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Foreword to the 
Second English Edition 

Foreword to the 
First English Edition 

The Mathematical Society of Japan takes 
pleasure in presenting this second edition of 
our Encyclopedic Dictionary $Mathematics 

to every researcher and user of mathematics. 
It is intended to be a compact, up-to-date 
source of information comprising, as com- 
pletely as possible, all significant results in ah 
fields of our Science, pure and applied, from 
the elementary to the advanced level. The 
success of the tïrst edition owed much to the 
kind assistance given by the American Mathe- 
matical Society. As described in the preface, 
the members of our Society have taken re- 
sponsibility for compiling this new edition. 
We hope that it Will be as useful to the mathe- 
maticians of today as the first edition was 
to the mathematicians of yesterday. We also 
hope that this edition Will be followed in 
years to corne by subsequent ones incorporat- 
ing the future development of our Science. 

Hikosaburo Komatsu 
President 198551987 
Mathematical Society of Japan 

The American Mathematical Society welcomes 
the publication of the Encyclopedic Dictionaqj 

of‘ Mathematics. For many years we have been 
fascinated by the publication in Japanese, 
Iwanami Sügaku Ziten, because we saw that 
this was an encyclopedia that contained effec- 
tive and penetrating information about all 
the tïelds of advanced mathematical research. 
We were also frustrated because we could not 
read Japanese and SO we could not really 
reach out to this expert and effective source 
of information. We now welcome the fact that 
the second Japanese edition has been trans- 
lated into English and we look forward to the 
fascination which we cari now have in getting 
at this rich mine of information. 

Saunders MacLane 
President 197331974 
American Mathematical Society 





Preface to the 
Second English Edition 

This second edition of the Encyclopedic Dic- 

tionary of Mathematics is in substance an 
English version of the third edition of Iwanami 

Sügaku Ziten (in Japanese). We shall explain 
how these two versions are related to each 
other and how the present edition differs from 
the first English edition. For the sake of sim- 
plicity we abbreviate Encyclopedic Dictionary 

of Mathematics and Iwanami Sügaku Ziten to 
EDM and ISZ, respectively, and indicate the 
numbers of editions beyond the lïrst by Arabie 
numerals. 

The prefaces of the previous editions Will 
clarify how ISZ, its augumented edition, ISZ2, 
ISZ3, and EDM came into existence in 1954, 
1960, 1968, 1985, and 1977, respectively. EDM, 
published nine years later than ISZ2, consisted 
of its English translation and some new mate- 
rials added to update its contents. In retro- 
spect, it was felt that this procedure was not 
adequate to tope with the recent rapid pro- 
gress of mathematics, and a suggestion was 
raised in the Mathematical Society of Japan 
that ISZ3 and EDM2 be produced simulta- 
neously. The favorable reaction of the mathe- 
matical public to EDM encouraged us greatly. 

In 1978 an agreement was made among the 
Society, Iwanami Shoten, Publishers, and The 
MIT Press for the publication of ISZ3 and 
EDM2. An editorial committee was estab- 
lished in the Society with the members named 
in the preface to ISZ3. Manuscripts were pre- 
pared simultaneously in Japanese and English 
by each contributor, with Yuji Ito acting as 
linguistic consultant. 

1 should mention that we benefïted greatly 
from the kind comments on EDM by the 
following mathematicians: J. F. Adams, M. 
Atiyah, A. Borel, H. Cartan, K. Chandrase- 
kharan, S. S. Chern, J. Dieudonné, E. Hewitt, 
F. Hirzebruch, 0. Lehto, J. L. Lions, L. Markus, 
and J. P. Serre. In particular, we are deeply 
grateful to J. Dieudonné for his many detailed 
comments. 

Compared with ISZ3 and EDM, EDM2 has 
the following characteristics: 

(1) EDM2 contains many more new mathe- 
matical results than EDM. For the details we 
refer the reader to the main points of revision 
mentioned in the preface to ISZ3, because 
EDM2 has the same mathematical content 
as ISZ3 and the additions made to ISZ2 and 
subsequently in EDM are of relatively minor 
importance. 

(2) The Japanese textbooks listed in the 
article references of ISZ3 are replaced in 
EDM2 by references to standard textbooks 

written in English. Such replacement was not 
done in compiling EDM. 

(3) Years of birth and death are included in 
the Name Index of EDM2 as far as possible. 
This information was given in ISZ2 but was 
removed in compiling EDM. 

(4) The Subject Index of EDM2 is SO de- 
signed that every concept consisting of two or 
more words cari be traced from each of these 
component words. (This principle was adopted 
in ISZ2 and EDM but was not rigidly fol- 
lowed in ISZ3 due to the lack of space.) 

(5) While a11 editions of ISZ were in one 
volume and EDM was in two volumes, EDM2 
is in four volumes: 1. Forewords, prefaces, 
introduction, text A-E; II. Text FFN; III. 
Text O-Z; IV. Appendices, indexes and other 
backmatter. The Systematic List of Articles 
appears in volume IV, page 1857. 

While EDM2 is more voluminous than 
ISZ3, we hope that, being written in English 
and printed with generous margins, it cari 
easily provide readers with information on 
every signitïcant result of today’s mathematics 
and SO Will be useful to a large number of 
mathematicians. 1 am responsible for any 
shortcomings that may exist despite all our 
efforts, and 1 would appreciate any remarks 
from the readers. I hope to have occasion to 
remedy any such shortcomings in the future. 

Finally 1 would like to repeat my thanks to 
a11 the collaborators named in my preface to 
ISZ3. Also 1 express my gratitude to Yuji Ito 
for his tremendous effort to polish the English 
of all manuscripts, to Shigeru Iitaka for his 
laborious assistance in the final stage of the 
work, to Mrs. M. Nawata for her excellent 
secretarial work, and to the staff of the De- 
partment of Mathematics at Gakushuin Uni- 
versity for providing me with an office for 
compilation for eight years. 

Kiyosi Itô 
December 1986 



Preface to the 
Third Japanese Edition 

The tïrst edition of Iwanami Sùgaku Ziten was 
published in 1954, and a revised and aug- 
mented edition appeared in 1960. Extensive 
revision of the work was carried out sub- 
sequently, and the result was published in 1968 
as the second edition, which has retained its 
valuable and useful life for the past 17 years. 
The English translation of this second edition 
published by The MIT Press has achieved 
international recognition. In the meantime, 
remarkable progress has been made in mathe- 
matical sciences: recognition of the interrela- 
tionships amongst various branches within 
mathematics has increased signitïcantly, and 
the formulation of mathematics as a synthetic 
entity is in the making. Furthermore, advanced 
mathematical theories have been utilized fre- 
quently in the physical, biological, and social 
sciences, and expectations for mathematics 
to be the basis of a11 the sciences have been 
increasing. In order to tope with these devel- 
opments, it was decided that the second edition 
of Sügaku Ziten should be further revised and 
an updated version be published as the third 
edition. The English translation of this third 
edition Will also be published by The MIT 
Press. 

The main points of the revision are as 
follows: 

(1) On the Size and Scope of the Encyclo- 
pedia: The total number of articles has in- 
creased only slightly from that of the second 
edition, from 436 to 450. However, in view 
of the rapid and extensive development in 
mathematics in recent years, many old articles 
have been reorganized and unilïed, and much 
new material has been added. Consequently, 
the mathematical content of the encyclopedia 
has increased a great deal over that of the 
second edition, and this, together with the 
authors’ efforts to render the articles more 
readable than before, necessitated a 50% in- 
crease in the number of pages devoted to the 
main text. The account of computer science 
has been taken out of the subject area of 
Numerical Analysis, and a new subject area 
has been created for it; thus mathematics is 
now classified into 21 subject areas altogether 
instead of 20. 

(2) On the Arrangement of the Articles: In 
the second edition, the title of each article 
was spelled out in Romanized Japanese, and 
articles were arranged alphabetically. In the 
third edition, however, the titles of the articles 
are arranged in the order of the Japanese syl- 
labary (katakana) and each article is numbered 

X 

accordingly. TO each article a parenthetical 
number is also attached, giving the subject 
area to which the article belongs and its place 
in that list. 

(3) On the Text: Sections within each arti- 
cle are headed by letters A, B, C, ; the ini- 
tial section of each article gives an outline 
and is devoted to an introductory and general 
account of the topic with which the article 
is concerned. In the actual exposition of 
the articles, every effort has been made to 
pay close attention to the interrelationships 
amongst various lïelds of mathematics. Even 
when there was no need to revise the original 
article, changes were made in the bibliography 
to list items that would be more accessible to 
the readers. 

(4) On the Appendices: The appendices have 
been revised and augmented along with the 
text. Numerical tables were deleted when- 
ever it was felt that scientilïc calculators or 
microcomputers could easily reproduce their 
contents. 

(5) On the Indexes: The listing of mathe- 
matical terms in Japanese has been changed, 
as in the case of the arrangement of articles, 
from the alphabetical order to the order of 
the Japanese syllabary. However, terms in 
Japanese that start with a European word 
have been separated out, and, in order to 
facilitate fïnding, have been listed indepen- 
dently in an Index for Mathematical Terms in 
Japanese with European Headings. The loca- 
tion of a term listed in the indexes is indicated 
by the article number and the letter heading 
of the section in the article where the term 
appears. 

We here outline briefly how the process of 
compilation of this edition was organized. In 
the summer of 1978 the Mathematical Society 
of Japan decided, following a proposa1 by 
Professors Shôkichi Iyanaga and Yukiyosi 
Kawada, the chief editors of the previous 
editions of Sügaku Ziten, to undertake the 
compilation of the third edition. Following 
a resolution by the members of the Soci- 
ety, Kunihiko Kodaira, Sigeru Mizohata, 
Itiro Tamura, Nagayoshi Iwahori, Tosihusa 
Kimura, and myself have joined Iyanaga and 
Kawada to form an editorial committee and 
have formulated basic guidelines for the com- 
pilation of the third edition. The work of 
editing and compiling articles in each subject 
area was delegated to the editors designated 
for the areas, and 1 was asked to undertake the 
responsibility of putting the entire volume in 
order. 

The subject areas and their editors are as 
follows: 



Xi 

1 
II 

III 
IV 
V 
VI 

VII 

VIII 
IX 
X 
XI 

XII 

XIII 

XIV 
xv 
XVI 

XVII 

Logic and Foundations: Shôji Maehara 
Sets, General Topology, and Cate- 
gories: Shôji Maehara, Hikosaburo 
Komatsu, Masayoshi Nagata 
Algebra: Masayoshi Nagata 
Croup Theory: Nagayoshi Iwahori 
Number Theory: Takayoshi Mitsui 
Euclidean and Projective Geometry: 
Itiro Tamura 
Differential Geometry: Morio Obata, 
Shigeru Iitaka, Itiro Tamura 

Algebraic Geometry: Shigeru Iitaka 
Topology: Itiro Tamura 
Analysis: Sigeru Mizohata, Kiyosi Itô 
Complex Analysis: Yukio Kusunoki, 
Shigeru Iitaka 
Functional Analysis: Hikosaburo 
Komatsu 
Differential, Integral, and Functional 
Equations: Tosihusa Kimura, Sigeru 
Mizohata 
Special Functions: Sin Hitotumatu 
Numerical Analysis: Masaya Yamaguti 
Computer Science and Combinatorics: 
Sin Hitotumatu 
Probability Theory: Kiyosi Itô 

XVIII Statistics: Kei Takeuchi 
XIX Mathematical Programming and 

Operations Research: Shigeru Furuya 
xx Mechanics and Theoretical Physics: 

Huzihiro Araki 
XXI History of Mathematics: Shôkichi 

Iyanaga 
Appendices: Sin Hitotumatu 

Before the actual process of compilation 
started, the editorial committee had met sev- 
eral times, and two meetings of a11 the subject- 
area editors had been called. Furthermore, 
editors for each area consulted with other 
experts in their fïelds as they selected the 
titles of articles to be included. In areas where 
remarkable development had taken place, such 
as differential geometry, functional analysis, 
probability theory, and applied mathemat- 
ics, extensive revision and insertion of many 
new articles were proposed by the respective 
editors. For this reason, the original articles 
were thoroughly reorganized and systematized. 
We resolved to keep the whole work in one 
volume, even though a number of new articles 
have had to be added. 

The selection of articles and of their re- 
spective authors was tïnally completed in the 
spring of 1980, and 197 colleagues were asked 
to Write the articles. The names of these con- 
tributors and those of the previous editions are 
listed elsewhere in this volume. TO all of the 
authors we express our sincere gratitude. 

Editing of the entire manuscript has been 
carried out since the summer of 1982, and we 
are deeply indebted to the following colleagues 
for their painstaking efforts in checking cross 
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references and in proofreading: Nobuyosi Moto- 
hashi (Foundations, Set Theory), Takeo Yoko- 
numa (Algebra, Group Theory), Takayoshi 
Mitsui (Number Theory), Tetsuro Kawasaki 
(Geometry, Topology), Shigeru litaka, Isao 
Wakabayashi (Algebraic Geometry), Morio 
Obata, Koichi Ogiue, Osamu Kobayashi (Dif- 
ferential Geometry). Seizô Ito, Hisashi Oka- 
moto (Analysis), Hiroaki Aikawa, Makoto 
Ohtsuka (Computer Analysis), Hikosaburo 
Komatsu, Akihiko Miyachi (Functional 
Analysis), Kazuo Okamoto, Daisuke Fujiwara 
(Differential Equations), Sin Hitotumatu 
(Special Functions), Teruo Ushijima (Nu- 
merical Analysis), Hideo Wada (Computer 
Science), Yasunori Okabe (Probability Theory), 
Mituaki Huzii, Yoshihiro Yajima (Statistics), 
Shigeru Furuya (Mathematical Programming), 
Koichi Nakamura (Theoretical Physics), 
Shûichi Okamoto (History of Mathematics), 
Kosaku Okutsu (History of Mathematics, 
Number Theory). 

On those occasions when it became neces- 
sary to rapidly revise manuscripts in order to 
unify the presentation, we were forced to go 
through the revision without consulting the 
authors of the manuscripts. 1 am responsible 
for all such revisions and hereby express my 
apologies to the authors concerned. 

As for the indexes, we received assistance 
from Takeo Yokonuma, Koichi Yano, Hiroaki 
Aikawa, and Hisashi Okamoto in all aspects 
of the work, which lasted for two years, 
through the final proofreading. Preliminary 
work on the Name Index was carried out by 
staff members of the University of Tokyo, and 
Seizô Tto supervised its final compilation. We 
also asked many other colleagues, and in par- 
ticular Nobuyuki Ikeda and Huzihiro Araki, 
to participate in the preparation of the Name 
Index, using resources available at different 
universities. TO all of these people goes our 
sincere gratitude for their assistance. 

Last August, when the completion of the 
work was drawing near, it became necessary 
for me to leave Japan for some time, and this 
made it imperative that 1 entrust Shigeru 
Iitaka with responsibility for supervising the 
work at the final stage of editing. 1 am most 
grateful to Iitaka for having agreed to take 
over this responsibility and for having brought 
the work to completion under the pressure of 
time. 

From the beginning of this project, we have 
received an unlimited amount of assistance 
from the members of the Dictionary Depart- 
ment of Iwanami Shoten, Publishers. Messrs. 
Ikutaro Sasaki, Hirotomo Ushida, Kazuhiko 
Uetake, and Nagao Sato in particular, have 
made supreme efforts and have corne up fre- 
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quently with innovative ideas to make this 
dictionary polished and Perfect. TO them and 
also to those at Dai-Nippon Printing CO., who 
typeset with the use of computers the entire 
text, including the complicated mathematical 
formulas, and who have cooperated with us 
fully in the process of editing the indexes, goes 
our deep gratitude. 

Kiyosi Itô 
October 1985 

xii 

Preface to the 
First English Edition 

The fïrst and second editions of Iwanami 
Sügaku Ziten (in Japanese) were published, 
respectively, in April 1954 and June 1968 by 
lwanami Shoten, Publishers, Tokyo. Begin- 
ning in the late 1950s a number of unsuccess- 
fui attempts were made to arrange for translat- 
ing the Sügaku Ziten into European languages. 
Finally an agreement for an English transla- 
tion was made between The MIT Press and 
the Mathematical Society of Japan in July 
1968. The discussions were carried on tïrst 
by Professor Kôsaku Yosida, then presi- 
dent of the Mathematical Society of Japan, 
and later by Yukiyosi Kawada, who suc- 
ceeded him in April 1968. Throughout these 
initial negotiations, which lasted from 1966 to 
1968, we received the kindest assistance 
from Dr. Gordon Walker, Executive Director 
of the American Mathematical Society, 
and from Professors W. T. Martin and Shizuo 
Kakutani. 

The agreement for the project was shortly 
followed by the establishment of a commit- 
tee for the English edition of Sügaku Ziten 
within the Mathematical Society of Japan, 
with the following membership: Professors 
Yasuo Akizuki, Shigeru Furuya, Sin Hito- 
tumatu, Masuo Hukuhara, Isao Imai, Shô- 
kichi Iyanaga, Yukiyosi Kawada, Kunihiko 
Kodaira, Atuo Komatu, Hirokichi Kudo, 
Shôji Maehara, Yukio Mimura, Kiyoshi 
Noshiro, Shigeo Sasaki, Shoji Ura, Nobuo 
Yoneda, and Kôsaku Yosida. This committee 
requested the original authors of the articles 
and other members of the Society to translate 
the work. A list of translators Will be found at 
the end of this work. 

In November 1968, an advisory committee 
for the project was formed with the following 
membership: Professor Edwin Hewitt (chair- 
man), Dr. Sydney H. Gould, Professor Shizuo 
Kakutani, Professor Kenneth 0. May, and 
Professor Isaac Namioka. 

As the translating began, we were immedi- 
ately faced with problems concerning unilïca- 
tion of terminology and style, some of which 
were inherent in the differences between the 
structures of our two languages-for example, 
the fact that the Japanese language makes no 
distinction between singular and plural forms 
of nouns. 

In August 1969, Professor Hewitt kindly 
arranged a meeting at the University of Wash- 
ington, Seattle, that included the members 
of the Japanese and American committees 
and a representative of The MIT Press. It was 
agreed during this meeting that the transla- 



. . . 
XIII 

tion should be faithful, with only a minimum 
number of changes, such as the correction of 
mathematical errors; whereas the references 
to each article might be augmented consider- 
ably for the convenience of Western readers. 
Professor Kenneth 0. May volunteered to 
review the entire translated manuscript, and 
Professors Isaac Namioka and Shizuo Kaku- 
tani, who are protïcient in both Japanese and 
English, proposed to read through some of the 
manuscript of the translated articles. It was 
also agreed that the Systematic List of Arti- 
cles should appear in French, German, and 
Russian, as well as in English. 

We owe very much to the American com- 
mittee: Professor Hewitt organized the whole 
work, and Professor May revised the entire 
manuscript and gave us important advice con- 
cerning the appendices, according to which we 
deleted some of the numerical tables which 
may be easily found in readily accessible West- 
ern books. Professor Namioka reviewed a 
great part of the manuscript, transmitting his 
views to Professor May, who forwarded them 
to us with his comments. Al1 of this assistance 
helped us greatly in making our final decisions. 
Professor Kakutani gave us very detailed and 
important advice on the choice of reference 
works. 

We were also assisted concerning English 
terminology and reference books by the fol- 
lowing Japanese mathematicians working in 
American universities: Tadatoshi Akiba, Pro- 
fessors Kiyosi Itô, Tatsuji Kambayashi, Tosio 
Kato, Teruhisa Matsusaka, Katsumi Nomizu, 
Ichiro Satake, Michio Suzuki, and Gaisi 
Takeuti. 

The Mathematical Society of Japan estab- 
lished the following double reviewing system: 
group A with its twenty subgroups, each 
headed by the members listed below, reviewed 
their respective subjects; while group B re- 
viewed the whole manuscript, mainly from the 
linguistic standpoint. 
Group A 
1. Foundations of mathematics: Shôji 
Maehara 
2. Set theory: Atuo Komatu and Shôji 
Maehara 
3. Algebra: Akira Hattori, Masayoshi Nagata, 
and Hideyuki Matsumura 
4. Group theory: Shingo Murakami, Mitsuo 
Sugiura, and Reiji Takahashi 
5. Number theory: Yukiyosi Kawada and 
Tomio Kubota 
6. Geometry, 7. Differential geometry: Shô- 
kichi Iyanaga, Shigeo Sasaki, and Kentaro 
Yano 
8. Algebraic geometry: Yasuo Akizuki and 
Kunihiko Kodaira 
9. Topology: Atuo Komatu 
10. Real analysis: Sin Hitotumatu, Shunji 
Kametani, and Shigeki Yano 
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11. Complex analysis: Kiyoshi Noshiro 
12. Functional analysis: Yukio Mimura and 
Kôsaku Yosida 
13. Differential equations: Masuo Hukuhara 
and Sigeru Mizohata 
14. Special functions: Sin Hitotumatu 
15. Numerical analysis, 16. Probability 
theory: Kiyosi Itô 
17. Statistics: Hirokichi Kudo 
18. Information theory: Tosio Kitagawa and 
Hirofumi Uzawa 
19. Theoretical physics: Isao Imai and 
Kazuhiko Nishijima 
20. History of mathematics: Tamotsu Murata 
Group B 
Kenichi Iyanaga and Mitsuyo Iyanaga 

Professor Sin Hitotumatu also assisted us in 
translating the titles of Japanese books given 
in the references and the explanations attached 
to the lists of formulas and numerical tables in 
the appendices. We are also grateful for the 
generous cooperation offered to us by our 
colleagues in the Department of Mathemat- 
ics, Faculty of Science, University of Tokyo: 
Hiroshi Fujita, Shigeru Furuya, Akio Hat- 
tori, Seizô Itô, Nagayoshi Iwahori, Tosihusa 
Kimura, Kunihiko Kodaira, Hikosaburo 
Komatsu, Akihiro Nozaki, and Itiro Tamura. 
We are indebted as well to Professors Walter 
L. Bailey of the University of Chicago and 
Yuji Ito of Brown University for many valu- 
able consultations concerning both mathe- 
matical and linguistic questions. 

In translating the Systematic List of Articles 
into French, German, and Russian, we were 
assisted by Professor Hideya Matsumoto in 
Paris, Professor Emanuel Sperner in Hamburg, 
Professor Katsuhiro Chiba in Tokyo, and 
Professor Arkadiï Maltsev in Moscow. 

We began to send the manuscript to The 
MIT Press in March 1970 and iïnished send- 
ing it in July 1972. The manuscript was edited 
there, then sent to Professors May, Namioka, 
and Kakutani, and fmally was sent back to us 
with their comments and questions. All of the 
references were carefully checked by Laura 
Platt. 

Iwanami Shoten, Publishers, have always 
been cooperative with us. In the office of 
the Mathematical Society of Japan, Yoko 
Endo, Reiko Nagase, and Chieko Sagawa 
helped us with their eftïcient secretarial 
work. 

The fruition of this project was made pos- 
sible only by the gracious assistance offered to 
us by many people, including those already 
mentioned. We should like to express our 
most sincere gratitude to all those who have 
helped us SO kindly. 

Shôkichi Iyanaga, Yukiyosi Kawada 
August 1973 
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Addition made in January 1976 

After the procedures described above, the 
whole manuscript of this Encyclopedia was 
sent to The MIT Press in August 1973. It was, 
however, toward the end of November 1975 
that the final decision was made by The MIT 
Press to send the manuscript to composition 
in early 1976 in order that the work be pub- 
lished in 1977. 

At the same time, we were asked to review 
and update the manuscript up to the end of 
February 1976. We are now making our best 
effort to this effect with the kind help, especially 
from the linguistic viewpoint, of Dr. E. J. 
Brody. 

In SO doing, we have noticed that perhaps 
too much emphasis has been given to results 
obtained by Japanese mathematicians and that 
there are still many things in this book which 
should be improved. 

We hope that ongoing revisions Will be 
carried out in subsequent editions. 

xiv 

Preface to the 
Second Japanese Edition 

Seven and a half years have passed since the 
revised and augmented edition of Iwanami 

Sügaku Z&en was published. The nature and 
purpose of this book remain the same as de- 
scribed in the preface to the first edition: It is 
an encyclopedic dictionary with articles of 
medium length aimed at presenting the whole 
of mathematics in a lucid system, giving exact 
definitions of important terms in both pure 
and applied mathematics, and describing the 
present state of research in each field, together 
with historical background and some per- 
spectives for the future. However, mathemat- 
ical science is in rapid motion, and the “pre- 
sent state of research” changes constantly. 
The present updated second edition has been 
published to remedy this situation as far as 
possible. 

The main points of revision are as follows: 
(1) On the Articles and the Size of the Ency- 

clopedia: From the articles of the last edition, 
we have removed those whose importance has 
diminished recently (e.g., Geometry of Tri- 
angles), while we have added new articles in 
domains of growing importance (e.g., Cate- 
gories and Functors; K-Theory). Many articles 
concerning applied mathematics in the fïrst 
edition were short; in this edition, they have 
been combined into articles of medium length 
to save space and to systematize the presenta- 
tion. The number of articles, 593 in the fïrst 
edition, has thus diminished to 436. We have 
made every effort to keep the size of the ency- 
clopedia as it was, but the substantial aug- 
mentation of content has necessarily brought 
about an enlargement of about 30%. 

(2) On the Text: When the title of an article 
has remained the same as in the fïrst edition, 
we have reviewed the whole text and revised 
whenever necessary. Especially for the fun- 
damental ideas, we have endeavored to give 
thorough explanations. In the first edition we 
gave English, French, and German transla- 
tions of article titles; in the present edition, we 
have also added Russian. The bibliographies 
at the ends of articles have been updated. 

(3) On Terminology: In previous editions we 
endeavored to unify the terminology of the 
whole encyclopedia SO that the reader would 
have no difficulties with cross-references. Here 
we have done this once again with the hope of 
attaining results more Perfect than before. 

(4) On the Appendices: The appendices were 
designed to supplement the text efficiently. 
Some overlapping of the appendices with the 
text found in previous editions has been re- 
moved. Also deleted in this edition are elemen- 
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tary formulas in analytic geometry and tables 
of statistical distributions, which cari be easily 
found in other books. However, we have 
added some formulas in topology, the theory 
of probability, and statistics, as well as tables 
of characters of lïnite groups, etc. 

(5) On the Indexes: Important terms are 
listed multiply in the indexes to facilitate tïnd- 
ing, e.g., the term transcendental singularity 

appears under both transcendental and singu- 

larity. Both names in the text and those in the 
references are included in the Name Index of 
this edition. The numbers of items in the Index 
of Mathematical Terms in Japanese and in 
European Languages and in the Name Index in 
this edition are 17740, 10124, and 2438, com- 
pared with 8254,8070, and 1279, respectively, in 
the previous edition. 

The compilation of this edition was organized 
as follows. In the spring of 1964 we began to 
Select the titles of articles with the aid of the 
following colleagues: in set theory and foun- 
dations of mathematics, Shôji Maehara; in 
algebra and number theory, Yasuo Akizuki, 
Yukiyosi Kawada; in differential geometry, 
theory of Lie groups, and topology, Yozo 
Matsushima, Atuo Komatu; in analysis, 
Masuo Hukuhara, Kôsaku Yosida, Shunji 
Kametani, Sin Hitotumatu; in probability 
theory, statistics, and mathematics for pro- 
gramming, Kiyosi Itô, Hirokichi Kudo, and 
Shigeru Furuya; in theoretical physics, Isao 
[mai; and for the appendices, Sin Hitotumatu. 
1 have participated in compiling the articles 
on geometry and the history of mathematics. 
Kawada and Hitotumatu undertook the re- 
sponsibility of putting the volume in order. 

The work of selecting titles was completed 
in the summer of 1964. We then asked 173 
colleagues to contribute articles. The names of 
these contributors and those of the previous 
editions are listed elsewhere. TO all of them 
goes our most sincere gratitude. 

In editing the manuscript, we were assisted 
by the following colleagues in addition to 
those mentioned already: in set theory and 
foundations of mathematics, Setsuya Seki and 
Tsurane Iwamura; in algebra and number 
theory, Masayosi Nagata, Akira Hattori, 
Hideyuki Matsumura, Ichiro Satake, Tikao 
Tatuzawa; in geometry, theory of Lie groups, 
and topology, Singo Murakami, Hideki Ozeki, 
Noboru Tanaka, Kiiti Morita, Hirosi Toda, 
Minoru Nakaoka, Masahiro Sugawara, Shôrô 
Araki; in analysis, Kiyoshi Noshiro, Yûsaku 
Komatu, Seizo Ito, Hiroshi Fujita, Shige- 
Toshi Kuroda, Sigeru Mizohata, Masaya 
Yamaguti, Tosiya Saito, Tosihusa Kimura, 
Masahiro Iwano; in probability theory, sta- 
tistics, and mathematics of programming, 

Preface to the 

Second Japanese Edition 

Nobuyuki Ikeda, Tadashi Ueno, Masashi 
Okamoto, Haruki Morimoto, Kei Takeuchi, 
Goro Ishii, Tokitake Kusama, Hukukane 
Nikaido, Toshio Kitagawa; and in theoretical 
physics, Ryogo Kubo, Hironari Miyazawa, 
Yoshihide Kozai. 

After the summer of 1965, we entered into 
the period of finer technical editing, in which 
we were assisted by the following colleagues: 
in algebra, Keijiro Yamazaki, Shin-ichiro 
Ihara, Takeshi Kondo; in geometry, Tadashi 
Nagano, Mitsuo Sugiura, Ichiro Tamura, 
Kiyoshi Katase; in analysis, Nobuyuki Suita, 
Kotaro Oikawa, Kenkiti Kasahara, Tosinobu 
Muramatsu, Hikosaburo Komatsu, Setuzô 
Yosida, Hiroshi Tanaka; and in history, 
Tamotsu Murata. 

We were also assisted by Katsuhiro Chiba 
in the Russian-language translation of the 
article titles, and by Osamu Kôta and Kiyoshi 
Katase in the indexing. 

Proof sheets began appearing in the spring 
of 1966. In proofreading, Kaoru Sekino, 
Osamu Kôta, Kiyoshi Katase, and Teruo 
Ushijima helped us, as well as Mrs. Rieko 
Fujisaki. Miss Yoko Endo worked with all of 
us throughout the entire revision at the office 
of the Mathematical Society of Japan. She 
helped us especially in looking for and check- 
ing references and preparing the Name Index. 

Yukiyosi Kawada supervised the whole 
work, succeeding me in the role 1 had played 
in the compilation of the tïrst and augmented 
editions. Sin Hitotumatu collaborated with 
him throughout, especially on the appendices. 
The second and the third proof sheets of the 
text were read by Kawada; the fourth proof by 
Hitotumatu; the proof sheets of appendices by 
both Kawada and Hitotumatu. 

The Editorial Committee of the Mathe- 
matical Society of Japan asked me to Write 
this preface. Having edited the previous edi- 
tions and realizing full well the diflïculty of the 
task, 1 would like to express my particular 
gratitude to Kawada. In the Dictionary De- 
partment of Iwanami Shoten, Publishers, 
Messrs. Hiroshi Horie, Tetsuo Misaka, Shi- 
geki Kobayashi, and Toshio Kouda were very 
cooperative in their collaboration with us. 
TO them and also to those who typeset and 
printed this book at Dai-Nippon Printing CO. 
and Shaken CO. goes our gratitude. 

S. lyanaga 
March 1968 
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Preface to the Revised and Preface to the 
Augmented Japanese Edition First Japanese Edition 

Six years have passed since the publication of 
the first edition of this encyclopedia. This re- 
vised and augtnented edition incorporates the 
achievement of these years. It contains, to- 
gether with the correction of errors found in 
the first edition, some new articles such as 
Abelian Varieties, Automata, Sheaves, Homo- 
logical Algebra, Information Theory, and also 
supplements to articles in the fïrst edition such 
as Complex Multiplication, Computers, and 
Manifolds. These additional items render the 
new edition 93 pages longer than the previous 
one. Each article has been thoroughly re- 
vised, and the indexes have been completely 
rewritten. 

We were assisted by the following colleagues 
in selecting articles, writing, and proofreading: 
In set theory and foundations of mathematics, 
Sigekatu Kuroda, Setsuya Seki; in algebra 
and number theory, Tadao Tannaka, Tsuneo 
Tamagawa: in real analysis, Shunji Kametani, 
Kôsaku Yosida; in function theory, Kiyoshi 
Noshiro, Sin Hitotumatu; in theory of dif- 
ferential and functional equations, Masuo 
Hukuhara, Masahiro Iwano, Ken Yamanaka; 
in functional analysis, Kôsaku Yosida, Seizô 
Itô; in geometry, Shigeo Sasaki, Nagayoshi 
Iwahori; in topology, Atuo Komatu, Itiro 
Tamura, Nobuo Yoneda; in theory of proba- 
bility, Kiyosi Itô, Seizô Itô; in statistics, Toshio 
Kitagawa, Sigeiti Moriguti, Tatsuo Kawata; 
in applied mathematics, Sigeiti Moriguti; and 
in mechanics and theoretical physics, Taka- 
hiko Yamanouchi, Isao Imai. The revision 
and augmentation of the articles concerning 
the history of mathematics was done by 
myself. Mlles. Yôko Tao, Eiko Miyagawa, and 
Mutsuko Nogami worked in the office of the 
Society. 

The names of authors who contributed to 
the completion of this edition have been added 
to the original list of contributors. 

The project of editing this edition started 
in the summer of 1958. We acknowledge our 
deep gratitude to all those who have col- 
laborated with us since that time. 

S. Iyanaga 
August 1960 

This encyclopedia, Iwanami Sügaku Z&en, was 
compiled by the Mathematical Society of 
Japan at the request of the Iwanami Shoten, 
Publishers, who have hitherto published a 
series of scientifïc dictionaries such as Iwanami 
Rikagaku-Ziten (Iwanami Encyclopedia qf 

Physics and Chemistry) and Iwanami Tetugaku- 

Ziten (Iwanami Encyclopedia of Philosophy). 

As mentioned in the prefaces to these volumes, 
the importance of such encyclopedias in clari- 
fying the present state of each science is obvious 
if we observe the rapid pace of contemporary 
research. Mathematics is also in rapid motion. 
As a fundamental part of exact science, it 
serves as a basis of all science and technology. 
It also retains its close contact with philo- 
sophy. Therefore, the significance of having 
an encyclopedia of mathematics cannot be 
overemphasized. 

Mathematics have made remarkable pro- 
gress in the 20th Century. As for Ihe situation 
toward the end of the 19th Century, we quote 
the following passage from the article Mathe- 
matics in the 19th Century of this encyclo- 
pedia: “Toward the end of [the 19th] Century, 
the subjects of mathematical research became 
highly differentiated. Branches split into more 
specialized areas of study, while unexpected 
relations were found between previously 
unconnected fields. The situation became 
SO complicated that it was dificult to view 
mathematics as a whole. It was in these cir- 
cumstances that in 1898, at the suggestion of 
Franz Meyer and under the sponsorship of the 
Academies of Gottingen, Berlin, and Vienna, a 
project was initiated to compile an encyclo- 
pedia of the mathematical sciences. Entitled 
the Enzykloptidie der mathematischen Wissen- 

schcften, it was completed in 20 years.. .” 
One of the characteristics of 20th-Century 

mathematics is the conscious utilization of the 
axiomatic method and of general concepts 
such as sets and mappings, which serve as 
foundations of different theories. Indeed, 
mathematics is being reorganized on the basis 
of topology and algebra. One such example of 
reorganization is found in Bourbaki’s Eléments 
de mathématique; some fifteen volumes of this 
series have been published since 1939, and 
more are coming. This encyclopedia, with 
its limited size, cannot contain proofs for 
theorems. However, we intend to present a 
lucid view of the totality of mathematics, 
including its historical background and future 
possibilities. 

Each article of this encyclopedia is of me- 
dium length-suffciently short to permit 



xvii 

the reader to find exact definitions of notions, 
and sufflciently long to contain explanations 
clarifying how important concepts in the same 
field are related to each other. The problem of 
choosing adequate titles required some de- 
liberation. The Systematic List of Articles, 
classified according to specific fields, shows 
those we have chosen. The Index of Terms 
contains detailed references for each notion. 
The appendices, including formulas and tables, 
supplement the text, and Will be particularly 
useful for applied mathematicians. 

The project of compiling this encyclopedia 
was proposed in the spring of 1947 by the 
Steering Committee of the Mathematical 
Society of Japan. It was promptly adopted, 
and the selection of articles in specifïc tïelds 
was started by the sectional committees of the 
Society. After seven years, our encyclopedia 
is fïnally appearing. We shall not give a de- 
tailed description of how our work proceeded 
through a11 these years. We list simply the 
names of those who assisted us greatly and 
to whom we should like to express our deep 
gratitude. 

The president of the Society at the start of 
this project was the late Professor Tadahiko 
Kubota; but our work has been supported also 
by Professors Teiji Takagi, Zyoiti Suetuna, and 
Masatsugu Tsuji as well as by other leading 
members of the Society. 

At the stage of selecting articles, we were 
assisted by the following colleagues: in history 
and the foundations of mathematics, Sige- 
katu Kuroda, Motokiti Kondo; in algebra 
and number theory, Kenjiro Shoda, Tadasi 
Nakayama, Masao Sugawara, Yukiyosi 
Kawada, Kenkichi Iwasawa; in geometry, 
Kentaro Yano, Asajiro Ichida; in function 
theory, Kiyoshi Noshiro, Yûsaku Komatu; in 
t‘he theory of differential and functional equa- 
tions, Masuo Hukuhara, Shigeru Furuya; in 
topology, Atuo Komatu, Ryoji Shizuma; in 
functional analysis, Yukio Mimura, Shizuo 
Kakutani, Kôsaku Yosida; in the theory of 
probability and statistics, Tatsuo Kawata, 
Toshio Kitagawa, Junjiro Ogawa; and in 
applied mathematics, Ayao Amemiya, Isao 
Imai, Kunihiko Kodaira, Shigeiti Moriguti. 

We asked 190 colleagues to contribute arti- 
cles, which were collected in 1949. Since then 
we have spent an unexpectedly long time edit- 
ing them. Terminology had to be unified 
throughout the encyclopedia SO that the reader 
would have no trouble with cross-references. 
Repetitions had to be eliminated and gaps 
filled. Part of the manuscript thus had to be 
rewritten a number of times. We have made 
out utmost effort in this editing work, but we 
are not completely without apprehension that 
our result has still left something to be desired. 

Preface to the 
First Japanese Edition 

For any shortcomings in the work, 1 take 
complete responsibility, as 1 have acted as the 
editor-in-chief. Also, since we have rewritten 
the manuscript, as already mentioned, we have 
refrained from printing the name of the original 
author of each article; for this, 1 must request 
the understanding of the contributors. 

In the stage of editing and proofreading, 
we were assisted by the following colleagues: 
Yukio Mimura, Yukiyosi Kawada, Kazuo 
Matsuzaka, Sin Hitotumatu, Setsuo Fuku- 
tomi, Setsuya Seki, Shoji Irie, Shigeo Sasaki, 
Tatsuo Kawata, Sigekatu Kuroda, Yûsaku Ko- 
matu, Ayao Amemiya, Isao Iami, Tosio Kato, 
Tsurane Iwamura, Morikuni Goto, Kôsaku 
Yosida, Jirô Tamura, Yasuo Akizuki, Kiyoshi 
Noshiro, Motosaburo Masuyama, Sigeiti 
Moriguti, Osamu Kôta, Nobuo Yoneda, 
Tsuneo Tamagawa, Jun-ichi Hano; and more 
particularly, in the foundations of mathematics, 
Sigekatu Kuroda, Tsurane Iwamura; in alge- 
bra and number theory, Kazuo Matsuzaka, 
Yukiyosi Kawada; in algebraic geometry, 
Yakuo Akizuki; in real analysis, Tatsuo Ka- 
wata; in complex analysis, Yûsaku Komatu, 
Sin Hitotumatu, Jirô Tamura; in functional 
analysis, Kôsaku Yosida; in topology, Setsuo 
Fukutomi, Nobuo Yoneda; in the theory of 
probability and statistics, Motosaburo Masu- 
yama, Sigeiti Moriguti; and in applied mathe- 
matics, Ayao Amemiya, Isao Imai, Tosio 
Kato, Sigeiti Moriguti. 

The portraits of Abel and Riemann were 
kindly loaned to us by Torataro Shimomura. 

The formulas in the appendices were com- 
piled by Isao Imai, Sin Hitotumatu, and Sigeiti 
Moriguti; the Subject Index (in Japanese and 
European languages) by Osamu Kôta and 
Mrs. Hiroko Ide; the Name Index and Com- 
ments on Journals and Serials by Setsuo 
Fukutomi. Setsuo Fukutomi has taken an 
active part in our work ever since 1948 and 
given much effort to collecting and rewriting 
the manuscript and to unifying terminology. 
The editorial staff of Iwanami Shoten, Pub- 
lishers, has always been cooperative. Without 
their generous support, this encyclopedia 
could never have been published. 

1 should like to express my sincere gratitude 
to a11 those who have collaborated with us 
directly or indirectly. 

S. Iyanaga 
March 1954 





Introduction The Cyrillic alphabet is transliterated as 
follows: 

The text of this Encyclopedic Dictionary con- 
sists of 450 articles arranged alphabetically, 
beginning with 1 Abel and ending with 450 
Zeta Functions. Most of these articles are 
divided into sections, indicated by A, B, C, , 
AA, BB, _. Cross-references to articles, e.g., 
to the second article, are of the form: (- 2 
Abelian Groups) or (- 2 Abelian Groups A), 
according as the whole article or a specific 
section is being referred to. Citations in the 
indexes are also given in terms of article and 
section numbers. 

Transliteration - 
a (4 

6 (W 

Key terms accompanied by their definitions 
in the text are printed in boldface. Al1 of these 
terms are found in the Subject Index at the 
end of the volume. 

The sign + means that the term preceded by 
it cari be found in the index. A list of special 
notations used throughout the work (with 
explanations of their meanings) appears after 
the appendices. 

A Systematic List of Articles, showing the 
general structure of the work, Will be found on 
p. 1857 (vol. IV). The number in parentheses 
after each article title refers to this systematic 
classification into subject areas; e.g., “Abehan 
Varieties (VIII.5)” means that the article on 
Abelian varieties is the fifth article in Section 
VIII of the systematic list. 

Books and articles in journals are cited in the 
text by numbers in brackets: [l], [2], At 
the end of each article there is a section of 
references in which, for books, the name of the 
author or authors, title, name of the publisher, 
year of publication, and the number of the 
edition are given; for journals, the name of the 
author, title of the article, name of the journal, 
and the volume numbers and inclusive page 
numbers are given in this order. (The names of 
journals and publishers are abbreviated as 
indicated in the lists at the end of the work.) 

Cyrillic 
Alphabet 
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1 
Abel, Niels Henrik 

1 (XXI.12) 
Abel, Niels Henrik 

Niels Henrik Abel (August 5, 1802-April 6, 
1829) was born a son of a poor pastor in the 
hamlet of Findo in Norway. In 1822, he en- 
tered the University of Christiania; however, 
he studied mathematics almost entirely on his 
own. He was recognized as a promising stu- 
dent by his senior, Holmboe, and after gradu- 
ation he studied abroad in Berlin and Paris. 
In Berlin he met and was aided by A. Crelle, 
the founder of the Journal,fîr die Reine und 

Angewandte Mathematik, and participated in 
the founding of this journal. Although he did 
brilliant work in Paris, he did not gain the 
fame he deserved. He returned to Norway in 
May 1827, but, unable to find a job. he was 
obliged to fight poverty while continuing his 
research. He died at twenty-six of tuberculosis. 

His best-known works are the result that 
algebraic equations of order five or above 
cannot generally be solved algebraically, the 
result that +Abelian equations cari be solved 
algebraically, the theory of tbinomial series 
and of series in general, the theory of tellip- 
tic functions and more generally of +alge- 
brait functions, the introduction of TAbelian 
integrals, and the establishment of +Abel’s 
theorem. His work in both algebra and analy- 
sis, written in a style conducive to easy com- 
prehension, reached the highest level of attain- 
ment of his time. 

References 

[1] N. H. Abel, Oeuvres complètes 1, II, L. 
Sylow and S. Lie (eds.), Grondahl & Son, new 
edition, 1881 (Johnson, n.d.). 
[2] C. A. Bjerknes, Ni& Henrik Abel, 
Gauthier-Villars, 1885. 
[3] F. Klein, Vorlesungen über die Entwick- 
lung der Mathematik im 19. Jahrhundert 1, 
Springer, 1926 (Chelsea, 1956). 

2 (IV.2) 
Abelian Groups 

A. General Remarks 

A +group G is called an Abelian group (or 
commutative group) if G satistïes the commuta- 
tive law ab = ha for a11 a, h E G. In this article, G 
always denotes an Abelian group. Every +sub- 
group of G is a tnormal subgroup, and all the 
elements of tïnite order in G form a subgroup 
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T, for which the +factor group GIT has no 
elements of fmite order except the identity e. 
T is called the (maximal) torsion subgroup of G. 
If  G = T, then the Abelian group G is called a 
torsion group (or periodic group). On the other 
hand, if T= {e}, then G is called torsion-free; if 
T# G, T#{e), then G is called mixed. If  the 
order of every element of a torsion group G is 
a power of a fixed prime number p, then G is 
called an Abelian p-group (or primary Abelian 
group). An Abelian torsion group is the tdirect 
sum of primary Abelian groups. Thus the 
study of torsion groups is reduced to that of 
primary Abelian groups. 

B. Finite Abelian Groups 

The following fundamental theorem on finite 
Abelian groups was established by L. Kro- 
necker, G. Frobenius, and L. Stickelberger in 
the 1870s. An Abelian group G of order p”, 
where p is a prime number, is a direct product 
of tcyclic subgroups Z, , . . . , Z,: G = Z, x . x 
Z,. I f  Zi is of order p’i, then n=n, + fn,, 

and we cari assume that ni à n,+l. A direct 
product decomposition of G, as above, is not 
unique, but n,, , n, are determined uniquely 
by G. The system {P”I, . . , p”,} or {n,, , n,} is 
called the system of invariants (or type) of G, 
and a system of tgenerators {z, , , zr} of 
Z,, , Z, is called a basis of G. An Abelian 
group of type (p, p, , p) is called an elemen- 
tary Abelian group. The decomposition of a 
fïnite Abelian group into a +direct sum of 
subsets (not necessarily of subgroups) was 
considered by G. Hajos (1942) and applied 
successfully to a problem of number theory 
(- 151 Finite Groups). 

C. Finitely Generated Abelian Groups 

The theory of +tïnitely generated Abelian 
groups, i.e., Abehan groups generated by a 
fïnite number of elements, is as old as that of 
fïnite Abelian groups. The direct product of 
+infïnite cyclic groups is called a free Abelian 
group. A fïnitely generated Abelian group G is 
the direct product of a fmite Abelian group 
and a free Abelian group. The finite factor is 
the torsion subgroup of G. The free factor of the 
group G is not necessarily unique; however, 
the number of infïnite cyclic factors of the free 
factor is uniquely determined and is called the 
rank of G. Two finitely generated Abelian 
groups are isomorphic if they have isomorphic 
maximal torsion subgroups and the same 
rank. This theory cari be extended to the 
theory of +modules over a +Principal ideal 
domain (- 67 Commutative Rings K). 
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D. Torsion Groups 

The structure of Abelian p-groups is relatively 
well known, compared with other iniïnitely 
generated Abelian torsion groups. In the 
192Os, H. Prüfer made the fïrst important 
contribution to the study of Abelian p-groups, 
and H. Ulm and L. Zippin completed the 
theory for countable groups in the 1930s. The 
uncountable case was first treated by L. Kuli- 
kov in the 194Os, but the study of this case is 
still in progress. 

An Abelian p-group G # {e} is called divis- 
ible (or complete) if for any CI E G there is an 
element x E G satisfying xp = a. A divisible 
group is a tdirect sum of Abelian groups of 
type p” (Prüfer). Here a group of type p” is 
isomorphic to the tmultiplicative group of a11 
the p”th roots of unity (n = 1,2, ) in the 
complex number field. Let G be any Abelian 
p-group. The maximal divisible subgroup 
V of G is a direct product factor of G: G = 
Vx R, where R has no divisible subgroups. 
An Abelian p-group without a divisible sub- 
group is called a reduced Abelian group. 

An element x of an Abelian p-group G is 
said to have infinite height if for any n there is 
an element y, E G satisfying x = y:“. The ele- 
ments of infinite height form a subgroup G’ of 
G. If  G’ = {e} and G is countable, then G is 
decomposed uniquely into the direct sum of 
cyclic groups. This assertion fails if the hy- 
pothesis of countability is dropped. By +trans- 
finite induction we cari define GP as follows. If  
b is an Csolated ordinal number, then GB = 
(CD-‘)‘; if p is a tlimit ordinal number, then 
GP = nu<0 G”. For the least ordinal number 7 

such that G’= G’+‘, G’ is the maximal divis- 
ible subgroup of G. If  G is reduced, then G’= 
{e}. We cal1 7 the type of an Abelian p-group 
G. For a < 7, C? = Gr/G’+l is called the Ulm 
factor of G, and the sequence Go, , G”, 
(r* < 7) is called the sequence of Ulm factors 
of G. Each Ulm factor G” has no element of 
iniïnite height, and if a < 7 - 1, then @ has an 
element of arbitrarily large order. Let 7 be a 
countable ordinal number; assume that for 
any ordinal number a < 7 there is given a 
countable Abelian p-group A, such that A, 
has no element of infinite height, and that 
for a #7 - 1 A, has an element of arbitrarily 
large order. Then there is a reduced coun- 
table Abelian p-group which is of type 7 with 
a sequence of Ulm factors isomorphic to A,, 
A,, . , A,, (a < 7) (Zippin). Two reduced 
countable Abelian p-groups A and B are iso- 
morphic if they have the same type 7; and for 
any a < 7 the Ulm factors A” and p are iso- 
morphic. The assertion fails if the hypothesis 
of countability is dropped. 

2E 
Abelian Groups 

E. Torsion-Free Groups 

In Abelian groups, the group operation is 
often written a + b, using the additive notation; 
an additively written group, called an additive 
group, is generally assumed to be Abelian. In 
the rest of this article we consider exclusively 
additive Abelian groups, of which the additive 
group Z of rational integers is the most primi- 
tive example. In such a group the identity 
element is called the zero element and is de- 
noted by 0; the inverse of a is denoted by -a, 
and we Write a + (- b) = a - b. The direct sum 
of additive groups A, (LEA) is called a free 
additive group if each A, is isomorphic to Z. 
An additive group G is regarded as a +module 
over the tring Z, to which the notion of linear 
independence is applicable (- 277 Modules). 
Elements a,, , a, of G are linearly dependent 
if there are integers n I, , n, not a11 of which 
are zero such that n, a, + + n,a, = 0. Those 
that are not linearly dependent are termed 
linearly independent. An infinite set of elements 
of G is called linearly independent if the ele- 
ments of any finite subset are linearly inde- 
pendent. I f  there are N elements of G that are 
linearly independent, but if any N + 1 elements 
of G are linearly dependent, then N is called 
the rank of G. Such a system of N linearly 
independent elements is called a maximal 
independent system. A torsion-free additive 
group G is not necessarily free if G is not 
tïnitely generated. 

The first important work on torsion-free 
additive groups was done by F. W. Levi (1917). 
A. G. Kurosh (1937) completed the theory in 
the case of lïnite rank. In the general case little 
is known, and 1. Kaplansky, J. Rotman, and 
others are continuing the investigation. 

The additive group Q of rational numbers is 
of rank 1, and conversely any additive group 
of rank 1 is isomorphic to some subgroup of 
Q. An additive group G is called divisible (or 
complete) if for any UE G and for any integer n 
there is an element x, E G such that nx, = a. A 
divisible torsion-free additive group is isomor- 
phic to a direct sum of some copies of Q. For 
any torsion-free additive group G there is a 
divisible torsion-free additive group containing 
G. A minimal additive group F among these 
groups is uniquely determined up to isomor- 
phism and has the rational number fïeld Q as 
an toperator domain. Let Q@) = { a/b 1 (a, b) = 
1, pl;b} be the ring of p-integers in Q, and let 
G,, be the smallest Q@)-subgroup of F contain- 
ing G. Let Q, be the +p-adic number lïeld and 
Z, the ring of tp-adic integers. Extending the 
operator domain Q to Q, we obtain naturally 
a Q,-module Fp from F. Let cp be the natural 
closure of G, in F,,. Then G, has Z, as an 
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operator domain and thus becomes a Z,- 
module. A Z,-module of rank N is isomorphic 
to the direct sum of ICI copies of Q, and N - rcp 
copies of Z,:G,~C,Q,u,$C,Z,w,(n= 
1, . , rcp; m = 1, . . , N - ICI). Here rcp is called 
the p-rank of G. As the invariants of G, Kurosh 
gives the rank, the p-ranks for a11 primes p, 
and a certain equivalence class of the sequence 
of the matrices YJ$,. Here p ranges over a11 
primes, and YJ$ is the matrix of coefftcients 
when the elements of a maximal independent 
system of F are written as linear combinations 

of (%, %J. 

F. General Abelian Groups 

An Abelian group is, in general, an textension 
of a torsion group by a torsion-free group. A 
torsion group T is called bounded if there is an 
integer n such that t”= 1 for a11 te T. Suppose 
there is a torsion group T. Then T is a direct 
summand of an Abelian group G which con- 
tains Tas its maximal torsion subgroup if and 
only if T is the direct product of a divisible 
group and a bounded group (R. Baer and S. 
Fomin). 

G. Characters 

A character 1 of an Abelian group G is a func- 
tion which assigns to each a E G a complex 
number x(a) of absolute value 1 and satisfies 
à = ai for a11 a, hé G. The product x= 
x,x2 of two characters x, and x2 is delïned 
by x(a) = x1 (~)X~(U), and x is also a character 
of G. Thus a11 the characters of G form an 
Abelian group C(G), which is called the char- 
acter group of G. The identity element of the 
character group is the identity character (or 
principal character) x such that x(a) = 1 for a11 
UE G. If  G is lïnite, then G g C(G). This implies 
the duality G = C[C(G)]. This fact was ex- 
tended by L. S. Pontryagin to tlocally compact 
ttopological Abelian groups (- 422 Topo- 
logical Abelian Croups B-D). For additive 
Abelian groups with operator domains - 211 
Modules. 
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3 (vlll.5) 
Abelian Varieties 

A. History 

Except for C. F. Gauss, whose work on this 
subject saw the light many years after his 
death, N. H. Abel was the lïrst to consider 
talgebraic functions as functions of complex 
variables and to discover double periods of 
telliptic functions such as x=x(u), which is the 
inverse function of an elliptic integral 

s 

x dx 

u= &a’ 

where f4(x) is a polynomial in x of degree 4. C. 
G. Jacobi expressed elliptic functions explicitly 
as ratios of theta series. As a natural generali- 
zation of elliptic functions, which are tAbelian 
functions of genus 1, Jacobi and his successors 
studied the inverse function of the thyperellip- 
tic integral, or more generally, the inverse 
function of the Abelian integral. By investigat- 
ing hyperelliptic integrals of the lïrst kind of 
genus 2, 

where &(x) is a polynomial of degree 6 in x, 
Jacobi obtained multiple-valued functions 
with quadruple periods. He then discovered 
the remarkable fact that if we consider sums of 
two integrals 

the elementary symmetric functions s1 =x1 
+x2 and s2 = xi x2 of xi and x2 are single- 
valued functions of ni and u1 with quadruple 
periods. He also conjectured that these func- 
tions s1 and s2 might be expressed explicitly in 
terms of theta series of u1 and u,; this conjec- 
ture was later contïrmed by J. G. Rosenhain 
and A. Gopel. 

In the latter half of the 19th Century, the 
general theory of Abelian functions was es- 
tablished. The central subject was Jacobi’s 
inverse problem (- Section L), which is a 
natural generalization of the above results. B. 
Riemann solved this problem by expressing 
elementary Abelian functions (- Section M) 
as rational functions of theta functions. 

The theory of functions with multiple 
periods was developed further by H. Poincaré, 
G. Frobenius, and E. Picard. In the 20th cen- 
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tury, the importance of the theories of Abelian 
functions and Abelian varieties has become 
more obvious with the development of the 
theory of functions of several complex vari- 
ables and algebraic geometry. In particular, 
problems intimately related to number theory 
have given rise to the development of a purely 
algebraic theory of Abelian varieties. Valuable 
contributions have been made by S. Lefschetz, 
C. L. Siegel (Giegel modular forms), A. Weil 
(algebraic theory of Abelian varieties, syste- 
matization of the theory of theta functions), 
and by D. Mumford (tmoduli theory, algebraic 
theory of theta functions). 

B. Algebraic Theory 

When a +group variety is tcomplete as a 
variety, the group law is commutative; such a 
group variety is called an Abelian variety (- 
12 Algebraic Varieties H.). Let B be a sub- 
variety of an Abelian variety A, and assume 
that B is a subgroup of A as an abstract group. 
Then B has the structure of an Abelian variety 
whose law of composition is induced by that 
of A, and B is called an Abelian subvariety of 
A. More generally, when an algebraic subset b 
is a subgroup of A, then the component B of 23 
containing the identity element is an Abelian 
subvariety, and 23 is a union of B and a finite 
number of cosets of B. When A is defined over 
a field k, then any Abelian subvariety of A is 
deiïned over a finite tseparable extension of k 
(W. L. Chow’s theorem). An Abelian variety 
A is called simple if A has no Abelian sub- 
varieties other than A itself and 0. 

Every trational mapping of an algebraic 
variety 1/ into an Abelian variety is defined at 
each simple point of V. This implies that an 
Abelian variety is tabsolutely minimal. 

C. Homomorphisms 

A rational mapping of an Abelian variety A 
into an Abelian variety B is called a rational 
homomorphism (or simply homomorphism) if f  
is a group homomorphism. Let F be a rational 
mapping of A into B; then F cari be uniquely 
expressed as follows: F(x) = F,(x) + F(0) (x E A), 
where F0 is a homomorphism and F(0) is the 
image of the unit element 0 of A. Hence the 
structure of an Abelian variety (as a group 
variety) is uniquely determined by the underly- 
ing algebraic-variety structure. 

When a rational homomorphism fis bira- 
tional, fis called a birational isomorphism (or 
simply isomorphism). It is clear that a rational 
isomorphism is an abstract isomorphism, but 
the converse is not necessarily true. Let A, B 
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be two Abelian varieties. We say that A is 
isogenous to B if the dimension of A is equal to 
that of B and there exists a surjective homo- 
morphism of A onto B, or equivalently, if there 
exists a surjective homomorphism of A onto B 
whose kernel is fïnite. The relation of isogeny 
is an equivalence relation. For an Abelian 
variety A and an Abelian subvariety X of A 
there is an Abelian subvariety Y of A such 
that the natural homomorphism X x Y-r 
A :(x, y) +x + y  is an isogeny (Poincaré% com- 
plete reducibility theorem). In particular, every 
Abelian variety is isogenous to a product of 
simple Abelian varieties that are determined 
uniquely up to isogeny and order. 

Let A, B be two Abelian varieties; we denote 
by Hom(A, B) the additive group of rational 
homomorphisms of A into B. When a rational 
homomorphism Â is surjective, then the degree 
v(n) of n is defïned by Â(A) = v(A)B as talgebraic 
cycles. If  1. is an isogeny, then v(1) # 0, and the 
order of the kernel {t 1 tu A, it = 0) is at most 
v(1) and equal to v(1) if and only if Â is tsepa- 
rable. The additive group Hom(A, B) is shown 
to be free of rank < 4 dim A .dim B by the l-adic 
representation (- Section E). I f  A = B, then 
Hom(A, A) has a ring structure; it is called the 
ring of endomorphisms (or endomorphism ring) 
of A and is denoted by %(A). The tensor prod- 
uct ‘%,(A) = (U(A) 0 Q, where Q is the fïeld 
of rational numbers, is an tassociative alge- 
bra over Q. If  A is simple, then <u,(A) is a 
tdivision algebra. More generally, (U,(A) is iso- 
morphic to a direct product of some +total 
matrix algebras over division algebras; thus 
(U,(A) is tsemisimple. In particular, if A is l- 
dimensional (in other words, if A is an telliptic 
curve), the types of 2&,(A) are well known; 
when the characteristic p=O, then %,(A) is 
either the lïeld of rational numbers or an 
timaginary quadratic field. When p > 0, aside 
from these two fïelds, we have a tquaternion 
algebra over Q as a possible type of ‘&(A). 

Let k be a tïnite field with q elements. An 
algebraic integer is called a Weil number for 9 
if every conjugate of it has absolute value &. 
If  A is an Abelian variety defïned and simple 
over k, the qth power endomorphism of A: 
x+x4 determines a conjugacy class of Weil 
numbers for q, as Weil showed (- 450 Zeta 
Functions). Moreover, we have the following 
classification theorem (J. Tate, T. Honda): 
There is a one-to-one correspondence between 
the set of all k-isogeny classes of k-simple 
Abelian varieties over k and the set of a11 con- 
jugacy classes of Weil numbers for q. Tate also 
determined the structure of the division alge- 
bra %,(A) over Q, which is described in terms 
of the decomposition of the qth power endo- 
morphism into prime ideals. 
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D. Divisors 

Let KI be the additive group of tdivisors on an 
Abelian variety A and 8, be the subgroup of 
divisors that are talgebraically equivalent to 0. 
Then the factor group O/S, has no ttorsion 
part; this implies that for an Abelian variety 
tnumerical equivalence coincides with talge- 
brait equivalence. We denote this relation 
by =. Given an element a of A, the translation 
T,: A~x+x+uEA gives a tbirational trans- 
formation, which is everywhere tbiregular, on 
the underlying variety of A; we denote by X, 
the image of a divisor X on A. Then X = 0 if 
and only if X, is tlinearly equivalent to X for 
each point a of A. The +Albanese variety of an 
Abelian variety A is A itself, and the +Picard 
variety Â of A is isogenous to A. In particular, 
for the +Jacobian variety J of an algebraic 
curve, J  ̂is isomorphic to J itself. The Picard 
variety Â of Â is isomorphic to A (duality 
tbeorem). Let X be a divisor on A; the map- 
ping a+the tlinear equivalence class of the 
divisor X, - X, a E A, is a rational homomor- 
phism of A into Â, and we denote it by ‘px. If  
‘px = 0, then X z 0, and vice versa; hence we 
have an additive map of Q/B, into Hom(A, Â). 
I f  ‘px is surjective, we say that X is nondegener- 
ate. A +Positive divisor X is nondegenerate if 
and only if X is +ample, and then nX is +very 
ample for n > 3. There always exist positive 
nondegenerate divisors on an Abelian variety; 
therefore an Abelian variety is a tprojective 
variety. For a given divisor X on A, we cari 
fïnd n suitable points ul, , u,, where n is the 
dimension of A, SO that the tintersection prod- 
uctXvI’... X,” is delïned. We denote by (Xc”)) 
the tdegree of the zero cycle X,, X,“. I f  X 
is positive nondegenerate, then the dimension 
I(X) of the tdefïning module of the tcomplete 
linear system determined by X is equal to 
(X(“))/n! (Poincaré% theorem). Furthermore, the 
degree v(<px) of <px, where X is any divisor on 
A, is given by the formula ~(cp~)=((X(“))/n!)’ 
(Frobenius’s theorem). 

For a nondegenerate divisor X on A there is 
a unique integer i = i(X), 0 <i < dim A, called 
the index of X, such that fP(A, O(X)) = 0 for 
p # i and H’(A, O(X)) # 0. We have i( -X) = 
dim A -i(X) and i(X) = 0 if and only if X is 
ample. 

E. l-adic Representations 

Let A be an Abelian variety of dimension n. 
For a given prime number 1, let B,(A) denote 
the group of points on A whose order is a 
power of 1. I f  2 is different from the character- 
istic of the base fïeld of A, then the group 
B,(A) is isomorphic to the direct product of 2n 
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factor groups QJZ,, where QI is the fïeld of 1- 
adic numbers and Z, is the group of I-adic 
integers (- 439 Valuations). We cal1 such an 
isomorphism the l-adic coordinate system of 
B!(A). Now let Â be a rational homomorphism 
of A into an Abelian variety B of dimension m. 
Then we cari see that À induces a homomor- 
phism of B,(A) into B,(B). This shows that by 
placing I-adic coordinate systems on B,(A) and 
B,(B) respectively, we get a matrix representa- 
tion M,(A) of n with 2m rows and 2n columns. 
The representation 1.-M,@) is faithful, and 
M,(n) is called the l-adic representation of Â. 
When A = B, then &M,(n) is a faithful repre- 
sentation of the ring of endomorphisms ‘U(A). 
This representation cari be naturally extended 
to the representation of the algebra %,(A); 
the characteristic polynomial of the I-adic 
representation M,(Â) (where 1. is an element 
of %,(A)) is a polynomial with coefficients in 
Q. Moreover, the polynomial does not depend 
on the choice of the prime number 1. When 
LE%(A), then v(n) is equal to detM,(3,). The 
trace of M,(i) is usually written as cr(A). 

Let ,? be a rational homomorphism of A 
into B and Y be a divisor on i?. Then by the 
correspondence cl( Y)+cl(i-‘( Y)), we obtain a 
rational homomorphism of B into Â, called the 
transpose of 1. and denoted by ‘A, where cl 
means the linear equivalence class (- 16 Alge- 
brait Varieties M). If  X is a nondegenerate 
divisor on A, then the composition map /j’: Â+ 
A of ‘cpx:Â*A and the canonical isomorphism 
Â+ A satisfy the equality fl o <px = v(qx)6 
(6 = the identity mapping of A). We denote by 
qX’ the element (l/v(<p,)) /l in Hom(Â, A) @ Q. 
The correspondence ~(+CI’, CI’= cpi’ O~CI o <px 
(~E<U,(A)) is an tinvolution of ‘U,(A) and 
is of order 1 or 2. I f  CI # 0, then cr(a’o CC) > 0 
(Castehmovo’s lemma). A. Weil was the lïrst to 
recognize the importance of this theorem in 
connection with +Riemann’s hypothesis on 
+congruence zeta functions. 

F. Differential Forms 

A tdifferential form w on an Abelian variety A 
of dimension n is called invariant if Tzw = w 
for every point UE A, where T, is the trans- 
lation by c1(- Section D). The differential form 
+of the first kind is invariant, and conversely, 
every invariant differential form is of the fïrst 
kind. Let K be the tuniversal domain and 
K(A) be the tfunction fïeld of A. The set of the 
linear differential forms of the fïrst kind on A 
is a linear space over K of dimension n, and its 
basis becomes a basis over K(A) of the linear 
space consisting of a11 linear differential forms 
on A. An invariant derivation on A is a deriva- 
tion D in K(A) satisfying (pf)o T, = D(,fo T,) 



7 

for any element ,f  of K(A) and every point a of 
A. For a linear differential form w=cf;& 
and a derivation D, we put (w, 0) = CfiDui. 
Then (w, D) is a bilinear form in w and D. A 
derivation D is invariant if and only if (w, D) 
is a constant function for every invariant linear 
differential form w. Similarly, a linear differen- 
tial form w is invariant if and only if (0, D) is 
a constant function for every invariant deriva- 
tion D. The linear space of invariant linear 
differential forms and that of invariant deriva- 
tions are dual to each other with respect to 
the bilinear form (0, 0). 

Now consider the case when the character- 
istic p of the universal domain is positive. The 
automorphism a+&‘, UE K, of the universal 
domain K induces a group isomorphism of A; 
we denote by AP the image of A and by xp the 
image of a point x of A. The image AP is an 
Abelian variety, and the group isomorphism 
~:X+X~, XE A, is an isogeny of A onto AP. Let 
B be another Abelian variety and let Â be an 
isogeny of A onto B. If  there is an isogeny p: 
B-+ AP such that n = p o Â, then we say that Â is 
of height 1. The function tïeld K(B) of B cari be 
considered as a subiïeld of the function field 
K(A) of A by the mapping Â. If  Â is of height 1 
and v(î) = p, there exists an invariant deriva- 
tion D of K(A) with the constant field K(B), 
uniquely determined up to constants. More- 
over, we cari choose D SO that DP = D or DP = 0. 
In the first case À is said to be of type (ii); in 
the second case it is said to be of type (i2). An 
isogeny whose degree is a prime different from 
the characteristic p is said to be of type (sr), 
and a tseparable isogeny whose degree is p 
is said to be of type (s*). Any isogeny cari be 
written as a product of isogenies of these four 
types. 

G. Polarized Abelian Varieties 

Let X be a divisor on an Abelian variety A; we 
denote by X the class of divisors X’ such that 
mX = m’X’ for suitably chosen positive inte- 
gers m, m’. When the class 3 contains positive 
nondegenerate divisors, we say that X deter- 
mines a polarization on A, and the couple 
(A, X) is called a polarized Abelian variety. In 
particular, if A is a +Jacobian variety whose 
polarization X is determined by a theta divi- 
sor, we cal1 (A, X) the canonically polarized 
Jacobian variety. I f  an endomorphism c( of A 
keeps the polarization invariant, i.e., if the 
class determined by E-‘(X) coincides with the 
class 3E, then CI is called an endomorphism of 
the polarized Abelian variety (A, 3E). In partic- 
ular, if tl is an automorphism of A, then we 
say that x is an automorphism of (A, X). The 
group of all automorphisms of a polarized 
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Abelian variety is finite. In particular, the 
group of automorphisms of a canonically 
polarized Jacobian variety is fïnite. Hence 
follows the famous theorem concerning the 
fïniteness of the group of automorphisms of an 
talgebraic curve of genus not less than 2. 

On the other hand, the algebraic equiva- 
lente class of a nondegenerate divisor is called 
an inhomogeneous polarization. (The above 
polarization is then sometimes called a homo- 
geneous polarization.) An inhomogeneous 
polarization X determines an isogeny qpx : 
A-Â uniquely. I f  <px is an isomorphism, 
the polarization is called principal. An endo- 
morphism of an inhomogeneously polarized 
Abelian variety cari be defmed similarly. 

H. Analytic Theory 

For the rest of this article we take the complex 
number fteld C as the universal domain, and in 
this case we cari utilize analytic and topolog- 
ical methods. 

Let C” be an n-dimensional vector space 
over C. In a natural way, the space C” be- 
cornes a 2n-dimensional vector space R’” 
over the real field R, and the mapping J : z-r 
fi z, z E C”, is an R-linear automorphism 
of R’” such that Jz = -1. Conversely, if for an 
even-dimensional R-vector space R”’ such 
a mapping J is given, then by putting (a + 

J-1 b)x=ax+bJx (xER”‘;qbcR), we cari 
introduce an n-dimensional complex linear 
structure into R’“. We then say that J deter- 
mines a complex structure on R2”; we denote 
by C”= (R2”, J) the space having the complex 
structure determined by J. Let wi, . , a2” be 
2n R linearly independent points on C” = 
(R2”, J). Then the tlattice D generated by 
these points is discrete, and the factor group 
T”= C”/D is a complex torus of dimension n. 
We fix a basis of C” and introduce a complex 
coordinate system on C”. Utilizing the basis 
wi, . , m2” of R2”, we also introduce a real 
coordinate system on R2”. We then obtain an 
n x 2n matrix R =(w,), where the (ulir . . , uni) 
are the complex coordinates of wi; the ma- 
trix R is called the period matrix of T”. Let 
(zi , . ,z.) be the complex coordinates of 
a point z E C” and (xi , . , x2”) be the real 
coordinates. Then we have ‘(zi , . . . , z,,) = 
R’(x,, . . . . x,,). I f  we let the same symbol J 
stand for the representation matrix of the 
linear transformation J with respect to the 
basis wi, . . . , aZn, then we have fl Q = RJ. 
The underlying real Lie group of T” is a 2n- 
dimensional (real) ttorus group (R/Z)2”. Hence 
the +Poincaré polynomial of T” is (1 +x)‘“. 
Any +Hermitian metric on C” (as a vector 
space) induces a +flat tKahler metric; hence the 
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Hodge numbers (- Kahler Manifolds C) are 
P-q=(;)(;). 

1. Tbeta Functions 

A holomorphic function f(z) on C” = (R”, J) is 
called a theta function if for every d E D we 
have f(z+d)=f(z)exp(l,(z)+c,), where Id(z) is 
a linear form on C” which, as for cd, depends 
on d. The set of zeros of a theta function J 
which we Write as (f), determines an analytic 
divisor on T”. Conversely, for every effective 
analytic divisor X on T”, there exists a theta 
function f  such that (,f) = X. With respect to 
the real coordinate system xi, . , x2” deter- 
mined by the basis wl, . , w~,,, we cari find 2n 
x 2n matrices A, A, and a 1 x 2n matrix b, 

with elements in C, such that the transforma- 
tion formula f(x + a) =f(x)exp(2rrfi(‘aAx 
+f’aA,a+‘ba)) (where A=A, (modZ), ‘A, 
=A,) holds for every 1 x 2n matrix a whose 
elements are rational integers. Moreover, if 
we put E = A -‘A, then E is an talternating 
matrix whose elements are rational integers, 
and S = EJ is a +Positive semidefinite sym- 
metric matrix. Conversely, if there exists such 
an alternating matrix E we cari find a theta 
function. (There does exist, however, a com- 
plex torus on which no theta function exists 
other than trivial ones, i.e., ones of the form 
exp(<p(z)), where C~(Z) is a polynomial of degree 
at most 2.) 

A theta function fis called nondegenerate if 
it cannot be a function of n - 1 complex vari- 
ables, and f  is nondegenerate if and only if thc 
matrix S = EJ is +Positive definite. A complex 
torus has the structure of an Abelian varicty if 
and only if there exists a nondegenerate theta 
function, i.e., if and only if there exists an 
alternating matrix E whose elements are ra- 
tional integers such that EJ is a positive de- 
tïnite symmetric matrix. The latter condition 
is satisfted if and only if there exists an alter- 
nating matrix E whose elements are rational 
integers such that R’E-“R = 0, J-1 Q’E-“fi 
>O (positive defïnite Hermitian matrix). In 
particular, a period matrix n satisfying these 
conditions is called a Riemann matrix, and the 
rational matrix ‘E-l is called the principal 
matrix belonging to R. 

Determining a polarization on an Abelian 
variety cari be reduced to designating a class of 
principal matrices obtained from a principal 
matrix by multiplying by positive integers. Let 
X be a positive divisor on an Abelian variety 
T”= C”/D, and let f  be a theta function such 
that (f) = X. Then the divisor X is nondegen- 
erate if and only if the theta function fis non- 
degenerate, and the latter statement holds if 
and only if the alternating matrix E obtained 
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from f  is tinvertible. For a given principal 
matrix ‘E-i , we cari choose suitable coordinate 
systems of C” and D SO that R = (1,, F) and E = 

, where In is a unit matrix and A is 

a diagonal matrix whose elements are telemen- 
tary divisors of E. In these situations, AF is 
symmetric and its imaginary part positive 
defïnite, i.e., AF is a point of the Negel Upper 
half-space 6,. Thus to the polarized Abelian 
variety (where the polarization is determined 
by ‘E-l) there corresponds a point of G,. This 
gives a one-to-one correspondence between 
the isomorphism classes of Abelian varieties 
inhomogeneously polarized by a principal 
matrix with given elementary divisors and the 
points of the factor space G,/T,(A), where 
f,(A) is a subgroup that is tcommensurable 
to the Siegel tmodular group of degree n and 
operates on 6, discontinuously. The case 
of principal polarization corresponds to the 
case when A=I”, and then T,(A) is the Siegel 
modular group itself. $Jr,(A) is the coarse 
tmoduli space of Abelian varieties, polarized 
as above; the projective embedding of G,/T,(A) 
is given by means of +Siegel modular forms. 

J. Abelian Functions 

Meromorphic periodic functions on C” with 
periods wi, . , uzn (i.e., meromorphic func- 
tions on T = C”/D, D = Zo, 0 . @ Zo,,) are 
called Abelian functions with periods D (or on 
T). The quotient of two theta functions having 
the same periods and the same transforma- 
tion formulas is an Abelian function, and con- 
versely any Abelian function cari be written as 
such. Al1 Abelian functions on T form a tïeld 
C(T) called the Abelian function field. I f  T has 
the structure of an Abelian variety, then C(T) 
coincides with the tïeld of rational functions on 
T. In general, for any complex torus T there 
are an Abelian variety T’ (possibly of dim0) 
and a surjective homomorphism Â:T+T 
which induces an isomorphism Â* : C(T’)r 
C(T). Such a pair (T’, 1: T+T’) is unique up 
to isomorphism, and is called the talgebraic 
reduction of T. 

K. Homomorphisms 

Let C”l=(R 2n,, Ji) (i = 1,2) be complex linear 
spaces; an R-linear mapping f: R2’Q +R2”2 is 
C-linear if and only if the relation fo J, = 
J2 of holds. Let Q be tlattice groups of C”L for 
i = 1,2. If  a C-linear mapping A : C”l --C”î 
satislïes A(D,) c D,, then A induces a com- 
plex analytic homomorphism of T, = C”l/D, 

to T, = C”2/D,. Conversely, any complex 
analytic homomorphism of T, to T, is ob- 
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tained in this way. Let T, and T, be Abelian 
varieties, and let 0, = (wi’), , wii!) and fi, 
=(oq’, . ..) w&) be their Riemann matrices. ,) 
Then for a homomorphism ‘:T, -ST~, we 
cari find a representation matrix W(i) with 
complex coefficients; and with respect to the 
real coordinate systems (WY), . , w&)~) and 
(cp, . ) w$$ we cari fïnd a representation 
matrix M(i) with coefficients in Z such that 
W(A)R, = fi, M(i). Conversely, if for a complex 
matrix W there is a matrix M, with coefficients 
in Z, satisfying the relation given above, then 
W gives a homomorphism of T, to T,. The 
above equation is called Hurwitz’s relation. 
The notion of l-adic coordinate system, which 
is valid for a general characteristic, corre- 
sponds to that of the lattice group, and the 1- 
adic representation M&) of i is the abstrac- 
tion of the integral representation M(i,). 

L. Abelian Integrals 

Let % be a compact tRiemann surface of genus 
y>1 (- 11 Algebraic Functions) and let w be 
a sum of +Abelian differentials of the fïrst kind 
or of the second kind. Then the tperiod of w 
along a cycle y  depends only on the thomology 
class of y. The set of all differentials of the first 
kind forms a complex linear space of dimen- 
sion g; we denote it by a,,. Let P be a point 
and P0 a fixed point of R; then we denote by 
u(P) the vector integral (Sp,w,, . , SF,w,), 
where (<II,, , w4) is a basis of a, and the path 
from P,, to P is common to every integral. The 
correspondence P+u(P) is not a single-valued 
mapping; the totality of differences of values 
of u(P) coincides with the group D consisting 
of periods (j, w, , . , sï wy), where y  varies over 
a11 cycles. Let a set of cycles {yI, , yZg} be a 
basis of the homology group, with coefficients 
in Z; then 2g column vectors of the g x 2g 
matrix R = (wij), wi, j,, wi, are linearly inde- 
pendent over R. Since the group D coincides 
with the set of linear combinations, with co- 
efflcients in Z, of column vectors of R, this D 
is a Uattice of rank 2g, and the matrix R is a 
period matrix of the complex torus Tq = Cg/D 
of dimension g. 

For a basis of the homology group with 
coefficients in Z, we take tnormal sections 

~lr...r~gr~g+l,...r~2g of ‘!II, and let the same 
symbol R stand for the period matrix (w,), 
wij = SI, (11~; then we have 

RE’R=O, ~RE’Q>O 

(positive defmite Hermitian matrix), where 

E= (with 1, the unit matrix). 

This implies that E is a principal matrix be- 
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longing to 0, we cal1 the equality and inequal- 
ity just given Riemann% period relation and 
Riemann3 period inequality, respectively. Fur- 
thermore, we cari choose a suitable basis of 3, 
SO that the period matrix fi is of the form 
(I,, F) with FE G, (- Section 1). We consider 
the function Y(u), u=(u,, , u,), defïned by an 
infïnite series 

9(u)=Cexp(2nfi(m’u+$mF’m)), 
m 

where the sum is taken over all row vectors 
m=(m,,..., mg) with coefficients in Z. If  u is in 
a bounded region, then the series for S(u) is 
uniformly and absolutely convergent. Hence 
S(u) is a holomorphic function of u. This is 
a theta function corresponding to the princi- 

pal matrix E = 0 43 

( > 
and is called the 

-lg 0 
Riemann tbeta function. As S(u) is nondegen- 
erate, the complex torus Tg = C?/D has the 
structure of an Abelian variety. I f  we regard 
the Riemann surface ‘% as an algebraic curve, 
this Abelian variety T” is precisely the Jaco- 
bian variety of the curve !II. The collection of 
zeros of g(u), a divisor on Tg, defïnes the ca- 
nonical polarization on the Jacobian variety 
(- Section G). 

The correspondence P+u(P), pu’% induces 
a well-defïned mapping <p of !II into Tg = 
C?/D. Moreover, if we set <p(A) = C&I <p(e)- 
& cp(Q,) for any divisor A = P, PJQ 1 .Q, 
of degree 0, then <p(A) is a point on T” = C?/D, 
which is represented by the vector (&, iawl, 

, C& S$U~) of Cg, and the mapping A+ 
p(A) is a homomorphism of the group e0 of 
divisors of degree 0 onto Tg = Cg/D. The kernel 
of this homomorphism coincides with the 
group 6, of ?Principal divisors (Abel% tbeo- 
rem). Hence a divisor A = P, PJQ 1 Q, of 
degree 0 is a divisor of some function if and 
only if we have & jz wi = 0 (mod D) (i = 
1, , g), or equivalently, the left-hand side is 
0 for a suitable path. 

Given g fixed points P,, . , P, on !II and 
given (u,, . . , ug) as any vector of Cg, the prob- 
lem of fïnding g points QI, . , Q, satisfying 
relations & #ai = ui (mod D), i = 1, , g, is 
called Jacobi’s inverse problem. TO salve the 
problem, we take a divisor A of degree 0 such 
that the class <p(A) (mod D) is represented by 
(u 1, , u,); then, by virtue of the tRiemann- 
Roch theorem, there exists a divisor Q, Q, 
satisfying 

A=Q, . ..QJP. . ..Pg (mod6,). 

Abel’s theorem implies that the set of points 
{QI, , Q,} is a solution of Jacobi’s problem. 
Moreover, for general (u,, , u,), the solution 
is unique; i.e., there exists a subvariety x of 
dimension y  - 2 on Cg such that the solution is 
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unique up to order if and only if (ur , . , Ut) 
does not lie on x. In particular, if every point 
P, coincides with the fïxed point P, that ap- 
peared in the definition of u(P), the subvariety 
on Tg = C”/D determined by ~ is obtained in 
the following way: Let W, + . + W,,-, be a 
canonical divisor on %, and put c = cp( W,) + 
+ <p( W,,-,). Then the locus of points c - cp(R,) 
- -P(R,-,)(whereg-2pointsR,,...,R,-, 
are taken independently over ah points of %Fi) is 
the desired subvariety. 

In terms of the theory of complex manifolds 
the above result cari be rewritten as follows: Let 
Sg(!R) be the symmetric product of !K and X the 
subvariety of Tg = t?/D induced from xi. Then 
the holomorphic map Sg((p):Sg(%)+Tg induced 
from <p: X+TS is bimeromorphic and isomor- 
phic outside that X whose elements corre- 
spond to effective divisor classes of degree g 
contained in canonical divisors on ‘%. 

M. Elementary Abelian Functions 

Let z be a nonconstant meromorphic func- 
tion on ‘%. Then for any u=(u,, . . ..u.)ECg 
that does not lie on 2, there exist g points 
Q, , , Q, (uniquely determined up to order) as 
the solution of Jacobi’s problem. Therefore 
the elementary symmetric functions 

S~(u;z)= f  z<Qj>, 
j=l 

S,(U;Z)=C Z<QI>z(Qj>> . ..>“g(“.Z)=fi Z(Qj) 
i<j j=1 

are well detïned if u lies outside the variety 2 
of dimension g - 2. Each function S;(U; z), re- 
garded as a function of u, cari be extended 
uniquely to an Abelian function in the whole 
space Cg; the function is denoted by the same 
symbol S~(U; z). The Abehan functions S~(U; z), 

, S~(U; z) are called the elementary Abelian 
functions obtained from z. 

Now let K be the field of Abehan functions 
on Cn/D and k the fïeld of meromorphic func- 
tions on !Ri; then the dimension of K over C is 
g, and [K: C(~r(u; z), . . . , S&U; z))] = rg, where r 
is the degree of the function z that is given by 
[~:C(Z)]. Moreover, if we take any function w 
such that k = C(z, w), then we have 

K = C(s, (u; z), , S&U; z); s1 (u; w), , s,(u; w)), 

where s, (u; w), , S~(U; w) are the elementary 
Abelian functions obtained from w. 

We cari Write any elementary Abelian func- 
tion as a rational function of Riemann theta 
functions; therefore any Abelian function cari 
be written as a rational function of Riemann 
theta functions. Furthermore, if u and u are 
variable vectors, then si(u + u; z) cari be repre- 
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sented as an algebraic function of s, (u; z), , 
S&U; z), s,(u;z), ,sg(u; z); i.e., we cari choose 
a suitable polynomial HJZ; X, , , X,; Y,, 
. ..) 5) with coefficients in C SO that H,(sJu + 
u;z);s,(u;z) >...) s&;z); s,(u;z) >...> sg(u;z))=O. 
This algebraic addition formula with respect 
to the elementary Abelian functions S~(U; z), i = 
1, , g, is a function-theoretic interpretation 
of the fact that the addition map X x X-* 
X :(x, y) *x + y  is a tmorphism of algebraic 
varieties. 

As the study of +Abelian integrals of the tïrst 
kind led us to the theory of Jacobian varieties, 
+Abelian integrals of the second and the third 
kind give rise to the theory of tgeneralized 
Jacobian varieties (- 9 Algebraic Curves). 

The theory of Abelian varieties has signifï- 
tant applications to number theory, as shown 
by the following examples: the theory of +Un- 
ramitïed Abelian extensions with respect to a 
function field of several variables defïned over 
a lïnite field (S. Lang), the theory of heights of 
points on an Abelian variety (Weil, A. Néron, 
J. Tate), and the theory of complex multipli- 
cation (- 73 Complex Multiplication) in the 
case of higher dimensions (Y. Taniyama, G. 
Shimura). 

N. Some Recent Results 

(1) Level Structure, Moduli of Abelian 
Varieties. Let A be an Abelian variety over k 
of dimension g and n a positive integer which 
the characteristic of k does not divide. A level 
n structure on A is detïned to be a set of 2g 
points or, , gzg on A which form a basis for 
the group of points of order n on A. 

Let A(g, d, n; k) be the set of triples: (i) an 
Abelian variety A over k of dimension g, 
(ii) an inhomogeneous polarization X on A 
with v(qx) = dz, and (iii) a level n structure 
or, . . . , ozg of A, a11 up to isomorphisms. Simi- 
larly we cari defïne A(g, d, n; S) for Abelian 
schemes over a scheme S. The correspondence 
S+ A(g, d, n; S) detïnes a functor .&‘(g, d, n). 
D. Mumford has shown that there exists 
the tcoarse moduli scheme A(g, d, n) quasi- 
projective over Spec(Z[l/n]), and that it is even 
fine if n > 3 [6]. He used the technique of +Hi]- 
bert schemes and +Stable points (- 16 Alge- 
brait Varieties). One of the key steps of his 
proof is to show that for an embedding 4: A-, 
P” of degree Y (i.e., the degree of 4(A) in P”) 
over an algebraically closed tïeld k and a posi- 
tive integer n such that char(k) does not divide 
n and n > ,/‘m, the point (~(Xi))i=l,...,” zq 
in (P”)“‘” is stable with respect to the action 
of PGL(m), where the xi are the points of order 
n on A (with an arbitrary order). Mumford 
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later showed another method of constructing 
the moduli of polarized Abelian varieties by 
using algebraic theta constants [7]. 

(2) Néron Minimal Models, Good and Stable 
Reduction. Let R be a discrete valuation ring 
with residue field k and quotient fïeld K. For 
an Abelian variety A over K, there exists a 
smooth group scheme .d of finite type over S 
= Spec(R), called the Néron minimal mode1 of 
A, such that for every scheme S’ smooth over S 
there is a canonical isomorphism 

Hom,(S’, &) z Hom,(Si, A), 

where S; is the pullback of S’ by Spec(K)-t 
Spec(R) (A. Néron, M. Raynaud). In particu- 
lar, we have &Kg A. Denote by A, the fiber of 
.d over the closed point of S. 

If  d is proper over S, we say that A has a 
good reduction at R. If  the connected compo- 
nent Ai of A, containing 0 has no unipotent 
radical (or equivalently, AO is an extension of 
an Abelian variety by an talgebraic torus over 
a finite algebraic extension of k), we say that A 
has a stable reduction. If  there is a finite sepa- 
rable extension K’ of K with a prolongation R’ 
of R to K’ such that A xK K’ has good (stable) 
reduction, we say that A has a potential good 
(stable) reduction at R. Let K, be a separable 
closure of K and f? a prolongation of R to 
K,. For a prime number 1 #char(k), we have 
a canonical homomorphism p:Gal(K,/K)-, 
Aut(CC>,(A)), called a monodromy. Then A 
has potential good reduction if and only if the 
image of the tinertia group I(R) by p is a fïnite 
group (J.-P. Serre and Tate). Every Abelian 
variety A over K has potential stable reduc- 
tion at R (stable reduction theorem, A. Gro- 
thendieck [ 161). 

(3) Graded Ring of Theta Functions. If  f  is a 
theta function with a period system D, f” is 
also a theta function with the same period 
system for every positive n. We denote by S, 
the vector space of the theta functions with the 
period system D subject to the same trans- 
formation law as f”. I f  we denote by X the 
effective divisor on T = C”/D detïned by ,fi then 
S,, cari be naturally considered as the tdefining 
module of the tcomplete linear system of nX, 
and the dimension of S,, (= I(nX)) is equal to 
the product of the nonzero diagonal elements 
of nA (- Section 1) (Frobenius). I f  9 ES,,, and 
hES,, then yhfS,+,; hence S= @.aoSn is a 
tgraded ring, which is normal and finitely 
generated. For m 9 2 and n 9 3, the product 
map S, x S,+S,+, is surjective (D. Mumford, 
S. Koizumi). I f  the elementary divisors of E 
cari be divided by an integer >4, the kernel of 
the natural graded mapping S(S,)-tS (where 

S(S,) denotes the tsymmetric algebra over Si) 
is generated by the quadratic relations (i.e., the 
part of degree 2) for suftïciently large degrees 
(Mumford). Geometrically this means that if 
X =(,f‘), ~ES,, is nondegenerate, then, with the 
projective embedding i:T-+P” defined by the 
complete linear system of X, i(T) is an inter- 
section of quadrics in PN containing i(T). 

Mumford has developed a theory of alge- 
brait theta functions that also works for the 
positive characteristic case [7] and has proved 
the above results in general. 
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A. General Remarks 

Let N be the set of natural numbers, and let A, 
B,... besubsetsofN.ThesumC=A+Bis 
defïned as the set {clc~A, ~EB, or c=a+b, 
a E A, b E B}. A finite sum of subsets of N is 
deiïned similarly. I f  N is the sum A + + A 

(r times), then we say that A is a basis of order 
r in N. Let A(x) denote the number of integers 
in A that do not exceed x. The density of A 

is delïned as infA(x)/x. I f  A(n) > cm, B(n) 2 

Bn(O<cr,~<l)foralln~N,thenwehave 
(A+ B)(n)>(min(l,a+b))n. This result was 
stated by E. Landau (1937) without proof; A. J. 
Khinchin had given a proof (1932) for the case 
c( = 8, and H. B. Mann (1942) and E. Artin and 
P. Scherk (1943) succeeded in proving the 
statement for the general case. Suppose that 
the densities of A and B are, respectively, IX 
and 0. If  B is a basis of finite order in N, then 
the density of A + B is greater than that of A 

(Khinchin and P. Erdos, 1936). Let P be the 
set of a11 prime numbers. Though the density 
of P is 0, the density of P + P is positive (L. G. 
Shnirel’man, 1930). Hence P is a basis of Iïnite 
order in N; in other words, there exists a posi- 
tive integer r such that every natural number 
cari be expressed as a sum of at most r primes. 
Though the density of the set Q of the kth 
powers of natural numbers is 0, there exists a 
positive integer s(k) such that the sum Q + 
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+ Q (s(k) times) is a set of positive density. L. 
K. Hua (1956) gave a simple proof of this fact, 
based on Yu. V. Linnik’s idea. It follows, 
therefore, that any natural number n cari be 
expressed as a sum n = a: + + a:, where 
a,gN, t > s(k). This result had already been 
shown by D. Hilbert (1909). 

An ancient method of fïnding prime num- 
bers is TEratosthenes’ sieve. V. Brun (1920) 
devised a new sieve method to express an 
arbitrary integer n as the sum of two integers 
n = a + b, where the number of prime factors 
of a and b is as small as possible. This method 
was improved by H. A. Rademacher (1924), 
Landau (1931), A. Bustab (1937), and others. 
Among these the method found by A. Selberg 
(1952) is notable (- 123 Distribution of Prime 
Numbers E). 

B. Farey Sequences 

Let L be a positive integer. We arrange in 
increasing order the set of a11 positive irreduc- 
ible fractions lying between 0 and 1 whose 
denominators do not exceed T. This sequence 
is called the Farey sequence of order 7. For 
example, the Farey sequence of order 5 con- 
sists of 

A necessary and sufIïcient condition that a 
fraction a/b be directly followed by a fraction 
c/d in the Farey sequence of order n is b + d 2 

n + 1, bc - ad = 1. In this case the fraction 
(a + c)/(b + d) is called the mediant of a/b and 
C/d. Interpolating the Farey sequence of order 
n with such mediants (a + c)/(b + d) satisfying 
b + d = n + 1, we obtain the Farey sequence 
of order n+ 1. 

Let u/q be a fraction in the Farey sequence 
of order T, and a’/q’, u”/q” be adjacent mem- 
bers of u/q in the sequence such that a’/q’< 

u/q < a”/q”. The interval [(a’ + u)/(q’ + q), 

(a + u”)/(q + q”)] is known as the Farey arc 
surrounding a/q. In particular, if a/q=O/l, 
then we set [-lin, lin] to be the Farey arc 
surrounding O/l, where n = [z] + 1 ([ ] is the 
tGauss symbol). We cari thus decompose the 
interval [-lin, 1 - I/n] into a disjoint union 
of Farey arcs. If  c( is contained in the Farey 
arc surrounding u/q, then 1 CI - u/ql < l/qz. 
Therefore, for a given z 3 1 and a real CI, we 
cari prove the existence of u/q such that 

Let f(i) = C,$,,u,[” be a power series which 
is convergent in the disk Ill d 1. Then, by 
Cauchy’s integral formula, 



TO estimate such an integral, we sometimes 
utilize the decomposition of the interval [0, l] 
into a disjoint union of Farey arcs as men- 
tioned above. This method is called the circle 
method, and the subdivision of the interval is 
known as the Farey dissection. 

Given a positive number c, a Farey arc 
around a/q is usually called a major arc (or 
basic interval) if q does not exceed the given 
bound c; otherwise, it is called a minor arc (or 
supplementary interval). Usually, the principal 
part of the previously mentioned integral is 
derived from the integral over the major arcs, 
and the residual part is provided by the in- 
tegral over the minor arcs. 

C. Goldbach’s Problem 

Goldbach’s problem is found in letters (1742) 
he exchanged with L. Euler. In them he stated 
that every positive integer cari be expressed as 
the sum of primes. More precisely, he conjec- 
tured that any even integer not smaller than 6 
cari be expressed as the sum of two odd primes 
and that any odd integer not smaller than 9 
cari be expressed as the sum of three odd 
primes. 

1. M. Vinogradov (1937) proved that every 
sufficiently large odd integer cari be expressed 
as the sum of three primes. Let N be a suffi- 
ciently large odd integer. I f  we Write 

PM Ah, NJ=--- C exp 
<p3(q) (I y)‘“1 

0, 

then the series S(N)= C;L, A(q, N) is ab- 
solutely convergent and is equal to 

It is known that S(N) > 6/7? for a11 N. If  we 
denote by r(N) the number of solutions of 
N=p,+p,+p,, then r(N)-(N2/2(logN)3). 
S(N). TO prove this, Vinogradov used the cir- 
cle method. He employed the +Prime number 
theorem for arithmetic progressions to esti- 
mate the integrals over the major arcs and 
devised an ingenious method to estimate the 
series C,,, exp(2niap) in the computation of 
the integrals on the minor arcs. A finite or 
infinite sum of exponential functions such as 
this is called a trigonometric sum. More gener- 
ally, we consider trigonometric sums of several 
variables. Vinogradov provided detailed re- 
marks and calculations [6]. 

In the case of even integers, the problem is 
still unsolved, although J. G. van der Corput, 
T. Estermann, and N. G. Chudanov proved 
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simultaneously (1938) that almost a11 even 
integers (i.e., except a set of density 0) cari be 
expressed as the sum of two primes. For these 
problems, Linnik (1946) and Chudanov (1947) 
introduced function-theoretic methods. They 
obtained the density theorem concerning the 
zeros of L-series, and A. Zulauf (1952) con- 
tinued along the same lines. These methods 
had been suggested by G. H. Hardy and J. E. 
Littlewood (c. 1919) although they had as- 
sumed that the textended Riemann hypothesis 
held. 

We denote by 4 a number having at most j 
prime factors counted with their multiplicity. 
Using his sieve method, Brun (1919) proved 
that every sufficiently large even integer 2n cari 
be expressed in the form 2n = PS + PS. Radema- 
cher (1924) improved this result and obtained 
2n = PT + P,. Applying his new sieve method to 
this problem, Selberg (1950) proved that 2n = 
P2 + P3. On the other hand, using the +large 
sieve, A. Rényi proved that 2n = P, + Pk for 
some k. Afterwards, combining Richert’s sieve 
with.a large sieve, Chen Jing-Run (1973) 
proved that 2n = P, + P2 for large 2n [ 111. 

D. Polygonal Numbers 

Let m be an integer greater than 3, and let 

a1 = 1, a,+, -a,=@-2)n+l (n= 1,2, . ..). 
The sequence {a,} forms the system of polyg- 
onal numbers of order m. The general term 
of {a,} is given by II++(~-~)(FI-n) (n= 

1,2, ). Such a, are said to be triangular 
numbers if m = 3, square numbers if m = 4, and 
pentagonal numbers if m = 5. 

P. Fermat (1636) stated that every natural 
number cari be expressed as the sum of m 

polygonal numbers of order m. This conjecture 
was proved by A. M. Legendre (1798) for m = 

3, by J. L. Lagrange (1772) for m = 4, and by 
A. L. Cauchy (18 13) for the general case. With 
regard to Lagrange’s result, Legendre noticed 
that in order that a positive integer n be ex- 
pressed as the sum of three squares, it is neces- 
sary and sufficient that n not be of the form 
4”(8m + 7). 

Given a positive integer n, the number of 
integral solutions of the equation x: +x2 + 
+XI = n is denoted by r,(n). For example, r,(5) 

= 8. The tgenerating function xz, r,(n)nes 

cari be expressed as XL,:= m(m2 + n’)-‘, where 
the term corresponding to m = n = 0 is omitted; 
the function is equal to 4[&), where [&) is 
the +Dedekind zeta function of the Gaussian 
number field K = Q(n). The equation 
45K(~)=45(~)L(~,~) (where x(n)=( -4/n)) leads 
to 

rz(n)=4C’(-1)(“~‘)“, 
m,n 



4E 
Additive Number Tbeory 

14 

where C’ means the sum over a11 odd factors 
m of n. This result was obtained by C. G. J. 
Jacobi (1829). He also obtained the following 
formula: 

r4(n)= 8 c’ m, 
n,n.4i,n 

where 2’ means the sum over a11 divisors m of 
n not divisible by 4 (Hardy and E. M. Wright, 
C. L. Siegel, 1964). Let q = exp(2nir) (Im 7 > 0), 
and 

f(q)= 1+ f  r,(n)q” 
n=, 

=(1+2q+2q4+2$+ . ..y. 

Hardy (1920) considered the variation of ,f(q) 

for q=aexp(2&/k) (with O<a< 1) as a+l; he 
obtained 

where S,,, = C:=, exp(2rri(h/k)j2). Furthermore, 
he constructed the singular series 

A,=kmS 1 (&,)“exp -2aiin , 
IBbgk ( > 
(h,k,=l 

and showed that r,(n) = p&z) for s = 5, 6, 7, and 
8. P. T. Bateman (195 1) proved the same equa- 
tion for s = 3 and 4. Ifs > 9 then ~,~(n) = p,(n) + 
O(n”‘4) (Hardy, Littlewood, and S. Rama- 
nujan, c. 1919). The detailed exposition of this 
result is in the notes of A. Z. Walfisz (1952) 
and Rademacher [4]. H. D. Kloostermann 
(1926) and Estermann (1962) studied the equa- 
tion ax: + bxz + cx: + dxi = II, which led to a 
new lïeld of study concerning the PKlooster- 
mann sum. For instance, estimates such as 

are obtained by using the theory of zeta func- 
tions in algebraic function fields in one vari- 
able (A. Weil, 1948) (- 450 Zeta Functions). 

E. Waring’s Problem 

The tïrst formulation of Waring’s problem is 
found in E. Waring, Meditutiones algebraicae 

(1770) in which he discusses the problem of 
expressing an arbitrary positive integer as the 
sum of at most nine cubes or as the sum of at 
most nineteen biquadratics. Hilbert proved (- 
Section A) that there exists a positive integer 
s(k) such that, for any integer N, the equation 

x;+x;+...+x,;=N 

has a nonnegative integral solution if sas(k). 

We denote by g(k) the least value of s(k), and 
by G(k) the least value of s(k) for which the 
equation is solvable with at most lïnitely many 
exceptions of N. Research concerning g(k) and 
G(k) received its initial impetus from the circle 
method considered by Hardy and Littlewood, 
and it underwent considerable development in 
the works of H. Weyl and Vinogradov. 

Let r,(N) be the number of solutions of the 
above equation. We then have 

SC ,,’ ,,,k > ’ 
r,(N) = exp(2niaxk) 

x exp( -2xiNa)d~. 

If  we make the Farey dissection, translating 
the interval [0, l] slightly, then the main term 
of r,(N) is provided by the integrals over major 
arcs, and the residual term is derived from the 
integrals over minor arcs. Let p be a prime, 
and let M(N,p’) denote the number of solu- 
tions of the congruence equation 

Then lim,,,, M(N,~‘)/~‘(“~“=x~(N) is not zero, 
and the inlïnite product HP X~(N) = S(N) con- 
verges for s > 4k, where S(N) is larger than a 
positive constant which is determined inde- 
pendently of the choice of N. On the other 
hand, let 

, 

A(q,N)=q-” 1 S(a,q)“exp 
I<a<q 

(o,q)=l 

Then L>, A(q, N) is absolutely convergent, 
and the sum is equal to S(N). According to 
Hua (1959) we have 

r,(N) - S(N) 
r(l+ ‘lWN,,km, 

I-(s/k) ’ 

provided that s 2 2k2(2 log k + loglog k + c). 

Next, if we denote by V(N, 6) the volume of the 
closed region satisfying N d x: + xi + + 
x,$ <N + 6 in the s-dimensional Euclidean 
space, then lim,,, I/(N, 6)/fi = x,(N) exists and 
is equal to (I( 1 + l/k)“/F(s/k)) N”‘km’. Hence we 
cari show that the principal part of r,(N) is 
equal to the intïnite product &X,,(N), where p 

runs over a11 Imite and infmite prime spots in 
Q. This is a generalization of the singular 
series studied by Hardy. 

With regard to g(k), there are studies by L. 
E. Dickson (1936) and others. It is easy to see 
that y(k)>2k+(3/2)k-2 and that G(k)>k+ 1. 
It has been shown that 9(3)=9, G(3)<7 (G. L. 
Watson, Linnik, 1947) and that g(4) < 37, 
G(4) = 16 (H. Davenport, 1939). More gener- 
ally, Vinogradov (1959) proved that 
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G(k)<2klogk+4kloglogk 

+2klogloglogk+ck. 

TO prove this, Vinogradov (1934) introduced 
the following integral, which is closely related 
to the tprime number theorem: 

1 L 
Z(P)= 

s s1. 0 
o Cexp(2rti(a,x+a,x’+... 

+a,~~)) “da, . ..dcc.. 

Hua (1949) improved Vinogradov’s result and 
proved that ifs a$k(k + 1) + Ik, then 

where 6=ik(k+ l)(l- l/k)‘-‘. Concerning 
I(P), another notable approach was made by 
A. A. Karacuba and N. M. Korobov (1963). 
Further investigation proved that I(P) = 
c,c2P2smMk+l)/2 +O(P2smk(k+1)/2) ifs>&Zlogk 

(Vinogradov, Hua, 1959). The result is called 
the Vinogradov mean value theorem. 

There are many variations and generaliza- 
tions of this theorem. Vinogradov and Hua 
(1944) studied the problem of representing an 
arbitrary N as N=p:+pi+ . ..+p. (with pi 
prime). Hua (1937) and others also considered 
the problem of representing N as N =f(xi) + 

f(x2) + . +,f(x,), where f(x) is a given poly- 
nomial. Also, let 

Cb,,X2>...> xJ= t c c CijkX,XjXk 
i=, j=, k=, 

be a homogeneous polynomial of degree 3 
with integral coefficients. Davenport (1963) 
proved that if n > 16, then the equation 
C(x, ,x2, . ,x,) = 0 has at least one nontrivial 
integral solution. There are further develop- 
ments of the theory of representations of in- 
tegers by forms in many variables by V. A. 
Tartakovskii, H. Davenport, B. J. Birch, and 
D. J. Lewis. 

F. Additive Problems in an Algebraic Number 

Field 

Siegel (1922) considered the generalization of 
Hardy’s square sum problem to the case of an 
algebraic number lïeld. He later (1945) studied 
the generalized Waring’s problem in an alge- 
brait number field K of lïnite degree: Let 1 
be the principal order of K, and let Jk be the 
subring of I generated by the kth powers of 
integers in K. It is easily seen that the index 
(1: Jk) is finite. Hence our concern regarding 
s(k) must be restricted to integers contained in 
Jk. Another question is how to extend the 
Farey dissection to an algebraic number fïeld. 
Siegel succeeded in solving these difficulties. 

His ingenuity is seen in his way of dealing with 
the minor arcs, which provided a stimulus to 
the research of T. Mitsui (1960). 

A generalization of Goldbach’s problem to 
the case of an algebraic number field was 
obtained by Mitsui (1960) and 0. Korner 
(1961). 

As another extension of the Vinogradov 
three primes theorem, Mitsui (1971) proved 
the following theorem: Let K be an algebraic 
number lïeld of degree n. Let C be the prin- 
cipal ideal class generated by a totally positive 
number in K, and P be the set of prime ideals 
of degree 1 contained in C. Let N be a positive 
integer and Z,(N) be the number of representa- 
tions of N as the sum of the norms of s prime 
ideals belonging to P, 

IAN)= c 1, pieP (l<i<s). 
N=Npl+...+Nps 

If N is sufftciently large and s > 3, we have the 
asymptotic formula 

NS-1 

UN) = A,W)(log Ny + 0 N 

s l loglogN 

(log N)s+, 

> 

> 

where A, is a positive constant depending on s 
and K independent of N, and S(N) denotes the 
singular series. Ifs = N (mod 20), where D is 
the discriminant of K, then S(N) > c > 0, where 
c is a constant. Later this problem was ex- 
tended by Mitsui and T. Tatuzawa (1981). 
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A. General Remarks 

The study of sums of tindependent random 
variables has been one of the main topics in 
modern probability theory (- 250 Limit 
Theorems in Probability Theory). Combin- 
ing the ideas of this study with the considera- 
tion of tstochastic processes with continuous 
time parameter, we get the notion of additive 
processes. 

B. Definitions and Fundamental Properties 

A real-valued tstochastic process {X,}, at< ~, 
denoted by X(t) (0~ t < x) for the rest of this 
article, where for simplicity we assume that 
X(0)=0, is called an additive process (or pro- 
cess with independent increments) if for any t, < 
t,<...<t,,X(t,)-X(ti-,)(i=l,2 ,..., n)are 
tindependent. An additive process is essentially 
the same as a tspatially homogeneous tMar- 
kov process (i.e., a Markov process on R’ that 
is invariant under translations). When, for any 
h>O and t>s, X(t+h)-X(s+h) and X(t)- 

X(s) have the same law, i.e., the distribution 
law of X(t) - X(s) depends only on t-s, we 
cal1 the additive process X(t) temporally homo- 
geneous. This is essentially the same notion as 
a temporally and spatially homogeneous Mar- 
kov process. 

Let X(t) be a given additive process. If  f(t) is 
a function of t only, then clearly Y(t) = X(t) - 

f(t) is also an additive process, and we cari 
choose f(t) in such a way that for every t > 0 
and for every sequence s,rt (sJt), Y(s,) con- 
verges with probability one. Here, lim Y(s,) 
is independent of a particular choice of s,, 
and we denote it by Y(t -) (Y(t +)). We cal1 
such Y(t) a central process and also say that 
Y(t) is obtained from X(t) by centering. This 
,f(t) is given, for example, by the condition 
E(arc tan(X(t) -f(t))) = 0. 
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Let Y(t) be a centered additive process. 
Then Y(t -) = Y(t) = Y(t +) for a11 t > 0, except 
on an at most countable t-set S, and tES is 
called a fixed point of discontinuity of Y(t). 

Then Y1 (t) = lim,,, U,(t) exists with proba- 
bility 1, where 

+Y(t)- Y(t-)-CT:, 

C; being a constant determined by E(arc tan 
U,(t))=O, and S=is,) (j=1,2,...). Yz(t)= 

Y(t) - Y,(t) is a centered additive process 
without any fixed point of discontinuity. Fur- 
thermore, Y,(t) and Y2(t) are independent. 
Thus we have a decomposition of Y(t): Y(t)= 

Y,(t)+ Y2(t), where Y1(t) and Y*(t) are mutu- 
ally independent additive processes. The struc- 
ture of Yl(t) is simple. and it is not worthwhile 
to study its behavior in more detail. On the 
other hand, since Y,(t) is a centered additive 
process without any fixed point of discontinu- 
ity, it is an additive process that is tcontinuous 
in probability. Let ý2(t) be a tseparable modi- 
fication of Y*(t). Then the discontinuities of 
almost a11 sample functions of F1(r) are of the 
first kind. If  we set Y$(t)= y2(t +), Y;(t) is a 
+modifïcation of Y2(t). and almost all sample 
functions of Y;*(t) are right continuous and 
have a left-hand limit at every t. In the study 
of the process Y2(t), it is always convenient to 
take such a modification. Thus we give the 
following general definition: An additive pro- 
cess is called a Lévy process if it is continuous 
in probability and almost a11 sample functions 
are right continuous and have a left-hand limit 
at every t E [0, cn) [3,9]. 

The notions of additive processes and Lévy 
processes cari also be considered for RN-valued 
processes. 

C. Additive Processes and Infinitely Divisible 
Distributions 

Let X(t) be a Lévy process and @,, (s < t) be 
the tdistribution of X(t)-X(s). Then @,t is an 
+infinitely divisible distribution (- 341 Proba- 
bility Measures G). Conversely, for a given 
infinitely divisible distribution @ we cari con- 
struct an essentially unique temporally homo- 
geneous Lévy process X(t) such that @ coin- 
cides with the distribution of X(1). I f  X(t) is 
temporally homogeneous, the tcharacteristic 
function <p,,(z) = E(e iz(x(r)-x(s))) of the distri- 

bution Q,, is given in the form qst=exp((t- 
s)$(z)); hence the law of the process X(t) is 
completely determined by the function $(z). 
By the +Lévy-Khinchin canonical form, $(z) is 
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written in the form 

v 2 
mL 

$(z)=imz--z + s ! eizu- 1 

2 -a 
n(du), 

(1) 

where m, 11 E R, v  2 0, and n(du) is a nonnegative 
Tr 

measure on R - (0) such that 
I 

u2 
pn(du) 

-,l+u2 
< CO. These m, u, and n(du) are uniquely deter- 
mined by $(z). 

D. Basic Additive Processes 

Wiener Process. When almost a11 sample func- 
tions of a Lévy process X(t) are continuous, 
the distribution of X(t) - X(s) is a +normal 
distribution. If, further, X(t) is temporally 
homogeneous, $(z) has the form $(z) = imz - 

ivz2. In particular, if m = 0 and u = 1, then 
X(t) is called a Wiener process or Brownian 
motion. This stochastic process was introduced 
by N. Wiener (1923) as a mathematical mode1 
for the random movement of colloidal par- 
ticles first observed by a British botanist, R. 
Brown. This is one of the most fundamental 
and important stochastic processes in modern 
probability theory (- 45 Brownian Motion). 

Poisson Processes. When almost all sample 
functions of a Lévy process are increasing step 
functions with only jumps of size 1, the distri- 
bution of X(t)-X(s) is a tPoisson distribution. 
If, further, X(t) is temporally homogeneous, 
$(z) in (1) has the form $(z)=J”(&- 1) (n>O), 
and X(t) is called a Poisson process. Let X(t) 
be a Poisson process, and let T,, T, + T1, T, + 
T1 + T2, be successive jumping times of a 
sample function X(t). Then TO, T,, T2, . . . is 
a sequence of mutually independent ran- 
dom variables with the common exponential 
distribution P(TEdt)=lemitdt. Conversely, 
given such a sequence {T,}, if we detïne X(t) = 

infjnl TO+T, +...+ T,> t), then X(t) is a 
Poisson process. Thus, for example, the num- 
ber of telephone calls at a switchboard is a 
Poisson process when the intervals between 
successive calls cari be regarded as inde- 
pendent and having a common exponential 
distribution. 

E. The Structure of the General Lévy Process 

C% 91 

In this section we restrict ourselves for sim- 
plicity to temporally homogeneous Lévy pro- 
cesses. As we noted, the probability law of the 
process X(t) is determined by the function 
$(z). The Lévy-Khinchin formula (1) in a 
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certain sense shows that $ is a combination of 
a Wiener process and Poisson processes. This 
fact cari be seen more clearly from the Lévy-Itô 
theorem, which states that the sample function 
of X(t) itself cari be expressed as a composite 
of those of a Wiener process and Poisson 
processes. The Lévy-Itô theorem actually 
implies formula (1) and, moreover, clarifies its 
probabilistic meaning. 

The Lévy-Itô theorem cari be summarized 
as follows: Let U be a Bore1 subset of R which 
has a positive distance from the origin, and let 
N(t, U) be the number of s such that X(s) - 
X(S-)E U, s< t. Then N(t, U) is a Poisson 
process. The expectation E(N(t, U)) cari be 
written in the form m(U), where n(U) defïnes 
a nonnegative Bore1 measure on R - (0); fur- 
thermore, it satisfies 

s 

CO 
U2 

--n(du)< co. 
-,1+u2 

Next, we set 

se@) = s uN(t, du) 
IM’E 

= s;c (X(s)-Xe)). 
lX(s)-X(s-)~~c 

Generally, S,(t) diverges as ~10. However, with 
probability one, a centered process 

converges uniformly in t on every finite inter- 
val as ~10. Furthermore, X(t) - limEJo S,(t) is 
continuous with probability one. However, a 
Lévy process X(t) of which almost all sample 
functions are continuous has the form mt + J% 

B(t), where m, va0 are constants and B(t) is a 
Wiener process. Hence we have 

X(t)=mt+Jv B(t) 

u uN(t,du)-p 
l+u2 

(4 

Furthermore, we cari show that if 

are disjoint, then 

B(t), Ne, U,), N(L U,), > N(L Un) 

are mutually independent Lévy processes. In 
particular, in (2) the terms are mutually inde- 
pendent. The m, v, and n(du) in (2) correspond, 
of course, to those in (1). Conversely, given m, 

v, and n(du), we cari construct B(t) and N(t, U) 

with the properties above, and then (2) defines 
a Lévy process which corresponds to 6(z) 
given by (1). The measure n(du) is called the 
Lévy measure of X(t). 
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F. Examples of Lévy Processes 

Compound Poisson Processes. A temporally 
homogeneous Lévy process is called a com- 
Pound Poisson process if almost a11 sample 
functions are step functions, namely, if $(z) in 
(1) is given by 

m= 
s 

m (eizu - lMw, 
-m 

s 

00 
A= n(du) < CO. 

-a> 

If we set @(du)=(l/i)n(du), then @(du) is a 
probability distribution on R. @ is the distri- 
bution of the size of jumps when they occur. 
A compound Poisson process is constructed 
in the following way: Let T,, T,, T,, . . . . U,, 
U,, be mutually independent random vari- 
ables such that 

P(T+dt)=Aeë”‘dt, t > 0, 

P( U,,E du) = @(du), 

and let 

N(t) = u, + u, + . . + UN(t)> 

where 

n=inf{nlT,+T,+...+T,>t}. 

Then X(t) is a compound Poisson process. 
Thus the number of jumps of X(t) follows a 
Poisson process, and the size of each jump 
obeys the distribution @. 

Stable Processes. A temporally homogeneous 
Lévy process X(t) is called a stable process if 
for every CI > 0 we cari find b > 0 and c real 
such that the processes X,(t) = X(at) and X,(t) 
= bX(t) + ct are equivalent in law. It is called a 
strictly stable process if in the above c cari be 
chosen to be 0. X(t) is a stable process (resp. a 
strictly stable process) if and only if the corre- 
sponding infïnitely divisible distribution is a 
tquasistable distribution (resp. +Stable distri- 
bution). The texponent a (0 <a < 2) of the 
quasistable distribution is called the exponent 
(or index) of tbe stable process. $(z) in (1) cor- 
responding to a stable process is given as 
follows: 

$(z) = imz + c, s 
ru ce izu 0 -l& 

s 
0 

+C- (eiru- 1) 
du 

l+dl> O<cc<l, 
-zc 14 

Cc=l, 
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~(z)=imz+C+ 
s 

m ce izu 

0 
-1-izu)$ 

s 

0 

+ c- 
du 

(PU- 1 - izu)-- 1+c 1 <c(<2, 
-m 14 

v 2 $(z)=imz--z ) c(=2. 
2 

Here m, C,, C- , and u are real constants such 
that C, 20, C- 20 with C, +C- >O and V>O. 
$(z) corresponds to a strictly stable process if 
andonlyifm=Owhencc#landC+=C 
when a= 1. The above $(z) is also expressed as 
follows: 

(i)ifO<a<2,a#l,then 

$(z)=imz-c,lzl” 
( 

z 
l-ifitan-- , 

2 I-4 > 

where 

co=i if a=2 

and 

CO= -(C+ +C)r(-a)cosy, 

c, -c- p=- 
C++C- if af2; 

(ii) if a = 1, then 

( 2 
$(z)=iyz-colzl 1 +i-g3oglzl 

n 14 > 
) 

where 

y=m+a(C+ +c-) 

c+-c- co=;(c+ -Cm), fi=--- C++c-’ 

When a = 2, it is thus essentially a Wiener 
process: X(t)= mt + J i?(t), where B(t) is a 
Wiener process. When a = 1, it is called a 
Caucby process, a symmetric Cauchy process if 
m = 0 and C, = C or equivalently y  = b = 0, or 
an asymmetric Cauchy process if fi # 0. Gener- 
ally it is called a symmetric stable process if 
m=OandC+=C- ora=2andm=O,Inpar- 
ticular, for the symmetric Cauchy process cor- 
responding to ti(z)= - 1~1, we have 

P(x(t)<x)=i s 
x 

ST &G. -mt +y 

Next, when 0 <a < 1 and m = C_ = 0, almost 
a11 sample functions of X(t) are purely dis- 
continuous increasing functions (i.e., sums of 
positive jumps). In this case, X(t) is called a 
one-sided stable process of the exponent a (or 
subordinator of tbe exponent a). Now, if X(t) is 
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a symmetric stable process of the exponent 
b (0 <bd 2) and Y(t) is a subordinator of the 
exponent c( which is independent of X(t), then 
Z(t) = X( Y(t)) is a symmetric stable process 
of the exponent c@. This operation is called 
a subordination and is closely related to the 
theory of tfractional powers of tinlïnitesimal 
generators of semigroups (- 261 Markov 
Processes) [2]. 

A stable process X(t) is deiïned in a simi- 
lar way when X(t) takes values in an N- 
dimensional space RN. In particular, if X(t) is 
a symmetric stable process of the exponent c( 
(0 <a < 2) given by 

E(e +X(r))) = e-tlZi”, ZE RN, 

then for every bounded measurable function 
f(x) with compact support, we have 

(S 

a 

E f(x+X(t))dt 
0 

U(N - 4/2) 
=2"7FI-(C(/2) a,% s 

Ix-A-NfWy. 

The right-hand side is the tRiesz potential of 
order CI (- 338 Potential Theory). This fact 
is a generalization of a well-known rela- 
tion between Brownian motion and Newton- 
ian potential (- 45 Brownian Motion), and 
through this relation we cari study several 
properties of sample functions and also com- 
pute various quantities related to stable pro- 
cesses [ 11. 

G. Sample Patb Properties of Lévy Processes 

Let X(t) be a temporally homogeneous Lévy 
process. For a Bore1 set B in R, the hitting 
time a, is defïned by 

a,=inf{t>OjX(t)EB}. 

Recurrence. X(t) is called recurrent if oB < m 
a.s. for every nonempty open set B. Otherwise 
it is called transient. X(t) is recurrent if and 

s 

1 1 
only if Re -dz = CO (Port and Stone, 

- 4w 
Ornsteinjf If, in particular, E(X( 1)) exists, it is 
recurrent if and only if E(X( 1)) = 0. When X(t) 

is a stable process, it is recurrent if and only if 
cc>l,ora=l andjJ=O. 

Hitting Probabilities for Single Points. I f  B = 
{u}, (Tu is denoted by cr,,. OER is said to be 
regular for X(t) if a,=0 as. Set C={XERI 
P(u, < a) > 0). The following result is due to 
Kesten [ 101: 
(i) I f  u # 0, then C = R and 0 is regular; 
(ii) I f  V=O and j’, luIn( CU, then either C 
= R and 0 is regular, or C = @ and 0 is not 

.c 1 
regular according to whether 

RRei-$(z)dZ 
<xforall1,>0or =coforsomeÂ>O; 
(iii) I f  V=O and FL1 luIn( CO, then the 
following four cases are possible, where 
a=m-j,u(l -tu’)-In(du) and S(n) is the sup- 
port of the Lévy measure n: 
(a) C=D when a=O, 
(b) C = (0, CD) when a > 0 and s(n) c (0, co), 
(c) C=(-co,O) when a<0 and S(~)C(-a,O), 
and 
(d) C = R in the remaining case. 

For further properties of sample functions 

- c41. 

H. Generalization of Additive Processes 

A temporally homogeneous Lévy process is, as 
we have seen, essentially a temporally homo- 
geneous Markov process on R which is homo- 
geneous in space (i.e., invariant under transla- 
tions of the space). Thus, on a homogeneous 
space when homogeneity in space makes sense, 
we cari generalize the notion of additive pro- 
cesses. Let M be a thomogeneous space with 
transformation group G. A temporally homo- 
geneous Markov process X(t) is called an 
invariant Markov process, (or bomogeneous 
Markov process) if its system of ttransition 
probabilities {P(t, x, E)} satisfîes P(t, x, E) = 

P(t, gx, gE) for a11 gE G. Thus an additive pro- 
cess is exactly an invariant Markov process 
on RN when G is the group of translations. G. 
A. Hunt determined a11 invariant Markov 
processes when M is a ?Lie group or a factor 
space of a Lie group [6]. 

Let G be a Lie group and A = A(G) be the 
(left-invariant) +Lie algebra of G. Let G, = 
G U {w} be a tone-point compactifïcation of 
G, and C be the set of a11 continuous functions 
on G,. We cari define Yf( YEA,~EC) as usual by 

y(f) = lim Rq(c)‘f-f, 
t10 t 

u(t) = exp t X Kf(d =.f(N 

when the limit exists uniformly. Let C, = 
{f~Cl Y(Xf) exists for every X, YEA}. Let 
X,, X,, , X, be a basis of A(G), and let x,, 
x2, . , x,, be functions in C, such that x,(e) = 
0 and Xi(xj) (e) = 6, (i,j = 1,2, . , d; e is the 
unit element of G). Take a neighborhood of e, 
and defïne a function q(g) = C$-, x;(g) for g 
contained in the neighborhood, and extend 
this function to G, in such a way that cp E C, 
and <p > k > 0 (k = constant) outside of the 
neighborhood of e. Then g E G defïnes a trans- 
formation of G, by Z~‘T = gc, zsw = w, and in 
this way G, is supplied with the structure of a 
thomogeneous space with the transformation 



5 Ref. 
Additive Processes 

group G. Now let X(t) be an invariant Markov 
process on G, which is tcontinuous in proba- 
bility. Then the tsemigroup 7; (which is a 
tstrongly continuous semigroup on C) of the 
process X(t) is characterized as follows: The 
domain of the inlïnitesimal generator A of 7; 
contains C,, and for f e Cz 

where ai, a, are real numbers (i,j= 1,2, . , d) 
such that (a,) is a symmetric nonnegative 
delïnite matrix, and n(do) is a nonnegative 
measure on G,-- {e} such that JG,- (el ~(a). 
n(da) < CO. Conversely, given such ai, a, and 
n(do), there exists one and only one invariant 
Markov process on G, whose infinitesimal 
generator is given as above. 

A similar result is obtained when A4 is a 
factor space of a Lie group by its compact 
subgroup. Furthermore, for more concrete 
homogeneous spaces such as spheres or Loba- 
chevskii spaces (more generally, tsymmetric 
Riemannian spaces) the canonical form of the 
invariant Markov processes and inlïnitely 
divisible laws is obtained by making use of 
harmonie analysis [5]. 
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6 (111.20) 
Adeles and Ideles 

A. Introduction 

The concept of idele was first introduced by C. 
Chevalley (J. Math. Pures Appl., (9) 15 (1936); 
Ann. Math., (2) 41 (1940)), for talgebraic num- 
ber lïelds. Later on, this concept and the allied 
concept of adele were defined for +Simple alge- 
bras and also for talgebraic groups over 
algebraic number fields, and the two concepts 
became important in the arithmetical theory of 
these abjects. We shall first explain the general 
concept of restricted direct product, by means 
of which adeles and ideles Will be delïned. 

B. Restricted Direct Product 

Let I be an index set. Suppose we are given, 
for each p ~1, a tlocally compact group G,, and 
for each p except for a given finite set, say 
p,,p2, . . . ,p,, a compact open subgroup U, of 
G,. Let G be the subgroup of the direct prod- 
uct Q,, G, consisting of elements (g,) whose 
G,-components gp lie in UP, except for a tïnite 
number of p. Put U = I&i Gpi x I&#pi Li,. 
Then CJ is a locally compact group with re- 
spect to the tproduct topology. The group G 
cari be supplied naturally with a topology with 
respect to which G is a locally compact group 
and the quotient space G/U is discrete. The 
group G together with this topology is called 
the restricted direct product of {G,} with re- 
spect to {UP}. 

C. Adeles and Ideles 

Let k be an talgebraic number field of tïnite 
degree and 1 be the totality of lïnite and in- 
tïnite +Prime divisors of k. For each pu 1 we 
denote by k, and k,” the +completion of k with 
respect to p and the multiplicative group of 
nonzero elements of k,, respectively. Further- 
more, for each finite prime divisor p, we de- 
note by o, and II, the ring of +p-adic integers 
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of k and the multiplicative group of +units of 
ol>, respectively. 

(1) Since o,, is a compact open subgroup of 
k, as an additive group, we cari construct the 
restricted direct product A, of {k,} with re- 
spect to {o,}. Then A, is a locally compact ring 
with respect to the componentwise ring oper- 
ations. We cal1 A, the adele ring (or ring of 
valuation vectors) of k, and an element of A, an 
adele (or valuation vector) of k. The element of 
the direct product I-I,, k, whose p-component 
is a fixed element of k for all p is an adele. We 
cal1 such an adele a principal adele. Since up is a 
compact open subgroup of k,’ for each finite 
prime p, we cari construct the restricted direct 
product J, of {k,“} with respect to {up}. We 
cal1 J, the idele group of k and an element of J, 
an idele of k. The element of the direct product 

l-I$” whose p-component is a fixed element 
of k for a11 p is an idele. We cal1 such an idele a 
principal idele. Each element b of J, induces an 
automorphism f, of the additive group A, 
defined by fb(a)=b’a (aEAk). Thus J, cari be 
regarded as a subgroup of the automorphism 
group Aut of the additive group A,. The 
topology of J, coincides with the relative 
topology of J, as a subgroup of Aut( We 
note, however, that the topology of J, is dif- 
ferent from the relative topology of J, as a 
subspace of A,, and the former is stronger 
than the latter. Finally, for a tfunction tïeld 
in one variable over a +tïnite fïeld, the adele 
ring and the idele group cari be defined 
similarly. 

(2) Let ‘!II be a tnormal simple algebra over k 

and 0 be a tmaximal order of %. For each 
p E 1 put !Ri, = ‘% @ kkpr and for each fïnite 
prime divisor p put Dz), = op’ D. Then 0, is a 
compact open additive subgroup of %,. By the 
adele ring A, of !II we mean the restricted 
direct product of {!II,} with respect to {O,}. 
Let 91,” and U, be the multiplicative group of 
nonzero divisors of !?Iv and the multiplicative 
group of the units of DP, respectively. (U, cari 
be detïned only if p is a tïnite prime divisor.) 
By the idele group J, of ‘% we mean the re- 
stricted direct product of {‘9X,“} with respect to 
{U,}. The notion of principal adele (or idele) of 
‘% cari be detïned similarly, as in (1). The struc- 
tures, as topological groups, of A, and J, do 
not depend on the choice of a maximal order 
0. The adele ring A, and the idele group J, 
described in (1) are special cases of A, and J,, 
respectively. 

(3) Let G be a linear talgebraic group de- 
fïned over k, and let G, be the set of k,- 
trational points of the group for each p E Z. For 
each finite prime divisor p, let U, be the set of 
elements c( of G, such that the coordinates of 
both c( and tl-’ are p-adic integers. We cari 
then construct the restricted direct product of 
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{G,} with respect to {U,}, which is called the 
idele group (or adele group) of G. 

In the following section we focus on describ- 
ing the fundamental properties of adeles and 
ideles of an algebraic number tïeld k. We shall 
start, however, by observing more generally 
those adeles and ideles of a normal simple 
algebra ‘% over k. (For the properties of the 
adele group of algebraic groups - [7]; 13 
Algebraic Groups.) 

D. The Structures of the Adele Ring and Idele 
Group 

Let % be a normal simple algebra over an 
algebraic number tïeld of finite degree k. We 
identify the totality of principal adeles of % 
(principal ideles of %Fi) with ‘% (!II”), and denote 
it by the same letter 5R (!Ri”). Then % (9X”) is a 
discrete subgroup of A, (Ja). The quotient 
group A,/‘% is compact. Denoting by Isi,l, 
(C(~E k,,) and N&a,,) (c(,E!$) the tnormalized 
valuation of k, and the treduced norm from 9$, 
to k,, respectively, we define, for aEJ,, a posi- 
tive number: V’(a)=&,,]N,(a,,)&,, where a= 
(a,). We cal1 V(a) the volume of a. I f  a is a prin- 
cipal idele, we have I’(a) = 1 by the tproduct 
formula on valuations. Denote by Ji,the set 
of ideles a with V(a) = 1 and put Ci = J:/!R ‘. 
Then Ci has finite volume with respect to 
the +Haar measure of J,. Furthermore, Ci is 
compact if and only if % is a Idivision algebra. 
In particular, Ci is compact. Let Q be the fteld 
of rational numbers. For each rational prime 
p, we defme a character /1, of the completion 
Q, of Q with respect to the p-adic topology 
(by a character of Qp, we mean a continuous 
homomorphism from Q, to the l-dimensional 
torus R/Z): I f  p = pm is the infmite prime of Q, 
then we put ÂPm (x) = - x mod Z (x E Q,). I f  p is 
finite, then we let ii, be the composite of the 
following three canonical homomorphisms, 
namely, the one from Q, to Q,/Z,, the one 
from Q,JZ, to Q/Z, and the one from QJZ to 
R/Z. We define a character ip of 9$, as follows: 
/I, = 3,,0 tr(%,/Q,), where p is the rational 
prime divisible by p and tr(!R,/Q,) denotes the 
treduced trace from 9$, to Q,. For x, y~ Xp, 
put (x, y), = exp(2ni1,(xy)). Then the additive 
group !Rp is self-dual relative to (x, y),. Fur- 
thermore, if we put (a, b) = &(a,, h,), for 
a = (a,) and b = (b,) E A, then A,, is self-dual 
relative to (a, b). The tannihilator of the 
group of principal adeles with respect to (a, b) 
is ?II. Hence it follows from tPontryagin’s 
duality theorem that A,/% is compact. Hence- 
forth let ‘% = k. We cal1 the quotient group 
C, = J,.k’ (an element of C,) the idele class 
group of k (an idele class). I f  a character x of J, 
satisfies the condition x(a) = 1 for all NE k (i.e., 



6E 
Adeles and Ideles 

if x is a character of C,), we cal1 such a charac- 
ter a Grlissencharakter (or Hecke character). 
Grossencharakters were introduced by E. 
Hecke as characters of a certain type of the 
+ideal group of k (Math. Z., 1 (1918), 5 (1920)), 
but they are essentially the same as the ones 
defïned above [l]. Let D, be the connected 
component of the identity element of C,. Then 
C,/D, is totally disconnected and compact. 
Hence a Grossencharakter x is of finite order if 
and only if x(Dk) = 1. We cari prove by +class 
tïeld theory that C,/D, is canonically isomor- 
phic to the Galois group over k of the maxi- 
mal Abelian extension of k (- 59 Class Field 
Theory). For the structure of D,, the following 
fact is known: Let r, and r2 be the number of 
treal infinite prime divisors and timaginary 
infinite prime divisors of k, respectively. Then 
the dual group of D, is isomorphic to R x 

Q ‘l+‘z- r x 2’2, where R is the additive group of 
real numbers with the usual topology and 
Q (Z) is the additive group of rational numbers 
(rational integers) with the discrete topology. 
Let F be a function fïeld in one variable over a 
finite fïeld F,. The properties of the adele ring 
and idele group of F are similar to the prop- 
erties of A, and J,, while the group CF has 
a simpler structure than C,. TO explain the 
structure of C,, let F be the maximal Abelian 
extension of F, G be the Galois group of F/F, 
and GF be the subgroup of G consisting of the 
elements 0 such that a(a)= aq” for a11 CLEF,, 
(= the talgebraic closure of F,), where q is the 
number of elements of the tïnite tïeld F, and n 
is a given rational integer. Also, let Gg be the 
subgroup of G, consisting of the elements 
inducing the identity map on F,. Cg is a com- 
pact group with respect to the +Krull topology. 
G, cari be naturally supplied with a topology 
such that the group G, is a locally compact 
group and the quotient group G,/GF is dis- 
crete. Then class tïeld theory implies that GF is 
isomorphic to C, as a topological group. 

The following characterization of the adele 
ring of a number fïeld or function field in one 
variable over a tïnite fïeld is the work of K. 
Iwasawa (Ann. Math., (2) 57 (1953)). Let A be a 
tsemisimple commutative and locally compact 
topological ring with unity 1. Assume that A is 
neither discrete nor compact, and moreover 
that A contains a discrete subtïeld ks 1 and 
A/k is compact. Then k is an algebraic number 
fïeld or a function tïeld in one variable over a 
fïnite tïeld, and A is isomorphic to the adele 
ring of k as a topological ring. 

E. Ideles and Cohomology 

Let K be a Galois extension of tïnite degree of 
an algebraic number field k, and 6 be the 
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Galois group of the extension K/k. 6 operates 
naturally on the idele group J, and the idele 
class group C, of K. The structures of the 
tcohomology groups of 8 with the coefficient 
groups J, and C, were investigated by G. 
Hochschild, T. Nakayama, E. Artin, J. Tate, 
and others. In particular, we have H’(@C,) = 
(0) and HZ(%, C,)E Z/nZ (cyclic group of 
order n), where n = [K : k]. These facts play an 
important role in one of the proofs of class 
field theory (- [3]; 59 Class Field Theory). 
Furthermore, A. Weil introduced the so-called 
Weil group, which is a tgroup extension of a 
certain type of C, by 6. He detïned the most 
general L-functions, which include both 
tArtin L-functions and +Hecke L-functions 
with Grossencharakters (- [2]; 450 Zeta 
Functions). 

F. Fourier Analysis on the Adele Group 

+Dedekind zeta functions and Hecke L- 
functions are tmeromorphic on the whole 
complex plane and satisfy functional equa- 
tions of certain types. This cari be proved by 
methods of Fourier analysis on the adele 
group A, (Artin, Iwasawa, Tate [ 1,8,9]). For a 
continuous complex-valued function cp(a) on 
A, satisfying suitable conditions, we defïne the 
Fourier transform of cp(a) as follows: 

Jak 
where db denotes the Haar measure on A,. 
By normalizing db suitably and applying 
+Poisson’s summation formula, we get, for 
each idele a of k, 

This is called the O-formula. Consider the 
following integral on J,: 

JJk 
where d*a denotes the Haar measure on J,, 
s is a complex number, and x is a Grossen- 
charakter of k, namely, a character of C,. This 
integral converges if s > 1, and by using the 
O-formula one cari show that t(s) is meromor- 
phic on the whole complex plane and satis- 
fies a functional equation of a certain type. 
When the function cp is of special type, then 
the above integral cari be explicitly expressed 
as the product of L-functions, F-functions, and 
exponential functions. This method of express- 
ing L-functions by integrals on Jk and apply- 
ing the O-formula cari be applied to investi- 
gate +Hey zeta functions and L-functions of 
various types detïned for a simple algebra (- 
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450 Zeta Functions) (G. Fujisaki [6]; T. Tama- 
gawa, Ann. Math., 77 (1963)). 
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7 (VI.1 5) 
Affine Geometry 

A. Construction of Affine Spaces 

An affine space A is constructed as follows: Let 
V be a tvector space over a tfield K, and let A 
be a nonempty set. For any vector a6 V and 
any element p of A, suppose that an addition p 
+ a E A is delïned SO as to satisfy the following 
three conditions: (i) p + 0 = p (0 being a zero 
vector); (ii) (p+a)+ b=p+(a+ b) (a, bE V); and 
(iii) for any qE A there exists a unique vector 
a E V such that q = p + a. (Condition (i) follows 
from (ii) and (iii).) Then we cal1 A an affine 
space, V the standard vector space of A, and K 
the coefficient fïeld of A. Each element of A is 
called a point. 

I f  we ftx an arbitrary point OEA, there is a 
one-to-one correspondence between A and V 
given by the mapping sending PE A to aE V 
such that p = o + a. Such an element a of V is 
called a position vector of p with the initial 
point o and is denoted by Op. We say that r + 1 
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points pbL (0 < CT < r) of A are independent if r 
vectors ai = Pop; (1~ i < r) are linearly inde- 
pendent in V; otherwise, they are said to be 
dependent. This definition of dependence of 
points pa is independent of the choice of the 
initial point among them. If V is of dimension 
n, we say that A is of dimension n, dim A = n; in 
this case, we sometimes Write A” instead of A 
and V” instead of V. The affine space A is of 
dimension n if and only if the maximum num- 
ber of independent points in A is n + 1. 

Next, for any vector subspace V’ of V” and 
an arbitrary point pu A”, we put AP= {qE A”( 
q = p + x, x E Vk} and cal1 it a subspace of A”. It 
is an affine space of dimension k. Conversely, 
every subset of A” that is an affine space under 
the affine space structure of A cari be expressed 
in this form. A’, A’, and A”-’ in A” are called 
a line, plane, and byperplane, respectively. A set 
that consists of only one point is also consid- 
ered as a subspace A’. For subspaces A’ and 
AS of A”, we denote by A’n A” the intersection 
(ie., the set-theoretic intersection) of A’ and A”, 
and by A’U A” the join of A’ and A” (i.e., the 
intersection of a11 subspaces that contain both 
A’ and A”). Then A’n A” is the affine space of 
highest dimension contained in A’ and A”, and 
A’U A” is the affine space of lowest dimension 
that contains A’ and AS. If  r + 1 points are 
given in A”, there always exists a subspace A’ 
that contains a11 these points. In particular, if 
the points are independent, then such an A’ is 
unique. Moreover, if A’n A” # 0 (0 is the 
empty set), then we have r + s = dim(A’U A”) + 
dim(A’n AS). This is called the dimension 
tbeorem (or intersection tbeorem) of affine 
geometry. 

Next suppose that r + 1 points pu (O< a< r) 
in A” are independent, and put P’+~ =p,,. Let 
q, be an arbitrary point on p, U pcii that differs 
from pa and P~+~. If  2 are elements of K such 
that A”.mj=a, then q0 ,..., q,are de- 
pendentifandonlyifÂ’Â’...A’=(-l)’+’.And 
if r>2 and oc=q,Up,+,U UP,,’ (p,+l=pi-l 
if i> 1), then oo, . . . . a’ have a point in common 
if and only if 1’1.’ A’= 1. The former is 
called Menelaus’s tbeorem, and the latter 
Ceva’s tbeorem. 

The set L(A) of a11 subspaces (including 0 
considered as an aftïne space of dimension -1) 
constitutes a tlattice with respect to the inclu- 
sion relation. 

B. Parallelism in Affine Spaces 

Let A’ and A” be subspaces of A”. We say 
that A’ and A” are parallel in tbe wider sense 
if either of the following conditions holds: 
(i)A’~A”orA”~A’;or(ii)A’FlA”=~ 
and dim(A’U A”) < r + s. Next, let A’ and 
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B’ be subspaces of A” of the same dimension. 
If  A’ and B’ coincide, or A’ n B’= 0 and 
dim(A’ U B’) = r + 1, then they are said to be 
parallel in the narrower sense (or simply paral- 
lel), and we denote the relation by A’// B’. I f  
r = s = 1, the definitions of parallelism in the 
narrower sense and wider sense are equivalent. 
I f  r> 1, parallelism in the narrower sense im- 
plies parallelism in the wider sense. For two 
sets (a,) and (b,) (0 < GL d Y) of r + 1 independent 
points, let v’ and W’ be vector spaces with 
bases mi and b,b, (1~ i < r), respectively. 
Then A’=a,U...Ua,andB’=b,U...Ub,are 
parallel if and only if V’= W’; and for an 
arbitrary point p, there exists a unique r- 
dimensional subspace that is parallel to A’ and 
passes through point p. I f  A’ and B” are paral- 
le1 in the wider sense, then there exist sub- 
spaces A’ and B’ (t > 1) of A’ and B” that are 
parallel to each other. Moreover, if neither A’ 
nor B” is contained in the other and if t is the 
largest integer with the property just given, 
then we have t=r+s+l-dim(ArUB”). 

Parallelism between subspaces of A” is an 
equivalence relation. Specitïcally, the equiva- 
lente class of a 1 -dimensional subspace A’ is 
called a point at intïnity and is denoted by AZ 
Given a subspace A’ of A”, the set of points at 
infinity AZ represented by lines A’ con- 
tained in A’ is denoted by AZ’; we have 
A*// B’ if and only if A’,’ = Bz’ A’,-’ is 
called a space at infinity. In particular, the set 
A”,-’ is called the hyperplane at infinity. The 
set-theoretic sum A” U AZ i = Àn is supplied 
with the structure of a tprojective space; the 
“points” in A” are elements of A”, and the 
“lines” in ,@ are A’ U A: and AL. 

C. Coordinates of Affine Spaces 

If we fïx a point o in A” and a basis {er , , e,} 
of the standard vector space V”, then any 
point p in A” is uniquely expressed as 

p=o+ i x’.e,, XiEK. (1) 
i=l 

The system 5 = (0; e,, . . , e,) is called an affine 
frame (simply the frame) of A”; the point o 
is called its origin, and e, is called the ith 
unit vector. The mapping sending p to (x1, 

“‘. x”) gives a ‘bijection of A” to K”; we cal1 
(x’, . ,x”) affine coordinates of p with respect 
to 3, and xi the ith affine coordinate. In partic- 
ular, if K is a topological field (e.g., the real 
number field R or the complex number field 
C), this bijection A”+K” induces a topology of 
A”, which cari be shown to be independent of 
the choice of 3. For the remainder of this 
article, by “coordinates” we mean affine co- 
ordinates unless otherwise stated. Putting 
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ai = 0 + e, (1 < i < n), we sometimes cal1 (0; a,, 
. . a,) an affine frame. Further, putting li = o U 
ai, 7q=oUa, U . Uql Uai+l U Ua,, we cal1 
ai, li, and rri the ith unit point, the ith coordi- 
nate axis, and the ith coordinate hyperplane, 
respectively. 

Assume that subspaces A’ and A” (r, s > 0, r + 
s = n) are not parallel in the wider sense. For 
a point p of A”, denote by A’(p) the subspace 
that passes through p and is parallel to A’, and 
put 4 = A’(p) n A”. A mapping <p : A”-, A” de- 
fmed by <p(p) = q is called a parallel projection 
on A” with respect to A’. In particular, if A’= 
ni and As=& (r=n- l,s= l), we Write <p(p)=pi. 
Then the ith coordinate xi of p is an element 
of K such that opi = xi@,. Hence such coordi- 
nates are also called parallel coordinates (or 
Cartesian coordinates). 

Suppose that we are given Y + 1 points 
b,, , b, of A” and r + 1 elements A’, , A’ of 
K such that C~=,Y= 1. We tïx a point o of A”. 
I f  a point p in A” satisfies o’p = CLzo laon, then 
cp = Ci=, /l’&& hence p is contained in the 
subspace b, U . . U b,. Conversely, if a point p is 
contained in the latter subspace, then there 
exists a system (Âo, . ,,Y) such that 

op = CLzo Po# and X~=ol~= 1. 

The system (ao, , A’) has a geometric mean- 
ing since we also have rp = CL=0 Âolza if we 
replace the point o by any other point o’ of A”. 
The elements Âo, , Â’ are called barycentric 
coordinates of p with respect to {b,, , b,}. In 
particular, if (b o, . . , b,} are independent, 
then the barycentric coordinates (Ao, . , 2”) 
are uniquely determined by the point p on 
b, U U b,. Furthermore, let (y’, , y”) be 
affine coordinates of p with respect to an affine 
frame 3, and let (xi, . . . , xi) be affine coordi- 
nates of b, (s( = 0, , Y). Then p belongs to the 
subspace A’= b, U U b, if and only if yi = 
C;=oÂ~X;(i=l)..., FI). In this case we say 
that the system of the linear equations y’= 
C /I’xi (x 2 = 1) gives a parametric represen- 
tation of the subspace A’ (by parameters Y). 
Specilïcally, if r = n - 1, the solvability of the 
system of equations y’= Ca=& 1’~: (i = 1, . . , n), 
1 = CA” implies the equation C:=i yipi = p. for 
some nontrivial constants po, . , pn. Hence the 
latter equation represents the hyperplane 7~ = 
A”-‘. I f  a point p has barycentric coordi- 
nates3L0=i1=...=i’=(r+1))‘withrespect 
to {b,, , b,}, it is called the barycenter of b,, 
b,, . . , b,. The barycenter is uniquely deter- 
mined by the set {b,, . , b,} and is denoted 
by g(b,, . . , b,). Specifically, the barycenter 
of two points b, and b, is called the midpoint 
(or middle point) of b, and b,. I f  we divide 
B = {b,, . , b,} into two sets of points and if 
gi and g2 are barycenters of these two sets 
of points, respectively, then y1 U g2 passes 
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through the barycenter of B. More generally, a 
point with barycentric coordinates (Ao, , 2) 
with respect to {b,, , b,} is called a barycen- 
ter of b,, , b, with weights A’, ,Z. 

D. Affine Spaces over Ordered Fields 

Suppose the coefficient fïeld K is an tordered 
field (e.g., the real number field R). Given a 
hyperplane 71 of A”, we take an affine frame for 
which 7-c is the nth coordinate hyperplane. If  we 
denote coordinates of points with respect to 
this frame by (x’, ,x”), then the equation of 
n is given by x” = 0. Let A; and A’Y be sets of 
points whose nth coordinates are positive and 
negative, respectively. They are called half- 
spaces of A” divided by 7~. The union of 7~ and 
a half-space is called a closed half-space. A 
half-space of a subspace A’ of A” (divided by 
some A’-’ on A’) is called a half-space of di- 
mension r. For a point p of A” that does not lie 
on 7-r, the half-space containing p is called the 
side of p with respect to n. In particular, when 
IZ = 1, let p and q be two points on a line 1. The 
closed side of 4 with respect to p is called the 
(closed) half-line (or ray) from p to 4. The inter- 
section of the closed half-lines emanating from 
p to q and from q to p is called the segment 
joining p and 4 and is denoted by @j. Clearly 
py=qp. A subset C of A” is called a convex set 
if the segment joining two arbitrary points of 
C is contained in C. Each half-space of each 
dimension is convex. For any family C, of 
convex sets, fi7 C, is also convex. Therefore, 
for any subset D in A” there exists a minimal 
convex set that contains D. It is called the 
convex closure (or convex hull) of D. The con- 
vex closure C(P) of a fïnite set of points P = 
{ po, , pk} in A” is called a convex cell, and 
dim(p, U . U pk) is called the dimension of the 
convex cell. In particular, when po, , pk are 
independent, C(P) is called a k-dimensional 
simplex with vertices po, , pk. The 1 -dimen- 
sional simplex having two distinct points p 
and q as vertices is the segment pq, and the 
vertices p and q are called ends of the segment. 
A point is regarded as a 0-dimensional sim- 
plex. Each 2-dimensional or 3-dimensional 
simplex is called a triangle or tetrahedron, 
respectively. A k-dimensional simplex S with 
vertices po, , pk is a set of points whose 
barycentric coordinates Â” (0 < tl Q k, C 1” = 1) 
with respect to the vertices satisfy i” > 0. On 
the other hand, if we put Ak = p. U U pk and 
n,=p,U...Up,-,Up,+, U...Up,, anddenote 
by A: the side of pz in Ak and by $ the closed 
side of pa in Ak with respect to z~, then the 
simplex S is given by n:=, Ai, and nkEo Ak, is 
called an open simplex. A” has the structure of 
a rtopological space in which the set of open n- 
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dimensional simplexes forms a +base of topen 
sets. In particular, if K is R, the topology of A” 
thus deiïned is compatible with the one that is 
naturally induced by the topology of R. With 
respect to this topology, A” is a +Hausdorff 
space. The terms open and closed used before 
for n-dimensional simplexes agree with the 
corresponding notions with respect to this 
topology. 

A subset of A” is said to be hounded if it is 
contained in some simplex. A bounded set 
obtained through a fïnite process of construct- 
ing intersections and unions from a lïnite 
number of closed half-spaces is called a poly- 
hedron. The points of a convex polyhedron are 
characterized by several linear inequalities 
satistïed by their coordinates. A set of points 
whose coordinates (x1, , x”) satisfy hi <xi < 
k’ for k’, h’eK is called a parallelotope; it is a 
polyhedron whose tinterior is called an open 
parallelotope. A simplex is a polyhedron, and 
polyhedra admit tsimplicial decompositions. 
A polyhedron cari also be deiïned as the set- 
theoretic union of a tïnite number of simplexes. 

Let P be a finite set of points, and let its 
convex closure C(P) be a convex ce11 of dimen- 
sion m. Then C(P) is contained in an m- 
dimensional subspace A”. The tboundary of 
C(P) in the topological space A” is called the 
houndary of a convex ce11 C(P). We cari take a 
subset Q of P SO that dim C(Q) = m - 1 and 
C(Q) is the intersection of the boundary of 
C(P) and an (m- 1)-dimensional subspace. 
Such a C(Q) is called a face of C(P), and 
we denote this relation by C(P)>C(Q). If  
C(P)>C(P,)> . ..>C(P.), then C(P,) is called 
an (m - s)-dimensional face of C(P). A O- 
dimensional face is called a vertex, and a l- 
dimensional face is called an edge. Suppose 
that C(P)>C(Q) for P={p,, . . ..pk} and Q 
= {pi,, . , pi,-,}. Then F = pi, U . U pi,-, is a 
hyperplane of E =po U . . . U pk, and C(P) is 
contained in a closed side of E divided by F. 
Therefore, if C(P) has d (m - I)-dimensional 
faces, then C(P) is expressed as the intersection 
of d m-dimensional closed half-spaces. This 
shows that any convex ce11 is a polyhedron. 

E. Affine Transformations 

A mapping cp : A”+ A” is an affine mapping if 
there is a linear mapping <p: v”+ V”’ of the 
standard vector spaces of A” and A”’ such that 
<p(p+x)=<p(p)+cp(x) holds for any PE A” and 
any XE V”. An affine mapping of A” into itself 
is called an affine transformation (or affnity) 
of A”. Specifïcally, a bijective aff~ne transforma- 
tion is called a regular (or proper) affine trans- 
formation. An affine transformation q of A” is 
characterized by each one of the following 
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properties: (i) Let OEA”  be a fixed point. Then
cp  is a mapping of A” onto  itself that cari  be
expressed as

do + x) = 0 + a +.f(x), (2)

where a is a fixed vector of V” and f is a
linear transformation of V”. (ii) The mapping
47: A”+A” is a mapping such  that <p(a)<p(h)=
i.<p(p)<p(yj  if ab=n.pq  (E.EK).  Moreover, if
the tcharacteristic  of K is not equal to 2, an
affine transformation is also characterized as
follows: (iii) <p  is a mapping that sends litres
into lines and preserves the ratio of each pair
of parallel segments.

The set %(A”)  of all regular affme  transfor-
mations of A” constitutes a group that we cal1
the group of affine transformations. If the
linear mapping f associated with a regular
affine  transformation q is the identity map-
ping, then <p  is called a translation. The set
%(A”) of all translations is a normal subgroup
of ‘%(A”)  and is called the group of translations.
The group of translations is isomorphic to V
regarded as an additive group. The vector
group %(A”) (i.e., an additive group of a linear
space) acts  +simply  transitively on A”. We see
that 21(A”)/6B(A”)~  GL(n,  K), where GL(n,  K)
denotes the tgeneral  linear group. The set of
ail regular affine transformations that leave a
point o of A” invariant constitutes a subgroup
B(A”)  of %(A”); it is called an tisotropy  group
at o and is isomorphic to GL(n,  K). Let 3 =
(0;  e, , , e,) be an affine frame of A” with
origin o, and let rp be a regular affine  trans-
formation of A” given by (2); put x =C x’ei,
<p(o  +x) = o +C -ï’e,,  a = C aie,, and S(ei)  =
C ujej. Then cp  is expressed with respect to 3
by the following equation:

zczai+  i ajxk, det(uj’)#O,  1 <i<n. ( 3 )
k=l

Conversely, a transformation that is given by
(3) is a regular aftïne  transformation. Elements
of B(A”)  and %(An) are expressed with respect
to  3 by

Xl=xi+ui, l<i<n, ( 4 )

and

X’=  i aixk, det(aj  # 0, 1 Gi<n, (5)
k=,

respectively. Hence (LI(A”)  is represented as a
tsemidirect  product  group of ‘%(A”)  and (F>(A”).
In particular, a regular affine transformation
that is represented by Y’ = uxi  (1 <id  n) for
some acK (a #O)  is called a similarity with the
origin 0 as tenter.

According to F. Klein, the abjects we deal
with in affine  geometry are the properties
(parallelism, barycenters, etc.) that are invar-
iant under regular afftne  transformations.

2 6

Subsets S, and S,  of A” are called affinely
congruent if there exists a regular afftne  trans-
formation <p  sending S, onto  S,. For a tïxed
k, two k-dimensional simplexes are affinely
congruent. Now we lïx an affine frame 3 in A”
and denote by x: the coordinates of II + 1
points pz  (0 < a d n) in A”. Then the quantity

(6)

is called the volume with respect to 3 of the II-
dimensional simplex with vertices po,  , p,.  If
cp  is a regular affine  transformation given by
(3), we have p=det(uj)  V. Hence the ratio of
volumes of two n-dimensional simplexes is
independent of the choice of coordinate sys-
tems, and is invariant under regular affine
transformations.

A regular affine transformation given by (3)
satisfying det(u/)  = 1 is called an equivalent
affnity. The set of all equivalent afftnities
constitutes a subgroup of %(A”). The geometry
belonging to this group is called affine geome-
try in the narrower sense. For instance, the
concept of volume is an invariant in affine
geometry in the narrower sense.

F. Relation to Projective  Geometry

Let P”  be a projective space over a coefficient
field  K (- 343 Projective Geometry). If we fïx
a hyperplane rt, in P”, then the set of projec-
tive transformations that leave T[,  invariant
constitutes a subgroup of the group of tprojec-
tive transformations of P”; this subgroup is
isomorphic to a group of regular affine  trans-
formations. Actually,  if we use a tprojective
frame [ao, a , ,  , a,, u] such that a,, , a, are
points on T[,  , then each projective transfor-
mation leaving rc, invariant is expressed by
equations of the same form as (3) with respect
to the tinhomogeneous  projective coordinates.
The point set A” complementary to x, in P”
is an affine  space, and n,  coincides  with the
hyperplane at infïnity. Moreover, two distinct
lines in P” are parallel in A” if they meet on the
hyperplane at infïnity.  Hence, denoting by
(0, I’, . , I”)  the +homogeneous projective co-
ordinates of the intersection of a fine  1 in A”
and rr,,  we cal1 (I’, , I”) the direction ratio of
1. A projective transformation leaving each
point of n,  invariant induces  a translation.
The tprinciple of duality that holds in projec-
tive geometry does not hold in affine  geome-
try. The +pole  of the hyperplane at infmity,
with respect to a quadric hypersurface, is
called the tenter  of the quadric hypersurface. A
regular quadric hypersurface is called central
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or noncentral according as its tenter  belongs to
A”  or is a point at inlïnity. Quadric hypersur-
faces in an affine space  are classilïed in several
ways, by taking account  of their relations with
the hyperplane at infinity  (- 78 Conic Sec-
tions, 350 Quadric Surfaces).

References

[ 11 0. Schreier and E. Sperner, Einführung in
die analytische Geometrie und Algebra 1, II,
Teubner, 1931, 1935; English translation,
Introduction to modern algebra and matrix
theory, Chelsea, second edition, 1961.
[L]  E. Sperner, Einführung in die analytische
Geometrie und Algebra 1, II, Vandenhoeck &
Ruprecht ,  1948 ,  1951 .
[3] E. Artin,  Geometric algebra, Interscience,
1957.
[4] H. Weyl,  Raum, Zeit, Materie, Springer,
fifth  edition, 1923; English translation, Space,
time, matter,  Dover, 1952.
[S] S. Iyanaga and K. Matsuzaka, Affine
geometry and projective geometry, J. Fac. Sci.
Univ. Tokyo, 14 (1967),  171-196.

8 (111.1)
Algebra

Though the word “algebra” usually refers to
a lïeld of mathematics as Will be explained
below, the word may also denote specific
mathematical structures such as tassociative
algebras, +Jordan  algebras, +Clifford  algebras,
etc. The first concepts concerning “unknowns”
in algebra originated in India, whence came
also our decimal  positional system of numer-
ation. These ideas were introduced to Europe
through Arabia in the Renaissance period. F.
+Viète  systematized them into a symbolic
method, called algebra, representing numbers
by letters. The tïrst  problem of algebra was
solving equations. Before Viète, G. Cardano
and L. Ferrari had solved algebraic equations
of degrees 3 and 4; the solution of equations of
lower degree had been known from antiquity.
The effort to solve equations of higher degree
remained unresolved until the middle of the
19th Century, when N. H. tAbel  and E. +Galois
proved the nonexistence of algebraic solutions
of such equations. They considered not only
individual roots of these equations but also
any rational transforms of their roots at the
same time, and thus were led to the concept of
tfields.  They also noticed that the problem of
algebraic solution could be characterized by
properties of permutation groups of the roots.
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After the discovery of the Galois group, group
theory and group-theoretical considerations
maintained the central position in algebra for
some time (- 172 Galois Theory). These de-
veloped into the “abstract  algebra” of this
Century in the general atmosphere of arithme-
tization and of axiomatization of mathematics.
At the turn of the Century  the monumental
textbook in three volumes by H. Weber [l]
was considered the standard work on algebra.
Then there appeared in 1910 an epoch-making
paper [Z]  by E. Steinitz on the abstract  theory
of lïelds.

The main abjects of algebra today are +alge-
brait  systems of various kinds, such as tgroups,
trings, tlïelds,  and tmodules. Another fun-
damental concept of algebra is that of +iso-
morphism or of thomomorphism.  The col-
lection of algebraic systems of a given kind,
together with the homomorphisms among
them, gives rise  to the notion of tcategory; a
functor is a sort of homomorphism between
categories  (- 52 Categories and Functors).
These notions were lïrst  used in thomological
algebra, created in the 1940s by methods
transferred from topology to algebra; now
they are of basic signitïcance  to the whole of
mathematics.

An important branch  of algebra with wide
applications is the theory of tvector spaces,  or
more generally that of tmodules  over a ring.
This branch  is called linear algebra. Homo-
morphisms between finitely generated modules
cari  be represented by tmatrices. Another
branch  of algebra, called trepresentation
theory, is concerned  with representations of
groups or rings by matrices. The methods of
modern algebra provide useful and powerful
tools for the whole of mathematics, in partic-
ular for the theory of numbers and algebraic
geometry.

The present development of algebra owes
much to the activity  of the German school in
the late  1920s represented by E. Noether,  E.
Artin,  W. Krull, and B. L. van der Waerden.
The book by van der Waerden [3] has had a
great impact on mathematics. N. Bourbaki [4]
has been influenced by van der Waerden but
gives accounts of more recent  developments,
particularly in linear algebra. In Japan, M.
Sono, who worked at about  the same period
as E. Noether,  was a forerunner in this lïeld;
after him, algebraists of the Kyoto School, Y.
Akizuki, M. Nagata, and their followers, did
notable research, especially in algebraic geom-
etry. On the other hand, K. Shoda studied
with E. Noether  toward 1930 in Germany; his
school includes  such algebraists as T. Naka-
yama, K. Asano, and G. Azumaya. Finally
K. Morita and his disciples have made signif-
icant contributions to homological algebra.
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9 (Vlll.2)
Algebraic Curves

A. General Remarks

An talgebraic  variety of dimension 1 is called
an algebraic curve (for analytic theory - 11
Algebraic Functions). The theory of algebraic
curves has two aspects, the geometry of l-
dimensional complex manifolds in projective
spaces  and the theory of function lïelds of
transcendence  degree 1 (-  3 Abelian Varieties,
16 Algebraic Varieties). The number-theoretic
study of algebraic function fïelds  concerns the
latter theory (- 73 Complex Multiplication,
450 Zeta Functions). In this article, the geo-
metric aspect of the theory is emphasized.
We denote the +universal  domain  by K.

B. Classical Results  on Plane Algebraic Curves

Let ,f(X,  Y) be a polynomial of degree rn in
two variables X and Y. A point set in an affine
two-space defïned by f(X,  Y) = 0 is called the
plane algebraic curve of degree m. If we set
F(&, Xl, X2)  = JG.f(X,lXo,  X,/X,),  the
homogeneous polynomial F defines an alge-
brait  curve of degree m in a projective plane
P’. The curve is called irreducible if the poly-
nomial f(X, Y) is irreducible. A curve of degree
1 is said to be a line. Some results of this sec-
tion are valid only in the case where the char-
acteristic of K is zero.

Let C be a plane curve detïned by the equa-
tion f(X,  Y) = 0. A point P = (a, b) on C is
called an r-ple point if f(X  + a, Y + b) has no
term of degree < r in X and Y. At an r-ple
point there are r tangent straight lines (count-
ing multiplicity).  An r-ple point with r z 1 is
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called a multiple point (or singular point). If
these tangents are distinct, P is called ordi-
nary. An ordinary double point is called a
node; e.g.,  the origin for X3  + Y3 -3X Y = 0.
An algebraic curve cari be transformed into a
plane curve that has only ordinary multiple
points by a lïnite  number of plane TCremona
transformations (tquadratic  transformations of
the projective plane into itself).

Let C be anirreducible  plane curve of de-
gree m > 1 in a projective plane. The set of a11
tangent lines at nonsingular points of C deter-
mines a set of points in the dual projective
plane, and its closure is an algebraic curve C,
that is called the dual curve of C. The dual
curve of C becomes the original C. The degree
m’ of C is said to be the class  of C, which is
equal to the number of tangent lines to C
drawn from a general point. A nonsingular
point P is called a point of inflection  (or a flex)
if the tangent line at P has contact of order
> 2. If C is detïned by an irreducible homoge-
neous polynomial F(X,,  Xi, X,), the curve
defined by det(@F/aXioXj)=O  is said to be the
Hessian of C. A nonsingular point P is a point
of inflection if and only if P is contained  in the
Hessian. A singular point P is said to be a cusp
if C is detïned by an equation Y2 =X3  + higher
terms, in terms of suitable affine coordinates X
and Y where P = (0,O).  Whenever the singular
points of C are only v nodes and y cusps, the
effective genus g is given by the formula g =
(m - 1) (m - 2)/2  - v -y. In addition, suppose
that the dual curve has only v’ nodes and y’
cusps as singularities. Then C has y’ points
of inflection, and m’ and y’ are given by m’=
m(m- I)-2v-3y  and y’=3m(m-2)-6v-8y.
Moreover, m=m’(m’- l)-2v’-  3y’  and y =
3m’(m’  - 2) - 6v’  - 8y’  hold. These formulas are
called Pliicker  formulas.

For example, a nonsingular plane curve of
degree 3 is an elliptic curve, i.e.,  g = 1, of class
6, which has 9 points of inflection. A non-
singular plane curve of degree 4 has, in gen-
eral, 24 points of inflection and 28 bitangents.
This results from the Plücker formulas.

C. Fundamental Notions

In what follows, by a curve we mean an alge-
brait  variety of dimension 1. Let I be a non-
singular complete irreducible curve. An ele-
ment of the free Abelian group generated by
points of I is called a divisor. A divisor is
written in the form a = 2 niPi, with ni  E Z. The
integer n =C rti  is called the degree of a and is
denoted by deg a. The expression for a divisor a
is said to be reduced if Pi  # Pj  for i #j.  A divisor
whose reduced expression has only positive
coefftcients  is called a positive divisor (or effec-
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tive divisor, or integral divisor), and this is
denoted by a>O. The group of divisors on r is
denoted by G(r), and the subgroup consisting
of divisors of degree 0 is denoted by G,(T).  Let
P be a point of r.  The subset of the function
fïeld K(T)  of r consisting of functions regular
at P forms a valuation ring R,  for a tdiscrete
valuation of K(T). A prime element t of R,  is
called a local parameter at P. Let uP  be the
tnormalized  valuation of K(T)  defïned by R,;
the integer up(f) is called the order off at P.
The point P is a zero off if Qf)  > 0; it is a
pole off if up(f) < 0. There are only a lïnite
number of poles and zeros of a given function
f: The divisor EU~(~) P is called the divisor of
the function f and is denoted by (f). The set of
divisors of functions forms a subgroup G,  of
G,. Any  divisor a in G,  is called a principal
divisor (we also say  that a is tlinearly equiva-
lent to zero and Write  a - 0).

Let a be an arbitrary divisor. The set of all
positive divisors that are linearly equivalent to
a forms a complete l inear system la1  deter-
mined by a. We set L(a) = { fi K(r) 1 (f) +
a>O} U (0). Then L(a) is a finite-dimensional
vector space  over K, and 1-dimensional sub-
spaces of L(a) correspond bijectively to  the

,elements  of 1 ai. We set J(a) = dim, L(a) and
dimlal=J(a)-  1. Then dim)al is called the
dimension of 1 ai. For any divisor a, the integer
deg a - diml a 1 is nonnegative and bounded.
The supremum g of such integers is called the
genus of r.  The nonnegative integer i(a) =
g - deg a + dim 1 a 1 is called the speciality index
of a.

Let w  be a tdifferential form on r, P be a
point of r, and t be a local parameter at P.
Then w  cari  be written in the form w  =fdt.  We
now set V~(W)  = up(f) and (w) = C v,(w)P.  Then
(w) is a well-defined divisor, and the class  of
(w) in G/G,  is independent of the choice of w.
This divisor class  is called the canonical class;
any divisor in this class  is called a canonical
divisor (or differential divisor) and is denoted
by I.  We have J(f) = y, deg f = 29 - 2. Given a
divisor a, the index i(a) is equal to the number
of linearly independent differentials w such
that (w)>a,  i(a)=J(f-a).  The equality J(a)=
deg a -y + 1 + i(a) is called the Riemann-Roch
theorem.

For any irreducible algebraic curve r, there
exists a birationally equivalent nonsingular
curve j? that is unique up to isomorphism. The
genus of r is called the effective genus of r.  A
curve whose effective genus is zero is called a
rational (or unicursal) curve. An elliptic curve  is
a curve whose effective genus is 1. An irreduc-
ible curve r with genus > 2 is called a hyper-
elliptic curve  if K(T)  is a quadratic extension of
a fïeld K(t) for some t.

A positive divisor a on a nonsingular com-
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plete irreducible curve r is called a special
divisor if i(a) > 0. In this case, 2 (J(a) - 1) < deg a,
where equality holds if and only if a = 0 or a -
t,  or r is a hyperelliptic curve (Clifford’s
theorem). Let r be a nonsingular complete
irreducible curve and k be a sublïeld of K such
that r is defined over k. Denoting by k the
algebraic closure of k, we cal1 a divisor p =
C n,P, on r a prime rational divisor over  k if
p satisfies  the following three conditions: (i) p
is invariant under any automorphism o of %/k;
(ii) for any j, there exists an automorphism
cri  of k/k such  that Pj  = Pyj; (iii) n, = . =II,  =
[k(P,):kli.  An element in the subgroup of
G(T)  generated by prime rational k-divisors is
called a k-rational divisor. Let k(T) be the
subset of K(T)  consisting of functions ,f defïned
over k. Then k(T) is a subfïeld of K(T),  and the
quotient fïeld of k(r)  0 kK  = K(T). k(T) is
called the function field of r over  k. Let p be a
prime rational k-divisor, and let P be a point
of p.  Then R,  f? k(T) is a valuation ring of k(T)
uniquely determined by p and independent of
the choice of the point P in p. We cal1 this
valuation ring the valuation ring determined
by  P.

D. Algehraic Function  Fields

Let k be a fïeld, and let K be a finite  separable
extension of a purely transcendental extension
k(x) of k such  that k is maximally algebraic in
K. Then K is called an algehraic function tïeld
over  k of dimension 1 (or of transcendence
degree 1). The equivalence  class  of texponen-
tial valuations of K that are trivial over k is
called a prime divisor of K/k. An element of the
free Abelian group generated by prime divisors
is called a divisor of K/k. The group opera-
tion in the divisor group of K/k is usually
denoted multiplicatively. Let R,  be the
valuation ring of the prime divisor P, and
let M,  be the maximal ideal of R,. The de-
gree deg P of the prime divisor P is defïned by
[(Rp/Mp):  k]. If we replace the terms: curve r
by function fïeld K/k; K(T)  by K;  K by k; and
points on r by prime divisors of K/k, we cari
develop the theory of the function field  K/k,
which is similar to  the theory of nonsingular
curves r (- Sections B, C). Thus we define the
genus of the function field  K/k.

Suppose we are given an algebraic function
field K/k of dimension 1. An algebraic curve r
defined over k is called a mode1  of K/k if k(T)
and K  are k-isomorphic. For any function iïeld
of dimension 1, there always exist two ele-
ments x and y in K  such that K=  k(x,  y). Let
f(X,  Y) be an irreducible polynomial such that
,f(x, y) = 0. Then the plane curve defined by the
equation f(X,  Y) = 0 is a mode1  of K/k. Among
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the models of K/k  there exists a tnormal  mode1
I, over k that is unique up to isomorphism
(and the uniqueness of the normal mode1 of
the function Iïeld  within the birational equiva-
lente class of varieties holds only for curves). In
particular, if k is the complex number tïeld, the
normal mode1 I, is the tRiemann  surface of
the function lïeld K/k.  If I, has no singular
point, the theory of the curve I, and the
theory of the function tïeld Klk are essentially
identical. (This occurs, for example, when k is
tperfect.)  In that case the genus of I, is equal
to that of K/k.  In general, the genus of the
function iïeld is not less than the genus of the
normal mode1 I,, and it is greater than the
latter if I, has a singular point. If the genus of
K/k  is zero, we cari  take a plane quadratic
curve as a mode1 of K/k.  Moreover, Klk has a
prime divisor of degree 1 if and only if K is a
purely transcendental extension of k. A func-
tion lïeld K/k  of genus 1 is called an elliptic
function fïeld.  If K has a prime divisor of de-
gree 1, an elliptic function tïeld  K has a mode1
of a plane cubic curve. Moreover, if the char-
acteristic of the lïeld k is different from 2, we
cari  take as the mode1  I, the curve delïned by
anequationoftheform Yz=4X3-g,X-gs.
This is called Weierstrass’s canonical form.
The numberj=(g,3-27g32)-‘g23  (#O)is a
birational invariant of I,.

E. Jacobian  Varieties

Let I be a nonsingular curve. A tgroup  variety
J is called the Jacobian  variety of I if it has the
following four properties (we tïx an algebrai-
cally closed +tïeld  k of definition for I and J):
(i) There exists an isomorphism a> (of.abstract
groups) of G,(I)/G,(I)  into J. (ii) Q,  is contin-
uous  in the following sense: Let ii, b be elements
of G,(I)/G,(I)  represented by a, b. If b is a
specialization of a over a field  K( = k), then
O(b)  is also a specialization of @(a)  over K. (iii)
If there exists a K-rational divisor in the class
5, then the point Q(5)  is also K-rational. (iv)
For any ~EJ,  there exists a k(r)-rational  divi-
sor a in G,  such that @(a mod G,)  = 5.  A group
variety J satisfying these conditions is neces-
sarily a complete variety, hence an +Abelian
variety, and is determined uniquely up to
isomorphism. The construction of Jacobian
varieties over a lïeld of arbitrary characteristic
is due to A. Weil [27] (for analytic construc-
tion - 11 Algebraic Functions  C).

Let P be a +generic  point of I over k, and let
P0  be a tïxed k-rational point. Then <p(P)=
@(P-  PO)  detïnes a rational mapping of I into
J, and cp,  which is an isomorphism of I and its
image <p(I),  is determined uniquely by @  up to
translation on J. This mapping cp  is called the
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canonical function on I. The dimension of J is
equal to the genus g of I. If P,,  . . . , P,  are
independent generic  points of I over k, then
k(P,,...,PJ, is the function field of J over k,
where k(P, , . , PJ, is the subtïeld invariant
under the group of g! automorphisms (P, , . . ,
PJ-(P,,,  , P,,).  The Jacobian  variety of I is
also the +Picard variety of I, and it is equal to
the +Albanese  variety of I (- 16 Algebraic
Varieties P). Hence for any function f on I
with values in an Abelian variety A, there
exists a unique homomorphism Â  of J into A
such that f=  1 o cp  + const.  This i is called the
linear extension of 1:

Let 0 be the set of points on J that cari  be
written as cp(P,)  + + cp(P,-J.  Then 0 is an
irreducible subvariety of codimension 1. The
divisor 0 is called the canonical divisor of J.
The Jacobian  variety that is polarized by the
divisor 0 is called the canonically polarized
Jacobian  variety (- 3 Abelian Varieties G). If
two curves I and I’ are birationally equiva-
lent, the canonically polarized Jacobians  of I
and I’ are isomorphic. Conversely, if the
canonically polarized Jacobian  varieties J of I
and J’  of I’ are isomorphic, then I and I’ are
birationally equivalent (Torelli’s tbeorem). Let
r be any integer such that 1 <Y  < g, and let W,
be the set of points that are written in the
form

(W, = v(I),  Wgm, = 0, Wg = J).  Then we have
O(“)=r!  W,-, (tnumerically  equivalent) and
(O(g)) = y!, where 0”)  is the class of intersec-
tions of r copies of 0. The existence of a divi-
sor 0 is characteristic for Jacobian  varieties.
Actually, if A is an Abelian variety of dimen-
sion n that bas-an irreducible subvariety X”-’
of codimension 1 and a positive l-cycle C such
that (Xc”))  = n! and X(“-r)= (n - l)! C, then C
is a nonsingular irreducible curve, A is the
Jacobian  variety of C, and X is the canonical
divisor. The canonical divisor 0 is defmed
by a +theta  function in the classical case.
For a divisor a = C niPi,  we delïne q(a) to be
Cn,rp(Pi)~J.  For lïxed numbers l<r<g,  O=C~,

welet W,!denote {q(a)cJIl(a)>d+l,dega=
Y}. Then W,!‘c  W,  and is a tsubscheme of J.
Wecall the number p=g-(d+  l)(g-r+d)
the Brill-Noetber  number. Then dim W,!‘> p.
Moreover, if I is a general curve, then dim W,!
= p.  In particular, if p < 0, then Wl=  0. This
result has been verifïed recently by S. Kleiman,
D. Laksov, P. Griffths,  and J. Harris [9,  141.

Let I be a nonsingular curve, and let w be a
differential form on I. If the divisor (w) is >O,
the o is called a regular 1-form or differential
form of tbe first kind. Let 0 be the +sheaf  of
germs of regular differential forms. A differen-
tial form of the lïrst  kind is an element of
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H’(T,  fi),  and vice versa. Let f be a canonical
divisor. Then we have a natural isomorphism
H’(T,  0) g L(f), and the number of linearly
independent differential forms of the first kind
is equal to the genus g of r.  The tresidue of a
differential cari  be defïned as in the classical
case. A differential that has nonzero residues is
called a differential of the third kind. The re-
sidue  theorem C Res,co = 0 holds for any dif-
ferential w.  The form w is called a differential
form of the second kind if for any PE  r there
exists a rational function fP  such  that w-afP  is
regular at P. The set of differential forms of the
second kind forms a linear space G,  over the
universal domain  and contains the subspace
G, consisting of the differential forms of the
first kind. The quotient space G,/dk(T)  has
dimension 29 or y according as the character-
istic of the universal domain  is 0 or not.

When the characteristic p of the universal
domain  is positive, we have what is called the
Cartier operator. Let r be a curve defïned over
a Perfect  tïeld k, let L = k(T),  and let t be an
element of L that is transcendental over k and
such  that L/k(t)  is separable. Then any dif-
ferential w  of L/k  is written uniquely as w
=(fO+fPt+...+fP-ltP-‘)dt,wherefl~L.
Then the Cartier operator C given by Cw
= fp-l dt  is well defined and independent of
the choice of t and leaves G, invariant. Hence
given a basis wl, , (ug  of G,, we obtain a
matrix (a,) with coefficient in L by CO, =
C aijoj( 1 d i < y). This y x y matrix A is called
the Hasse-Witt matrix of r.  The class  of
A modulo the transformations of the form
T”AS  is a birational invariant of r and plays
an important role in the theory of unramified
cyclic p-extensions of the algebraic function
fïeld.

F. Generalized Jacobian  Varieties

The notion of linear equivalence  of divisors on
a nonsingular curve cari  be extended to a more
general situation. Such attempts have been
made by M. Noether,  F. Severi, and M. Rosen-
licht, who succeeded in obtaining such a gen-
eralization [22].

Let r be an algebraic curve, and let
P, , , P, be singular points of r.  Let DPi be
the +local  ring of P,.  We set 0 = fit=,  DPi and
r’ = r - {P,,  , P,}. An element of the free
Abelian group G(T)  generated by points of r’
is called a r-divisor.  Let a be a r-divisor  and
set L(a)={f~DI(f)+a>O}Uj0}.  Then L(a)
is a finite-dimensional  linear space (over  the
universal domain). The dimension of L(a) is
denoted by l(a), and we set dim)a] =T(a)-  1.
The Upper  bound 7-1  of deg(a) - dlrnl  a/ is a
nonnegative integer and is called the D-genus
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of r.  We calli(a)=n-dega+dlmIal  the D-
speciality index of the divisor a. Let C be a
nonsingular curve birationally equivalent
to r, and let Q,,  . . . , Q, be points of C that
correspond to singular points of r.  An D-
differential w is a differential form on C (of
K(T)  = K(C)) such that xfcl ResQi,fw  = 0 for
any feo.  Then i(a) is equal to the number of
linearly independent D-differentials  w  such
that (w)>a  in Y. The equality I(a)=dega-
7~ + 1 + i(a) is called the generalized Riemann-
Roch  theorem. An D-differential  w is called an
D-differential  of the fïrst  kind if w is regular
everywhere on Y. The number of linearly
independent D-differentials  of the lïrst  kind is
equal to the Dgenus  7~.  Let g be the effective
genus of r, i.e.,  the genus of C. Then we have
the equality 7~ -g = dim,(a/D)  = S, where 0 1s
the integral closure of 8 in K(T). The set of SI-
differentials forms an D-module that is in
general not of rank 1. Hence in this case, we
do not have the “canonical divisor.” Let c be
the conductor of D/O. Then c determines a
divisor in a natural way. If we denote the de-
gree of this divisor by d, we have the inequal-
ity6+1<d<2&Wehaved=26ifandonly
if the set of D-differentials  forms an D-module
of rank 1. This case occurs, for example, if r is
a curve on a nonsingular surface or a complete
intersection. Two r-divisors  a and b are said
to be 0-linearly  equivalent if there exists a unit
,f of 0 such that a-b=(f). The set of r-
divisors that are D-linearly  equivalent to zero
forms a subgroup G,(r) of G(T). There exists a
group variety J,, unique up to isomorphism,
that satisfïes  the four conditions required for
Jacobian  varieties (- Section E) with respect
to the class group G,(r)/G,(r).  The variety Jo
is called the generalized Jacobian  variety. The
generalized Jacobian  variety is not complete,
in general. If J is the Jacobian  variety of C,
then J,  is an extension of J by a connected
tlinear  algebraic group 1,. Any  Abelian exten-
sion of the function tïeld of r cari  be obtained
by the tisogenies  of the generalized Jacobian
variety of r [22]. This fact plays  an important
role in class fïeld  theory over algebraic func-
tion fïelds  (- 59 Glass  Field Theory G). The
theory for nonsingular curves is considered as
the special  case in which D = K(T).

Suppose that r is situated in a projective
space of dimension n. Let p be the prime ideal
in k[X,,  X,,  , X,,]  deiïning r and x(p,  m) be
the number of linearly independent homoge-
neous polynomials of degree m modulo p. Then
x(p,  m) is a polynomial in m for large m. This
polynomial is called the Hilbert polynomial of
p (or r).  Let c be the constant term of the
Hilbert polynomial. The number p,(r) = 1 -c
is called the arithmetic genus of r and is equal
to the D-genus of r.  Let r be a nonsingular
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irreducible curve in P3 of degree d. If r is
contained  in a plane, then p,(T)  = (d - 1).
(d-2)/2. Otherwise, p,(T)<d’/4-d+ 1 when
dis even, and p,(T)<(d2-  1)/4-d+ 1 when d
is odd [ 111.

G. Sheaf Theory

Let r be an irreducible curve and flp  be the
local ring of p. Then 0r = u 0, is an talgebraic
coherent  sheaf, which is called the structure
sheaf of r, and dim, H’(r,  Or) is equal to the
arithmetic genus rt of r. Let a be a r-divisor,
and let or(a) be the tsheaf of germs of rational
functions ,f such  that (f)+ a>0  and ~ED, for
every singular point Q of r (- 383 Sheaves
D). Then dim, H’(T,  O,(a)) is equal to the
speciality index ?(a),  and dim, ff’(T, &-(a))
is equal to I(a). When r has no singular
point, the Riemann-Roch theorem is deduced
naturally from Serre’s  duality theorem:
Hl(r,O,(a))~HO(r,O,(f-a)).

H. Algebraic Correspondence

Let r be a nonsingular curve. A divisor of
the product  variety r x r is called an alge-
brait  correspondence of r [26,27]. Let Do
be the subgroup consisting of divisors that
are linearly equivalent to degenerate divisors
a x r + r x b. Then the class  group q(r) =
G(T  x T)/D,  is called the group of classes of
algebraic correspondences.  We Write  X r0  if
X is an element of Do. Let X be an algebraic
correspondence, k a lïeld of delïnition for r
over which X is rational, and P a generic
point of r over k. Then X(P)=prz[X(P  x r)]
is rational over k(P). The composite Xl  o X2
of two correspondences  X, and X,  is delïned
by (Xi  oX,)(P)=X,(X,(P))  whenever they
have meaning. The composite X, o X,  deter-
mines an element of g(r) that depends only on
the classes of X, and X,. This multiplication
supplies the group V(T)  with the structure of
an associative ring. This ring is called the
correspondeuce ring of r. The correspondence
ring V(T)  and the ring & of endomorphisms of
the Jacobian  variety J are isomorphic, and the
isomorphism is given by the following rule: Let
5 be an element of V?(r),  and let X be a divisor
in 5.  Let P be a generic  point of r with re-
ference to k over which X is rational. Let P. be
a k-rational point of r. Then the class of
X(P) - X(P,)  modulo G,(I) is independent of
the choice of a divisor X in the given class.  We
set Y(P)=@(X(P)-X(P,))  andlet i be the
linear extension of Y. The correspondence
(+3,  is an anti-isomorphism of ‘V(r)  and &‘.
Now we set &.  = & @ Q.  Then &.  contains
an automorphism I of order 2 called an in-
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volution. Let 1 be a rational prime different
from the characteristic p. Then A has a faithful
representation by 2g x 2g matrices with co-
efficients in l-adic integers. The ttrace <T  of
this representation has the property that
o(  /I 0 /?) > 0 if [j #  0 (Castelnuovo’s lemma). s9,
is an algebra of lïnite  tank over Q,  and & is a
finitely generated Abelian group. Based on
these results A. Weil proved the Riemann
hypothesis for congruent [-functions on a non-
singular curve (- 450 Zeta Functions  P).

1. Coverings

Let r and C be nonsingular curves such that
there exists a regular mapping rc:  r-C.  Then
there is an injection of the function lïeld K(C)
into K(T). If K(f) is separably algebraic over
K(C), then r is called a covering (curve) of C.
The integer [K(I): K(C)] = n is called the de-
gree of covering. Let P be a point of r and let
Q=n(P). Let t,  s be local parameters at P on r
and at Q on C, respectively. The nonnegative
integer u,(ds/dt)  is called the differential index
at P and is denoted by mp. The index mp is
zero except for a finite  number of points. The
divisor C m,P  is called the branch  divisor. The
covering r is called an unramified covering if
the branch  divisor is zero. If we denote the
branch  divisor by a, we have the formula
28(r)-2=n(2g(C)-2)+dega,  where g(T)
and g(C) are genera of r and C, respectively.
This is called the Riemann-Hurwitz formula.
This formula yields at once that a rational
curve has no nontrivial unramified covering
and that r cari  be an unramified covering of
itself if and only if r is an elliptic curve.

J. Theory of Moduli

Let A&k) be the set of isomorphy classes of
complete nonsingular irreducible curves (here
simply called “curves”)  of genus y defmed over
a field  k. We cari  endow Jt’&k)  with a structure
of an algebraic variety over k with the prop-
erty that for any smooth family (over  k) n:W+
S of curves of genus y the map T:S+A?Jk)
sending s to the isomorphy class of the liber
K’(s)  is a tmorphism. This algebraic variety is
called the (coarse)  moduli space  of curves  of
genus g. Furthermore, the moduli space  over
Spec(Z)  exists (D. Mumford [16]). A&k) is
tnormal,  irreducible and tquasiprojective  (but
not complete for y > 0) of dimension 0 (g = 0), 1
(g=1),3g-3(g>2)(=3g-3+dimAut(C))
with only quotient singularity [S].

Since when g = 1 any elliptic curve C over
an algebraically closed lïeld k is isomorphic to
a plane curve with the Weierstrass canonical
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form y2=4x3-g2x-g3  (if char(k)#2;  the case
of char(k) = 2 needs a slight modification), the
correspondence C+j(g*,  g3)  (- Section D)
defines an isomorphism &Y,  =AL  (affine line).
In the case of g > 2 and k = C we have another
function-theoretic construction of &‘g  due to
Teichmüller (- 11 Algebraic Functions F).

Let ,xZ~  be the coarse moduli space (over  Z)
of principally polarized Abelian varieties of
dimension g (- 3 Abelian Varieties 1). For a
curve C we denote the Jacobian variety of C
by J(C) (- Section E). The correspondence
C-tJ(C)  detïnes a morphism i:.kg*=dg  which
is injective (Theorem of Torelli). It is even an
timmersion  (F. Oort, J. Steenbrinck). If g= 1,
2, 3, then i is an open immersion whose image
we cari  describe.

For k =C we cari  express the above map
i by using periods of curves. Namely, let
tl,, , c(~,  /3r, , & be a (canonical) basis of
H,  (C, Z) detïned by +normal  sections of C
(considered as a real surface). Let wi, . . , w,  be
a basis of tdifferential forms of the tïrst  kind
on C with jpi  wj  = 6,. Then the matrix R =
(Liwj)  is symmetric and has a positive detïnite
imaginary part, i.e.,  is an element of the +Sic-
gel Upper  half-space 6,  of degree y. With the
identification &q  = G,/Sp(g,  Z) (- 3 Abelian
Varieties 1) the map ‘:A9-d9  is nothing but
the one sending the isomorphy class  of C to
Rmod Sp(g, Z). For g =4  the closure of i(.Ab)
is a principal divisor detïned explicitly with
theta constants (Schottky, J.-I. Igusa).

K. Stable Curves

A reduced connected  complete curve C over k
is called a stable curve of genus g ( > (0) if(i) C
has only ordinary double points as possible
singularities; (ii) when I is a smooth rational
irreducible component  of C, then F intersects
the other components in more than 2 points;
(iii) dim, H’ (C, Gc)  = y.

There exists a +coarse  moduli space Y9 of
stable curves of genus g which contains &‘q
as a Zariski open subset. The space ,Yg detïned
over Spec(Z)  is tcomplete  and even +Pro-
jective; hence -‘Yg gives a compactification of
dg. The completeness of $ follows from the
stable reduction  theorem as follows:  let R be a
discrete  valuation ring with quotient tïeld  K
and C be a smooth connected  curve over K.
Then there exists a finite  separable algebraic
extension L of K such  that the curve C x K L
extends to a flat family of stable curves over
Spec(R,), where R, denotes the integral clo-
sure of R in L. In this case we say  that the
curve C x Kl.  has a stable reduction  in R,.
With the above notation a curve C over K
has a stable reduction  in R if and only if its

9 Ref.
Algebraic Curves

Jacobian variety J(C) has a tstable reduction
in R (- 3 Abelian Varieties N).

Over C, &q  has the +Satake  compactifïcation
C&g, which is a disjoint union of dg,,  0 <g’  <g,
as a set. The injection ‘:Ag-dg  (- Section J)
extends to a morphismj:,yq+&q  that sends
the isomorphy class of a stable curve C =
Ci  U U C,  (Ci  irreducible) to that of J(c,)
x x J(ck)~.dggg.,  g’=Cigenus(ci),  where ci is
the Qrormalization of C,.  In particular the
closure of the image of i in ~2; is the set of
products of Jacobian varieties.
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Algebraic Equations

A. General Remarks

Let F,(X,,..., X,), , F,(X,,  . ,X,) be r
tpolynomials in m variables X,,  . , X,,,  over a
tfïeld  k. Then the equations

F,  =o, .  . . )  F,=O

are called algebraic equations in m unknowns.
When we consider these equations simulta-
neously, where r > 2, we cal1 them a system of r
equations or simultaneous equations. (For r = 1,
a system of one equation means the single
equation F,  = 0.) Coefficients  of F,  , , F, are
called coefficients of the system, and the great-
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est of the degrees of F,  , . . , F,  is called the
degree of the system.

TO salve  a system of equations (henceforth
in this article we shall omit the word “alge-
brait”)  means to tïnd the common  tzero  points
(in an talgebraically  closed field  containing k)
of elements F,,  .  .  , F, of the tpolynomial ring
k[X,,  , X,]. If there exist no common  zero
points, the system is said to be inconsistent; if
there exists  a tïnite  number of such points, it
is said to be regular; and if there are an infïnite
number of such  points, it is called indetermin-
ate.  The telimination method allows us to
reduce the problem of solving a system of r
equations to the case r = 1. In particular, any
regular system of equations cari be reduced to
the case m=r= 1.

B. Equations in One  Unknown

For the above reason, it is important to  con-
sider an equation of the formf(X)  = 0, where

f(X)=a,X”+a,X”~‘+...+a,,  a,#O. (1)

This gives the general form of an algebraic
equation in one unknown.

According asf(X)  is reducible or not in the
tpolynomial ring k[X],  the equationf(X)=O
is called reducible or irreducible (- 337 Poly-
nomials). In some talgebraic  extension fïeld  K
of k, f(X) cari  be factored:

f(x)=ao(x-a,)(X-a,)...(X-a,). (2)

m,,  . ,ct,  are called the roots of the equation
.f (X) =O. Hence, any algebraic equation of
degree n has exactly n roots (Kronecker’s
theorem). Now, ( -l)‘ai/a,  is equal to the tele-
mentary symmetric function of degree i of
n ,,..., cc,.Someoftherootscc,  ,..., ~(,maybe
identical. If CI appears p times in t(,  , . , CI,,,  we
say  that tl  is a p-tuple root, and p is called the
multiplicity  of the root c(.  When p = 1, s(  is
called a simple root,  and when p > 2, c(  is called
a multiple root. Let bl,  . . . , pu  be a11 the distinct
roots among c(~,  .  , c(,, and let pi  be the multi-
plicity  of fii(i= 1, , v). Then

f(x)=a,(x-/31)~~ . . . (x-p”p, (2’)

p1  + . + py = n.

If pl, . , py  are not divisible by the tcharacter-
istic of k, the greatest common  divisor g off
and

is(X-~l)P1~l...(X-&)py~l.Thuswecan
reduce the multiplicity of every root to 1 by
dividing f by g. Any  irreducible equation over
a field  of characteristic 0 has no multiple roots.
Equation (1) has multiple roots if and only if
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its tdiscriminant  D  is equal to 0 (- 149 Fields;
172 Galois  Theory) .

C. Equations  of  Special  Type

In Sections C and D we assume that the char-
acteristic of k is zero.

Binomial Equations. An equation of the type
X” - a = 0 is called a binomial equation. It is
solved by root extraction. Let !!$&  (mtb root of
u) be one of the roots (if a is a positive real
number, $ usually denotes a positive real
root). Then $ multiplied by 1, <,  <*,  , cm-’
are the roots of X”-a=O,  where [ is a +prim-
itive mth root of unity.

Reciprocal Equations. An equation a, X”  +
u,X”~‘+...+a,=Oiscalledareciprocal
equationifa,=u,,  a, =anml,a2=unm2  ,..._  A
reciprocal equation of an odd degree n =
2m  + I has a root X = ~ 1, and dividing the left
side  by X + 1 we get a reciprocal equation of
degree 2rn. A reciprocal equation of degree
n = 2rn is reduced to an equation of degree m
in Y= X + X m1  and the quadratic equation
x2-xy+  1 =o.

D. Equations of Lower Degree
(- Appendix A, Table 1)

(1) A linear equation u0  X + a, = 0 has a single
root -a,/a,.  (2) the roots of a quadratic equa-
tiona,X2+a,X+a2=Oaregivenby(-a,
kds)/2a,.  (3) TO solve a cubic
equationa,X3+~~,X’+a,X+u,=0,  we set
A,=9a,a,a,-2a:-27aia,,  A,=&3a,u,,
and salve the quadratic equation T2  - A, T
+ Ai=O.  Let t,  and t, be the roots of this
quadratic equation, and let CU be any cube root
of 1.  Then (-a, +wt/fl+co2~)/3a, is a
root of the original cubic equation. (Cardano’s
formula). If we apply this method to a cubic
equation aX3+ hX2+cX  +d=O  with real
coefficients, we need to use complex cube
roots even if the roots of the equation are real.
In fact,  it has been proved that it is not pos-
sible to salve this equation within the real
numbers in this case; i.e.,  if the cubic equation
is irreducible over the extension Q(a,  b, c, d) of
the rational number iïeld Q,  and if all of its
roots are real, it is impossible to fïnd  the roots
only by rational operations and with real
radicals. This is called the casus  irreducibilis.
(4) A quartic equation a,X4  + a, X 3 + a2  X 2
+ a3  X + a4  = 0 cari  be solved by means of
reduction  to a cubic equation (L. Ferrari) (-
Appendix A, Table 1). Generally, the proce-
dure of solving an algebraic equation, i.e.,
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iïnding the roots of a given equation from its
coefficients by means of a finite  number of
rational operations and extractions of radicals,
is called a solution by radicals (or algebraic
solution). The tgeneral  algebraic equation
whose degree is 2 5 cannot  be solved by
radicals  (N. H. Abel) (- 172 Galois Theory).

E. Analytic Tbeory

In this section, k denotes  the fïeld  R of real
numbers or the fïeld  C of complex numbers.
These cases have been studied for a long time,
for practical reasons.

Concerning the case k = C, the fïeld  C is
talgebraically  closed; i.e.,  every equation with
coefficients from C has a root in C (Gauss’s
tbeorem, called the fundamental tbeorem of
algebra). Accordingly, in the fïeld C, we always
have equations (2) and (2’).

Let c(~,  , xn be the roots of equation (1).
Then each ri is a continuous  function of coeffi-
cients a,, a,, , a,. Concerning the location of
roots off(X)=0 and,f’(X)=O  on the complex
plane, we have the following theorems:

(1) Any  convex polygon on the complex
plane containing the roots off‘(X)=0  also
contains the roots off’(X) = 0 (Gauss).

(2) Let C be a rectifiable +Jordan  curve not
passing through a root off(X) = 0. Then
the number (C’,f‘)  of the roots of.f(X)=O
lying in the region enclosed by C is equal to
( l/2ni)lc(,f’(z)/,f(x))dz,  where the multiplicity
of the roots is taken into account.

(3) Let C be a Jordan curve on the complex
plane. If If(z)1  > Ig(z)l  at every point z on C,
then the equationsf’=  0 andf‘f g = 0 have the
same number of roots (counting multiplicity)
within the region enclosed by C (Roucbé’s
theorem).

(4) The absolute value of a root of equation
(1) is less  than

M=max(la,/a,l,...,la,/a,l)+l.

(5) Let D  be the +discriminant of,f,  and as-
sumethatIril<M(i=l,...,n).ThenIri-~j(2
>D/(&f4)“‘“-“-2= E. Since the value of

IDI  is known fromf’and one value of M  is
given by theorem (4), we have one value of E.
If we draw a circle on the complex plane with
tenter  at the origin and with radius M,  and if
we caver it with a net whose meshes have
diameters less  than &/2,  then the interior of
each mesh contains  at most one root of,f=O.

When k=R,  i.e.,fER[X],  let /$, . . . . 8,
denote the distinct roots off= 0, and recall
equation (2’). Suppose that p,, , bi~ R and
the others $R.  Then v-n is an even integer 2~,
and we cari  renumber [ji,+l,  ,fl, SO that pi,+,
=Pi,+K+l>“‘i FA+,  = fi, (/1  denotes  the con-
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jwate  of81 and  P~+~=P~+~+~,...,P~+~=~“.
In this case, pi, . , PI are the real roots of
equation (2), and the other /Ys are called the
imaginary roots.

(6) IfjER[X]  and a,>~,  > . . >a,,>O,  then
the absolute value of any root of equation (1)
is less than 1  (Kakeya-Enestrom  theorem).

Concerning the real roots of an equationf
= 0, wherefeR[X],  we have the following
theorems: Let N(a, b)(a,  bER) denote the
number of real roots in the interval (a, b).

Furthermore, let V(c,, cî,  . , c$ denote the
number of changes of sign in the sequence
c,,c 2,  , cp  of real numbers, which is defïned
as follows: Suppose that we have the sequence
C Y1>  . ..> cYq after deleting the terms ci = 0 from
the sequence cl, c2,  , cp.  Then

(7) N(O, CO)=  F(a,,  a,, , u,) (mod 2) and
N < V(Descartes’s  theorem).

(8) Let V(c)= V(f(c),,f’(c), . . . , f’“‘(c)). Then
N(a, b) = V(a)  - V(b) (mod 2) and N d k’(a) -
V(b) (Fourier%  theorem).

(9) We may assume thatf=O  has no multi-
ple roots. Construct  a finite  seriesf,  =f;f, =
,f’,  ,,fi  of polynomials over R such that
Lf,l  =fiqi-f;+l  for i= 1,2,  . . . . 1- 1 andf;ER,
by successive application of the tdivision al-
gorithm. Let V(c)= T/(f,(c),f,(c),  ,fi(c)).
Then N(a, b) = V’(a)  - V(b) (Sturm’s theorem).
By means of this theorem we cari  determine the
location of real roots as precisely as we wish.

(10) In order that every root xi of an equa-
tionf‘=  0 with a, > 0 lies on the left side  of
the imaginary axis, i.e.,  Re CQ < 0, it is necessary
and suffcient  that in the following matrix the
tprincipal  minois  composed of the first  r rows
and tïrst  r columns be positive for a11 r =
1,2,  , n  (Hurwitz’s theorem):

a, a3  cl5  a,
a, a2  a4 ah  .

0 u1  a3  a5  .

0 a, a2  a4 . . .

0 0 unm2 a,

Also,  forfeC[X],  various results have been
obtained about  under what conditions a11 the
roots off= 0 lie on one side  of a given straight
line or inside a given circle (e.g., the unit circle)
(- 301 Numerical Solution of Algebraic
Equations).
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A. Def in i t ion

An algebraic function  is a multiple-valued
tanalytic function w = w(z) deiïned by an +irre-
ducible algebraic equation P(z,  w) =0 with
complex coefficients.

B. History and Methods

The theory of algebraic functions evolved from
the works of C. F. Gauss, N. H. Abel, and C.
G. J. Jacobi  on telliptic functions in the early
19th Century. Stimulated by their works, B.
Riemann and K. Weierstrass established the
foundations of the theory of complex functions
and developed the important theory of alge-
brait  functions.

The equation P(z,  w) = 0 detïnes a curve in
the 2-dimensional  complex tprojective space
with inhomogeneous coordinates z, w. Inves-
tigations from this point of view were initiated
by Riemann, A. Clebsch, and P. Gordan.
This approach was followed by A. Brill,  M.
Noether,  and the Italian school (F. Severi, C.
Segre, etc.) and has developed into contempo-
rary algebraic geometry (- 9 Algebraic
Curves, 12 Algebraic Geometry).

The set of tfunction elements w(z) satisfying
P(z,  w) = 0 is a tcomplex manifold %,  a closed
(= compact) tRiemann  surface, on which z and
w are tmeromorphic functions. The field  K,
consisting of the meromorphic functions on ‘8
is an talgebraic function fïeld  C(z,  w). Con-
versely, for any closed Riemann surface !Il,  the
field  K,  is an talgebraic  function fïeld  in one
variable over C, and any pair of functions z
and w with K,  = C(z,  w) has the property that
‘%  is tconformally equivalent to the Riemann
surface determined in the above fashion by the
irreducible algebraic equation P(z,  w) = 0 satis-
fied  by z and w. Two Riemann surfaces !Ri,  %,
determined by the equations P, = 0, P2  = 0 are
conformally equivalent if and only if the fïelds
K,, and K%,  are C-isomorphic. This condition
is equivalent to the existence of a tbirational
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transformation between the algebraic curves
P, = 0, P2  = 0. The “analytic method” (the
method of studying algebraic functions as
functions on Riemann surfaces) is the creation
of Riemann. It was extended by F. Klein and
D. Hilbert, and later by H. Weyl, who es-
tablished in his monograph [6] a rigorous
foundation of the analytic method for the
theory of algebraic functions.

Given an arbitrary algebraic function field
K  in one variable over C, the set !Il  of its
tprime divisors with a suitable topology and
analytic structure is a closed Riemann surface
whose function lïeld K,  coincides  with K. The
“algebraic method” (the method of studying
algebraic functions as elements of an algebraic
function tïeld) was founded by J. W. Dedekind
and H. Weber at the end of the 19th Century.
In the 20th Century, the algebraic method has
made remarkable progress, owing to the devel-
opment of abstract  algebra. It covers the case
of an arbitrary ground lïeld as well as that
of more than one variable. The theory of
algebraic functions has had considerable  in-
fluence on the development of number theory
because of a basic analogy between the two
subjects.

The tuniversal covering spaces  (surface) ‘%  of
a closed Riemann surface !X cari  be regarded,
by conforma1 mapping, as the Riemann
sphere, the plane, or the unit disk (or, equiva-
lently, to the Upper  half-plane) if the tgenus g
of % is 0, 1, or à 2, respectively. Then the
tcovering transformation group G, consisting
of tlinear  fractional transformations without
tïxed points in s%, is tproperly discontinuous
and has a compact tfundamental  domain.
Conversely, if D  is one of the three domains
just mentioned and if G is the group just de-
scribed, then % = D/G is a closed Riemann
surface such  that D  and G are its universal
covering space  and covering transformation
group. A meromorphic function on X is repre-
sented as an tautomorphic function on ‘%  with
respect to G. If y = 0, then G = { 1 },  si  = ‘%,  and
K,  is the field of rational functions. If g = 1,
then K, is the lïeld of telliptic functions. The
study of algebraic functions as automorphic
functions was initiated by H. Poincaré and
Klein. Recently, C. L. Siegel made a remark-
able contribution to the investigation of the
case of several variables. The theory of auto-
morphic functions is also related to number
theory. Works of E. Hecke, M. Eichler, and
G. Shimura on this domain  are noteworthy
(- 32 Automorphic Functions,  73 Complex
Multiplication).

Another important topic concerning alge-
brait  functions (closed Riemann surfaces) is
the problem of moduli. Riemann stated, with-
out rigorous proof,  that the set of conforma1
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equivalence  classes of closed Riemann surfaces
of genus g (> 2) depends on 3g - 3 complex
parameters, called moduli. This has led to the
modern theory of Teichmüller spaces,  which is
developing into an extensive new tïeld  (- 234
Kleinian Groups, 416 Teichmüller Spaces).

In the rest of this article, we deal mainly
with the analytic method (for the case of two
variables - Cl]).

C. Abelian Differentials

An Abelian differential on a closed Riemann
surface ‘il?  is, by definition, a complex +dif-
ferential form w  = a(z)dz,  where a(z) is a mero-
morphic function of a local parameter z. Such
a differential is said to be of the first kind if
a(z) is holomorphic, of the second kind if the
residue vanishes everywhere, and of the tbird
kind otherwise.

The indelïnite integral W(p) = si,  w of an
Abelian differential w, where p0  is assumed not
to be a pole of w, is called an Abelian integral.
It is said to be of the tïrst,  second, or tbird kind
if the same holds for w.  If y is a 1-+Cycle on !Il,
the quantity Sÿu  is referred to as the period of
w along y. An elliptic integral is detïned to be
an Abelian integral on a closed Riemann sur-
face of genus 1. For example, this is the case if
the equation P(z,  w) = 0 detïning the surface is
of degree 2 with respect to w and of degree 3
or 4 with respect to z. More generally, a closed
Riemann surface is called byperelliptic if P(z,  w)
is of degree 2 with respect to w, or, equiva-
lently, if !R  carries  a meromorphic function
with exactly two poles.  An Abelian integral on
such a surface is called a hyperelliptic integral.

On a closed surface ‘Sz,  let V, be the linear
space  over C of the Abelian differentials of the
lïrst  kind. Given a l-cycle CI of !Ri, there exists a
unique O,E V,  such  that RejYw, is equal to the
tintersection number (u, y) for every 1 -cycle y.
This differential is also characterized by the
property ((0, o,)~  =) S%~A*O,=  -2fi
Saw  for every wEV,.  If {CI~,  . . ..a.,} form a
basis of the 1-dimensional thomology group
with integral coefficients, then Re w,,  (i = 1, . ,
29)  form a basis of the linear space  & over R
of the tharmonic  differentials on % as well  as
that of the space  { Re w  1 w  E V,}.  Accordingly,

dimc V, = g, dim, V, = 29.

These identities show a close relationship
between the topological structure of % and the
space  of the Abelian differentials on 9? (- 194
Harmonie  Integrals).

One cari  choose a 1-dimensional homology
basis {~~,tl~+~}f=i  SO that (~(~,a~)=(a~+~,a~+~)=
0, (ai,agti)=  1, and (ai,a,+j)=O  (i#j), (i,j=
1,2,  , g). Such a basis is called a canonical
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homology basis. If w and c are Abelian dif-
ferentials of the lïrst  kind, then we have

(w,qB=  -&ïf w 0
(J Jj=1  a, %+j

-
J J>

0 0 =o,
ag+j  4

(oJ,w>w=Jïf (J Jw a
i=l a, %+j

-J J>w 0 30.%+, 5
Together, these are called the (Riemann) period
relation. The second formula implies that w
vanishes identically if the periods of w along
a11 cci (j = 1, . . , y) are zero.

Let c(i , . , c(~,  be a 1-dimensional homology
basis, and let o, , . , o, form a basis of V, over
C. The g x 2g  matrix R with sswi  as its (i,j)-
component  is called a period matrix. Corre-
sponding to the change of bases (a) and (w), it
is subject to transformation into the form
A&U, where A is a g x g invertible complex
matrix and M  is a 2g x 2g integral square
matrix with determinant f 1. Conversely, two
Riemann surfaces are conformally equivalent if
they possess period matrices transformable to
each other in this manner (Torelli’s theorem).
We cari  choose oi,  . . . , wg SO that the cor-
responding period matrix with respect to a
canonical homology basis becomes (I,, 7) with
the g x g unit matrix 19. Then from the period
relation, T is symmetric and Im T is positive
defïnite.

On the complex linear space  Cg, consider
the subgroup generated by the 2g column
vectors of a period matrix n (the subgroup
is also denoted by n). Since it is of rank 2g
and properly discontinuous,  a group mani-
fold Cg/R is obtained. It is determined by ‘%
uniquely up to analytic isomorphism and is
called the Jacobian  variety of FI.  The general-
ized Jacobian  variety is introduced in a simi-
lar fashion by means of Abelian integrals of
the second and third kinds (- 9 Algebraic
Curves).

D. The Riemann-Roch Theorem

In the present context, a 0-tchain with inte-
gral coefftcients  on a Riemann surface % is
referred to as a divisor. A divisor d = C nipi
(ni  E 2, pi  E ‘9) is an integral divisor (or positive
divisor) if ni > 0 in the reduced expression; d is
a prime divisor if it consists  of a single point p1
and ni = 1. A divisor of a meromorphic func-
tion for an Abelian differential w is delïned
by taking the pi  as the zeros (poles)  off or o
and ni( - ni)  as the multiplicity of the zero
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(pole) at pi. The divisors on % constitute an
Abelian group D in which principal divisors,
ie., divisors of meromorphic functions, consti-
tute  a subgroup Cp.  The factor group D/v is
called the divisor class  group; an element of it is
called a divisor class.  The divisors of Abelian
differential constitute a single divisor class,
which is referred to as the canonical divisor
class  (or differential divisor class).  The degree
and the dimension of a divisor class D  are
detïned as follows, independent of the choice of
the representative d = C nipie D:  degD  = C ni,
dim D  = dim,{  flf  is meromorphic, (divisor of
f) + d is a positive divisor}. For example, the
degree of the principal divisor class  is zero.

In terms of these concepts, the Riemann-
Roch  theorem is stated as follows: For a divi-
sor class D  on a closed Riemann surface % of
genus g and for an integer n,  we have

dim(D+nW)-dim(-D-(1  -n)W)

=degD+(2n-l)(g-l),

where W is the canonical divisor class (- 9
Algebraic Curves).

This theorem implies the following prop-
erties of X:  (i) deg W= 2g - 2. (ii) The holo-
morphic invariant forms <pdz2  (i.e., analytic
tensors of order 2) referred to as quadratic
differentials, constitute a linear space  over C of
dimension 0 (if y = 0), 1 (if g = l),  or of dimen-
sion 3g - 3 (if y 2 2). The quadratic differentials
have close connection  with textremal quasi-
conforma1 mappings and play an important
role in the theory of Teichmüller spaces (-
352 Quasiconformal Mappings, 416 Teich-
müller Spaces).  (iii) For a point pc !Jl,  a posi-
tive integer m is called a gap value if !II  carries
no meromorphic function having a pole only
at p with multiplicity m. Then if y = 0, no point
has gap values; and if g 2 1, every point p has
exactly g gap values; in this case, p also has
a nongap  value m  <g  + 1. A point p is called
an ordinary point if the gap values at p are
1,2,  , g; otherwise p is called a Weierstrass
point. If y > 2, then the total number N of
Weierstrass points is not less  than 2g + 2 and
not greater than (g - l)g(g  + 1) (A. Hurwitz).
Moreover, the case N = 2g  + 2 occurs if and
only if 5%  is hyperelliptic, and then the gap
values at Weierstrass points are 1, 3, . . ,2g - 1.
This implies that every closed Riemann surface
of genus 2 is hyperelliptic. (iv) Suppose the
genus g of !R  is > 2. A conforma1 mapping f of
!R  onto  itself with the property that every l-
cycle y is always homologous to f(y) is neces-
sarily the identity transformation. Also, ‘%  is
known to admit only a fmite  number of con-
forma1 mappings onto  itself (H. Schwarz);
the total number does not exceed 84(g- 1)
(Hurwitz) .
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E. Abel% Tbeorem

Abel% tbeorem is stated as follows: A divisor d
of degree zero is a principal divisor if and only
if it is expressed as d = dy by means of a l-
chain y that has the property that sy  w = 0 for
every WE V,.

Given a divisor class D  of degree zero, con-
sider a 1-chain y with ay~D. For every l-cycle
c1 there corresponds the quantity

independent of the choice of y. Thus D  deter-
mines a tcharacter  on the 1-dimensional ho-
mology group, called the integral character.
Conversely, every character on the homology
group is shown to be the integral character
of some D.  In terms of this notion, Abel%
theorem cari  be stated as follows: D  is the
principal divisor class if and only if x,(D)  =
1 for every LX  This result shows that the l-
dimensional homology group with integral
coefficients and the group of the divisor classes
of degree zero (with compact topology) are,
with respect to integral characters, mutually
dual (in the sense  of Pontryagin) topological
Abelian groups (- 422 Topological Abelian
Groups). For the relationship between Abelian
integrals and Jacobian  varieties, in particular
the +Jacobi  inverse problem, +Abelian  func-
tions, and tRiemann  theta functions, - 3
Abelian Varieties L. Also  - references to 234
Kleinian Groups, 352 Quasiconformal Map-
pings, 367 Riemann Surfaces, 416 Teichmüller
Spaces.
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12 (VIII.1)
Algebraic Geometry

A. Introduction

Algebraic geometry is the branch  of mathe-
matics that deals with talgebraic  varieties, that
is, point sets detïned by several algebraic equa-
tions in a space  of any dimension or those
derived from these sets by means of certain
constructions (- 16 Algebraic Varieties). It
may also be considered to be a theory of the
+tïeld  of algebraic functions in several variables
in geometric language, and it is closely related
to the theories of complex analytic manifolds,
commutative algebra, and homological alge-
bra. It also has an important connection
with number theory through the theories of
automorphic functions, Diophantine equa-
tions, and zeta functions.

TO investigate local properties of algebraic
varieties we consider varieties embedded in an
+affine  space;  to study global properties we
usually consider varieties contained  in tprojec-
tive spaces.  A quantity (or property) that is
invariant under tprojective transformations,
isomorphisms, i.e.,  tbiregular  and tbirational
transformations, or birational transformations
is called a tprojective invariant, a relative
invariant, or an absolute  invariant (birational
invariant), respectively. The study of projective
invariants is a part of projective geometry,
whose methods are important in algebraic
geometry. The notions of relative invariant
and absolute invariant are used,  for example,
in the classification of algebraic varieties.
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We usually assume that the coordinates of
each point of the variety belong to a certain
fixed 7fïeld  K.  In the classical case, namely,
when the field K is the field C of complex
numbers, the algebraic varieties are considered
as complex spaces and are studied by apply-
ing the theories of partial differential equa-
tions, tdifferential geometry, etc. Topological
methods may also be applied. Algebraic geom-
etry originated from such studies, but, for the
study of properties such as trational  mappings
or lalgebraic  systems, it became  necessary
to consider as well the case where the ground
fïeld  K is not talgebraically closed.  Further-
more, to apply this to number theory, it is
necessary to establish the theory over the fïeld
of any tcharacteristic p.  For this purpose  it is
necessary to establish a theory for varieties
having ground domains  as general as possible.

B. History

Analytic geometry began with the study of
lines and quadratic curves (surfaces) and later
came to include the study of cubic and quartic
curves (surfaces), and SO on. These subjects
originally belonged exclusively to analytic (or
projective) geometry. At that time, the study
could not have been described by SO specific a
title as algebraic geometry.

The study of such theories as the construc-
tion of an algebraic plane curve by families
of curves of lower degree or the talgebraic
m-n correspondence  on a straight line prob-
ably began with research such as that by M.
Chasles. The most outstanding event in the
history of algebraic geometry was the intro-
duction and development of the theory of
algebraic functions (- 11 Algebraic Func-
tions) by B. Riemann (1857). Before that time
the degree of an algebraic curve (surface) was
the only quantity known to be a projective
invariant of the curve (surface).

With the theory of algebraic functions,
Riemann gathered into one family a11 the
curves that cari  be transformed onto  each
other by birational transformations. As the
basis for his study, Riemann examined bira-
tional transformations in place of projective
transformations. This idea led to the notion of
the so-called tRiemann  surface. The tgenus of
the surface was obtained as the characteristic
number of the family of curves.  The concept
of genus was the tïrst  absolute invariant to
appear in the history of algebraic geometry.
Riemann based his theory on +Abelian  inte-
grals using TDirichlet’s  principle, under the
assumption that any algebraic curve reduces
to one without tsingularities.

After Riemann many mathematicians tried

4 0

to reconstruct  the theory more precisely with-
out using transcendental methods. M. Noether
attempted this reconstruction by using geo-
metric methods. Using the tCremona  trans-
formation, he confirmed  Riemann’s assump-
tion for curves:  that any algebraic curve on a
plane cari be transformed by a birational
transformation to a plane curve without sin-
gularities except for simple tnodes.  He also
contributed in making more precise  the basis
conditions for the tRiemann-Roch  theorem,
which is considered to be one of the most
important theorems in the field.  His results
on space  curves and surfaces are also note-
worthy. J. Plücker  detïned the concept of
genus in geometric terms and introduced the
tP1ücker  coordinates. A. Cayley and A. Brill
worked along similar lines.  Cayley’s idea was
developed later by B. L. van der Waerden and
W. L. Chow, who introduced the tassociated
form of an algebraic variety and its tChow
coordinates.

Around 1890 the Italian school of algebraic
geometry appeared. Following the tradition
established by Noether,  they employed alge-
brogeometric methods and uncovered many
new facts  concerning algebraic surfaces.
Among those who belonged to this school
were G. Castelnuovo, F. Enriques, and F.
Severi.

In France, H. Poincaré and E. Picard ini-
tiated their study of algebraic functions of two
complex variables. After them S. Lefschetz
investigated the theory of complex algebraic
surfaces [ll,  123. The results attained by the
Italian and French  schools were very  sugges-
tive but lacked rigorous foundations.

On the o”ther  hand, rigorous number-
theoretic theories of algebraic curves appeared
in Germany. R. Dedekind and H. Weber de-
veloped the theory of algebraic function fields
parallel to that of talgebraic  number fields.  K.
Hensel introduced the concept of Ip-adic num-
bers in analogy to +power  series expansions of
analytic functions. E. Noether  constructed an
abstract  theory of tpolynomial  ideals from a
forma1 theory by E. Lasker and F. S. Macau-
ley.  Under her influence there appeared the
arithmetic algebraic geometry (of curves)
over an abstract  tïeld as developed by F. K.
Schmidt and others.

In the higer-dimensional case, van der
Waerden attempted to create a more rigorous
foundation for algebraic geometry under the
influence of Noether’s abstract  ideal theory
(c. 1930) [14]. He introduced the concept of
tgeneric points and tspecialization, and specifï-
cally defïned the tmultiplicity of intersections
of two varieties in a projective space.  He
succeeded in getting a rigorous proof  of Be-
zout’s  theorem: In n-dimensional projective
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space, the number of intersections of an Y-
dimensional algebraic subvariety of degree 1
with an (n - r)-dimensional  subvariety of
degree m is always Im  if they intersect in only
a fïnite  number of points.

The problem of intersections was taken up
by C. Chevalley and A. Weil in the 1940s.
Chevalley developed the ideal theory of tlocal
rings (studied initially by W. Krull); he intro-
duced topological concepts and applied them
to the problem of intersections. The theory in
this direction was later extended further by P.
Samuel, M. Nagata, and J.-P. Serre.

Weil gave foundations of algebraic geometry
over an abstract field and reconstructed the
theory by introducing geometric language to
designate abjects of abstract algebra [15]. He
thus gave quite  a new aspect to the theory and
extended H. Hasse’s arithmetization of the
theory of algebraic functions in one variable to
the case of several variables. Reconstructing
Severi’s theory of algebraic correspondence
over abstract fields, he succeeded in proving
an analogy of the tRiemann  hypothesis on
tcongruent  zeta functions (- 450 Zeta Func-
tions N). He also constructed, purely algebrai-
cally,  the entire theory of +Abelian  varieties
independent of characteristic.

Around 1930, 0. Zariski gave another
foundation to algebraic geometry by applying
the generalized +Valuation theory that had
been introduced by Krull. Zariski clarihed
especially the properties of birational trans-
formations by using valuation theory. Zariski’s
main theorem states that if a birational map-
ping is not tregular  at a tnormal  point P (-
16 Algebraic Varieties 1), each component  of
the image of P by the mapping is of dimension
21.

Zariski also solved the problem of +reso-
lution of singularities in the affirmative in the
case of characteristic 0 for varieties of dimen-
sion < 3. The affirmative resolution of this
problem (which Riemann assumed) says that
any algebraic variety in a projective space cari
be transformed birationally to a projective
algebraic variety without singularities. In
1964, H. Hironaka gave an affirmative
answer for any dimension in the case of char-
acteristic 0.

Along with the achievements in algebraic
methods, great development took place in
analytic methods. Unification of the concepts
of Riemann surfaces and +Riemannian mani-
folds led to the concept of tcomplex analytic
manifolds. Furthermore, G. de Rham’s theo-
rem on the duality of topologically defmed
homology and cohomology based on differen-
tial forms was proved; also, W. V. D. Hodge’s
theory of tharmonic  integrals was developed.
In the case of the complex dimension 1, any
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compact Riemann surface is derived from a
certain projective algebraic curve. However,
the situation is not SO simple in the case of
higher dimensions. Weil?  concept of tabstract
complete algebraic varieties cari  be consid-
ered as an analog of compact complex mani-
folds. If a compact complex analytic variety is
projective, then it must be an algebraic variety
(+Chow’s  theorem). K. Kodaira proved that a
necessary and sufficient condition for a com-
pact complex analytic manifold to be biholo-
morphically equivalent to a projective com-
plex analytic manifold is that the manifold is
a +Hodge variety.

Using results on harmonie  integrals, J. Igusa
and Weil established the theory of +Picard and
+Albanese  varieties associated with algebraic
manifolds of arbitrary dimensions as a gen-
eralization of the theory of +Jacobian varieties
associated with algebraic curves (- 9 Alge-
brait  Curves E). Thus many ambiguities in
the theory as developed by the Italian school
were clarifïed. Later the theory was gen-
eralized to the case of characteristic p by T.
Matsusaka, Chow, and S. Lang. The duality
theorem in this case was later proved by M.
Nishi and P. Cartier (- 3 Abelian Varieties
Dl.

The concept of tsheaves (- 383 Sheaves)
had already been used in Kodaira’s theory.
Serre defined an abstract algebraic variety as a
+ringed  space by using an analogy to the con-
cept of complex analytic spaces ; he considered
it as a topological space with respect to the
+Zariski  topology. By introducing tcoherent
algebraic sheaves, Serre claritïed the idea that
classical invariants (such  as tarithmetic  genus)
may be considered cohomological quantities
(- 16 Algebraic Varieties E).

A. Grothendieck invented the concept of a
tscheme, which is far more general than that of
an algebraic variety, by admitting the existence
of tnilpotent elements in structure sheaves and
taking as a coordinate ring a general commu-
tative ring with unity  element. By the device
of taking into account  nilpotent elements, an
analog of the method of successive approxima-
tion in analysis is now applicable. By master-
ful use of cohomological techniques, Grothen-
dieck derived many results, including Zariski’s
important theorems.

In the classical case, F. Hirzebruch gen-
eralized the Riemann-Roch theorem to higher-
dimensional manifolds. He made use of the
language of sheaves and some topological
results of A. Bore1 and R. Thom [S]. Later
Grothendieck generalized the theorem for the
abstract case as well. His idea in this work is
recognized as the origin of il<-theory.

Every nonsingular complete curve of genus
0 is isomorphic to the projective line, and any
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nonsingular complete curve of genus 1 is iso-
morphic to a projective curve delïned by the
equation X:X,=X,(X,  -X,)(X, -1X,) for
some /z # 0, 1. On the other hand, the set of a11
isomorphism classes of nonsingular complete
curves of genus g > 1 is parametrized by a
normal quasiprojective variety of dimension
3g - 3. Such facts  were lïrst  discussed by Rie-
mann as the problem of moduli.

Concerning the moduli of manifolds of
higher dimensions in the classical case,
Kodaira and D. C. Spencer developed their
theory of tdeformations of complex structures
(- 72 Complex Manifolds G). The meaning of
number of tmoduli  is clarilïed  by deformation
theory. Deformation theory has been extended
in various ways, and deformation is considered
as one of the fundamental concepts in alge-
brait  geometry.

TO investigate the global structure of the
moduli varieties, D. Mumford introduced
geometric invariant theory (- 16 Algebraic
Varieties W).

Etale and crystalline cohomologies initiated
by Grothendieck and others are useful for the
study of algebraic varieties of positive charac-
teristic. In particular, the conjecture made by
Weil concerning tcongruent  zeta functions has
been solved affirmatively by P. Deligne  with
the help of étale cohomology [2].

Many important questions have been
answered by means of the geometric theory.
For example, (1) every tvector bundle on A: is
trivial (- 16 Algebraic Varieties Z); (2) there
exist tunirational  but nonrational fields over C
(- 16 Algebraic Varieties J); (3) the funda-
mental groups of the complements  of node-
curves on Pc are commutative (- 16 Alge-
brait  Varieties 1);  (4) the cancellation theorem
holds for AZ (- 15 Algebraic Surfaces H); (5)
whenever the tangent vector bundles are am-
ple, the varieties are Pi (- 16 Algebraic Var-
ieties R).
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13 (IV.1 1)
Algebraic Groups

A. Definit ions and General  Remarks [ 1,2,  S]

Let k be a fïeld  and R a tuniversal domain
containing it. An affine algebraic group  G
defined over k is, by definition, a group G
which has the structure of a (not necessarily
irreducible) talgebraic  variety defmed over k in
an affme  space  QN  such that the group oper-
ation (x, y) H x ml  y on G is an everywhere
+regular trational mapping defined over k. For
such a group G, the set Gk  of a11 k-trational
points on G is an abstract  group. The tirreduc-
ible component  G,  of G (viewed as an alge-
brait  set) containing the identity element e is
unique and is a normal subgroup defined over
k with Imite  index in G; the decomposition of
G into (absolute) irreducible components
coincides  with that into the cosets  of G by G,.
When G = G,, the group G is called connected.
It should be noted that for an algebraic group
G detïned over k, a coset gG, is not necessarily
delïned over k; and if it is, a representative g
cannot  necessarily be taken to be k-rational.
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However, if k is an infinite  field  and G is con-
nected, and if moreover k is +perfect  or G is
treductive, then G, is +Zariski  dense in G ([SI,
A. Bore1  and T. A. Springer [30]); hence G  is
uniquely determined by Gk.  (In this case, G, is
sometimes referred to as a k-group.) When
k is a ttopological  tïeld, Gk  is a +topological
group with respect to the natural topology de-
fined  by that of k, which is generally stronger
than the Zariski topology on Gk.  For instance,
when k = R, (C,),  is a tLie group with finitely
many connected components.

A subgroup H of an affine algebraic group
G, which is Zariski closed, is an affine alge-
brait  group with respect to its natural induced
structure and is called an algebraic subgroup
of G. If H is defïned over k, then H is k-closed;
the converse is also true when k is +perfect.
(An affine  algebraic set A is called k-closed
if A is a common  zero of a set of polynomial
equations with coefficients in k. The set A is
k-closed if and only if a11 irreducible com-
ponents of A are detïned over the algebraic
closure k of k, and for every +Galois  auto-
morphism o of k/k, A”= A.) The notions of
homomorphism and isomorphism for alge-
brait  groups cari  be detïned in a natural
manner. For instance, for affine algebraic
groups G and G’ defined over k, a rational
bomomorpbism <p  : G +  G’ defïned over k, or a
k-morpbism for short, is a homomorphism of
G into G’ that is at the same time an (every-
where regular) rational mapping defïned over
k. For a k-morphism <p  of G into G’, the (set-
theoretic) image <p(G)  is a closed subgroup
of G’ defined over k, the kernel <p  -’ (e’) is a k-
closed subgroup of G,  and dim <p(C)  = dim G -
dim <p-l  (e’). In particular, when dim G  =
dim<p(G)=dim G’ (or equivalently, when
<P(C,)=  G;  and <P-‘(e’) is fmite),  q is called an
isogeny. (Two groups G and G’ are called
isogenous if there exist a third group G” and
isogenies C”+G,  G”-G’.)  When a k-morphism
q is bijective and <p  ml  is also an (everywhere
regular) rational mapping defmed over k, <p is
called a birational isomorphism defïned over k,
or a k-isomorphism for short. It should be
noted that a rational homomorphism which
is an isomorphism of abstract  groups is
not necessarily an isomorphism of algebraic
groups (e.g.,  a Frobenius homomorphism); a
similar statement holds for an injective con-
tinuous homomorphism of topological groups.

Given a connected affine algebraic group G
and a closed subgroup H, both defïned over k,
the quotient space  C/H  has the uniquely deter-
mined structure of an algebraic variety defïned
over k such  that the canonical mapping G*
G/H  is separable. The tfunction tïeld  of C/H
is then identified with the subfield of the func-
tion field  of G  formed by all H-invariant ele-
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ments. In particular, if H is a closed normal
subgroup, then G/H  has a natural structure of
an affine  algebraic group (defined over the
same ground fïeld  k) [8,10,11].

As an example, we have the group GL(n)  of
a11 II x n nonsingular matrices (x,). CL(n)  may
be viewed as an algebraic set in fi”‘+‘, defined
by a single equation det(x,)  y = 1, and as such
is a connected algebraic group defïned over
the +Prime  field. In general, an algebraic group
reahzed as a closed subgroup of CL(n)  is called
a linear algebraic group. Since an affine alge-
brait  group is always isomorphic to a linear
algebraic group, these two terminologies are
essentially synonymous [ 1,2].

B. Generalization of the Definition

Replacing the term @ne  algehraic  set (or
@ne  cariety) in the definition of an affine
algebraic group by a more general term +alge-
hic uariefy,  we obtain the notion of an
algebraic group (algebraic group variety, or
simply group variety). On this subject, the
following facts  are fundamental. A tcomplete
connected algebraic group is an Abelian
variety (- 3 Abelian Varieties). More gener-
ally,  given a connected algebraic group G
defïned over k, there always exists a (k-closed)
largest linear connected closed normal sub-
group L, and the factor group C/L is an
Abelian variety. Furthermore, for a closed
normal subgroup H of G, the factor group
G/H  is complete if and only if H 3 L (Che-
valley’s theorem [SI). In particular, if a con-
nected algebraic group G is complete and
linear at the same time, then G reduces to the
identity group. In view of these theorems, the
study of algebraic groups cari  be reduced, in a
sense, to the study of Abelian varieties and
linear algebraic groups. For this reason, we
henceforth restrict ourselves to linear algebraic
groups, which are simply called algebraic
groups. (The notion of tgeneralized  Jacobian
variety, introduced by M. Rosenlicht [12], is
an example of an algebraic group in a general
sense; - 9 Algebraic Curves.) The notion of
algebraic groups has been generahzed further
to that of +group  schemes by A. Grothendieck
c3,41.

C. Lie Algebras

Since an algebraic group G defined over k has
no singularities, the ttangent  space  g to G at
the identity element e is detïned and has the
same dimension as G : dim g = dim G. The space
g cari  be identified in a natural manner with
the space  of ah left-invariant  +derivations  of
the function field  of G,  and thus has the struc-
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ture of a Lie algebra defined over k (- 248 Lie
Algebras). We cal1 g (the Lie algebra gk over k
of all k-rational points in CJ)  the Lie algebra of
G (of the k-group Gk).  If G  is a linear algebraic
group contained in GL(n),  then gk is a Lie
subalgebra of gl(n,  k) with the Lie product
defïned by [x,  y] = xy - yx; a linear Lie algebra
corresponding to a linear algebraic group is
called an algebraic Lie algebra. When the
characteristic of k is zero, conditions for a
linear Lie algebra to be algebraic cari  be given
in terms of the replica  [S].  Also, in the case of
characteristic zero, for x E gl(n,  k), x E gk if and
only if exp(tx)s  G,  where t is a variable over k
and exp(tx) is understood as a tformal power
series in t (contained in fi).  From this, we cari
prove, exactly as in the theory of Lie groups
(- 249 Lie Croups), a one-to-one  correspon-
dence between k-closed subgroups H of G  and
algebraic Lie subalgebras hk of qk, establish-
ing a complete parallelism of the theories of
algebraic groups and Lie algebras [S]. This
parallelism breaks down when k has positive
characteristic [l, 21. On the other hand, over a
tïeld  of characteristic p > 0, we have formal
groups, an analog of local Lie groups intro-
duced by J. Dieudonné [ 131, and also thyper-
algebras, which play the role of Lie algebras in
characteristic 0.

D. Tori [1,2]

The group G,  = GL(l), the multiplicative
group of nonzero elements in R,  is a l-
dimensional connected algebraic group defïned
over the prime tïeld.  In general, an algebraic
group G  that is isomorphic to the direct prod-
uct (G,)”  is called an (algebraic) torus. When a
torus G  deiïned over k is isomorphic to (G,)
over an extension K of k, G  is called K-trivial
(or K-split), and the tïeld  K is called a splitting
fïeld  for G. A torus G defined over  k always has
a splitting tïeld  K which is a fïnite  separable
extension of k.

In general, a rational homomorphism 1:  of
an algebraic group G  into G,  is called a char-
acter  of G.  If we defïne the sum of two charac-
ters  x1 and x2  ofG  by (xl  +x2M=x1(d~x2(d
(9 E G), the totality of characters of G  is an
additive group, called the character module of
G and denoted by X(G). Let G  be a torus
defined over k and X =X(G) its character
module, and let K be a splitting fïeld for G
that is a fïnite Kialois  extension of k. If a K-
isomorphism Gr(G,)”  is given by the corre-
wndence G3g+(x1M,  ,X,(Y)),  then the Xi
are characters of G,  and X is a +free  module of
rank II  generated by x1,  __.  ,x,.  Furthermore, if
T denotes the Galois  group of K/k, then for
<TE  f and XEX,  the conjugate  x0 is also a char-
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acter of G;  under this action of T,  X becomes a
right f-module. We have complete duahty
between a torus G  and its character module X
in the following sense. There exists a one-to-
one correspondence  between the closed sub-
groups G, (defïned over k) of G  and a (T-
invariant) submodule X, of X for which X/X,
has no p-ttorsion (where p is the character-
istic of k). This correspondence  is determined
by the relation of the annihilators X, = G:,
G, =X:,  and under the correspondence  the
character modules of G, and of G/G,  are
canonically identiiïed with X/X, and X,,
respectively. Furthermore, let G’ be another
torus (defined over k and split over K) with the
character module X’, and suppose that we
have a (k-) homomorphism cp:  G-rG’.  Then we
cari  defïne a (T-)  homomorphism ‘<p:X’%X,
called the dual homomorphism of <p,  by the
relation ‘V(X’)  = ~‘0 cp  for x’E X’; conversely,
any (T-)  homomorphism of X’ into X is ob-
tained uniquely in this manner. In particular,
p is a (k-) isomorphism if and only if its dual
‘cp is a (T-)  isomorphism. Since for any free (T-)
module X of fïnite  rank there always exists
a torus G  (defined over k and split over K)
such  that X(G) E X (as a special  case of the
existence theorem of k-forms), the tcategories
of ail tori (defmed over k and split over K) and
that of all free (T-)  modules of finite  rank are
mutually  dual.

E. Semisimple Elements and Unipotent
Elements

A matrix u is called tsemisimple if it is diago-
nalizable, i.e.,  if the tminimal  polynomial of u
has only simple roots. A matrix LI  is called
+unipotent  if u - 1 is nilpotent, i.e.,  if all charac-
teristic roots of LI  are equal to 1. (When the
characteristic of the ground tïeld  is zero, the
unipotent elements u in GL(n,  k) and the nilpo-
tent elements x in gl(n,  k) are in one-to-one
correspondence  by the relation u = expx.) Any
nonsingular matrix a cari  be written uniquely
as a product of a nonsingular semisimple ma-
trix a’ and a unipotent matrix a” of the same
size which are mutually commutative: a =
u’a” = a”~’  (tmultiplicative  Jordan decompo-
sition); u’ (a”) is called the semisimple (unipo-
tent) part of u and is denoted by u, (a,); u,~  cari
be expressed as a polynomial of the matrix u
with scalar coefficients. For an element a of a
(linear) algebraic group G,  the semisimplicity
(unipotency) of a does not depend on the
matrix representation of G.  Moreover, these
properties are preserved by homomorphisms
of algebraic groups. Also, if UE  G,  then a,, U,E
G .

For an algebraic group G,  we denote the
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totality of semisimple (unipotent) elements
contained in G by G,  (G,)  and cal1 it the semi-
simple (unipotent) part of G. (Note that G,  and
G, are not necessarily subgroups.) A torus G is
then characterized by the property that G =
G,  = G,. On the other hand, an algebraic group
G such  that G = G, is called unipotent. For
instance, the additive group of the universal
domain,

is a 1 -dimensional  connected unipotent alge-
brait  group.

F. Solvable Groups and Nilpotent Groups
11,2,7,91

For two closed normal subgroups H,, H,
(deiïned over k) of an algebraic group G, the
+commutator group [H,,  HJ  (in the sense of
abstract group theory) is also a closed normal
subgroup (defïned over k) of G. In view of this
fact,  an algebraic group G is called solvable
(nilpotent), when it is tsolvable (tnilpotent)  as
an abstract group. For example, the totality
T(n) of n x n nonsingular upper  unipotent ma-
trices, i.e.,  matrices of the form

* ... *
. .

l .i0 i
, is a connected solvable algebraic

group. A unipotent algebraic group is always
nilpotent.

For any connected solvable algebraic group
G c CL(n),  there always exists an element a in
CL(n)  such  that ü’  Ca c T(n) (Lie-Kolcbin
tbeorem [ 1,2]).  A connected solvable algebraic
group G has a tcomposition series G = G,  = G,
3 ... 3 G,  = {e} such  that each G,  is a connected
closed normal subgroup of G and Gim,/Gi
is isomorphic to either G,  or G,. If G is de-
fined  over k, the subgroup G, is a connected k-
closed norma1 subgroup of G,  and for any
maxima1 torus T in G, we have a decompo-
sition into a tsemidirect  product  G = T.  G, (in
the sense of algebraic groups, i.e.,  the natural
map T x G,+G  is birational). It is known
that for any algebraic group G defïned over k
there exists a maximal torus defined over k
(141,  A. Bore1  and T. A. Springer 1301).  G is
nilpotent if and only if G has a u,nique  maxi-
mal torus T; when that is SO, T= Gs and T is
contained in the +center  of G. For a connected
solvable algebraic group G defined over k, we
cari  take a E GL(n,  k) such  that cl-’  Ca c T(n)
(see the Lie-Kolchin theorem) if and only if ail
characters XE~(G) are defined over k; when
this condition is satisfïed,  G is called k-solvable.
G,,  is then defined over k, and C/G,,  is a k-
trivial torus.
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When the characteristic of k is zero, any
commutative unipotent algebraic group (de-
fïned  over k) is (k-) isomorphic to the direct
product (GJ.  When k is an algebraically
closed field  of characteristic p > 0, any con-
nected commutative unipotent algebraic group
delïned over k is k-isogenous to a direct prod-
uct of a certain number of the groups W, of
+Witt  vectors (of length m)  (Chevalley-Chow
theorem [ 121).  A 1 -dimensional  connected
unipotent algebraic group detïned over a per-
fect iïeld k is k-isomorphic to G, [ 1,2].

G. Borel’s  Theory

Let G be an algebraic group and V an alge-
brait  variety (both defïned over k). We say
that Vis a transformation space  of G (defïned
over k), or simply G  acts  on V,  if there is given
an everywhere regular rational mapping G x
V~(g,u)+gv~  V (delïned over k) such  that
gl(~r~)=(gl~z)~,e~=~(g,,g,~G,~~V). When
the action of G on V is +transitive,  V is called a
+homogeneous space  of G. For a closed sub-
group H of a connected algebraic group G
(both defined over k), the quotient space  C/H
has the natural structure of a homogeneous
space  of G (deiïned over k). A. Bore1  [ 1,2]
proved the following theorems:

(1) If G is a connected solvable algebraic
group and Va complete transformation space
of G, then G has at least one fixed point in V.
More precisely, in order that a connected
algebraic group G  defïned over k be k-solvable,
it is necessary and suftïcient  that for any com-
plete transformation space  V of G defined over
k for which V,  # 0,  G have at least one k-
rational  fixed point in V [9].

(2) Let G be a connected algebraic group. A
maximal connected solvable closed subgroup
of G is called a Bore1  subgroup of G. Then (i) a11
pairs (T,  B) formed by a maxima1 torus T in G
and a Bore1  subgroup B containing it are con-
jugate to each other with respect to  inner auto-
morphisms of G. (ii) For a closed subgroup
H of G, the quotient space  C/H  is complete
if and only if H contains a Bore1  subgroup
of G; and, when that is SO, C/H  is actually a
+projective  algebraic variety. (For instance,
if G = GL(n),  B  = T(n), then G/B  is a so-called
Vlag  manifold.) (iii) The conjugates  of B(T)
caver the whole group G (G,).  A closed sub-
group of G is called parabolic if it contains
a Bore1  subgroup of G. A parabolic subgroup
H coincides  with its own tnormalizer  N(H); in
particular, H is always connected. Parabolic
subgroups are signifïcant in the theory of
automorphic functions. (For the parabolic
subgroups associated with BN-pairs - Sec-
tions Q,  R.)
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When G is a connected algebraic group
detïned over a Perfect  field  k, proposition (i)
cari  be sharpened: The pairs (A, H) formed by
a maximal k-trivial torus A in G and a maxi-
mal connected k-solvable subgroup H con-
taining it are conjugate  to each other with
respect to the inner automorphisms detïned by
elements in Gk.  The normalizer N(H) of such  a
k-solvable subgroup H is a minimal k-closed
parabolic subgroup of G. When the maximal
connected k-solvable subgroups of G are re-
duced to the identity group, G is called k-
compact or k-anisotropic. (Otherwise, G is
called k-isotropic.) For instance, the tortho-
gonal group G = SO(n,f)  of a tquadratic  form
,f of n variables is k-compact if and only if the
form ,f is anisotropic, i.e.,  the homogeneous
equation f’= 0 has no solution other than
zero in k. Similar facts  hold for other classi-
cal groups. When k is a +local  field,  G is k-
compact if and only if Gk  is compact as a
topological group. In general, a k-compact
group is +reductive.

H. The Weyl Group

Let G be a connected algebraic group and Q
an arbitrary torus in G. The tcentralizer  Z(Q)
of Q is then connected and coincides  with the
connected component  of the normalizer N(Q).
Hence the factor group W= N(Q)/Z(Q)  is finite
and cari  be identilïed with a subgroup of the
automorphism group of Q (or of its character
module X(Q)) in a natural manner. The group
W is called the Weyl group of G relative to Q.
In particular, when Q = T (a maximal torus),
the order of W is equal to the number of Bore1
subgroups containing T.  In this case, the cen-
tralizer C = Z(T) is called a Cartan  subgroup of
G; it is characterized by the property that C is
a (maximal) connected nilpotent closed sub-
group of G which coincides  with the connected
component  of its own normalizer N(C). The
notions of Bore1  subgroups, Cartan  subgroups,
and maximal tori are preserved under rational
homomorphisms of algebraic groups.

1. Semisimple Groups and Reductive Groups

In an algebraic group G delïned over k, there
exists a largest connected solvable closed
normal subgroup R, called the radical of G.
The unipotent part R, of R is called the unipo-
tent radical of G. When R = {e}, G is called
semisimple. When R is a torus, namely, R, =
(e), G is called reductive. Semisimplicity and
reductiveness are preserved under forming a
direct product  and taking the image (or in-
verse image) of an isogeny. For a reductive
group G, the +commutator subgroup D(G) is
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semisimple, and G = D(G).  R, D(G) n R = finite;
in other words, G is isogenous to the direct
product  of a connected semisimple algebraic
group and a torus. In general, if R is the rad-
ical of a connected algebraic group G and R, is
the unipotent radical of R, then the factor
groups GIR,  GIR,  are semisimple and reduc-
tive, respectively. Furthermore, if the charac-
teristic of the lïeld k is zero, there exists a
reductive closed subgroup H of G  such that G
decomposes into a semidirect product  G =
H. R, (Chevalley decomposition [SI). (In this
case, R and R, are k-closed, and H cari  be
taken to be k-rational; such an H is unique up
to inner automorphisms delïned by elements in
Gk.)  Also  in the case of characteristic zero,
reductive algebraic groups are characterized
by the property that all rational representa-
tions are completely reducible. But when k
has the characteristic p >O,  this property char-
acterizes tori (M. Nagata).

J. Root Systems [ 1,2,14]

Let G be a connected semisimple algebraic
group, T a maximal torus, and X =X(T) its
character module. A character XE  X is called a
root of G relative to T if there exists an iso-
morphism x, of G, onto  its image in G such
that

tm’x,(&=x,(a(t)()  f o r  all <EG,, ~ET’.

For a root c(,  such  an isomorphism x, is
uniquely determined up to a scalar multipli-
cation in G,; hence we put P, = x,(G,).

If we denote by c the totality of roots (rela-
tive to T), r satislïes the following axioms,
where E = X @ Q and E* is the +dual  space  of
E with respect to the inner product  ( ): (i) For
each CI E r, there corresponds c(*  E E*  such that
(x*,x)=2and  (a*,/?)~Zforallfi~r.(ii)Ifwe
delïne a reflection w, of E by

w,x=x-(a*,x)a  f o r  X~E,

then w,IJEr  for all /!Er. (In particular, w,cc=
-~ET.) (iii) If a, /JET are linearly dependent,
then B = ~CC. (iv) If dim E = r, r contains  r
linearly independent elements.

In general, a finite  subset r in a Iïnite-
dimensional vector space  E over Q satisfying
the axioms (i)-(iv) is called a root system in E.
(This root system is sometimes said to be
reduced, to distinguish it from the root system
delïned in Section Q,  which does not satisfy
axiom (iii).) For a root system r, the elements
x* of E* corresponding to CIE~  are uniquely
determined by these conditions, and the set
r* = {a*}  is a root system in E* (a* Er*  is
called a coroot).  Also,  the group W of linear
transformations of E (E*)  generated by w,
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(w,*) with txEr  is tïnite  and is called the Weyl
group of the root system r.  If we identify E*
with E by means of any IV-invariant  (positive
detïnite)  metric on E, then a* =(2/(c(, ~))a.
When r is a root system of a semisimple alge-
brait  group,

(a*,x)~Z  fora11  ZEN,  XEX, (1)

SO that X is IV-invariant,  and the Weyl  group
of the root system r cari  be identified with the
group N(T)/Z(T)  of Section H. (In general, a
maximal torus in a connected reductive alge-
brait  group coincides with its own centralizer,
SO that the Weyl group W cari  be identified
with N( T)/T.)

When a +linear  ordering (compatible with
the addition) is given in E, we denote by r, the
set of all positive roots in r. An element C(E~+
is called a simple root if it cannot be written as
cc=sc’+a”withcc’,z”~r+.IfA={~(~,...,~,}is
the totality of (distinct) simple roots in r+, the
elements hi, , c(,  are linearly independent,
and any root C(ET  cari  be written uniquely in
the form a = k CI=,  mixi, with rni~ Z, mi  > 0. In
general, a subset A of r having this property is
called a fundamental system; a fundamental
system is always obtained in the manner ex-
plained from a linear ordering on E. For a
fundamental system A, the cane A, in E*,
defined as the set of x in E* satisfying the
inequalities (mi, x) > 0 (1 < i < r),  is called a
Weyl chamber.  If we denote by L, the hyper-
plane deiïned by the linear equation (x,  x) = 0
for a root E,  then E* - vo,, L, = VaA,,  and W
acts  tsimply  transitively on the set of ah Weyl
chambers {AA}.  The Weyl group IV  is gen-
erated by r reflections w,,  (1 < i < r).

In a semisimple algebraic group G,  Bore1
subgroups B  containing a (fïxed) maximal
torus Tare in one-to-one  correspondence  with
the fundamental systems A (or r+) relative to T
by the relation B,  = n,,,,  P,,  where P, = x,(G,).
(More precisely, every element in B,  cari  be
written uniquely as a product  of the elements
in P,,  where the ordering of the P, is taken
arbitrarily.)

K. Bruhat Decomposit ion

If we take a representative s,  of WE  W in N(T),
there is a decomposition G= uweW  L&B
(disjoint union). Furthermore, if for w E W we
put Nw = %r+  nwr, P,,  and in particular N =
N, = B,, and denote  by w,,  the unique element
in W such  that w,A=  -A, then the element
in Bs,B  cari  be written uniquely as a product
of elements in N,,“, s,T,  N. Hence we have

G =  u N,,o.~wT,N,
wtw

which is called a Bruhat decomposition of G. In
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particular, if we put N’ = s,” -‘Ns,~ (which is
the unipotent part of the Bore1  subgroup cor-
responding to -A), then N’TN is a Zariski
open  set in G,  and the natural map N’ x T x
N+G  is birational. This implies that the
function field of G  is rational (i.e., tpurely
transcendental over Q).

L. Structure of Semisimple Groups

A subset ri of a root system r is called a closed
subsystem if r,  z n r = r, , where r, L denotes  the
submodule of X generated by ri A closed
subsystem satisfïes  conditions (i), (ii), and (iii)
of a root system. For a closed subsystem r, of
a root system r of a semisimple algebraic
group G,  the subgroup C(ri) of G  generated by
the P, (c( E r i) is a semisimple closed subgroup
with a maximal torus T, =(G(ri)ll  T),,  of
which the root system relative to T,  coincides
with the restriction of r, on Tl  and the coroot
system cari  be identitïed with r:={r*IEEri}.
The subgroup G(r,) is normal if and only if
r-ri is also a closed subsystem; when this is
SO, G=G(r,).G(r-r,),  G(r,)nG(r-r,)=finite.
Ah connected closed normal subgroups of G
are obtained in this manner. In order that G
be simple (sometimes called ahsolutely simple
or almost simple) as an algebraic group (i.e.,
without proper connected normal subgroups),
it is necessary and sufftcient that r be irreduc-
ible (ie., r cannot be decomposed into a dis-
joint union of two proper closed subsystems).
In general, a root system r cari  be decomposed
uniquely into the disjoint union r = r, U U rs
of irreducible closed subsystems ri such  that
r, U U ri (1  < i < s) are also closed subsystems;
correspondingly, G  is isogenous to the direct
product  G, x x G,  of (absolutely) simple
algebraic groups G,  = G(r,).  (G is actually a
direct product  if it is simply connected or an
adjoint group.) The subgroups Gi  are deter-
mined uniquely and only by G.

M. k-Forms [15]

Let K be an extension of k and G, an alge-
brait  group defined over K. An algebraic
group G  defmed over k is called a k-form
of G, if there is a K-isomorphism .f of G  onto
G,.  Suppose further that K/k  is finite  sepa-
rable, and for every Galois  automorphism
rrofklk,put<p,=fbofm’.Thenrp,isaniso-
morphism of G, onto  Gy,  and the 9, satisfy
the relation <pi  o <PT  = cp,,.  Conversely, given
a collection of isomorphisms { cp,)  satisfying
these conditions, there always exists a k-form
G  (with a K-isomorphism ,f onto  G, such
that <~~=,f~o  f-l), which is unique up to k-
isomorphism (Weil). In particular, if K/k  is a
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fïnite  Galois extension with Galois group T,
then { qO}  is a (continuous) +l-cocycle  of f in
Aut,  (the group of a11 K-automorphisms
of G,), and by the above correspondence the k-
isomorphism classes of k-forms G are in one-
to-one correspondence with the (continuous)
1-+cohomology classes of the cocycle {cpO}  (in
the cohomology set H’(I,Aut,(G,)))  (- 172
Galois Theory J)

TO a given fïnite separable extension K/k of
degree d and an algebraic group G, delïned
over K of dimension n,  we cari  associate a
certain algebraic group !RHKII<(GI)  defïned over k
of dimension dn, which is obtained from G, by
restricting the ground tïeld  [ 191. A more pre-
cise  definition is as follows. Let (0, , cr2,  . , a;l}
(gl = 1) be a set of automorphisms of k/k such
that o,  1 K( 1 <i  <d)  are a11 distinct. Then one
cari  fïnd  a k-form G  of G, = n$,  C:i with an
isomorphism ,?: S-G, such that &, =fb 07~’
is given by @,,((xJ)  = (xi”),  where i” is defined
by the relation (aia) 1 K = cri0  1 K. If we denote
by p1  the canonical projection of d, onto  its
first component  G, and put p = p1 ofythen  the
pair (G, p) is uniquely characterized (up to k-
isomorphism) by the following universality
property: If G’  is any algebraic group defined
over k and <p  is a K-morphism of G’  into G,,
then there exists a (uniquely determined) k-
morphism @  of G’  into G  such  that <p  = p o @.
The group r?  (together with p) is denoted by
%,/,(G,).  For the group of rational points,
c, = G, K.  When the algebraic group G, has
some additional structure (such  as that of
+vector  space,  talgebra,  etc.), then %klk(G1)
automatically has the same kind of additional
structure.

N. Chevalley’s Fundamental Theorems

Let G, G’ be connected  semisimple algebraic
groups, and let T(  T’) be a maximal torus in
C(G’),  X(X’) its character module, r (r’) a root
system of G (G’) relative to T (T’), etc. If we
have an tisogeny qn  of G onto  G’ such  that
<p(T) = T’, then there is a bijection n-rsc’  of r
onto  r’  such  that $(a’)  = q,a, where $ is the
dual homomorphism of <p  1 T and q, is a posi-
tive integer, which equals 1 if the characteristic
is zero and is a power of p if the characteristic
is p > 0. Conversely, any injective homomor-
phism $ : X’+X  satisfying this condition (with
respect to a certain bijection r+r’  and qJ
cornes from an isogeny cp:  C+G’  in the mannet
already stated. In particular, <p  is an isomor-
phism if and only if $ is an isomorphism such
that $(r’)=r  (i.e.,  q,=  1 for ah XEr)  [7]. The
isomorphism class of G  is thus completely
determined by the pair (X, r), SO that we some-
times Write  G = G(X,  r). A connected  semi-
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simple algebraic group G defïned over k is
called of Chevalley type over k(or k-split) if
there exists a k-trivial maximal torus T in G. If,
in the above theorem, G and G’ are of Cheval-
ley type over k and T and T’  are k-trivial, then
the theorem remains true if we replace isogeny
by k-isogeny. In particular, the k-isomorphism
class  of a connected  semisimple algebraic
group of Chevalley type over k is completely
determined by (X, r). Chevalley also showed
that, for any pair (X, r) satisfying condition (1)
above, there exists a connected  semisimple
algebraic group G(X,  r) of Chevalley type
defined over the prime lïeld. Therefore, since
the classification of semisimple algebraic
groups of Chevalley type is reduced essentially
to that of root systems (X, r), it turns out that,
over any ground field  k, there exist as many
connected  simple algebraic groups of Cheval-
ley type as connected  simple complex Lie
groups (- 249 Lie Groups; Appendix A, Table
5.1).

For a given semisimple algebraic group
G = G(X,  r) delïned over k, put X,  = rL (=
the submodule of X generated by r), X0  =
jx~Fl(a*,x)~Z  for all aer}.  Then we have
natural isogenies G(X’,r)+G(X,r)+G(X,,r)
(with q, = l),  all of which cari  be taken to be
defined over k. The group G(X’,  r)  (G(X,, r)) is
called the simply connected  group (the adjoint
group) isogenous to G. When the characteristic
of k is zero, these isogenies (which are already
known in the classical theory of complex Lie
groups) are essentially the only possible iso-
genies among the semisimple algebraic groups.
But when the characteristic is p > 0, there are,
in addition to these, the Frobenius homo-
morphism (with q, = p) and the following
“singular” isogenies (for which 4, = 1 or p de-
pending on x):B,@C,,  F4+F4(p=2),  G,+G,
(p = 3). In particular, when k is a lïnite  lïeld,
taking the set of fixed points of the singular k-
isogenies, we obtain the simple lïnite  groups of
M. Suzuki and R. Ree (- 151 Finite Groups).

0.  Class i f icat ion  Theory

A connected  semisimple algebraic group G
defined over k is called k- (almost) simple if
there is no proper connected  closed normal
subgroup of G dehned over k. (When G is k-
simple and k-split,  the factor group D(G,)/
tenter  is an abstract  simple group except for
a few special  cases [ 171. For more general
results - Section Q.) For a k-simple algebraic
group G, let G, be any one of its absolutely
simple components, and let k, be the smallest
field of definition for Ci  containing k. Then
k,/k  is a finite  separable extension, and G is k-
isogenous to !l&!,(G,).  Hence the problem of
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classifying all k-simple groups (up to isogeny)
is equivalent to that of tïnding all k,-forms of
simple groups of Chevalley type. This latter
problem cari  be reduced, in principle, to the
classification of compact k,-forms and that of
certain diagrams (i.e., +Dynkin  diagrams along
with an action of the Galois group) [ 161, J.
Tits 1301 (- Appendix A, Table 5.1). For
instance, when k is a lïnite lïeld (or, more gen-
erally, a fïeld of dimension d 1 [ 15]),  there is
no compact k-simple group; hence, using a
simple classification theory of the diagrams,
we cari  show that the only absolutely simple
algebraic groups G deiïned over k are either of
Chevalley type or of the types introduced by
R. Steinberg (denoted by ‘A,,,  ‘D,,  3D,, 6D4,
2E,).  Connected  semisimple algebraic groups
composed of the groups of these types are
characterized by the property that they have a
Bore1  subgroup defined over k. Such groups
are said to be of Steinberg type over k (or k-
quasi-split). Absolutely simple algebraic groups
over a +p-adic  lïeld have been classifïed by M.
Kneser and J. Tits [30,31]. When the charac-
teristic of k is not equal to 2, the classification
of simple groups of classical type (except  for the
type Db)  is known to be equivalent to that of
semisimple tassociative algebras with +invo-
lution [ 181. A similar relation also holds be-
tween some of the exceptional simple groups
and +Cayley  algebras or +Jordan  algebras (H.
Hijikata, T. A. Springer, J. Tits).

The following is a list of absolutely simple
algebraic groups of classical type.
1. k-forms of SL(n)  (n 2 2).

1.1. Glk=SL(m,A)={y~M,(R)IN(y)=l},
where R is a +Central  division algebra
over k with (U:k)=r2,  n=mr,  and N
denotes the +reduced  norm in M,($Z).

1.2. G,,=SU(m,R,f)={g~SL(m,A)I
f(w,w)=f(x,.~) for  x, FR”‘},  where
U  is a central division algebra over a
quadratic extension k’ of k with an in-
volution I of the second kind (which
means that {<Ek’l<‘=<)=k),  (K:k’)=
r2, n = mr,  and f is a (nondegenerate)
+Hermitian form of nî variables over
SZ  with respect to the involution 1.

II. k-forms of SO(n) (n 3 3, n #4), Sp(n) (n
even, n 3 2).

G,,=SU(n,W,f),  where H  is a central
division algebra over k with an involu-
tion I of the fïrst  kind (i.e.,  such  that
{<Ek1t’=<}=k),(Ji:k)=r2,n=mr,
and f‘  is a nondegenerate c-Hermitian
form of m  variables over 52  with re-
spect to the involution z.  In this case,
dim{<EK  I<‘=<}  =r(r+c,)/2  with c,,=
f 1, and G, is a k-form of SO or Sp
according as CE~ = 1 or ~ 1. (SO@)  may
have other k-forms coming from the so-
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called triality.) The case where the
characteristic of k is 2 cari  also be dis-
cussed by a method given by J. Tits
(Inventiones  Math. 5, 1968).

When k is a local fïeld or an algebraic num-
ber iïeld, the only central division algebra with
an involution of the first kind is a tquaternion
algebra (and, if 1  is the “canonical involution,”
then E” = - 1).

P. Algebraic Groups over  an Algebraic
Number Field

Let G be a connected  algebraic group detïned
over an algebraic number fïeld k of tïnite  de-
gree. Let {u}  be the totality of +Prime  divisors
(i.e., equivalence  classes of valuations) of k.
Taking the trestricted direct product  of a
family of locally compact topological groups
{ GkU},  we obtain a locally compact topological
group GA,  called the adele group of C[l91  (- 6
Adeles and Ideles). In particular, when G =
G,,  the adele group I= (G,,,),,,  is exactly the
+idele  group introduced by Chevalley in class
lïeld theory. If we identify XEG,  with an
adele whose components are all equal to x,
G, becomes a discrete subgroup of GA,

Concerning the tïniteness property of GA/G,,
the following results have been obtained
[21,22]: A character XEX,(G)(  = the module
of all k-rational characters of G) gives rise
to a (continuous) homomorphism xa: GA+
I=(G,)~.P~~G~~={~EG~IJx~(Y)I=I  forall
XE  X,(G)}, where II  is the standard norm in 1.
Then Ci is +unimodular, and the quotient
space  C;/G,  is of lïnite  volume with respect to
the (unique) invariant measure on it. GA/G,
(GA/Gk)  is compact if and only if the semi-
simple part GIR  (the reductive part GIR,)  of G
is k-compact. From the arithmetic point of
view, it is important to determine explicitly the
volume of C:/G,  with respect to the invariant
measure normalized in a certain manner; such
a volume is called the Tamagawa number of G
and is usually denoted by 7(G) [19,23].  For
instance, Siegel’s formulas on the volume of
the fundamental domain  of the unit group of a
quadratic form 1‘  over k are essentially equiva-
lent to a theorem on the Tamagawa number
stating that z(SO(f))=  2.

Let o be the +ring  of integers in k and L an
o-lattice in the vector space  on which G is
acting. We cari  delïne in a natural  manner an
action of GA on the set of all o-lattices; then the
orbit G,L (G,L)  of L with respect to G,  (Gk)  is
called the genus (class)  of L. The tstability
subgroup GA,L  of L in G,  is open,  and the
double coset space  G,.,L\GA/Gk  is fïnite (lï-
niteness of the class number). Moreover, let
{ül,  , z>,i  be the totality of tintïnite  prime
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divisors of k, and put G,  = HF=,  &,. Then G,
is a Lie group, and the canonical projection
G,  on G,  of G,,, c GA is a discrete subgroup of
finite  type. (In general, (discrete) subgroups of
G,  which are tcommensurable  with GL  are
called arithmetic subgroups.) As in the adele
case, X~X,(G)  gives rise  to a (continuous)
homomorphism x, : G, +(R  ’ ): and if Go,,  =
{ggG,  1 Ix,(s)l= l},  then the quotient space
C:/CL  is of tïnite  volume. Moreover, C$/G,
(G, /G,) is compact if and only if GA/G,  (GA/G,)
is compact.

In addition to these, the tapproximation
theorem and the +Hasse  principle are also
extended to (classical, or general) algebraic
groups (M. Eichler, M. Kneser, G.  Shimura,
Hijikata, Springer; - [30]).

Q. Structure of Reductive Groups [24]

Let G  be a connected  treductive group defined
over a field  k. Then G  has a tmaximal  torus
defined over k and G  is +spht  over a tïnite
tseparable extension K  of k. The structure of
the group G, cari  be discussed as in Sections 1,
J, K, and L. Here, we discuss the structure of
G,,  i.e.,  a +k-form  of G,.

Let S be a maximal k-split  torus of G,  i.e.,  a
k-subtorus of G  that is k-spht  and maximal
with respect to these properties. Any  two such
tori are conjugate  over k, i.e.,  by an element of
G,.  Their dimension is called the k-rank of G.
TO say  that G is of k-rank zero is equivalent to
saying that G  is +k-anisotropic.  The centralizer
Z = Z,(S) of S in G  is a reductive k-group,
and its derived group is k-anisotropic. Let
N = N,(S) be the normalizer of S in G. The
+Weyl  group kW= N/Z  relative to S is called
the k-Weyl group of G. A k-root of G  with
respect to S is a nontrivial character of S that
appears when one diagonahzes the represen-
tation of S in the +Lie algebra q of G,  S  operat-
ing via adjoint representation. Denote by kr
the set of a11 k-roots of G  with respect to S.
There is a decomposition of the Lie algebra g
ofG:g=g,,+C .tx,n,where~,=JX~~IAd(s)X
=rc(s)X  for ah SES). Then q,, is the Lie alge-
bra of Z, and there is a unique unipotent k-
subgroup P,  of G  normalized by S such  that its
Lie algebra is ga. The set kr is a +root  system in
a suitable Euclidean space whose Weyl group
is isomorphic to kW;  if G  is k-split,  kr is the
ordinary root system, and the P,  are as in
Section J. In general, kr need not be reduced
(i.e., axiom (iii) in Section J need not be satis-
tïed),  nor should dim q, = dim P,  always be 1.

A closed subgroup of G  defined over k
which is minimal among the parabolic sub-
groups of G  is called a minimal paraholic k-
subgroup of G.  (If G  is k-spht,  a minimal para-

50

bohc k-subgroup is a +Bore1  subgroup of G.)
Any  two minimal parabohc k-subgroups are
conjugate  to each other over k. If P is one such
subgroup, then there exists a maximal k-split
torus S such that P is the semidirect product
of the reductive k-subgroup Z = Z,(S) and the
tunipotent  radical U  = R,(P) of P. The ex-
pression P = ZU is called a Levi-decomposition

of P, and Z is called a Levi-suhgroup of P. Any
two Levi-subgroups of P are conjugate  by an
element in Q.  There is an ordering of kr such
that P is generated by Z and P,  with c(  > 0. The
minimal parabolic k-subgroups containing a
given maximal k-split  torus S correspond to
the +Weyl  chambers of kr.  They are permuted
simply  transitively by the Weyl group kW.

Fix an ordering of kr,  and let kA  be the ifun-
damental system of kr with respect to the given
order. For any subset 0 of kA,  denote by PS the
subgroup generated by Z = Z,(S) and P,,
where n is a linear combination of the roots of
kr in which all roots not in 0 occur with a
coefficient > 0. Then PH  contains  P and, in
particular, P, = P. PS is called a standard para-

bolic k-subgroup of G  containing P. Any  para-
bohc k-subgroup of G  is conjugate  over k to a
unique P@.  If S, is the identity component  of
n&kerrx), then S, is a k-split torus of G  and
PH  = Z(.S,)R,(P,).  This shows that any parabohc
k-subgroup of G  has a Levi-decomposition
and its Levi-subgroups are conjugate  to each
other over k. Let P be a minimal parabolic k-
subgroup of G  containing a maximal k-split
torus S. Put U  = R,(P), Z = Z,(S), and N =
N,(S). Then, N = NkZ,  SO Gk  is the disjoint
union over kW of double cosets  U,n,P,  (WE
kW),  where n, is a representative in Nk  of
WE,W.  More precisely, if WE~W,  there exist
two k-subgroups Uk  and Cl: such  that U  =
UL,  x UL (product of k-varieties), the map
Ul, x P+ Un,P  sending (x, y) onto  ~n,y  is an
isomorphism, and

where 71 is the projection G+G/P.  This is
called a relative Bruhat decomposition. If G  is
k-split,  this gives an ordinary Bruhat decom-
position (- Section K). If 0 is a subset of kA,
let W,  be the subgroup of kW generated by
reflections detïned by the c(‘s  in 0. If 0,  0’ are
subsets of kA,  then there is a bijection of dou-
ble cosets

(Note that all these properties follow from the
fact that (Pk,  Nk)  is a BN-pair in Gk;  - Section
R.1

If G  is k-isotropic, let G+  be the subgroup of
G, generated by a11 U,,  where U  runs over the
unipotent rddicals  of the minimal parabolic k-



51 13 R
Algebraic Croups

subgroups of G. Kneser and Tits conjectured
that when G  is semisimple and simply con-
nected and k arbitrary, Gk  = G+.  Platonov
showed that this conjecture fails for some k-
forms of SL, (n > 2) but it is true in many
cases, e.g.,  when G is +k-split  or +k-quasi-split
(J. Tits, Sém. Bourhaki  29e,  no. 505, 1976677).
In this case, if G is simple as an algebraic
group and the cardinality of k is > 4, then
Gk/Z(Gk)  is simple as an abstract  group. The
connected semisimple algebraic k-groups over
a tïnite  iïeld k are k-split or k-quasi-split (-
Section 0). J. Tits has given a reduction  pro-
cess  for classifying the groups over an arbi-
trary tïeld  k. He defined the index of the k-
group (to a certain extent a generalization of
Witt’s theorem characterizing a quadratic
form by means of its index and anisotropic
kernel) and gave all possible indices of the k-
groups and also a complete list in the case of
local tïeld (J. Tits 130,311).

R. Buildings and BN-pairs [25]

The origin of the notations of buildings and
BN-pairs lies in an attempt to give a systema-
tic procedure  for the geometric interpretation
of the semisimple Lie groups and, in partic-
ular, the exceptional groups. The theory has
various applications to the groups of Lie types.
TO describe this precisely, we must introduce a
number of detïnitions.

A complex  A is a set with an order relation
c, read “is a face of” or “is contained  in” such
that for a given element A, the ordered subset
S(A) of all faces of A is isomorphic to the set of
all subsets of a set. The subset S(A) of A is
called a simplex in A. A complex has a smallest
element, which we denote by 0. For an element
A, the number rk A of minimal nonzero faces
of A is called the rank of A. Define rk A =
sup(rk Al AEA). A morpbism a:A-tA’  (where
A and A’ are complexes) is a mapping of the
underlying sets such  that for every AEA,
S(A) ~S(T(A)).  A subcomplex of A is a com-
plex whose underlying set is a subset of A such
that the inclusion is a morphism. If AEA,  the
star St(A) of A is the set of all elements of A
containing A. With the order relation induced
from A, St(A) is a complex.  If BESt(A),  the
rank of B in St(A) is called the codimension of
A in B and is denoted by codim,il.

A complex A is called a cbamber complex  if
every element is contained  in a maximal ele-
ment, which is called a cbamber, and if given
two chambers C, C’, there exists a sequence of
chambers C = C,, C, , , C,,,  = C’ such that
c o d i mCL-I  (Ci-, flCi)=codimci  (Ci-t flCi)<  1
for all i= 1, 2, , m. A chamber  complex is
called tbick (resp. tbin) if every element of

codimension 1 is contained  in at least  three
(resp. exactly two) chambers. An endomor-
phism <p  of a thin chamber  complex A is called
a folding  if <p2  = <p  and if any chamber  on p(A)
is the image of exactly two chambers in A by
q, For any folding <p,  q(A)  is called a root. A
thin chamber  complex is called a Coxeter
complex  if for any pair of adjacent chambers
C, C’, i.e.,  chambers such  that codim,(C  f’  C’) =
1, there is a root containing C and not C’. Let
Z be a Coxeter complex.  For any root (p(c)
of L, there is only one root <p’(L),  called the
opposite of <p(C),  such  that <p(C)  f’  <p’(C)  does
not contain  any chamber  and <p(X)  U <p’(Z)  = C;

there is also an involutive automorphism
called the reflection associated with q~  that
transforms v(C) onto  <p’(z).  The group W(C)
generated by all reflections of C is called the
Weyl group of Z,  which turns out to be a
Coxeter group, i.e.,  there exist sets 1 and {m,),
(i,;) E 1 x 1, where m, are integers or CO  and
mLi  = 1, such  that the group is presented by
the generators jri}it, and the fundamental
relations (rirj)“‘jJ  = 1, i, jE1, m,#rs.  A Coxeter
complex is called irreducible if it is not the
join  of two nonempty Coxeter subcomplexes.

A building is a thick chamber  complex A
with a system QI of Coxeter subcomplexes,
called the apartments of A such that (i) every
two simplexes of A belong to an apartment. (ii)
If 2-,  L’~‘11, there exists an isomorphism of 1
onto  c’ that fixes C Il c’ (elementwise). Since
the apartments of a building are isomorphic to
each other, we cari  detïne the Weyl group,
rank, and irreducibility of the building to be
those of its apartment. A building with finitely
many chambers is said to be of spberical type.
If a building cari  be realized as a simplicial
decomposition of a Euclidean space,  then one
says it is of Euclidean type.

Examples of buildings are provided by BN-
pairs. A BN-pair or Tits system in a group G is
a system (B, N) consisting of two subgroups of
G such  that
(BNO) B and N generate G;
(BNI)  BnN=HaN;and
(BN2) The group W= N/H  has a generating
set R such  that for any r E R and any U’E  W,
(BN2’) rBw  c BwB f’ BrwB,
(BN2”) rBr # B.
The group W is called the Weyl group of the
BN-pair. For any subset S of R, let W,  denote
the subgroup of W generated by S. Set PS =
B W,B. Then PS  is a subgroup of G and the
mapping S-PS  is a bijection of the lattice of
all subsets of R onto  the lattice of all sub-
groups of G containing B. A subgroup of G is
called parabolic if it is conjugate  to some PS.
Let A be the set of all left cosets  of all sub-
groups PS, S c R, ordered by the opposite of
the inclusion relation. Let G operate on A on
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the left. Let C be the subset {nPS  1 ne N, S c R}
of A, and % be the set of G-translates of C.
Then (A, CU)  is a building whose Weyl group is
W .

Let G be a reductive algebraic group defined
over a tïeld  k and P be a minimal parabolic k-
subgroup of G containing a maximal k-split
torus S and set N = N,(S). Then (Pk,  Nk)  is a
BN-pair in Gk.  Therefore there is a building of
spherical type associated with the group G.
Conversely, the buildings of rank > 3 and
irreducible spherical type (roughly speaking)
aIl  turn out to be associated with simple alge-
brait  or classical groups (J. Tits [25]). This
result gives a complete and unifïed description
of structures that were discovered previously
in certain cases. For example, the building of
type A, gives a tprojective space (E. Abe, T.
Tsuzuku), that of type C,  gives a polar space
(Veldkamp), and that of a k-form of type E,
gives a Cayley space (J. Tits). As an applica-
tion, one cari show that a Imite  building of
rank > 3 and irreducible spherical type is
isomorphic to the building of an tabsolutely
simple algebraic group over a imite  fïeld.

When k is local (i.e.,  endowed with a com-
plete discrete  valuation whose residue field  is
Perfect), the reductive group defïned over k
has another BN-pair such  that the associated
building is Euclidean. This theory was ini-
tiated by N. Iwahori and H. Matsumoto [26],
who considered split semisimple groups. Later,
quasi-split and classical groups were studied
by H. Hijikata, and the theory for the general
case was given by F. Bruhat and J. Tits
[27,28]. TO distinguish from the usual BN-
pair structure, the subgroups conjugate  to B in
this case are called Iwabori subgroups, and
parabolic subgroups are called paraholic sub-
groups. The Euclidean buildings are the “ultra-
metric analogs”  of the +Riemannian symmetric
spaces.  In other words, in the study of p-adic
simple groups, they play a role similar to that
of the symmetric spaces in the theory of simple
groups.
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Algebraic Number Fiel&

A. Introduction

A complex number that satistïes  an algebraic
equation with rational integral coefftcients  is
said to be an algebraic number. If the coeffi-
cient of the term of highest degree of the equa-
tion is 1, this algebraic number is said to be
an algebraic integer. The set A of ah algebraic
numbers is a field which is the talgebraic  clo-
sure of the rational number tïeld Q in the
complex number tïeld C. The set 1 of all alge-
brait  integers is an tintegral  domain  which
contains the integral domain  Z of a11 the ra-
tional integers. The +Iïeld of quotients of 1 is A.

B. Principal Order

An extension fïeld k of Q of finite  degree
(which we shah always suppose to be con-
tained in C) is said to be an algebraic number
field of finite  degree, and k is a subfield of A.
The intersection o = k n 1 is an integral domain
whose tïeld  of quotients is k; o is called the
principal order of k. (More generally, a subring
R of o containing 1 is said to be an order of k if
the fïeld of quotients of R is k. The set f of all
elements y of o such that yo  c R is an ideal of o;
in addition f is called the conductor of R.) Let n
be the degree of k over Q. Then the additive
group of the principal order o of k is a tfree
Abelian group of +rank  II.  A +basis  (wr  , , w”)
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of o as a free Abelian group (or Z-module) is
said to be a minimal basis of o (or of k). Let c$)
(i = 1, , n) be tconjugate  elements of y over
Q,  and let A = [WY)]  be the determinant whose
(i,j) entry is WY).  Then Dk  = AZ  is a rational
integer that is independent of the choice of a
minimal basis of o. Dk  is called the discrimi-
nant of k. If k #Q,  then IOrl>  1 (Minkowski’s
theorem, 1891). For any given rational integer
m  there are only a lïnite  number of algebraic
number tïelds  whose discriminants  are equal
to m  (C. Hermite and H. Minkowski, 1896).
The proof of these theorems depends on the
methods of geometry of numbers (- 182
Geometry of Numbers).

C. Ideals  of tbe Principal Order

An tideal a of the principal order o is said to
be an integral ideal of k. In particular, a prime
ideal ( # 0) of o is called simply a prime ideal of
k. The domain  o is not necessarily a +Principal
ideal ring but is always a +Dedekind  domain.
That is, every ideal a of o is uniquely ex-
pressed (up to the order of the factors) as a
finite  product  of powers of prime ideals of o.
This theorem is called the fundamental tbeo-
rem of tbe principal order o.

The quotient ring o/a of o by an ideal a (#O)
of o is a tïnite  ring. The number of elements
of o/a is called the absolute  norm of a and is
denoted by N(a). We have N(ab) = N(a)N(b).
Every prime ideal p ( # 0) of o is a tmaximal
ideal of o, and o/p is a Imite field. Let the
tcharacteristic  of o/p be p,  where p is a prime
number. Then o/p is a Imite extension of the
+Prime  field Z/pZ.  Let the degree of o/p over
Z/pZ  be 1:  Then N(p) = pr,  and ,f is said to be
the degree of the prime ideal p.

Let s be a complex variable. The (complex-
valued) function

ih)=C  l/W(a)Y=n  I/(l  -W(P))-“)
0 P

of s E C is called the Dedekind zeta function  of
k (R. Dedekind, 1871). Here the summation
extends over all ideals a of o, and the product
extends over all prime ideals p of o. This series
converges absolutely for Re s > 1, and the
function [,(s) has a single-valued  tanalytic
continuation to a +meromorphic function
on the whole complex plane (- 450 Zeta
Functions).

D. Units

An algebraic integer E of k is said to be a unit
of k if a-’ is also an algebraic integer. Hence a
is a unit of k if and only if the +Principal ideal



14 E
Algebraic Number Fields

(E) is o. The set E, of a11 units of k forms an
Abelian group under multiplication, which is
called the unit group of k. The set of all ele-
ments of E, of finite  order coincides  with the
set of a11 the roots of unity  contained in k and
forms a cyclic group of a finite  order w. Let n
be the degree of k over Q. Then for each ele-
ment XE  k there are n conjugate  elements cl(‘)
over Q. Let ceci)  (i = 1, , rl) be real for any
NE  k, and let cl(‘l+j)  and &lt’2ij)  (j = 1,  . , rZ)
be pairs of complex conjugates for any tlE k.
Then we have n = r, + 2r,. The unit group E,
of k is the direct product of a cyclic group of
order w and the free Abelian multiplicative
group of trank r = r, + r2  - 1. This theorem
is called Dirichlet’s unit theorem (1846). A basis
(Es,  , E,)  of this free group is called a system
of fundamental uni@  of k.

Letl(i)a=loglcr(i)l(i=l,...,r,),I(j)~=
2loglcc”‘I  (j=r,  + 1, . . ..r.  +rz)  for mEk.  For r
elements ri,  , q, of E,,

RCv,>...>%l=
1’2’q*  P2’q2  1’2’q,
.
PV/ 1 P’q,  I”)V/,

is called the regulator of (ql, , q,) (Dedekind).
Inorderforq,,..., ql to be multiplicatively
independent, it is necessary and sufflcient
that R [ql, , ql] # 0. The absolute value of
R [ql, . , ~~1 takes the minimum positive
value R for fundamental units (Es,  . . , cl). R =
1 R [Es, , E,] 1 is independent of the choice of
fundamental units (E,,  . , E,)  of k. R is called
the regulator of k. In general, 1 R[q,,  , q,]  I/R
is equal to the index [E,:  H] of the group
H generated by the roots of unity  in k and
q,, ,q,.  H. W. Leopoldt conjectured  that
units in k, which are multiplicatively indepen-
dent over Z, remain multiplicatively indepen-
dent over Z, (the ring of p-adic integers) when
they are considered as elements of the tensor
product k 0 Q, over Q. This conjecture was
afflrmatively proved in some special cases by
J. Ax (Illinois J. Math., 9 (1965)) and others.

If k/Q is a Galois extension, there exists a
unit E  of k such  that the conjugates of E  over Q
contain  r multiplicatively independent units
(Minkowski’s theorem).

E. Ideal Classes

An o-module contained in k (i.e.,  oa c a) such
that cta  c o holds for some element CI ( #O)  of k
is said to be a fractional ideal of k. For two
fractional ideals a, b of k the “product” ab
defined by {Xa$;  (finite  sumi)cciEa, /Y&gb}  is
also a fractional ideal. Thus the set of the
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fractional ideals of k forms a multiplicative
commutative semigroup. For a fractional ideal
a the set a m1  = {a  E k 1 aa c o} is also a fractional
ideal of k, and we have aa-’  = o. Thus the set
of all nonzero fractional ideals of k forms an
Abelian group & under multiplication with
o as identity. Each fractional ideal a (#O)
is uniquely expressed as a finite  product of
powers of prime ideals, if we admit negative
powers. Namely, Jk is a free Abelian multi-
plicative group with the set of all prime ideals
as basis. Given fractional ideals a and 6,  we
say that a is divisible by b if a c b; in this case,
we cal1 b a divisor of a and a a multiple of b.
Also, a c b if and only if there exists an integral
ideal c such that a = bc. Given fractional ideals
a=I’Ip:i  and b=nqifj  (ei#O,fj#O),  we say
that a and b are relatively prime if {pi} and {qj}
are disjoint. Usually a fractional ideal of k is
simply called an ideal of k.

For an element s(  ( # 0) of k, (ct) = C[D  is a
(fractional) ideal of k, and (z)  is said to be a
principal ideal of k. The set Pk  of all principal
ideals (a) (cc~k,a#O)  is a subgroup of &.
Since (c()  = o is equivalent to C(E E,,  we have
Pk  g k*/E,,  where k* is the multiplicative group
of all nonzero elements of k.

Each coset of & modulo Pk  is called an
ideal class  of k, and the group K, = &JPk  is
called the ideal  class  group of k. Each ideal
class contains an integral ideal a with N(a) <
m (more precisely, with N(a)<(4/$2(n!/n”)
ml. From this it follows that Kk  is a finite
Abelian group. The order h of Kk  is called the
class  number of k. For the calculation of the
class  number the tresidue at the pole s = 1 of
the Dedekind zeta function is used. Namely,

lim ( s -  l)&(s)=gh,
s-1 +o

g=2 r,+rvf2Rk/~k~,

where R,  is the regulator of k and w, is the
number of roots of unity  in k (Dedekind,
1877). This formula is used, in particular, for
the computation  of the class numbers of
tquadratic  fields and tcyclotomic fields  (- 347
Quadratic Fields). The class  numbers of cubic
and quartic (real) tcyclic  fïelds  over Q were
computed  by H. Hasse in the case where
the +conductor of k/Q is less than 100 (Abh.
Deutsch. Akad. Wiss. Berlin, 2 (1948)). Hasse
has also given a detailed computation  of the
class  number of cyclotomic fields  [ 15). In
general, let the degree n  = [k: Q] be fïxed and
let lDkl+cû.  Then

lim(log(h,R,)/logJ)=  1.

(This formula was proved for n = 2 by C. L.
Siegel, 1935, and for general n by R. Brauer,
Amer. J.  Math., 69 (1947))
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F. Valuations

Al1  the TArchimedean  and tnon-Archimedean
valuations of an algebraic number fïeld k cari
be obtained as follows  (- 439 Valuations):

Archimedean Valuations.  Let  n = [k :  Q], and
let n conjugates of C(E k be X(I),  , ~6”)  such that
8) (i = 1, , r,) is real, and c((‘l+j)  and &1+‘2+j)
(j=l , , r2)  are pairs of complex conjugates.
W e  Write  I~II.=\&)~  (j=l,J , rl + r,); these
are Archimedean valuations of k that are
not mutually equivalent. The equivalence
classes of these valuations are denoted by
P (1)m  > “‘> p3;1+‘2),  respectively, and are called the
+infïnite  prime divisors of k. The first  r1 infinite
prime divisors are called +real  and the remain-
ing r2 are called timaginary  (or complex). The
valuations of k defined by

Ialplil=IaJj, j= 1, . . . . rl,

=Ialj’, j=r,+l,...,  r,+r,,

are called tnormal  valuations of k. Here ( Ipl,
(j=r,+l,..., r, + r2)  are valuations in the
wider sense. If r1 =II we cal1 k a totally real
fïeld,  and if r,  = 0 we cal1 k a totally imaginary
tield.

Non-Archimedean Valuations.  Let p be a prime
ideal of k and 51 an element of k. Let (tl)=p’b,
where p and b are relatively prime. Put v,(a) =
a. Then for any constant p (0 < p < l),

is a non-Archimedean valuation of k. This
valuation of k is called the tp-adic valuation of
k; p-adic valuations for different prime ideals
are mutually inequivalent. The valuation (ai,,
with p=(N(p))-’  is called a tnormal  valuation
of k. The equivalence class of valuations con-
taining 1 Ip  is denoted by the same letter p
and is called a tfinite  prime divisor of k.

A forma1 finite  product of powers of tïnite  OI

inlïnite prime divisors m*  = n pe’  is called a
divisor of k. If a11 ei > 0, then m*  is called an
integral divisor of k. Given divisors m*  =
n p,Fi  and n*  = n P{i, we Write  m* 1 n*  if ei <
f; (i = 1,2,  ).

Any  valuation of k is equivalent to one of
the valuations defïned previously (A. Ost-
rowski, 1918; E. Artin,  1932). For any element
CI (#O) of k the tproduct  formula nplal,  = 1
holds, where p runs over a11 finite  and inlïnite
prime divisors of k and 1 Ip  are the normal
valuations of k. Conversely, let k be a lïeld,
and let V= { 1 1,) be a set of inequivalent
valuations of k such that (i) for any a E k (a # 0)
Ialy  # 1 holds only for a finite  number of p in
1/;  (ii) the product formula ~,~a~,=  1 (aEk,
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x ~0)  holds; and (iii) there is at least one
Archimedean valuation in V. Then k is an
algebraic number field  and Vis the set of all
the prime divisors of k (Artin  and G. Whaples,
Bull. Amer. Math. Soc., 5 1 (1945)).

G. Ideal  Classes in the Narrow Sense

For a, /?E k, the expression a = /3 (mod pa))
means aci)pci)  > 0 for a real infinite  prime divi-
sor p$!  and a(i)/3(i’  # 0 for an imaginary infï-
nite  prime divisor ~(2. We cal1 an element
x E k totally positive if all real conjugates ati)
(i= 1,. , r,) are positive. In the notation just
given, this means a = 1 (mod pz)  (i = 1, , rl).
The set of a11 principal ideals (a) generated by
totally positive elements a E k is a multipli-
cative subgroup Pc of Pk.  Each coset of &
modulo Pk is called an ideal class of k in the
narrow sense. Let E: be the group of all totally
positive units of k. Then we have (zk:  Pc)  =
hTl/(E,:  E;).

H. Multiplicative Congruence

Let m be an integral ideal of k, and let k*(m)
be the multiplicative group of a11 elements a in
k such that (a) is relatively prime to m. Any
element aE k*(m) cari  be expressed in the form
r = fl/y such  that B,  y E o and (b),  (y) are rela-
tively prime to m.

Consider an integral divisor m* = m n pm
which is a forma1 product of m and intïnite
prime divisors pm  of k. We cal1 rn the fïnite
part of m*. Given an element aE  k*(m)  and
elements p,  y E k*(m)  n o such that a = fl/y,
we set a = 1 (mod’ nt*) if /j’= y (mod nr), and
a E 1 (mod pt!).  The set of a11 a in k*(m) such
that a = 1 (mod” m*) forms a multiplicative
group. We Write  a = fi (mod” m*) for a, BE k if
a/b E k*(m) and a/8  = 1 (mod’ tn*).  This con-
gruence is called the multiplicative congruence.
In the following discussion we shall Write
modm*  for mod” m*.

We denote by &(m)  the group of a11 ideals
of k that are relatively prime to an integral
ideal nt,  and by S(m*)  the group of all prin-
cipal ideals (a) such that a E k*(m), a = 1
(modm*); ,S(m*)  is known as the ray modulo
m*. Any  subgroup H of zk(m)  which contains
S(nr*)  is called an ideal group modulo nr*,  and
the factor group &(m)/H  is called a group of
congruence classes of ideals  modulo m*.

If n* 1 m*  for integral divisors m* and n* of
k, then &(m)  c &(n)  and ,S(m*)  c S(n*).  If H
is an ideal group modula  n*,  then Q(H) =
H n &(m)  is an ideal group modulo m*,  and
we have sS,(n)/H  g s,(m)/@(H). For any given
ideal group H,  modulo tn*  there is a smallest
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integral divisor f* such that f* 1 m*,  and there
exists an ideal group H modulo f* with Q(H)
= H, (i.e., if there is an ideal group H’ modulo
n* with @(H’)  = H,, then f* 1 n*).  We call f* the
conductor of the ideal group H. The notion of
multiplicative congruence is used in +class  fïeld
theory and in the theory of +norm-residue
symbols .

1. Ideal  Tbeory for Relative Extensions

If an algebraic number lïeld K has a sublïeld k,
we say  that K/k  is a relative algebraic number
field. Let 0 be the principal order of K. For a
(fractional) ideal a of k, Da  is an ideal of K.
We Write  Dn=E(a)  and call E(a) the exten-
sion of a to K. For ideals a, b of k, we have
E(ab)=E(a)E(b)and  E(a)nk=a.

Let ‘Pi  : K + C be k-isomorphisms (i =
l,...,n),wheren=[K:k].WewriteK’=
‘V(K) an (ildA =Y-(A)for AcK.Fora’i
idéal 9I of K,  91”’  I {A”’  1 A E 9I)  is an ideal
of K”‘,  and 9I(‘)  is called the conjugate ideal
of ‘11  in K”‘.  Let L be the composite lïeld of
K”‘, , K’“‘. Then the ideal generated by
W”... ‘LI’“’  in L is the extension of an ideal a
of k. We Write  a = NKII<(91)  and call a the rela-
tive norm of SU  over k. We have Nk,#IB)  =
NKII<((u)NKII<(%3)  and N&E(a))  = a” (for an
ideal a of k). In particular, for k = Q,  N&U)
=(N@I)).

Let p be a prime ideal of k. Then E(p) =
‘j3:1  S$I?  $$s  in 0, where ‘13  i, , ‘$3, are
prime ideals of K. Let ,1;  be the degree of the
lïnite  field O/!@, over o/p.  Then NK,k($3i)  = psl;
,/;  is called the relative degree of $$  over k, and
ei is called the (relative) ramification index of
‘qi over k. We have the relation II = C$i  eiA
between these numbers. If e, = =es=  1, the
prime ideal p is said to be unramified for K/k.
Otherwise, p is said to be ramified for K/k.  If
every prime ideal of k is unramified for K/k,  we
cal1 K/k  an unramified extension. (For an in-
finite  prime divisor p x of k we Write  p,  =
ny=,  S@$“i  if the Archimedean valuation
I lI’;c of k cari  be extended to g Archimedean
valuations 1 ltVci  (i=  1, . . ..y)  of K, where e,=
2 if ‘l3:; is imaginary and P,~  is real, ei = 1
otherwise . )

J. Relative Differents and Relative
Discriminants

Let K/k  be a relative algebraic number field
and D,  8 be the principal orders of k, K,  re-
spectively. Put YJ1= {A E K 1 Tr&  AD) c o},
where Tr,,, is the +trace  (- 149 Fields J). Then
!lJ1 is a (fractional) ideal of K and YJJ1-’  = B,,, is
an integral ideal of K; B,,, is called the rela-
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tive different of K over k. When k = Q,  FKjQ  is
simply called the different of K.  For L 1 K  3 k,
we have the chain  theorem: Br,,k  = a,,,%,,,.

Let the conjugates  of AE  K over k be
A(“,  , A’“‘, and assume that A(‘)= A. Put
6,1,(A)=n:=,(~-~‘)for  AEK. If AEQ
thenàKlk (A)~33 Klk D(” kik  is generated by
jSKik(A)I  AED}. The integral ideal Et’)  gen-
erated by {A -A”’  1 A EO}  in the field L =
K”‘K”’  K’“’ was called an element by D.
Hilbert. We also have I),,, = @2)E(3).  @i.
The integral ideal bRlk  = NKlk(TIKIk)  of k is
called the relative discriminant of K/k.  If k = Q,
ùK)Q  = UM.

For the relative different a,,,  to be divisible
by a prime ideal ‘$?  of K,  it is necessary and
sufficient that E(p) = ‘$VI32  Il> with e > 1,
where p = $3 n k (Dedekind’s discriminant
theorem, 1882). Hence a prime ideal p of k is
ramilïed for K/k  if and only if p divides the
relative discriminant bKlk;  there are thus only a
lïnite number of prime ideals of k which ramify
for K/k.  In particular, K/k  is unramilïed if and
only if bK,k  = 0.

K. Arithmetic of Galois Extensions

Let K/k  be a relative algebraic number field
such that K is a +Galois  extension of k of
degree II,  and let G be the +Galois  group of
K/k.  Let o, 3 be the principal order of k, K,
respectively. The conjugate ideals of an ideal
Y1 of K are given by W’={A”I  AEPI}  (oEG).
If NKIk(91)  = a, then E(a) = nrrtCsXUb.  For a
prime ideal p of K, E(p)=(~,$l,...~,)‘,
where Nk,k($$)=p.f(i=  1, . . . . g), n=&,  and
‘$3,)  . . . , sq4  are mutually conjugate prime ideals
of K over k.

Hilbert (1894) developed the decomposition
theory of a prime ideal p of k for a Galois
extension K/k  in terms of the Galois  group G
as follows: Let $@  be a prime ideal of 0. Then

is a subgroup of the Galois group G of K/k.  Z
is called the decomposition group of ‘l3 over k.
Let G = u,  Z7, be the left coset decomposition
of G. Then vi = (yr+l  (i = 1, . , g) are all the
conjugate ideals of $$l  over k.

The subgroup

T={oEZI A”= A(modsJ3),AsD}

of the decomposition group Z is normal, and
T is called the inertia group of $? over k. The
quotient group Z/T  is a cyclic group of order .f
(the relative degree of Q).  There exists an
element (T  of Z such that

A”=A”‘“‘(modv),  AE-C),

and 0 is uniquely determined mod T; oT  gen-
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erates the cyclic group Z/T.  This o is called the
Frobenius substitution (or Frobenius automor-
phism) of ‘$3  over k. For m = 1,2,  ,

V’“‘=(~~Z(A6~A(mod’Vm+‘),A~C}

are normal subgroups of Z; the group I/(“‘)  is
called the mth ramification group of ‘$3  over k.
Let

zz vw,+l)i  V(c,+l)=  *

Let V=V’“p+‘)(p=O,l,...,r),where~,=-1.
In pakicular,  V, = V (‘)  = T. The integers u, ,
L’à, _.  are called the ramification numbers of G@.
The group T/V, is isomorphic to a subgroup of
the multiplicative group of the fïnite field O/‘&
Hence T/V, is a cyclic group whose order e,
is a divisor of N($q)-  1. The group VJV,,,
(m b 1) is isomorphic to a subgroup of the
additive group of the fïnite  fïeld C/s@. Hence
wvm+, is an Abelian group of type (p,  p,  , p)
whose order divides N(s@).  From e = 1 TI =
(T: V,)I  VI ( it follows that c=eopU,  (e,,p)=  1.
Here 1 GI  denotes the order of a finite  group G.
Hence the decomposition group of <p is a
tsolvable group. The relation between the
ramification numbers for K,ik  and those for an
intermediate Galois extension F/k  was com-
pletely determined by J. Herbrand (J.  Math.
Pures  Appl.,  10  (1931)) [ll].

Let ‘q13”  be the s@-component  of the relative
different I, K,k of a Galois extension K/k.  Then

r-l
d=  c tu”+, -V,)(11/,/-1)=  c (lV”‘I-1).

p=0 t=0

In particular, d = 0 if T=  1, and d = e - 1 if
V”‘Z  1.

Let k,,  kT,  and k”(m)  be the intermediate
fields which correspond to the subgroups Z, T,
and V(““,  respectively, in the sense  of +Galois
theory; the fields k,,  kT,  and kvcm)  are called
the decomposition field, the inertia field, and
the mth ramification fïeld of ‘@,  respectively.
Let q be a prime ideal of K containing p,  and
let pz  and p7.  be prime ideals in k, and kT such
that pz  = $@  n k, and pT  = v f’  kT.  Then we
have E(p)=pzpg’  ~9)  for k,/k; E(pz)=p7.

and N,&p.,.)=piif  for k,lk,;  and E(pT)=$Y
for K/k.,..

If a prime ideal p of k is unramified for a
Galois extension K/k  then we have E(p) =

‘1 1 y+*  y,,  ‘pi  = y?’ (i =  1,  ) q), NNIk( ‘PJ =

ps,  and n =fq.  The Frobenius automor-
phism gi:A”i=  AN’V’  (mod$) (A ED)  for the
prime ideal ‘$Ii  is uniquely determined, and its
order is ,f:  Since sqi= ‘$1-,  we have CJ;  = rim’a,  7,.
Hence (T,  , , gg belong to the same +Con-
jugate class  of G. In particular, if G  is an
Abelian group, then 0, = _.  = o4 and
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A”I = AN’“’  (mod p), A E  0.

We then Write

(T1=  y ( E G )
( >

and cal1 this symbol the Artin  symbol for p
for the Abelian extension K/k.  For an ideal
u = n pc  of k that is relatively prime to the
relative discriminant of K/k,  we defïne

($poI  (EG)

Evidently, we have

(g) = (g(y),
The arithmetic of quadratic fields (- 347

Quadratic Fields) and the arithmetic of cyclo-
tomic fïelds  (- Section L) have been developed
since  the 19th Century.

L. Arithmetic of  Cyclotomic Fields

A complex number  [ whose mth power is 1 but
whose m’th power is not 1 for m’ <m is called
an mth primitive root of unity.  There are cp(m)
primitive roots of unity:  exp(2niv/m)  ((Y,  m) = 1),
where p is TEuler’s  function. These q(m) primi-
tive roots of unity  are the zeros of an irreduc-
ible polynomial over Q of degree <p(m):

where p is the +Mobius  function. The coeff-
tient  of the highest term of F,(X) is 1, and the
other coefficients are a11 rational  integers.
F,(X) is called a cyclotomic polynomial. An
example is

F,,(X)=(X’Z-1)(X2-1)/(X6-1)(X4-l)

=x4-x2+  1.

The algebraic number fïeld K,  = Q([,)
(i,, = exp(2ni/m)) obtained by adjoining an
mth  primitive root of unity  to Q is a Galois
extension over Q of degree q(m)  whose Galois
group G  is isomorphic to the multiplicative
Abelian group of +reduced  residue classes of Z
modulom:G={~~(~~=~m,(r,m)=Ij.  K,is
called the rnth  cyclotomic field. Cyclotomic
tïelds  are +Abelian  extensions of Q. Conversely,
every Abelian extension of Q is a subfïeld of a
cyclotomic fïeld (Kronecker’s theorem, 18.53,
1877).

We cari  choose  (1, i,,  ii,.  , [$m’-‘) as a
minimal basis of K,. Let m  = 1:~  1:2  Ip be
the decompositions of m  in powers of prime
numbers 1,, ,1,. Put K(‘)=  K,?.  Then K,
is the composite field K,=  K’1’K’2’...  K”‘.
The different of K,,  is given by TIKmIQ  =
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LQ  (1,  0 (2)K ,e K ,c.. . %cl,(t),c,  and the discriminant
of K,  is given by DKm  = D;,,, D& (n, =
p(m)/cp(@)).  If m= Ik,  the discriminant of K,
is D K,=~la  (a=Ih-‘(hl-h-  l)),  where E=
-1ifIh=40r1=3(mod4),and.s=10ther-
wise. Hence the discriminant of K,  is DKm  =
(J-1  m/&,,pll(p~‘))<p(m).  Suppose that
m $2 (mod 4). Then a prime number p ramifies
for K,/Q if and only if p divides m. In par-
ticular, if m = 1’ (m > 2),  then only 1 ramifies for
K,/Q and (I)=I”(“‘),  N(I) = I (1  is explicitly
given by 1=  (l-i,,,)). For 1# 2 the ramification
numbers for 1 are ai  = 1’  - 1 (i = 1,2,  ),  and
the ramitïcation tïelds  are K,,  K,z,  For i= 2
the ramification numbers are I,3,7,  and the
ramification fields are Q,  K,, K,,

In K,/Q  a prime number p (pjm) is decom-
posed as (p)=pi  pg, N(pi)=pf(i=  1, . . . . y)
and ,[y  = qn(m). Here the degree f of pi  is de-
termined as the minimal positive integer f
such  that pf  = 1 (mod m). Hence the decom-
position law of a prime number p in K,/Q is
derermined by its residue class modulo m. This
is a prototype form of class tïeld theory (- 59
Glass  Field Theory).

The class number of the cyclotomic tïeld K,
cari  be calculated by Dedekind’s formula (-
Section E; see also Hilbert [4]). Here we shah
give the result for m = 1 (a prime number).
Let r be a +Primitive root modula  1. For [ =
exp(27ii/l),  we put

Then c is a unit in K,. Define an element 0 of
the Galois group of KJQ by [“=  i’, and put
~~=~~‘(i=0,1,...  ).Thena,,a ,,..., spml(p=
(1-  3)/2)  are multiplicatively independent units.
That is, the regulator R [so,  Es, , +,] =
E#O. The units E”, I-:,, . . . . .s-,  are called
circular units. The class number h of K,  is the
product  of two factors, h = h, h,. Here h,  is the
class number of the real subtïeld K;  = Q(c  +
i-r).  E. E. Kummer called k1  the first factor
and h,  the second factor  of the class number h.
Let xi,  x2,  , xi-,  be the multiplicative char-
acters of the treduced residue classes of Z
modula  1, and let xi(i = 1, , p + 1) be the
characters among them such  that xi( - 1) = - 1.
Then

(Kummer, 1850). Here R, is the regulator of
K;.  Since circular units belong to K;,  the class
number h,  of K;  is equal to the index of the
subgroup generated by f 1, R,,,  , spm,  in the
group of units of K;.  The class number h of
K,  is equal to 1 for /< 19 and it has been con-
jectured that there exist no more fields K,
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with h= 1. H. L. Montgomery and K. Uchida
solved this conjecture by proving that the first
factor h, > 1 for 2 > 19 (Tôhoku  Math. J.,  23
(1971)). J. M. Masley and Montgomery proved
that there are precisely 29 distinct K,  with
class number 1 (J. Reine Angew.  Math.,
286/287  (1976)).

According to Kummer, I divides h if and
only if 1  divides h,. Since h, cari be computed
explicitly, we cari  readily determine whether
II h or not (- 145 Fermat’s Problem; Ap-
pendix  B, Table 4.111). A prime 1 is called regu-
lar if l-jh,  otherwise it is called irregular. Thus
an odd prime 12 5 is irregular if and only if
there exists an even integer j with 2 <j  < l-  3
such that 1 divides the numerator of the jth
Bernoulli number Bj.  This criterion of Kum-
mer cari  be strengthened as follows. Let S
denote the l-Sylow  subgroup of the ideal
class group EK,  of the prime cyclotomic tïeld
K,  = Q(C).  Because the Galois group G of
Q([,)/Q  operates on S, the Abelian group S
becomes naturally  a Z,[G]-module.  Choosing
the canonical character O:G-+ZI defined
by 5; = [f@’  for any (TE  G, we have a direct
decomposition S = ni=;  Su), where S”I =
{SESIf=S~‘(~) , crû G}. Then it is necessary and
sufficient for 1)  (the numerator of Bj) that S(‘-j)
#O (K. A. Ribet, Inventiones Math.,  34 (1976)).
Moreover, because G is naturally isomorphic
to the multiplicative group of the reduced
residue classes of Z//Z,  each 8’ becomes a
+Dirichlet character. Let

B,,,+f  e-‘(a)a;
<I  1

then this number, regarded as an element in
Qi,  is equal to a factor of the product  (up to
&  1 and 2) appearing in the class number
formula for h,. Let mi be the I-exponent  of
B, ,d-i  for each odd i  (2 < i  < l-  3). Then it is
conjectured  that the order of S(‘)  is precisely
equal to ?“i  for each odd i  with 2<i<E-3.  In
particular, if s’  = njzeven  S(j) is trivial, then
this is known to be true. In general, it is also
conjectured  that I+h,  holds for any prime 1
(Vandiver’s conjecture). If the group Si) is
cychc, then Sci)  is of order I”i  (A. Wiles,  Inven-
tiones  Muth.,  58 (1980)).

When a Galois extension K over a tïnite
algebraic number field  k has the Galois group
isomorphic to the additive group of the I-adic
integer ring Z,, the extension K/k  is called a
Z,-extension  or r-extension. Then for each
integer n 3 0 there exists a unique subfïeld k, of
K with degree I” over k. Let k = K,  = Q(&)  (l> 2),
and let K be the union of all I”+i  th cyclotomic
fields Kln+  I (n 3 0). Then K/k  is a typical ex-
ample of a Z,-extension  with subfïelds  k, =
K ,“+  1.  Let Kjk  be a Z,-extension  with sub-
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tïelds  k,, and let I’n  denote the I-component
of the class number of k,. Then there exist
integers 1>  0, p > 0, v independently of n
such  that e, = l,n + ~1”  + v for all sufftciently
large numbers n (K. Iwasawa, Bull. Amer.
Math. Soc., 65 (1959)). These numbers i, p,
v are called the Iwasawa invariants for the
Z,-extension K/k.  There exists a unique
Z,-extension Ko over the rationals Q.  An ex-
tension K”k over k obtained by taking the
composite of Ko and k is called the basic Z,-
extension of k or  the  cyclotomic Z,-extension
of k. We denote its Iwasawa invariants by
AI(k),  PI(k),  v,(k). It is known that there are Z,-
extensions with arbitrarily large p.  But it is
conjectured  that p,(k)  = 0 holds for the basic
Z,-extension of any k. In particular, in the case
k = K, = Q(c[)  it has been computed that p,(k)  =
0 for 1<  125,000 (for 1<  4001 by K. Iwasawa
and C. C. Sims, J. Math. Soc. Japan,  18 (1966);
for l< 30,000 by W. Johnson, Math. Comp., 29
(1975); for l< 125,000 by S. Wagstaff, Math.
Comp., 32 (1978)). By applying the theory of
uniform distributions to l-adic situations, B.
Ferrero  and L. C. Washington (Ann. Math.,
109 (1978)) proved that p,(k)  = 0 when k/Q  is
Abelian. In particular, when k = K, and k, =
K “+’  , e, > 0 if and only if the class number
oflK,  is divisible by I (P. Furtwangler, 1911).

Since any quadratic field is a subfïeld of a
cyclotomic tïeld  (by a +Gaussian  sum formula
we have Q(A)  c Q(c,,,),  where d is the dis-
criminant of Q(&)),  the computation  of the
class number of quadratic fields  and the proof
of the law of reciprocity for the tlegendre
symbol follow from the arithmetic of cyclo-
tomic fields.

M. Aritbmetic of Kummer Extensions

Assume that an algebraic number field  k con-
tains an nth primitive root of unity.  Then a
+Kummer  extension K = k(G)  (PE  k) is a
tcyclic  extension of k. Assume that [K: k] = n.
In order that a prime ideal p of k ramify for
K/k,  it is necessary that p be a divisor appear-
ing in (n) or(p).  If pi(n)  and v,(p)fO  (modn),
then p ramifies for K/k.  A prime ideal p which
is relatively prime to (PL)  has the decomposition
E(p) = Fp i g. with distinct primes Fpi  in K if
and only if the equation p = 5” (mod p”) is
satistïed  by some 5 E o for any positive integer
m. In particular, if p+(n) and vp( PL)  = 0, we have
E(p) = $3 i SP,, if and only if p = 5” (mod p) is
solvable in o.

If for an element p of 0

p-t”(modp)

is solvable by some 5 E o, p is said to be a
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residue of tbe ntb power modulo p. Assume
that p)(n) and v,(p)  = 0. Let f be the minimal
positive integer such  that p”  is a residue of the
nth power modulo p. Then p is decomposed
in K as E(p)=‘@, $p4,  and NKlk(‘$$)=pf
(i=l,...,y).

N. Power-Residue Symbol

Let <, = exp(2ni/n) E k, and let p be relatively
prime to (n) and (x)  (C(E  k). Then for some r we
have

and we Write

(““= LT
0P n

This symbol is called the nth power-residue
symbol  (Kummer). Generalizing this definition,
we cari  define the nth power-residue symbol
(cc/b), for an ideal b of k which is relatively
prime to the relative discriminant of k($)/k
by using the +Artin  symbol  (( K/k)/b):

This symbol  satistïes

if a11 the symbols are well delïned. In partic-
ular, c(  is a residue of the nth power modulo p
if and only if (a/~), = 1. This symbol coincides
with the tquadratic  residue symbol  for n  = 2,
k=Q, and p#2.

0. Law of Reciprocity for tbe Power-Residue
Symbol

Several formulas concerning the power-residue
symbol are known which are similar to that
for the quadratic residue symbol (F. G. M.
Eisenstein, Kummer, Furtwangler, Takagi,
Artin,  Hasse). These cari  be proved by means
of Artin’s tgeneral  law of reciprocity in class
field theory (- 59 Glass  Field Theory).

There are many formulas concerning the
reciprocity of the power-residue symbol. One
of them is as follows: Let n = 1 be a prime
number. Let cc,  BE  k and assume that (i) x is
totally positive; (ii) v,(a) = 0 (mod 1) if v,(p)  $0
(mod1),  and V&?)=O  (mod1)  if v,(a)+0  (modl),
for any prime ideal p; and (iii) a = 1 (mod I)  and
/I = 1 (mod( 1 -&)).  Then
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(general law of reciprocity, Hasse, 1924). This
result is a generalization  of the formula of
Eisenstein (1850). If a(Ek)  is totally positive
and CI = 1 (mod I),  then

If c(  = 1 (mod I(  1 - TJ),  then

(complementary law of reciprocity, Hasse,
1924).

P. Norm Residue

Let m be an integral  divisor of k such that
nr = ni  p,F’  nj  p$ (ei > 0) with fïnite prime divi-
sors {pi} and infinite  prime divisors {p’$),
and let fl  be an element of k that is relatively
prime to m.  For a relative algebraic num-
ber iïeld K/k and an element B of K,  we set
fi =  NKIk(  B) (mod m) if the following two con-
ditions are satisfïed:  (i) b = NK,,.(B)  (mod p?) for
every fïnite  pi  and (ii) /j(j)>0  for every intïnite
prime pe such that p,(j) is real and its extension
to K is imaginary. BE  k is then said to be a
norm residue modulo nr for K/k if there exists a
number B of K such that /j= NKlk(B)  (modm).

Let p be a lïnite  prime divisor of k. If fl  is a
norm residue modula  pc  for a suflïciently large
c, then fi is a norm residue modulo p’  for any
e > c. Let c be the smallest such integer (c > 0).
Then the ideal f, = pc  is said to be the p-
conductor of norm residue for K/k.  If p is un-
ramifïed for K/k,  then c = 0; i.e.,  every /3~ k
which is relatively prime to p is a norm residue
modula  p’  for any e > 0. For a ramifïed p put
f, = pc.  For a Galois  extension K/k,  c is not
greater than

L-o  #,,,
OI 1 v<i>I

-UP)=  c  -.
i=O I Vol

In particular, for an Abelian extension K/k this
value is an integer and is equal to c (Hasse, J.
Fac. Sci. Univ. Tokyo, 1934). For example, the
I-conductor  of the cyclotomic iïeld K,h/Q is lh.
We deiïne the p,-conductor  for Klk for an
infinite  prime divisor pm  of k by fu, =pw  if pa
is real and its extension to K is imaginary, and
fp,  = 1 otherwise (- 257 Local Fields F).

Q. Norm Residue Symbol

For an Abelian extension K/k,  the positive
divisor

P

(where p runs over a11 finite  and infinite  prime
divisors of k) is called the conductor of K/k
(- 59 Class Field Theory). For a E k (a # 0)
take x0 such that C(/C(~ = 1 (mod f,)  and c+,  = 1
(mod ff;‘),  and put (x0)  = p”b  with b relatively
prime to p.  Then b is relatively prime to the
relative discriminant bKlk.  We defïne a new
symbol  by

(F)=(T)  (CG),

where ((K/k)/b)  is the Artin  symbol. This
value is independent of the choice of the
auxiliary element ci0.  The new symbol is called
the norm-residue symbol (Hasse, J. Reine
Anyew.  Math., 162 (1930)). In particular, for
an infinite  real prime divisor p’$ of k whose
extension SJJ(z  for K is imaginary, we have

according to whether the conjugate  CL(~’  is
positive or negative, where o is the automor-
phism of K/k induced from the complex con-
jugation of the completion C of K with respect
to qP.

Thz norm-residue symbol has the following
properties:

(2) if p is unramified for K/k,  then

(Mb)  = (“-y”“‘;

(3) in order that c(  be a norm residue modulo f,
for K/k,  it is necessary and sufflcient that

rpKlk
( >
_ 1.

P ’

(4) the product  formula for the norm-residue
symbol  (Hasse)  i s

where p runs over ail finite  and infinite  prime
divisors of k; and (5) if the domain  of the
variable cx is the whole k (#O), or the set of
a11 r such  that (c()  is relatively prime to p,  or
the set of all c(  such  that c(  = 1 (mod p”) (uP  +
l <m<v, p+l),  then the range of ((a, K/k)/p)  is
the decomposition group Z of p,  the inertia
group T of p,  or the ramification group V,
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of p,  respectively (Hasse, S. Iyanaga, 1933)
(- 257 Local Fields F).

R. Hilbert Norm-Residue Symbol

The symbol first  introduced by Hilbert for
quadratic fields cari  be defïned in a general
algebraic number field k containing an nth
primitive root [,  of unity.  Let c(,  PE k (N#O,
b # 0), and let p be a prime divisor. Then the
following nth root of unity  ((a,  /Y)/p), is defïned
by using the norm-residue symbol:

This symbol ((a, B)/p),,  is called the Hilbert
norm-residue symbol. It is also called the
Hilbert-Hasse norm-residue symbol.  For c(,  z’,
/I’  E k, we have

(1)  ($!)“=(gp)n;

(2) the law of symmetry:

(!$)“+y

and (3) the product formula for the Hilbert
norm-residue symbol:

(Hilbert, Furtwangler,  Takagi, Artin,  Hasse).
For detailed properties concerning the norm-
residue symbol, power-residue symbol, and
Hilbert norm-residue symbol and for refer-
ences for them see Hasse [6].

In general, the problem of obtaining various
laws of reciprocity for the power-residue sym-
bol is reduced to the one of computing the
Hilbert norm-residue symbol explicitly. De-
tailed formulas for these symbols are called
explicit  reciprocity laws; they are treated as
a topic in the number theory of local iïelds
(- 257 Local Fields H).

S. Density  Tbeorem

Let M  be a set of prime ideals of k. If

l i m  1 -L log&
s-l+OPeMw(P)) I

exists, its value is said to be the density of M.
The density of the set of all prime ideals of k is
1. Let H be an ideal group modulo an integral
divisor m. Then the density of the set of all
prime ideals contained  in each coset of z(m)
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modulo H is 1/(3(m): H). In particular, let H
be the ray S(m). Then this result implies that
each coset of 3(m) modulo S(m) contains
intïnitely many prime ideals (a generalization
to algebraic number tïelds  of the tprime num-
ber theorem for arithmetic progression).

Let K/k  be a Galois extension, C be a conju-
gate class  of the Galois  group G of K/k,  and
M(C) be the set of a11 prime ideals p of k such
that the tFrobenius  automorphism of each
prime factor ‘pi  of p in K belongs to C. Then
the density of M(C) is ICl/lGI (Cbebotarev’s
density tbeorem, Math. Ann., 95 (1926)).

Each element o of the Galois group G of K/k
cari  be expressed by the permutation z of the
conjugate  fïelds  K(l),  , K(“)  of K over k. Let z
be expressed as the product of Y tcycles  of
length fi,  ,f,.  Hence n =fi + +f,.  Let
C(fl,. ,f,) be the set of all such  0 in G, and
let M(f,,  ,f,) be the set of all prime ideals
p of k such  that p is decomposed in K/k  as
the product of r prime ideals of K with rela-
tive degree fi,  . ,f,.  Then the density of
M(L,  A) is I C(h,  . . . ,f,MGl  (Artin,  A&/L
Ann., 89 (1923)).

T. Relation to  the Arithmetic of Local Fields

It is quite  useful  to investigate the relation
between the arithmetic of algebraic number
fields and that of local fields. For example, let
a prime ideal p of an algebraic number fïeld  k
be decomposed as E(p)= ‘p71. (u2, NKlk()pi)
=p/i(i=l,...,g)inanextensionKofk.Let
K, and k, be the completion of K and k with
respect to s$-adic  and p-adic valuations, re-
spectively. Then we have [KY+:  k,] = ei,fi  and
K OK k, z K,>  + + KSug  (direct sum). The
relative different DKIL  is expressed as (the
p-component of aKjk)  = l-Q=,  aK‘U,kp.  For a
Galois extension K/k  the p-condtictor f,, = pc
for the norm-residue and the conductor p’  of
local extension K,/k,  have the same exponent
c. For a local field K,L,/k,,  each norm-residue
modulo f,, is a norm of an element of K,.
Hence precise  results  concerning the norm-
residue in local fields cari  be applied imme-
diately to  a global fïeld  K/k  (- 257 Local
Fields).

We cari  also apply the method of the idele
group of an algebraic number fïeld  k, and
therefrom we cari  prove results concerning the
ideal class  group, unit group, and zeta function
of k (- 6 Adeles and and Ideles).

U. History of the Arithmetic of Algebraic
Number Fields

C. F. Gauss (1832) was the lïrst  to generalize
the notion of integers to algebraic number
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tïelds  in considering the elements of Z[fl],
now called Gaussian integers (Z[fl]  is the
principal order of Q(n)).  After investiga-
tions by G. L. Dirichlet and Kummer, the
notion of ideals was introduced by Dedekind
(1871) [2]. L. Kronecker gave another founda-
tion for the arithmetic of algebraic number fields
(1882) [3]. Dirichlet proved the unit theorem
and, introducing the analytic method to num-
ber theory, gave the class number formula of
quadratic fïelds (- 347 Quadratic Fields). H.
Minkowski tïrst  applied the theory of lattice
points to number theory (- 182 Geometry of
Numbers), and K. Hensel introduced the p-
adic method (- 257 Local Fields). Hilbert
(1897) [4] and Hasse (1926,1927,1930) [6]
summarized the main results on the arithmetic
of algebraic number fïelds known at that time.
In particular, Hilbert’s report centered around
the arithmetic of Galois extensions, and
Hasse’s around  the class fïeld  theory obtained
by T. Takagi, E. Artin,  and H. Hasse (- 59
Glass  Field Theory). Since c. 1950, when the
notions of ideles and adeles  were introduced,
cohomology-theoretic methods have been
successfully applied to number theory (- 6
Adeles and Ideles). Recently various local
methods, for example, the Iwasawa theory of
Z,-extensions, tformal groups, and tp-adic L-
functions (T. Kubota and H. W. Leopoldt, J.
Reine Angew. Math., 214/215  (1964)) have been
frequently applied to research in algebraic
number lïelds.
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15 (Vl11.3)
Algebraic Surfaces

A. Def in i t ion

An algebraic variety of dimension 2 is called
an algebraic surface. In this article, by a sur-
face we mean a complete irreducible algebraic
surface defïned over an algebraically closed
field  K.

B. History

The history of algebraic surfaces originated
with the study of algebraic functions of two
variables. In the case of algebraic functions of
one variable, the introduction of tRiemann
surfaces attached  to such  functions played an
essential role in the development of the theory.
The study of algebraic functions of two vari-
ables led naturally to the consideration  of the
surfaces detïned by a suitable polynomial
equation. H. Poincaré and E. Picard are
among those who studied the homological
structure of the surface delïned by the equation
P(x,  y, z) = 0. The theory of +Abelian  integrals
(Picard integrals) is one of the consequences  of
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such  topological investigations. S. Lefschetz
obtained further results in this direction.

M. Noether and geometers of the Italian
school, such  as F. Enriques, G. Castelnuovo,
and F. Severi, studied algebrogeometric prop-
erties of algebraic surfaces. In particular, the
Italian school geometers recognized the im-
portance of irregularity and thoroughly inves-
tigated its geometric meaning. In the early
20th Century they succeeded in constructing
the great editïce of the theory of algebraic
surfaces. Though some of their results lack
rigorous proof,  efforts to build a foundation
for those results have led to the recent  devel-
opments in algebraic geometry. A signifi-
tant  contribution to the modernization of
the theory was made by 0. Zariski and K.
Kodaira.

The resolution of singularities of an alge-
brait  surface is one of the most fundamental
problems in the field.  When the tuniversal
domain  is the complex number fïeld,  function-
theoretic methods were used by Italian-school
geometers and R. J. Walker (Ann. Math., 36
(1935)). Zariski introduced the tvaluation-
theoretic method to deal with the problem
when the characteristic of the universal do-
main is zero. S. Abhyankar (1966) succeeded
in resolving the case of positive characteristics.

C. Divisors and Linear Systems

In what follows,  let S denote a nonsingular
surface. S cari  be embedded into some projec-
tive space.  Let z be a linear system of divisors
on S and fO,  ,fn  be a basis of the detïning
module for z over K. Associated with C we
have a rational mapping (DL  : S+P” defined by
QL(P)=(,fo(P),  . . . ..fn(P))  for general points P
on S. Pullbacks of hyperplanes by DZ  are
called variable components of L. Any  member
of z is a sum of a variable component  and a
fixed component  of X.  Let s’  denote the clo-
sure of the image of S by (DL.  If dim S’ = 2, a
general variable component  is irreducible. If
dim S’ = 1, then a general variable component
is composed of an algebraic system of dimen-
sion 1, which is called an algebraic pencil.
These result from Bertini’s theorems. For any
divisors D  and D’  on S,  the intersection number
(or the +Kronecker index) I(D.D’)  is defmed;
this number is a symmetric bilinear form such
that I(D.D)=I(D,  ‘D’,) for any divisors D, and
D’,  linearly equivalent to D and D', respec-
tively. If C is a nonsingular curve on S, I(C.D)
coincides  with the degree of the restriction
C"D of D to C. I(D.D)=(D')  issaidtobethe
self-intersection number of D. If D is an ample
divisor on S, then (0')  > 0 and I(D. C) > 0 for
any irreducible curve C on S. These properties
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characterize an ample divisor (Y. Nakai; - 16
Algebraic Varieties E).

Let .X be an irreducible linear system of
dimension r( > l),  and let C be a generic  com-
ponent of L. Let c’ be a member of ,? different
from C. Then the set of C-divisors C.  C’ forms
a linear system of dimension Y- 1 on C. This
is called the trace of z on C and is denoted
by Tr,z.  The trace is, in general, not com-
plete. The integer dim ITrcCI  -dimTr,C=
6(L)  is called the deficiency  of C.  The defi-
ciency of the complete linear system IDI is
denoted by S(D).

Let x be a point of S, and let G’,  be the local
ring of x. Then 0s  = lJxtS 0, is an talgebraic
coherent  sheaf, called the tstructure sheaf of S.
Let D be a divisor on S. The sheaf of germs of
rational functions f such  that (f)+ D>O is
denoted by G',(D). Then H”(S, GJD))  is a defïn-
ing module for the complete linear system 1 D 1.
D>O if and only if 6,( -D)  is a sheaf of I’s-
ideals. The quotient sheaf (L;/OS(-D) Will be
denoted by 0,. If D is a +Prime  divisor, then (i’D
is the structure sheaf of the algebraic curve D
(- 9 Algebraic Curves). Let 9 be a sheaf on S.
We set

~(S,.~)=C&,(-l)qdimHq(S,~).

~(5,  Q.) Will be denoted simply by x(S).  We
cal1 p,(S) = x(S)  - 1 the aritbmetic genus  of
the algebraic surface S. Sometimes x(S) is re-
ferred to as the arithmetic genus of S. We set
X~(D)  = x(S) - x(S, Os(-D)).  The integer p,(D)
= 1 -X~(D)  is, by definition, the arithmetic
genus of the divisor D. If D is a prime divi-
sor, then p,(D) coincides  with the arithmetic
genus of the algebraic curve, i.e.,  p,(D) =
dim H'(D,G,).

D. Riemann-Roch Theorem

Let S be a nonsingular surface and let K de-
note a canonical divisor on S, i.e.,  K = (0) for
some nonzero rational 2-form w  on S. If C is a
nonsingular irreducible curve on S, (K + C).  C
becomes a canonical divisor on C; hence,
deg((K+C).C)=2p,(C)-2  byacorollaryto
the Riemann-Roch theorem on C (- 9 Alge-
brait  Curves C). Since I((K  + C).  C) = deg((K  +
C).C), it follows that p,(C)=I((K+C).C)/2+
1. Moreover, the formula

p,(D)=I((K+D).D)/2+1

holds for an arbitrary curve D on S; this is
called the adjunction  formula. For any divisor,
we define p,(D) to be I(D .(D + K))/2  + 1. Then

i[(S,~~(D))=%(s)-%s(-D)=%(s)+~a(-D)-  1

=I(D.(D-K))/2+x(S).
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This formula is called the Riemann-Rocb
theorem on S (- 366 Riemann-Roch Theo-
rems C). Applying Serre’s duality theorem to
D (- 16 Algebraic Varieties E) we have

dimH’(S,  O(D))=dimH’-‘(S,  B(K  -D))

for i=O, 1, 2.

In particular, dim H'(S,O(D))=l(K-D),
which is called the index of speciality of D;
dim H'(S, 6(D))=dimH’(S,  O(K  -D))  is called
the superabundance of D, denoted by h'(D).
The inequality

l(D)+I(K-D)

2 x(S, O(D)) = I(D. (D - K))/2  + x(S)

is called the Riemann-Roch inequality, where
equality holds if and only if h'(D) = 0. If D is a
curve with s connected  components, then

In addition, if h’(0)  = 0, then h’( - D) = 0 and
thus l(D+K)=p,(D)-~+X(S)  This is called
the Riemann-Roch theorem for the adjoint
system. Note that 1 D + K) is called the adjoint
system of D. The Noether  formula, (K') +
C~(S)=  12x(S),  is a special  case of Hirzebruch’s
theorem of Riemann-Roch type (- 366
Riemann-Roch Theorems B). Here, c*(S)
denotes the second Chern number of S, which
coincides  with the Euler number of S if K is
the field of complex numbers.

Let Div(S) denote the group of a11 divi-
sors on S; by linearity we cari  define the bi-
linear form I(D.D') on Div@)a  = Div(S) @ ZQ.
J = {DE Div(S), 1 I(D. D') = 0 for a11 D'} is
a subgroup and X = Div(S),/J  is a finite-
dimensional vector space  over Q,  on which the
nondegenerate bilinear form 1 is induced. 1 has
a unique positive eigenvalue; thus the other
eigenvalues are a11 negative. This is called the
index theorem of Hodge; it is derived from the
Riemann-Roch theorem on S. From this, we
inferthatif D'=I(D.D)>O,  then 1(D.D')2>
D2 'Dr2  for any D'. X is said to be the Neron-
Severi group of S and dimX  is said to be the
Picard number of S (- 16 Algebraic Vari-
eties P).

TO study /(mD) as a function of m » 0,O.
Zariski writes an arbitrary effective divisor D
as a sum of D(+l and D”sDiv(S),  with non-
negative rational coefficients such that (1) D(+l
is arithmetically effective (or, numerically
semipositive), ie., I(D (+).  C) 2 0 for any curve C
on S; (2) D"=O  or the intersection matrix of
the support of DC-)  is negative detïnite; and
(3) I(D'+'.D")  = 0. Such a decomposition is
unique and is called the Zariski decomposition
of D [7]. If mD (+)  is a divisor for some m > 0,
then l(mD)=I(mD't').
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E. Invariants of Algebraic Surfaces

There are many invariants besides the arith-
metic genus discussed earlier. We set hq.P=
dim, HP(S,  @).  Then h2,’  is equal to the
number of linearly independent holomorphic
2-forms;  it is called the geometric genus  and is
usually denoted by pn.  Since ho, ’ gives the
maximum among the deficiencies  6(z) of linear
systems on S,  it is called the maximal defi-
ciency of S. For a divisor C such that h’(C) =
0, we have 6(C)=h”r1. The number ho,’  was
formerly called the irregularity of S, because
ho. ’ was considered to be a correction term in
the equality p,(S)  = ps  - ho, ‘.  The study of
higher-dimensional varieties showed, however,
that it was unnatural to regard ho,’  as a cor-
rect ion term.  At  present ,  by irregularity we
mean the dimension of the Picard variety of S
(- 16 Algebraic Varieties P),  and we denote
this number by q.

When S is defïned over the complex number
fïeld,  we have hp.q  = hqzp.  In particular, q =
ho* ’ = h’*‘. This number is equal to the num-
ber of linearly independent +Abelian  simple
integrals of the first kind; it is also equal to
one-half  the lïrst Betti number of S. In cases
with positive characteristic, these equalities
do not hold in general. J.-P. Serre gave an
example of an algebraic surface S such that
ho, 1 fhl.0, and J. Igusa gave an example such
that q -ch’,  ’ =h’,‘.  Let K be a canonical divi-
sor of S. The number Pi = l(iK)  is called the i-
genus,  and Pi (i = 2,3, . ) are generally called
plurigenera. If P,,  = 0 and d 1 n,  then Pd is also
zero. The numbers p,(S)  = hz.0  -ho, l, p,(S)  =
h2~o,h'~o,ko~',Pi(i=2,3,...)(P,=p,)  are
tabsolute invariants of s’; i.e.,  they take the
same values for any nonsingular surface S’
that is birationally equivalent to S. However,
h’*’ is not an absolute invariant. For a pro-
jective plane, a11 plurigenera P, vanish and
the irregularity q = 0. Thus if S  is a rational sur-
face (- 16 Algebraic Varieties J), i.e.,  a sur-
face which is birationally equivalent to P2,
a11 P,,  = q = 0. Conversely, any surface with
q = P2 = 0 is a rational surface. This is called
Castelnuovo’s criterion. A ruled surface is de-
fined to be a surface that is birationally equiv-
alent  to a product  of the projective line and a
curve. Al1  P, of a ruled surface equal0  and
any surface with P4 = Pc = 0 is a ruled sur-
face. This is called the criterion of ruled sur-
faces (Enriques).

F. Characteristic Linear Systems of Algebraic
Families

One of the central problems considered by the
Italian  school was to prove that the irregular-
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ity 4 is equal to the maximal deficiency ho,‘.
For that purpose,  Severi introduced the notion
of characteristic linear systems of algebraic
families. Let C be an irreducible algebraic
family of positive divisors on S such that a
generic member C of C is an irreducible non-
singular curve, and let r be the dimension of C.
Let C, be a 1-dimensional subfamily of C
containing C as a simple member, and let C
be a generic member of Z,.  Then the speciali-
zation of C”C  over the specialization C+C  is
a well-defined C-divisor of degree n = I(C. C’).
The set of C-divisors thus obtained is called
the characteristic set. The characteristic set
forms an (Y - l)-dimensional  linear system and
contains Tr, 1 Cl  as a subfamily. This linear
system is called the characteristic linear system
of C.  For any algebraic family of dimension r,
we have r < dim 1 Cl + 4.  In particular, there
exists an algebraic family C that contains ~04
linear systems and such that for a generic
curve C we have h’(C)  = 0. For such an alge-
brait  family, we have the equality r = dim 1 CI
+ q;  hence the inequality 4 < ho, l follows.
Moreover, if the characteristic linear system is
complete, we have q = ho, i. The proof  of the
completeness of characteristic linear systems
given by Severi is valid only in some special
cases (e.g.,  the case pg  = 0). For a complex
algebraic manifold, a rigorous proof  was given
later. When the characteristic is positive, the
completeness does not hold in general (Igusa);
however, for the surface with ps  = 0, the com-
pleteness holds (Y. Nakai). The completeness
holds if and only if the Picard scheme of S is
reduced [ 141.

G. Birational Transformations of Algebraic
Surfaces

Let S and s’  denote nonsingular surfaces. If
there exists a birational morphism T:  S-S’, we
say  that S dominates S’,  and we Write  S 3 S’.  In
addition, if T is not an isomorphism, we Write
S > S’. In case there does not exist an S’ with
S > S’, S is said to be relatively minimal. On the
other hand, if we have s’  > S for any s’  which
is birationally equivalent to S, S is said to be
minimal. Any  minimal surface is, by definition,
relatively minimal. If a minimal (resp. rela-
tively minimal) surface S is birationally equiva-
lent to S’,  we say  that S is a minimal (resp.
relatively minimal) mode1  of s’  or of the lïeld
K(S). A necessary and sufftcient  condition for
S to have a minimal mode1 is that S not be a
ruled surface (Castelnuovo and Enriques).

Let S be a nonsingular surface and P be a
point on S. Replacing P by a projective line
P’, we have a nonsingular surface S’ and a
birational morphism T:S+S  such  that T-‘(P)
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=EzP’  and S-EES-{P}  by T. T:S+S
(or T-’  in some references) is said to be a
locally quadratic transformation. Any  bira-
tional morphism between nonsingular sur-
faces is a composition of locally quadratic
transformations and an isomorphism. Given
a birational mapping T: S+S’  and P on S’,
T-’ {P} is called an exceptional curve when-
ever it is not a point. Moreover, it is called an
exceptional curve of the first kind if T is regu-
lar along T-’  {P}. Otherwise, it is of the second
kind. Exceptional curves consist  of irreducible
rational curves.  An irreducible curve E is an
exceptional curve of the lïrst  kind if and only
if (E’)  = - 1 and E g P’. S is relatively minimal
if and only if S has no exceptional curves of
the first  kind; S is minimal if and only if S has
no exceptional curves at all. A relatively mini-
mal surface that is not minimal is a ruled
surface. Such a surface is either Pz  or a PI-
bundle over a curve. In particular, a relatively
minimal rational surface is either P2 or a P’-
bundle over P’. Any  surface of the latter type
is occasionally called a Hirzebruch surface and
its (K’)  is 8, where K denotes a canonical
divisor. However, (K’)  of P2 is 9. Delïne the
linear genus  of a rational surface to be 10. If S
is not a rational surface, taking a relatively
minimal surface S,  we delïne the linear genus
p”’ of S to be (K’) + 1 of S.

H. Examples of  Algehraic Surfaces

Let S, denote a nonsingular surface in P3
delïned by a homogeneous polynomial of
degree m. Let H denote a divisor on S,,, in-
duced from a (hyper)plane on P3. Then the
canonical divisor K is linearly equivalent to
(m-4)H,  i.e. K-(m-4)H. Hence,p,=(m-1)
(m - 2) (m - 3)/6.  Moreover, q = 0; if K is the
lïeld of complex numbers, S, is simply con-
nected. S, is isomorphic to the product  of two
copies of P’, i.e. S, 2 P’  x P’; hence, it is a ra-
tional surface. S, is also rational. There exist
27 lines on S,. Contracting 6 mutually disjoint
lines among these 27 lines,  we obtain a pro-
jective plane. Conversely, given 6 points on
P2 in general position, by performing locally
quadratic transformations with these points
as centers we get a cubic surface S, and a
birational morphism T: S, -+P’. The inverse
images by T of the 6 given points, the proper
transforms of 15 lines connecting every pair of
points chosen from the 6, and 6 conics passing
every 5 of the 6 points by T-l, exhaust 27 lines
on S,. If m = 4, then K - 0. In general, a non-
singular surface with K - 0 and q = 0 is said to
be a K3 surface (- 72 Complex Manifolds J).
K3 surfaces have certain properties similar
to Abelian surfaces that are defmed to be 2-
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dimensional Abelian varieties (- 3 Abelian
Varieties). For K = C, the period mapping
defined by integrating regular 2-forms has
been studied extensively in connection  with
moduli theory.

In general, surfaces with the bigenus Pz  =
p,  = 1 and q =0 are birationally equivalent to
K3  surfaces; surfaces with P4  = p4  = 1 and 4 = 2
are birationally equivalent to Abelian surfaces.
Every Abelian surface has the involution i
defïned by i(x) = -a and the quotient surface
by i  is a singular surface with 16 ordinary
double points. By performing 16 locally qua-
dratic transformations successively with these
singular points as centers we obtain a K3
surface. Such a K3  surface is called a Kummer

surface. The original singular surface is also
called a Kummer surface. A quartic surface in
P3  with 16 double points is an example of a
Kummer surface.

The theory of birational classification of
surfaces was developed by Castelnuovo, En-
riques, and others of the Ttalian school. This
theory has been extensively enriched and gen-
eralized in various ways. Kodaira’s theory of
analytic surfaces includes  classitication  of
algebraic surfaces (- 72 Complex Manifolds 1,
J), and classification of surfaces in the positive-
characteristic case has been recently studied in
detail [4,5]. When the field  K(S) is a subfield
of a purely transcendental extension K(X,  Y), S

is said to be a unirational surface. If the exten-
sion K(X,  Y)/K(S) is separable, S is a rational
surface. However, if it is inseparable,  S may
become nonrational, a K3  surface, an elliptic
surface, or a surface of general type [S, 121.
Even for noncomplete surfaces, we have a
classification theory [ IO] similar to the previ-
ous  ones.  The following result is one of the
applications: whenever S x A’ g A3, S is iso-
morphic to A’.  Here A” means the affine n-
space  (M. Miyanishi, T. Sugie, T. Fujita;
[7,9,131).

Let 1 be the ring of integers of a real qua-
dratic field of discriminant d. The Hilbert
modular group G  = SL(2,1)/{ f 1) acts  on the
product  X2, X  being the complex Upper  half-
plane. The normal complex space  X2/G  cari
be compactified by adding  a Imite  number of
points and thus a compact nor)nal surface is
obtained. Resolving these singularities in the
canonical minimal way, we have a nonsingular
surface Y(d) over C, which is called the Hilbert

modular  surface with discriminant d. Y(d) is
simply  connected; hence, q(  Y(d)) = 0. If d = 5, 8,
12, 13, 17, 21, 24, 28, 33, 60, then Y(d) is a
rational surface. If d = 29, 37,40,41,44,  56, 57,
69, 105, then Y(d) is birationally equivalent to
a K3  surface. If d = 53, 61, 65, 73, 76, 77, 85, 88,
92, 93, 120, 140, 165, then Y(d) is an elliptic
surface with IC(  Y(d)) = 1. Otherwise, it is a

66

surface of general type (- [ 19,201 in 72 Com-
plex Manifolds).

For O-cycles on a surface - 16 Algebraic
Varieties J.
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A. Affine Algebraic Varieties and Projective
Algebraic Varieties

Fix a fïeld  k. A subset of the n-dimensional
taffine  space k” over k is called an affine alge-
brait  variety (or simply affine variety) if it
cari  be expressed as the set of the common
zeros of a (finite  or intïnite) set of polynomials
Fi(X,,  , X,) with coefficients in k. Similarly, a
subset of the n-dimensional tprojective space
P”(k) over k that cari be expressed as the set of
the common zeros of a set of homogeneous
polynomials Gj(  Y,, . , Y,)  is called a projective
algebraic variety (or simply projective variety).
In this section, variety means either an affine
or projective variety. A variety which is a
subset of another variety is called a subvariety.
These varieties are the forerunners of the
modern, more general versions of algebraic
varieties, which we Will discuss later.

When 1/  is an affine variety in k”, the set of
the polynomials in k[X]  = k[X,,  ,X,1 that
vanish at every point of V form an ideal I(V)
of k[X].  The residue class ring A, = k[X]/I(  V)
is called the coordinate ring (or affine ring) of
K  We cari  regard A, as the ring of k-valued
functions on V that cari  be expressed as poly-
nomials of the coordinates of k”. When Vis a
projective variety, the thomogeneous  ideal
generated by the homogeneous polynomials in
k[  Y] = k[  Y,, . , Y,] that vanish at every point
of V is denoted by I(V), and the ring A, =
k [ Y]/I(  V) is called the bomogeneous coordi-
nate  ring of V.

A variety Vis said to be reducible or irreduc-
ible according as it is the union of two proper
subvarieties or not. A maximal irreducible
subvariety of V is called an irreducible compo-
nent of V. Any  variety cari be written uniquely
as the union of a finite  number of irreducible
components. A variety V is irreducible if and
only if I( V) is a +Prime  ideal. When that is the
case, the field  of quotients of A, (when Vis
affine) or the subfield of the fteld  of quotients
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of A, consisting of the homogeneous elements
of degree 0 (when V is projective) is called the
function  field  of V and is denoted by k(V).
Elements of k( V) are called rational functions
(or  s imply functions)  on the variety V. The field
k(V) is tfinitely  generated over k. The tran-
scendence degree of k(V) over k is called the
dimension of V. When I/ is reducible, the max-
imum of the dimensions of its irreducible
components is called its dimension. If W is a
subvariety of an irreducible variety V, then
dim V - dim W is called the codimension of W
on V. A subvariety of pure codimension 1 of
an affine  or projective space cari  be detïned by
a single equation and is called a hypersurface.
If the ideal I(V) of a variety V of dimension r
in a projective space P”(k) is generated by n-r
homogeneous polynomials, then Vis called a
complete  intersection. Compared with general
varieties, complete intersections have some
simpler properties. On the other hand, many
important varieties are not complete intersec-
tions, e.g.,  +Abelian  varieties of dimension > 2.

The intersections and tïnite  unions of sub-
varieties on a variety V are also subvarieties.
Thus the subvarieties cari  be taken as the
tsystem  of closed sets of a topology on V (-
426 Topology), which is called the Zariski
topology of the variety V. When k is the Iïeld  of
complex numbers, V cari  be viewed as an
tanalytic space, and the topology of Vas such
(the “usual” topology) is much stronger than
the Zariski topology. For the rest of this arti-
cle, varieties Will be considered as having Zar-
iski topologies unless stated otherwise. Terms
such as Zariski open,  Zariski closed,  and Zar-
iski dense are used to mean open,  closed, or
dense in a Zariski topology. Suppose a con-
dition (P) concerning the points of an irreduc-
ible variety V (concerning the elements of a
set M  parametrized by the points of V) is
satistïed  in a nonempty Zariski open set of V.
Then we say  that the condition (P) holds at
almost all  points of the variety V or at general
points of V (almost a11 elements of the set M).

Let U  and V be affine varieties in k”  and km,
respectively. Then the product  set U x Vis an
affine variety in k”+” and is called the product
algebraic variety (or simply the product)  of U
and V. Note that the Zariski topology on
U x Vis stronger than the product  of the
topologies of U  and V. When k is talgebrai-
cally closed, U  x Vis irreducible if U  and
V are irreducible.

Suppose that k is algebraically closed. Let !I3
be a tprime ideal of k[X]  = k[X,,  ,X,1, and
let V  be the affine variety in k”  detïned as the
zero points of !IJ.  Then I(V) = s$  (+Hilbert  zero
point theorem) (- 369 Rings of Polynomials
D). Therefore there exists a one-to-one  corre-
spondence between the set of prime ideals of
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k[X]  and the set of irreducible varieties in k”.
In particular, the tmaximal  ideals correspond
to the points of k”. Similarly, there exists a
one-to-one  correspondence  between the set of
homogeneous prime ideals of k[ Y] other than
&, Kk[ Y] and the set of irreducible sub-
varieties in P”(k).

When we deal with nonlinear algebraic
equations, we cannot  expect asimple,  clearcut
theory without assuming that k is algebraically
closed. Hence we take an algebraically closed
field K containing k and regard a variety V in
k” as a subset of the variety V, in K” detïned
by the same equations. From now on, we
suppose that k is algebraically closed. If the
ideal I(V) of k[X]  or k[ Y] determined by a
variety Vis generated by polynomials with
coefficients in a subfield k’  of k, we say  that V
is defined  over  k’ or that k’ is a tïeld  of defi-
nition for V. Any  variety has the smallest lïeld
of definition, which is tïnitely generated over
the prime fïeld. In the theory of A. Weil [92],
we lïx an algebraically closed lïeld K that has
an infinite  transcendence  degree over the
prime lïeld. This K is called the universal
domain.  A point of Vis called a k’-rational
point of V if all of its coordinates belong to a
subtïeld k’ of K. Let K,,  K,  be two extension
fields  of a lïeld L, and let (x)EK;,  (y)~Ki.
We say  (y) is a specialization of the point (x)
over L (notation: (x)7(y))  if a11 polynomials
fW)~~CXl,  . . . . X,] satisfying f(x) = 0 also
satisfy f(y) = 0; in other words, if there exists a
homomorphism of L-algebras  L [xi, ,x,1 +
L [yi,  . , y,,] mapping xi to yi. Let K be the
universal domain,  Van irreducible variety in
K”,  and k’ (c K) a lïeld of definition for V
having a lïnite  transcendence  degree over the
prime field.  Then there exists a point (x) of V
such that a11 points of V are specializations of
(x) over k’. Such a point (x) (in general not
uniquely determined) is called a generic  point
of V over k’. The ring k’[x]  is isomorphic to
k’[X]/I(  V) n k’[X] over k’. (Some authors use
the term yeneric  point to mean almost  dl points
as defined earlier.)

B. Local Rings

Let V be an affine variety and let W be an
irreducible subvariety of V. Let !&,,  be the
subset of A, consisting of the elements that
vanish identically on W.  Then !Q, is a prime
ideal of A,. The ring of tquotients  of A, with
respect to Epw  is denoted by a,, w or by a,
and is called the local ring of W on V (or of
V at IV).  Suppose for simplicity  that Vis irre-
ducible. Then 3,  is the subring {f/g  If;  g GA,,
g$ Fpy}  of k(V), and the tresidue field of a,
modulo the maximal ideal <p,,,l),  cari  be
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identilïed with k( IV).  When a function cp  on
V (<p  E k( V)) belongs to a,, it is said to be
regular at W. For a given function VE  k( V),
the set of the points of V where <p  is regular
is Zariski open.  In the case of a projective
variety, the local ring a,, w  is delïned as the
subring of the ring of quotients of A, with
respect to &, consisting of the homogeneous
elements of degree 0.

A mapping from an open set U  of a variety
V to k that is regular at every point of U  is
called a regular function  on U. The ring of
regular functions on U  is denoted by A,. By
assigning A, to each open set U, we cari delïne
a +sheaf  of rings 0” on V, of which the tstalk
O,,,  at a point XE V is the local ring a,,,.  The
sheaf 0, is called the sheaf of germs of regular
functions  on V (or the structure sheaf of V)
(- 383 Sheaves H).

C. General  Def ini t ion

Consider a pair (V, 0) of a topological space
V and a sheaf 0 of germs of mappings from
V to k. If V has a lïnite  open covering (Ui)
such  that each (Ui, 01  Ui)  is isomorphic to an af-
fine variety v (in the sense that there exists a
homeomorphism from U,  to y that transforms
01  U,  to the structure sheaf of &),  the pair (V, 0)
is called a prealgebraic variety over  k, and 0
is called its structure sheaf. Usually (V, 0) is
denoted simply by V.

A regular mapping between prealgebraic
varieties is detïned as a continuous  mapping
g:T/-tV’satisfying<pog~0,,,foranyx~V
and <PE  Gv.,s(x).  Furthermore, if g is a homeo-
morphism and g -i is also regular, then y
is called an isomorphism or a hiregular map-
ping. The Cartesian product  X x Y of pre-
algebraic varieties X and Y is locally a prod-
uct of affine  varieties. Therefore X x Y has
the structure of a prealgebraic variety. A pre-
algebraic variety X is called an algebraic va-
riety if the image of the diagonal mapping X+
X x X is closed in the Zariski topology of
the product  variety X x X (“separation con-
dition”). (This definition is due to J.-P. Serre
[Si].)  The separation condition corresponds
to +Hausdorff’s  separation axiom. If W is a
locally closed subset (i.e.,  the intersection of
an open set and a closed set) of an algebraic
variety V, then it becomes an algebraic variety
in a natural manner (the germs of regular
functions at PE  W are taken to be the germs of
functions induced on W by the functions in
O,,,).  Locally closed subvarieties of k”  or P”(k)
are called quasi-affine or quasiprojective alge-
brait  varieties, respectively. Definitions of
irreducibility and local rings for general alge-
brait  varieties are given in the same manner
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as before. In this article, algebraic varieties Will
often be referred to simply as varieties.

The notion of an irreducible algebraic
variety was developed from that of abstract
algebraic variety (or simply abstract variety)
defïned by Weil.

D. Scbemes

The set of prime ideals ( # (1)) of a commuta-
tive ring A with unity  element 1 is denoted by
Spec(A)  and is called the spectrum of A. For
any subset a of A, we denote by V(a) the set of
the prime ideals containing a. We deiïne a
topology on Spec(A)  in which the closed sets
are V(a). This, again,  is called the Zariski
topology of Spec(A).  For an element f of A, the
open  set D(f)=Spec(A)-  V(S) is called an
elementary open  set. The elementary open sets
form a base of open sets in the Zariski topol-
ogy of Spec(A).  The set of closed points is
nothing but the set of maximal ideals of A.
Assigning to each point ‘$3  of Spec(A)  the +ring
of quotients A,, we obtain a sheaf of rings A
on Spec(A).  We have the equality I(D(f),  A)=
As, where A,[  is the +ring  of quotients by the
multiplicative system {f” ( n 2 0).  In particular,
we have T(Spec(A),  A)  = A. Regarded as a
+local-ringed space with A  as the structure
sheaf, Spec(A)  is called an affine scbeme.

A local-ringed space X which is locally
isomorphic to an affine scheme is called a
scbeme. A morphism of schemes is, by defï-
nition, a tmorphism between them as local-
ringed spaces.  Thus we obtain a tcategory
whose abjects are schemes. We denote it by
(Sch). Giving a morphism f:X+Spec(A)  is
equivalent to giving a ring homomorphism
r(f):  A+T(X,  0,). Hence the category of
affine schemes (which is a +full subcategory of
(Sch)) is contravariantly equivalent to the
category of commutative rings. If there is given
a morphism of schemes f: X-S,  X is said to
be an S-scheme or a scheme over  S, and f is
called the structure morphism and S the base
scheme. For two S-schemes f:X*S,  g: Y+S,
a morphism of S-schemes is defined to be a
morphism of schemes h: X+  Y with f=  g o h.
Thus we obtain the category of S-schemes
denoted by (Sch/S). Spec(Z)  is the unique +final
abject  in (Sch), hence (Sch) is nothing but
(Sch/Spec(Z)).

The tiïber product  always exists in (Sch). In
fact in the case of affine S-schemes X = Spec(B)
and Y= Spec(C)  with S = Spec(A)  we have
X x ,Y = Spec(B  aa C), and in the general case
we construct  X x s Y by patching together fïber
products of affine  schemes.

A morphism f: X-S  is called separated if
the image of the diagonal morphism Axis  :

1 6  D
Algebraic Varieties

X+X  x,X is closed. We also say  that X is
separated over S or X is a separated S-scheme.
A scheme X is said to be separated if it is
separated over Spec(Z).  Al1  affine schemes are
separated.

When K is a tïeld,  Spec(K)  is a space having
only one point and equipped with K as the
stalk of the structure sheaf. For a point x of a
scheme X, denote by k(x) the residue fïeld  of
fi,,,. For fi@,,, we cal1 the residue class off
in k(x) the value off at x, denoted by f(x). We
have a natural morphism i,: Spec(k(x))+X
whose image is {x}. More generally, we cal1 a
morphism i of a spectrum Spec(K)  of a field  K
to X a point of X with values in K. Such a
point is determined by a point x in X and an
embedding of k(x) in K. A point of X with
values in an algebraically closed iïeld is called
a geometric point. For a morphism f: X +
S and a point s in S, the tïber product  X x s
Spec(k(s)) is called the fiber off over s and
denoted by f-‘(s).  For a geometric point
Spec(K)+S,  X x sSpec(K) is called a geo-
metric liber.

A scheme X is called reduced if the local ring
at each point of X has no tnilpotent  elements.
A scheme is said to be irreducible if its underly-
ing topological space is not a union of two
proper closed subsets. A scheme is called in-
tegral if it is reduced and irreducible. Every
local ring of an integral scheme is an tintegral
domain.  If a scheme X has an affine  open
covering { Ui = Spec(A,)}  such that every Ai
is a +Noetherian ring, X is said to be locally
Noetherian. A locally Noetherian scheme is
called Noetherian if its underlying topological
space is +(quasi-)Compact.

A morphism f: X+  Y = Spec(A)  is said to be
locally of finite  type (of finite  type) if X has an
open affine covering (a finite  open affme cover-
ing) {  Ui  = Spec(A,)}  such that each Ai is a
finitely  generated A-algebra. A general mor-
phism f:  X + Y is said to be locally of finite
type (of finite  type) if there is an open affine
covering {y}  of Y such that every restriction
of f‘:f‘-‘(  Q-r v is locally of fïnite  type (of
finite  type). If f: X-* Y is (locally) of fïnite
type we say  that X is (locally) of finite  type
over Y.

A scheme of finite  type over a field  K (i.e.,
over Spec( K)) is called an algebraic scheme
over K. There is a tnatural  equivalence  of
categories  between the category of reduced
separated algebraic K-schemes (as a full sub-
category of (Sch/K)) and the category of alge-
brait  varieties over K (deiïned in Section C)
equipped with regular mappings as mor-
phisms. Hence we identify these categories
from now on. Occasionally, algebraic vari-
ety  means irreducible variety. Nonalgebraic
schemes are also important as tools for the
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study of algebraic varieties. For example, for a
point x in a scheme X there is a canonical
monomorphism j,: Spec(fJx,,)-+X by which
the unique closed point of Spec(Q,,,)  is map-
ped to x. If for two algebraic K-schemes X, Y
and for two points X~X,  ye  Y there is a K-
isomorphism O,,,g O,,,,  then suitable neigh-
borhoods of x and y are isomorphic over K.

Many concepts concerning varieties, e.g.,
dimension, generic  points, specialization, cari
be naturally extended to the case of schemes
by virtue of commutative ring theory.

A morphism of schemes f:  X+  Y is called
proper if it satistïes  the following two con-
ditions: (1) f is separated and of finite  type, (2)
for every scheme T and for every morphism T
-+ Y, the morphism X x yT+  T obtained from
f by the “change of base” is a closed mapping.
We also say  that X is a proper Y-scheme or X
is proper over Y. A proper algebraic K-scheme
is called complete. A projective variety is com-
plete, while an affine variety over K is com-
plete only when it is of dimension zero. Every
algebraic variety cari  be embedded in a com-
plete variety (M. Nagata [63]).

A morphism of schemes f: X+  Y is called
affine if every inverse image by f of an open
affine  subset of Y is again  an affine  scheme.

A morphism of schemes f:  X+  Y is called
finite  if it is of tïnite  type and there is an affine
open covering { Ui  = Spec(A,)}  of Y such that
f -‘( U,)  = Spec(B,),  where Bi is tintegral over
Ai. For a locally Noetherian scheme Y and a
morphism of schemes f:  X+  Y the following
three conditions are equivalent: (i) f is finite;
(ii) f is affine and proper; (iii) f is proper and
every tïber off is a tïnite  set. For a tïnite  sur-
jective morphism of Noetherian schemes f:
X-+ Y, X is an affine scheme if and only if Y
is an affine scheme.

A morphism of schemesf: X+  Y is said to
be Bat  if for each point x E X, 0x,x  is a tflat
0,,fC,,-module. If, moreover, fis surjective,
then Sis called faithfully flat. Assume that
g: Y’+ Y is a faithfully flat morphism of finite
type of locally Noetherian schemes and f:X+
Y is a morphism of schemes. Then for many
important properties of morphisms, f has these
properties if and only if the pull-back 1;. :
X x r Y’+ Y’ has the same properties (theory of
descent [29,30]).

E. Cohomology Theory

Let (X, 0) be a ringed space.  An &Module
(i.e., a sheaf of O-modules) F is said to be
quasicoherent if for each point x of X there
exist a neighborhood U of x and an texact
sequence M+N+F,,+O,  where M and N are
free 8,,-Modules.  An G-Module F is said to
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be of finite  type if F is locally generated by a
tïnite  number of sections over 0; F is of finite
presentation if, locally, there exists an exact se-
quence OP+Oq+F+O where p and q are posi-
tive integers (they need not be globally con-
stant); F is coherent  if(i) F is of tïnite  type and
(ii) the kernel of any homomorphism O’+Fju
(where n is an arbitrary positive integer, and U
is an open set) is of tïnite  type. Obviously, if F
is coherent,  then F is of finite  presentation,
which implies that F is quasicoherenet and of
finite  type. In the category of U-Modules, the
full  subcategory of coherent  sheaves is closed
under almost all operations of sheaves. If 0
itself is coherent  as an O-Module, 0 is said to
be a coherent  sheaf of rings. In this case every
@Module of tïnite  presentation is coherent.

The structure sheaf of a locally Noetherian
scheme is a coherent  sheaf of rings. On a lo-
cally Noetherian scheme X, every quasicoher-
ent sub-@,-Module or quotient @,-Module of
a coherent  0,-Module  is coherent.  A coherent
Q-Module  on an algebraic variety V  is called
a coherent  algebraic sheaf.

Let X = Spec(A)  be an affine  scheme. Then
every quasicoherent (&-Module F on X is
generated by its global sections. The corre-
spondence F-+T(X, F) detïnes an equivalence
beeween the category of quasicoherent sheaves
on X and the category of A-modules; if A is
Noetherian, then the coherent  sheaves and the
tïnite  A-modules correspond to each other
under this equivalence.

Let X be a separated scheme, and U  = {U,}
an affine  open covering of X. For each quasi-
coherent  @,-Module F,  the cohomology group
Hq(X,  F) is canonically isomorphic to the
tcech  cohomology Hq(U,  F) (- 383 Sheaves
F). If X is of dimension d, then Hq(X,  F) =0
for every sheaf F of Abelian groups on X and
q>d.

For a scheme X we define the cohomological
dimension cd(X) to be the largest integer q
such  that Hq(X,  F) #O for a quasicoherent CO,-
Module F on X [35]. The cohomological
dimension cd(X) does not exceed the dimen-
sion of X. If X is an affine scheme, then cd(X)
= 0. The converse is true under the assump-
tion that X is Noetherian (Serre’s criterion
[29,  III]). For an algebraic scheme X of dimen-
sion n,  cd(X) = n if and only if X is complete
(S. L. Kleiman).

Let f: X + Y be a proper morphism of
Noetherian schemes. Then for every coherent
O,-Module  F and for every q > 0, P&(F)  (-
200 Homological Algebra) is also coherent.  In
the special case of Y = Spec(k)  with a field k
this means that for an algebraic coherent  sheaf
F on a complete variety X the cohomology
group Hq(X,  F) is a finite-dimensional  vector
space  over k.
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Let X be a scheme over k and let F be a
locally free O,-Module  of rank n (i.e., an 0x-
Module which is locally isomorphic to 0;). If
we take an open covering {UC}  of X and iso-
morphisms vi: F,o,‘i&$,j,  then <pio  <p,-’  defïnes
a morphism gij: Uin U,+GL(n, k), which is
called the coordinate transformation of F.  If we
construct  a tvector bundle B  on X by the same
coordinate transformations g,,  then F cari be
regarded as the sheaf B(B) of germs of sections
of B. By means of the canonical homomor-
phism GL(n,  k)+PGL(n-  1, k) we cari  con-
struct a projective bundle P(F) on X (which is
said to be associated with F). (Note that in
[29], P(F) is dehned to be a projective bundle
with coordinate transformations ‘gi;‘, i.e.,  as-
sociated with the dual of F in our sense.) This
procedure  of associating P(F) with a locally
free 0,-Module  F cari  be generalized for any
quasicoherent Os-Module of fmite  type on
an arbitrary scheme S.

A closed (locally closed) S-subscheme f:  X+
S of p: P(F)+S  is called a projective scheme
(quasiprojective scheme) over  S, or f is said to
be a projective morphism (quasiprojective mor-
phism). A projective morphism is proper. A
reduced projective scheme over a field  k is
nothing but a projective variety over k. We
cari  develop the theory of projective schemes
by means of tgraded  rings in a way similar to
affine  schemes.

A locally free 0x-Module  of rank 1 is called
an invertihle sheaf. Invertible sheaves corre-
spond to line bundles up to isomorphisms. Let
P = PN(k)  be a projective space,  (y,, y,, . . , yN)
a system of homogeneous coordinates of P,
and Ui  the open subset of P defined by yi  # 0.
Denote by O(n) the invertible sheaf on P de-
fined by the coordinate transformation g,=
(y,/~,)“.  More generally, let p:  P = P(F)+S  be
the projective bundle associated with a locally
free Us-Module F of rank N + 1 on a scheme
S. Then there is an invertible sheaf O(n) =
C!(l)@’  on P  with the properties: (i) for each
SES its restriction to the fïber p-‘(s)  = PN(k(s))
is 0(n)  detïned above; (ii) p,(O(n))=  S”(F)  for
n > 0 where S”(F) denotes  the nth symmetric
product  of F. The invertible sheaf U(1) is called
the tautological line hundle on P. (Note that
O(  1) in the sense of [29] is O(  -1) in our sense,
but since the definition of P(E) is also differ-
ent, the above property (ii) holds without
modification.)

For a quasiprojective S-scheme f: X+P(E)
+S, the restriction of G(  1) to X is denoted by
0,( 1) (or simply 0( 1)). An invertible sheaf L on
X is called very  ample over  S if there exist a
locally free Q-Module  of finite  type E on S
and an S-immersion i: X -+P(F)  such that
CI!&(  1) = L; L  is called relatively ample over S  or
S-ample if L On  is very  ample over S for a cer-
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tain n > 0 (- Section N). When S is an affine
scheme, an ample (very  ample) sheaf over S is
simply  called ample (very  ample). There is the
following cohomological criterion of ample-
ness (generalized Serre%  theorem).

Let Y be a Noetherian scheme, f:  X+  Y a
proper morphism, and L an invertible 0X-
Module. Then the following four conditions
are equivalent: (i) L is f-ample; (ii) for each
coherent  @,-Module F there is an integer
N such that Rqf,(F  @ L@) = 0 for a11 n 2 N
and q > 0; (iii) for each coherent  sheaf of
ideals 9 of 0,  there is an integer N such that
R’,f,(Y@  Lon)=0  for a11 n> N. They imply
the condition (iv): for each coherent  0-
Module F there is an integer N such that the
canonical homomorphismsf*&(F  @ LB”)+
F 0 L@”  are surjective for all n > N.

Let X be a scheme proper over a tïeld  k
(such  an X is called a k-complete scheme),
and let F be a coherent  Q-module. Then all
Hq(X,  F) are finite-dimensional  k-vector
spaces (fïniteness theorem), and x(F)  =
C( - l)q dim Hq(X,  F) is a finite  number,
called the Euler-Poincaré characteristic of F
over X. For every invertible sheaf L, I(F @
L@“‘)  is a polynomial in m,  which is said to
be the Snapper polynomial [48]. Supp F,  de-
tïned to be the set {x E X 1 F, # 0}, is a closed
subset of X and is called the support of F. The
degree of the polynomial x(F @ LB”‘)  is at
most Y = dim supp F, and we have x(F  @$  L@‘“‘)
= e. m’/r!  + lower terms in m  for some e E Z. e
is said to be the intersection number of L’  with
F [48]. When W is a closed subscheme of X
detïned by an 8,-ideal  1, (L’. W) is defïned to
be the intersection number of L’ with O,/f,
where r = dim W. If L is ample, then (L’ t W) >
0 for any W. In particular, when W= X, it
follows that (L”) > 0, where n = dim X. The
converse of this fact is the Nakai-Moishezon
criterion, saying that if (L’ W) > 0 for any
closed subvariety W of X where r = dim W,
then L is ample [56,64].

When L is ample, Hq(X,  F @ LB”‘)  = 0 for
any 4 > 0 and for suflïciently large m; hence
x(F @ L@“) = dim H’(X,  F @ LBm)  and the
Snapper polynomial x(F @ LB”‘)  is also called
the Hilbert polynomial or the Hilbert charac-
teristic function  of F.  If L is the invertible sheaf
detïned by a hyperplane section of X in Pf, i.e.,
L = Q(l),  then X(L@“) = dim H”(X,  LB”‘)  =
dim R, for sufficiently  large m where OR,
denotes the homogeneous coordinate ring of
X in P/.

In general, for a complete irreducible variety
V  of dimension Y, we put

x(V)=x(O,)=  i (-1)qho.q
q=o

(ho,q  = dim Hq( V, CV))  and call it the arithmetic
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genus of V. Classically, the number p,(V) de-
finedbyp,(V)=(-I)“(X(V)-l)=hO,‘-ho,’-’
+...&hOs’ was called the arithmetic genus of
V,  instead of x( V). When V is a nonsingular
irreducible curve, p,(V) is the usual tgenus. If
V is a projective variety, the constant term of
the Hilbert polynomial is x(V) and the coeffi-
tient  of its highest term is (deg V)/r!.

Let V be a tnormal  variety, and D  a tdivisor
on V. If, for each point x E V,  we denote by
0(D), the set of the functions fe  k( V) that
satisfy (f) + D  2 0 on some neighborhood of x,
we obtain a coherent  algebraic sheaf U(D),  and
we have dim Ho(  V,  O(D)) = I(D). If, moreover, V
is complete, we put xv(D)  = x(V)-  2(0(-D))
and cal1 it the virtual arithmetic genus of D.
Classically, the number p,(D) =( -l)‘-‘(QD)
- 1) was called by that name. When D  is effec-
tive and has no multiple components, xv(D)
coincides  with the arithmetic genus of D  re-
garded as a variety. In general, xv(D)  stays in-
variant if D is replaced by a divisor that is
algebraically equivalent to D  (- Section N).

If D  is a Cartier divisor, O(D) is an inver-
tible sheaf. For two Cartier divisors D,, D,,
O(D,  +Dz)  = @(Dl)  @ O(D,),  and D, and D,
are linearly equivalent if and only if O(D,)g
WU.

Let V be an irreducible nonsingular variety
and let Qp denote the sheaf of germs of regular
differential forms of degree p (!A0  = Cl”).  If V is
complete, then we denote dim Hq( V,  W) by
hP.4.

Serre%  duality theorem: Let V be a nonsin-
gular complete irreducible variety of dimen-
sion r, B an algebraic vector bundle over V,
and B*  the dual vector bundle of B. Denote by
98  and 5?* the sheaves of germs of sections of
B and B*,  respectively. Then (i) H’(  V,  Q’) is
canonically isomorphic to k, and (ii) Hq( V, LB)
and H’mq( V,  Oß*  0 n*)  are dual to each other as
linear spaces by means of the +cup  product  of
the above spaces with H’(  V,  Qr) g k. In partic-
ular, H4( V, P’) is dual to Hreq(  V,  RreP);  hence
we bave hPBq = h’-P-‘-‘J.

This theorem was extensively generalized
by Grothendieck in the category of schemes
Cl, 331.

When the lïeld k is of characteristic 0, we
furthermore have hpxq  = hq.p  by complex con-
jugation (- 232 Kahler  Manifolds C); but in
characteristic p, there are examples for which
this symmetry does not hold [61]. In general,
hP34  is a trelative invariant but not an +ab-
solute invariant; however, as hpvo  is the dimen-
sion of the hnear space  of the differential forms
of the first kind with degree p,  hp,’ is an ab-
solute invariant. Hence h”,p  is also an absolute
invariant in the case of characteristic 0. When
the characteristic is positive, the absolute
invariance of h”*p  has not yet  been proved.
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F. Simple Points and Singular Points

Let V be a variety over an algebraically closed
field k. We say  that a point P of Vis simple
or that Vis nonsingular or smooth at P if the
local ring 0,  is a tregular  local ring. Since the
problem is local, we may assume that Vis an
affine variety in k”. Then the simplicity  of P on
Vis equivalent to the following condition: P is
contained  in only one irreducible component
of V,  and if that component  has dimension r
there exist n-r polynomials F,(X)  in I(V) such
that rank (8Fi/8Xj)o,=,  = n -1. A point of V
that is not simple is called a singular point or
a multiple point. The set of singular points on
V (called the singular  locus of V) is a proper
closed subset of V. A variety with no multiple
points is called smooth or nonsingular.

This notion cari  be made relative. A mor-
phism f:  X + Y of a locally Noetherian scheme
is called smooth if f is flat and locally of finite
type and a11 the geometric libers off are non-
singular. In the case of an affine morphism
f:x=Spec(RCX,,...,X,+,ll(f,,...,f,))~Y=
Spec(R)  of relative dimension r (by which we
mean the dimension of the general fïber) with
a Noetherian ring R, the smoothness off
amounts to a condition that rank ((af,/aX,)(x))
= s at each point x of X.

When for a point P of a variety V the local
ring Dz),  is tnormal,  P is called a normal point.
A simple point is normal. The set of normal
points is a nonempty open subset of V. An
irreducible variety whose points are a11 normal
is called a normal algebraic variety (or simply
normal variety). The singular locus of a normal
variety has codimension > 2. For an irreduc-
ible variety V,  there exists a pair (V’, f) of a
normal variety V’ and a birational fïnite  mor-
phism f:  V’+ V; V’ is unique up to isomor-
phisms and is called the derived normal mode1
or normalization of V.

Simplicity  and normality for V at a sub-
variety W are detïned in the same way as at
a point by using the local ring -O,,,.

For a morphism f:  X + Y of locally Noe-
therian schemes, locally of fïnite  type, the fol-
lowing three conditions are equivalent: (i) f is
smooth and every fiber off is a discrete set; (ii)
fis flat and every geometric tïber over Spec(K)
off is a union of spectra of fields  isomorphic
to K; (iii) f is flat and every tïber off over
y E Y is a union of spectra of fïelds  that are
fïnite  tseparable  extensions of k(y). These
conditions are local with respect to X. If a
morphism f satistïes these equivalent con-
ditions, we say  that f is étale or X is étale over
Y. A morphism

f: X = SpectRCX,,  , K,ll(.fIi  . ,.A,))

+ Y= Spec(R)
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is étale if and only if det((afi/8Xj)(x))#0  for ah
x6X.  Hence étale morphisms correspond to
local isomorphisms in the analytic category.
For a surjective  étale morphism f: X + Y many
important geometric properties (reduced,
integral, normal, nonsingular, etc.) hold on
X if and only if they hold on Y (theory of
descent).

G. Dimension Theorems

Let I/ be an irreducible variety, and let U and
W be irreducible subvarieties of V. Then any
irreducible component of Un W that is simple
on V has dimension > dim Cl + dim W - dim V.
When the equality holds, the component is
called a proper component of the intersection
Un W. If every component of Un W that is
simple on Vis proper, we say  that U  and W
properly intersect on V. Any  two subvarieties
U  and W of P”(k) with dim U  + dim W 2 n
intersect each other. When Vis an irreducible
r-dimensional variety in P’(k),  the number of
points of intersection V n L of V with an (n -
r)-dimensional linear variety L is independent
of the choice of L as long as L is in a “gen-
eral position.” This number is called the degree
of V and is denoted by deg( V). Letting 0( 1) be
the fundamental sheaf of P”(k), we have deg V
=(&(ly.  V) (- Section E).

H. Group Varieties

An algebraic variety G is called an talgebraic
group if it has a group structure and if the
mapping G x G-G sending (x, y) to xy-’ is
a morphism. Every algebraic group is quasi-
projective (Chow). If G is irreducible, then
it is also called a group variety; a complete
group variety is called an +Abelian  variety (-
3 Abelian Varieties B, 13  Algebraic Groups B).
A scheme G over another scheme S equipped
with morphisms over S:G  x sG+G,  C+G,  and
S-tG,  called multiplication, inverse, and unit
section, respectively, which satisfy the relations
corresponding to the usual axioms of group, is
called a group scheme (over S). As a point set,
G is not a group, while, for any scheme T over
S the set G(T) = Hom,(  T, G) of the morphisms
from T to G is a group (- 52 Categories and
Functors M). Consider an algebraic group
scheme G over S = Spec(k).  If the characteristic
of k is zero, then G is necessarily reduced, SO

an algebraic group scheme over k is essen-
tially the same as an algebraic group; if k has
characteristic p,  there exist algebraic group
schemes over k that are not reduced.
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1. Rational Mappings

Let f: V-t V’ be a morphism of varieties. If V
is not complete, the image f(V) is not always
closed;  the closure off(V) (in V’) is called the
closed  image of V. The image f(V) contains an
open dense subset of the closed image.

Let V and W be irreducible varieties. A
closed subset T of Vx W is called an algebraic
correspondence  of V and W. We say that points
P E V and Q E W correspond to each other by T
if (P,  Q)E  T. If T is irreducible and the closed
image of the projection T+ V coincides  with
V, then the function fïeld k(V) cari  be identified
with a subfield of k(T); if we have k(V) = k(T)
with this identification, then T is called a
rational mapping from V to W. Moreover, if
the same conditions are satished for W,  then T
is called a birational mapping (of birational
correspondence  or birational  transformation),
and in this case we have k(V) = k( W). A mor-
phism cari  be considered a special  kind of
rational mapping by taking the graph. If T is a
rational mapping from V to W and WI  is the
closed image of T in W,  then k( WI)  cari  be
regarded as a subiïeld of k(T) = k( V). If k(V) is
tseparably generated (tpurely  inseparable) over
k( WI),  then T is said to be separable (purely
inseparable).

Let T be a rational mapping from V to W,
and let V’ and W’ be irreducible subvarieties
of V and W,  respectively. If there exists an
irreducible subvariety T’ of T whose projec-
tions have the closed images V’ and W’, then
we say  V’ and W’ correspond to each other by
T. The union of irreducible subvarieties of W
that correspond to 1/’ by T is a closed subset of
W; it is called the proper transform of V’ by T
and is denoted by T[V’].  Note that V’I  V”
does not imply T[V’]  3 T[ V”]. The set of
points of W that correspond to the points of
V’ is called the total transform of V’ by T and
is denoted by T{ V’}. Identifying k(T) with
k(V), we have D,,.. 3 D,.,. in general; if the
equality holds, we say  that T is regular  (or
delïned)  along  V’. In that case, W’ is the unique
irreducible subvariety of W corresponding to
V’ by T. If V’ is simple and of codimension 1
in V, then T is always regular along V’. The set
U  of points of V at which T is regular is a
nonempty open  subset, and the restriction of T
to U  defines a morphism from U to W.  A
rational mapping cari  be defined as the closure
of the graph of a morphism defined on an
open subset of V. The study of a rational
mapping cari be reduced to that of the bira-
tional morphism T+ V. Zariski’s main theo-
rem: Let S : X + Y be a birational mapping,
and assume that the inverse S-‘: Y-X is
regular, and that X is normal along an irre-
ducible subvariety X’. If there exists an irre-
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ducible component  Y’ of S[X’] with dimX’>
dim Y’, then S is regular along X’. It follows
from the above main theorem that, if T:  V-t
W is a rational mapping and if P is a normal
point of V such that T[P]  contains an iso-
lated point, then T is regular at P.

For a birational mapping T:  V+  W between
complete irreducible varieties, a subvariety V
of V is said to be fundamental when dim T[  V’]
> dim I”. When V’ is a point (curve) we say  V’
is a fundamental point (fundamental curve) with
respect to T.  The most classical example of a
birational correspondence  with fundamental
points is the quadratic transformation T of a
projective plane onto  itself given by (x,,:  x, : xî)
+(x,xz:xzxO:x,,xi)  with a suitable coordinate
system. In this case, T2  = identity and the
points Pi defined by xj = 0 for j # i correspond
to the lines x,=0 by T.  Let Cr, denote the
group of birational transformations of P”(k)
into itself. These transformations are called
Cremona transformations when n > 2. Cr, is
generated by linear transformations and qua-
dratic transformations (M. Noether). Recently,
Cr, has been studied in detail by M. Dema-
zure [21] and H. Umemura [91]. Let V be a
complete nonsingular irreducible variety over
k. It is called relatively minimal if every bira-
tional morphism from V to a complete non-
singular variety 1/’  is an isomorphism. It is
called minimal if every birational mapping
from a nonsingular variety V’ to Vis a mor-
phism. Replacing birational mapping by ra-
tional mapping, we cari  defïne strong (abso-
lute)  minimality. Abelian varieties and com-
plete nonsingular curves with positive genera
are strongly minimal. In general, minimality
implies relative minimality.

Zariski’s main theorem is closely related to
the general connectedness theorem due to W.
Fulton and J. Hansen  stated as follows: Let P
be the product  of r copies of Pr and A be the
diagonal subvariety of P. If X is an irreducible
projective variety and f: X +P  is a morphism
with dimf(X)>(r-  l)m, then J‘-‘(A)  is con-
nected [22]. The following results are derived
from this theorem: (1) if X is singular with only
normal crossings (- Section L), then X can-
not be imbedded in Pin-‘, where n = dim X. (2)
Let X be a nonsingular subvariety of PN which
is not contained  in any hyperplane. Suppose
that by the projection rr,:PN+PNml  with cen-
ter x, x being a general point of PN,  X is iso-
morphic to n,(X). Then 3. dim X Q  2(N  - 2)
(Zak’s theorem). (3) Let X be a nonsingular
subvariety of PN and H be an arbitrary hyper-
plane section of X. Then dim(Sing H) <
codimX  (J. Roberts).

By a similar connectedness theorem, it was
proved that if C is a (reducible) curve with
normal crossings on P* over C, then the fun-
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damental group of P2 -C is commutative,
which was conjectured  by 0. Zariski [20].

J. Rational Varieties

An irreducible algebraic variety V over k
whose function tïeld  is purely transcendental
over k is called a rational variety. A complete
smooth surface S over an algebraically closed
field  is rational if and only if P2(S)  = q(S) = 0
(the Castelnuovo-Zariski criterion, - 15 Alge-
brait  Surfaces E).

If the function field  of V has a finite  alge-
brait  extension which is purely transcendental
over k, then Vis called unirational. A unira-
tional curve is in fact rational. More generally,
if the function field  k(C) of a curve C over
k is contained  in a field tïnitely  generated
and purely transcendental over k, then C is
rational (Lüroth’s theorem). A unirational
surface over an algebraically closed fïeld of
characteristic zero is rational by virtue of the
above criterion, but in the case of positive
characteristic there are unirational surfaces
which are not rational (Zariski). There are
nonrational unirational threefolds even of
characteristic zero; for example, ah smooth
cubic hypersurfaces in P4  (C. H. Clemens and
P. A. Grifhths [ l6]), and some smooth quartic
hypersurfaces in P4  (V. A. Iskovskiï and Yu. 1.
Manin [45]). See [6].

K. Monoidal  Transformations

Let V be an irreducible variety and .a be a
sheaf of ideals of 6,. For any affine open set U
of V, .a/ U is determined by an ideal a of the
coordinate ring A of CJ. Let a,, a,, , a, be a
system of generators of a, and let CJ’  be the
graph of a rational mapping from U to Pm(k)
such  that the points PEU  and (ao(P):al(P):
: ~,(P))E P”‘(k)  correspond to each other by
ci’. Then U’ is uniquely determined (up to
isomorphisms) by U  and a only.  Suppose
V has a covering by affine  open  sets Ui.  We
obtain U:  over Ui as before. By patching them
together, we get a birational morphism T:
V’+ V, which is unique up to isomorphisms.
This T with V’ is called the monoidal trans-
formation or blowing  up of V by the ideal
sheaf .P. Note that in some references, the
inverse transformation T-i  is said to be the
monoidal transformation. The inverse image
ideal T-‘(y)  is an invertible sheaf, that is
relatively ample over V. If W is the support of
C’,j.a and W# V, then T-‘(W) has codimen-
sion 1 and T gives rise  to the isomorphism
from V’ - T-‘(W)  onto  V- W. Thus one cari
say  that V’ is obtained from V by replacing W
with T-‘(W), which is locally defïned by prin-
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cipal ideals. If every point of IV  is a nonsin-
gular point of V  and W is itself nonsingular,
T-‘(W)  is the projective bundle over W whose
fiber is the projective r-space where r = dim V
- dim W-  1. In general, if W is a subvariety
defined by a sheaf of ideals 9, then T is said to
be the monoidal transformation with tenter  W.
In particular, if W is a point, T is called the
(locally) quadratic transformation.

L. Resolution  of Singularities

Given an arbitrary irreducible variety V, we
have the problem of finding out a nonsingular
projective variety v’ birationally equivalent
to V. This is called the problem of resolution
of singularities. In the case of characteristic
zero, this problem was solved by Zariski
(1944) for dimension < 3 and by H. Hironaka
(1964) [37] for any dimension. In the case of
characteristic p,  S. Abhyankar solved the 2-
dimensional case (1956) and the 3-dimensional
case (1966). Hironaka’s theorem of resolution
of singularities is stated as follows:  Let V be a
variety over a Iïeld  of characteristic zero. Then
there exists a fïnite  sequence of morphisms of
varieties: V,-, V,-,  +.  V, 4 Ve = V such that (1)
V, has no singular points, (2) each I$+,  + K  is a
monoidal transformation of F with tenter  Q,
(3) each D,  is a nonsingular subvariety, (4)
each v is normally flat along Q. Here, Vis
said to be normally flat along a subscheme D
of V defined by the sheaf of ideals f,  if the
quotient modules ~~/~~” are flat O,,,-
modules for a11 p and a11 points x of D.

Let 1/  be a nonsingular variety and D  an
effective divisor on V. D  is said to be a divisor
with (only)  normal crossings at x E V,  if D  is
defined by fi . f,  such that (,f;  , ,f,)  is a part
of a tsystem  of local coordinates around  x. D
is said to be a divisor with only normal cross-
ings, if it is SO everywhere. For any subvariety
W on V,  there exist h: v-t  V that is a composi-
tion of monoidal transformations with non-
singular centers, such  that h-‘(W)  has only
normal crossings. This results from Hironaka’s
main theorem II [37]. The normal crossing
divisor is also deiïned for complex manifolds,
and similar results  hold.

M. Cycles and Divisors

Let V be an irreducible variety. We denote by
%3, the set of r-dimensional irreducible sub-
varieties of V that are simple on V (i.e., are not
contained  in the singular locus of V), and by
3,(V)  the free Abelian group with basis 23,.
Elements of 3,( V) are called cycles of dimen-
sion Y (or r-cycles) on V. Let A and B be r-

16N
Algehraic Varieties

cycles; A = x ni  Ai, B = C  mi  Ai (Ai E 23,,  Ai # Aj
if i #j).  If ni > mi  for all i, then we Write  A > B.
If A >O,  then A is said to be a positive cycle.
For a O-cycle A =C nie the integer deg(A)  =
C ni  is called the degree of A.

A cycle of codimension 1 is called a divisor.
A divisor > 0 is usually called effective in-
stead of positive. If Vis of dimension d and if
W l 23,-, , the local ring O,,,  is a tdiscrete
valuation ring. The tnormalized  valuation
defined by it is denoted by uw( ).  For a func-
tion fi k( V), we say  that W is a zero of order n
if or&“)  = n  > 0, and that W is a pole of order
-n if vi&“)  = n < 0. Any  function fi k( V),
other than the constant 0, has at most a Imite
number of zeros and poles.  We denote by
(,f),,  the sum X u&f) W extended over all the
zeros W off, and put (f-‘)e=(f),  and (f)e-
(f),=(f). We cd (fb (f),,  and (f)  the
zero divisor, the pole divisor, and the divisor
off; respectively. The divisor (f) is equal to
C uw(,f)  W, where the summation is taken over
WE%,-,,  and we have(fg)=(f)+(g). When V
is complete and the singular locus of V has
codimension > 1, then fis constant if and only
if(f), =0 (or (f)e=O).  Let D, and D, be divi-
sors; if there exists a function f( # 0)~ k(V)
such that D, -D,  =(f),  then D,  and D, are
called linearly  equivalent to each other and we
Write  D, - D,.  The linear equivalence  class
containing a divisor D  is denoted by cl(D). A
divisor which is linearly equivalent to 0 on a
neighborhood of each point of V is called a
Cartier divisor (some authors cal1 a Cartier
divisor simply a divisor). If V is smooth, then
any divisor is a Cartier divisor. If a divisor D
cari  be written as D=(f) on an open set U,
then the function fis called a local equation of
D  on U. Let T:  V’+ V be a rational mapping
from a normal variety V’ to a complete variety
V, let D  be a Cartier divisor on V, and assume
that the closed image of T is not contained  in
D. Since T is regular on some open set U  such
that codim( V’ - U) > 1, we have a morphism
<p  = T,,  and the pullback <p*(D)  defined by
composing the local equations of D  with cp.
Taking the closure of this divisor in V’, we
obtain a divisor on V’, which is denoted by
T*(D).

N. Divisors and Linear Systems

Let V be a complete irreducible variety, fO,
.fi  > . . . >f,  be elements of the function fïeld  k(V)
of V,  and D  be a divisor on V satisfying (fi) +
D  > 0 for each i. Then the set C of the divisors
of the form (C  ai.fi) + D,  where the a, are
elements of k and not a11 zero, is called a linear
system. The linear space  kf,  + kf,  + . + kf,  is
called a defming module of C.  The divisors in
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Z are positive and are linearly equivalent to
each other; if every positive divisor that is
linearly equivalent to a member of Z belongs
to C,  then Z is said to be a complete linear
system. For any linear system C,  there exists a
unique complete linear system containing it,
which is denoted by ICI.  The maximal positive
divisor D, that is contained  in a11 divisors of C
is called the fixed component of L, and for
each DEC we cal1 D  - D,  the variable compo-
nent of D  (or of c). A point P of V  is called a
base point of a linear system C if P is on each
variable component of C.  A linear system C
is called irreducible if its generic  member is
irreducible; otherwise it is called reducible. The
dimension of a deiïning  module of a linear
system Z is denoted by 1(C); we cal1 I(C)- 1 the
dimension of C and denote it by dim Z.  A
linear system of dimension 1 is called a linear
pencil.

A detïning module of a linear system C is
determined uniquely up to k-isomorphisms.
Let L be a defming module, and let fO,fi,  . ,f.
be a linearly independent basis of L over
k. If we associate to each point P of V the
point Q=(f,(P):f,(P):...:f,(P))ofthe  n-
dimensional projective space, then we obtain
a rational mapping Dz  from V to another
variety V’. Outside the base points of Z,  the
rational mapping az is regular; and the base
points are the fundamental points of a,. We
say  that mL.  is the rational mapping defïned
by the linear system L. When Chas no tïxed
components and Qz  is a closed immersion,
C is said to be very  ample (or ample). For a
divisor D, the set of positive divisors that are
linearly equivalent to D  is a linear system,
which is called the complete linear system and
is denoted by IDI. We usually Write  I(D)  in-
stead of 1( IDI).  If IDI  is very  ample, we say  that
D  is very  ample. We say  that D  is ample (or
nondegenerate) if mD  i s  very  ample for some
m > 0.

0. Differential Forms

Let V be an n-dimensional irreducible variety,
and let A = k( V) be its function tïeld.  We de-
note by a*  the set of derivations of R over
k, i.e.,  the k-linear mappings D: R-R satisfy-
ing D(fg)=D(f)g+fD(g).  Then a* is an n-
dimensional linear space over 5%.  Let 3 denote
the tdual space of a* over R. For each ~EA,
let df be an element of 3 defïned by (dJ 0) =
D(f) (DE~*).  Let x1, x2, . . . , x, be a separat-
ing transcendence  basis of R over k, in the
sense that x1, ,x, are algebraically inde-
pendent over k and 53 is a tseparable  algebraic
extension over k(x 1, ,x,). (Such a basis exists
under the weaker hypothesis that k is tperfect.)
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Then dx,, . . . . dx, form a basis of a over R.
The homogeneous elements of degree r of the
tGrassmann  algebra of a over 52  are called
differential forms of degree r on V (or rational
r-forms). The set of the differential forms of
degree n is a 1-dimensional linear space over W
spanned by dx, A dx, A . A dx,.

A set of n functions fi,  ,f, in R is called a
system of local coordinates on an open set U of
V iff1 -fi(P), . ,f”-f.(P) is a tregular  system
of parameters of the local ring 0,  for each
PE U. In that case, fi,  ,f, is also a separat-
ing transcendence  basis of R. If P is a simple
point of V,  then there exists a system of local
coordinates on a suitable neighborhood of P.
Let w be a differential form of degree r on V,
and Write  w = Xi,  <  ,_,  <i,cpci,dfi,  A A d&
where (ft,  . . ,f,)  is a system of local coordi-
nates around  P. If the coefficients v(i) are
regular at P, then w is said to be regular at P.

When Vis a complete variety without sin-
gular points, a differential form that is every-
where regular on V is called a differential form
of tbe first kind (or a regular form); the dif-
ferential forms of the fïrst  kind are determined
by the function field  A and are independent of
the choice of the nonsingular mode1  V. The
number of linearly independent differential
forms of the fïrst  kind, of degree n,  is denoted
by ps  and is called the geometric genus of V.

Let V be a complete variety, W an irreduc-
ible subvariety of V of codimension 1, and P
a point of W that is simple on V. Choose a
system of local coordinates (fi). Given a dif-
ferential form w on V,  we Write  it as a “poly-
nomial”  in the df;, and denote by u,+,(w)  the
minimum of the values of the coefficients for
the +Valuation  uw( ).  The number V~(W)  is
determined by w and W,  and it is independent
of the choice of P and of the local coordinates.
Then w defines a divisor (w) = & V~(W) W on
V,  which is called the divisor of a differential
form w.  The divisor of a differential form of
degree n (= dim V) is called a canonical divisor
and is usually denoted by K. The canonical
divisors form a linear equivalence  class  of
divisors.

P. Albanese Variety, Picard Variety, Néron-
Severi Group

Let V be an irreducible variety. Then we cari
construct  a couple (A,f)  consisting of an
+Abelian  variety called the Albanese variety of
V and a rational mapping ,f:  V+A (called an
Albanese mapping) such  that: (i) the image of
f generates A, i.e.,  the sum off with itself n
times, F: V”+A, is generically surjective for
suftïciently large n; (ii) for every rational map-
ping g: V+B  of V into an Abelian variety B,
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there exist a homomorphism h: A + B  and a
point ~EB such  that g=h.f+b.  The Albanese
variety is uniquely determined up to isomor-
phisms and f is determined up to translations.

In the case of k = C, if V is a complete non-
singular variety and if 4 is the dimension of the
linear space of differential 1-forms of the first
kind on V, then the tïrst  tBetti  number i?, is
equal to 2q. Let w,, , w4  be a basis of the
linear space and let yi,  , yzq  be a basis of
the first homology group modulo torsion. Put
xjtii  = j,, wi  and xj = (01]i,  , xj,).  Then the period
vectors mj  (1 <j  < 29) are linearly independent
over R in C4.  If F denotes the discrete sub-
group of Cy  generated by the gj, then the quo-
tient group Cq/I  is the Albanese variety of
V. The Albanese mapping is given by the map-
ping P+(jgw,, . ,sC,wJ  (modr),  where P
is a variable point on V and Q is a fïxed point
on V (- 232 Kahler  Manifolds C).

Replacing the term “rational mapping” by
“morphism” in the definition,  we cari  detïne  the
strict Albanese variety of V and prove its
existence. It is a quotient Abelian variety of
the Albanese variety of V. If V is nonsingular,
both coincide by virtue of the tstrong mini-
mality of an Abelian variety (- Section 1).

Let V be a complete normal variety, U  the
set of the simple points of V, and D a divisor
on V. Then D is said to be algebraically equiva-
lent to 0 if there exist a nonsingular curve C,
a divisor I on U  x C, and two points P and
Q on C such that D cari  be written as D =
<p;(I)  - <p;(F),  where <pp  and <ho are the mor-
phisms<p,:U+UxP+UxCand<p,:U+
U  x Q-U x C. We denote by G(V),  6,(V),
and 8,(V)  the set of a11 divisors on V, the set
of divisors that are algebraically equivalent to 0,
and the set of divisors that are linearly equiva-
lent to 0, respectively. We cari  introduce a
canonical structure of an Abelian variety into
n>,(V)/CG,(V),  which is called the Picard variety
of V. The dimension q of the Picard variety is
called the number of irregularity of V; if q =  0
we say  that Vis regular.

The Albanese variety and the Picard variety
of V are tisogeneous  to each other, and each
one is the Picard variety of the other. If Vis
a curve, they are isomorphic and cdlled the
Jacobian  variety (- 9 Algebraic Curves E).

Using Cartier divisors instead of divisors, we
get an analogous theory to construct  another
kind of Picard variety which turns out to be
isomorphic to the Picard variety of the strict
Albanese variety of V. The group of the linear
equivalence  classes of Cartier divisors cari be
identified with H’( V, @), where Gr?  is the sheaf
of multiplicative groups of the invertible ele-
ments in 0,. From this point of view, we cari
generalize the theory of Picard variety to the
case of schemes also. The theory thus obtained
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is called the theory of Picard schemes [60].
The quotient group NS(V) = 6(V)/6,( V) is
fïnitely generated [66] and is called the Neron-
Severi group of V. We cal1 the rank of NS(V)
the Picard number of V and denote it by p(V).
In the case of a nonsingular projective vari-
ety  over k = C we have an inequality p(V) <
hi’ i (V) ( = dim, H’  (V, nh)) and the Lefschetz
number B2( V) - p(  V) is a birational invariant
(where B,(V) is the second Betti number of
V) [39]. For the positive characteristic case,
however, the above inequality does not hold
in general [61].

The torsion part of NS(V) is n>,(  V)/8,(  V),
where cr>,(  V) denotes  the group of divisors
numerically equivalent to zero (- Section Q)
(T. Matsusaka). The last  fact cannot  be gen-
eralized for higher codimensional cycles [25].

Q. General  Intersection Theory

Let V be an irreducible variety of dimension n,
and let A and B  be irreducible subvarieties of
V of dimension r and s,  respectively. If C is a
proper component  of A n B, we cari  defïne the
intersection multiplicity  i(A B, C; V) of A and
B along C on V, which has properties consis-
tent with our geometric intuitions. In partic-
ular, it is invariant under biregular mappings.
If A and B  intersect properly on V and if
C,, , C, are the proper components of A n B,
wedefine  an(r+s-n)-cycle  A.B by A.B=
C, i(A . B, C,;  V) C,  and cal1 it the intersection
product  of A and B. If each component  X,  of
an r-cycle X =C,  n,X, and each component  Y0
of an s-cycle Y = C,]  mB  Y, intersect properly,
we define

x. Y=C,&n,mpX;  Ya.

Then we have the associative law (X Y).  Z =
X. (Y. Z) for cycles X, Y, and Z whenever
both sides are defined. Two r-cycles Xi  and X,
are said to be numerically equivalent if for
every (n - r)-cycle Y that intersects them pro-
perly we have deg(X, Y) = deg(X, Y).

The theory of intersection is one of the most
basis theories in algebraic geometry, for the
other theories cari  be constructed from it [92].

R. Chow Rings

Let U and T be nonsingular irreducible vari-
eties. If Z is a cycle on U x T such  that Z.
(U x t) is defined for every point t of T,  we
put Z.(U  x t)=X(t)x  t,  and we obtain a
family {X(t)} of cycles on U  parametrized by
the points of T.  Such a family is called an
algebraic family of cycles. Two cycles Xi  and
X, whose difference is equal to the difference
of two cycles in an algebraic family are said to
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be algebraically equivalent. In particular, if X,
-X,  cari  be expressed as the difference of two
cycles of an algebraic family parametrized by
the points of the affine line, then X, and X,
are said to be rationally equivalent. The set of
the cycles that are algebraically (rationally)
equivalent to 0 is a subgroup 3,(  U)(&,,(  U)) of
J(U). For divisors, rational equivalence coin-
cides with linear equivalence.

Let ,f:  V+U  be a morphism between non-
singular irreducible varieties. For an irre-
ducible subvariety W of V, let W’ denote the
closure of f(  W), and put fJ(  W) = 0 if dim W >
dim W’ and f,,(W) = m W’ if dim W = dim W’,
where m= [k(W): k( W’)] is the degree of the
morphism W+  W’. Extending ,[{  by linearity,
we obtain a module homomorphism &:  3( V)
-c-(U).  If f is proper, then f-3  induces  a
module homomorphism f,  from 3(V)/&,,(V)
=A(V) to A(U).

Let U and V be nonsingular irreducible
projective varieties, and f: V+U be a mor-
phism with graph I.  If Yes( U) is such that
I. (V x Y) is defïned, we denote by lT( Y) the
image of I. (Vx Y) under the induced isomor-
phism I-t V. Each class of the rational equiva-
lente class group A(U) = s(U)/&,( U) contains
a cycle for which f?  is defined. Hence we cari
definef*:A(U)+A(V).  Let A:U-tU  x U be
the diagonal morphism, and delïne x. y =
A*(x  x y) for x, y~  A(U). Then A(U) is a ring
with respect to this product;  moreover, it is a
tgraded  ring with the grading by codimension.
This graded ring A(U) is called the Chow ring
of U, and the mappingf*: A(U)+ A( V) is a
ring homomorphism. If f is proper, we have
f,(y~f‘*(x))=f,(y)~x  for xMU),  YEA(V.

Zero Cycles. Let V be a nonsingular irreduc-
ible projective variety over an uncountable
algebraically closed field of characteristic
zero (say  C). Denote by A,,(V) the group of
classes of O-cycles of degree 0 on V modulo
rational equivalence. We say  A,(V) is fmite-
dimensional if the mapping V” x V”+A,(V)
sending(a  ,,..., a,,h  ,,..., h,)toxa,-Cb,is
surjective for a certain n.

If A,(V) is fïnite-dimensional, then the
canonical mapping A,( V)-tAlb(  V) induced
from V+Alb(  V) is bijective (A. A. Rojtman).
In general, the torsion part of A,(V) is isomor-
phic  to that of Alb(  V) (Rojtman [75]). If
hp,‘(  V) > 0 for some p > 1, then A,(V) is not
fïnite-dimensional  (Mumford, Rojtman [74]).
If Vis a surface which is not of general type
and with h2,‘(  V) = 0, then A,(V)  is isomorphic
to Alb(  V) (S. Bloch, A. S. Kas, D. Lieberman
[13]). There exist surfaces of general type with
h2so  =0 such that A,(V) =O. For instance,
Godeaux  surfaces are such  surfaces (H. Inose
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One  Cycles. Let V be a nonsingular projective
irreducible variety and N(V) denote {numer-
ical equivalence classes of l-cycles on V} BzR.
Via the intersection pairing, N(V) is dual to
the Neron-Severi group tensored by R (-
Section P); and let NE(V) denote the smallest
cane  in N(V) containing a11 effective l-cycles.
S. Mori studied the structure of NE(V) in
detail. One of his results is stated as follows: If
the anticanonical divisor is ample, then there
exist rational irreducible curves I, , , I,  such
that (1) -(li.K,,)<n+ 1 and (2) NE(V)=
R+[/,]+...+R+[1,],wheren=dimV,K,is
the canonical divisor on V, and [lJ denotes
the class represented by 1,. Moreover, Mori
has proved that (1) if K,  is not numerically
effective, e.g.,  if -K,  is ample, then V con-
tains a rational curve, and (2) if the tangent
bundle of V is +ample,  then Vis isomorphic
to the projective space  [59]. (This is called
the Hartshorne conjecture.)

S. Chow Coordinates, Hilbert Schemes

Consider an irreducible algebraic correspon-
dence T between irreducible varieties V and
W. Let V’ and W’ be the closed images of the
projections of T to V and W, and let a and c
be their dimensions, respectively. Take generic
points P, Q of V’, W’, and consider the total
transforms T{P} of P to W and T{Q} of Q
to V. Denoting the dimensions of T{ P} and
T{ Q} by b and d, respectively, we have a +
h = c + d, where both sides are equal to the
dimension of T. This property is called the
principle  of counting constants.

This simple principle has wide application.
For instance, let V be an r-dimensional variety
in P”(k), and let CjuijXj=O  (O<i<r)  be the
equations of r + 1 hyperplanes Hi. The con-
dition Vn (Ho  n n H,)  # 0 defïnes an irreduc-
ible algebraic correspondence  T between V
and the multiprojective space  W = F’“(k) x x
P”(k) with uij as coordinates: T={(x,u)\xE  V,
C uijxj = 0).  In this case, we have a = r, b =
(n - l)(r + l),  and d =0 in the notation intro-
duced previously, SO that c= n(r + l)-  1. This
implies that W’ is of codimension 1 in W;
hence W’ is detïned by a single equation F(u,)
= 0. This form F is the associated form of V of
B. L. van der Waerden and W. L. Chow. It is
a homogeneous form of degree d (d = deg( V))
in each (nio, , uiJ and is symmetric in the
indices i. More generally, for a positive cycle
X=C  n, V, of dimension r and of degree d
(=C n,deg(  V,)) in Pn(k),  the product  n Fp of
the associated forms F,  of V, is called the as-
sociated form of X. The coefficients of F,
arranged in a fïxed order and regarded as the
homogeneous coordinates of a point of a pro-
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jective space, are called the Chow coordinates
of X. This is a natural generalization of the
tPlücker  coordinates. Given r, d and a projec-
tive variety U( c P”(k)), the set of Chow coor-
dinates of the positive cycles that are con-
tained in U, whose dimension is r and whose
degree is d,  is a projective variety called a
Chow variety.

In scheme theory, the Hilbert scheme is
introduced in the following way [60]. Let Pg
be the n-dimensional projective space over
Spec  Z. For a locally Noetherian scheme S,
and for a closed subscheme 2 of P; x S,  we
have the composition of the immersion of Z
and the projection P; x S to S; this is denoted
by jz:ZdS.  For any point s of S, f;‘(s) is
a closed subscheme of P&,  and the restric-
tion of 0(l)  tofzml(s)  is denoted by L,. Put
A(S)  = {Z c Pg x S} Ifi  is flat}. Then M  be-
cornes a contravariant functor to the cate-
gory of sets, which is representable, i.e.,  there
exists a locally Noetherian scheme A4  such
that A? is naturally isomorphic to the functor
Hom( -, M). M  is written as Hilb(P2)  and
is called the Hilhert scheme. There exists a
closed subscheme W of Pg x Hilb(P;)  with flat
& such  that for any ~EM(S),  there exists a
unique cp:  S-rM  = Hilb(Pg) in such a way that
Z = W x MS.  In particular, if X is a closed sub-
scheme of Pi over a field  k, there exist SE

Hilb(Pi)  and a fïeld  extension k/k(s)  such that
X =fi’(s)  @ kcsjk.  Thus Hilb(Pi)  parametrizes
all closed subschemes of Pi.  Fix a polynomial
P and defïne A’(S)  to be {ZEM(S)IX(L~“)
= P(m) for a11 s}. A!’ is also a contravariant
functor, represented by a scheme HilbP(Pi)
which is projective over SpecZ.  The direct
sum of a11 Hilb’(Pg)  is just Hilb(Pi).

T. Algehraic Geometry and Complex Analytic
Geometry

When k = C, an algebraic variety is called a
complex  algehraic variety, and it has the struc-
ture of a tcomplex analytic manifold or (if it
has singular points) of an tanalytic space. If we
denote by Ob,, the ring of holomorphic func-
tions at a point x of V, then O,,,  c Ob,x,  and
their tcompletions coincide. If x is a simple
point of V, then 0;,, is the +ring  of convergent
power series,  and its completion is the +ring  of
formal power series.  The prime ideals  of Oy,x
remain prime under completion (M. Nagata).
Because of this, the analytic behavior of Vin a
neighborhood of x cari  be investigated alge-
braically through the completion of Lo,,,.
If Vis complete, then the analytic coher-
ent sheaves on V and the algebraic coherent
sheaves on V correspond to each other bijec-
tively; consequently, for propositions that cari
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be stated in terms of coherent  sheaves, the
results in the analytic sense remain valid in the
algebraic sense also, and vice versa (J.-P. Serre
[82]) (- 72 Complex Manifolds E).

U. Topology of Algebraic Varieties

Every algebraic variety defïned over R (or C)
cari  be triangulated by real analytic cells [46].
Let V be a nonsingular connected  algebraic
variety detïned over C. For an algebraic auto-
morphism 0 of C we cari  deiïne V” by letting
(r operate on the coefficients of the defming
equations of open affine coverings of V. V and
V” are not necessarily homeomorphic or even
of the same homotopy type [83]. Grothen-
dieck has shown that there is a +Spectral  se-
quence Eq,P=  HP( V, R$)=HP+4(  V, C), called a
Hodge spectral sequence.  This spectral se-
quence cari  be defïned in a purely algebraic
way and Hp+q(  V, C) cari  be considered as the
thypercohomology  of the de Rham complex
{ r( V, !A”),  d}  of V. If V is projective, V carries  a
Kahler  metric and by the theory of tharmonic
integrals the Hodge spectral sequence degener-
ates and EP,q  is C-isomorphic to the complex
conjugate  of Ef-”  (- 232 Kahler  Manifolds B).
This is also the case if V is complete.

The topology of a nonsingular projective
surface was studied by Lefschetz using the
method of Lefschetz pencils.  For a projective
nonsingular irreducible variety V of dimension
n delïned over C, a Lefschetz pencil  { M/;}tEPI  of
V is, by definition, a linear pencil consisting of
hyperplane sections w of V such that: (i) for
a11 t E U = Pk  - {t  1, t,, , td},  y is nonsingular;
(ii) each e, has only one singular point that is
an ordinary double point; and (iii) W,  n W,
is nonsingular, where we assume 0, CO  E LT.
Embed V into PN by a high multiple of a
hyperplane of V and take a generic  linear
pencil {H,}  of hyperplanes in PN.  Then { W,  =
Ht  fl  V} is a Lefschetz pencil of V. By blowing
up V along W, n W,  we obtain a smooth
variety v and a surjective morphism n: P+P’.
Let W=C1(0),  n,=z1z-‘(U).  R%,,Q  is a
local system attached  to the monodromy
representation ~~,:~L~(U,O)+GL(H~(W,Q)).  ‘pp
is trivial if p # n - 1. For each point ti  there
corresponds a cocycle hi  of H”-’  ( W, Q) called a
vanishing cocycle such  that if yi  is a loop based
at 0 going once (counterclockwise) around  ti,
we have, for each XE Hnml(  W, Q),  cp,(y,)(x)=
x f (x, &)&, where ( ) is the intersection
pairing of H”-‘( W, Q). <~,(y,)  is called a Picard-
Lefschetz transformation.  The main resul ts  due
to Lefschetz are restated as follows. (1) (Weak
Lefschetz theorem). The natural  homomor-
phism Hi(  V, Q)+H’(  W, Q) is an isomor-
phism for 0 d id  n - 2 and is an injection for
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i = n - 1, or equivalently Hi( I/, W, Q) = 0 for
0 < i < n  - 1. (2) (Strong Lefschetz theorem). Let
5 be the cohomology class of Hz(  V, Q) corre-
sponding to the hyperplane section W, and let
L:H*(F,Q)+H*+2(I’,Q)  be the homomor-
phism detïned by the cup product  with <.  Then
for each i < n,  L”-’ :Hi( V, Q)+H2"-i(  V, Q) is an
isomorphism. The weak Lefschetz theorem is
true for a cohomology with integral coefh-
cients.  In fact,  V-W has the homotopy type
of a real n-dimensional  tïnite  CW complex,
and n,(  V, W) = 0 for Y < n.  The strong Lefschetz
theorem is equivalent to the statement that
Hn-l(  W, Q) is the direct sum of the vector
space spanned by the vanishing cocycles hi
and the vector space spanned by the invar-
iant cocyles (i.e., cp.-i(yi)x=x,i=  1, ,d).
Lefschetz’s original proof  of this statement is
incomplete, and no direct topological proof  is
known. The transcendental proof  of (2) is
given by the theory of harmonie  integrals. A
version of Lefschetz pencils is a proper mor-
phismf:X+D={zIlzl<s}ofacomplexmani-
fold X onto  a disk D such that f* =fIf-I(D*),
D* =D - {0}, is of maximal rank at every point
off-‘@*).  Fix a point SED*.  n,(D*,s)  oper-
ates on Hj( W, Z), W =f-i(s), and we have a
representation cpj:n,(D*,s)+GL(Hj(W,Z)).
For a loop y based at s and going once around
0 the Picard-Lefschetz transformation ~~(y)  is
quasiunipotent (i.e., for a certain integer m,
<p,(y)”  is unipotent).

For a nonsingular projective variety detïned
over a field  k with characteristic p > 0, the
above Lefschetz theorems hold for an l-adic
cohomology (1#p)  [19,  30 (SGA 7)]  (- Sec-
tion AA). Using the theory of fïnite  étale cover-
ings of an algebraic variety detïned over a tïeld
k, we cari detïne the algebraic fundamental
group and the algebraic homotopy groups,
which are profïnite  completions of the topo-
logical  fundamental group and the topological
homotopy groups, respectively, where k = C
[S, 30 (SGA l)]. Let (X,x) be a germ of a
complex space with isolated singular point x.
(X,x) is always algebraizable, i.e.,  the com-
pletion d*,,  of the analytic local ring 4,, is
isomorphic to the completion of the local ring
of a closed point of an algebraic variety de-
tïned over C [3]. For topological type of al-
gebraic surfaces - Moishezon [57].

V. Hodge Theory

Let H, be a tïnite-dimensional  real vector
space containing a lattice Hz,  and let H =
H, @aC be its complexification. A Hodge
structure of weight m on H (or HR)  is, by de-
finition, a direct sum decomposion H =
@p+q=mHP34,  fiP-q~ Hq,p,  where Hp,q is a
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romplex vector subspace and the overbar de-
notes complex conjugation.  If H and H’ carry
Hodges structures of weight m  and m’, respec-
tively, then H 0 H', Hom,(H,  H'), APH,  and
H* carry Hodge structures of weight m + m’,
WI-~, pm, and -m, respectively. For a Hodge
structure H ofweight m, PH= @kzpHk,mmk,
p=o,  1 , . , m, induces  a decreasing filtration.
Let H be a Hodge structure of weight m, and
let Q be a bilinear form on H. If the follow-
ing three conditions are satistïed,  the Hodge
structure H is said to be polarized by Q.  (i) Q
is detïned over Q and is symmetric (skew-
symmetric) if m is even (odd). (ii) Q (HP,q,  HP  ,")
= 0 unless p = p’,  4 = 4’.  (iii) ( J-l>P-qQ(~,  U) >
0 for nonzero VE Hp,q.  Let V be a compact
Kahler  manifold. Then H = H"( V, C) carries
the Hodge structure induced by the type (p,  q)-
decomposition (- 232 Kahler  manifolds B).
This is also the case if V is a compact complex
manifold which is the image of a holomorphic
mapping from a compact Kahler  manifold of
the same dimension. Moreover, if Vis projec-
tive, the Hodge-Riemann bilinear relations
define a natural polarization on the subspace
P of H consisting of a11 primitive cohomology
classes.

Each algebraic cycle W of codimension
s determines a cohomology class [W] E
H2"( V, Q),  which belongs to Hsss(  V). (Such
a class is called an algebraic cycle.) The con-
verse of this fact is called the Hodge conjecture,
which says that H2s( V, Q)n H'-'(V) is spanned
by algebraic cycles. The case s = 1 has been
verified by Hodge., Lefschetz, and Kodaira.

Let V(W) be a smooth irreducible algebraic
variety detïned over C (complex manifold), and
let <p:  V-+  W be a projective smooth morphism
with connected  tïbers. Then H = R*<p,  C i s  a
flat vector bundle on W with the flat connec-
tion V. V is often called the Gauss-Manin
connection,  and it cari  be detïned algebraically
if W is also algebraic.

For each fïber V,=<p-‘(s),  SE W, the tïltra-
tion FPH"(K,  C)= @kapHk,m-k(  V,)induces a
complex subbundle FP  and the connection  V
has the property V(O(FP))  c O(Fpm’  @T*),
where T is the tangent bundle of W [26].
Moreover, if W is algebraic, V is a differential
equation with regular singular points on W
where W 1s a smooth compactification of W,
such that W - W is a divisor with normal
crossings (- Section L). If we consider the
subbundle P of H consisting of a11 primitive
cohomology classes, the polarization on each
fiber induces  a Hermitian pseudometric on
P. Curvatures of bundles P n FP  have been
studied by Griffiths [26]. There exists a classi-
fying space D for polarized Hodge structures
and there exists a holomorphic mapping of the
universal covering w of W into D, usually
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called a period mapping. D  may not be a
bounded symmetric domain  but has several
interesting properties [24,27]. In some cases
D/l- with a suitable discrete  subgroup r is the
moduli space  of polarized algebraic varieties
(e.g.,  curves,  Abelian varieties).

P. Deligne  [ 1 S] has generalized Hodge
theory to arbitrary algebraic varieties (more
generally schemes of finite  type over C). The
simplest case is the Hodge theory of a smooth
noncomplete irreducible variety X. By Na-
gata’s embedding theorem [63] there exists a
complete algebraic variety X such that Y =
X-X is a subvariety. By virtue of Hironaka’s
resolution theorem we cari assume that X
is nonsingular and that Y is a divisor with
normal crossings. Let fii(log  Y) be a sheaf
of germs of meromorphic 1-forms with loga-
rithmic pole along Y, i.e.,  locally written as
Cf=,  ~,(x)(dx,/x~)+C~=~+, u,(x)dx,,  where
(xi,  , x,,)  is a system of local coordinates with
tenter  PE Y in X such  that x xk = 0 is a local
equation of Y and ai(x), aj(x) are holomor-
phic  at p. Using the complex {Rl;(log  Y)=
A%i(log  Y), d},  with a suitable filtration,
Deligne  has shown that H = H”‘(X,  C) carries
a mixed Hodge structure and this structure is
independent of the choice of X. The mixed
Hodge structure on H consists  of two finite
filtrations, i.e.,  Oc.. c W,-, c W, c . c H, the
weight filtration which is detïned over Q,  and 0
c . cFPC  PJ+’ c . c H, the Hodge filtration
such  that FP  induces  on W,/W,_,  a Hodge
structure of weight n.  As a corollary he has
shown that a meromorphic p-form on X with
logarithmic pole along Y (i.e., a section of
R$(log Y) is d-closed on X, and w  = 0 if and
only if ~0,~ is zero in HP(X,  C). An important
application of the theory of this mixed Hodge
structure on H”(X,  C) is the following. Let
V and W be smooth irreducible varieties,
and let cp:  V+ W be a smooth projective mor-
phism. If v is a smooth compactification of
V,  the canonical homomorphism H”(V,  Q)+
Ho(  W, R”<p,Q)  is surjective. Fix a point SE

W. n, (W, s) operates on H”(  V,,  Q).  Then this
action is semisimple [ 181.

W. Deformations,  Moduli ,  Algebraic Spaces

In this section for simplicity  the field  k is as-
sumed to be algebraically closed. Let X be an
algebraic scheme over k. A (flat) deformation of
X over  a connected  scheme S over k with base
point s. consists  of the following data: (1) A
morphism p:X+S  that is flat and of finite
type. If X is complete, p is also proper. (2) A
closed point s. E S such that the liber X  x s k(s,)
is isomorphic to X. For any closed point s E S,
the liber X,=X xs k(s) is called a flat deforma-
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tion of X. If X is smooth and complete, we
assume further that p is smooth. Similarly, we
cari  define a deformation of a polarized alge-
brait  manifold, an embedding deformation
of X in an algebraic scheme Y over k, a de-
formation of an affine scheme with isolated
singular points, and a deformation of vector
bundles on a tïxed algebraic scheme over k,
etc. The theory has two aspects: local theory
and global theory.

Let (R, m) be a complete Noetherian local
ring such  that RJm  = k. Set R,  = Rjm”.  A for-
mal deformation X,  of X is a sequence {X.}
such that (i) X, is a deformation of X over
Spec(R,) and (ii) there is a compatible se-
quence of isomorphisms X, @ R,Rn-,  qX,-,
for any n. Let (FLA/k) be the category of
lïnite-dimensional  commutative local k-
algebras. The local theory of deformation is
the study of the covariant functor F of (FLA/k)
to (Set), where, for AE(FLA/~), F(A) is the set
of isomorphism classes of deformations of X
over Spec(A).  The functor is in general neither
representable nor prorepresentable (i.e., there
exists a formal deformation X,  of X such that
F(A) = Hom,.,,,(R,  A)). But, under reasonably
mild conditions on F,  F has the hull R [78].
That is, there is a formal deformation X,  of X
and a natural transformation j: G-F, where
G(A) = Hom,.,,,(R,  A), such that j is for-
mally smooth (i.e.,  for any surjection A’+ A in
(FLA/k),  G(A’)+G(A) xFca,F(A’)  is surjective)
and G(k[E])+F(k[c])  is bijective for the ring
of dual numbers k[E]. The formal deformation
X, is called a versa1  deformation of X. The
hull R is unique up to noncanonical isomor-
phism. The deformation functor F  has the hull
R if X is (i) a complete algebraic scheme over
k, (ii) an affine scheme with isolated singular
points, (iii) a polarized algebraic variety over
k, or (iv) a vector bundle on a complete alge-
brait  scheme over k, etc. If there exists a de-
formation n:X+S  of X over a scheme S
with base point s. over k such that R = 6&s,,
X, g 3 0 R,,  the formal deformation {n,  :
X,+Spec(R,)}  is called algebraizable. Alge-
braizability of the versa1  deformation has been
studied by M. Artin.  Since the assumption that
S is a scheme is rather restrictive, Artin  has
introduced the notion of algebraic spaces and
has considered algebraizability in the category
of algebraic spaces [2-41.  For a complete
algebraic variety, the versa1  deformation is not
necessarily algebraizable and we need to con-
sider deformations of polarized algebraic
varieties. The versa1 deformation of an affine
variety with an isolated singularity is alge-
braizable in the category of algebraic spaces.
For the global theory of deformations, we
need the projectivity assumption, and the
theory is essentially reduced to the theory of
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Hilbert schemes (or Chow varieties) (- Sec-
tion S). The problem of moduli is considered
as the study of the set A4 of all isomorphism
classes of deformations of X. Usually we con-
sider the moduli of polarized varieties.

Let (Sch) be the category of Noetherian
schemes and 1 a contravariant functor from
(Sch) to (Set) delïned by d(X)=  {isomor-
phism classes of families of polarized varieties
parametrized by X ~Ob(Sch),  e.g.,  families
of polarized Abelian varieties with(out) addi-
tional conditions}. The functor A  is called
a moduli functor. If it is represented by a
scheme M,  M  is called a fine moduli scheme
[60]. In this case there is the universal family
n:V+h4.  In many cases the moduli functor
is not representable. A coarse moduli scheme
for a given moduli problem is a scheme A4
together with a natural transformation d:
A+Hom(  -, M)  such that (1) &Spec(k)):
M(Spec(k))+Hom(Spec(k),  M)  is bijective for
any algebrically closed field k, and (2) for
any scheme N and any natural transformation
$ : d-Hom(  -, N), there is a unique natural
transformation 1: Hom( -, M)+Hom(  -, N)
with $ = 1. d. A coarse moduli scheme is called
a moduli space or a moduli scheme.

In many cases, the moduli space cari  be
obtained as the quotient space of a certain
(locally closed) subset H of a Hilbert scheme
by the following equivalence  relation: s-s’ EH
if and only if X,rX,.  as polarized varieties,
where n: X + H, T[  -l(s) =X,  (T. Matsusaka
[53]). This equivalence  relation is often in-
duced by an action of a treductive algebraic
group G. Suppose that a reductive algebraic
group G operates on an algebraic k-scheme Z.
A G-invariant morphism ,f: Z+  Y (i.e., for the
trivial action of G on Y, 1’ is a G-equivariant
morphism) is called a geometric quotient if (1)
fis  a surjective affine morphism andf,(oz)’
= &,  (2) if X is a G-stable closed subset of Z,
then ,f’(X)  is closed in Y, and (3) for x I, x2 E Z,
f(x,) =f(x2)  if and only if the G-orbits  of x1
and xz are the same. Let G be a reductive
algebraic group, x: G+Aut(  V) a rational rep-
resentation on a finite-dimensional  vector
space V over k, and u,,  #O a G-invariant point.
Then there exists a G-invariant homogeneous
polynomial F of degree > 1 on V such that
F(u,) # 0 (W. J. Haboush [32]). This implies
that if a reductive group G operates on an
algebraic k-affine scheme Spec(A),  then the
invariant ring A’ is a finitely generated k-
algebra and, moreover, if any G-orbit in
Spec(A)  is closed, the natural morphism
Spec(A)->Spec(A’) is a geometric quotient.
For a quasiprojective scheme Z over k with
an action of a reductive group G we need a
notion of stable points [60,62].  The subset
of stable points of Z consists  of all geometric
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points of a G-stable open subscheme Z”  of Z,
and there exists a geometric quotient ,f:  Z”%  Y
where Y is quasiprojective (Mumford [60], C.
S. Seshadri [79], Haboush [32]). In this way
Mumford has shown the existence of coarse
moduli schemes of nonsingular complete
irreducible algebraic curves and polarized
Abelian varieties. But, in general, analysis of
stable points is very  difficult and it is desirable
to extend the category of schemes SO that it
becomes easier to obtain a quotient. Matsu-
saka has introduced the notion of a Q-variety
[52]. M. Artin  has introduced the notion of an
algebraic space (D. Knutson [49]).

An algebraic space X of tïnite  type consists
of an affine  scheme U  and a closed subscheme
R c U  x U  such that (1)  R is an tequivalence
relation, and (2) the projections pi: R+U (i =
1,2)  are étale. (These are often written as R=t
U-X.)  A morphism g: V+X  of an affine
scheme V  to an algebraic space X consists  of
a closed subscheme WC U  x V  such that (1)
the projection W+  V  is étale and surjective,
and (2) the two closed subschemes R x u  W,
WxVWofUxUxVareequal.LetSsV+Y
be an algebraic space. Then Hom( Y, X) is de-
fïned as the kernel of Hom(V,  X)QHom(S,  X).
If Y is an affine  scheme, this definition of
Hom( Y, X) is equivalent to the previous defi-
nition by virtue of the étaie descent.  Thus
algebraic spaces form a category which con-
tains the category of schemes. We cari  deiïne
the structure sheaf of an algebraic space and
construct  a cohomology theory. Many impor-
tant notions and theorems for schemes cari
be generalized to those for algebraic spaces.
Every algebraic space has a dense open subset
that is an affine  scheme. A group algebraic
space is a group scheme (J. P. Murre). Suppose
k = C. If an algebraic group G operates on an
algebraic k-scheme properly with a lïnite  stabi-
lizer group, the quotient space exists as an
algebraic space. In this way H. Popp has
shown the existence of moduli spaces of alge-
brait  surfaces of general type as algebraic
spaces 170,711  (- 15 Algebraic Surfaces; also
[54]). Moreover, every separated algebraic
space X of fïnite  type over C carries  a natural
structure X”” of an analytic space. If there
exists a proper modification morphism f: X””
-t Y of a separated algebraic space X onto  an
analytic space Y, then Y carries  a structure of
an algebraic space and f becomes a morphism
of algebraic spaces (Artin  CL]). For any alge-
braically closed field k, Artin  has introduced
the notion of formal algebraic space and
formal contraction and has obtained results
similar to those for algebraic spaces [49].
An irreducible compact complex space X
whose algebraic dimension (- 72 Complex
Manifolds F) is equal to dim X is called a
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Moishezon space. As a corollary of the above
theorem, any Moishezon space X carries  a
structure M of a compact algebraic space such
that X r M”“.

X. Formal  Schemes

Let A be a ring which we assume to be Noe-
therian, for simplicity,  and 1 an ideal of A.
Taking { In}n,0 as a fundamental system of
neighborhoods of 0, we cari  introduce a struc-
ture of a topological ring into A called I-adic
topology. The tcompletion of A with I-adic  to-
pology is isomorphic to the projective limit Â
=I@l,,, A/I” (here A/I”  are regarded as dis-
crete  topological rings) and called the comple-
tion of A along  1. If A is Noetherian, then Â is
again  Noetherian. There is a canonical con-
tinuous homomorphism i: A+Â whose kernel
comprises the zero divisors a with a - 1 E 1
(intersection theorem of Krull; - 284 Noeth-
erian Rings B). If i is an isomorphism, we say
A is complete with respect to 1. The topology
of Â is the I^adic topology where Î= i(1)Â  and
Â is complete with respect to 1. Take a Noeth-
erian ring A complete with respect to 1 which
we consider as an Z-adic  topological ring by
identifying its completion along 1 with A.
On X= V(r)c  Spec(A) we cari detïne a sheaf
of topological rings 0, by I(in(f),  0,) =
@,>O A,/l”A, for &Q(f)=D(f)nx  with
fi A. We cal1 (X, 0,)  the format spectrum of A
and Write  Spf(A). 1 is called a detïning  ideal of
Spf(A). A (locally Noetherian) forma1 scheme is
by defïnition a topological local ringed space
which is locally isomorphic to a forma1  spec-
trum (of a Noetherian ring). If we detïne mor-
phisms between two formal schemes by those
in the category of topological local ringed
spaces,  the forma1 schemes form a category.

For two forma1 spectra Spf(A) and Spf(B)
with deiïning ideals 1 and J, respectively, the
direct product  Spf(A) x Spf(B) in the category
of forma1  schemes is the formal spectrum of
the completion of A @ B along the image of
! @ t? + A @ J. Similarly, we cari  construct  a
fiber product of forma1 schemes. A forma1
scheme X  is called separated if the image of the
diagonal morphism Ax: 3E+X  x X  is closed (-
Section D).

For a Noetherian ring A with an ideal 1,  the
formal spectrum Spf(Â) (with a defming ideal
0 is called the completion of Spec(A) along
P’(I). Similarly for a Noetherian scheme X and
a closed subscheme X’ we cari define the com-
pletion XlxC  of X along  X’. Every completion of
a separated scheme is separated. For a coher-
ent sheaf F on X one cari define its completion
F,,.  along  X’, which is again  coherent  (under
the assumption that X is locally Noetherian).
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Thus we cari  develop a theory of forma1
schemes in a way similar to that of schemes,
which we cal1 “formal  geometry” (for the more
general definitions and further discussions see
[2;  29,1,  III; 303). Roughly speaking, a function
on X,,. is a formal Taylor series with respect
to the direction normal to X’ whose coeffi-
cients are regular functions on X’. The method
of forma1 completion enables us to introduce
“analytic” or “intïnitesimal” methods in alge-
brait  geometry. Among many important
theorems, we state here the following two
theorems. (1) The fundamental theorem of
proper mapping: Let f: X+  Y be a proper mor-
phism of locally Noetherian schemes, Y’ a
closed subscheme of Y, and X’ = X x y Y’ the
inverse image of Y’. Denote the respective
completions of X and Y along X’ and Y’ by
X and Y, respectively. We have the induced
proper morphism of forma1 schemes j‘: 8+
Y. Then we have canonical isomorphisms,
(R”‘*(F))ly.  z R”f,(F,,.), n 2 0, for every coher-
ent, 0,-Module  F on X. This theorem cari
be applied to prove Zariski’s connectedness
theorem: for a proper morphism f: X+  Y of
locally Noetherian schemes with ,f,(Lox)  = L”,,
every Iïber f-i (y) off is connected  and non-
empty for y~  Y. (2) We use the same nota-
tion as in (1) and assume, moreover, that Y =
Spec(A)  for a Noetherian ring A, complete
with respect to an ideal 1, and Y’ = V(I). Then
the correspondence  F+F,,.  gives an equiva-
lente between the category of coherent  O,-
Modules with proper support over Y and the
category of coherent  @n-Modules  with proper
support over Y? This theorem plays an impor-
tant role in the theory of tdeformations  of
algebraic varieties.

Y. Algebraic  Vector  Bundles

In this section a vector  bundle is a locally free
sheaf of tïnite  constant rank (- Section E). A
quotient sheaf of a vector bundle is called a
quotient bundle if it is a vector bundle. A sub-
sheaf F of a vector bundle E is a subbundle
when both F and EJF  are vector bundles. A
vector bundle is said to be indecomposable
unless it is a direct sum of proper subbundles.
Every vector bundle E on P’ is a direct sum of
line bundles, that is, E g @ @(ai)  (Grothen-
dieck). This property characterizes P’ in the
category of nonsingular projective varieties. In
fact,  if X is a nonsingular projective variety
with dim X > 0 and X $ P’ and if r is an in-
teger with r > dim X, there are stable (see
below), a fortiori, indecomposable  vector
bundles on X of rank r (J. Simonis and M.
Maruyama). Vector bundles are closely related
to subschemes of the base variety. Let E be a
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vector bundle of rank 2 on a nonsingular
quasiprojective variety X and O(  1) an tample
invertible sheaf on X. For n »O and general
s~H’(x,E(n)),  E(n)/sO,gL  @ 1 with L a line
bundle and 1 an ideal in 0, which defines a
smooth subscheme Y= (s)~  of codimension 2.
When X is, for example, P” (n > 3) or affine,
the converse holds. Let Y be a subscheme of X
purely of codimension 2 and locally of com-
plete intersection. If wr g A4 @ 8, for an inver-
tible sheaf M  on X, there is a vector bundle
E of rank 2 and SEH’(X, E) with (s)~  = Y.
Moreover, E is decomposable  if and only if Y
is globally a complete intersection. An Abelian
surface cari  be embedded in P4(C),  and hence
we have an indecomposable vector bundle of
rank 2 on P4(C)  [40]. For n > 5, we have no
examples of indecomposable vector bundles of
rank 2 on P”(C) [36]. Every vector bundle on
A” = k” is trivial (D. Quillen [72], A. Suslin).
From this and the fact stated above several
results cari  be deduced; every nonsingular
curve in A3 is set-theoretically a complete
intersection (L. Szpiro).

For a vector bundle E on a complete
scheme, the following are equivalent: (i) for
every coherent  Ux-module F,  F @ S”(E) is
generated by its global sections for n»O, (ii)
for every coherent  sheaf F on X, H’(X,  F @
S”(E)) = 0 for a11 i > 0 and n » 0, (iii) the ttauto-
logical line bundle U(  1) on P(E) is ample. A
vector bundle having these properties is said
to be ample. This is a generalization of the
notion of ampleness of invertible sheaves
(- Section E). The set of ample vector bundles
is closed under several operations [34]. No
good criterion such as Nakai-Moishezon’s
for the ampleness of invertible sheaves (-
Section E) is yet  known. The tangent bundle
of a nonsingular complete variety X is ample
if and only if X g P” (- Section R; S. Mori
C591).

Let Y be a nonsingular projective variety
over an algebraically closed lïeld and 0,(  1) an
ample invertible sheaf on Y. A coherent  sheaf
E on Y is said to be stable (or, semistable) with
respect to Or(  1) if E is torsion-free and if for
every coherent  subsheaf F of E with 0 #F  #E,
X(F(m))/r(F)<(or  <)X(E(~))/~(E)  for a11 m»O,
where r(*) denotes  the rank. If E is stable (or
semistable) and locally free, it is called a stable
(resp. semistable) vector bundle. Let f:  X+S  be
a tsmooth, projective, geometrically integral
morphism and 0,( 1) an f-ample invertible
sheaf on X. For a numerical polynomial H
and an S-scheme T,  set Ctls(  T)  = {E  1 E is a
coherent  sheaf on X,  with the properties (a)
and (b)}/  - ; (a) E is T-flat, (b) for every geo-
metric fïber X,,  E, = E 1 XE  is stable with re-
spect to 8,( 1) 1 x, and X(E,(~))  = H(m), and if
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El  g E, @f;(L) with L an invertible sheaf on
T,  El  -E,. x& is a tcontravariant  functor of
the category of tlocally Noetherian S-schemes
to the category of sets. If S is of Vinite  type
over a tuniversally  Japanese ring A, C!&.  has
a coarse moduli scheme M,JH)  (- Section
W) and it is tlocally of tïnite  type over S (D.
Mumford, Seshadri, D. Gieseker, Maruyama
[23,51]). The set of the classes of semistable
sheaves under a suitable equivalence  relation
(S-equivalence) on geometric libers of X over S
also has a coarse moduli scheme MxiS(H)  and
M,,,(H) is its open subscheme. Moreover, it is
known that M,,,(H) is projective over S in
some cases, for example, when A is a field of
characteristic zero. When dimX/S= 1, X2  P*
or P3, the structures of M,,,(H) have been
extensively studied [ 11,691.  Theories of vector
bundles are used in theoretical physics [9].

Z. Torus Embeddings

Over an algebraically closed lïeld k, a torus
embedding, or a toric  variety, is a normal
scheme X locally of finite  type over k on which
an algebraic torus T acts  with a dense open
orbit  isomorphic to T.  Such X’s, as well as
many of their algebrogeometric properties, cari
be described very  simply in terms of cones in
real aflïne spaces,  as Demazure [21] lïrst  saw
in the nonsingular case in connection  with
algebraic subgroups of the Cremona trans-
formation group, and then as D. Mumford et
al. [47] as well as K. Miyake and T. Oda [67]
saw in the general case immediately after H.
Sumihiro [SS] proved a basic theorem on
linear algebraic group actions.

The group N, written additively, of one-
parameter subgroups of an r-dimensional
algebraic torus T is a free Abelian group of
rank r. A convex  rational polyhedral cane  g in
Na  = R Oz N with 0 as the vertex is the set of
nonnegative linear combinations of a fïnite
number of elements of N such that on  (-0) =
{O}. A subset r of o is called a face, and is
denoted by r < o, if there exists a linear func-
tional m on Na  having nonnegative values on
crandr={yEoIm(y)=O}.AfanAin  Naisa
collection of such 0’s satisfying the conditions
(i) Asa,  O>T~A~T  and (ii) Aso,  ~‘-a>
0 n d < d.

Each aeA gives rise  to an affine torus em-
bedding U,  as follows: Let M be the Z-module
dual to N; hence A4 is the group of tcharacters
of T.  For ~CA,  the set Mn6={m~MJm(y)>O
for a11 y~o} is seen  to be a lïnitely generated
additive subsemigroup of M containing 0
and generating M as a group. U,,  is then the
spectrum of the semigroup algebra k[M n 61.
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Thanks to the condition (ii) above, the U,‘s
cari  be naturally pasted together to produce
a torus embedding X = UgpA  U,.

Every torus embedding is obtained in this
way. Equivariant dominant morphisms be-
tween torus embeddings cari  be described in
terms of Z-linear maps between N’s which
send a fan to another.

Many  algebrogeometric properties of X cari
be described in terms of A, e.g., X is nonsin-
gular if and only if every o E A cari  be spanned
by a part of a Z-basis of N. X is complete
(proper over k) if and only if the union of 0’s in
A coincides  with N,. X has at worst cyclic
quotient singularities if and only if every 0 E A
is simplicial, i.e.,  if it is spanned by R-linearly
independent elements of N. An equivariant
resolution of singularities of X exists and is
obtained by a suitable subdivision of A (Mum-
ford et al. [47]). X has only rational singular-
ities, hence is Cohen-Macaulay (M. Hochster
[38] and Mumford et al. [47]). The set of T-
orbits in X is in one-to-one  correspondence
with OEA.  A reduced T-invariant subscheme Y
of X is the union of T-orbits,  and hence corre-
sponds to a subset C of A. M.-N. Ishida [44]
determined when Y is Cohen-Macaulay or
Gorenstein in terms of the combinatorics of z.

A T-invariant Cartier divisor D  on X cor-
responds to a support function h,  which is a
continuous  R-valued function on the union

u cEA~  which is (i) positively homogeneous,
i.e.,  h(Ây)=Âh(y)  for A>0 and YE~,,~(T,  (ii)
Z-valued on N n ( UaEb  g) and (iii) linear
when restricted to each OEA.  Various prop-
erties of the invertible sheaf 8,(D)  (- Section
E) cari  be described in terms of h.  For in-
stance, when X is complete, Q(D) is +ample  if
and only if h is upper convex,  i.e.,  h(y) + h(y’) <
h(y  + y’), and moreover, A is the coarest fan
with the property (iii) above. The cohomology
of O,(D)  cari  be calculated by means of h
(Demazure [21] and V. Danilov [ 171).

A support function h,  on the other hand,
gives rise  to a convex polyhedron in Ma  with
vertices in M.  In this way, certain aspects of
the geometry of convex sets cari  be thought of
as a part of the theory of projective varieties
(R. Stanley [87], B. Teissier [SS]).

Mumford et al. [47] introduced a more gen-
eral concept of toroidal embedding: A normal
algebraic variety Y and a nonsingular Zariski
open  subset U  such  that Y 3 U is formally
isomorphic at each point to a torus embedding
X 3 T. This concept has been used very  effec-
tively to prove important theorems: (1) Sys-
tematic nice compactitïcations of arithmetic
quotients of bounded symmetric domains  (D.
Mumford et al. [7], 1. Satake [77]). Y. Nami-
kawa [65] worked out the details in the case
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of the Siegel Upper  planes, improving their
earlier Satake compactifications studied by 1.
Satake, W. Baily,  J.-I. Igusa, and A. Bore1 [12].
(2)  Semistable  reduction  theorem (Mumford et
al. [47]). Let f: V+C  be a flat morphism from
a nonsingular variety V to a nonsingular
curve C in characteristic 0. After a tïnite  base
extension c’+ C and a modification 1/‘+
Vx,C’, we cari  get f ‘:  V’+C’ whose singular
libers are reduced with only nonsingular com-
ponents crossing normally with each other
(- Section L). Without the reducedness
requirement, the existence is derived from a
result of Hironaka [37].

AA. Etale Topology

Let Cp  be a category. We say  that a Gro-
thendieck topology on Y is given if, for each
SE Oh(S),  families of morphisms (covering
families of S) are given and satisfy the follow-
ing conditions: (1) If cp:  T+S  is an isomor-
phism, {<p  : T+S}  is a covering family, (2) if
{cpi:  QPS}~,,  is a covering family, for any
morphism VO’:  S’+S,  the tïber product  Ri =
Ri x ,S’ exists and the induced family {  <pr  :
RI+S’} is a covering family of S’, (3) if {cp,:
Ri+S}i,,  is a covering family and if for each
iEl,  {s~,~:S~,~+R~}~~~,  is a covering family,
then {<P~s~,u:S~,~~S}~~,,~~~~  is a covering
family. In general, it is more convenient  to
use a notion of sieves to detïne a Grothen-
dieck topology [30 (SGA 4)].)  A category with
Grothendieck topology is called a site. Let X
be a scheme and Et/X  the category whose
abjects consists  of schemes étale over X. If we
choose  a family of morphisms {di:  yi*  Y}i,,,
with lJiEI  &(  y)  = Y as a covering family of
Y E Ob(Et/X),  this defines the étale topology
on X and the étale site Xé,.  Similarly, one cari
define the Zariski site XZar (resp. the flat site
X,,),  using open immersions (resp. flat mor-
phisms locally of fïnite  type). A presheaf on a
site Y is a contravariant functor from Y to
(Set). A presheaf F is a sheaf if, for any cover-
ing family {4,:Ri+R}islr  F(R)+II,,,F(RJ=t
ni,js,F(Ri  x .Rj)  is exact. If Y has a final ob-
ject X, the functor FHF(X)  is left exact on
the category of Abelian sheaves on y and
the cohomology groups H. (X, F) are de-
tïned as the right derived functors. Using
covering families, one cari  define the Lech
cohomology B ‘(X,  F)  as usual. In the follow-
ing, a sheaf means an Abelian sheaf. For a
+geometric point ~:X+X of a scheme, an étale
neighborhood U of x consists  of an étale mor-
phism ,f:  U-rX  and a morphism j: x+ U such
that f oj = i. For a sheaf F on X,,, the stalk
F,  at a geometric point x is defïned by F, =
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l@ F(  U, F), U being the étale neighborhoods
of x. On X6, the sheaf G,  is defined by G,(S)=
T(S,  &)* for each SEOb(Et/X).  The kernel of
the nth power homomorphism G,3G,  is

I”denoted by pL,. The sequence l+pL,+G,,+
G,+ 1 is exact in X,, if p is prime to resid-
ual characteristics of X, but not necessarily
exact in Xzar.  There are canonical isomor-
phisms Pic(X)= Hi(Xz,,,  O$)sH1(Xe,,  G,)s
H’(X,,,  G,). For X = Spec(k),  k a tïeld,  the
étale cohomology theory of sheaves on Xé,  is
equivalent to the tGalois  cohomology theory
over k; hence #(X6,,  F)zH’(G,  Fr),  where
G  = Gal(k/k), k the tseparable  closure of k and
Fk  is the stalk of F at the geometric point Bk
of X. For a morphism f:  X + Y of schemes
and a sheaf F on Xe,,  the direct image sheaf
f,  F of F is defined by f,  F(S) = F(X x $),
s~ob(Et/Y),  and higher direct-image sheaves
Rff,F  are detïned by the right-derived functor.
Let X be a separated scheme of lïnite type
over a field k. By a theorem of Nagata [63],
there exists a scheme X proper over k and
an open immersion j: X+X.  For a torsion
sheaf F on X6,,  let j,F  be a sheaf on X6, ex-
tended by 0 outside X. The cohomology
with compact support Hc(X&,,  F) is defïned
by He(X&,,  F)=  Hq(&,j,F).  This is inde-
pendent of compactifïcations. Similarly, for a
separated morphism f:  X +S  of lïnite type of
schemes and a torsion sheaf F on Xi,, one cari
defïne higher direct image sheaf with compact
support Rql;F.  For the étale topology, torsion
sheaves are important. Al1  torsion sheaves on
Xe,  on a Noetherian scheme X are inductive
limits of constructible sheaves. A sheaf F on
Xi, is called locally  constructible (constant) if F
is represented by an étale covering of X. A
sheaf F on Xe,  is called constructible if there
exists a lïnite surjective family of subscheme Xi
of X such that the restriction of F to Xi  is
locally constructible (constant). This is equiva-
lent to saying that every irreducible closed
subscheme Z of X contains a nonempty open
subscheme U  such  that the restriction F to U
is locally constant and has fmite  stalks, i.e.,
there is a covering family {&:  Y-U}  such that
F 1 Ui is constant and the stalk F, is a finite
Abelian group for all geometric points x of U.
The cohomology of a torsion sheaf or a con-
structible sheaf has properties similar to those
of the classical cohomology. Let f:  X+S  be a
proper morphism and F a torsion sheaf on
XL,.  Then the stalk Rqf,F at a geometric
point s of S is isomorphic to Hq(X,,&,,  F),
where X,=X x s Spec  k(s). If f is a separated
morphism of lïnite type of Noetherian schemes,
a similar fact holds for the cohomology with
compact support. Moreover, if F is a con-
structible sheaf, R4f;F  is also constructible
(f initeness theorem).  For an affine  scheme X of
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finite  type over a separably closed lïeld and F
a torsion sheaf on Xe,,  one has Hq(Xe,,  F) =0
for q > dim X. Let f:  X+S  be a separated
morphism of schemes of lïnite type on C, F a
torsion sheaf on X6,.  One has a canonical
isomorphism (RqJF)““2;Rqfp”F”“.  In partic-
ular, if X is proper over C, one has Hq(X,,,
Z/(n))sHq(X”“,  Z/(n)). On the other hand,
for a nonsingular complete curve C over an
algebraically closed field, one always has
Hi(&,  Z) = 0. For a geometric point s of S
the strict localization  of S at s is the ring
4 s = lim F(  U, 0,) U being étale neighbor-
ho’ods  zf  s. A geometric point t of S is called a
generalization of s if t is detïned by an alge-
brait  closure of the residue fïeld of a point of
Spec  6&,.  In this case, s is called a special-
ization of t. If f:  X +S  is a proper smooth
morphism the sheaf Rqf,Z/(n)  is locally con-
structible (constant), and ifs is a specializa-
tion of t one cari  detïne a cospecialization of
Hq(X,,&,,  Z/(n)) to Hq(X,,é,,  Z/(n)) which is
bijective. Let X be a scheme of tïnite  type over
a tïeld  k. If I #ch(k) is prime, one cari defïne the
l-adic cohomology Hq(X,  Qi)  = lim,Hq(X,  Z/
(l”)) Oz,QI. The l-adic cohomology has as
many good properties as the classical co-
homology (- Section U).
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17 (X1.11)
Algebroidal Functions

A. General Remarks

If an analytic function S satisfies an tirreduc-
ible algebraic equation

A,(z)fk+Al(z)f’k-‘+...+Ak(Z)=O (1)

with single-valued tmeromorphic  functions
A,(z)  in a domain  G  in the complex z-plane,
then f is called a k-valued  algebroidal function
in G. With no loss of generality, we cari  as-
sume that there is no common  zero among the
A,(z)  and that a11 the Aj(z)  are tholomorphic  in
G. When k = 1, the solution of (1) is a single-
valued meromorphic function in G. If a11 the
Aj(z)  are polynomials, then ,f is an talgebraic
function. Thus algebroidal functions cari  be
regarded as extensions of single-valued to
multiple-valued functions and also as exten-
sions of algebraic to ttranscendental  functions.
Since (1) is irreducible, its discriminant D(z)
does not vanish identically. For a11 the points
a satisfying D(u)#o,  A,(a)#O,  UEG,  equation
(1) determines k holomorphic function ele-
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ments f,(z), fk(z)  in a suitable neighborhood
of a that determine the analytic function ,f:
They cari  be tprolonged  analytically in G  in
the wider sense. At any point satisfying A,(z)
= 0, at least one element has a pole; and at any
point satisfying D(z)  = 0, there may appear
ramilied  elements. Therefore an algebroidal
function cari  be delïned as a lïnitely multiple-
valued analytic function in G with the excep-
tion of poles and talgebraic  branch  points.
Every algebroidal function f(z) determines a
tRiemann  surface, which may be considered a
tcovering surface 3 of G. This surface 3 is a k-
sheeted tcovering surface over G with no sin-
gular point except for algebraic branch  points.
Also, f reduces to a single-valued  meromor-
phic  function on 3, and a11 the function ele-
ments over a point z are different. A k-valued
algebroidal function cari  also be characterized
by  th i s  p rope r ty .

These two (equivalent) delïnitions of alge-
broidal functions give rise  to two distinct
methods of studying these functions. In adopt-
ing the tïrst  definition, we cari  make use of
results in the single-valued case, as did G.
Rémoundos and G. Valiron. When the lat-
ter definition is adopted, we cari  use several
methods that are also applicable in the single-
valued case, as did H. Selberg and E. Ullrich.

Research on algebroidal functions has been
carried  out mainly for the case where G is the
lïnite  plane ]zl< CO  or the unit disk (z(  < 1.
Almost a11 the known results for algebroidal
functions are extensions of those on single-
valued functions, but several results particu-
larly relevant to algebroidal functions have
been discovered. The existence of branch
points makes it difficult to investigate alge-
broidal functions in some cases.

B. Absolute  Value

Among several results on the absolute values
of algebroidal functions, the tmaximum  prin-
ciple,  one of the basic principles,  holds on the
Riemann surface 3. The following relation
holds among the Aj(z)  and lf,(z)l.  Assume that
(1) has the form

fk+‘4,(z)fk-1+...+Ak(Z)=0. (1')
Then log( 1 + A(z))/log( 1 + F(z)) is bounded,
where A(z)=maxIAj(z)]  and F(z)=maxIfv(z)l.

An algebroidal function that has no pole
in 1 z I< cc is called an entire  algebroidal func-
tion. The successive derivatives of an entire
algebroidal function may have poles at every
branch  point, which is a departure from the
case of single-valued integral functions. An
algebroidal function delïned by (1) or (1’) with
entire functions Aj(z)  and zero-free ,4,,(z) is
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entire. Dividing both sides of (1) by A,(z), we
obtain equation (l’),  and all its coefficients are
entire. In equation (1’) the +order,  type, and
class  of an entire algebroidal function coincide
with those of the largest Aj(z)  (- 429 Tran-
scendental Entire Functions).

For an entire algebroidal function of order
less than 1/2, F(z) tends to infïnity  uniformly
along a sequence of concentric circles (zj  =r,
(rn+  CO).  However, it cari be shown that not
a11 the branches of ,f(z)  necessarily tend to in-
fmity  on the Riemann surface 3; in this sense,
+Wiman’s  theorem does not remain true. But,
using min,,,,,max,lfY(z)l,  one cari  obtain some
extensions of the generalized  Wiman theorem.

C. Picard%  Tbeorem and Its  Extension

Rémoundos tïrst  extended +Picard’s  theorem
and +Borel’s  theorem to an algebroidal func-
tion. Every k-valued transcendental alge-
broidal function in the fïnite  plane takes on
every value inlïnitely often with at most 2k
exceptional values. There are examples where
2k values are actually  omitted. Hence the
theorem is the best one possible in this sense.
T. Varopoulos (Bull. Soc. Math. France, 53
(1925),  23-34) introduced the degeneracy index

A=dim{(c,,ci  ,..., c,)ECk”IcgAo+clA1+...

+c,A,=O}

(06  i < k - 1) into equation (1) and showed
that the number of Picard’s exceptional values
off is at most k + 1+  1. There is no single-
valued meromorphic function with A > 0, SO

this result is relevant only for algebroidal
functions. Extending this idea further, J. Du-
fresnoy and others obtained more precise
results. The situation is the same for the Bore1
exceptional values. That is, the +Convergence
exponent of f(z) - w = 0 coincides  with the
+order  off except for at mcst 2k values, for
which the convergence exponents off are
less than the order off (E. Borel).  There are
at most 2k polynomials P(z) for which f(z) -
P(z) = 0 has at most a finite  number of roots
(Borel),  and furthermore, using the degeneracy
index, we cari  give more precise  results.

Selberg was the lïrst  to extend the +Nevan-
linna theory of meromorphic functions to
algebroidal functions (- 272 Meromorphic
Functions). Almost simultaneously, Valiron
obtained the same results starting from the
coefficients of (1); then Ullrich  improved the
results by considering the effect  of branch
points of 3.

Let 3, be the part of 3 over Izl< r, let n(r, w)
be the number of roots of f(z) - w = 0 in &,
and let n(r, 3) be the number of branch  points

9 0

of 3,.  With these notations we Write

N(r.w)=i  r(n(t,w)-n(O,w))T+k
J

d t  n(O,w)
log r,

0

N-,  w)

1

=-J

1

2kn  ,z,=r ‘Og+ If(reiv)-wl dq, wfm,

T(r,  w) = m(r, w) + N(r,  w).

Let T(r,f)  be the tlogarithmic  integral of the
spherical area of the image of 3, under w =
f(Z)>

1 ‘dt
T(r,I) =i o fJ SS 1 f ‘(te”P)12.j,U  +If(te’“N*)* t dt d<p,

and let N(r,  3)  be the logarithmic integral of
n(r, 3). Then we have T(r,  w) = T(r,f)  + O(1)
and the ramification theorem:

N(r,  3)  <W  - 2)  W,.f) + O(1).

Also, T(r,f)=  O(logr) holds if and only if f is
algebraic.  Let .4(z) be the maximum of IAj(z)l,
and let

Ar)=& J 277

logA(rei’P)dqx
0

Then T(r,  f) = p(r) + 0( 1). As the second funda-
mental theorem we have

il N(r,w,)>(q-2)T(r,f)-N(r,3)

+ f N1  (r, wy)  + O(logrT)
v=1

> (4 - 24  W, .f)

+ 2 N,(r,w,)+O(logrT),
“=l

where N, (r,  w) is the logarithmic integral of
n,(r,  w) which is the sum of the tmultiplicity
minus one of a11 the roots of f(x) - w = 0 in 3,.
Furthermore,  the defic iency,  ramif icat ion index
of f(z), and ramification index of the surface 3
are defmed by

6(w)= 1 -limsupN(r,  w)/T(r,f)

=liminfm(r,  w)/T(r,f),

a(w)  = liminfN,(r,  w)/T(r,f),

[=liminfN(r,3)/T(r,f).

With these notations, we have

C6(w,)+CD(w,)<2+i;<2k.

These results contain  the Picard theorem
and the Bore1  theorem. Furthermore, by con-
sidering the effect  of branch  points, the Ahlfors
theory of covering surfaces cari  be extended to
algebroidal functions (Y. Tumura). By using
this result,  +Bloch’s  theorem cari  be obtained
very s imply .
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But these results do not contain  the Varo-
poulos result. Taking into consideration  the
degeneracy index 1,  H. Cartan  proved the
following inequality when A=  0:

(4 - k - 1)  W, f) < Vi,  &Jr,  w,) + S(r),

and for general 3,  he conjectured  that the
number q-k - 1 may be changed  to the num-
ber q-k-Â - 1. This conjecture is still un-
solved except for some special cases where for
example, q = k + n + 2 (N. Toda, Nayoya  Math.
J.,  91 (1983),  37-47).

Interesting results follow upon a study of
this degeneracy index. For example, when f is
an entire algebroidal function, if c$;’  6(w,)
> 2k - 2 (w, # CU),  there are at least k - 1
+Picards exceptional values in {wy}  (Niino,
Ozawa, and Toda).

With respect to the relation between the
number of exceptional values and the order of
fin IzI  < co, there are some results similar to
those for single-valued functions. For example,
if f has k + 1 Picards exceptional values, the
order off must be a positive integer or CO.

D. Asymptotic Values and Other Results

In the single-valued case, Valiron, L. Ahlfors,
W. H. J. Fuchs, A. Edrei, W. K. Hayman, and
others studied the +Bore1  direction, the number
of tasymptotic  values, the relation between the
defïciency values and the asymptotic values,
etc. However, almost none of the correspond-
ing results holds for the algebroidal case as
shown by several counterexamples.

There is no relationship between the order
of an entire algebroidal function and the num-
ber of its tïnite  tasymptotic values, which is
quite  different from the single-valued case.
Furthermore, it is possible to have an infinite
number of asymptotic values even if the order
is equal to zero. If an algebroidal function f
satisfies  lim inf T(r,  ,f)/(log r)* < + CO, then it
has at most k asymptotic values (Valiron-
Tumura). The Ahlfors theorem, which is con-
cerned with the number of tdirect  transcen-
dental singular points of the inverse function
and the order of a meromorphic function in
the single-valued case, was extended to the
algebroidal function by Lü Yinian (Scientia
Sinica, 23 (1980)).

The +Julia  direction or the Bore1  direction
for an algebroidal function is defined not on 3
but on IzI  < cc because of the appearance of
branch  points. With respect to the Julia direc-
tion, there are results similar to those for the
single-valued case, but it is unknown in gen-
eral whether the Bore1 direction exists. A.
Rauch proved that if j”  T(r,f),W1  dr = 90,

then there is a sector with an angle of at least
n/p in which L(cp)=J”log+F(re’@‘)/rP+‘dr
diverges. Apart from the theory of distribution
of values, Selberg obtained some conditions
under which the inverse functions of +Abelian
integrals of a special kind reduce to alge-
broidal functions.
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Almost Periodic Functions

A. History

The theory of almost periodic functions was
originated by H. Bohr in 1924 as a result of his
study of +Dirichlet series.  The theory provides
a method of studying a wide class  of trig-
onometric series (- 159 Fourier Series)  of
general type. Further generalizations were
made by N. Wiener, V. V. Stepanov, A. S.
Besikovich, S. Bochner, and others. H. Weyl,
J. von Neumann, and others clarified the rela-
tions between this theory and trepresentation
of groups, specifically, the relations between
almost periodic functions in a ttopological
group and representation theory of a +Compact
group.

B. Almost Periodic Functions in the Sense of
Bohr

Let f(x) be a complex-valued continuous
function defined for a11 real values of x. A
number T is called a translation numher of f(x)
belonging to E > 0 if

sup  If(x+4-f(x)I<.5
-m<x<sx

If for any E > 0 there exists a number 1(a)  > 0
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such that any interval of length QE)  contains a
translation number off belonging to E, then
f(x) is called almost periodic in the sense of
Bohr. We denote by B the set of a11 almost
periodic functions in the sense of Bohr.

If f(x) is tperiodic with a period p, then
fi B, because each number 12 p plays the role
of I(E)  for any E > 0. Any  f E B is bounded and
uniformly continuous. A necessary and suffi-
tient  condition for a bounded continuous
function on (-co, CO) to belong to B is that for
any given sequence {h,}  of real numbers, there
exist a subsequence {h,“}  such  that the se-
quence of functions { f(x + h,“)} is uniformly
convergent in (-CO,  CO);  i.e.,  the set { f(x+
h) 1 h~( -CU,  co)}  is ttotally bounded with re-
spect to the uniform norm 11 f 11 =sup  1 f(x)1  in
the space of bounded continuous functions in
t-m,  ml.

If f(x) E B, then f( -x), f(x),  af  (x) (where
CI is a complex number), and f(x + h) (where
h is a real number)EB.  If f(x), g(x)EB, then
f(x)kg(x) and ,f(xMx)sB.  Iff,(x)EB  and
{,f,(x)}  converges uniformly to f(x), then f(x)
EB. For any real number A, expiix  (where
i is the timaginary  unit) is continuous and
periodic. Hence the polynomial function
Cr=i  CI,  exp iÂ,x  E B. Moreover, if the latter
function converges uniformly to C cc,exp ii,x
as m tends to ~3, then the limit function
is also an element of B. The polynomial
Zn=  1 c(,  exp iÂ,x  and the series xz,  51, exp il,x
are called a generalized trigonometric poly-
nomial and a generalized trigonometric series,
respectively.

For any f EB,  its mean  exists:

M[f]=  lim L
JT-mT L? f(x) dx.

The convergence of the right-hand formula
is uniform in a~(  -cû, CO),  and the limit is
independent of the choice of a. Thus M[f]
is a tlinear  functional defined on B. Since
M[expinx]=  1 for Â=O  and =0 for AfO, the
family {exp ilx 1 -CO  <A  < CO} is an tortho-
normal system with respect to the tinner prod-
uct (Lg)=M[f(x)g(x)]  delïned on B. Let
E(J)  = M  [ f (x)exp( - iÂx)]  for any f E B; then
there exist countably many values of Â  for
which ~(1~)  differs from zero. Denote these
values of 3,  by A,,  J.z,  . and Write  ~(1,)  =
z,.  We cal1 the numbers x1,  CQ,  , c(,, the
Fourier  coeff ic ients  of f(x). The forma1 series
Zz,  c(,  exp L$x is called the Fourier series
of f(x).  Moreover,  the Parseval  equality
M[lf(x)12]=~~,I~,I’isvalidforanyf~B.
For every periodic function, these definitions
coincide  with the ordinary Fourier coefficients
and the Fourier series (- 159 Fourier Series).
Any  almost periodic function in the sense of
Bohr is uniquely determined by its Fourier
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coefficients; i.e.,  if two almost periodic func-
tions have the same Fourier series,  then they
are identical. For any f E B, its Fourier series
does not always converge uniformly, but
f(x) E B cari  be approximated uniformly by a
sequence of trigonometric polynomials. Hence
the almost periodic functions in the sense of
Bohr are also called uniformly almost periodic
functions.

C. Generalizations of Almost Periodic
Functions

Let C( -CO,  CO) be the space (- 168 Func-
tion Spaces)  of a11 bounded continuous func-
tions on (-CO,  CO) with distance p(,f,  g) =
SU~~~<~<~  If(x)-g(x)\. Then a uniformly
almost periodic function is the limit of a se-
quence of trigonometric polynomials with
respect to this distance. Generally, let p be a
tdistance function introduced in a function
space (whose elements are not necessarily
continuous in (-CO,  KJ)).  Then the limit of a
sequence of generalized trigonometric poly-
nomials with respect to the distance p is called
an almost periodic function with respect to p.
For example, for p > 1, we set

{S

Cl+1
Dsdf;  SI = sup If(x)-g(x)P’dx  >-m<llcw  a 1

l/P

4vPC.L  SI =

lim sup f
a+1 UP

If(x)-g(x)P’dx1-m  -m<o<m iS<I 1

These are distance functions. The properties of
the corresponding almost periodic functions
and their relations to other classes of almost
periodic functions have been studied by Besi-
kovich [ 11.

D. Analytic Almost Periodic Functions

Let D be a strip domain,  a < Re z < b, delïned
in a complex plane. For any tholomorphic
function f(z) in D and E  > 0, a real number z is
called a translation number off belonging to
E>O  if s~p,,~If(z+iz)-f(z)/  <E.  If for any E>
0 there exists a number l(~)  > 0 such that any
interval of length 1(s)  contains  a translation
number off belonging to E, then f(x) is called
an analytic almost periodic function in D.  We
denote the set of a11 analytic almost periodic
functions in D  = {a < Rez < b} by A(a,  b). If we
tïx an x in a < x < b, then g(y) = f (x + iy) for
any f(z)EA(a,  b) belongs to B.

For any feA(a,  b) there corresponds a
+Dirichlet series C:i  CI,,  exp 3,,z  such that two
analytic almost periodic functions are identi-
cal if the corresponding Dirichlet series are
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identical. Here the coefficients

z,  = M,  [f(x  + iy)  exp(  - ii, y)]

are determined independently of x (a <x  <b),
and Parseval’s identity

holds (Bohr [3]). If the series

1 cc, exp 1,x exp &y

at x = a and x = b represent the Fourier series
off:(y)  and fh(y)~B, respectively, then there
exists ~EA(U, b) such that f(z) is continuous on
D and

The behavior of ~EA(U, b) at the boundary or
exterior points of the domain  D  = {a  < Re z <
b} has also been investigated by Besikovich
111.

E. Almost Periodic Functions on Groups

Von Neumann detïned almost periodic func-
tions on any group, generalizing the charac-
terization of uniformly almost periodic func-
tions on (-CO,  CO).  Let B(G) be the set of a11
complex-valued bounded functions on a group
G. Then B(G) is a metric space with the +dis-
tance p(f,g)=sup,,GIf(x)-g(x)t.  If for  any
feB(G)  the set A,= {,f,,b(~)=f(uxb)~a,b~G}
is totally bounded in the metric space B(G), we
cal1 f an almost periodic function on the group
G. This condition is equivalent to the total
boundedness of Br  = {h(x)  =f(xa) 1 a~ G} or
C,=  {J(x)=~(ax)la~G}.  We denote the set
of almost periodic functions on G by J&‘(G).

For f(x), ~(X)E.&‘(G),  the linear combina-
tions U.~(X)+  b.g(x)  (a, bEC) and the prod-
uct f(x)g(x)  are both contained  in d(G).  If
f,  E col(G) and { ,f,}  converges to ,f uniformly on
G, then f~d(G). Iffc.ti(G),  then f,,b,f,,J~
d(G) also.  Hence JJZ(G)  is a closed subalgebra
invariant under two-sided translation in the
+Banach  algebra i?(G). For any f~d(G)  there
exists only one number M[,f]  in the closure
(with respect to the distance p in B(G)) of

A;={~~i,~(uixbi)lci>~,Z<:i=l;oi,b,~G}

(= the least closed tconvex set including A,).
We cal1 M[S]  the mean  off on G. The map-
ping f-M[,f]  is a linear functional on d(G),
and we have M[f]>O  iff>O.

F. Relation to Bounded Representation

Suppose that we are given a finite-dimensional
matrix representation D(x) = (d,(x)) of a group
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G. Then the following three conditions are
equivalent: (i) Al1  the d,j(x) are bounded on G.
(ii) Al1  the d,(x) are almost periodic in G. (iii)
The representation D  is tequivalent  to a repre-
sentation by unitary matrices. The inner prod-
uct (J g) = M[,f(x)g(x)]  provides the algebra
d(G)  with the structure of a +pre-Hilbert
space. Let H(G) be the Hilbert space that is the
completion of .d(G).  If we Select  D”(x) = (dû(x))
from each L, where L is an equivalence class  of
bounded irreducible representations of G, and
if n, is the order of D”, then { (l/&)di(x)  11  Q
i, j < n,, n E L} is a tcomplete  orthonormal sys-
tem in the Hilbert space H(G). Any  f(x) E
J&‘(G)  cari  be approximated uniformly in G
by a tïnite  linear combination of the d,(x).

G. Almost Periodic Functions on Topological
Groups

When G is a tseparated topological group, we
denote the set of a11 continuous functions on G
contained  in d(G)  by d,(G).  The statements
of the theorems in the previous section con-
cerning d(G)  and the representation D  remain
valid if we replace d(G)  by d,(G) and replace
D  by a continuous representation of G. In
particular, if G is the additive group of real
numbers R, then d,(R) is exactly B.

H. Relation to Compact Groups

Every continuous function on a compact
group G is almost periodic; i.e.,  J&‘,(G)  = C(G).
The mean value M[f]  offg,d,(G)  is identical
to lcf(x)dx,  where the +Haar  measure dx is
normalized SO that s,dx= 1. In this case, the
theory of bounded representations discussed
above is the Peter-Weyl theory (- 69 Com-
pact Groups).

In general, let G be a separated topological
group. There exists a continuous homomor-
phism cp  of G onto  a compact group K = K(G)
with the following two properties: (i) For any
compact group K’ and a continuous homo-
morphism Q’: G-K’,  there exists a continuous
homomorphism $ : K j K’ such that cp’= $ o
<p.  (ii) Such a pair K =(K, <p)  is unique up to
isomorphism. K is called the Bohr compactifi-
cation  of G, and <p  is called the canonical map-
ping. In particular, suppose that G is a locally
compact Abelian group and G* is its tcharac-
ter group. We denote by G’  the group G* with
discrete  topology. Let K be the character
group of G’, and let q* be the identity map-
ping G’-G*  and cp  be its conjugate  mapping
G-K,  which is a continuous homomorphism.
Then K is the Bohr compactifïcation of G
with the canonical mapping cp.  A necessary
and suftïcient condition for f on G to be con-
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tinuous almost periodic is that a continuous
function f’ on K such that f = f ‘o cp  must
exist. If this condition is satished, then the
mean M  [f] is identical to jKf’(x)  dx. For
any fïnite-dimensional continuous unitary
representation LY of K,  D  = D’O cp is a fïnite-
dimensional continuous unitary represen-
tation of G,  and vice versa. Hence there exists
a canonical isomorphism (determined by D  =
D’O <p)  between the equivalence classes of
lïnite-dimensional  unitary representations
of a separated topological group G and the
equivalence classes of finite-dimensional  uni-
tary representations of its Bohr compactilïca-
tion K. The tkernel of the canonical mapping
cp:  G-K  is identical to the intersection of all
the kernels of fïnite-dimensional continuous
unitary representations of G.

1. Maximally Almost Periodic Croups

Let G be a topological group. If for each pair
a, b of distinct elements of G there exists a
continuous almost periodic function f on G
such that f(a) #f(b), then G is called a maxi-
mally almost periodic group. This is the case
if and only if G has suflïciently many tïnite-
dimensional unitary representations. For a
connected  locally compact group G, the fol-
lowing six conditions are equivalent: (1) G is a
maximally almost periodic group. (2) There is
a one-to-one  continuous homomorphism from
G into a compact group. (3) G is the direct
product  of a compact group and a vector
group R”. (4) G is the tprojective limit of +Lie
groups that are locally isomorphic to compact
groups. (5) The quotient group G/Z is com-
pact, where Z is the tenter  of G. (6) The system
of a11 neighborhoods that are invariant under
the +inner  automorphisms constitutes a basis
for the neighborhood system of the unit [7].

Moreover, any discrete free group is maxi-
mally almost periodic. If there is no continu-
ous  almost periodic function except constant
functions, the topological group is called
minimal ly  a lmost  periodic .  Any  noncompact
connected  +Simple  Lie group is minimally
almost periodic.
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Analog Computation

A. History

The term analog computation  is a generic  term
describing various techniques of computa-
tion employing diagrams, or physical systems
whose equations are similar to the mathemat-
ical problems in question. The history of ana-
log computation  is probably as old as that of
digital computation;  for example, the ancient
Greeks tried to solve cubic equations using
diagrams, and the astrolabe widely used by
astronomers through the medieval period is
also a kind of analog computer. Soon after
the discovery of logarithms, the slide rule  was
invented. In the 18th Century, the planimeter,
used to measure plane areas, was introduced,
and in the 19th Century, the nomogram ap-
peared (- Section D). In the tïrst  half of 20th
Century, a large electronic analog computer
was developed, thus predating the lïrst prac-
tical digital computer.

However, analog computation  has an essen-
tial defect, namely, the limitation of accuracy.
Today it is useful for simple calculation, but is
rapidly becoming less important as the devel-
opment of digital computers,  including pocket
calculators, advances.

B. Graphical Calculation

Graphical calculation is a method of compu-
tation by means of geometric constructions
using common  drawing tools. Some typical
examples of practical graphical calculation are
the following: evaluation of linear functions of
several variables (J. Massau, 1887),  of systems
of linear equations (F. J. van den Berg, 1888)
of polynomials (J. A. Segner, 1761),  of alge-
brait  equations (Lill, 1867),  graphical integra-
tion, graphical differentiation,  and the solu-
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tion of ordinary differential equations of the
first  order (J. Massau,  1878),  of linear differ-
ential equations (Czuber),  and of ordinary
differential equations of the second order
(Lord Kelvin, 1892).

Using bisquare-root graph paper, sold
under the names  of binomial probability
paper or stochastic paper; we cari  handle IF-
distributions or other probability distributions
reducible to F-distributions, such  as binomial
or normal distributions, to a fairly good de-
gree of approximation. This grapbical method
of statistical inference  is, even now, a powerful
method of statistical quality control.

C. Graphical Mechanics

Graphical mechanics is the graphical treatment
of mechanical problems, especially problems of
equilibrium. In this method, the fundamental
constructions are the composition and reso-
lution of forces by means offorce  polygons
(Fig. 1). This method is also applicable to
problems in dynamics when they cari  be re-
duced to problems of equilibrium by means of
d’Alembert’s  principle.

(4)O

I
<FJ/

o...,  In o.,,,,,,,,t,,  /, , ,2 kg
lengths forces

I (a)I (b)

Fig. 1
An example of the graphical method of constructing
the composite and the line of action of three given
forces F2  Fz,  and F3.  In the force polygon in (b), the
vector  03 represents the composite R. On the link
polygon in (a), the point d is a point on the line of
action of the force. If the fourth force F4  has the
same  magnitude as R with opposite direction, both
polygons  are closed,  and the four forces FI,  F2,  F3,
and F4  are in equilibrium.

Graphical mechanics is most convenient
when applied to problems reducible to 2-
dimensional structural mechanics. But we cari
also use it for 3-dimensional  problems if we
work on projections, e.g.,  on the plan and the
elevation, of the original body. In recent  years,
however, the amount of work involved in
geometric construction has been deemed non-
negligible, and the technique of computer

graphies  is now considered to be much more
convenient. Here the computation  is done by a
digital computer, and the result is displayed in
a convenient  graphical form.

D. Nomograms

Nomograms are charts in which we cari  easily
read off the corresponding value u, from given
values u,,  , u,-~ when there is a relation
F(u ,>“‘, UJ  = 0 among n real variables u, ,
. . . . u,. The construction of nomograms has
been thoroughly investigated by M. d’ocagne
cv.

A function of two variables F(u,,  u2) = 0 cari
be represented by a two-sided scale  or by func-
tional  paper. The most useful  nomograms are
those for functions of three variables, F(u,,
uî, u3) = 0. Changing this into ,fi(x,  y, ui)  = 0
(i = 1,2,3) and drawing the curves L(x,  y, ui) = 0
for lïxed values of uir  we have an intersection
chart,  where three curves for the correspond-
ing values ul, ul, u3  meet at a point. In prac-
tice,  however, it is much more convenient  to
use the alignment chart, which is a dual of the
intersection chart.  It is especially useful when
the relation F(u,,  u2, UJ  = 0 cari  be decom-
posed into an equation of the form

.A(%)  Y2W  h204  =@ (1)
.L(%) Y3W  h,(u,)

Putting xi =fi/hi,  yi  = gi/hi  (i = 1,2,3) and
drawing the curves (xi, yi)  with the parameter
ui  scaled on it (u,-scaled),  the corresponding
values ul, u2, and u3  satisfying relation (1) lie
on a straight line (Fig. 2). Using this property
we cari  easily read off the corresponding values
(by laying down a ruler). In the strict sense, the
term “nomogram” usually refers specifically to
an alignment chart.

Fig. 2

For four or more variables, we cari  apply
similar techniques if the function is separable
into functions of three variables. If it is not
separable, we cari  sometimes apply such tech-
niques such  as two-functional scales with
functional networks, cocircular charts, co-
planar charts, or moving charts. Using func-
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tional approximations, an approximate nom-
ogram has recently been constructed with
errors considered to be admissible in practical
use.

Historically, the origin of Hilbert’s 13th
problem, which asks if it is possible to rep-
resent a function of many variables as the
composite of functions of two variables,
cornes from a study of nomograms with many
variables.

E. Analog Computers

The analog computer is a special purpose
machine designed for a specifïed  analog com-
putation. In a wider sense it includes  special
devices that perform tanalog  simulation. The
following mechanical devices are well known:
the pantograph for copying plans, the harmonie
analyzer for obtaining the Fourier expansion
of a periodic function, and V. Bush’s differen-
tial analyzer. Since about  1940 large electronic
analog computers  for solving differential equa-
tions have been extensively developed.

Analog computers have up to recently had
the advantages of ease of construction, sim-
plicity,  and inexpensive operation, and they
were also considered to be fast enough for use
in real-time computation.  TO compensate for
the limitations of analog computers in com-
parison to digital ones,  several hyhrid com-
puters have also been used. However, with
the rapid progress of digital computers and
digital-analog converters, the analog com-
puters are now considered less important than
in the past.

F. Curve Fitting

Curve fïtting  is a method of tïnding a sim-
ple curve y =f(x) supplying the best possible
approximation to the values y,, y,, for
discrete  values x, , x2, of the independent
variable. A polynomial passing through a11 the
given points is constructed by means of tinter-
polation. For experimental data we usually
construct  a curve by using methods, such as
the tmethod of least squares, that take the
errors due to observation into account.

A function constructed to best fit the ob-
served values of the function y =f(x) express-
ing some physical law is called an empirical
formula, in contrast  to the theoretical formula.
Usually, we first assume that the function
contains several empirical constants, which are
then determined to fit the experimental data.

The most common  case is a linear approx-
imation (using a linear function) with a suit-
able change of variables. Semilogarithmic
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paper, logarithmic paper, or probability paper
are used to facilitate transformations in terms
of logarithms or normal distributions.

We also frequently use polynomials or trig-
onometric polynomials of lower degree. TO

determine the empirical constants the follow-
ing methods are used: the graphing method,
the selection of certain points, the mean value
method, or the method of least squares.

G. Orthogonal  Polynomials

Let there be given the values y,,~,,  , y,-,  for
discrete  values x = 0, 1, . , n - 1 with equal
differences.  A polynomial f(x) of degree k (<n)
that minimizes the sum of the squares G,(n) =
C(y,-f(m))*  is given by

n-1

n-1

and we have G,(n)=c,ym-~~=,a~S,(n).
Here the function qJn, x), called a Chebyshev
q-function, is defïned by

In practical applications, it is better to replace
qv(n, x) by the function

4Xn,  .4=4v(nrxY-Y~!  M,(n),

where M,(n) is the greatest common  divisor of

(“;)y--mm)  (m=O,l,..., v ) .

Thevaluesq~(n,m)(m=O,l,...,n-l)aremu-
tually coprime integers. The function q:(n, m)
is called the simplest Chebyshev q-function  or
simplest orthogonal polynomial, and is some-
times denoted by X,,,(x), <k,,(x),  or C~,,,(X).

When two functions satisfy the condition

they are called orthogonal for a fïnite  sum. If
from 1,x,x2 , . . . , xv we construct  a system
orthogonal with respect to this detïnition, then
we have the polynomial

which has the following connection  with q,:

qv@, 4

=((-l)“(n-  l)!/L’(n-v-  l)!)P,,,-,(x).



97

The polynomial P”,+(x)  is called a Chebyshev
orthogonal  polynomial  or sometimes simply an
orthogonal  polynomial .  The polynomials  PV,“(x)
are orthogonal for the finite  sum. If n+ cc and
0 $x d 1, the function PYJx)  tends to P,(  l-
2x), where P, is the tlegendre  polynomial.
These functions may be conveniently used in
least-squares curve fitting.
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Analysis

The origin of analysis cari  be traced back to
the time when Eudoxus (4th Century  B.C.) and
Archimedes (3rd Century  B.c.)  devised the so-
called method of exhaustion for calculating
the area  of a plane figure and the volume of a
solid. Their abjects of investigation were re-
stricted, however, to particular types of figures
or solids. In the 16th and 17th centuries, F.
Viète, J. Kepler, and B. Cavalieri again  took
up this problem. In the 17th Century, the prob-
lem of drawing a tangent to a given curve
was studied by R. Descartes, P. de Fermat,
B. Pascal, and J. Wallis. Fermat,  in particular,
applied the result to fïnd  the maxima and
minima of certain functions. It is worth noting
that a certain type of mathematics powerful
enough to produce similar results was inde-
pendently developed in Japan around  that
time. In 1684, G. Leibniz in Germany intro-
duced the symbols dx and dy in treating the
same problem. He proved that dy/dx  repre-
sents the slope  of the tangent to the curve at
a given point and discovered a new operation
to calculate it. In 1686, he established the “in-
verse tangent method,” which is what we now
cal1 integral calculus. He also introduced the
notation j. On the other hand, 1. Newton in
England  developed his “method of fluxions,”
corresponding to our differential and integral
calculus, from the viewpoint of mechanics. But
neither Leibniz nor Newton formulated the
fundamental concepts rigorously, and there-
fore they were criticized severely by many
contemporary scholars. The new calculus
gained ground in Great Britain rather slowly.
B. Taylor in England  and C. MacLaurin  in
Scotland demonstrated its usefulness in 1715
and in 1745, respectively. On the continent,
however, Leibniz’s symbolic calculus  was
taken up by mathematicians of the Bernoulli
family, G. F. A. de I’Hôpital,  G. Fagnano, and
many others; with it, they solved many scien-
titïc problems which until then had remained
intractable.  This motivated subsequent re-
searchers to pose new problems in the form of
differential equations.

One of these problems, treated by J. le
Rond d’Alembert in relation to the vibration
of a chord, concerns  the tpartial  differential
equation

d2yjat2=a2a2yJaX2 (1)
for y = y(t,  x) with the boundary conditions
y = 0 for x = 0 and x = 1. He obtained the solu-
tion y=f(at+x)-f(at-x), where f is an
arbitrary function of period 21. In 1753, D.



20
Analysis

Bernoulli showed that solutions of equation
(1) are given by functions of the form

n

y=-+  1
knx knx

2
a,cos-+b,sin-

1 >k=l 1

These two kinds of solutions gave rise  to the
question of whether an arbitrary function cari
be expressed by a ttrigonometric  series.  This
problem was studied by A. C. Clairaut, J. L.
Lagrange, and L. Euler. In 1807, J. Fourier in
France, in treating a problem on the conduc-
tion of heat, claimed that an arbitrary function
of period 27~ cari  be expressed as

y=$+  5 (a,coskx+b,sinkx),
k=l

where the coefficients uk and bk are given by

ak=-I,
1

;  f(x)coskxdx,
I

b,=k
s

n f(x)sinkxdx.
x

(3)

This series is now called the +Fourier  series,
but Fourier never verilïed the fact that the
series (2) with coefftcients  (3) converges and
represents f(x). It was only as late  as 1820 that
A. L. Cauchy in France tïrst  noted that to
treat a series properly, one must examine its
convergence.

In the 19th Century, the concept of tfunc-
tions, which had been taken in the sense of
“analytic expressions,” came to be detïned by
the correspondence  relation. Cauchy clarifted
the ideas of +limit  and tcontinuity,  tdifferentia-
bility and tintegrability.  He showed that a
function that is continuous  in a bounded
closed interval is integrable in that interval.
But his proof was not rigorous, as he lacked
the notion of tuniform continuity.  In his 1854
paper on the trigonometric series,  B. Riemann
in Germany considered the integrability of
functions that might be discontinuous  and
introduced the concept of what we now call
the tRiemann  integral.

The theory of +Sets, initiated by G. Cantor in
Germany in his paper of 1874, revolutionized
analysis. R. Baire, E. Borel, and H. Lebesgue
in France contributed to the establishment of
analysis on the basis of set theory. Baire made
a classification of discontinuous  functions.
Generalizing his results, Lebesgue gave a
definition of analytic expressions, thus clarify-
ing the term that had been used vaguely since
the time of Euler. Lebesgue also tried to delïne
the concepts of the integral of a function, the
length of a curve, and the area  of a surface
from the most general viewpoint. In generaliz-
ing the notion of tmeasure  introduced by
Borel, he established in 1902 the theory of
+Lebesgue  measure with which he laid the
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foundations of the theory of +Lebesgue  inte-
grals. The introduction of this theory gave
to the theory of Fourier series a new turn in
the direction of functional analysis. Measure
theory was also employed by A. N. Kolmo-
gorov of the Soviet Union to lay a solid foun-
dation for tprobability  theory in 1933.

The study of functions of a complex variable
was originated by Cauchy in the lïrst  half of
the 19th Century. He began his research by
introducing the notion of “monogenic func-
tions”; a function which is monogenic at every
point of a domain  is what we now cal1 a tholo-
morphic function. He established +Cauchy’s
integral theorem and integral formulas for
these functions, and deduced from these theo-
rems the tresidue theorem for functions with
tpoles.  Making use of the integral formula,
Cauchy proved that a function that is
holomorphic at a point a cari  be expanded in
a power series of the form C& ak(z  - a)” in a
neighborhood of this point.

Riemann considered a complex variable w
as a function of another complex variable z
when dw/dz is independent of the value of
the differential dz. This amounts to the same
thing as a “monogenic function” of Cauchy.
Riemann’s mapping theorem became  a mode1
for subsequent developments. Riemann intro-
duced the concept of tRiemann  surfaces in
order to tuniformize multivalued functions.
This important idea was basic to the progress
of analysis and ttopology  in the 20th Century.

K. Weierstrass, who was a contemporary of
Riemann, developed the theory of functions
of a complex variable from a purely analytic
viewpoint. He delïned an element of a function
to be a power series C&, ak(z  - a)k  of z -a,
representing a holomorphic function in the
interior of its tcircle of convergence, and de-
fmed an analytic function to be an aggregate
of such elements that are derived from one of
them by means of tanalytic continuations,
along ah curves having the point a as the
initial point.

Riemann and Weierstrass constructed their
theory to complete the theory of telliptic func-
tions and +Abelian  functions that was initiated
by N. H. Abel and C. G. J. Jacobi. Their re-
sults were a high point of 19th-Century  class-
ical mathematics. H. Poincaré in France built
upon their work. Another high point in the
theory of functions of a complex variable was
reached when J. Hadamard and C. de La Vallée
Poussin in France made use of it to prove the
+Prime  number theorem in 1896.

Weierstrass also initiated the study of func-
tions of several complex variables and was
succeeded by Poincaré, P. Cousin, and E.
Picard in France. They tried to extend the
theory of functions of one complex variable to
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that of many variables. F. Hartogs, however,
discovered a phenomenon quite  different from
the case of one variable. Cousin posed in 1895
the problem of constructing a function of
several complex variables that has assigned
poles.  This problem was pursued by A. Weil in
France and solved by K. Oka in Japan in
1936. Also,  the problem of characterizing
tdomains  of holomorphy was investigated by
E. E. Levi in Italy, H. Cartan  in France, and
P. Thullen and K. Stein in Germany and was
finally solved by Oka in 1953. H. Cartan  and
J.-P. Serre reformulated these results in terms
of tcohomology  with coefficients in +sheaves.
This considerably influenced the formulations
of mathematics thereafter. These results were
further generalized to tanalytic space by H.
Grauert, R. Remmert, and Stein in Germany.
The theory of tcomplex manifolds, which are
generalizations of Riemann surfaces to several
variables, was initiated by W. V. D. Hodge in
England  and K. Kodaira in Japan and con-
tinued by F. Hirzebruch in Germany, M. F.
Atiyah in England,  and 1.  M. Singer in the
United States.

Differential calculus gives a general method
of finding extreme values of a given function.
Likewise, in order to find a function that pro-
duces an extremal of the given tfunctional,  the
calculus of variations was created in the 18th
Century. For example, Euler considered the
problem of tïnding a particular function y(x)
that renders the functional C F(x, y, y’) dx
an extreme value among a11 those functions
y(X) for which the plane curve y = y(x) passes
through two given points (a, A) and (b, B) of the
plane; he showed that this y(x) must satisfy
the differential equation dF,./dx  - F,  = 0 (1744).
Lagrange, W. R. Hamilton, and others devel-
oped this result into a general tvariational
principle that governs not only classical +me-
chanics but also tquantum  mechanics.

From research on the continuity or differen-
tiability of the functional with respect to y
emerged the idea of considering a function as a
“point” in a tfunction space. This gave rise  to
tfunctional analysis, a branch  of analysis that
treats functions as elements of certain spaces
and utilizes the methods of algebra and topol-
ogy. The fïrst  result in this regard was the
theory of tintegral  equations of V. Volterra  in
Italy and E. 1. Fredholm in Sweden in the
beginning of the 20th Century. Fredholm’s
work was motivated by his desire to salve the
+Dirichlet problem, the solution of which had
been used by Riemann in the proof  of his
mapping theorem, etc. However, Riemann%
own proof  of existence of the solution, called
the +Dirichlet principle, was not rigorous, and
attempts to save the proof provided one of the
central problems of analysis for some time.
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Fredholm’s solutions were different from Rie-
mann% but D. Hilbert in Germany was able
to justify Riemann’s original proof.  Hilbert’s
proof was later simplitïed and generalized by
R. Courant, H. Weyl,  and others. Hilbert also
introduced the tfunction spaces 1,  and L, to
study the teigenvalue  problem of integral
equations with tsymmetric kernels. Later J.
von Neumann in Germany established +spec-
tral theory in abstract  +Hilbert  spaces and
applied it to the mathematical foundations
of quantum mechanics (1929). S. Banach in
Poland created the theory of tlinear  operators
in Banach spaces (1932). This theory was
further generalized to that of tlinear  topolog-
ical spaces and was applied to the theory of
distributions.

In their study of partial differential equa-
tions and Fourier analysis,  Hadamard, J.
Leray,  S. L. Sobolev, T. Carleman, and many
others had to extend the notion of functions;
they also enlarged the notion of derivatives. L.
Schwartz in France introduced tdistributions
and defined derivatives in the sense of distribu-
tions to unify these generalizations (1945). M.
Sato in Japan detïned more general generalized
functions, called thyperfunctions (1958). It has
become evident that both distributions and
hyperfunctions have provided the most power-
fui  tools in recent research in the general
theory of +Partial  differential equations, to
which L. Hormander in Sweden has made
outstanding contributions.
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21 (X1.20)
Analytic Functions of Several
Complex Variables

A. Holomorphic Functions

As in the case of tholomorphic  functions of
one complex variable, the definition of holo-
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morphic functions cari  be given in two ways:
the first  definition utihzes differentiability,
following the approach of B. Riemann; and
the second method utilizes the notion of power
series expansion as developed by K. Weier-
strass. In this article, N = {0, 1,2,. }.

B. Power Series

Let z be an n-tuple of complex variables
z r ,..., z,,andc=(c, ,..., c,)apointofC”.
An intïnite  sum P of monomials ak(z  - c)~  =
ak,,...,k,~Z~-C~~k~~~~~Z,-C,~kn~k=~~,,~~~,k,~~

N”),  where ak  E C, is called a power series
with tenter  c and coefficients ak. If, for a bi-
jection <p  of N onto  N”,  the simple series
cPEN lu<p(p)(z  - cpq 1s convergent at z = z”,
we say  that P is absolutely convergent at z”.
Its sum at z”,  denoted by C ak(zo  -c)~,  is de-
fined as the sum C u,~,)(z’  - c)~@),  which is
independent of the choice of <p.  If P is uni-
formly bounded at z”,  then P is absolutely
convergent at every point of the open polydisk
S={zIlzj-C~[<I~:-~~l,j=l,...,n}.Further-
more, in this case P converges absolutely and
uniformly on every compact set in S (N. H.
Abel).

The convergence domain  of a power series P
is the set D  of points z”  such that P is ab-
solutely convergent at every point in a neigh-
borhood of z”.  The interior of the set B of
points at which the infinite  sum P is uniformly
bounded is equal to D.  A (complete)  Reinhardt
domain  with tenter  c is a domain  D in C” such
that whenever D  contains zo,  the domain  D
also contains the torus {z 1 Izj  - cjl = Iz,” - cjl,j =
1, ,rr}  (the closed polydisk {z[  Izj-cjl  <lzp-
cjl,j= 1,. , n}).  If the convergence domain  D
of the power series P is not empty, it is a com-
plete Reinhardt domain  and is also logarithmi-
cally  convex;  that is, the set D-uj{zIzj=cj}  is
mapped onto  a convex domain  in R” by the
mapping zj+loglzj-c,l  (j= 1, . . ..n). The set d
of points at which P is absolutely convergent
is, in general, greater than D,  and it is possible
that b contains  exterior points of D. A thorn of
D  is the set of exterior points of D  contained  in
d that are located on the planes {z 1 zj  = cj} (j =
1, . , n). An n-tuple  r E R’!+ is called a set of
associated convergence radii if P is absolutely
convergent at every point of {z II z,  - cjl <
rj,j=l  ,..., n}  butnotof{zIIz,-cjl>rj,j=
1, , n}. An n-tuple of associated conver-
gence radii may not be uniquely determined,
but it satistïes

limsup(la,lrk)lllkt=  1, lkl=k,+...+k,
Ikl-fm

(E. Lemaire).
Let f be a complex-valued function detïned

in a neighborhood of z”  E C”. If there exists a
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convergent power series P with tenter  z”  such
that at every point of a neighborhood of z”  the
value off’ and the sum of P coincide, then f is
called analytic at z”  in the sense of Weierstrass,
and P is the Taylor expansion of ,f at z”.

C. Differentiability

Let f be a complex-valued function detïned in
a neighborhood of z”  E C”. If in a neighbor-
hood of z”  we have

f(Z)-f(zO)=a,(z,  -zl)+...  +CI”(Z,-Z:)+E,

with c(,,  . . ..cI.EC  and

lim.s/(lzi-z~)+...+Jz,-znl)=O,z-z0 (1)

then we say  that ,f is (totally) differentiable at
z”.  The function f is then continuous at z”,
and the partial derivatives af/az,  (j = 1, , n)
exist. Furthermore, the Cauchy-Riemann
differential equations r?f/aq=O (j= 1, , n)
hold, where 8f/8zj=(1/2)(8f/iflaxj-iaf/r?yj) and
af/az,=(1/2)(af/axj+  iaf/ayj) with zj= xj + iyj
We say  that f is holomorphic at z”  in the sense
of Riemann if f is differentiable at every point
in a neighborhood of z”.  Analyticity in the
sense of Weierstrass is equivalent to holomor-
phy in the sense of Riemann. Furthermore, if
the partial derivatives df/iYz, (j = 1, . . . , n) exist
at every point in a neighborhood of z”,  then f
is, without assuming continuity,  proved to be
holomorphic. Thus the holomorphy off in
each variable zj  implies the holomorphy off in
z=(zl,  . ..) z,) (Hartogs’s theorem of holomor-
phy, 1906).

A complex-valued function in a domain  G c
C” is called holomorphic or analytic in G if it
is holomorphic at every point of G. Let H(G)
be the ring of holomorphic functions in G. For
f = u + iv  E N(G), u and u satisfy in G the dif-
ferential equations @u(z,  z)/azj&  = 0; that is,

a2u  a2u
-=o,

axjaxk  +  ayjayk

ah a2u
---=O,
axjhh ax,ôyj

j,k=l,...,  n.

(2)

A tdistribution  TED’(G) is called plurihar-
monic in G if it satistïes  (2) in G. Then T is
harmonie  and hence a real analytic function
by +Weyl’s  lemma.

Let Gj  be a domain  in the z,-plane  with
piecewise smooth boundary Cj. If ,fE  H(G) (G
= I-I;=,  Gj)  is continuous on G,  then
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(Cauchy’s integral representation).  Thus if n > 2,
then f is determined by its values only on the
proper subset C = Ci x x C,  of aG,  which is
called the skeleton (or determining set) of G.
For (pluriharmonic) functions of several com-
plex variables, the boundary value problem,
not necessarily solvable in its classical form, is
not SO effective as the Dirichlet problem in one
complex variable.

As in the case of one variable, the +Laurent
expansion is valid for every holomorphic
function in a domain  of the form G = l-Q=,  Gj,
where the G,  are circular  annuli c C. Suppose
that we are given fi E H(G,)  and .f2  E H(G&
where G,,  G2  are domains  in C” such that G,  n
Gz  is nonempty and connected. If f, =f2  on
{zlIzj-z~\<rj,y=yo,j=l,...,n},wherezO=
x0 + iy” E G,  n G,,  then there exists a unique
,~EH(G,  U G2)  such that fi G, =f, and fi G2  = f2
(tbeorem of identity). Thus tanalytic  continu-
ation proceeds as in the case of one variable.
Similarly, some fundamental theorems in one
variable, such as tliouville’s  theorem on ten-
tire functions and the tmaximum  principle,
hold also for several variables. However, there
are some properties that reveal the differences
between the cases of one and several variables.
For instance, the set of zeros of a holomorphic
function (- 23 Analytic Spaces B) has no
isolated point for n 2 2. The investigation of
these remarkable differences is one of the
purposes of the theory of analytic functions of
several complex variables.

D. Shilov Boundaries

While the maximum principle holds for a
holomorphic function in a domain  G, the set of
points where the maximum is attained may be
a proper subset S of ôG. For instance, if G is
the product  of annuli as before, then the skele-
ton of G cari  be taken as S. In connection  with
the theory of tnormed  rings, CI.  E. Shilov
proved that there exists a unique smallest
member SO (called the Shilov boundary of G)
in the family of closed subsets S such that
sup{~f(z)~~~~S}=sup{~f(z)l~z~G}forevery
fe  H(G) continuous on G. The structure of
SO is investigated in detail together with
the pseudoconvexity of G connected  with it.
Applying +Perron’s  method for the Dirichlet
problem to +plurisubharmonic  functions and
the Shilov boundary, H. J. Bremermann solved
one type of boundary problem.

E. Local Theory

Let f and g be two functions delïned in neigh-
borhoods of a set SC c”. If f=  g in a neigh-
borhood of S, then f and y are called equiva-



21 F
Analytic Functions,  Several Complex Variables

lent with respect to S. The germ off on S,
denoted by fs, is the equivalence  class off: A
germ of a bolomorpbic function on S is the
germ on S of a holomorphic function defïned
in a neighborhood of S, and H(S) denotes the
ring of germs of holomorphic functions on S.
Given a point 0 in C”, H(0) = If( {0}) is iso-
morphic to the ring Hn  of convergent power
series at 0, i.e.,  the power series that are ab-
solutely convergent in some neighborhoods of
0. For every nonzero function fe  H(O), there
exists a system of coordinates (zi, , z,,) cen-
tered at 0 such that ,f(O,  , 0, z”)  # 0 for every
z,  # 0 in a neighborhood of z,  = 0. In a neigh-
borhood of 0, S is then equal to the product  of
an invertible element of H,,  and a distinguished
pseudopolynomial

P(z,)=z,P+a,(z,,  . . . . Z”-l)Z;-l+

witha,(O  ,..., O)=...=a,(O  ,..., O)=O,andP(z,)
is uniquely determined by f and the coordi-
nates zl,  , z,  (Weierstrass’s preparation
theorem). It follows from this that H, is an n-
dimensional tregular  local ring. Considering
H(0) as the tinductive limit of tlocally convex
rings H(U), where U  ranges over a base for a
neighborhood system of 0, H. Cartan  proved
the preparation theorem in a more precise
form in which the association f-uj  is con-
tinuous with respect to the supremum norm.
Based on a deep consideration  of this situ-
ation, K. Oka proved a theorem of funda-
mental importance: The tsheaf &cn  defined by
0C”,Z = H(z) (zEC”)  is tcoherent.

F. Domains  of Holomorphy

Given a domain  G c G” for n > 2, it may be
that there exists a domain  G’ strictly greater
than G such that a11 the functions that are
holomorphic in G extend to holomorphic
functions in G’. For instance, let S = S’ x o,
where S’ and o are open polydisks in (zi, . ,
z,-,)-space  and z,-space,  respectively, and
let T c C” be an open set. If there exists an
opensetU(#@)cS’suchthat(Uxa)U(S’x
aa) c T and if S n T is connected,  then a11 the
functions that are holomorphic in T extend
uniquely to holomorphic functions in SU T
(Hartogs’s continuation theorem). In particular,
if A is an tanalytic set in a domain  G c C” with
dim A <n  - 2, then all the functions that are
holomorphic in G-A extend uniquely to
holomorphic functions in G. Furthermore, if A
is an analytic set in G with A #G,  then every
fi H(G  - A) that  is locally bounded at the
points of A extends uniquely to a holomorphic
function in G (Riemann% continuation theorem
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for n > 2). The domain  (?f of holomorphy for f
is defined to be the maximal domain  to which
f may be continued  analytically. A domain  G
is called a domain  of holomorphy if G = G,  for
some SE H(G). However, t?,.  is, in general,  not
a subdomain of c”. (?f  is, generally, a mani-
fold spread over C”; i.e.,  c, is a connected  n-
dimensional tcomplex analytic manifold with a
holomorphic mapping <p:  G,+C”  of maximum
Jacobian  rank (<p  is then an open mapping).
The same is true for the common  existence
domain  of functions in a subfamily of H(G).
The common  existence domain  G  of a11 the
functions in H(G) is called the envelope of
holomorphy. A holomorphically complete
domain  is a domain  G such  that G = G.  These
notions carry over to the case where G is a
manifold spread over C”. The (general) Levi
problem of determining the conditions for a
given domain  to be holomorphically complete
is fundamental to the theory of analytic func-
tions of several complex variables (- Section
1). In connection  with this problem, various
notions of pseudoconvexity of holomorphi-
cally complete domains  are defïned.

G. Pseudoconvexity

An Upper  semicontinuous real-valued function
u(-co<u<+co)inadomainGcC”issaid
to be plurisubharmonic if for every z”  E G and
every a E C” the function u(z”  + ta) of t is +sub-
harmonie  (including the constant -CO)  in a11
the connected  components of {t ( z”  + tas G}. A
domain  G is said to be pseudoconvex (or d-
pseudoconvex) if u = - logd, is plurisubhar-
monic in G, where d,(z) is the distance from
z E G to 3G with respect to any norm in C”.
Every connected  component  of the interior of
the intersection of a family of pseudoconvex
domains  is pseudoconvex, and the union of an
increasing sequence of pseudoconvex domains
is pseudoconvex. Suppose that we are given a
domain  G and a function u of class C*  in a
neighborhood of G such that G = {z)  u(z) < 0}
and, for some .s>O,  ~j,(~zu/~zj~~,)uj~,~~~a~Z
for every UEC”.  Then the domain  G is said to
be strongly pseudoconvex. Strong  pseudo-
convexity implies pseudoconvexity. Every
pseudoconvex domain  is exhausted by an
increasing sequence of strongly pseudoconvex
domains.  An open set Pc C” is called an ana-
lytic polyhedron if P=  {z[  I~~(z)1  < l,cc=
1, , N}, x31~ H(P) (a= 1, . . . N). Then every
connected  component  of P is pseudoconvex. A
Weil domain  is a connected  and bounded
analytic polyhedron P defïned by x,(cc  =
1, , N) with N > n,  such  that for every k
(1~  k < n) the intersection of the hypersurfaces
Ix,,(z)\=1 (l<i<k)isofdimension  <2n-k.
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H. Holomorphic Convexity

A domain  G c CI” is called holomorphically
convex if for every compact set K c G,  K =

n .M~~~{z  1 If(41  G  sup,,~  I&)l  1 (the  holomnr-
phic  hull of K) is a compact set contained in
G. (For a domain  G contained in an Tanalytic
set we cari  similarly defïne holomorphic con-
vexity of G.) Every connected component of
the intersection of a family of holomorphically
convex domains  is holomorphically convex,
and a holomorphically convex domain  is
exhausted by an increasing sequence of Weil
domains. Holomorphic completeness implies
holomorphic convexity.  The converse is true
for domains  in c”. If G is holomorphically
convex, then for every point <  of aG there
exists an ,f~ H(G) such that f is not locally
bounded at <  (H. Cartan  and P. Thullen, 1932).
Hence a holomorphically convex domain  is a
domain  of holomorphy. Thus a domain  in C
is holomorphically convex if and only if it is a
domain  of holomorphy. (The same is truc for
unramifïed  covering domains  over C” (Oka,
1953).)  The union of an increasing sequence of
domains  of holomorphy is a domain  of holo-
morphy (H. Behnke and K. Stein [2], 1939).
Suppose that we are given a domain  G and
domains  S,, T,  (a = l,2,  ) such that S, U 7” c

G and SU~~, If1  = SUP~,~~,  I.fl  for every ~EH(G).
Suppose also that S, = lim S, is bounded. We
say  that the continuity principle holds in G if
TO  c G (T,  = lim T,)  implies S, c G. The con-
tinuity principle holds in a domain  of holo-
morphy (Hartogs’s theorem of continuity).
This implies that if G is a bounded domain
c C” (n 3 2) with connected boundary i3G,
then every function holomorphic in a neigh-
borhood of r7G  extends to a holomorphic
function in G (Hartogs-Osgood theorem). In
particular, for II > 2, the set of singular points
of a holomorphic function has no isolated
point. A domain  is pseudoconvex if the con-
tinuity principle holds there. Hence a domain
of holomorphy is pseudoconvex.

1. The Levi Problem

Let G be a domain  in C” and z’E~G. If there
exists an open  neighborhood U  of z”  such that
every connected component of G fl  U is a
domain  of holomorphy, then G is called Car-
tan pseudoconvex at z”.  On the other hand, if
every 1-dimensional analytic set that has z”  as
an ordinary point contains points not belong-
ing to G U {z”}  in the neighborhoods of z”,
then G is called Levi pseudoconvex at z”.  Fur-
thermore, G is called locally Cartan  (Levi)
pseudoconvex if G is Cartan  (Levi) pseudo-
convex at every point of (3G.  Every domain  of
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holomorphy is locally Cartan  pseudoconvex. If
G is pseudoconvex and there exists a neighbor-
hood Cl  ofz’such  that Gn U={zlcp(z)<O},
where <p  E Cl( U), then G is Levi pseudoconvex
at z”.

The (proper) Levi problem of whether every
pseudoconvex domain  is a domain  of holo-
morphy was proposed by E. E. Levi (1911).
After unsuccessful efforts by various mathe-
maticians to salve the problem, it was afflrma-
tively solved by Oka (1942 for n = 2 and 1953
for manifolds spread over c” for n > 2),  H.
Bremermann, and F. Norguet. The problem
was solved also by H. Grauert [ 14](1958) in a
more general  form (- Section L) using results
on linear topological spaces and by L. Hor-
mander [ 1 S] (1965) using methods of the
theory of partial differential equations. A
fundamental step in Oka’s solution is his
gluing theorem: Let G be a bounded domain
c C”. If every connected component of G, =
{z~x,>a}flGandG,={z~x,<b}~G(a<b)
is a domain  of holomorphy, then G is a do-
main of holomorphy. Indeed, by virtue of
the Behnke-Stein theorem and the fact that
every pseudoconvex domain  is the union of an
increasing sequence of bounded locally Cartan
pseudoconvex domains,  it suffices  to solve the
Levi problem in the case of a bounded locally
Cartan  pseudoconvex domain.  The Levi prob-
lem in this case is solved by the gluing theo-
rem. Various integral representations of holo-
morphic functions are known besides the
Cauchy representation. The Bergmann-Weil
integral  representation in a Weil domain  was
used as an important means of solving the
Levi problem.

J.  Holomorphic Mappings

Holomorphic functions wi;h values in a tquasi-
complete tlocally convex complex vector space
E have also been investigated. The classical
theory described above has been generalized,
to some extent, to this case. In this way, many
applications of the theory have been dis-
covered. An E-valued function in a domain  G
c C” is holomorphic if and only if the map-
ping uof: G-C  is holomorphic for every con-
tinuous linear form u on E. By this theorem,
most problems concerning E-valued holo-
morphic functions cari  be reduced to those of
ordinary holomorphic functions. Note that the
vector space  H(G) of ordinary holomorphic
functions in G is a TFréchet  space.  The spaces
Cp  and complex +Banach  spaces belong to the
above category of E. A. CP-valued  holomor-
phic function in a domain  G c c” is called a
holomorphic (or analytic) mapping of G into
CD.  An isomorphism in the category of do-
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mains G c C” and holomorphic mappings is
called an analytic isomorphism (or hiholomor-
phic  mapping). An automorphism in the cate-
gory is called an analytic (or holomorphic)
automorphism. With every domain  G c C
is associated the sheaf 0,  of germs of holo-
morphic functions over G. Thus we have the
notion of a tringed  space (G, 0,). A complex
analytic manifold cari  be detïned as a (Haus-
dorff) ringed space that is locally isomorphic
to some (G, 0,).

A meromorphic function in G is a function
that is locally the quotient of two holomor-
phic functions with denominator #O.  It may
be defïned more rigorously as a meromor-
phic  mapping of G into P,(C) (- 23 Analytic
Spaces D).

K. The Cousin Problems

The Cousin problems are those of constructing
meromorphic functions with given zeros  or
poles.  In terms of sheaves the problems are
stated as follows: Let & be the sheaf of germs
of meromorphic functions over a domain  G c
C”. The first  Cousin problem asks whether
the mapping T(G,&)-tT(G,pG)  induced
by the exact sequence O*O,--t&*gG+O
(pc  = ,X,/0,)  is surjective, where T(G,  9) is
the module of tsections  of 9 over G (- 383
Sheaves C). Let &*  be the sheaf of multiplica-
tive groups of germs of meromorphic functions
not identically 0 and Lot*  be the subsheaf of
z&*  formed by germs of nonzero holomorphic
functions. The second Cousin problem asks
whether the mapping T(G,  %&*)+P(C, gG)
(BG = %$*/O,*) is surjective. P. Cousin (1895)
solved the fïrst  problem for G = c” or ny=,  Gj
and the second problem for G =C”. Oka (1935)
proved that the tïrst  problem is solvable in
every domain  of holomorphy. In solving the
second problem in a domain  of holomorphy,
Oka established the notion of Qïber  bundles
and proved that the problem for any domain
is reduced to holomorphic triviality of a
holomorphic principal fïber bundle over the
domain  and that holomorphic triviality is
equivalent to topological triviality when the
domain  is of holomorphy (Oka’s principle).
Using the solutions of the Cousin problems,
Oka proved his gluing theorem, described in
Section 1.

L. Stein Manifolds

Abstracting certain important properties of a
domain  of holomorphy, Stein [33] introduced
the following category of complex analytic
manifolds (X, 0,): (1) X is paracompact (i.e.,
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each connected  component  of X has a count-
able open base). (2) Functions in T(X,  ox)
separate the points of X. (3) For every point
x E X there exists a system of local coordi-
nates around  x that is formed by functions in
T(X,  a],).  (4) X is holomorphically convex.
(X, 0,) is then called a Stein manifold. It was
later discovered by Grauert [ 121  that con-
ditions (2) and (4) imply (1) and (3).

Applying the theory of tcohomology  with
coefficients in sheaves, H. Cartan  and J.-P.
Serre obtained for an tanalytic coherent  sheaf
5 on a Stein manifold X, the following funda-
mental theorems of Stein manifolds. Theorem
A: H”(X, 9) generates the stalk Fx (as an O,-
module) at every point x of X. Theorem B:
Hq(X,  9) =0 for all 4 > 0 [7,30].  Conversely,
for a complex analytic manifold X, if for every
analytic coherent  sheaf 3 of ideals defïned by
a 0-dimensional analytic set in X (i.e.,  a dis-
crete  subset of X), H1  (X, 9) = 0, then X is a
Stein manifold. Furthermore, if l-(X, ox) =
r( Y, CO,)  for a Stein manifold Y (as in the case
where X c Cn), then the fundamental theorem
A for every coherent  sheaf of ideals implies
that X is a Stein manifold (1.  Wakabayashi).

Due to the fundamental theorems, most
results on domains  of holomorphy hold un-
changed  for Stein manifolds. For instance, the
fïrst  Cousin problem is always solvable. The
second Cousin problem is solvable if and only
if H'(X,  Z)=O. An n-dimensional Stein mani-
fold cari be realized as a (ramitïed) covering
domain  of holomorphy over C”. Furthermore,
some theorems on differentiable manifolds
have analogs on Stein manifolds. For instance,
the cohomology groups of the complex of
holomorphic differential forms over a Stein
manifold X are isomorphic to  the cohomol-
ogy groups H*(X,  C) (analog of tde  Rham’s
theorem). Every n-dimensional Stein manifold
X is realized as a closed complex analytic
submanifold in C2”+‘;  that is, there exists an
injective tproper holomorphic mapping f:
X+C2”+’  with df#O.  Consider a11 the holo-
morphic tprinciple tïber bundles over a Stein
manifold X whose fïbers  are isomorphic to a
complex Lie group G. The analytic isomor-
phism classes of the bundles and the elements
in H'(X,  G”) (where G”  is the sheaf of germs
of holomorphic mappings of X into G) are in
one-to-one  correspondence.  The same is true
for the topological isomorphism classes of the
bundles and the elements in H'(X,  P) (where
G’  is the sheaf of germs of continuous  map-
pings of X into G). The mapping H1  (X, GO)--+
H'(X,  G') induced by the canonical injection
G”  +  G’  is bijective (Grauert [ 131).  Every rela-
tively compact domain  in a complex analytic
manifold is holomorphically convex if it is
strongly pseudoconvex (Grauert [14]). Hence
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such  a domain  is a Stein manifold. It follows
from this that every real analytic manifold
with countable base for open sets is realized as
a closed real analytic submanifold of some R”.

The notion of Stein manifolds is generalized
to that of weakly 1-complete manifolds: a
complex manifold X is called a weakly l-
complete manifold if there exists a plurisubhar-
monic function u of class  C”  on X, such that
for any CER,  X,={x~Xlu(x)<,} is relatively
compact. The family of such manifolds in-
cludes compact complex manifolds too. For a
weakly 1-complete manifold also, vanishing
theorems of cohomology have been estab-
lished by H. Hironaka, S. Nakano [26], and H.
Kazama [2] (- 232 Kahler  Manifolds D).

The theory of entire functions of two vari-
ables has been developed from a new view-
point established by T. Nishino. An entire
function f of two variables defines a family of
Riemann surfaces { f’= c 1 c E C} on C’, and
investigations of the structure of such a family
play an important role. For instance the fol-
lowing is proved in this way: If every irreduc-
ible component  off= c (CE C) is biholomor-
phic  to C’, then there exists an entire function
g such that (f; y): C’ +C2  is a biholomorphic
mapping (Nishino [28]). In this theorem, the
analyticity of g is obtained from the fact that
C*  is a Stein manifold.

M. Continuation of  Analytic  Sets

The application of the theory of cohomology
with coefftcients  in sheaves is not restricted
to problems concerning Stein manifolds.
Given G,={z~(zjl<1,1<j~n}(nà3),G,=
{zIlz,I<&,Izjl<lr2dj~n},andG(“)=G,U
(Go-{z~z,=...=z,=0})(3~m~n),  we have
W(G(“),  OG,,J  = 0 (1 < p <m - 2) (Scheja’s
theorem [32]). Let 9 be a coherent  analytic
sheaf over a domain  G c C”. If, for every point
z of an analytic set A $ G, 9$ = {0} or p <
n - dim, A - 2 - hd, 9 (where hd, B is the
thomological  dimension of the 9,,,-module
ZQ then it follows from Scheja’s theorem that
the mapping HP(G,  5)+HP(G  - A, F) induced
by the canonical injection G-A+  G is bijec-
tive. This generalizes Hartogs’s continuation
theorem for holomorphic functions, which
corresponds to the case p = 0.

Besides the continuation of holomorphic
functions, we cari  consider the continuation of
analytic sets. Let A be an analytic set in a
domain  G c c” and S an analytic set in G - A.
A point ZE  G is said to be regular (essentially
singular) with respect to S if the closure s of S
in G is (is not) analytic at z. If dim A < dim, S
for every point z E S, then s is analytic in G. If
S is purely d-dimensional and S is analytic at
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a point of a d-dimensional irreducible com-
ponent A’ of A, then S is analytic at every
point of A’ that is not located in any other ir-
reducible component  of A. Furthermore, if
dim A < dim S and S is purely d-dimensional,
then the following hold: (1) The set E of essen-
tial singularities of S is, if not empty, a purely
d-dimensional analytic set in G, formed by
irreducible components of A. (2) If every
irreducible component  of A contains  points
of E not located in any other irreducible com-
ponent of A, then A c E, and A is, if not
empty, purely d-dimensional. (3) If every d-
dimensional irreducible component  of A con-
tains points that are regular with respect to S,
then S 1s  a purely d-dimensional analytic set
in G (Thullen, Remmert, and Stein). By these
results it is possible to give a proof  for +Chow’s
theorem that every analytic set in P.(C)  is
algebraic.

The continuation of holomorphic functions
is related to the continuation of their graphs.
W. Rothstein investigated the continuation of
analytic sets to obtain the following analog
to Hartogs’s theorem of continuity:  If G =
GI  UG,,  GI  ={ZI  1211~  1/2,C7=,lZj12  <  l},  G,=
{z~~z,~~1,1/2~~~~2~~j~2<1},and~=
{z~~z,l~1,C~=,~zj~2<l}(theenvelopeof
holomorphy of G) with n > 3, then every purely
(n - 1)-dimensional analytic set A in G extends
to an analytic set in G;  that is, there exists a
purely (n - l)-dimensional analytic set A  in
G  such that A = An G. K. Kasahara and H.
Fujimoto generalized this theorem to the case
of analytic spaces.

N. Nevanlinna Theory for Several Complex
Variables

The Nevanlinna theory investigates holomor-
phic  mappings between complex manifolds.
In function theory of one variable, for a holo-
morphic mappingf:C+P’(C)  from C into
the 1-dimensional tcomplex projective space,
the famous +Picard theorem states that if f
omits three values, then f must be constant.
R. Nevanlinna developed the quantitative
theory of value distributions off: L. Ahlfors
Cl],  introduced the geometric approach, and
enunciated the principle that the negative
curvature of the image manifold restricts a
holomorphic mapping. In higher-dimensional
situations, this principle has been realized in
many cases. The Nevanlinna theory for a
holomorphic mapping f: C-P”(C)  with re-
spect to thyperplanes was established by Ahl-
fors and H. Weyl and J. Weyl [34]. Holomor-
phic mappings into projective spaces have
been studied in detail by W. Stoll, H. Fujimoto,
and M. Green. Following the work of S. S.
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Chern [9] of around  1970, the equidimen-
sional case was investigated (P. A. Griflïths, K.
Kodaira, S. Kobayashi and T. Ochiai). J. A.
Carlson and Griflïths [6] succeeded in obtain-
ing a tdefect relation for equidimensional
holomorphic mappings and thypersurfaces of
the image manifold. This yields the following
Picard-type theorem (after the formulation by
F. Sakai, Inventiones Math., 16 (1974)): Let X
be a tprojective algebraic manifold of dimen-
sion n and f: C”+X  a holomorphic mapping.
Let D  be a hypersurface of X. We take a
tdesingularization 7~: X*+X SO that the in-
verse image D* = tri  (D) has at most normal
crossings as singularities. We denote by K*  a
tcanonical  divisor of X*. We assume that

lim sup
dim H’(X*, O(m(K*  +D*))) > o,

m-m mn

If f omits D, then the Jacobian  off vanishes
everywhere. As a corollary, it follows that the
tuniversal covering manifold of X -D cannot
be C”. When X = P”(C) and D  is a nonsingular
hypersurface of degree d, the above assump-
tion is satisfïed if d > II + 2. In the nonequidi-
mensional case, Ochiai [29] (with supple-
mentary works by M. Green, Y. Kawamata,
and P. Wong) verified the following asser-
tion, which was tïrst  stated by A. Bloch with
rough arguments: Let X be a projective alge-
brait  manifold of dimension n,  and suppose
dim H’(X,  Q,)  > n; then the image of a holo-
morphic mapping f: C-X  is contained  in a
proper subvariety of X (- 124 Distributions
of Values of Functions of a Complex Variable;
272 Meromorphic Functions).

0. Hyperbolic Manifolds

Every complex analytic space  X has two in-
variant tpseudodistances: the Carathéodory
pseudodistance cx and the Kobayashi pseudo-
distance d,,  both of which generalize the Poin-
caré distance p of the unit disk D = { IzI < 1).
These pseudodistances cari  be delïned by the
property that d,  is the largest pseudodistance
among a11 pseudodistances 6, on X for which
a11 holomorphic mappings (X, C?+(D,  p) are
distance-decreasing, while cx is the smallest
among all pseudodistances 6, for which a11
holomorphic mappings (D, p)-(X, 6,) are
distance-decreasing. Then cx < d,. If Y is an-
other complex analytic space,  every holomor-
phic mapping f:  X + Y is distance-decreasing
with respect to either its Carathéodory or
Kobayashi pseudodistance. This may be con-
sidered to be a generalization of the Schwarz-
Pick lemma. (The tSchwarz lemma is often

106

referred to by this name, since G. Pick also
investigated the distance-decreasing property.)
The Kobayashi pseudodistance d,  cari  also
be obtained by integrating an inlïnitesimal
differential pseudometric called the Koba-
yashi pseudometric in the same manner as the
Riemannian distance is obtained from the
Riemannian metric (H. L. Royden).

If d,  is a (complete)  distance on X, then X is
said to be (complete)  hyperbolic. A Riemann
surface is hyperbolic in this sense if and only
if its universal covering is biholomorphic to
the unit disk. If X is open in Y and if, for
every pair of sequences of points {p,}  and
{qn}  in X converging to distinct points of X,
lim d,(p,,  q,,)  is positive, then X is said to be
hyperbolically embedded in Y. The Riemann
sphere CU { co} minus three points is not
only complete hyperbolic but also hyperboli-
cally embedded in the Riemann sphere. Every
holomorphic mapping of C into a hyperbolic
complex analytic space  is constant, while every
holomorphic mapping of the punctured disk
D* = (0~  Izl< 1) into a hyperbolically embed-
ded space  Xc  Y extends to a holomorphic
mapping of D into Y. Thus the classical little
Picard theorem reduces to the statement that
C - {0, l} is hyperbolic, while the great Picard
theorem reduces to showing that C - {0, l} is
hyperbolically embedded in the Riemann
sphere. These classical theorems cari  be gen-
eralized in two ways. If M  is a tsymmetric
bounded domain  and F is a discrete arithmetic
group acting freely on M,  then M/T  is not
only complete hyperbolic but also hyperboli-
cally embedded in its Satake compactification
(Kobayashi and Ochiai). If X is the comple-
ment of 2n + 1 hyperplanes in general position
in the complex projective space  P”(C), then X
is complete hyperbolic and hyperbolically
embedded in P”(C) (a restatement of a re-
sult going back to E. Borel, A. Bloch,  and H.
Cartan).

Although there are some noncompact non-
hyperbolic complex manifolds X for which
every holomorphic mapping f:  C+X is con-
stant, a compact complex  manifold X is hyper-
bolic if and only if every holomorphic map-
ping f: C+X is constant (R. Brody).

For the tTeichmüller  space  X = T,  of com-
pact Riemann surfaces of genus g, the Koba-
yashi distance d,  agrees with the Teichmüller
distance which had been introduced before
the complex structure of T, was defined (H. L.
Royden).

In the study of pseudoconvex domains,  the
tBergman  metric, the Carathéodory distance,
and the Kobayashi distance serve as useful
tools. Their behavior at the boundary has been
studied extensively.
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Given an n-dimensional complex mani-
fold X, an invariant measure \Y, cari be de-
fined as the largest measure such  that every
holomorphic mapping f from the polydisk
D” with invariant measure into X is measure-
decreasing. For an algebraic manifold of gen-
eral type, this measure is everywhere positive.

P. Bounded Domains  in C”

For any bounded domain  in C” there is natu-
rally assigned a tKahler  metric called the
Bergman metric. Using the invariance of this
metric, E. Cartan  proved that a11 the Her-
mitian symmetric spaces of noncompact type
are realized as bounded domains. In view of
the fact that some important period matrix
domains  (e.g.,  the 19-dimensional  bounded
symmetric domain  of type IV, the Siegel Upper
space,  etc.) are of this type, it is obviously of
great significance  in algebraic geometry to
study discontinuous  subgroups of the auto-
morphism groups of such domains  (Pyatetskiï-
Shapiro).

On the other hand, it is almost impossible
for general bounded domains  to determine the
explicit form of their Bergman metrics. But
Cartan  also investigated strongly pseudo-
convex real hypersurfaces in C’, and he solved
completely the (local) equivalence  problem for
them, introducing a defmite  type of Cartan
connections over them in a functorial way.
Thereafter N. Tanaka (and for hypersurfaces
also Chern and J. Moser) generalized this
result to a11 pseudoconvex real submanifolds
in higher-dimensional complex manifolds.
One cari  further apply this result to the equi-
valence problem of bounded domains  with
smooth strongly pseudoconvex boundaries,
for C. Fefferman [ 101  proved by analyzing the
boundary behavior of the Bergman metric that
every biholomorphic mapping between two
such  domains  is extended smoothly up to their
boundaries (1.  Naruki [27] gave an alternative
proof).

Q. History

In connection  with tAbelian functions, ana-
lytic functions of several complex variables
have been studied sporadically since the time
of Riemann and Weierstrass (H. Poincaré,
Cousin). A series of investigations by Hartogs
([ 171  (1906),  etc.) that revealed the distinctive
properties of several complex variables ini-
tiated a new epoch in complex analysis. Levi
(1910- 1911) generalized Hartogs’s results to
the case of meromorphic functions, introduced
the notion of pseudoconvexity, and proposed
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the so-called Levi problem. After a lapse of
time, many contributions to this new area  of
complex analysis have been made since 1920.
The study by K. Reinhardt (1921) of analytic
automorphisms was further developed by C.
Carathéodory and Behnke. The tkernel func-
tion introduced by S. Bochner and S. Berg-
mann (1922) produced many remarkable
results. In contrast  with tPicard’s theorem
in one variable, P. Fatou found a holomor-
phic  mapping S: C2  +Cz  with nonvanishing
Jacobian  such  that the image f(C*) has an
exterior point.

The theory of analytic functions of several
complex variables has flourished since 1926.
Behnke and Thullen in Münster, together with
G. Julia and H. Cartan  in Paris, were the most
active investigators. The results on tnormal
families  of analytic functions of several com-
plex variables (Julia [20], 1926)  the uniqueness
theorem of holomorphic mappings (H. Cartan,
1930),  and a characterization of a domain  of
holomorphy by holomorphic convexity (Car-
tan and Thullen, 1932) are their most remark-
able achievements. Behnke and Thullen [3]
systematized the results obtained since the
discovery of the theory by providing a com-
plete bibliography of articles up to 1934.

The three major unsolved problems at that
time-those of Cousin, Levi, and the approx-
imation of holomorphic functions-were
intensively studied by Oka from 1936, who has
given complete solutions [30]. The investiga-
tion of ideals of holomorphic functions by H.
Cartan  (1944),  together with that of ideals with
undetermined domains  by Oka, has developed
into the theory of coherent  analytic sheaves.
The notion of analytic spaces, Iïrst  introduced
by Behnke and Stein (1951),  extended the field
of investigation in the theory of analytic func-
tions of several complex variables. The theory
of cohomology with coefficients in sheaves has
been effectively applied by H. Cartan  and
Serre (1951-1952). The introduction of the
notion of Stein manifolds (195 1) came at the
same time. Grauert’s deep investigations since
1955, together with those of Stein and Rem-
mert, have contributed greatly to the develop-
ment of the theory of analytic spaces. In the
1960s active investigations took place also in
the United States [16]. The theory of auto-
morphic functions of several complex variables
has been developed by C. L. Siegel, 1. Satake,
and others in connection  with the theory of
numbers. Entire functions of two variables
have been investigated from a new point of
view by Nishino and others since 1968 (- last
paragraph of Section N). The notion of a
hyperbolic manifold introduced by Kobayashi
(1967) enables  us to obtain many results on
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complex manifolds by means of the methods of
differential geometry. The theory of automor-
phisms of bounded pseudoconvex domains
was developed extensively in the 1970s by
Fefferman, Naruki, and others. The theory of
an envelope of holomorphy has also been
successfully applied to the theory of elemen-
tary particles in physics.

References

[l]  L. Ahlfors, An extension of Schwarz’s
lemma, Trans. Amer. Math. Soc., 43 (1938),
359-364.
[2] H. Benhke and K. Stein, Konvergenten-
folgen von Regularitatsbereichen  und der
Meromorphiekonvexitat,  Math. Ann., 116
(1939),  204-216.
[3] H. Behnke and P. Thullen, Theorie der
Funktionen mehrerer komplexer Veranderli-
chen, Springer, 1934; second edition, 1970.
[4] L. Bers, Introduction to several complex
variables, Courant Institute, 1964.
[S] S. Bochner and W. T. Martin, Several
complex variables, Princeton Univ. Press,
1948.
[6] J. A. Carlson and P. A. Griffïths,  A defect
relation for equidimensional holomorphic
mappings between algebraic varieties, Ann.
Math., (2) 95 (1972),  557-584.
[7] Sém. H. Cartan,  Ecole Norm. SU~.,  1951-
1952.
[S] H. Cartan,  Oeuvres, Springer, 1979.
[9] S. S. Chern, On holomorphic mappings of
Hermitian manifolds of the same dimension,
Amer. Math. Soc. Proc. Symposia in Pure
Math., 11 (1968),  157-170.
[ 101  C. Fefferman, The Bergman kernel and
biholomorphic mappings of pseudoconvex
domains,  Inventiones Math., 26 (1974),  l-65.
[ 1 l] B. A. Fuks, Special chapters in the theory
of analytic functions of several complex vari-
ables, Amer. Math. Soc. Transl. of Math.
Monographs, 1965.
[ 123 H. Grauert, Charakterisierung der
holomorph-vollstandiger  komplexen Raume,
Math. Ann., 129 (1955),  233-259.
[ 131  H. Grauert, Holomorphe Funktionen mit
Werten in komplexen Lieschen Gruppen,
Math. Ann., 133 (1957),  450-472.
[ 141  H. Grauert, On Levi’s problem and the
imbedding of real-analytic manifolds, Ann.
Math., (2) 68 (1958),  460-472.
[ 151  H. Grauert and R. Remmert, Theory of
Stein spaces,  Springer, 1979.
[ 161  R. C. Gunning and H. Rossi, Analytic
functions of several complex variables,
Prentice-Hall, 1965.
[ 171  F. Hartogs, Zur Theorie der analytischen

108

Funktionen mehrerer unabhangiger  Ver-
anderlichen,  insbesondere über die Darstellung
derselben durch Reihen, welche nach Potenzen
einer Veranderlichen  fortschreiten, Math.
Ann., 62 (1906),  l-88.
[l S] L. Hormander,  L2 estimates and exis-
tence theorems for the 2 operator, Acta  Math.,
113 (1965),  89-152.
[ 193 L. Hormander,  An introduction to com-
plex analysis in several complex variables, Van
Nostrand, 1966.
[20] G. Julia, Sur les familles de fonctions
analytiques de plusieurs variables, Acta  Math.,
47 (1926),  53-115.
[21] H. Kazama, Approximation theorem and
application to Nakano’s vanishing theorem for
weakly 1-complete manifolds, Mem. Fac. Sci.
Kyushu Univ., 27 (1973),  221-240.
[22] S. Kobayashi, Hyperbolic manifolds and
holomorphic mappings, Dekker, 1970.
[23] S. Kobayashi, Intrinsic distances, mea-
sures and geometric function theory, Bull.
Amer. Math. Soc., 82 (1976),  357-416.
[24] P. Lelong,  Fonctions plurisoushar-
moniques et formes différentielles positives,
Cordon & Breach, 1968.
[25] L. Nachbin, Holomorphic functions,
domains  of holomorphy and local properties,
North-Holland, 1970.
[26] S. Nakano, Vanishing theorems for
weakly 1-complete manifolds, II, Publ. Res.
Inst.  Math. Sci., 10 (1974),  101-l 10.
[27] 1. Naruki, On extendibility of isomor-
phisms of Cartan  connections and biholomor-
phic mappings of bounded domains,  Tôhoku
Math. J., 28 (1976),  117-122.
[28] T. Nishino, Nouvelles recherches sur les
fonctions entières de plusieurs variables com-
plexes (II), Fonctions entières qui se réduisent
à celles d’une variables, J. Math. Kyoto Univ.,
9 (1969),  221-274.
[29] T. Ochiai, On holomorphic curves in
algebraic varieties with ample irregularity,
Inventiones Math., 43 (1977),  83-96.
[30] K. Oka, Sur les fonctions analytiques de
plusieurs variables (collected papers), Iwanami,
1961.
[31] W. F. Osgood, Lehrbuch der Funk-
tionentheorie II, Teubner, 1924; revised edi-
tion, 1929 (Chelsea, 1965).
[32] G. Scheja, Riemannsche Hebbarkeitssatze
für Cohomologieklassen, Math. Ann., 144
(1961),  345-360.
[33] K. Stein, Analytische Functionen meh-
rerer komplexer Veranderlichen  zu vorgege-
benen Periodizitatsmoduln  und das zweite
Cousinsche Problem, Math. Ann., 123 (1951),
201-222.
[34] H. Weyl and J. Weyl,  Meromorphic
functions and analytic curves,  Ann. Math.



109

Studies 12, Princeton Univ. Press, 1943.
Also  - references to 23 Analytic Spaces.

22 (1.12)
Analytic Sets

A. General Remarks

The notion of analytic sets was tïrst  detïned by
N. N. Luzin and M. Ya. Suslin in 1916, and
it was extended to that of projective sets by
operations such  as complementation  and pro-
jection (Luzin, 1924). Most mathematicians,
including Luzin and W. Sierpinski, who
worked in this tïeld,  were in agreement with
+French  empiricism (or tsemi-intuitionism),
which defended the standpoint of R. Baire,
E. Borel, H. Lebesgue, and others. An abject  is
said to be effectively given if it cari  be uniquely,
individually, and unambiguously determined
in tïnite  terms SO that anyone cari  reach the
same abject  by following the defining pro-
cedure. Semi-intuitionists  claim that only
effectively given abjects have mathematical
existence, and they do not recognize as a
mathematical abject  something that needs the
axiom of choice for its definition. From this
point of view, +Bore1  sets were “well-defined”
sets to which classical analysis had to be re-
stricted.  Thus the question was raised whether
it is possible to extend the class of Bore1  sets to
a wider class  of sets with the same certainty.
Lebesgue (J.  Math. Pures Appl.,  1 (1905)) de-
tïned a function not belonging to any class
of Baire functions by using the totality of
tordinals  of the second class.  (Later, this
method was systematically developed as the
+theory  of sieves by Luzin.) However, it did
not satisfy Bore1  as being effective. Can we,
then, extend the Bore1  sets without any use of
ordinals of the second class?  The discovery of
analytic sets gave an affirmative answer.

In this article (except in Section 1), we treat a
space  (denoted by X, Y, . ) that is thomeo-
morphic to a tcomplete  +separable  +metric
space  and its subspace. Denote by ‘%  the space
of irrational numbers (a metric space  consis-
ting of the irrational numbers E R with the
metric Ix -y/  of x and y). The following prop-
erties of a subset S of a space X are equivalent:
(i) S is a continuous  image of %n;  (ii) S is a con-
tinuous image of a Bore1  set in X; (iii) S is the
projection of a closed set in a product  space
X x 91;  (iv) S is the projection of a Bore1 set in
X x Y. We cal1 a set satisfying one of these
properties an analytic set, an A set, or a Zl set
(in X). The complement  of an analytic set is
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called a complementary analytic set (or simply
coanalytic set), a CA set, or a ni  set.

B. The Operation A and Sieves

When to each (nr , , nk) of finite  sequences  of
natural  numbers there corresponds a unique
element E(n,, , nr)  of a family F of sets, this
correspondence  {E(n,, . . , n,)} is called a
schema  of Suslin  (or system of Suslin)  consist-
ing of sets in F. Denoting an intïnite  sequence
of natural numbers by {ni},  the set given by
U:,, nkE(n,,  ,n,) is called the kernel of a
system of Suslin, and the operation of taking
the kernel is called the operation A (analytic
operation).

Let Q be the set of a11 rational numbers
between 0 and 1 and F be a family of sets.
Take a family { CrJreQ of sets belonging to F
with the index set Q (or more geometrically, a
subset C= UIEQC,  x (r) of X x Q when F is a
family of subsets of a space  X), and cal1 it a
sieve  consisting of sets in F. Denoting by {ri}  a
(strictly) monotone decreasing sequence of
elements of Q,  we cal1 the set u{,&)  nk  C,r
(namely, the set of all x such  that C’“‘=
{r ) (x, r) E C} is not well-ordered by the
order < of rational numbers) the set obtained
by a sieve  C or the sieved set obtained by C. If
the family F is closed with respect to countable
intersection, then the family of all sets ob-
tained by sieves consisting of sets in F is ident-
ical to the family of all sets obtained by apply-
ing the operation A to F. When F consists  of
a11 the closed sets in a given space,  this is the
family of a11 analytic sets. In particular, it is
suffrcient  to take the family of closed intervals
as F when X is the space  of real numbers.
Note that we cari  detïne sieves and sieved sets
more generally by using the space  of real num-
bers R instead of the set Q of rationals.

C. Properties of Analytic Sets

It is evident from the definition that every
+Bore1 set is analytic. If a Bore1  set is uncount-
able, then it is the union of a countable set
and a one-to-one  continuous  image of 91.  The
analyticity of sets is invariant under countable
unions, intersections, and Cartesian products
and the operation A and +Bore]-measurable
transformations. An uncountable analytic set
contains  a tperfect subset (Suslin). Therefore
the possible cardinality of an analytic set is at
most countable or is that of the continuum.
Every analytic set enjoys the +Baire  property,
and in Euclidean space  every analytic set is
+Lebesgue  measurable (Luzin, Sierpinski). If a
set E in the Euclidean plane is analytic (coana-
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lytic), then I(E) is also analytic (coanalytic),
where I(E) is the set of all x such that the
section E’“’  of E that is parallel to the y-axis
has a positive measure (M. Kondô and T.
Tugué). Concerning the Baire property, the
similar result for a set E of X x Y is obtained
by replacing “to have a positive measure” by
“to be the +Second  category (nonmeager) set”
(A. S. Kechris). The Lebesgue measure of an
analytic set is effectively calculable (in the
sense  that the measure of a r,’ (or C:(c())  set is
a z:  (resp. z:(a))  real number (- Section G
and 356 Recursive Functions) (H. Tanaka).
Every analytic (coanalytic) set E cari  be de-
composed into K, Bore1 sets. This decompo-
sition is called a decomposition of E into
constituents. An analytic (coanalytic) set is a
Bore1 set if and only if it is decomposable  into
a countable number of constituents (Luzin,
Sierpinski). In a space with the cardinality of
the continuum, there exist analytic sets that
are not Borelian. For example, in the space
C( [0, 11) of continuous  functions on the inter-
val [0, 11 (- 168 Function  Spaces)  the set of
a11 differentiable functions is coanalytic but not
Borelian (S. Mazurkiewicz).

The following theorems are especially im-
portant in analytic set theory. Luzin’s fïrst
principle  (the lïrst  separation theorem): For
every pair of disjoint analytic sets A,, A,, there
exists a Bore1  set B such  that A, c B and
B Il A, = 0. An immediate corollary of
Luzin’s first principle is Suslin’s  theorem: If
both A and X - A are analytic,’ then A is a
Bore1  set. Luzin’s second principle  (the second
separation theorem): For every pair of analytic
sets A and B,  there exist complementary analy-
ticsets  C and D  such  that A-BcC,  B-Ac
D, and C n D = 0. A one-to-one  continu-
ous  image of a Bore1  set is Borelian (Suslin).
More generally, for a given B-measurable
function ,f detïned on a Bore1 set B, the set A
(cf(B))  of ail points y whose inverse images
f-i (y) are singletons is a complementary
analytic set (Luzin’s unicity  theorem). In this
theorem, we cari  replace “a singleton” by “a
+cT-compact  set” (V. Ya. Arsenin, K. Kunugui).
Therefore, if a set is the image of a Bore1  set by
a continuous  function such  that the inverse
image of each point is a o-compact set, then it
is a Bore1  set.

D. Generalization to Projective  Sets

A projective  set of class  n is inductively defïned
as follows: (i) the Bore1 sets are the projective
sets of class  0; (ii) the projective sets of class
2n + 1 are the continuous  images of the sets of
class  2n; (iii) the projective sets of class 2n are
the complements of the sets of class 2n - 1.
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The projective sets of class 1 are exactly the
analytic sets, and those of class 2 are the com-
plementary analytic sets. The following are
fundamental properties of projective sets.
Denote by L,,  the family of the projective sets
of class  n. Then (1) L,,, c LZn+k  and L,,,,,  c
L 2n+2+k  (k= 1,2,  . ..). (2) the property of
being a set of class n is invariant under count-
able unions, intersections, and Cartesian
products and homeomorphisms; (3) a contin-
uous image of a projective set of class  2n + 1
is of the same class;  (4) the projection on X of
a set of class 2n + 1  in X x Y is a set of class
2n + 1 in X; (5) the family of the projective sets
of class  2n + 1 in a space X is the family of the
projections of a11 sets of class  2n in X x X (or
X x !R);  (6) the kernel of a system of Suslin
consisting of sets of class n is a projective set
of the same class,  where n #O,  2.

We frequently call a projective set of class
2n - 1 a P, set or a x,,i  set, and that of class  2n
a C,,  set or a ZZJ  set. A B, set or a AA set is a set
that is both P, and C,.  The respective families
of these sets are also denoted by P, (zi),
C,,  (ZZ,!),  and B,  (An), respectively. In general, for
a family 3 of sets in a space X, we denote by
Cg  the family of the complements  X-E of a11
sets E in 5. We Write  Sep,(g)  and Sep&) for
the propositions obtained by substituting “set
in 3,” “ set in 3 and in Cg,”  and “set of Cr
for “analytic set,” “Bore1  set,” and “coanalytic
set,” respectively, in Luzin’s tïrst  principle and
Luzin’s second principle, respectively. Fur-
thermore, we say  that the reduction  principle
holds for 3, and denote it by Red(s),  when for
any sets A, BE iy  there exist A,, B, E 5 such
thatA,cA,B,cB,A,UB,=AUB,and
A, f’  B, = 0. C. Kuratowski introduced the
latter principle Red(k) which implies Sep,(Ca)
and Sep,,(Ck), and proved Red(#). Classi-
cally, reduction  or separation principles for the
projective sets of higher classes were not
settled except for Sep,(n:),  Sepi,  (P. S.
Novikov), and Red(i$  (Kuratowski). Now-
adays, it is known that these principles for
iA!>e!).iA are undecidable from the axiom-
atic set theory ZFC. If we assume +the axiom
of constructibility I’= L, then Red#)  holds
for n > 3 (J. W. Addison). On the other hand,
under the assumption of +projective  deter-
minacy PD (- Section H), it follows that
Red(Q!) (Red(zi))  holds when n is odd (even)
(A. Martin, Addison and Y. N. Moschovakis).

E. Universal Sets

A set U  in ‘JI x X is called the universal set
for the projective sets of class n in X if for any
projective set P of class  n in X, there exists
z,,E%  such  that P=jxl(z,,x)~U).  Concern-
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ing universal sets, we have the following result:
for every n > 0, there exists a universal set for
the projective sets of class n in X that is of the
same class in % x X. Hence in a space with
the cardinality of the continuum, there exists a
projective set of class n + 1 which is not of
class n. In general, if a class 8 of sets is closed
under taking a universal set and continuous
preimages, then 5 and Cg  cannot  both have
the reduction  property. Therefore Red(I7:) or
Red(&!) fails for each n > 1.

Any  two universal sets of analytic sets are
+Bore1  isomorphic. On the other hand, an
analytic set E is not Bore1  isomorphic to any
universal analytic set if the complement  of E is
an uncountable set without a Perfect subset (A.
Maitra and C. Ryll-Nardzewski).  Hence, there
are at least two equivalence classes of uncount-
able analytic sets with respect to the Bore1
isomorphism g under the assumption of V=
L, since the latter assumption implies the
existence of such  a set E (- Section H).

F. Uniformization Principle

The uniformization problem arose during
investigations of implicit functions. For a set E
in a space X x Y, uniformization of E  is the
finding of a subset V of E such that

where 3!y is the tquantifier  which means
“there exists exactly one y.” A Bore1  set cari  be
uniformized by choosing a suitable coanalytic
set (Luzin). Kondô’s uniformization theorem
(Ju~an.  J. Math., 1.5( 1938)) is the most impor-
tant result in descriptive set theory: every
coanalytic set is uniformizable by a coanalytic
set. As a corollary to this, any zi  set is uni-
formizable by a Li set, and every xi set is
obtained as a one-to-one  continuous image
of a coanalytic set.

Kondô’s original proof was very  diflïcult to
understand. Since teffective  descriptive set
theory was introduced by Kleene and Ad-
dison, the proof  has been simplitïed by Ad-
dison, and a more elegant one has been given
by J. R. Shoentïeld  [7,  p. 1881. Nowadays, the
theorem is also called the Novikov-Kondô-
Addison theorem, and is one of the most
powerful and fundamental theorems not only
in descriptive set theory, but also in the tfoun-
dations of mathematics.

The uniformization of an analytic set is, in
general, not to be found among analytic or
coanalytic sets. There was a conjecture that
any analytic set is uniformizable by specifying
an A, set (difference  of two analytic sets).
Recently, this conjecture was negatively settled
(J. Steel, Martin). Assuming that V= L,  the
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uniformization of a LJ (n > 3) set is determined
by specifying a z,!  set, and that of a t7,!  (n > 2)
set by specifying a I7,&  set. On the other hand,
if an axiom system of set theory (e.g.,  ZF; - 33
Axiomatic Set Theory) is consistent, then it is
still consistent even if we add to it the follow-
ing proposition: There exists a ZZ:  set whose
uniformization is impossible by any choice of a
detïnable  set in the system (P. J. Cohen, A.
Lévy). However, if we assume the existence of
a tmeasurable  cardinal (MC), it is known that
every l7:  set is uniformizable by a l7: set
(Martin and R. M. Solovay). On the other
hand, PD implies “every n,!  @A)  set is uni-
formizable by a I7:  (zi)  set for each odd
(resp. even) n”  (Moschovakis).

There are sufftcient  conditions on sections
E’“)  of a Bore1  set E in the Cartesian product
X x Y for E to be uniformizable by the Bore1
set as follows: all sections E(“)  are (i) countable
(Luzin, Novikov), (ii) a-compact (Arsenin,
Kunugui); or, as “large section property,” (iii)
in the second category (S. K. Thomason, P. G.
Hinman), or (iv) of positive measure (Tanaka,
G. E. Sacks).  For applications of descriptive
set theory to analysis, an important uniformi-
zation result is von Neumann%  selection
theorem: for any A set E c X x Y, there exists
a +Baire  measurable and +absolutely  measur-
able function .f‘:  X+  Y (- 270 Measure
Theory L (vi)) such that

Concerning implicit functions, any Bore1  set
E c X x Y such  that all sections E(“’  are at
most countable is expressed by a union of
intersections of E with graphs of some Baire
functions ,f,:X-,  Y, nEN (Luzin). Recently, it
was shown known as a generalization of this
that any Bore1  set EcX x Y such that all
sections are a-compact is a union of countably
many Bore1  sets E, for each of which a11 sec-
tions EF’  are compact (J. Saint-Raymond).

G. Kleene’s Hierarchy and Effectiveness

First, projective set theory in any space is
reducible to the theory in the space of irra-
tional numbers. Second, if we introduce a
tweak topology in the set NN  = %I  of tnumber-
theoretic functions si  with one argument, the
resulting topological space N”  is homeomor-
phic  to the +Baire  zero-dimensional space
of irrational numbers. Third, any subset B of
NN  is open  and closed in this topology if and
only if there exist a function <(EN~)  and a
predicate A’(a)  that is +general recursive in <
such that ~EBO  A<(a).  Fourth, logical opera-
tions such  as 1, v , A, 3x (where x is a vari-
able ranging over the natural numbers), and 3cx
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exactly correspond to the operations (on sets)
complementation,  union, intersection, count-
able union, and projection, respectively. On
the basis of these facts,  projective set theory is
regarded as the theory of the NN  tanalytic hier-
archy of Kleene. Here, the following example
is remarkable: We cari  construct a Ci set which
is universal for the analytic sets (namely, a
C: [N”] set) in the  space  of irrational num-
bers (- 356 Recursive Functions H).

The connection between projective set
theory and logic has been discussed by C.
Kuratowski and A. Tarski. From their point of
view, semi-intuitionists such as Bore1  regard
the set of natural numbers to be precisely clear
in itself and also the continuum to be immedi-
ately recognizable by our geometric intuition.
In their argument rational numbers do not
play such an important role. They take, a
priori, the set of irrational numbers as the
fundamental domain,  and intervals with ra-
tional extremities as the simplest sets of points
among the subsets of the fundamental domain
as the starting point of their argument. Here,
the fundamental domain  or each interval is
not conceived as a totality of its elements, but
recognized as a “uniform extent.” In contrast
to this, singletons and individual irrational
numbers are not SO simple. For this reason
Bore1  introduced the notion of calculable
numbers to study deiïnable  real numbers.
Following Luzin, we say  that a calculable

number is a constructible real number in the
sense that we cari  give it by an arithmetical
approximation as precisely as we want. Now,
this notion is nearly identical to the notion of
an effectively calculable real number given by
A. Church or A. M. Turing.

In the mathematics of the semi-intuitionists,
the word “effective” has played an especially
important role. Although these mathema-
ticians have always agreed not to accept the
+axiom  of choice, the exact meaning of “effec-
tive” has differed slightly among different
members of their group or in different stages
of the development of the theory. Such dif-
ferences mainly arose  in connection with the
question: How cari  we tel1  whether given en-
tities are fïnitary or individual? One way to
guess the original intention held by Bore1  and
others when they used the term “effective” is to
replace the term by “recursive.” Nowadays, the
concept of “effectiveness” is used in this sense
(- 356 Recursive Functions C), and a11 clas-
sical results  in descriptive set theory essentially
have effective versions (or retïnements via
relativization). For example, the Novikov-
Kondô-Addison theorem is described as fol-
lows:  Any  IZ:  (IZ:  (x) for an C(E~~)  set is uni-
formizable by a I7: (resp. n:(a))  set. Similarly,
Suslin’s theorem is that every analytic and
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coanalytic (i.e., d: (c())  set A is a Bore1  set of
class  v(x) which is effective relative to the
“defïnability a” of given A, where v(a) is the
+Constructive ordinal relative to c(  (Kleene,
Tugué and Tanaka, A. Louveau,  etc.).

H. Further Results  in Axiomatic Set Theory

and Strong Axioms

The recent development of axiomatic set
theory has yielded the following propositions.
Under the assumption that V= L (K. Godel,
Novikov, Addison): (1) there exists an uncount-
able I7:  set that does not contain  any Perfect
subset; (2) there exists a nonmeasurable di
set; (3) there exists a di set that does not have
the Baire property. On the other hand, if the
axioms of set theory ZFC plus “there exists an
tinaccessible cardinal number” are consistent,
then SO is “every projective set is Lebesgue
measurable, has the Baire property, and has a
Perfect subset when it is uncountable” with
them (Solovay). Concerning these properties,
+Martin’s  axiom MA and “2”0>  K,” (MA +
1 CH is consistent with ZFC; - 33 Axiom-
atic Set Theory E) implies that every Lj is
measurable, and has the Baire property
(Martin and Solovay). The possible cardinality
of a ,.Y; set is at most K,  or that of the continu-
um, which is implied from “every ,,Y; set is a
union of tE,  Bore1  sets” (Sierpinski). It is
known that one cannot  prove or refute from
ZFC the converse of the latter statement. If
one assumes MC (the existence of a measur-
able cardinal), then every Li set is a union of
K, Bore1 sets. Therefore MC implies that the
possible cardinality of a ,.Y: set is at most K,
or that of the continuum.

With each set A c “ w we associate the
following intïnite  game of Perfect  information
G(A), played by two players  1 and II. First
player  1 chooses n, E w, then player II chooses
n, E w, then 1 chooses n2 E (0,  and SO on. The
game ends after w  steps. Let r(k) = n,; if XE A,
then 1 wins G(A); otherwise II wins. A strategy
(for 1 or II) is a rule that tells the player what
move to make, depending on the previous
moves of both players. A winning strategy is
one such  that the player who follows it always
wins. The game G(A) is determined if one of
the players has a winning strategy. The axiom
of projective determinacy PD is the assertion
that for every projective set A( c”‘w)  the game
G(A) is determined. PD is widely used to salve
problems on projective sets that are not decid-
able from ZFC, and is a plausible hypothesis
that does not seem to contradict the axiom of
choice at present; and it has pleasing conse-
quences in descriptive set theory. For n 3 3,
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reductions and uniformization  results of L,!
(ni)  sets mentioned earlier are such examples.
Furthermore, PD implies that every projective
set is Lebesgue measurable, has the Baire
property, and contains a Perfect  subset if it is
uncountable.

Now, write  Determinacy (zj)  (Determinacy
(Ai)),  or simply, Det(&!)  (Det(A,!)),  when G(A)
is determined for every L,! (Ai)  set A. Using
the fact that the open game is determined,
namely Det(xy) (D. Gale and F. M. Stewart),
D. Blackwell has given a short proof  of
Sept@:). The extremely diflïcult problem was
to show Det(At)  in ZF (indeed, one cannot
prove Det(A:) only from the Zermelo axioms
z;  - 33 Axiomatic Set Theory B). In 1975,
Martin solved this problem. Concerning L{,
Det(L{) cannot be proved from only the ZF
axioms, but MC implies Det(L:)  (Martin).
However, it is known that Det(Li)  cannot be
proved even if we assume MC.

By a pre-well-ordering, we mean a relation
< having all the properties of a Weil-ordering
except for tantisymmetry.  Denote  by SA the
least  ordinal that cannot be the length of a
preewell-ordering on W.  belonging to A:. It
is a classical result that Si =w,  (= K,). The
following results are mainly due to Martin:
Si <K,,  MC 3 Si < Eç,,  and also, PD =-
81 <K,.  Let K  be an infinite  cardinal. A set
A c X is called K--Suslin  when there exists a
closed set CcX x % (%={f]f:~-trc}) such
that

A is Eç,-Suslin  iff AeL’i  If A is a L$ set, then
A is çE,-Suslin  (Shoenfïeld). Under the assump-
tions of MC, if A is a Z: set, then it is K,-
Sushn (Martin). Furthermore, Det(A&J  implies
the following facts  (Kechris, Moschovakis):
every zln+2  set is rc-Suslin,  where K  is the
cardinal of Si,,,,  ; every Li,,,  set in rc-Suslin
for some K < Ci~,+,

The axiom of determinacy AD i s  the  asser -
tion that the game G(A) is determined for
every set A. AD implies that every set is
measurable (J. Mycielski and S. Swierczkow-
ski), has the Baire property, and has a Perfect
subset if it is uncountable (Morton Davis).
Though AD contradicts the axiom of choice,
some consequences  of AD in the area of pro-
jective sets are more desirable than the conse-
quences of the axiom of choice. The following
are examples of consequences  of AD. (1) A is a
zl  set iff A is a union of K,  Bore1 sets (Mos-
chovakis). (2) For each n, 8: is a cardinal
(Moschovakis). (3) Generalization of Suslin’s
theorem holds as follows: d,’ = B,; (= the
smallest +Boolean  algebra containing the open
sets and closed under complementation  and
unions of length <Si)  (Martin, Moschovakis).

22 1
Analytic Sets

1. Polish Spaces,  Luzin Spaces,  and Suslin
Spaces

A topological space  homeomorphic to a com-
plete separable metric space  is called a Polish
space.  A subspace E of a Polish space  X is
Polish if and only if it is a G,-subset of X, i.e.,  a
countable intersection of open subsets of X
(Aleksandrov and Uryson). A Hausdorff top-
ological space  X is called a Luzin space  (resp.
Suslin  space)  if we cari  fïnd  a Polish space  S
and a continuous  bijective (resp. surjective)
mapping f’:  S+X.  Every Polish space  is a
Luzin space  and every Luzin space  is a Suslin
space.

Let X be a Hausdorff topological space.  A
subset E of X is called a standard set (resp.
analytic set) if the set E with the relative top-
ology is a Luzin (resp. Suslin)  space.  The
analytic subsets are closed under analytic
operations. Every analytic set is obtained from
closed sets by applying the analytic operation.
Every analytic set is tuniversally  measurable.
Every standard set is a Bore1  set. Every count-
able union or intersection of standard sets is
standard.

A subset E of a Suslin space  is a Bore1  set if
and only if both E and E’ are analytic. A
subset E of a Luzin space  is a Bore1 set if and
only if E is standard.

Let f be a Bore1  measurable mapping from
a Suslin space  X into another Suslin space  Y.
Then the image f(X)  is an analytic subset of Y.
Furthermore, if 1‘ is injective, then f’gives a
+Bore1  isomorphism between X and .f(X).  If
both X and Y are Luzin spaces and if f is
injective, then f(X) is a Bore1  subset of Y.
Every Suslin space  is +Bore1  isomorphic to an
analytic subset of R, and every Luzin space  is
Bore1  isomorphic to one of the following
spaces:(l)N,={1,2  ,..., n},(2)N={1,2  ,...  },
(3) R.

The selection theorem due to von Neumann
(- Section F) holds when X and Y are Suslin
spaces.  This fact and its ramifications [ 15,161
are useful in nonlinear functional analysis and
control theory.

Practically all useful spaces appearing in
functional analysis and probability theory are
Polish or Luzin spaces.  Examples: (i) Every
locally compact Hausdorff space  with a count-
able open base is Polish. (ii) Every separable
Banach space  is Polish.  (iii) The set C of all
continuous  functions on [0, l] with the ttop-
ology of uniform convergence is a Polish
space.  (iv) The set D  of all right continuous
functions on [0, l] with left limits is a Polish
space  when it is endowed with the Skorokhod
topology (- 250 Limit Theorems in Proba-
bility Theory E). (v) The space  y’  of distri-
butions and the space  .y of tempered distri-
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butions (- 125 Distributions and Hyperfunc-
tions) are Luzin spaces.

References

[l]  C. Kuratowski, Topologie 1, Warsaw,
revised edition, 1948.
[2] A. A. Lyapunov (Liapunov), E. A. Shche-
gol’kov (Stschegolkow), and V. J. Arsenin,
Arbeiten zur deskriptiven Mengenlehre, Deut-
scher Verlag der Wissenschaften, 1955.
[3] N. N. Luzin, Sur les ensembles analytiques,
Fund. Math., 10 (1927),  l-95.
[4] N. N. Luzin, Leçons sur les ensembles
analytiques et leurs applications, Gauthier-
Villars, 1930.
[S] W. Sierpifiski,  Les ensembles projectifs et
analytiques, Mémor. Sci. Math., Gauthier-
Villars, 1950.
[6] H. Rogers, Jr., Theory of recursive func-
tions and effective computability, McGraw-
Hill, 1967, ch. 16.
[7] J. R. Shoentïeld, Mathematical logic,
Addison-Wesley,  1967, ch. 7.
[S] D. A. Martin, Descriptive set theory: Pro-
jective sets, Handbook of Mathematical Logic,
North-Holland, 1977, ch. C.8.
[9] T. Jech, Set theory, Academic Press, 1978,
pt. IV.
[ 101  P. G. Hinman, Recursion-theoretic
hierarchies,  Springer, 1978, pt. B.
[ 1 l] Y. N. Moschovakis, Descriptive set
theory, North-Holland, 1980.
[12] C. A. Rogers, J. E. Jayne, C. Dellacherie,
F. Topsne,  J. Hoffman-Jnrgensen,  D. A. Mar-
tin, A. S. Kechris, and A. H. Stone, Analytic
sets, Academic Press, 1980.
[ 133 N. Bourbaki, Éléments de mathématique,
Topologie générale, Hermann, 1974, ch. X, sec.
6 .
[ 141  J. Hoffmann-Jnrgensen,  The theory of
analytic spaces, Various publication series 10,
Math. Institute, Aarhus Univ., 1970.
[ 151  M.-F. Sainte-Beuve, On the extension of
von Neumann-Aumann’s theorem, J. Func-
tional Anal., 17 (1974),  112- 129.
[ 161  A. F. Filippov, On certain questions in
the theory of optimal control, SIAM J. Con-
trol, 1 (1962),  76-84.

23 (X1.21)
Analytic Spaces

A. General Remarks

An tanalytic function of a complex variable
has as its natural domain  of detïnition a +Rie-

114

mann surface, i.e.,  a 1 -dimensional  complex
tanalytic manifold. In the case of several com-
plex variables, the set of zeros of an analytic
function, the quotient space  of a domain  by
a tproperly discontinuous  group of analytic
automorphisms, the existence domain  of an
talgebroidal  function, etc., are, strictly speak-
ing, not necessarily complex analytic mani-
folds.  It is necessary to consider a more gen-
eral category of complex analytic manifolds
with singularities, and the notion of analytic
spaces is drawn from these examples. Many of
the properties of complex analytic manifolds
are extended to  analytic spaces; on the other
hand, theories specific  to  analytic spaces have
also been developed.

B. Analytic  Sets

We say  that a subset A of a complex analytic
manifold G  is an analytic set in G  if it is a
closed subset and each point of A has a neigh-
borhood U  such that Un A is the set of com-
mon zeros of a finite  number of holomorphic
functions in U. Specifïcally,  if A is locally the
set of zeros of a single holomorphic function
that does not vanish identically, then A is
called principal. Two subsets S, and S, of G
are called equivalent at z”  E G if there exists
a neighborhood U of z”  such that S, n U  =
S, n U. By this equivalence  relation, every
subsets S of G  detïnes its germ S,, at z”.  A
germ of an analytic set at z”  is the germ at z”
of an analytic set in a neighborhood of z”.
Each germ A, of an analytic set at z”  = OE  G  is
associated with an ideal I(A,)  = {fi ~EH(O),
,fl  A, =0} in the ring H(0) of tgerms  of holo-
morphic functions at 0. We cal1 A, reducible
if A, is the union of two germs of analytic sets
A,’ and A,” with A,‘# A,, A,“#  A,; other-
wise, A, is called irreducible. An analytic set A
is called irreducible at 0 if the germ at 0 of A
is irreducible. Properties of A, and I(A,)  cor-
respond to each other. Thus A, is irreducible
if and only if I( A,) is prime.

As the ring H(0) is +Noetherian, in a neigh-
borhood of every point z”  an analytic set A
is represented as a union of a tïnite  number
of analytic sets Ai that are irreducible at z”.
These Ai are essentially unique. If an analytic
set A is irreducible at z”,  then there exists a
system of local coordinates (zl, . , z,) centered
at z”  and a pair of natural numbers d <n  and k
such that, in a neighborhood of z”,  A is a k-
sheeted ramified  covering space  with covering
mapping VO:(~,, . . . . z,)+(zl,  ,z,);  i.e.,  for an
analytic set R in a neighborhood of 0 E Cd, cp  :
A-<p-‘(R)+Cd- R is, in a neighborhood of
z”,  a k-sheeted covering mapping, where A ~
p -’ (R) is a connected  d-dimensional com-
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plex analytic manifold in the neighborhood.
The coordinates of the k points of A -<p-‘(R)
over each point (z,  , , zd)  are holomorphic in
these variables. The number d is the (local)
dimension of A at z”  and is denoted by dimzO  A.
From this local representation, we obtain
Riickert’s zero-point theorem: Every prime
ideal !$I  in H(0) is equal to I(A,),  with A, an
irreducible germ of an analytic set at 0. In this
case the dimension at 0 of an analytic set A
that detïnes A, is equal to the +Krull  dimen-
sion of the Uocal  ring H(O)/<@.  The theory of
local rings is very important in the study of
germs of analytic sets. The dimension of a
general analytic set A at z”  is detïned by
dim,OA=sup,dim,OAi,whereA=UiA,ina
neighborhood of z”,  with the Ai irreducible
at z”.  If dim,” Ai is equal to d for ah i, then A
is called purely d-dimensional at z”.  The
(global) dimension of A is defined by dim A =
SUP,,~  dim, A. A purely d-dimensional ana-
lytic set is defïned to be an analytic set that is
purely d-dimensional at every one of its points.

A point z”  of an analytic set A is called
ordinary (regular or simple) if A has the struc-
ture of a complex analytic submanifold in a
neighborhood of z”.  The set A’ of ordinary
points of A is dense and open in A. The set A*
= A -A’ of singular (not ordinary) points is an
analytic set in G. If A is purely d-dimensional,
then A’ is a d-dimensional complex analytic
manifold and A* is an analytic set of dimen-
sion <d-  1.

Let A be an analytic set of dimension d in G,
and B  a purely d’dimensional  analytic set in G
-A with d’ > d. Then the closure B of B  in G is
a purely d’-dimensional  analytic set (Remmert-
Stein continuation theorem [17]).

For every analytic set A in G, the tanalytic
sheaf .9(A) of germs of holomorphic functions
over G that vanish on A is tcoherent  (H. Car-
tan). We call Y(A)  the sheaf of ideals defined
by an analytic set A. Let 8,  be the sheaf of
germs of holomorphic functions over G. Then
CJ~=(O,/.P(A))I  A is a coherent  sheaf of rings
over A. 0A is called the sheaf of germs of holo-
morphic functions on an analytic set A.

C. Analytic Spaces

A tringed  space  (X, 0,) with Hausdorff base
space  X is called an analytic space  if for every
point XEX,  there exists an open neighborhood
U  of x such  that the ringed space  (U,  0x1 U) is
isomorphic to a ringed space  (A, OA),  where A
is an analytic set in an open set G of some C”.
The structure sheaf 0,  is then called a sheaf of
germs of holomorphic functions.  The notion of
tholomorphic  mapping from one open set in
c” into another is generalized to the case of
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mappings from one analytic set into another.
An analytic set Y in an analytic space  X and
the sheaf 0, of germs of holomorphic functions
on Y are detïned as in the case where X is a
complex manifold. The ringed space  (Y, 0,) is
an analytic space  and is called an analytic
suhspace of X. For an analytic space  X, the
notions of dim, X, dim X, irreducibility, and
pure dimensionality are detïned as for an
analytic set A c G c C”. Every analytic space  X
is the union of a locally tïnite  family of irreduc-
ible analytic subspaces X, called the irreduc-
ihle components of X.

Let 40  : X * Y be a holomorphic mapping
of an analytic space  X into another, Y. Its
rank at x E X is detïned by Y~(X)  = dim, X -
dim,<p-‘(<p(x)).  The number rP=sup,,,r,Jx)
is called the rank of <p. The set of degeneracy
E, of <p  is the set of points x~x such that
~qIx4x)<rvlx~ for an irreducible component
X’ of X through x. The mapping <p  is non-
degenerate if E, = 0. For any k E N, {x E X )
Y~(X)  < k} is an analytic set (R. Remmert [ 161).
In particular, E, is analytic. For a holomor-
phic  mapping <p  :X + Y, the inverse image of
an analytic set in Y is an analytic set in X.
However, the image of an analytic set is not
necessarily analytic. If cp  is +proper,  then the
image cp(X’)  of an analytic set X’ in X is an
analytic set in Y of dimension rvplx. and is
irreducible if X’ is irreducible (Remmert’s
theorem [ 161).

D. Modifications and Resolution of
Singularities

Let M  be a subset of an analytic space  X. If,
for every point x E X, there exists an open
neighborhood U of x and and an analytic set
M*  in U, containing Un M  such that U-M*
is dense in U, then M  is called analytically
thin. Let <p:  X-t  Y be a holomorphic map-
ping. Suppose that there exist two analyti-
cally thin sets A4 c X, N c Y such that cp
induces an isomorphism between X -M  and
Y - N. Then X is called a holomorphic modifï-
cation  of Y. If furthermore <p  is proper, then X
is called a proper modification of Y. A mon-
oidal transformation of an analytic space  X
with respect to a coherent  sheaf of ideals 9 is
detïned as in the case of a complex manifold or
an algebraic variety (- 16 Algebraic Varieties
L; 72 Complex Manifolds H). It is a proper
modification f: X* +X  such  that the inverse
image ideal sheaf f-‘9.8,.  is inyertible, and
is universal among ah proper holomorphic
mappings h:Z+X  with the property that
h -‘4.  Ls,.  is invertible, where f -‘.a  is the
+inverse  image of .f.  If 9 is the sheaf of ideals
detïned by an analytic set Y in X, the mon-
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oidal transformation of X with respect to 9 is
often called the blowing-up of X with tenter  Y.

H. Hironaka [ 141  proved that, if X is an
analytic space which is countable at infinity
(i.e., a countable union of compact sets), then
there is a proper modification 7~: X’-tX with
X’ smooth (i.e.,  free from singular points). Such
a modification is called a desingularization (or
resolution  of singularities) of X. Moreover,
over any relatively compact open set U  of X, n
is the product  of a tïnite  sequence of blowing-
ups ri: Xi-Xi-,  (X0  =X),  with smooth centers
XL1  along which Ximl  is tnormally  flat.  This
deep result enables one to derive properties of
analytic spaces from those of complex
manifolds.

Let X and Y be two analytic spaces and G
an analytic set in X x Y. If the canonical pro-
jection x:G+X is a holomorphic (or proper)
modification, then we say  that a meromorphic
mapping (a proper meromorphic mapping) p
of X into Y is defined. The set G  is then called
the graph of p.  A holomorphic mapping <p:  X
+ Y cari  be viewed as a proper meromorphic
mapping. Let p : X + Y be a proper meromor-
phic mapping. Then p(x) (the projection of
n-‘(x)  into Y) is a nonempty analytic set in Y
for every point x E X. Moreover, there exists
an analytic set N, with X-N dense in X, such
that p maps X-N into Y holomorphically.
The smallest set N with this property is called
the set of points of indeterminacy or the sin-
gularity  set of p.  A meromorphic mapping f‘: X
+PI(C)  is called a meromorphic function  on X
if none of the irreducible components of X is
mapped to {  co} by 1:  The set ,f -’ (0) = 7z((X  x
{0}) fl  G) is called the set of zero points of X,
and the set ,f-‘(~3)  is called the set of poles.
These are analytic sets in X. Let fi,  . , fk be
meromorphic functions on X. Then, by a
suitable proper modification of X, one cari
eliminate the points of indeterminacy of the
meromorphic mapping f: X+(P’(C))k  defined
by X+(~~(X),  . ,,fk(x)),  i.e.,  one cari  modify f to
be holomorphic. The ring of meromorphic
functions on X is invariant under proper
modifications of X. If X is irreducible and
compact, then the fïeld  of meromorphic func-
tions on X is a simple algebraic extension of
the +iïeld  of rational functions of k (<dimX)
variables.

Let (X, 0,) be an analytic space. A point
x E X is called normal for X if O,,,  is a tnormal
local ring. The set of nonnormal points for X
is an analytically thin analytic set in X (K.
Oka). Every ordinary point of X is normal.
We cal1 X normal if every one of its points is
normal. Every nondegenerate holomorphic
mapping of an irreducible X into an irreduc-
ible and normal Y is an open mapping if its
rank is equal to the dimension of Y (Remmert).
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For every analytic space X, there exists a
proper modification V:~+X  with x normal
such  that v is nondegenerate and v 1 x-v-‘(S)
is an isomorphism, where S is the set of non-
normal points. Such a proper modification of
X is unique up to isomorphisms. We cal1 r?
a normalization of X with normalizing map-
ping v.

Let <p  : X + Y be a holomorphic modifi-
cation. Suppose that Y is normal at <p(x”)
(x06X). If the set <p-‘(V(X’))  contains an iso-
lated point, then <p-‘(<~(X~))=X~,  and q is an
isomorphism in a neighborhood of x0 (an
analog of +Zariski’s  main theorem). In partic-
ular, if <p  :X-t  Y is a holomorphic modifïca-
tion and Y is normal, then p maps X -E,
isomorphically onto  the dense open set cp(X -
EV).  Furthermore, if a holomorphic mapping
<p  : X + Y is injective and X and Y are irreduc-
ible,  normal, and n-dimensional, then <p(X)
is an open set in Y and <p  ml  : 9(X)+X  is
holomorphic.

E. Analytic Spaces in the Sense of Behnke and
Ste in

Let cp  : & G  be a proper continuous  mapping
of a connected  tlocally compact space G  onto
a domain  G  c C”. The triple 6 = (G, <p,  G)  is an
analytic covering space over G  if the following
conditions are satislïed:  (i) cpml(zo)  is a finite  set
for every point z”  E G. (ii) There exists  an ana-
lytic set A c G  of dimension <n  - 1 such that
<p  1 G  - <p-‘(A)  is a local homeomorphism and
every point of <p-‘(A)  has a fundamental sys-
tem of neighborhoods U such that both U
and U-v--‘(A)  # @ are connected. As 6 is
unramitïed over G-A, the number of points in
<p  ml  (z”)  is constant for z”  E G-A and is called
the number of sheets of 8. A point ZE  G  is
called a ramification point of 6 if the restric-
tion of <p  to  any neighborhood of Z is not a
homeomorphism. Denote by B the set of
ramification points of 6. Then <p(B)  c A is an
analytic set of dimension n - 1. Let f be a
continuous  complex-valued  function in an
open set D  in G.  We cal1 f holomorphic in D  if
for every point 1’ ED - B and for every open
neighborhood V  of z”  = V(~“O)  over which cp  is
a homeomorphism, fo  <p-l  is holomorphic in
V. Denote by 9~ the sheaf of germs of holo-
morphic functions over c. Then (G, 06)  is a
ringed space. An analytic space in the sense of
Behnke and Stein is  a  Hausdorff  r inged space
(X, 0,) that is locally isomorphic to a ringed
space of the form (G, bu)  [3]. +Riemann’s
theorem on removable singularities holds for
such spaces. Every norma1 analytic space is an
analytic space in the sense of Behnke and
Stein. An analytic covering space 6 =(G, <p,  G)
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is a C-covering space (covering space in the
sense of Cartan)  if for every point z”  E G there
exist an open neighborhood V of z” and a
holomorphic function g in U  = 40  -l(V)  which
cari  be defined by an irreducible polynomial
of degree k such that its coefficients are holo-
morphic functions on V and the coefficient of
its highest term is 1, where k is the number of
sheets of 6. A C-analytic space is an analytic
space in the sense of Behnke and Stein that is
locally isomorphic to a C-covering space. The
category of C-analytic spaces coincides  with
that of normal analytic spaces. According to
H. Grauert and Remmert [ 101, every analytic
covering space is a C-analytic covering space.
Therefore every analytic space in the sense of
Behnke and Stein is a normal analytic space.

Let R be an equivalence relation in an ana-
lytic space X. Given a subset A of X, denote
by R[AI  the set of points of X which are R-
equivalent to points of A. We cal1 R proper if
R[K]  is compact for every compact set K in
X. Let q be a proper holomorphic mapping of
an analytic space X into another Y. For x,
X’E X, let x =x’(R) be defined by <p(x)  = V(X’).
The equivalence relation R is then proper. We
consider the quotient space X/R and the
canonical projection p:X+X/R. With each
open  set U  in the quotient space X/R we cari
associate the ring of holomorphic functions in
p-‘(U) that are constant on P-‘(X)  for every x
E U.  This leads to a ringed space (X/R,  G,/R),
which is proved to be an analytic space by
Grauert’s theorem [9]: Al1  the +direct  images of
a coherent  analytic sheaf over X by a proper
holomorphic mapping cp:  X--f  Y are coherent.
For every proper equivalence relation R in X,
the ringed space (X/R,  O,/R)  is an analytic
space if and only if for every point Xo  X/R
there exists an open neighborhood V of ,? such
that functions in T(  V, b,/R) separate the
points of V (H. Cartan).

F. Stein Spaces

For an analytic space (X, 0,)  let us consider
the following conditions: (i) Functions in
I(X, 0X)  separate the points of X. (ii) X is K-
complete;  i.e.,  for every point XEX there exist a
finite  number of LE I(X, ox) (i = 1, , k) such
that the holomorphic mapping f=  (,fi):  X 4?
is nondegenerate at x. (iii) Every compact
analytic set in X is a finite  set. Condition (i)
implies (ii), and (ii) implies (iii). If an irreducible
analytic space X is K-complete, then X is a
countable union of compact sets (Grauert
[S]). In fact,  if n=  dim X, there exist functions
fi~r(X,O,)  (i= 1, . . ..n) such  that the holo-
morphic mapping f=(A):  X -c”  is nondegen-
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erate. The notion of holomorphic convexity
(- 21 Analytic Functions of Several Com-
plex Variables H) is carried  over to analytic
spaces. For a holomorphically convex analytic
space, conditions (i), (ii), and (iii) are equivalent
(Grauer [SI).  A Stein space (or holomorphi-
cally complete  space) is a holomorphically
convex analytic space that satistïes  one of the
conditions (i), (ii), or (iii). In a holomorphically
convex analytic space (X,0x),  let R be the
equivalence relation detïned by I(X, 6,); i.e.,
for x, x’ E X, x = x’(R) if and only if f(x) =S(x’)
for every ,f~ I(X,  ccx).  Then R is proper. The
analytic space (X/R,  C,/R)  is a Stein space. A
Stein space is a generalization of the notion of
a Stein manifold. Fundamental theorems A
and B on Stein manifolds hold Verbatim for
Stein spaces (- 21 Analytic Functions  of
Several Complex Variables L). Therefore the
main properties of Stein manifolds are in-
herited by Stein spaces. Let cp:  X 4 Y be a
holomorphic mapping of an analytic space X
into another, Y. If for every X~X a11 the con-
nected components of the fïbers  <P~I(<~(X))  are
compact, then the equivalence relation R’
defïned by those components (ie., for x and x’
in X, x = x’(R’)  if and only if x and x’ belong to
the same component  of <P~I(<~(X)))  is proper,
and the ringed space (XIR’, G,/R’) is an ana-
lytic space. In particular, if X is a holomor-
phically convex irreducible analytic space
and R is the equivalence relation detïned by
I(X,  8,),  then a11 the tïbers  of the canonical
projection p: X + XJR  are connected.

G. Further Topics

The notion of analytic space cari  be gen-
eralized as follows (Grauert [SI). A ringed
space (X, fJx)  is a general analytic space if it is
locally isomorphic to a ringed space (A, ST~),
where A is an analytic set in a domain  G 5 C”,
and &i  = (8,/9)  IA for some coherent  analytic
subsheaf # of Y(A)  such  that Supp(&,/2)
( = {z  E G 1 (&,/y),  # 0)) = A. An analytic sub-
space of (X, ex)  is a ringed space (Y, &) where
Y = Supp(&JS)  and 0r = C5J.f  for some co-
herent sheaf of ideals .f of 6~.  (Y, &y)  is also a
general analytic space. A. Douady [6] showed
that for any general analytic space (X, &)
there exists a natural  structure of a general
analytic space on the totality of all the com-
pact analytic subspaces of (X, Q). The result-
ing analytic space is called the Douady space
of (X, 0J.  For the proof,  the notion of a
Banach analytic space is used,  which is ob-
tained by fïrst  defining analytic subspaces in
an open  subset of a complex +Banach  space
and then patching them. A Douady space cari
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be used,  for example, to show that the identity
component  of the analytic automorphism
group of a compact Kahler  manifold is a
+complex  Lie group which is naturally an
extension of a tcomplex torus by a tlinear
algebraic group (A. Fujiki, D. Lieberman; -
232 Kahler  Manifolds C).
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24 (Xx1.1)
Ardent IÜlathematics

A. General Remarks

TO determine the beginning of the history of
mathematics, one must detïne the term “math-
ematics.” Only speculation based on the ob-
servation of primitive peoples today cari  be
made regarding the development of the number
concept among prehistoric peoples. The pre-
historic period ended in Egypt and Meso-
potamia c. 3000 B.c.,  and a little later in the
valleys of the large rivers in India  and China.

Since the basis of the civilizations in the
river valleys of the ancient  world was agricul-
ture, the administrators tïrst  had to control
watering systems through irrigation, drainage,
pumping, and canalization;  second, they had
to measure land and harvests for tax collec-
tion; and third, they had to establish a calen-
dar by observation of the heavenly bodies.
Al1  these tasks demanded some knowledge
of mathematics.

Additional knowledge of mathematics was
certainly needed for construction of the pal-
aces and tombs. We know something of the
development of mathematical knowledge
during these ages from some recovered arti-
facts,  but there remains the possibility of new
finds that Will bring about  a basic change in
our knowledge of the history of mathematics
during this period.

B. Mathematics in Egypt

The main sources for our understanding of the
history of mathematics in Egypt are the Mos-
cow papyrus and the more important Rhind
papyrus, both discovered in the 19th Century.
The Greeks place the origin of their mathe-
matics  in Egypt, but it seems that Egyptian
mathematics was limited to practical mathe-
matics. The Egyptians had a decimal  numera-
tion system, but the place value was not clear;
they used fractions, which they always decom-
posed into the sums of unit fractions (i.e., frac-
tions with 1 as numerator); they solved the
problems of everyday arithmetic that were
reducible to linear equations; they computed
approximate areas  and volumes of some tïg-
ures for the purpose  of measurement of farm-
land or granaries and for construction work;
they had exact formulas for the computation
of areas  of triangles and of trapezoids; and
they used (16/9)‘=3.1605  as the value of
n; but no trace has been found to prove the
existence of demonstrative mathematics in
ancient  Egypt.
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C. Mathematics in Mesopotamia

Sources abound for the study of Mesopota-
mian mathematics, and these sources may
very  well  increase in the future. The Meso-
potamians kept exact records of astronomical
observations for long periods of time. Their
more advanced mathematics was not limited
to practical use, as was that of the Egyptians.
They used a sexagesimal system of numeration
with place value, and also used sexagesimal
fractions; however, they lacked a cipher to
denote  zero until the 4th Century a.~.,  and they
did not have a symbol  corresponding to our
decimal  point, SO that exact place value had to
be determined from the context  of each ex-
pression. They had a multiplication table and
tables of inverses, squares, and cubes of num-
bers, and they used these tables to solve equa-
tions, even some simple equations of the third
degree, as well  as simultaneous equations of
the second degree for two unknowns. They
had accurate solutions for quadratic equations
(expressed in words); they discarded negative
roots, but they admitted both positive roots
when two existed. They studied integral solu-
tions of a2 + b2  = c2 (the largest of their solu-
tions were 12,709, 13,500, and 18,541) and
approximate computation  of quadratic roots.
which suggests some relation to Greek mathe-
matics. We have evidence that some of the
geometric algebra in Euclid’s  Elements  cari  be
traced to Mesopotamian algebra. Some his-
torians also affirm that the concept of dem-
onstration in Greek mathematics originated
with the Mesopotamians, but this theory lacks
suffcient proof.

By the 7th Century, the Mayas in Central
America also possessed a numeration system,
with the base 20. As far as we know, the Meso-
potamians and the Mayas were the earliest
people to possess numeration systems with
place value (- 57 Chinese Mathematics, 187
Greek Mathematics, 209 lndian Mathematics).
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25 (XX.35)
Approximation Methods in
Physics

A. Introduction

It is often possible to salve a differential equa-
tion of mathematical physics analytically by
expanding the solution in a series with respect
to a small (or large) parameter involved in the
equation. In general, such  an approach is
called a perturbation method (- Section B).
For an equation which is difhcult to treat
analytically, it is possible to get a numerical
solution either by replacing the derivatives by
difference quotients (tdifference  method), or by
expanding the solution in terms of suitable
functions and determining the expansion coef-
ficients numerically from the equation re-
written in a weak form (tvariational  method,
tmethod of weighted residuals, +Galerkin’s
method, +finite-element method, etc.). For such
numerical methods - 46 Calculus of Vari-
ations, 301 Numerical Solution of Algebraic
Equations, 302 Numerical Solution of Linear
Equations, 303 Numerical Solution of Ordi-
nary Differential Equations, 304 Numerical
Solution of Partial Differential Equations, 441
Variational Principles.

In Section C we describe a method for deriv-
ing an asymptotic expression for a function
written as an integral in a complex plane.

B. Perturbation Method

(1) Regular Perturbation. (a) Initial-value prob-
lem. Consider an initial-value problem of an
ordinary differential equation involving a
small parameter E:

du

u=b(&)  at t=O. (2)

We assume that J is sufficiently  smooth as a
function of t and is regular as a function of u
and E, and that b is a regular function of E.

Substituting the power series in E for L u,
and b,

f(t, u; E) = ,pyt,  u) + &ff yt, u) + ,

u(t;E)=U(“)(t)+EU~‘)(t)+  . ..)

/I(E)  = b”)+ ch”‘+ ,
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into equations (1) and (2) and equating terms
of equal power, we get

dl.&0
x+o)(t,  u(O)), u’O’(O) =p,

du”’
,=f~O’(r,U’O’)U’~)+f(~)(t,U(Oi),  .(yj)=b”‘,

+jy’(t,  U(“))U”‘+,f’2’(t,  u(O)),

.(y))  = p,

the solutions of which determine the perturba-
tion series for u.  The equation for u(O)  (the
unperturbed equation) is nonlinear in general,
but those for u(l),  u(‘), are inhomogeneous
linear equations with identical principal parts.

The system of differential equations

!?=,h( t,u,  ,..., U”;S) (i=1,2  ,..., n),

ui=b,(&)  a t  t=O,

or a differential equation of higher order,

d”u d”-‘u-=
dt”

f t,u,...,-;E
( >dt”-l ’

u=b”‘(e)  ,..., ~=h’ne’)(~)  at t=O,

cari  be treated in a similar way.
(b) Boundary-value problem. Given a linear

differential operator H = Ho +EV involving
a small parameter E linearly (Ho  is a linear
differential operator and Vis a function of
(Xl>%,  ...Y x,)), consider the boundary-value
problem

(H,+~V)u=,f(x I>...>X,) b,,...,X”)EQ ( 3 )

Bu=0 (Xl,  . . ..X.)Exl, ( 4 )

where B is a linear and homogeneous
operator.

Substitution of the Taylor expansion

u=u,+Eu,  +

into equations (3) and (4) gives

Hou,  =A Bu, =O,

Hou,  + Vu,=O, Bu, =o,

. . . .

of which the solutions are

u,=Kf; u,=-KVK,f;

u,=KVKVK,J;....

Here K = Hi’ is an integral operator such  that,
for any function v = n(x, , x2, , x,), we have
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(Kc)(x ,,..., x,)=
S S

G(x  ,,..., X~I<~  ,..., 5,)

x ~(5, > > LM,  dt,,,
where G(x, ,..., x,lcl ,..., QistheGreen’s
function for the unperturbed problem. The
perturbation series

u=K,f-~KVKff~2KVKVKf-...

converges if VK is bounded and I&l< l/li VKII.
(c) Eigenvalue problem. The solution of an

eigenvalue problem

(H,+EV)U=h ( 5 )

with the boundary condition Bu = 0 for the
operators considered in (b) cari  be obtained in
power series in E:

~.=~o+~/l”‘+E2Â’2’+...,

U=Uo+&U(‘)+E2U(2)+...,

where u. and Âo are the eigenfunction and
nondegenerate eigenvalue, respectively, of the
unperturbed operator Ho,  which is assumed to
be self-adjoint. Substitution of the series into
(5) gives

(Ho-i,)u”‘= -VU~+~.‘%,, (6)

(Ho -J~o)u(2)=  - I/u”‘+~‘z’uo+~(l)u(l)

(Ho -i,)~‘~‘= _ VU(Z)  + jj3juo + ~<2>,<1>

+J”‘u’2’
” 1

If we normalize u. and u by the conditions
(uo, uo) = 1 and (u, uO)  = 1, we get from equation
(6)

2”=(vu,,u,)~a.

Let S be the inverse of Ho -Ao1 in the sub-
space  perpendicular to u. (we put Su, = 0),
then each term of the perturbation series for u
and 3,  is obtained in the following way from
the system of the equations given above:

fi’)=  -svu,,

i(2)  = - (VS vu,, Mo),

u’2’=s(v-a)svuo,

1~‘3’=(vS(v-a)SvuOrUo)>

uc3)=  -S(V-a)S(V-a)SVu,

(2) Singular Perturbation. Formal  application
of the procedure  described in (1) often  fails
when the term including the highest-order
derivative is multiplied by a small parameter
(or a lower-order term is multiplied by a large
parameter), i.e.,  when we deal with singular
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perturbation problems. Typical methods for
treating such cases are described below.

(a) WKB method. The method for getting an
asymptotic solution of the second-order dif-
ferential equation

for large values of k was developed for prob-
lems arising in classical wave motion (Jeffreys,
1924 [l]) and for problems of quantum
mechanics (Wentzel, Kramers, Brillouin,
1926),  and is called the Jeffreys method, WKB
method, or  WKBJ method.

If the function P in (7) does not vary rapidly,
the solution is expected to have the form

u~exp{ikdx)},

with q(x)  not very  different from a linear func-
tion of x, since the exact solution for P = P. =
const  is exp( &  ikvK  x).

Substitution of this expression for u in equa-
tion (7) gives

ik<p”-k2qf2fk2P=0.

Neglecting the first term, we get

s

x
<p”=P,  i.e.,  q(x)= P u2  dx.

This result suggests a transformation of the
form

s

x
)y= p”4U, z= Pl’z dx,

which gives

d2w
Z+(kZ-Q)w=O,

where

Q=p-‘“$(rl”)=  -p-3,4!$,,4),

Equation (8) cari  be transformed further into a
Volterra’s integral equation of the second
kind:

w(qk)=.&ik”+&-ik”

+k
s

’ sin{k(z-<)}Q(<)w([;  k)d[.
20

Therefore, if we expand w as

w(z;k)=w,(z)+;w,(z)+..., (9)

we have

wo(z)  = Aeik’  + Be  +,

W,,(Z)=
s

’ sin{k(z-i)JQ(S)Wn-l(i)di
=Cl

(n=1,2,...).
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If P is positive for the interval z,dz<z,  in
question and has continuous  derivatives up to
second order, the foregoing series converges to
the solution of (8).

On the other hand, when kz takes complex
values, the series (9) does not converge in
general. The series expansion appropriate for
this case is

II 1
w(z;k)=exp{$kk)), $=  iikz+~(ik)“h,(z),

and we get the asymptotic expansion for w:

w-exp { iikzT;J pd:+$Q(')

+&{Qrf(~)-2Q(z)2}  +

Now, in many cases, P takes both positive
and negative values within the interval in
question, e.g.,  in the problem of transonic flow
of a gas, in the problem of determining the
reflectivity and transmissivity of a wave propa-
gating in a nonuniform medium, or in the
quantum-mechanical problem of a material
wave passing through a potential wall.  The
point at which P vanishes is cahed a turning
point. In this case there arises the problem of
analytic continuation of the solution obtained
in one side  into the other through the turning
point. For the special  case when PCC~”  (the
turning point is chosen as x = 0), it cari  be
shown that the exact solution of equation (7) is
explicitly given by

where v = l/(n + 2),  and Z,  is a cylindrical
function of order v. Based on this fact,  the
continuation formula for the case when P
is approximated by x” near x = 0 has been
obtained.

(b) Lighthill’s method. With nonlinear equa-
tions, forma1  application of a perturbation
procedure  sometimes leads to the difficulty
that the solution of the unperturbed equation
has a singularity not exhibited by the exact
solution of the original equation and whose
order increases in higher approximations, SO

that the perturbation series cesses to have any
meaning near this point. Such a difftculty  cari
often be overcome by so-called coordinate
straining. This method has been applied to a
number of fluid-dynamical problems, such
as those arising in theories of aircraft wings,
boundary layers, and shock waves.

Before describing the method, it is conve-
nient to sketch Poincaré% method of getting
the perturbation series for the period of a
nonlinear oscillation. In order to solve the
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nonlinear equation

where Te  is the period of oscillation when the
small parameter E is taken to be zero, Poincaré
wrote series expansions for both u and the
period T:

u=u,(t)+&Ul(t)+..., T=T,+&Tl+...,

and determined Ti,  T,,  . . . in such a manner as
to avoid resonance  at each step in the deter-
mination  of u,(t), u,(t), . .

Based on this idea, Lighthill(l949) [Z]
developed coordinate straining in order to
overcome the difficulty  stated above. We illus-
trate the method here by means of the follow-
ing simple example.

Consider a boundary-value problem of a
nonlinear differential equation

d u
(X$&l++u=O  (O<x<  1 ) :

dx

u(l)= 1. (11)

Application of the usual perturbation method
would give the series solution

As is seen,  however, the order of an apparent
singularity occurring at x = 0 increases as we
proceed to higher approximations SO that it is
not possible to see the true behavior of the
solution near x = 0.

In Lighthill’s method, we assume that series
expansion is valid not only for u but also for
the independent variable x, i.e.,

u=uo(5)+EUl(lr)+..., X=(+&X,(<)+....

Substitution of these series into equations (10)
and (11) gives

5u;+u,=o, u,(l)= 1,

5u;+u,=  -(Qx; fzl~x,+u,u~),

u,(l)=@ x,U)=O,

From the tïrst  equation we have u,, = l/t.
Before solving the second equation for u1  , we
determine xi (5)  SO as to avoid the increase
of the order of singularity in uO(<)  at t =O.
This requirement is satislïed by taking x, =
(1/2)  (5 - l/t),  and this gives ui = 0; thus,  at
this stage of approximation, we have

x=S+Ex,(:)=Cf; ( >t-i

The guiding  principle is the same for higher
approximations. (The foregoing expression
happens to be the exact solution, but this a
fortuitous result of our choice of this particular
example.)

The convergence of the series obtained by
Lighthill’s method has been proved by Wasow
(1955) [3] for the more general problem

d u
(X$&l++q(x)u=r(x),dx

u(a) = b,

where E, a, and b are positive constants and
q(x) and r(x) are functions regular in 1x1 <a.

Lighthill’s method cari  also be applied to
partial differential equations. Sometimes it is
ca l led  the  PLK method (Poincaré-Lighthill-Kuo
method), after its successful application to the
problem of the boundary layer of a thin flat
plate by K~O.

(c) Method of matched  asymptotic expan-
sions. In some cases it is possible to get a uni-
formly valid series solution if we divide the
domain  into two or more subdomains, salve
the equation by use of a suitable independent
variable for each subdomain, and then deter-
mine the coefficients in each solution by the
process of matching neighboring solutions
on their common  boundary. Such a perturba-
tion technique was developed in treating the
boundary-layer equation in fluid dynamics
and has been systematized into the method
of matched  asymptotic expansions.

The idea of the method cari be shown by
the following simple example. Consider the
boundary-value problem

d2u d u
EdXZ+z=u  (O<x<l),

u(0) = 0, u(l)=l, (12)

where E is a small positive parameter and a is a
constant such  that 0 <a  < 1. In order to solve
this problem, we tïrst  take x itself to be an
independent variable (the outer  variable) in the
domain  x » E and expand the solution as

u=  Uo(x)+EU1(X)+

Because the highest derivative is multiplied by
a small parameter E  in equation (12) the per-
turbation equations to be solved are a11 of tïrst
order, of which the tïrst  one is

dUo
-=a
dx ’

Q)(l)=  1.

Solving this, we get an approximation for the
outer  solution:

U,(x)=  1 -a(1 -x).

On the other hand, we introduce a new
independent variable 5 (the inner variable) by
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putting x = E[ for x ( E. This transforms equa-
tion (12) into

d=v  du
d52+d5=Ea’  V(()=u(x).

If we assume the expansion

v=v,(g)+Ev1(5)+...,

we have the equation for V,:

d2Vo  dV,-f-=0,
dt=  dt

Vo(O)=O.

This gives an approximation for the inner
solution:

Finally, in order to match the inner and the
outer solutions, we equate their values at some
point within the interval E «x « 1 (t-  GO  for
the inner solution, x+0  for the outer solution):

V,(co)= U,(O)=  1 -a,

from which the coefficient in Vo is determined
to be c = 1 -a. Therefore we have an approxi-
mate solution valid in the whole interval
O<x<l:

uEV,(x)+V,(ii)-(1 - a )

=a~+(1  -a)(1 -em+).

C. Method of Steepest Descent and make use of the method of steepest descent.

If an analytic function f(z) of a complex vari-
able z is expressed in terms of an analytic
function g(t) by an integral

f(z)  = s ew{W)) dt, (13)
c

where C is a curve on the complex t-plane,
then an asymptotic expression for f(z) for
large values of JzJ  cari  be derived by the
method of steepest descent  (the saddle-point
method). The idea of the method may be
traced back to Riemann, and various asymp-
totic expressions for cylindrical functions were
obtained by Debye  (1909) [SI.

The point at which the first derivative of g(t)
in the integral(l3)  vanishes is called a saddle
point. The function g(t) is expanded in a power
series near this point as

.Y(r)=s(~o)+~s”(ro)(t-to)=+”

We have an inequality

zg”(t,)(t-  t,)=  GO

along the line

L: arg(t-t,)=t-~arg{zy”(r,)j. (14)

Therefore the absolute value of the integrand
exp{zg(t)} reaches a maximum at t, on the
line L and decreases along it more rapidly
than along any other direction. Hence if we
deform the integration path in such  a way
that it passes through the saddle point t, in
the direction of steepest descent,  the value of
the integrand is practically zero on the new
path except very  near to t, when lzl  is large,
whereas the value of the integral remains the
same.  Therefore we cari  get an asymptotic
expression of f(z) for large (z]  by truncating
the Taylor series for g(t)  up to the second term
and taking the line L as the integration path:

As an example, Stirling’s formula

n!sJiZ  n”e-”

for a large positive integer is derived if we start
with the formula

s

m
=p+l exp{n(logs-s)}ds

0
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26 (Xx1.4)
Arab Mathematics

The role of the Arabs in cultural history has
been partly that of cultural transmitter. Between
the 7th and 13th centuries, they established a
religious empire that extended from India  to
Spain; later it was divided into the eastern and
western empires. The caliphs of these empires
encouraged  research in the sciences, SO the
capitals Baghdad and Cordova became  centers
of culture where scholars from different coun-
tries gathered.

Arabie scholarship is sometimes called the
stepfather of European  culture. During the
13th Century, Alphonso X (1252- 1284) invited
Islamic and Hebrew scholars to the Spanish
court to translate their writings on algebra,
medicine, and astronomy into Spanish. This
accomplishment earned him the title of Al-
phonso the Wise.

The lïrst  contact between Greek and Indian
mathematics took place in Baghdad under
Caliph Al-Mans% (754-775); Euclid’s Ele-
ments was introduced by way of the Byzantine
Empire, while Brahmagupta’s Brahmasphuta-
siddhânta  came directly from India. Many
mathematical texts found in the Eastern Ro-
man Empire and Syria, including some Greek
works, were translated into Arabie. Though it
is diffïcult to discern essential scientific ad-
vances in Arabian works, the diffusion of
these translations was instrumental in the
development of European  mathematics.

The Arabs did not use written numerals
until Mohammed’s time (570-632). Signs
representing numbers had been introduced
into Arabia when its influence encompassed
Egypt and Greece. Indian numerals were
imported with Brahmagupta’s book and
became  our present Arabie  numerals after a
series of modifications.

Among all the branches of Arab mathe-
matics, algebra was the most advanced. It
started with Alkwarizmi’s (820) Al Gebr W’al
Muquabala,  the origin of the word “algebra.”
It was the first  mathematical book written in
Arabie. Its  content was essentially a variety of
methods of solving algebraic equations. Al
gebr means “transposition of negative terms
on one side  of the equation to the other side
and changing their signs.” and al muqua-
bala  means “simplification of the equation by
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gathering similar terms.” For example, qua-
dratic equations cari  be brought by these
methods into one of the following three types:
x2=px+q;x2+q=px;x2+px=q,wherep,q
are positive numbers. The Arabs expressed the
rule of solving these equations verbally. They
apparently knew that quadratic equations
have two roots, but they adopted only posi-
tive roots; when the equation had two posi-
tive roots they adopted the smaller root. The
proof  was given geometrically. It is possible
that they learned geometric proofs from the
Greeks.

For the Arabs, geometry was secondary to
algebra. They did not appreciate proof  as seen
in Euclid’s Elements. The book on conic sec-
tions by Apollonius was also translated into
Arabie, but no essential progress was made in
this area. The only remarkable contribution
was that of Omar Khayyam, author of The
Rubkyit, who applied conic sections to the
solution of the cubic equation x3 + bx = a.

In trigonometry, Al Battani (c. 858-929) left
a notable contribution. He studied The  Almag-
est, the Arabie translation of Ptolemy’s astro-
nomical work. He added nothing outstand-
ing to  plane trigonometry, but obtained such
formulas as COS a = COS b COS c + sin b sin c COS CI
for spherical triangles, which were not men-
tioned in The Almagest.
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Arithmetic of Associative
Algebras

A. General  Theory

Let g be a TDedekind  domain  (i.e., an integral
domain  in which every ideal is uniquely de-
composed into a product  of prime ideals), let F
be the fïeld  of quotients of g, and let A be a
tseparable  algebra of finite  degree over F. A g-
lattice  a of A is a g-submodule  of A that is
lïnitely generated over g and satislïes A = Fa. If
a subring o of A is a g-lattice containing g,
then o is called an order. A maximal order is
an order that is not contained  in any other
order. A maximal order always exists although



125 2 7  D
Arithmetic of Associative Algebras

it may trot  be unique; in particular, if A is
commutative, it has only one maximal order.
Ifweput o,={x~AIxaca} (o,={x~Alaxc
a}) for a g-lattice a of A, then o[ (0,)  is an
order of A and is called the left (right) order of
a. If the left order of a is maximal, then SO is
the right order; the converse is also true. If or
and o, are maximal, we cal1 a a normai g-
lattice. TO describe the same situation we say
that a is a left o,-ideal  or a right o,-ideal.  If
oi  = o, = o, then we say  that a is a two-sided o-
ideal. A lattice a with a c or (or equivalently
with a c 0,) is called an integral g-lattice or
integral left (right) ideal. The product ab of
two normal g-lattices a, b is called a proper
product if the right order of a coincides  with
the left order of 6.  The proper product defines
the structure of a tgroupoid on the set of all
normal g-lattices of A. In particular, the in-
verse a ml of a normal g-lattice a satisfying
aa-i=o,,a-‘a=o,isgivenbya-‘={xEAIxa
c 0,)  = {x E A 1 ax c or}. For a tïxed maximal
order o, a maximal integral two-sided o-ideal p
different from o is called a prime ideal of o. If p
is prime, then o/p is the matrix algebra of
degree K over a division algebra, and K  is
called the capacity  of the prime ideal p.  The set
of a11 two-sided o-ideals forms a multiplicative
group, of which prime ideals are independent
generators.

F, p be the maximal ideal of g, and A be a
simple algebra with F as its tenter.  If A is a
idivision  algebra and [A : F] = n2, then A has
only one maximal order o, and o has only one
prime ideal q such that qn= no;  o/q  is an exten-
sion of degree n of g/p.  If A is not necessarily a
division algebra, the relation 505-i  = o’ with
an element 5 of A holds between two maximal
orders o and o’ of A. Furthermore, for any left
(right) o-ideal a, there exists an element c(  such
that a = ocx (a = c(o).  By using the notation of
tcyclic  algebra, we cari express A in the form
(K,, o, 7~‘).  Here K, is the unramifïed  extension
of degree n over F, o is the tFrobenius  substi-
tution of K,/F,  7t  is a prime element of F, and
0 < Y < n. The element of Q/Z determined by
r/n  (mod Z) is denoted by {A} and is called the
tHasse  invariant of the algebra class  contain-
ing A. The mapping A -{A} gives an isomor-
phism of the +Brauer  group of F onto  the
additive group Q/Z.  If M  is an extension of F
of finite  degree, then {A”‘} = [M : F] {A} holds
for the algebra AM  obtained from A by scalar
extension (- 29 Associative Algebras).

D. Simple Rings over  an Algebraic Number
Fie ld

B. Maximal Orders of a Simple Ring

In the rest of this article, A is a tsimple  ring, F
is the tcenter of A, and o is a maximal order of
A. The prime ideals q of o and the prime ideals
lu  of g are in one-to-one  correspondence  by
the relation qn  g = p; o/q  is a simple algebra
over q/p,  and q’=  po for some natural num-
ber e. The different ù of o is detïned by X1  =
{xEAI  Tr(x0)c-g).  (Tr  is the treduced trace
from A to F;  ù is an integral two-sided o-ideal,
and is divisible by q e-1 if qe=  po.) For q to
divide b,  it is necessary and suftïcient that
either e > 1 or o/q  not be separable over g/p.
In particular, if A is a ttotal matrix algebra
over F,  then b = o, q = po. The ideal of g gener-
ated by the +reduced  norms (to F) of the ele-
ments in a normal g-lattice a of A is denoted by
N,,,(a). If ab is a proper product, then we have
NAiF  = h,F(4NA,F(b),  where h,Ab)  does
not depend on the choice of o; this is called
the discriminant of A. If [A : F] = n2  and q’=
no, then NAIF(q)  = pf, ej’= n.

Let F be an algebraic number tïeld  of tïnite
degree, and let A be a simple algebra with
tenter  F. Then A is a cyclic algebra and is
isomorphic to a total matrix algebra over a
division algebra D.  The order n of the algebra
class of A over F is determined by n2  = [D : F]
(H. Hasse,  R. Brauer, and E. Noether).

Denote by F, the completion of F with
respect to a +Prime  divisor p of F, and let A, be
the algebra obtained from A by the scalar
extension F, over F. For a tïnite  prime divisor
p,  the meaning of {A,,} is as before; for an
intïnite  prime divisor p,  put {A,} = 0 or 1/2
(mod Z) according as A, is a total matrix alge-
bra over F, or not. Furthermore, define the
subgroup J, of Q/Z by

J, = Q/C

= {0,1/2 (mod Z)} p a real infinite
prime divisor,

= {OI,

C. Simple Rings over  a Local Field

Let F be a fïeld  that is complete with respect
to a tdiscrete  valuation whose tïeld  of residue
classes is finite.  Let g be the tvaluation  ring of

Now let J be the subgroup of the direct prod-
uct nP J, consisting of all elements of the
form (a,) (a,~  J,) such  that aP = 0 except for a
tïnite  number of prime divisors and C,cc, = 0.
Then A+( { A,}) gives rise  to an isomorphism
of the Brauer group over F onto J (Hasse).
Each {A,} is called the +p-invariant of A. In
particular, A is a total matrix algebra over F if

p a tïnite  prime
divisor,

p a complex intïnite
prime divisor.
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and only if A, is a total matrix algebra over
F, for a11 p (- 29 Associative Algebras). These
theorems are closely related to +class  fïeld
theo ry .

If o is a maximal order of A and a, b are left
o-ideals, then a< = b with an element <  of A
defines an equivalence relation between a and
6.  The number of equivalence classes of left
ideals with respect to this equivalence is called
the class number of A; it is independent of the
choice of o and is equal to the class number
defined by using right ideals. The product of
a11 real infïnite  prime divisors p with {AP}  = 1/2
is denoted by P,. If P, is the product of a11
inlïnite prime divisors and [A : F] = 4, then A is
called a totally definite  quaternion algebra.

If o is a maximal order of A and A is not a
totally detïnite quaternion algebra, then a+
N,,,(a) gives a one-to-one  correspondence
between the classes of left o-ideals and the
congruence classes of ideals of F modulo P,
(- 14 Algebraic Number Fields H) (Eichler’s
theorem).

In particular, if A is a total matrix algebra
over F,  then the class number of A is equal to
the class number of F. The class number of a
totally detïnite quaternion algebra was deter-
mined by M. Eichler by using the zeta function
(- Section F) of A [4].

Let o be a maximal order of A, a be an
integral two-sided o-ideal, b be an integer of F,
and 5 be an element of o. Furthermore, assume
b = 1 (mod P,),  NAIF(<)=  b (mod a n F) (tmulti-
plicative congruence). Then there exists an
element b of o such  that N,,,(B) = b, ,B  = 5
(mod 4 (NAIF is the reduced norm), provided
that A is not a totally definite quaternion
algebra [S]. This theorem, which is called
Eichler’s approximation theorem, is widely
applicable; e.g.,  it yields the previous theorem
on the class number and cari be generalized to
the case of semisimple talgebraic  groups (- 13
Algebraic Groups).

E. Algebras over  a Function  Field

The Hasse-Brauer-Noether and Hasse theo-
rems also hold for tnormal  simple algebras
over a +fïeld  of algebraic functions of one vari-
able over a finite  fïeld. On the other hand, a
normal simple algebra over a tïeld K of alge-
brait  functions of one variable over an alge-
braically closed field is a total matrix algebra
over K (Tsen’s theorem).

F. Other Notions

Adeles and ideles for a simple algebra A over
an algebraic number fïeld of finite  degree cari
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be introduced as in the case of number fields
(- 6 Adeles and Ideles). If N(a) stands for the
number of elements in o/a, where o is a maxi-
mal order of A and a is an integral left o-ideal,
then the zeta function  of the simple algebra A,
called the Hey zeta function,  is detïned by c,(s)
=C N(a))” (the sum over a11 integral left o-
ideals). This function has properties similar to
those of Dedekind zeta functions (- 450 Zeta
Functions L). Let p be an infinite  prime divisor
of the tenter  F of A, and let G, be the group of
elements in A, with the reduced norm 1. Put
G = J&  G, (the product over ah infïnite prime
divisors of F). Then the group I of units with
the reduced norm 1 in o is naturally regarded
as a subgroup of G. TO be more precise,  I is a
discrete subgroup of G, the volume of G/F is
finite  with respect to an invariant measure,
and G/I  is compact if and only if A is a divi-
sion algebra (- 1 2 2  Discontinuous  Groups) .
This result cari  be viewed as a special  case of
more general facts  about  semisimple algebraic
groups (- 13 Algebraic Groups). If K is a
tmaximal  compact subgroup of G, then F gives
rise  to a tdiscontinuous  group operating on
the homogeneous space  G/K,  and we obtain
tautomorphic  forms with respect to I. The
case where A is a tquaternion  algebra has
been studied extensively (- 32 Automorphic
Functions).
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28 (XXI.1 3)
Artin,  Emil

Emil Artin  (March 3, 189%December  20,
1962) was born in Vienna. After he studied at
the Universities of Vienna, Leipzig, and Got-
tingen, he taught at the University of Ham-
burg from 1923 to 1937. In 1937 he left Ger-
many under the Nazi regime for America,
where he taught at Notre Dame, Indiana, and
Princeton universities. He returned to Ger-
many in 1948 and taught again  at the Univer-
sity of Hamburg until his fatal heart attack.

In his thesis (1923),  he proved afflrmatively
the tRiemann  hypothesis in function fïelds
over lïnite  constant lïelds in the hyperelliptic
case, and conjectured  that this should be valid
in general. This was eventually verifïed by A.
Weil in 1941. Also  in 1923, he introduced the
+l-function  for Galois extension and was led
to the tgeneral  law of reciprocity, which he
stated as a conjecture and proved four years
later, thus bringing tclass  field theory to com-
pletion. Around the same period, he estab-
lished in collaboration with 0. Schreier the
theory of tformally real fields and solved the
17th tproblem of Hilbert. He also initiated the
theory of tbraids,  which he later developed
with F. Bohnenblust in the 1940s. In view of
these and other ingenious works as well as
his inspiring teaching in a11 areas  of mathe-
matics, Artin  is considered to have been one of
the most influential mathematicians of this
Century.
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Associative Algebras

A. Fundamental Concepts

Let K be a commutative ring with unity  ele-
ment 1 (- 368 Rings A), and let A be a ring
which is a tunitary K-module (- 277 Mod-
ules). Such a ring A is called an associative
algebra over  K (or simply algebra over  K) if
it satisfies the condition Â(ab)  = (ia)h  = a(ih)
(1.~ K; a, b~,4). An (associative) algebra A over

K is often written A/K,  and K is called the
coefficient ring (or ground ring) of the algebra
A= A/K.  In particular, if K is a Qïeld,  then it is
called the coefficient field (or ground field)  of A.
Algebras over iïelds have been studied in de-
tail.  Notions such  as zero algebra, unitary
algebra, commutative algebra, (semi)  simple
algebra, and division algebra are replicas of the
respective ones for rings (- 368 Rings). Con-
sidering both structures as rings and as K-
modules, homomorphisms and isomorphisms
are defined in a natural manner, and are called
algebra homomorphism and algebra isomor-
phism, respectively. In this connection,  sub-
algebra, quotient algebra (or residue class
algebra), and direct product of algebras are
also delïned as in the case of rings.

An +ideal of an algebra A is defined as an
ideal of the ring A, which is at the same time a
submodule of the module A over the coeffï-
tient  ring. The tradical  of an algebra A con-
sidered as a ring is then an ideal of A in this
sense. In fact,  the existence of a unity  in an
algebra A implies that any ideal of A consid-
ered as a ring is necessarily an ideal of the
algebra A.

In the rest of this article, we assume that all
rings have a unity  element and that a11 homo-
morphisms are unitary. Hence, when we con-
sider subalgebras of an algebra A, we require
that they share the unity  element with A. If e is
the unity  element of an algebra A over K, then
the mapping I+Âe  = Â’  (2~ K) is a homomor-
phism K 4 A whose image Ke is contained  in
the +center  of A, and the scalar multiplication
na is equal to the ring multiplication 1’~ (né K,
ni A). Conversely, given a homomorphism of
K into a ring A whose image is contained  in
the tenter  of A, we cari  regard A as an algebra
over K in an obvious way. Hence we are given
an algebra A over K if and only if there exists
a pair (A, p)  of a ring A and a homomorphism
p : K + A whose image is contained  in the
tenter  of A. There exists a uniquely determined
(unitary) homomorphism of the ring Z of
rational integers into any ring; hence any ring
cari  be regarded as an algebra over Z. If the
coefficient ring K of a nonzero algebra A is a
field, then K cari be regarded as a subfïeld
contained  in the tenter  of A, and the unity
element 1 of K coincides  with the unity  ele-
ment of A.

Let A and B be algebras over K. Then the
ttensor product  A OK  B of K-modules is an
algebra over K under the multiplication
(a @ @(a’ 0 b’) =uu’  0 bb’ (U,U’E  A, b, ME  B).
This algebra is called the tensor  product  of
algebras A and B. Moreover, the mapping
a-ru@l(resp.b+l@b)(a~A,b~B)givesan
algebra homomorphism A-1 A OK B (resp. B+
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A OK  B, which is called the canonical homo-
morphism. In particular, if A is a commutative
algebra, then A OK  B cari  be regarded as an
algebra over A by this canonical homomor-
phism; and in this case A OK  B is called the
algebra obtained by extension of the coeffi-
cient ring of B to A (or a scalar extension of B
by A), and is often denoted by B”.  The algebra
K OK  B is canonically isomorphic to B. Fur-
thermore, (A OK  B) OK  C and A &(B OK C)
are canonically isomorphic and are written
A @B @ C. Let A and B be commutative
algebras over K. Then, for any commutative
algebra C and homomorphisms a : A+ C, b : B
-tC,  there exists one and only one homomor-
phism y:A&B-+C  such that a(a)=y(a@  l),
b(b)  = y( 1 @ b) (a~ A, h E B). This property char-
acterizes the tensor product A & B of com-
mutative algebras A and B. In this sense,
A @k B is sometimes called the coproduct of A
and B (- 52 Categories and Functors E).

B. Examples of Associative Algebras

As we mentioned, any ring cari  be regarded as
an algebra over the ring Z of rational integers.
But it is often useful  to deal with algebras over
“large? or more “efficient”  coefficient rings.
For instance, we have many rings which are
algebras over a commutative ring K, such  as
the +ring  of polynomials, the +ring  of forma1
power series in n variables with coefficients in
K, the tendomorphism  ring of a K-module,
and the +full matrix ring of degree n over K
(- 368 Rings C). There are other important
classes of algebras, such as (semi)  group alge-
bras, Hecke algebras, and crossed-product
algebras, which Will be explained later. These
algebras are defïned by a canonical basis con-
nected directly with a (semi)  group structure.
On the other hand, the ttensor algebra and
the texterior  algebra of linear spaces and the
Klifford  algebra associated with a given
quadratic form are also important (- 61
Clifford Algebras, 256 Linear Spaces).

The most frequently used example of a
division algebra is the quaternion field  H (often
called Hamilton3  quaternion algebra, W. R.
Hamilton, 1858). This is a 4-dimensional
linear space  over the real number field  R with
basis {  1, i,j, k}, with the following laws of
multiplication: 1 is a unity  element, i2 =j2 = k2
= -1, ij= -ji=k,jk=  -kj=i,  and  ki= -ik=j,
An element of H is called a quaternion. The
only finite-dimensional  division algebras over
the real number lïeld R are the real number
Iïeld  R, the complex number tïeld C, and the
quaternion lïeld H.
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C. Group Algebras and Hecke Algebras

Let K be a commutative ring and KcG)  be the
direct sum CSEG K, of modules K,, where each
K, is isomorphic to K with a group G  as the
index set (- 277 Modules F). The elements of
KcG)  are the families (A&  of elements of K
whose components are a11 zero except for a
finite  number of them. Let {u,~},,~  be the
canonical basis of KcG’,  namely, u, is an ele-
ment of KcG)  of which the sth component  is 1
and the others are 0. The module KfG)  has the
structure of an algebra over K, where the law
of multiplication is determined by U,U~ =
u,,(s,  t E C). This algebra is called the group
algebra of G over K. The product i * p of
elements 2 = (2,)  and p = (p,)  of KcG)  is then
given by

Each basis element u, is often identilïed  with
the group element s,  and in this manner, the
group G  is regarded as a basis of K(“),  which is
usually written KG or K[G].

In this definition, the group G  cari  be re-
placed by a semigroup G,  and then the algebra
KcG’  is called a semigroup algebra. As an
example, let N be the additive semigroup of a11
nonnegative rational integers and N”  be the
direct product of n copies of N. If we denote
the elements (il, , i,) of N” by X2 Xn and
use multiplication instead of addition, then the
semigroup algebra of N”  over K is exactly the
+ring  of polynomials K [X,,  . , X,,].  On the
other hand, if G  is a semigroup, then even
when it is infinite, it may occur that for any
SE G,  there exists only a lïnite  number of pairs
(Y, i) of elements of G  such  that s = rl. In this
case, formula (1) also defines the law of multi-
plication on the Cartesian  product KG.  This
algebra is called a large semigroup algebra
and contains KcG)  as a subalgebra. In par-
ticular, the large semigroup algebra of N”
is exactly the tring of forma1 power series
KCCX,,...,Xll.

Let H be a subgroup of a group G,  and
assume that the index of H n sHs-’  in H is
fmite for any s E G. This assumption is equiva-
lent to the condition that any double coset of
G  by H is a union of a lïnite  number of left
as well as right cosets.  Let H\G,  G/H,  and
H\G/H  be the set of a11 tright  cosets,  +left
cosets,  and +double  cosets,  respectively. Then
each element of the direct sum KtH”‘,  KcGIH’,
or K(H’G’H)  cari be regarded as a function
detïned on G  taking a constant value on each
right, left, or double coset,  respectively. Con-
versely, any function defined on G  cari be
regarded as an element of KtH”),  K’G’H),  or
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K’H  ‘lH1  if it takes a constant value on each
left,  right, or double coset,  respectively, and if
it vanishes everywhere except on a finite  num-
ber of cosets  of respective type. Under such
identification, let A,,  Al,  A,,  and Ât  denote the
values of a function Â:G*K  on SEG,  1~  H\G,
r E GIH,  and t E H \GIH,  respectively. For any
j”, ~ E K(H\W) we define a function 3,  *p by

G*P),=~;~~P~.  SEG, (2)

where the right-hand side  is the sum taken
over ah pairs (r, I)  such  that s~rl,  rE  G/H,
1~  H\G. It cari  be shown that this sum is a
tïnite sum and that Â  * ~JE  K(‘f”G’H).  Hence the
module K’H’G’H’  has the structure of an alge-
bra over K,  which is called the Hecke alge-
bra of (G, H) over K and often denoted by
XK(G,  H). If H = {e}, the X’(G,  H) is exactly
the group algebra of G. In general, XK(G,  H)
cari  be regarded as an algebra obtained by
extending the coefficient ring of Zz(G,  H) to
K. Furthermore, K’H’G’ (K’G’H’)  cari  be re-
garded as a right (left) module over the group
algebra K(‘), and the endomorphism ring
8KK(W(K ‘H’G’)  (resp. &K~c)(K’“‘H’))  is canonically
isomorphic (anti-isomorphic) to the Hecke
algebra K’H,CH’.

D. General  Crossed Product

Let G be a group that operates on a commuta-
tive ring L, and denote  the operation by (s, n)+
s(i) (sEG,ÂEL);  thus for any ~EG the map-
ping ihs(‘)  (1.~ L) is an automorphism of L
satisfying s(t(JJ)  = st(n)  (s, t E G). For any 3,,
/iE L’G’, we define the product E.  * PE L(‘)  by

6 * ~1, = c &rh)f(r,  0, SE G, ( 3 )S=d

where  if@, 0 )r&G is a given family of elements
of L. If this family satisfies  the equations

fh r)f(sr,  0 = s(f(r,  O)fk 4, s,r,lEG,

then L”’ forms a ring. In terms of the canon-
ical basis {u,},,~:,  this ring structure is defined
by the formulas u+!=f(r,  L)u,,,  u,i=s(A)u,
().E  L). If K is the subring of L consisting of a11
1.~ L such  that s(3)  = ‘(SE G), then the ring L(‘)
is an algebra over K,  called the crossed  product
of L and G with respect to the given operation
and the given factor  set ,f of G. In a narrower
sense of the term, we consider only the case
when L is a fïeld,  G is a fïnite  group, f’(r, 1) # 0,
and G operates on L faithfully.  In this case, G
cari  be identified with the +Galois  group of a
tïnite +Galois  extension L/K,  and SO the crossed
product is written (L/K,,f).  This is a tcentral
simple algebra over K (- Sections E, F).

If the operation of G in the above-
mentioned general crossed product is trivial,
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namely, L = K,  the crossed product of K and G
is called an algebra extension of G over K with
respect to ,f:  Usually, we assume that K is a
tïeld  and f(r, I)  #O.  If f(r, 1) = 1, the algebra
extension is the group algebra. If G is a fïnite
group whose order is prime to the tcharacter-
istic of K,  then any algebra extension of G over
K (in particular, the group algebra) is always
+semisimple  and tseparable. If G is a finite
Abelian group and fis a factor set of G, then a
bihomomorphism 40: G x G+K*  (a mapping
which is a homomorphism in each variable)
is detïned by <p(s,  t)=,f(s,  t).,f(t,s)-‘. An alge-
bra extension of G over K with respect to f
is a central simple algebra if and only if <p  is
nondegenerate. In particular, if G is a direct
product of n copies of a group of order 2,
then by choosing n elements s,,  s2,. ,s,  of G
suitably, any element of G cari  be uniquely ex-
pressed as s, si,.  s,, where {a, h,  . , z} is a
subset of { 1,. , n}  in the natural order. Hence,
if we take u(,..  .L)  = u,uh  ~1,  as a basis of an
algebra extension, then any factor set f is
determined by f(si,  sj)  = i,,  where iij=  1 (i <j),
,$= -t 1 (i >j), and iii are arbitrary. When iij
= -1 (i>j),  the corresponding algebra exten-
sion is a Clifford  algebra. Furthermore, if ii,
= 0, then it is a +Grassmann algebra. If iii # 0
and n is even, then it is a central simple alge-
bra whenever the characteristic of K is not 2
(- 61 Clifford Algebras).

Now let K be the real number fïeld R and
A, be the Clifford algebra with iii = - 1. Then
A, is the quaternion field.  Elements of A,
are called sedenions, and are important in
+spinor  theory and +Dira&  equation. In gen-
eral, let K be an arbitrary iïeld whose charac-
teristic is not 2 and put n = 2, il 2 = 1, I, i =
-l,i,,=>“#O,and&,=p#O,inthepre-
vious notation. Then the corresponding cen-
tral simple algebra Q is called a (general-
ized) quaternion algebra. Thus Q has a basis
{ 1, u,  u, w} satisfying the following laws: 1 is
the unity  element, w = UV  = -vu,  u2  = Â,  and
u2 = p (1, p E K). Any  central simple algebra of
dimension 4 is isomorphic to a certain quater-
nion algebra. (In particular, if K = R and Â  = p
= -1, then Q coincides  with the quaternion
field  H.) For any element x = t(  + bu  + yu  + 6w
of Q, the element 2 =CI-BU  - yv  - 6w is said to
be conjugate  to x, and N(x) = X%E  K is called
the norm of x. An element x of Q is invertible
in Q if and only if N(x) # 0.

E. Finite-Dimensional  Associat ive Algebras
over  a  Fie ld

For the rest of this article, we assume that the
algebras considered are unitary and finite
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dimensional over a tïeld  K. Then by general
properties of left (right) +Artinian  rings, any
associative algebra A has the following struc-
ture: the ‘radical  N of A is the greatest tnilpo-
tent ideal, and the quotient algebra A/N = À is
tsemisimple and decomposed into a direct sum
of ideals which are simple algebras:

A=A,+...+A,.

Each simple component Ai  is a full  matrix ring
of degree ri over a certain division algebra Di,
and Ai  is decomposed into a direct sum of ri
minimal left ideals which are mutually A -
isomorphic:

,?.=Aé!“+...+~ëj’i’,  l<i<n,1 L

where ë!‘), / . . . . ë,&) are orthogonal tidempotent
elements of Ai  whose sum is equal to the unity
element of Ai.  On the other hand,

gives a decomposition of Ai into the direct
sum of minimal right ideals that are mutually
A-isomorphic. Moreover, we cari choose  an
idempotent element ey)  of A from each residue
class é,@) such  that {ep’}  forms a system of
orthogonal idempotent elements, whose sum is
equal to the unity  element 1 of A, and

gives a decomposition of A into a direct sum
of tdirect  indecomposable  left (right) ideals.
Here, A&) and A$)  (ep)A  and ey)A)  are A-
isomorphic if and only if i =j. Conversely,
every decomposition of A into indecom-
posable ideals is obtained as above. The A-
submodule Nejs) of Aej”’ is the unique maxi-
mal proper submodule, and Aep’JNey’  and
Ae$“/Ney’  are A-isomorphic if and only if i = j.

Any  simple A-module is A-isomorphic to a
certain Ae!“‘/Ne!“’ (- Sections H, 1).

Any  simple algebra A over K is isomorphic
to a full matrix ring M,(D) over a certain divi-
sion algebra D. This is called Wedderburn’s
tbeorem. Here n is determined uniquely by A,
and D is also determined uniquely by A up to
isomorphism. Moreover, the tenter  of A is
isomorphic to the tenter  of D.  If the tenter  of
A coincides  with K, then A is called a central
simple algebra (or normal simple algebra) over
K. In this case, any isomorphism of two simple
subalgebras of A cari  be extended to an tinner
automorphism of A. Let V(B) denote the tcom-
mutor of a simple subalgebra B of A. Then
V(B) is also a simple subalgebra and V(I’(B))
= B, dim A = dim B. dim V(B). In particular, if
B is central over K,  then there is a canonical
isomorphism AZ B @ KV(B).  If D  is a central
division algebra, then any maximal commuta-
tive subalgebra L of D  is a Iïeld  and satistïes
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(dim L)2 = dim D. Moreover, there are +sepa-
rable extensions over K among such  L. In
general, the dimension of a central simple
algebra A is a square number r2,  where r is
called the degree of A.

Two central simple algebras are said to be
similar if they are isomorphic to full matrix
rings over the same division algebra. This is an
equivalence  relation, and each equivalence
class is called an algebra class. On the other
hand, if A is a central simple algebra and B is a
simple algebra, then A OK  B  is a simple alge-
bra. Moreover, if B is central, then A OK B is
also a central simple algebra. If A and B are
similar to A’ and B’,  respectively, then A OK B
is similar to A’ OK  B’. Hence, the tensor prod-
uct 0 detïnes multiplication in the set B(K)
of the algebra classes over K. If A is a central
simple algebra and Ao is an algebra anti-
isomorphic to A, then A0 is also central simple
and A @x A0 is isomorphic to a full matrix
ring over K. This shows that a(K)  forms a
group, which is called the Brauer group, after
R. Brauer, who introduced this concept, or the
algebra class group over K. For a central
simple algebra A, the degree of a division
algebra similar to it is called the Schur index of
A (or of the algebra class of A), and the order
of the algebra class of A in the Brauer group is
called the exponent of A. The Schur index is
divisible by the exponent; and conversely, the
exponent is divisible by every prime divisor of
the Schur index.

F. Extensions of Coefficient Fields

Let L be an textension tïeld over a lïeld K.
Then for any algebra A over K, L OK A cari  be
regarded as an algebra over L. This algebra is
denoted by AL  and is called an algebra ob-
tained by extending the coefficient Beld  to L.
Let us denote the radical of a ring A by ‘%(A).
An algebra A over K is called a separable
algebra if it satislïes %(AL)  = (0) for any exten-
sion lïeld L over K. In the special case when A
is an talgebraic  extension lïeld over K, A is a
separable algebra if and only if every element
of A (or every element of a subset which gener-
ates A) is tseparable  over K (- 149 Fields). A
(finite-dimensional) algebra A over K is sepa-
rable if and only if A is semisimple and the
tenter  of every simple component of A is a
separable extension over K. If the quotient
algebra A/$%(A) of an algebra A is separable,
then there exists a subalgebra S such that
A=S+!R(A)andS~%(A)={O},andSis
uniquely determined up to inner automor-
phisms (Wedderburn-Mal’tsev tbeorem).

In order that an algebra A over K be central
simple, it is necessary and sufhcient that AL be
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simple for any extension tïeld L over K. This
latter statement holds if and only if AL  is iso-
morphic to a full  matrix algebra over L for a
certain extension tïeld L over K. Such an exten-
sion fïeld is a tsplitting lïeld of A (- 362 Re-
presentations F). For a central simple algebra
A, a (finite)  extension fïeld L of degree r over K
is a splitting field of A if and only if there exists
a central simple algebra B  of degree r which is
similar to A having a subtïeld which is K-
isomorphic to L. In this case, r is divisible by
the Schur index of A. Furthermore, A has a
separable splitting field whose extension de-
gree is equal to the Schur index of A. This
shows that A has a splitting tïeld which is a
finite  Galois extension tïeld over K.

Let L be a fïnite taalois  extension over a
tïeld K and G be its +Galois  group. If f is a
factor set with respect to the operation of G on
L*,  then the crossed product (L/K,f) is a cen-
tral simple algebra over K (- Section D). The
productfg  of two factor sets f and g is also a
factor set, and the set of a11 factor sets forms an
+Abelian  group. Thus (L/K,fg)  is similar to
(L/K,f)@,(L/K,g).  On the other hand, factor
sets 1’ and g are said to be associated with each
other if there exists a family {/lsJAEG  of elements
of L such  that

f(r,  4 = dr, bGJ~L~;’  A,, r, !EG.

Hence, f and y are associated with each other
if and only if (L/K, f) and (L/K, g) are similar.
Therefore, the mappingf+(L/K,f)  gives a
monomorphism of the group H’(G, L*) of all
associated classes of factor sets (which cari  be
identilïed with the 2-dimensional  tcohomology
group of G  with coefficients in L*) into the
Brauer group g(K)  over K. Its  image coin-
cides with the subgroup of a11 algebra classes
which have L as a splitting field. In particular,
any algebra class  is similar to the crossed
product of a certain tïnite  Galois extension L
and its Galois group G  (R. Brauer, E. Noether,
A. Albert, K. Shoda, and others).

G. Cycl ic  Algebras

Let Z be a tcyclic  extension field of degree n
over a field  K. Then the crossed product of
Z and its Galois group G is called a cyclic
algebra over K.  For a tïxed generator s of
G and any element s(  # 0 of K, a factor set
,f(s’,  si) (0 < i, ,j < n) cari  be defïned by f(.s’,  sj)
= 1 (i+,j<n)  and,f’(s’,sj)=a  (ifjan).  Let
(Z, s,  c() denote the corresponding crossed
product. Then (Z, s,  a) and (Z, s,  b) are similar if
and only if ~X/[I  is a norm of a certain element
of Z into K. On the other hand, any crossed
product of Z and G is similar to a certain
(Z, s,  cc), and the correspondence  a+(Z,  s,  a)
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gives an isomorphism of K*/N,,,(Z*)  (the
norm class group of Z/K)  to the group con-
sisting of the algebra classes over K which
have Z as a splitting field. If K is a +p-adic  field
or a finite  talgebraic  number tïeld, then any
central simple algebra over K is isomorphic to
a certain cyclic algebra. In this section, we
describe this situation in detail.

Let K be a p-adic fïeld and q the number of
residue classes modulo p.  If A is a central
simple algebra over K, then its Schur index
coincides  with the exponent, which is called
simply the index. A fïnite extension tïeld L over
K is a splitting field for A if and only if the
degree of L is a multiple of the index of A. If n
is the degree of A, then the field W= K(w) ob-
tained by adjoining to K a ?Primitive  (q” - 1)st
root of unity  w  is a cyclic (and tunramifïed)
extension of degree n over K, and its Galois
group is generated by the automorphism
g of Wdetermined by wO=  wq, o 1 K = iden-
tity. Moreover, we have A z (W, 0, a) for a
certain XE  K*. Let v be the texponential  p-
adic valuation U(S()  of X.  Then v/n  (mod Z) is
uniquely determined by the algebra class  of A,
which is called the Hasse invariant of A (or of
the algebra class  of A). By assigning to each of
the algebra classes its Hasse invariant, we get
an isomorphism of the Brauer group B(K)
over K to the group Q/Z,  the additive group
of the rational numbers mod Z (H. Hasse,
1931).

Let K be a tïnite  algebraic number tïeld and
A be a central simple algebra over K. Let p be
a (tïnite  or intïnite) tprime divisor of K and K,
the +p-adic  extension fïeld over K. The algebra
A, which is obtained from A by extending the
coefficient tïeld to K,  is a central simple alge-
bra over K,. Except for a Imite  number of p,
A, is isomorphic to a full  matrix ring over K,,
and A itself is isomorphic to a full  matrix ring
over K if and only if A, is isomorphic to a full
matrix ring over K,  for a11 p. The index mp  of
A, is called the p-index of A, and the Hasse
invariant of A, is called the p-invariant of A,
which is denoted by (A/p). If p is an +intïnite
prime divisor, then mP  is equal to 1 or 2, and in
each case, we detïne the p-invariant by setting
(A/p) = 0 or 1/2 (mod Z) correspondingly. The
Schur index of A is the L.C.M. of the p-indices
mP for a11 p and coincides  with the exponent of
A. This is called simply  the index of A. On the
other hand, the p-invariants satisfy (A/p) G  0
(mod Z) except for a tïnite  number of p,  and

C(A/P)-O(modZ).

Conversely, given a rational number pP  for
each p such that (i) pP = 0 (mod Z) except for a
fïnite number of p; (ii)p,  = 0 (mod Z) if p is
infinite  and imaginary, pP  = 0 or 1/2  (mod Z) if
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p is infinite  and real; (iii) &pP ~0 (mod Z),
then there is a uniquely determined algebra
class of central simple algebras A over K such
that (A/n)  = pP  (mod Z) for each p.  In this way
the structure of the Brauer group over a fmite
algebraic number Iïeld is completely deter-
mined (Hasse, 1933).

H. Frobenius Algebras

Let A be an algebra over a tïeld  K. A is called
a Frobenius algebra if its tregular  representa-
tion and tcoregular  representation (- 362
Representations E) are similar. Thus A is a
Frobenius algebra if the left A-module A and
the dual module A* of the right A-module A
are isomorphic as left A-modules. Let

i=1  s=l i=l  s=l

be direct decompositions of A into indecom-
posable left (right) ideals (- Section E). We
denote ej”  by e,. Then A is a Frobenius alge-
bra if and only if there exists a permutation n
on 1, . , n such that (i) Ae, E (eZc,,  A)*; (ii) ri  =
Y,(~).  When there exists a permutation satisfy-
ing only condition (i), A is called a quasi-
Frobenius algebra.

For a subset S of A, the ideals I(S) =
{a~AluS=0}  andr(S)={aEAISa=O}  are
called the left annihilator and right annihilator
of S, respectively. Then A is a quasi-Frobenius
algebra if and only if (ii) l(r(l))  = I and r(l(r))  = r
for any left ideal I and any right ideal r.  In
general, if we are given a left (right) A-module
M,  we denote the right (left) A-module
Hom,(M,  A) by fi. Then if A is a quasi-
Frobenius algebra, there is a canonical iso-
morphism fi  2 M,  and the annihilator relation
gives a one-to-one  and dual correspondence
between the set of the submodules of M  and
the set of submodules of fi  (M. Hall). If a
quasi-Frobenius algebra A satisiïes (iv) dim r +
dim I(r) = dimI+  dim r(l) = dim A for any left
ideal 1 and any right ideal r, then A is a Fro-
benius algebra; the converse is also true.

A criterion for an algebra A to be a Frobe-
nius  algebra is that there is a linear form x+
n(x) on A such that if A(xa)=0  for a11 XE A,
then a = 0. Moreover, if 1.  satishes Â(xy)  =
n( yx) (x, y~  A), then A is called a symmetric
algebra. For example, semisimple algebras
and group algebras are symmetric algebras.
If A is a symmetric algebra, then for any left
(right) A-module M  the right (left) A-modules
M*  = Hom,(M,  K) and M  = Hom,(M,  A) are
canonically A-isomorphic.

If A is a Frobenius algebra, the radical N of
A satisfies  I(N)  = r(N), and the annihilator of
N is a principal left and principal right ideal;
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the converse is also true. For a two-sided ideal
z of a Frobenius algebra A, the quotient alge-
bra A/z  is a Frobenius algebra if and only if
l(z) and r(z) are a principal left and a principal
right ideal, respectively. If A is a symmetric
algebra, then any two-sided ideal z satistïes
l(z) = r(z), and A/z  is also a symmetric algebra
if and only if l(z) = r(z) is a principal ideal
generated by an element in the tenter.

Furthermore, for any extension L of the
coefficient Iïeld K, AL is a quasi-Frobenius
algebra (resp. Frobenius algebra, symmetric
algebra) if and only if A is (T. Nakayama,
1939,194l). The concept of Frobenius algebras
has been extended to algebras B over a ring A
(F.  Kasch,  1954).

1. Uniser ia l  Algebras

In the notation of the preceding section, if each
indecomposable  left ideal Ae, (right ideal e,A)
of an algebra A over K has a unique compo-
sition series,  then A is called a generalized
uniserial algebra. If an algebra A is decom-
posed into a direct sum of ideals which are
primary rings, then it is called a uniserial alge-
hra. Any  left module over a generalized uni-
serial algebra A is decomposed into a direct
sum of submodules which are A-homomorphic
images of Ae,:  An algebra whose radical N is
a principal left and principal right ideal is a
generalized uniserial algebra. For an algebra A
to be uniserial, it is necessary and sufficient
that every two-sided ideal of A be a principal
left and principal right ideal. Hence A is uni-
serial if and only if every quotient algebra of A
is a Frobenius algebra. If AL is uniserial for an
extension field L of K, then A itself is uniserial.
The converse, however, is not always true. If
AL is uniserial for any extension Iïeld L of K,
then A is called an absolutely uniserial algehra.
For A to be absolutely uniserial it is necessary
and sufhcient that its radical N be a principal
ideal generated by an element in the tenter  Z
and Z be decomposed into a direct sum of
simple extensions of K (i.e.,  ideals of the form
K [a]) (K. Asano, G. Kothe, Nakayama, G.
Azumaya).

J.  Algebraic  Algebras

Here, we consider general (not necessarily
tïnite-dimensional)  algebras A over a iïeld K.
We say  that A is an algehraic algehra if every
element of A is algebraic over K, i.e.,  every
element of A is a root of a certain polynomial
with coefficients in K. We say  that A satistïes a
polynomial identity p(X,,  . . , X,,) = 0 or that A
is a PI-algebra with an identity p(X,,  , X,) =
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0 if there exists a nonzero (noncommutative)
polynomial p(X,, ,X,) in X,,  , X, with
coefficients in K such that ~(a,, , a,) = 0 for
a11 a, E A. A PI-algebra satisiïes an identity
which is homogeneous linear in each variable,
and also an identity of the form [xi , , x,1”‘=
0 (where [ ] is the sum C k xi,. . .xi, taken
over a11 permutations of 1,2,  , n and f is the
sign of the permutation). An algebra is said to
be locally fïnite if any finite  number of ele-
ments of A generate a finite-dimensional
subalgebra. For PI-algebras, an affirmative
answer was found for Kurosh’s problem,
which asks whether an algebraic algebra is
locally fïnite if the degree of any element c(  of
A (i.e.,  dim K [a]) is bounded.

K. Brauer Group of a Ring

Let R be a commutative ring. An R-algebra is
called a separable algebra if A is tprojective as
a two-sided A-module (- 200 Homological
Algebra F). When the base ring is a fïeld, this
agrees with the classical notion of separability;
and A is separable over R if and only if A/mA
is separable over the residue field  R/m for
every maximal ideal m of R. A central separa-
ble algebra is also called an Azumaya algebra.
If P is a finitely generated faithful projective
R-module (briefly: R-progenerator), the endo-
morphism ring End,(P)  is an Azumaya R-
algebra. Azumaya algebras A, and A, are
said to be in the same class  (similar) if there
exist R-progenerators P, and P2  such  that
A, 0 End,(P,)  z A, @ End,(P,).  The set of
similarity classes forms an Abelian group
with respect to 0.  This is called the Brauer
group B(R) of R (Auslander and Goldman
[lO]).  Every element of B(R) is of finite  order
[12,13].

B(R) is a covariant functor from commuta-
tive rings to Abelian groups. If R is a tïeld,
B(R) coincides  with the classically dehned one
(- Section E). If R is a +Hensehan  local ring
with the residue fïeld k, the mapping B(R)-+
B(k) is an isomorphism [9]. If R is a tregular
ring with the quotient field K, i?(R)-+B(K) is
injective. If further dim R d 2, we have B(R) =
n$(R,,),  p running over ah primes of height
1 of R, where R, is the localization  of R at p
and B(R) and B(R,)  are considered as em-
bedded in B(K) [lO]. As an example, put-
ting these facts  together with the structure of
B(K) of the algebraic number tïeld  K (- Sec-
tion G), we have the structure of B(R) of the
ring of integers of K: B(R) = 0 if K is totally
imaginary, and g (Z/2Z)‘m’  if K has r( > 0) real
infïnite places.

A commutative R-algebra S is called a split-
ting ring of A if the S-algebra  S 0 A is isomor-
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phic  to End,(P)  for some S-progenerator P.
We denote by B(S/R)  the subgroup of B(R)
consisting of a11 algebra classes split  by S.
Since an Azumaya algebra over a ring need
not have a Galois extension as splitting ring,
the description of the Brauer groups by means
of Galois cohomology cesses to have full
generality. Instead we have the following exact
sequence of +Amitsur  cohomology, assuming
S is an R-progenerator (Chase and Rosenberg
[ll]):  O+H’(S/R,  U)+Pic(R)+H’(S/R,  Pic)
-+H’(S/R,  U)+B(S/R)+H’(S/R,  Pic)->
H 3(S/R,  U)-,  , where we denote by U( 7’)
and Pic(T) of a commutative ring T the unit
group and the +Picard group of rank 1 projec-
tive modules of 7;  respectively. The full Brauer
group B(R) is mapped monomorphically into
H’(R,  r/)=l&H’(S/R,  U), the limit over the
tfaithfully flat R-algebras S.

Grothendieck and others studied the Brauer
groups in a more general geometrical context
cw.
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A. Asymptotic Series  and Asymptotic
Expansions

Let C~,,(X),  n=O,  1, 2, be functions delïned in
R,. The sequence of functions {cpJx)}z,  is
called an asymptotic sequence for x+ CO  if

(P~+~  (4 =O(C~,(X))  as x-r ~0 (1)

for each n. When {~p,(x)}~~~  is an asymptotic
sequence, the forma1 series z a,cp,(x) is called
an asymptotic series.  In most cases, the func-
tions <p,(x)  have the form $(X)C~(X)“.  When
$&(X)=x-” an asymptotic series is called an
asymptotic power series.  A function f(x) de-
fined  on R,  is said to have the asymptotic
expansion (or be asymptotically developable in
the form)

f(x)-~o<Po(x)+~,~,(x)+...+~,<p,(x)+...  (2)

as x+ co if f(x) satisfies

S(x)-~o<po(x)-~,<p,(x)-...-~,<p,(x)

= o(cp”+,(x)) ( 3 )

for any integer naO as x+ CU. The coefftcients
a, (n = 0, 1, ) appearing in (2) are uniquely
determined. This fact immediately follows
from the formulas

ao = p;  f(W~o(XX . ‘.  >

a,=?‘li(f(x)-a,<p,(x)-...

-a,-1 <p”-l(x)Ycp,(x).

For example, the +Hankel  function of the lïrst
kind H:“(x)  has an asymptotic expansion

H;‘)(x)

(”  +(4v’-  1)(4vZ-32) . . . [4v2-(2m- 1)2]
2Tn!

If v +)  is not a positive integer, ~~=,  (v,  m)
(-  2ix))”  is not convergent, and (4) means that
for each n,

for x+co.
Assume that f(x) and g(x) admit asymptotic

expansions in power series for x-t CD. Then
a11 functions delïned by f(x)+g(x), f(x)-
g(x), f(xM4,  f(xYd4  Wm,+,  g(x)  ZO)  admit

asymptotic expansions in power series for x+
CU. Furthermore, if f’(x) has an asymptotic
expansion for X-CO,  its expansion is obtained
by termwise differentiation of the f(x)‘s.

For any asymptotic power series C,“oa,,x~”
there always exists a smooth function f(x)
defined in R,  such that

for x+ CO, and all the derivatives of f(x) are
asymptotically developable in power series.
lndeed,  a function delïned by

f(x)  =nlfo  u,Qw,)x -n

satistïes  the required properties if 0(t)  is a
smooth function satisfying

0,w=  1{.
t<l,
t>2,

and the sequence {t,,}zo  satislïes 1 < t,<t,  <
. . . and

In(n+1)...(2n-l)2na,i;‘l<2~”

for a11 n.
Until now only asymptotic series for x’

CO  have been considered, but the notion of
asymptotic series has been adapted in vari-
ous  forms to the spaces of functions under
consideration.

(a) Asymptotic series in a complex domain.
Let CI be a boundary point of an open con-
nected domain  D  in the complex  z-plane. When
the asymptotic behavior for ~+CI  of holomor-
phic  functions in D is considered, we adopt as
an asymptotic sequence {<p,(z)}:, of holo-
morphic functions in D  satisfying for each n

as z tends to tl  through D. Let D  be an angular
domain  with vertex at CI.  For any asymptotic
power series Czo  u,(z - cc)” there always exists
a function f(z) that is holomorphic in D and
that admits an asymptotic expansion

f(z)-u,+u,(z-a)+...+u,(z-a)‘+... (5)

for ~+CI.  Concerning the uniform convergence
of asymptot ic  expansions,  Carleman’s tbeorem
is well known [L]:  If the asymptotic expansion
(5) is valid as z tends to c(  through an arbi-
trary angular domain  in the Riemann sur-
face of log(z - a) having CI as its vertex, then
the asymptotic expansion (5) is uniformly
convergent.

(b) Asymptotic expansions by a large para-
meter. In the theory of differential equations,
functions with a large parameter are often
considered. Let 0 be a domain  in R” and k a
parameter 3 1, and let (P,,(x, k), n=O,  1, 2,. ,
be functions defïned for (x, k) E R x [ 1, CO).  If
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they satisfy for each XGR  and n

~~+,(X,k)=o(cp,(x,k)) (6)

for k-r  CO, the sequence { <p,(x,  k)}$, is called
an asymptotic sequence, and the forma1 series
En=, a,(x)<p,(x,  k) is called an asymptotic series.
A function f(x, k) is said to  be asymptotically
developable in the form

+ +4<p,(x>  k) + .

for k+ CU  if for every x~fi and every n

f(x,k)-ao(x)<po(x,k)-...-a,~,(x)<p,-,(x,k)

= O(<p,(x>  4) ( 7 )

holds as k+ CO. Especially, if the order rela-
tions (6) and (7) hold for each n uniformly in
x~R,  we say  that f(x, k) is uniformly asymp-
totically developable. In most cases, the
q,(x,  k) are of the form I&X,  k)k-“.

B. Methods of  Asymptotic  Expansion

There are several general methods of obtaining
asymptotic expansions of functions represented
by integrals with a large parameter. These
methods are useful in applications because
most tspecial  functions are represented by
integrals (- 39 Bessel Functions, 389 Special
Functions).

(a) Laplace%  method. Let h(s) be a smooth
real-valued function in [a-fi,  a + S] (fi  > 0)
satisfying

h(a)<h(s)  for all SE[~-&a+&-(a}

and

h”(a) > 0,

and let &)EC”([U-&u+6]).  Then

s

Cl+*
I(x) = e-“h’“‘g(.~)ds

o-s

has an asymptotic expansion

fi~(x)-e-“h(“‘-fi d”)~+<,x-  + . . .

+c,x-“+... 1
for x+ CO, where the c, are determined by
derivatives of h(s) at s = a of order < 2n + 2
and those of g(s) at s = a of order 9 2n.

As an application of this method, con-
sider the r-function  T(x) = jo e mttxml  dt. By a
change of variable t = xs, we have T(x) =
x”JO e -x(sm’O’@)s  -’ ds. Since for any 6 > 0

1s

1-s

e-X(.T-‘O&+-’  ds +

0 / 1s

a>

e -X(S-h&?S)s-l  ds

I+d

the asymptotic expansion by the Laplace
method

*+S e-as~,og.~)s-lds_e-x
1-d J;(l+<:,rl+...)

implies tstirling’s formula

IJx)=J2nxX~‘ize~X(l  +0(x-‘)).

(b) Stationary phase method. Let h(s) be a
real-valued smooth function detïned in [a -
b,  a + S] such that

h’(u) = 0, h”(u) # 0 and h’(s) # 0 for s #a,

and let g(s) be a function in Cr(u  - 6,  a + 6).
Then

s

.+S
I(x) = eiXh(“)g(s)ds

o-s

has an asymptotic expansion

I(x)  - e

+c,x-“+
1

)

where cr= h”(a)//  h”(u)) and the c, are deter-
mined by derivatives of II(S)  at s = a of order
d 2n + 2 and those of g(s) at s = a of order
< 2n.

Further, tintegration  by parts and the
tmethod of steepest decent  are often used to
derive asymptotic expansions of integrals with
a large parameter.

C. Application to  Differential Equations

For a system of linear ordinary differential
equations with an tirregular  singular point at
z =O,  even when there exists a forma1 power
series solution, the power series is generally
divergent. Taking the hint given by Stirling’s
formula for the r-function,  Poincaré intro-
duced the notion of asymptotic expansions
and succeeded in giving an analytic meaning
to forma1 solutions of divergent type. Actual
solutions for tdifference equations, tdifference-
differential equations, and tordinary  differen-
tial equations of canonical form (including
second-order linear tdifferential equations
of confluent type) always have asymptotic
expansions.

In the study of certain ordinary differential
equations containing a large parameter k, an
asymptotic solution is often  obtained in the
form

u(x, k) - e ik”‘“‘(uo(~)+a,(x)k~’  +

+u,(x)k-“+...)

(+WKB  method). Also, in the study of linear
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partial differential equations, an asymptotic
solution of the above form plays an important
role. For example, consider the Schrodinger
equation

L~[ul=~~-~~u-u(x)u=~.
In at (dJ2

An asymptotic series

u(x, t; 1”) - PP(XJ) (%(x,r)+u,(x,r);+...

+a,(x,t) ; “+...  (8)(.> >
satishes LA[u]  -0 for A+co if

g - (Vq)’ - V(X)<~  = 0 (eikonal equation),

~-2~B.Vn”-*u7n”=~u”~,, n=O, 1 ,  2 ,

(transport equation),

where we set a -,  = 0. For each asymptotic
solution of the form (8) there exists an actual
solution of LJf(x,  t;  A)]  = 0 which is asymp-
totically developable in the form

Then asymptotic solutions of the form (8) cari
describe the fundamental properties of the
phenomenon governed by the equation LA[u]
=o.

Geometric  optics cari  also be illustrated by
asymptotic solutions of the form (8) (- 325
Partial Differential Equations of Hyperbolic
Type L).  The ideas of asymptotic series,  asymp-
totic expansions, and asymptotic solutions
are essential to the theory of tpseudodifferen-
tial operators and tFourier  integral operators
(- 345 Pseudodifferential Operators).
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31 (XVI.1)
Automata

A. General Remarks

Automaton  is a generic  term for the math-
ematical models for automatic machines hav-
ing memory devices and capable of perform-
ing definite acts  within each unit of time.
There are several types of automata, namely,
Turing machines for the theory of computa-
bility [6], linear bounded automata, push-
down automata, and fïnite  automata  for math-
ematical language theory [10-l 31. These
models are also used in the theory of tcomplex-
ity of computation  of algorithms [ 141.

B. Turing Machines

Since the tarithmetization of metamathematics
was used in the proof of tGodel’s  incomplete-
ness theorem, mathematical formulations of
the notion of teffectively computable  functions
have been attempted by many mathematicians,
including S. C. Kleene, A. Church, and others,
as well as by Gode1  himself (- 356 Recursive
Functions). With this end in mind, A. M. Tur-
ing and E. L. Post independently introduced a
sort of ideal computer [ 1,2], called a Turing
machine.

Such a machine is capable of being in one
of a finite  number’of interna1 states (possible
contents of a memory device)  q,,  q,, . , q,
tïxed for the machine; and the machine is
supplied with a tape divided into squares. The
tape is infinite  in both directions. Each square
cari  be blank or cari  have printed on it any one
of the previously specitïed  symbols sO,  si, . ,
s,,  where s0  stands for the blank. In any situa-
tion the number of nonblank squares is fmite.
Let Q={qO,ql,...,qn},  M={so,sl,...,s,},and
consider the mapping t : Q x M-Q x M x
{R, L, 0).  A Turing machine T is specifïed  by
(Q, M, t,  qo,  F), where F is a subset of Q called
a set of final states and q. is the specihed ini-
tial state. If t(q, s) = (q’,  s’, x),  then the 5-tuple
(q, s,  q’, s’,  x) is called an instruction for T.  The
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machine acts  as follows: (1) At the start, the
machine is in the state q,.  Some sequence of
symbols in M  are written on the tape as an
input,  and the machine is on the square next
to the leftmost nonblank symbol. (2) With
respect to the present state q and the scanned
symbol, the machine selects  an instruction
(q,  s,  q’,  s’, x); then the next state becomes q’,  s
is replaced by s’,  and the machine moves one
square right or left or stands still according
as x is R, L, or 0. (3) The machine stops when
the state becomes an element of F,  and then
the sequence of symbols on the tape is the
result of the computation and considered to
be the output. A Turing machine is called
deterministic if there is always at most one
instruction associated with a given pair (q, s);
otherwise it is called nondeterministic.

We represent a natural number y on the
tape by y + I squares, each of which has the
symbol si  printed on it. A pair (yl,yZ)  is repre-
sented on the tape by the following sequence
of symbols of length y, + yZ + 5: one sO,  the
representation of y,; ones,,  the representation
of y2; and one sO.  Similarly, in general we cari
represent a k-tuple (y,, . , yk)  of natural num-
bers on the tape. Let @  be a partial function
of k variables, k > 0. We say  that a Turing ma-
chine T computes @  if T starts with the tape
in which the representation of (x, , , xk) is
printed and stops with the tape having the
representation of (x,,  , xkrx) when @(x,,
. ..> xk) is defïned and equal to x. A partial
function is computable  (in the sense of Turing)
if there exists a Turing machine that com-
putes the function. It is known that a partial
function is computable  if and only if it is par-
tial recursive. The equivalence  of comput-
ability (in the sense of Turing) and recursive-
ness for number-theoretic functions is strong
evidence for the validity of Church’s thesis
(- 356 Recursive Functions).

We cari  apply a Turing machine not only to
the computation of number-theoretic functions
but also to the transformation of a finite  se-
quence of letters in any language  with a tïnite
list of letters. A finite  nonempty list of distinct
symbols is called an alphabet, and a finite  se-
quence of symbols in the alphabet is called
a word in that alphabet. Al1  the words in an
alphabet constitute a tfree  monoid if we add
the empty sequence and think of the concate-
nation of two words as its multiplication. We
cal1 a fïnite nonempty list  (A r, B,),  , (A,, B,)
of pairs of words a set of production rules.  By
an application of a rule (Ai, Bi) to a word W,
we mean that an occurrence of A, exists in W,
and by the application, Ai  is replaced by Bi.
We say  that two words R and S are equivalent
if they are transformable into each other by a
finite  number of applications of the production
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rules.  The following problem is called Tbue’s
(general) problem: 1s  there an algorithm for
deciding, for any given alphabet and a set of
production rules,  whether or not any given
two words are equivalent? E. L. Post and A. A.
Markov proved by applying Turing machines
that this decision problem is unsolvable [4,3]
(a negative solution for the so-called word
problem for semigroups).

C. Universal Turing Machine and
Generalizations

Turing showed that it is possible to construct
a machine U with the following property [ 11:
If we supply U  with a tape on which a suitably
coded list of instructions of any given machine
T is printed then U  successively prints on it
the behavior of T which results from the exe-
cution of the instructions of T.  In other words,
U  simulates the operations performed by any
machine. Such a machine U  is called a univer-
sal Turing machine. We cari  construct  a univer-
sal Turing machine with only two interna1
states and also one having only two symbols,
including the blank s0  (C. E. Shannon and J.
McCarthy [7]).

Let $, , . , $, be given functions that are all
defïned everywhere on the domain  considered.
Then we cari  relativize (- 356 Recursive Func-
tions) the notion of computability of functions
(in the sense of Turing) to $, , , I,&.  Indeed,
we cari  consider a machine acting as follows:
When the machine is in a state qi,  (j=  1, _.. , k
and we assume that these states are specifïed
correspondingly to $, , . , $, and are not in
F), then the machine prints the representation
of $j(Yl, , Y,,) to  the  right  of (Y,,  , y,,)
and scans  the resulting (ni-t I)-tuple  (y,, . ,
ynj,  tij(y,, , y,,)). In this process, the symbol
a that is written to the right of (y,, . . , y,,) is
moved one step to the right SO that a is pre-
served on the right of the resulting (n + l)-
tuple. Extending the preceding, Kleene defined
a machine that computes a functional of fmite
types [S]. A functional of variables of any
tïnite  types is computable  by such a general-
ized Turing machine if and only if it is partial
recursive.

D. Language and Automata

Let M  and N be mutually disjoint alphabets
and V= MU N. Then G =(N, M,  P, S) is called
a Chomsky grammar if P is a set of production
rules consisting of finite  number of pairs of
elements of V* and S is specified  element of N,
where V* means the free monoid generated by
V. For a word UE  V*,  if the result of a tïnite
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number of applications of rules in P is u,  then
we Write  u-+0,  and u is said to be derived from
u  by G. The language generated by G is L(G)
= {u  1 S+u and ~EM*}.  N. Chomsky classi-
fied  the grammars into three families with
respect to the form of production rules:  (1)
Context-sensitive grammar: For each (u, II)E~,
the length of u is less than or equal to the
length of u. (2) Context-free grammar: For
each (u, u)EP,  u is an element of N and v is
not  a  empty Word.  (3)  Regular grammar: For
each (u, v) E P, u E N and v is either an element
of M or of the form ax, where aE M and XE N.
Let Fi(M),  F*(M),  and F,(M) be the families
of languages generated by the grammars in
the corresponding families classitïed as above.
Then F,(M)$F,(M)$F,(M)  holds and this
is  ca l led  a  Chomsky hierarchy [ 101. Forma1
language theory studies various structures of
these families of languages.

Corresponding to the three families of lan-
guages, we have the following families of auto-
mata: (1) A deterministic (nondeterministic)
l inear bounded automaton is  a  Turing machine
with input tape, namely, T=  (Q, MU N, t, qo, F),

where Q is the set of states, M an input alpha-
bet, N a tape alphabet, t is a mapping from
Qx(MU{e})x(NU{e})intoQxNx{L,R}
(the power set of Q x N x {L,  R}), q.  E Q is the
initial state, and F is a subset of Q. A word
WE  M* is placed on the input tape, and T
starts its computation  from the initial state
with blank tape and by reading one symbol
from the input tape, and with respect to the
mapping t,  we decide the configuration of the
next step. If at a certain stage, T reaches a
state in F when T reads up w and if the length
of the tape used is a constant multiple of the
length of the input tape, then w is said to be
accepted  by T. (The special symbol e makes
it possible to change the configuration without
moving the input tape.) (2) A push-down auto-
maton  is a Turing machine with an input
tape. The working tape is of inlïnite length
and moves in only one direction, say to the
right. The computation  with input word WE
M* starts with the position at the left end of
the work tape. It uses the tape according to a
lïrst-in-hrst-out  principle; namely, the ma-
chine may Write  a symbol to the blank square,
but if it is on the rightmost nonblank square,
it may not go left without erasing the non-
blank symbol. If it reaches a state in F,  then
w is said to be accepted  by T. (3) A tïnite  auto-
maton  is a machine without its intïnite  tape;
a word w is accepted if T reaches a state in F
(without using the symbol e).

Let L(T) be the set of words over M ac-
cepted by T; then L(T) is called the language
accepted  by T. Corresponding to the three
families of automata, DF,(M)  and NF,(M), i=
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1, 2, 3, denote the family of languages ac-
cepted by deterministic or nondeterministic
automata. It is known that DF,(M)  = NF,(M) =
F,(M)  for i=2  and 3, and NF,(M)=F,(M);
however, whether DF,  (M) = NF,(M) holds or
not is still open,  and this problem is called the
LBA problem. These automata  are used to
study the closure properties under various
operations within the families F,(M).  In par-
ticular, the LBA problem is equivalent to the
problem of whether F,(M) is closed under
complementation.

E.  Appl icat ions  of  Automata  Theory

Finite  automata  are formulated as models for
digital circuits with memory. Therefore there
exist structural studies of tïnite  automata; for
example, methods to decompose a given lïnite
automaton to smaller automata  correspond-
ing to a circuit and its subcircuits are studied
using tsemigroup theory [14,17].

Context-free grammars are useful  in describ-
ing the syntax of programming languages. For
a context-free grammar G, a derivation tree of
x E L(G) is a tree whose terminal nodes are
labeled by each symbol of x, its root is labeled
by 5, and other nodes are labeled by some
elements of N in such  a way that if for a node
with AE  N the nodes connected  by an out-
going edge from the former have labels xi,
.” i xk,  then (A, xi, , xk) is a production rule
of G. Parsing is an algorithm to construct
a derivation tree of each XE L(G). Various
parsing algorithms have been studied within
subfamilies of context-free grammars [ 161  and
they are used in the construction of compilers.
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32 (X1.22)
Automorphic Functions

A. General Remarks [l]

Let X be a (complex) tanalytic manifold and I
a tdiscontinuous  group of (complex) analytic
automorphisms of X. A set of tholomorphic
functions (without zero) on X, {j,(z)) (y+~ I),  is
called a factor  of automorphy if it satisfïes the
condition j,,.(z) =j,(y’(z))j,(z) for ah y, y’~ I,
zsX.  A tmeromorphic  function f on X is
called a (multiplicative) automorphic func-
tion with respect to the factor of automorphy
{j,(z)} if it satisfies  the condition ~(Y(Z))=
f(z)j,(z) for all YET,  ZEX.  When all j,(z)
are identically equal to 1, i.e.,  when f(z) is F-
invariant, ,f is simply  called an automorphic
function  with respect to I.  When a11 j,  are con-
stant (and hence y-j, is a “quasicharacter”
of r), f is called a multiplicative function.  If
we denote by J,(z) the functional determinant
of the transformation y, then for an integer m,
an automorphic function ,f with respect to
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a factor of automorphy of the form j,,(z) =
J,(z))” is called an automorphic form of weight
rn.  (In this case, it is customary to assume
that fis holomorphic. Also,  in this and most
other cases, we add a suitable condition on
the behavior off at the “points at infinity,”
when I\X is not compact (- 234 Kleinian
Groups) . )

B. The Case of One  Variable [2-61

Except for the cases where r is a tïnite group
or its extension by a free Abelian group of
rank <2(- 134 Elliptic Functions  E), it is
essentially enough to consider the case where
X is the Upper  half-plane 5 = { ZE  C 1 Im z > 0).
In this case, I may be obtained as a tdiscrete
subgroup of the tspecial linear group G =
SL(2,  R). In the following, we restrict our-
selves  to the case where I is a +Fuchsian  group
of the fïrst  kind (i.e., the case where the +Haar
measure P(I\%)  of the quotient space  F\$  is
fïnite;  - 122 Discontinuous  Groups). An
automorphic function  (or Fuchsian  function)  f
with respect to I is, by detïnition, a meromor-
phic function f on 5 satisfying the following
conditions: (i) f is I-invariant,  i.e.,  f(yz)=f(z)
for a11 y~  F;  (ii) f is also meromorphic around
any +cusp  x0 of r,  i.e.,  if q0  is a real linear
fractional transformation mapping x0 to 10
(e.g., vo(z)  = -l/(z -x0)) and if the trans-
formation z’z  + h (h >O)  is a generator of
<pOTx,cp;’  (where Ix0  is the tstabilizer of x,,),
then f(<p;‘(z))  cari  be expanded into a +Lau-
rent series of q,, = exp((2ni/h)z)  (which has only
tïnitely  many terms with negative exponent) in
a neighborhood Im z > y, of CO  (qh  is called the
local parameter around  the cusp x0).  If we
denote by !Rr  the compact tRiemann  surface
obtained from the quotient space  F\$  by
adjoining a certain (tïnite) number of “points
at infinity” corresponding to the equivalence
classes of cusps of r, then conditions (i) and
(ii) amount to saying that f gives rise  in a
natural manner to a meromorphic function on
$8,.  Thus the fïeld  51, of a11 automorphic func-
tions with respect to I cari  be identified with
the talgebraic  function tïeld  belonging to the
Riemann surface ‘Jir (- 11 Algebraic Func-
tions A). (While any (nonconstant) automor-
phic  function with respect to a Fuchsian  group
of the tïrst  kind I has the real axis as its +nat-
ural boundary, an automorphic function with
respect to a Fuchsian  group of the second
kind cari  always be analytically extended to
the lower half-plane through a neighborhood
of any “ordinary point” on the real axis (-
234 Kleinian Groups).)

Let k be an even integer. A (holomorphic)
automorphic form (or Fuchsian  form) .f of
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weight k or of dimension -k with respect to I
is, by definition, a holomorphic function f on
$ satisfying the following conditions: (i) For

a b
every <T  =

( >
c d ET,  f(c~z)=f(z)~(cz+d)~.  ( I n

other words, J,(z)-~”  = (da(z)/d~))~/~  = (cz + d)k
is the factor of automorphy.) (ii) ,f is also
holomorphic around  any cusp x,,, i.e.,  in the
above notation, we have an integral “Fou-
rier expansion” f(<p;‘(z))(d<p{l(z)/d~)~~’  =
C~Oa,q~.  Note that this definition of weight
is different from that given in Section A (-
Sections F, G). If, moreover, the constant term
a, in this Fourier expansion vanishes at all
cusps of I, f is called a cusp form. In partic-
ular, fis a cusp form of weight 2 if and only
if f(z)dz  gives rise  in a natural manner to a
tdifferential form of the first kind on the
Riemann surface Y$-. (By a slight modifica-
tion of condition (ii), we cari also detïne an
automorphic form of odd weight k. When

-1 0

( >0 -1
EI, condition (i) (for k odd) im-

plies that f is identically equal to zero. SO as-

sume that
( >

-A -1 $I. Then cusps x0 are

classifïed into two categories,  according as

E’p,,IXx,<pO’  or not, and in the tïrst

case we should replace the power series in qh  in
condition (ii) by 4;”  x (power series in qh).)
(Note that the above definition of weight is
slightly different from the general one given in
Section A. See also the Siegel and Hilbert
modular cases (- Sections F, G).)

We denote by %II,(I)  (resp. Gk(I)) the linear
space  of a11 automorphic forms (cusp forms) of
weight k with respect to I. Since clearly the
relations 5332kY.I~k.  cW,+,,,  %Rk6,.  c Gk+k. hold,
the direct sum %II(I)  = ~,%R,(I)  is a (commuta-
tive) tgraded  algebra, of which 6(I) = CkGk(I)
is an ideal. It is known that 9X,(I) is of tïnite
dimension, and d, = dim YJIk(I),  df = dim 6,(I)
cari  be determined (from the tRiemann-Roch
theorem) as follows:

d,=O for k<O;

d,=l, d;=
1 for t = 0,

0 for t > 0;

for t = 0,
for t > 0,

d;=g;

+;t,

df=d,-t for k even, 24,

where s is the number of the equivalence
classes of telliptic fixed points of I, ei (1 < i < s)
is the order of the stabilizers of these elliptic
points, t is the number of the equivalence
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classes of cusps of I, and g is the tgenus of the

Riemann surface ‘9,.  (When

we cari  obtain a similar formula for k odd
except for d, , d?, which, in general, cannot  be
determined from the Riemann-Roch theorem.)

One method of constructing automorphic
forms is provided by Poincaré series as fol-
lows:  Let or,  be a tlinear  fractional transfor-
mation that maps the unit disk to the Upper
half-plane (e.g.,  the +Cayley  transformation),
and put I’ = a{‘Ia,;  let 9 be a function
holomorphic on the unit disk including its
boundary (e.g.,  a polynomial). Then for k 34,
the series

P , ( z ) =  C <p(o’(z))(dc~‘(z)/dz)~‘~
O’EI-’

is tuniformly  convergent in the wide sense (i.e.,
uniformly convergent on every compact set) in
the unit disk and expresses an automorphic
cusp form of weight k with respect to I’, i.e.,
we have P,(a;‘(z))(do;1(z)/dz)k’2EGk(lJ.
Conversely, every element in G,(I)  (k>4)  cari
be expressed in this form. A series of this type
is called a theta-Fuchsian series  of Poincaré (or
s imply Poincaré series).

For k > 3, we cari defïne a (positive dehnite
Hermitian) inner product  on Gk(I) as follows:

where z = x + iy and F is a tfundamental  region
of I in $j.  This is called the Petersson metric.
Since this integral converges also for A  gE
%Il,(I)  if one of them belongs to  Gk(I), we
cari  defme the orthogonal complement  ek(I)
of 6,(I) in VI,(I).  As we shall see, Ek(I) is
generated by +Eisenstein  series.

Any  automorphic function f with respect to
I cari  be expressed as a quotient of two auto-
morphic forms fi ,f2 E %II,(I)  for a sufficiently
large k. If we put w =f(z),  the inverse function
z =f  -l(w) cari  be expressed as the quotient of
two linearly independent solutions of a tlinear
differential equation of the form d2z/dw2  =
q(w)z,  where q(w)  is an talgebraic  function
belonging to the Riemann surface !II,.

C. Modular Functions and Modular Forms
C4,1,81

The (elliptic) tmodular  group

r=r(i)

=X(2, Z)

ZZZ a,b,c,dEZ,ad-bc=l

is a Fuchsian  group of the first  kind acting on
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the upper half-plane $j. The quotient space
r\$ cari  be compactified to  get a compact
Riemann surface ‘!?lr  = r\5,  U {CO}  of genus
zero by joining one point at infïnity  corre-
sponding to the cusp CO, around  which we
take q = ezair as a local parameter. The dimen-
sion d, = dim !VI,(r)  (k even, > 2) is given as
follows:

d  =
i
CWI f o r  k=2 (modl2),

k [k/l2]+  1 for k+2 (mod 12),

where [ ] is the +Gauss  symbol.
More generally, an automorphic function

(automorphic form) with respect to the prin-
cipal congruence subgroup

is called a modular function (modular form) of
level N. (For the number of cusps of T(N),
denoted by t(N), and the genus of ‘!RrcNJ  - 122
Discontinuous  Groups.) At any cusp of T(N),
the local parameter q,,  in (ii) is given by qN  =
exp(2nizlN).  For N, k > 3, the dimensions d,,
df are given by the general formula of the
preceding paragraph (including odd k). For
k > 3, we defme the (extended) Eisenstein series
by

‘&tZ;c,,c,,N)=  c
1

m,%,(modN)(ml  +m2z)k’

where c, , c2 are integers such that (cl, c2,  N) =
1 and the symbol C’  denotes  the summa-
tion excepting the pair (m,, m2) = (0,O).  Then
Gk(z;  cl, c2,  N) depends only on cl, c2 (mod N),
andifwetakeaset{(c,,c,)}  suchthat {(cI,c2),
(-cl> -c,)} forms a complete set of repre-
sentatives of the (primitive) residue classes
(mod N), then the corresponding set of Eisen-
stein series forms a basis of the space Ek(r(N))
(k > 3),  whence we obtain dim Ek = d, - df =
t(N) (k 2 3) (for details, including the case k=
1, 2, see E. Hecke, Abh. Math. Sem. Univ. Ham-
burg, 5 (1927)).

The Fourier coefficient a, of the Eisenstein
series cari  be calculated easily, and we get an
estimate a, = O(n k-1+E)  for k > 2, where E is an
arbitrary positive number. On the other hand,
for cusp forms, Hecke (Abh. Math. Sem. Univ.
Hamburg, 5 (1927)) gave an=  O(nk”).  In an
attempt to improve this estimate, H. D. Kloos-
terman was led to consider the sum

Kb,u,d=  1 exp
xtmodq)
(x,q)=l

(4 u,  4 6  a,

called the Kloosterman sum, which is also
related to the arithmetic of quadratic forms.
Using A. Weil%  estimate Il<(u,  u, p)I  < 2&

(where p is an odd prime, (u, p) = (v, p) = l),
based on the analog of the Riemann hypoth-
esis,  we obtain a, = O(nki2-1i4+e).  The estimate
an=  O(n k/2m1/2+E)  is a weak form of what is
known as the Ramanujan-Petersson conjec-
ture (- Section D). In the case N = 1, we ob-
tain the classical Eisenstein series G,(z)  =
G,(z;  O,O,  1) (k even, > 4), from which we
define the modular forms g2(z)= 6OG,(z),
g3(z)  = 140 G&), and A(z) = gz - 27s: of weight
4, 6, and 12, respectively. If we denote by M =
P(U;  1, z) the Weierstrass +@-function  with
the fundamental period (1, z) we have the
relation @” = 4f~~-g~ p-g,,  and A(z) is the
tdiscriminant  of the cubic polynomial appear-
ing in this relation. It is known that every
modular form cari  be expressed uniquely as a
polynomial in g2 and g3, or in other words, we
have %(r(l))rC[g2,gJ.  The polynomial in
g2, g3 expressing a modular form is, moreover,
isobaric, i.e.,  consists  of terms of the form
cgZpg3”,  C~C,  where 2~+  3v  is a constant
called the weight of the isobaric polynomial.
Also, A(z) is a cusp form of the smallest weight,
and the ideal of a11 cusp forms, 6(r(  l)),  is a
principal ideal in VJI(r(  1)) generated by A(z).
The Fourier expansion of the Eisenstein series
Gk(z)  is given as follows:

Gk(z)=(2n)‘; Bk+(-l)k’22k  f v”-‘5 >
v=l >

where q = eznir and B,  is the +Bernoulli  num-
ber. The discriminant A(z) is expressed as an
infïnite  product  as follows:

A(z)=(2#‘q  fi  (1 -q’)24.
v=1

If we put J(z)=gz/A,  the function J(z)  is a
modular function and gives an tanalytic iso-
morphism of the Riemann surface ‘Y?&(~) =
r( l)\$  U (m}  onto  the Riemann sphere
CU{coJ  (which maps c3, c4, CO  to  0, 1, CO,
respectively). Hence the lïeld of modular func-
tions 5X,(,, is a rational function fïeld C(J)
generated by the function J. The analytic
isomorphism class  of tcomplex tori of dimen-
sion 1 (= telliptic curves)  .E,,I  ,w,)  = C/(Zw,  +
Zw,)  with the fundamental period (wl, w2)
is uniquely determined by the r( 1)-equivalence
class  of the modulus  z = 02/w,  (E  $j), and hence
by the value J(z)  of the function J. This is the
historical origin of the name of tmodular
function [4].

As an example of a modular function of
level 2, we have the A.-function:

,(Z)=~((l+z)i2)-~(zi2)
@(W)-@WI  ’

which gives an analytic isomorphism of the
Riemann surface !Rrc2)  = r(2)\5,  U (three
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points) to the Riemann sphere CU { CYJ}  (map-
ping 0, 1, CO  to 1, CO, 0, respectively; this prop-
erty is used in a proof  of the tPicard  theo-
rem). Hence we again  have Arc2) = C(n).  The
following relation holds between J and Â:

4 (1 -A+Â2)3
J ( z ) = -

2 7  Â’(l-A)’

In general, the iïeld R,(,,  of modular func-
tions of level N is generated by (g2/g3).  ~((a,
+a,z)/N;  1,~)  (a,,a,~Z).

D. The Hecke Ring and Its Representation

[S-l 13

In general, let f be a group, r a subgroup of
f, and suppose that, for every ogf,  aTo-’
and r are tcommensurable,  which amounts to
saying that every double coset l-or is a union
of a iïnite  number of left or right cosets of
r.  Then in the free module generated by a11
double cosets rar (a~ T),  we cari  defïne a
bilinear associative product as follows:

rd-.  r7r  = C m(o,  7; g-Pr,

where, writing TaT = ui Ta,,  TzT  = uj  rzj, we
denote by m(cr,  7; p)  the number of pairs (i,j)
such  that Toiizj  = Tp.  The associative ring thus
obtained is called the Hecke ring (or Hecke

algehra) and is denoted by X(r,  r).  (If r is a
ttopological  group and r is an open compact
subgroup, the Hecke ring X(T, r) cari also be
interpreted as the ring of all Z-valued continu-
ous  functions on f with compact support
provided with a tconvolution  product; - 29
Associative Algebras C.)

As an example, setting T = GL+(2,  Q),  r =
SL(2,  Z), we obtain a Hecke ring X(f, r).  In
virtue of the theory of telementary  divisors, a
complete  set of representatives of r\f/r  is
given by

r. From the

relation T(a,a,,a,~,)T(a;~,a;‘)=T(a,,a,)
follows the commutativity of X(r, r).  Fur-
thermore, if we put, for a positive integer n,

then the following multiplication formula
holds:

T(n).  T(m) = C dT(d, d) . T(nm/d2).
d/n.m

We obtain a representation of X(f,  IJ  in Then from the multiplicative property of the
W,(r)  as follows. For T=  TaT = U Ta+ n(n),  we obtain the following tEuler  product

X”(T,  r) and fEYJl,(r)  we put

(fl  r)(z)‘Cf(~i(Z!)oiZ+di)-‘det(ai)‘,

where ~~  =
ai bi

( >ci di
and 1 is a tïxed integer. This

representation leaves Gk(r) and a,(r) invar-
iant. In particular, the representation of T,
(with l=  k - l),  called the Hecke operator

(Hecke, Math. Ann., 114 (1937)),  is THermitian
with respect to the Petersson metric.

Following Hecke, we associate with every
modular form f(z) = CzO a,,q”  (q = ezniz) a
+Dirichlet series C~(S) = CE,  u,,n-‘.  Since a, =
O(n km1’E)  for f~!Ul,  (k>2),  C~(S)  is absolutely
convergent in the half-plane Res > k. The
conditions for f to be a modular form of
weight k are equivalent to the following con-
ditions for <p:  (s-k) <p  (s) cari  be extended to an
Tentire  function of fmite tgenus (actually, of
genus 1) and, if we put R(s) = (27cmsr(s)(p(s),
R(s) satisfies  a functional equation of the
form R(k - s) = ( -l)k’2R(s).  A correspondence
between f and cp  that satislïes these con-
ditions is one-to-one; in fact we have a, =
( -l)k’2Res,=k R(s), and the function g(x) =f(ix)
-a,(~ > 0) and R(s) are related by the tMellin
transform as follows:

s

m
R(s)= g(x)x”-’ dx,

0

y(I)=&
s

R(s)x-“ds.
ReS=CTo

This correspondence  between Dirichlet series
and automorphic forms cari be generalized to
the case of a certain discrete  subgroup of
SL(2,  R), which is not necessarily of the fïrst
kind (Hecke, Math.  Ann., 112 (1936); [ 101). It is
also known that if the functional equations for
Cg1 x(n)a,nF  hold for suffïciently many char-
acters x, then f=  CE1 a”q”  is a cusp form with
a character for some congruence subgroup
(Weil, Math.  Ann., 168 (1967); [12]).

Now, suppose that a linear subspace %R of
!LX,(r)  is invariant under a11 T,  (n = 1,2,.  . . ),
and let (fi,  . . ..f.)  (rc=dim%R)  be a basis of 9JI.
If we denote by L(n) the K  x K  matrix represent-
ing T,  in this basis, it cari be shown that there
exist K  x K  (complex) matrices B”)  (1 < i < K)
and n(O)  such that we have

F(z) = f q”l(n)  = f j$)B”‘.
n=Cl i = l

Similarly we associate with F(z)  a matrix-
valued Dirichlet series

O(s)= f iFSA(
“=l
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expression of O(s):

u>(s)=n(l~-a(p)p-s+pK-l-*SIK)~l>
P

where f, denotes the unit matrix of degree K.
In particular, when dim!RI  = 1, i.e.,  when W
= CA where f is an teigenfunction  of a11 Hecke
operators T,,  the corresponding Dirichlet
series C~(S) has an Euler product of the follow-
ing form:

P

For instance, the Dirichlet series correspond-
ing to the Eisenstein series Gk  is (2(27~i)~ (k-
l)!){(s)<(s-  k + 1) (where [ is the tRiemann
zeta function), which has a well-known Euler
product. Since GI2  = CA, the Dirichlet series
corresponding to A(z)  also has an Euler prod-
uct. (This is part of the Ramanujan conjecture.
Ramanujan also,conjectured that the quadra-
tic polynomial 1 -‘,X  + p1  ‘X2  appearing in
this Euler product has imaginary roots, i.e.,
I&l<  2~’ ‘/‘.) Generalizing the Ramanujan
conjecture, Petersson conjectured  that ah
eigenvalues of the Hecke operator T,  in 6,
have absolute value < 2~~~~‘)”  (Ramanujan-
Petersson conjecture). P. Deligne  proved this
conjecture for k 2 2, and his method extends to
the case when F is a congruence subgroup
(Publ.  Math. Inst.  FIES,  53 (1974)). For k= 1,
see Deligne  and J.-P. Serre (Ann. Sci.  Ecole
Norm. SU~.,  7 (1974)). It may be noted that this
conjecture was proved earlier for k = 2 (and for
almost a11 p) by M. Eichler (1954) and by G.
Shimura (1958) (- 450 Zeta Functions M).

E. The Case of Many  Variables [l, 15,161

Let X be a bounded domain  in CN  and F a
tdiscontinuous  group of analytic automor-
phisms of X. The Poincaré series of weight (-
Section A) m 2 2, defined similarly to the case
of the unit disk, converges normally in X and
expresses an automorphic form of weight m. If
I\X is compact, let (fi,  ,f,)  be a basis of the
space  of Poincaré series of weight m. Then for
a suftïciently  large m (which is a multiple of
the order of I, for a11 x E X), the map X 3 z+
(f,(z), ,,f,(z))  delïnes in a natural manner a
projective embedding of the quotient space
I\X into PK-l  (C), which actually gives an
analytic isomorphism of I\X onto  a tnormal
projective algebraic variety. It follows that the
field of automorphic functions with respect to
I is an talgebraic  function field of dimension
N, and that every automorphic function cari
be written as the quotient of two Poincaré
series of the same weight. In the case where
I\X is not compact, we first  discuss some
examples.
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F. Siegel Modular Functions [ 15,17,1 S]

The Siegel Upper half-space  6. of degree n  (or
Siegel space  of degree n) is, by definition, the
space  of a11 n x n complex symmetric matrices
Z =X  + iY with the imaginary part Y > 0 (posi-
tive delïnite). (5,  is analytically equivalent to a
tsymmetric  bounded domain.) The group of all
(complex) analytic automorphisms of sj, is
given by the real (projective)  tsymplectic  group
Sp(n,  R)/{ f 12,,},  which acts  transitively on
s3,  by Z-tc(Z)=(AZ+B)/(CZ+D)  for o=

A B
( >

C D  E Sp(n,  R). The subgroup F,  = Sp(n,  Z)

consisting of integral matrices, or the corre-
sponding group of linear fractional transfor-
mations, is called the Siegel modular group
of degree n.  I,  is a tdiscontinuous  group of the
first kind acting on $,.

A Siegel modular  form f of weight k or of
dimension -k is, by definition, a holomorphic
function on sj,  satisfying the following con-

ditions: (i) for o =
A B

( >
c D  Er”,f(w))=

f(Z)det(CZ + D)k;  (ii) f has an integral Fourier
expansion of the form f(Z) = &-,0 uTe2*‘t’(TZ),
where T runs over a11 half-integral +Positive
semidefïnite symmetric matrices of degree n.
(Note that the Jacobian  determinant J,(Z) of

A B
0=

( >c D
is given by J,(Z)  = det(CZ  +

D))k-l.)  For n>2,  condition (ii) is superfhrous
(M. Koecher, Math. Z., 59 (1954)). We denote
by %R~)=%R,(r,)  the space  of a11 Siegel modu-
lar forms of degree n and weight k. When

WC Write  $j, 3 Z = z, 3
( >

withZ,E$j-,,3E
3 z

%@)3f(Z)=  5 a,(Z,,  3)e2ni”z,
n=O

it turns out that a,(Z,,  3) depends only on Z,
and, writing it as fi(Z,),  we have fi E!U$‘-“.
The mapping @:f-f,  thus defmed is a linear
mapping from %Rk’  into !RI~~‘),  which is sur-
jective if k is even and > 2n (H. Maass, Math.
Ann., 123 (1951)). We denote the kernel of @
by Gk)  and cal1 fe G(kn)  a cusp form (viewing
$j-1  as a cusp of a,).  For ~E!U$“),  the fol-
lowing three conditions are equivalent: (a)
fc  SF;  (b) f(Z) = &,O nTeZni”(TZ);  (c)
lf(Z)det(  Y)k/2  1 is bounded. We have %Rf)  =
{0} if k < 0 or if both k and n are odd, and
‘%IQ)  = C. In general, dim !II$“)  is lïnite  and
= O(k “(“+iy2)  (k-t CO).  The graded algebra
!JJqr,)  = CEo  !@“)  is finitely generated, and
its tKrul1  dimension is n(n  + 1)/2  + 1. In par-
ticular, for n= 2 the structure of the graded
algebra %R(I’,)  is determined explicitly. (The
even part of this algebra is isomorphic to the
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polynomial ring of four variables.) Also, functions is a rational function lïeld. On the
dim!JJI~‘)  and the singularities of the quotient other hand, for FI = 1 mod 8, n > 9, the field
variety F*\.&  are known explicitly (J. 1. Igusa, of Siegel modular functions is not rational
Amer. J. Math., 84 (1962) 86 (1964); U. (E. Freitag, Abh. Math. Sem. Univ. Humburg
Christian). (1978)).

As an example of Siegel modular forms, we
have the Eisenstein-Poincaré series,  delïned as
follows:

%I<(Z)= c e2~iWSNzN  det(Cz  + D) -k,
osrm\r.

where S is an n x n rational symmetric matrix
> 0, and we put

Let I be a subgroup of I, of lïnite  index.
Then F\sj,,  cari  be compactified in the same
way as above [23]. However the singularities
of F\$j,  are extraordinarily complicated (Igusa
[24]). When F is the principal congruence
subgroup I,(N)  of level N > 2, the blowing-up
of F,,(N)\&  along the cusps is nonsingular for
n  = 2, 3 (Igusa, Math. Ann., 168 (1967)). Fol-
lowing Igusa’s idea, it is possible to construct
an explicit  nonsingular compactification of
F\B,  in which D  is a bounded symmetric
domain  and F is a suitable arithmetic sub-
group of Aut  ([19]; see also Satake, Bull.
Amer. Math. Soc., 79 (1973)). For D  = 5 x sj
and I the Hilbert modular group (- Section
G), F. Hirzebruch has given explicit nonsin-
gular compactilïcations of r\o  (Enseignement
Math., 19 (1973)).

e27WST)  = det(  u)”

This series is convergent for k > n + rank S + 1
ifrankS<nandfork>2nifS>O,andthe
totality of Es,, (those series with S > 0) spans
KBf)  (@“)) (Maass,  Math. Ann., 123 (1951)) .
tTheta  series delïned by integral quadratic
forms are examples of Siegel modular forms
(with a certain level) and are of great signilï-
tance  in the arithmetic of quadratic forms
(C. L. Siegel, Ann. Math., (2) 36 (1935)).

The quotient space  F,\sj,  cari be compacti-
lied as follows (1.  Satake and W. Baily [15]):
There exists a positive integer k, such that,
for any multiple k of k,,  any basis of !II$“)
defines in a natural manner a one-to-one
biholomorphic projective embedding of F,\!&,
of which the image is a Zariski open set of a
normal projective algebraic variety. Since the
structure of this projective variety is indepen-
dent of k, we denote it simply by In\!&,  . In
other words, m is the projective variety
Proj %II(I,,)  associated with the graded algebra
%R(F,).  Then we have F,\sj,  = lJ:=,, F,.\sj,.
When n > 2 for r < n,  I,.\.$, is of codimension
> 2 in F,,\!&, SO that (by virtue of tHartogs’s
continuation theorem) the conditions at the
points at infinity in the delïnitions of modular
functions and forms become superfluous. In
fact,  for n  > 2, if we delïne a Siegel modular
function  of degree n simply as a F,-invariant
meromorphic function on sj,,  then it cari  auto-
matically be extended to a meromorphic func-
tion on the compactilïcation F,,\&,  and hence
be expressed as the quotient of two modular
forms of the same weight. It also follows that
the lïeld of a11 Siegel modular functions of
degree n is an algebraic function lïeld of di-
mension n(n  + 1)/2. (These results cari  also be
obtained from the tpseudoconcavity of F.\$,
without using compactilïcation (A. Andreotti
and H. Grauert, Nachr. Akud. Wiss.  G&in-
gen).) For n = 2, the lïeld of Siegel modular

The Hecke theory (- Section D) cari also be
extended to the Siegel modular case. For any
integer m > 0, let S,,,  = S$)  be the set of 2n x 2n
integral matrices M such that ‘MJM  = mJ,

where J= and 1,  is the identity

matrix of degree n. We define the Hecke
operator T(m) on !Il$“’  by

~(m)f=m”k-“‘“+l”2 1 det(CZ
<;  ;)=MEV(m)

+ D) -kfew,

where fi !JJIk),  S, = u MEV(m)  LM ad W) is
a complete system of representatives of r,\s,.
Then for any prime number p, the forma1
operator series D,(X)= xz,  T(p”)X”  is form-
ally equal to a rational function in X:

P,(X)
D”(x)=Q,o

in which P,(X) and Q,(X) are polynomials in
X of degree 2” - 2 and 2”,  respectively, with
coefficients in the ring of Hecke operators
(Satake, Publ.  Math. Inst.  FES, 18 (1964)). For
n = 2 we have (Shimura, hoc.  NU~.  Acud. Sci.
US, 49 (1963))

D  (X)=(l-pZk-4X2){1-T(p)X+(T(p)2P

-T(p2)-pZkyX2-p=3T(p)X3

Let f(Z)~%lIk)  be a Siegel modular form of
degree 2 such that T(m)f=  Â(m)f  for a11 m > 1.
We detïne Ls(s)  by
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in which c(s)  is the Riemann zeta function. It is
known that L,(s) cari  be meromorphically
continued  to the entire plane and satisfïes  the
functional equation

Y1(2k  - 2 -s)  = YJS),

where Y,(s) = (27~~~~r(s)r(s - k + ~)L,(S) and
the function (s - k)(s  - k + 2)YJs)  is entire (A.
Andrianov, Trudy  Math. Inst.  Stekloo., 112
(1971)).

G. Hilbert Modular Functions

Following a suggestion of Hilbert, 0. Blu-
menthal studied a generalization of modular
functions of the following type: Let K be a
totally real talgebraic  number field of Imite
degree, and let K(i),  , K(“)  be the conjugates
of K,  where n = [K : Q]. (“Totally real” means
that a11 the Kti) are real.) For c(  E K,  we denote
by &).K(‘)  the ith conjugate  of a. Let D be the
+Principal order of K,  and consider the group

r,  = SL(2,  a)

We define  the action of I,  on the n-fold prod-
uct of the Upper  half-plane $j”  = {z = (zi  , . , ZJ  1
ZiEsj}  by

a(z)= ~-
(

cP)Zl  + p a@)z,  + p
y”‘z,+~‘l”““y’“‘z”+~‘“’

>

for 0= a B
( >Y 6

; then I,  becomes a discontinu-

ous  group of the tïrst  kind (I,  cari  also be
considered as an tirreducible  discrete  subgroup
of SL(2,  R)“). The group r,  is called the Hil-
bert modular group of K (in the strict sense).
(The defmition is sometimes modilïed by re-
placing the condition a6 -Pr = 1 by, say,  ct6  -
By  =(totally positive +Unit).)  If the tclass  num-
ber of K is h, the quotient space  F,\$j”  cari
be compactified by adjoining h points at in-
fmity.  Therefore, if n > 2, a Hilbert modular
function cari  be detïned as a meromorphic
function on !$ invariant under I,;  and simi-
larly a Hilbert modular form f of weigbt k
or of dimension -k as a holomorphic function
Son $j”  such  that (fi  o)(z) =f(c(z))ny=,  (yci)zi
+&‘)))“=f(z)  for all asI,.  (In the latter case,
fis holomorphic at a11 cusps, i.e.,  for every
acSL(2,  K), flo  has an integral Fourier ex-
pansion.) For Hilbert modular functions and
forms, results quite  similar to those for the
case n = 1 or the case of Siegel modular groups
have been obtained (Kloosterman, Maass, K.
B. Gundlach, H. Klingen).
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H. Furtber Generalizations

As further generalizations of the notion of
modular function, we have Hilbert-Siegel
modular functions (1.1. Pyatetskiï-Shapiro,
Baily,  Christian [20], where we cari  tïnd some
150 references),  Hermitian modular functions
(H. Braun, Klingen), etc. For the most general
case, i.e.,  for an arithmetically defmed discon-
tinuous group acting on a tsymmetric  bounded
domain,  a unitïed theory of automorphic func-
tions has been established in the works of
Pyatetskiï-Shapiro [21,22] and Baily and A.
Bore1  [23,24].

On the other hand, exactly as in the classical
theory, where the elliptic modular function
gave an invariant of 1-dimensional complex
tori, generalized modular functions cari  be
viewed as giving an analytic invariant of a
certain family of (polarized) +Abelian  varieties.
From this point of view, a deep number-
theoretic (and algebrogeometric) study of
automorphic functions (initiated by Hecke and
Eichler) has been substantially carried  forward
by the work of Shimura (see the series of his
papers in Ann. Math. starting from vol. 70
(1959); see also [9,24,25]).

From the analytic point of view, the theory
of automorphic functions is closely connected
with the unitary representation of G  in the
space  L,(I\G)  (or its adelic analog) [26,27]
(for adelic analogs - [ 12,131). In this respect,
the +trace  formula of A. Selberg [28], gen-
eralizing the +Poisson summation formula,
is of fundamental importance; and actually
it cari  be used effectively for calculations of
the dimension of the space  of automorphic
forms and of the trace of Hecke operators
(R. P. Langlands, Amer. J.  Math., 85 (1963);
H. Shimizu, Ann. Math., (2) 77 (1963),  J.  Fac.
Sci. Unio.  Tokyo, 10 (1963); also [24]). When
X = G/K  is a symmetric domain,  we cari  define,
for any representation p of K, a (matrix-
valued) canonical automorphy factor, by
which we defme (vector-valued) automorphic
forms with respect to a discrete  subgroup I’ of
G,  and under a further condition (say,  I free,
I\X compact, and the thighest weight of p
sufftciently large) we obtain a formula for the
dimension of the space  of such automorphic
forms in terms of the tarithmetic  genus of I\X
and certain numbers related to the “dual” X,
= G,/K and the representation p [ 15,29,30].
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33 (1.5)
Axiomatic Set Theory

A. General Remarks

Axiomatic set theory pursues the goal of rees-
tablishing the essentials of G. Cantor’s rather
intuitive tset  theory by axiomatic construc-
tions consistent with modern theories of the
foundations of mathematics.

A system of axioms for set theory was lïrst
given by E. Zermelo [47], and was completed
by A. Fraenkel [8]. J. von Neumann [30]
expressed it in tsymbolic logic, gave a forma1
generalization, and eliminated ambiguous
concepts. P. Bernays and K. Gode1  [2,1 l]
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further retïned and simplified von Neumann’s
formulation. The theories based on the sys-
tems before and after the forma1 generaliza-
t ion  are  ca l led  Zermelo-Fraenkel set theory
(ZF) and Bernays-Gode1  set theory (BG),
respectively.

B. Zermelo-Fraenkel Set Theory

ZF is a forma1  system expressed in ttïrst-order
predicate logic with the predicate symbol=
(equality) and based on the following axioms
l-9 (- 411 Symbolic Logic). These axioms
do not contain  any predicate symbol other
than E,  where XC~  is read “x is an element
of y.” Any  formula containing only E as a
predicate symbol is called a set-theoretic for-
mula. Following the usual convention, we omit
the outermost universal quantifier, and use
restricted quantifiers such as 3x E a, Vx E a.

Axiom 1 (axiom of  extensionality):

This asserts that sets formed by the same
elements are equal. The formula x E a(x E b) is
denoted by a c b.  This means “a is a subset of
h.” Then Axiom 1 cari  be expressed by

acbAbca-+a=b.

Axiom 2 (axiom of the unordered pair):

3xVy(yEx=y=avy=b).

This asserts the existence, for any sets a and b,
of a set x having a and b as its only elements.
This x is called the unordered pair of a and b
and is denoted by {a, b}. The notion of ordered
pair is characterized by

(a,b)=(c,d)-a=cr\b=d.

An example of such a set is (a, b) = { {a, a},
{a,bll.

Axiom 3 (axiom of the sum set):

This asserts the existence for any set a of the
sum (or union) x of all the sets that are ele-
ments of a. This x is denoted by Ua or S(a).
We Write  a U b for U {a, b} and a’ for
aU{a,a}.

Axiom 4 (axiom of the power set):

This asserts the existence for any set a of the
power set x consisting of a11 the subsets of a.
This x is denoted by P(a). We have S(P(a)) =
a, SO S  is a left  inverse of P, and the products
SP and PS are idempotent.

Axiom 5 (axiom of the empty set):

3xvy(ly6x).
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This asserts the existence of the empty set. The
empty set is denoted by @ or 0.

Axiom 6 (axiom of infinity):

This asserts the existence of a set containing
a11 the natural numbers, where 0, 1= 0’ = {0},
2=  l’={O, l},  3=2’={0,1,2},  T h i s  defmi-
tion of natural number is due to von
Neumann.

Axiom 7 (axiom of separation):

This asserts that the existence for any set a and
a formula A( y) of a set x consisting of a11
elements of a satisfying A( y). This x is denoted
by { y~a  1 A( y)}. This is rather a schema for an
intïnite number of axioms, for there are an
intïnite  number of A( y). This axiom, also
called the axiom of comprehension  or axiom
of subsets, was introduced by Zermelo.

For example, the set of a11 natural numbers
is introduced by

{xEaIvy(OEyAvzEy(z’Ey)  +  XEY)},

where a is a set satisfying Axiom 6. The set of
all natural numbers is denoted by w or N.

Axiom 8 (axiom of replacement):

This asserts the existence for any set a of a set
x such  that for any y of a, if there exists a z
satisfying A( y, z) then such z exists in x. If the
relation A( y, z) determines a function, then the
image of a set by the relation is included in a
set, SO by Axiom 7, the image is a set. This
axiom was introduced by Fraenkel.

Axiom 9 (axiom of regularity):

This asserts that if there exists a set satisfying
A(x), then there is a set x satisfying A(x) but
every element y of x does not satisfy the prop-
erty ,4(y). This axiom is also called the axiom
of foundation. Its dual expression, called E-
induction, is of course equivalent to Axiom 9.

Axiom 9’ (axiom of E-induction):

Using this we cari  show that -IXE~,
1 (x E y A y E x), etc. If we assume the axiom of
choice stated below, then this is equivalent to
the nonexistence of an infinite  descending
sequence

X,E...EXZEX1.

If a mode1 of set theory satistïes  the axiom of
regularity and has an infïnite descending se-
quence that is not in the model, then such  a
mode1  is called a nonstandard model.
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Axiom 10 (axiom of choice):

This asserts that if for any element x of a there
is a set y such  that A(x, y), then there is a
choice function y for the formula, i.e.,
.4(x, y(x)) for all x in a. Usually a function is
represented by its graph. A setfis called a
function detïned on a if

This formula is denoted by Fric(f);  then the
formula A(x,f(x))  is an abbreviation of

The axiom of choice is equivalent to many
properties, such  as the well-ordering  theorem,
Zorn’s lemma, and Tikhonov’s theorem on the
product  of compact spaces,  and it is used
widely and essentially in mathematics.

The system of axioms 1 to 9 is called
Zermelo-Fraenkel set theory and  i s  deno ted  by
ZF; the system ZF minus the axiom of replace-
ment is called Zermelo set theory, denoted by
Z; and the system ZF plus the axiom of choice
is denoted by ZFC.

The system Z is weaker than ZF. Indeed, the
existence of the set o of all the natural num-
bers and of P(ro), P(P(w)),  cari  be proved
in Z, but the existence of the set{w,p(w),
P(P(w)),  .} cannot be proved in Z. However,
we cari  prove its existence in ZF.

The theory ZF minus the axiom of intïnity is
called general set theory. Its consistency cari  be
reduced to the consistency of the theory of
natural numbers as follows.  Let II  be any
natural number and n = 2”~ + 2”2  + ...  +
2”k(n,  < n2 < < nk) be its binary expan-
sion. We cari  defme a mode1  of general set
theory by identifying a set with the natural
number n  and detïning m E n by “m appears as
one of the ni.”  In general set theory we cari
show the existence of 0, P(O), P(P(O)),  but
the existence of the set (0,  P(O), P(P(O)),  .)
cannot be proved. However, we cari  prove its
existence in Z. The set consisting of all heredi-
tary fïnite  sets is the smallest mode1  of general
se t  t heory .

C. Bernays-Godel  Set Theory

The existence of {ni A(u)} for an arbitrary set-
theoretic formula .4(u) cannot be deduced
from the axioms of ZF. We cal1 this abject  a
class  to distinguish it from sets. We introduce
a generalized logical system of tïrst-order
predicate logic by adding  to the logical system
used in ZF class variables, class  constants, and

14x

inference rules with respect to quantitïers  for
classes. For any set-theoretic formula A(u)  in
which no +bound  class  variable occurs, we
adopt

as an axiom, where capital letters X are class
variables. The set theory thus obtained is
equivalent to Gode1  set theory [ 111. Von
Neumann axiomatized set theory by making
use of the notion of functions instead of that of
classes [30]. In refïning this theory and intro-
ducing the notion of classes, Bernays and
Gode1 [2,  Il]  initiated Bernays-Gode1  set
theory, BG.

ZF and BG are related as follows:  Any
formula provable in ZF is provable in BG, and
any set-theoretic formula provable in BG and
having neither class variable nor class constant
is provable in ZF. In this sense,  the systems
cari  be regarded as essentially equivalent, but
as BG has class variables and class  constants,
it is more convenient  for expressing set-
theoretic notions.

Von Neumann detïned the following func-
tion R by ttranstïnite induction:

NO)  = 0, W4=  u ‘J-WB))~
P(a

where r and fl  are ordinal numbers and
us<,~(R(/l))  denotes the set sum of ‘$J(R(O)),
q(R(l)),  . . . . <P(R(b)),  . . . (/J<E). The function R
cari  be detïned by a set-theoretic formula, SO it
exists as a class.  Now consider the mode1
M  =M(E) for a fixed ordinal number IX.  We
define sets of the mode1  M  as elements of R(E),
and classes of the mode1  as subsets of R(E).  We
denote the E relation of the mode1  by E,,,,.  For
classes X and Yof the model, we Write  XE,
YPX  E Y Then a necessary and suffïcient
condition for R(x)  to be a mode1 of BG is that
z is an tinaccessible  ordinal number (- 3 12
Ordinal Numbers). The existence of an in-
accessible ordinal number cannot be deduced
from the axioms of ZF. There is a series of
studies of axiomatization of set theory in
which any number of inaccessible ordinal
numbers is assumed to exist [23]. When R(x)
is a mode1  of BG (ZF), it is called a natural
mode1 of BG (ZF). Furthermore, if H is Ua  R(a)
then H satisfïes a11 the axioms of BG (ZF). As
we do not need the axiom of regularity for
detïning the class H, we see that BG (ZF) is
consistent as long as BG (ZF) without the
axiom of regularity is consistent.

D. Independence of the Continuum Hypothesis
and the Axiom of Choice

These axiomatizations of set theory motivated
a series of studies from the standpoint of the
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tfoundations  of mathematics on problems that
remained unsolved after the appearance of
Cantor’s primitive set theory. Among these,
the problem of the relation between the con-
tinuum hypothesis and the axiom of choice
was central.

Consistency of the Axiom of Choice and the
Continuum Hypothesis.  Gode1  [l l] proved
that if ZF without the axiom of choice is con-
sistent, then the system obtained by adding  to
ZF the axiom of choice and the continuum
hypothesis is also consistent. TO show this, he
constructed a mode1  of ZF satisfying the
axiom of choice and the generalized con-
tinuum hypothesis as follows. Assume tïrst  that
M is an arbitrary domain  of abjects among
which the E relation is detïned. By a formula
on M, we understand a formula having con-
stants of M as its only constants, having E as
its sole predicate symbol, and further having
exclusively variables whose ranges are re-
stricted to M. Let us denote by M’  the totality
of subsets of M detïned by a formula A(x) on
M. Now we put Mo= {QI},  M,,, =ML, Mp  =

u a<B  M,, if b is a tlimit ordinal number. We
cal1 x constructible if x E M,  for some ordinal
number c(,  assumed to be less than the first
inaccessible ordinal number, if any.  We denote
the totality of constructible sets by L, and the
totality of sets of ZF by k! We cal1 the asser-
tion V= L, that is, every set is constructible,
the axiom of constructibility. If we add this
axiom to ZF, the axiom of choice and the
generalized continuum hypothesis become
provable. On the other hand, if we regard
elements of L as sets of the mode1  and the
original E relation as the E relation of the
model, we have a mode1  of ZF in which the
axiom of constructibility holds.

Independence of the Axiom of Choice and tbe
Continuum Hypothesis.  Since the  resu l t  o f
Godel, attempts have been made to prove that
the axiom of choice is independent of the other
axioms. Fraenkel constructed a mode1 of set
theory without satisfying the axiom of choice,
starting from a countable number of abjects
that are not sets. A. Mostowski constructed in
ZF a mode1 of set theory having abjects that
are not sets, and he proved that the mode1
satisfies the axiom: Every set cari  be tlinearly
ordered, but does not satisfy the axiom of
choice [27]. E. Mendelson constructed a
mode1 of set theory that does not satisfy the
axiom of choice by making use of an intïnite
descending chain a, 3 a2 3 a3 3..  [25]. These
models, however, do not satisfy all the axioms
of ZF or of Zermelo set theory minus the
axiom of choice, even though they satisfy most
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of the axioms. Consequently, they are not
sufftcient  for proving independence.

P. J. Cohen [3,4]  proved the following
results in connection  with the independence of
the axiom of choice, the continuum hypo-
thesis, and k’=  L: If ZF is consistent, each of
the following conditions has a model. (1) The
axiom of choice as well  as the generalized
continuum hypothesis holds, but there exists
an a satisfying a $ L and a c w.  (2) ‘@p(w)  is not
well-ordered. (3) The axiom of choice holds,
but the continuum hypothesis does not hold.
(4) +$I($@(w))  cannot  be linearly ordered.

By (1) we see that V= L is independent of
the axiom of choice and the generalized con-
tinuum hypothesis: (2) shows the independence
of the axiom of choice; and (3) shows that the
continuum hypothesis is independent of the
axiom of choice. In (4) ‘$3  (‘B(w))  corresponds
to the set F of a11 real-valued functions detïned
on the interval [0, 11,  and (4) shows that the
proposition “F cari be linearly ordered” is not
deducible in ZF without the axiom of choice.

E. Some Recent  Results

Boolean-Valued Set Theory. D. Scot t  and
R. M. Solovay defïned models of set theory in
which the set-theoretic formula has values in a
complete Boolean algebra. This viewpoint is
motivated by P. J. Cohen’s original notions of
the forcing relation and the generic  filter.

According to the relation between sets and
their representing functions, a function f: A+
B corresponds to a subset of A when B is a
complete Boolean algebra. SO by transtïnite
induction we put

PC,

where P(‘)(A)  is the Boolean-valued power set
of A deiïned by

Let VcB)  be the union of a11 V~?s;  then the
truth values of the formulas [u E u] and [u = un
are detïned by transtïnite induction as

[lEu]=  1 u(x).[x=u],

= n U(x)'~~~~n.x.d_(")tl(X)~j[X~Un,xtdorn(u)
where a = b is an abbreviation for the element
-a+b  in B.

In V@)  the following properties are satistïed:
(i) The truth value of any formula provable
from ZFC is 1, the largest element of B.
(ii) Any  complete homomorphism h: B, +B,
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cari  be extended to

SO that the commutative relation

NUAh I,...,u,)ll)=UA(h(u,),...,h(u,))ll

is satistïed  for every restricted formula; further,
if h is an epimorphism then it is satisfïed  for
every formula.
(iii) (maximum principle) For any formula A(x)
there is an element u of V@)  such that

WWlj  = U441.

Moreover, if [~XIX(X)]  = 1 then there an ele-
ment u of k’(s)  such  that [R(u)] = 1 and

UWW~.4x>>l=  UA(44.

Property (i) means that if [A] < 1, then A is
not provable from ZFC. Many consistency
results  in set theory are obtained in this way
by constructing special partial order struc-
tures, topological spaces,  or complete Boolean
algebras.

Axiom of Strong Infïnity.  The axiom of infin-
ity, Axiom 6, of ZF asserts that there exists a
set including the set w of ah natural numbers.
The set o is the smallest infinite  cardinal num-
ber. In general, the axiom of strong intïnity is
stated in a form such that certain special prop-
erties of w  are satistïed for an uncountable
cardinal number.

Though such an axiom asserts the existence
of large cardinal numbers, their properties
sometimes reflect,  for example, those of the
real numbers, or of the set of real numbers, etc.

We state here some typical examples:
(i) Weakly inaccessible cardinal numher. This
is a regular limit cardinal number, that is,

Cf(%)  = 00, V~~~@hqJSl~~,).

(ii) Strongly inaccessible cardinal number.

Cf(U,)  = o,, vg < U(2”P < CO,).

(iii) Weakly compact cardinal number. w, is
uncountable and the space  X = 2”‘~  with < w,-
topology is w,-compact.
(iv) Measurable cardinal number. o,  is un-
countable and there is a nonprincipal CO,-
additive 2-valued measure p:  P(U.+{~,  1).
(v) Strongly compact cardinal number. o, is
uncountable and any product  of 2 = { 0, 1 }  with
< w,-topology  is w,-compact.

The strength of these properties increases in
the order presented here. Properties (i) to (iii)
are compatible with the axiom of constructi-
bility V= L. And (iv) implies V#L.  while it is
compatible with V= L(p).  But (v) implies
V# L(a) for any set a.

There are many other stronger axioms of
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infinity, and the consistency proofs of these
“axioms” within ZF or ZFC would involve
essential difficulties.  Inconsistency proofs of
these properties, if they exist, would be very
interesting.

F. Examples of Results

(1) Cardinality and Cofinality  (- 3 12 Ordinal
Numbers). (i) (W. B. Easton [6]) Let YJI be a
mode1 of ZFC (the Zermelo-Frankel axioms
plus the axiom of choice) in which the GCH
(generahzed continuum hypothesis) is vahd,
i.e.,  Vc((2”a  =w,+r),  and let g be a function
from ordinals to ordinals in !Dl  such that Va,
B(~<B*q(n)G~g(pJ  ad v4a<cf(~,~,,)).
Then there is a Boolean mode1 % of ZFC, ?JI  1
cJJ&  having the same cofïnality and satisfying
2% zz  w s(oj for every regular cardinal. (This
means that Konig’s condition (cf(2”a)  > wa)  is
the only restriction on the cardinality of
powers of regular wa.)

(ii) (J. H. Silver [39]) Suppose

w  < cf(cc)  = cf(w,)  < w,.

Then for any 1.  < cf(cc)

However, the validity of the implication

still remains an open question. And it is
known that if there is a mode1  for

Vn<w(2w*=w,+,), 2°w>%+,,

then there is a mode1  in which there are many
measurable cardinal numbers.

(iii) (K. Prikry [31]) Let w,  be a measurable
cardinal number in a mode1  M  of ZFC. Then
there is a Boolean extension N of M  in which
the notion of cardinality is not changed  but
the notion of cotïnality is changed,  that is
cf(w,)  = w,  in M  but cf(w,)  = w  in N.

(iv) (Solovay) Let w, be a strongly compact
cardinal number. Then for any strong-limit
singular cardinal wg > w,  the continuum hypo-
thesis holds at w8; that is, the implication

cfbp)  < op vy<p(2?  <wp)+2wP  =wp+i

is provable.

(2) Lebesgue Measurability and the Baire Prop-
erty. As is well known, every Ai  (Borel) set
(and consequently every r{ (analytic) set) of
real numbers is Lebesgue measurable and has
the Baire property.

(i) (Godel) V= L implies the existence of a
Ai  set of real numbers that is neither Lebesgue
measurable nor has the Baire property.
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Let DC denote the principle  of depending
choice:

~3f:w~aVnEwP(f(n),f(n+ 1)).

DC is adequate for the development of the
classical notions of measure theory, such as
Jordan decomposition, the Radon-Nikodym
derivate, etc. Let 1 denote the hypothesis
3a(cf(w,)  = W, A Vg  < ~$29 < 01,))  (strongly
inaccessible).

(ii) (Solovay [40]) The consistency of ZFC
and 1 implies that of ZF and either of the
following two axioms:

(a) DC plus the hypothesis that every set of
real numbers is Lebesgue measurable and has
the Baire property.

(b) The axiom of choice plus the hypothesis
that every set of real numbers definable by an
w sequence of ordinals is Lebesgue measurable
and has the Baire property.

Axiom (a) means that DC is not strong
enough to construct  a (Lebesgue) nonmeasur-
able set, while Axiom (b) implies that every
projective set is Lebesgue measurable and has
the Baire property, and hence implies that the
set of all constructible real numbers, as a Ci
set, has Lebesgue measure 0, and is of the tïrst
category.

(3) Martin%  Axiom. Let B be a Boolean
algebra. We say  that B satisfies w, C.C. (chain
condition) if the cardinality of every disjoint
family of positive elements of B is at most w,.
Let B*  denote the topological space  consisting
of a11 homomorphisms h: B-+2  = {0, l} with
the open base u(a)={hlh(a)=  1) (aeB);  then
B*  is a +Baire  space.  Then Martin%  axiom
(MA) is: Let B be an w C.C. Boolean algebra
and c(  < 2”. Then the intersection of a dense
open  sets is dense in B*. Since {h  1 ,Y,h(a,) =
h(b)} is dense and open in B* if C,a,  = b,
MA means the existence of an h E B* preserv-
ing any given set of CI ( < 2”) equations in B, If
2” = wi, MA merely reduces to the Baire prop-
erty of B*.  However, if 2” > wi, then the w
C.C. hypothesis is essential, for there exists a
B  satisfying o1  C.C. such  that B* contains wi
dense open sets with empty intersection.

(i) (Solovay and S. Tennenbaum [43]) The
consistency of ZF implies that of ZFC, MA,
and 2”>w,.

(ii) (D. A. Martin and Solovay [24]) ZFC,
MA, and 2” > wi  imply the propositions:
(a) Vw,  < 2”(2”m  = 2”),  hence 2” = 2-1;
(b) the totality of the lïrst  category sets of
Lebesgue measure zero sets is a-additive for
any tl  < 2”;
(c) every ,,?Y:  set of real numbers is Lebesgue
measurable and has the Baire property.
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(4) Suslin’s  Hypothesis (SH) is: Every dense,
linear, order complete set without end points,
having at most w  disjoint intervals, is order
isomorphic to the continuum of real numbers.

(i) (T. J. Jech, Tennenbaum) The consistency
of ZF implies that of (a) ZFC, 1 SH, and
GCH, as well as (b) ZFC, 1 SH, and 2” > w,

(ii) (R. Jensen [15]) The consistency of ZF
implies that of ZFC, SH, and 2” = wi.

(iii) (Solovay and Tennenbaum [43]) ZFC,
MA, and 2” > wi  imply SH.

(iv) (Jensen [15]) V=L  implies 1 SH.

(5) Measurahle and Real-Valued  Measurahle
Cardinals. A cardinal K  > o is said to be
measurahle if there is a measure p:  (U(K)+
{O,l}  with(a)&c)=l,(b)Vv<K(~({v})=O)
and (c) ~(C,,,A,)=C,,,~(A,)I~~~ K  is said
to be real-valued  measurahle if there exists a
P:‘@(K) + [0, l] that satilïes (a), (b) and (c), and
is not measurable.

Let MC (RMC) denote the existence of a
measurable cardinal (real-valued measurable
cardinal).

(i) (S. Ulam [45]) The existence of an w-
additive measure p:‘Q(A)-[0,  11,  with p(A)=
1 and VxeA(p({x})=O),  implies RMC or MC;
RMC implies the existence of an extension
of Lebesgue measure detïned on ‘B(  [0, 11);
every real-valued measurable cardinal is < 2”’
and weakly inaccessible.

(ii) Every measurable cardinal is strongly
(hyper) inaccessible, and (a) 3aF(a)+3ct  <
wi  F(a) for any r: formula F(a) on the ordinal
numbers, (b) 3ctF(cc)+3cr  <pi  F(cc) for any Z7:
formula F(a) and the smallest measurable pi.
(Many  results have been obtained concerning
the ordinal magnitude of wi  and the measur-
able cardinals.)

(iii) (Solovay [41]) The consistency of ZFC
and MC is equivalent to that of ZFC and
R M C .

(iv) (Martin and Solovay [24]) ZFC, RMC,
and MA are not consistent.

(v) (Lévy and Solovay [21]) The consistency
of ZFC and MC implies that of ZFC, MC,
MA, and 2”>w,.

(vi) (Solovay) ZFC and MC imply that
every Ci set of real numbers is Lebesgue
measurable.

(vii) (Martin, Solovay) ZFC, MC, MA, and
2” > w2  imply that every Xi  set of real num-
bers is Lebesgue measurable and has the Baire
proper ty .

(viii) (Silver [38]) The consistency of ZFC
and MC implies that of ZFC and MC as well
as the existence of (Lebesgue) non-measurable
A:  sets of real numbers.

(6) Axiom of Determinateness. We consider the
following inlïnite game. Let A be a set consist-
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ing of functions o to w. The players 1 and II
choose  alternatively natural numbers ni  and
mi, and, for the resulting inlïnite sequence, if

h,m,,n z,...>nk,mk>...)EA,

then 1 wins, otherwise II wins.
A function o: Unew~“-+~ is called a

strategy. If II plays according to the sequence
m=(m,,m,,  . . . . mkr  . ) and 1 plays according
to the strategy cr,  then the resulting sequence is

o*m-
=(“(0),ml,o(m,),...,mk,o(m,,...,mk),...).

The strategy o is called a winning strategy for
1 of the game delïned above, if for any play  m
of II, the resulting play c*m is in the set A, and
similarly for the winning strategy of II.

The axiom of determinateness AD is the
assertion that for any A c ww, the player 1 or
II has a winning strategy.

(i) (J. Mycielski [28]) Assume ZF and AD;
then we have:
(a) axiom of choice for countable sequence of
sets of real numbers;
(b) every set of real numbers is Lebesgue
measurable and has the Baire property, SO the
axiom of choice does not hold;
(c) every uncountable set of real numbers
contains a Perfect set.

(ii) (Solovay) Assume ZF and AD; then we
have:
(a) cardinalities  of wi  and 2” are not
comparable;
(b) w, and w2  are measurable cardinals, but w3
is a singular cardinal such that cf(w3)  = 02.

(iii) (Martin) In ZFC, every Borel, namely
Ai,  game is determined.

(iv) (Martin, Solovay) In ZFC:
(a) if there exists a measurable cardinal, then
every analytic, namely Z7:, game is determined;
(b) if every Al-game  is determined, then there
is a mode1  of ZFC with many measurable
cardinal numbers.

Since the axiom of determinateness AD is
very  strong, there is some suspicion that it
might contradict ZF. But at present there is no
such  evidence.
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34 (11.5)
Axiom of Choice  and
Equivalents

A. The Axiom of Choice

In set theory, the following axiom is known as
the axiom of choice: For any nonempty family
2I of nonempty subsets of a set X, there exists
a single-valued function A  called the choice
function,  whose domain  is ‘u, such that for
every element A of SU  the value f(A) is a mém-
ber of A. This axiom is equivalent to each of
the following three propositions: (1) If {A,},,,
is a family of sets not containing the empty set
and with an index set A, then the Cartesian
product  n, A, is not the empty set. (2) If a set
A is a disjoint union lJI  A, of a family of
subsets {A,},,, which does not contain  the
empty set, there exists a subset B, called the
choice set, of A such that every intersection of
B and A,(AEA)  contains one and only one
element. (3) For every mapping f from a set A
onto  a set B, there is a mapping from B to A
such  that f‘o  g = 1, (identity mapping). Also
equivalent to the axiom of choice are the well-
ordering theorem and Zorn’s lemma, which
are discussed in the following sections.

B. The Weil-Ordering  Theorem

In 1904, E. Zermelo [2] first stated the axiom
of choice and used it for his proof of the well-
ordering theorem, which says that every set cari
be twell-ordered by an appropriate tordering.
Conversely, the well-ordering  theorem implies
the axiom of choice. Many important results
in set theory cari be obtained by using the
axiom of choice, for example, that ?Cardinal
numbers are comparable, or that various
definitions of the tïniteness or inlïniteness
of sets are equivalent. Various important
theorems outside of set theory, e.g.,  the exis-
tence of bases in a tlinear  space,  tcompactness
of the direct product  of compact ttopological
spaces (tTikhonov’s  theorem), the existence
of a subset which is not tlebesgue  measurable
in Euclidean space,  etc., are proved using  the
axiom of choice. But for those proofs the well-
ordering theorem or Zorn’s lemma (stated
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below) are used more often than the axiom of
choice.

Using the well-ordering theorem, it cari  be
proved in the following manner that for every
field  k, any linear space X over k has a basis.
Let {xvJueA be an enumeration of X. By ttrans-
finite  induction, we cari  delïne the function f
from X to B = {0, l} such that (i) if x0 = 0,
f(xo) = 0; if x0 # 0, f(xe)  = 1; (ii) for v > 0, if x,
is expressed as a linear combination of ele-
ments of {xp~~~v,f(xp)=  l},,f(x,)=O;  other-
wisef(x,)=l.ThenU={x~X~f(x)=l}isa
basis of X.

C. Zorn’s Lemma

An ordered set X is called an inductively
ordered set if every ttotally ordered subset of X
has an +upper  bound. A condition C for sets is
called a condition of finite  character if a set X
satisfies  C if and only if every finite  subset of
X satisiïes C. A condition C for functions is
called a condition of finite  character if C is a
condition of fïnite character for the graph of
the function. Zorn’s lemma [4] cari  be stated
in any one of the following ways, which are all
equivalent to the axiom of choice. It is often
more convenient  to use than the axiom of
choice or the well-ordering theorem.
(1) Every inductively ordered set has at least
one maximal element.
(2) If every well-ordered subset of an ordered
set M  has an Upper  bound, then there is at
least one maximal element in M.
(3) Every ordered set A4 has a well-ordered
subset W such  that every Upper  bound of M
belongs to W.
(4) For a condition C of fïnite character for
sets, every set X has a maximal (for the rela-
tion of the inclusion) subset of X that satis-
fies C.
(5) Let C be a condition of finite  character for
functions from X to Y. Then, in the set of
functions that satisfy C, there is a function
whose domain  is maximal (for the relation of
the inclusion).

Using Zorn’s lemma (1) we cari prove again
in the following way any linear space X over a
field  k has a basis. Let 2I be the set of a11 non-
empty subsets A of X such that arbitrary tïnite
subsets of A are linearly independent over k. 2l
is not empty. If we order 2I by the relation of
inclusion, then 9I is an inductively ordered set.
By Zorn’s lemma (1) there is a maximal ele-
ment U  of 2I. Since U is maximal, Ii is a basis
OfX.

The same theorem is proved as follows
using Zorn’s lemma (4). Condition C for the
subset A of X, that arbitrary fïnite subsets of A
are linearly independent over k, is a condition
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of fmite  character. Hence there is a maximal
subset U that satistïes C and is a basis of X.

Concerning recent developments regarding
the axiomatic basis for the axiom of choice
- 33 Axiomatic Set Theory D.

References

[l]  G. Cantor, Über unendliche, lineare Punkt-
mannigfaltigkeiten, Math. Ann., 21 (1883)
545-591. (Gesammelte Abhandlungen, Sprin-
ger, 1932.)
[2] E. Zermelo, Beweis, dass jede Menge wohl-
geordnet werden kann, Math. Ann., 59 (1904),
5 1 4 4 5 1 6 .
[3] E. Zermelo, Neuer Beweis für die Moglich-
keit einer Wohlordnung, Math. Ann., 65
(1908) 1077128.
[4] M. Zorn, A remark on method in trans-
fmite  algebra, Bull. Amer. Math. Soc., 41
(1935) 6677670.
[S] J. W. Tukey, Convergence and uniformity
in topology, Ann. Math. Studies, Princeton
Univ. Press, 1940.
[6] N. Bourbaki, Eléments de mathématique
1, Théorie des ensembles, ch. 3, Actualités Sci.
Ind., 1243, Hermann, second edition, 1966;
English translation, Theory of sets, Addison-
Wesley, 1968.

35 (1.2)
Axiom Systems

A. History

A mathematical theory is based on a specifïc
system of axioms, i.e.,  a system of hypotheses
from which the whole theory is deduced with-
out reliance  on other assumptions.

One of the tïrst  deductive methods of math-
ematical reasoning was utilized by Thales, who
returned to Greece from Egypt with the knowl-
edge of surveying methods, and who deduced
additional results from that empirical knowl-
edge. His method gave impetus to the devel-
opment of Greek geometry, which flowered
with the Pythagorean school and research by
members of Plato’s Academy. In the course of
this development, the deductive method led to
the idea of constructing the whole theory upon
a system of “absolutely obvious” statements
from which the whole theory could be de-
duced. Euclid systematized Greek geometry in
his Elements utilizing this idea. His work
became  the basis of geometry after the Re-
naissance, and Greek geometry came to be
called +Euclidean geometry. In the Elements
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Euclid called the basic obvious statements
common  notions when they were of general
nature, and postulates when they were specifi-
cally geometric. Both were later called axioms
(or postulates).

Among the axioms stated by Euclid, the
“lïfth postulate” concerning parallels was
longer and more complicated than the other
axioms. Many efforts were made to deduce
this particular axiom from the other axioms.
The failure of these attempts suggested the
possibility of establishing a mon-Euclidean
geometry, which was actually done by N. 1.
Lobachevskii and J. Bolyai, who replaced the
lïfth  postulate by its negation and showed that
the new system of “axioms” was as valid as the
classical one.  This development naturally led
to a new evaluation of the idea of axioms, and
eventually the traditional concept of recogniz-
ing the axioms as obvious truths was replaced
by the understanding that they are hypotheses
for a theory. D. Hilbert [ 11 established the
latter idea as axiomatization and claimed that
the whole science of mathematics should be
built upon a system of axioms. His idea be-
came the foundation of present-day mathe-
matics. Hilbert reorganized classical geometry
based upon his idea and published his result in
Fo~ndations  of Geometry  (1899).

B. Systems of  Axioms

The system of axioms of a theory, i.e.,  the
system of basic hypotheses from which we
hope to deduce the whole theory, is written in
undefined  terms (or in terms of undefined con-
cepts) by means of which all other terms are
delïned. On the other hand, a given theory is
axiomatized by speci fy ing  such  a system of
axioms upon which the theory may be re-
organized. It should also be noted that a sys-
tem of axioms determines a +Structure  (- 409
Structures).

A system of axioms is considered to be
mathematically valid if and only if it is consist-
ent. It is also desirable that the axioms in such
a system be mutual ly independent (i.e.,  the
negation of any one of the axioms is still  con-
sistent with the others). When such a system is
not independent, it cari be simplilïed by delet-
ing redundant axioms from it.

When any two models of a system of axioms
are isomorphic to each other, we call the sys-
tem complete  or categorical (- 409 Struc-
tures). For example, the system of axioms (1))
(V) postulated by Hilbert as the foundation
for Euclidean geometry is complete (- 155
Foundations of Geometry), whereas the sys-
tems of axioms for the theories of tgroups,
+rings,  or +lïelds  are not complete  since there
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are nonisomorphic groups, etc. Although it is
desirable that the systems of axioms postu-
lated for a given theory (e.g.,  the ttheory of real
numbers, or Euclidean geometry) be complete,
the study of partial systems that may not be
complete is also important (- 156 Founda-
tions of Mathematics).
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36 (XII.1 7)
Banach Algebras

A. Definition Cl-43

A real or complex +Banach  space R is called a
Banach algebra (or normed ring) if a multiplica-
tion law between elements of R is introduced
that makes R an tassociative algebra and if
l/xyll $ ~/XII.  II yIl  is satisfïed.  The complex case
is generally easier to handle, and a real Banach
algebra cari  always be embedded in a complex
one isomorphically and isometrically. When
a Banach algebra contains a unity  element e
with respect to the multiplication, i.e.,  it is
unital,  we cari  suppose IleIl  = 1. If it is not uni-
tal, we cari  adjoin a unity  element to  it.

B. Examples

1. Let C,(m)  be the set of complex- (real-)
valued continuous  functions x(t)  on a locally
compact space !Dl  that vanish at intïnity.
Endowed with the pointwise operations
and the tsupremum norm (- 168 Function
Spaces),  it forms a complex (real) Banach
algebra. In the complex case, it has the invo-
lution X*(~)=X(<).

2. Let X be a Banach space. The set g(X)
of tbounded  linear operators on X forms a
Banach algebra if we deiïne addition, multi-
plication by scalars, multiplication between
elements, and the norm in the usual fashion.

3. Let G be a locally compact Hausdorff
group (- 423 Topological Groups) and p be
its +left-invariant Haar measure. The Banach
space L,(G) (with respect to p)  cari  be made
into a Banach algebra by defïning xy(g) =
jx(h)y(K’y)dp(h)  (- Section L).

4. Every subalgebra of a Banach algebra
R, which is closed in the norm topology, is a
Banach algebra with respect to the original
algebraic operations and norm and is called a
closed  subalgebra of R.

Throughout this article, a11 Banach algebras
are supposed to be complex Banach algebras
unless otherwise specified.

C. Spectrum of an Element

We define a new operation x. y in R by setting
x.y=x+y-xy.  Ifx.y=y.x=O,  y is called a
quasi-inverse of x. When a unity  element e
exists, y is a quasi-inverse of x if and only if
e-y is an inverse of e - x. For a complex
number A such  that I)&l> //XII,  we see that
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i-‘x  possesses a quasi-inverse y given by the
strongly convergent series y= --CE,  Px”.
The set of a11 complex numbers 1.  such that
Â-lx  does not have a quasi-inverse is called
the spectrum of x and is denoted by SP(X).
(When x itself does not have an inverse, in
particular, when R does not contain  a unity
element, we include  0 in this set.) SP(X)  is a
bounded closed set in the complex plane, and
SLIP{  [Al  1 ~ES~(X)}  =lim,,,  //X~I~~“.  In Exam-
ple 2, this spectrum is the spectrum of the
operator x, and the problem of determining
the behavior of this spectrum constitutes one
of the central problems in the theories of
Banach and Hilbert spaces.

D. Representations of a General Banach
Algebra [ 1,2]

We understand by a representation of a
Banach algebra R on a Banach space X any
algebraic homomorphism 7~ of R into the alge-
bra uA(X)  (see Example 2) satisfying lIz(x)ll<
IIxII for a11 XE R. We cal1 X the representation
space. A Banach algebra always possesses
an isomorphic and isometric representation.
Especially important are the irreducible rep-
resentations. A vector subspace (closed  or not)
Y of X is an invariant subspace if z(x) Yc Y
for any XE R. A representation is called alge-
braically irreducible if the invariant subspaces
are trivial, i.e.,  they are only {0} or X. A repre-
sentation is said to be topologically irreduc-
ible if closed invariant subspaces are trivial.
The tkernel of an algebraically irreducible
representation is called a primitive ideal,  which
cari  alternatively be detïned in the following
way: A left ideal J ( # {0}, R) is regular, by
definition, if R contains  an element u, a unity
element modulo J, such  that x - xu E J for any
XE R. Such an ideal is always contained  in a
maximal left ideal, which in turn is necessarily
regular and closed.  A two-sided ideal I is
primitive if it is the set of elements a in R for
which aR c J, where J is some fïxed regular
maximal left ideal. If R is commutative, a
primitive ideal is a regular maximal ideal, and
conversely. The intersection of a11 primitive
ideals is called the radical of R, and when it
is {0}, R is called semisimple.

The set of primitive ideals 3 is known as the
structure space of R, in which the hull-kernel
topology (or Jacobson  topology) is introduced.
The tclosure of a set CU  in J is, under this
topology, the set of primitive ideals containing
the intersection of the ideals in QI.  This topol-
ogy is rather intractable;  even in commutative
cases, it does not coincide  with the Gel’fand
topology (- Section E), in general.
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E. The Gel’fand Representation of a
Commutative Banach Algebra

A complex Banach algebra is a fïeld  if and
only if it coincides  with the fïeld  C of complex
numbers (Gel’fand-Mazur theorem). This  i s  the
most fundamental fact in the study of com-
mutative Banach algebras. Now let R be a
commutative Banach algebra. Then every
regular maximal ideal J of R is closed and the
tquotient  algebra R/J is isomorphic to C, SO

that the quotient mapping R+R/J is viewed
as a complex-valued homomorphism of R.
Conversely, if <p  is a nonzero complex-valued
homomorphism of R, it has norm <l  as a
linear functional on R and its kernel, say  R,, is
a regular maximal ideal of R such that <p  is
exactly the quotient mapping R + R/R,. The
set %II(R) of nonzero complex-valued homo-
morphisms (or regular maximal ideals) of R
endowed with the tweak* topology of the
Banach space tdual R’ of R is cahed  the maxi-
mal ideal space of R. !JX(R)  is a locally com-
pact Hausdorff space, and its topology is
called the Gel’fand topology. For each XE R we
dehne a function X on !IX(R)  by setting X(p)  =
<p(x).  Then the mapping x-X is a homo-
morphism of R into the algebra C,(!Dl(R))  of
a11 continuous  complex-valued functions on
!Ut(R) vanishing at infinity. This is the Gel’fand
representation of R whose image, the Gel’fand
transform of R, is denoted by l?. Concerning
this, we have (1) !V{(R) is compact if R has a
unity  element; (2) SP(X)  equals the closure of
the range A(YX(R))  of X; (3) the representation
x+X  is norm-decreasing if C,(W(R))  is en-
dowed with the tsupremum  norm; (4) ))z?))  m
(=SU~{  IX(<p)lI  VE~(R)})  equals lim,,,  /lx”lliin.
The tkernel of the Gel’fand representation of
R is the radical of R, which consists  of gen-
eralized nilpotent elements of R.

F. Banach Star Algebras

An involution in a Banach algebra R is an
operation x*x* that satisfïes  (1) (x + y)* =x*
+y*; (2) (lx)* six*;  (3) (xy)*=v*x*;  (4) (x*)*
=x. A Banach algebra with an involution is
called a Banach *-algebra.  A *-homomorphism
u> between two Banach *-algebras  is an alge-
brait  homomorphism which preserves invo-
lutions, i.e.,  0(x*)  = O(x)*.  TO represent a
Banach *-algebra  we prefer a *-representation,
i.e.,  a representation x-> TX on a Hilbert space
such that TX,  is equal to the adjoint TX* of TX
for any XER.

G. C*-Algebras [5510]

A Banach *-algebra  A satisfying IIx*xII  = //x11’
for a11 x E A is called a C*-algebra. Every C*-

tlgebra is *-isomorphic and -isometric to a
sanach algebra of operators on a Hilbert
pace (see Example 2) that contains, along
vith  an operator, its adjoint (the Gel’fand-
Vaïmark theorem). A C*-algebra is semi-
:imple,  and a commutative C*-algebra A is
r-isomorphic to &@I(A))  under the Gel’fand
.epresentation. A topologically irreducible *-
.epresentation of a C*-algebra is also algebrai-
:ally irreducible (R. V. Kadison), and the set of
.unitary equivalence  classes of these irreduc-
ble *-representations  is called the dual space.
[t  becomes a topological space if we introduce
:he hull-kernel  topology inherited from the
structure space, but other topologies are also
Introduced. Moreover, for the study of separ-
able  C*-algebras, Bore1 structure in the sense
af G. W. Mackey is a very  powerful tool. C*-
algebras also have intimate connections with
the theory of tunitary  representations of a
topological group (see below) and with quan-
tum physics. Many works have been published
on *-representations,  dual spaces,  etc.

A linear functional o on a C*-algebra A is
said to be positive if ~(X*X)  > 0 for any x E A.
For any nonzero positive linear functional w
of A, there exist a *-representation  (rc,,  H,) of
A on a Hilbert space If, and a vector <,EH,
such that w(a)=(~,(a)&,,&J  for a11 ~EA and
that the subspace {rc,(a)<,la~  A} is dense in
H,. We cal1 (7-c,,  H,) a cyclic representation of
A induced by w.  A *-representation  (z,  H) of A
is called universal if for any *-representation
(p,  K) of A there exists a +g-weakly  continuous
*-homomorphism  p of n(A)” onto  p(A)” such
thatp(a)=(/?orr)(a)forallaEA,where7r(A)”
is the double ?Commutant of n(A) and SO is
a tvon Neumann algebra (- 308 Operator
Algebras). Von Neumann algebras z(A)”  for
universal representations rr of A are mutually
*-isomorphic, SO that they determine the envel-
oping von Neumann algebra of A. Especially,
the direct sum 7~ of ah cyclic representations
7~,  is a universal representation and there is a
unique isometric isomorphism of n(A)” onto
the second dual A** of A that is bicontinu-
ous  in the o-weak topology of n(A)” and the
o(A**, A*)-topology of A**. SO A** is identi-
fied  with the enveloping von Neumann algebra
ofA.

H. Some Classes  of  C*-Algebras

Let A be a C*-algebra. If is a CCR (liminal
C*-) algebra if it is mapped to the algebra of
compact operators under any irreducible *-
representation. It is a GCR (postliminal C*-)
algehra if every nonzero quotient C*-algebra
of A has a nonzero CCR closed two-sided
ideal. These classes of C*-algebras have inter-
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esting properties. For example, the dual space
of a separable C*-algebra is a +T.  space (+Y&
space) if and only if the algebra is GCR (CCR)
(J. Glimm).

A is called an AF (approximately finite)
algebra if it is the uniform closure of an in-
creasing sequence of lïnite-dimensional  C*-
algebras (0. Bratteli). AF algebras are classi-
lied by so-called dimension groups. TO see this,
we cal1 an ordered Abelian group G (written
additively) a Riesz group if (a) for any integer
n>O and any gEG, ng>O  implies g>O  and
(b)foranyg,,h,(l<i<m,l<j<n)inGwith
gi < hj  for a11 i and j, there exists k E G with
gi < k < hj  for a11 i, j. Then the isomorphism
classes of AF algebras correspond bijectively
to the isomorphism classes, as local semi-
groups, of generating upward-directed heredi-
tary subsets of the positive cones of countable
Ries.2  groups, and a dimension group, delïned
otherwise, is exactly a countable Riesz group
(G. Elliot, E. G. Effros, D. E. Handelman and
C. L. Shen) (- [Il]).

Now consider two C*-algebras A and B.
The algebraic ttensor product  A @ B over C
becomes a *-algebra  in the natural way. A
norm /I on A 0 B is a C*-crossnorm if IlxyllP <
lIxllp  llyll,  and IIx*x//~= llxll~ for x, y6A 0 B
and Ila@bllp< IlaIl  Ilbll  for UEA,  bEB. The
completion of A 0 B under such a norm fi is
a C*-algebra, which is denoted by A OP B.
There are two special C*-crossnorms on A @
i?: 11.  /Imin  and 11. Ilmax.  The former is called the
spatial (minimal, injective) C*-crossnorm and
isdefined  by  ll~ll~~~~~~P~,~ll~<pO~~~~~ll,
where cp  and $ run over a11 *-representations
of A and B, respectively. The algebra A Bmin  B
is called the spatial tensor product  of A and B.
The latter is called the greatest C*-crossnorm
and is defined by IIxII,,,=supT  iiT(x)ll,  where
T runs over a11 *-representations  of A @ B.
And the algebra A @,,, B is called the projec-
tive C*-tensor product  of A and B. Any  C*-
crossnorm fi  on A 0 B lies in between these
tW0 mm,  ix., IIXII*in<  llxlla<  llxll,,,  for
xcA 0 B. A C*-algebra A is called nuclear if
A @ B has a unique C*-crossnorm for any C*-
algebra B. It is known that any GCR algebra
is nuclear and that an inductive limit of nu-
clear C*-algebras (e.g.,  any AF algebra) is
nuclear. Given a linear mapping <p  between
C*-algebras A and B, we define for any inte-
ger n > 1 a linear mapping q,,  :A @ Mn-B @
A4,, by setting <p,(x  @ e,) = <p(x)  @ e,, where
{e,}  are the matrix units for the C*-algebra
M,,  of n x n complex matrices. cp  is said to be
completely positive if (P”  is positive for any n >

1. A C*-algebra A is then called injective  if,
for any C*-algebras B, C with B Z C and any
completely positive contraction <p:  B+  A, there
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exists a completely positive contraction 4:
C+A that extends rp.  A C*-algebra A is
nuclear if and only if its enveloping von NeuT
mann algebra A** is injective. Every injective
C*-algebra B is not necessarily a von Neu-
mann algebra but every AW*-algebra, i.e.,
every maximal commutative *-subalgebra  M
of B, is monotone complete (i.e.,  every increas-
ing net of self-adjoint elements has a least
Upper  bound in M) and the lattice of projec-
tions in B is conditionally complete.

1. Crossed Product

Let A be a C*-algebra, G a locally compact
Hausdorff group with left-invariant mea-
sure p,  and c(  a continuous  action of G on A
as *-automorphisms  LYS,  geG.  Let K(G, A)
be the linear space of continuous  functions
from G to A with compact support, which is
a *-algebra  under the multiplication y * z
and the involution y* given by (y * z)(g) =
Scv(h)crh(z(h~‘s))d~c(h)  and y*(g)=AW’)~
cc,(y(g-‘)*)  for y, ZEK(G,  A), where A is
the tmodular  function of G. By completing
K(G  4 under  the  norm Il Y Il, = JG I l Y II 44d,
we get a Banach *-algebra  L,(G, A). L,(G, A) is
then made into a C*-algebra by furnishing the
norm Ilx11 =SU~, Ilrr(x)il,  where rc  runs over a11
*-representations  of L,(G, A). This C*-algebra,
denoted by A 0,  G, is the crossed  product  of
A by G relative to the action IX.  Crossed prod-
ucts are useful in the structure theory of C*-
algebras.

J. Extensions by C*-Algebras (BDF Tbeory)
Cl21

Let H be a separable infinite-dimensional
Hilbert space and S%?(H)  the ideal of oA
consisting of a11 compact operators. The quo-
tient C*-algebra 5?(H)/ZV(H)  is called the
Calkin  algebra. We denote it by 9(H) and
the quotient mapping by n:&J(H)+2(H). By
an extension of F&‘(H)  by a separable unital
C*-algebra A we mean a unital (preserving
unity  elements) *-isomorphism r of A into
S!(H). We cal1 two extensions ri, r2 :A +2!(H)
equivalent if, for some unitary operator UE
a(H),  rr(u)rl(a)n(u)*  =T~(U)  for any UEA,  and
denote by Ext(A)  the set of a11 equivalence
classes [t] of extensions 7 by A. Ext(A)  forms
a commutative semigroup with respect to the
addition [r] = [T,]  +  [7J, where 7(a) =  z1 (a)  @

T~(~)ES!(H)  @ 2?(H)cZ?(H  @ H). Cal1  an ex-
tension 7: A+S?(H)  trivial if there is a unital
*-isomorphism o of A into 9(H)  with r = rr(~.
Then (1) a11 trivial extensions are equivalent,
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and we detïne the unity  element of the semi-
group Ext(A)  (D. Voiculescu); (2) Ext(A)  is a
group if A is commutative (L. G. Brown, R. G.
Douglas, and P. A. Fillmore) or, more gener-
ally, if A is nuclear (M. D. Choi and E. G.
Effros); (3) Ext(A)  is not always a group (J.
Anderson). For further information - 390
Spectral Analysis of Operators J.

K. Derivations in C*-Algebras

A linear operator 6 in a C*-algebra A is a
derivation in A if its domain  D(6) is a dense
subalgebra of A and 6(xy)  = S(x)y + xS(y)  for x,
y~ D(6). 6 is a *-derivation  if, moreover, x E D(6)
implies x* E D(S) and ~(X*)=&X)*.  6 is called
bounded (unbounded, closed) if it is bounded
(unbounded, closed) as a linear operator.

Every bounded derivation 6 is expressed
as &X)=~X-XE  with some i? in the envelop-
ing von Neumann algebra A** of A (R. V.
Kadison and S. Sakai). The element ü cari  be
taken from the mult ipl ier  a lgebra M(A)  =
{bEA**]bA+AbcA}ofAifAissimple
(Sakai) or if A has continuous trace (C. A.
Akemann, Elliott, G. K. Pedersen, and J.
Tomiyama). If A is separable, we see that all
bounded derivations in A are given by ele-
ments in M(A) if and only if A is the C*-direct
sum of a family of simple C*-algebras and a
C*-algebra with continuous trace (Elliott,
Akemann, and Pedersen) [13] and that every
bounded derivation in the quotient C*-algebra
A/I, 1 being any closed two-sided ideal, cari  be
lifted to a derivation in A (Pedersen).

Next we consider unbounded derivation. By
a *-automorphism  group on A we mean a +one-
parameter group pt,  t E R, of *-automorphisms
of A such  that, for each XE A, p,x  is contin-
uous in t E R. A C*-dynamical system i s  a
pair consisting of a C*-algebra A and a *-
automorphism group pt  on A. The fact that the
time evolution of a physical system is often
represented by such  a dynamical system has
made the study of unbounded derivations
quite  active. We have to see if a given deriva-
tion 6 is tclosable and if, in case of a closable
6,  the closure 8 generates a *-automorphism
group. Sample results: (1) If a *-derivation  6
is well-behaved  in the sense that for every self-
adjoint x in D(6) there exists a +state  <p  with
Ip(x)l=  JIxJI and V(&X))=~, then 6 is closable
and its closure is well-behaved (A. Kishimoto
and Sakai); (2) if a *-derivation  6 is closable,
its closure 8 generates a *-automorphism
group if and only if 6 is well-behaved and
(1 +&)D(S)  is dense in A (R. T. Powers and
S. Sakai; 0. Bratteli and D. W. Robinson).
For further results - [ 141.
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L. Applications to the Theory of Topological
Groups [2,3,6,15]

Banach algebras have many applications in
different branches of mathematics and quan-
tum physics. Here we mention some that con-
cern topological groups. Let G be a locally
compact Hausdorff group and p be its left-
invariant measure. We make the complex
algebra L,(G) of Example 3 into a Banach
*-algebra  by detïning x*(g)=x(g-‘)A(g-‘),
where A is the tmodular  function of G. This is
called the L,-algebra  (or group algebra). It is
not C* but is semisimple. Considering a uni-
tary representation of G is equivalent to con-
sidering a *-representation  of the L,-algebra.
Replace the norm of X~L,(G) by suplln(x)ll,
where the supremum is taken over all the *-
representations.  The new norm satistïes the C*
condition, and the completion of L,(G) with
respect to this norm is a C*-algebra, which we
cal1 the C*-group algebra of G. The dual of the
C*-group algebra thus detïned is called the
dual of the group G, and this notion plays an
important role in the study of topological
groups. Unitary representations of a group G,
*-representations  of the L,-algebra  of G, and
*-representations  of the C*-group algebra of G
are a11 characterized by positive detïnite  func-
tions on G. A function p(g) is positive definite,
by definition, if it is measurable on G and

SS P(S~‘h)x(g)x(h)d~(g)d~(h)~O

for any continuous function x(g) with compact
s u p p o r t .

The Abelian case. When G is an Abelian
group (- 422 Topological Abelian Groups), a
regular maximal ideal M  of the L,-algebra  R
of G and a character y of G are in a one-to-one
correspondence  by the relation

f(M) = XMYMMd
s --

(the left-hand side  is the value of x at M  under
the Gel’fand representation).  Moreover, the set
of regular maximal ideals of R provided with
the Gel’fand topology and the set G  of charac-
ters of G provided with the Pontryagin topol-
ogy (the tcharacter  group of G) are homeo-
morphic by this correspondence.  Therefore the
Gel’fand transform of an element x of the L,-
algebra R is seen  to be a function ?(y)  on G
detïned by the integral on the right-hand side
in the above expression, which is properly
called the Fourier transform of x. Of course,
the Fourier transform cari  be detïned for other
classes of functions (e.g.,  for the L,-space  over
G. the Fourier transform in the sense of Plan-
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cherel), and classical theories of Fourier
series,  Fourier integrals, and harmonie  analysis
(- 192 Harmonie  Analysis) are studied from a
more extensive point of view. Thus the state-
ment that the Fourier transform of an element
x of the L,-algebra  of G is a continuous func-
tion vanishing at inlïnity (- Section E), for
example, is a version of the classical tRiemann-
Lebesgue theorem. Bocbner’s  tbeorem in
classical tFourier  analysis is restated thus: A
continuous tpositive  detïnite  function on an
Abelian group cari be put in the form

P(g)=  Y(9)&(Y),s
where p is a uniquely determined bounded
positive tRadon  measure on the character
group C?.  Developing these theories further, we
obtain an alternative proof of the tpontryagin
duality theorem (H. Cartan  and R. Godement).
A closed ideal 1 in the L, -algebra R deter-
mines a set Z(I) in i: as the set of common
zeros of the Fourier transforms of elements of
I. We ask whether, conversely, I is character-
ized by Z(1). This question is the problem of
spectral syntbesis, and many important results
have been obtained. The statement that 1 must
coincide  with R when Z(1) is empty is a for-
mulat ion of  the generalized Tauberian tbeorem
of N. Wiener. A considerable  simplification
of the proof was accomplished by using the
theory of Banach algebras, which was the tïrst
application of the theory (1.  M. Gel’fand).

M. Holomorpbic Functional Calculus
Cl6 171

Let R be a unital commutative Banach algebra
with maximal ideal space  %II = ‘!VI(R).  We de-
fine the joint spectrum SP(X)  of a fmite  n-tuple
X={XI,..., 4 in R by  {<%  (rph  , %(<p))  I
(PE%~I},  a nonempty compact subset of C”.
Then the bolomorpbic functional calculus  says
the following: For each X = {xi,  . , x,} c R
there exists a unique algebra homomorphism
Qx of the algebra H(Sp(X))  of tgerms  of holo-
morphic functions on SP(X)  into R with the
following properties: (1) @x(l) = 1, the unity
element of R, and Ox(zi)  = xi, 1 <i  < n; (2) if
n-cm, X=(xi,  . . . . x,} and F(z,,  . . . . z,,,)=
WI , . . . . zn)  with FcH(Sp(X)),  then ax(P)=
(&JF);  (3) if { Fk  1 k = 1,2,  } are holomorphic
in a fixed neighborhood U of SP(X)  and Fk+
F uniformly on U, then @,.JFk)-4,(F)  (L.
Waelbroeck). From this follows the implicit
function tbeorem: Let xi, . ,x, E R, fc C(!J.B),
and let F(w,  z , , . . , z.)  be holomorphic in a
neighborhood of the set Sp(f, x, ,. . . ,x,)  =
i(f(<pL2, (CPI,  , %(<P))I  (PE~I.  Suppose  that
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F(AX,,  .,.,X,)=0  but OF/aw#O on Sp(f,x,,
“‘>x,). Then there exists a unique y~  R such
that $=  f and F(y,x,, . ,x.)=0 (R. Arens and
A. Calderon). As an application we obtain
Shilov’s idempotent tbeorem: If K is a closed-
open subset of %Il,  there exists x E R with X =
lonKand~=Oon’B-K.SetQ(R)={xE
Rie Znix=  1). Then Q(R) is an additive sub-
group of R and Shilov’s theorem says that
the Gel’fand representation gives an isomor-
phism of Q(R) onto  Q(C(W)) ( gHO(%R,  Z)).
Another theorem of this sort is the Arens-
Royden tbeorem: R -‘/exp(R)  g C(W))‘/
exp(C(W)) g H’(!IR,  Z), where R-’ is the set
of invertible elements of R and exp(R)=  {exl
XE R}. Further extensions related to K-theory
have been given by J. L. Taylor and others.
(For functional calculus  for one variable -
25 1 Linear Operators)
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37 (X11.3)
Banach Spaces

A. General Remarks

The notion of Banach space was introduced in
1922 by S. Banach and N. Wiener, working
independently. The idea was to apply topo-
logical and algebraic methods to fundamental
problems of analysis, such as mapping prob-
lems in inlïnite-dimensional  function spaces
(- 168 Function Spaces, 197 Hilbert Spaces,
25 1 Linear Operators).

B. Definition of Banach Spaces

We associate to each element x of a tlinear
space X over the real (or complex) number
lïeld a real number IIxII  satisfying the following
conditions: (i) IIxII  20 for a11 x, and ~~XII  =0 is
equivalent to x=0; (ii) IIcIxII  =Iml. IIxII  for any
real (complex) number cc;  (iii) llx+yll<  ~~XII  +
jlyJJ.  Then IIxII  is called the norm of the vector
x, and X is called a normed linear space. The
norm is thus an extension of the notion of
the length of a vector in a +Euclidean space. A
normed linear space X is a tmetric space under
the distance p(x,y)=  I~X--yIl.  We Write  s-
lim,,,x,=x  or simply x,+x  when lim,,,  I~X,
-xl/  = 0 and say  that x, converges strongly to
x. If this metric space X is tcomplete, then X
is called a Banach space. In normed linear
spaces the addition and the multiplication
by scalars are continuous. A closed linear
subspace M  of a Banach space X is again  a
Banach space, and the tquotient  space X/M
becomes a Banach space if the norm of a tcoset
is delïned by lIx+MII =inf,,,  Ilx+mll.  The
subset {x 1 IIxil< 1} of a normed linear space
X is called the (closed)  unit bal1  (or unit sphere)
OfX.

Examples. +Function  spaces C, L, (1~  p <
co),  M, Wi, HA, tsequence spaces c, 1,  m, and
BV  are a11 Banach spaces (- 168 Function
Spaces).
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C. Linear Operators and Linear Functionals

Suppose that a linear subspace D(T) of a
linear space X is the (definition) domain  of
a mapping T with values in a linear space
X,  T is called a linear operator if T(ax +
/Jy)  = ct TX  + BTy  for any scalars c(,  p and x, y E
D(T). R(T)={TxcX,  ~~ED(T)}  is called the
range of T.  In the special case where X,  is
the real or complex number lïeld, T is called
a linear functional.  If X and X,  are both
normed linear spaces, then T is continuous  if
and only if s-lim,,, TX, = TX whenever s-
limn-m x,=x. This is equivalent to the condi-
tion su~,,~(~), llxli  al II Txll < CO. In particular, if
D(T) = X, the linear operator T is continuous
if and only if the set {TX 1 llx11 < I} is bounded.
In this case, T is called a bounded linear oper-
ator, and 11 TII  = SUP,,~,,  GI II TX II is called the
norm of the operator T. In particular, a linear
operator T satisfying II TII < 1 is called a con-
traction. (Sometimes T is called a contraction
only when II TII < 1. In that case, an operator
with II T / / < 1 is called a nonexpansive opera-
tor.) The scalar multiple, sum, and product  of
linear operators are delïned by (aT)x  = CC(  TX),
(T + S)x = TX + Sx, and (ST)x  = S( TX), respec-
tively. The identity operator 1 in X is detïned
by 1. x = x for a11 x EX. If the inverse mapping
T-'  of x+ TX exists, then it is called the in-
verse operator of T. A normed linear space X
is said to be isomorphic to a normed linear
space Y if there exists a bounded linear opera-
tor T from X onto  Y with bounded inverse.
If T cari  be chosen to be isometric (i.e.,  II Txll =
IIxJ/  for a11 X~X),  then X is said to be iso-
metrically isomorphic to Y.

D. The Dual Space  and the Dual Operator

The totality of continuous  linear functionals
f delïned on a normed linear space X is a
Banach space X’ under the previously de-
fined linear operations and the norm IlfIl  =
SU~,,~,,~~  I~(X)[.  This X’ is called the dual (or
conjugate)  space of X. In view of useful prop-
erties of the tinner product  in +Hilbert  spaces,
it is sometimes convenient  to Write  (x,f)  for
f(x). Let X and Y be normed linear spaces,
and let T be a linear operator with the dense
domain  D(T) in X and the range R(T) in Y.
If (A g) is a pair with fe  Y’ and geX’  satisfy-
ing the equation (TX, f) = (x,  g) for any XE

D(T), then g is determined uniquely by 1:  The
operator T' delïned by T'f=  g is linear and is
called the dual operator (or conjugate  or adjoint
operator) of T. This is an extension of the
notion of the ttranspose  of a matrix in matrix
theory. If T is a bounded linear operator then
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T’  is also a bounded linear operator such that
IIT’II  = IIU.

E. The Weak Topology and the Strong
Topology

Let X be a normed linear space and X’ its
dual space. Take a finite  number of elements

I Ix1,x2,  , xl from X’, and consider the subset
ofX:{xEXIsup I~i~nI(X,XI)IdE},E>O.  If
we take the totality of such subsets of X as a
tfundamental  system of neighborhoods of 0
of X, then X is a tlocally convex topological
linear space, denoted sometimes by X,.  This
topology is called the weak topology of X. If
a sequence {x,,}  c X converges to x E X with
respect to the weak topology of X, then it is
said to converge weakly. This is equivalent to
the convergence (x,, f )+(x, f) for any f E
X’. The original topology of X determined by
the norm is then called the strong topology
of X, and to stress the strong topology we
sometimes Write  X,  in place of the original
X. Take a finite  number of elements x1, xî,
“‘> x, from X, and consider the subset of
X’:{x’EX~ISUpl Qi<nl<XiiX’)IGE}r  &>O.  If
we take the totality of such subsets of X’ as a
fundamental system of neighborhoods of 0 of
X’, then X’ is a tlocally convex topological
linear space. We Write  this space as X&  and
cal1 the topology the weak* topology of X’.
The topology of X’ detïned by the norm 11 fil is
called the strong topology of X’, and to stress
the strong topology we Write  Xi.  The terms
“weak” and “weakly” are used in reference to
the weak topology, for instance, weak closed-
ness and weakly closed. Similar conventions
are used for the weak* and strong topologies.

The unit bal1  of the dual space of a normed
linear space X is weak*-compact (Banach-
Alaoglu theorem). Then by the +Krein-Milman
theorem (- 424 Topological Linear Spaces)
the unit bal1 of X’ is the weak* closure of the
tconvex hull of its +extreme  points. If X is a
Banach space, a convex subset K of X’ is
weak*-closed if and only if the intersection of
K and each weak*-compact subset is weak*-
closed (Krein-Shmul’yan theorem).

F. The Hahn-Banach Extension Theorem

Let M  be a linear subspace of a real linear
space X and p(x) a real-valued functional
detïned on X such  that p(x+y)<p(x)+p(y)
and p(Âx)=lp(x)  for a11 x, YEX and A>O.  If
a linear functional fi defïned on M  satistïes
fi(x) <p(x) for a11 x E M,  then there is a linear
functional f on X which extends fi and satis-
fies f(x) <p(x) for all X~X  (the Hahn-Banach
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(extension) theorem). The Hahn-Banach exten-
sion theorem has many applications. (1) Let M
be a linear subspace of a normed linear space
X. Then for any fi EM’,  we cari  construct  an
feX’  such  that f(x)=fi(x)  for a11 XEM and
ii,f~~ = //fi 11. (2) For any x,,  #O of a normed
linear space X, we cari  construct  an f. E X’
such that fo(xo)=  11x0// and Ilfoll  = 1. (3) For
any closed linear subspace M of a normed
linear space X and a point x0$ M we cari
construct  foeX’  such that 11 fol1  = 1, fo(x,)=
infmeM llx,-mll and fo(x)=Ofor  aIl  ~EM. A
proposition more general than (3) is Mazur’s
theorem, which is useful in applications: (4) Let
a closed subset M of a normed linear space X
be tconvex. Then for any x0 6 M we cari con-
struct an foEX’  such that fo(x,)>  fa(x)  for a11
XE M. By (4) we cari  prove, e.g.,  that a convex
set of a normed linear space ïs weakly closed
if it is strongly closed. This proposition has
the following corollaries: (5) A convex set A
containing 0 is closed if and only if (A”)O  =
A, where A0 is the +Polar  of A (the hipolar
theorem). (6) For two closed convex sets A and
B, containing 0, the polar of A n B  coincides
with the weak* closure of the convex hull of
A” U B”.  For complex linear spaces,  most of
the propositions in this section are valid with
Re f(x) instead of ,f(x).

The Hahn-Banach theorem cari  also be em-
ployed to prove the existence of the general-
ized limit (or Banach limit) Lim,,,  [,  defined
for a11 bounded real sequences {&,}  such that
lim inf,,,, [,, < Lim,,,  [,, < lim SUP,,-~  [,, and
Lim,+,(d,  + Bd  = a Lim,,,  5, + B  Lim,,,  qn.

G. Duality in Normed Linear Spaces

An element  x0 of a normed linear space X
gives rise  to an element x0 of (Xi)’  determined
by (x,,x’)=(x’,x~)  for a11 x’EX:. If we Write
x8 = Jx,, then J is a linear operator satisfying
IIJx,II  = //x011 by (2), and SO the space X is
isometrically isomorphic to a linear subspace
of (Xi):.  If X,  coincides  with (X:)i  under this
isomorphism, we cal1 X a reflexive (or regular)
Banach space. A necessary and sufftcient  con-
dition for the normed linear space X to be
reflexive is that the unit bal1 of X be weakly
compact. A convenient  criterion for the reflex-
ivity of X is that any bounded sequence {x,,}  of
X contains a subsequence weakly convergent
to a point of X (Eherlein-Shmul’yan theorem).
In this connection,  a Banach space X is reflex-
ive if and only if each X’E X’ attains its norm,
i.e.,  there is an x0 EX such that I~X,, / / = 1 and
I(x,,  x’)l=  llx’l/  (James%  theorem).

A normed linear space is said to be uni-
formly convex if for any c:  > 0 there exists a 6 >
0 such that ~~XII  < 1, 11 yll<  1 and I~X-yIl  >a
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implies 11 x + y 11~  2 - 6.  A normed linear space
is said to be uniformly smooth if for any E > 0
there is a 6>0 such  that ~~XII  = 1 and 11 yil  <6
imply llx+yll + I~X-yll  <2+~llyll.  A Banach
space X is uniformly convex (resp. uniformly
smooth) if and only if the dual X’ is uniformly
smooth (resp. uniformly convex). If a Banach
space X is uniformly convex or smooth, it
is isomorphic to a Banach space that is
uniformly convex and uniformly smooth
(P. Enflo). The space L, with 1 <p  < ca is
uniformly convex and uniformly smooth.
Any  uniformly convex or uniformly smooth
Banach space is reflexive (Milman’s theorem).

H. The Resonance  Theorem

Let {T,} be a sequence of bounded linear
operators from a Banach space X into a
normed linear space Y. The uniform bounded-
ness theorem (resonance theorem or Banach-
Steinhaus theorem) states that SLIP.~,  11 TJ < CO
if SU~,,, I( T,xll  < CO  for every X~X.  As a corol-
lary,  we have supnàl  IIx,ll<  CO  for any weakly
convergent sequence of X. Another corollary
states that the set {XGX  1 limsup,,,  11 T,xll  <
co} either coincides  with X or is a subset of X
of the Wïrst category. This implies the so-called
principle  of condensation of singularities, which
gives a general existence theorem for func-
tions exhibiting various kinds of singularities,
for example, a continuous  function whose
+Fourier  expansion diverges at every point of a
tperfect  set of points having the cardinal num-
ber of the continuum.

1. The Closed Graph Theorem

Let T be a bounded linear operator from a
Banach space X into a normed linear space Y.
If the image of the unit bal1  of X under T is
dense in the unit bal1 of Y, then for any E >O
and any y0  E Y the equation TX = y, has a
solution x with ~IX  (/ < (1 + E) //y, /I (Banach’s
theorem). By using the +Baire  category theo-
rem, we cari  derive from this the open  map-
ping theorem: Every bounded linear operator
from a Banach space X onto  a Banach space
Y maps each open  set in X onto  an open set
in Y. As an application of the open mapping
theorem, we cari prove the closed  graph theo-
rem: A linear operator T from the whole of a
Banach space into a Banach space is con-
tinuous if and only if T is a closed operator,
i.e.,  s-lim,,, x, =x  and s-lim,,, TX, = y imply
TX = y. This theorem plays an important role
in modern treatments of linear partial differen-
tial equations.
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J.  The Closed Range Theorem

Let X and Y be Banach spaces and Ta linear
closed operator with domain  D(T) dense in X
and with range R(T) in Y. Under these con-
ditions, the following four propositions are
mutually equivalent. (1) R(T) is a closed set in
Y. (2) R(T’) is a closed set in X’. (3) R(T) =
{y~YJ(y,y*)=Oforally*~D(T’)suchthat
T’y*=0}.(4)R(T’)={x*~X’I(x,x*)=Ofor
all x E D( T) such  that TX = 0).  These four
propositions, as a whole, are called the closed
range theorem. This theorem implies (5)  R(T)
= Y if and only if T’ has a continuous  inverse;
and (6) R( T’) = X’ if and only if T has a con-
tinuous inverse. The following theorem is of
similar nature: the following three propositions
on two closed linear subspaces M  and N of a
Banach space are mutually  equivalent. (7) M +
N is closed. (8) Mo  +No  is strongly closed.
(9) MO  + No is weak*-closed.

The Hahn-Banach theorem, the resonance
theorem, the open mapping theorem, the
closed graph theorem, and the closed range
theorem cari  be extended to various classes of
tlocally convex topological linear spaces.  By
virtue of this extension, we are able not only to
treat various fundamental problems of analysis
from a unified viewpoint but also to develop
the theory of functional analysis itself  in a new
direction (- 424 Topological Linear Spaces;
concerning linear operators on a Banach space
- 68 Compact and Nuclear Operators, 251
Linear Operators, 390 Spectral Analysis of
Operators).

K. Differential and Integral  Calculus  of
Functions  with Values in Banach Spaces

Calculus  involving functions from a set to a
Banach space is also an effective tool in vari-
ous  problems. A function x(t) detïned on an
interval [a, b]  with values in a Banach space X
is said to  be strongly (weakly) continuous  if x(t)
converges strongly (weakly) to x(t,)  as t+tO.
For a strongly (weakly) continuous  function
x(t), the Riemann integral cari  be defined in a
standard way, using strong (weak) convergence
of the Riemann sum

s b
x(t)dt=lim~~(t,‘)(t~+~  -tJ.

a

The tfundamental  theorem of calculus, i.e.,
strong (weak) differentiability of the indefïnite
integral, remains true. Various defmitions of
integrals of a Banach space-valued function
on a tmeasure  space are discussed elsewhere
(- 443 Vector-Valued  Integrals).

Now let x(n) be defïned on a domain  R in
the complex plane with values in a complex
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Banach space X. x(n) is said to be holomorphic
if f(x(1))  is tholomorphic in Q for every fi X’.
If x(1)  is holomorphic, then there exists an X-
valued function y(i) on R such that

Iii-‘(x(n+O-x(n))-Y(Â))ll-0  a s  i-0.

Therefore there is no difference between
“strong” and “weak” in analyticity. tcauchy’s
integral theorem remains true for a holo-
morphic function x(1)  with values in X, and
the tlaurent  expansion

x(k)= c a,(n-nJ,“=-OZ
a& x(Â)(A-/1,)-“-‘d/l,sc
is valid with the integral taken in the Rieman-
nian sense. Banach space-valued  holomorphic
functions on complex (or real) tanalytic mani-
folds of higher dimension cari  be defined in a
natural way by means of power series expan-
sion. A function @(A)  defined on a domain  in
the complex plane with values in the Banach
space B(X, Y) of bounded linear operators
from X to Y becomes holomorphic iff(O(1)x)
is holomorphic for every x E X and fi Y’. An
operator-valued holomorphic function is often
called an analytic operator function.

L. The Approximation Property

A Banach space X is said to have the approxi-
mation property if there is a family {S,} of
bounded linear operators of tfinite  rank in X
such that inf, 11 (S, - 1) T /I = 0 for a11 tcompact
linear operators T in X. There is a Banach
space that fails to have the approximation
property (Enflo [SI). More surprisingly, the
space of a11 bounded linear operators on an
infinite-dimensional Hilbert space fails to have
the approximation property (A. Szankowski).
The approximation property plays a deci-
sive role in the theory of ttensor products of
Banach spaces.  A Banach space X is said to
have the hounded approximation property if a
family {S,} in the defïnition of the approxi-
mation property cari  be taken bounded, i.e.,
supI  l/Sill < CO. The bounded approximation
property does not follow  from the approxi-
mation property. The bounded approximation
property is closely related to the existence of a
basis. A sequence {e,} in a Banach space X is
called a Schauder  hasis or simply a hasis (or
hase) for X if to each XE X there corresponds
a unique sequence of numbers {cc,} such that
lim,,, //x-Xi=i akek II =O.  Most separable
Banach spaces appearing in analysis have
bases. A separable Banach space has the
bounded approximation property if and only
if it is isomorphic to a complemented linear
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subspace (- Section N) of a Banach space
with a basis (A. Pelczynski).

M. Injective  and Projective  Banach Spaces

Banach spaces of the type ?C(Q)  with compact
0 and of the type tli(Q) on a set R play a spe-
cial role in the theory of Banach space. This
is already seen  in the fact that every Banach
space is isometrically isomorphic to a subspace
of a space C@i)  as well  as to a quotient space
of a space Ii (0,). A Banach space X is said to
be injective  if for any Banach space Y and
its linear subspace M,  each bounded linear
operator T from M  to X cari  be extended to a
bounded linear operator T from Y to X, that
is, h = TX for a11 XE M.  A Banach space is in-
jective if and only if it is isomorphic to a com-
plemented linear subspace of the space C(R)
for a compact Hausdorff space R with the
property that the closure of every open set is
open.  Such a topological space is called tex-
tremally disconnected. The tmaximal  ideal
space of the tBanach  algebra L,(a)  is extrem-
ally disconnected. Hence the Banach space
L,(a)  is injective. Whether every injective
Banach space is isomorphic to a space C(0) is
still an open problem. However, a Banach
space is isometrically isomorphic to a space
C(Q) with R extremally disconnected if and
only if it is injective with the property of norm-
preserving extension, i.e.,  11 TII  = I/ TII  is always
possible (Nachbin-Goodner-Kelley theorem). In
this connection,  the following propositions on
a Banach space X are mutually equivalent. (1)
X’ is isometrically isomorphic to a space
tLi(p).  (2) For any Banach space Y, its linear
subspace M,  and E > 0, each compact linear
operator T from M  to X cari be extended to a
compact linear operator T from Y to X with
11 TII  ~(1 +E)IITII  (J. Lindenstrauss). A Banach
space X is said to be projective  if for any
Banach space Y and its closed linear subspace
M,  each bounded linear operator S from X to
the quotient space Y/M is lifted to a bounded
linear operator 5 from X to Y, i.e.,  &Vx)=  Sx
for a11 X~X, where <p  is the quotient mapping
from Y to Y/M.  Projectivity of X is character-
ized by its being isomorphic to the space Il(Q)
on a set 0. A Banach space is isometrically
isomorphic to a space 1, (R) if and only if it
is projective with the property of norm-
preserving lifting, i.e.,  IlSIl  = IlSIl  is always
possible (- [SI).

N. Complemented Subspaces Problems

A linear subspace M of a Banach space X is
complemented, i.e.,  there is a closed linear
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subspace N such that M fl  N = {0} and M +
N = X if and only if M is the range of a
bounded projection P, i.e.,  P2 = P and R(P) =
M.  Each nonzero closed hnear subspace of a
Hilbert space is complemented, or more pre-
cisely,  it is the range of a projection of norm
one (- 197 Hilbert Spaces). This property
distinguishes Hilbert spaces from general
Banach spaces: (1) A Banach space of more
than 3 dimensions is isometrically isomorphic
to a Hilbert space if each nonzero closed linear
subspace is the range of a projection of norm
one (Kakutani’s theorem). (2) A Banach space
is isomorphic to a Hilbert space if each closed
linear subspace is complemented (J. Linden-
Strauss  and L. Tzafriri [ 101).

0. Quasi-Banach Spaces and Fréchet Spaces

Let X be a linear space over the real (or com-
plex) number fïeld.  Suppose that a real-valued
function 11x/1  on X satistïes  (i) and (ii) of Sec-
tion B and (iii’) ~~X+~II  <k(llxll  + llyll) with a
constant k > 1 independent of x and y. Then
IIxll  is called the quasinorm of x, and X equip-
ped with a quasinorm is called a quasinormed
linear space. Let 0 < p < 1 be the root of the
equation k = 2(““-‘.  Then there is a distance
d(x,  y) = d(x -y) depending only on x -y such
that d(x-y)<  ~IX-yIIP<2d(x-y).  Hence a
quasinormed linear space is a metric space in
which a sequence x, converges to x if and
only if I~X,  -x II -+O.  If a quasinormed linear
space X is complete under this metric, then X
is called a quasi-Banach space. The tfunction
space L, is a quasi-Banach space for 0 <p  < 1.

If we denote by IIxil  the distance d(x-0) of
a quasinormed hnear space, then it satisfies (i)
and (iii) of Section B and (ii’) 11 -X/I = //XII  and
lim,,,  IIcI,,x,-cLxII  =0 whenever c(,+c(  and
limn-~ I~X,-XII  =O. A functional IIxli  satisfying
(i), (ii’), and (iii) is called a pseudonorm. If a
hnear space X equipped with a pseudonorm is
complete, then X is called a Fréchet space (in
the sense of Banach). The tfunction space S(n)
is a Fréchet space. Quasinormed linear spaces
and Fréchet spaces are ttopological linear
spaces, but they need not be tlocally convex.
Hence it is possible that there is no continuous
linear functional except for zero. However, the
open mapping theorem and the closed graph
theorem hold for linear operators from a
Fréchet space into a Fréchet space.
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The Bernoullis, Protestants who came origi-
nally from Holland and settled in Switzerland,
were a signitïcant family to the mathematics
of the 17th Century. In a single Century, the
family produced eight brilliant mathemati-
cians, ah of whom played important roles in
the development of calculus.

The brothers James (1654-1705) and John
(1667- 1748) and Daniel (1700- 1782),  John’s
second son, were especially outstanding. James
and John were close friends of G. W. tleibniz,
with whom they exchanged the correspon-
dence through which it might be said that
calculus developed. James studied problems
related to the ttautochrone  and tbrachisto-
chrone, as well as problems in geometry, dy-
namics, and other fields,  including the tisoperi-
metric problem. He was the tïrst  to change the
name calculus  summatoris to calculus  integralis
(1690). His Ars conjectandi was published after
his death in 1713; in it is found the tlaw  of
large numbers, which made his name promi-
nent in the theory of tprobability. James had
little guidance, learning mathematics on his
own. He was a professor of experimental
physics at the University of Base1 and later
became  a professor of mathematics. He taught
mathematics to his brother John, who suc-
ceeded him as professor at the University.
John’s many achievements appeared in such
publications of the time as Acta  eruditorum
and Journal des savants. In 1701, the begin-
nings of the tcalculus of variations were seen  in
his solution to the isoperimetric problem. He
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was the tïrst  to use the term jiinctio, the root of
the present term function (1714).

Despite distord  between the brothers and
also between fathers and sons, the Bernoullis
were ardent teachers and brilliant researchers,
who instructed not only their sons but also
such mathematicians as +Euler.  Their achieve-
ments were numerous in consolidating the
content and form of calculus and also in ex-
panding its application. Daniel was especially
outstanding in the theory of probability; he
also made contributions to the lïeld of thydro-
dynamics and to the tkinetic theory of gases.
The eldest John’s eldest son Nicolas (1695-
1726) achieved distinction as a professor of
mathematics in St. Petersburg. Daniel%
youngest brother, John (1710-1790), suc-
ceeded his father, John Sr., as a professor at
the University of Base].  The son of John, Jr.,
also named  John (1744- 1807),  was the chair-
man of mathematics at the Academy of Berlin.
His brother, another James (1759-1789), was
a professor of experimental physics at the
University of Basel. Nicolas (168771759) a
grandson  of the founder Nicolas (162331708)
and son of Nicolas the painter (1662-1716)
held Galileo’s old chair of mathematics at
Padua from 1716 to 1719.

Nicolas

I
James Nicolas (painter) John

1654-1705 1662-1716 1667-1748

+f=
Nicolas Nicolas Daniel John

1687-1759 169551726 1700-82 1710-90

John James
1744-1807 1759-89

In this article, the lïrst  names  have been
given in English. The German names  corre-
sponding to James, John, and Nicolas are
Jakob, Johann, and Nikolaus, respectively.
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Bessel Functions

A. General Remarks

Bessel functions were lïrst  introduced in order
to solve +Kepler’s  equation concerning plane-
tary motions and were systematically investi-
gated by F. W. Bessel in 1824. Since then they
have appeared in various problems and have
become important.

B.  Besse l  Functions

Separating variables for the Helmholtz equa-
tion AY  + /?Y = 0 in terms of cylindrical
coordinates, we obtain Bessel’s differential
equation

d2w  l d w
p+idZ+

for the component  of the radius vector.  The
following two linearly independent solutions
of(l):

are called the Hankel functions  of the first and
second kind, respectively, where the contour L,
of the first integration is a curve from ( - x + 0)
+ico  to -0-ioo,  and L, is a curve from +0
-ico to (z-O)+ico.  If both z and v are real,
we have

fy(z)  = q2’(z), H;2’(z)  = fiy’( ( 3 )
where Y is the complex conjugate  of z. Hence

J,(z) =(H$“(Z)  + H$2’(z))/2,

N”(Z)  = y,(z)  =(Hp(z)  - Ip(z))/2i ( 4 )
are real functions. If both z and v are complex,
the functions J,(z) and N,(z)  defïned in (4) are
also called Bessel functions  and Neumann
functions,  respectively. The other names  for
J,(z), N,(z),  and H,(z) are Bessel functions  of
the first,  second, and third kind, respectively.
Each of them satislïes the following recurrence
formulas:

2dW)
-=c”-,(z)-c”+l(4,dz

P/4W)=  C,-,(z)+ Cv+,(z). ( 5 )
In general, functions satisfying the simulta-
neous tdifferential-difference  equations (5) are
called cylindrical functions.  Every cylindrical
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function C,(z) is represented in the form C,(z)
=a,(~)H~~)(z)+u~(v)H~~)(z),  where a,(v) and
+(v) are arbitrary periodic functions of period
1 with respect to v.

If v = n (an integer) we have

J-,(z)=(-l)“Jn(z),

N-,(z)=(-l)“N”(z), (6)

which show the linear dependency of J-,  and
J,,  and N-,  and N,,  respectively. If v # n (an
integer), as the fundamental solutions of (1) we
cari take a pair J,  and L,,  or NV and N-,.  In
(2) if we take as a contour of integration a
curve from (-n+O)+ico  to (n-O)+ico,  we
obtain an integral representation for J,(z),
which yields the relations

Jy(zeimT)=eimYnJ,(z),

J-V(zeimn)=e-imuaJmY(z). ( 7 )

If v = n (an integer) and Re z > 0, we obtain

J.cz>=;  ;
s

einsin<+in<d( (8)lc

=a  Zcos(zsin[-$)d<,
s

(9)
0

which is called Bessel’s integral. These repre-
sentations imply the following expansions by
means of tgenerating  functions:

ei.zsin<  _-.g,: Jn(4eini, (10)

cos(zsin[)=J,,(z)+2  c J2n(~)~~~2n5,
n=1

sin(zsin[)=2  C J,,+,(z)sin(2n+  l)c.
(11)

Il=0

Making a change of variable u = exp( - ii) in
(2) we obtain

J,(z)=~dexp(I(,-~))~~v~‘ds,  (12)

where L is a contour starting at the point at
infïnity  with the argument - n, encircling the
origin in the positive direction, and tending
to the point at intïnity  with the argument n.
From (12) we obtain a power series expansion

J&)=  5 “mf*!,;v-;m,l,  ; >0 0
2m

(13)

obtained also from (1) by a power series ex-
pansion at z = 0, which is a tregular  singular
point of (1). Substituting (13) into

N,(z)  = (COS vzJ,(z)  - J-,(z))/sin  vrc, (14)

we obtain a power series expansion for N,(z).
A power series expansion for N,(z) for an inte-
ger n is obtained by taking the limit v+n (-
Appendix A, Table 19). In particular, if v =

n + 1/2  (n is an integer), we have

sinz
J“+l,z(z)=(-lY~&  z /

( !

n=O, 1,2 )...,

which is represented by elementary functions
and is sometimes called simply the half Bessel
function. Bessel functions for half-integers have
appeared also as radius vector components
when the variables in the Helmholtz equation
are separated by spherical coordinates. The
function

L,(4=Jn/2zJn+li2(4
is called the spherical Bessel function.

We have the following addition theorem:

where
p= 1,2,

p=Jrf+r$-2r,r,cos<p,

pcos$=r,-r,cos<p, psin*=r,sin<p.

C. Zero Points of the Function  J,(z)

From the differential equations satislïed by
J,(az),  we have

s

1
(a2 -P’) zJ,W  J,(P)  dz

0

=bJ&dJ:(P)  - aJ:WJvW). (15)
By letting fi->a  in (15),  we have

s

1
z(J,(ctz))‘dz

0

=;
(( >

1 -f:  (J,(c())*+(J;(c())* (16)

If CI and b are distinct roots of J,(z) = 0, we
have from (15)

s

1
zJ,(az)J,(fiz)dz=O, Revi  -1. (17)

0

The integral formulas (15) (16) and (17) are
called Lommel’s integrals.

As for the zero points of J,(z), the following
facts  are well known: J,(O) = 0 if v > 0. J,(z) has
no multiple zero points other than z = 0. J,( - LY)
= 0 if J,(u)  = 0. Every zero point of J,(z) is real
if Y > -1. Between two adjacent zero points
that are positive, there exists one and only one
zero point of J,-,(z)  and J,+l(z),  respectively.
J,(z) has a countably inlïnite set of zero points
on the real axis. When v > 0 is rational, every
zero point of J,(z) except z = 0 is a ttranscen-
dental number. The transcendentality of n is
a special  case of this result for v = 1/2.



39 D
Bessel Functions

170

D. Expansion by means  of  Bessel  Functions

Letf(r,rp)bedeIïnedforO<r<l,  -x<cp<n,
anda,,l,a,,2,...,a,,  ,...  (O<~,,<a,s+l,s=
1, 2, for every n) be zero points of j,(x) (n =
0, 1,2,  . . . ).  Then we have an expansion

fh CPI=  2 f (a,,,cosncp+b,,,sinncp)J,(a,,,r),“=Os=1
(18)

which is called the Fourier-Bessel series.  The
coefficients un,s and b,,,  are determined by the
properties of +Fourier series and (16) and (17)
as follows:

h Et8
b“,S =Wn+l(a,,,))2

1 n

X

SS

cas  n<p
f(r,  cpV,(a,,,r) r d<p  dr;

0 -n sin ncp

EO=l, E1=E2=...=2.

The integral transformation

8(Y) =
s

00
xfWn(x~)dx (19)

cl

is called the Fourier-Bessel transform. If f(x) is
sufficiently smooth and tends rapidly to zero
as X-CO,  the following inversion formula
holds:

f(x)  =
s

m  ydyVnWdy.
0

(20)

There are other types of series expansions in
terms of Bessel functions as follows: Dini’s
series

(1, is the mth positive root of x&(x)  + HJ,(x)
= 0, where H is a real constant); Kapteyn’s
series

z %J”+,((v+m);I?I=,
Schli5milch’s  series

$+ f a,J,(mx);
m=O

and  the  generalized SchlGmilch  series

where H,(mx)  is the Struve function (-
Section F).

E. Asymptotic Expansion

If 1 z]  or 1 v 1 is sufftciently large, the asymptotic
representation for Bessel functions is obtained

by applying the tmethod of the steepest de-
scent for (2). If lzl>  IV~, we have

*i’)(z)-&expi(z-iv-t),

-n<argz<2n,

kri2)(z)-&exp(  -i(z-iv-f)),

-n<argz<n,

Hence Hi’)(z)  tends to zero as Izl*co  in the
Upper  half-plane, and becomes large exponen-
tially as IzI  +  00  in the lower half-plane. The
results for HL2)  are obtained by interchanging
“Upper  half-plane” with “lower half-plane” in
this statement.

If both Izl  and Iv1 are sufficiently large, we
have the Debye  asymptotic representations.
For example, if z = v sec fi  (v > 0, fl> 0), we have

H(1~2)(vsec~)-(nvtan/I/2)-1’2Y

x exp( f i(v(tan fi-  b) - rc/4)).

Ifz=vsecha (v>O,a>O),  we have

J, (v sech  a)

-(~XV  tanha))“‘expv(tanha-a),

NV (v sech  a)

- - (nv tanh a/2)-‘j2  exp v(a - tanh a),

If Iv/-lzl,  we have

fj(l~z)(vsec~)-tanBY
&

xexp( *i(~+v(tan~-~tan3~-~)))

x H$‘)((v/3)tan3  p)+O(v-i),

which is called Watson’s formula.

F. The Wagner Function

As an application of Bessel functions to the
theory of nonstationary aircraft wings, T.
Theodorsen introduced the function

C(z) = H~2’(z)/(zf~2’(z)  + H$yZ))

[6], and H. Wagner considered the function

k,(î)=&  ~s ews2ww)dwrlr W
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[S], where Hi’)(z),  H\‘)(z)  are Hankel func-
tions, and JBr  means a Bromwich integral
giving the inverse Laplace transform. Then
C(z) and k,(s) are called the Theodorsen func-
tion and Wagner function, respectively. The
function k,(s) is equal to the hft  coefficient
when a 2-dimensional  flat wing suddenly
proceeds forward a distance s at an angle of
incidence I/n.

G. Functions Related to Bessel Functions

The following functions are closely related to
Bessel functions (- Appendix A, Table 19.IV).

(1) Modified  Bessel functions.

I,(z) E e?=‘2Jv(ein’2Z),

n à-”
K(z) =y sin v7t

(2) Kelvin functions.

ber,(z)  f i bei,(z)  =J,(e*  3ni’4z),

her,(z)fihei,(z)=H~1)(e*3”i’4~),

ker,(z)=  -(n/2)hei,(z),

kei,(z)=(n/2)her,(z).

(3) Struve function.

(-l)m(Z/2)“+2m+i
Hv(Z)=~!&m+(3,2),I[v+m+(3,2),

(4) Anger function.

J,(z)=’ lc
s

cos(v0  -z sin @dB.
77 il

When v is an integer n, we have J,(z)= J,,(z).
(5) H. F. Weber function.

E,(z)2
s

*
sin(v&zsin0)dO.

n 0

The last three functions satisfy certain in-
homogeneous Bessel differential equations.
Many other functions, such as tAiry’s  integral,
cari  be represented by Bessel functions.
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Biometrics

A. General Remarks

Biometrics is the branch  of science that ap-
plies mathematical and statistical methods
to biological problems, and deals with ah the
phenomena that affect the physical, social, and
psychological well-being of human  beings.
These phenomena involve the relationships
of groups of human  beings to other human
beings, to animals, microbes, and plants, and
to physical and chemical elements in the en-
vironment. In dealing with these problems the
biometrician encounters such  theoretical tasks
as analyzing autocorrelated data in time series,
and such practical undertakings as cost-vs-
benefit evaluations of health programs.

Biometrics began in the middle of the 17th
Century  when Sir William Petty and John
Graunt developed a new method of analyzing
the London Bills of Mortahty. Petty and
Graunt essentially invented the held of vital
statistics by studying the reports of christen-
ings and causes of death and proposed a
method called “political arithmetic.”

Some tïelds  to which biometries is relevant
are given below.

B. Statistical Genetics

After early development in vital statistics,
statistical genetics was founded on the new
ideas emerging in statistics. Major contri-
butions were made by Charles Darwin (1809-
1882),  Francis Galton (1822-1911), Karl
Pearson (1857- 1936)  and Ronald A. Fisher
(1890-1962).

Galton was the first  to use the term “regres-
sion” in statistics (- 403 Statistical Models
D),  when he observed that sons regressed
linearly on their fathers with respect to stature.
He called the phenomenon a “regression to
mediocrity” because the deviations of the
stature of sons were less  than those of fathers.
This gave rise  to the measurement of cor-
relation in the bivariate normal distribution
by means of the coefficient of correlation
(Pearson, 1897). Pearson is credited with the
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creation  of the discipline of biometry (bio-
metrics), and he established the journal Bio-
metrika to promote studies in the tïeld. Fisher’s
major contributions were to genetics and
statistical theories. His General theory of nat-
ural  selection appeared in 1930. This landmark
book, along with earlier and later publica-
tions, represented Fisher’s attempts to give
quantitative form to Darwin%  views and to
frame a statistical theory of evolution.

C.  B ioas say

Bioassay is a set of techniques for evaluating
the effectiveness of dosages of drugs by moni-
toring biological responses. It entails  the use of
special transformations, such as probits and
logits, as weil  as the application of regression
to the estimation of dosages that are p percent
effective within stated confidence limits. Prob-
lems to be solved include measuring relative
potency,  slope-ratio assays, and quanta1 re-
sponses vis-à-vis tolerance  distributions.

D. Demography

Demography, which includes  traditional vital
statistics, rates and ratios, life tables, com-
peting risks, actuarial statistics, and census
enumeration techniques, is a part of bio-
metrics. In this category, many tabulations of
data consist  of time series of events or rates
classitïed by age. For the analysis of such data,
the cohort  analysis techniques described in
Hastings and Berry [3] are employed.

E. Epidemiology

The quantitative description of an epidemic
should state the sensitivity and specifïcity of
any diagnostic tests, as well as the true in-
cidence or prevalence of the epidemic from
survey results. Within an epidemiological
theory, a disease is studied by the use of deter-
ministic and stochastic models, wherein the
theory of Markov chains cari be applied (-
260 Markov Chains). Differential equations
involving probability-generating functions or
tmoment-generating functions cari  be solved to
yield the tprobability distribution, tmean, and
tvariance  of the number of infected individuals
as functions of time [4,5].  Fundamental to
this whole tïeld  of application is a clear under-
standing of causality and association.

When clinical trials are possible, two groups
of persons, “treated” and “untreated,” are
monitored over a period of time with regard to
the incidence or recovery from the disease
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under study. The techniques in this procedure
include compiling reports on persons to be
observed, using double-blind techniques, and
combining multiple-response variables by use
of multivariate analysis (- 280 Multivariate
Analysis).

If clinical intervention is forbidden on
ethical grounds, e.g.,  studying congenital  mal-
formation by infecting pregnant women with
German measles, the relative risk of expo-
sure is estimated from retrospective studies.
In practice, almost all statistical studies in
epidemiology are retrospective with the sole
exception of clinical trials. The research is ex
post facto because investigators are mostly
confined to describing and analyzing sudden
and/or obvious events in the etiology of the
disease.

F. Clinical Trials

In clinical trials, many problems have arisen
for which biometricians have had to develop
special techniques. One such technique takes
account  of unexpected adverse effects  of drugs,
and the consequent  early termination of a
trial. Moreover, when data demonstrate a
trend earlier than expected, investigators Will
desire to end the accession of patients and to
stop further treatment with what may be an
inferior regimen. This means that the bio-
metrician must be familiar with the problems
of multiple examinations of data, multiple
comparisons,  and other adjustment procedures
required by the ex post facto dredging of data.

G. Future Trends

There are two areas  in which the biometrician
has played a leading role recently. These are
pertinent in many different applications and
problems, and considerable  methodological
research has been devoted to the two areas.
The areas  are “mathematical modeling” and
“effects  of hazardous substances.”

Mathematical  Modeling.  The re la t ionship
between a set of independent variables and the
dependent or response variable(s) is usually
referred to as a mathematical model. The
mode1 may take the form of a standard multi-
ple regression analysis with a single response
variable or with multiple response variables as
in multivariate analysis (- 280 Multivariate
Analysis).

It is generally assumed that specialists with
substantive knowledge of the specitïc fïeld
of applications (epidemiology, toxicology,
pharmacology, radiology, genetics, etc.) play a
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crucial role in determining a mode1  or rela-
tionship between a set of independent vari-
ables and response variable(s). However, it is
mainly the biometrician who fïnally selects  the
speciiïc  mode1  establishing the functional
relationship and who attempts to measure the
strength or influence of the independent vari-
ables therein. The biometrician is also ex-
pected to contribute substantially to the deci-
sion  as to whether the relationship is causal, or
merely one of association or correlation. For
example, in the measurement of carcinogenic-
ity of a food additive or drug, questions arise
as to whether a substance cari  be judged harm-
fui if it “accelerates” the appearance of a tumor
even though it does not increase the incidence
of the abnormal growth. In general, the answer
to this question is in the affirmative when an
unequivocal dosage-response relationship
is indicated between the substance and the
tumor.

Effects  of Hazardous Substances. With the
successful  conquest of most of the infectious
diseases that have plagued mankind through-
out history, health authorities have recently
been concentrating on two chronic diseases
whose etiology is yet  to be determined: cardio-
vascular disease and cancer. In both cases
there is no disagreement with the thesis that
heredity exercises a determining influence, but
the role of the environment in causing many
cases is also unquestioned. Measurement of
the risk due to potentially toxic substances in
the environment, principally with respect to
these two diseases, represents the greatest chal-
lenge to the biometrician today. The social
benefits of success  make this a tantalizing area
of research, though exceptional complexities
are involved.

For related topics - 263 Mathematical
Models in Biology.
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Boltzmann Equation

A. Introduction

The Boltzmann equation is an equation of
motion of a rarefied  gas given by L. Boltzmann
in 1872 [l]. He used it successfully in his
pioneering work on the kinetic theory of gases
and on the more general statistical mechan-
ics (- 402 Statistical Mechanics), but the
equation was held to be inconsistent with the
tclassical mechanics used in its derivation;
objections were raised by, e.g.,  J. Loschmidt
(1895) and E. Zermelo (1896). Through the
controversies  it became  widely recognized that
the Boltzman equation should be justiiïed by
means of the ttheory of probability, and many
such justifications have been proposed. Also,
this equation has been studied extensively
as a significant  nonlinear partial differential
equation.

B. Boltzmann Equation

Let ,f=f(t,  x, 5) be the density of gas molecules
having position x E R3 and velocity c E R3  at
time t.  The Boltzmann equation is a conser-
vation law for ,f of the form [l-3]

f;=  -5.v,f-a(t,~).V~,f+QCfl. (1)
Here a(t,  x) denotes the external force and Q is
a quadratic nonlinear integral operator in <-
space  describing binary collisions of the mole-
cules.  The integral kernel of Q,  called the colli-
sion cross section, depends on the intermole-
cular forces. The two classical examples are the
hard bah mode1  (a gas of rigid spheres) and the
inverse power law potential (one proportional
to 9, where r is the intermolecular distance
and s > 1). The latter gives rise  to singularities
in the kernel, and a cutoff is customarily em-
ployed to avoid this difficulty.  Grad’s hard
(s > 5) and soft (s < 5) cutoff potentials may be
effectively used in the study of (1) [3].

If the gas is contained  in a vesse1 (domain),
then f must also satisfy boundary conditions
determined by the assumed law of reflection
at the walls (boundaries) (specular reflection,
random reflection, etc.). For spatially homo-
geneous gases with no external forces, (1) re-
duces to

f,=QCfl> (2)

with f = f(t, <).  The Maxwellians, those solu-
tions satisfying the +Maxwell-Boltzmann dis-
tribution law, are the only stationary solutions
of (2); they describe equilibrium states.
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C. Justification by tbe Tbeory of Probability

Consider (2). The collision process is a tMar-
kov process, and the tmaster equation ob-
tained from the tchapman-Kolmogorov  equal-
ity is equivalent to (2) under the assump-
tion of “propagation of molecular chaos” (G.
Uhlenbeck (1942)). This assumption becomes
valid in the limit as N (total number of mole-
cules)  +co  (M. Kac (1955),  H. McKean
(1967),  F. Grünbaum (1971)) [4]. Also, non-
linear Markov processes defined by (2) (with
probability density f/N)  have been studied
(McKean (1967),  H. Tanaka [SI). No such
results have yet  been established for (1).

D. Existence of Solutions

T. Carleman [2] gave the lïrst solutions of the
Boltzmann equation, solving globally  in time
the Xauchy  problem for (2) for the hard bal1
model. His result has been extended to a wide
class  of potentials.

The spatially inhomogeneous case (1) is also
known to have global solutions if a(t,  x) = 0
and if the initial data for f are nearly Max-
wellian. This was first proved by S. Ukai [6]
assuming periodicity in x, and then proved for
the Cauchy problem by Ukai [7] and T.
Nishida and K. Imai [S], and for the initial
boundary problem by J. P. Guiraud [9] (ran-
dom reflection) and Y. Shizuta and K. Asano
[ 101  (specular reflection) for bounded domains,
and by Ukai and Asano [ 1 l] for exterior
domains,  all assuming Grad’s hard cutoff
potentials. The case of soft cutoff potentials
was also solved (Ukai and Asano, R. Caflisch
(1980)). Al1  the solutions are unique and
tend to Maxwellians as t+ CO, with certain
decay rates. There are some results also on
1-dimensional shock wave solutions (B. Nico-
laenko (1975)) and stationary solutions (J: P.
Guiraud (1972) (bounded domains), Ukai and
Asano (1980) (exterior domains)).

For initial data far from the Maxwellian, (1)
remains unsolved even locally in time for hard
cutoff potentials. As for noncutoff potentials,
the existence theorem in [S] is the only result
known SO far for either (1) or (2).

E. Hilbert  Expansion

Put f ‘= f/N  with E  = l/N.  If fE  has a power
series expansion in E, then (1) gives an iniïnite
system of equations for the coefficients. D.
Hilbert (19 12) proposed a method of solving
this system as an application of his theory of
integral equations, initiating the attempt to
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solve the Boltzmann equation. No proofs of
convergence exist, but his expansion and the
improved one by S. Chapman (1917) and D.
Enskog (19 17) made possible the applications
of (1) to hydrodynamics. The zeroth-order
approximation to the expansion gives rise  to
the compressible Euler equation, and the first-
order approximation yields the compressible
Navier-Stokes equation. The solutions fE of
the Cauchy problem for (1) with nearly Max-
wellian initial data converge to those of the
compressible Euler equation locally in t as
6-0  (Nishida [12], Caflisch (1980),  and
to those of the compressible Navier-Stokes
equation asymptotically as t + GO  when E > 0 is
fixed [13].
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42 (11.15)
Boolean Algebras

A. Boolean Algebras

Boolean algebra was introduced by G. Boole
to study logical operations (- 411 Symbolic
Logic). It is now included within the more
general concept of tlattice or lattice-ordered
set (- 243 Lattices) and appears not only in
logic but also very  often in analysis in the form
of a particular lattice of sets, e.g.,  the lattice of
tmeasurable  sets.

Let L be a given set and suppose that to any
pair of its elements x, y there correspond two
elements x U y, x n y of L (called join  and meet
of x and y, respectively) such that the follow-
inglaws arevalid: (1) xUy=yUx,  xny=ynx
(commutative law); (2) x U (y U z)  = (x U y) U 2,

xn(ynz)=(xny)nz  (associative law); (3) XU

(y n x) =(x U y) n x =x  (absorption law); (4) x U

(ynZ)=(Xuy)n(XuZ),Xn(yuz)=(xny)u
(x n z) (distributive law); (x, y, ~EL). From
(l), (2), and (3) it follows further that x U x =

x n x = x (idempotent law). If x < y is defined
to mean x U y = y, L becomes an tordered  set
with respect to the ordering < Now suppose,
moreover, that the following law holds: (5)
there exist a least element 0 and a greatest
element 1, and for any element x there exists an
element x’ satisfying x U x’ = 1,  x n x’ = 0 (law of
complementation).  Then L is called a Boolean
algebra (or tBoolean  lattice). In this case x’ is
uniquely determined by x and is called the
complement  of x. The binary operations
(x, y)-x U y, x n y together with the operation
x+x’ are called Boolean operations. These
operations obey de Morgan%  law (x.Uy)‘=

x’  n yf,  tx n y)’  = x’  u y’.

B. Generalized Boolean Algebras

Suppose that a < b holds for two given ele-
ments a, b of an ordered set. Then the set of a11
elements x satisfying a <x  <b  is denoted by
[a, b] and is called an interval. An interval of a
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Boolean algebra is also a Boolean algebra with
respect to the induced operations U and fl,
where the least and greatest elements are a and
b, respectively, and the complement  of x in
[a, b] is equal to a U (x’ n b) =(a U x’) n b. More
generally, if a set L with two operations U, fl

satisfying (l))(4)  above has a least element 0
and if each interval of L satistïes (5) (i.e.,  is a
Boolean algebra), then L is called a generalized
Boolean algebra.

C.  Boolean Rings

A ring L satisfying the condition xx = x for a11
x E L (i.e., all of its elements are tidempotent) is
called a generalized Boolean ring, and if it has
a unity  element then it is called a Boolean ring.
A generalized Boolean ring L satislïes x +x = 0
for a11 x E L and is necessarily a commutative
ring. A (generalized) Boolean algebra L be-
cornes a (generalized) Boolean ring if for any
elements x, y of L the sum x + y is defmed to
be the complement  of x n y in the interval
[0,x U y], and the product  xy is delïned to be
x ny.  A nonempty subset J of a (generalized)
Boolean algebra L is an ideal with respect to
the corresponding structure of the ring if and
only if xUyEJ  for x, YEJ and xtlyEJ  for
x~J, ~EL. More generally, in any lattice, a
nonempty subset that satislïes these conditions
is sometimes called an ideal of the lattice.

D. Representation of a Boolean Algebra

Any  Boolean algebra L is isomorphic to a
Boolean lattice of subsets in a set X. If L is of
tïnite  theight, then L is isomorphic to the
Boolean lattice ‘$(X)  of a11 subsets of X. In
general X cari  be taken to be the set of a11
maximal ideals of L. Let a6L  and let O(a)=
{m(mEX,  a$m}.  The isomorphism is obtained
by the mapping a-+0(a).  If we define a topol-
ogy in X such that (O(a) 1 a-eL}  is the topen
base, then X is a compact, totally discon-
nected Ti  space  and O(a) is characterized as
a compact open  set in X. Such a space  X is
called a Boolean space  (M. H. Stone [3,4]).

In any complete Boolean algebra L, the
complete distributive laws hold: (sup,x,) fl  y =
supl(xi n y) and its dual. These are equivalent
to the stronger relations: (sup,xi)fl(sup,yj)=
suprJ(xi n yj)  and its dual. In order for a
Boolean algebra L to be isomorphic to the
Boolean algebra s@(X)  of a11 subsets of X, it is
necessary and sufficient that the following
strongest complete distributive laws hold:
inf,(sup,(,>xij)  = sup,(inf,x,,&  (where F is the
set of a11 functions <p  assigning to each if 1 a
value cp(i)~J(i))  and its dual.
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43 (X1.4)
Bounded Functions

A. General Remarks

A complex-valued  function defined on a subset
E of the complex z-plane is called a bounded
function dehned on E if its range f(E) is
bounded, that is, if there exists a positive
constant M  such that If(z)]  < M  on E. How-
ever, when studying the theory of bounded
functions, we usually restrict ourselves to the
consideration  of tanalytic or tharmonic  func-
tions. On the other hand, the classes of func-
tions f(z) satisfying conditions such as Ref(z)
>O  or cc<argf(z)<b  rather than lf(z)l<M
are studied by a method similar to that ap-
plied  to the study of bounded functions.

tschwarz’s lemma, tliouville’s  theorem, and
tRiemann% theorem on the removability of
singularities (which Will be explained later) are
among the classical theorems in the theory of
bounded functions.

B. Maximum Principle

When a function f(z) is holomorphic  and not
constant in a domain  D of the complex plane,
If(z)]  never attains its maximum in the interior
of D. In particular, when f(z) is continuous  on
the bounded closed domain  D = D U aD,  the
maximum of If(z)]  on D is taken on its bound-
ary LJD.  This fact is called the maximum (mod-
ulus) principle.

As a direct application of the maximum
principle, we cari deduce Schwarz’s lemma: If a
holomorphic function f(z) in ]zl  <R  satistïes
lf(z)]<M  andf(O)=O,  we have l,f(z)l<M.
l~l/R(lzl<R).Theequalityatz,,O<lz~]<R,
occurs only for the functions f(z) = e’“Mz/R
(where A is a real constant).
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C. Lindekif’s  Principle

E. Lindelof extended Schwarz’s lemma and
obtained various extensions of the maximum
principle, from which he, together with E.
Phragmén, deduced several useful theorems on
the behavior of a function that is single-valued
and holomorphic in a neighborhood of the
boundary. We mention some representative
theorems:

Let z = <p(c)  and w = $([) both be tmero-
morphic and tunivalent functions in I[l  < 1 that
map I[l  < 1 onto  D,  and D,,  respectively. Set
<p(O)=z,  and $(O)=w,.  Let D,(p) and D,(p)
denote the images of I[l  < p (0 < p < 1) under
the mappings <p  and $, respectively.  Under
these circumstances, if a function f(z) that is
holomorphic in DZ  satisfïes  f(D,)  c D,  and f(ze)
= wO,  then ~(D,(P))  c D,(p). Furthermore,
unless f(z) maps D,  onto D,  univalently,
~(D,(P))  is contained  in the interior of D,(p)
(an extension of Schwarz’s lemma).

Let f(z) be analytic in a bounded domain  D
but not necessarily single-valued. Suppose that
If(z)1  is single-valued.  Suppose, furthermore,
that there is a positive constant M such that,
for each boundary point [ oi D, except for a
finite  number of boundary points and for each
E  > 0, the inequality If(z)]  < M+E holds on the
intersection of D with a suitable neighborhood
of [, and suppose also that each of the excep-
tional points has a neighborhood such  that
.f(z)  is bounded on the intersection of D with
this neighborhood. Under these assumptions
we have If(z)/  < M. Moreover, if lf(za)l=  M at
a point z0  of D, then f(z) is a constant (an
extension of the maximum principle).

Let f(z) be holomorphic in an angular
domain  W: l arg z]  < coc/2. Suppose that there is
a constant M such that, for each E > 0, each
lïnite  boundary point has a neighborhood
such that If(z)]  < M + E on the intersection of D
with this neighborhood, and that for some
positive number fi > c(  and for sufftciently large
Izl  the inequality If(z)1  <explzl”@ holds. Under
these assumptions we have If(z)  < M in D
(Phragmén-Lindelof  theorem).

Let f(z) be a function that is holomorphic
and bounded in a closed angular domain  W:
tl  < arg z d /3 except for the point at intïnity.
Suppose that f(z)+a  as z+  CO  along a side  of
the angle and that f(z)+b  as z+co  along the
other side  of it. Then we have a= b and f(z)+
uniformly as z+  CO  in W (Lindelof’s  asympto-
tic value theorem).

D. Bounded Functions in a Disk

If f(z) is a bounded holomorphic function in
the unit disk Iz]  < 1, it has a limit at every
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point z0  on the circle C: IzJ  = 1, except for a set
of 1 -dimensional  measure zero,  as z tends to z,,
from within an angle with vertex at z,,  and con-
tained in lzl<  1 (or along a +Stolz’s  path at z,,)
(Fatou’s theorem). Under the same assump-
tion, if the boundary value function f(e’“)  =
lim,,,~,f(re’8),  which exists by Fatou’s theo-
rem, is equal to a constant a for a set of posi-
tive measure on the circle C, then f(z) = a in
IzI < 1 (F. and M. Riesz theorem). These theo-
rems are valid for some kinds of meromorphic
functions in (zl  < 1 (- 272 Meromorphic
Functions D).

E. Three-Circle Theorem and Related
Theorems

Let f(z) be a function that is single-valued,
holomorphic, and not identically zero in an
annulus p<  lzl  <R. Set M(r)-max,,,=,If(z)l
(p < r < R) for f(z). Then log M(r) is a fcon-
vex function of log r in log p < log r < log R
(Hadamard’s three-circle theorem). The same
assertion holds for a function S(z)  that is not
necessarily single-valued, as long as If(z)1  is
single-valued. When f(z) is single-valued, a
stronger assertion cari  be obtained (0. Teich-
müller). The following theorems are regarded
as the analog of Hadamard’s three-circle
theorem for the respective basic regions:

Set L(cr)~sup~,,,,,If(o+it)l  (a<o<b)
for a function that is bounded and regular in a
strip LY  < Re z < 8. Then log L(o)  is a convex
function of o in a < o < /I (Doetsch’s three-line
theorem).

Set i(0)  = lim supt-tm  lf(u  + it)l  (a < 0 < /?)  for
a function that is holomorphic and bounded in
a half-strip c(  < Re z < 8, Im z > 0. Then log I(a)
is a convex function of c in CI  < 0 <fi  (Hardy-
Littlewood theorem).

Set

1,<r)=&
s

277
If(reio)lPdO

0

for a holomorphic function in a disk lzl  <R.
Then for every p > 0, log I,(r) 1s an increasing
convex function of logr for -00  < logr < log R
(Hardy3 theorem).

F. Hardy Glass

Hardy%  theorem motivates us to introduce a
class  of functions. An analytic function f in the
unit disk is said to belong to the Hardy class
HP (O<p<  co)  if I,(r,f)=(2~)-‘SO”If(reiB)IPde
remains bounded as r-1. For the case p=  CO,
fi H” if I,(r,f)=max,,,,lIf(z)l is bounded.

43 F
Bounded Functions

An analytic function fis said to be of the class
N if si”log+  If(re’“)l  de is bounded for r< 1.
f E N if and only if f = <p,4j,  where <p,  I/IE  Hm.
fi HP if and only if lflP has a tharmonic  majo-
rant. If 1 <p  < CO, HP is a +Banach  space  with
the norm Ilfllp=(supI<i Ip(r,f))llp  for p-c cc
and ~Ifll,=sup,.,,I,(r,f)forp=co,andifO<
p < 1, HP is a complete metric space  with the
metric sup,<i  I,(r,f-g).  For O<p<q<  m the
inclusion relation N 13  HP 3 H4  3 H” holds, SO

that Fatou’s theorem and that of F. and M.
Riesz are valid for functions of HP (p > 0).

For a nonnegative integer p and a sequence
of nonzero complex numbers a,, la,1  < 1, the
intïnite  product  B(z)=zp~~,(oi,(cr,-z)/~cc,~  (1
- oi,z))  converges locally uniformly in the unit
diskifandonlyifCz,(l--la,l)<co.Then
B(z) is called a Blaschke product  and {a,} a
Blaschke sequence.  If the sequence {a,} U {0} is
the set of zeros of an analytic function f (an m-
tuple zero appears m times in {an},  and z = 0 is
a p-tuple zero), B(z) is said to be generated by
thezerosof$IffEN,thenCz,(l-la,l)<cc
for the set {a,} of zeros off: An analytic func-
tion f in the unit disk is called an inner func-
tion if its modulus is less than 1 and its non-
tangential limit on the unit circle is of modulus
1 almost everywhere. A Blaschke product  is an
inner function. An inner function f without
zeros  is said to be singular if f(0) > 0. A sin-
gular inner function f cari  be represented by
f(z)=exp{  -~~*(eie+z)/(eie-~)&L(B)}  with a
positive measure p tsingular  with respect to
Lebesgue measure. An outer  function F(z) for
HP (p > 0) is an analytic function that cari  be
represented by

F(z) = e”exp &
{ s

2neiB+z

--logti(@dO  >o e”-z 1

where r is a real number and $(0) is a non-
negative function such that $(O)E  Lp  and
log$(B)EL’.  An HP-function  f (p>O) is fac-
torized uniquely as f(z) = B(z)S(z)F(z),  where
B(z) is a Blaschke product  (generated by the
zeros  off), S(z) a singular inner function, and
F(z)  is an outer function for HP (with $(O)=
If(e’“)l)  (factorization theorem). Conversely,
such a product  belongs to HP.  The inter-
polation prohlem raised by R. C. Buck asks
whether or not there exists a sequence of dis-
tinct points {zn  1 lz,,l< l} such that, given any
bounded sequence of complex numbers {w”},
there is a function fi H” for which f(zJ  = w,.
The sequence {z,} in the problem is called an
interpolating sequence.  L. Carleson proved that
a necessary and sufficient condition for {z,} to
be an interpolating sequence is that there be a
6>0 such that n,,,l(z.-zJ(1  --~,z,)l>6
(k = 1,2,  . . . ).  An interpolating sequence is a
Blaschke sequence, and any sequence {z, 11 z,  1
-+ 1) contains an interpolating subsequence
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tending to the unit circle. An analogous theo-
rem is obtained for a function of HP (p > 1).

G. Corona  Problem

The Hardy space H” on the unit disk D is
furthermore a commutative +Banach  algebra
with identity. Let M denote the tmaximal  ideal
space of H”. It is a compact Hausdorff space
with respect to the tGel’fand topology. TO

each point ZE  D, there correspond a homomor-
phism <pZ:  <p,(f)  =f(z) for f E H”, and a maxi-
mal ideal M,  = { fe  H” If(z)  = 0} as its kernel.
This correspondence  gives a continuous  injec-
tion of D into the maximal ideal space M of
H”. By identifying z and MZ,  D is regarded as
an open subset of M, and the corona  problem
then asks: Are there points of M outside the
closure of D? The negative answer was given
by L. Carleson, that is, D is dense in A4 (corona
theorem). The corona  theorem is obtained as a
direct consequence  of the following theorem
and is equivalent to it. For functions f;-~  H”,
i= 1,2,.  . , n,  satisfying x Ifi(  > 6 in D with
some6>0,  thereexistg,GH”,i=l,...,  n,such
that Zfi(z)gi(z)  = 1 in D. As a trivial conse-
quence of the corona  theorem, we have the
following cluster  value theorem: Let C(f; [)
denote the tcluster set of fg H” at [ with
I[l = 1; then C(f; [)=fcM<), wheref  is the
Gel’fand transform off and M,  is the tfiber of
M over [. M is decomposed into pairwise
disjoint +Gleason  parts. A Gleason part is a
connected  open set or a singleton according as
each point of it is captured  in the closure of an
interpolating sequence or not. Each point of
the +Shilov  boundary r of M forms by itself a
trivial Gleason part, and r is tadherent  to  a
sequence S in D with the property that the set
of its nontangential limit points covers the unit
circle (Brown-Shield-Zeller theorem). Let D
be, in turn, a general bounded domain.  The
corona  theorem is proved for some classes of
such  domains. A Shilov boundary r lies only
over the set of points on 8D which are not
tremovable  for bounded analytic functions. It
is adherent to a sequence S in D on which
sup,If(z)I=~~f~~m.Foranyf~H”and[~aD,
the boundary off(M,)  is contained  inf(r()  if Ts
= r fi  M,  is not empty. This, together with the
cluster value theorem, has an important im-
plication in the theory of cluster sets. The ex-
tremal problem of maximizing 1 f ‘(z,)l,  zoe D,
among a11 fi H” satisfying IlfIl  ~ < 1 has the
unique normalized solution G such that G’(z,)
= max If’(z,)l.  G(z) is called the Ahlfors func-
tion. The Ahlfors function has unit modulus on
the  Sh i lov  boundary  (Fisher’s theorem). The
theory of H” is also applied to the problem of
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trational  approximation of bounded analytic
functions.

H. Applications of  the Maximum Principle

Theorems of the following type are useful for
some problems of holomorphic functions:

Let D be a domain.  Suppose that there
exists an arc of angular measure c(  that is on a
circle of radius R centered at a point z0  of D
and not contained  in D. Let C denote the
intersection of the boundary of D with the disk
(z  - zO(  < R. If f(z) is a single-valued holom-
orphic function that satislïes 1 f(z)\  GM,  and if
lim SU~,,, 1 f (z)l d M  for every [c C, then the
inequality 1 f(z,Jl< M’mli”ml’”  holds for every
positive integer n satisfying 2n/n  < CI  (Lindekif’s
theorem).

Let D be a domain  bounded by two seg-
ments OA,  OB both starting from 0 and mak-
ing an angle ~LU,  and a Jordan arc A%,  and
let R be the maximal distance between 0 and
the points on A?.  Suppose that f(z) is holo-
morphic in D and that limsupl  f(z)] as z+
[e aD  with ZE  D is not greer  than M for
[e OA U OB and m for [e AB. Then we have
If(z)l<M’-“ma  (where Â=(lzl/R)““) at every
point on the bisector of the angle L AOB in D
(Carlemann’s theorem).

1. Holomorphic Functions with Positive Real
Parts

Holomorphic functions with positive real parts
are intimately connected  with bounded func-
tions. Concerning these functions we have the
following classical result, which is equivalent
to Schwarz’s lemma: If f(z) is holomorphic in
1 zI  < R, Re f (z) 2 0 in the same domain,  and
.f(O)=  1, then (R-Izl)/(R+lzl)~Ref(z)~(R+
Izl)/(R  - lzl) (lzl<  R). The right or left inequality
becomes equality for some z,,,  0 < IzOI  <R,  only
if f(z)=(Rz, fz,z)/(R +z,z),  respectively.

In order to prove various results for the
class of functions with positive real part,
Herglotz’s integral  representation,  which is
based on Poisson’s integral representation and
unique to this class,  cari  be used effectively. It
is given by

f ( z ) =  D  ei,_z&Gd,  lzl<R>s
2ne’“+z

where p(q) is monotone increasing (real-
valued) with total variation 1 and is deter-
mined uniquely up to an additive constant by
f(z). An analogous integral representation is
introduced for a holomorphic function in an
annulus.

Similar to the case of holomorphic functions
is the notion of Hardy classes to harmonie
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functions, that is, a harmonie  function u in the
unit disk is said to be of the class  hP  (0 < p <
CO) if I,(r, u) is bounded for r < 1. u E hP  if and
only if u + iuE HP,  where u is conjugate  to u.  h’
is equal to the vector space of functions which
are representable as a difference of two non-
negative harmonie  functions. The Herglotz
theorem stated above is then a corollary of the
theorem of integral representation for h’-
functions.

J. Coefficient Problems

There are many classical results for partial
sums and coefficients of the Taylor expan-
sion of bounded functions in a disk. Let f(z)
= xF=,  c,z”  be the Taylor expansion of a
bounded function in (zl  < 1. Set its partial sum
s,(z)=~~=~c,z”  (n=O, 1, . ..). and let t,(z)=
(l/(n+l))C~+s,(z)(n=O,  l,... ),  which is the
sequence of the arithmetic means of the par-
tial sums (the Fejér sums). Then If(z)1  < 1 in
IzI<lifandonlyifIt,(z)l<lforlzl=l(n=
0, 1, ) (L. Fejér). Thus the sequences {t,(z)}
for bounded functions f(z) are uniformly
bounded, whereas the sequences {s,,(z)} are no1
uniformly bounded. Indeed the maximum
value of I~,,(l)1  over the set of function f satis-
fying If(z)1  < 1 for IzI  < 1 is

(G,-n-‘logn  as n+co).
The following result is decisive for coeff?

tient  problems: Set h,,  = C&C,~~C,~~ (p < v),
h,,  = h,,  for f(z) = xz,  c,z”,  let mi be the
maximal eigenvalue (a nonnegative real num-
ber) of the Hermitian matrix ( -hti,)C,,=o,  and
let m  =lim m,(  > 0).

Let H be a Hermitian form in inlïnitely
many variables given by

H =m2 2 Xvx,-  f h,,uXpx,
V=O I<,“=O

Then a necessary and sufflcient condition for
If(z)1  < 1 when IzI  < 1 is that H be positive
semidetïnite, i.e.,  the sequence of the tprincipal
minor determinants of H,

A(:  5 1::  l), m=1,2  ,...,

is a11 positive or positive for an initial finite
number of them and zero for the remainder
(1.  Schur).

A corresponding result for functions with
positive real part in a disk cari  be stated in a
jimpler form: A holomorphic function f(z) =
1/2+C,7,c,z”  in IzI<  1 satisfïes  Ref(z)>O  if
znd  only if

1 c, . . . c,
Cl~ 1 .

cn-1 30, n=1,2,...

CPI q-1  . . . 1

(C. Carathéodory). Furthermore, for n =
1,2,  , when we regard (cl, . , c,) as a point
of complex n-dimensional Euclidean space, we
cari  determine the domain  of existence of
points satisfying this criterion by Carathéo-
dory. This result is generalized for coefficients
of the Laurent expansion of a function that is
holomorphic and single-valued in an annulus.

Next, there are some results for a function
that omits two values: If f(z) = a, + a, z +
. ..(a.#O)isholomorphicin~z~<Rand
f(z)#O,  1 in the same domain  IzI  < R, then
there exists a constant L(a,,  a,), depending
only on a, and a,, such that R d L(a,,  a,)
(Laudau’s tbeorem). Under  these  circum-
stances,I,f(z)l<S(aO,Q)inIzI<ORforO<O<l,
where S(a,, 0) is a constant depending only on
a, and Q (Scbottoky’s tbeorem). These theo-
rems have applications in value distribution
theory. On the other hand, coefficient prob-
lems have been investigated as extremal prob-
lems in HP-spaces  under general conditions.

K. Angular Derivative

Let f(z) be holomorphic in IzI  < 1. Iff(z)+wO
uniformly as z+zO  along Stolz paths with end
point at z0  and if the limit lim,,,O((f(z)-  wO)/(z
-z,,))  = D exists, we cal1 D the angular deriva-
tive of j”(z) at z,,.  In the case of the half-plane
Re z > 0, the angular derivative at the point z0
on the imaginary axis is similarly defined. It
should be noted that f(z) - w0  is replaced by
l/f(z) for w,, = CO  and l/(z - z,,)  by z for z,,  = CO.
In the latter case, a Stolz path is a path con-
tained in an angular domain  largzl <CI  ( < 742)
and tending to CO. The study of angular de-
rivatives was initiated by G. Julia (1920) and
J. Wolff (1926) and was further advanced by
Carathéodory (1929) and E. Landau and G.
Varilon (1929).

A fundamental theorem for angular deriva-
tives cari  be stated as follows: If a holomorphic
function f(z) in Re z > 0 satisfïes  Ref(z) > 0,
there exists a constant c (0 d c < +io)  such that
f(z)/z+c  and ,f’(z)+c uniformly as z+co
along every Stolz path. Moreover, the pth
derivative of f(z) for an arbitrary positive
p, denoted by DPf(z),  has the property that
zP-’ Dpf(z)+c/T(2  -p) uniformly. Further-
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more, the inequality Re f(z) 2 c Re z holds
everywhere in Re z > 0. An analogous theorem
is valid for the unit disk.

An important problem in the theory of
conforma1 mapping is to find some condition
for a mapping w =f(z)  of the unit disk (or half-
plane) G onto  a simply connected  domain  B  to
have a nonzero and lïnite  angular derivative at
a boundary point z,,,  that is, the condition for
conformality at the boundary point. Cara-
théodory showed that a sufftcient condition is
the existence of two circles that are mutually
inscribed and circumscribed at the boundary
point we  =f(zO)  # CO  of B and that lie inside
and outside of B, respectively. Ahlfors later
established a necessary and sufftcient condi-
tion for the existence of the angular derivative
by making use of his tdistortion  theorem for a
strip domain.  The angular derivative was
used by Wolff in his research on the iteration
of conforma1 mappings.

References

[l]  L. Bieberbach, Lehrbuch der Funktionen-
theorie II, Teubner, 1931 (Johnson Reprint
CO., 1969).
[2] C. Carathéodory, Funktionentheorie 1, II,
Birkhauser,  Basel, 1950; English translation,
Theory of functions, Chelsea, 1, 1958; II, 1960.
[3] E. G. H. Landau, Darstellung und Be-
gründung einiger neuerer Ergebnisse der
Funktionentheorie, Springer, 1929.
[4] J. E. Littlewood, Lectures on the theory of
functions 1, Clarendon Press, 1944.
[S] P. L. Duren, Theory of HP-spaces,  Aca-
demie Press, 1970.
[6] R. Nevanlinna, Eindeutige Analytische
Funktionen, Springer, second edition, 1953;
English translation, Analytic functions,
Springer, 1970.
[7] L. Carleson, Interpolations by bounded
analytic functions and the corona  problem,
Ann. Math., (2) 76 (1962).
[S] H. S. Shapiro and A. L. Shield, On some
interpolation problem for analytic functions,
Amer. J.  Math.,  83 (1961).
[9] K. Hoffman, Banach spaces of analytic
functions, Prentice-Hall, 1962.
[lO] K. Hoffman, Bounded analytic functions
and Gleason parts, Ann. Math., (2) 86 (1967).
[l l] M. L. Weiss, Cluster sets of bounded
analytic functions from a Banach algebraic
viewpoint, Ann. Acad. Sci. Fenn., 367 (1965).
[12] T. W. Gamelin, Lectures on H”(D), Univ.
National  de la Plata, 1972.
[13] T. W. Gamelin, The algebra of bounded
analytic functions, Bull. Amer. Math. Soc., 79
(1973).

180

44 (XVII.1 0)
Branching Processes

A. General Remarks

A brancbing process is a mathematical mode1
for random motion of a family of particles
each of which is in an isolated process of multi-
plication and death. Examples of such ran-
dom motions are population growth, miosis of
genes, growth of the numbers of neutrons in an
atomic chain  reaction,  and cascade showers of
cosmic rays. The simplest and most fundamen-
ta1 branching process is discussed in Section
B. For a historical introduction to the study
of branching processes - Kendall [2] and
Harris [3].

B. Galton-Watson Processes

Although there is a similar process with con-
tinuous parameter teR,  we consider here
only the case of a discrete time parameter
(i = 0, 1,2,.  ).  Suppose that we are given a
family of particles of the same kind. Each
member of the family splits into several par-
ticles according to a given probability law
independently of the other members and its
own past history. Let Z,  be the number of
particles of the family at a moment (or gener-
ation) n;  then {Z,,}  gives rise  to a +Markov
chain. This is called the Galton-Watson pro-
cess.  A precise  mathematical description of the
process is as follows: A Galton-Watson pro-
cess  is a Markov chain {Zn  1 n = 0, 1, . . . } on the
nonnegative integers with ttransition  proba-
bility dehned in terms of a given tprobability
distribution {pk  1 k = 0, 1, },  pk  > 0, Cg,,pk  = 1,
by

i

*i
PijzpCzn+l

=jIZ,=i]=  pj if i>l,  j>O,
6, if i=O, j>O,

where the probability distribution {pi’  1 k =
0, 1, . } denotes  the i-fold tconvolution  of
the probability distribution { Pk  1 k =O,  1, . . . }
and 6, is the +Kronecker delta. Then pk is
interpreted as the probability that an abject
existing in the nth generation has k children in
the (n + 1)th  generation. We assume that Z, =
1 a.s.  for the rest of this section. An impor-
tant tool in the analysis of the process is the
+generating function f(s) = x,EO  pjd, ~SI  < 1.
Denote the generating function C&, P(Z,  =
k)sk  (s< 1) of Z,  by f,(s). Then we havef,(s)=
S, fi (SI  =f(s),  .h+jls) =,L(fj(S))  (ij  = O,l>Z  ‘1,
and the texpectation  of Z,  is given by E(Z,) =
m”, where m =f’(  1) = E(Z,) is the expecta-
tion of Z,. A Galton-Watson process is said
to be subcritical, critical, or supercritical if
m < 1, = 1, or > 1, respectively. If we have Z,  =
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0 for some n, then Z,,,  = Z,,,  = . . = 0. The
probability q = P (lim, Z,  = 0) is called the
extinction probability. The case fi(s)  = s is
excluded in the following. The extinction pro-
bability q of the process {Z”}  is the smallest
nonnegative solution of the equation s =f(s).
Itislifm<land<lifm>l.Moreover,
P(lim,Z,=  co)= 1 -q  when m> 1, and hence
the process {Z.}  is ttransient.

If we put W, = Z,/m” when m < CO, { W,}
gives rise  to a tmartingale,  and the limit W=
lim,,, W, exists with probability 1. If m>
1, then the tmoment-generating  function
v(s)=E(exp(  -sW))  of W satisfies  the Kijnigs-
Scbroder  equation <p(ms)  =~(V(S)),  Re s > 0. If
m  d 1, then P(Z, = 0 for some n) = 1. The fol-
lowing theorem on the conditional distribu-
tion of Z,, given that Z,  # 0, was Iïrst  proved
by Yaglom [6] under moment restrictions. If
m  < 1, there exist bk = lim, P(Z,  = k 1 Z,  # 0), k =
1,2 ,.... Then{b,Ik=l,2 ,...  }isaprobability
distribution and its generating function g(s)=
CE1 &s“, ]SI < 1, is the unique solution of
the equation g(f(s))=mg(s)+  1 -m,  [SI < 1,
among generating functions vanishing at 0.
Furthermore, when m  < 1, x,5$ jbj<  00  if and
only if xJE1  p,(jlogj)  < m (i.e.,  E[Z,  logZ,]  <
ml.

If m = 1 and o2 = variante  of Z,  < CO, then
lim,P[Z./n>  ul Z,  #O] =exp[ -2u/a2],  ~20.
If oz = 00, then this result is still correct with
the interpretation that the limit in the left-
hand side  equals 1.

For further details regarding the theory of
Galton-Watson processes - [3,  S].

C. Multitype Galton-Watson Processes

These are generalizations of the Galton-
Watson process, involving k types of particles
(k 2 2),  say,  7”) 7”,  , &.  Let p’(r,,  r2,  . , rJ  be
the probability that a particle of type 7;  splits
into r, particles of type T, (m = 1,2,  . . , k), and
set f’(s,  , sî,  . , .sk) = Cvp’(rI,  r2,  . . , rj,)s;ls?
. . SP. The number of particles Z,  =(Z,!, Zi,
“’  >Zj) at a moment n gives rise  to a +Markov
chain over Z:,  and its transition probability
is determined by p’(r,,  r,, , rJ  as for Galton-
Watson processes. Here Z: denotes  the space
of a11 k-dimensional tlattice points whose
components are nonnegative integers. We
now detïne a mathematical mode1  of the
process mentioned above. A Markov chain
{Z,,ln=O, l,...} on Z!+  is called a multi (k)-
type Galton-Watson process if its transition
probability is given by

P(i, j) = P[Z,+,  = j 1 Z,  = i] = coefftcient of

fJsPin  ~(,f(s,,~2....r~k))i’,=*
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for i=(i,,i,,  . . . . ik),  j=(jl,j2,  . . . . j,)EZk,,  n=
O,l,...  ands=(s,,s,  ,..., s,)E&,whereD,=
{s=(s,,s,,  ...> s,)~R~IlsrI<1,1=1,2  ,.../ k}.

When m,=af’(l, , l)/as,<  CO  (i,j=  1,2,
. , k), the tconditional  expectation of Z,,,,,
given Z,,  is given as E[Z,+,  1 Z,]  = Z,M”,
where M  is the matrix (m,).  From now on we
assume that m, < 00  (i, j = 1,2,  . , k). A multi-
type Galton-Watson process {Z.  1 n = 0, 1, . }
is said to be singular if the generating func-
tions f’(sl,  s s )2,“‘,  k> 1=1,2  ,..., k,arealllinear
in si,  s2, , sk with no constant terms. We
assume nonsingularity throughout. If there is
a positive integer N such that every compo-
nent of MN  is positive, the process Z,  is said
to be positively regular. In this case, M has a
positive teigenvalue  Â. that is simple, and 1>
1~1 for a11 other eigenvalues p.  The eigenvalue
i plays the role of m  in the case of the Galton-
Watson process. For every i, 1  < i < k, set qi =
P[Z,,=O for some nlZ,=e,],  where e;=(e!,ef,
“‘> ei),  ei= 6,.  Then qi is called the extinction
probability of the process {Z,  1 n = 0, 1, . }
starting with a single particle of type 71; let
q=(q1,q2,  . . . . qk).  Suppose that the process
{Zn  1 n = 0, 1, . . . } is positively regular and not
singular. Then q=(l,  1, . . . . 1) if l< 1, and OQ
q’<l(i=1,2,...,k)ifi>l,andqsatisIïesthe
equation q=(f’(q),f’(q),  . ,f”(q)). Further-
more, the process {Z,  1 n = 0, 1, . . . } is ttran-
sient, i.e.,  P[Z,  = j inlïnitely often] = 0 for any
j # 0, j E Z!+  Moreover, if E.  > 1, then W, =
Z,,/?  converges with probability 1, and

lim Z,/Â”  = v W a.s.,“+a.

where v denotes the positive left teigenvector
v = (vr  , . , vk) for Â  of the matrix M, and W is
a nonnegative trandom  variable. P[ W>  0] >
0 holds if and only if

E[Z$logZ$<co  fora11 l<i,j<k. (1)

Here Zfj denotes  the number of type q par-
ticles in the lïrst  generation for a process with
Z,  = ei, 1 d i < k. If condition (1) holds, the
+moment-generating  functions of W, <pi(a)  =
E[exp[-aW]IZ,=e,],i=1,2  ,..., k,a>O,
satisfy <piCcrI  =?(<PI  (4% %(di),  . , cpk(4~1),
lgi<k.

When A < 1, a theorem analogous to Ya-
glom’s holds. For further information - Joffe
and Spitzer (J.  Math. Anal. Appl.  19 (1967))
and Athreya and Ney  [S].

D. Markov Branching Processes

The branching processes dealt with in Sections
B and C are limited in the sense that gener-
ation times are lïxed. We now formulate a
continuous-time  version of branching pro-
cesses. The treatment in this section is limited
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to Markov processes that are extensions to
continuous time of the Galton-Watson pro-
cess.  A Markov process {Xt,  Pi} on Z: is
called a Markov branching process if the tran-
sition probability P(t,  i,j)= Pi[X,=j]  (i,jEZ!+,
t 2  0) satislïes

jfYo  p(L U)s’= (jIo  0, l,.iW)iC P

for a11 iEZ!+  and ~SI<  1. Then there exist
a positive constant a and a probability
distribution { pk;  k = 0,2,3,.  } such that
lim,,,(  1 - P(t,  i, i))/t  = ia if ié Z!+  and
lim,,,P(t,  i,j)/t=  iapj-i+l if j>i- 1, j#i. The
+Kolmogorov equations are

$P(r,i,j)= -jaP(t,i,j)+.  ‘f  Ipj-l+,P(t,i,l)
I=l,lfj

(tforward equation)

and

iP(t,i,j)=  -iaP(t,i,j)

(tbackward  equation).

Then a and { pk  ( k = 0,2,3, . } are interpreted
as follows. An abject  existing at t has a proba-
bility a& of dying in the time interval  [t,  t + dt)

of length dt. If it dies at any time t, the proba-
bilities are pc,,  p2,  p3, . that it is replaced by
0,2,3,.  abjects. When C&, P(t,  i, k) < 1, the
number of particles attains +m in a lïnite  time
interval with positive probability. In order that
Cg,, P(t,  i, k) = 1 for a11 ig Z:, it is necessary
and suftïcient that for each 1 >E>O, j:-,(f(u)
-u)-‘du = CO, where f(s)= &zO,jg r pjsj  for
ISI d 1.

Most of the theory of the Galton-Watson
process carries  over to the continuous case. In
particular, concerning the tlimit distribution of
X,,  more precise  results have been obtained.
(For detailed discussion of Markov branching
processes - [3,8].)

Some work has also been done on the
asymptotic behavior for temporally inhomo-
geneous cases of multitype Markov branching
processes .

E. Branching Markov Processes

We now give a systematic treatment of gen-
eral branching processes in which an abject  is
characterized by a parameter x in a +Compact
+Hausdorff  space  S with a countable open
+base.  The results are formulated in terms of
strong Markov processes. Set S” = {a},  where
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07  is an extra point. For every positive integer
n,letS”=SxSx...xS/-,where  - isthe

--Y-
tequivalence  relation given by the tpermu-
tations of coordinates. S” is compact with
respect to the tquotient  topology, and its
ttopological direct sum S = Eso S” is tlocally
compact. Let S = S U {A} be the one-point
tcompactification  of S. A point x E S is de-
notedbyx=[x,,x,,...,x,]ifxisthe+equiv-
alence class  containing (x,,  x2,.  . , x,ES”).
x = [x] is denoted simply by x. Set B(S) =
if1.f  a bounded Bore1 measurable function on
SJ, B*(S)= j.f~W)I  Ilfll cl), W)={flfa
bounded continuous function on S}, and
C*(S) = C(S) n B*(S). B(s),  C(S), . are delïned
similarly. For fcB*(S),  delïnef*EB(S)  by,[(x)=
1 ifx=& =~&,j(x,)ifx=[x,,x,  ,..., X,]E
Y, and = 0 if x =A. A +strong  Markov pro-
cess  X = {X,, P,} on S is called a branching
Markov process if its semigroup {T,}  (- 261
Markov Processes) satisfies

A
T,f(x)=(T,f),,(x)  for every XES  and

f~B*(S),
where for CJEB(S),  gis is the restriction of
g on S [10-121. We set(i) Z,=n  if X,ES”,
n=O,l,..., CO, where S” = {A}, and (ii) r =
inf{ t 1 Z,  #Z,}.  Z,  and r are called the number
of particles and the first splitting time, respec-
tively. Let X = {xc,  P,} be a strong Markov
process on S. We assume that the semigroup
{H,}  of X is a strongly continuous semigroup
on C(S). Let qot be a nonnegative continuous
tadditive functional of X. Let p,(x), n = 0,2,
3,. be a sequence of nonnegative functions
in B(S) such that CEo,,z  r p,(x) = 1. Con-
sider a sequence of stochastic kernels rt,(x, dy),
n=0,2,3,  . . . . on S x S”, i.e.,  for lïxed AEB(S”),
rt,(x, A) is a measurable function of x, and
for lïxed x it is a probability on (S”, s(p)),
where 23(S”) is the ttopological  cr-lïeld  on S”.
Set x(x,  D) = CZo,nz  1 p,(x)n,(x, D  n Sn)  for
DE!.%($,  ~ES,  where S(S) is the topological (T-
field  on S. Then there exists a unique branch-
ing Markov process X = {X,, P,} on S satisfy-
ing the following: (i) The Markov process {X,,
t < r, P,} on S obtained from X by shorten-
ing its tlifetime is equivalent to the Markov
process obtained by tkilling X at a rate d<p,
(- 261 Markov Processes). (ii) For any DE

S(S) and i>O,  E,[exp[-ir];  X,EDIX,~]=
E,[exp[-lr]IX,~]n(X,~,D) a.s.  on {r<  CO}
for every x ES. (iii) With probability one, X,  =
A for a11 t > lim,,, r,, where T,  denotes  the nth
splitting time [ 101. This process X = {X,, P,} is
referred to as the {x1, qt,  rc}-branching Markov
process .

Example l.LetS={a,,u,,...,a,};thenScan
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be identified with Z!+  and s with .??$  = Zk,  U
{  co}.  Therefore a branching Markov process X
on s is a Markov process on s+  such that its
transition probability P(t, i, j), i, jEZ!+  satisfies

c P(t, i,(j,  ,j2,.  ,j,))s{ls~.  sp
j,~j,,...,ikeZ~

=tii (j j, .Cj  EZ$
P(L  e,, (j,  A, . J,))

I!  . rIr

P(t, CO, 10)=  1 for i=(i,,i,,  . . . . &)EZ$,

s=(s1,s2  ,...)  +JE&.

Then the process X is called a multi (Q-type
Markov brancbing process.

Example  2. Let S = [0, CO],  k(x) be a non-
negative locally integrable function on [0, CO),
and p,(x), n = 0, 1, , be a sequence of non-
negative measurable functions on [0, CO) such
that CzOp,(x)=  1 and pl(x)=O.  We extend
k(x) and p,(x) (n f2) as functions on [0, m]  by
setting them to  0 at CO, and set p2(  CO) = 1.
Define a stochastic kernel z(x, dy) on S x s by

~~~Pn(x)S![o.“,....ol!  (DnS”)
7l(x,  D) =

i’ -
II

if x E [0, m),

Let X = {xc,  P,}  be the uniform motion on S
with the semigroup {H,}  such that for foc,
H,f(x)  =f(x+t)  if XE[~,  CO) and =f(co)  if
x = GO.  Set <Pu  = j& k(x,) ds. Then we have a
{xt,  <pt,  n}-branching Markov process, and we
cal1 it an age-dependent brancbing process.

We now discuss some fundamental prop-
erties of {x~, <pt,  n}-branching Markov pro-
cesses. For the sake of simplicity  we assume
the following: (i) cp,=&  k(x,Jds,  kEC+(S)=
{f~C(S)lfaO},  (ii) p,(x)~c’(S)  and

for DE~~(S”).  Then {T,}  is a strongly con-
tinuous semigroup on C,(S) = {foc 1
lim,,,f(x)=O}.  Let A be the tinfïnitesimal
generator of {H,}  (- 261 Markov Processes)
and s(A)  be the domain  of A. If fcg(A)n
C*(S), then u(t,x)=(T,f),s(x)~~(A),  and it
satisfies i?u/Ot = Au + k (F(  .; u) - u),  ~(0 +,x)  =
f(x),  where fXx;d=~g~(y)~(x,dy)  ClOl.

Let &’  be the space of all nonnegative
+Radon  measures on S and &&,  be the sub-
space of &’  consisting of a11 probability Radon
measures on S endowed with the topology of
tweak convergence. Set .,&’ = AU  {LT},  where 6
is an extra point and &= [0, CO]  x A0. Delïne
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a mappingp:.~3(Â,A,)Hp(À,~,)E~  by
p(;i,  A.,,)  = & if i, < CO  and = 6 if i = CO, and
deiïne the topology of .A as the strongest of a11
the topologies rendering p continuous.  Set
C++(S)={feC(S)lf>O},  and for foc”,
detïne a function Q,-(i)  on &? by Qf(L)  =
exp[-(&f)]ifiE.Aand  =OifÂ=&where
(4 f) = JsfbP(dxl consider a mapping $ : s-,
&? defïned by $(x)=  0 if x = û,  = xkzl hixxl if
x=[xl,x,,... ,x,]ES”,  and =6  ifx=A. Let
&‘p  be the subspace of .g consisting of a11 non-
negative integer-valued  Radon measures on S,
i.e.,  ~~={$(X)[XE~}.  We denote by 9 the
space of a11 right-continuous mappings v:
[0, ,)-tAp  whose discontinuities are at most
of the fïrst kind and such that v, =.a for t >
s if v, = 6. Consider a branching Markov
process {X,, P,}, and let P@,  be the tprob-
ability law on 9 of the stochastic process
{vt=$(X,);O< t<  co} with X,=x, where px=
$(x). Then the branching property cari  be
rewritten as follows:  For every t>O, feC”(S)
and pl,  AGEJ@‘~,  E,1+1<2CexpC-(v,,f)ll=
E,lCexpl-(v,,S)llE,,CexPC-(v,,f)ll  (-
Silverstein, Z. Wahrscheinlichkeitstheorie und
Verw.  Gebiete, 9 (1968); for a treatment of
branching processes in the framework of
tmartingale  problems  - Holley and Stroock,
PL&.  Res. Inst. Math. Sci.,  14 (1978)).

There are analogous processes which pre-
serve the basic features of the branching
property. A Markov process {  pLt,  P,,) on l
with S as a +trap  is called a continuous-state
brancbing process if it satistïes the property
that for every t>O,fcC++(S),  and pL1, p2sh4,
E,,+,,CexpC-(~,,f)ll=E,,CexpC-(~Lt~f)ll
EIlx[exp[ -(p,,f)]].  This concept was intro-
duced by Jiiina [ 151  for some special  cases.
For further information - Jifina (Third
Prague Con$,  1964),  Lamperti (Bull. Amer.
Math. Soc., 73 (1967)),  Watanabe (J.  Math.
Kyoto Univ., 8 (1968)),  and Fujimagari and
Motoo (Kôdai Math. Sem. Rep., 23 (1971)).
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Brownian Motion

A. General Remarks

R. Brown, an English botanist, observed in
1827 that the minute particles comprising the
pollen of plants, when suspended in water,
exhibit peculiarly erratic  movements [ 11.  The
physical explanation of this phenomenon is
that haphazard impulses are given to the sus-
pended particles by collisions with molecules
of the fluid. Let X(t) be the x-coordinate of a
particle at time t.  Then X(t) is treated as a
trandom  variable, and the distribution of X(t)
-X(s) is a tnormal  distribution N(O,Dlt-si),
with +mean  0 and tvariance  D 1 t -s 1,  where D
is a positive constant. TO be more exact, such
a family of random variables {X(t)} is now
considered as the family of random variables
determining a tstochastic process. Various
aspects of the theory were analyzed by A.
Einstein [2], L. Bachelier, N. Wiener, P. Lévy,
and others.
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B. Wiener Processes

Let T be the real line R’ or a subinterval. A
tstochastic process {X(t)},,, delïned on a
tprobability  space  (Q 23,  P) is called a Wiener
process on Rd  if it satislïes the following three
conditions: (1) X(~,W)ER~  (tu  T,coE~). (2) The
Rd-valued random variables X(t,),  X(ti)-
X(t,-,),  j = 2,3, , n, are tindependent  for
anyt,<t,<...<t,,liET(j=1,2  ,..., n),where
n is an arbitrary positive integer. (3) If Xi(t)  is
the ith component  of the vector X(t), then the
{Xi(t)}tET  (1 < i < d) are independent as sto-
chastic processes and every increment Xi(t)

-X,(s)  is normally distributed with mean 0
and variante  1 t-s/.  A Wiener process is also
called a Brownian motion. A Wiener process
is a Qemporary homogeneous additive pro-
cess.  A tseparable Wiener process has continu-
ous  paths with probability 1. Conversely, if
{X(t)}c,,.  is a temporary homogeneous addi-
tive process on R1  whose tsample function is
continuous with probability 1 and the incre-
ment X(t) - X(s) has mean 0 and variante
1 t -SI,  then it is a Wiener process (- 407 Sto-
chastic Processes, 406 Stochastic Differential
Equations). Let {%}1,,  be an tincreasing
family of o-subfields of 23. We assume that
{et>  is right continuous. A d-dimensional
continuous process X=(X(t)),,,,, is called a
d-dimensional {F,}-Brownian  motion if it is
+{  z}-adapted  and satisiïes

a.s.  for every tsRd, O<S<~

where 151  denotes  the tnorm of teRd  [9]. Then
X satislïes conditions (l)-(3)  mentioned above,
and hence it is a Brownian motion on Rd  (-
406 Stochastic Differential Equations).

Let {XI<(w)}  (k=O, 1, . ..) be a sequence of
independent random variables delïned on a
probability space  (fi,!-&  P) such that each X,
has the normal distribution N(O,  1) with mean
0 and variante  1. Then the series

converges uniformly in t E T with probability 1,
and its limit, denoted by X(t,  w), is a Wiener
process [3,10].

Let Wd= C( [0, ~o)-tR~)  be the space  of a11
continuous functions w: [0, a)+Rd  endowed
with the topology of uniform convergence on
lïnite  intervals and d( Wd) be the ttopological
a-field. Let X=(X(t)),,,,, be a Brownian
motion on Rd  and p be the probability law of
X(0). The probability law Px of the Brownian
motion X on ( Wd, %(  W”))  is called the d-
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dimensional Wiener measure with the initial
distribution p [9,11,12].  For a probability p
on (Rd, d(Rd)) the d-dimensional Wiener mea-
sure P, with the initial distribution p is a prob-
ability on ( Wd, 23(  Wd)) characterized by the
property that for every 0 = t, < t,  < < t,  and
AjEB(Rd),j=1,2  ,..., n,

where %(Rd)  denotes the topological a-tïeld on
R d .

C. Brownian Motion as a Diffusion Process

In terms of the general framework of +Markov
processes, Brownian motion is a typical exam-
ple of a diffusion process (- 115 Diffusion Pro-
cesses). Let X = {X,(w), Rd, P,} be a continuous
Markov process on Rd  (- 26 1 Markov Pro-
cesses) with the ttransition  probability

P(t,x,B)=
s.  d’2  ( l 2>

(271t)-  e x p  -2tlx-yI dy,

t > 0, XER~, BEN.

For each XE Rd, the process {X,(w), P,} is a
Wiener process in the sense mentioned above.
The Markov process X, which is a collection
of Wiener processes {X,, P,} starting at x, is
said to be a d-dimensional Brownian motion. A
d-dimensional Brownian motion possesses the
tstrong Markov property. Let 8 be the +gen-
erator of the tsemigroup  T,  corresponding to
X. A bounded uniformly continuous function
f defined on Rd  belongs to the domain  of (li if
its partial derivatives dflax,  and a2f/axidxj,  i,j
= 1,2,  . d, are bounded and uniformly con-
tinuous. For such a function f we have @if(x)
=(1/2)Af(x), where A is the tlaplacian  [S, 121.

D. Brownian Motions and Potentials

For cc  > 0, the function G,(x) detïned by

is said to be the cc-order Green%  function.
Since Brownian motion is tnonrecurrent  for
d > 3, the limit G,+(x)=lim,,,  G=(x),  XER~,
exists for 2 3, and G,+(x) is equal to K,(x) =
(T(d/2  - 1)/47rd”)lx  1 md’2, which is the kernel
for the +Newtonian  potentials. Brownian
motion is trecurrent  when d < 2 and G,+(x) =
fco,  XER~.  In this case, K,(x) is defmed by

U4 = limalo(W)  - GhJ), and  K,(x)  =
(1/2n)log(l/lxl),  when d=2 and 1x01=  1.
This is the kernel for the tlogarithmic  poten-
tials. When d = 1 and x0 = 0, K,(x) = -(x1/2.
Using this relationship, we cari  express many
concepts of classical potential theory in an
elegant form in probability language. Let
X = {X(t), P,} be the d-dimensional Brown-
ian motion. Given a set A, set a, = inf{t  1 t >
0, X(~)E  A}, where the infimum over the
empty set is understood to be +co. Then a, is
called the thitting time of X for the set A (-
261 Markov Processes). For a Green domain
(i.e., a domain  which is a +Green  space)  D  in
Rd  (d 2 2),  set 2gD(t,  x, y)dy = P,(X(t)~dy,  o,,>
t),  x, y~  D. Then the right-hand side  of this
equation is the ttransition  probability of the
Brownian motion on D with the tabsorbing
barrier dD. Then GD(x,  y) =JO gD(t,  x, y)dt  is
Green’s  function of D. If B is a compact sub-
set of a Green domain  D  or an open subset
with compact closure Bc  D, then the hitting
probability p(x) = P,(G~  < crJ is the equilib-
rium potential of B  relative to D.

Suppose A is an tanalytic subset of Rd.
+Blumenthal’s  O-l law implies that P,(a,  = 0)
= 1 or 0. The point x is said to be regular for
A if this probability is 1 and irregular for A
otherwise. Let B be a compact subset in Rd
(d > 2). Then +Wiener’s  test (- 120 Dirichlet
Problem) states that x is regular or irregular
for B according as the following series diverge
or converge:

f 2k’d-2’C(B,), d 2 3,
k=l

kz,  kC(Bk), d=2,

where C(B,) is the +Newtonian  capacity (the
logarithmic capacity relative to a bounded
domain  when d = 2) of the set B, = {y 1 2-(k+1)<
ly-x1-~2-~}flB[12].SupposeDisabounded
domain  in Rd  (d > 2). A point x E aD  is regular
or irregular for Rd  -D according as x is regu-
lar or irregular in the sense of the +Dirichlet
problem for D. Given a continuous boundary
function f on aD,  u(x) = E,(f(X(a,,)) is the
solution of the generalized Dirichlet problem
for D. Given ~ED,  the distribution !I(X,  B)=
P,(X(~,,)EB)  (B~23(aD))  used in the solution
u(x) = j&y)h(x,  dy) of the generalized Diri-
chlet problem is the tharmonic  measure of aD
as viewed from x.

E. 1-Dimensional  Brownian Motion

In his monograph [6], P. Lévy gave a pro-
found description of the fine  structure of the
individual 1-dimensional Brownian path
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jX(t,w)},,,.  Let us set

a, = the hitting time to the point a in R’,

and

Yz(L  4 =
{

X(4 o), t < % (4,
X(t,  CO)-  m(t, w), t 2 ql(w).

Then we have (1) P,(M(t)>a)=2P,,(M(t)>
a,X(t)>a)=2P,(M(t)>a,X(t)<a)=
P,,(lX(t)l  >a)  (reflection principle  of D.André).
(2) The stochastic process {a,,  Og a < CO, P,}
is a +one-sided  stable process with exponent
1/2, that is, it is additive and homogeneous
with the law

Po(o*-~~~t)=Po(~*-,~t)

=J
’ b-a -(h-o)*/ZsdS
OJGe ’

O<a<b, t>o.

(3) Let cp-‘(t,w)  be the right continuous in-
verse function of

where xro, mJ(  .) is the tindicator  function of the
interval [0, CO).  Set Y,(t,W)=X(cp-‘(t,w),o).
Then the four processes { x(t,  w), O<  t < CO, Px}
(XE[~,  CO),  O<i<3)  on [0, CO) have the same
probability law. Each of them is a diffusion
process with transition probability

P(L  x, B)

and is said to be a Brownian motion on [0, ~0)
with a treflecting barrier at the origin. (4) As a
consequence  of (3), if X(0, w) = 0 as.,  then, for
fxed t,  M(t), -m(t), and yi(t)(O<i<3)  have a
common  distribution. For example,

2=J-rct J cc
e -*2/2r& a > 0,

a

P,(X(t)Eda,M(t)Edb)

ZZZ (2h-a)e-‘2b-““‘2’dadb, O<a<b.

(5) The diffusion process {X(t,  w), 0 < t < cr0,  P,}
(x E (0,10))  obtained from a 1-dimensional
Brownian motion by shortening its tlifetime is
called a Brownian motion on (0, CO) with an
tabsorbing  barrier at the origin, and its tran-
sition probability is given by

BEWCO,  oo)), t > 0, XE(0,  CO).

The arcsin  law is valid for many functionals
of 1-dimensional Brownian motion. For
example,

(s
f

pli 0
%ra,.~(X(J,o)ldr40)=~arcsin~,

o<o<t,

P0(7,(o)<s)=(2/7c)arcsinJslt, O<s<t,

where ~,(w)=sup{sIX(s,w)=O,  O<S<~}.
The visiting set Z(w)=  {tJX(t,o)=O}  of a

Brownian path is a ttotally disconnected
set. Its +Lebesgue  measure is 0, and the
+Hausdorff-Besikovich dimension number of
S?(w)  is 1/2.

Consider a l-dimensional  Wiener process
{X(nJOQt<m starting at the origin. Let us set

1 0
40)=

t = 0,
tx(l/t)  t>o,

and

B2(t)=cX(t/c2), t>O,  (c>O).

Then the stochastic processes {Bl(t)}oGt<m
and jB2W104t<m are likewise 1-dimensional
Wiener processes starting at the origin. Hence
the properties of the Wiener process starting at
the origin in a neighborhood of t = 0 (t = CO)
cari  be obtained from those in a neighborhood
of t=m  (t=O).

F. d-Dimensional Brownian Motion

Almost all paths of d-dimensional Brown-
ian motion are continuous but are not of
tbounded  variation on any finite  interval.
Accordingly, they cannot  have lengths. A
positive, continuous, increasing function <p
defïned on [to, CO) with t, > 0 is said to belong
to tbe upper (lower) class  witb respect to local
continuity  if PO((inf{t  ((X(t,w)(>Jt  <p(l/t),  t>
0}) > 0) = 1 (0). Kolmogorov’s test states that
cp  belongs to the upper class or to the lower
class with respect to local continuity according
as

J m
l. t~i(<p(t))de-<p2”“2dt
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converges or diverges. For example,

&)=(2log,,, t +(d+2)logc,,t  + 2log,,,t  + .

belongs to the upper or lower class with re-
spect to local continuity according as 6 > 0 or
6~0,  where log,,,t=loglog(,-,,t and log(,)t=
log  t.  The law of the iterated logarithm for l-
dimensional Brownian motion,

P0  limsup
(

IXk4-X(s,4 =l  =l,
f-s J21t-slloglogl/lt-si >

is a special case of this example. For the case d
= 1, consider the space-time Brownian motion
{(-t,X(t)),P,}. SetD,={(s,x)I  -llt,dsdO,
fi cp(-l/s)<x<  m}.  Then O=(O,O) is a
regular point of D, or an irregular point of D,
for the space-time Brownian motion accord-
ing as <p  belongs to the lower or upper class
with respect to local continuity. (- 261 Mar-
kov Processes). Thus Kolmogorov’s test is the
Wiener test for space-time Brownian motion.
Let tj  be a positive, continuous decreasing
function defïned on [to, CO) with t, > 0. Then

PO
((

inf{tIIX(t,w)l<~lCl(l/t),t>O}  >O
> >

=0 or 1.

We have

s

“1
when d > 3,

10
$$(t))“-*dt  = 03  or < CO

and

s

cc dt
f” ~l~WW)l

=coor<co when d = 2.

TO describe uniform continuity of a path on
the interval [0, 11,  take a positive, continuous
increasing function ti  detïned on [to, CO) with
t, > 0 and set <p(t)  = 4 ti( l/t). Then tj  is said
to helong to the Upper  class with respect to
uniform continuity if almost a11 paths X(t,  w)
(06  t < 1) satisfy the +Lipschitz  condition rela-
tive to <p,  that is, for almost a11 w  there exists
an E(W) > 0 such that 0 < 1 t-si <E(W)  implies
IX(t,w)-X(s,co)I<cp(lt-si).  And $ is said to
belong to the lower class with respect to uni-
form continuity if almost a11 paths X(t, w)
(0 < t < 1) do not satisfy the Lipschitz condition
relative to <p.  Then tj  belongs to the Upper  or
lower class with respect to uniform continuity
according as

converges or diverges [ 161. For example,

$(t)=(2logt  +(d +4)log,,,  t + 2log,,,t  + .

+2logc,-,,  t+(2+6)log,,,  tp2

belongs to the Upper  or lower class with re-
spect to uniform continuity according as 6 > 0
or 6 GO. The following theorem on the uni-
form continuity of 1-dimensional Brownian
motion is a special case of this criterion:

P0  limsup

i

IXk~)-X(S,4 = 1  =l.
It-si-0

OGC,S41
J21t-sllogl/lt-SI

‘1

Now we state some other properties of
Brownian paths. Let A be a set of zero touter
capacity in Rd  (d > 2). Then P,(X(t)E A for
some t > 0) = 0 for any x E Rd. Let A be a plane
set with positive tinner capacity.  Then P,(X(t)
E A for intïnitely many t larger than any given
s > 0) = 1 for any x E R2. With probability 1,
the Lebesgue measure of the set {X(t, w)  10 <
t < co} in Rd  is zero for d 2 2. With proba-
bility 1 this set is everywhere dense in R2
when d = 2 and nowhere dense in Rd  when
d 2 3 [ 13,15,17]. Almost a11 2-dimensional
Brownian paths have k-fold multiple points
for any integer k > 2. In the 3-dimensional
case, almost a11 paths have tdouble points but
cannot  have any triple point. In the d( > 4)-
dimensional case, almost a11 paths have no
double point [18&20].

G. Itô’s Formula and Brownian Local Time

The following formula of Itô [21] is of funda-
mental importance in the theory of stochastic
processes .

Itô’s formula. Let X={X(t) =(X,(t), X2(t),
“‘> X,(t)),  P,} be a d-dimensional Brownian
motion and ,f(x) =f(xl , xî, . . , xd) be a C2-
function delïned on Rd. Let us set <p(t) =
f(X(t))-f(X(0)).  Then {cp(t)},,,  is a continu-
ous  tadditive functional of the Brownian mo-
tion X (- 261 Markov Processes), and we
have

where the fïrst  term in the right-hand side  is a
tstochastic integral with respect to the Brown-
ian motion X [22] (- 406 Stochastic Differ-
ential Equations). In particular, if f is a C3-
function defïned on Rd, Itô’s  formula cari  be
rewritten as

f(x(t))  -m(o))  =

where the right-hand side  is a stochastic inte-
gral of the +Stratonovich type with respect to
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the Brownian motion X [9] (- 406 Stochastic
Differential Equations).

Consider a 1-dimensional Brownian motion
X = (X(t), P,}.  By the local time or the sojourn
time density of X we mean a family of non-
negative random variables {cp(t,x)}  (tu  [0, CO),
XER’) such that, with probability 1, the fol-
lowing holds:
(a) the mapping [0, CO) x R’s(t,x)~<~(t,x)~Rl
is continuous,
(b) for every Bore1 subset A of R’  and t > 0,

s

t
xa(X(s))ds=2  q(t,x)dx.

0 sA

The notion of the local time of Brownian
motion was first  introduced by Lévy [6]. The
family of random variables { <p(t,  x)} (t  > 0,
XE R’) defmed by

q(t,x)=(X(t)-x)+-(X(0)-x)+

s

r
- x(x, ,,(X(s))dX(s)

0

satistïes properties (a) and (b) mentioned above
and hence it is a local time [9,22]. Here a+ is
the bigger of a and 0. It is clear that the local
time cp(t,  x) of X is given by

for every XGR’,  t>O.

Furthermore, we have

and

p. limsupl<p(~~~)-~(~~O)l
( 610 JiKggjz

<2&3 =l.
>

Lévy [6] studied the fine structure of the local
time. Define the visiting sets ?Z”+  = {t)  Yo(t,w)
=0} and T-={tl  YI(fw)=O}, where Y,(t,w)
and Y, (t,  w) are the stochastic processes de-
fined in Section E above. Then we have

P. I&i,:
(\i

7 x [the number of flat stretches of

M(s,w)  (O<S<~) of length >E] =M(t,w),

tgo  =l.
>

Since the two diffusion processes X+  =
{Y,(t),Ogt<oo,P,}andX~={Y,(t),O~t<
00, P,}  define the same probability law on
W( [0, a)),  there exists a functional <~+(t,  w)  of
X +  corresponding to M(t,  w) of X -.  Here,
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W( [0, CO))  denotes the space  of all continuous
functions w: [0, CO)+CO,  CO).  The flat stretches
of the graph of cp’(t,  w) are the open intervals

Then we have

x [the number of intervals

Z,,cCO,t)oflength  >~]=cp+(t,w),t>O
>

=1.

Furthermore, we have

x [the total length of the inter-

vals .Z?k“”  c [0, t)  of length CE]  = <p  ‘(t,  w),

tao =1
>

and

Po($y2vJ-~ xco,d y,(~,  4)ds

=cp+(t,w),t>O
>

= 1.

Let d,(t,  w) be the number of times that the
reflecting Brownian path Yo(s,  w) crosses down
from E  > 0 to 0 before time t.  Then

C;O&d,(t,O)=V)+(t,W),t~O
>

=l.

H. Flows and Random Distributions

The flow  derived from the 1-dimensional
Wiener process {X,} -m(t<a is +Kolmogorov’s
flow. It has tmixing  properties of a11 orders
and is tergodic  (- 136 Ergodic Theory, 39.5
Stationary Processes). The tstationary  process
with independent values at every point corre-
sponding to the tcharacteristic  functional

on the +Schwartz  space  Y defines the same
probability law with the stationary process
obtained by differentiation of the Wiener
process in the tdistribution  sense [23] (-
395 Stationary Processes, 407 Stochastic
Processes) .

1. General izat ions  of  Brownian Motion

In addition to the Brownian motion described
above, there are several stochastic processes
that are also called Brownian motion. A Gauss-
ian system {X(CI)},,~N  defined on a proba-
bility space  (Q, 8, P) is said to be a Brownian
motion witb an IV-dimensional  time parameter
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if(i) E(X(a))=O,  (ii) E(X(a)X(b))=~(jal+
lb/-la-bl),(iii)P(X(O)=O)=l.  Leta*bethe
tspherical inversion of a E RN with respect to
the unit sphere. Set X*(a)=lulX(a*)  (a#O)
and X*(O) = 0. Then {X*(a)JosR~  defines the
same probability law with a Brownian mo-
tion with an N-dimensional time parameter.
Almost a11 paths of a Brownian motion with
an N-dimensional  time parameter are con-
tinuous. A positive, continuous, increasing
function cp  detïned  on [to,  CO) with t,  >O  is said
to belong to the Upper  (lower) class with re-
spect to local continuity if the probability
that the closure of the set {a  1 IX(a,  w)l > fi
<p(  l/lal),  la1  >O}  contains the origin 0 is equal
to 0 (1). Then <p  belongs to the Upper  or lower
class with respect to local continuity according
as the integral

s

r*  1
f.  ,km 2N-le-<p2W/2&

converges or diverges. For example,

&)=(2log,,,t+(2N+  l)logo,t+210g~,,t+

+210g~,-,,t+(2+6)log~“,t)1’2

belongs to the Upper  or lower class with re-
spect to local continuity according as 6 > 0 or
6 < 0. As a special case, we have

P limsup
(

IX(4  41
a-0 Jmlwog  lll4

=1 =l.
>

Take a positive, continuous increasing func-
tion <p  defined on [t,, CO) with t, > 0, and set
$(t)  = 4 <p(  l/t). If almost all paths X(a, w)
(la1 < 1) satisfy the Lipschitz condition relative
to $(t), then <p  is said to belong to the Upper
class with respect to uniform continuity. It is
said to belong to the lower class with respect
to uniform continuity if, with probability 1,
these paths do not satisfy the Lipschitz con-
dition relative to +(t). Then <p  belongs to the
Upper  or lower class with respect to uniform
continuity according as

s

CO
tN~‘(<p(t))4N~‘e-<p2(1)/2dt

‘0

converges or diverges (T. Sirao, Nagoya Math.

J., 17 (1960)). For example,

q(t)  = (2Nlog t + (4N  + l)logc,,  t + 2 log,,,  t

+...+2log~,~,,t+(2+6)log~“,t)“2

belongs to the Upper  or lower class with re-
spect to uniform continuity according as 6 > 0
or 6 < 0. As a special case,

P Ix(a,  WI-X@,  ~11
,r~i_u.llbfb,~lv/2Nla-bllogl/lu-bl

El cl
>
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(For general information about  Brownian
motion with a multidimensional time para-
meter - P. Lévy [6] and H. P. McKean,
Theory  of Prob. Appl.  8 (1963).)

Let X(t) be a Wiener process. L. S. Ornstein
and G. E. Uhlenbeck based their investigation
of the irregular movements of small particles
immersed in a liquid on Langevin’s equation

du(t)=  -xU(t)dt+bdX(t),

where U(t)  is the velocity of a particle. The
fïrst  term on the right-hand side  of this tsto-
chastic differential equation (- 406 Stochastic
Differential Equations) is due to frictional
resistance or its analog, which is thought to be
proportional to the velocity. The second term
represents random external force. The station-
ary solution of this equation is given by

r/(t)  =
s

’ flemgcfm”)dX(u).
-CU

The stochastic process {U(t)}-,,t<a> is a
stationary +Gaussian  Markov process with
covariance function y(t)  = (~2/2a)e~“~r’.  This
process is called Ornstein-Uhlenheck Brownian
motion [24] (- 176 Gaussian Processes).

Brownian motion has been defined on state
spaces that are +Riemannian spaces or +Lie
groups, and its properties are being investi-
gated (- 5 Additive Processes, 115 Diffusion
Processes).
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46 (X.32)
Calculus  of Variations

A. General Remarks

One of the lïrst abjects of differential calculus
was to systematize the theory of the extrema
of functions of a lïnite number of indepen-
dent variables. In the calculus  of variations
we consider functionals (i.e.,  real-valued or
complex-valued functions delïned on a func-
tion space  {u} consisting of functions delïned
on a certain domain  B), originally SO named
by J. Hadamard. Such a functional is denoted
by J[u  1 B]  (or simply J[u]).  A function u,
which is considered an independent variable of
the functional, is called an argument function
(or admissible function).

Concrete examples of functionals are the
length of a curve y =f(x) and the area of a
surface z = z(x, y), which are expressed by

LCyl=
s

x1  Jmdx
x0

and

S[z]  = Jwdxdy,

respectively. Furthermore, consider a curve y =
y(x) connecting two given points (x,, y0)  and
(x1,  y,) with y, >y,. The time in which a parti-
cle slides down without friction from (x,, y,,)
to (xi,  yl) along this curve under constant
gravity acting in the direction of the positive
y-axis is expressed by the functional

JCyl=k s x’,,h1 +y’2My-.v,)dx~
x0

k constant. (1)

Let F( . . . ) be a known real-valued function
that depends on a certain number of indepen-
dent variables and on argument functions of
these variables, together with derivatives of
these functions up to a certain order. Then a
typical problem in the calculus  of variations is
formulated as an extremal problem of a func-
tional that is expressed by the integral with
F( . . . ) as the integrand, for example,

s

Xl
J[u]  = F(x, u(x), u’(x), . . ,ucm)(x))dx,

x0

J[u,  u]  =
S S

F(x, Y>  4x, Y),  4, uy,  ‘. 2
B

4x,  Y),  u,,  qc . . . 1  dx  dy.
For instance, a curve minimizing (1) is the
curve of steepest descent.

In extremal problems, suitable boundary
conditions cari  be assigned to argument func-

tions. On the other hand, there are so-called
conditional problems in tbe calculus  of vari-
ations. A typical example of this sort is the
tisoperimetric problem, i.e.,  the determination
of the curve that bounds a domain  with maxi-
mal area  among a11 curves on a plane with
given length. In general, an extremal problem
of a functional under a subsidiary condition
that the value of another given functional
remain lïxed is called a generalized isoperi-
metric problem. In addition to these, there are
Lagrange’s problem, in which a fmiteness
condition is imposed, and Hilbert’s problem, in
which a condition consisting of differential
equations is imposed.

The birth of the calculus  of variations was
almost simultaneous with that of differential
and integral calculus. Johann Bernoulli, Jakob
Bernoulli, L. Euler, and others had dealt with
several concrete problems of the calculus  of
variations when in 1760, J. L. Lagrange intro-
duced a general method of dealing with vari-
ational problems connected  with mechanics.
Then an equation bearing the name of Euler
or Lagrange was introduced.

B. Euler’s Equation

As an example, consider the simplest vari-
ational problem

JKYI  =
s

X1 F(x,  y(x), y’(x))dx = min. (2)
x0

Let the boundary condition y(xO)  = y,, y(xr)
=y, be assigned to the argument function
y(x). Consider a family of admissible functions
Y(x;~)=y(x)+q(x),  where q(x) is any lïxed
function vanishing at both endpoints and
E is a parameter. If y(x) gives the minimum
of J[y],  then the function of E, J[  Y], must
attain a minimum for E = 0. The condition
(aJ[  Y]/&),,, = 0 is written in the form

by taking into account  the boundary con-
dition. By making use of the arbitrariness of
n(x),  we conclude  that

holds, in view of the following lemma: Let C~(X)
be continuous  in [x0, xi] and q(x) be a func-
tion of class  CP that satislïes q(xO)  = q’(x,)=  . .
=~‘~‘(x~)=o,~(x,)=~‘(x~)=...=~‘~’(x,)=o
(O<q<p).  If &q(x)cp(x)dx=O  holds for any
such q(x),  then cp(x)=O.  (Here class CP cari  be
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replaced by class  C” when 4 is supposed finite.
If VE C”, then q = CO  is admitted.) This is called
the fundamental lemma in the calculus  of vari-
ations. We cal1 (3) the Euler-Lagrange differ-
ential equation (or Euler’s  equation for the
extremal problem). Since this equation is of
the second order, y(x) cari  be determined by
means of the boundary condition.

The quantity [F],=Fy-$F,,  contained  in

equation (3) is called the variational derivative
of F with respect to y. Furthermore, 6y  = r&
and 6J = (&r  [ Y]/&),,, dc  are called the first
variations of the argument function y and of
the functional J[y],  respectively. If n(x) is not
subject to the condition that it must vanish at
the endpoints, then the lïrst  variation of J
becomes

x’6J=
s

[F],Gydx+  [F,Ay];;.
x0

In comparison  with an ordinary extremal
problem f(xi, ,x,)  = min in differential
calculus, [F],  and 6J correspond to gradfand
dA  respectively. In general, a solution of the
Euler-Lagrange differential equation [F],  =0
is called a stationary function for the vari-
ational problem, and its graph is called a
stationary curve.

For a variational problem involving several
argument functions, we have only to Write  the
system of Euler-Lagrange differential equa-
tions corresponding to them. For a problem

s

XI
J[y]= F(x,y,y’,...,  y(“))dx=min

x0

whose integrand involves derivatives of higher
orders of an argument function, the Euler-
Lagrange differential equation is

[F],= t (-l)$$=O.
p=o

For a problem involving a double integral

J[u]  =
S S

F(x, y, u,  u,, y,)dx  dy  = min,
B

the equation is

For a generalized isoperimetric problem, for
example J[y]  = min, K [y] = c, the Euler-
Lagrange equation becomes

[F+AC],=0

with the so-called Lagrange multiplier 1,  where
F and G denote the integrands of J and K,
respectively. Two integration constants con-
tained in a general solution of this differential
equation of the second order and an undeter-

mined constant 1 cari be determined, for in-
stance, by the boundary condition y(~,) = y,,
y(xi) = y, and a subsidiary condition K [y] = c.
As an example, for the classical proper isoperi-
metric problem F = y, G = d+y’z,  the equa-
tion is 1 - n(y’/Jm)‘=  0, which after
integration leads to (x -a)’  + (y - /3)’ = 1’
(- 228 Isoperimetric Problems).

Besides the case of fixed endpoints, there is
a boundary condition, for instance, that an
endpoint (xi,  y,) of the argument function
y = y(x) must lie on a given curve T(x, y) = 0.
For the case of such a movable endpoint, the
extremal function is subject to the condition of
transversality,

(F-y’F,~)T,-F,.T,=O,  x=x1.

C. Suffïcient  Conditions

A. M. Legendre  introduced the notion of the
second variation, corresponding to differential
quotients of the second order in differential
calculus, in order to discuss sufhcient con-
ditions. Concerning the simplest problem (2),
the inequality F,,,(x,  y,(x), y;(x)) 2 0 is neces-
sary in order for y,(x)  to give the minimum.
Conversely, the inequality Fr.,,,  > 0 and Jacobi’s
condition (which is stated below) imply that
y = yo gives a weak minimum. Here “weak
minimum” means the minimum when a family
of admissible functions { 1 y - y, 1 < E, 1 y’ - yO  l<
E} is considered a neighborhood of y,.

Jacobi’s  condition: Let u be a solution of a
linear ordinary differential equation of the
second order,

u(xo)  = 0;

then the smallest zero of u that is greater than
x0  (i.e.,  the conjugate  point of x0)  is greater
than the right endpoint xi.

K. Weierstrass derived suflïcient conditions
for a strong minimum by extending the range
of admissible functions to { 1 y -y,  1 CE}.  Re-
sults that were obtained until about  that time
constitute the content of what is usually called
the classical theory of the calculus  of variations.

If for the variations problem (2) there exists
a unique curve through every point in a do-
main on the xy-plane that belongs to a one-
parameter family of stationary curves of the
functional

JCYI  =
s

x1
Fb,  Y, Y’W,

x0

then the domain  is called a fïeld  of stationary
curves.  Let the parameter value of the curve
through a point (x, y) in such a family of
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stationary curves y = cp(x;  a) be denoted by c(
= 6 Y). The dope  P(X,  Y)  = Cdx;  ~)l,=,~,,y~  is
called the slope of the tïeld at the point (x, y)
or, by regarding x, y as variables, the slope
function of the fïeld.  The value of a curvilinear
integral

k=rCYl

= (F(X,Y,P)-(Y’-P)F,,(X,Y,P))dX
sc

is then determined and depends only on the
two endpoints of the curve C. We cal1 Ic
Hilbert’s invariant integral. In view of the
property mentioned above, we cari  denote the
value of the functional J for a function y = y(x)
representing a curve C by Jc. Then any admis-
sible curve C that passes through a tïeld em-
bedding a stationary curve C, satislïes

O<AJ=J,-Jco=  &(x,y;p,y’)dx.
sc

Here

4%  y;  P, Y’)

=~(x,Y,Y’)-~(x,Y,p)-(Y’-P)~,~(x,Y,P)

is the &-function  introduced by Weierstrass.
For C, to give the minimum of J[y],  it suffices
that 8 > 0 hold for every point (x, y) in. the fïeld
and every value y’ (- 279 Morse Theory).

D. Optimal Control

Let a system of differential equations

dxi/dt  =fi(xl, . . > x,; u,,  , uk),

(U 1,  . ..) u&R; xi&J=xi, i= 1, . ..) n, (4)

be given, where ui, . . , uk are parameters. In
general, a problem of optimal control is to
determine uj  = uj(t) (t,,  < t < ri) such that the
value of a functional

fl
J[u]  =

s
F(x,,  . . . . x,;u,, . . . . u,)dt

‘0

assumes a minimum, where xi(t) are the solu-
tions of (4) and are considered functions in
ui, . . . , uk, and t. Such a problem is a kind of
conditional variational problem. But since the
existence region of u is restricted, certain con-
ditions in the form of inequalities are imposed,
and furthermore u is not necessarily continu-
ous,  and in many cases the problem cannot
be treated within the classical theory of the
calculus  of variations (- 86 Control Theory).

E. The Direct Method in the Calculus  of
Variations

In mathematical physics tvariational  principles
are derived from discussions of forma1 corre-
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spondence between a functional J[u]  to be
minimized and Euler’s equation for J[u].  This
is certainly one of the important methods in
the calculus  of variations, but it is also possible
to investigate a stationary function u,,  on the
basis of its stationary character and indepen-
dently of Euler’s equation. This is called the
direct method in the calculus  of variations. It
plays  an important role in the theoretical
treatment of the existence and uniqueness of
solutions, and it is also significant  as a tech-
nique for approximate or numerical solutions.
When a differential equation is given inde-
pendently of the calculus  of variations, it is
possible to apply the direct method if a func-
tional whose Euler’s equation is the given
differential equation cari be constructed.

Let D  be a bounded domain  in m-
dimensional space  and ~EL,(D)  be a real-
valued function. Consider the variational
problem of minimizing the functional

J[u]=
s

Igradul’dx-2  fudx.
D sD

Here we suppose the set of admissible func-
tions, denoted by A,, to be the Hilbert space
obtained by completing the function space
C:(D)  with respect to the norm

112
N ( u )  =

(s
Igradu]‘dx+ u=dx

D s >D

Utilizing F. Riesz’s representation theorem in
Hilbert spaces,  it cari be shown that there
exists a minimum value I in A, which is
uniquely realized by certain u0  E xJ. Since the
function u0 belongs to A,, it cari  be shown that
the boundary condition

ul20=0 (5)

is satisfied in a generalized sense. Furthermore,
in view of J[u,]  < J[u, + cp]  being valid for
any <PEC~(D),  it cari  be verified that the
equation

-AU=~ (6)

is satistïed in D in the sense of differentiation
of tdistributions.  In other words, the station-
ary function u0 is a solution in the wide sense
(a tweak solution) of the classical boundary
value problem for tPoisson’s  equation for-
mulated by (6) and (5). If a function space  A,
with xJ 3 AJ 2 CO(D)  is taken as the set of
admissible functions, the value 1=  J[u,]  be-
cornes the greatest lower bound of J in AJ.
In this case, if {u,}z,  is any minimizing se-
quence from AJ, that is, if u, E A,, n = 1,2,  . . ;
J[u,]  +1 (n+  CO),  then it converges to ua in the
sense that

N(u,-u,)+O  +~XI). (7)

In other words, the solution in the wide sense
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u0 of the boundary value problem cari  be
constructed as the limit of a minimizing se-
quence that cons&  of suflïciently smooth
functions vanishing on the boundary. In the
proof of the fact that a solution in the wide
sense u,,  coincides  with the classical solution of
the boundary value problem under an assump-
tion of suitable smoothness for f and aD,  a
standard argument has been established for
proving the regularity of a solution in the
wide sense.

The technique of obtaining the solution of
the boundary value problem as the limit of
a minimizing sequence was proposed by B.
Riemann concerning the classical +Dirichlet
problem and was completed by D. Hilbert.
This pioneering work led to the recent  treat-
ment of boundary value problems by utilizing
Hilbert spaces.  For +Self-adjoint boundary
value problems, the method stated for the
above example has been generalized almost
directly to the cases of differential operators of
higher order and with variable coefficients (-
323 Partial Differential Equations of Elliptic
Type). By making use of some auxiliary argu-
ments, this technique cari be applied exten-
sively to the construction of several kinds of
mapping functions in the theory of functions
of a complex variable, to the solution of
tintegral  equations of the second kind, and
also in other Iïelds  [3,4].

The eigenvalue problem, which is formu-
lated by

Hu = Âu, uzo, (8)

with a +Self-adjoint operator H in a Hilbert
space,  cari  also be transformed into a vari-
ational problem for the +Rayleigh  quotient

~C~l=W~>4/ll~l12 ( 9 )

(- 298 Numerical Computation of
Eigenvalues).

F. Solution of Differential Equations by the
Direct Method

In view of the convergence shown in (7), a
minimizing sequence cari  be regarded as an
approximating sequence for a solution of the
boundary value problem or a stationary func-
tion uO.  Let a function

u, = u,(x;  c) = u,(x;  c, / . . , c,) (10)

involving an n-vector c = (c,, . . . , c,) as a para-
meter be admissible for any c. If J [u,( .; c)] =
F(c), obtained by substituting u, into J, is
minimized at c = CO, then u,,( .; c”)  is considered
as a function that approximates u. most pre-
cisely  within the family u,( .; c). This vector c”
is obtained, in general, by solving the simulta-
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neous equations

aqu,(.;c)yacj=O,  j=~,...,~. (11)
The function u, appearing in (10) is often taken
to be a so-called linear admissible function.
For instance, in the example above, let {(pk}gi
be a system of independent functions complete
in A,,  and set

un=clql+...+cn<Pn. (14

The method that constructs  a minimizing
sequence ui, u2,. by determining the value of
the ck  in (12) by (11) is called Ritz%  method,
and (pk  is called a coordinate function in this
method. As for the rate of convergence in
approximation by Ritz’s method, as well as
for the estimation of errors, there are several
results by the Soviet school in addition to
those of E. Trefftz [3,5]. (Other methods of
constructing minimizing sequences are stated
in detail in [3]; concerning a connection  with
Galerkin’s  method - 304 Numerical Solution
of Partial Differential Equations.)

Ritz%  method applied to eigenvalue prob-
lems is called the Rayleigh-Ritz method. Since
a stationary value of the Rayleigh quotient is
itself an eigenvalue in this case, the precision of
approximation is far better for eigenvalues than
for eigenfunctions, SO that it is a convenient
method for the approximate computation  of
eigenvalues.
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Cantor, Georg

George Cantor (March 3, 1845-January  6,
1918),  the founder of set theory, was born in
St. Petersburg into a Jewish merchant  family
that settled in Germany in 1856. He studied
mathematics, physics, and philosophy in Zu-
rich and at the University of Berlin. After re-
ceiving his degree in 1867 in Berlin, he became
a lecturer  at the University of Halle and served
as a professor at that university from 1879 to
1905. In 1884, under the strain of opposition
to his ideas and his efforts to prove the +Con-
tinuum hypothesis, he suffered the lïrst of
many attacks of depression which continued
to hospitalize him from time to time until
his death.

The thesis he wrote for his degree concerned
the theory of numbers; however, he arrived at
set theory from his research concerning the
uniqueness of ttrigonometric  series.  In 1874, he
introduced for the lïrst time the concept of
+Cardinal numbers, with which he proved that
there were “more” ttranscendental  numbers
than talgebraic  numbers. This result caused
a sensation in the mathematical world and
became  the subject of a great deal of con-
troversy. Cantor was troubled  by the oppo-
sition of L. +Kronecker, but he was supported
by J. W. R. +Dedekind and G. Mittag-LefIler.
In his note on point-set theory, he wrote, in
connection  regard with his concept of infinity,
“The essence of mathematics lies in its free-
dom!” In addition to his work on cardinal
numbers, he laid the basis for the concepts of
tarder  types, ttranstïnite ordinals, and the
theory of real numbers by means of tfunda-
mental sequences. He also studied general
point sets in Euclidean space  and delïned the
concepts of taccumulation  point, +closed  set,
and topen set. He was a pioneer of the point-
set theory that led to the development of
general ttopology.

References

[l]  G. Cantor, Gesammelte Abhandlungen, E.
Zermelo and A. Fraenkel (eds.), Springer, 1932
(Olms,  1962).
[2] A. Schoenflies, Die Krisis in Cantors math-
ematischem Schaffen, Acta  Math., 50 (1927)
l-23.

196

48(X.31)
Capacity

A. General Remarks

The electric capacity of a conductor in the 3-
dimensional Euclidean space  R3 is detïned as
the ratio of a given positive charge on the
conductor to the value of the potential on the
surface. This definition of capacity is indepen-
dent of the given charge. The capacity of a set
as a mathematical notion was defined lïrst by
N. Wiener (1924) and was developed by 0.
Frostman, C. J. de La Vallée Poussin, and
several other French mathematicians in con-
nection with tpotential  theory.

B. Energy

Let Q be a tlocally compact Hausdorff space
and 0(x, y) be a +lower  semicontinuous func-
tion on R x R such that -CO  <Q < CO. A mea-
sure p Will mean a nonnegative +Radon  mea-
sure with compact +Support  S,,. Denote by
@(x,  p)  the tpotential  S@(X,  y)&(y) of a mea-
sure p with kernel @  and by (p,  pc)  the tenergy
jj@dpdp  of p.  Let X be a set in R,  and denote
by @x the class of normalized measures p (i.e.,
of measures p satisfying p(n) = 1) with S, c X.
Let K be a nonempty compact set in 0. Set
W(K)=inf(p,p)  for ~LE%~,  and W(@)=co  for
the empty set 0. For @(x,  y) = 1/1x -y1 in s1
= R3, the general solution u(x) of the +Dirich-
let problem (texterior  problem) for the bound-
ary function 1 in the unbounded component  of
R3 -K is equal to the potential of an tequilib-
rium mass-distribution. Therefore, if S is a
smooth surface surrounding K and normals
are drawn outward to S, the integral -( 1/4 7~).
j,(h/&z)do of the normal derivative is equal
to l/W(K).  This is the capacity  of K delïned
by N. Wiener (J.  Math. Phys.,  MIT, 3 (1924))
when K is a closed region. Vallée-Poussin
(Ann. Inst.  H. Poincaré, 2 (1932)) called the
supremum of P(R~)  the Newtonian capacity of
a bounded +Bore1  set E, where p runs through
the class  of measures p with S, c E whose
+Newtonian  potentials are not greater than 1
in R3. If E is compact, the Newtonian capacity
coincides  with Wiener%  capacity.  For the
tlogarithmic  potential in R’, ëwcK)  is called
the logarithmic capacity.  When +Green’s  func-
tion g(z,  CO) with the pole at the point at inlïn-
ity exists in the unbounded component  of R2
-K,  lim,,,(g(z,  CO)-loglzl)  is called Rohin’s
constant and cari  be shown to be equal to
W(K). (For the relation between Robin’s con-
stant and treduced  extremal distance - 143
Extremal Length.) In the case of a general
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kernel it is diffïcult to  defïne capacity as above
by means of W(K), and hence the value of
W(K) itself  instead of the capacity of K is often
used. When W(K)= CO, we cari  say  that K is of
capacity zero. The minimum value of the
+Gauss  integral  (p,  p)  - 2 jj dp  is a generaliza-
tion of W(K), where p~%~ and f is an upper
semicontinuous function bounded above on K.

C. Minimax  Value

Suppose that we are given the kernel @  as
above. For a set X c n and a measure p,
set ~(PC;  X) = SUP,,~ @(x,  p)  and V(w  X)=
inf,,,@(x,  p).  Next,  for Yc R,  set U(Y) =
inf CI@; S,),  V(Y) = sup ~(PC;  SU),  U(X,  Y) =
inf U(  p;  X), and V(X, Y) = sup V( p;  X), where
P@&~.  If 6(x,  y) = @(y, x) is taken as a kernel
instead of @(x,  y), then the notations u/(K),
~(PC;  X), y(~;  X), are used correspondingly.
For any compact set K the following relations
hold:

W(K)= l+‘(K)<  CI(K)= ü(K)

}!

U(Q,  K) = V(K,  Q)
< ri@, K)= V(K,Q)

V(K)= ii(K).

Examples show that a11 the inequalities cari  be
strict. The tminimax  theorem in the ttheory of
games plays an important role in the proof  of
these inequalities [7]. Even if the kernel is
symmetric, the inequalities cari  be strict except
for the equality W(K)= U(K). When the kernel
is positive, we cari  defïne the quantities which
correspond to  U(Y), V(Y), V(X, Y), V(X, Y)
by considering the class of p with S,,  c Y and
(p,  p)  = 1 instead of 02~.

D. Transfinite Diameter

As  k~co,

decreases and the limit D(K) is equal to  W(K).
For the logarithmic kernel in R2, M. Fekete
defïned D(K) and called ëDcK)  the transfinite
diameter of K (1923). F. Leja and his school in
Poland studied relations between transtïnite
diameter and tconformal  mapping. Next,  set

k

kR,(X,  Y) = s u p inf 1 @(x,  xi).
x,,...,xxsYxPxi=l

Then R(X,  Y) = lim R,(X,  Y) exists  as k+  CO,
and we have R(K,  Y)= V(K,  Y).

Fekete introduced R(K)=R(K, K) in R2
(1923). G. Polya and G. Szego computed D(K)
and R(K) for special  K and cc-kernel r -” (tlk 0)
in R2 and R3 [12]. The equality D(K)=R(K)
holds for the logarithmic kernel in R2 and the
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Newtonian kernel in R3. The maximum of the
absolute value on K of +Chebyshev’s  poly-
nomial (- 336 Polynomial Approximation)
of order k with respect to  K in R2 is equal to
ev(  - kR,(K)).

E. Evans’s Theorem

In order that K be of Newtonian capacity
zero,  it is necessary and sufflcient that there
exist a measure p on K such  that the New-
tonian potential  of p is equal to *3  at every
point of K. This result was proved by G. C.
Evans and H. Selberg independently (1935)
and is called Evans’s theorem (or the Evans-
Selberg theorem). The corresponding theorem
in R2 is often applied in the theory of functions
[ 15,161.  A similar potential exists  in case of a
general kernel if and only if R(K,  K)= CO.

F. Nonadditivity of Capacity

Many kinds of capacity satisfy the inequality
cap( Un  X,) < Z”  cap X,, where a capacity is
denoted by cap. Even the Newtonian capacity
C is not necessarily additive, but it satisfies
C(K,UK,)+C(K,flK,)<C(K,)+C(K,)(G.
Choquet [2]). Choquet [3] proved that X cari
be divided into mutually disjoint sets X, and
X2 such  that Ci(X)  = Ci(X,)  = C,(X,),  where
C,(X)  is the Newtonian inner (or interior) ca-
pacity delïned to  be supx  c x C(K) if X # 0
andOifX=@.

G. Relat ion to  Hausdorff  Measure

There are many studies of relations between
capacity and +Hausdorff  measure [ 11.  Frost-
man [6] introduced the notion of capacitary
dimension and observed that it coincides  with
the Hausdorff dimension. The capacity of
product  sets has been evaluated from above
and below [ 111. For compact sets K c R”, K’
c R”,  their dimensions a, /?,  and the dimension
JJ of K x K’, we have the relation a + /l< y <
min(m + a, FI  +/I’),  where the equalities are
attained by general tCantor  sets. There are
also works on the evaluation of capacities
of general Cantor sets [lO,  151. If K is a con-
tinuum of logarithmic capacity 1 in a plane,
then its diameter d satisfies 2 <d  < 4, and its
area  A satisfies  A<n [S]. Consider the sum K
= {z,+...+z,Iz,~K,,l~k~n}  ofcontinua
K,, . . . , K, in a plane. The logarithmic capacity
of K is strictly  greater than the sum of the
logarithmic capacities  of K,, , K, except
when all K, are convex and mutually  similar
[14]. By various tsymmetrizations the log-
arithmic capacity decreases in general (- 228
Isoperimetric Problems; also [ 133).
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H.  Capacitabi l i ty

The Newtonian outer  (or  exterior) capacity
C,(X) is defïned by inf Ci(G),  where G ranges
over an open set containing X. The inequality
C,(X)< C,(X) holds, in general. When the
equality holds, X is called capacitable. Cho-
quet (1955) [2] proved that a11 tanalytic sets
and hence +Bore1  sets are capacitable but there
exists an analytic set whose complement  is not
capacitable. He himself generalized his result
on capacitability in the following way [4]: Let
0 be an abstract  space,  <p  a nondecreasing
function defined on the family of all subsets of
R,  and x some family of subsets of 51 that is
closed under the formation of imite  unions
and countable intersections. Assume that
<p(&)&(H) as H, in %’  decreases to H and
that q(X,)tcp(X)  as X,tX.  When C~(X)  is equal
to sup{<p(H)l  HE%?,  HcX},  X is called
(cp,  xX)-capacitable. Choquet detïned xx-
Suslin sets and showed that they are (cp,  Y)-
capacitable. M. Kishi [9], Choquet [S], and B.
Fuglede [7] investigated capacitability with
respect to several kinds of capacity more gen-
eral than Newtonian capacity. We cari discuss
capacitability with respect to quantities de-
tïned  in connection  with the +Gauss  varia-
tional problem.
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Cardinal Numbers

A. Definition

The general concept of cardinal number is an
extension of that of natural number (Cantor
[ 11).  When there exists a +one-to-one  corre-
spondence whose tdomain  is a set A and
whose +range is a set B, this set B is said to be
equipotent (or equipollent) to A, and this rela-
tion is denoted by A-B. The relation - is
an +equivalence relation, and each equivalence
class  under this relation is said to be a cardinal
number. The class of a11 sets equipotent to a set
A is denoted by A (or 1 Al) and is said to be the
cardinal number (power, cardinality, or potency)
of tbe set A. When A is a fïnite set, A IS said to
be finite,  and when A is an infmite  set, A is
said to be intïnite  (or transfinite). When the
cardinal number of a set A is m,  A is also said
to consist of m members (or m elernents). In
this sense, 0 and the natural numbers are
considered to express fini&cardinal  numbers.
For example, 0= 0, 1 = {0}, 2 = (0,  l}, etc.
Examples of infïnite  cardinal numbers: A set A
which is equipotent to the set N of a11 natural
numbers is said to be countably infinite, and
the cardinal number of the set N is denoted by
a. A set A which is finite  or countably intïnite
is said to be countable. The cardinal number of
the set of ah real numbers is denoted by c and
is called the cardinal number of tbe continuum.
Moreover, the cardinal number of the set of all
real-valued functions whose domain  is the
interval [0, l] is denoted by f.  These three
cardinal numbers are known to be distinct.
Henceforth in this article, lower-case German
letters denote cardinal numbers. For a defi-
nition of cardinal numbers using the concept
of ordinal numbers - 312 Ordinal Numbers.
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B. Ordering of Cardinal Numbers 

m > n or n <m Will mean that there exist sets 
AandBsuchthatm=&n=B,andA=B. 
A # B does not necessarily imply m #n. For 
example, the cardinal number of the set of a11 
positive even numbers is also a. m 2 n and 
n > m imply m = n (Bernshtein’s theorem). 
Since the treflexive and ttransitive laws for the 
relation < between cardinal numbers are 
obvious, the relation is an tordering relation. 
The twell-ordering theorem imples that 2 is a 
+total ordering (comparability theorem for 
cardinal numbers). m > n means that m 3 n 
and m fn. When B<nr, B is said to be at 
most nt. 

C. Sum, Product, and Power of Cardinal 
Numbers 

For cardinal numbers m and n, choose sets A 
andBsothatnr=A,n=B,andAnB=@, 
and put 5 =AU B. Then 5 is uniquely deter- 
mined by m and II. The B is said to be the sum 
of the cardinal numbers m and n and is de- 
noted by m + n. If  the sets A, B are chosen as 
described above, the cardinal numbers of the 
+Cartesian product A x B and of the set of 
functions AB are called the product of m and n 
and the nth power of m, denoted by mn and 
m”, respectively. These operations are also 
determined by tn and n. For these three oper- 
ations, the following laws are valid: commuta- 
tive laws m + II= n + m, mn = nnt; associa- 
tive laws(m+n)+p=m+(n+p), (mn)p= 
m(np); distributive law p(m + n) = pm + pn; 
exponential laws m” + L> = m”mp, m”” = (nr”)p, 
(m11)~ = m%“. In particular, if A = m, then 2”’ 
is the cardinal number of the +power set s@(A) 
of A. 

Addition and multiplication of more than 
two cardinal numbers cari be defined as fol- 
10~s. Let A be any set, and suppose that to 
any element i, of A there corresponds a unique 
cardinal number tnAI. Let M, be a set such that 
GA = m,, and M, n Mi = @ for j, #A’. Then 
the cardinal number of the tdisjoint union 
Ci M, is said to be the sum of a11 m, and is 
denoted by Czmn. The cardinal number of the 
Cartesian product n, M, is said to be the 
product of a11 m,(iEA) and is denoted by 
n,nt,. The axiom of choice cari be stated as 
follows: If  nr, # 0 for all n E A, then n, m, # 0. 

D. The Continuum Hypothesis 

For a, c, and f  defïned as before, f  = 2’ > c = 2” > 
a. In general, 2”’ > nt holds for any cardinal 
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number rn (Cantor). The hypothesis which 
asserts that for any m, there does not exist an 
n such that 2’” > n > m is called the gener- 
alized continuum hypothesis. In particular, this 
hypothesis restricted to the case where m = a 
is called the continuum hypothesis. After Can- 
tor stated this hypothesis (J. Reine Angew. 
Math., 84 (1878)), it remained an open ques- 
tion for many years. In particular, Cantor 
himself repeatedly tried to prove it, and W. 
Sierpiriski pursued various related hypotheses. 
Finally, the continuum hypothesis and the 
generalized continuum hypothesis were proved 
to be independent of the axioms of set theory 
by K. Gode1 (1940) [3] and P. J. Cohen (1963) 
[4] (- 33 Axiomatic Set Theory). 

E. Cardinality of Ordinal Numbers 

Lower-case Greek letters Will stand here for 
+Ordinal numbers. The cardinal number of 
{ 5 ( 5 <a) Will be denoted by Z, which is called 
the cardinality of the ordinal number c( or the 
cardinal number corresponding to CI. When a 
cardinal number nt corresponds to some 
ordinal number, the minimum among ordinal 
numbers x with ?ï=m is called the initial or- 
dinal number corresponding to m. An initial 
ordinal number corresponding to an infinite 
cardinal number is called a transfinite initial 
ordinal number. There exists a unique corre- 
spondence p-w0 from the class of ordinal 
numbers onto the class of a11 transfinite initial 
ordinal numbers such that /l> y  implies op > 
wy. In particular, w0 = o, and an ordinal 
number t such that 4 < w, is called a count- 
able ordinal number. wp is called the fith 
transfinite initial ordinal number. The cardi- 
nality of wp is denoted by K, (K is the Hebrew 
letter aleph). In particular, a is denoted by K, 
(aleph zero). We have N, > K, if and only if 
b 3 y, and in this case K, + K, = K,, K,K, = 
K,. The axiom of choice implies that every 
infinite cardinal number is an K,. Hence, in 
this case, the continuum hypothesis cari be 
formulated as 2”o = N, , and the generalized 
continuum hypothesis cari be formulated as 
2% = NB+, for every ordinal number 8. 

F. Finiteness and Infiniteness 

Dedekind [S] delïned a set A to be infinite if A 
is equipotent to a proper subset of itself, and 
to be finite otherwise. It is also possible to 
detïne lïniteness and intïniteness of sets as 
follows: A set A is finite if there exists a +well- 
ordering of A such that its +dual ordering is 
also a well-ordering, and A is infinite other- 
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wise. If  a set is imite in the latter sense, then it 
is also tïnite in the sense of Dedekind. Under 
the axiom of choice, these two definitions cari 
be shown to be equivalent. 
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Cartan, Elie 

Elie Cartan (Apri19, 1869-May 6, 1951) was 
born at Dolomieu in the French province of 
Isère. He entered the Ecole Normale Supé- 
rieure in Paris in 1888 and graduated in 1891, 
having at the same time qualified in the agrégé 
examination. Beginning his research immedi- 
ately, he completed his thesis on the structure 
of continuous transformation groups [2] in 
1894 at the age of 25. 

Cartan was a professor tïrst at the Univer- 
sity of Montpellier, later at the University of 
Lyon, then the University of Nancy, and fi- 
nally in 1912 at the University of Paris. He 
freely used the tmoving coordinate system 
introduced by J. G. Darboux, and contri- 
buted to many areas, such as the theory of 
tLie groups, the theory of tPfaIIian forms, the 
theory of tinvariant integrals, ttopology, tdif- 
ferential geometry (especially the geometry 
of tconnections), and theoretical physics. His 
doctoral thesis is still an abject of interest 
among Young researchers today, and the con- 
cept of connection introduced by him is funda- 
mental in the field of differential geometry. 
Henri Cartan (1904-) is his eldest son. 
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Catastrophe Theory 

A. General Remarks 

Catastrophe theory was originally proposed 
by R. Thom [ 1,2] in late 1960. This theory 
provides certain mathematical models for the 
evolution of forms in nature, in particular in 
biology and the natural languages. In recent 
years, E. C. Zeeman and others have devel- 
oped and applied the theory to various fields, 
including the physical sciences, medicine, 
economics, and sociology; a detailed bibli- 
ography may be found in [3,9,10]. 

B. Static Models 

The basic concept of the theory is the static 
model. This is a family of potential functions 
,f,:X-+R, where X is a subset of R”, containing 
a neighborhood of the origin, and the para- 
meter u lies in a neighborhood U of the origin 
in R’. 

We regard R” as the interna1 space or state 
space, which is parametrized by the various 
variables that are relevant to the process under 
study, and R’ is the external space or control 
space, which cari be either the physical space- 
time continuum in which the process under 
consideration takes place or a space of control 
parameters that govern the process. As a rule, 
we assume that the dimension r < 4, although 
the dimension n cari be arbitrary large. 

The static mode1 is local in nature, and any 
one of the local minima off., called a local 
regime at UE U, is a candidate for the state 
of the mode1 corresponding to the control 
point u. 

Mathematically, a static mode1 is a germ of 
C”-functions f: R” x R’-+R at 0 that is an 
unfolding (r-dimensional extension family) of a 
germ of C”-functions ré =f 1 R” x (0) : R”+R at 
0; further details are given in Section D. 
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C. Classification of Singularities 

Let &(n, m) be the vector space of tgerms of 
C”-functions ,f: R”+R” at 0, and let B(n)= 
&(PI, n) be the subset of invertible germs R”+ 
R” mapping 0 to 0. 

The germs u, 5 l 6(n, m) are called right 
equivalent if there exists an hé% such that 
‘1 oh = 5. Let 6?(n) = b(n, 1). Then it follows in 
the usual manner that R(n) is a local algebra 
with the unique maximal ideal &Z =A(n) = 
{q~&(n)Iq(0)=0}. A germ VE&(~) such that 
~(0) = LIV(O) = 0 is called a singularity. For any 
singularity 9, we deiïne the codimension of q by 

codim q = dimR(~/(avl/ax,),,.,), 

where (hl~xi>~<n> is the ideal of R(n) gen- 
erated by I?~/~?X,, . , Ôu/~x, and x =(x1 , ,x,) 
denotes the coordinate system of R”. 

The following result was proved by J. N. 
Mather [4]: Up to the addition of a nondegen- 
erate quadratic form in other variables, and up 
to multiplication by fl, a singularity of codi- 
mension < 4 and > 1 is right equivalent to one 
of the >1 appearing in Thom’s list of the seven 
elementary catastrophes below. 

D. Unfoldings 

Let v  be a singularity. An r-unfolding of q is a 
germfE.X(n+r) such that f/R” x {O}=q; this 
unfolding is denoted by (r,,f). Let (r,f) and 
(~,y) be unfoldings of q. A morphism (cp, @, 8): 
(r,f)+(s, g) consists of(i) a germ <p E&(PI + r, 

y1 + s) such that <p 1 R” x {0} = identity, (ii) a 
germ @E&(Y,s) such that n,op=@orc,, (iii) a 
germ EE&(~) such that f=gocp+~oq, where 
n,:R” x R’+R’ is the projection. In this case 
we say that the unfolding (r,f) is induced by 
(<p, 0, E) from (s, y). A morphism is an isomor- 
phism if <p and @ are diffeomorphic germs. 

The addition of unfoldings (r, f) and (s, 9) of 
v  is delïned by (r,f)+(.s,g)=(r+s,f+g-~), 

where the last term on the right is given by 

(f+s-~)(X,U,U)=f(X,u)+Y(X,U)-)1(X). 
Thus if the constant unfolding (s, q) of q is 
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defïned by s(x,u)=q(x), we have (r,f)+(s,q)= 

(r+s,S). 
An unfolding (r,f) of q is said to be versa1 if 

any unfolding of q is induced by (r,,f) and a 
suitable morphism. A versa1 unfolding (r,f) 

with minimal r is said to be universal. The 
following facts have also been proved by 
Mather [4]: 

A singularity ai&’ has a versa1 unfolding 
if and only if codim y~ is finite. Any two r-versa1 
unfoldings of y~ are isomorphic. Every versa1 
unfolding is isomorphic to (r,f) + constant, 
where r = codim q and (r,f) is a universal 
unfolding detïned as follows: If  {b,, , b,} c 

4!(n) is a system of representatives for a basis 

of,~(n)l(a~laxi)t(n)r then the unfolding f  of 
q is detïned by ,f(x, u) = q(x) + b, (x)u, + . . . + 

h(x)u,. 

E. The Seven Elementary Catastrophes 

Let f  and g be germs in 8(n + r). We say that f  
and g are equivalent as r-unfoldings if there 
exist IIE%?(~), a family of H,eB(n), where UE 
U c R’, and an E E A’(r) such that f(x, y) = 

dft,(x)> 44) + 44. 
We say that a static mode1 (r,f) is stable if 

any small perturbation (r, g) of (r,f) in G(n + r) 

(with the Whitney C”-topology) is equivalent 
to (r,f). The following is the main result ob- 
served by Thom and proved by Mather and 
others (for references see the bibliography in 
[3]). Suppose that r64. Then the set of stable 
static models (r,f) is an open dense subset of 
G(n + r), and up to the addition of a nondegen- 
erate quadratic form and multiplication by 
kl, any stable static mode1 (r,f) is equivalent 
to one of the models with the standard poten- 
tials F, which are the universal unfoldings 
of singularities q in Table 1 (x, y  denote inter- 
nal variables, and u, u, w, t denote external 
variables). 

The static models with these standard po- 
tentials are known as the elementary catas- 
trophes and cari serve as qualitative models 
of various natural processes. 

Table 1. Thom’s List of the Seven Elementary Catastrophes 

r Singularity 77 Standard Potential F Name 

1 X3 

2 X4 

3 X5 

3 x3 +y3 

3 x3 - xy2 

4 X6 

4 x2y+y4 

x3+ ux Fold 

x4+ux2+vx Cusp (Riemann-Hugo-Niot) 

x5+ux3+vx2+wx Swallowtail (Dovetail) 

x3+y3+uxy+vx+wy Hyperbolic umbilic 

x3-xy2+u(x*+y*)+vx+wy Elliptic umbilic 

X6+tX4+UX3+“X*+WX Butterfly 

x2y+y4+ux2+uy2+wx+ty Parabolic umbilic 
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F. Catastrophe Sets 

A process for the static mode1 fc b(n + r) is a 
subset s of X x U, where X and U are neigh- 
borhoods of the origin in R” and R’, respec- 
tively. Ifs is a process and u E ci, we defïne s, = 
sfl(X x {u}). We say that UE U is a regular 
point for s if there exists a neighborhood V of 
u in U and a homeomorphism h: X x V-+X x 
Vsuchthat7r,oh=rcronXx Vandh(sn 
(X x V))=s, x V. A catastrophe point is a non- 
regular point in U. The set of a11 catastrophe 
points is called the catastrophe set. 

There are several conventions with regard to 
the definition of a process for the unfolding 
(r,f). One of these is the Maxwell convention, 
which requires that s, be a least local regime at 
UE U. The catastrophe set of the mode1 (r,f) 
according to the Maxwell convention consists 
of those points u of the control space R’ where 
the least minimum off, is attained for at least 
two points or where this minimum is attained 
at a unique point but is not stable. 

Another is the Perfect delay convention, 
which assigns to each path T in U a mapping 
(possibly discontinuous) m,:z+X x r such that 
Tc,(m,(u)) = u, (m,(u), u) is a local regime, and m, 
remains continuous for a maximum interval 
on the path r. Consider the set 

A = {(x, u) E R” x R’ 1 dz f(x, u) is degenerate} 

and its image B = n,(A), called the bifurcation 
set, under the projection q:R” x R’+R’. Then 
the points of the bifurcation set B are impor- 
tant candidates for catastrophe points of the 
static mode1 with respect to the Perfect delay 
convention. 

For geometrical studies of the elementary 
catastrophes - [668]. The static models have 
been generalized to metabolic models, the 
structure of which largely remains an open 
question [2]. In this connection, the bibli- 
ographies of [3,9,10] appear to be fairly 
complete. 
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Categories and Functors 

A. Categories 

Consider the family of a11 tgroups. Given two 
groups X and Y, denote the set of all thomo- 
morphisms of X to Y by Hom(X, Y). I f  X, Y, 
and Z are groups and if f :  X + Y and g : Y-t 
Z are homomorphisms, we cari compose 
them to get a homomorphism gof:X-tZ. 

In general, suppose that we are given, as in 
this example, (1) a family !IJJ of mathematical 
abjects, and (2) for every pair (X, Y) of abjects 
in 9J& a set Hom(X, Y) whose elements are 
called morphisms; and let f~Hom(X, Y) 
and g E Hom( Y, Z) determine a morphism 
g OJ~ Hom(X, Z), which is called their com- 
posite. A morphism f~Hom(X, Y) is also 
written f: X+ Y. Suppose further that these 
morphisms satisfy the following axioms: (1) if 
f:X+Y, g: Y+Z, and h:Z+Ware mor- 
phisms, then (hog)of= ho(gof); (2) for 
each abject XE%~ there exists a morphism 
lx:X+Xsuchthatforanyf:X+Yand 
g:Z+X we havefolx=fand l,og=g; 
(3) Hom(X, Y) and Hom(X’, Y’) are disjoint 
unless X=X’ and Y = Y’. Then we ca11 the 
whole system (i.e., the family of abjects !JJl, the 
morphisms, and the composition of mor- 
phisms) a category. The elements in ?IR are 
called the abjects of the category. 

By axioms (1) and (2), the set Hom(X,X) is 
a semigroup (with respect to the composition 
of morphisms) which has 1, as the identity 
element. Hence 1, is determined uniquely by 
X. On the other hand, axiom (3) implies that 
a morphism f  determines the abjects X and 
Y such that fe Hom(X, Y). From these facts 
we cari give an alternative definition of cate- 
gory using only the morphisms and their 
composition. 

The totality of the abjects (or morphisms) in 
a category %’ is denoted by Oh(W) (or FI(W); 



203 

the notation FI cornes from the French word 
.flèche). The relation x E Ob(%?) is often ab- 
breviated to XE%‘, while Hom(X, Y) is written 
HomCs(X, Y) if necessary. A subcategory of a 
category V? is a category V?’ with Ob(%?‘)c 
Ob(%?), such that for X, YE%” we have 
Hom&X, Y) c Hom,b(X, Y) and the compo- 
sition in w is the restriction of w to %?‘. I f  
Hom,<.(X, Y)=Hom,JX, Y) for a11 X, YEV’, 
we say that V’ is a full subcategory of (&. 

We delïne the product category %, x W2 of 
two categories in the canonical way, using the 
pairs of abjects and the pairs of morphisms. 

B. Examples of Categories 

(1) Taking a11 sets as the abjects, a11 mappings 
as the morphisms, and the composition of 
mappings as the composition, we obtain a 
category called the category of sets, denoted by 
(Sets) (or (Ens) from the French ensemble). For 
the empty set 0 we make the convention that 
Horn@, Y) contains just one element for any 
Y and that Hom( Y, 0) is empty ifY# 0. 

(2) As we have seen, taking a11 groups as the 
abjects and the homomorphisms as the mor- 
phisms, we get the category of groups, written 
(Gr). I f  we limit the abjects to +Abelian groups, 
we get the category of Abelian groups (Ab) as a 
full subcategory of (Gr). 

(3) Fix a ring R. The left R-modules and 
their R-linear mappings detïne the category of 
left R-modules, which we denote by sJ. The 
category of right R-modules, ,,&‘a, is delïned 
similarly. When R is tunitary, we usually 
limit the abjects of ,&? and J%?~ to tunitary 
modules. If  R is commutative we cari identify 
R.M with AR. When R = Z (the ring of ra- 
tional integers), s.M cari be identilïed with 
(Ab). When R is a tïeld, rrA is also called the 
category of linear spaces over R. 

(4) Taking rings as abjects and homomor- 
phisms of rings as morphisms, we obtain the 
category of rings. The subcategory consisting 
of unitary commutative rings and unitary 
homomorphisms is called the category of 
commutative rings and is denoted by (Rings). 

(5) If  we take tdifferentiable manifolds as 
abjects and differentiable mappings as mor- 
phisms, we obtain the category of differentiable 
manifolds. Similarly, for tanalytic manifolds 
and analytic mappings we obtain the category 
of analytic manifolds. 

(6) Taking topological spaces as abjects and 
continuous mappings as morphisms, we get a 
category called the category of topological 
spaces and denoted by (Top). On the other 
hand, if we take the thomotopy classes of 
continuous mappings as morphisms and 
define their composition in the natural way, 
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we obtain another category, which is called the 
homotopy category of topological spaces. 

(7) Fix a tpreordered set 1. Taking the ele- 
ments of 1 as the abjects and the pairs (x, y) of 
elements of 1 with x < y  as the (unique) mor- 
phism from x to y, we get a category, in which 
we defme the composite of the morphisms 

(x, Y) ad (Y, 4 to be k 4. 
In examples (1) through (6) the totality of 

the abjects Oh(V) is not a set, but a tclass 
(- 381 Sets G; for the logical foundation of 
category theory - [3,9]). 

C. Diagrams 

If a set of arrows {A,) and a set of points {B,} 
are given in such a way that each arrow A, has 
a unique initial point and a unique endpoint, 
then we say that {A,, BP} is a diagram. (Usu- 
ally, we consider the case where each point B, 
is the initial point or the endpoint of at least 
one A, (Fig. 1)) Let ?? be a category and 

{Aa, BP) a diagram. If we associate a mor- 
phism ,f, in V with each arrow A, and an 
abject .Z,E%? with each point B, SO that 
,f,~ Hom(ZO, Z,) whenever A, has the initial 
point B, and the endpoint B,, then we say that 
{f,, Zp) is a diagram in the category Y? (Fig. 2). 
Suppose, furthermore, that the following con- 
dition is satistïed: For any pair of points B, 
and B,, and for any sequence of adjacent 
arrows A,,, , Aam starting at B, and ending 
at B, (i.e., the initial point of A,, is B,, the 
endpoint of Aai is the initial point of Azi+, and 
the endpoint of Amm is B,), the composite 

.L,Of+, o . of,, (EHom(BB, B,)) depends 
only on B, and B,. Then the diagram in ‘R is 
said to be a commutative diagram. For exam- 
ple, commutativity of Fig. 2 is equivalent to 

.f;o,f,=.f4of2=fs. 

Fig. 1 Fig. 2 

D. Miscellaneous Definitions 

A morphism f: X + Y in a category %? is called 
an isomorphism (or equivalence) if there exists a 
morphism g: Y+X such that fog= l,, gof= 
1 x. In this case, y  is determined uniquely by 

f  and is itself an isomorphism. We cal1 g the 
inverse morphism off: Then the inverse of g 
is 1: An isomorphism is sometimes written 
,f: X1 Y. Two abjects X and Y are said to be 
isomorpbic if there is an isomorphism X + Y, 
and then we Write X g Y. The composite of 
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isomorphisms is again an isomorphism. In 
particular, an isomorphism X-X is an inver- 
tible element of the semigroup Hom(X, X), 
and is called an automorphism of X. Examples 
of isomorphisms are bijections in (Sets), group 
isomorphisms in (Gr), the R-isomorphisms in 
si,%!, ring isomorphisms in the category of 
rings, tdiffeomorphisms in the category of 
differentiable manifolds, and homeomorphisms 
in (Top). 

A morphism f: X + Y is called a monomor- 
phism (or injection) if for any abject Z and for 
any morphisms u, u: ZdX(u # u) we have 

fou #fo u. Dually, f :  X + Y is called an epi- 
morphism (or surjection) if for any U, U: Y-, 
Z(u#v) we have uof #VO~: In the category 
of sets the monomorphisms and the epimor- 
phisms coincide, respectively, with the injec- 
tions and the surjections as mappings (- 381 
Sets). A monomorphism which is at the same 
time an epimorphism is called a bijection. An 
isomorphism is always a bijection, but the 
converse is false in some categories. 

Two monomorphisms fi :X, -tX and 
f,:X,+X (with the same X) are said to 
be equivalent if there exist g, :Xi -‘X, and 
g2:X2+X, such that J1 =,f20g, and f2= 

,f, o g2 (Fig. 3). An equivalence class with 
respect to this equivalence relation is called a 
suhohject of X. Similarly, we detïne a quotient 
ohject of X as an equivalence class of 
epimorphisms X + Xi. 

Fig. 3 

An ohject e of a category V is called a 
final ohject of %? if for every abject Y of V?, 
Hom( Y, e) contains one and only one element. 
Dually, an abject e’ is called an initial ohject 
(or cofinal ohject) if Hom(e’, Y) contains one 
and only one element for every y~%‘. If  e, and 
e2 are final abjects, then there is a unique iso- 
morphism e, ze,, and similarly for initial 
abjects. A set with only one element is the 
final abject in (Sets), and a space with only 
one point is the final abject in (Top). In the 
category (Gr) (resp. (Ab)), the trivial group { 1) 
(or (0)) is the final abject and the initial abject 
at the same time. In the category of commuta- 
tive rings, the zero ring (0) is the final abject 
and the ring of rational integers Z is the initial 
abject. 

E. Product and Coproduct 

Let X, and X, be abjects of a category %‘. We 
say that a triple (P, p,, pz) consisting of an 

abject P and morphisms pi: P+Xi (i = 1,2) is 
the product (or direct product) of X, and X, if 
for any pair of morphisms ,fi: X +Xi (i = 1,2), 
there exists a unique morphism f: X-tP with 
pi o,f=,h (i = 1,2) (Fig. 4). I f  (P’, p’i, pi) is an- 
other product of X, and X,, then by virtue of 
this definition there is a unique morphism 
f:P-+P’suchthatpjof=pi(i=1,2),and,fis 
an isomorphism. The product is unique in this 
sense. The product (or any one of the prod- 
ucts) of X, and X, is denoted by X, x X, or 

by X, I-IX,. 

Fig. 4 

The product in the categories of sets, of 
groups, of rings, and of topological spaces 
coincides with the notion of tdirect product in 
the respective systems. In a general category, 
the product does not always exist. Suppose the 
product X x X exists for an abject X; then 
there is a unique morphism A,:X-tX x X such 
that l,=p, oAx=pzoAx, which is called the 
diagonal morphism of X. Let f,: X-X; (i = 1,2) 
be morphisms and assume that the products 
(X, x X,, pi, p2), (X’, x Xi, pi, pi) exist. Then 
there is a unique morphism f:X, x X2+ 
Xi xX; satisfying pjof=,fiopi (i= 1,2). This 
f  is denoted by fi x f2. On the other hand, if 
y,: X +Xi(i= 1,2) are given, the unique mor- 
phismg:X+X, xX, withpiog=gi(i=1,2)is 

demed by (s1,g2). We bave (gl,g2)=(gl x 
gz) o Ax if X x X exists. 

The dual notion of product is coproduct. 
We say that a triple (S,ji,j,) of an abject S and 
morphisms ji: Xi-tS (i= 1,2) is the coproduct 
(or direct sum) of X, and X, if for any mor- 
phismsf,:XijX (i= 1,2) there exists a unique 
morphismf:S+X withfoji=,f,(i=1,2) 
(Fig. 5). The coproduct, like the product, is 
uniquely determined up to canonical iso- 
morphisms. It is denoted by X, +X, or by 
X, u X,. The coproduct in (Gr) is the tfree 
product. In (Ab), or more generally in &%‘, the 
product of two abjects cari be identitïed with 
the coproduct ( = direct sum) (- 277 Modules 
F). The coproduct in the category of com- 
mutative rings is the ttensor product over Z. 

Fig. 5 

Product and coproduct cari also be detïned 
for a family {Xi}it, of abjects. Namely, the 
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product of {Xi}ip, is an abject P together with 
a family of morphisms pi:P+Xi (Ill) having 
the property that for any family of morphisms 
f; : X +Xi (i E I), there exists a unique morphism 
f:X+P such that p,oj”=fi (~CI). The product 
is unique up to canonical isomorphisms, and 
similarly for the coproduct (- Sections F, L). 

F. Dual Category 

In the theory of categories we often encounter 
the dual treatment of notions and propo- 
sitions. TO be precise, we may define the no- 
tion of the dual category go of a category ?? as 
follows: The abjects of %?” are those of ??, i.e., 
Ob(%?“) = Ob(%?); for any abjects X and Y we 
put Hom,JX, Y) = Hom,6( Y, X); if f :  X-t Y 
and y: Y+Z in Vo (i.e., f :  Y-X and y: Z+ 
Y in %?), then the composite g o,f in %?O is de- 
fïned to be fo g in V. It is clear that Vo then 
satisfïes the axioms of a category. Quite gener- 
ally, given a proposition concerning abjects 
and morphisms we cari construct another 
proposition by reversing the directions of the 
morphisms, and we cal1 the latter the dual 
proposition of the former. The dual propo- 
sition of a proposition in %? coincides with a 
proposition in %‘O. For instance, a monomor- 
phism (epimorphism) in %? is an epimorphism 
(monomorphism) in Vo, and the final (initial) 
abject in %? iS the initial (final) abject in Vo. 
The product (coproduct) in %? is the coproduct 
(product) in Vo. Although the notion of the 
dual category is defined quite formally, it is 
useful in describing relations between specitïc 
categories. The dual category of (Ab), for 
instance, is equivalent to the category of 
commutative compact topological groups 
(tpontryagin’s duality theorem). 

G. Categories over an Object 

Fix a category V and an abject SE%?. A pair 
(X, f) of an abject XE %7 and a morphism f: X 
4s is called an abject over S or an S-abject, 
and fis called its structure morpbism. We 
often omit f  and simply say “an S-abject X” if 
there is no danger of misunderstanding. If  
(X,,f) and (Y, y) are S-abjects, a morphism 
h:X- Y such that f=goh is called an S- 
morpbism from (X,f) to (Y, g). The category 
whose abjects are the S-abjects and whose 
morphisms are the S-morphisms is called the 
category of S-abjects in %?, and is denoted by 
%?/S. It has (S, 1,) as the final abject. The prod- 
uct of two S-abjects X and Y, taken in YnjS, is 
called the iïber product of X and Y over S (in 
%‘), and is denoted by X xs Y or Xn, Y. The 
dual notion of the fïber product is called iïber 
sum (or amalgamated sum). Thus for two 
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morphisms f:S+X and g:S+ Y, the fïber 
product of X and Y over S in V/S is the fïber 
sum of X and Y (with respect to S); it is de- 
noted by X u, Y. 

Let %? be the category of commutative rings 
and K EV. Then the family of K-abjects in %?’ 
is precisely the family of commutative K- 
algebras. The liber product A x K B in Vo, i.e., 
A J& B in %‘, is the tensor product A & B of 
algebras. 

H. Functors 

Let %? and %7’ be categories. A covariant functor 
F from (6 to %?’ is a rule which associates (1) 
with each abject X in %‘, an abject F(X) in V’, 
and (2) with each morphism f: X + Y in ‘67, 
a morphism F(,f): F(X)+F( Y) such that 

F(gof)=WoW), FUx)= l,,,,. A con- 
travariant functor is deiïned dually, by mod- 
ifying this definition to F(f): F( Y)+F(X), 
F(gof)= F(f)0 F(g). Thus a contravariant 
functor from %/ to w’ is the same as a covariant 
functor from the dual category V to %” (or 
from W to %P). Functor is a general term for 
both covariant functors and contravariant 
functors, but some authors use the word ex- 
clusively in the sense of a covariant functor. 
A functor in several variables is delïned to be 
a functor from the product category of the 
categories in which the variables take their 
values. 

A covariant functor F: %‘+V’ is said to be 
faithful (fully faithful) if for any X, YE%‘, the 
mapping Hom(X, Y)+Hom(F(X), F(Y)) in- 
duced by F is injective (bijective), and simi- 
larly for contravariant functors. A faithful 
covariant functor F: +G+V’ which maps dis- 
tinct abjects of V? to distinct abjects of %?’ is 
called an embedding, and in this case %? cari 
be identitïed with a subcategory of %? by F. 
A fully faithful covariant functor F:&+%i” is 
called an equivalence (between the categories) if 
it satistïes the condition that for any abject X’ 
of v’, there exists an abject X of (i3 such that 
F(X)gX’. In this case we cari consider the 
two categories essentially the same. A con- 
travariant functor from %? to (67’ which defines 
an equivalence from Vo to %’ is called an 
antiequivalence. 

1. Examples of Functors 

(1) Let %? be the category of groups (or rings). 
For any XE~ let F(X) be the underlying set of 
X (i.e., the set obtained from X by “forgetting” 
its structure as a group or ring), and for any 
homomorphism f  put F(f) =f: Then we get 
a faithful covariant functor (often called the 
forgetful functor) F : W +(Sets). 
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(2) Let Ce be any category and tïx an abject 
X of %. Then we get a covariant functor h,:% 
+(Sets) as follows: With each YE% we associ- 
ate the set Hom(X, Y), and with each mor- 
phism f: Y+ Y’ in W the mapping fo(where 
fo : Hom(X, Y)-*Hom(X, Y’) is defmed by 
(fo)(g)=fog). Similarly we detïne a con- 
travariant functor hX : V +(Sets) by hx( Y) = 
Hom(Y,X) and hx(f)=o$ 

(3) Let p : A + B be a homomorphism of 
rings. With each left A-module M associate 
the tscalar extension p*(M) = B Oa M, and 
with each A-homomorphism f  associate the 
B-homomorphism p*(f) = 1, of: Then we get 
a covariant functor p* : a~ +B&Z. 

(4) Let R be a ring. With each left R-module 
M associate its dual module M* = Hom,(M, 
R), and to each R-linear mapping f  associate 
its +dual mapping tf= of: Then we get a con- 
travariant functor RAMER, and similarly for 
.hY~-+&%?. 

(5) For each differentiable manifold X let 
F(X) denote the commutative ring of the dif- 
ferentiable functions on X, and for each dif- 
ferentiable mapping f: X + Y let F(f) be the 
ring homomorphism of: F( Y)+F(X). Then F 
is a faithful contravariant functor. 

(6) Fix an Abelian group A. By associating 
with each topological space X the cohomology 
group H(X, A) and with each continuous map- 
ping f: X + Y the homomorphism H( Y, A)+ 
H(X, A) induced by A we obtain a contrava- 
riant functor from (Top) to (Ab). 

(7) Fix a topological space X, and let T(X) 
be the set of the open sets in X. Then T(X) is 
ordered by inclusion, SO it is a category (- 
Section B, no. 7). The contravariant functors 
from T(X) to (Ab) are precisely the tpre- 
sheaves of Abelian groups over X. We cari use 
any category instead of (Ab) to define a pre- 
sheaf over X (- 383 Sheaves). 

J. Natural Transformations 

Let % and %?’ be categories, and denote by 
Horn@?, V’) the collection of all covariant 
functors GGM’. Let F, GEHom(%‘,%?‘). A nat- 
ural transformation (or functorial morphism) 
from F to G is a function which assigns to 
each abject X of 9? a morphism <p(X): F(X)+ 
G(X) in %?’ such that for any morphism f:X-* 
Y in %‘, the equation G(f) o <p(X) = <p(Y) o F(f) 
holds; in other words, the accompanying dia- 
gram is commutative: 

F(f) 
L ~(y) JGCf) 

Y F(Y) + G(Y) 
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A natural transformation between contrava- 
riant functors is defined similarly. For in- 
stance, let A and B be Abelian groups and let 
Hi(. , A) and Hj(. , B) be the contravariant 
functors of tcohomology viewed as functors 
(Top)+(Sets). Then the natural transform- 
ations between them are the tcohomology 
operations. 

Let (p:F-*G be a natural transformation, 
and suppose that cp(X):F(X)+G(X) is an 
isomorphism for every XE%?. Then the inverse 
transformation G-F of cp exists, and <p is 
called a natural equivalence (functorial isomor- 
phism or isomorphism) and is written ~0: FSG. 

Suppose that Ob(%?) is a set. Then the collec- 
tion Hom(F, G) of a11 natural transformations 
F->G is also a set, and hence we cari consider 
Horn@?, 48’) a category in which the abjects are 
the covariant functors V+%?‘, the morphisms 
are the natural transformations, and the com- 
position of morphisms is the natural one. Then 
Horn@?“, V) is the category of contravariant 
functors from w to V’. In particular, the cate- 
gory Hem(%?, (Sets)) is sometimes denoted 
by @. 

Given a category %‘, a covariant (resp. con- 
travariant) functor F:V+(Sets), and an abject 
XE %?, we cari detïne a canonical bijection 
ax: Hom(h,, F)SF(X) (resp. Hom(hx, F& 
F(X)) by ax(<p) = <p(X)l,. (The functors h, 
and hX were defïned in Section 1.) The inverse 
mapping of @, assigns to 5 E F(X) the natural 
transformation cp: h,+F defïned by <p( Y)u = 
F(u)t( YEN). In particular, if we take F = 
h,(hY), we obtain a canonical bijection 
Hom(h,, h,)sHom( Y, X) (Hom(hx, hi’)3 
Hom(X, Y)). It follows that there is a fully 
faithful contravariant (covariant) functor V-> 
Hom(V, (Sets)) (w-Horn@‘“, (Sets)) = @) 
which associates hx(hx) with XE%?. 

K. Adjoint Functors 

Let F:%i+%?’ and FI:%?+%? be covariant 
functors. Suppose that there is a rule which 
assigns to each pair of abjects ME %? and 
M/E%?’ a bijective mapping O,,,.: Hom,(M, 
F’(M’))5Hom,8.(F(M), M’) such that for any 
pair of morphisms N + M in %? and M’-+ N’ 
in %?‘, the following diagram induced by the 
morphisms is commutative: 

Hom&M,F’(M’))‘s Hom,(F(M),M’) 

1 I 
Homc(N,F’(N’)) ‘4 Hom&F(N),N’) 

Then we say that F is a left adjoint functor of 
F’ and that F’ is a right adjoint functor of F. 
We cari regard Hom,JF(M), M’) as a functor 
from V x %? (contravariant in the variable 
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ME%?, covariant in the variable MIE%‘) to the 
category of sets, and similarly for Hom,(M, 
F’(A4’)). This commutativity of the diagram 
means that these two functors are isomorphic 
(- Section J). 

For instance, let A and B be rings and L a 
tïxed B-A-tbimodule. Let F:,&Z-‘& and 
F’:,.A-r a*4 be the functors defined by 

F(M)=L@,M, F’(M’)=Hom,(L,M’), 

where the assignment for morphisms is detïned 
in the natural way. Then F is the left adjoint of 
F’ and F’ is the right adjoint of F. In parti- 
cular, let p : A-B be a homomorphism and 
consider the case L = B. Then F is the functor 
p* : A&-tB& and F’ is the functor p.+ : BA’ -+ 
A&, SO that p* is the left adjoint of p* (and 
p* is the right adjoint of p*) (- 277 Modules, 
K, L; for more examples of adjoint functors - 

Cl 11). 

L. Representation of Functors 

We begin by discussing an example. Let T be 
a set, and consider the following problem: 1s 
it possible to lïnd a group X and a mapping 
5: T-X such that, for any group Y and for 
any mapping q: T-, Y, there exists a unique 
homomorphism u : X + Y with u o 5 = q? The 
answer is yes; it is enough to take the tfree 
group X generated by T and the canonical 
injection 5: T-X (Fig. 6). On the other hand, 
let F(Y) be the set of all mappings T-t Y, and 
for each group homomorphism f: Y-, Y’ 
define the mapping F(.f): F(Y)+F(Y’) by 
F(f)v=foq (VER(Y)). Then we get a co- 
variant functor from the category %? of groups 
to the category of sets, F:V+(Sets). We cari 
now reformulate the condition on XE%? and 
5 6 F(X) as follows: 

For any YE%? and for any VE F( Y), there 
exists a unique morphism U: X+ Y such that 

w45 = ‘I. 

Fig. 6 

Proceeding to the general case, let %? be an 
arbitrary category and let F:V-(Sets) be a 
functor. I f  there exist an abject X of +Z and an 
element 5 of F(X) satisfying the condition just 
stated (with the modification u: Y+X in the 
contravariant case), then we say that the pair 
(X, 5) represents the functor F, or less specifi- 
cally, that X represents F, and we cal1 5 the 
canonical element of F(X). We also say that F 
is representable. The condition stated above is 
a formulation of the so-called universal map- 
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ping property. I f  (X’, 5’) also represents F, the 
unique morphism u: X +X’ (or XI+X) with 
F(u)t = 5’ is necessarily an isomorphism. 

When (X, 5) represents F, the natural trans- 
formation <p:h,+F (hx+F in the contrava- 
riant case) which corresponds to 5 by the 
canonical bijection @,:Hom(h,, F)sF(X) is 
an isomorphism. Conversely, if there is a func- 
torial isomorphism <p:h,+F (or h’+F) for 
some XE%, then the abject X represents F, 
with the canonical element of F(X) the element 
which corresponds to <p by the canonical bijec- 
tion ax, i.e., <=qo(X)l,. 

We have already seen the example of a free 
group; here we list a few more examples. (1) 
Let {Xi}is, be a family of abjects in a category 
V. For each YE%? we put F(Y)=&rHom(Y, 
Xi), and for each morphism f: Y+ Y’ we define 
the mapping F(f):F(Y’)+F(Y) by F(f)(A)= 
(fi of). Then we get a contravariant functor 
F: %+(Sets). A pair (X, 5) which represents 
F (where <E F(X) = ni,, Hom(X, Xi)) is the 
product of {Xi}. Thus representability of F is 
equivalent to the existence of the product of 
{Xi}, and similarly for the coproduct. 

(2) Let R be a ring, M a right R-module, and 
N a left R-module. For each Abelian group Y 
let F(Y) denote the set of the R-balanced map- 
pings M x N + Y (- 277 Modules J). Since a 
homomorphism f: Y- Y’ induces a natural 
mapping F(f): F( Y)+F( Y’) by composition, 
we obtain a covariant functor F:(Ab)+(Sets). 
This functor is representable: the pair consist- 
ing of the tensor product M OR N and the 
canonical mapping M x N +M OR N repre- 
sent it. 

(3) Let R be a commutative ring and S a 
subset of R. For each commutative ring Y, let 
F(Y) denote the set of homomorphisms R-r Y 
that map the elements of S to invertible ele- 
ments of Y. As in the preceding example, we 
obtain a covariant functor F:(Rings)-+(Sets). 
This functor is represented by the tring of 
quotients Sm’R and the canonical homomor- 
phism R-S-‘R. 

M. Groups in a Category 

Let (e be a category with a final abject e, and 
assume that a tïnite product always exists in %. 
If an abject GE %? and morphisms ~1: G x G+ 
G, b:G+G, .s:e-+G are given such that the 
the diagrams of Fig. 7 are commutative, then 
(G, CI, fi, E) is called a group in +Y (group abject in 
W or %Y-group). 

I f  %? is the category of sets, then c( defines a 
law of composition in the set G, and the image 
of e by E is the identity element and p(x) is the 
inverse of x, SO that G is an ordinary group. If  
%? is the category of topological spaces (analy- 
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tic manifolds, algebraic varieties, tschemes) 
then G is a ttopological group (+Lie group, 
talgebraic group, +group scheme). 

We cari also detïne the %-group by lifting 
the group concept in (Sets) to the category %? 
by means of the functor hX. Namely, let G be 
an abject of %‘, and suppose that for each YE%? 
the set hG( Y) = Hom( Y, G) is equipped with a 
group structure and that for each morphism 

f: Y+ Y’ the induced mapping hG( Y’)+h’( Y) 
is a group homomorphism. In other words, 
suppose that hG is a contravariant functor 
from V to the category of groups. Then the 
abject G with the additional structure on hG is 
called a %?-group. This definition is equivalent 
to the one given above. 

N. Additive Categories 

A category % is called an additive category if 
for each pair X, YEW, the set of morphisms 
Hom(X, Y) has the structure of an additive 
group such that (1) the composition of mor- 
phisms is distributive in both ways: ho (f+ g) 
=hof+hog, (f+g)oh=.foh+goh; (2) 

there exists an abject 0’ with Horn@‘, 0’) = {O}; 
(3) the product (or the coproduct) of any two 
abjects exists. Then the abject 0’ in (2) is a final 
and initial abject, and is called the zero abject. 
Both the product and the coproduct of any 
two abjects exist and cari be identifïed. The 
dual category of an additive category is also 
an additive category. A functor F from an 
additive category to another is called an addi- 
tive functor if F(f+g)=F(f)+F(g) holds 
for morphisms. In an additive category %?, 
Hom(X, Y) is an additive functor from %? to 
(Ab) in each variable. 

For any ring R, the category of left (or right) 
R-modules is an additive category. The follow- 
ing definitions are generalizations of the corre- 
sponding concepts in the theory of modules. 
The kernel of a morphism f: A +B is a pair 
consisting of an abject A’ and a monomor- 
phism i: A’+A with fo i = 0, such that any 
morphism u: X-A with fo u = 0 is divisible 
by i (that is, u = i o u for some u: X-*4’). Dual- 
ly, the cokernel off is a pair consisting of 
an abject B’ and an epimorphismj:B+B’ 
with jof=O which divides any morphism 
u:B-+X with uof =O. We Write A’=Kerf, B 
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=Coker$ The kernel ofj: B+Cokerf is 
called the image off and is denoted by Im f; 
the cokernel of i: Ker f + A is called the 
coimage off and is denoted by Coim$ If a11 
these exist, it follows from the definitions that 
there is a unique morphism Coim f +Irn f 
such that the composite of A-Coim f -1rn f 
-t B is equala to ,f: 

An additive category rfZ is called an Abelian 
category if it satisfïes the following conditions: 
(1) every morphism has a kernel and a coker- 
nel, (2) for every morphism A the morphism 
Coim f +Irn f just mentioned is an isomor- 
phism. The dual category of an Abelian cate- 
gory is also Abelian. The categories of Abel- 
ian groups, of R-modules, and of sheaves 
of @-modules on a tringed space (X, 0) are 
important examples of Abelian categories. 
Many propositions which are valaid in (Ab) 
remain valid in any Abelian category. In parti- 
cular, the notion of an +exact sequence is de- 
fïned in an Abelian category in the same way 
as in (Ab), and the fïber product and fiber sum 
of a fmite number of abjects always exist in an 
Abelian category. A functor between Abelian 
categories which carries exact sequences into 
exact sequences is called an exact functor; 
(such a functor is automatically additive). I f  %? 
is a category of which Oh(V) is a set and if %? 
is an Abelian category, then Horn&‘, %?‘) is an 
Abelian category. Given an Abelian category 
V and a subcategory %’ which satistïes certain 
conditions, one cari construct an Abelian 
category cg/%” which is called the quotient 
category (Serre% theory of classes of Abelian 
groups; - [SI). 

I f  %? is an Abelian category of which Ob(%?) 
is a set, there is an embedding of %? into the 
category R~ of modules over some ring R by 
a fully faithful flat exact covariant functor (full 
embedding theorem, B. Mitchell, Amer. J. 
Math., 86 (1964)). This remarkable theorem 
enables us to extend results obtained for 
modules to the case of Abelian categories. 

The notions of category and functor were 
introduced in [7] and were applied first in 
topology and then in homological algebra and 
algebraic geometry (- 200 Homological 
Algebra). 
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53(xX1.17) 
Cauchy, Augustin Louis 

The French mathematician Augustin Louis 
Cauchy (August 21, 1789-May 25, 1857) 
graduated from the Ecole Polytechnique in 
1807 and from the Ecole des Ponts et Chaus- 
sées in 1810, to become a civil engineer. In 
18 16, his mathematical works were recognized, 
and he was appointed a member of the Aca- 
démie des Sciences while a professor at the 
Ecole Polytechnique. After the July revolution 
in 1830, he refused to pledge loyalty to Louis- 
Philippe and fled to Turin; he later moved to 
Prague. He returned to France after the revo- 
lution of 1848 and became a professor at the 
University of Paris, where he remained until 
his death. He was a Catholic and a Royalist a11 
his life. 

His scientific contributions were numer- 
ous and covered many fïelds. In algebra, he 
did pioneering work in tdeterminants and in 
the theory of tgroups. He also made notable 
achievements in theoretical physics, optics, 
and the theory of elasticity. His main lïeld 
was analysis. He was interested in making 
analysis rigorous by giving calculus a solid 
foundation in such works as Cours d’analyse 

de /‘Ecole Polytechnique (1821). In his paper 
“Memoire sur les intégrales définies prises 
entre les limites imaginaires” (1825), he proved 
the main theorem of the theory of functions of 
a complex variable. Another important work 
is his proof of the existence theorem for the 
solutions of tdifferential equations in the cases 
of real and complex variables 
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Cayley Algebras 

Let Q be a tquaternion algebra over a lïeld K 
of characteristic zero. A general Cayley algebra 
?Z is a 2-dimensional Q-tmodule Q + Qe with 
the multiplication (q + re)(s + te) = (qs + yir) + 

(tq + rF)e, where q, r, s, t E Q, y is a given ele- 
ment in K, and t, S are the tconjugate quater- 
nions of t, s, respectively. The elements of % 
are called Cayley numbers; %? is a nonassocia- 
tive, talternative algebra of dimension 8 over 
K (- 23 1 Jordan Algebras). The map a = 

q + re-+ü = 4 - re is an tantiautomorphism 
of %?. Delïne two maps W-tK by N(a)=aa=Za 

(norm of a) and r(a) = a + ü (trace of a). Then 
every a in %? satisfïes the equation x2 - T(a)x + 
N(a)=O. Furthermore, N(ab)=N(a)N(b) for 
a, b in %?. The tquadratic form N(x) = T(x?z)/~ 
characterizes %?. In particular, any two (non- 
associative) general Cayley algebras over the 
same fïeld K which are not talternative tïelds 
are isomorphic. 

In order for ?Z to be an alternative field, 
either of the following two conditions is neces- 
sary and sufficient: (i) N(a) = 0 implies a = 0; 

(ii) Q is a noncommutative division algebra 
and y  cannot be expressed in the form cr’ - 
a(’ - ~~11’ + Â& (a, 5, q, CE K). (For the mean- 
ing of A, ,u with respect to Q - 29 Associative 
Algebras D.) Every alternative field of finite 
dimension is a general Cayley algebrd. 

In particular, when Q is the tquaternion 
field over the real number field with 1. =p = 
- 1, the general Cayley algebra over Q with 
y  = - 1 is called the Cayley algebra. When K 
is an talgebraic number field of fïnite degree, 

there are only a fïnite number of nonisomor- 
phic general Cayley algebras over K. 

The Lie algebra a(%‘) of a11 tderivations of a 
general Cayley algebra %? is a +Simple Lie 
algebra of type G,. I f  K is the real number 
field, the identity component of the group of 
all tautomorphisms of the Cayley algebra %? is 
a compact simply connected +Simple Lie group 
of type G,. The Cayley algebra %? is the unique 
alternative fïeld over the real number field K. 

This last fact is important because of the fol- 
lowing proposition: In the theory of +non- 
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Desarguesian projective planes, the field which 
gives rise to the coordinates is an alternative 
tïeld. Let f?P, be the set of a11 3 x 3 THermitian 
matrices A over the Cayley algebra W such 
that tr A = 1, A2 =A. Then we cari deiïne a 
structure of a projective plane on CP,, which 
with this structure is called the Cayley projec- 
tive plane. Furthermore, let 3 be the set of a11 
3 x 3 Hermitian matrices over %‘, with a multi- 
plication in 3 defined by A B = (1/2) (BA + 
AB). The identity component G of the group 
of all automorphisms of 3 is a compact simply 
connected simple Lie group of type F4. This 
group G acts on i!P, transitively, and .f?P, = 
G/Spin(9) (- 249 Lie Groups; Appendix A, 
Table 5.111). 
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55 (Xx.6) 
Celestial Mechanics 

A. General Remarks 

The motions of planets, cornets, the moon, and 
satellites in our solar system are the main 
topics in celestial mechanics (- 392 Spherical 
Astronomy). However, studies in this subject 
cari also include motions of fixed and binary 
stars in our galaxy, equilibrium figures of 
celestial bodies, and rotational motions of the 
earth and the moon. 

Celestial mechanics is usually based on 
+Newtonian mechanics, with the effects of 
tgeneral relativity sometimes taken into ac- 
Count to determine corrections to the orbits of 
celestial bodies. Therefore the main task of 
celestial mechanics is to solve differential 
equations of motion based on Newtonian 
mechanics. However, since the equations for 
the problem of n > 2 bodies cannot be solved 
rigorously (- 420 Three-Body Problem), 
appropriate methods have been devised where- 
by we may obtain approximate solutions of 
the equations with accuracy comparable to 
that of observations. 

The two-body problem, which concerns the 
behavior of two celestial bodies regarded as 
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points exerting mutual interactions, cari be 
reduced to a one-body problem with reference 
to a central force, since integrals of motion of 
the tenter of gravity for the system exist. The 
+Hamilton-Jacobi equation for the one-body 
problem is of tseparable type and cari be 
solved completely. The orbit for the two-body 
problem is a tconic with one of its +foci at the 
tenter of gravity. The majority of celestial 
bodies in the solar system actually perform 
elliptic motions. TKepler’s orbital elements for 
elliptic motion are functions of the integration 
constants in the solution of the Hamilton- 
Jacobi equation and are determined by the 
initial conditions. 

B. Perturbations 

In studying the +n-body problem, we fïrst solve 
certain two-body problems and then apply the 
method of +Perturbations, i.e., the method of 
variation of constants, in order to obtain solu- 
tions developed as tpower series of small 
parameters. The parameters are ratios of the 
masses of planets to that of the sun for plane- 
tary motions and the ratio of the geocentric 
lunar distance to the solar distance for lunar 
motion. 

Electronic computers have made it possible 
to compute planetary coordinates for long 
intervals of time by solving numerically dif- 
ferential equations of motion including a11 
possible interactions. However, in discuss- 
ing the stability of the solar system, analytic 
methods are more effective, particularly the 
method of obtaining secular perturbations by 
eliminating short-periodic terms by canonical 
transformations. This is one of the averaging 
methods of solving differential equations. 
However, as the solutions obtained by means 
of perturbation methods are not always con- 
vergent, most important problems related 
to the stability of motion have not yet been 
solved rigorously. Secular perturbations for 
planetary motions cari be derived by solving 
differential equations that are linearized by 
neglecting cubic powers of orbital eccentric- 
ities and inclinations to the ecliptic (- 309 
Orbit Determination), which are small quan- 
tities. The teigenvalues of these linear differen- 
tial equations correspond to mean angular 
velocities of the perihelion and the ascending 
node. The equations for the eigenvalues are 
called secular equations. 

C. Artificial Satellites 

TO discuss motions of artilïcial satellites close 
to the earth, the latter cannot be regarded as a 
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point or as a sphere but must be assumed to 
be an oblate spheroid, i.e., an tellipsoid of 
revolution. The effects of oblateness on the 
motion of satellites cari be derived as pertur- 
bations of the theoretical elliptic motions ob- 
tained as the solutions of this two-body prob- 
lem under the assumption that the earth is 
spherical. Also, by utilizing a special potential 
very close to the geopotential, we cari find a 
Hamilton-Jacobi equation of separable type 
which is solvable. This special potential ap- 
pears in the problem of two fïxed centers with 
equal masses situated on an imaginary axis. 
When the geopotential is assumed to be axi- 
ally symmetric, the equations of motion for the 
satellites have two degrees of freedom; there- 
fore there appear two fundamental frequencies 
related to the special potential. When these 
two frequencies are equal, the problem is 
called a critical inclination problem and is 
important from the mathematical point of 
view. Theories for satellites cari be applied to 
the motions of tïxed stars in the galaxy. 

D. Equilibrium Figures 

There is a large literature concerning equilib- 
rium figures and the stabilities of celestial 
bodies assumed to consist of spinning fluids. 
The two-body problem with tidal interactions 
is particularly important; problems concerning 
the evolution of the earth-moon system are 
special cases of such a problem. 

The theory of rotation of the earth as it is 
affected by tprecession, tnutation, and latitude 
variations is also a part of celestial mechanics; 
for this theory, elastic theory and geophysics 
are applied. 

For the n-body problem - 420 Three-Body 
Problem. 
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56 (1X.14) 
Characteristic Classes 

A. General Remarks 

The theory of characteristic classes arose from 
the problem of whether or not there exists a 
ttangent r-frame tïeld on a tdifferentiable 
manifold (E. Stiefel [S]) (- 105 Differentiable 
Manifolds). The importance of the character- 
istic class as a fundamental invariant of +vec- 
tor bundle structure is now fully recognized 
(- 114 Differential Topology, 147 Fiber 
Bundles, 427 Topology of Lie Groups and 
Homogeneous Spaces). 

B. Stiefel-Wbitney Classes 

Let 5 = (E, B, R”) be an n-dimensional real 
tvector bundle (called an R”-bundle) with 
tparacompact Hausdorff tbase space B, tïber 
R”, and torthogonal group O(n) as the ktruc- 
ture group. Then the element wi(c) of the i- 
dimensional tcohomology group H’(B; Z,) 
(i = 1,2, , n) of the base space B with coeffi- 
cient in Z, = Z/2Z, called the i-dimensional (or 
ith) Stiefel-Wbitney class, and the element w(t) 
= 1 + w, (5) + + w.(c) of the tcohomology 
ring H*(B; Z,), called the total Stiefel-Wbitney 
class, are defïned as follows. First, we deal with 
the case n = 1. We cal1 the infinite-dimensional 
real projective space the tinductive limit Pm(R) 
= 15 P”(R) of the Imite-dimensional real +Pro- 

jective space P”(R). The nontrivial tline bundle 
y1 over the infïnite-dimensional real projective 
space Pm(R) is a universal Ri-bundle (tuniver- 
sa1 bundle for the orthogonal group 0( 1)); 
therefore any R’-bundle l=(E, B, R’) is equiv- 
alent to an tinduced bundle from the universal 
bundle y1 by a tclassifying mapping &: B+ 
Pm(R): 5 -fc*yl. We detïne the 1-dimensional 
universal Stiefel-Whitney class w, (y,) to be 
the generator of H’(P”(R); Z,) and set w,(t)= 
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,&* w, (y,). For general n, we consider the prin- 
cipal O(n)-bundle (P, B, O(n)) tassociated with 
the given R”-bundle 5 =(E, B, R”). Let Q, be 
the subgroup of O(n) consisting of all diag- 
onal matrices. Then the orbit space Y = P/Qn 
is the base space of the +Principal Q,-bundle 
q=(P,P/Q,,Q,). Let p:Y+B=P/O(n) be the 
natural projection. Then the R”-bundle p*< 
over Y induced by p is associated with n and 
is equivalent to the +Whitney sum of n line 
bundles (F. Hirzebruch [4]), p*< = <, @ . . . @ 
5,. Moreover, the homomorphism P*:H*(& 
Z,)-+H*( Y, Z,) is injective (A. Bore1 Cl]). 
Therefore we cari uniquely define the total 
Stiefel-Whitney class w(t) of the R”-bundle by 
the relation p*w(t)= ~(5,). ~(5,). The Stiefel- 
Whitney classes detïned above are compatible 
with bundle mappings f‘: w(f*<)=,f*w(<) (- 
147 Fiber Bundles M). The Stiefel-Whitney 
class wi(y,) E Hi(&(,,; Z,) (1 d i < n) of the 
universal R”-bundle yn over the tclassifying 
space B,(,, is called the i-dimensional univer- 
sal Stiefel-Whitney class. For the Whitney sum 
of vector bundles, we have w([ @ q)= w(t)w(r). 

In order for an R”-bundle 5 to be torient- 
able, namely, for 5 to have an SO(n)-structure, 
it is necessary and sufficient that wi(<)= 
0. For an oriented R”-bundle 5, the Euler- 
Poincaré class X,,(t) is detïned to be the +pri- 
mary obstruction X,(<)EH”(B;Z) for con- 
structing a ‘cross section of the tassociated 
(n - 1)-sphere bundle. In particular, the Euler- 
Poincaré class of the universal bundle for 
SO(n) is called the universal Euler-Poincaré 
class. X,(t) mod 2 is equal to w,(c). I f  n is odd, 
we have 2X,(5) = 0. 

C. Chern Classes 

We consider an n-dimensional complex vector 
bundle w = (E, B, C”) (called C”-bundle in the 
following) with a paracompact Hausdorff base 
space B, tïber C”, and unitary group u(n) as 
the structure group. The cohomology class 
ci(w)~Hzi(B, Z) (i= 1,2, . ,n), called the 2i- 
dimensional (or ith) Chern class, and the total 
Chern class c(w)= 1 +c,(w)+ +c,(w)E 
H*(B, Z) are detïned as follows. In the case 
n= 1, let C” =l$C” (the inductive limit of 
the +complex Euclidean spaces C”), S” be 
its unit sphere, and P”(C) be the intïnite- 
dimensional complex projective space consist- 
ing of a11 complex lines through the orgin 0 of 
C”. Then the natural mapping S”+P”(C) 
defines a universal principal U( 1)-bundle 
(Sm, P”(C), U(1)). Let y, be its associated 
universal Ci-bundle. Then we define the l- 
dimensional universal Chern class c, (y,)~ 
ff2(P”(C); Z) to be the cohomology class that 
takes the value -1 on the cycle Sz( ~P~(C)C 
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P”(C)) with the natural orientation. Since a 
general Cl-bundle 5 =(E, B, Ci) is induced 
from y1 by a classifying mapping fs: B+ 
P”(C), we set cl(<)=f~*cl(yl). When n> 1, let 
(P, B, U(n)) be the principal U(n)-bundle asso- 
ciated with the given C”-bundle 5 =(E, B, C”). 
Let T, be the subgroup of U(n) consisting of 
a11 diagonal matrices (which is a tmaximal 
torus of U(n)). Then the quotient space Y = 
P/T, is the base space of the principal T,- 
bundle q=(P, P/T,, TJ. Let p: Y-+B=P/U(n) 
be the natural projection. Then the C”-bundle 
p*t over Y is associated with q and is equiva- 
lent to the +Whitney sum of n complex line 
bundles: p* 5 = 5, 0 . @ 5,. Moreover, 
p*: H*(B; Z)+H*( Y, Z) is a monomorphism 
(Bore1 [ 11, Hirzebruch [4]). Therefore we cari 
uniquely delïne the total Chern class c(t) of the 
C”-bundle 5 by the relation P*C(~)=C(<,) . . . 
~(5,). The Chern classes, as delïned above, 
are compatible with bundle mappings f  (i.e., 
c(,f*t)=f*c(t)) (- 147 Fiber Bundles N). 
The Chern class C~(~“)E H2’(Buc,,,; Z) (1 d i< n) 
of the universal C”-bundle y. over Bu(,,) is 
called the 2i-dimensional universal Chern class. 
Let 5, q be complex vector bundles over B. 
Then we have c(< @ ~)=C(<)C(V). By the nat- 
ural inclusion U(n) c S0(2n), we cari identify 
a C”-bundle w with an oriented R2”-bundle 
wa. Then we have ci(w)mod2=wIi(~a), 
w,,+,(w,)=O (i=O, 1, ,n), c,(c~)=X~~(qJ. 

Examples. Let (SZntl , P”(C), U( 1)) be the +Hopf 
bundle, and let y; be the associated complex 
line bundle. Then the classifying mapping of y; 
is the natural inclusion P”(C)-tBU(l)=P”(C), 
and ~(y;)= 1 -g,, where g,,EH’(P”(C);Z) is the 
cohomology class dual to the homology class 
represented by the hyperplane P”-‘(C). On the 
other hand, for the complex line bundle 5; = 
{P”-‘(C)} determined by the tdivisor (- 72 
Complex Manifolds) P”-l (C) c P”(C), we have 
C((T)= 1 +g,, and (y, y; are dual to each other. 
5; is called the canonical line bundle over the 
complex projective space. Moreover, the Whit- 
ney sum z @ai of the tangent bundle z(P”(C)) 
of the n-dimensional complex projective space 
P”(C) and the trivial Cl-bundle si is equivalent 
to the Whitney sum of (n+ 1) copies of 5;. 
Therefore we have ~(~(P”(C)))=C(<; @ 5; @ 

@ 5”)=(1 1 +g ” )n+r. 

D. Pontryagin Classes 

Utilizing the inclusion mapping O(n) c U(n) of 
structure groups, we cari associate a C”-bundle 
tc = 5 @ fi< with an R”-bundle 5. We 
delïne the 4i-dimensional (or ith) Pontryagin 
class of the R”-bundle 5 by pi(t)=( -l)‘~,~(<~) 
(E H4’(B; Z)) (i = 1,2, , [n/2]) (Hirzebruch 
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[4]). In particular, the Pontryagin classes of 
the universal bundle for O(n) are called the 
universal Pontryagin classes. We also defïne 
the total Pontryagin classes p(t) = 1+ p,(t) + 
. +pcni2,(Q. We have 2~,,+~(&.)=0. For R”- 
bundles 5 and q, p(< @ q)-p(s)p(q) modula 2- 
torsion elements. We have p,(t) (mod2) = 
(~~~(5))~ and ~,(<)=(x,,,(<))~ for the oriented 
R2”-bundle 5. Moreover, for a complex vector 
bundle w, we have (Wu [S]) 

i=O 

where we put c,,(w) = 1. 
Al1 such classes as defïned in Sections B-D 

are called characteristic classes. 

E. Other Definitions of Characteristic Classes 

Axiomatic Definition. (1) For a C”-bundle 5 
over a paracompact Hausdorff base space B, 
Chern classes ~(<)EH~~(B;Z) (i>O) are de- 
fined, and we have c,J<)= 1, ci(t)=0 (i>n). (2) 
For the total Chern class c(l) = C&C~([), we 
have c(f*t)=f*c([) for each bundle mapping 
1: (3) For the Whitney sum, we have ~(5 @ q) = 
c(5). c(q). (4) Normalization condition: For 
the canonical line bundle <y, we have C((Y)= 1 
+ g. (- Section C). We cari verify the existence 
and uniqueness of ci(<) satisfying these four 
conditions, SO Chern classes cari be defïned 
axiomatically by these conditions (Hirzebruch 
[4]). We cari similarly defïned Stiefel-Whitney 
classes axiomatically. 

Definition in Terms of Obstruction Classes. 
When the base space is a KW complex, we 
cari detïne the Chern class of a C”-bundle r 
over B as follows: Let V,,,-,+,(C)= U(n)/&+, 
x U(q - 1) be the tcomplex Stiefel manifold of 

a11 orthonormal (n-q + l)-frames in C” with 
Hermitian metric. Then V,,,-,+,(C) is +(2q-2)- 
connected, and its (2q - 1)-dimensional 
thomotopy group TC~,-~(~,.-,+~(C))=Z. Let 
5’ be the tassociated bundle of 5 with fïber 
V&+,(C). Then the tprimary obstruction 
(E H2¶(B; Z)) to constructing a +Cross section of 
5’ coincides with the Chern class c,(t). Anal- 
ogously, we cari interpret w,(t) for an R”- 
bundle 5 as an obstruction class (- 147 Fiber 
Bundles). 

Definition in Terms of Schubert Varieties. 
We denote by Ck the subspace defïned by 
~~+~=~~+~=...=z,,+~=OofthespaceC”+~= 

{<z,, ,~,+~)lz~~C,i=l,..., n+N},andfix 
the sequence of subspaces C’ c C2 c c C”+N. 
The set of a11 complex n-planes X through 
the origin 0 in (YN forms the tcomplex 
Grassmann manifold Mn+N.n(C). We denote 
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by E(yf) the set of a11 pairs (X, u), where 
XEM ,,+N.n(C) and v  is a vector in X. Then 
we cari delïne a 2N-universal complex n- 
dimensional vector bundle y: with base space 
M n+N,n(C)r with total space E(yr) and projec- 
tion (X, V)+X. Let w = (w( l), . . . , w(n)) be a 
sequence of integers satisfying the condition 
O<w(l)<...<w(n)<N.Thenthesete,ofall 
n-planes Xc C”+N through the origin 0 satis- 
fying dim(X n Ci+w(i)) = i, dim(X n Ci+w(i)ml) = 

i- 1, i= 1, 2, . . , n, forms a real (2 CyZ1 w(i))- 
dimensional open tcell. The set of a11 these 
open cells e, gives a tcellular subdivision of 
M .+N,n(C) as a CW complex. The closure ë, 
of e, is a cellular subcomplex of Mn+N,n(C)r 
called a Schubert variety. This is a tpseudo- 
manifold with canonical orientation and 
represents a (2& w(i))-dimensional inte- 
gral cycle, called a Schubert cycle. We denote 
ëw by (w(l), , o(n)). Al1 these homology 
classes form the basis of the homology group 

~&(M~+N,,(C); z). Th e cocycle dual to the cycle 
(0,. ,O 1, , 1) represents the Chern class 
-- 
n-q Y 

cq(Vf)~ff~~(Mn+,v,n (C); Z). For the real Grass- 
mann manifold M,+,,,(R), we cari analogously 
detïne the universal Stiefel-Whitney classes. 

Thom’s Definition. Let 5 be an R”-bundle over 
B, B, be its tThom space, and U CH”(I~,; Z,) 
be the tfundamental class of B,. Let j: B->B, 
be the inclusion induced from the zero cross 
section and cp: Hk(B; Z,)r Hkf”(B,; Z,) be the 
tThom-Gysin isomorphism. Then we have j* U 
=w,(<), ~~‘(Sq’U)=w~(t)(O<i<n), where 
Sq’ is the +Steenrod square (R. Thom [6]). 

Definition in Terms of Differential Forms. 
Let B be a tdifferentiable manifold and 5 = 
(PS, B, U(n)) be a differentiable principal U(n)- 
bundle over B. Let 0 = (Qj) be the tcurvature 
form corresponding to the konnection form 
w = (QI,), i, j = 1, . , n, on P<. Then R, is a 
complex-valued 2-form, and fiii = -a,,. For 
the matrix R, we consider the differential form 

4 

where 1 is the unit matrix, the multiplication 
in the determinant is the texterior product, 
and $q is the part of degree 2q in ICI. Then $ is 
defined as a real form independent of the con- 
nection w. We have d$, = 0, and the coho- 
mology class of (-l)“+, in H2q(B; R) is the 
Chern class c,(c) with real coefficients (Bore1 
and Hirzebruch [2], S. S. Chern [3]). 

Definition in Terms of Symmetric Polynomials. 
(- 427 Topology of Lie Groups and Homoge- 
neous Spaces.) 
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F. Characteristic Classes of Manifolds 

For a differentiable (complex or almost com- 
plex) manifold M, the characteristic classes of 
its tangent bundle are called characteristic 
classes of the manifold M. We shall denote 
Stiefel-Whitney classes, Pontryagin classes, 
Euler-Poincaré classes, and Chern classes of h4 

by wi(M)t Pi(M)> X,(M), ad Ci(M)> respec- 
tively. These are invariants of differentiable 
structures, orientations, or (almost) complex 
structures of a manifold M if M is a differ- 
entiable, oriented differential, or (almost) com- 
plex manifold. By the Stiefel-Whitney num- 
bers of an n-dimensional manifold M, we 
mean the values of n-dimensional monomials 
of Stiefel-Whitney classes of M on the fun- 
damental homology class ((w1(M)‘1w2(M)‘2. 
w,(M~)[M]cZz, where r,+2r,+...+nr,,= 
n, ri > 0. We cari define integer-valued Pon- 
tryagin numbers and Chern numbers similarly. 
These numbers are called generally character- 
istic numbers of the given manifold. In partic- 
ular, X,,(M) [M] =x(M) is the tEuler-Poincaré 
characteristic. 

In the case of topological manifolds, we 
cari define characteristic classes in the follow- 
ing sense. Let M be a closed n-dimensional 
topological manifold and X” the genera- 
tor of H”(M; Z,). By delïning Xi( Ynmi) = 
(XiY”-‘)[M]E~, for X’EH’(M;Z,), Ynmi~ 
H”-‘(M; Z,), we have an isomorphism 
H’(M; Z,)rHom(H”-‘(M, Z,); Z,). The ele- 
ment ui~Hi(M;Z,), corresponding to the 
homomorphism Y”-‘+@’ Y”-‘[M] under this 
isomorphism is called the Wu class of M, 
where Sq’ is the Steenrod square. Moreover, 
we cal1 wj = xi=, Sqj-‘u,6 Hj(M; Z,) the Stiefel- 
Whitney class of the topological manifold M. 
Then for any tdifferentiable structure 2, we 
have wj(M, 9) = wj. Therefore Stiefel-Whitney 
classes of differentiable manifolds are topolog- 
ical invariants (more precisely homotopy type 
invariants) (Thom [6], W. T. Wu [SI). J. W. 
Milnor [9] proved that Pontryagin classes of 
differentiable manifolds are not topological 
invariants. The image of p,(M) by the homo- 
morphism H4’(M; Z)+H4’(M; Q) induced by 
the inclusion Z c Q (the rational number field) 
is called the rational Pontryagin class. In 1966, 
S. P. Novikov [ 101 proved the topological 
invariance of the rational Pontryagin class 
(- Section H). 

G. Index Theorem for Differentiable 
Manifolds 

Let M be an oriented closed manifold of di- 
mension 4k. Putting f(x, y) = x. y[M] for 
elements x, y  of the 2k-dimensional real coho- 
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mology group Hzk(M; R), we obtain a bilinear 
form on Hzk(M; R). The tsignature of the 
quadratic form f(x, x) (namely, (number of 
positive terms) - (number of negative terms) in 
its canonical form) is a topological invariant 
(homotopy type invariant) of the manifold M. 
We cal1 it the index or the signature of the 
manifold M and denote it by z(M). If  the di- 
mension of M is not divisible by 4, we delïne 
z(M) = 0. For the product of manifolds we 
have z(M x N)=z(M).t(N). Also r(M) is an 
invariant of the tcobordism class of M (Thom 

C61). 
The index r of a differentiable manifold 

gives a homomorphism of the tcobordism ring 
R into the ring Z of integers. Hirzebruch inves- 
tigated the multiplicative property of r and 
gave its expression by means of Pontryagin 
numbers. Let Pi be the ith telementary sym- 
metric function of indeterminates &, . . , & 
Then a homogeneous part of the formal power 
series 

fi& 

i=i tanh& 

of Pr, , /3, is a symmetric polynomial of 
&, . , fi., and therefore a polynomial of Pi 
with rational coefficients. For k < n, we de- 
note the homogeneous part of degree k by 
&(Pi, , Pk). Specifïcally, if Pi are the Pontrya- 
gin classes pi(M4k) of a 4k-dimensional closed 
differentiable manifold M4k, then L,(P,, . , Pk) 
is a 4k-dimensional cohomology class of M4k. 
Then we have the formula 

T(M~~)=L~(P~, , Pk)[M4’], 

called the index theorem of differentiable mani- 
folds (or Hirzebruch index theorem). For exam- 
ple, L,=(1/3)P,, L2=(1/45)(7P2-P:), and 
L,=(1/945)(62P,-13P,P,+2P;),... (- 114 
Differential Topology). Later this index theo- 
rem was generalized to the tAtiyah-Singer 
index theorem (- 237 K-Theory). 

H. Combinatorial Pontryagin Classes 

Let K be an oriented n-dimensional compact 
thomology manifold, and let .?/ be the bound- 
ary of an oriented (r + 1)-simplex, namely, the 
combinatorial r-sphere. Let f:  K+Cnm4’ be a 
tpiecewise linear mapping. Then for almost a11 
points y  of zneLi, f-‘(y) is an oriented 4i- 
dimensional compact homology manifold, and 
its index T(~-‘(Y)) is independent of y. We 
denote this by r(f). The r(f) is an invariant of 
the homotopy class of 1: Let CT be the funda- 
mental class of H”-4’(z”-4i; Z). Then for n > 8i 
+ 2, there exists a unique cohomology class 
Ii= l,(K)~fl~‘(K; Q) such that for any piece- 
wise linear mapping f: K+JT4’, we have 
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(li.f*~)[K] =z(f). We cari remove the restric- 
tionna8i+2ifwetakeKxCmforKand 
defme ii(K) to be I,(K x Cm) for suftïciently 
large m. If  K is a tC’-triangulation of a dif- 
ferentiable manifold M, l,(K) coincides with 
the class L,(P,, . . , Pi) defïned by Hirzebruch 
(R. Thom [7]; V. Rokhlin and A. Shvarts), 
where Pj = pj(M) is the Pontryagin class of 
M. Since the variable Pi cari be expressed as 
a polynomial with rational coefficients of 
Lj(Pl , , Pj), j < i, we detïne the combina- 
torial Pontryagin class p,(K) of a homology 
manifold K as the polynomial of lj(K) with 
rational coefficients. Therefore, if K is a Cl- 
triangulation of a differentiable manifold M, 
we have p,(K) = p,(M) (modulo torsion ele- 
ments). The class l,(K) and consequently p,(K) 
are important combinatorial invariants of K. 
These classes are topological invariants [lO]. 
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Chinese Mathematics 

A. Mathematics in the Chao, Han, and Tang 
Dynasties (3rd Century n.c.-10th Century A.D.) 

In ancient China, the art of divination, called 
yi, was used in government administration. 
This was a kind of calculation that used pieces 
called tse. The book embodying it, called the 
I-Ching, is still popularly used. It shows that 
“numbers” or mathematics was seriously uti- 
lized in China at that time. The multiplica- 
tion table for numbers up to nine (called the 
Pythagorean table in the West) was known in 
China from the legendary period. However, 
mathematics in the Greek sense, that is, math- 
ematics as a logically systematized science, was 
unknown in ancient China. 

Suanching-Shihshu, or the Ten Books on 
Arithmetic-namely, Choupi-Suanching, 
Chiuchang-Suanshu, Haitao-Suanching (edited 
by Liu Hui), Suntzu-Suanching, Wutsao- 
Suanching, Hsiahouyang-Suanching, 
Changchiu-Suanching, Wuching-Suanshu, 
Chiku-Suanching (edited by Wang Hsiao- 
Tong), and Shushu-Chiyi (edited by Hsu Yue) 
-came into being between the 2nd Century 
B.C. and the 6th Century A.D., from the Chao 
to the Han eras, with the exception of the 
Chiku-Suanching compiled in the Tang era. 
These are the only mathematical texts from 
this early period whose authors and times of 
publication are known. They were used in the 
civil service examination for selecting adminis- 
trators up to the beginning of the Sung era 
(960 A.D.). The most important among them is 
Chinchang-Suanshu, or the Book of Arithmetic, 
which contains nine chapters. It treats positive 
and negative fractions with laws of operations 
on signed numbers, equations, and the elemen- 
tary mathematical knowledge of daily life. The 
Chiku-Suanching contains a number of prob- 
lems reducible to equations of the 3rd and 
4th degrees. 

There were also two works called Sun Tung 
Shu (edited by Tong Chuan) and Chui Shu 
(edited by Tsu Chung-Chih), but no copies of 
them are extant. Later works, one from the Sui 
era (published in 636) and another from the 
Tang era, tel1 us that the latter contained the 
result 3.1415927>~>3.1415926 and the ap- 
proximate values 355/113 and 2217 for TC. 

In the 1st Century A.D. Buddhism was intro- 
duced from India, and paper was invented. 
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However, despite the communication with 
India, neither the Indian numeration system, 
written calculation, nor the abacus was at that 
time widely used in China. The extraction of 
square or cube roots was done with calculat- 

ing rods. 

B. Mathematics in the Sung and Yuan 
Dynasties (lOth-14th Centuries) 

In the Sung and Yuan periods contact was 
made with the Arab world. In the 13th cen- 
tury, a mechanical algebra utilizing calculating 
rods made remarkable progress; this cari be 
attributed to Arab influence. Toward the 
end of the Sung era appeared the Shushu- 
Chiuchang by Ch’in Chiu-Shao and the Yiku- 

Yentan by Li Chih. The former gives a method 
like Horner’s for approximate solution of 
equations, and the latter gives the principle of 
tienyuan-shu, i.e. the mechanical algebra of 
this period. The principle of tienyuan-shu was 

further expounded in the Suanhsueh Chimeng 

(1295) and the Suyuan Yuchien (1303) by Shih 
Shih-Chieh, the Yanghui Suanfa by Yang Hui, 
and other works. These were introduced into 
Japan and they influenced the wasan (Japanese 
mathematics) of early times. Until recently, no 
further original mathematical ideas appeared 
in China. 

C. Mathematics after the Ming Era (15th 
Century) 

In this epoch, European renaissance civiliza- 
tion began to influence the Orient. In 1607, 
Matteo Ricci (155221610) translated Books I- 
IV of Euclid’s Elements into Chinese with the 
aid of Hsu Kuang-Chi. In 1592 Sanfa Tung- 

tsung by Ch’êng Ta-Wei appeared, which 
dealt with the use of the abacus. This book 
had great influence upon wusun. 

No development was seen in the indigenous 
mathematics of the Ching era, that is, after 
the 17th Century, but science and technology 
were imported by Christian missionaries. This 
brought about calendar reform from the lunar 
to the solar method. On the other hand, new 
editions of classical works such as the Ten 
Books on Arithmetic began to appear in this 
period. Emperor Kang Hsi-Ti (16555 1722) 
who was in correspondence with Leibniz, 
asked Ferdinand Verbiest (renamed Nan Huai 
Jen in Chinese) to compile Shuli-Chingwen 

(Advanced mathematics), whose 53 chapters 
were completed in 1723. This book dealt with 
European-style algebra and trigonometry. In 
the latter half of the 19th Century, Alexander 
Wylie translated a number of Western mathe- 
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matical books into Chinese, including Books 
VII-XIII of Euclid’s Elements and some works 
on calculus. Many current Chinese and Japa- 
nese mathematical terms originated with this 
translation. 
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Cm-Functions and Quasi- 
Analytic Functions 

A. General Remarks 

An example of a tC”-function is a treal ana- 
lytic function, which is detïned to be a function 
that cari be expressed as a power series that 
converges in a neighborhood of each point 
of the domain where the function is defined. 
Many examples, however, show that real 
analytic functions form a rather small subset 
of the C”-functions. Sometimes C”-functions 
(not real analytic functions) play essential roles 
in the development of theories of analysis (- 
105 Differentiable Manifolds S). On the other 
hand, there is a subfamily of C”-functions 
having some remarkable properties in com- 
mon with the family of real analytic func- 
tions. This family is called the family of quasi- 
analytic functions. It has been an important 
abject of study since the beginning of the 20th 
Century. On the other hand, the Gevrey class 
functions, which are no longer quasi-analytic 
in general, also constitute an important subset 
of C”-functions. The tïrst part of this article 
deals with C”-functions, the second part with 
quasi-analytic functions, and the third part 
with Gevrey class functions. 

B. CT’-Functions 

Let R be an open set of the n-dimensional real 
Euclidean space R”. A real-valued function 
f(xr , , x,) defïned on R is called a function 
of class C” on R (or C”-function on Q) if 
f(x i, . . ,x,) is continuously differentiable up to 
any order. The totality of C”-functions defmed 
on R is denoted by P(R). It is an tassociative 
algebra over the real number field R. A contin- 
uous function f  defined on some closed set F 
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of R” is called a C”-function on F if there exist 
an open neighborhood U of F and a function 
g E Cm( U) such that f= g 1 F. This definition is 
equivalent to the following (H. Whitney [6]): 
For any multi-index t( = (IX,, . . , a,), we cari find 
a continuous function f”(x 1, ,x,) on F such 
that (i)f’(x,, . . . ,x,)=f(xl, . . . ,xJ and (ii) for 
any positive integer r and for every multi- 
index a with la1 Q r, 

- 1 fQ+qx)~~]=o, 
la+Pl<r 

where /I /I denotes the Euclidean norm of R” 

C. Local Theory of C”-Functions 

We shall now introduce an equivalence rela- 
tion - in C”(R”), defïned as follows: f-g 
0f1 U = g( U for some open neighborhood 
U of the origin. Let &,, denote the quotient set 

CmW’)/-> which naturally inherits the struc- 
ture of an associative algebra from C“‘(R”). An 
element of & is called a germ of a C”-function 
at the origin. We denote the germ of fE Cm(R”) 
by y  TO fi &“, we assign the formal Taylor 
expansion C(Dmf(0)/a!)xa around 0, where 
O”f means (all+...+rnf)/(Tlx, Tmx,) for a= 

(r,, . . . ,Y,). This assignment induces a homo- 
morphism z from &n to the dring of forma1 
power series R[ [x1,. ,x,1] of n variables. 
The homomorphism z is surjective but not 
injective. Put A,, = z -’ (0) c 8,. A function f  
whose germ f  belongs to A, is called a flat 
function. The function C~(X) delïned by <p(x) = 
exp(-1/x2) when x#O and q(O)=0 is an 
example of a flat function on R’. A close study 
of the relationship between & and R[[xI, 
. . . ,x,,]] leads to the preparation theorem for 
C”-functions, which cari be stated as follows: 
Let F(x,, , X”)E&~ satisfy F(0,. . . ,O, xJ= 
X:~(X.) (Q~&~,g(0)#0). Then any fi&” cari 
be expressed as f  = F”Q + i?, where & E 8” and 
R=CfZiri(xl, . . . . x,-,)x: with r,E&-, (B. 
Malgrange [3]). 

Letf(x,,..., x,) be a symmetric function in 
(x1, . ,x,) of class C”. Then there exists a 
germgE&such thatf(x, ,..., x,)=Y(al ,..., 
a,), where ol, ,o” denote elementary sym- 
metric functions with respect to x1, ,x, (G. 
Glaeser, Malgrange). Let 7~8, satisfy f(x) = 
f( - x). Then there exists a germ YE 8, such 
that y(x)=y(x”) (H. Whitney). 

D. Global Results 

Case of n Variables. C” (0) becomes a TFréchet 
space when it is endowed with the topology of 

uniform convergence on compact sets for a11 
partial derivatives. Let J and J, be two closed 
tideals of Cm(Q). Then we have J = J, if and 
only if z,(J) = z,.(J,) for each x E R, where Z, is 
the mapping from C”(Q) to the ring of the 
formal power series that assigns the forma1 
Taylor series off around x (Whitney). 

Case of One Variable. In the case of one vari- 
able, further information cari be obtained from 
various points of view. In the following, f  
denotes a C”-function defined on the unit 
interval I= [0, 11. If  f  satisfïes f( 1) = 1, f’(O) 
= =f”-‘j(O) = 0, then we have 

where rn,=s~p{~f’~~(x)~~x~I} and where k 

is some constant independent of the choice 
off and r (E. Borel). Similar kinds of inequal- 
ities were obtained by A. N. Kolmogorov, 
A. Gorny, and H. Cartan. Let A be an arbi- 
trary countable set of real numbers. If  for any 
XE I we cari fïnd an integer r(x) such that 
~@@))(X)E A, then such a function f  is neces- 
sarily a polynomial. The interval 1 cari be 
divided into three disjoint subsets: Sl), S2), 
and S$f). These are characterized as follows: 
For x E Sl) the formal Taylor series T,( ,f) of , f  
around x converges to f  in some neighbor- 
hood of x. For x E Sif), TJ~) diverges. And for 
x E Shf), z,(f) converges in some neighbor- 
hood of x but does not tend to ,f: Then Sl’ is 
an open set and S2) is a G,-set, while S3’ is 
an F,-set of the ttïrst category. Conversely, let 
1= S, + S, + S, be any partition of I into an 
open set S,, a G,-set S,, and an F,-set S, of the 
first category. Then there is some fe Cm(I) 
with S.=S!f) (i= 1 2 3) [S]. L L > > 

E. Relations between C”-Functions and Real 
Analytic Functions 

Let C-(1) be the set of real analytic functions 
on 1. Then CO(r) is a subalgebra of Ca(l). 
Applying the above result in the case of S, = 
0, we tïnd a function fi Cm(l) that admits 
no real analytic function coinciding with f  
in a subinterval of 1. Actually, functions with 
such a property are distributed densely in 
Cm(l). A necessary and suffïcient condition for 
a function fé C”(1) to belong to CU(l) is that 
for suitable constants A and k, If’“‘(x)l < 
Ak”n!, X~I, n=O, 1, 2, . . . . be valid (Pring- 
sheim’s theorem). If  f(“)(x) > 0 for a11 x E I and 
n=0,1,2 )...) then fi CU(r) (S. N. Bernshteïn). 
For any open set R (c R”), the set C”‘(Q) of 
real analytic functions on fi is dense in C”(Q) 
(polynomial approximation theorem). This re- 
suit is true even when the topology of C=(n) 
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is replaced by a stronger one (Whitney [SI). 
Let fgCm(fi) and (Pic”. Then we cari 
lïnd g E Cm(n) satisfying f= gcp if and only if 
for any x E R, rX(f) is divisible by r,(q) in the 
ring of forma1 power series (S. Lojasiewicz, 
Malgrange [3]). 

F. Quasi-Analytic Functions 

The investigation of quasi-analytic functions 
began with the attempt to obtain an intrinsic 
characterization of analytic functions. Bore1 
defined monogenic functions as functions 
differentiable on their domains of definition, 
which cari be any subset of the complex plane, 
not necessarily assumed to be open (- 198 
Holomorphic Functions Q). Similar to com- 
plex analytic functions, monogenic functions 
are uniquely determined by their values on 
any curve. While quasi-analyticity cari be 
detïned by such properties, it is customary to 
approach quasi-analytic functions from an- 
other aspect, that is, the behavior of higher 
derivatives of C”-functions. 

Generally, a subset B of C?‘(I) is called a set 
of quasi-analytic functions if the mapping 7,: 
B+R[ [x]] defmed in Section D is injective at 
each point XE I. The functions belonging to B 
are called quasi-analytic (with respect to B). 
Here, an important problem is to characterize 
a set of quasi-analytic functions B by specializ- 
ing the image of T~(B). 

Now let {M,,} be a sequence of positive 
numbers. Let C(M,,) be the subset of Cm(I) 
consisting off such that 

If’“‘(x)l <Ak”M,, XEI, n=0,1,2 ,...) 

where A =A(f) and k = k(f) are constant. 
Then Pringsheim’s theorem simply asserts that 
C(n!) = CU(I). 

In 1912, J. Hadamard raised the problem of 
determining the condition that the sequence 
{M,,} should satisfy SO that C(M,) becomes a 
set of quasi-analytic functions [9]. A. Denjoy 
showed that if 

Mn = (n log’ n log’ n . logPn)“, 

where 

log’ n = log n, logPn = log(logp~’ n), 

p=2,3 > “‘/ 

then C(M,) is a set of quasi-analytic functions 
[ 101. Later he derived an improved result that 
the condition C Mn-lin = CO is suffcient. T. 
Carleman tïrst gave a necessary and suffcient 
condition for C(M,,) to be a set of quasi- 
analytic functions, and later A. Ostrowski and 

T. Bang gave another version of the same 
condition [l 1~ 131. The condition states essen- 
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tially the following: A necessary and sufftcient 
condition for C(M,) to be a family of quasi- 
analytic functions in the interval (a, b) is given 
by either (i) C/$-‘= +Q, where &=inf,., M/jk 
(Carleman), or (ii) S”(log T(r))/(?)&= 00, 
where T(r) = SU~,, , (r”/M,) (Ostrowski, Bang). 
S. Mandelbrojt and T. Bang also gave another 
condition [13,14]. (The simplest proof of these 
results is found in [ 131 or [ 151, where the 
proof follows Bang% idea.) 

Related to the above theorem, we also have 
the following: Let {M,} be a sequence of posi- 
tive numbers with Z(M,/M,+,) < CO. For tl> 0 
we cari tïnd fe C(M,) delïned on (-00, CO) such 
that f(0) > 0, f’“‘( k c() = 0. Moreover, for 0 < 
c( < fi there exists fi C(M,) such that f(0) > 0, 
f’“‘=O(a<x</?, n=0,1,2 ,...) [16]. 

Suppose that we are given an interval I and 
increasing sequences {Y~} and {M,,} of positive 
numbers. Then we have the problem of linding 
suitable conditions on {v,,} and {M,} under 
which the mapping f-{f’“~‘(xO)} gives an 
injective mapping from C(M,) to the sequences 
above. When {v”} and {M,} satisfy the above 
conditions, then a function belonging to C(M,,) 
is called quasi-analytic (vJ in the generalized 
sense. The study of the inclusion relation be- 
tween two families C(M,) and C(M:) also 
deserves attention. In [ 151 the relation be- 
tween C(M,) and C(n!) = C”(1) is discussed in 
detail. There are many open problems con- 
cerning the relationship between C(M,) and 
C(M;) in general. 

Quasi-analytic functions are closely related 
to problems in various branches of analysis, in 
particular the theories of complex analytic 
functions, Fourier series, Fourier integrals, 
Dirichlet series, and asymptotic expansions 
[S, 15,171. 

G. Gevrey Glass Functions 

This class of functions has its origin in the 
study of tparabolic equations. A Cm-function 
f(x) defined in a domain of R” is called of 
Gevrey class s (1 <s < CO) if for every com- 
pact set K in that domain there exist positive 
constants A, and C, such that 

m;x ID”f(x)l Q A,C!$M!~ 

forallmulti-indicescc(lal=cc,+...+cc,,cc!= 
c(i ! Es! . . . cr,!). A typical example is 

f (x)= o 

{  

exp(-1/x) for x>O, 

for x<O, 

which is of Gevrey class 2. Let us denote the 
function space of a Gevrey class s by y(“). Evi- 
dzntly y(‘) c y  (“1 ifs < s’. Let ~(X)E$~) and 

F(Y)EY (‘); then XH F(f(x))~y@). In particular, 
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the sum and the product of two functions in 
y’“’ belong also to y(“). Furthermore, the tim- 
plicit function theorem holds in this class. 
Unlike the class of analytic functions, we cari 
use this class of functions of class s (> 1) for a 
+Partition of unity, and several problems in 
partial differential equations cari be treated 
within this function space. Gevrey class func- 
tions are discussed in a complete form in [20] 
(- also [19]). 
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Class Field Theory 

A. History 

The notion of a class field was fïrst introduced 
by D. Hilbert (1898). Let k be an talgebraic 
number field and K a +Galois extension of k. 
Hilbert called such a iïeld K a class fïeld over k 
(or K/k was called a class field) when the fol- 
lowing property was satisfïed: A +Prime ideal 
p of k of absolute degree 1 (i.e., a prime ideal 
whose tabsolute norm is a prime number) is 
decomposed in K as the product of prime 
ideals of K of absolute degree 1 if and only if 
p is a +Principal ideal. (Such a fïeld K is now 
said to be an ahsolute class field over k in 
order to distinguish it from a class field defïned 
later more generally by T. Takagi as explained 
below.) Hilbert conjectured the following theo- 
rems (l))(4) together with the principal ideal 
theorem (- Section D), and proved them in 
some special cases. (1) For any algebraic num- 
ber field k there exists one and only one class 
held K/k. (2) A class fïeld K/k is an +Abelian 
extension whose +Galois group is isomorphic 
to the tideal class group of k. Hence the degree 
n = [K : k] is equal to the +class number h of k. 
(3) The trelative different of a class held K/k is 
the principal order; thus K/k is an tunramified 
extension. (4) Let p be a prime ideal of k, and 
let f  be the smallest positive integer such that 
pf is a principal ideal. Then p is decomposed 
in the class iïeld K/k as p = ?$3 i (p2 v9, 

&,k(w= Pf> .h = n. 
Hilbert was led to these conjectures by the 

analog to the theory of talgebraic functions in 
one variable. Theorems (l)-(4) were proved by 
P. Furtwangler (Math. Ann., 63 (1907)), but 
these results were subsumed under the class 
field theory of Takagi, who generalized the 
notion of class field and proved that every 
Abelian extension of k is a class fïeld over k (J. 
Coll. Sci. Imp. Univ. Tokyo, (9) 41 (1920)). Since 
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then, the arithmetic of Abelian extensions of k 
has developed through this theory. In Takagi’s 
paper, L. Kronecker’s problem concerning 
Abelian extensions of an imaginary quadratic 
tïeld (- 73 Complex Multiplication) was 
solved simultaneously; this had been an open 
problem since the 19th Century. Later, E. Artin 
proved the general law of reciprocity (Abh. 
Math. Sem. Univ. Humbury, 5 (1927)) which put 
class lïeld theory into its complete form. The 
original proof by Takagi was rather com- 
plicated, and H. Hasse, Artin, J. Herbrand, C. 
Chevalley, and others tried to simplify it. In 
particular, Chevalley introduced the notion 
of +ideles and gave a purely arithmetic proof. 
On the other hand, attempts are also being 
made to generalize this theory to non-Abelian 
extensions. We mention here the results of 
G. Shimura [ 151 and Y. Ihara [ 161. Today, 
class field theory is considered one of the 
most beautiful theories in mathematics. 

B. Definition of a Glass Field 

Let k be an algebraic number fïeld. For the 
detïnition of a general class lïeld over k, we 
need a generalization of the ideal class group 
ofk(- 14 Algebraic Number Fields H). Let m 
be an tintegral divisor of k, and let J(m) be the 
multiplicative group of a11 tfractional ideals of 
k which are trelatively prime to m. For the 
rest of this article, we mean by an ideal of k 
a fractional ideal of k. Denote by S(m) the 
+ray modulo m. Let H(m) be an tideal group 
modulo m, that is, a subgroup of 3(m) con- 
taining S(m). A Galois extension K of k is said 
to be a class field over k for the ideal group 
H(m) if the following property is satislïed: A 
prime ideal p of k of absolute degree 1 which is 
relatively prime to m is decomposed in K as 
the product of prime ideals of K of absolute 
degree 1 if and only if p belongs to H(m). The 
absolute class fïeld of Hilbert is the case where 
m = (1) and H(m) is the group of a11 principal 
ideals of k. 

A class lïeld K/k for an ideal group H is 
uniquely determined by H (uniqueness theo- 
rem). The tconductor f  of H is said to be the 
conductor of the class Iïeld for H. The ideal 
group H corresponding to the class lïeld K/k is 
determined by K as follows: H(f)/,S(f) is the 
union of a11 cosets C of J(f) modulo S(f) such 
that C contains a trelative norm iVKII<((u) of 
some ideal VI of K which is relatively prime to 
f. In general, let K/k be a Galois extension and 
m be an integral divisor of k. Let H(m) be the 
union of a11 cosets C of 3(m) modulo S(m) such 
that C contains a relative norm NKIL((u) of 
some ideal 5.X of K which is relatively prime to 
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m. Then H(m) is a multiplicative subgroup of 
3(m), and the index h=(s(m):H(m)) is not 
greater than the degree n = [K : k]. We have 
h = n if and only if K/k is the class lïeld for 
H. Hence a class tïeld K/k cari be defïned as 
a Galois extension of k such that h = n for a 
suitable integral divisor m of k. 

C. Fundamental Theorems in Glass Field 
Theory 

(1) Main theorem: Any Abelian extension K/k 
is a class fïeld over k for a suitable ideal group 
H. 

(2) Existence theorem: For any ideal group 
H(m) there exists one and only one class tïeld 
for H(m). 

(3) Composition theorem: Let K, and K, be 
class tïelds for H, and H,, respectively. Then 
the composite Iïeld K, K, is the class fïeld over 
k for H, fl H,. Consequently, K, 3 K, if and 
only if H, c H,. 

(4) Isomorphism theorem: The Galois group 
of a class fïeld K/k for H(m) is isomorphic to 
z(m)/H(m). In particular, every class lïeld 
K/k is an Abelian extension of k. 

(5) Decomposition theorem: Let f  be the 
conductor of the class lïeld for H. If  p is a 
prime ideal of k relatively prime to f  and f’ is 
the smallest positive integer with pS6H, then 
p is decomposed in Klk as p = v, (uZ v9, 

NK/k((Pi) = Pfa fi = n. 
(6) Conductor-ramification theorem: Let f  be 

the conductor of a class field K/k. Then f  is not 
divisible by any prime divisor that is unrami- 
tïed for K/k, and f  is divisible by every prime 
divisor that ramifies for K/k. Let f  = nf,, 
f ,  = pc. Then f, coincides with the tp-conduc- 
tor of K/k, and the exponent c cari be explicitly 
expressed by the order of the tramifïcation 
groups and the tramification numbers of p for 
K/k (- 14 Algebraic Number Fields P). 

(7) Let p be a prime ideal of k that rami- 
fies for K/k. Let H, be the ideal group of k 
such that (i) the conductor of H, is relatively 
prime to p and (ii) H, is the minimal ideal 
group of k containing H with property (i). 
Let n=[K:k],e=(H,:H), and pfeH,, where 
pd(d<f)$H,. Then p is decomposed in K/k as 

P = R-J, 7% . . PJ, ~Klk(%) = pf, n = efu. 
(8) Translation theorem: Let K/k be the class 

fïeld for an ideal group H(m), and let R be an 
arbitrary finite extension of k. Then KQ/Q is 
the class lïeld for H*, where H* is the ideal 
group of R consisting of a11 ideals b of R with 
&,,(b)EH(m). In particular, the conductor of 
KR/R is a divisor of the conductor of K/k. 

(9) Artin’s general law of reciprocity: Let K/k 
be the class field for an idea group H with the 
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conductor f.  We denote the +Artin symbol of 
an ideal a of k that is relatively prime to f  by 

(K/a)= 4 ( > 
Let a mapping @ from 3(f) to the Galois 
group G of K/k be delïned by @(a)=(K/a) for 
ami. Then @ induces the isomorphism 
J(f)/H(f) g G. Namely, the isomorphism men- 
tioned in (4) is explicitly given by the Artin 
symbol. Also, the ideal group H(f) is character- 
ized as the set of a11 ideals a such that agz(f) 
and (K/a) = 1. From this theorem we cari prove 
ail the known laws of reciprocity for power- 
residue and norm-residue symbols (- 14 
Algebraic Number Fields 0, Q, R). 

From the general results of class field theory 
we cari systematically derive all the known 
theorems concerning the arithmetic of qua- 
dratic lïelds, cyclotomic lïelds, and Kummer 
extensions. 

D. Principal Ideal Theorem 

Let K/k be an absolute class fïeld. Then the 
extension of any ideal of k to K is a principal 
ideal of K. This theorem is called the principal 
ideal theorem. It was conjectured by Hilbert, 
formulated by Artin as a theorem of group 
theory, and proved by Furtwangler (Abh. 

Math. Sem. Univ. Hamburg, 7 (1930)). Later a 
simple proof was given by S. Iyanaga (Abh. 

Muth. Sem. Univ. Hamburg, 10 (1934)). This 
theorem was also generalized to the following 
general principal ideal theorem (Iyanaga, 
Japan. J. Muth., 7 (1930)): Let K/k be the class 
field for the ray S(f), and let f  = 33, where I, is 
the relative different of K/k. Then the exten- 
sion to K of any ideal of k that is relatively 
prime to f  belongs to S(z). Put iy = n p”. 
Then u is equal to the ramification number 
u, + 1 (- 14 Algebraic Number Fields K). For 
an absolute class lïeld K/k, let the extension of 
an ideal a to K be (O(a)). Then we cari choose 
O(a)6 K such that O(a)O(b) Ek, 

where a(a) =(K/a) is the Artin symbol for a 
(T. Tannaka, Ann. Math., 67 (1958)). This 
result cari also be generalized for the class 
field for S(f). 

E. Theory of Genera 

Let K/k be a Galois extension and let H(m) be 
an ideal group of k. The set of ah ideals ‘LI of K 

relatively prime to m such that NKII<(Z) be- 
longs to H(m) forms an ideal group of K. This 
ideal group is said to be the principal genus for 
ff. Each coset of 3(m) modulo the principal 
genus for H is said to be a genus for H. In 
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particular, let K/k be a cyclic extension with 
the conductor f,  and let H(f) be the ideal group 
of k generated by N&A) (AE K) and S(f). 
Then the principal genus for H(f) is the ideal 
group formed by the ideal classes of K of 
the form C’~0, where cr is a generator of the 
Galois group of K/k (- 347 Quadratic Fields 
F). In general, let K/k be an Abelian extension, 
and let f  be the conductor of K/k. Then for the 
ideal 5 = n !JJ” of K delïned in Section D, 
N,,,(S(mS))=S(nrf) for an arbitrary integral 
ideal m of k. In particular, let K/k be a cyclic 
extension, and let H = S(mf). Then the prin- 
cipal genus for H is the ideal group consist- 
ing of a11 cosets of J(m3) modulo S(mS) of 
the form Bimb (Herbrand; Iyanaga, J. Reine 

Aqew. Math., 171 (1934)). 

F. Glass Field Tower Problem and 
Construction Problem 

Furtwangler considered the following prob- 
lem: Let k be a given algebraic number tïeld, 
k = k, c k, c k, be the sequence of tïelds 
such that ki is the absolute class field over kiel, 

and K 1: be the union of all the ki. 1s K co a 
tïnite extension of k? The answer is yes if and 
only if k, is of class number 1 for some n. This 
problem is called the class fïeld tower problem. 
Artin remarked that if for every algebraic 
number lïeld F of degree n we have the inequal- 
ity 1 D,I > (n/4)2’2(n”/n!)2 > (7re2/4)n/(2nne”6”) 
for the tdiscriminant D,, then K ,/k is always 
lïnite [l, p. 461. E. S. Golod and 1. R. Shafa- 
revich (1964) solved the class field tower prob- 
lem negatively; they proved that K,/k is 
inlïnite if ki (i = 1,2, . ) is the maximal unrami- 
lied Abelian p-extension of kiml for a tïxed 
prime number p and if the inequality y  > 3 + 
2m holds, where y  is the minimal num- 
ber of generators of the p-component of the 
ideal class group of k and p is the rank of the 
unit group of k. (We cal1 an extension K/k a p- 

extension if the degree [K : k] is a power of a 
prime number p.) For example, the class lïeld 
tower K,/k is actually infinite if k is an imagi- 
nary quadratic tïeld (p = 1) and y  > 7 for p = 2, 

forexample, k=Q(J-3.5.7.11.13.17.19). 
Construction problem. Let k be a given alge- 

brait number lïeld and G a lïnite group. The 
construction problem asks us whether there 
exists a Galois extension K/k such that its 
Galois group Gal(K/k) is isomorphic to G. If  G 
is Abelian the problem cari be solved aftïrma- 
tively by using class tïeld theory. This problem 
was also solved affïrmatively for p-groups by 
A. Scholtz and H. Reinhardt in 1937, and for 
general solvable groups by Shafarevich in 1954 
(I~V. Akad. Nauk SSSR, ser. mat. 18). 
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G. Class Field Theory for Algebraic Function 
Fields and Local Glass Field Theory 

F. K. Schmidt developed an analog of class 
fïeld theory for Abelian extensions over an 
algebraic function tïeld in one variable with 
imite coefficient fïeld (1930; - [8]). An arith- 
metic proof was given by M. Moriya (1938). 
An analog of class Iïeld theory for local fields 
with finite residue-class fields, called local class 
tïeld theory (- 257 Local Fields) was fïrst 
developed by Hasse, and later Chevalley gave 
an algebraic derivation (1933). 

H. Cohomology of Groups and Class Field 
Theory 

For the purpose of simplifying the proof of the 
main theorems in class field theory, the theory 
of +Galois cohomology was developed by T. 
Nakayama, G. Hochschild, A. Weil, Artin, J. 
Tate, and others. In particular, Artin and Tate 
[9] constructed class tïeld theory on the basis 
of the cohomology theory of finite groups as fol- 
10~s: Let G be a lïnite group, A a +G-module 
(or a multiplicative commutative group with 

the operator domain G), and fi”(G, A) the nth 
tcohomology group (n = 0, k 1, k 2, . ) of 
G with coefficients in A (- 200 Homolog- 
ical Algebra N). Then we have fi’(G, A)E 
AGIN,( where AG is the set of a11 G-invariant 
elements in A and N,(A) is the set of all ele- 
ments of the form NG(a)=~,,,oa (ao A). We 
cari consider Z a G-module by defining on = n 
(n E Z, o E G). Let A, B, C be G-modules such 
that a G-bilinear mapping (A, B)+C is de- 
fined. Then we cari define the +cup product 
(~,B)~~~-B(c(EA’(G,A),BEA~(G,B),cI-PE 
@+“(G, C)) for r, SE Z with the usual prop- 
erties. Let A be a G-module and H a sub- 
group of G. Then the trestriction homomor- 
phism RGIH:fi”(G, A)+fi”(H, A) and the 
tinjection homomorphism InjHic:E?“(H, A)+ 
fi”(G, A) are detïned for nE Z. If  H is a 
normal subgroup of G, then the tinflation 
homomorphism Info,H1,G: E?“(G/H, AH)+ 
E?“(G, A) cari be deiïned for n > 1 (- 200 
Homological Algebra M). 

Let k be an algebraic number fïeld, and let 
K be a Galois extension of k of degree n with 
the Galois group G = G(K/k). The multiplica- 
tive group Kx = K - {0}, the tidele group J, of 
K, and the idele class group C, of K are multi- 
plicative commutative groups with G as their 
operator domain. The fundamental formulas 
in Galois cohomology for class field theory are 

fi’(G,C,)=O, (1) 

#(G, C,))g Z/nZ. (2) 
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It is possible to realize the isomorphism of 
(2) by the invariant invKik:fi2(G, C,)<{(r/n) 
(modZ)Ir=O,l,...,n-l}insuchawaythat 
the following properties hold, where the canon- 
ical cohomology class for K/k is the element 

5 K,k of fi’(G, C,) such that inv,,, tKik =( l/n) 
(modZ): (i) for kclcK, G=G(K/k), H= 
G(K/I), the relation Res,,, tKlk = tK,i holds; 
(ii) if l/k is also a Galois extension with F = 
G(l/k), then we have Inf,,, &,k = t& (m= 
[K: II); (iii) for a cyclic extension K/k we 
have inv Klk SKik = C,inv,(SK,A, (mod 9, where 
p runs over a11 prime divisors of k and inv, is 
the invariant in the local theory (- 257 Local 
Fields E). By these properties, the canonical 
cohomology class <K,k is uniquely determined. 
After these preliminaries we cari state Tate’s 
theorem, from which the fundamental theo- 
rems in class fïeld theory follow. 

Tate’s theorem. Let K/k be a Galois exten- 
sion with the Galois group G. Then we have the 
isomorphism Q”:E?“-‘(G, Z)E A”(G, C,) (n= 
0, * 1, k 2, . ) that is given explicitly by 

Qn(4 = 5K,k - c(, where tK,k E fi’(G, C,) is the 
canonical cohomology class for K/k (Ann. 
Math., (2) 56 (1952)). 

Corollary 1. Since fim2(G, Z)g G/[G, G] and 
fi’(G, CK)g Ck/NKIk(CK), we have the isomor- 
phism u>,: G/[G, G] g Ck.NKIk(CK). Let f(z, a) 
(7, 0 E G) be a 2-tcocycle belonging to tKik. 
Then by the explicit expression for the cup 
product we obtain the isomorphism 

@,:a mod[G, GI)-, 

This is an analog of the result in local theory 
that was proved earlier by T. Nakayama and 
Y. Akizuki (Math. Ann., 112 (1936)). 

Corollary 2. For an Abelian extension K/k 
we have the isomorphism @,: G g Ck/NKIk(CK). 
@>o’ has the property of being the norm- 
residue symbol for C,, and from this iso- 
morphism we cari prove immediately Artin’s 
law of reciprocity. Thus we cari prove the main 
theorems in class field theory by cohomology- 
theoretic methods [9]. 

We cari also see, by generalizing this iso- 
morphism to infinite Abelian extensions, that 
the Galois group of the maximal Abelian 
extension of k over the ground lïeld k with 
+Krull topology is algebraically and topologi- 
cally isomorphic to Ck/Dk, where Dk is the 
connected component of the unit element in 
C,. The structures of Dk and C,./D, were ex- 
plicitly determined by Artin and T. Kubota, 
respectively (- 6 Adeles and Ideles D). 

I f  we assume the fundamental formulas (1) 
and (2) stated above and several other simple 
assumptions as axioms for an infïnite ex- 
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tension of a Iïxed ground field, we cari de- 
velop the results stated in this section purely 
cohomology-theoretically. Such a system is 
called a class formation (Artin; - [SI). In ad- 
dition to the cases of algebraic number Iïelds, 
algebraic function fields in one variable with 
lïnite coefficient fïelds, and local fïelds with 
finite residue-class lïelds, which we have men- 
tioned already, we also know several other 
cases for which analogies of class tïeld theory 
are valid. These analogies cari be explained 
systematically by using class formation the- 
ory (Y. Kawada, Duke Math. J., 22 (1955)). 
Examples are (1) the theory of unramifïed 
Abelian extensions of an algebraic function 
held in one variable with algebraically closed 
constant iïeld of characteristic 0 (Tate and 
Kawada, Amer. J. Math., 77 (1955)); (2) the 
theory of Kummer extensions over a field k 

such that (i) the characteristic of k is 0, (ii) k 

contains ah the roots of unity, and (iii) for any 
Galois extension K/k, N&K)= k; (3) the 
theory of Abelian p-extensions of a field of 
characteristic p (E. Witt, J. Reine Angew. 

Math., 176 (1963); 1. Satake and Kawada, J. 
Fac. Sci. Univ. Tokyo, 7 (1955)); (4) the theory 
of unramitïed Abelian p-extensions of an 
algebraic function fïeld in one variable with 
algebraically closed constant Iïeld of char- 
acteristic p (Hasse and Witt, Monatsh. Math., 
43 (1936), H. L. Schmid, 1. R. Shafarevich, 
Kawada, T. Tamagawa); and (5) the theory 
of Abehan extensions of a local fïeld with 
algebraically closed residue-class fïelds (J.-P. 
Serre, Bull. Soc. Math. France, 89 (1961)). 

An analogy of class Iïeld theory for infinite 
Abelian extensions was considered by Her- 
brand, Moriya, M. Mori, and Kawada. 
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Classical Groups 

A. Introduction 

The general linear groups, unitary groups, 
orthogonal groups, symplectic groups, etc., 
that are described below are a11 called classical 
groups (- 13 Algebraic Groups, 151 Finite 
Groups, 248 Lie Algebras, 249 Lie Groups). 

B. General Linear Groups 

Let V be a tlinear space of dimension n over a 
+Iïeld K, and let GL( V) denote the set of ah 
tlinear mappings of V onto V (hence they are 
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all bijections). Then GL( V) is a group under 
the composition of mappings. This group is 
called the general linear group (or full linear 
group) on V. Let e,, , e, be a basis of V over 
K, and let (IX~) be the matrix associated with an 
element A of GL( V): Ae, = cjxijej. Then the 
mapping A *(c$) is an isomorphism of GL( V) 
onto the multiplicative group GL(n, K) of a11 
n x n tinvertible matrices over K. We cari 
thus identify the group GL( V) with GL(n, K). 
GL(n, K) is called the general linear group of 
degree FI over K. Consider the homomorphism 
A + 1 A 1 (IA 1 is the determinant of A) of GL( V) 
onto the multiplicative group K* = K - {O}. Its 
kernel SL( V) is a normal subgroup of GL( V) 
and is called the special linear group (or uni- 
modular group) on V. The subgroup SL(n, K) 
={AIAEGL(~,K),IA~=~}~~GL(~,K)~~~~~- 
sponds to SL( V) under the above isomorphism 
GL( V) %’ GL(n, K). SL(n, K) is called the special 
linear group of degree n over K. Unless n = 2 
and K is the tfinite Iïeld F, = GF(2), SL(n, K) is 
the tcommutator subgroup of GL(n, K). The 
tcenter 3 of GL(n, K) coincides with the set 
of a11 scalar matrices ctl (C(E K*), and the 
tenter 3e of SL(n, K) is a tïnite group given by 
3nSL(n,K)={cillcc~K,cc”=l}. 

Now let P(V) be the tprojective space of 
dimension n - 1 obtained from a linear space 
V of dimension n. Namely, P(V) is the set 
of ail linear subspaces of dimension 1. Then 
there exists a natural homomorphism cp of 
GL( V) into the group of a11 projective trans- 
formations of P(V), and the tkernel of cp 
coincides with the tenter 3 of GL( V). Hence 
q(GL( V))z GL( V)/3. This group is written as 
PGL( V) and is called the projective general 
linear group on P(V). Similarly, PGL(n, K) 
=GL(U, K)/3 is called the projective general 
linear group of degree n over K. The quotient 
group SL(n, K)/30 of SL(n, K) by the tenter 3,, 
is called the projective special linear group and 
is written as PSL(n, K) or M(n, K) (linear 
fractional group). 

The groups GL(n, K), SL(n, K), etc., are also 
written as GI,,(K), SI+,(K), etc. In particular, 
when K is the tfinite fïeld F,, these groups 
are denoted by GL(n, q), SL(n; q), PGL(n, q), 
PWn, 41, -Wn, 4). 

Simplicity of PSL(n, k). When n = 2 and K = 
F2, PSL(2,2)= 6, (the tsymmetric group of 
degree 3). When n = 2 and K = F3, PSL(2,3) z 
‘%, (the alternating group of degree 4). Except 
for these cases, the group PSL(n, K) (n > 2) is 
a noncommutative +Simple group (- 15 1 
Finite Croups 1). 

Suppose that K is the fïnite field F,, and let 

0, d, B(n, 4, Y@, qh6(n, d denote the orders 
of GL(U, 41, SUn, 41, PG+, 4, PWn, 4, res- 
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pectively. Then we have 

cc(n,q)=(q”- I)(q”-q)...(q”-qn-‘), 

a(n, 4) = y@, qM 

where d = (n, q - 1) (the greatest common divi- 
sorofnandq-1). 

C. Properties as Lie Groups 

If the ground tïeld K is the tïeld R of real num- 
bers (the field C of complex numbers), the 
above groups are all +Lie groups (tcomplex Lie 
groups). In particular, SL(n, C) is a tsimply 
connected, +Simple, and tsemisimple complex 
Lie group of type A,-, , and PSL(n, C) is the 
tadjoint group of the complex simple Lie 
algebra of type A,-, 

D. Determination of the Rational 
Representations of GL( V) 

In Sections D and E, the fïeld K is assumed to 
be of characteristic 0. Let p be a homomor- 
phism of GL( V) = GL(n, K) into GL(m, K) (p: 
A = (aj)*B = (@)). Then if each &’ is a rational 
function (or polynomial or analytic function) 
in (xi, ai, , @J over K, p is called a rational 
representation (or polynomial or analytic repre- 
sentation) of degree m of GL( V). (We suppose 
that K is R or C when we consider analytic 
functions.) For example, every rational repre- 
sentation of degree 1 cari be expressed as A+ 
1 Al’ (e is an integer). In particular, if K is the 
field C of complex numbers, every analytic 
representation of GL(n, C) is a rational repre- 
sentation. Since GL(n, C) is the tcomplexifica- 
tion of the tunitary group U(n), there exists a 
one-to-one correspondence between the com- 
plex analytic representations of GL(n, C) and 
the continuous representations of U(n); this 
correspondence preserves equivalence, irre- 
ducibility, ttensor product, and direct sum 
of the representations (- 249 Lie Groups). 
Hence, determining the rational representa- 
tions of GL(n, C) is equivalent to determining 
the continuous representations of U(n). In the 
general case, the rational representations of 
GL( V) = GL(n, K) are all completely reducible. 
For any rational representation p of GL( V), 
there exists a natural number e such that the 
representation p’: A+I AI’p(A) is a polynomial 
representation. Hence in order to determine 
the rational representations of GL( V), it is 
suffcient to determine the irreducible poly- 
nomial representations of GL( V), which, as 
described below, cari be obtained by decom- 
posing the representations on the ttensor space 
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V”=V@...@Vofdegreem(mcopiesofV) 
(m = 1,2, ). For A E CL(V), define D,(A)E 
GL(Vm) as the tensor product 

D,,,(A) = A @ @ A (m copies of A). 

Namely, for ur, , U,E V, we have 

The mapping CL( V)g A+D,(A)E GL( V’“) is a 
polynomial representation of degree nm of 
CL(V). Now let 1?( Vm) be the tassociative 
algebra of all linear mappings of V” into V” 
(ttotal matrix algebra), and let (11 be the sub- 
algebra of Q( V”‘) generated by {DJA)I AE 
CL(V)}. Next, for an element (T of the symmet- 
rit group 6, of degree m, define B, E CL( Vm) 
by B,(v, @ . . . Q u,,,)=v,~I~,~ @ . @ V;I<,,,,. 
Then the mapping o+ B, is a representation 
of 6, on V”. Thus we obtain a representation 
t of the +group ring K[G,] of 6, over K on 
Vm:K[G,,,]+2(Vm). Set t(K[G,])=23. Then 
CU and !B are tcommutors of each other in 
Il( V”‘), i.e., % = {Xc Q( Vm) 1 XB = BX (for a11 
BE%)}, !l3={X~2(V”‘)jAX=XA(for ah 
A&I)}. 

Now for a right ideal r of 23, let r( V”‘) be the 
subspace of V” composed of a11 the fmite sums 
of the form C Bx (BE r, x E V”‘). Then the fol- 
lowing statements hold: 

(1) r( V”) is invariant under ‘u; hence it is a 
subspace of V” invariant under GL( V). Con- 
versely, for any subspace U of V” invariant 
under CL(V), there exists a unique right ideal r 
of b such that U = r( Vm). 

(2) Let r,, r2 be right ideals of 8, and put 
U,=r,(V”), U,=r,(V”).Thenr,~r,(asright 
&-modules) if and only if U, E U, (as repre- 
sentation spaces of CL(V)). 

(3) The mapping r-rr( Y) is a lattice iso- 
morphism of the tlattice of right ideals of %3 
onto the lattice of CL( V)-invariant subspaces 
of V”. Hence if r = r, + rz (direct sum), then 
Cl = U, + CI, (direct sum). Also, r( Vm) gives an 
irreducible representation of CL(V) if and only 
if r is a minimal right ideal of 8. 

Since the algebra K [ &,] is a tsemisimple 
algebra, 23 cari be considered as a two-sided 
ideal of K [G,]. Hence a minimal right ideal r 
of b is also a minimal right ideal of K CG,,,], 
and the tidempotent element E which generates 
r is a +Primitive idempotent of K [ s,,,]. From 
the theory of symmetric groups (- 362 Repre- 
sentations H) the primitive idempotents of 
K [G,] are a11 given (up to isomorphism) by 
+Young’s diagrams T(f,, ,,fJ (fr >f2 > . > 

fk > 0, m =fr + +fJ. In this setting, we have 
(4) Let E = a(,fr , . ,fJ be the primitive 

idempotent determined by Young’s diagram 
T(f,, ,fk). Then EK CG,,,] c 23 if and only if 
k<n. In this case, put sK[&,] =r, r(V’“)= 
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E(V”‘) = Vm( T(f,, ,fk)) and denote the 
irreducible representation of CL(V) on 
Vm(T(fir . . . . fk)) by A+D(A;1;, . . . . fk). We cal1 
(fi, . . ,fk) the signature of this irreducible 
representation. 

(5) The representation D(A;f,, ,,fk) is an 
irreducible polynomial representation of 
CL(V). Furthermore, for any irreducible poly- 
nomial representation p of CL(V), there exists 
a unique D(A;f,, ,fk) equivalent to p. For ex- 
ample,ifk=l,thenfI=m,~=(m!)~‘~,,u,a, 
and V”‘( T(m)) is the space of tsymmetric ten- 
sorsofdegreem.If,f,=...=f,=l, then k=m, 
E=(m!)-‘. c ,,E5m(sgno)0, and V”‘(T(1, . . . . 1)) 
is the space of talternating tensors of degree m. 

(6) Let x(A; fi, , fJ be the tcharacter of the 
irreducible representation D(A; ,f,, . ,fk). Then 

zdA;f,, . . ..A) 

Y-l 1 c-2 1 . . . El 1 
+ . 

c-l n-2 
n E, ..’ El! 1 

where E r, . . . , E, are the teigenvalues of A and 
1,=fr+(n-1),/,=f2+((n-2),...,1,=f,(set 
,fk+l = =f, = 0). Hence the degree d of 
D(A;,f,, ,fJ is expressed as 

d=D(l, ,..., 1,)/D(n-l,..., l,O), 

where D(x,, . ,x,,)=~,,~(x,-xj). 
(7) In particular, denote the character 

of D(A; m) by p,,, = p,(A). Then they satisfy 
Il-~A~~‘=p,+p,z+p,z~+... and 

Pf, PS,+1 “’ Pfl+(n-l) 

= Pf2r1 Pr, “. Pf,+(n-2) 
. . . . . . 

Pf”-<n-l> Pf.-<“-z> “’ PJ” 

where we put .fk+r =fk+2= . =.fn=O, P-I = 
pm2 = = 0. This matrix is simply written as 
IP~-(~-,), ,pJ, with the convention that in 
eachrow,wesetI,=f,+(n-1) ,..., 1,-,= 

fL1-t 1, 4=f,. 

E. Determination of the Rational Represent- 
ations of SL( V) 

The rational representations of SL( V) are 
completely reducible. By restricting any 
irreducible representation D(A; f,  , . . , f,) 
(fi>f2>...2fn>O)ofGL(V)toSL(V),we 
get an irreducible rational representation 
&A; f,, , f,) of SL( V). Furthermore, any 
irreducible rational representation of SL( V) 
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cari be obtained in this way. &A;fr, . . ,f,) 
and &A; &‘, . . . ,f;) are equivalent representa- 
tions of SL(V) if and only ifA-fi+r =A’-J;r 
(i= 1,. ..,n-1). 

F. Unitary Groups 

The set U(n) of ah n x n tunitary matrices with 
complex elements is a group under multipli- 
cation (- 269 Matrices). This group U(n) is 
called the unitary group (or unitary transfor- 
mation group) of degree n. The subset of U(n) 
consisting of a11 matrices of determinant 1 is a 
normal subgroup of U(n). This group is called 
the special unitary group and is denoted by 
SU(n). 

U(n) and SU(n) are subgroups of GL(n, C) 
and SL(n, C), respectively, and cari be obtained 
from these groups through the tunitary restric- 
tion. Hence they are both compact, connected 
Lie groups; in particular, SU(l) is composed 
only of the identity and U( 1) is the multiplica- 
tive group of ah complex numbers of absolute 
value 1. The tenter 3 of U(n) is the set of all 
diagonal matrices ÂI(~EC, /Il= l), and we 
have 

3gLJ(l), 3’SU(n)=U(n), 

U(n)/SU(n)g U(1). 

Moreover, for n 2 2, SU(n) is a simple, semi- 
simple, and simply connected Lie group, which 
gives one of four infinite series of simple com- 
pact Lie groups. 

U(n)/3 is denoted by PU(n) and is called the 
projective unitary group. We have the relations 
PU(n)rSU(n)/3nSU(n), 3nSU(n)=Z/nZ. 

Hence PU(n) is locally isomorphic to SU(n). 

G. Irreducible Representations of U(n) 

Restricting the irreducible representation 

wcf,,..., fk) of GL(n, C) on SU(n), we obtain 
a continuous irreducible representation of 
SU(n), and conversely, a11 continuous irreduc- 
ible representations of SU(n) are obtained in 
this manner. Similarly, any continuous irre- 
ducible representations of U(n) are given by 
A+/ AI’D(A;f,, . . . ,fk), where e is an integer. 
Since both U(n) and SU(n) are compact, any 
continuous representation of these groups 
cari be decomposed into a direct sum of the 
irreducible representations mentioned above 
(- 69 Compact Groups). 

The representation theory of U(n) and SU(n) 
is important as the most typical and concrete 
example of the representation theory of gen- 
eral compact Lie groups (- 69 Compact 
Groups, 248 Lie Algebras, 249 Lie Groups). 
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H. Unitary Groups over General Fields 

A unitary matrix and the unitary group cari 
also be defïned over some fïelds other than the 
tïeld C of complex numbers. Namely, let P be 
a field and K a quadratic extension tïeld of P; 
for an element 5 of K, let r be the tconjugate 
of 5 over P. Then a matrix of degree n with 
entries in K is called a unitary matrix of K 
(relative to P) if it leaves invariant the tHer- 
mitian form {,c, + & 5, + . . + <,,f,,. The multi- 
plicative group consisting of a11 unitary mat- 
rices is called the unitary group over K (relative 
to P) and is denoted by U(n, K, P); its sub- 
group consisting of a11 unitary matrices of 
determinant 1 is called the special unitary 
group over K and is denoted by SU(n, K, P). 
The quotient group of SU@, K, P) by its 
subgroup consisting of a11 Âl (2 = 1,/11= 1) is 
called the projective special unitary group over 
K and is denoted by PSU@, K, P). In partic- 
ular, when K and P are the fïnite tïelds F,, 

ad F, (q=P”), U(n, K PI, SU@, K, PI, 
PSU(n, K, P) are written simply as U(n, q), 
SU(n, q), PSU(n, q). Then for n > 3, each 
PSU(n, q) is a noncommutative simple group, 
except for PSU(3,2) (- 151 Finite Groups 1). 

1. Orthogonal Groups 

The set of a11 torthogonal matrices of degree n 
(with real entries) forms a group under multi- 
plication. This group O(n) is called the ortho- 
gonal group (or orthogonal transformation 
group) of degree n. The subset of O(n) consist- 
ing of a11 orthogonal matrices of determinant 1 
forms a normal subgroup of O(n) of index 2. 
This group SO(n) (also denoted by 07) is 
called the rotation group (special orthogonal 
group or proper orthogonal group) of degree n. 
Geometrically, O(n) is the set of a11 orthogonal 
transformations leaving a point in Euclidean 
space of dimension n fixed, and SO(n) is com- 
posed of a11 rotations around the point. 

Both O(n) and SO(n) are compact Lie 
groups, and SO(n) coincides with the con- 
nected component of O(n) which contains the 
identity. For n = 3 or n 2 5, each SO(n) is a 
simple and semisimple Lie group. Following 
the theory of Lie algebras, we divide the set 
of a11 SO(n) (n 2 3 but n 24) into two classes 
according as n is even or odd, and we thus get 
two of the four intïnite series of simple and 
semisimple compact Lie groups (for SO(4), for 
example, see [ 11). 

Although SO(n) (n > 3) is a connected Lie 
group, it is not simply connected. The simply 
connected Lie group which is locally isomor- 
phic to SO(n) is called the spinor group and is 
denoted by Spin(n). SO(n) is isomorphic to the 
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quotient group of Spin(n) by a normal sub- 
group of order 2. Let 3 be the tenter of Spin(n). 

Then 3~ ZJ2Z for odd n, 3~2142 for n=2 

(mod4), and 3z(Z/22)@(2/22) for n-0 

(mod 4) (- 61 Clifford Algebras). 
The group O(n, C) of a11 tcomplex ortho- 

gonal matrices is called the complex ortho- 
gonal group, and the group So(n, C) of a11 
matrices in O(n, C) of determinant 1 is called 
the complex special orthogonal group. So(n, C) 
(n > 3, n # 4) is a simple and semisimple com- 
plex Lie group. 

J. Irreducible Representations of Orthogonal 
Groups 

In the same way as for GL(n, K), the irreduc- 
ible representations of O(n) cari be obtained 
by decomposing the tensor product D,,,(A) 
=A @ 0 A of m copies of an orthogonal 
matrix A using Young’s diagram. Namely, con- 
sider the Young’s diagram T(fi,f2, . . ..fJ 
such that the sum of the lengths of the lïrst 
column and of the second column is not 
greater than n, and cal1 it an O(n) diagram. 
Then to any O(n) diagram T= T(f,, ,fk), 
there corresponds an absolutely irreducible 
representation D’(A;f,, f2,. , fk), and the 
representations D’(A;f, ,f2, . . . , fk) correspond- 
ing to two distinct O(n) diagrams are mutually 
inequivalent. D,(A) cari be decomposed into 
the direct sum of those representations D’(A; 

f,,f,,...,f,)suchthatf=f,+...+f,takesthe 
values m, m-2, m-4,. . Furthermore, any 
continuous irreducible representation of O(n) 

is equivalent to a D’(A; f,, fi, , fk) obtained 
from some O(n) diagram T= T( fi, fi, , fk). 

In general, two O(n) diagrams T and T’ are 
called mutually associated diagrams if the sum 
of the lengths of their lïrst columns is equal to 
n and if the lengths of each column other than 
the fïrst one coincide. In particular, if T= 

T(fi>fz, . ..> fk) and 2k = n, then T is said to 
be self-associated. The set of a11 O(n) diagrams 
cari be divided into pairs of mutually asso- 
ciated T, T’ (and self-associated T= T’). 

Suppose that we are given mutually asso- 
ciated diagrams T and T’ and that the length 
k of the tïrst column of T= T( f, , f2, . , fk) is 
not greater than nj2. Then the character x1(A) 

of D’(A; fi, f2, , fJ corresponding to T and 
the character X~,(A) of the irreducible repre- 
sentation corresponding to T’ are given by 

Pf~(“~2)-Pl~(“+2)~“‘rP~-P~-î”lr 

x~~~=IAIx~(~, u=C@l, 

where pi and ~pl~~v~l,-pl~~v+,~, . ..I have the 
same meaning as in the formula for the char- 
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acters of irreducible representations of 
GL(n, K). 

The irreducible representations of SO(n) cari 
be obtained immediately from those of O(n). 

Namely, if T= T( f, , f2, . . , fk) is not self- 
associated, D’(A; fl, f2, . , fk) is irreducible as 
a representation of SO(n), and the represen- 
tations of SO(n) derived from T and the asso- 
ciated T’ coincide. If  T is self-associated, 

D"Mf,,f,,...,.L) cari be decomposed into 
two irreducible representations of SO(n) of the 
same degree over the lïeld of complex num- 
bers. Furthermore, the irreducible represen- 
tations of SO(n) obtained in this way from 
different pairs of associated diagrams are 
mutually inequivalent, while any continuous 
irreducible representation of SO(n) is equiva- 
lent to one of these representations. For the 
representations of SO(3) (the rotation group of 
degree 3) - 353 Racah Algebra. 

Since SO(n) is isomorphic to the quotient 
group of Spin(n) by a normal subgroup N of 
order 2, a continuous representation of Spin(n) 

which is not the identity representation on N 
cari be considered as a double-valued repre- 
sentation of SO(n). This representation is called 
the spin representation and is important in the 
tïeld of applied mathematics. 

The orthogonal group O(n) consists of a11 
n x n real matrices which leave invariant the 
quadratic form <: + . + <i, while the group of 
a11 n x n real matrices which leave invariant the 
quadratic form <t + + tf -<I+i - . . . - tn of 
tsignature (r, n-r) is called the Lorentz group 
of signature (r, n-r). The case for n = 4 and r = 

3 is used in special relativity (- 359 Relativ- 
ity). Let Go be the connected component of the 
identity of the Lorentz group of signature 
(3,1). Then Go is called the proper Lorentz 
group. For cr=(gij)~G, we have loi= fl and 
gb4 > 1 or g44 < - 1. Moreover, we have Go 

={aIlal=1,g~~~1},G/Go~(Z/2Z)O(Z/2Z) 
(tfour group), and Go E X(2, C)/{ *I}. 

K. Orthogonal Groups over General Fields 

Orthogonal groups cari also be defïned over 
other general lïelds than the field of real num- 
bers as follows: Fix a tquadratic form Q(<, c) 
= X;j=l c(,&tj (Icc,l #O) over a lïeld K. Then a 
linear transformation of &(i = 1,2, , n) over 
K which leaves Q invariant is called an ortho- 
gonal transformation with respect to Q. The set 
of all orthogonal transformations forms a 
group. This group is denoted by O(n, K, Q) or 
simply O(Q) and is called the orthogonal (trans- 
formation) group over K with respect to Q. In 
particular, the normal subgroup of a11 trans- 
formations in O(n, K, Q) of determinant 1 is 
called the special orthogonal group over K with 
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respect to Q and is denoted by So(n, K, Q) (or 
simply SO(Q)). O(n) and SO(n) are special cases 
of O(n, K, Q) and So(n, K, Q), where K is the 
fïeld R of real numbers and Q(& 5) is the unit 
quadratic form <: + [z + . . . + ti. 

Let Q(n, K, Q) be the tcommutator subgroup 
of O(n, K, Q). Then this subgroup coincides 
with the commutator subgroup of So(n, K, Q). 
I f  K is of characteristic f2, and if n > 5 and 
the tindex v  of Q > 1, then n(n, K, Q)/3 (3 is the 
tenter of Q(n, K, Q)) is a simple group, where 3 
= {1} or 3 = { &l} (L. Dickson, J. Dieudonné). 
Suppose that K is a fïnite fïeld F, (of character- 
istic 22). Then we have v  = m if n = 2m + 1, and 
v=morm-1 ifn=2m.Hencev>2ifna5.If 
v  = 0 and K = R, we have fi(n, R, Q) = SO(n) 

and, as mentioned before, SO(n)/3 is simple for 
n > 5. The same proposition also holds when 
K is an talgebraic number tïeld (M. Kneser, 
1956). I f  K is of characteristic 2, then O(n, K, Q) 

=So(n, K, Q), 3 = {r}, and O(n, K, Q) is a sim- 
ple group in many cases (Dieudonné [SI). For 
the case where K is a iïnite fïeld (Dickson) 
- 151 Finite Groups 1. 

L. Symplectic Groups 

Let51,52,...ir2nand111,v12,...,~2,betwosets 
of variables, and suppose that the same linear 
transformation A over a field K acts on them 
(from the left). I f  A leaves the tbilinear form 
Cy=1(<2i-1 y12i-<2i~2i~l) invariant, this linear 
transformation (or the corresponding matrix) 
A is called a symplectic transformation (sym- 
plectic matrix) of degree 2n. The set of a11 sym- 
plectic transformations (or matrices) of degree 
2n over K forms a group denoted by Sp(n, K) 

and called the symplectic group (symplectic 
transformation group, complex group, or 
Abelian linear group) over K. 

Any matrix in Sp(n, K) is always of determi- 
nant 1, and the tenter 3 of Sp(n, K) consists of 
1 and -1. The quotient group PSp(n, K) of 
Sp(n, K) by 3 is called the projective symplectic 
group over K. Except for the three cases n = 1, 
K=F,;n=l, K=F,;andn=2, K=F,,the 
group PS’p(n, K) (na 1) is always simple. 

Properties of Symplectic Groups as Lie Groups. 
When K is the fïeld C of complex numbers or 
the fïeld R of real numbers, Sp(n, K) is a Lie 
group. The intersection of the complex sym- 
plectic group Sp(n, C) and the unitary group 
U(2n), namely, the unitary restriction of 
Sp(n, C), is denoted by Sp(n) and is called the 
unitary symplectic group (or simply symplectic 
group). Sp(n, C) is a simple and semisimple 
complex Lie group, and both Sp(n, R) and 
SP(n) are simple and semisimple Lie groups. 
Moreover, Sp(n) is compact and simply con- 
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nected and gives one of the four series of 
simple, semisimple and compact Lie groups 
(- 249 Lie Groups). 

Let H” be the linear space of dimension n 

over the tquaternion field H. Define the inner 
product of two elements x=(x1, , xn) and y  
=(y1 ,..., y,)inH”by(x,y)=x,L,+...+x,~~ 
(Fi is the tconjugate quaternion of yi), and 
consider the group of all linear transforma- 
tions which leave this inner product invar- 
iant. Then this group is isomorphic to SP(~). 

Sp(n) is thus compared with the orthogonal 
group O(n), which leaves invariant the inner 
product of a linear space over the field R of 
real numbers and with the unitary group U(n), 
which has the same property over the fïeld C 
of complex numbers (C. Chevalley [4, ch. 11). 

M. Irreducible Representations of Symplectic 
Groups 

In the same way as for GL(n, K), the represen- 
tation D,(A) = A @ . . 0 A (tensor product of 
m copies of A) of Sp(n, C) cari be decomposed 
into irreducible components using Young% 
diagram. Namely, for any Young’s diagram 
T= T(j1,f2, . . ..fk) (k<n) such that the num- 
ber k of rows is not greater than n, an irreduci- 
ble representation D”(A; fi, , fk) of Sp(n, C) 

is determined. These D’(A; f ,  , . ,fk) are mutu- 
ally inequivalent, and D,(A) cari be decom- 
posed into the direct sum of representations 
D”(A;f,,f,, ,fk) such thatf=f, + . +fk is 
equal to any of the values m, m - 2, m - 4, . 

The character of D”(A;f, ,.f2, ,fk) is given by 

where pi and IP~-,,+~,P~+~+~ +p,-,, . 1 have the 
same meaning as in the formula for the char- 
acters of the irreducible representations of 
GL(n, K). 

For the matrices A in SP(n), D”(A;f, ,f2, , 

&.) gives rise to a continuous irreducible 
representation of SP(n). Furthermore, any con- 
tinuous irreducible representation of Sp(n) is 
equivalent to a representation D”(A;f,, f2,. , 
fk) corresponding to some diagram T. 

N. Relations among Various Classical Groups 

There are some isomorphisms (homomor- 
phisms) among the classical groups mentioned 
above. For general fields K - [ 1,5]. For fïnite 
tïelds K - 151 Finite Groups 1. For K =R or 
C, the following isomorphisms hold: SO(3) E 
SU(2)/{ H}, SU(~)ES~(~), SO(5)=Sp(2)/ 

{k I}, SO(6)zz SO(4)/{ *I} (- 248 Lie Alge- 
bras, 249 Lie Groups). 
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0. Classical Groups over Noncommutative 
Fields 

Let V be a right linear space over a non- 
commutative field K. Then the set of a11 linear 
transformations of V forms a group under the 
multiplication defïned by the composition of 
mappings. This group GL( V) is called the 
general linear group on V. It is isomorphic to 
the multiplicative group of a11 n x n invertible 
matrices with entries in K. The commutator 
subgroups SL( V) and SL(n, K) of GL( V) and 
GL(n, K), respectively, are called the special 
linear group of degree n on V and over K, 
respectively. Now, suppose that an element A 
of GL( V) leaves each element of a subspace U 
of dimension n - 1 of V fixed. Choose an ele- 
ment x of V which does not belong to U, and 
set Ax ~XCI (mod U); C(E K depends not only on 
A but also on the choice of x. However, the 
conjugate class c?= {Âai-’ 12~ K*} of c( in the 
multiplicative group K* of K is determined 
only by A. In particular, if oi = { 1} and A # 1, 
then A is called a transvection. For a tmatrix 
unit E,, B,(E) = I+ c&, is a transvection if 
i #j and c( # 0. SL( V) coincides with the sub- 
group of GL( V) generated by a11 transvections. 
This fact also holds when K is a commutative 
tïeld, except when n = 2 and K = F,. In this 
case, transvections generate the whole GL(2,2), 
which is isomorphic to the symmetric group 
6, of degree 3 and does not coincide with 
the commutator subgroup. The tenter 3 of 
GL(n, K) consists of a11 scalar matrices corre- 
sponding to nonzero elements in the tenter of 
K. Let C be the commutator subgroup of the 
multiplicative group K* of K. Then for n > 2, 
GL(n;K)/SL(n, K) is isomorphic to K*/C. This 
isomorphism cari be obtained by appropriately 
defming, for AE GL(n, K), an element det A of 
K*/C which is called the determinant of A 
[6,9]. The tenter 30 of SL(n, K) is {ct1I C(“E C}. 
The quotient group PSL(n, K) = SL(n, K)/30 is 
called the projective special linear group of 
degree n over K. If  K is a noncommutative 
fïeld, then PSL(n, K) (n > 2) is always a simple 

gros [5,81. 
Next, let K be any field (commutative or 

noncommutative), and let V be a right linear 
space of dimension n over K. Consider a Her- 
mitian form f(x, y) (- 256 Linear Spaces) on 
V relative to an kvolution J of K. If  for a 
fixed element E in the tenter of K we have 
f(x, y) = &y, x), then f  is called an E-Hermitian 
form. For the rest of this article, fis assumed 
to be an E-Hermitian form on V. Let W be a 
subspace of V. If  f(x, y) = 0 for any x, y  E W, 
then W is called a totally isotropic subspace. 
The largest dimension m of the totally iso- 
tropic subspaces of V is called the index of ,f: 
We always have 2m < n. If  f(Ax, Ay) =f(x, y) 
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for any x, y~ V, then A is called a unitary trans- 
formation relative to f:  

The set U(n, K,f) of all unitary transforma- 
tions relative to f  forms a subgroup of GL( V). 
This group is called the unitary group relative 
to f:  Also, the group SU(n, K,f)= U(n, K,f)fl 
SL(n, K) is called the special unitary group. 
When J = 1 and E = 1, a unitary transformation 
(unitary group) is called an orthogonal trans- 
formation (orthogonal group), and U(n, K,f) is 
written as O(n, K,f). Also, when J= 1 and 
6 = - 1, a unitary transformation (unitary 
group) is called a symplectic transformation 
(symplectic group), and U(n, K,f) is written as 
Q(n, K). In fact, in these cases, for arbitrary 
choice off; the corresponding groups are 
mutually isomorphic. 

An E-Hermitian form f  is called an E-trace 
form if for any XE V, there exists an SIE K 
which satistïes f(x, x) = c( +EU J. If  J = 1, E = - 1 
(hence K is commutative) or E = 1 and K is of 
characteristic 22, then any &-Hermitian form 
is an E-trace form. If  f  is an E-trace form, a 
linear mapping B of any subspace W of V into 
V such that for any x, y~ W, f(Bx, By) =f(x, y) 
cari be extended to an element A of the unitary 
group U(n, K,f) relative to f  (Witt’s theorem). 
In particular, U(n, K,f) acts transitively on the 
maximal totally isotropic subspaces, and their 
dimensions are equal to the index m of jY Now, 
let P be a Pythagorean ordered iïeld (an or- 
dered iïeld which contains square roots of 
any positive element). I f  K = P and J = 1, or if 
K = P(&i), or if the noncommutative fïeld 
K is a +quaternion algebra over P and J is the 
operation of konjugation of K, then for two 
Hermitian forms 1; f’, their unitary groups 
U(n, K,f) and U(n’, K,f’) are isomorphic if 
and only if n = n’, and the indices of ,f  and f’ 
are equal. In this case, U(n, K,f) cari be writ- 
ten as U(n, m, K), where m is the index of J If  
the tïeld K is a tquaternion algebra over P and 
fis an tanti-Hermitian form, there exists an 
orthogonal basis (ei) of V such that f(ei, ei) =j 
(quaternion unit), 1 < i < II. Hence, in this case, 
the,unitary group U(n, K,f) relative to f  is 
determined only by n and K. 

Suppose that we are given an E-trace form f  
over a general lïeld K whose index m is not 
equal to 0. We exclude the case where J = 1 
and E = 1. Then the unitary group U(n, K, f) 
contains transvections. Let T(n, K,f) denote 
the subgroup of U(n, K, f) generated by trans- 
vections which are unitary transformations. If  
m 3 2, then T(U, K, f) is the commutator sub- 
group of U(n, K, f). The tenter W, of T(n, K, f) 
coincides with the intersection of T(n, K, f), 
and the tenter 3 of GL(n, K). I f  n > 3 and K 
contains more than 25 elements, then the quo- 
tient group T(n, K, f)/W, is a simple group [6]. 
Also, if K is commutative and n 2 2, m 3 1, 
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J # 1, then T(n, K,f) = SU@, K,f), except for 
the case where n = 3, K = F4. 

If  K is the lïeld R of real numbers, the lïeld 
C of complex numbers, or the quaternion lïeld 
H, then GL(n, K), SL(n, K), and U(n, K,f) are 
a11 Lie groups. In particular, SL(n, K) and 
U(n, K,f) are simple Lie groups except in the 
following three cases: (1) n = 1, K = R or C; (2) 
n=2,K=R,J=1,~=1;(3)n=4,K=RorC, 
J = 1, E = 1, m = 2. In cases (1) and (2) they are 
commutative groups, and in case (3) they are 
locally direct sums of two noncommutative 
simple groups. 

Suppose that K = H. Since H contains C as 
a sublïeld, a vector space V of dimension n 
over H has the structure of a vector space of 
dimension 2n over C. From this fact, GL(n, H) 
cari be considered as a subgroup of GL(2n, C) 
in a natural way. 

Each of the complex classical simple groups 
G = SL(n, C), So(n, C), Sp(n, C) has the struc- 
ture of an talgebraic group detïned over R 
(- 13 Algebraic Groups). The real forms of 
G, i.e., the algebraic subgroups of G whose 
scalar extension to C is G, cari be realized as 
SI& K), U(n, K,f) corresponding to K =R, C, 
H. Namely, a real form of a complex classical 
group G is conjugate in G to one of the follow- 
ing groups: (i) The real forms of SL(n, C): 
SL(n, R) (type AI); SL(k, H) only for n= 2k 
(type AII); and the special unitary group 
SU(n, m, C), 0 <m < [n/2], relative to a Her- 
mitian form f  of index m (type AIII). (ii) The 
real forms of SO(2n + 1, C): the proper ortho- 
gonal group SO(2n + 1, m, R), 0 <m < n, relative 
to a quadratic form of index m on a space of 
dimension 2n + 1 (type BI and BII). (iii) The 
real forms of S0(2n, C): S0(2n, m, R), 0 <m < n 
(type DI and DII); and U(n, H,f) relative to an 
anti-Hermitian form f  on H (type DIII). (iv) 
The real forms of Sp(n, C): Sp(n, R) (type CI); 
the unitary group U(2n, m, H), 0 <m < n, rela- 
tive to a Hermitian form f  of index m on H 
(type CII); and Sp(n) corresponds to the special 
case m = 0. The quotient groups of these real 
forms by their centers cari a11 be realized as the 
groups of automorphisms of semisimple alge- 
bras with involutions J which commute with 
J (A. Weil [lO]). 
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A. Definitions and Basic Properties 

Let V be an n-dimensional tlinear space over a 
lïeld K, and let Q be a tquadratic form on V. 
Denote the ttensor algebra over V by T(v), the 
tensor multiplication by 0. Let 1(Q) be the 
two-sided ideal of T(V) generated by the ele- 
ments x 0 x - Q(x). 1 (x E V). The resulting 
tquotient associative algebra T( V)/I(Q) is then 
denoted by C(Q) and is called the Clifford 
algebra of the quadratic form Q. The elements 
of C(Q) are called Clifford numbers. 

The composite of two canonical mappings 
z : V-t T(V), o : T(V) - C(Q) is a linear injection 
o o Z: V+C(Q). Hence we cari regard V as a 
linear subspace of C(Q) via 00 r. Then C(Q) 
is an associative algebra over K generated 
by 1 and V. Furthermore, x2 = Q(x). 1 for 
every x in V. 

Indeed, C(Q) is the universal associative 
algebra with these properties. That is, let A be 
any associative algebra with a unity element, 
and let f :  V+A be a linear mapping such that 
f(x)‘= Q(X). 1 for every x in V. Then f  cari be 
extended uniquely to an algebra homomor- 
phism f: C(Q)+.4 with f( 1) = 1. Furthermore, 
let @ be the tsymmetric bilinear form associ- 
ated with Q:@(x,y)=Q(x+y)-Q(x)-Q(y), 
x, y~ V. Then xy + yx = a>(~, y). 1 for every 
x, y  in V. C(Q) is of dimension 2” over K. If  
e,, . . , e, is a basis of V, then 

1, e,, eiej(i<j), . . . . e,e, . ..e. 

form a basis of C(Q). In particular, if {ei} is an 
orthogonal basis relative to Q, we have 

eiej= -ejei, ef=Q(ei). 1; 

i,j= 1, . . . . n, i#j. (1) 
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In this case, C(Q) cari be defmed as an as- 
sociative algebra (with a unity element) gen- 
erated by the {ei) together with the defining 
relations (1). In particular, for Q = 0, C(Q) is 
the texterior algebra (TGrassmann algebra) 
over V. 

B. The Principal Automorphism and the 
Principal Antiautomorphism of C(Q) 

There exists a unique automorphism c( of the 
algebra C(Q) such that U(X) = -x for every x in 
V. This automorphism CI is called the principal 
automorphism of C(Q), and we have u2 = 1. 
Also, there exists a unique antiautomorphism 
b of the algebra C(Q) such that p(x) = x for 
every x in V. This antiautomorphism /3 is 
called the principal antiautomorphism of C(Q), 
and we have fl’ = 1. 

For the rest of this article we assume that 
the tdiscriminant of Q is #O. We also assume 
for the sake of simplicity that the characteristic 
ofKis #2.LetC+=Ct(Q)=K.1+V2+V4 
+ . ..> andC=C-(Q)=V+V3+V5+.... 
Then C(Q) is the direct sum of the linear 
subspaces C’(Q) and C-(Q). Furthermore, 
C+C+ c C+, C+C- c C-, C-C+ c C-, and 
C-CmcC+.ThusC(Q)=C++C hasthe 
structure of a tgraded algebra with the index 
group { k l}, and C+ is a subalgebra of C(Q). 
The elements of C’(Q), C-(Q) are called even 
elements and odd elements, respectively. We 
have dim C* (Q) = dim C- (Q) = 2”-‘. 

C. The Structure of C(Q) and C’(Q) 

C(Q) and C’(Q) are both tseparable, tsemi- 
simple associative algebras over K. Suppose n 
is even: n = 2r. Then C(Q) is a tsimple algebra 
with K as its tenter; the tenter Z of C’(Q) is 2- 
dimensional over K. Let e,, . , e, be an ortho- 
gonal basis of V. Then 1 and z= 2’e, . . . e, form 
a basis of Z, and we have 

zz = 22r( - l)‘Q(e,) Q(e,) = (- l)‘D, 

where D is the tdiscriminant of @ relative to 
the basis {ei}. Thus if (- 1yD has a square root 
in K, Z g K @ K (direct sum), and SO C’(Q) is 
decomposed into the direct sum of two simple 
algebras. If  ( - l)rD does not have a square 
root in K, then Z is a lïeld and C’(Q) is a 
simple algebra. In particular, if the tindex of Q 
(i.e., the dimension of a maximal ttotally sin- 
gular subspace of V (- 348 Quadratic Forms)) 
is Y, C(Q) is isomorphic to the ttotal matrix 
algebra of degree 2’ over K, and C’(Q) is 
isomorphic to the direct sum of two copies of 
the total matrix algebra of degree 2’-’ over K. 

Now suppose that n is odd: n = 2r + 1. Then 
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C’(Q) is a simple algebra with K as its tenter. 
(In particular, if Q is of index r, then C’(Q) is 
isomorphic to the total matrix algebra of 
degree 2’ over K.) The tenter Z of C(Q) is 2- 
dimensional over K, and we have C(Q) g 
Z 0s C’(Q). If  e,, , e, is an orthogonal 
basis of V, then 1 and z = er . . . e, form a basis 
of Z. Putting z’ = 2’+iz, we have z” = 2( - l)‘D, 
where D is the discriminant of @ relative to 
{ei}. Thus if 2( - 1)‘D has a square root in K, 
C(Q) is the direct sum of two 2”-dimensional 
simple algebras. If  2( - l)‘D has no square root 
in K, then C(Q) is a simple algebra. 

D. The Clifford Group 

Let G be the set of a11 invertible elements s in 
C(Q) such that ~VS ml = V. Then G forms a 
group relative to the multiplication of C(Q). 
This group G is called the Clifford group 
of the quadratic form Q. The subgroup G+ 
= G ll C’ (Q) is called the special Clifford 
group. The linear transformation <p(s):x-+ 
sxs-’ of V induced by SE G belongs to the 
torthogonal group O(Q) of V relative to Q. 
Moreover, the mapping s-q(s) is a homomor- 
phism from G into O(Q). Thus <p is a trepre- 
sentation of G on V. This representation <p is 
called the vector representation of G. The tker- 
ne1 of <p consists of invertible elements in the 
tenter Z of C(Q). If  x~Gn V, then Q(x)#O and 
-<p(x) is the reflection mapping of V relative 
to the hyperplane orthogonal to x. I f  n = dim V 
is odd, q(G)=cp(G+)=SO(Q). If  n is even, C~(G) 
=O(Q), dG+)=WQ). 

Exploiting the principal antiautomorphism 
fl of C(Q), we obtain a homomorphism N:G+ 
+K* (the multiplicative group of K) detïned 
by N(s) = /?(s)s (SE G’), and N(s) is called the 
spinorial norm of SEG+. The normal subgroup 
of G+ defmed as the kernel of N is denoted by 
Gz and is called the reduced Clifford group (of 
Q). The subgroup cp(Gi) of SO(Q) is denoted 
by 0: (Q) and is called the reduced orthogonal 
group. 

In particular, when the ground Iïeld K is the 
real number field R, O:(Q) coincides with the 
tidentity component of the tlorentz group 
O(Q). Furthermore, if Q is delïnite, 0: (Q) g 
SO(n), SO that the identity component Spin(n) 
of GJ is a tsimply connected tcovering group 
of SO(n) via the covering homomorphism cp 
(with each point in SO(n) covered twice). The 
group Spin(n) is called the spinor group of 
degree n. 

E. Spin Representations 

In this section we assume that the ground lïeld 
K is the complex number field C and that n 
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= dim Va 3. Then we have 0: (Q) g So(n, C), 
SO GJ is a simply connected covering group of 
So(n, C) via the covering homomorphism <p. In 
this section we denote GO by Spin(n, C) and 
cal1 it the complex spinor group of degree n. 
Spin(n, C) is the tcomplexification (- 249 Lie 
Groups) of the compact Lie group Spin(n) and 
is a complex analytic subgroup of the +com- 
plex Lie group C(Q)* consisting of a11 inver- 
tible elements of C(Q). With the bracket 
operation [x, y] = xy - yx, C(Q) becomes the 
+Lie algebra of C(Q)*. Furthermore, the Lie 
subalgebra of C(Q) associated with the com- 
plex analytic subgroup Spin(n, C) is given by 
CicjCeiej, where e,, , e, is an orthogonal 
basis of V. The spin representations of the 
group Spin(n, C) are delïned as follows: 

(1) When n is odd: n = 2r + 1. Since C+ (Q) is 
isomorphic to a total matrix algebra of degree 
2’ over C, C’(Q) has a unique (up to equiva- 
lente) tirreducible representation b, which is of 
degree 2’. The restriction of D on Spin(n, C) (on 
S@(n)) defines an irreducible representation p 
of degree 2* of Spin(n, C) (of Spin(n)); p is called 
the spin representation of the group Spin(n, C) 
(of Spin(n)). The elements in the representation’ 
space of p are called spinors. Thus we cari say 
that a spinor is a quantity with 2’ components 
which obey the transformation law according 
to the spin representation (- 258 Lorentz 
Group). This representation p delïnes a rep- 
resentation of the Lie algebra so(n, C) of 
Spin(n, C) (note that so(n, C) is a tcomplex 
simple Lie algebra of type B,). This represen- 
tation of ao(n, C) is also called the spin repre- 
sentation of so(n, C). Note that p is not well 
delïned on So(n, C) or on SO(n); p is of valence 
2 on So(n, C) or on SO(n). 

(2) When n is even: n = 2r. Since C(Q) is 
isomorphic to a total matrix algebra of degree 
2’ over C, C(Q) has a unique (up to equiva- 
lente) irreducible representation p, which is of 
degree 2’. The restriction of p on Spin(n, C) (on 
Spin(n)) defines a representation p of degree 2’ 
of Spin(n, C) (of Spin(n)); p is called the spin 
representation of the group Spin(n, C) (of 
Spin(n)). This representation p is, however, not 
irreducible; p is decomposed into the direct 
sum of two irreducible representations p+ and 
p-. They are not equivalent to each other, and 
both are of degree 2’-‘. By taking a suitable 
minimal left ideal L of C(Q) as the representa- 
tion space of the representation b, we obtain 
the representation spaces L+, L- of p+, p-, 
respectively, by putting L+ =L fl C’(Q) and 
L- =LflC(Q). The representation p+ (or pm) 
is called the half-spin representation of the 
group Spin(n, C) or of the group Spin(n). The 
elements in the representation space of p+ (or 
p -) are called half-spinors. Again, p ’ and p 
are not well deiïned on So(n, C) or on SO(n). 
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They are of valence 2 on these groups. The 
representations of the Lie algebra of the Lie 
group So(n, C) (note that this Lie algebra is a 
tcomplex simple Lie algebra of type 0,) asso- 
ciated with p+, p- are also called half-spin 
representations of this Lie algebra. 
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A. Cluster Sets of Functions Meromorphic in 
an Arbitrary Domain 

Let D be an arbitrary tdomain in the complex 
z-plane, F its boundary, and E a ttotally dis- 
connected closed set contained in I. Let w = 
f(z) be a single-valued tmeromorphic func- 
tion detïned in D. Then for each point z,, in I, 
we cari delïne the following sets related to the 
mapping w =f(z) in the complex w-plane (or 
on the complex w-sphere c). 

The Cluster Set. A value LY is called a cluster 
value of f(z) at z0 if there exists a sequence of 
points {z,,} such that 

z,ED, z,+zo, .%-a. 

The totality C,(J zo) of a11 the cluster values of 
f(z) at z. is called the cluster set of f(z) at z. 
or, more precisely, the interior cluster set. It is 
a nonempty, closed, but not necessarily con- 
nected set. 

The Boundary Cluster Set. The set of a11 values 
a such that there exist a sequence of points 
{i,,} of F-{zo} (resp. r-{zO}-E) and a se- 
quence of points {w.} in the complex w-plane 
satisfying 

bZO> Wn~CLd.LL)r w,-+a 

is called the boundary cluster set of f(z) at z. 
and is denoted by Cr(i; zo) (resp. C (f z I-E TO )). 
These are closed sets, and 

%EU 20) = CAL zo) = Gl(.L zo). 

I f  z. E I - E or z. is an isolated point of E, then 

C,-,(L zo) = G(,L zo). Furthermore, CAL zo) 
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(resp. Cr-,(A z,,)) is empty if and only if z0 is 
an isolated boundary point (resp. z0 is an 
exterior point of I-E). 

Range of Values. The set of values CI such that 

z,ED, z,+zo> f(zn)=a 

is called the range of values off(z) at z. and is 
denoted by R,(f, zo). In other words, R,(f, zo) 
is the set of values CI assumed by f(z) inlïnitely 
often in any neighborhood of z. and is a tG,- 
set. 

The Asymptotic Set. Let z. be an taccessible 
boundary point of D. If  f(z) converges to a 
value CI as z tends to z. along a simple arc in D 
terminating at zo, then x is called an asymp- 
totic value off at zo. The totality A,(f; zo) 
of asymptotic values off at z. is called the 
asymptotic set off at zo. If  z. is an inacces- 
sible boundary point, we let A,(f; zo) be the 
empty set. 

B. Iversen-Beurling-Kunugui Theorems 

Suppose now that E is empty, and put 

Q = CLA”C %- WL zo). 

tIversen’s theorems in the case where D is the 
unitdisklzl<landzoisapointonlzl=lare 
generalized as follows. 
(l)Q-R,(f,z,)cA,(f,z,) (K. Noshiro, 1936). 
(2) First Beurling-Kunugui theorem: If z0 is 
not an isolated boundary point, then R is an 
open set. 
(3) Second Beurling-Kunugui theorem: Sup- 
pose that the open set R is not empty. Then 
f(z) assumes every value belonging to each 
component R, of fi intïnitely often, with two 
possible exceptions belonging to R,, that is, 
0, n (c - R,(f; zo)) consists of at most two 
values (an extension of tPicard’s theorem on 
an isolated essential singularity). 

Next suppose that E is not empty and of 
tlogarithmic capacity zero, and put R= 

Cdl; zo) - C,-,(f; zo). I f  a6Q -MA zo), then 
either CI is an asymptotic value of f(z) at z. or 
there exists a sequence of points <,EE (n = 
1,2, . . . ) converging to z. such that a is an 
asymptotic value of f(z) at each [. (Noshiro, 
1937). Furthermore, if z. is contained in the 
closure of I - E, then R is an open set (which 
may be empty), and 0 - R,(f, zo) is at most of 
logarithmic capacity zero (M. Tsuji, 1943). I f  E 
is contained in a single component I. of the 
boundary I, z. is contained in the closure of F 
-E, and R is nonempty, then w = f(z) assumes 
every value belonging to each component R, 
of !A infïnitely often, with two possible excep- 
tions belonging to R, (Noshiro, 1950). In par- 
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ticular, if f is bounded in a neighborhood of 
zO, the number of such exceptional values is at 
most 1. This is still true if each point of E is 
contained in a boundary component that is a 
tcontinuum containing at least two points and 
R is not empty (M. Hervé, 1955). However, 
this conclusion does not hold if we remove the 
hypothesis on the set E (K. Matsumoto, 1960). 

C. Cluster Sets of Functions Meromorphic in 
the Unit Disk 

LetDbetheunitdisk{lzl<l},zo=eiB~bea 
tïxed point on the unit circumference I, A be 
an open arc of I containing zo, and E be a set 
of tlinear measure zero such that z. E E c A. 
With every e”E A -E we associate an arbi- 
trary simple arc A, in D terminating at eis and 
the curvilinear cluster set C,,@(f; e”), defmed as 
the set of a11 values a such that z, E As, z,+eis, 
f(z,)+a. We put 

c;-,(L~~)= n M,, 
r>O 

where A4, denotes the closure of the union 
C,,@(f. eie) for a11 eis in the intersection of A-E 
with lz-zol<r. 

By using the above cluster set CF-,(J zo) 
instead of the boundary cluster set &,(A zo), 
we obtain results similar to those in the pre- 
ceding section (M. Ohtsuka, 1950, Noshiro, 
1955). Many interesting results have been 
obtained by F. Bagemihl and W. Seidel, E. F. 
Collingwood, 0. Lehto and K. 1. Virtanen, 
and others concerning the cluster sets of func- 
tions meromorphic in the unit disk. They 
studied functions of Seidel’s class LT, normal 
meromorphic functions, and other functions 
where the class U is the totality of regular 
bounded functions in the unit disk possessing 
almost everywhere on (zl = 1 radial limits of 
the constant modulus 1; a nonconstant mero- 
morphic function f(z) in IzI < 1 is normal if 
the family {f (T(z))} is tnormal in the sense 
of Montel, where T(z) is an arbitrary con- 
forma1 mapping of lzl< 1 ont0 itself. 

D. The More General Case 

The delïnitions of cluster sets are also available 
for arbitrary functions for which neither ana- 
lyticity nor continuity is assumed. If  there exist 
two simple arcs Ai and A, in the unit disk D 
terminating at a point z = eie such that 

CA,(Jeieln G,CLeiB)=O, 

then z = eis is called an ambiguous point of 1: 
Bagemihl proved the following: The set of 
ambiguous points of an arbitrary complex- 
valued function defined in the unit disk D is at 
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most countable [SI. Under the same hypoth- 
esis, the set of points eis such that C,(l; eis) # 
C,(f; eis) is at most countable (Collingwood, 
1960). This result shows the importance of 
introducing the cluster set C,%,(J z,,) that was 
previously mentioned. 

E. History 

The theory of cluster sets originated from the 
?Value distribution theory of analytic functions 
in the neighborhood of their essential singular- 
ities. The fïrst systematic results were those 
of F. Iversen and W. Grass, obtained about 
1920. Subsequent signifïcant contributions 
were made by Seidel, J. L. Doob, M. L. Cart- 
Wright, A. Beurling, and others. Since 1940, 
some important results have been obtained 
by K. Kunugui, S. Irie, Y. Tôki, Y. Tumura, 
S. Kametani, Tsuji, Noshiro, and other Japa- 
nese mathematicians. Many results have been 
extended to tpseudoanalytic functions. As cari 
be seen from the Bagemihl ambiguous point 
theorem, some properties of cluster sets are 
not intrinsic to analytic mappings [2,5]. On 
the other hand, it seems to be an interesting 
problem to extend the theory of cluster sets to 
the case of analytic mappings between open 
Riemann surfaces. 
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A. General Notions of Coding Theory 

When we wish to store, to search for, or to 
send information in the presence of noise 
effciently and with the least error, we cari 
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apply various bounds to the efflciency (- 213 
Information theory). Sophisticated coding 
operations are required in order to achieve 
efficiencies as close as possible to the bounds. 
In the abstract sense, the information is gener- 
ally understood to be a choice of an element 
from a finite set X. For implementation, we 
take a set K of 4 elements called alphabets. 
Each element of K is called a letter. We con- 
sider the direct product K”, i.e., the set of a11 
sequences of n letters. An injection + from X 
into K” is called encoding. The sequence $(x) 
for x E X is called a code Word, and the image 
Il/(X) (a collection of code words) is called a 
code. Such a code is also called a block code. 
The noise is represented by a mapping w : K” 
+K”, but usually it is restricted to a certain 
subset Q of the set of such mappings with 
special properties. For example, we usually 
assume that the sequences x E K” and o(x) are 
different only at less than d letters, where d is a 
preassigned constant. The inverse mapping cp, 
i.e., a mapping cp: K”+X satisfying <p o I&X) =x 
for a11 x E X, is called the decoding of $. A code 
$ satisfying the property wo+(x)$$(X) for a11 
x E X and for a11 w E R is called error-detecting 
with respect to the noise Q. If  $ has the decod- 
ing <p satisfying <p 0 w 0 $(x) = x for a11 x E X 
and for a11 o E Q, $ is called error-correcting 
with respect to the noise R. TO discuss such 
properties, we cari assume X = $(X) ( c K”) 
without restricting the generality, SO hereafter 
we assume this condition. Also, we take q = 2 
unless explicitly stated otherwise. Because 
in many communication systems q = 2 is 
commonly adopted, and the generalization 
for other prime powers 4 cari be obtained 
naturally. 

B. Bounds for tbe Size of Codes 

Let x=(x,, . . . . x,), y=(~,, . . . . y,)eK”. The 
Hamming distance d(x, y) = d,(x, y) between 
the elements x and y  is the total number 
of unequal bits (xi # y,). We put dmi, = 
min{d,(x,y)Ix,yEX,x#y}. When e= 
max{d,(x,w(x))IwEQxEX} is less than d,i,, 
the errors due to R cari be detected, and if 
d,i, > 2e + 1, the errors cari be corrected. The 
maximal integer t satisfying d,i, > 2t + 1 is 
often called the error-correcting capability. 
Several important relations are known among 
ddim, t, n (the length of the code), and JXJ (the 
size of the code Word) as follows. Hamming 
bound: IX I<2”/&(1). A code satisfying the 
equality here is called a Perfect code [6]. Plot- 
kin bound: d,,,<nJXJ/(2(1XJ-1)). On the 
other hand, if the Varsharmov-Gilbert-Sacks 
bound 2”mk> ~~?;~‘(“;‘) is satisfied, there 
exists an (n, k)-linear code (Section C). 
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C. Linear Codes 

Let K = GF(2) = {0, l}, K” be an n-dimensional 
vector space over K, and X be a k-dimensional 
linear subspace. Then X is called a group code 
or (n, k)-linear code. In the present case, we cari 
take a suitable basis of K for which there exists 
a k x (n-k) matrix P over K such that every 
vector X=(X~, . . . . x,) representing a code word 
is expressed as x = (zP, z) by a suitable vector z, 
and conversely, every vector of this form is a 
code Word, i.e., a vector x E X is a code word if 
and only if 

(x,, . ..) x,-k)=(x,mk+l, . ..) x,)P=O. (*) 

Introducing the matrix H = [I.-k, - PT], where 
1,-, is the unit matrix of order n-k and r 
indicates the transpose, the condition (*) is 
equivalent to xHT=O. Therefore, H is called 
the parity check matrix, x,-k+,r . . . ,x, are 
called the information bits, and xi, . , x.-~ 
are called the check bits. I f  x is deformed to 
y  = wx by a noise o, i.e., the original signal x 
is transmitted as signal y, we cal1 s = yHT = 
(y-x) H r the syndrome of the transmitted 
signal y. I f  we have an algorithm to determine 
the error vector e = y  - x from the syndrome s, 
we have a decoding with error-correcting 
property. For the linear code, it is evident that 
d,i, = min { the number of nonzero elements of 

XlX(#O)EX}. 
The Hamming code is given by n = 2” - 1 (m 

being an integer > 2), k = n-m, where the (i, j)- 

componenth,(i=l,..., m;j=l,..., n)ofthe 
parity check matrix H is given by the ith bit of 
the number j -- 1 expressed in the binary (2- 
adic) number system. The check bits are xj 
(j=2’,2l, . . . . 2m-1), and a11 other bits are the 
information bits. This code has the error-cor- 
recting property with respect to the noise w 
for which the nonzero component of e = wx - 
x is at most 1. In fact, from the syndrome s = 
(si, , s,), we compute j*= si + 2s, + + 
2m-‘~, and put e;= 1, e,=O for a11 j#i ifj=O, 
we cari put e = 0. The Hamming code is a per- 
fect code. 

D. Cyclic Codes 

The cyclic code is a special case of a linear 
code. This is the abject of one of the most 
important applications of the theory of lïnite 
lïelds. By using this theory, we cari actually 
construct the codes with high for error- 
correcting capability in which the encoding 
and the decoding operations are performed 
algebraically. 

An (n, k)-linear code X over GF(2) is called a 
cyclic code if x =(x,,x,, . . . , x,)EX implies (x,, 
x x 1, 2,“‘, X”~,),(X.~,,X,,X,,~‘~,X”-*),“‘>(XZ, 
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“‘. x,,xi)~X. TO each X~X, we cari associate 
a polynomial of one variable x(t) = xi +x2 5 + 

+x,5”-’ over GF(2). Let gx(<) be the poly- 
nomial of the least degree n-k among the 
polynomials corresponding to X~X. y*(<) is 
called the generator of X, because the property 
x E X and the property that x(t) is divisible by 
gx(<) are equivalent. gx(<) also divides <“- 1. 
Let the quotient be h,(l)=(<“- l)/gx(c). Then 
x6X is equivalent to x([)hx(<)=O (mod(<“- 
1)). h,(c) is called the parity check polynomial. 
The BCH code (Bose-Chaudhuri-Hocquenghem 
code) delïned below is a typical example of a 
cyclic code. 

Let CI be an element of order n in GF(2”‘) 
(the Imite lïeld with 2”’ elements), and let g,(t) 
be the polynomial of the lowest degree in 
GF(2)[5] for which mi is a root (i= 1,3, .,., 
2t - 1). The BCH code is given by the least 
common multiple g(t) of the polynomials 

s1(5), g3(5), ...,s~,-~(O The BCH code bas at 
least n - mt information bits and satislïes 
&, > 2t + 1, and algebraic decoding methods 
are known [3,5]. The Hamming code is a 
BCHcodewhent=l,n=2m-l. 

E. Other Codes 

Other important types of codes include con- 
volutional codes (not block codes) for correct- 
ing errors in consecutive digits (burst errors) 
and Goppa codes (an extension of the BCH 
class). For correcting burst errors, special 
cyclic codes or their mixtures are also used. 
This Iïeld of research is closely connected to 
information theory, algebra, and various ap- 
plications of combinatorial analysis, such as 
texperimental design [3]. 
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A. General Remarks 

The notion of cohomology operations was 
introduced by L. S. Pontryagin and N. E. 
Steenrod in order to salve homotopy classifi- 
cation problems (- 202 Homotopy Theory). 
Since then, numerous works have proved the 
importance of cohomology operations as 
applied to thomotopy theory, tdifferential 
topology, and other branches of topology. In 
fact, the use of cohomology operations is 
indispensable in studying problems related to 
thomotopy groups, tcharacteristic classes of 
manifolds, etc. 

We denote by the symbol H*(X; A) = 
C H”(X; A) the tsingular cohomology ring of 
a topological space X with coefficients in an 
+Abelian group A. 

B. Primary Cohomology Operations 

A (primary) cohomology operation (or simply 
an operation) cp is a tnatural transformation 

q:; HI”( ; Ail-n H”Y ; BP) 
u 

between the cohomology functors defïned on 
the tcategory of topological spaces and con- 
tinuous mappings. That is, <p is a family of 
mappings satisfying the following conditions: 

(1) For each space X, cp defïnes a mapping 

~:~H’A(X;AJ-nH-p(X; B,,) 
P 

that is not necessarily additive. 
(2) For each mapping f:X+ Y, the commu- 

tativity f* o <p = cp of* holds in the diagram 

n H”(X; A)1=n H”*(X; B) 

(J H&; A)S;T H”& B). 
u 

We list here two trivial examples. 
(1) Addition of cohomology groups deter- 

mines an operation <p: H’(X; A) x H’(X; A)+ 
H’(X; A). 

(II) The +cup product determines an 
operation 

<P:H”(X;A,)XH’~(X;AJ+H’~+‘~(X;A~ @A,) 

denoted by 

The composite of two cohomology opera- 
tions is detïned in the obvious way. Among 
cohomology operations the most important 
ones are operations of one variable. A co- 
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homology operation of type (A, I; B, m) is a 
natural transformation 

<P:H~( ;A)+H”( ;L?). 

n(A, I; B, m) denotes the Abelian group consist- 
ing of a11 such operations. 

Denote by H”(A, 1; B) the mth tcohomology 
group of an +Eilenberg-MacLane space K(A, I), 
and let u E H’(A, 1; A) be the tfundamental class 
of K(A, 1). I f  X is a CW complex, by assigning 
f*u to each f :X+K(A,I), we obtain a one- 
to-one correspondence between the set of the 
homotopy classes ~L(X, K(A, I)) and the co- 
homology group H’(X; A) (- 70 Complexes 
F). Hence by utilizing condition (2), it cari 
be shown that the value of cp on H’(X; A) is 
uniquely determined by its operation on 
H[(A, 1; A). Thus the assignment <~+<PU detïnes 
the isomorphism D(A, I; B, m) E H”(A, I; B). 
Here we should remark that the isomorphism 
n(K(A, l), K(B, m)) E H”(A, 1; B) defines a one- 
to-one correspondence D(A, I; B, m)+n(K(A, 1), 
K(B, m)). In some cases Hm(A, I; B) vanishes, 
for example, when 0 < m < 1; l= 1 < m, A = Z; 
1=2,m=2m’+l, A=Z; 1=21’<m=2m’+l, 
A=Z.B=Q; 1=21’+1 cm, A=Z, B=Q; A 
is finite, B = Q; etc. 

The following four types of operations to- 
gether with the two above are called elemen- 
tary operations: 

(III) Homomorphisms induced by a coeffï- 
tient homomorphism: There are homomor- 
phisms q* : H’(X; A)+H’(X; B) induced by a 
homomorphism q : A-L?. 

(IV) Bockstein (cohomology) operation: This 
operation is given by the tconnecting homo- 
morphisms 6* : H’(X; C)-+H’+‘(X; A) asso- 
ciated with a short exact sequence O+A+B-+ 
C-O of coefficient groups (- 200 Homo- 
logical Algebra). For example, the coefficient 
sequence O+Z~Z+Z,,+O (Z,= Z/nZ) defines 
a Bockstein operation (or Bockstein homomor- 
phism), which is usually denoted by (l/n)6 or 

An. 
(V) Steenrod (or reduced) square operations 

Sq’ (i > 0) : Sq’ are sequences of operations 
defined by the following fïve axioms [2,5]: 

(Vl) For each pair of integers i > 0 and 12 0, 

Sq”:H’(X; Z&+H’+‘(X; Z,) 

is a natural transformation of functors that is a 
homomorphism. 

(V2) sqo = 1. 
(V3) If  deg x = i, then Sq’x =x -x (cup 

product). 
(V4) If  degx < i, then Sq’x = 0. 
(VS) (Cartan formula) 

Sq’(x -y)= C sqjx-sqi-jy. 
j=O 
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These lïve axioms imply the following two 
formulas: 

(V6) Sq’ is the Bockstein operation j$ of the 
coefficient sequence O-+Z2+Z4-+Z2+0. 

(V7) (Adem relations) If  0 < i < 2j, then 

sq i+l-k o sqk, 

The binomial coefficient is taken mod 2. 
We cari extend the defmition of the Sq’ SO 

that they operate on the relative cohomology 
groups. Now (Vl), (V2), and (V5) imply: 

(V8) If  fi: H’( Y; Z2)+H1+‘(X, Y; Z,) is the 
tcoboundary homomorphism, then 6 o Sq’= 
Sq’oG. 

(V’) Steenrod pth power operations @ (i $0): 
Let p be an odd prime. Then 9’ is a sequence 
of operations delïned by the following lïve 
axioms [SI. 

(V’l) For each pair of integers i > 0 and 1> 0, 

Y’: H’(X; Zp)+Hf+Zi(P-l)(X; Z,) 

is a natural transformation that is a homo- 
morphism. 

(v’2) @= 1. 
(V’3) If  degx = 2k, then Pkx = xp. 
(V’4) If  degx < 2k, then Pkx = 0. 
(V’5) (Cartan’s formula) 

P(x uy) = C ypjx - y/li-jy. 
j=O 

These axioms imply the Adem relations for 
UP’ and the Bockstein homomorphism fi, asso- 
ciated with the coefficient sequence O+Z,+ 
Z ,2+Z,+0 (- Appendix A, Table 6.11). 

We cari extend the definition of UP’ to the 
relative cohomology groups too, and we ob- 
tain 8ouPi=uPio& 

(VI) Pontryagin pth power operations ‘p,. 
Let p be a prime. $@, is a system of operations 
satisfying the following lïve conditions [3]: 

(VI 1) For each pair of integers 12 0 and 

ha 1, 

‘$3,: H’(X; Z,,++H@(X; Zph+l) 

is a natural transformation. 
(V12) If  q : Zph+r +Z,,I, is a homomorphism 

defined by q(l)= 1, then we have yI*o~IJPx=xP. 
(V13) If  P:Z~~+Z~~+~ is a homomorphism 

defined by p( 1) = p, then we have 

‘u,(x +Y) 

p-1 
=!p,x+<U,y+ 1 p P P*(x’~Y”-‘)~ 

(OI > i-1 i 

(~14) cD,(x -Y) = $8,~ - vp,y. 
(V15) If  p > 2 and degx = 2k + 1 (odd), then 

q,x=o. 
Let A, B be finitely generated Abelian 

groups. Then the computation of H*(A, l) 
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shows that each element of T)(A, I; B, m) cari be 
written as the composite of a lïnite number 
of the operations of the types (I))(VI) (H. 
Cartan). 

Here we show some examples. Let u be the 
fundamental class of K(Z,, 2). Then the ele- 
ments of HZ(Z,,2;Z4)~Z,,H3(Z2,2;Z4)~ 
Z,,H4(Z,,2;Z4)gZ4, and H5(Z,,2;Z4)g 
Z, + Z, correspond to the cohomology opera- 
tions /12,, @*0(6/2), pc<&, and pq*o(8/4)0 
(p2 + A2, o Sq’ o Sq’, respectively, where 1, p 
denote integers satisfying 0 <A < 1,0 < 
p<3 and q:Z+Z,,2:Z,+Z, stand for the 
homomorphisms detïned by rj( 1) = 1, 2(l) = 2, 
respectively. 

Suppose that we are given sets of integers li 
and mj. We delïne the stable (primary) coho- 
mology operation cp with respect to these sets 
of integers li and mj as a system of natural 
transformations 

<P:~H”+“( ;A,)+nH”+“~( ;B,) 
P 

satisfying the following condition, for all 
integers n > 0; 

(3) Let S:H’+‘(SX; A)+H’(X; A) denote the 
+Suspension. Then the commutativity S o <p = 
<p o S holds in the diagram 

This condition is equivalent to the commuta- 
tivity with the coboundary homomorphisms. 

For example, the cohomology operations 

(-l)“&,:H”(X;Z,)+H”+‘(X;Z,) 

detïne a stable cohomology operation fi. Sq’, 
SP’ are also examples of stable cohomology 
operations. 

A stable cohomology operation cp of type 
(A, B) and of degree q is a sequence of coho- 
mology operations of type (A, n; B, n + q) de- 
lïned for ah integers n > 0. %(A, B& denotes the 
Abelian group consisting of ah stable coho- 
mology operations of type (A, B) and of degree 
q. When A=B, ‘U(A)=CF,Zl(A, A), is a 
tgraded algebra, where multiplication of two 
operations is given by their composition. Let p 
be a prime. Then Ql(Z,) is called the Steenrod 
algehra modp and is denoted by a(p). ‘u(2) is 
the augmented graded algebra over Z, gen- 
erated by Sq’ subject to the Adem relations. 
Suppose that we are given a sequence of non- 
negative integers 1 = (ii, i,, , ik). We call I 
an admissible sequence if i,-, z 2i, holds for 
26s<k. We Write Sq’=Sq’loSq’20 . . . oSq’k. I f  
1 is an admissible sequence, we say that Sq’ is 
an admissible monomial. The admissible mono- 
mials form an additive basis for 2I(2), which 
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has the structure of a +Hopf algebra whose 
tcomultiplication $ : ‘u(2)+%(2) 0 (u(2) is 
given by $Sq’= x&, Sqj @ Sq’-j. The dual 

space 2f(2)* = Homzl(ZI(2), Z,) gives a Hopf 
algebra that is the polynomial algebra gen- 
erated by ti of degree 2’- 1, where ti is the dual 
element of Sqztm’Sq2’-’ . Sq’ with respect 
to the additive basis. The comultiplication 
<p*:‘-X(2)*+~%(2)* @ a(2)* is given by <p*ti 
=~;=o~,f-lio<j. 

B(p) has properties similar to %(2) (p is an 
odd prime). In particular, QI(p) is a +Hopf 
algebra generated by 9’ and p subject to the 
Adem relations with comultiplication $ given 
by~B=BO1+lOBand~~i=C~=o~jO 
y’-‘. An additive basis of QI(p) is given by 
{PE~Pil/F . . ..@flEk}. where E[=O or 1, i,> 
pi,,, + E, (m > 1) and i, > 1. Such a sequence 
~=(Eg>~~,~i,..., kr k i E ) is also called an admis- 
sible sequence. Denote the dual element of 
yPP’-‘cqP’-’ 9” and yPP’-‘yP’-’ . ..Y’/3 by 5: 
and ri, respectively; then the dual algebra 
‘%!I(p)* is isomorphic to the tensor product of 
the polynomial ring over Z, generated by tl, 
t2, . and the exterior algebra over Z, gen- 
erated by r,, z2, . . . The comultiphcation <p* is 

given by <P*(I$) = &, [cj 0 tj and <p*(ri) = 
ri @ 1 + &, [Cj 0 rj [S] (- Appendix A, 
Table 6.111). 

C. Secondary Cohomology Operations 

Here we restrict our attention to a special 
type of operation treated by J. F. Adams [4] 
that has been proved to be powerful in 
applications. 

For a specified prime p, we Write H+(X) = 
C,!‘$ I?(X; Z,). We cari regard H+(X) as a 
tgraded left module over Z(p). Now let C, 
(s =O, 1) be a pair of tleft free modules over 
Z(p), and let d: C, +C, be a graded homomor- 
phism over 2l(p). Suppose that we are given an 
element z E C, such that dz = 0. For future pur- 
poses, C, and C, are assumed to have bases 
{c~,~} and {c~,~} with degc,,,=1, and degc,,, 
= m,, respectively, in terms of which d has the 
representation dc,,,= CIaI<,Aco,I,. Then z is 
expressed in the form z=C,b,c,,,. 

We say that @ is a stable secondary coho- 
mology operation associated with the pair (d, z) 
if it satisfïes the following four axioms: 

(1) Let D”(d, X) be the module consisting of 
homomorphisms E : C, -t H+(X) over VI(p) of 
degree n such that Ed = 0. Putting E(c~,~) = xI, 
we cari assume that D”(d, X) = {E = ~,x,E 
rI,H”+‘“(X)lC ia,,,x,=O}. Let Q”(z,X) be 
the submodule of H+(X) consisting of ele- 

ments of the form t(z), where 5 is an s(p)- 
homomorphism : C, + H ‘(X) of degree n - 1. 
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In other words, Q”(z, X) = C,, bFH”+mpml(X). 
Then for each n > 0 and each X, @ is a 
mapping 

@:D”(d,X)+H+(X)/Q”(z,X). 

(2) For each mapping f: X + Y, the commu- 
tativity f* o @ = @ of* holds in the diagram 

D”(d, X)zH+(X)/Q”(z, X) 

tJ* Tf’ 
D”(d, Y$ H +( Y)/Q”(z, Y). 

(3) Let S: H”+‘(SX)+H”(X) denote the 
suspension. Then the commutativity S o @ = 
@o S holds in the diagram 

D”(d, X)zH +(X)/Q”(z, X) 

TS ts 
Dn+l(d,SX):H+(SX)/Q”+‘(z,SX). 

(4) Let i: Y-X be an injection such that 
i* o E = 0. That is, i*x, = 0. We cari then fmd 
homomorphisms (over i!l(p))~:C,+H’(X, Y) 
ofdegreenand<:C,+H+(Y)ofdegreen-1 
such that the following diagram commutes: 

H+(Y)CH+(X)tH+(X, Y)zH+(Y)t*H+(X) 

1 E ;<* ; 
0 1 

Then for any such pair (q, [) we have i* o @E = 
jzmod i*Q”(z, X), where 6* denotes the homo- 
morphism defïned by 6*y = (- l)dimy6y. 

For each pair (d, z), there is at least one 
associated operation @. Existence is proved by 
means of a +Postnikov system. Let Q, and @’ be 
two operations associated with the same (d, z). 
Then they differ by a stable primary operation 
in the sense that there is an element <p E C,/dC, 
such that @‘E = @E + <PC mod Q(z, X), where 
<p-&a,~,,, moddC, means cp~=&a,x,. 

For example, define the action of VI(2) on 
Z,bytherulea~v=Oifdega>Oandl~v=v 
for each v  E Z,. We consider a minimal projec- 
tive resolution 

d, 6 O+Z2=Co+C1cC2t 1.1 

(- 200 Homological Algebra). First we take 
C, = B(2) and define E( 1) = 1. Next we take C, 
to be free over (U(2) with generators ci, where 
0 < i and d r ci = Sq”. Furthermore, we take C, 
to be free over a(2) with generators ci, j with 
O<i<j, j#i+ 1 and 

O<k<j 

with bi,j,kE(U(2). Here the d,c,=Sq” form 
a minimal set of generators of (u(2), and 
the equations 0 = d, d,ci, j= Sq” o Sq” + 
~o~k<jbi,,i,kSq2x form a minimal set of gen- 
erators over ‘u(2) of the Adem relations. Let 
C,(j) be the submodule over a(2) generated 
by ck with 0 < k <j in C, , and let d,(j) be the 
restriction of d, on C,(j). We Write zi,j=d,ci~j. 
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Let $, j denote an operation associated with 
(d,(j), zi, j). Then Qi, j is defïned on the sub- 
module DZ!‘,(X) consisting of elements XE 
H”(X) such that Sq”x = 0 for 0 d k <j and 
takes values in H”+2it2’-‘(X) modulo the 
submodule 

+ c bi,j,kHn+2X-1(X). 
OSk-Cj 

For example, @,,,:Ker/&+Cokfi, is the 
generalized Bockstein homomorphism detïned 
by S/22 and a,, , is the operation discovered 
by J. Adem that appears as the Ttertiary ob- 
struction of S” for n > 2. If  k > 3, we have the 
relation 

sq 2k+‘~o~~j~kui,j.k<Dilj 
x,x 
j+i+l 

c at,j,kQPj(X) 
O<i<j<k > 

j+i+i 

These formulas cari be applied to prove the 
nonexistence of an element with +Hopf- 
invariant 1 in n2nml (S”) unless n = 1,2,4,8 
(Adams [4]). Analogous formulas also hold 
for ‘U(p) with p > 2. We have no satisfactory 
theories concerning cohomology operations of 
orders higher than 2. For cohomology oper- 
ations in generalized cohomology theory - 
231 K-Theory. 
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Combinatorial Manifolds 

A. Introduction 

First of all, we explain some notions in geo- 
metric combinatorial topology, also called PL 
(piecewise linear) topology, in order to distin- 
guish between the usual topological view- 
point and the combinatorial (or PL) one. By 
an n-dimensional simplicial complex K we 
mean an n-dimensional, tlocally tïnite and 
trectilinear simplicial complex in the Euclidean 
N-space RN, i.e., an n-dimensional +Euclidean 
simplicial complex (- 70 Complexes). The 
subspace P = 1 K 1 of RN covered by a11 sim- 
plexes of K is called an n-dimensional poly- 
hedron, and K is referred to as a simplicial 
division or simply a division of P. A poly- 
hedron covered by a tsubcomplex of a division 
of P is called a subpolyhedron of P. A poly- 
hedron contained in a polyhedron P is a sub- 
polyhedron of P if and only if it is a closed 
subset of P. An open subset of a polyhedron P 
is always a polyhedron but not necessarily a 
subpolyhedron of P [13]. For arbitrary divi- 
sions K, and K, of a polyhedron there is a 
common +Subdivision of K, and K,. Thus a 
property of a simplicial complex K which is 
invariant under subdivision is called a com- 
binatorial property of K or of a polyhedron 
1 KI. Two polyhedra P and Q are said to be 
combinatorially equivalent if they have tisomor- 
phic divisions K and L, respectively. Then a 
homeomorphism f: P-Q which is induced 
from an isomorphism f: K + L is called a 
combinatorial equivalence. Since a combina- 
torial equivalence f: P+Q is an isomorphism 
in the category of polyhedra and PL (tpiece- 
wise linear) mappings, (PL maps) which is 
called the PL category, it is also called a PL 
homeomorphism or a PL isomorphism, and P 
and Q are said to be PL homeomorphic or PL 
isomorphic. A ttopological space X which 
is homeomorphic with an n-dimensional 
polyhedron P is said to be triangulable and 
is referred to as an n-dimensional topological 
polyhedron. Then a division K of P, or a 
homeomorphism t : P+X, is called a triangula- 
tion of X. A division K of P is a triangulation 
of P. However, there is a compact polyhedron 
of dimension n (2 5) which has a triangulation 
K not combinatorially equivalent to its divi- 
sion ( - 70 Complexes; for triangulation prob- 
lems on manifolds - Section C below). The 
notion of a simplicial complex or ce11 complex 
had been introduced as a tool to describe 
topological invariants of triangulable mani- 
folds (H. Poincaré [ 11). The notion of an n- 
dimensional combinatorial manifold (i.e., a 
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polyhedron locally combinatorially equivalent 
to an n-dimensional simplex) was established 
as an important geometric abject in com- 
binatorial topology by means of J. H. C. 
Whitehead’s theory of regular neighborhoods 
[2,1939,1940]. The 1960s saw remarkable 
results in the study of combinatorial manifolds 
together with the topological study of dif- 
ferentiable manifolds, which gave rise to con- 
temporary combinatorial or PL topology 
[3,4]. The fundamental conjecture (Haupt- 
vermutung) for combinatorial manifolds and 
the combinatorial triangulation problem of 
manifolds were negatively solved by R. C. 
Kirby and L. C. Siebenmann [S, 19691. In the 
197Os, important results about general trian- 
gulations were obtained by T. A. Chapman [6] 
R. D. Edwards, and J. W. Cannon 171. 

B. Pseudomanifolds and Homology Manifolds 

In this section we explain some topological 
properties of triangulable manifolds which cari 
be defined by means of incidence relations 
among their triangulations. A tpolyhedron M 
= 1 K) is called an n-dimensional pseudomani- 
fold if K satisiïes the following three con- 
ditions: (i) Every simplex of K is either an n- 
simplex or a face of an n-simplex; (ii) each 
(n - l)-simplex is a face of at most two n- 
simplexes; (iii) for any two n-simplexes 0, z of 
K, there exists a fïnite sequence of n-simplexes 
0 = o,,, o, , . , gs = T such that cri and gi+l have 
an (n - 1)-face in common. 

Consider the set S of (n - 1)-simplexes of K, 
each of which is a face of only one n-simplex. 
Then the set of a11 o E S together with their 
faces forms a subcomplex L of K. The poly- 
hedron (,!,I of L is called the boundary of the 
pseudomanifold M = 1 K 1 and is detioted by 
aM as well as by aK = L. The boundary 
of a pseudomanifold is not necessarily a 
pseudomanifold. 

Let 1 K 1 be an n-dimensional polyhedron (or 
tcell complex). A point p in 1 K ( is called a 
regular point of (K 1 if it has a neighborhood in 
1 K ( homeomorphic to an n-dimensional sim- 
plex; otherwise, p is called a singular point. A 
pseudomanifold without singular points is a 
topological manifold, called a triangulated 
manifold. An n-dimensional polyhedron 1 K 1 is 
a pseudomanifold if and only if the set of all 
regular points in 1 K) is dense and connected 
and the set of all the singular points is of di- 
mension less than n - 1. Thus a connected 
triangulated manifold is a pseudomanifold 
whose boundary coincides with the boundary 
as a topological manifold: 

Let 71, rz be oriented n-simplexes of an n- 
dimensional pseudomanifold M = 1 K 1. Suppose 
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that they have an (n - 1)-face 0 in common. If  
the tincidence numbers of these simplexes with 
g satisfy the relation [zr , cr] = - [Tu, (r], then ~~ 
and 22 are said to be coherently oriented. We 
cal1 M = 1 K 1 with a11 its n-simplexes oriented 
an oriented pseudomanifold if any two n- 
simplexes z, and z2 are coherently oriented 
whenever they have an (n- 1)-face in common. 
For an oriented pseudomanifold, the forma1 
sum of all its oriented n-simplexes forms an 
integral cycle of the pair (M, aM), which is 
called the fundamental cycle of (M, aM). Its 
homology class, or fundamental class, gener- 
ates the homology group H,(M, dM; Z) = Z. 
When M = 1 K 1 is nonorientable, the funda- 
mental class with coefficient Z, (Z, = Z/2Z) is 
similarly defined. A pseudomanifold is orient- 
able if and only if the topological manifold 
consisting of all its regular points is orientable. 
If  for each point p of a polyhedron M = 1 K 1 
the local homology groups are H,(p) = 0 (i# 
n)andH,(p)=ZorO,wecallM=IK(ann- 
dimensional homology manifold, where H,(p)= 
Hi(M, M -p; Z). I f  M is connected, it is also 
a pseudomanifold. The set aM of points p of 
M = ) K \ with H,(p) = 0 is called the boundary 
of M and is an (n - 1)-dimensional homology 
manifold without boundary. 

Let M = 1 K 1 be an n-dimensional homology 
manifold. Given simplexes o, z of K, CT < z 
means that 0 is a face of T and 0 # z. By delï- 
nition, a vertex of the tbarycentric subdivision 
Sd K of K is the barycenter of a simplex of K, 
and a k-simplex 7 of Sd K is delïned to be 
1 âo â, & 1, where q,,, o, , . , a, are simplexes 
ofKsuchthata,<o,<...<qandôiisthe 
barycenter of CT~. In the following we denote 
Sd K by K’. For a q-simplex o of K, we de- 
note by K(a) the union of ail (n - q)-simplexes 
Iââ, ...ân-nl of K’ such that D<o1 < . ..<<rnm4. 
Then K(o) is an (n-q)-dimensional homology 
manifold and pseudomanifold contained in M. 
K(o) is called the (n - q)-dual cell or simply the 
dual of o. Let K, be the subcomplex of K’ 
consisting of simplexes of K’ contained in 
K(o). Thus we have 1 K,, = 1 K(O)~. We denote 
by (K(o))’ the union of simplexes of K, which 
do not intersect with o. The set of dual cells 
K* = {K (0) 1 (r E K} of simplexes of K is called 
the dual complex of K; and K* is also called 
the dual subdivision of 1 K (. K* satisfies the 
following conditions: 
(i) UasK K(o)= 1 K 1. Each K(a) is the tjoin 
ô*(K(g))’ of the barycenter 0 and (K(o))‘. 
(ii)o<~o(K(o))‘xK(t)(o,rEK),(K(o))’= 

U n<rt~ KW. 
(iii) I f  K(G) f! K(z) # 0, then there exist sim- 
plexes of K with o and z as faces, and for the 
least simplex p of K with (T and z as faces, it 
holds that K(O)~ K(T)= K(p). 

The boundary a( K(o)) of the (n-q)- 
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dimensional homology manifold K(a) satisfies 

d(K(cr))=(K(o))‘U((aK)(a)), where (aK)(cr) 
denotes the dual ce11 of o in 8K, and we under- 
stand that (aK)(a)=@ if a$aK. K*U(aK)* is 
called the dual complex of (K, 8K) and is de- 
noted by (K, aK)*. For an r-simplex (T (0 <r < 
n - l), it holds that 

H,((K(o))‘,(aK(a))‘;Z)=O, i#n-r-l, 

H,m,m,((K(a))‘,(dK(o))‘;Z)zZ. 

Let 1 K* l4 be the union of i-dual cells of 
(K, i?K)* = K* U (aK)* such that i < 4. Let 
Cq(K*)=~q(~K*~q/~K*~q-‘), and let a,:C,(K*) 
-‘C,-,(K*) be the tconnecting homomorphism 
~,:~q(~K*~q/IK*~q-‘)+~q_,(IK*~q-1/IK*~~-2) 
in the treduced homology exact sequence 
of(~K*~4,~K*~q-1,1K*lq~2)(- 201 Homol- 
ogy Theory F). Then C,(K*) is a free Abe- 
lian group generated by the q-dual cells 
of (K, 8K)*, and C(K*) = {C,(K*), a,} is a 
tchain complex. It follows from the property 
of H,((K(cr))‘,(aK(a))‘; Z) as above that 
H,(C(K*))=H,(fKI) as in the case of a +CW 
complex. 

Now suppose that K is oriented. For a q- 
simplex 0 = 1 a,a, a41 we give an +Orientation 
[a,, a,, , a,]. Furthermore, we choose uq+i, 

aq+*, . . . . a, SO that [a,, a,, . . , a,] is the orien- 
tation of la,a, a,,1 induced from the orien- 
tation of K, and we give K(c) the orientation 
determined by [O, Or, . , ânmq], where oi = 
la,a, . ..~.+~l. We delïne o.K(a)= 1 for 0 and 
K(o) thus oriented, and r. K(cr) =0 if 7 fa. 
Let c = C lioi~ C,(K) and c* = C pjK(oj). Then 
we delïne c. c* EZ by c. c* = Ci,jÂipj(gi. K(O~)). 
The integer c. c* is called the intersection 
number of c and c*. For homology classes 
[z] E H,(K) and [z*] E H,-,(K*), the intersec- 
tion number z. z* is independent of the choice 
of representing cycles, and thus we delïne the 
intersection number [z] [z*] = z. z*. 

When X is compact, the isomorphism of 
the Poincaré-Lefschetz duality theorem 
H,(X, 8X; R)E Hnmq(X; R) is given in terms of 
intersection numbers. 

C. Combinatorial Manifolds and PL Manifolds 

A polyhedron which is PL homeomorphic 
with a k-dimensional simplex or its boundary 
is called a PL k-bal1 or a PL (k-1)-spbere and is 
denoted by Bk, Sk-‘, respectively. A simplicial 
complex K or a polyhedron M = 1 K 1 is called 
an n-dimensional combinatorial manifold if 
the +Star of each vertex in K is a PL k-ball. I f  
M is an n-dimensional combinatorial mani- 
fold, then SO is an open subset of M. An n- 
dimensional PL manifold is a topological 
manifold X with a distinguished maximal 
coordinate system rt = {(U,, hi)}, called a PL 
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structure on X, which consists of homeomor- 
phisms hi: Ui+ K from open subsets U, onto 
open subsets I$ of an n-dimensional simplex 
such that hjo hi-’ : hi( U, n r/j)-hj(S n uj) are 
PL homeomorphisms. For a PL manifold 
(X, rc) there is a triangulation t : M +X from a 
combinatorial manifold M such that for each 
(U,,hJ~rr, h,otltml(Ui) is a PL homeomor- 
phism from an open subset t -‘( IJi) of M onto 
hi(Q). Thus the notions of combinatorial mani- 
fold and PL manifold are essentially the same. 
For a tsmooth manifold (X, o), there is a 
unique PL homeomorphism class of a com- 
binatorial manifold by means of a +smooth 
triangulation. In this sense, smooth manifolds 
are combinatorial manifolds; but the converse 
of this is not true (- 114 Differential Topol- 
ogy C). A triangulation of a topological mani- 
fold which is a combinatorial manifold is 
called a combinatorial triangulation. The trian- 
gulation problem for n-dimensional topolog- 
ical manifolds, especially the existence and 
uniqueness problem of their combinatorial 
triangulations, a long-standing problem, is 
stated as follows. CT,, (Combinatorial Triangu- 
lation Problem): 1s every n-dimensional topo- 
logical manifold homeomorphic with a com- 
binatorial manifold? CH, (Hauptvermutung for 
combinatorial manifolds): Homeomorphic n- 
dimensional combinatorial manifolds should 
be PL homeomorphic. When n < 3, CT, and 
CH, hold; this was shown for n = 2 by T. Rade 
[ 151 and for n = 3 by E. E. Moise [16]. More- 
over, in this case, topological manifolds admit 
unique smooth structures, and homology 
manifolds are combinatorial manifolds. For 
n b 5, +surgery theory was used and developed 
as an obstruction theory for “homotoping” 
a homeomorphism h: M-M’ between n- 
dimensional combinatorial manifolds to a PL 
homeomorphism by D. Sullivan (1967). By the 
discovery of the torus-unfurling method for 
“isotoping” h : M -* M’ to a PL homeomor- 
phism, Kirby reduced CT, and CH,, for n 2 5 
to CH, for some specific manifolds, such as 
thickened tori modulo the boundary, for 
which surgery methods had been sufficiently 
developed (for isotopy - Section D). The 
solutions (l)-(9) cari be stated as follows. 

(1) Classification of combinatorial trian- 
gulations. Assume n > 5. Existence: An n- 
dimensional closed topological manifold X 
admits a combinatorial triangulation if and 
only if an obstruction A(X)E H4(X; Z,) van- 
ishes. Uniqueness: A homeomorphism h : M + 
M’ between n-dimensional closed combina- 
torial manifolds is isotopic (- Section D) to a 
PL homeomorphism if and only if an obstruc- 
tion A(~)E H3(X; Z,) vanishes (Kirby and 
Siebenmann [SI). 

In fact, for each n > 5, there is an n- 
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dimensional combinatorial manifold which is 
homeomorphic to a torus S’ x _. x S’ but is 
not PL homeomorphic, and there is an n- 
dimensional closed manifold which is not 
homeomorphic to a combinatorial manifold 
(Siebenmann [lS]). 

As a special case, the following conjecture is 
proved for n > 5. 

(2) The n-dimensional annulus conjecture. 
The closed region bounded by two mutually 
disjoint tlocally flat (n - 1)-dimensional topo- 
logical spheres S, and S, in an n-dimensional 
sphere S” is homeomorphic with an n- 
dimensional annulus S”-’ x [0, 11 (Kirby [19]). 

Regarding the uniqueness problem for (not 
necessarily combinatorial) triangulations of 
topological manifolds, we mention the follow- 
ing deep result. 

(3) Double suspension tbeorem for homology 
spheres. The double suspensions of homology 
n-spheres are homeomorphic with ,Y+‘, where 
a homology n-sphere is a closed topological 
manifold with the same homology groups as 
those of 5” (Cannon [7]). 

For each n > 3, there is a homology n-sphere 
P” which is a combinatorial manifold with 
the nontrivial tfundamental group (for n = 3, 
see Poincaré [ 1,1904] and for n > 4, see M. 
Newman, 1948). The suspension of P” is an 
example of an (n + 1)-dimensional homology 
manifold which is not a topological manifold. 
The double suspension of P” is not a com- 
binatorial manifold but is homeomorphic 
with S”+*. The problem of whether every n- 
dimensional topological manifold is homeo- 
morphic to a polyhedron is still open for n > 
4. This problem is reduced to a problem in 
homology 3-spheres (T. Matumoto; D. E. 
Galewski and R. J. Stern). 

In the following we list some results on 
combinatorial manifolds focusing on White- 
head’s theory of regular neighborhoods [2]. 
Let M = 1 K 1 be an n-dimensional combina- 
torial manifold without boundary. The dual 
complex K* consists of PL halls. Thus the 
division K of M gives rise to a decomposition 
into PL thandles H(K) of M in such a way 
that for each k-dimensional simplex on K, 
the star St,..(â) of its barycenter â in the sec- 
ond barycentric subdivision K” of K is a PL 
handle of index k. I f  L is a subcomplex of K or 
K*, then the star St,,,(ILI) of IL1 in K” is a 
subhandlebody of H(K) or of its dual han- 
dlebody H*(K)=H(K*), denoted by H,(L) 
or H,,(L), respectively. In particular, if M 
is closed, orientable, and of dimension 3, 
then U =H,(K(‘)) and V=H,*(KI,,) are 
PL homeomorphic with a PL boundary- 
connected sum of some copies of a solid torus 
S’xB2,andM=UUV,UflV=~U=dV, 
where Kck’ and K& stand for the k-tskeletons 
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of K and K*, respectively. This decomposition 
(U, V; 8U = 8 V) of M is called a Heegaard 
decomposition (or splitting) of M 1121. We say 
that a simplicial complex L collapses elemen- 
tarily to a subcomplex L, of L, referred to as 
an elementary collapse L L L 1, if L - L i = 
{cr, r}, where o is a k-dimensional simplex of L 
and T is a (k - 1)-dimensional face of o which is 
not a face of any simplex in L - {o, r}. We say 
that a polyhedron P collapses to a subpoly- 
hedron Q of P or Q expands to P, referred to 
as a collapse P L Q or expansion Q Y P, if there 
is a division L of P containing a subcomplex 
L, dividing Q SO that there is a sequence of 
elementary collapsings L L L, L . . I L,. For a 
subpolyhedron P of a combinatorial manifold 
M, a subpolyhedron U of M is called a regular 
neighborhood of P in M if (1) U is a combina- 
torial manifold which is a closed neighbor- 
hood of P in M and (2) U L P. In general, for a 
subcomplex L of a simplicial complex K, the 
+Star St,..( 1 Ll) of 1 Ll in the second barycentric 
subdivision K” of K is called a second barycen- 
trie derived neighhorhood or simply a derived 
neighborhood of IL1 in 1 K 1 (E. C. Zeeman [4]). 

(4) Regular neighborhood theorem. Let P be 
a compact subpolyhedron of a combinatorial 
manifold M. Existence: Every derived neigh- 
borhood of P in M is a regular neighborhood. 
Uniqueness: Any two regular neighborhoods 
of P in M are PL homeomorphic by a map- 
ping keeping P pointwise lïxed [2,1939]. On 
one hand, this theorem is regarded as a com- 
binatorial counterpart to the ttubular neigh- 
borhood theorem of differential topology. For 
a topological manifold X with boundary 8X, 
there are a neighborhood U of 8X in X and a 
homeomorphism h : dX x [0, l] -i U, called a 
collar of 8X in X, such that h(x, 0) = x (x E 8X). 
In particular, for a combinatorial manifold 
M = X we cari take U as a derived neighbor- 
hood of ciM in M and h as a PL homeomor- 
phism, called a PL collar of C?M in M. (For 
more about normal bundle theory - 147 
Fiber Bundles Q). On the other hand, it is 
also regarded as a combinatorial deforma- 
tion theorem of a handlebody decomposition 
HK.,(L) of a derived neighborhood St,,,(lLl). 

Two polyhedra P and Q are said to be 
simple homotopy equivalent if Q is obtained 
from P by a finite sequence of collapsings and 
expansions. A composite mapping f’: P+Q of 
the inclusion mappings and deformation re- 
tractions associated naturally to the expan- 
sions and the collapsings from P to Q is called 
a simple homotopy equivalence. Moreover, if P 
and Q are subpolyhedra of a combinatorial 
manifold M and those collapsings and expan- 
sions take place in M, then their regular neigh- 
borhoods are PL homeomorphic [2,1940]. 

(5) A simply homotopy equivalence is clear- 
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ly a homotopy equivalence. Conversely, we 
have the simple homotopy theorem: For the 
homotopy class of a homotopy equivalence 
f: P+Q between compact connected poly- 
hedra P and Q, there is a well-defined element 
W(f), called the Whitehead torsion of ,1; in the 
+Whitehead group Wh(G) of the fundamental 
group G = ni(P) such that f  is homotopic to a 
simple homotopy equivalence if and only if 

W(,f)=O, (C2,19501; - also J. W. Milnor 

C201). 
Let W be a compact combinatorial mani- 

fold of dimension n + 1. If  3 W consists of two 
connected components M and N such that 
the inclusion mappings M c W and N c W are 
simple homotopy equivalences, then (W; M, N) 

is called an s-cobordism of dimension n + 1. 
The following theorem of D. Barden, B. Mazur, 
and J. Stallings is the nonsimply connected 
PL version of Smale’s +h-cobordism theorem. 

(6) s-Cobordism theorem. For n b 5, an s- 
cobordism ( W; M, N) of dimension n + 1 is PL 
homeomorphic with (M x [0, 11; M x 0, M x 1) 
(B. Mazur 1211; M. Kervaire [22]; C. Weber 
[23]; J. F. P. Hudson [SI). 

(7) Topological invariance of simple homo- 
topy types. Two homeomorphic compact 
polyhedra are simple homotopy equivalent 
(T. A. Chapman [6]). 

The famous Poincaré conjecture that a sim- 
ply connected closed manifold of dimension 3 is 
homeomorphic to a 3-sphere is still unsolved 
despite much effort by many mathematicians. 
This conjecture is generalized for dimension n 
as follows. 

(8) Generalized Poincaré conjecture in dimen- 
sion n. Any homotopy n-sphere C” is homeo- 
morphic to an n-sphere, where a homotopy 
n-sphere is detïned to be an n-dimensional 
topological manifold homotopy equivalent 
to an n-sphere. 

This has been aflïrmatively answered for 
n 2 5. The tïrst proof was given by S. Smale 
(- 114 Differential Topology F, K). From the 
viewpoints of collapsing and general position 
(- Section D), J. Stallings [3,1960] and E. C. 
Zeeman [ 11,1988204] proved the following. 

(9) Engulfing lemma. For a compact poly- 
hedron P of dimension m in the interior M = 
M - dM of an n-dimensional combinatorial 
manifold M, there is a PL n-bal1 in &i contain- 
ing P in its interior (ie., engulfïng P), provided 
that M is m-connected (i.e., q(M) = 0 (i <m)) 

and n-m > 3. (For the topological version - 
M. H. A. Newman [24].) I f  a combinatorial 
manifold M = 1 K 1 is a homotopy n-sphere 
(n > 5) then by the engulfing lemma, there are 
PL n-halls B, and B, engultïng ~&K(“~3’) 
and HKcc(K&,) SO that 8, U ti2 = M. By the 
generalized Schoenflies theorem (- Section 
G), B, -B, = M - fli is homeomorphic to 
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an n-ball. It follows that by the Alexander 
trick (- Section D) M is homeomorphic to an 
n-sphere. Since CH, holds for S” (n > 5) the 
homotopy PL n-sphere M is actually PL 
homeomorphic with S”. 

D. Embeddings of Combinatorial Manifolds 

An injective PL mapping f: P-Q between 
polyhedra is called a PL embedding if f(P) is a 
subpolyhedron of Q (- Section A). Namely, 
a PL embedding f: P+Q is a PL mapping 
which is induced from a simplicial injection 
f: K + L, called a division of ,L for some divi- 
sions K and L of P and Q, respectively. In the 
following we explain PL embeddings from an 
m-dimensional combinatorial manifold M into 
an n-dimensional combinatorial manifold N. 
ForaPLembeddingf:M+N,c=n-mis 
called the codimension of ,f: I f  f-‘(aN) = C?M, 

f  is said to be proper. Since an injective PL 
mapping f: M-N is a PL embedding if and 
only if it is proper as a mapping between topo- 
logical spaces M and N (i.e., the preimages of 
compact sets are compact), this term “proper” 
for PL embeddings should not be confused 
with the term “proper” for mappings. Two PL 
embeddings f: M+N and f’ : M’+ N’ are said 
to be (PL) equivalent if there is a PL homeo- 
morphism h : N + N’, called an equivalence 
from f  to f’, such that h of(M) =f’( M’). When 
M=M’, f  and f’ are said to be (PL) isomor- 
phic if there is an equivalence h : N + N’ from 
f  to f’ such that hof=f’. A submanifold of 
N is detïned as a subpolyhedron of N which 
is a combinatorial manifold. Thus the equiv- 
alence class of a PL embedding f: M+N is 
nothing but the PL homeomorphism class of a 
pair (N, ,f( M)) of N and its submanifold f(M). 

For a submanifold of N, the same terms as 
those for the inclusion mapping are used. For 
every division f: K+L of a (proper) PL em- 
bedding f: M+N and for XE M we have a 
(proper) PL embedding ,fl St,(x) from a PL m- 

bal1 St,(x) into a PL n-bal1 St,(,f(x)) which 
represents the +germ off at XE M. A PL em- 
bedding of a PL m-sphere into a PL n-sphere 
is called a PL (n, m)-knot or (n, m)-sphere pair 
and a proper PL embedding of a PL m-bal1 
into a PL n-bah is called a PL (n, m)-bal1 knot 
or (n, m)-bal1 pair. A PL (n, m)-knot (a PL 
(n, m)-bal1 knot) is said to be trivial or un- 
knotted if it is equivalent to the inclusion 
mapping al”+’ x 0 c a1”“(l”‘c In), where 1 = 
[ -1, 11. Then we have the following state- 
ments (l))(5). 

(1) Zeeman’s unknotting theorem. Every PL 
(n, m)-knot and every PL (n, m)-bal1 knot are 
unknotted, provided that n-m 2 3. 

In general, an injection y: X + Y between 
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topological manifolds is said to be locally Bat 
if for each point x E X, there is a neighborhood 
U of x in X SO that the local germ of ,f  at x is 
equivalent to the inclusion mapping CJ x 0 c U 
x 1’. Then f  is necessarily proper, i.e., S-‘(aY) 
=dX. A PL embedding f: M+N is said to be 
locally flat if it is locally flat in the PL cate- 
gory. Namely, fi St,(x) is equivalent to I” x 
0 c I”. Conversely, Zeeman’s unknotting theo- 
rem implies the following. 

(2) Every proper PL embedding of codimen- 
sion > 3 is locally flat. 

Since every locally flat PL embedding f: M 
+N admits a normal tblock bundle, the classi- 
fication of F: M+ U up to isomorphism is 
reduced to the classification of block bundles 
(- 147 Fiber Bundles Q), where U is a derived 
neighborhood of f(M) in N. (For the general 
classification of locally flat PL embeddings by 
surgical methods - C. T. C. Wall [25, Corol- 
lary 11.3.11). 

In the codimension 2 case, there exist non- 
trivial knots (the classical knots) (- 235 Knot 
Theory) and there is a proper PL submanifold 
which is not locally flat. For example, a com- 
plex projective curve T/ defïned by ~“+y”-‘z 
= 0 cari be regarded as a PL 2-sphere in the 
complex projective plane CP*, and for the 
inclusion mapping i: I/cCP*, at O=(O:O: l), 
i 1 St,(O) is PL equivalent to a cane of a torus 
knot k: S’ cS3 of type (n, n- 1). For further 
results in higher-dimensional knot theory (- 
235 Knot Theory) we mention the works of M. 
Kato and Y. Matsumoto [26] and S. Cape11 
and J. Shaneson [27]. 

Here we consider only proper PL embed- 
dings of a tïxed m-dimensional combinato- 
rial manifold M into a fixed connected n- 
dimensional combinatorial manifold N, SO 
that a codimension 0 PL embedding is a PL 
homeomorphism. Two PL embeddings fO, 
fi :M+N are said to be pseudoisotopic if there 
is a proper PL embedding F : M x [0, l] +N 
x [0, 11, called a pseudoisotopy from f0 to 

fi, such that F(x, 0) =(&(XX 0) and F(x, 1) = 
(fi(x), 1) (~EM). Moreover, if F satislïes the 
level-preserving condition F(M x {t})c N x {t} 
(0 < t d l), then f0 and fi are said to be isotopic, 
and F or a homotopy {f,} detïned by F(x, t) = 
(ft(x), t) ((x, ~)EM x [0, 11) is called an isotopy 
from f0 to fi. When M = N, a PL homeomor- 
phism which is isotopic to the identity, or the 
isotopy of the identity itself, is called an am- 
bient isotopy of N. Two PL embeddings from 
M to N are said to be ambient isotopic if they 
are isomorphic by an ambient isotopy of N. 

Since Zk (I= [ -1, 11) is a k-dimensional 
tconvex ce11 and is a cane 0 * aZk of 81k from 
the tenter 0, each point x of Ik- {0} cari be 

written uniquely as x = t. u for 0 < t < 1 and 
u~ûl~. Thus a PL embedding ,f: alm+al” cari 
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be extended to a PL embedding F: 1”-In, 
called a cane extension or simply a cane of A 
by setting F(0) = 0 and F(t u)= t .f(u) for 
t. UE Z” - (0). This method of cane extension is 
often referred to as Alexander’s trick. By using 
Alexander’s trick and the uniqueness of regu- 
lar neighborhoods, one cari show without 
much difftculty that (i) the isotopy classes of 
PL homeomorphisms of PL spheres or PL 
halls onto themselves are classitïed by their 
tdegrees (= fl) (V. K. A. M. Gugenheim, 
1953), and (ii) every PL (n, m)-knot or PL 
(n, m)-bal1 knot is equivalent to the standard 
one alm+l x 0 c W+1 or 1” xOcl” up to iso- 
topy, provided that IZ - m > 1. This is why we 
defme the notion of ambient isotopy in a dif- 
ferent way from the differentiable category, 
where the smooth isotopy is always covered by 
the ambient isotopy. However, for codimen- 
sion > 3, because of Zeeman’s unknotting 
theorem, the following holds. 

(3) The pseudoisotopy class, the isotopy 
class, and the ambient isotopy class of a PL 
embedding of codimension > 3 are the same 
(J. F. P. Hudson and E. C. Zeeman, 1964). 

In order to construct a PL embedding from 
a continuous mapping within its homotopy 
class, the notion of general position is useful. 
A PL mapping cp: M+N is said to be in gen- 
eral position if dimcp-‘(y)<0 (~EN) and 
dim S(q) < 2m- n, where S(q) is the closure of 
{x~MIq~~((~(x))#{x}} in M(J. F. P. Hudson 

Dl). 
(4) General position tbeorem. Every con- 

tinuous mapping $ : M-N cari be approxi- 
mated by a PL mapping <p : M-N which is in 
general position. 

The following theorem cari be proved by 
sharpening the general position theorem and 
the engulfing lemma. 

(5) Irwin’s embedding tbeorem. Let $:M+N 
be a continuous mapping from a compact 
combinatorial manifold of dimension m into a 
combinatorial manifold of dimension n such 
that $1 C3M is a PL embedding from C?M into 
aN. Assume that (i) M is d-connected, (ii) N is 
(d + l)-connected, and (iii) n-m 2 3, where d = 
2m - n. Then $ : M+N is homotopic to a 
proper PL embedding f: M+N relative to 
aM. Moreover, if M and N are closed and if 
(i*) M is (d + 1)-connected and (ii*) N is (d + 2)- 
connected, then two homotopic PL embed- 
dings from M into N are ambient isotopic (M. 
C. Irwin, 1965). 

E. 3-Manifolds 

There has been a great deal of research done 
on 3-manifolds, and we have, among others, 
the following results (l)-(4). 
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(1) Sphere theorem. Let M be an orientable 
3-manifold with n,(M)#O. Then there exists a 
PL embedding f  of a 2-sphere into M such 
that f  is not homotopic to 0 in M (C. Papa- 
kyriakopoulos [28]). 

(2) Dehn’s lemma. Let D be a 2-ce11 with 
self-intersections in a 3-manifold M, with its 
boundary a simple polygon C. If  some neigh- 
borhood U of C in D has no singularities, then 
there exists a 2-ce11 in M without singularities 
whose boundary is C. In 1910, M. Dehn as- 
serted this lemma, but his proof was incom- 
plete. In 1957, Papakyriakopoulos and T. 
Homma proved the lemma independently 
[28,29]. 

(3) Loop theorem. Let N be the boundary 
of a 3-manifold M and U be an open set 
in a component of N. If  there is a closed 
curve in U which is homotopic to 0 in M 
but not in N, then there exists a simple closed 
curve in U homotopic to 0 in M but not 
in N (Papakyriakopoulos [30], J. Stallings 

C311). 
(4) Unique decomposition theorem for a 3- 

manifold (J. W. Milnor [32], H. Kneser). We 
assume that a11 manifolds are connected, 
oriented, and triangulated 3-manifolds without 
boundaries and that a11 homeomorphisms are 
piecewise linear. Two manifolds M, M’ are 
said to be isomorphic (M z M’) if there exists 
an orientation-preserving homeomorphism of 
M onto M’. Removing an open 3-ce11 from 
each of two 3-manifolds M, M’ and identifying 
the boundaries of these removed cells, we 
obtain a 3-manifold M#M’, called the con- 
nected sum of M and M’. A manifold that is 
not isomorphic to the 3-sphere S3 is called 
nontrivial. A nontrivial manifold P is called 
prime if P cannot be decomposed as P = 
M, # M2 with M, and M2 both nontrivial. 
A manifold M is called irreducihle if every 
2-sphere in M bounds a 3-cell. Then from 
the sphere theorem the following results cari 
be deduced: If  a compact 3-manifold M is 
nontrivial, then M is isomorphic to a con- 
nected sum PI # P2 # # Pk of prime mani- 
foldsP;(i=1,2 ,..., k),whereP,,P, ,..., Pk 
are determined uniquely up to order. Every 
irreducible 3-manifold M has z2(M)=0. Con- 
versely, if a 3-manifold M has n,(M) =O, then 
M is irreducible, provided that the Poincaré 
conjecture is correct. (For further results 
on 3-manifolds - F. Waldhausen [lO] and 
J. Hempel [ 121.) 

Irreducible sutlïciently large 3-manifolds 
[ 101 cari further be decomposed into Seifert 
fïbered spaces and “simple manifolds” which 
contain no essential tori (W. Jaco and P. B. 
Shalen, K. Johannson). Existence of hyperbolic 
structures on “simple manifolds” has been 
extensively studied by W. Thurston. 
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F. Wild Spaces 

Nonclosed 3-manifolds behave very differently 
from closed 3-manifolds. For example, there 
exists an open 3-manifold U that has the same 
thomotopy type as an open 3-ce11 but is not 
homeomorphic to it (M. H. A. Newman and J. 
H. C. Whitehead, 1937). The construction of 
this and similar examples generally involves 
inlïnite processes. Such examples, which do 
not exhibit the properties we expect, are com- 
monly termed pathological (or wild) spaces. 
For the manifold U above, the product U x R’ 
is found to be homeomorphic to the Euclidean 
4-space R4. R. Moore proved that the quotient 
space of the Euclidean 2-space R2 by any 
Upper semicontinuous decomposition consist- 
ing of continua not separating R2 is homeo- 
morphic to R2. On the other hand, R. H. Bing 
(1959) gave an example of a similar Upper semi- 
continuous decomposition of R3 for which the 
quotient space B is not homeomorphic to 
R3 and is not even a manifold. This quotient 
space has the property B x R’ z R4. Bing 
(1957) also proved that at most countably 
many copies of a wild closed surface cari 
simultaneously be embedded in R3. On the 
other hand, Stallings (1960) proved that there 
exists a wild disk of which a set of copies with 
the power of the continuum cari simulta- 
neously be embedded in R3 [l 11. 

The study of the quotient space of n- 
dimensional manifolds by cell-like decompo- 
sitions has been fully generalized by Edwards 
and Cannon [7] for n > 5 to prove the double 
suspension theorem of homology spheres (- 
Section C (3)). 

G. The Schoenflies Theorem 

In 1906, A. M. Schoenflies proved that every 
+Simple closed curve in the plane is the bound- 
ary of a 2-cell. This result is sharper than 
the +Jordan curve theorem and is called the 
Schoenflies theorem. However there was a gap 
in the proof, and the complete proof was given 
by L. E. J. Brouwer in 1910. 

The following higher-dimensional analog of 
the above theorem is called the Schoenflies 
problem: 1s every (n - l)-sphere embedded in 
the n-dimensional Euclidean space R” (n > 3) 
the boundary of an embedded n-disk? 

For the case where the embedding is topo- 
logical, L. Antoine constructed a counter- 
example, called Antoine% necklace, for n = 3 in 
1921 and solved this problem negatively. Also, 
J. W. Alexander constructed another counter- 
example, called Alexander’s horned sphere, in 
1924 (Fig. 1). A similar example was given by 
R. H. Fox and E. Artin in 1948 by making use 
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of knot theory (Fig. 2). The study of wild em- 
beddings began with these examples, and 
many interesting results were obtained (Bing). 

For the case where the embedding is PL or 
smooth, the Schoenflies problem has been 
solved affirmatively for n = 3 (Alexander). 

M. Brown (1960) and B. Mazur (1959) 
proved the following: Let h: ,Y’ x [ -1, l] -S” 
be a topological embedding; then S”-I?(S”-’ x 
{0}) consists of connected open sets D, and 
D- of S”, and the closures of D, and D_ are 
both homeomorphic to the n-disk. This result 
solves the Schoenflies problem afftrmatively 
for n > 5 when the embedding is PL and lo- 
cally flat or smooth. 

Fig. 1 

Fig. 2 
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A. General Review of Combinatorics 

Combinatorics is concerned mainly with prob- 
lems of discrete sets, such as the enumeration 
of subsets satisfying certain conditions, or their 
actual construction and the selection of an 
optimal subset with respect to a suitable crite- 
rion. Generally speaking, both the theoretical 
analysis and the construction of discrete sets 
are much more diftïcult than those problems in 
analysis concerning infinite sets with suitable 
topologies. 

The main emphasis and the name of this 
lïeld have changed from time to time and from 
person to person. Other names such as com- 
binatorial analysis, combinatorial theory, or 
combinatorial mathematics are commonly used 
and mean almost the same thing. Recently, 
the expression “discrete mathematics” has 
also been used to describe the same lïeld. In 
many cases a problem originally conceived as 
number-theoretic, algebraic, analytic, or geo- 
metric has eventually turned out to be com- 
binatorial (- 102 Design of Experiments, 241 
Latin Squares). 
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Graph theory, originally a combinatorial 
study of 1-dimensional topological tcomplexes, 
has developed into an important branch of 
mathematics. 

In this article we discuss various topics not 
yet considered to be established branches or 
organized lïelds of mathematics. The topics 
treated under the title “combinatorics” are 
at present not unilïed, and consist of a mix- 
ture of isolated techniques. However, recent 
progress with electronic computers is play- 
ing an important role in the solution of 
various combinatorial problems arising from 
large systems, and the study of combinatorics 
is now quite active both in theoretical develop- 
ment and application. We now have special 
journals in this lïeld, such as the Journal of 
Comhinatorial Theory (Academic Press), Com- 
binatorica (Elsevier), the European Journal 
of Combinatorics (Academic Press), Discrete 
Mathematics (North-Holland), and Discrete 
Applied Muthematics (North-Holland). 

B. Three Fundamental Principles 

The most fundamental among the various 
principles in combinatorics are the following 
three principles for enumeration problems. Let 
R be a lïnite set and let 1 Al denote the number 
of elements in a subset A of R. 
(l)Ruleofsums:IfAnB=@,thenIA+B(= 

lAl+lBl. 
(2) Rule of products: 1 A x BI = 1 Al x IBI, where 
A x B is the tdirect product of the two sets A 
and B. 
(3) Principle of inclusion and exclusion: 

IA,UA,U...UA,l 

-...+(-l)“-‘[A,fIA,n...nA,I. 

These principles cari be generalized as state- 
ments concerning various measures. 

C. Mobius Inversion Formula 

Let P be an ordered set whose arbitrary inter- 
val is a finite set. Let [P x P] = {(x, y) E P x 
P 1 x < y} be the set of intervals of P. A func- 
tion satisfying the following two conditions is 
determined uniquely and is called the Mobius 
function over P: 
(i) ~L(X, x) = 1 for a11 x E P; 
(ii) C r:x4rGy~(~,~)=0 for all x, HEP with x<y 
and xfy. 

When K is a fïeld, for a mapping f: [P x P] 
+K, we cari define another mapping 8: [P x 



66 D 
Combinatorics 

P]+K by 

&>Y)= 1 fkz). 
“E[%YI 

Then we have the Mobius inversion formula 

This formula implies, as its special cases, many 
important formulas, such as the +Mobius in- 
version formula in number theory, the prin- 
ciple of inclusion and exclusion, and the in- 
verse relation of difference and summation. 

D. Some Special Sequences 

In the enumeration problem, many important 
sequences {a,} are given by the tgenerating 
function f(x) = C a,,~“. Typical examples are as 
follows: (1) +Binomial coefficients: (1 +x)” = 
Z,(n)x”. (2) Multinomial coefficients: (xi + . . . 
+ x,)“’ = C(,,,~,Jx;i . xp. (3) Multiple combi- 
nation a,=,H,=(“+i-‘):(l -x)-“=C,(,H,)x”. 
(4) Bell numbers: exp(e” - 1) =C B,x”/n! (5) 
The Stirling number of tbe second kind ,Sm is 
the total number of bijections from N, to N, 
divided by m!, where N, = { 1,2, . . , n}. This is 
equivalent to the total number of partitions of 
N, into m nonempty blocks: (eX- l)“/m! = 
~;,s;x”/n!. 

In general, when the generating function 
f(x) is an analytic function of one or several 
variables as above, we cari obtain recurrence 
formulas for the sequence from the functional 
equations or the differential equations which 
f(x) satisfïes; or we cari get asymptotic esti- 
mates by using the tsaddle point method. 

E. Polya’s Enumeration Tbeorem 

Let U be a imite set, V be a (finite or infinite) 
set, G be a transformation group operating on 
U, and w be a function assigning to each ele- 
ment of Va “weight.” A weight is an element 
of a ring and is usually defined by a suitable 
generating function. The weight of a function 
f: U-* V’ is defïned by w(f) = nUpU w(f(u)). 
Two functions fi and f2 are considered iden- 
tical (f, =f2) if there exists a ~CE G such that 
f,  =f2 o rr. Put F = V”/(E), the set of a11 equiv- 
alence classes of the relation 1. w(f) is well- 
defïned for fcF, because fi -f2 implies w(f,) 
=w&). Then we have the equality Ci,,w(f) 

= PG(C”,“W(4> C”E” w(42, .” > C”E” w(4m). 
Here, Pc( y,, y,, , y,) is the cycle index of G, 
which is given by n-l Cn~Gy{l(n)yj2(n) y$(“), 
where n = 1 GI, m = 1 U 1, and j,(rc) is the number 
of cyclic permutations of length k contained in 
rc. This is called Polya’s enumeration tbeorem. 
When G = S,,, (the tsymmetric group), Psm(y,, 

“’ > YnJ=c i,~0,Xkip=m(“l!2”2Â,! . ..m”-&!)-‘y.1 
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y?. When G = A, (the talternating group), 

elJYl> . . ..Ym)=C Ità0.kAx=m.Xlx=even2(/21 !2”2J-,! 
m”-A,,,!)-’ yfl y$. When G = C, (the tcy- 

clic group), pc,(yl, . . ..y.)=m-‘Cklm~(k)ykik, 
where q(k) is the +Euler function, i.e., the num- 
ber of integers less than k and coprime to k. 
This theorem is widely applicable to various 
problems with suitable choices of weights. 
Several generalizations have also been studied 

(se5 e.g., C31). 

F. Tbe Notion of Polymatroids 

The theory of matroids was originally intro- 
duced as an abstraction of the notion of tlinear 
dependence in a vector space or of some prop- 
erties of tgraphs or of the notion of talge- 
brait dependence in the theory of tïelds (see, 
e.g., [4,5]). But recently, as many important 
applications were discovered, it has become 
an important branch of combinatorics (see 

Ch-81 1. 
Let p be a function from a tlattice L to a 

totally ordered module R. p is called sub- 
modular if ~(x)+&)~~(xvy)+~(x~y) for 
every pair of elements x, y  EL. The set of a EL 
such that ~(a) = min,,,p(x) constitutes a sub- 
lattice in L. Let L be the family of a11 subsets 
of a finite set E. The sublattices K in L = 2E 
and the pseudo-orders over E correspond in a 
one-to-one manner as follows (here pseudo- 
order means a binary relation taken as an 
tordering without assuming the tantisym- 
metric law): (i) The class of a partition P of E 
corresponds to the difference of two subsets 
which are the immediate predecessor and 
immediate successor in K, or the complement 
with respect to E of the maximum element in 
K, or the complement of the minimum ele- 
ment. (ii) The complement of the maximum 
element in K is maximum in the order of P, 
and the minimum element in K is minimum in 
the order of P. (iii) Two classes [i, t2 in P, 
given as the difference of two elements in K, 
satisfy the relation t1 2 t2 with respect to the 
order of P if and only if a11 elements of K such 
that x~<r in E satisfy XI<~. 

Now let E be a finite set, L = 2E, and let R be 
the real number tïeld with the usual addition 
and order relations. If  a submodular function 
P:~~+R satisfies the following conditions, 
then P = (E, p) is called a polymatroid over E, 
and p is called the rank function over P. (i) 
PL(@) = 0, where 0 is the empty set. (ii) xc y  
(c E) implies ~(X)<~L(Y). A function u: E-R is 
automatically extended to u: 2E-tR by u(x) = 
Z,,, u(e) (xc E), which is also denoted by 
the same symbol u. I f  a function u satistïes 
0 <u(x) <p(x) for every x E E, then u is called 
an independent vector over P. An independent 
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vector u with u(E) = p(E) is called a base of P. 
A function u:E+R is identifïed with an ele- 
ment in R”, where n= (El. Then a set of inde- 
pendent vectors in P forms a tconvex poly- 
hedron in R”. I f  we denote the polyhedron by 
P, then such a P is characterized by the follow- 
ing two conditions: (P 1) If  UEP then each u 
satisfying 0 < u(e) < u(e) for every e E E also 
belongs to P. (P2) If  two u, OGP satisfy u(E)< 
u(E), then there exists w E P, w # u, satisfying 
u(e) < w(e) < max [u(e), u(e)] for every eE E. If  
there are two polymatroids Pi = (E, pi) and 
P, =(E, p2) over the same finite set E, then we 
have max{u(E)IuEPi nP,}=min{p,(x)+ 
p2(E - x) 1 XC E}. According to tinformation 
theory, an example of a polymatroid (E, n) is 
given by the following: p(x), XE E, is the simul- 
taneous tentropy of a subset x of the infor- 
mation source E with correlation. 

G. Matroids 

A polymatroid P = (E, PL) is called a matroid if 
the values of p are always integers and p(x) < 
Ix I= the cardinality of the set x. A set xc E is 
called an independent set if p(x) = 1 xl, and 
a dependent set otherwise. An independent 
set with maximal cardinality is called a base. 
A minimal dependent set is called a circuit. 
The set y  with max{ lyl Iy~x,p(x)=p(y)} is 
uniquely determined by x, which is called 
the closure of x and denoted by cl x. Several 
axioms stated in terms of these notions exist, 
and cari be used to characterize matroids. 
Some of them are: 

(1) The axiom for the family of independent 
sets Y: (i) DE.~; (ii) XE.~ and ycx implies 
y~l; (iii) I f  x, y~9 and Ixl<lyl, then there 
exists an eeE in y-x such that xU{e}E.Y. 

(2) The axiom for the family of bases B: (i) % 
is not empty; (ii) I f  b, VE B and b #b’, then for 
every eE b - Y, there exists an e’ such that e’E 
b’-b and(b-{e})U{e’}Eg. 

(3) The axiom for the family of circuits V: 
(i) 0 E(V; (ii) For every pair x, y  EV, y  is not a 
proper subset of x; (iii) I f  x, y~%? and x #y, 
then for every e E x n y  there exists a z E %? such 
that zcxUy-je}. 

(4) The axiom for the closure function cl : 
2Ej2E: (i) x~clx=cl(clx) for every X~E; (ii) 
xcy implies clxccly; (iii) I f  eEcl(xU {e’})- 
clx, then e’Ecl(xU{e})-clx. 

The following are typical examples of ma- 
troids: (1) Let E be the family of tïnite set of 
vectors in a vector space V and .a be the 
family of sets of linearly independent vectors. 
(2) Let E be the set of edges of a tgraph and 
V be the set of edges constituting a fundamen- 
tal circuit. (3) Let E be a tïnite set and S be a 
family of subsets of E. x = {el, . , e,} c E is 
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defïned to be independent if there exist differ- 
ent elements si, , s, in S such that e, E si 
for every i = 1, , r. 

Let a weight function w : E + R be defmed 
for every element eE E in a matroid (E, n). TO 
obtain a base b of the matroid with minimal 
weight w(b) = Ces,, w(e), we cari apply the fol- 
lowing procedure, called the greedy algorithm: 
(1) Arrange the elements e, , . , e, of E in such 
a manner that w(ei) < . . < w(e,). (2) Put b(O):= 
~,andi:=0.(3)If~=b”‘U{e,+~}~Y, then 
b(i+l).- .-x; otherwise, b(‘+‘):= b(‘). (4) Repeat 
process (3) for i =O, 1, . . . , n - 1. Then the final 
b(“) is the base of minimal weight. 

H. Operations on Matroids 

For a matroid M = (E, FL) with the family B of 
its base, B* = {E-x 1 x E B} also satisfïes the 
axioms of the base. The matroid M* =(E, p*) 
with .%Y* as its base is called the dual of M. 
Here we detïne ~*(X)=I~I+~(E-x)-p(E). 
When F c E, M 1 F = (F, pLF) is called the reduc- 
tion of M=(E, p) to F, where pLF is the restric- 
tion of p on 2F. A matroid M x F = (M* 1 F)* is 
called the contraction of M to F. A matroid 
given by the form (M 1 F) x F’ is called a minor 
of M. From two matroids M, =(E,p,) and M, 
= (E, pLz) over the same set E, we cari construct 
a matroid M = M, v  M, = (E, p) whose rank 
function p(x) is defïned by the minimum of 
{~1(y)+~2(y)+I~-yl~y~x}.Thisiscalled 
the union of M, and M2. 

Let M=(E, p) be a matroid and c( be a posi- 
tive constant. The function j?(x) = p(x) - tll xl is 
submodular. The set L of x which minimizes 
M(x) is a sublattice of 2E. The partition of E 
and the order relation of its classes detïned by 
L are called the principal partition of M with 
respect to the parameter c(. When the value of 
the parameter c( is not specified, CI is taken to 
be 2. 

As was seen in example (1) at the end of the 
preceding section, the family of vectors in 
a vector space V over a field K is a matroid 
M. A matroid isomorphic to such an M is 
called linearly representable over K. If  K = 
GF(p), the lïnite lïeld with p elements, then it 
is called a p-ary matroid. A matroid linearly 
representable over any field is called regular. I f  
[G] is a matroid isomorphic to the matroid 
detïned by the family of edges of a graph as 
shown in example (2) it is called graphie. If  the 
dual M* is graphie, M is called cographic. 
Graphie and cographic matroids are always 
regular. There exist matroids not linearly 
representable over a lïeld K, or linearly repre- 
sentable over a particular fïeld K but not 
regular, or regular but neither graphie nor 
cographic. I f  [G] is a matroid isomorphic to 
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the matroid of the type in example (3), it is 
called transversal. Such a matroid is linearly 
representable when the cardinality of the tïeld 
K is suficiently large. 
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A. General Remarks 

A ring R (- 368 Rings) whose multiplication 
is commutative is called a commutative ring. 
Throughout this article, we mean by a ring a 
commutative ring with unity element. 

B. Ideals 

Since our rings are commutative, we need not 
distinguish right or left ideals from tideals. A 
subset a of a ring R is an ideal of R if and only 
if a is an R-submodule of R (- 277 Modules), 
if and only if a is the tkernel of a ring homo- 
morphism from R into some ring (except for 
the case a = R). Given an ideal a of a ring 
R, the set of elements which are tnilpotent 
modula a, i.e., {x~Rlx”~a (3n)}, is called the 
radical of a and is often denoted by &. The 
radical of the zero ideal is called the radical 
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of R, or more precisely, the nilradical of R 
(- 368 Rings H). 

For a subset S of a ring R, the smallest ideal 
a containing S is called the ideal generated by 
S, and S is called a basis for a; if S is a fïnite 
set, then S is called a finite basis. When a, 
(LEA) are ideals of R, the sum of these ideals, 
denoted by Ca,, is defined to be the ideal 
generated by the union of the ideals a, (LEA). 
If  A is a fïnite set, say { 1,2, , n}, then the sum 
is denoted also by a, + . . + an, and in this case, 
the sum is also called a tïnite sum. Note that 
a,+...+a,={a,+...+a,~a,~a,}.Theproduct 
a, . . a, of a fïnite number of ideals a,, . . , a, is 
defined to be the ideal generated by the set 
{a1 . a, 1 a, E ai}. The intersection of an arbi- 
trary number of ideals is an ideal. When a 
is an ideal of a ring R and S is a subset of R, 
the quotient a: S is defïned to be the ideal 
{x~RJxSca}.Ifa,b,c,b,(Â~h)areideals, we 
have(a:b):c=a:bc,a:Xb,=n,(a:b,). 

C. Prime Ideals 

An ideal p of a ring R is called a prime ideal if 
R/p is an tintegral domain; p is a prime ideal if 
and only if p # R and also ab E p (a, b E R) im- 
plies a E p or b E p (some literature includes the 
ring R itself in the set of prime ideals). Let S be 
a multiplicatively closed subset of a ring R, i.e., 
a nonempty tsubsemigroup of R with respect 
to multiplication. A maximal member among 
the set of ideals which do not meet S is called a 
maximal ideal with respect to S. Such a mem- 
ber is necessarily a prime ideal; when S = { 1 }, it 
is called a maximal ideal of R. An ideal m is a 
maximal ideal of R if and only if R/m is a fïeld. 

D. Jacobson Radical 

The intersection J of a11 maximal ideals of a 
ring R is called the Jacobson radical of R; in 
some cases, this intersection J is called the 
radical of R (- 368 Rings H). Let N be an R- 
submodule of a finite R-module M. If  MJ + 
N = M, then M = N (Krull-Azumaya lemma 
or Nakayama lemma). 

E. Krull Dimension 

For a prime ideal p of a ring R, the maximum 
of the lengths n of tdescending chains of prime 
ideals p = p0 2 p, $ . $ p, which begin with p 
(or SO if the maximum does not exist) is called 
the height or rank of the prime ideal p. For an 
ideal a, the minimum of the heights of prime 
ideals containing a is called the height of the 
ideal a. The maximum of heights of prime 
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ideals of R is called the Krull dimension (or 
altitude) of the ring R. For an ideal a of R, the 
Krull dimension of R/a is called the Krull 
dimension (or depth) of the ideal a. (The mean- 
ings of the terms rank, dimension, and depth 
now depend on the writings in which they 
are found; standardization of definition of 
these terms is becoming more and more of a 
necessity.) 

F. Primary Ideals 

For an ideal q of R, if q # R and every zero divi- 
sor of R/q is nilpotent, then q is called a pri- 
mary ideal. (If R is included in the set of prime 
ideals, then R is regarded as a primary ideal.) 
In this case, p = h is a prime ideal, and q is 
then said to belong to p or to be a p-primary 
ideal. The intersection of a tïnite number of pri- 
mary ideals belonging to the same prime ideal p 
is p-primary. Assume that an ideal a is ex- 
pressed as the intersection a = q, n . . n q, of a 
tïnite number of primary ideals q i, , qn. If  
this intersection is irredundant, that is, if none 
of the qi is superfluous in the expression of a, 
then the set of & (i = l,.. , n) is uniquely 
determined by a. The Jqi are called prime 
divisors (or associated prime ideals) of the ideal 
a; a minimal one among these is called a mini- 
mal (or isolated) prime divisor of the ideal a, 
and those which are not minimal are called 
embedded prime divisors of the ideal a. A max- 
imal one among the prime divisors of a is 
called a maximal prime divisor of the ideal a. 
(For detïnitions of these concepts in the case 
where a is an arbitrary ideal, see [4].) If, in the 
expression of a as above, n is the smallest 
occurring in similar expressions, then the 
expression is called the shortest representation 
of the ideal a by primary ideals. In this case, 
each qi is called a primary component of the 
ideal a; if fi is isolated, then qi is called an 
isolated primary component of the ideal a, and 
otherwise qi is called an embedded primary 
component of the ideal a. Isolated primary 
components are uniquely determined by a, but 
embedded primary components are not. 

G. Rings of Quotients 

Let R be a ring. Then the set U of elements of 
R which are not zero divisors is multiplica- 
tively closed. In the set R x U = {(r, u) 1 r E R, 
UE U}, we defïne a relation = by (Y, u) = 
(r’, u’)o ru’ = r’u. Then = is an equivalence 
relation, and the equivalence class of (r, u) is 
denoted by rju. In the set Q of these r/u, addi- 
tion and multiplication are detïned by r/u + 
r’ju’ = (ru’ + r’u)/uu’, (r/u)(r’/u’) = rr’/uu’. Then 
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Q becomes a ring, and r/l cari be identitïed 
with r. Thus Q is a ring containing R, gen- 
erated by R and inverses of elements of U. This 
property characterizes Q, which is called the 
ring of total quotients of the ring R. If  R is an 
integral domain, then Q is a tïeld, called the 
freld of quotients of the integral domain R. Let 
S be a multiplicatively closed subset of R such 
that O$S, and let n be {x~Rlxs=0(3s~S)} 
and <p be the natural homomorphism R+ R/n. 
Then none of the elements of C~(S) is a zero 
divisor. The subring of the ring of total quo- 
tients of R/n, generated by R/n and inverses of 
elements of p(S), is called the ring of quotients 
of the ring R with respect to S, and is denoted 
by R, (R[S-‘1 or RT’). When M is an R- 
module, M OR R, is called the module of quo- 
tients of the R-module M with respect to S. It 
is signifïcant that R, is tR-flat. There is a one- 
to-one correspondence between the set of pri- 
mary ideals q of R which do not meet S and 
the set of primary ideals B of R, such that q 
corresponds to B if and only if B = qR, (q = 
EJ n R). When p is a prime ideal of R, the com- 
plement R - p is multiplicatively closed, and 
R,-, is called the local ring of p or the ring of 
quotients of the ring R with respect to the prime 
ideal p, and is denoted by R, (- 284 Noe- 
therian Rings C, D). A ring of quotients is also 
called a ring of fractions. 

H. Divisibility 

In a ring R, if a = bc (a, b, CE R), then we say 
that b is a divisor (or factor) of a, and that a is 
a multiple of b, or a is divisible by b. We denote 
this by b 1 a. This relation between a, bE R is 
called divisihility relation in R. If, in this situ- 
ation, c has its inverse in R, we say that a is an 
associate of b. A factor b of a is called a proper 
factor if b is neither an associate of a nor tin- 
vertible. An element which has no proper fac- 
tor is called an irreducible element. A nonzero 
element which generates a prime ideal is called 
a prime element. 

I f  in an integral domain R every nonzero 
element is a product of prime elements (up to 
invertible factors), then we say that the unique 
factorization theorem holds in R, and that R is 
a unique factorization domain (or simply u.f.d.). 

Let A = {a,, , a,} be a set of nonzero ele- 
ments of a ring R. A common divisor of A is an 
element which is a factor of ai. A common 
multiple of A is detïned similarly. The greatest 
common divisor (C.C.D.) of A is a common 
divisor which is a multiple of any common 
divisor; the least common multiple (L.C.M.) of 
A is a common multiple m which is a factor of 
any common multiple. Thus, the G.C.D. and 
L.C.M. exist if R is a u.f.d. 
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1. Integral Dependence 

Let R be a subring of a ring R” sharing a unity 
element with R”. An element UER” is said to 
be integral (or integrally dependent) over R if 
there are a natural number n and elements ci 
of R such that un + c, unmi + . + c, = 0. If  every 
element of a subset S of R” is integral over R, 
we say that S is integral over R. (When R has 
no unity element, a similar definition is given 
under an additional condition that ci6 Ri. An 
important special case is where R is an ideal. 
See D. G. Northcott and D. Rees, Proc. Cam- 
bridge Philos. Soc., 50 (1954); M. Nagafa, Mem. 
Coll. Sci. Univ. Kyôto, 30 (1956).) The set R of 
elements of R” which are integral over R is a 
ring and is called the integral closure of R in 
R”. I f  i? = R, then R is said to be integrally 
closed in R”. I f  R is integrally closed in its ring 
of total quotients, we say that R is integrally 
closed. An integrally closed integral domain is 
called a normal ring. (In some literature, an 
integrally closed ring is called a normal ring.) 
An element a E R” is called almost integral over 
R if there is an element b of R such that b is 
not a zero divisor and u”bE R for every natural 
number n. If  an element a of the ring of total 
quotients of R is integral over R, then a is 
almost integral over R. R is said to be com- 
pletely integrally closed if its ring of total quo- 
tients contains no elements which are almost 
integral over R except the elements of R itself. 

J. Group Theorem 

Let Q be the ring of total quotients of a ring R. 
An R-submodule a of Q is called a fractional 
ideal of R if there is a non-zero-divisor c of R 
such that tac R. The product of fractional 
ideals is defïned similarly as in the case of 
products of ideals. The inverse a-i of the 
fractional ideal a is defmed to be {x E Q 1 xa 
c R}. I f  a contains an element which is not a 
zero divisor, then ami is also a fractional ideal. 
When R is completely integrally closed, we 
deiïne fractional ideals a and b to be equiva- 
lent if a-i =b-‘. This gives rise to an equiva- 
lente relation between fractional ideals. The 
set of equivalence classes of fractional ideals 
which contain non-zero-divisors forms a 
group. This result is called the group theorem. 

An integral domain R is called a Krull ring if 
(i) for every prime ideal p of height 1, the ring 
R, is a tdiscrete valuation ring; (ii) R is the 
intersection of a11 the valuation rings R, and 
(iii) every nonzero element a of R is contained 
in only a finite number of prime ideals of 
height 1. In a Krull ring R, for an arbitrary 

nonzero fractional ideal a, there is a uniquely 
determined product of powers of prime ideals 
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of height 1 which is equivalent to a in the sense 
stated above (- 439 Valuations). 

K. Dedekind Domains and Principal Ideal 
Domains 

A ring R is called a Dedekind domain if(i) R 
is a +Noetherian integral domain, (ii) R is a 
normal ring, and (iii) the Krull dimension of R 
is 1. For an integral domain R which is not a 
iïeld, R is a Dedekind domain if and only if the 
set of a11 nonzero fractional ideals is a group, 
if and only if every nonzero ideal of R is ex- 
pressed as the product of a finite number of 
prime ideals and such.expression is unique up 
to the order of prime factors. An important 
example of a Dedekind domain is the ring of 
a11 talgebraic integers, i.e., the +Principal order 
of an talgebraic number fïeld of tïnite degree. 
In general, if R is a Dedekind domain with 
tïeld of quotients K and L is a tïnite algebraic 
extension of K, then the integral closure of R 
in L and any ring R’ such that R c R’$ K are 
Dedekind domains. 

An ideal generated by an element is called 
a principal ideal; a fractional ideal generated 
by an element is called a principal fractional 
ideal (or simply principal ideal). In a Dedekind 
domain, the set P of nonzero principal frac- 
tional ideals is a subgroup of the group 1 of 
nonzero fractional ideals; I/P is called the ideal 
class group of R, and a member of it is called 
an ideal class. The +order of I/P is called the 
class numher of R (- 14 Algebraic Number 
Fields). There are many Dedekind domains 
whose class numbers are infinite. 

A ring R is called a principal ideal ring if 
every ideal is principal; furthermore, if R is an 
integral domain, then R is called a principal 
ideal domain. A principal ideal ring is the 
direct sum of a lïnite number of rings of which 
each direct summand is either a principal ideal 
domain or a tlocal ring whose maximal ideal is 
a principal nilpotent ideal. A principal ideal 
domain which is not a fïeld is a Dedekind 
domain and a u.f.d. We consider, for an arbi- 
trary natural number n and a principal ideal 
ring R, the set M(n, R) of all n x n matrices 
over R. Given an element A of M(n, R), there 
exist elements X, Y in M(n, R) such that (i) 
X-‘, Y-i are in M(n, R), and (ii) denoting by 
b, the (i,j)-entry of XAY, we have b, 1 R 3 b,, R 
3.. .= b,, R and bij = 0 if i #j. The nonzero 
members of the set {b, ,, b,,, , b,,,} are called 
the elementary divisors of the matrix A. Apply- 
ing this to a tïnite module M over the principal 
ideal ring R, we see that M is the direct sum of 
m,R,...,m,R(mi~M)suchthat,withai= 
{x~R~m,x=O},wehavea,ca,c...ca,(-2 
Abelian Groups B; 269 Matrices E). 
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L. Euclid Rings 

A ring R is called a Euclid ring if there is a 
map cp of R - (0) into a +well-ordered set W 
(the set of natural numbers is a special case) 
satisfying the condition that if a, b E R, a # 0, 
then there are r, q E R such that b = aq + r and 
either r=O or <p(r)< q(a). 

Every Euclid ring is a principal ideal ring. 
Besides the ring Z of rational integers, there 
are several famihar examples of Euclid rings, 
such as Z[fl], Z[fi], Z[w] (w3= 
1, w # l), and the polynomial ring of one 
variable over a field. 
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68 (XII.1 0) 
Compact and Nuclear 
Operators 

A. General Remarks 

Let X be a finite-dimensional linear space. 
Then a linear operator in X is surjective 
if and only if it is injective. If  X is infinite- 
dimensional, this is no longer the case in 
general. For an operator of the form 1 + K 
with an integral operator K of continuous 
kernel, 1. Fredholm [l] developed the the- 
ory of determinants and retrieved the above 
equivalence (- 217 Integral Equations). Later, 
F. Riesz [3] simplifïed the proof and showed 
that the equivalence holds if K is a compact 
operator in a Banach space. 1. Ts. Gokhberg 
and M. G. Kreïn [4] reformulated the result as 
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the stability of indices of operators. The con- 
cept of compact operators itself was introduced 
by D. Hilbert (who used the terminology, “com- 
pletely continuous operators”). The Hilbert- 
Schmidt class is also due to him. These classes 
of operators are employed in the spectral 
theory of integral operators [2]. The trace 
class of operators in Hilbert spaces is defïned 
as the class of operators for which the trace 
has meaning. A. Grothendieck [S] introduced 
nuclear operators, extending the definition of 
trace class operators to general Banach spaces. 
Nuclear operators and related classes of 
operators, such as integral operators and 
absolutely summing operators, play important 
roles in the theory of topological tensor prod- 
ucts [S], determinants [6], vector measures, 
and measures in linear spaces [7]. 

B. Compact Operators 

A tlinear operator T from a +Banach space X 
to a Banach space Y is said to be compact (or 
completely continuous) if T maps any tbounded 
set of X to a trelatively compact set of Y. In 
other words, T is compact if, for any bounded 
sequence {xn} in X, the sequence {TX,} in Y 
contains a tstrongly convergent subsequence. 
A compact operator is necessarily tbounded 
and hence continuous. A compact operator 
from X to Y maps any tweakly convergent 
sequence in X to a strongly convergent se- 
quence in Y. If  X is treflexive, the converse is 
also true. 

In this article the set of all bounded (resp. 
compact) linear operators from X to Y are 
denoted by B(X, Y) (resp. B(‘)(X, Y)). 

C. Examples of Compact Operators 

(1) Degenerate operators. An operator 
TE B(X, Y) is said to be degenerate or of 
tïnite rank if the trange R(T) of T is tïnite- 
dimensional. A degenerate operator is neces- 
sarily compact. The tidentity operator in X is 
compact (Y= X) if and only if X is fïnite- 
dimensional. (2) Untegral operators with con- 
tinuous kernel. Let E and F be bounded closed 
regions in the Euclidean spaces R” and R”, 
respectively, and let k = k(t, s), t E F, s E E, be a 
continuous function defined on F x E. Then 
the integral operator T with tkernel k, 

(TX)(~)= k(t,s)x(s)ds, 
s 

tEF, (1) 
E 

is a compact operator from the Banach space 
C(E) to C(F). (For the notation for various 
function spaces - 168 Function Spaces.) (3) 
Integral operators of Hilbert-Schmidt type. 
In example (2) let E and F be +Lebesgue mea- 
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surable sets, and let kcL.,(F x E). Then the 
integral operator T determines a compact 
operator from the +Hilbert space L,(E) to the 
Hilbert space L,(F). (4) Let R be a bounded 
open set in R”, s < t two real numbers, and 
H”(R) the Sobolev space of order s (- 168 
Function Spaces). Then the natural injection 
from H'(R) into H"(R) is compact (F. Rellich’s 
lemma). 

D. Properties of Compact Operators 

Any linear combination of compact opera- 
tors is again compact. I f  a sequence {T,} of 
compact operators converges in the norm 
(i.e., in the tuniform operator topology), then 
the limit T is compact. Thus B(‘)(X, Y) is a 
closed subspace of the Banach space B(X, Y) 
with the toperator norm. Any product of 
a compact operator and a bounded opera- 
tor is compact. Namely, A E B(“(X, Y), BE 
B(Y, Z), and CEB(Z,X) imply BAeB(')(X,Z) 
and AC E B”‘(Z, Y). In particular, B(‘)(X) = 
B”‘(X, X) forms a closed ttwo-sided ideal 
of B(X) =.B(X, X). An operator TE B(X, Y) 
is compact if and only if its tdual operator 
T’EB( Y’, X’) is compact. The range of a com- 
pact operator is always tseparable. Let X and 
Y be Hilbert spaces. Then for any TEB@)(X, Y) 
there exist torthonormal sets { cp,} in X and 
{$“} in Y and a sequence {c,} of nonnegative 
numbers with lim c, = 0 such that 

Consequently, any compact operator between 
Hilbert spaces X, Y cari be approximated by 
a sequence of degenerate operators in the 
operator norm. However, there are Banach 
spaces X and Y for which the statement is no 
longer true. In fact, a Banach space X (resp. 
the dual Y’ of a Banach space Y) has the +ap- 
proximation property (- 37 Banach Spaces L) 
if and only if every TE B(‘)( Y, X) is the limit in 
norm of a sequence of degenerate operators 
for any Banach space Y (resp. X). 

E. The Riesz-Schauder Theorem 

Let TEB@)(X) and consider a pair of linear 
equations 

u-Tu=f, fEX, (4 

<P-T’<p=CL géX’, (3) 

where T’ E B(X’) is the dual operator of T in 
thetdualspaceX’ofX.PutA={uEXIu= 
Tu} and A’ = { cp E X’ 1 cp = T'cp}. Then one 
and only one of the following two cases (i) and 
(ii) occurs. (i) 1= {0}, J& = (0); for any ~EX 
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equation (2) has a unique solution; and for any 
gEX’ equation (3) has a unique solution. (ii) 
dim&=dim&=m, 1 <m<co; (2) has a 
solution if and only if f  is orthogonal to A’ 
(i.e., <p(f) = 0 for any <p E &‘); and (3) has a 
solution if and only if g is orthogonal to Jz’ 
(i.e., g(u) = 0 for any u E A), This is called the 
Riesz-Schauder theorem. In particular, when T 
is an integral operator in a suitable function 
space, this theorem is also called Fredholm’s 
alternative theorem for integral equation (2). 

F. Fredholm Operators and Their Indices 

Let T be a +closed linear operator from a Ba- 
nach space X to a Banach space Y. T is called 
a Fredholm operator or an operator with index 
if both Ker T (= nul1 space N(T)) and Coker T 
(= Y/R( T)) are fïnite-dimensional. Then the 
integer ind T= dim Ker T- dim Coker T is 
called the index of T. I f  a closed linear opera- 
tor T has Coker T of fïnite dimension, then 
the range R(T) is closed. Moreover, if R(T) is 
closed and the domain D(T) is dense, then 
dim Coker T= dim Ker T', where T' is the dual 
of T, and hence ind T = dim Ker T- dim Ker T'. 
A linear operator K from X to Y is said to be 
T-compact if the domain D(K) contains D(T) 
and if K from D(T) with the tgraph norm into 
Y is compact, i.e., for any bounded sequence 
{x,,} in D(T) with sup 11 Tx,ll < m, the se- 
quence { Kx,} contains a strongly convergent 
subsequence. 

The following are basic properties of Fred- 
holm operators [4,11]: (1) If  T is Fredholm 
and K is T-compact, then T-t K is Fredholm 
and ind( T+ K) = ind T. (2) If  T is Fredholm 
and another linear operator S is sufflciently 
close to T in (graph) norm, then S is also Fred- 
holm and ind S = ind T. (3) If  T is a Fredholm 
operator from X into Y and S is a Fredholm 
operator with dense domain in Y into Z, then 
ST is Fredholm and ind ST= ind S + ind T. I f  
D(T) is dense, then D(ST) is also dense. (4) 
Let T be a closed linear operator with dense 
domain; then T is Fredholm if and only if the 
dual T' is Fredholm, and then ind T'= -ind T. 

Fredholm operators and their indices were 
fïrst studied by Russian mathematicians in 
connection with boundary value problems of 
differential equations and singular integral 
equations. M. F. Atiyah and 1. M. Singer have 
proved that an telliptic linear differential 
operator P of order m on a compact differenti- 
able manifold M is a Fredholm operator from 
the Sobolev space H"(M) into Hsm"(M) for 
any s and that its index is computed from the 
+symbol of P and the tcharacteristic classes of 
M (- 237 K-Theory). Similarly, the indices 
of linear ordinary differential operators (and 
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more generally of maximally overdetermined 
systems of linear partial differential operators) 
are computed in various spaces of functions 
and generalized functions (H. Komatsu, B. 
Malgrange, J.-P. Ramis, M. Kashiwara). 

G. Spectra of Compact Operators 

The following structure of the tspectrum of 
compact operators TE B”‘(X) is derived from 
the Riesz-Schauder theorem. The spectrum 
u(T) of T consists of at most countably many 
points and has no accumulation points except 
possibly for 0. Any nonzero point of a(T) 
is an teigenvalue of T. When X is inlïnite- 
dimensional, 0 always belongs to a(T) but is 
not necessarily an eigenvalue of T. Each non- 
zero eigenvalue of T has tïnite (algebraic) 
tmultiplicity, and hence the teigenspace AA(T) 
= {u 1 Tu = Ây}, Â. # 0, is Imite-dimensional. I f  3, 
is an eigenvalue of T, then x is an eigenvalue 
of the tadjoint operator T* of T with the same 
(either algebraic or geometric) multiplicity as 
that of Â. 

H. Spectral Representations of Compact 
Normal Operators 

Let T be a compact tnormal operator in a 
Hilbert space H. Then we cari tïnd a tcomplete 
orthonormal set consisting solely of eigen- 
vectors of T. Namely, for each nonzero eigen- 
value Aj of T, take an orthonormal basis {q;)} 
of the eigenspace associated with Âj. Rearrange 
a11 the q$’ into a sequence {cp,} and add to it, 
if 0 is an eigenvalue, a complete orthonormal 
set of the eigenspace associated with 0. Then 
we obtain a desired complete orthonormal 
set of H. Let pn be the eigenvalue associated 
with qn. Then the sequence { pL,} is precisely 
an enumeration of nonzero eigenvalues of T 

with repetitions according to multiplicity. 
In terms of { cp,} and { p,}, a +Spectral repre- 
sentation of T is given as 

The eigenvalue problem of a compact non- 
negative +Self-adjoint operator T cari be solved 
by means of the following Rayleigh prin- 
ciple. Consider Rayleigh’s quotient R(x) = 
(Tx,x)/lix~~‘, x#O. The largest eigenvalue pi 
is obtained as pi =max,,,R(x) and any vector 
x1 which attains this maximum is an eigen- 
vector. When the largest n - 1 eigenvalues 
pi, . . . , pLnml and eigenvectors x,, . ,x.-, are 
determined, the nth eigenvalue CL,, is the maxi- 
mum of R(x) on the subspace orthogonal to 
X i, ,x,-i and any vector which attains the 
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maximum is an eigenvector. A more direct 
characterization of pL,, involving no previous 
eigenvectors, is given by 

P”= min 
f, I..., fn-,EX 

( 

(yo W) 
x. f  ,<..‘, f,-,#O j=l,.!...-1 1 

This formula is referred to as the minimax 
principle. 

1. Classification of Compact Operators in 
Hilhert Spaces 

Let H and K be Hilbert spaces. Then a TE 

B(H, K) is compact if and only if (Te,,,f,)-0 

for any orthonormal sequences e, in H and 
f, in K. J. von Neumann and R. Schatten 
(Ann. Math., 49 (1948)) classilïed operators 
TEB@)(H, K) in the following way. The opera- 
tor A =(T* T)“’ is a compact nonnegative 
self-adjoint operator. Let til > CQ > be the 
enumeration in decreasing order of the posi- 
tive eigenvalues of A, with each repeated ac- 
cording to its multiplicity. The c(, = c(,( T) are 
sometimes called the characteristic numhers of 
T. For any p > 0 the set of a11 TE B@)(H) such 
that 

IITllP= 
( > 

f cc; l”< +CC 
n=1 

is denoted by B,(H) (or simply BP). Among 
these classes, B, and B, are most important. 
B, is called the trace class and B, the Hilbert- 
Schmidt class. Correspondingly, 11 T 11 i and 
// T // 2 are called the trace norm and Hilbert- 
Schmidt norm of T, respectively. B, is also 
called the nuclear class and any operator 
TEB, a +nuclear operator. The norm 11 TllP cari 
also be delïned more directly as follows. (i) I f  1 

<P<C~, /l~ll,=~~~II~~~~,f,~ll~,;~~~~~fO~p~2, 
II~ll,=~~f//~ll~~,lI~ll,p; (4 IfZ<pc ~0, lITIl,= 
sup II(I1 Te,ll)llip, where e, and f, range over 
the orthonormal sequences in H and K, and e, 
over the orthonormal bases in H. The class B, 
is a two-sided * ideal in the Banach algebra B. 
Moreover precisely, TE B, and R E B imply 

lIRTII,G IIRII lITIl,, IIWIpG IIRll IITllp ad 
llT*ll,= IITll,,. When 1 <P<C~, the class B, 
becomes a Banach space with the norm II T IIP. 

It is always a tquasi-Banach space, in which 
the set of a11 degenerate operators is dense. 

The norm II T Ilp (T#O) is a decreasing func- 
tion of p. Hence B, c B, if p < q. Also, TE B, 
and SEB, imply TSEB,, where l/r= l/p+ l/q. 
Let TeB,, and let { pj} be an enumeration of 
eigenvalues of T with repetitions according to 
(either geometric or algebraic) tmultiplicity. 
Then 

CIPjl’G IlTllp~ 
j 
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Hilbert-Schmidt class. For an arbitrary 
complete orthonormal set {uk}, we have 

Thus B, cari be delïned as the set of all TE B 
such that the sum on the right-hand side is 
lïnite for a certain complete orthonormal set 
jr+}. A linear operator T:&(E)-+&(F) is of 
Hilbert-Schmidt class if and only if it is an 
integral operator of Hilbert-Schmidt type 
(example (3) in Section C). The space B, with 
the norm 11 TII 2 becomes a Hilbert space with 
the inner product delïned by 

where {uk} is as above. 
Trace class. For an operator TE B, , the 

trace tr( T) of T is delïned as 

tr(T) = C Wh, ud 

Here the right-hand side converges absolutely 
and does not depend on the complete ortho- 
normal set {uk}. The trace is a bounded linear 
functional on the Banach space B, The prod- 
uct of two operators of Hilbert-Schmidt type 
belongs to the trace class, and the converse is 
also true. If  1 < p, q < CO satisfy l/p + l/q = 1, 
then the inner product (T, S) of TEB,(H, K) 
and SsB,(K, H) is defined by (T, S) = tr(ST). 
Under this inner product the dual of the 
Banach space B,(H, K) is identified with 
B,(K, H). Similarly, the dual of BcC)(H, K) 
is isomorphic to B,(K, H), and the dual of 
B, (K, H) to B(H, K) (J. Dixmier, Schatten). 

J. Volterra Operators 

A compact operator T in a Hilbert space is 
said to be a Volterra operator if it is tquasi- 
nilpotent, i.e., its tspectral radius is 0. The 
integral operator 

s 

b 
(TX)(~)= k(t,s)x(s)ds, X~J!&, 4 

f  

appearing in the integral equation of Volterra 
type is a Volterra operator. Conversely, a 
Volterra operator satisfying a suitable con- 
dition is unitarily equivalent to such an inte- 
gral operator (M. S. Livshits, Gokhberg and 
Kreïn [ 131). A Volterra operator admits an 
abstract triangular representation in a manner 
similar to Jordan’s canonical form (- 390 
Spectral Analysis of Operators H). 

K. Nuclear Operators 

Extending the definition of trace class to 
operators in Banach spaces, A. Grothendieck 
[.5] delïned a nuclear operator (or Fredholm 
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operator according to [6]) from a Banach 
space X into a Banach space Y to be a linear 
operator T: X + Y that is represented as TX = 
C3,(x,uj)bj with a sequence ijaO in I,, a 
bounded sequence aj in X’, and a bounded 
sequence bj in Y. In other words, a linear 
operator T: X + Y is nuclear if and only if it is 
decomposed as the product 

XAtlEll,BtY, (4) 

where A and i? are bounded linear operators 
and A is multiplication by ni in I,. The in- 
fimum of IIAll ~~~j~~~, IlkIl is called the nuclear 
norm of T and is denoted by 11 T 11 i. When 
X and Y are Hilbert spaces, this coincides 
with the trace norm. The integral opera- 
tor T’delïned by (1) is nuclear with // Tll 1 = 
Jsup,]k(t,s)lds. The totality B,(X, Y) of nuclear 
operators T: X-+ Y forms a Banach space 
under the nuclear norm. If T is nuclear and 
A is bounded, then II TAIl 1 < jl T 11 1 // AIl and 
11 AT II i < // AIl I/ T // , I f  T is nuclear, then the 
dual T’ is nuclear, and 11 T’II 1 d 11 T 11 1. Suppose 
that X and Y are Banach spaces satisfying one 
of the following conditions: (i) Y is the dual of 
a Banach space; (ii) X’ has the approximation 
property; (iii) Y” has the approximation prop- 
erty. Then conversely a TE B(X, Y) is nuclear 
if the dual T’ is nuclear, and 11 TII 1 = 11 T’ll 1. 
However, this is not necessarily the case in 
general (T. Figiel and W. B. Johnson). 

Replacing 1, by l,, we obtain the definition 
of operators T:X+ Y of summable pth power. 
Grothendieck [S] considered the case 0 < p < 1 
and showed that if T’, , T, are of summable 
p,, . ,p,,th power, then the product T, . . . T, is 
of summable rth power, where r is given by 
l/r=(Z l/p,)-(n+ 1)/2. 

L. Traces and Determinants of Operators 

Let T be a linear operator of tfinite rank in a 
linear space X. There are a lïnite number of 
elements ai E X’ and b, E X such that 

TX= c (x,q)b,. 
i=l 

(5) 

Then tr( T) = C (b,, ai) and det( 1 - T) = 
det(6i,j- (bi,uj)) are independent of the repre- 
sentation (5). Let X be a Banach space. If  
TEB,(X) is represented as TX = C Lj(x, uj)bj, 
then it seems reasonable that the trace tr(T) 
be delïned by C ij(bj, a,), but the sum may 
depend on the representation. It is known that 
a Banach space X has the approximation 
property if and only if the sum does not de- 
pend on the representation for any nuclear 
operator T. However, if T is of summable 
(2/3)rd power, the trace tr( T) is always de- 
fmed uniquely. I f  X or T satislïes the afore- 
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mentioned condition, then the determinant 
det( 1 - T) is also defïned uniquely as the limit 
of det( 1 - T,), where T. is the nth partial sum. 
det(1 -zT) is an entire function of z and its 
zeros are exactly the reciprocals of the nonzero 
eigenvalues of T. If  det( 1 - zT) #O, then the 
resolvent (1 -z T) m1 is given by Fredholm’s 
formula extending +Cramer’s rule. Eigen- 
vectors are also computed explicitly [6]. 

Let H be a Hilbert space, and let TEB~(H). 
Then det( 1 -zT) = n( 1 - zs), where Aj are the 
nonzero eigenvalues of T, and is an entire 
function of genus 0. Moreover, let p > 2 be an 
integer. Then the modified determinant 

is defined for TEB,(H) and is an entire func- 
tion of genus p - 1. This type of determinant 
was introduced by T. Carleman (Math. Z., 9 
(1921)) for the Hilbert-Schmidt class of oper- 
ators (- also Hilbert [2]). It is utilized to 
prove the completeness of the troot vectors of 
T and many other facts [9,12,13]. 

M. Weakly Compact Operators 

A linear operator from a Banach space X to 
a Banach space Y is said to be weakly com- 
pact if T maps any bounded set of X to a rela- 
tively weakly compact set. Weakly compact 
operators are bounded. They have proper- 
ties similar to those of compact operators. 
The following are equivalent conditions for a 
bounded linear operator T: X-r Y. (1) T is 
weakly compact; (2) T’: Y’+X’ is weakly 
compact; (3) T”: X”- Y” maps X” into Y; 
(4) There is a reflexive Banach space Z and 
bounded linear operators S:X+Z and R: 
Z+ Y such that T= RS. The last characteri- 
zation is due to W. J. Davis, Figiel, Johnson, 
and A. Pelczyhski. Any linear combination of 
weakly compact operators is weakly compact. 
The uniform limit of a sequence of weakly 
compact operators is weakly compact. The 
product of a weakly compact operator and a 
bounded operator is weakly compact. 

Dunford-Pettis theorem ([9]; R. S. Phillips, 
Trans. Amer. Math. Soc., 48 (1940)). Let (0, ,u) 
be a o-fïnite measure space and X a Banach 
space. If  T:Ll(C+X is a weakly compact 
linear operator, then there exists a bounded 
strongly measurable function 9 on R with 
values in X such that 

Then T maps weakly convergent sequences in 
L,(Q) into strongly convergent sequences in X. 
In particular, the product of two weakly com- 

pact linear operators in L1(Q) is compact. 
Similarly, Grothendieck and R. G. Bartle, N. 
Dunford, and J. Schwartz (- [9]) have proved 
the following: Let Q be a compact Hausdorff 
space and X a Banach space. If  T: C(Q)-,X is 
a weakly compact linear mapping, then there 
is a tvector measure p detïned on the +Bore1 
sets in Q with values in X such that (pc, x’) is a 
+Radon measure for any X’E X’ and 

?“= f(t)44 s 
T maps weakly convergent sequences in C(Q) 
into strongly convergent sequences in X. The 
product of two weakly compact linear opera- 
tors in C(0) is also compact. 

N. Ahsolutely Summing Operators 

A linear operator T from a Banach space X to 
a Banach space Y is called an integral operator 
if there is a positive +Radon measure p on the 
product A x B of the unit bal1 A in X’ and 
the unit bal1 B in Y” both equipped with the 
weak* topology such that 

(TX, Y’> = s (x, x’> (Y’, Y"> 44x', Y"), 
or equivalently if T: X + Y” is decomposed 
as (4) with 1, and I, replaced by L,(M) and 
L,(M) for a suitable compact space M with a 
Radon measure. Nuclear operators are clearly 
integral. Integral operators are weakly com- 
pact, but they are not necessarily compact or 
nuclear. However, the product of an integral 
operator and a weakly compact operator is 
nuclear, and hence every integral operator in 
a reflexive Banach space is nuclear. 

I f  a compact (resp. weakly compact) opera- 
tor T from a Banach space X to a Banach 
space Y maps a closed linear subspace X, of 
X into a closed linear subspace Y, of Y, then 
the restriction Tl :X1 + Y, and the induced 
operator T’ :X/X, + Y/Y, are also compact 
(resp. weakly compact). The corresponding 
result does not hold for nuclear operators and 
integral operators. The following conditions 
are equivalent for a bounded linear operator 
T: X + Y: (i) There is a Banach space P 3 Y 
such that T: X-i p is integral; (ii) there is a 
positive Radon measure p on the unit bal1 
A of X’ such that 

II Txll < 
s 

I (x,x’> I &L(x’); 

(iii) there is a constant C such that 

~II~~~ll~~~~P{~I~~~~~‘~lIII~‘ll~~} 

holds for any finite set {x1, ,x,} in X; (iv) if 
C xi is an tunconditionally convergent series 
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in X, then C 11 Tx,ll converges. Grothendieck 
called such an operator a right semi-integral in 
view of property (i), and A. Pietsch called it 
ahsolutely summing in view of (iv). Similarly, 
a bounded linear operator T: X+ Y is called a 
left semi-integral if there is a Banach space 2 
such that X = x/z, for a closed subspace z,, 
and the product T: 8 + Y is integral. The 
product of two right (resp. left) semi-integral 
operators is nuclear. A bounded linear opera- 
tor in a Hilbert space is right (or left) semi- 
integral if and only if it is of Hilbert-Schmidt 
class. A bounded linear operator T from a 
Banach space X into a Banach space Y is 
integral if and only if the dual T’ is integral. 
It is a right (resp. left) semi-integral if and only 
if T’ is a left (resp. right) semi-integral. 

For other related classes of operators - 
Grothendieck’s paper in Boletin Soc. Mat. Sûo 
Paulo, 8 (1953). 
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69 (IV.8) 
Compact Groups 

A. Compact Groups 

A +topological group G is called a compact 
group if the underlying topological space of G 
is a +Compact Hausdorff space. The +torus 
group T”= R”/Z” (n= 1,2,. ..) (commutative 
group), the torthogonal group G(n), the +Uni- 
tary group U(n), the tsymplectic group Sp(n), 
and the additive group Z, of +p-adic integers 
are compact groups (- 60 Classical Groups; 
for other compact Lie groups - 249 Lie 
Groups, 248 Lie Algebras). Let C(G) be the 
+linear space formed by all the complex-valued 
continuous functionsf, y, h, defined on a 
compact group G; C(G) is a +Banach space 
with the norm 

Il.fIl =s~PIf(x)l. 
xtc 

Since a compact group G is tlocally com- 
pact, there exists a right-invariant +Haar mea- 
sure on G. Because of the compactness of G, 
the total measure of G is finite, and the mea- 
sure is also left-invariant. By the condition 
that the total measure is 1, such a measure is 
uniquely determined. The integral of . f  in C(G) 
relative to this measure is called the mean 
value off: Since for A gE C(G), f(xy-‘)g( y) is 
continuous in two variables x, y, the +convo- 
lution f  x g(x) = lf(xy-‘)g( y)dy also belongs 
to C(G). C(G) constitutes a ring under the 
multiplication defined by the convolution. 
This ring cari be considered as an extension of 
the notion of a +group ring for lïnite groups; it 
is called the group ring of the compact group 
G. The function X+~(X~‘) Will be denoted by 
,f*, and the inner product in the tfunction 
space L,(G) Will be written as (1; 9). 

B. Representations of Compact Groups 

Let G(E) be the group of units of tbounded 
linear operators on a Banach space E, and 
suppose that we have a homomorphism ci of a 
topological group G into G(E). The homomor- 
phism U is called a strongly (weakly) contin- 
uous representation on E of G if, for any a E E, 
the map x+ I/(X)~ of G into E is continuous 
with respect to the tstrong (tweak) topology on 
E. When E is a +Hilbert space, a strongly con- 
tinuous representation U such that every 
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U(a) is a unitary operator is called a +Uni- 
tary representation. Let U be any strongly 
continuous representation of a compact 
group G on a Hilbert space E; for a, b in E, let 
(a, h) be the mean value of the +inner product 
(U(x)a, U(x)b) on E. Then ZJ is a unitary repre- 
sentation on the Hilbert space E with the new 
inner product (a, h). 

A representation U of G on a Banach space 
E is said to be irreducible if E contains no 
closed subspace other than (0) and E, which is 
invariant under every U(x) (x E G). If  a weakly 
continuous representation of a compact group 
on a Banach space E is irreducible, then E is 
finite-dimensional. Moreover, any unitary 
representation U of a compact group on a 
Hilbert space E cari be decomposed into a 
discrete +direct sum of irreducible representa- 
tions. Namely, there exists a family {EOIJJLEA of 
irreducible (hence tïnite-dimensional) invariant 
subspaces E, of E which are orthogonal to 
each other such that E = CaeA E,. In particular, 
any continuous representation of a compact 
group on a finite-dimensional space is +com- 
pletely reducible. In L,(G) with respect to the 
+Haar measure on a +locally compact group G, 
the representation U deiïned by (U(x)f)( y) = 

f(yx) (x, y~G,fe&(G)) is a unitary repre- 
sentation of G. This representation U is called 
the (right) regular representation of G. Decom- 
position of the regular representation of a 
compact group G into irreducible represen- 
tations is given by the Peter-Weyl tbeory, 
described later. 

In the rest of this article, the representations 
under consideration Will be (continuous) repre- 
sentations by matrices of finite degree. Let 
oi(x)=(d$‘(x)) and D2(x)=(@(x)) be irredu- 
cible unitary representations which are not 
mutually tequivalent. Then from Schur’s 
lemma follow the orthogonality relations 

(dij),dE)) =0 and (&dij), &d~~)=6i,,,6j, 
(where n, is the degree of the representation 
Or). From each +class D, of irreducible repre- 
sentations of G, choose a unitary representa- 
tive D,(x) = (rlTj(x)), and let n, denote its de- 
gree. Then from the orthogonality relations it 
follows that the &dTj(x) form an tortho- 
normal system of L,(G). 

Let NEC and consider the map H:f+ 

h x fof C(G) to C(G). Then H is a +Compact 
operator in C(G). Since C(G) is contained in 
&(G), we cari defïne the inner product in C(G). 

BY (h x .J ~7) = f  .A h* x d, h = h* implies (Hf d 
= (h Hg); that is, H is a +Hermitian operator. 
For a given f  in C(G), there exists h( = h*) in 
C(G) such that h x fis uniformly arbitrarily 
near f:  From the theory of compact Hermitian 
operators, Hf cari be uniformly approximated 
by linear combinations of the teigenfunctions 
of H. Since the teigenspace of H is finite- 
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dimensional and invariant under U(a), the 
eigenfunctions of H are linear combinations of 
a finite number of Jnbld,(x). Hence any func- 
tion f  in C(G) cari be uniformly approximated 
by linear combinations of a finite number of 

Ji ij( 1. n d” x This fact, like the similar result in 
+Fourier series, is called the approximation 
theorem. From this, it follows that the or- 
thogonal system {fide,( is tcomplete; i.e., 
if an element of C(G) is orthogonal to each 
element in this system, then it is 0. 

Since C(G) is dense in L,(G), {&dTj(x)} is 
a tcomplete orthonormal system of the Hil- 
bert space L,(G). Hence for any ,~EL,(G), its 
“Fourier series” C,Cijc;,&dTi(x) (where cij 
=(A fia d&)) converges to ,f  in the mean of 
order 2 (i.e., with respect to the tmetric of 
L,(G)). In particular, if G is a compact +Lie 
group and fis suffciently many times dif- 
ferentiable, then this series converges uni- 
formly to f:  

The space y;” of dimension n, spanned by 
the elements d:(x) (1 <j<n,) in the ith row of 
the matrix D,(x) is invariant under the right 
regular representation U. The representation 
on F” given by U cari only be 0,. Then the 

fact that {&dfj(x)} is an orthonormal system 
of LX(G) means that the regular representation 
U of a compact group G is decomposable into 
a discrete direct sum of finite-dimensional 
irreducible representations. Each irreducible 
representation 0, is contained in U with multi- 
plicity equal to its degree n,. 

I f  a function <p(x) in C(G) satisfïes <p( y-‘xy) 
= q(x) for any x, y, then it is called a class 
function. The set K(G) of a11 the continuous 
class functions coincides with the tcenter of the 
group ring C(G). The tcharacter of an irredu- 
cible representation of G is a class function, 
and the set {x,(x)} of a11 characters plays 
the same role as the orthogonal system 
{&dTj(x)} in C(G). Namely, {x.(x)} is a 
complete orthonormal system in (the +com- 
pletion of) K(G), and any class function cari be 
uniformly approximated by linear combi- 
nations of a finite number of these characters. 

The preceding paragraphs give a brief de- 
scription of the Peter-Weyl theory. If  G is the 
1 -dimensional +torus group T’ = R/Z, namely, 
the compact group of real numbers mod 1, 
then this is actually the theory of Fourier 
series concerning periodic functions on the 
line. (For concrete irreducible representations 
of O(n), U(n), SP(~), and formulas for charac- 
ters - 60 Classical Croups. For represen- 
tations of compact Lie groups - 249 Lie 
Groups, 248 Lie Algebras.) The theory of 
compact groups was completed by F. Peter 
and H. Weyl (Math. Ann., 97 (1927)), and J. 
von Neumann’s theory concerning almost 
periodic functions in a group (1934) united the 
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theory of compact groups with H. Bohr’s 
theory of almost periodic functions (- 18 
Almost Periodic Functions). 

C. Structure of Compact Groups 

Let a be an element of a compact group G 
different from e. Since the underlying space of 
a topological group is a tcompletely regular 
space, there exists a function in C(G) such that 
f(a)#f(e). Hence there exists a representation 
D(x) of G such that D(a) is not equal to the 
unit matrix. This means that any compact 
group G cari be expressed as a tprojective limit 
group of compact Lie groups. Beginning with 
this fact, von Neumann (1933) showed that a 
tlocally Euclidean compact group is a Lie 
group (- 423 Topological Croups N). 

D. Set of Representations 

The set G’= {D} of representations of G by 
matrices admits the following operations: (i) 
D, 0 D, (ttensor product representation); (ii) 

D, @D,= DI 0 

( > 
o D (tdirect sum representa- 

2 
tion); (iii) P-‘DP (equivalent representation); 
and (iv) D (complex conjugate representation). 
Let M be a subset of G’ such that DEM when- 
ever DEM and the irreducible components 
of D, @ D, are in M whenever D,, D, E M. 
Then M is called a module of representations 
of G. There is a one-to-one correspondence 
between closed normal subgroups H of G and 
modules M formed by a11 the representations 
of C/H. 

A representation of G’ is a correspondence 
which assigns to each D a matrix A(D) of the 
same degree as that of D and preserves the 
operations of G’: A(D, 0 D2)=A(D1) 0 A(D,), 
A(D, @D,)=A(D,)@A(D,), A(P-‘DP)= 
P-‘A(D)P, and A(D)= A(D). Let G” be the 
set of a11 the representations of G’. Detïne 
the product of A,, A,cG” by A,A,(D)= 
A,(D)&(D) and a topology on G” by the 
tweak topology of the functions A(D) of D. 
Namely, a typical neighborhood of A, is of the 
form U(A,;D,,..., D~;EJ={A~ llA(Di)-A,(Di)ll 
CE, i = 1, , s}. G” is a topological group 
under this multiplication and topology. Then 
the Tannaka duality theorem states that G” z 
G holds (T. Tannaka, Tôhoku Math. J., 45 
(1939)). Let R(G) be the talgebra over the 
complex number fïeld C formed by the set of 
a11 the linear combinations of a finite number 
of dTj(x), and let Aut R(G) be the automor- 
phism group of this algebra R(G). Let G* 
be the set of all the elements o in Aut R(G) 

which commute with every left translation 
L(x) ((L(x)f)(y)=f(xy)) and which satisfy 
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o(f ) = a(f). Then G* is a topological group 
with respect to the weak topology, and the 
Tannaka duality theorem implies that the 
correspondence which assigns to each x E G 
the right translation R(x) (the restriction of 
U(x) to R(G)) is an isomorphism of G onto 
G* as topological groups. For the case where 
G is a compact Lie group, C. Chevalley re- 
stated the Tannaka duality theorem as one 
giving a relation between compact Lie groups 
and complex algebraic groups (- 249 Lie 
Groups U). 

References 

See references to 18 Almost Periodic Func- 
tions and 423 Topological Groups. 

For compact Lie groups - references to 249 
Lie Groups. 

70 (1X.5) 
Complexes 

A. General Remarks 

The notion of complexes was introduced by H. 
Poincaré to study the topology of tmanifolds 
by combinatorial methods (- 65 Combina- 
torial Manifolds). Various kinds of complexes 
have been introduced in the course of the 
development of topology. These Will be dealt 
with individually in the sections that follow. 

B. Euclidean Simplicial Complexes 

Let RN be the N-dimensional +Euclidean 
space, and let a,, a,, . . , a, be points of RN 
with coordinates ai = (uj’), ai”), . , ui”)) for i = 0, 
1 , . . . , m. For real numbers A,,, Âr, . , Â,, we 
denote by A,u,+Â,a, + . ..+&.a, the,point 
(Cc0 Âia;“, CL0 QI~~‘, > Cc0 AiujN’) of RN. 

Asetofn+lpointsu,,u,,...,u,ofRNis 
said to be independent or in general position if 

-- vectors a,~,, u0u2, , a,a, are linearly inde- 
pendent. For given independent points a,, 
a,, . . . ,a,, let la,u, a,1 denote the subset of 
RN given by 

(a,u,...u,I={l,u,+A,a,+... 

lu,u, . . . a,[ is called an n-simplex with vertices 
a,, a,, . , a,. Simplexes are denoted by A, A’, 
o, r, etc. For example, a O-simplex JueI is a 
point a,, a l-simplex lueu, 1 is a segment m, 
and a 2-simplex lu,u,u,l is a triangle Au,u,u,. 
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We attach to i,a,+l,a, + . ..+&a. the co- 
ordinates (1,. Âi, , A,), called the barycentric 
coordinates. If  [a,~, . a, 1 is an n-simplex, 
every subset {ai,, ail, , a,,} of {a,, a,, . . , a,} 
is independent. A q-simplex 1 aioui, . uiVI is 
called a q-face of 1 u,u i . a, 1. 

A set H of simplexes in a Euclidean space RN 
is called a Euclidean (simplicial) complex in RN 
if R satistïes the following three conditions: (i) 
Every face of a simplex belonging to si is also 
an element of H. (ii) The intersection of two 
simplexes belonging to R is either empty or a 
face of each of them. (iii) Each point of a sim- 
plex belonging to si has a neighborhood in RN 
that intersects only a finite number of sim- 
plexes belonging to R. A Euclidean complex is 
also called a geometric complex (or rectilinear 
complex). Each O-simplex in R is called a ver- 
tex in H. We define the dimension of H to be 
n if R contains an n-simplex but no (n + l)- 
simplex, and cc if A contains n-simplexes for 
a11 n>O. 

By a subcomplex of a Euclidean complex 53 
we mean a Euclidean complex that is a subset 
of H. For a Euclidean complex 53, its r-section 
(or r-skeleton) is detïned to be the subcomplex 
of H consisting of a11 n-simplexes (n < r) in A. 

If  52 is a Euclidean complex in RN, we de- 
note by I-iii the set of points in RN belonging to 
simplexes in 52. This set Isil is called the Eucli- 
dean polyhedron of R. 

By subdivision H’ of a Euclidean complex H 
we mean a Euclidean complex such that IH’I 
= IRI and each simplex in R’ is contained in a 
simplex in H. 

Specifïcally, we cari construct a subdivision 
si’ of R utilizing tbarycenters of simplexes in R; 
namely, we let si’ be the set of a11 r-simplexes 
whose vertices consist of barycenters of the 
series A, c A1 c . c A, of simplexes in R. Then 
R’ is a subdivision of H, called the barycentric 
subdivision of R and denoted by Sd si. 

Given a Euclidean complex si and a subset 
A of [HI, we define the star of A in 53 to be the 
subcomplex of 53 that consists of simplexes {A} 
and their faces such that A n A # 0. Further- 
more, we dehne the open star of A in R as 
the union of topen simplexes (the interiors of 
simplexes) of R whose closures intersect A. We 
denote by St,(A) the star of A in H and by 
O,,(A) the open star of A in R; then O,,(A) is an 
open set whose closure is ISt,(A)I. 

The notion of Euclidean simplicial com- 
plexes cari be generalized to that of Euclidean 
cell complexes; this is done by replacing the 
term simplex by tconuex cell in the definition of 
Euclidean simplicial complex. For a Euclidean 
ce11 complex R, the notions of vertex, dimen- 
sion, subcomplex, r-section, and subdivision 
are defined similarly as in the case of Eucli- 
dean simphcial complexes. 
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C. Simplicial Complexes 

Given a Euclidean simplicial complex R, let K 
denote the set of a11 the vertices in R, and let 
C denote the set consisting of those subsets 
{u,,, . , 0,) of K for which there exist simplexes 
A in R such that {ua, . , vr} coincide with the 
set of vertices of A. Then we have (1) if s E Z 
and s 3 s’, SI # 0, then s’ E C; (2) every set con- 
sisting of a single element in K is in C, and the 
empty set is not in C. 

In general, if a pair (K, C) of a set K and a 
set C consisting of finite subsets of K satisfy (1) 
and (2), then the pair (or the set K) is called an 
abstract simplicial complex (or simply sim- 
plicial complex). I f  K is a simplicial complex, 
each element of the set K is called a vertex in 
K, and each set of C is called a simplex in K. A 
simplex consisting of n + 1 vertices is called an 
n-simplex. We say that a simplicial complex K 
is tïnite if it consists of a imite number of ver- 
tices; it is locally finite if every vertex of K 
belongs to only iïnitely many simplexes in K. 
We define similarly countable simplicial com- 
plexes and locally countable simplicial com- 
plexes. The dimension and r-section of a sim- 
plicial complex are defined as in the case of 
Euclidean complexes. By a subcomplex of a 
simplicial complex K we mean a simplicial 
complex K, such that each simplex of K, is a 
simplex in K. 

Let K and L be simplicial complexes. A 
mapping cp : K + L is called a simplicial map- 
ping (simplicial map) of K to L if the following 
condition is satisfted: If  vO, v,, . . , v, are ver- 
tices of a simplex of K, then rp(ve), C~(V~), . . . , 
<P(U,) are vertices of some simplex of L. Two 
simplicial complexes K and L are said to be 
isomorphic if there exist simplicial mappings 
cp:K+L, $:L+K such that $0~ and cpo$ 
are the identity mappings. 

Given a simplicial complex K, let II<I denote 
the set of a11 functions x from the set of ver- 
tices of K to the closed interval I= [0, l] satis- 
fying the following conditions: (i) The set 
{u~Klx(u)#O} is a simplex of K. (ii) CVEKx(v) 
= 1. The value x(u) is called the barycentric 

coordinate of the point x E 1 K 1 with respect to 
the vertex v. Each vertex v  of K is identifïed 
with the point of IKI whose barycentric co- 
ordinate with respect to the vertex v  is 1 and is 
called a vertex in IKI. For a simplex s= {Q, vi, 
. . ..u.}inK,wedefine~s~={x~lKI~x(v)=O 
(V$S)}, which is called a simplex in IKI. We 
cal1 {x~~s~~~(u~)>O(i=0,1,...,n)} anopen 
simplex of 1 K 1 or the interior of 1 s 1. We remark 
here that for an arbitrary simplex s in K a 
point x E IsI cari be written in the form x = 
&,Vx(v). v. We cari defme a metric d on JKJ 

by 4x, Y) = L&(u) -Y(V))*)“*. However, IKI 
is usually supplied with a tstronger topology 
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defined as follows: (1) Each simplex ~SI in II< 1 
has the topology given by the metric d. (2) A 
subset U of 1 KI is open if and only if Un /SI 
is an open subset of ~SI for each simplex s of 
K. Henceforward, by the topology of II<I we 
mean the topology just defïned unless other- 
wise stated. The set II<I with such a topology 
is called the polyhedron of K. The topology 
of [K/ coincides with the above metric topol- 
ogy if and only if K is locally iïnite. I f  sim- 
plicial complexes K and L are isomorphic, 
then 1 K 1 and IL[ are homeomorphic. I f  K is 
the simplicial complex detïned by a Euclidean 
simplicial complex R, then 1Kl and IRI are 
homeomorphic. When K is finite, there exists 
an Euclidean simplicial complex 52 whose sim- 
plicial complex is isomorphic to K. Accord- 
ingly 1 KI is homeomorphic to the Euclidean 
polyhedron 1 R 1. 

If  K and L are simplicial complexes, a map- 
ping f’: 1 K I+ 1 L 1 satisfying the following con- 
dition is said to be linear: Ifs = {uO, ul, , u,} 
isasimplexinKandx=&,u,+...+3,,u,(&+ 
. . + 1, = 1, Ai > 0), then f(u,,), ,f(uJ belong 

to a simplex in L and f(x) = Âof + + 
&f(v,). The linear mapping determined by 
a simplicial mapping <p : K +L is denoted by 
1 cp 1: 1 K I+ 1 L 1 and is also called a simplicial 
mapping and denoted by the same letter <p. 
Let K and K’ be simplicial complexes. If  
there exists a linear mapping l:IK’I+IKI, 
which is a homeomorphism, then we identify 
IKI and IK’I by I and call K’ a subdivision of 
K. The harycentric subdivision Sd K of a sim- 
plicial complex K is delïned as in the case of 
Euclidean complexes. We also have notions of 
star St,(A) and open star O,(A) for a simpli- 
cial complex K and a subset A of 1 K 1. If  K 
and L are simplicial complexes, a mapping 
f: 1 K I+ 1 L 1 is called a piecewise linear map- 
ping if there exist subdivisions K’ and L’ of 
K and L, respectively, such that ,f:IK’l-IL’1 is 
linear. 

Given an open tcovering VI = {MU}UEK of a 
topological space X, the index set K becomes 
a simplicial complex if we consider each finite 
nonempty subset s of K such that nVss M, # 
0 (empty) to be a simplex. The resulting sim- 
plicial complex K is called the nerve of the 
open covering ‘%R. Furthermore, if W = { Mv}vaK 
and 5% = { NW}WEL are open coverings of a set X, 
% is a trefïnement of the covering %R, and L is 
the nerve of 91, then a simplicial mapping <p: 
L+K is defïned by sending each vertex w in 
L to a vertex v  in K such that N,,,c M,. 

Given two disjoint simplicial complexes K 
and L, a simplicial complex K *L, called the 
join of K and L, is defined by the following: (1) 
the vertices of K *L are the vertices of K and 
the vertices of L. (2) A nonempty subset of 
vertices is a simplex of K * L if and only if its 
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subsets in K and L are empty or simplexes 
there. In particular, the join of a simplicial 
complex K and a single point is called the cane 
of K. 

A simplicial complex K is said to be ordered 
if a ?Partial ordering is given in the set of ver- 
tices in K such that the set of vertices of each 
simplex is ttotally ordered. Given ordered 
simplicial complexes K and L, an ordered 
simplicial complex K x L, called the Cartesian 
product of K and L, is detïned by the following: 
(1) The vertices in K x L are pairs (0, w), where 
u and w are any vertices in K and L, respec- 
tively. (2) A set of vertices (uO, w,), . . . ,(u,, w.) 
suchthatv,<...<v,andw,<...<w,isa 
simplex in K x L if (u,, . , 0,) and (w,, , w,,) 
are simplexes in K and L, respectively; a11 
simplexes in K x L are obtained in this man- 
ner. (3) (u,,~,)~(u~,wJ if and only if u1 du, 
and w1 <w,. 

Assume that either K or L is locally tïnite or 
that both K and L are locally countable. Let 
X and Y be topological spaces and I be the 
closed interval [0, 11. We define an equivalence 
realtion - in the topological space X U (X x Y 

x I)U Y by x-(x,y,O) and y-(x,y, l), where 
X~X, y~ Y. The quotient space of XU(X x Y 

x 1) U Y by this relation is called the join of X 
and Y and is denoted by X * Y. Then the poly- 
hedron II( x LI is homeomorphic to the prod- 
uct space IKI x 1 LI of the topological spaces 
II< 1 and 1 LI. And the polyhedron IK * LI is 
homeomorphic to 1 K I* 1 LI. 

By a triangulation T of a topological space 
X we mean a pair (K, t) consisting of a sim- 
plicial complex K and a homeomorphism 
t : 1 K 1 +X. A triangulation is also called a 
simplicial decomposition. If  T = (K, t) is a trian- 
gulation of X, the various concepts defïned for 
K cari be transferred to X by means of the 
mapping t. For example, by a simplex of the 
triangulation T we mean the image of a sim- 
plex of II(I under t. We say that a triangula- 
tion T = (K, t) is finite if K is a finite simplicial 
complex. If  T = (K, t) is a triangulation and 
(K’, 1) is a subdivision of K, then T’ = (K’, t o 1) 
is called a subdivision of T. If  T, = (K, , t ,), T2 
=(K,, t2) are triangulations of topological 
spaces X, , X,, respectively, a mapping f: X, 
-X2 is called a simplicial mapping relative to 
T,andT,ift;10,fot1:lK11+IK21isasim- 
plicial mapping. The following two problems 
on triangulations are famous: (1) Under what 
topological conditions is it possible for a given 
topological space to be supplied with a trian- 
gulation? (2) Given two triangulations Tl, T2 
of a space X, are there subdivisions T; = 
(K;, t’,), T; = (K;, t;) of Tl and T2, respec- 
tively, such that K; and K; are isomorphic? 
Concerning the second problem, the conjec- 
ture asserting the existence of subdivisions T,’ 



263 

and T; as above is known as the fundamental 
conjecture (Hauptvermutung) in topology. 
Every 3-dimensional manifold is triangulable, 
and any two of its triangulations admit sub- 
divisions satisfying the condition in (2) (E. E. 
Moise [7]). 

In 1961, J. Milnor showed that the funda- 
mental conjecture is not true for polyhedra 
[S]. The triangulation problem and the funda- 
mental conjecture for topological manifolds 
were negatively solved by R. Kirby and L. 
Siebenmann [9] (- 65 Combinatorial Mani- 
folds). Any tdifferentiable manifold is triangu- 
lable, and the fundamental conjecture holds 
for its +C”-triangulations (~2 1) [6] (- 114 
Differential Topology). 

Let T1, T, be triangulations of topological 
spaces X,, X,, respectively, and let f :  X, -X, 
be a continuous mapping. Then a simplicial 
mapping <p: X, -X, relative to Tl and T, is 
called a simplicial approximation to f  if, for 
each x E X, the image q(x) lies on the simplex 
of T2 whose interior contains f(x). The follow- 
ing existence theorem is called the simplicial 
approximation theorem: For every continuous 
mapping f: X, -X,, there exist a subdivision 
T,’ of Tl and a simplicial mapping <p :X, -X, 
relative to T; and T2 that is a simplicial ap- 
proximation off: I f  the triangulation Tl is 
finite, then for a suffïciently large n we cari 
choose Sd” T, as the T; above (where Sd0 T = 
Tand Sd”T=Sd(Sd”-‘T)(n>l)).If<p:X,+ 
X, is a simplicial approximation to a continu- 
ous mapping A then f  and <p are thomotopic. 

D. Cell Complexes 

Let V” be the +Unit n-disk, S”-’ be the tunit 
(n - l)-sphere, and X be a Hausdorff space. For 
a subset e of X, let ë be the closure of e in X, 
and let é = e ~ e. A subset e of the space X is 
called an n-cell, or open n-cell in X if there is a 
relative homeomorphism cp:( V”, Snml)*(ë,é), 
i.e., a continuous mapping cp: V”+i? such that 
V(S”~‘)=& and q: V”-.Sml+ë-é is a homeo- 
morphism. For example, S”-{p} (~ES”) is an 
n-cell. A set (ei 11 E A} of cells in the Haus- 
dorff space X is called a cellular decomposition 
of X if the following three conditions are satis- 
fïed: (i) e1 n e, is empty if /z # p; (ii) X = U,,,e,; 
(iii) I f  the dimension of e, is n + 1, then éi c 
X”, where X” is the union of ail the cells ee 
(~LE A) whose dimensions are not greater than 
n. For example, the n-sphere s” has a cellular 
decomposition consisting of a single O-ce11 
and a single n-cell. 

A Hausdorff space X together with its cellu- 
lar decomposition {eA} is called a cell com- 
plex, and each e, is called a cell in the cell 
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complex X. For a ce11 complex, the notions of 
vertex, n-section, and dimension are defmed in 
the same way as the corresponding notions in 
Euclidean complexes. Let X be a cell complex 
and A a topological subspace of X such that 
the closure of each ce11 of X intersecting A is 
contained in A. Then the set of cells e such 
that en A # 0 forms a cellular decomposition 
of A. The set A together with this cellular 
decomposition is called a subcomplex of the 
ce11 complex X. A ce11 complex X with its cells 
{e?,} is said to be fïnite if the number of e, is 
finite. I f  each point in a ce11 complex X is an 
interior point of some tïnite subcomplex of X, 
then X is said to be locally finite. We detïne 
similarly a countable cell complex and a locally 
countable cell complex. If  the closure of each n- 

cell of a ce11 complex X is homeomorphic to 
V” (n =O, 1, ), X is said to be regular. I f  X 
and Y are ce11 complexes, a continuous map- 
pingS:X+Ysuchthatf(X”)cY”(n=O,l,...) 
is called a cellular mapping. If  X and Y are ce11 
complexes, the set of ttopological products 
e, x e,, where e,, e, run over a11 cells of X, Y, 
respectively, is a cellular decomposition of the 
product space X x Y. The resulting cell com- 
plex X x Y is called the product complex of the 
ce11 complexes X and Y. 

A cell complex X is said to be closure finite 
if each ce11 in X is contained in a fmite sub- 
complex of X; and X is said to have the weak 
topology if a subset U c X is open if and only if 
CJ 0ë is relatively open in ë for each ce11 e of 
X. We cal1 a ce11 complex a CW complex if it is 
closure finite and has the weak topology. The 
cellular decomposition of a CW complex is 
called a CW decomposition. A locally fïnite ce11 
complex is a CW complex. 

Fundamental properties of CW complexes 
are as follows: (i) A CW complex is a +Para- 
compact (hence +normal) space and is tlocally 
contractible. (ii) A subcomplex A of a CW 
complex X is a closed subspace of X, and A 
itself is a CW complex. (iii) A mapping f: X + 
Y of a CW complex X to a topological space 
Y is continuous if and only if the restriction 

fi ë is continuous for each ce11 e of X. (iv) I f  
X and Y are CW complexes and f: X+ Y is 
any continuous mapping then there exists a 
cellular mapping of X to Y that is homotopic 
to ,f  (cellular approximation theorem). (v) A 
pair (X, A) consisting of a CW complex X and 
its subcomplex A has the thomotopy extension 
property for any topological space. (vi) A CW 
complex has the tcovering homotopy property 
for any tfïber space. (vii) The product complex 
X x Y of two CW complexes X and Y is not 
necessarily a CW complex, but it is thomo- 
topy equivalent to a CW complex. (viii) I f  
either X or Y is locally finite, or if both X and 
Y are locally countable, then the product 
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complex X x Y is a CW complex. (ix) For CW 
complexes X and Y, the tmapping space Yx 
is homotopy equivalent to a CW complex. 
(x) The kovering space of a CW complex has a 
CW decomposition. 

If  K is a simplicial complex, the polyhedron 
1 K 1 is a regular CW complex whose cells are 
a11 open simplexes in 1 K 1. A simplicial complex 
K is (locally) finite if and only if the CW com- 
plex 1 K 1 is (locally) fmite. In particular, the 
Euclidean polyhedron of a Euclidean sim- 
plicial (or cell) complex is a locally finite CW 
complex. A polyhedron 1 K 1 generally admits a 
CW decomposition whose cells are far smaller 
in number than the simplexes constituting a 
simplicial decomposition of K. For any CW 
complex X, there exists a polyhedron II<I 
that is homotopy equivalent to X. In partic- 
ular, if X is an n-dimensional tïnite (coun- 
table) CW complex, we cari choose as K an 
n-dimensional tïnite (locally fmite and coun- 
table) simplicial complex. 

E. Semisimplicial Complexes 

By an ordered simplex in a simplicial complex 
K we mean a Imite sequence (vo, ui, . . , u,) 
(n > 0) of vertices in K, contained in the set of 
vertices of a simplex in K. Let O(K), be the 
set of a11 ordered simplexes of K of length n + 
1, and detïne mappings di:O(K),+O(K),-, 
and s~:O(K),-+O(K),,+~ for i=O, 1, . . . . n by 

ait%, . . . , u,)=(Q, . , ui-i, ui+i, , u,) and 
%t”O> ...t U~~~~“~~~~~~ui-lrui~ui~Ui+lr~~~~u~~~ 

Then the following relations hold: 

aiOaj=ajmloai (i <A, 

siosj=sj+los~ (i <.A 

aiOSj=Sj-lOai (i cd, 

aiOsj=sjOai-l (i>j+ l), 

ai o si = a,+r o si = identity. (1) 

Let A” be the n-dimensional simplex in R” 
withverticese,=(O,O ,..., O),e,=(l,O ,..., 0), 
. . . , e, = (0, . . , 1). By a singular n-simplex in a 
topological space X we mean a continuous 
mapping T:A”-tX. Let S(X), be the set of a11 
singular n-simplexes in X, and define map- 
pings ai:S(X),+S(X),-, and s,:S(X),-+S(X),+, 
fori=O,l,..., nbyaiT(& ,..., L,)=T(Â, ,..., 
Âi-r,O,Âi ,..., l,)andsiT(& ,..., 1,+,)=T(Â,, 
. ..) &l,Ai+Âi+l,&+l> ...,l,,+l), where (10, 
.‘., 1,) is the point x&Aiei, liaO, Cyz,Âi= 1. 
Then relation (1) holds between ai and si. 

Because of the importance of relation (l), 
which is basic in defining thomology of sim- 
plicial complexes and topological spaces (- 
201 Homology Theory), S. Eilenberg and J. A. 
Zilber gave the following definition: A semi- 
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simplicial complex K consists of a sequence of 
sets K, (n = 0, 1, ) together with mappings 
di:K,-+K,-l, s~:K,,+K,+~ (i=O, 1, . . . . n) satis- 
fying relations (1). An element of K, is called 
an n-simplex in K, and ai, si are called the ith 
face operator and the ith degeneracy operator, 
respectively. A simplex is said to be degenerate 
if it is the image of a simplex under some si. A 
semisimplicial complex is abbreviated as S.S. 
complex. The S.S. complexes O(K)= {O(K),, 
ai, si} and S(X) = {S(X),, ai, si} are called the 
ordered complex of K and the singular complex 
of X, respectively. 

Let K be an S.S. complex, and let L, be 
a subset of K, for n = 0, 1, . . I f  a,(,!,,) c L,-, 

and s~W,)~L+~ for each i, then L = {L,, 
ai 1 L,, si 1 L,} is an S.S. complex, and L is called 
a subcomplex of the S.S. complex K. If  A is a 
subspace of a topological space X, S(A) is 
a subcomplex of S(X). I f  K is an ordered sim- 
plicial complex, a subcomplex O’(K) of O(K) is 
obtained by considering the set of all ordered 
simplexes (u,, u1 , . . . , u,) such that u0 <vi < 
. <u, (n=O, 1, . ..). I f  K and L are S.S. com- 

plexes, a sequence f  = { f”} of mappings f. : 
K,+L, defined for each n is called an S.S. map- 
pingifaiof,=f,-Ioaiandsiof,=f,+,osi 
(0 < i < n). I f  f :  X - Y is a continuous mapping 
of topological spaces, then f  determines an S.S. 
mapping s(f):s(X)-+s(Y) by S(f)(T)=foT. 
Two S.S. complexes K and L are said to be 
isomorphic if there is a bijective S.S. mapping of 
K to L. For two S.S. complexes K and L, we 
delïne the Cartesian product K x L to be the 
S.S. complex given by (K x L), = K, x L,, a,((~, z) 
=(a,cr,a,z), si(0,7)=(sia,Si7) (fJEK,,TEL,). I f  K 
and L are ordered simplicial complexes, the S.S. 
complexes O’(K) x O’(L) and O’(K x L) are 
isomorphic. I f  X and Y are topological spaces, 
the S.S. complexes S(X) x S(Y) and S(X x Y) 
are isomorphic. 

Given an S.S. complex K, we construct a 
topological space IKI as follows: First, we 
provide K, with the tdiscrete topology and 
consider the topological space K = Una 0 K, x 
A”. Next we consider simplicial mappings 
.si:A”-i-A” and rli:A”+‘+A” defmed by .si(pj) 
=~~~(j<i),&(p~)=p~+~ (j>i)andq’(pj)=pj 
(j<i),qi(pj)=pjml (j>i), wherep, ,..., p. are 
the vertices of A”. The topological space 1 K 1 is 
detïned to be the tquotient space of I? with 
respect to an equivalence relation - that is 
detïned by the following: (a,a,y)-(o,?(y)) 

(c~Kn,y~A~-l)> (Si~,Y)-(~,Vi(Y)) (c~Kn> 
y~A”+i), where i=O, 1, . . . . n. The space II<I is 
called the (geometric) realization of the S.S. 
complex K. Given an S.S. mapping f: K+L, 
we obtain a continuous mapping Ifl:IKI-IL[ 
defîned by lfl(la,yl)=lf(a),yl, where la,yl is 
the point in 1 KI represented by (a, y) E K. We 
cal1 If[ the realization of the S.S. mapping f: 
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The realization 1 K 1 of an S.S. complex K is a 
CW complex whose cells are in one-to-one 
correspondence with the nondegenerate sim- 
plexes in K. For a topological space X, a 
tweak homotopy equivalence p:IS(X)I+X is 
detïnedbyp(l7’,yl)=T(y)(TES(X),,yEA”). 
This mapping gives rise to a homotopy equiv- 
alence when X is a CW complex. 

The singular complex S(X) of a topological 
space X has the following property: Given 
simplexes <r,, . , rr,-,, ~+i, , ~“+i E K, with 
aioj= aj-iai (i<j, i,j#k), there exists a simplex 

(TEK,+, with aia = ai (i # k). An S.S. complex K 
with this property is called a Kan complex. If, 
in addition, a,o=a,cr (a, cr’~K,, i# k) imply 
a,(r = a,~‘, we cal1 K a minimal complex. For 
every Kan complex K, there are minimal sub- 
complexes M of K that are isomorphic to each 
other. Moreover, IMI is a tdeformation retract 
of 1 K 1. For a Kan complex K, the thomotopy 
group cari be defmed combinatorially. 

Two CW complexes X and Y are homotopy 
equivalent if and only if the minimal sub- 
complexes of S(X) and S(Y) are isomorphic. 

F. Eilenberg-MacLane Complex 

Given an integer n > 1 and a group rt (Abelian 
if n > 2), there exists an tarcwise connected 
topological space X for which the thomotopy 
groups ni(X) are trivial for i # n and n,,(X)? n. 
Such a space is called an Eilenberg-MacLane 
space of type (n, n). Let 0(X; X, *) be the tpath 
space over X, and let p,,:R(X;X, *)+X be 
the natural projection. If  X is an Eilenberg- 
MacLane space of type (rr, n), then (0(X; X, *), 
po, X) gives rise to a standard tcontractible 
Qïber space whose fiber is an Eilenberg- 
MacLane space of type (rr, n - 1). Assume 
that X is an Eilenberg MacLane space of type 
(n, n) with Abelian group x. Then X is (n - l)- 
connected; hence the +Hurewicz theorem cari 
be utilized to show the existence of an isomor- 
phism h: n,(X) g H,(X), while the universal 
coefficient theorem cari be utilized to show 
that H”(X; X)E Hom(H,(X), 7~). Since in this 
case we have n,,(X)= rr, the element h-’ E 
Hom(H,(X), n,(X)) cari be regarded as an 
element of Hom(H,,(X), z). Now the funda- 
mental class of X is defïned to be the coho- 
mology class u E H”(X; rr) corresponding to 
hm’. Let Y be a +CW complex and rr( Y; X) be 
the set of thomotopy classes of continuous 
mappings from Y to X. Then there exists a 
one-to-one correspondence rr( Y; X)+H”( Y; 7~) 
given by the assignment [f]-f*u (- 305 
Obstructions). Let S(X) be the singular com- 
plex of X, and let M(X) be a minimal complex 
of S(X). I f  X is an Eilenberg-MacLane space 
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of type (n, n), M(X) is isomorphic to a certain 
complex determined uniquely by rc and n. This 
complex is called the Eilenberg-MacLane 
complex of type (rr, n) and is denoted by 
K(n, n). The notation K(q n) is also used to 
mean the space X itself. 

Let A(q) be a simplicial complex whose sim- 
plexes are a11 nonvacuous subsets of (0, 1, 

“.. q}. Let si:A(q- l)+A(q) be the simplicial 
mapping defined by si(j) =j (0 <j < i - l), .si( j) 
=j+l (i<j<q-1), andlet qr:A(q+l)+A(q) 
be the mapping detïned by ni(j) = j (0 <j < i), 
ai(j)=j-1 (i+ l<j<q+l). Now K(n,n)is a 
Kan complex defined by K(Tc, n)q = Z”(A(q); a), 
d,a=oos,, s,a=ao~, where Z’(A(q);n)=rr, 
Z’(A(q); rr) is the set of n-valued functions 
defined on the set of pairs (i, j) such that 0 < 
i <j < q and satisfying the equality a( j, k) 
Cr(i, k)-’ .o(i,j)= 1 for O<i<j<k<q, and 
Z”(A(q); rc) (na2) is the group of toriented 
cocycles of the simplicial complex A(q). I f  n is 
Abelian, the structure of the Abelian group 
Z”(A(q); rr) gives K(n, n) the structure of an 
Abelian group in the S.S. category. This struc- 
ture yields a one-to-one correspondence 
K(rr,n)q~K(n,n-l),~,x...xK(rr,n-l)ofor 
n > 1 and leads to the expression of r E K(Tc, n), 
in the form (0,-r, , oo) with qeK(n, n- l)i. 
The W-construction of K(n, n - 1) for n 2 1 
is a Kan complex W(rr, n - 1) deiïned by W(rr, 
n - l),i = K(n, n - l& x K(n, n), and a,(cr, x 7,J = 
(doa,). aq-1 x aozq, ai(oq x zq) = 3p, x ~3~7~ for 
1 <i<q, si(aqx7,)=sicrqxxi7q, where CT~EK(T-C, 
n-l),andz,=(a,- ,,..., a,)EK(rr,n),.Letp: 
IV(n, n - l)-tK(rc, n) be a natural projection. 
Then (W(n, n - l), p, K(Tc, n)) plays the role of 
the tuniversal bundle for K(Tc, n- 1) in the S.S. 
category in the following sense: Let L be an 
S.S. complex, and let f :  L+K(x, n) be an S.S. 
mapping. We defïne f# W(rc, n - 1) to be the 
subcomplex of W(rr, n - 1) x L generated by 
simplexes (crq x 7,J x p4 such that zq =f(p,), 

where crq x T~E W(qn- l), and p4cL4. Let 
p:,f# W(rr, n- l)+L be the natural projection. 
Then (f” W(rr, n - l), p, L) is called the prin- 
cipal fiber bundle induced from W(rr, n - 1) by 
f: Any principal bundle over L with group 
K(Tc, n - 1) cari be expressed as an induced 
bundle. This property means that (~V(X, n - l), 
p, K(rr, n)) is universal. On the other hand, 
we have an algebraic analog of the univer- 
sa1 bundle for the chain group of K(n, n - l), 
called the bar construction [12]. Both these 
concepts were defined by Eilenberg and Mac- 
Lane in order to determine the structure of the 
(co)homology of K(x, n), which is denoted by 
(H*(n, n))H,(x, n). This abject was later 
achieved by H. Cartan, who introduced an 
improved notion called Cartan construction 
(- Appendix A, Table 6.111). Let ~I(L, K(Tc, n)) 
be the set of S.S. homotopy classes of S.S. map- 
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pings from L to K (rc, n). I f  n is Abelian, there 
exists a one-to-one correspondence rr(L, K(rc, 
n))+H”(L; rt) given by the assignment [f] + 
f*u, where UE H”(z, n; rr) is the fundamental 
class of K(x, n). By virtue of this correspon- 
dence, k =f* u E H”(L; R) determines an in- 
duced bundle f” W(rc, n - 1) uniquely up to 
equivalence, which is denoted by K(rc, 
n-l)x,L. 

Let X be an arcwise connected topological 
space. Let X” be the Cartesian product of n 
copies of X. Clearly, the symmetric group 6, 
of degree n operates on X”. The n-fold sym- 
metric product SP”X of X is delïned to be the 
quotient space of X” under the action of 6,. I f  
we specify a reference point of X, we have a 
natural inclusion SP”-‘X c SP”X and cari 
consider the inductive limit space u, an SP”X, 
denoted by SP”X. Then the Dold-Thom 
theorem [ZS] shows that M(SP”X)z 
n,Z=, K(H,(X), i). In particular, we have 
A4(SPmS”) % K(Z, n) for n > 1. This result cari 
be applied to obtain a direct relationship be- 
tween the axiomatic definition of tcohomology 
operations using K(x, n) due to Eilenberg and 
Serre and the constructive defmition using the 
symmetric groups due to Steenrod (A. Dold 
[16], T. Nakamura [17]). For a detailed study 
of the (co)homology of SP”X - [18]. 

G. Postnikov Complex 

Let X be an arcwise connected topological 
space. For the sake of simplicity, throughout 
this section we assume that X is tsimple (- 
202 Homotopy Theory). Then the tpostnikov 
system of X cari be delïned as an inverse sys- 
tem (X,, p,) (n = 0, 1,2, . . ) consisting of topo- 
logical spaces X,, continuous mappings pn: 
X,+X,-,,andasystem(X,q,)(n=O,1,2 ,...) 
consisting of continuous mappings 4.:X+X, 
such that p,, o q, = q,-, and satisfying the fol- 
lowing three properties: (1) X, is one point. (2) 
(X,, p,,, X,-,) is a tlïber space induced from a 
standard contractible tïber space over an 
Eilenberg-MacLane space of type (r-c,(X), n + 1) 
by a mapping corresponding to a cohomology 
class k”+’ E H”+I (X,-, ; z,(X)). (3) q,,* : ni(X)-+ 
rri(X,) gives an isomorphism for 0 <id n. 
These cohomology classes k”+’ are called 
Eilenberg-Postnikov invariants (or simply k- 
invariants). Corresponding to the above facts, 
the minimal complex M(X) cari be obtained 
as the inverse limit of a certain inverse sys- 
tem (K(n),p(n)) consisting of Kan com- 
plexes K(n) and S.S. mappings p(n):K(n)+ 
K(n- 1) delïned by K(O)=K(O,O) and K(n)= 

K(G 4 x I<v+lK(n- 1) for n> 1 with natural 
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projections p(n), where rrn = z,(X) and k”+’ E 
H”“(K(n- 1); nn). This system is determined 
uniquely up to S.S. homotopy equivalence by 
its limit, called the Postnikov complex and 
denoted by K(Tc~, k3,z,, . . , k”+l, TK,, . ..). As 
yet we are ignorant of an effective method of 
computing the cohomology of a Postnikov 
complex from nn and k”+l. 
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Complexity of Computations 

A. Measures for Complexity of Computation 

Intuitively, complexity of computation means 
the amount of computing efforts measured on 
some suitable scale. When a problem cari be 
solved by means of any one of several algo- 
rithms, it is highly desirable to compare the 
complexities of those algorithms. For example, 
the power x1’ cari be evaluated with a pocket 
calculator by using either of the algorithms 

x1O- -xxxxxxxxxxxxxxxxxxx, (4 

u=xxx, v=uxu, w=vxv, 

xlO=uxw. (B) 

The complexities of these algorithms cari be 
measured by various quantities: (Tl) time in 
seconds, (T2) the number of times keys and 
buttons are touched, (T3) the number of basic 
operations (here, multiplications), and (S) the 
number of values to be stored in the calcu- 
lator. The quantities (Tl), (T2), and (T3) are 
called time complexities, and (S) is called the 
space complexity. Obviously, algorithm (B) is 
preferable with respect to time complexity, 
although (A) is better with respect to space 
complexity. (If the calculator has only one 
memory register, then only (A) cari be executed 
without recording numbers by hand.) For 
many calculators, the following algorithm 
is best with respect to both time and space 
complexities: 

xlo=((xy xx)“. (C) 

In the general theory of complexity, the num- 
ber of basic operations (T3) is often taken as 
the basis of time complexity, since it represents 
the intrinsic complexity of the algorithm, 
rather than of extrinsic factors such as human 
ski11 or mechanical performance. 

For the evaluation of a power x” in general, 
the complexity depends on the value of n: such 
a parameter dominating the complexity is 
called the size of the problem. Let T,(n) be 
the number of multiplications required for 
evaluating x” by an algorithm X. Let 9 be the 
set of a11 algorithms for evaluating x”. The 
time complexity T(n) for evaluation of the 
power is then defined by 

T(n)= MinXEF 7”(n). 

This is satisfied when [6] 

log, n < T(n) < 21og, n 

and 

lim T(n) - 1. 
n-m log, n 

In a problem concerning a tgraph, the num- 
ber m of nodes in the graph, the number n of 
its edges, or their sum m + n are chosen as 
the size of the graph. However, the complex- 
ity is not determined by such a size, because 
there are many different instances (particular 
graphs) of the same size. SO the complexity of 
this problem is detïned in the following man- 
ner. Let T(I) be the complexity of solving an 
instance I of the problem and L(n) be the set 
of a11 possible instances of size n. Then 

and 

where p(l) denotes the relative frequency of 
the instance I. The value W(n) is called the 
worst-case complexity, and A(n) is called the 
average complexity of the problem. 

In some cases the complexity of a circuit is 
measured by the number of its building blocks 
[ 11, and the complexity of a program is mea- 
sured by its length [2,3]. 

B. Complexity of a Decision Problem 

A decision problem and its complexity are 
rigorously formulated in terms of tTuring 
machines. Let C be a fmite set of symbols and 
Z’ be the whole set of nonempty strings of 
symbols in L. Every instance of the problem is 
assumed to be represented by a string in L+. A 
decision problem is a triple (C, L, P) of the set C 
of symbols, a subset L of Zf, and a mapping P 
from L to (0 (false), 1 (true)}. The set L repre- 
sents the set of a11 possible instances of the 
problem. The problem is said to be solvable if 
and only if there exists a Turing machine M 
satisfying the following condition for every 
string c( in the set L: When a tape containing 
the string c( is given to the machine M whose 
head is initially put on the leftmost symbol of 
CL, the machine writes the value of P(cc) on the 
tape and stops after a tïnite number of steps. 
Such a Turing machine is said to compute the 
function P. The number 7’,‘,(a) of steps is the 
time complexity of solving the instance c( by 
the machine M, and the length &(CC) of the 
used area of the tape is the space complexity. 
The worst-case complexity T,(n) is detïned by 
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The space complexity S,(n) for the size n is 
defined in a similar way. The complexities 
T(n) and S(n) of the problem are not delïned, 
because improvement by a constant factor is 
always possible for any Turing machine [S]. 

A problem is said to be solved in linear or 
polynomial time if its time complexity T,(n) is 
bounded by a linear or polynomial function of 
the size n. 

C. Objectives of Complexity Tbeory 

The objectives of complexity theory are as 
follows: 
(i) Analyze an algorithm X for a problem P 
and evaluate its complexity. When exact evalu- 
ation is hard, the order of magnitude 0(7,(n)) 
is investigated. 
(ii) Construct better algorithms for the prob- 
lem P. This gives a better Upper bound to the 
complexity T(n) of the problem. 
(iii) Make clear the limitation of improving 
algorithms for the problem P. This is done by 
establishing a lower bound to the complexity 
T(n) of the problem. 

A common approach to constructing better 
algorithms is to partition the problem into 
smaller parts, apply algorithms to the parts, 
and then combine the solutions for the parts 
into a solution for the whole (divide and con- 
quer, [SI). This approach often yields an efft- 
tient algorithm for the problem, especially 
when the partitioning cari be repeated recur- 
sively. For demonstrating the limitations of 
algorithms of a certain class, diagonalization 
[S], determination of information-theoretic 
lower bounds [6], or the oracle method [6] 
are often utilized. 

D. Elementary Results on Time Complexity 

(1) Number of aritbmetic operations. A poly- 
nomial of degree n with one variable cari be 
evaluated in about 3n/2 arithmetic operations 
if preconditioning on coefficients is allowed. 
Otherwise, 2n- 1 operations are necessary and 
suffïcient for evaluating a polynomial of degree 
n. For computing the product of two square 
matrices of degree n, O(n’) operations are 
necessary and O(n2.5) operations are sufftcient. 
The inverse matrix and the value of the deter- 
minant of a square matrix of degree n are 
computed with the same order of operations 
as the product. Discrete Fourier transforma- 
tion of n points is executed in O(nlogn) arith- 
metic operations (fast Fourier transformation). 

(2) Number of comparisons and data trans- 

fers. Rearrangement of n items in increasing 
order is realized in O(n log n) comparisons and 
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data transfers. Selection of the kth largest item 
among n items is done in O(n) operations. The 
position of an item in a list containing n items 
is found in O(n) comparisons by linear search, 
in O(log n) comparisons by binary chopping, 
and in 0( 1) comparisons on average by the 
thashing method. 

Many other results cari be found in [SI-[7]. 

E. NP-Completeness 

A problem is easily solved if its complexity is 
O(n) or less. The problem is very hard if its 
complexity is O(Y), unless the size n is small. 
Between these types of problems there is a 
class of problems, each of which cari be solved 
in polynomial time by a Turing machine. 

A tnondeterministic Turing machine is said 
to salve a decision problem (C, L, P) if it cari 
detect the case when P(a) = 1 by exercising 
good choices; more precisely, if it cari stop 
after a finite number of steps and Write the 
value 1 of P(C~) on the tape, starting from an 
initial state with the head on the leftmost sym- 
bol of a string tu on the tape, provided that 
P(a) = 1. If  P(E) = 0, then the machine may 
never stop. For a string tl such that P(a) = 1, 
NT’(a) and NS,(E) represent the minimum 
number of steps and the minimum length of 
tape used in computing P(a). Nondeterminis- 
tic complexities NT’(n) and NS,(n) for the 
size II are defmed in a similar way as before. A 
problem is said to be solvable in NP-time or 
NP-space if it cari be solved by a nondeter- 
ministic Turing machine M whose time com- 
plexity NT,(n) or space complexity NS,(n) is 
bounded by a polynomial function of size 
n. The class of a11 problems solvable in NP- 
time is denoted by NP, while that of the prob- 
lems solvable in polynomial time by ordinary 
(deterministic) Turing machines is denoted by 
P. Obviously, the class NP contains the class 
P. Nevertheless, whether NP= P or not re- 
mains one of the biggest unsolved problems. 

A decision problem (Z, L, P) is polynomially 
transformable to a problem (Z’, L’, P’) if there 
exists a mapping h from C+ to Z+ satis- 
fying the following conditions: (1) h(L)cL’; (2) 
for every string a in L, P(a) = P’@(a)); (3) the 
mapping h is computed by a Turing machine 
in polynomial time. If  a problem C is poly- 
nomially transformable to another problem C’ 
in P or NP, then the problem C is also in P 
or NP. A problem C is said to be NP-hard if 
every problem in NP is polynomially transfor- 
mable to C. It is called NP-complete if it is in 
NP and NP-hard. Many problems that have 
been known empirically to be very hard have 
recently been shown to be NP-complete [S]. 
For instance, integer linear programming is 
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NP-complete. Linear programming has re- 
cently been shown to be in P. The satistïability 
problem of a conjunctive normal form was 
proven to be NP-complete in 1971 [9]. 

The complement of a decision problem 
(C, L, P) is the problem (C, L, P’), where P’(Z) = 
1 -P(a). I f  a problem C is in P, then its com- 
plement c’ is also in P. When C is in NP, it is 
not guaranteed that c’ is in NP. The class 
of a11 problems whose complements are in NP 
is denoted by CO-NP. The intersection of NP 
and CO-NP contains the class P, but it is an 
open problem whether this containment is 
proper or not. The problem PRIME, which 
asks whether a number N is prime or not, the 
size n being the number of digits for represent- 
ing the number N, belongs to both NP and co- 
NP [ 101. However, it is not known whether it 
is in P. 

F. Other Topics 

The notion of completeness is introduced in 
many other classes of problems solvable in 
linear space, polynomial space, exponential 
time, etc. Comparisons among these classes 
have been done, although many problems still 
remain open. The fundamental conjecture in 
this tïeld is the nonequality NP # P, the prov- 
ing of which seems to be extremely difficult. 
This conjecture cari be relativized in ways such 
that it cari be either true or false, SO that it is 
not provable in some forma1 system. 

Some tricks may be used for hard problems. 
For decision problems, some algorithms have 
been proposed for guessing the correct answer 
with high probability [ 111. Some algorithms 
give nearly optimal solutions effïciently, in- 
stead of constructing optimal ones over too 
long a time [7]. 

A general theory of computational com- 
plexity would include investigations on rela- 
tions among various complexity measures, 
the complexity hierarchy, and an axiomatic 
approach independent of any machine models 

WI. 
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A. Definitions 

A Hausdorff topological space X is called a 
complex manifold (or complex analytic mani- 
fold) of complex dimension n if there are given 
an open covering { Uijic, and a family {<P~}~~, of 
homeomorphisms of Ui onto open sets in the 
n-dimensional complex affine space C” such 
that in case CJi n Uj # 0, the mapping ‘pi o qjA1 : 
cpj( Q fl Uj)-+(pi(Q n uj) is biholomorphic (i.e., 
<pi o ~~7’ and its inverse are both tholomorphic 
functions when expressed in terms of coordi- 
nate functions in C”). We cal1 X the underlying 
topological space of this complex manifold, 
and we say that an open covering { Ui}is, and 
a family { qi}itr delïne a complex analytic 
structure (or simply complex structure) on X. 

A complex-valued function f  defined on an 
open set U in X is called a holomorphic func- 
tion on U if for any i the function SO <p;’ on 
<pi( U fl Ui) is holomorphic. When we express 
the mapping ‘pi as <pi(p)=(zl(p), ,z”(p)) on 
Ui in terms of the coordinates in C”, each z’ 
is a holomorphic function on Ui. We cal1 
(z’, , z”) a holomorphic local coordinate sys- 
tem on Ui. Given two complex manifolds 
Y, X, a mapping cp: Y+X is said to be holo- 
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morphic if for any open set U in X and any 
holomorphic function f  on U, fo rp is holo- 
morphic on <p-i(U) c Y. When a mapping cp : 
Y+X is bijective and both <p and ‘p-l are 
holomorphic, we say Y and X are isomorphic 
by cp as complex manifolds. 

As in the case of tdifferentiable manifolds of 
class C”, we cari detïne concepts such as com- 
plex analytic suhmanifolds, holomorphic tan- 
gent vectors, holomorphic vector fïelds, and 
holomorphic differential forms of degree k (or 
simply holomorphic k-forms). Meromorphic 
functions on complex manifolds cari also be 
delïned as in the theory of analytic functions of 
several complex variables (- 23 Analytic 
Spaces D). 

Let X be a complex manifold and p a point 
of X. Take a holomorphic local coordinate 
system (z’, . . , z”) with tenter p (i.e., z”(p)=0 

for a11 c(). A holomorphic function delïned on 
a neighborhood of p cari be expressed as a 
holomorphic function in (z’, . . . , zn), hence as a 
power series in (z’, , z”) absolutely conver- 
gent in a neighborhood of p. I f  we denote by 
0 =0x the tsheaf of germs of holomorphic 
functions on X, the tstalk 0, of 0 at p is iso- 
morphic to the +local ring of convergent power 
series in n variables zi, . ,z”. At a point p, 

(a/az’),, . . , (û/az”), form a basis of the holo- 
morphic tangent vector space at p. A holomor- 
phic k-form w delïned on a neighborhood of 
p cari be expressed as o = Ci, (__, < i,fi ,,,, ilidzil A 

Adzik,wherefi,...ik is a holomorphic func- 
tion for each (ii, . . , ik). 

B. Almost Complex Structures 

Let X be a complex manifold, and let 
{ Ui, <P~}~~, be its complex analytic structure, i.e., 
a covering of X by holomorphic local coordi- 
nate systems with ‘pi = (z! , . . , ~1). Express zs in 

the form zg = xr + fl y:, where xp and y: 
are the real and imaginary parts of z”, respec- 
tively. Then x” and y,P real-valued functions 
on the open set Q of X, and the mapping 
$i:U+RZ”defined by$i(p)=(x,?(p),y!(p),..., 
x;(p), y:(p)) is a homeomorphism of Ui onto 
an open set of R’“. This { Ui, $i}iE, delïnes on 
X a tdifferentiable structure of class C” (in 
fact, a treal analytic structure). Thus a complex 
manifold of complex dimension n admits 
canonically a P-structure of real dimension 
2n. For every point p of X there is a real co- 
ordinate system on a neighborhood of p, such 
as (x1,$, ,~“,y”), where (z’, ,z”) (za=xB 

+ G y”, c( = 1, , n) forms a holomorphic 
coordinate system in X. The real tangent 
vector space at a point p of X has {(8/8x’),, 
(8/8~‘)~, , (a/a~“)~, (a/&~“),} as its basis. 
Define a linear endomorphism J, by (8/8x’), 
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+(a/ayLï)p, (û/f3ya)p - (û/ûx’), (a = 1, . , n); 

then Jj = -1, and J, does not depend on the 
choice of holomorphic coordinate system at p. 

Considering J, as a tensor of type (1, l), we 
thus obtain a tensor lïeld J of type (1,l) of 
class C” on X, which is called the tensor field 
of almost complex structure induced by the 
complex structure of X. 

More generally, when a real differentiable 
manifold X is provided with a tensor lïeld J of 
type (1,1) of class C” such that 5’ = -1 (con- 
sidering J as a linear transformation of vector 
fields), we say that X admits an almost com- 
plex structure or that X is an almost complex 
manifold. In this case, for contravariant vector 
lïelds x and y  on X, we delïne a tensor lïeld S 

of type (L2) by W, Y)= - Cx, Y]+ CJb), J(Y)] 
- J( [J(x), y]) - J( [x, J(y)]). S is called a Nijen- 
huis tensor. An almost complex structure J 

is induced by a complex analytic structure if 
and only if its Nijenhuis tensor S vanishes 
identically [49]. A differentiable manifold X 
of dimension 2n admits an almost complex 
structure if and only if the structure group 
GL(2n, R) of the bundle of ttangent 2n-frames 
of X cari be treduced to GL(n, C). Almost 
complex manifolds are +Orientable. 

C. Types of Differential Forms 

Let X be a complex manifold, and let (z’, 

“7 z”) be a holomorphic local coordinate 
system in a neighborhood of a point p with za 
= xa + fi y” (a = 1, . , n). On the complexi- 
lied real tangent vector space T,(X) 0 C at p, 

we define d/az”, a/&’ by 

(aiazu),=(1/2)((a/axa),-J-1 caiw),h 

w7,=w) uaiaq + J-1 cww),k 

It is easy to see that the operation d/dz” on 
holomorphic functions coincides with that of 
the holomorphic tangent vector a/az’ delïned 
in Section A. A function f  is holomorphic at 
p if and only if (a/aP)f= 0 (c( = 1,2, . . , n). 

T,(X) @ C is the direct sum of the subspace 
spanned by { a/&l, . , ajaz”} and the subspace 
spanned by {a/%‘, , a/Z’}. Moreover, this 
decomposition is independent of the choice of 
holomorphic coordinate system. Elements of 
the two subspaces are respectively called tan- 
gent vectors of type (1,O) and tangent vectors of 
type (0,l). Similarly, the complexified space of 
real differentiable 1-forms cari be decomposed 
into the direct sum of two subspaces spanned 
by {dz’, , dz”} and {dzl, . . . ,dF’}, where dz” 

=dxa+fldyaanddP=dxa-fldy”. 
We say that the elements of the former sub- 
space are of type (1,O) and those of the latter 
are of type (0,l). Thus the space of differential 
forms of arbitrary degree cari be written as 
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the direct sum of subspaces of type (r, s). Here 
the subspace of differential forms of type (r, s) 
hasasabasis{dz”l~...r\dz”~r\d@1~...~d& 
(l<cc,<...<cc,<n, l</?<...</&<n)}.This 
decomposition is independent of the choice of 
a local coordinate system, hence the concept of 
type cari be delïned globally on X. 

D. &Cohomology 

In the rest of this article we consider only 
complex differential forms. For every differen- 
tial form w of type (r, s) on X, its texterior 
derivative dw decomposes into a sum of dif- 
ferential forms of types (r + 1, s) and (r, s + l), 
which we denote by aw (or d’o) and aw (or 
d”w), respectively. We have d = 8 + 8, (d’)z = 0, 
(a)’ =O, and ad + 88 =O. In terms of a local 
coordinate system, we Write 

i%o=(-1)‘Tgdz’l A . . 

for o = fdz’l A A dz”, A d?Sl A . A dyss. A 
differential k-form w is holomorphic if and 
only if w is of type (k, 0) and & = 0. 

For the operator 8 Dolheault’s lemma holds: 
Let w be a differential form on a neighborhood 
U of a point p. I f  dw = 0, there is a neighbor- 
hood V of p contained in U and a differen- 
tial form 0 on V such that o= a0 on V. 

Let A(**S) and Qp be the tsheaf of germs of 
differential forms of type (r, s) and the sheaf of 
germs of holomorphic p-forms on X, respec- 
tively, and let I(X, A(‘,‘)) be the set of tsections 
of A(*vS) on X. I(X, A(**S)) is the set of differen- 
tial forms of type (r, s) on X, and &I(X, Acpsi)) 
forms a tcochain complex with respect to a 
This complex is called the d-complex or the 
Dolheault complex, and its tcohomology 
groups are called the &ohomology groups or 
the Dolheault cohomology groups. The qth 
cohomology group is denoted by Pq(A, a). It 
follows easily from Dolbeault’s lemma that O+ 
fiP,,pO)O*/p. 1) + . . is an texact sequence of 
sheaves. From this we get Dolheault’s theorem: 

Hqx, cv) Lz HyA, a,, 

where the left-hand side is the cohomology 
group with coefficient sheaf RP. 

More generally, for any tcomplex analytic 
(holomorphic) vector bundle E on X, we cari 
define the 8 cohomology groups of the dif- 
ferential forms on X with values in E, and they 
cari be shown to be isomorphic to the coho- 
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mology groups with coefftcient sheaves of 
germs of holomorphic forms with values in E 
(- 194 Harmonie Integrals E). 

E. Analytic Coherent Sheaves 

The structure of a complex manifold X is 
determined by the tsheaf 0 of germs of holo- 
morphic functions on X, and 0 is a tcoherent 
sheaf (of rings) (Oka’s theorem). Sheaves of 8- 
modules are called analytic sheaves, and coher- 
ent sheaves of @modules are called coherent 
analytic sheaves. Many properties of X cari be 
expressed in terms of coherent analytic sheaves 
and their cohomology groups; some exam- 
ples appear later in this article (also - 366 
Riemann-Roch Theorems B). 

It is important to know whether an analytic 
sheaf on a complex manifold is coherent. TO 
this question, not only does Oka’s theorem 
apply but SO does Cartan’s theorem: The tsheaf 
of ideals delïned by an analytic subset of a 
complex manifold is coherent. (We say that a 
subset Y of X is an analytic subset if it is a 
closed subset and each point of Y has a neigh- 
borhood U such that Un Y is the set of com- 
mon zeros of a lïnite number of holomorphic 
functions on U.) Also relevant is Grauert’s 
theorem: If 7-c: X + Y is a tproper holomorphic 
mapping of complex manifolds (i.e., the inverse 
image of any compact subset of Y for a holo- 
morphic mapping rc is also compact), then for 
any coherent analytic sheaf F on X its tdirect 
images Rq~,(F) (q = 0, 1,2,. ) are also coher- 
ent [16]. (In fact, this theorem holds for ana- 
lytic spaces; - 23 Analytic Spaces.) 

For an analytic coherent sheaf F on a tStein 
manifold X, we have the following fundamen- 
ta1 tbeorems of the Stein manifold. Theorem 
A: H’(X, F) generates the stalk F, (as an 0X- 
module) at every point x of X. Theorem B: 
Hq(X, F) = 0 for a11 4 > 0. Conversely, a Stein 
manifold X is characterized by the following 
property: For any coherent analytic sheaf F of 
ideals of 0, H’(X, F) =O. If a complex manifold 
X is compact and F is a coherent analytic 
sheaf on X, then Hq(X, F) is a complex vector 
space of finite dimension. If  X is an open sub- 
manifold of another complex manifold and its 
closure is compact, then Hq(X, F) is lïnite- 
dimensional for some q that depends on vari- 
ous properties (convexity or concavity) of 
the boundary of X [3]. 

Let E be a tcomplex analytic (holomor- 
phic) vector bundle on a complex manifold 
X of dimension n, and let E* be the tdual 
vector bundle of E. Then Hq(X, W(E)) and 
H”;q(X, G’-p(E*)) (where H, denotes the 
cohomology group with compact support) are 
dual as topological vector spaces under suit- 
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able conditions. The duality is given by the 
integration on X of the exterior products of 
the differential forms representing the re- 
spective elements of the cohomology groups. 
The duality holds, for example, when dim 
Hq(X, P(E)) < co. If  X is compact, we need 
not distinguish H, from H (Serre3 duality 
theorem) [SO]. 

F. Compact Complex Manifolds 

On a compact and connected complex mani- 
fold X, there are no holomorphic functions 
except constants (by the tmaximum principle 
of holomorphic functions). The lïeld K(X) of 
meromorphic functions on X is finitely gen- 
erated over the complex number tïeld, and its 
ttranscendence degree d does not exceed the 
complex dimension n of X. d is said to be the 
algebraic dimension of X and is denoted by 
a(X). For elements of K(X), functional inde- 
pendence and algebraic independence are 
equivalent [52]. When n= 1, X is a compact 
tRiemann surface and the classical theory of 
algebraic functions shows that K(X) is an 
talgebraic function tïeld of one variable and X 
is a tprojective algebraic variety. When n = 2, 
a(X) = 2, 1, and 0 cari a11 occur. I f  a(X) = 2, 
X is a projective talgebraic surface (Chow- 
Kodaira theorem). If  a(X) = 1, there exist an 
talgebraic curve A and a surjective holo- 
morphic mapping <p :X-A such that K(A) is 
isomorphic to K(X) under <p*, and q-‘(x) is 
an telliptic curve for a11 but a tïnite number of 
XEA. K. Kodaira investigated the structure of 
compact complex surfaces in detail [34, III]. 

On a compact complex manifold X, the free 
Abelian group generated by the set of irre- 
ducible analytic subsets of codimension 1 is 
called the divisor group of X, and an element of 
it is called a divisor of X. For an analytic sub- 
set Y of codimension 1, the sheaf of ideals 3(Y) 
defined by Y is a sheaf of locally principal 
ideals of 8. For a divisor D=Z a, Y,, the sheaf 
of locally principal fractional ideals 3(D) = 
n, J( Ye)n, is called the sheaf of ideals of D. 
The set of nonzero coherent sheaves of locally 
principal fractional ideals corresponds bijec- 
tively to the set of divisors. An element ,f#O of 
K(X) generates a sheaf of principal fractional 
ideals and therefore defines a divisor, which 
is denoted by (,f). The divisor group has 
an ordering detïned by D = Ca, Y,>0 if and 
only if a11 a, > 0, under which it becomes an 
tordered group. For a divisor D, let 

Then L(D) is a C-module of lïnite dimension. 
This submodule of K(X) is easy to handle and 
exhibits various analytic properties of D. The 
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‘Riemann-Roch theorem is used to calculate 
the dimension of L(D) in terms of other factors 
(- 366 Riemann-Roch Theorems C). Here is 
an example of how L(D) exhibits a property of 
D: We cal1 two divisors D and D' linearly 
equivalent if there is a 0 # FE K(X) such that 
(F) = D -D’. This is an equivalence relation 
titrer than thomological equivalence. If  D and 
D' are linearly equivalent, then L(D) and L(D') 
are isomorphic by the mapping L(D)sf+ 
fFgL(D'); therefore dim L(D) =dim L(D'). 
(The latter equation does not follow from the 
homological equivalence.) A holomorphic 
vector bundle with liber C and structure group 
C* is called a complex line bundle. For the 
sheaf of ideals 3(D) of a divisor D, we cari take 
a suitable open covering { Uj} of X such that 
for each uj there is an Rje IJ vj, J(D)) which 
generates J(D), for any x E Ui. Also gjk = Rj/Rk 
is a holomorphic function nowhere vanishing 
on U,f? U,. With { gjk} as the system of tcoordi- 
nate transformations, we detïne the complex 
line bundle determined by D and denote it by 
[Dl. It is easy to see that [D] is independent 
of the choice of { Uj} or { Rj}. Moreover, [D] 
is determined only by the linear equivalence 
class of D. I f  we denote by 0( [Dl) the sheaf of 
germs of holomorphic sections of [Dl, the 

mapping H”(X,0(CD1))3cp={<pj}~f= 
qj/Rj= cpJR,-eL(D) is an isomorphism of these 
modules. On an algebraic variety in a projec- 
tive space, any complex line bundle cornes 
from a divisor (i.e., it cari be expressed in the 
form [D] for some divisor D) [35,51], but this 
is not necessarily true on general compact 
complex manifolds. However, the importance 
of complex line bundles in the theory of com- 
plex manifolds lies in the relation L(D) g 
H'(X, 0( [Dl)), which replaces “things with 
poles” with “things holomorphic.” 

Any analytic subvariety X of the projec- 
tive space P” is an algebraic variety (Chow’s 
theorem) [51]. Suppose that X is an analytic 
submanifold of PN, and let Y be a general 
thyperplane section of X. Then Y is a divisor 
on X, and the +Chern class of the complex line 
bundle [Y] corresponds to the canonical 
Hodge metric on X (- 232 Kahler Manifolds 
D). When [Y] is represented by the system of 
coordinate transformations { gjk} with respect 
to an open covering {U,}, we cari associate 
with a coherent analytic sheaf F sheaves F(n) 
(n = 0, f  1, + 2,. . ) as follows. Denoting by Fj 
the restriction of F to Uj, we glue Fj and Fk 
together on L$n U, with the relation fj -fkofj 
=g;fk (wheref,EFjcF,f,EF,cF) and obtain 
a sheaf (denoted by F(n)) that is locally iso- 
morphic to F. The following theorems for F(n) 
hold. For each coherent analytic sheaf F there 
exists an integer no such that for any n 2 no the 
following fundamental theorems A, B of projec- 
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tive algebraic varieties hold [ 171. Tbeorem A: 
I(X, F(n)) generates F, (as an Ux-module) for 
every x E X. Theorem B: Hq(X, F(n)) = 0 for all 
4 > 0. This means that if we permit “poles” on 
Y of suflïciently high order, then F has suffï- 
ciently many sections and the higher coho- 
mology groups vanish. 

On a (nonsingular) algebraic variety X in 
PN we have the sheaf 0 of germs of holomor- 
phic functions (the ?Structure sheaf as a com- 
plex manifold) and the sheaf Qalg of germs of 
holomorphic rational functions (the structure 
sheaf as an algebraic variety). Therefore we 
have two kinds of coherent sheaves, coher- 
ent analytic sheaves and coherent algebraic 
sheaves. In fact, the cohomology theories de- 
rived from them are isomorphic. More pre- 
cisely, for any coherent algebraic sheaf F, p 
= F BO,,, 0 is a coherent analytic sheaf. The 
correspondence F+,@ gives an equivalence 
between the tcategory of coherent algebraic 
sheaves and that of coherent analytic sheaves, 
thus giving an isomorphism of their cohomol- 
ogy groups. In other words, as far as the prop- 
erties that cari be expressed by cohomology- 
theoretic terms of coherent sheaves are con- 
cerned, there is no difference between the 
analytic and algebraic theories of projective 
algebraic varieties [Si]. 

G. Deformations of Complex Structures 

The deformation theory of complex structures 
was initiated by Kodaira and Spencer [36] in 
order to explain various phenomena in the 
theory of (compact) complex manifolds. A 
triple (X, rr, S) is called a family of compact 
complex manifolds if X and S are connected 
tanalytic spaces and x is a tproper holomor- 
phic mapping of X onto S such that (i) it is 
smooth, i.e., is locally identilïed with the pro- 
jection S’ x U+s’, where S’ and U are open in 
S and C”, respectively, and (ii) every fiber V,= 
n-‘(s) of rc is connected. Vs is then a compact 
complex manifold. We sometimes Write { K}sas 
instead of (X, rc, S). S is called the parameter 
space of the family. Take a point o E S and fïx 
it. We say that Vs is a deformation of Vo for any 
s E S. There are a neighborhood s’ of o in S and 
a diffeomorphism n-‘(S’)-+S x Vo (Kuranishi 
[39]). Thus every Vs, SES’, determines a tcom- 
plex structure on a tïxed differentiable mani- 
fold. We say that the complex structure of V,, 
SES’, is a deformation of that of Vo. 

Now (X, n, S) = { I/s}sss is said to be complete 
at o if for any family (Y, p, T) = { w}lET with a 
point O’E T and a holomorphic isomorphism 
z : W,, + Vo, there is a neighborhood T’ of o’ in 
T and holomorphic mappings f: T’+S and 
h:p-‘(T’)-+X such that (i)fp=&, (ii)f(o’)=o, 
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and (iii) h = I on W,.. In this case, if T’ is SU~~I- 
ciently small, then h induces a holomorphic 
isomorphism h,: II+ Vfctj, for any t E T’. Hence 

1 USES contains a11 small deformations of Vo. 
On the other hand, { K}ses is said to be effec- 
tively parametrized at o if the Kodaira-Spencer 
mapping (Kodaira-Spencer map) pO: T,S+ 
H’(Vo, 0) is injective, where T,S is the Zar- 
iski tangent space to S at o and 0 is the sheaf 
of germs of holomorphic vector lïelds on Vo. 
Here, the linear mapping pu is defmed by 
p,(û/h) = { (agj,Jas)(lx,.,}, where a/& E T,S and 
gjjk are the coordinate transformations (zj, s) = 
(gjk(zk, s), s), using the smoothness of 7~. p,(a/as) 

is called the infinitesimal deformation to the 
direction alas. 

Kuranishi’s fundamental theorem [39,40] 
states: For any compact complex manifold V, 
there exists a family { I/s}scs with a point o E S 
such that (i) it is complete at every point of S, 
(ii) is effectively parametrized at o, and (iii) 
v,= v. 

The parameter space S in the theorem is 
called the Kuranishi space or the local moduli 
space of V. It is given as the zeros of a holo- 
morphic mapping f: U-t H*( V, 0) with f(0) = 0, 
where U is a neighborhood of 0 in H’(V, 0). 
Hence (1) if H*( V, 0) = 0, then S = U is nonsin- 
gular (Kodaira, Nirenberg, and Spencer [37]; 
(2) if H’(V,O)=O, then S=(O), i.e., one point 
(e.g., V=P”(C), the complex projective space). 

Kuranishi’s theorem was generalized to a 
compact analytic space V by Grauert [ 181 and 
A. Douady [8]. 

There are Kuranishi-type theorems in the 
deformation theory of other abjects: (1) com- 
pact analytic subvarieties of an analytic space 
(Douady [9]; - 23 Analytic Spaces G), (2) 
holomorphic mappings (Y. Miyajima [41]), 
(3) germs of analytic spaces with tisolated 
singularities [7], etc. 

SO far, only the local theory of deformations 
has been developed. The global theory is not 
yet in a satisfactory state. Its final purpose is 
to construct moduli spaces and to understand 
them. For a compact differentiable manifold V, 
we denote by M(V) the set of a11 isomorphism 
classes of complex structures on V. It is diflï- 
cuit in general to determine the set M(V). As 
yet unsolved problems are: (1) 1s M(S6) non- 
empty? (2) Does M(P”(C)) (n 2 3) consist of one 
point? (II~(~*(C)) is known to consist of one 
point (S. T. Yau; - 232 Kahler Manifolds C). 

I f  M(V) has a reasonable structure (e.g., an 
analytic space structure) and a universal prop- 
erty, then we cal1 it the moduli space (- 11 
Algebraic Functions F, 16 Algebraic Varieties 
W). Kodaira [34, III] constructed the moduli 
space of Hopf surfaces. Only a few examples of 
moduli spaces are known. It is to be noted 
that moduli spaces cannot in general exist. 



72 H 
Complex Manifolds 

One of the reasons for this is that there may 
exist jumpings of structures (Kodaira and 
Spencer [36]). 

As for talgebraic manifolds (varieties), there 
are two known methods for the moduli prob- 
lem: (1) Griflïths’ period mapping (- 16 Alge- 
brait Varieties V) and (2) Mumford’s geomet- 
rit invariant theory (- 16 Algebraic Varietics 

v, w. 

H. Monoidal Transformations 

Let Y be an analytic subspace of a complex 
manifold X, which is detïned by a nonzero 
coherent sheaf of ideals 3;. Then X has an 
open covering such that for each member U of 
the covering, there are elements ‘pi, . . , <P,,,E 
I( U, 3) that generate the stalks 3, at a11 x E U. 
Let W’ be the graph of the holomorphic map- 
pingxr+(cp,(x):<p,(x):...:cp,(x))from u-un 
Y to Pm-l, and denote by W the closure of W’ 
in U x Pm-l. Then W is an analytic space, pos- 
sibly with singularities, which is independent of 
the choice of the generators { qj} and is deter- 
mined uniquely by U and 3. Therefore a11 the 
w’s cari be glued together to form an analytic 
space r? and to determine a holomorphic map- 
ping p:bX. We cal1 p the monoidal transfor- 
mation (or blowing-up) of X with tenter 3 or 
with tenter Y. When Y is a point, p is also 
called a locally quadratic transformation or a 
<r-process. When Y is an analytic submanifold, 
f  also is a manifold, y=~-‘( Y) is a nonsin- 
gular divisor on r?, and p-‘(y) z pkm’ for a11 
y~ Y, where k is the codimension of Y. More- 
over, the line bundle [ 71 restricted to each 
tïber p-‘(y) is isomorphic to the Hopf bundle 
L on Pk-‘, i.e., the line bundle associated to 
the natural C* bundle Ck+Pk-‘. Conversely, 
suppose that we are given Pz r? and a holo- 
morphic mapping po: & Y with the property 
as above SO that, in particular, p;‘(y) z Pk-’ 
and [P] r L on p;l(y) for a11 y~ Y. Then there 
exists a complex manifold containing Y as a 
submanifold such that x is obtained by the 
monoidal transformation of X with tenter Y 
as above (S. Nakano [47]). Let f:  X-+ Y be a 
proper modification of complex manifolds (or 
analytic spaces). Then there exists a proper 
holomorphic mapping h: Y’- Y such that 
f-i oh: Y’-+X is holomorphic, where over 
any relatively compact subdomain of Y, h is 
obtained by a t-mite succession of monoidal 
transformations with nonsingular centers 
(Hironaka). The result is called Chow’s lemma. 

1. Fiber Spaces 

A triple of compact complex manifolds V, W, 
and a surjective holomorphic mapping f: 
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V+ W is called a fiber space if general tïbers 
,f-‘(w) are irreducible. In addition, if both V 
and W are algebraic, it is called an algebraic 
fiber space. 

For a compact complex manifold V, letting 
K, denote the canonical line bundle of V, 
detïne a subtïeld R of K(V) to be {ol/wZ, 
where co,,co,~H~(V,fi) for some m>O}. The 
transcendental degree of H over C is denoted 
by K(V), which we cal1 the Kodaira dimension 
of v. 

IfR=O, then defme K(V)= -00. If  K(V)= 
dim V, then Vis said to be of general type, 
and there exist a projective manifold X and a 
bimeromorphic holomorphic mapping p: X+ 
V. If  K(V) > 0, there exists a fiber space f: V* + 
W such that (1) V* is bimeromorphically 
equivalent to V, (2) dim W= K(V), and (3) some 
general libers f-‘(w) satisfy ~(f~‘(w))=O. In 
general, for a liber space f: V+ W, we have 
~(V)<~(f~l(w))+dim W, wheref-‘(w) is a 
general tïber. Moreover, if it is algebraic, an 
inequality of the form K(V) > ~(f-l(w)) + IC( W) 
is called the conjecture C,, n being dim V. 
C, has been verified by K. Ueno, E. Viehweg, 
T. Fujita, and Y. Kawamata [13,14,32,33,54- 
57] in the following cases: (1) n < 3, (2) when 
general tïbers are curves, (3) dim w = 1, K(W) = 1, 
(4) K(V) > 0, and W is of general types, etc. By 
using the results of case (4), Kawamata proves 
that an algebraic compact complex manifold V 
is birationally equivalent to an Abelian variety 
if and only if K(V) = 0 and the irregularity of V 
equals the dimension of V [32]. 

J. Analytic Surfaces 

In what follows, an analytic surface means a 2- 
dimensional compact complex manifold. For 
an analytic surface S, an exceptional curve on 
S and a (relatively) minimal model, etc., are 
delïned with respect to bimeromorphic map- 
pings in analogy with the corresponding con- 
cepts for an algebraic surface (- 15 Algebraic 
Surfaces). Let Cc S be an irreducible curve on 
S. Then there exists a holomorphic mapping cp 
from S onto another surface s’ such that C~(C) 
is a point and such that <p induces the isomor- 
phism S-C%S-C~(C) if and only if C2= -1 
and C is a nonsingular rational curve (Grauert 
[ 171). S has a minimal mode1 if and only if S is 
not a ruled surface (Kodaira [34, III]). The 
irregularity q = h ‘3 ‘, the geometric genus ps, i- 
genus Pi, etc., are also detïned in the same way 
as in the case of algebraic surfaces. Note that, 
in general, ho,’ #h’,‘. The Riemann-Roch 
theorem and M. Noether’s formula are valid 
also for an analytic surface (Atiyah and Singer; 
- 366 Riemann-Roch Theorems C). 
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K. Classification of Surfaces 

The classification of analytic surfaces by the 
aid of their numerical invariants was com- 
pleted by Kodaira and includes as a special 
case Enriques’s classification of algebraic 
surfaces [34, III]. By an elliptic surface we 
mean a surface from which there exists a sur- 
jective holomorphic mapping cp onto an alge- 
brait curve A, such that for a.general point p 
on A, <p-‘(p) is an irreducible nonsingular 
elliptic curve. If  a(S) = 1 or I~(S) = 1, S has a 
unique structure as an elliptic surface. The 
image by <p of the points on S at which <p is 
not of maximal rank is a lïnite subset {a,, 
. . , a,} of A. Let ti be a local coordinate on 
A around ai with t,(a,)=O. We cal1 a singular 
fïber of <p the divisor on S defined by { ti o cp 
= 0). The structure and the construction of 
singular libers of elliptic surfaces have been 
completely determined by Kodaira. By an 
elliptic surface of general type we mean a 
surface with Kodaira dimension 1. If  ~C(S) = 2, 
S is projective algebraic and is called a surface 
of general type. If  a(S) = 0, then there exists 
only a lïnite number of irreducible curves on S. 
By a Hopf surface we mean a surface whose 
universal covering is C? - (0,O). If  an analytic 
surface S is homeomorphic to S’ x S3, S is a 
Hopf surface. Let b,(S) be the vth Betti num- 
ber of S. If  a(S)=O, b,(S)= 1, b2(S)=0, and S 
contains a curve, then S is a Hopf surface 
(Kodaira). By a surface of class VII,, we mean 
a minimal surface S with b,(S)= 1. M. Inoue 
[26] constructed three families of surfaces of 
class VII, with b, =0 which contain no curves. 
These are SF) (ME%(~, Z)) and SKj,,,r,, and 
ShTj,s,r (NeSL(2, Z), p, q, r EZ, teC) which 
have H x C as their universal covering sur- 
faces, H being the complex Upper half-plane. 
These have a line bundle L such that Ho@’ @ 
6(L)) = 0. This property characterizes these 
Inoue surfaces among VII, surfaces with b, = 
0 which contain no curves. A couple of new 
surfaces of class VII, with b, > 0 were con- 
structed and studied by Inoue, Ma. Kato, 
T. Oda, 1. Nakamura, and 1. Enoki [lO, 27-29, 
461. Some of these have close connections 
with cusp singularities of Hilbert modular sur- 
faces, torus embeddings, and global spherical 
shells. Enoki’s surface is denoted by S,,,,, 
(n > 0,O < Iu[< 1, t E C”) and has the following 
properties: (1) class VII, and b2 = n, (2) there 
exists a connected curve D with Dz =O, (3) 
S “,%f -D is an affine bundle over an elliptic 
curve. Properties (1) and (2) characterize S,,,,, 
(Enoki). 

Let K, denote the canonical line bundle of 
an analytic surface S. An analytic surface S is 
said to be a K3 surface, if K, is trivial, i.e., if 
there exists a nonvanishing holomorphic 2- 
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form o and if q = 0. K3 surfaces are simply 
connected and are deformations of a nonsin- 
gular quartic surface in P3 (Kodaira). We shall 
delïne the period mapping of K3 surfaces. Let 
L be a free Abelian group of rank 22 with the 
pairing ( ) which is the direct sum of the two 
copies of -Es and three copies of U = Ze, + 
Ze, with (el,e,)=(e,,e,)=O, (e,,e,)= 
(e,, e,) = 1, where -Es denotes the lattice with 
the pairing corresponding to the Dynkin 
diagram E, with the opposite signs. Hz($ Z) 
with the intersection form is such a pair, con- 
sisting of S and ( ). A marked K3 surface is 
delïned to be a pair (S, $), where S is a K3 
surface and $ :Hz(& Z)+L is an isomorphism 
preserving ( ). The class [w] of w is a base of 
Hz,’ and satislïes ([a], [w]) =0 and ([w\,[Gj) 
>O. Let P(L,) denote the 21-dimensional 
projective space associated with L, = L Oz C. 
B={(u)EP&-)I(a,a)=O, (a,ü)>O} isan 
open set of the quadric G8c = { (~)EP(L,) 1 (a, a) 
=O}. 3 is the set of a11 Hodge structures on 
L,. The period of a marked K3 surface (S, $) is 
defïned to be (&Col). Every point of G8 is the 
period of some marked Kahler K3 surface. If  
the periods of two marked Kahler K3 surfaces 
(S, $) and (S’, $‘), coincide then S is isomorphic 
to s’. 

An analytic surface with ps = q = 0 and 
KS2 g 0 is called an Enriques surface, which 
has a K3 surface as its universal covering. An 
Enriques surface is an algebraic elliptic surface. 
An analytic surface with 4 = 1 and KS1 2 z 0 is 
said to be a hyperelliptic surface, which has an 
Abelian surface as an unramified covering. It is 
an algebraic surface and is an elliptic bundle 
over an elliptic curve. The classification of 
minimal surfaces is given in Table 1. The fol- 
lowing relations hold among these invariants: 
Let b+ (b-) be the number of positive (nega- 
tive) eigenvalues (counted with multiplicities) 
of the intersection matrix on H’(S,R) and ci be 
the ith Chern class of S. Then 

(1) b+ -b - = i(c: - 2c,) (Hirzehruch signa- 
ture theorem); 

(2) if b, is even, q=h’,‘=+b, and b+= 

Qq+ 1; 
(3) if b, is odd, q=h’,‘+ 1 =i(b, + 1) and 

b+ =2p,. 
Let c: and c2 denote the Chern numbers of 

an analytic surface S, i.e., CT = (Kz) and c2 is 
the Euler number of S. Then 3c, > CT [43], and 
if equality holds, then K, is ample (Y. Miyaoka) 
(- 232 Kahler Manifolds C). I f  S is a surface 
of general type which is minimal, then c: > 
0, the bigenus P2 > 2 and the m-genus P,,, is 
m(m- l)c$2+ 1 -q+pg for m>2. For each 
m > 5, the mth canonical mapping of S is a bi- 
rational holomorphic mapping onto its image 
(Kodaira, E. Bombieri [SI). In general, c: > 2pg 
-4, and if the canonical mapping, i.e., the 
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rational mapping associated with K,, is bira- 
tional, then c: > 3p4 - 7. For certain kinds of 
surfaces of general type, E. Horikawa suc- 
ceeded in determining completely the structure 
of surfaces obtained as deformations of a given 
surface. Among others, every minimal surface 
with ps = 4, q = 0, and c$ = 5 is a deformation of 
a nonsingular quintic surface [22,23]. 

Table 1. Classification of Minimal Surfaces 
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1 2 hyperelliptic surface 

elliptic surface 
1 1 belonging to 

class VII, 

0 0 K3 surface 

1 1 
/ / 

surface of class 

VII, 
I  

For a, b > 0, let C,,, be the set of isomor- 
phism classes of a11 minimal surfaces with c: = a 
and 1 - q + pg = b. D. Gieseker [ 151 proved the 
existence of N and constructed the mapping 
h: &+PN SO that the following hold: (1) h is 
injective; (2) if f :  X + Y is a smooth holomor- 
phic mapping such that a11 h ml (y) represent 
some classesE&,, then the set-theoretic map- 
ping f: Y+PN induced from h is a morphism 
of schemes; (3) h(&,) is a locally closed sub- 
variety of PN. Hence, h(ZOab) is a moduli variety 
of surfaces of general type with c: = a and l- 
q+p,=b. 

For each m with 1 <m < 9, there exists a 
minimal surface of general type with pg = q = 0 
and c: = m. 

I f  there exist a compact analytic surface S 
and a curve C on S such that S-C is biholo- 
morphic to a complex manifold M, then we 
say that S is a compactification of M with 
boundary C. Every compactification of C2 is a 
rational surface (Kodaira, J. Morrow [45]). 
Every compactilïcation of C x (C - (0)) is also 
rational (T. Ueda [53]). However, a11 compac- 
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titïcations of (C - { 0))’ are rational surfaces, 
certain kinds of Hopf surfaces, or Pi-bundles 
over elliptic curves as constructed by Serre 
(Ueda). 
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73 (V.15) 
Complex Multiplication 

A. Classical Theory 

If the ratio w,/w2 of two periods wr, w2 of an 
telliptic function f  belongs to an imaginary 
tquadratic field K, then there exists an alge- 
brait relation between f(z) and ,f(nz) for any 
n in K, and such an f  is said to have complex 
multiplication. This phenomenon for the tsn 
function with modulus fi was discovered 
by C. F. Gauss and was applied to the prob- 
lem of dividing a tlemniscate into five arcs of 
equal length. More generally, N. H. Abel 
showed that the special dividing equation of 
an sn function with complex multiplication 
is algebraically solvable. From a number- 
theoretic point of view, L. Kronecker conjec- 
tured that every +Abelian extension of an 
imaginary quadratic number tïeld K is deter- 
mined by a transform equation of an elliptic 
function with complex multiplication by a 
number of K (1880). This is an analog of the 
fact, announced by Kronecker and proved by 
H. Weber, that every Abelian extension of the 
rational number field is a subfield of a tcy- 
clotomic lïeld. Kronecker’s work was con- 
tinued by Weber [L], and his conjecture was 
proved by T. Takagi (1903) for K = Q(n), 
by T. Takenouchi (1916) for K =Q(e2”‘j3), and 
by Takagi (1920) for the general case using 
tclass lïeld theory. H. Hasse [S] and M. Suga- 
wara simplified the theory of complex multi- 
plication, and Hasse noticed a relationship 
between complex multiplication and +Con- 
gruence zeta functions. Working from Hasse’s 
idea, M. Deuring constructed the theory of 
complex multiplication purely algebraically 
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and determined +Hasse’s zeta function of an 
elliptic curve with complex multiplication. 

For the rest of this article, K always stands 
for an imaginary quadratic field. Let L be a 
+lattice group on the complex plane C gen- 
erated by o, , w2, and let z be a complex vari- 
able. Detïne functions y~, g2, g3 as follows: 
fJ(Z,~)=@(Z;C0,,C02)=Z-2+~((Z-W)~2- 

w-*), g2(L)=g2(w,,w2)=60Cw-4, g&)= 

g3(w1, CO*) = 14OC wm6, where the sum x is 
over the elements w of L except 0. Let @’ be 
the derivative of @; then z-(1, m(z), p’(z)) is a 
one-to-one correspondence between the points 
on the complex torus C/L and those on the 
telliptic curve E; X,X$ =4X: -g,XgX, - 
g3Xi in the projective plane. If  the quotient 
wl/wZ generates K, then the ring of analytic 
endomorphisms of C/L (i.e., the ring of endo- 
morphisms of E) is isomorphic to a subring of 
the +Principal order o of K. In particular, if the 
lattice group L is an tideal of K (for K c C; - 
347 Quadratic Fields), then the ring of endo- 
morphisms coincides with o. The function 
J(r)=J(E)=J(L)=2633g2(L)3/A(L)(A(L)= 
g2(L)3-27g3(L)2) of r=wl/wZ, Imr>O, is 
a tmodular function of level 1, and J(E) is 
called the invariant of the elliptic curve E. 
If  E has a complex multiplication, then J(E) 
is an algebraic integer. Then the three main 
theorems of the classical theory of complex 
multiplication cari be stated. 

Theorem 1. Let h be the tclass number of K, 
and let a,, , ah be a set of representatives of 
ideal classes of K. Then J(ar), , J(a,) are 
exactly the conjugates of J(a,) over K, and 
K(J(a,)) is the maximal unramified Abelian 
extension (the tabsolute class lïeld) of K (- 59 
Class Field Theory). 

Next we detïne the function f  by 

.f(z;L)=g,g,A~‘.k3(z;L), 

K #Q(n), Q(e2”i’3), 

=g;A-‘.@(z; L)', K = Q(J-11, 

=g3Am1.&z; L)3, K = Q(e2zi’3). 

Theorem 2. Let o be the tprincipal order of K, 
m be an integral ideal of K, and a be an arbi- 
trary ideal of K. Choose a number t of K such 

thatm={J.EolÂ~Ea}.ThenK(J(a),,f(<;a))is 
the tclass tïeld for the tray modulo m. 

The number < in this theorem is obtained by 
a ml m(t) = 6, where b is an integral ideal be- 
longing to the ideal class of a-‘m. Thus f(<; a) 
is a “special value” of an elliptic function as 
well as of a modular function. 

The tgeneral law of reciprocity, the tprin- 
cipal ideal theorem, and the ramification in the 
class lïeld in theorem 2 cari also be described 
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in terms of elliptic functions or elliptic curves. 
In general, the ring of endomorphisms of an 
elliptic curve defmed over a field k of charac- 
teristic 0 is either Z or an order of an imagi- 
nary quadratic Iïeld. On the other hand, if the 
characteristic of k is not zero, then the ring of 
endomorphisms may be an order in a detïnite 
tquaternion algebra. 

B. Complex Multiplication of an Abelian 
Variety 

Following Kronecker’s idea, D. Hilbert posed 
in his lecture at Paris (1900) the so-called 12th 
problem: to fmd an analytic function whose 
special values generate Abelian extensions 
over a given algebraic number field (- 196 
Hilbert). E. Hecke constructed unramified 
Abelian extensions of an imaginary biquadra- 
tic tïeld using +Hilbert modular functions 
[lO]. After this, there was no notable devel- 
opment concerning the problem until the 
theory of complex multiplication was gen- 
eralized to the case of +Abelian varieties, which 
was made possible by progress in algebraic 
geometry, in particular A. Weil% geometric 
theory of Abelian varieties (G. Shimura and 
Y. Taniyama [ 111). The following results 
have been obtained: Consider a triple (A, X, t), 
consisting of an Abelian variety A detïned over 
C, a tpolarization X of A, and a point t of A. 
Cal1 two such triples (A, X, t) and (A’, X’, t’) 
isomorphic if an isomorphism of A onto A’ 
maps X onto 3E’ and t onto t’. Then there exists 
one and only one subtïeld k, of C with the 
following property: In order for (A, 3E, t) and 
(A”, X”, t”) to be isomorphic for an automor- 
phism o of C, it is necessary and sufficient that 
o tïx a11 elements of k,. We cal1 k, the field of 
moduli of (A, X, t). I f  A is an elliptic curve E 
and if t = 0, then k, = Q(J(E)). In the higher- 
dimensional case, the lïeld of moduli is gen- 
erated by special values of a +Siegel modular 
function. 

If  F is a totally imaginary number field 
that is a quadratic extension of a totally real 
field F, of degree n, then there exists a set 
{<pi, . , cp,} of n different isomorphisms of F 
into C such that <pi = qj never occurs for i #j, 
where the bar denotes complex conjugation. 
We cal1 (F; { cp,}) a CM-type. 

If  a is an ideal of F, then L = {(cpi (tl), . , 
P”(CC)) E c” 1 m E a} is a lattice group in the n- 
dimensional complex linear space C”, and 
C”/L is analytically isomorphic to an Abelian 
variety A of dimension n in a complex pro- 
jective space. The tendomorphism ring ‘%(A) 
of A contains a ring that is isomorphic to 

the principal order o of F. Conversely, every 
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Abelian variety of dimension n such that %(A) 
contains a ring isomorphic to o cari be con- 
structed in this way. 

Let M be a normal extension of Q contain- 
ing F. Denote the Galois group of M by G 
and the subgroup of G corresponding to F 
by H, and put S = u1 <P~H, where (pA  ̂stands 
for a prolongation of the previous ‘pi to G. 
Then the following three conditions are equiv- 
alent: (i) ‘S(A)= o; (ii) A is simple; (iii) H = 
{ygGISy=S}. IfH*={SEGlhS=S}, then we 
cari choose &eG such that S= U,,H*$,. 
I f  F* is the subfield of M corresponding to H*, 
then (F*; {$,}) is also a CM-type, and F* = 
Q(C2 C~,(X) 1 c( E F). Moreover, for an ideal r of 
F*, n, $,,(r) is an ideal of F. 

Now let H,, be the group of ideals r of F* 
that are relatively prime to the norm à of 
an integral ideal m of F* and for which there 
exists a number 5 of F with 

Then H, is an tideal group modulo m in F*. 

Tbeorem 3. Assume that (U(A) g o, and let X be 
an arbitrary polarization of A. Denote a point 
of A with m={icolit=O} by t, and let k, be 
the lïeld of moduli of (A, X, t). Then k,, F* is the 
+class tïeld over F* corresponding to H,. 

The point t in theorem 3 always exists. In 
particular, if m = o, then t = 0. When A is an 
elliptic curve E, F is an imaginary quadratic 
lïeld and we have F* = K, and theorem 3 coin- 
cides essentially with the content of theorems 1 
and 2. If  n > 1, F = F* holds only in special 
cases. 

The theory of complex multiplication of A is 
closely related to the +Hasse zeta function of A 
(- 450 Zeta Functions). 
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A. Algebraic Properties of Complex Numbers 

A complex number is an expression of the form 
a + ib with arbitrary real numbers a and b and 
the imaginary unit i. Writing CI = a + ib, fi = 
c + id, we defïne a = B if and only if a = c and 
b = d. As regards algebraic operations with 
complex numbers, we delïne c( + b = (a + c) + 
i(b+d), a-B=(u-c)+i(b-d), ab=(uc-bd) 
+ i(ud + bc), and for fl# 0, i.e., c2 + dz # 0, 
a/P=(ac+ bd)/(c2 +d2)+ i((bc-ud)/(c2 +d’)). 
Then the addition and multiplication thus 
delïned obey commutative, associative, and 
distributive laws, and complex numbers form 
a +Commutative fteld with 0 = 0 + i0 and 1 = 
1 + i0 as its zero element of addition and iden- 
tity element of multiplication, respectively. The 
set of a11 complex numbers is usually denoted 
by C. 
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By assigning to each real number a a com- 
plex number a + i0, algebraic operations on 
real numbers are carried into those of the 
corresponding complex numbers. That is to 
say, the lïeld R of a11 real numbers is mapped 
isomorphically into the field C of a11 complex 
numbers. By identifying a with a + i0, we are 
taking R as a sublïeld of C. Also, 0 + i 1 Will 
be denoted simply by i. From the previous 
detïnition of algebraic operations, it follows 
that i2 = -1. Furthermore, since c( = u + ib 
=(u+iO)+(b+iO)(O+il), a+ib is nota mere 
symbolic expression but cari also be regarded 
as the outcome of algebraic operations on 
a, b, i in C. The real and imaginary parts of a 
complex number tl = a + ib are, by definition, 
a and b, denoted by Re LX and Im LX, respec- 
tively. A complex number that is not a real 
number is sometimes called an imaginary 
number; in particular, a complex number CI 
with Re c( = 0 is called a purely imaginary 
number. For each complex number CI = a + ib, 
we delïne its conjugate complex number as 
a - ib, and denote it by oi. We then have a + /3 
= oi + p and ab = oip. The mapping cc+?? is an 
tautomorphism of C which leaves each ele- 
ment of R invariant. Also, the following rel- 
ations hold: Re c( = (c( + oi)/2 and Im c( = (c( - 
Z)/(2i). 

Regarded as an overtïeld of R, C is an 
textension lïeld of R of degree 2 obtained by 
the adjunction of i, which is a root of an irre- 
ducible equation x2 + 1 =O. The important 
algebraic property of C is that it is talgebra- 
ically closed. Namely, for any polynomial f(x) 
with coefficients in C, the equation f(x) = 0 
possesses at least one root in C (+Gauss’s 
fundamental theorem of algebra). 

B. Topology of C 

The absolute value (or modulus) of a complex 
number c( = a + ib, denoted by 1~1, is by delï- 

nition 1 cr = Jaz+b2 = &. If  CI is real, then 
the absolute value of CI in the sense of complex 
numbers is identical to the one in the sense of 
real numbers. It always holds that 1x1 >O and 
lal=Ooa=O. It follows further that la+fil< 

bl+lBb l@I=l4lPl, ad l4=l4. 
For each pair of complex numbers a and fi, 

detïne p(a,B)=la-PI. Then with p(a,/I) as the 
tdistance function, C satistïes the axioms for a 
tmetric space, and in particular, lim,,, a, = 
a,olimp(a,,a,)=Oolimla,-a,l=O* 
(lima, = a, and lim b, = b,) (where a, = a, + ib,, 
a, = a, + ib,). From this it is easily seen, as in 
the case of the set R of a11 real numbers, that C 
also becomes a tlocally compact and tcom- 
plete metric space. 

With respect to this topology, the four oper- 
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ations (except for division by zero) are con- 
tinuous: n,+cc, and /I’,-&, imply c(,,+/I’+ 
CC~+[$,; c(,-~&w-P~; c(,,/jn~a,,/jO; and 
C(&~C(,&, (where in the last case we assume 
/5’,, # 0 and /&, # 0). Thus C becomes a topo- 
logical iïeld. Furthermore, the assignment 
x --toi gives a continuous mapping C + C, a 
homeomorphic automorphism of C. 

C. Tbe Complex Plane 

If in a plane to which is assigned rectangular 
coordinate axes a complex number c( = a + ib 
is represented by a point (a, b), then the plane 
is called the complex (number) plane (Gauss- 
Argand plane or Gaussian plane) (Fig. l), and 
the point representing c( is called simply the 
point CI. The abscissa and ordinate axes are 
called the real and imaginary axes, respec- 
tively. A point a = a + ib cari be represented by 
+Polar coordinates r, 0 with the origin and the 
real axis as the pole and the generating line, 

respectively, where r = ,,/m is the absolute 
value /ai of c( and 0 is the argument (or ampli- 
tude), denoted by arga, of a. The argument 
of a is uniquely determined mod 27t if a #O 
and is an arbitrary real number if a = 0. 

ty 
imaginary 

Fig. 1 

The absolute value /a1 of a complex number 
a, regarded as a vector from the origin to the 
point CI, is the length of this vector. For com- 
plex numbers a and [j, to the sum of the vec- 
tors a and /I corresponds the sum CI + /I of the 
complex numbers. A complex number a, in 
terms of its absolute value r and argument 0, 
is expressed as a = r(cos f3 + i sin O), which is 
called the polar form of a. For polar forms 
the following hold: oi = ~(COS 0 - i sin 0) = 
r(cos( -0)-t isin( -0)); a-l =??/i/l~l’= 
r-‘(cos(-O)+isin(-@)(a#O);anda,a,= 
r,r,(cos(0, +O,)+isin(0, +&)), where Iaj’jl=rj 
and arg aj = Oj for j = 1, 2. This last relation 
when r, = r2 = 1 is called De Moivre’s formula. 
The nth roots of unity in C are given by pj = 
COS 2rrj/n + i sin 2nj/n (j = 0, 1, , n - 1) (Fig. 2). 

In the complex plane, the mapping a + oi 
corresponds to the keflection of the plane in 
the real axis, a + a +/I to the parallel +trans- 
lation along a vector b, a + a/l (p#O) to the 
trotation through the angle argb followed by 

a thomothetic transformation with tenter 
0 and constant ratio Ibl, and a + a 1 to 
the tinversion with respect to the unit circle 
(X(lal=l}. 

The distance p(a, fi) = la-p 1 between CI and 
fl in C coincides with their Euclidean distance, 
provided that a and /J’ are regarded as points 
in the Euclidean plane, SO that the complex 
plane is tisometric, and accordingly homeo- 
morphic, to the Euclidean plane. 

Fig. 2 

D. Tbe Complex Spbere 

In the rest of this article, P denotes the com- 
plex plane and z denotes the sphere of radius 
1, with 0, the origin of P, as its tenter. The 
points N(O, 0,l) and S(O,O, -1) of z Will be 
called the north and south pole, respectively 
(Fig. 3) where the 1st and 2nd coordinate axes 
are the real and imaginary axes of P, respec- 
tively, and the 3rd coordinate axis is ortho- 
gonal to P. A straight line from N through a 
point z (a complex number) in P intersects 
Z at a point Z=(x,, x2, x3) different from 
N, where z=(x, +ixJ(l -x3), x, =(z+z)/ 
(l+(zl’),x,=(z-Z)/(i(l+I~[~)),andx,= 
(~z~2-l)/(~z~2+1).Themappingz~Ziscalled 
a stereographic projection from N, by means of 
which P and X- {N} become tconformally 
equivalent to each other. Consequently z cari 
be represented by a point Z of L- {NJ, and 
L thus used is called a complex sphere (or 
Riemann sphere). Let us adjoin to the complex 
plane P a new element, denoted by CU, called 
the point at infinity, which corresponds to the 
only exceptional point N of C. The topology 
of the complex plane with CO cari be intro- 
duced by the corresponding topology of the 
Riemann sphere. Indeed, the family of all 
the sets {z\ IzI > M} u {CD} for M>O forms a 
+local base around CU. By introducing local 
complex coordinates i = l/z into the neigh- 
borhoods of ~0, each element of this local base 
is represented as {[l I[l <IV-‘}, in which the 



74 E 
Complex Numbers 

282 

convention [ = 0 is adopted for z = CO. The 
complex sphere thus delïned cari be regarded 
as a tRiemann surface (i.e., a 1-dimensional 
tcomplex manifold). 

The complex plane (complex sphere) whose 
points are represented by a variable z or w is 
called a z-plane or a w-plane (a z-sphere or a NJ- 
sphere). 

Fig. 3 

E. Linear Fractional Functions 

Given complex numbers a, b, c, and d with 
ad - hc # 0, we defïne a linear fractional func- 
tion (or simply linear function) by 

az+h 
W- 

cz+d’ 
(1) 

As a mapping from the z-sphere into the w- 
sphere, this linear function is called a Mobius 
transformation (linear fractional or simply 
linear transformation). The usual linear trans- 
formation, i.e., the one with c = 0 in the pre- 
sent case, is sometimes distinguished as an 
entire linear transformation. Since (1) depends 
only on the proportion a : h : c : d, we cari 
assume ad - hc = 1 without loss of generality. 

The transformation (1) is tholomorphic and 
+univalent on the whole z-sphere with only 
one exceptional tpole at - d/c (CO if c = 0) of 
order 1, and the inverse of (1) is also a linear 
fractional function. The set of all linear trans- 
formations forms a tgroup with composition 
of transformations as the group operation. 
One of its subgroups is the tmodular group. 

Linear transformations carry any circle 
of the complex plane (or of the Riemann 
sphere) into a circle of the same plane (or of the 
same sphere) if we adopt the convention that 
straight lines are a special kind of circle. (In 
the case of a Riemann sphere, no such conven- 
tion is necessary.) Given on a plane a circle 
with tenter o and radius r and two points p 

and p’ on a half-line issuing from o satisfying 
op.op’ = r’, the points p and p’ are called 
symmetric points (or reflection points) with 
respect to the circle. The transformation p-p 

is called the inversion with respect to this cir- 
cle. In the complex plane, let z and z’ be sym- 
metric points with respect to a circle C. Sup- 
pose that by a linear transformation, z, z’ and 

C are carried to points w, w’ and a circle D, 
respectively; then w and w’ become symmetric 
with respect to the circle D (principle of reflec- 
tion). Thus symmetricity is invariant under 
linear transformations. Also the tanharmonic 
ratio of any four points z,, z2, zjr and zqr 

(z*>Z2;z3rz4)=(Z* -z3Mz, -z‘J:(z2-z3)/ 

(z2 -zJ, is invariant under a linear transfor- 
mation; i.e., (z1,z2;z3,zq)=(w1, w,; w3, wq) 
holds, where wj is the image of zj under a linear 
transformation (j = 1,2,3,4). 

F. Normal Forms of Linear Transformations 

There exist fixed points of the transformation 
(1) on the Riemann sphere, i.e., points satisfy- 
ing z = (az + h)/(cz + d). The number of fixed 
points is 2 or 1, except when w = z. I f  the trans- 
formation has two fïxed points, they Will be 
denoted here by p and q. The natural conven- 
tion p = q is adopted if the transformation has 
one fïxed point. I f  c = 0, then p or q is CO, and 
furthermore if c = a - d = 0, then p and q are 
both CO. 

For unequal finite p and q, (1) cari be re- 
written in the following normal form: 

W-P Z-P cc=a+cp, 
W-P z-q’ a-cq 

in which, according as arg c( = 0, IN/= 1, or 
otherwise, (1) is called a hyperbolic (Fig. 4), 
elliptic (Fig. 5), or loxodromic transformation, 
respectively. This classification cari be applied 
also for fïnite p and intïnite q, i.e., to the trans- 
formation w - p = a(z - p). Furthermore, for 
p = q # CO, (1) is rewritten in the following 
form: 

p=L 
a-cp’ 

Fig. 4 
Hyperbolic transformation. 

Fig. 5 

Elliptic transformation 



283 75 A 
Computers 

In this case (1) is called a parabolic transfor- 
mation (Fig. 6). For p = q = CO, i.e., if w = z + 8, 
(1) is also called parabolic. We cari easily de- 
termine to which class (1) belongs from the 
discriminant D = (a + d)* - 4 of the quadratic 
equation cz2 -(a -d)z -b = 0 obtained from 
z=(az+ b)/(cz+d) with ad-bc= 1 by multi- 
plying both sides by cz + d. I f  a + d is real, 
then according as D > 0, < 0, or = 0, (1) is 
hyperbolic, elliptic, or parabolic, respectively, 
and if a + d is not real, then the transforma- 
tion is loxodromic. 

Fig. 6 
Parabolic transformation. 

Let D and D’ be two arbitrary circular disks. 
Then there always exists a linear transforma- 
tion which gives a one-to-one tconformal 
mapping from D ont0 D’. Conversely, any 
mapping with this property is given only by 
linear transformations (provided that the half- 
plane having a straight line together with the 
point at infïnity as its boundary is regarded as 
a closed disk), which are uniquely determined 
by giving three points a, b, c from the bound- 
ary of D and as their corresponding points, 
three arbitrary points a’, b’, c’ from the bound- 
ary of D’. 

G. Tbe Poincaré Metric 

Since conforma1 mappings from the domain 
IzI < 1 onto IwI < 1 are given by the trans- 
formations W=E(Z-zO)/(l -Zgz) ([E[= 1, 

IzOI < 1) (- Appendix A, Table 13), for corre- 
sponding z and w it holds that 

Idzl/(l - 1~1~) is called Poincaré3 differential 
invariant. With a metric having ds = ldzl/( l- 

1~1~) as its +line element, the unit disk IzI < 1 
becomes a +non-Euclidean space in the sense 
of Lobachevskii, and the metric is called the 
Poincaré metric. Furthermore, since the trans- 
formations (2) leave the length of curves invar- 
iant, they cari be regarded as tmotions in this 
space, where the tgeodesic through two points 

Zl and zz is the circular arc orthogonal to the 
unit circle. I f  we denote the intersections of the 
arc with the unit circle by z3 and zqr then the 
+non-Euclidean distance between two points 

z, and z2 along the geodesic is given by 
(1/2)log(z,, z,; z3, z,), provided that the points 

Z4~ZlrZ2, z3 are arranged on the arc in this 
order (- 285 Non-Euclidean Geometry). 
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A. History 

Since the beginning of civilization, people 
have utilized tools for aiding computation. In 
Japan, bamboo computing rods were used in 
the 7th Century; before the close of the 16th 
Century, the abacus was imported from China 
(- 230 Japanese Mathematics (Wasan)). The 
fïrst calculator capable of performing the four 
arithmetic operations automatically was de- 
signed by W. Schickard of Tübingen Univer- 
sity (1623). After that, B. Pascal independently 
made his famous adding machine; this was 
improved by G. W. Leibniz SO that it was able 
to execute multiplications and divisions. 

Most calculators manufactored today are 
electronic; however, many of these machines 
are not “programmable” and hence require at 
every step of computation a manual operation 
for specifying the machine operations to be 
executed. On the other hand, modern auto- 
matic computers cari execute automatically a 
sequence of operations according to a given 
program without any manual intervention. 

The automatic computer was conceived by 
the English mathematician C. Babbage in the 
19th Century, but mechanical engineering at 
that time was not advanced enough to allow 
the construction of such a computer. His idea 
was fïrst realized by the relay computers 23 of 
K. Zuse (1941) and Mark 1 of Harvard Uni- 
versity (1944). In 1947, the fïrst electronic 
computer, ENIAC, appeared, in which vacuum 
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tubes were utilized instead of mechanical com- 
ponents. Since then, the capabilities of com- 
puters have increased rapidly and it cari be 
said that we now live in the “computer age.” 

B. Principles of Modern Computers 

Information processing in a computer is based 
on communication among its constituents by 
electric signals. In digital computers, informa- 
tion is encoded as a sequence of binary num- 
bers 0, 1, whereas continuous values are al- 
lowed in tanalog computers. The minimum 
quantity of information in digital computers 
is therefore a binary digit, called a bit. Since 
continuous values fluctuate on account of 
electric noise in the circuits, digital computers 
have the advantage of maintaining high preci- 
sion during computation. 

The binary numbers 0, 1 are represented in 
practice by two distinct electric signals: two 
distinct voltages, two distinct phases of altcr- 
nating current, the existence or nonexistence 
of a pulse, etc. A system of circuits is called 
synchronous when it contains a clock, a gener- 
ator of periodic pulses, which synchronizes 
the transmission and transformation of in- 
formation. In an asynchronous system, circuits 
execute each step of information processing 
independently and advance to the next step 
after verifying the termination of the preceding 
step. 

In ENIAC, a program was inserted into the 
computer by carefully connecting many con- 
trol lines on plugboards. Since this caused 
much trouble in inserting the different pro- 
grams needed for different jobs, J. von Neu- 
mann proposed encoding programs in se- 
quences of binary digits and storing these 
programs in the memory unit of the computer. 
His principle, the stored program principle, was 
realized by EDSAC (1949) and has since been 
widely used. 

An automatic computer in general con- 
sists of the following tïve units: the arithme- 
tic unit, memory, control, input, and output 
(Fig. 1). These units are interconnected by 
wires that exchange information in the course 
of computation. 

Fig. 1 

Construction of electronic computers. 
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The arithmetic unit consists mainly of sev- 
eral memory registers and operational circuits 
associated with them. Each register stores a 
binary number of n bits (usually 16 <n < 64). 
An important building block of the opera- 
tional circuit is the basic adder of l-bit num- 
bers. A parallel adder of n-bit numbers cari 
be obtained by connecting n copies of the 
basic adder. Alternatively, a sequential adder 
cari be composed of a single basic adder which 
is utilized repeatedly to sum up bit by bit two 
binary numbers from the lowest bit, Subtrac- 
tion is usually carried out by adding the com- 
plement of the subtrahend. Multiplication is 
realized by shifting the multiplicand to the 
left and adding it to the intermediate sum; 
this addition may be omitted, depending on 
the relevent bit of the multiplier. In division, 
we shift the dividend to the left and if possible 
subtract the divisor from it. By recording at 
each step whether or not the subtraction is 
possible, we obtain the quotient. 

The memory unit stores the instructions 
and given data as well as the necessary data 
obtained in the course of computation. It is 
divided into many registers, each of which 
contains a number and is referred to by means 
of a serial number called an address. At present, 
high-speed memory units are usually made 
up of magnetic cores or integrated circuits. As 
auxiliary large-scale memory, there are also 
magnetic drums, disks, and magnetic tapes, 
etc. Other elements under investigation are 
extreme-low-temperature elements, chemical 
elements, optical elements, etc. 

The control unit repeats the following o(per- 
ations consecutively: (1) takes an instruction 
from the memory location indicated by the 
sequential control counter, (2) gets a data 
word from the memory according to the ad- 
dress part of the instruction, (3) decodes the 
function part of the instruction and sends 
control signals to appropriate circuits, and (4) 
increases the content of the sequential control 
counter by 1 and, after receiving end signals 
from the arithmetic unit, returns to step (1). 
For these purposes the control unit contains a 
counter, a decoder, an encoder to send control 
signais, and a register to store the instruction 
to be executed. 

The arithmetic, control, and memory units 
form the central processor of the computer. In 
contrast to the central processor, the input and 
output units are called peripheral devices. An 
input device receives the necessary information 
(a program and data); a tard reader reads 
punched cards, and a teletypewriter sends 
signals directly into the computer. An output 
device presents the results obtained by the 
computer. The results are usually printed by a 
teletypewriter or line printer. Magnetic tape 
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units cari be considered as auxiliary input- 
output devices, since tape reels are removable. 
The tape units cari accept prepared input data 
as well as record the results, the output. 

These devices are operated according to 
given input-output instructions under the 
control of the central processor. However, 
since every input-output device contains me- 
chanical components and is extremely slow in 
comparison with the central processor, a large- 
scale computer is often accompanied by sat- 
ellite computers which undertake the control 
of input-output devices. 

C. Instructions and Programming 

In stored-program operation, a computer 
performs a sequence of calculations according 
to given instructions. There are various types 
of instructions, but those most frequently used 
are single-address instructions, each of which 
contains a single-address part designating an 
operand. 

A program is a finite sequence of instruc- 
tions arranged suitably for the required com- 
putation. Programming, or making a program, 
is therefore the task of decomposing the re- 
quired computation into elementary steps each 
of which corresponds to an instruction. 

Every instruction is represented in a com- 
puter by a number, a numeric code, which is 
determined in a delïnite way by the construc- 
tion of the control unit. Before starting com- 
putation, instructions thus encoded are stored 
in the memory. In this sense, a program is a 
sequence of numbers. This sequence is called a 
machine-kmguage program. 

A program is usually divided into several 
blocks, called subprograms or suhroutines. 
Some subroutines are made in advance, espe- 
cially those for frequently required jobs such as 
evaluating elementary functions and manipulat- 
ing input-output devices, etc. The system of 
these ready-made programs is called software, 
in contrast to the hardware (Le., mechanico- 
electronic equipment) of the computer. Quite 
often basic routines are microprogrammed, i.e., 
written in a simple code and stored in a fast 
read-only memory (ROM). In this case the set 
of built-in programs is called firmware. The 
handliness of a computer depends mainly on 
close matching of the software and hardware. 

Programs are usually written in certain 
forms called external languages which are easy 
to master. A problem-oriented language is an 
advanced external language in which ordinary 
arithmetic expressions are available with slight 
modifications. Programs written in these lan- 
guages are translated into machine languages 
by program input routines. The translator for 
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a problem-oriented language is called the 
compiler. 

A compiler accepts several macroinstruc- 
tions. Moreover, it is equipped with the fol- 
lowing facilities: (i) the ability to translate 
arithmetic expressions into machine language; 
(ii) the ability to generate linkages to various 
ready-made subroutines according to certain 
simple indications; (iii) the ability to auto- 
matically allocate programs, subroutines, and 
data in the memory; (iv) the ability to check 
automatically the syntactic correctness of 
programs. Thus it accepts an external form 
such as 

if x > 0 then printreal (SQRT(x)) 

else printstring (‘negative’). 

Another important translator is the as- 
sembler, which translates mnemonic codes of 
instructions (add for addition, etc.) into their 
numeric codes according to a given table. It 
allows us to utilize symbols for specifying 
addresses. It also converts decimal numbers 
into binary and generates certain segments of 
the program from rather simple indications. 
Compilers and assemblers are important con- 
stituents of software. 

The large-scale high-speed computers that 
have recently appeared have made software 
systems inevitably more complex. There is 
now software, so-called monitors or operafing 
systems, that supervises the uninterrupted 
processing of many programs. Some operating 
systems coordinate several assemblers and 
compilers SO that several languages cari be 
mixed in writing a program. Examples of 
other important software are mathematical 
(numerical) software and database manage- 
ment systems. 

D. Mathematical Models of Computers 

An operational circuit in the arithmetic unit is 
usually constructed from basic elements (log- 
ical gates), each of which performs a certain 
operation on the binary signais. Thus the 
construction of a circuit from basic elements 
is represented by a composition of a logical 
function defined over the set {0, 1) from a 
given set of basic functions. Post [3] consid- 
ered functional composition without feed- 
back loops and established a general crite- 
rion for a given set of logical functions to be 
complete, i.e., to be capable of generating the 
whole set of logical functions. Strictly, how- 
ever, a logical gate takes a detïnite time delay 
to perform its operation. Therefore Kudryav- 
tsev [4] proposed as a mode1 of a logical gate 
a pair (J; d) of a logical function f  and a non- 
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negative integer d: f  represents the operation 
of the gate and d represents its delay. He de- 
fmed the feedback-free composition of such 
functions with delays and gave a completeness 
criterion for a set of logical functions with 
delays. His study has been extended in various 
directions by Loomis [S], Nozaki [6], and 
Rosenberg [7]. 

When a circuit contains memory elements 
or feedback loops, its function is suitably 
represented by an tautomaton. Hence the 
design and analysis of circuits with memory 
elements, state-minimization, and equivalence 
checking [S], decomposition into simpler 
components [9,10], verification of complete- 
ness [ 111, etc., cari be studied in terms of auto- 
mata (- 3 1 Automata). A computer itself cari 
be considered to be a tïnite automaton, since 
it has a lïnite number of memory elements and 
its behavior is completely determined by the 
content of the memory (its interna1 state) and 
the inputs. However, since a modern computer 
has an enormous memory and contains re- 
placeable parts, such as magnetic tapes, it is 
more adequately represented by an infinite 
model, such as a +Turing machine. 

Turing machines are capable of simulating 
many intellectual activities governed by for- 
mal rules. It is believed that any well-defined 
tïnite algorithm cari be simulated by a Turing 
machine (Church’s thesis.) Thus any compu- 
ter cari be simulated by a Turing machine, 
and hence it is unable to resolve those deci- 
sion problems which are unsolvable for Tur- 
ing machines. For instance, no program cari 
decide in lïnite steps whether a given pro- 
gram written in a computer language, say 
FORTRAN or PASCAL, eventually stops or 
not. On the other hand, a modern computer 
cari simulate a universal Turing machine pro- 
vided that its memory cari be extended un- 
boundedly by supplying magnetic tapes. 
Hence any well-defined tïnite algorithm cari 
be simulated by a computer unless the limi- 
tation of memory capacity hampers its 
accomplishment. 

E. Mathematical Theory of Programming 
Languages 

Along with the development of software, pro- 
gramming techniques have gradually accumu- 
lated. For instance, we now have an almost 
satisfactory method of translating arithmetic 
expressions into machine language. However, 
we still lack a general theory to caver effec- 
tively a wide array of programming problems. 
The design of an adequate metalanguage 
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is still an important problem, if the word 
“adequate” implies complete description of 
syntax and semantics of problem-oriented 
languages. An interesting problem is to define 
and suitably classify grammars with respect to 
their capabilities of forming languages. Such 
research is an important branch of mathema- 
tical linguistics. N. Chomsky [ 121 has inves- 
tigated this problem, starting from research on 
natural languages, and has given forma1 delïni- 
tions of the grammars (- 31 Automata D). 

+Context-free grammars (type-2 languages) 
play an important role in the theory of soft- 
ware as well as in Chomsky% syntax, since 
they are powerful enough to describe the pa- 
renthesis structure and simple and easy to 
manipulate. Some variants of context-free 
grammar have been proposed for attaining 
high efhciency in the automatic appraisal of 
programs [ 13,141 or for increasing the pro- 
grams’ generative power [ 151. 

F. Branches of Information Science 

Many fields related to computers now make 
up the information sciences or informatiques. 
Important mathematical theories born or 
developed in the information sciences are: 
(1) Design and analysis of hardware devices: 
+Boolean algebra [ 161, switching theory [ 173, 
and theory of tautomata [18,19]. 
(2) Design and analysis of programming lan- 
guage; theory of forma1 languages [14,21]. 
(3) Design and analysis of algorithms; tnumer- 
ical analysis, theory of tcomplexity of compu- 
tation, theory of tdata processing. 
(4) Mathematical foundation of programming; 
logical verilïcation of correctness and equiva- 
lente of programs [22], trecursive function 
theory, tdecision problems. 

Applications of the information sciences are 
found in diversitïed tïelds, such as statistics, 
operations research, mathematical psychology, 
econometrics, jurimetrics, and behaviorimetrics. 
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76 (VI.17) 
Conforma1 Geometry 

A. Mobius Geometry 

We represent an n-dimensional sphere S” as 
the tquadric hypersurface S”: x: + xi + . . . + 
x,2-2x0x,= 0 in an (n + 1)-dimensional real 
tprojective space P”+I, where the (x,) are 
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thomogeneous coordinates in P”+I. We denote 
by M(n) the group of a11 tprojective transfor- 
mations of P”+l that leave S” invariant. Then 
the transformation group M(n) acts on S”. The 
pair (S”, M(n)) is called the conforma1 geom- 
etry or Mobius geometry. We cal1 S” an n- 
dimensional conforma1 space, a transformation 
belonging to M(n) a Mobius transformation, and 
M(n) the Mobius transformation group. Every 
point of the projective space P”+’ corresponds 
to a hypersphere on S”. For example, if a point 
A lies outside of S”, then the intersection of S” 
and the +Polar hyperplane of A with respect to 
S” is an (n - 1)-dimensional sphere S”-i, and 
the point A corresponds to this real hyper- 
sphere S”-‘. Similarly, if a point A lies on s”, it 
corresponds to a point hypersphere, and if a 
point A lies inside of S”, then A corresponds 
to an imaginary hypersphere. We sometimes 
identify the point A with the corresponding 
hypersphere. For any two points A=(u,) and 
B=(b,), we put AB=a,b, +a,b,+... +a,b,, 
-(a&, + a, b,) and cal1 it the inner product of 
the two hyperspheres A and B. The angle 0 
between two intersecting real hyperspheres A 

and B is delïned by COS tl= AB/(fl . fl). 
This angle is invariant under the Mobius 
transformation. 

In the projective space P”+I, we take a 
tframe (A,, A,, . . , A,, A,) that satislïes the 
conditions 

A;=AoAj=AiA,=A;=O, A,A,=-1, 

A,A,= g,, i,j=l,2 / . . ..a. 

where (gu) is a positive detïnite matrix. We see 
that A, and A, are points on S” and each Ai is 
a real hypersphere passing through these two 
points. Every hypersphere X of s” cari be 
written as a linear combination of the Ai: X = 
u,A,+u,A,+...+u,A,+u,A,.Thatis,X 
is represented by tprojective coordinates (u,) 
with respect to the above frame. We cal1 these 
homogeneous coordinates (u,) (n + 2)- 
hyperspherical coordinates of the hypersphere 
X. If  we use these coordinates, the inner prod- 
uct of two hyperspheres X = (u,) and Y = (u,) is 
given by XY=~~~j=lgijuiuj-(u,u,+u,u,). 

The Mobius transformation group M(n) is a 
topological group with two tconnected com- 
ponents. If  we denote by M,(n) the maximal 
connected subgroup of M(n) and by H the 
subgroup of M(n) that leaves invariant a real ’ 
hypersphere of S”, then the set E of a11 real 
hyperspheres of S” cari be identified with the 
thomogeneous space M,,(n)/H. The group H 
also consists of two connected components. 
If  we denote by Ho the maximal connected 
subgroup of H, the homogeneous space E= 
M,(n)/H,, is a two-fold tcovering space of E. 



76 B 
Conforma1 Geometry 

For each real hypersphere A E E, an element 
A E E over A is called an oriented real hyper- 
sphere. The Mobius transformation group con- 
tains as its subgroups ones that are isomor- 
phic to the group of tcongruent transforma- 
tions of a Euclidean space and ones that are 
isomorphic to the group of congruent trans- 
formations of a non-Euclidean space. That is, 
the subgroup of M(n) that leaves a point 
hypersphere invariant is isomorphic to the 
group generated by congruent transformations 
and thomotheties of the Euclidean space E”. 
The subgroup of +index 2 (the factor group by 
a +cyclic subgroup of +order 2) of the subgroup 
of M(n) that leaves invariant a real (imaginary) 
hypersphere is isomorphic to the group of 
congruent transformation of n-dimensional 
hyperbolic (elliptic) +non-Euclidean space. 

In the n-dimensional Euclidean space E”, 
consider a hypersphere of radius r with tenter 
0. For each point P of E”, mark a point Q on 
the +ray OP such that OP. OQ = r2. We cal1 
the point transformation that sends P to Q an 
inversion with respect to the hypersphere. A 
+symmetry with respect to a hyperplane, con- 
sidered as an extreme case of inversions, is 
also called an inversion. We adjoin a point at 
infïnity to the space E” to construct an n- 
dimensional sphere S”. Each inversion cari be 
extended to a transformation of Y, which we 
also cal1 an inversion. Then each Mobius 
transformation is generated by a fïnite number 
of inversions. By a Mobius transformation 
of S”, each hypersphere is transformed to a 
hypersphere. Any angle between two curves 
that intersect at a point of E” is invariant 
under Mobius transformations. Conversely, 
if n > 3, each local transformation of E” that 
leaves invariant the angle of each pair of inter- 
secting curves is a trestriction of a Mobius 
transformation. However, for n = 2 this is not 
true in general; any transformation that leaves 
angles invariant is called a tconformal map- 
ping. Any Mobius transformation z+w on 
the tcomplex sphere S2 =C U { 10) cari be ex- 
pressed by an equation of the form w =(c(z + p)/ 
(yz + 6) or w = (a? + /?)/(y? + 6), where c(, 8, y, 
and 6 are complex numbers such that a6 - & # 
0 and Y denotes the tcomplex conjugate of z. 

B. Laguerre Geometry 

Let r be an oriented smooth curve in a Euclid- 
ean plane E’. The tangent line at a point p 
of r is supplied with an orientation that is 
induced by the orientation of the curve r in 
an obvious manner. The oriented line 2 thus 
obtained is called the oriented tangent line 
of r at p. 
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Let S be the set of oriented lines in E2 and T 
be a given set of oriented smooth curves in E2. 
Consider a bijection y  of the direct product S 
x T to itself satisfying the following condition: 
If  1 is an oriented tangent line of a curve r 
belonging to T and y  sends (1, r) to (r, r’), then 
I’ is an oriented tangent of the curve r’. The 
set of such bijections forms a group G. Sup- 
pose that we have /ES for which there exist 
two curves r1 and r, in T such that 1 is a 
common tangent line of r1 and r2 at p1 and 
pz, respectively. Further suppose that the 
element ~EG sends (I, ri) to (I’, r;) (i= 1,2). 
Then the element y  of G is called an equilong 
transformation if the following conditions (i) 
and (ii) are satisfïed: (i) l’ is tangent to r; at 
points pi (i= 1,2), (ii) the distance between p, 
and pz is equal to the distance between p’, and 
p;. The set of equilong transformations forms 
a subgroup H of G. In particular, if T is the set 
of oriented circles (including point circles), the 
elements of H are called Laguerre transfor- 
mations. In an obvious manner, we cari divide 
the set of oriented circles into two classes, 
those with “positive” and those with “nega- 
tive” orientations. With an oriented circle r 
we associate the pair cp(T)=(P, r), where P is 
the origin of the circle and r is a real number 
whose absolute value is equal to the radius of 
the circle and whose signature coincides with 
that of the orientation of r. The mapping 
cp : T+E* x E’ thus defïned is called Lie% 
minimal projection. An example of a Laguerre 
transformation, called a dilatation, is given by 
a bijection y  of S x T to itself satisfying the 
following condition: Let y(l, r) =(I’, r’); then I 
is parallel to 1, the distance between 1 and I’ is 
a given number, and cp(T’) =(P, r +c), where 
<p(T)=(P,r) and c is a given constant. We note 
here that the action of a Laguerre transfor- 
mation y:([, r)+(l’, r’) is determined by its 
action on S (y acts on S by y(l) = r). Another 
example of a Laguerre transformation y, called 
a Laguerre inversion, is determined by means 
of a given oriented circle 0 and a line p that is 
not tangent to 0; given an oriented line 2, its 
image I’ under the action of y  is determined 
as follows (here we describe the case where 1 
is not parallel to p). There exists a uniquely 
determined oriented tangent line g of the circle 
0 parallel to 1. Now we have a uniquely deter- 
mined oriented tangent line g’ of 0 that passes 
through the point of intersection of the lines g 
and p such that g’ #g. The image 1’ is the line 
parallel to g’ and passing through the point of 
intersection of the lines / and p (Fig. 1). Each 
Laguerre transformation cari be written as a 
product of a fïnite number of Laguerre inver- 
sions. We denote the group of Laguerre trans- 
formations by L. The pair (L, S) is, by defini- 
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tion, a mode1 of Laguerre geometry. Notions 
such as Laguerre inversions, dilatations, and 
transformations cari be generalized to cases of 
higher dimension by utilizing oriented hyper- 
spheres and oriented hyperplanes. 

Fig. 1 

C. Sphere Geometry 

Let S be the set of oriented circles (including 
point circles and oriented lines) in the Eucli- 
dean plane E*. Two oriented circles C, and 
C, are said to be in contact with each other 
if they have a point p and an oriented tan- 
gent line passing through p in common. (An 
oriented circle C and an oriented line I are in 
contact with each other if and only if I is an 
oriented tangent line of C.) In this case, we cal1 
the pair (C, , C,) a contact pair. A bijection y  of 
S to itself is called a Lie transformation if it 
sends any contact pair to another. (The Lie 
transformation is a special case of the tcontact 
transformations.) An inversion with respect to 
a circle determines in an obvious manner a Lie 
transformation, which is also called an inver- 
sion. We denote the group of Lie transforma- 
tions by G. Any element y  of G cari be written 
as the product of a finite number of inversions 
and Laguerre inversions, and G contains the 
group of Mobius transformations and the 
group of Laguerre transformations as sub- 
groups. The pair (G, S) is called a mode1 of 
circle geometry. The notion of circle geometry 
cari be generalized to that of hypersphere geom- 
etry for the case of higher dimensions. Speci- 
Iïcally, when we replace E2 by E3 and circles 
by spheres, we have sphere geometry. 

Let V be a complex 3-dimensional space, 
and let M, N be the sets of oriented lines and 
oriented spheres in V, respectively. Then M, N 
have the structure of 4-dimensional complex 
manifolds that are homeomorphic to each 
other. The homeomorphism is given by the 
Lie line-sphere transformation that induces a 
bijection from the set of pairs of intersecting 
oriented lines onto the set of pairs of oriented 

spheres that are in contact with each other. 

D. Group-Theoretic Considerations 

Here we discuss the preceding three kinds of 
geometries from the group-theoretic point of 
view (- 137 Erlangen Program). Let us con- 
sider the quadratic form Q defined by Q(x) = 
-xi + x: + xi + xz -x4 in a real projective 
space P4, where x=(x~,x~,x~,~~,~,) are 
homogeneous coordinates. We denote by G 
the set of a11 projective transformations of P4 
that leave Q invariant. The group G consists of 
the set of matrices A of order 5 such that det A 
= 1 and Q(Ax) = Q(x) holds for a11 x in P4; we 
denote by L3 the set of ail points x in P4 that 
satisfy Q(x) = 0. Then G acts transitively on L3. 
Hence if we denote by H, the set of ah ele- 
ments of G that fix a point a in L3, for example 
a=(-l,l,O,O,O), we may assume that L3= 
G/H,. The circle geometry that belongs to 
the group of Lie transformations of circles is 
exactly the geometry of the homogeneous 
space G/H,,. The group Gb of a11 transforma- 
tions of G that leave the hyperplane x4 = 0 
invariant acts transitively on L3 n {x4 = 0} (G, 
is isomorphic to M(2)). The geometry of the 
homogeneous space Gb /Ha n Gb is plane con- 
forma1 geometry. Next, the group G, of a11 
transformations of G that leave invariant x0 
+ xi = 0 coincides with H, and acts transitively 
on L3 n {x0 +x1 =O}. The geometry of thc 
homogeneous space L3 fl {x0 + xi = 0) (on 
which G, acts transitively) is plane Laguerre 
geometry. In this sense, the circle geometry 
that belongs to the group of Lie transforma- 
tions contains the other circle geometries as 
subgeometries. 

We now describe how plane Laguerre geom- 
etry cari be realized as the geometry of the 
space L3 n {x0 +x, =O}. Let EZ be a plane in a 
Euclidean space E3. We tïx a Cartesian co- 
ordinate system (yo, y,, yZ) in E3 SO that E2 is 
given by y, = 0. TO each point y  of E3 we cari 
associate an oriented circle in EZ with tenter 
(0, yi, y2), radius 1 y, 1, and positive (negative) 
orientation if y0 is positive (negative). I f  y  lies 
on E’, the corresponding circle is the point 
circle y  itself. Now let us consider the group GA 
of a11 affine transformations of E3 whose rota- 
tion parts leave the quadratic form Q’(y) = 
-y; + y: + y: invariant. (GL is an isometry 
with respect to the tmetric defined by Q’.) Each 
element of GL induces a transformation of the 
set of oriented circles in EZ (including the 
oriented lines and point circles) onto itself. 
The mappings of E3 into L3 detïned by x0 = 

(~+Q’(Y))/~,~,=(~-Q’(Y))/~,~~=Y,,~,=Y~, 

x4 = y, is a one-to-one correspondence of E3 
onto the subset of L3 such that x0 + xi # 0. 
This correspondence induces an isomorphism 
of CL onto G,. In Laguerre geometry, there are 



76 Ref. 
Conforma1 Geometry 

no essential distinctions between points and 
oriented circles on E’; and the group G, acts 
on a 3-dimensional space of oriented circles 
(including point circles). 
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77 (XI.1 4) 
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A. General Remarks 

Let a function w =f(z) that maps a tdomain D 
on the tcomplex z-sphere homeomorphically 
onto a domain A on the complex w-sphere 
satisfy the following two conditions: (1) Every 
curve C,: z(t) (0 < t < 1) that starts at any point 
z0 in D and possesses a tangent there has an 
image curve C,: w= w(t)=f(z(t)) (O<t < 1) that 
also possesses a tangent at the image point w0 
=f(z,J. (2) The angle between any two curves 
Ci” and Ci’) possessing tangents at z0 is equal 
to the angle between their image curves Cc) 
and CF), where the direction of the angle is 
also taken into account. Then the mapping 
from D onto A is said to be conformal, and A 
is called conformally equivalent to D. It has 
been proved that w =f(z) is necessarily a func- 
tion +analytic in D (D. Men’shov, 1931). 

Consequently, the theory of conforma1 
mapping is a branch of the theory of analytic 
functions. That a function w =f(z) maps a 
domain D conformally onto a domain A 
means that it is a tmeromorphic function 
tunivalent in D and its range is A. Then f’(z) # 
0 holds at every (imite) point in D, and the 
ratio of the lengths of the segments between 
two points w0 = w(O), w(t) on C, and between 
two points z0 =z(O), z(t) on C, tends to a iïxed 
nonvanishing limit If’(za)l as t-0 indepen- 
dently of the choice of C,. Hence if z1 and z2 
lie on C”’ and Ci’), respectively, and wi and z 
w2 are their image points lying on the image 
curves Cc) and Cc), respectively, then the 
two triangles Az,z,z, and Aw, w0w2 are nearly 
similar in the positive sense, provided that z, 
and z2 are near enough to ze. This justifies 
the word “conformai,” which means “of the 
same form” (- Appendix A, Table 13). 

B. Conforma1 Mapping onto the Unit Disk 

A fundamental theorem in the theory of con- 
forma1 mapping is Riemann% mapping theo- 
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rem, which states that any tsimply connected 
domain D with at least two boundary points 
cari be mapped conformally onto the interior 
A of the unit circle. This theorem is equivalent 
to the assertion of the existence of +Green’s 
function of D and cari be proved in various 
ways. B. Riemann (1851) gave a proof, based 
on an idea of C. F. Gauss, by assuming the 
existence of a solution for a variational prob- 
lem minimizing the +Dirichlet integral. The 
logical incompleteness implied by this as- 
sumption was later removed by D. Hilbert 
and others. The proof that is now regarded 
as simplest is due to L. Fejér and F. Riesz’s 
method (T. Rade, 1922, 1923), which applies 
+normal family theory. On the other hand, 
the osculating process due to P. Koebe (1912) 
is a purely constructive method of proving 
existence that is also applicable to the case 
of tmultiply connected domains. The map- 
ping function w =f(z) in Riemann’s mapping 
theorem is uniquely determined under the 
normalization condition f(z,J = 0, argf’(z,,) = 
(3, at a point z0 in D, where (3, is a given angle. 

The other types of simply connected do- 
mains are the Riemann sphere less one point 
and the sphere itself. In both cases every con- 
forma1 mapping of these domains is a linear 
transformation. A simply connected domain 
is called hyperbolic, parabolic, or elliptic if 
it is conformally equivalent to the unit disk, 
the complex plane, or the Riemann sphere, 
respectively. 

Let w =f(z) map a simply connected domain 
D on the z-sphere conformally onto a simply 
connected domain A on the w-sphere. If  a 
sequence {z”} in D tends to a boundary point 
[ of D, then the corresponding sequence {w”} 
(w, =f(z,)) has no taccumulation point in A 
and does not necessarily tend to a boundary 
point of A. 

If  for any sequence {z~} tending to <, { f(z,,)} 
tends to a unique point w on the boundary of 
A, it is said that ,f(z) possesses a boundary value 
w at [. TO investigate the behavior of {w~} on 
a hyperbolic domain D, we cari assume, by 
using a suitable mapping if necessary, that D is 
bounded. Then the problem is reduced, in view 
of Riemann’s mapping theorem, to the case 
where D is a bounded simply connected 
domain and A is the unit disk ) w I< 1. 

C. Correspondence between Boundaries 

Concerning the correspondence between 
boundaries under the conforma1 mapping w = 
,f(z) of a bounded simply connected domain 
D onto the unit disk 1 WI < 1, we have the fol- 
lowing three theorems: 
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(1) TO any taccessible boundary point zc of 
D there corresponds a unique point on 1 w I= 1, 
and to any distinct accessible boundary points 
zc, and zc, of D there correspond distinct 
points on the unit circumference. Furthermore, 
the set of a11 points on 1 w I= 1 that correspond 
to accessible boundary points of D has tangu- 
lar measure equal to 2rr. 

(2) There is a one-to-one correspondence 
between tboundary elements of D and points 
on 1 w 1 = 1 (C. Carathéodory). 

(3) Let w =f(z) map the interior D of a +Jor- 
dan curve C conformally onto the unit disk 
A: 1 wl c 1. Then it possesses a boundary value, 
say f(i), at every point [ on C that satistïes 
If([)1 = 1. Hence f(z) is continuous on the 
closed domain D = D U C and maps D bijec- 
tively onto the closed disk A : 1 w I< 1. Similarly, 
the inverse function z = q(w) has an analogous 
property and maps A bijectively and continu- 
ously onto B; that is, a conforma1 mapping of 
the interior D of a Jordan curve onto the unit 
disk A cari be extended into a homeomor- 
phism of the closure B to zi (Carathéodory). 

In this case, if the Jordan curve C contains 
a tregular analytic arc F, then the mapping 
function w =f(z) cari be prolonged analytically 
beyond F (except at the endpoints of F). Hence 
the mapping w =f(z) is conforma1 at interior 
points of I. 

Problems on the correspondence of angles 
at the boundary are closely related to tangular 
derivatives. These problems have been at- 
tacked by Carathéodory, S. Warschawski, J. 
Wolff, and others. 

D. Schwarz-Christoffel Transformation 

The problem of determining the form of an 
analytic function that maps the interior of a 
circle or a half-plane conformally onto the 
interior of a polygon was tïrst dealt with by 
H. A. Schwarz and E. B. Christoffel (1869) 
(- Appendix A, Table 13). 

Let P be a polygon in the complex w-plane 
with vertices b, (p = 1, . . , m) and interior 
angles a,,n at b,. Then a function w =f(z) that 
maps a circular disk or a half-plane in the z- 
plane conformally onto the interior of P is 
given by f(z)=C ‘~fjU,-z)“Y-~dz+C s 
Here b, =f(a,), and C, c’ are constants de- 
pending on the position and magnitude of the 
polygon P. If  instead of a disk we consider a 
half-plane in the z-plane, and if one of the a, is 
the point at intïnity, then, modifying this for- 
mula by deleting the factor of the integrand 
corresponding to a, = CO, we obtain a formula 

for w =f(z). This representation is called the 
Schwarz-Christoffel transformation formula. 
This formula was originally derived by Chris- 
toffel to solve a problem of 2-dimensional 
distribution of stationary temperature. It 
then found extensive application to several 
problems of conforma1 mapping concerning 
polygonal domains and to problems of deter- 
mining force lines or stream lines and equi- 
potential lines in 2-dimensional electrostatics 
or hydromechanics. 

An analogous formula is also derived for a 
function that maps the interior of a circle or a 
half-plane conformally onto the exterior of a 
polygon. In connection with these formulas, a 
third-order differential equation that is satis- 
lied by a function mapping the interior of a 
circle onto a domain bounded by a circular 
polygon is found useful in the theory of auto- 
morphic functions. Moreover, a representation 
analogous to the Schwarz-Christoffel trans- 
formation formula is obtained for a function 
that maps the interior of a circle onto a curvi- 
linear polygonal domain bounded by arcs of 
logarithmic spirals with the origin as asymp- 
totic point. 

E. Conforma1 Mapping of Multiply Connected 
Domains 

It is also important to consider problems 
concerning one-to-one conforma1 mapping of 
a multiply connected domain on the z-sphere 
onto a suitable multiply connected domain 3 
on the w-sphere. The two domains D and 3 
are then homeomorphic, but the converse is 
not true; i.e., there does not necessarily exist a 
one-to-one conforma1 mapping between D and 
X? even when they are homeomorphic. Now let 
D and 3 be multiply connected domains on 
the z- and w-planes, respectively, both possess- 
ing at least three boundary points. The tuni- 
versa1 covering surfaces B and 5 of D and D 
are hyperbolic and they cari be mapped onto 
the unit disks. The groups of their tcovering 
transformations form the +Fuchsian groups G 
and 8. Then in order for D to be mapped 
one-to-one and conformally onto a, it is neces- 
sary and sufftcient that the group 8 be trans- 
formed into the group G by a suitable linear 
transformation. 

TO a domain of finite tconnectivity having 
only continua for its boundary components, 
we cari associate conforma1 invariants (namely, 
moduli) expressed by one real parameter in the 
doubly connected case and by 3n - 6 real 
parameters in the n( > 2)-connected case. A 
one-to-one conforma1 mapping is possible 
only within a class of domains having the 
same invariants (- 416 Teichmüller Spaces). 
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While a circular disk is taken as a canonical 
domain in the simply connected case, an tan- 
nulus is often taken as a canonical domain in 
the doubly connected case. In the latter case, 
the logarithm of the ratio (> 1) of the radii of 
two concentric boundary circles is usually 
called the modulus. There are various types of 
n( > 2)-connected canonical domains, for in- 
stance, the whole plane, a circular disk or 
annulus slit along concentric circular arcs or 
radial segments, a parallel slit plane, etc. The 
possibility of a one-to-one conforma1 mapping 
of a given domain onto a canonical domain of 
such a type was proved by Hilbert, Koebe, and 
others in a tpotential-theoretic way and by E. 
Rengel, R. de Possel, H. Grunsky, and others 
in a purely function-theoretic way. Such ca- 
nonical domains are characterized by some 
extremal properties. For example, the horizon- 
tal parallel slit mapping function pO(z, zO) = 
(z-zJ* +u[pJ(z-z,)+ . . . . z~ED, has 
the extremal property that it is the unique 
function maximizing Rea[f] within the 
family of univalent functions ,f(z) = (z - z0-t + 
a [,f] (z - zO) + in D. For a general domain 
D, pO(z, zO), called the extremal horizontal slit 
mapping, is defïned as the limit function of the 
sequence of horizontal slit mappings pg”‘(z, z,,) 

of O,, z0 E D,. Here {&}Et is a canonical ex- 
haustion of D. It has the same extremal prop- 
erty as in the case of tïnite connectivity. The 
boundary components of the image domain of 
D under po(z, zO) consist of a horizontal slit 
and a point. The parallel slit mapping ps(z, zO) 
in the direction of 0 is defïned similarly to the 
one that maximizes Ree-““a[S] [S]. 

For a domain of intïnite connectivity, by 
accumulation of boundary components, a 
pointlike boundary component cari be mapped 
onto a continuum. A boundary component “J 
of a domain D is called weak if its image ,f’(y) is 
a point under every conforma1 mapping f  on 
D. y  is called strong if f(y) always consists of 
more than one point. A boundary component 
y  that is neither weak nor strong is called 
unstable (L. Sario, J. Analyse Math., 5 (1956)). 

Criteria of weakness, etc., by means of ex- 
tremal length are given in [SI. Moreover, in 
terms of extremal length, a generalization of a 
boundary element is given by Oikawa and 
Suita [9]. On the other hand, the existence 
of one-to-one and conforma1 mapping of a 
domain bounded by a fïnite number of curves 
onto the whole plane with mutually disjoint 
circular disks removed was proved by Koebe 
and later derived by J. Douglas and R. Cou- 
rant as a particular case of the existence of a 
solution of +Plateau’s problem [lO]. M. Schif- 
fer showed that the mapping function is a 
solution of an extremal problem involving 
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Fredholm eigenvalues [ 111. L. Bieberbach and 
H. Grunsky showed the possibility of mapping 
an n-connected domain onto an n-sheeted 
disk. Concerning doubly connected domains, 
detailed investigations were made by 0. Teich- 
müller, Y. Komatu, and others. For a domain 
D bounded by n analytic Jordan curves, as 
an extension of the Schwarz lemma, Ahlfors 
showed that there exists a unique extremal 
function fO(z) maximizing Re,f’(z,), z0 E D, 

within the family of analytic functions f(z) 
satisfying If(z)] < 1 in D and that &(z) maps D 

onto the n-sheeted unit disk (1947). &(z) is 
called the Ahlfors function at zO. For a general 
domain the uniqueness of the extremal func- 
tion in nontrivial cases was established tïrst by 
S. Havinson (1961) and later by L. Carleson 
(1967) and S. Fisher (1969). 

Most tkernel functions of a plane domain D 

have connections with conforma1 mappings. 
For example, the Bergman kernel U(z, [) of 
exact differentials is equal to (2x)-‘(ph(z, 5) 

-p&(z, [)). The adjoint kernel V(z, 5) is de- 
fïned by (27r)‘(pO(z, <) + P;,~(z, 0). M. Schiffer 
showed that the integral of V(z, [), S(z, [)= 
st V(z, [)dz, is univalent and maps D onto a 
domain bounded by n analytic convex curves 
if D is bounded by n Jordan curves [ 131. 
For a general domain D, this is true in the 
sense that each boundary component of the 
image domain under S(z, 5) is a convex set (K. 
Oikawa and N. Suita, Kôdai Math. Sem. Rep., 

16 (1964)). It is known that S(z, 5) maximizes 
the area of the complementary set of the image 
domain under f(z) within the family of univa- 
lent functions f(z)=(rr(z-<))-’ + b,(z-[)+ 

The maximum value multiplied by 47~ is called 
the span of the domain D; it is equal to a[po] 

-a[pZ,,]. For the +Szego kernel function 
k(z, [) of a domain D bounded by n analytic 
curves, the adjoint kernel l(z, 5) is deiïned, and 
the Ahlfors function &(z) at [ is expressed by 
k(z, [)/l(z, [) (P. Garabedian, Trans. Amer. 

Math. Soc., 67 (1949)). 

F. Universal Constants 

Among various universal constants appearing 
in the theory of conforma1 mapping, Bloch’s 
constant is especially famous. A. Bloch (1924) 
showed that a covering surface over the w- 
plane obtained from a mapping w = F(z) = 
z + that is one-to-one, conformai, and 
holomorphic in IzI < 1 always contains a tuni- 
valent (schlicht) disk whose radius B is a posi- 
tive number independent of the function F 
(Bloch’s theorem). The supremum !B of such 
constants B is called Bloch’s constant. The true 
value of B is yet unknown, but estimates have 
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been given by Ahlfors (Trans. Amer. Math. 

Soc., 43 (1938)) and by Ahlfors and Grunsky 
(Math. Z., 42 (1937)) in the form 

+<&21,4~ U1W) l’* 
( > I-(1/4) I(1/12) 

=0.4719.... 

M. Heins showed that the equality sign cari be 
deleted from the left-hand side (Nagoya Math. 

J., 21 (1962)) and C. Pommerenke gave a 
simpler proof for the same fact (J. London 
Math. Soc., 2 (1970)). It is conjectured that the 
correct value of 23 is equal to the Upper bound 
of Ahlfors and Grunsky. Landau% constant f!  
corresponding to the case where the image 
disks are not necessarily univalent satisfïes 
0.5 < 2 < 0.55. The lower and Upper bounds 
are due to Ahlfors (cited above) and Landau 
(Math. Z., 30 (1929)). Pommerenke showed 
0.5 < 2 (1970, cited above). For the family of 
univalent functions these constants coincide, 
and the value is called the schlicht Bloch 
constant, denoted by 2I. Its lower and Upper 
bounds are known to be 0.5705 (J. Jenkins, J. 
Math. Mech., 10 (1961)) and 0.6565 (R. Robin- 
son, Bull. Amer. Math. Soc., 41 (1935)). (For 
distortion theorems and coefficient problems 
- 438 Univalent and Multivalent Functions.) 
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A. General Remarks 

Suppose that we are given two straight lines I 
and m intersecting at 1/ (but not orthogonally) 
in the 3-dimensional Euclidean space E3. By 
rotating the line m around 1, we obtain a sur- 
face 5. We cal1 this surface & a circular cane 
with vertex 1/ and axis I; a straight line on the 
surface passing through V is called a generat- 
ing line of 5. 

A section C of 5 by a plane rc not passing 
through V (C = rc n 5) is called a conic section 
(or simply a conic). This C is a plane curve on 
the plane n. The point set 3 - V consists of 
two tconnected components g1 and g2. Let ni 
(i = 1,2,3) be planes not passing through F. If  
the conic section C, = rri n 5 is tbounded, then 
C, is contained either in 5, or in s2 and is 
tconnected. We cal1 such a C, an ellipse. When 
C, = zL2 0 3 is not bounded but is connected, 
then rc2 is parallel to one of the generating 
lines of 3, and C, is contained either in si or 
in s2. We cal1 such a C, a parahola. When z3 
intersects both of Sr and g2, then C, = n3 n F 

has two connected components and is not 
bounded. We cal1 such a C, a hyperhola. These 
three types exhaust a11 possible types of conic 
sections. In particular, if the plane 71 is per- 
pendicular to the axis 1, then C = 7-c fl5 be- 
cornes a circle. Thus a circle is a special kind 
of ellipse. 

B. Foci and Directrices 

Let C = n n 8, be an ellipse. The Euclidean 
space E3 is divided by n into two thalf-spaces 
E:, E; (two “sides” of 7~). I f  we put g1 n El 

=~i1,~,flE:=~r2,wecanconstructa 
sphere S that is contained in EF, tangent to 
si i along a circle K, and tangent to 7-c at a 
point F. Similarly, we cari construct a sphere 
S’ that is in E2, tangent to si2 along a circle 
K’, and tangent to n at a point F’. We cal1 F, 

F’ the foci of the ellipse (Fig. 1). 
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Let K, K’ be the planes containing K, K’. 

Straight hnes d = K n 7c, d’ = K’ f’ 7~ are called 
directrices of C. Unless C is a circle, we have 
F # F’, and K, n (and K’, T[) actually intersect; 
hence d, d’ exist. When C = rr f’ 5 is a parabola 
or a hyperbola (Figs. 2 and 3), we cari similarly 
define foci (a parabola has only one focus, F, 
while a hyperbola has two foci, F, F’) and 
directrices (a parabola has only one directrix, 
d, while a hyperbola has two directrices, d, d’). 

Fig. 1 

Fig. 2 

\ 

Fig. 3 

Let X be a point on the plane rr, let DF(X) 
be the distance between the point X and a 
focus F, and let DJX) be the distance between 
X and a directrix d. Then the curve C is the 
locus of the points X satisfying the condition 
DJX) = e. DJX), where e is a constant. We cal1 
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e the eccentricity of the conic section C. Ac- 
cording as C is an ellipse, a parabola, or a 
hyperbola, we have e< 1, e= 1, or e> 1. A 
circle is an ellipse whose eccentricity is zero. 
An ellipse is also characterized as the locus of 
X such that FX + F’X = 2~; a hyperbola is the 
locus of X such that (FX - F’X 1 = 2a, where a 
is a positive constant. When there are two foci, 
the straight line FF’ is perpendicular to direc- 
trices d and d’. 

C. Canonical Forms of Equations 

When C is a hyperbola or an ellipse that is not 
a circle, C has two foci, F and F’. In this case, 
the midpoint 0 of the segment FF” is the cen- 
ter of symmetry of C (when C is a circle, its 
tenter 0 is, of course, the tenter of symmetry 
of C). We cal1 0 the tenter of C; an ellipse or 
a hyperbola is called a central conic. I f  we 
choose a rectangular coordinate system (x, y) 
having 0 as the origin and FF’ as x-axis, then 
the equation of C cari be expressed in the 
form 

x’ja’k y2/b2 = 1, a, b > 0. (1) 

According as C is an ellipse or a hyperbola, 
we take the + or - of the double sign. If  
C is an ellipse, we have a > b. Furthermore, 
e = Jm/a if C is an ellipse and e = 

d-1 a + b u if C is a hyperbola. We also have 
F = (ae, 0) and F’ = ( - ae, 0); the equations of 
directrices are x = It aje. 

On the other hand, if C is a parabola, the 
straight line that is perpendicular to the direc- 
trix d and passes through F becomes the axis 
of symmetry of C. We cal1 this straight line the 
axis of C; the intersection 0 of the axis and C 
is called the vertex of C. If  we choose a rectan- 
gular coordinate system (x, y) having 0 as the 
origin and having the axis of C as the x-axis, 
the equation of C cari be expressed in the form 

y= = 4ax, a>O. (4 

We cal1 (1) and (2) the canonical (or stan- 
dard) forms of the equation of C. We cal1 the 
associated coordinate system the canonical 
coordinate system. Suppose that C is an ellipse 
(hence a > b). Let A, A’ be points of intersec- 
tion of the x-axis and the ellipse and B, B’ be 
the points of intersection of the y-axis and the 
ellipse. We cal1 AA’ the major axis of C and 
BB’ the minor axis of C. If  C is a hyperbola 
and (x, y) is the canonical coordinate system, 
we cal1 the x-axis the transverse axis and the y- 
axis the conjugate axis. I f  C is a central conic, 
the x- and y-axes of the canonical coordinate 
system are called the principal axes; if C is a 
parabola, the x-axis is sometimes called the 
principal axis. 
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D. Properties of Ellipses 

An ellipse may be considered the image of a 
circle under a tparallel projection. Conse- 
quently, the section of a circular cylinder by a 
plane is an ellipse. Also, if we are given a circle 
C and a tïxed diameter D of C, an ellipse is 
obtained as the locus of the points X lying on 
lines PM, which are perpendicular to D, with 
PEC, MED, satisfying the condition that the 
ratio PM: XM is constant. 

Suppose that we are given two concentric 
circles having the tenter at the origin 0 and 
with radii a, b. Let P, Q be points of intersec- 
tion of moving half-lines through 0 and the 
two circles. Then the locus of points X of 
intersection of the ordinates (lines parallel to 
the y-axis) passing through P and the ab- 
scissae (lines parallel to the x-axis) passing 
through Q is an ellipse (Fig. 4). Suppose that 
the equation of an ellipse is given by x’/a’+ 

y2/b2 = 1, with a > b. Then the lengths of its 
major axis and minor axis are 2a and 2b, 

respectively. 

Fig. 4 

Given an ellipse and its tenter 0, the circle 
with tenter 0 and diameter equal to the major 
axis of the ellipse is called the auxiliary circle 
of the ellipse. Given an ellipse C and its focus 
F, the auxiliary circle of C is the locus of the 
points X satisfying the condition that the line 
FX is perpendicular to a tangent line to C 
passing through X. Suppose that X is a point 
on an ellipse with foci F, F’. Let ‘PT’ be the 
line tangent to the ellipse at X (X lies between 
T and T’). Then the angle L TXF’ is equal to 
L T’XF (Fig. 5). Consequently, the rays start- 

ing from one focus of an ellipse and “reflected” 
by the ellipse converge on the other focus of 
the ellipse. Also, the product of the distances 
from two foci of an ellipse to an arbitrary tan- 
gent is constant and is equal to b2. 

Fig. 5 

The ellipse C: x’/a’ + y2/b2 = 1 is expressed 
parametrically in the form 

x=acosB, y  = h sin 0. (3) 

We cal1 the parameter 0 the eccentric angle of 
a point (x, y) on C. Consequently, C is a +Jor- 
dan curve and divides the plane into two parts, 
the inside and the outside. The inside is the set 
of points (x, y) satisfying x2/a2 +y2/h2 < 1, and 
the outside is the set of points (x, y) satisfying 
x2ja2 + yZ/b2 > 1. The inside is a +convex set. 
From a point Q outside C, two tangents to C 
cari be drawn. The locus of points Q such that 
these two tangents are orthogonal is the circle 
x2 + y2 = a2 + b2. We cal1 this circle the direct 
circle. The area of the “sector” OAX formed by 
two points A(a,O), X(acos8, bsin0) (O>O) and 
the origin 0 is ab0/2=(ab/2) Arccos(x/a); the 
length of the arc A^x of the ellipse is repre- 
sented by the value of the telliptic integral 

a ~Jl-e”C0521)d0=aC(n/2-O,e). J 
In particular, the area inside an ellipse is equal 
to nab, and the whole length of the ellipse is 
4aE(O, e). 

With respect to a polar coordinate system 
(r, 0) having the focus P(ue, 0) as the origin and 
the ray directed positively along the x-axis as 
the initial line, the equation of the ellipse C is 

Here / is equal to half of the length of the 
chord that is perpendicular to the major axis 
and passes through the focus. (This chord is 
called the latus rectum of the ellipse.) Suppose 
that F is a fixed point and that X is a moving 
particle attracted toward F by a +Central force 
inversely proportional to the square of the 
length of FX. Suppose further that X begins 
with an initial velocity whose direction is 
tangent to the ellipse C with focus F. Then X 
always moves on C, and the areal velocity 
described by the radius FX is constant 
(Kepler’s second law). 

E. Properties of Hyperbolas 

Two straight lines x2/a2 - y2/b2 = 0, that is, 
y/x = $- b/a, are tasymptotes of the hyperbola 
C: x2ja2 - y2/b2 = 1. The hyperbola C’ : x2ja2 - 
y2/b2 = -1 is called the conjugate byperbola 
of C. When a = b, the asymptotes are ortho- 
gonal to each other, and C, C’ are congruent. 
In this case, we call C a rectangular byperbola 
(or equilateral hyperbola). When we draw 
parallels to asymptotes from a point X on C, 
the area of the parallelogram formed by these 
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lines and two asymptotes is constant. (In par- 
ticular, when C is a rectangular hyperbola, the 
equation of C becomes xy = k*/2 if we take 
two asymptotes as coordinate axes. The seg- 
ment tut off by the asymptotes on the tangent 
to C at X is divided equally at X. In the case 
of the hyperbola as well, the product of the 
distances from two foci to an arbitrary tangent 
is constant and is equal to b*, and the angle 
between two straight lines joining two foci to a 
point X on C is divided equally by the tangent 
at X. 

A hyperbola C is represented parametrically 

b 

x=usecQ, y=btano. (3’) 

In this case also, we call fl the eccentric angle 
of (x, y). I f  we use the thyperbolic functions 
and the parameter u, the equation of a hyper- 
bola cari be written as 

x=ucoshu, y=bsinhu (3”) 

instead of (3’). The area of a “sector” OAX 
formed by two points A(a, 0), X(x, y) on the 
hyperbola and the origin 0 is, in this case, 

abu ub 
-=lArccosh-=Glog 

x+Jx2-a* 

2 a a 

The length of the arc A^x of the hyperbola is 
given by the élliptic integral 

With respect to a polar coordinate system 
(Y, <p) having the focus F(ac, 0) as origin and the 
ray directed positively along the x-axis as the 
initial line, the equation of the hyperbola C 
becomes 

1 
r= 

1-ecoscp’ 
[=A? 

a’ (4’) 

where I is equal to half the length of the chord 
passing through the focus and perpendicular 
to the principal axis. (This chord, too, is called 
the latus rectum.) 

F. Properties of Parabolas 

The curve described by a particle attracted by 
“gravitation” in a Iïxed direction and affected 
by no other force is a parabola (G. Galilei). 
The tangent at a point X on a parabola makes 
equal angles with the straight line joining F 
and X and the direction of the principal axis 
(Fig. 6). Consequently, if the rays starting from 
the focus of a parabola are “reflected” by the 
parabola, they a11 become rays parallel to the 
principal axis. Let X’ be 

Y  

X E X’ 0 X0X” x 

Fig. 6 

the point of intersection of the tangent at 
X(x,, y,) and the x-axis, X” the point of inter- 
section of the normal at X and the x-axis, and 
X, the foot of the perpendicular from X to the 
x-axis. Then FX = FX’, AFXX’ is an isosceles 
triangle, and XX’ is divided equally by the y- 
axis. Consequently, the locus of the foot of a 
perpendicular from F to a tangent is the y- 
axis. Also, the length of subtangent X’X, = 
2x,,, and the length of subnormal X”X,, = 2a = 
20F. Conversely, a curve whose length of 
subnormal is constant is a parabola. The locus 
of the midpoints of parallel chords of a para- 
bola is a straight line parallel to the principal 
axis. 

With respect to a polar coordinate system 
having the focus as origin and the ray directed 
positively along the x-axis as the initial line, 
the equation of a parabola is 

1 
r=- 1=2a. 

1 -cos<p’ 
(4”) 

The area bounded by a chord BC and an arc 
B”c of a parabola (Fig. 7) is equal to 4/3 the 
area of AABC, where A is the point of contact 
on the tangent of the parabola parallel to BC 
(Archimedes). Also, the length of the arc &’ of 
parabola (2) is 

X having the coordinates (x,, yo). 

Fig. 1 

G. Conjugate Diameters 

The diameter is a straight line passing through 
the center of a central conic. The locus of the 
midpoints of the chords parallel to a diameter 
d is another diameter d’, called conjugate to d. 
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Then the diameter conjugate to d’ is d. The x- 
axis and y-axis of a canonical coordinate sys- 
tem form a set of conjugate diameters. Let 
2a’, 2b’ be the lengths of the segments (some- 
times called conjugate diameters) tut off from 
d, d’ by the curve or by the curve and the con- 
jugate one for hyperbolas and by w, the angle 
between d and d’. Then the following relations 
hold (as to the double signs k, we take + in 
the case of an ellipse and - in the case of a 
hyperbola): a” f  b” = a2 f  b2, a’b’sinw = ab. 
The product of the slopes of d, d’ is equal to 
+ bz/a2. With respect to an oblique coordinate 
system having d and d’ as axes, the equation of 
the curve is x’la” + y2/bt2 = 1. 

H. Confocal Conic Sections 

The set of ellipses and hyperbolas having two 
lïxed points F, F’ as foci is called the family of 
confocal central conics with foci F and F’ (Fig. 
8). The family of confocal central conics con- 
taining the ellipse x’/a’ + y2/b2 = 1 is repre- 
sented parametrically by 

x2 Y2 1, 
a2+i+KiZ= 

There exist only one ellipse and only one 
hyperbola that pass through a point inside 
each quadrant (for example, a point (x,,, y,), x0 
> 0, y, > 0, inside the fïrst quadrant) and be- 
long to the family of curves. The ellipses and 
hyperbolas of the same family tut each other 
orthogonally. Thus parameters corresponding 
to ellipses and hyperbolas belonging to a 
family of confocal central conics define an 
orthogonal curvilinear coordinate system, 
called an telliptic coordinate system (- 90 
Coordinates). 

Fig. 8 

The set of parabolas having a fïxed point F 
as focus and a straight line passing through F 
as axis is called a family of confocal parabolas 
(Fig. 9). The family of confocal parabolas 
containing y2 = 4ax is the set of curves 

y2=4(a+Â)(x+Â). 

Such families also give rise to orthogonal 
curvilinear coordinate systems. 

Fig. 9 

1. Curves of the Second Order 

With respect to a rectangular coordinate sys- 
tem, a curve represented by an equation with 
real coefficients of the second degree with two 
variables x, y, 

ax2+2hxy+by2+2gx+2fy+c=0, (5) 

where (a, h, b) # (0, 0, 0), is called a curve of the 
second order. A curve of the second order is 
either an empty set, one point, one or two 
straight lines, or a conic section. For equation 

(5), we put 

(6) 

and cal1 D the discriminant of the curve of the 
second order. I f  D, # 0, D # 0, and the curve is 
not an empty set, then the curve is a central 
conic. I f  D, > 0, then the curve is an ellipse or 
an empty set. I f  D, < 0, then the curve is a 
hyperbola. If  D, = 0, D # 0, then the curve is a 
parabola. If  D = 0, D, > 0, then the curve con- 
sists of one point. I f  D = 0, D, < 0, then the 
curve is two intersecting straight lines. If  D = 
D, = 0, then the curve is an empty set, one 
straight line, or two parallel straight lines. 

J. Poles and Polars 

Let F(x, y) = ux2 + 2hxy + by2 + 2gx + 2fy + c 
=0 be the equation of a conic C and (x0, y,) 
the coordinates of a point P on the plane. A 
straight line P* having the equation 

axox + &,y +~y,) + hoy + dx + xo) 

+f(Y+Yo)+c=O 

is called the polar of P with respect to C (Fig. 
10). When the polar of a point P is 1, we cal1 P 
the pole of 1 and denote it by l*. In general, l* is 
uniquely determined by I, and P** = P, l** = 
1. If  QEP*, then PEQ*. If  PIE/, then ~*EPI*. 
When a straight line passing through P inter- 
sects C at X, Y and intersects P* at P’, then P, 
P’ are tharmonic conjugate with respect to 
X, Y In particular, if PE P*, then P E C, and 
P* becomes the tangent of C at P. Given a 
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triangle APQR on the plane of C, we cal1 
the triangle with sides P*, Q*, R* the polar 
triangle of flPQR. Let Q* n R* = P’, R* fl P* 
= Q’, and P* n Q* = R’. Then the three straight 
lines PU P’, Q U Q’, R U R’ meet at a point (M. 
Chasles). When the polar triangle of APQR 
coincides with itself, then APQR is called a 
self-polar triangle. The polar of a focus is a 
directrix. 

Fig. 10 

K. Cuves of the Second Class 

When the coefficients u, 0, w of a straight line 
ux + uy + w = 0 satisfy an equation with real 
coefficients of the second order, 

Au’ + 2Huv + Bu2 + 2Guw + 2Fvw + Cw2 = 0, 

(5’) 

where (A, H, B) # (O,O, 0), the curve enveloped 
by these straight lines is called a cuve of the 
second class. Let A be the discriminant defïned 
analogously to D in (6) by using A, H, B, 
instead of a, h, b, A curve of the second class 
(with A # 0) is essentially the same as a curve of 
the second order with D#O. In order for the 
curve (5’) with A #O to coincide with the curve 
(5) with D # 0, it is necessary and suftïcient that 
A, B, C, F, G, H be proportional to the tco- 
factors of a, b, c, f ;  y, h in the determinant D 
given by (6). I f  A = 0, then (5’) represents either 
the empty set, or a point (regarded as the set of 
straight lines passing through the point), or 
two points. 

From a projective point of view, a curve 
of the second order is defïned as a locus of 
the point of intersection 1 fl1’= X of corre- 
sponding lines 1 and l’ when two tpencils of 
lines A(I, 112, . ..). A’(I’, m’, . ..) passing through 
two different centers A and A’ are in corre- 
spondence under a tprojective mapping f  (J. 
Steiner) (Fig. 11). From this it cari be proved 
that three points of intersection of three pairs 
of opposite sides (AB, DE), (BC, EF), (CD, FA) 
of a hexagon inscribed in a curve of the second 
order are on the same straight line (Pascal% 
theorem, Fig. 12). In particular, if the curve 
of the second order in this theorem consists 
of two straight lines, the theorem coincides 
with Pappus’s theorem (Fig. 13). We cal1 this 

straight line 1 the Pascal line of ABCDEF. 
Given a set of six points A, B, C, D, E, F on a 
curve of the second order, by considering all 
possible combinations of the points, we get 60 
Pascal lines. A configuration consisting of 
these 60 lines is called Pascal’s configuration, 
and has been studied by Steiner, Kirkman, 
and others. As a tdual to Pascal’s theorem, 
Brianchon’s theorem holds: Three diagonals of 
a hexagon with a curve of the second class 
inscribed meet at a point (Fig. 14). 

Fig. 11 Fig. 12 

Fig. 13 Fig. 14 
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79 (11.20) 
Connectedness 

A. General Remarks 

A +topological space X is said to be connected 
if there are no proper closed subsets A and B 
ofXsuchthatAflB=@‘andAUB=X(C. 
Jordan, Cours &Analyse 1, 1983). A subset S of 
X is connected if S considered as a tsubspace of 
X is connected. 

If  a subset S of X is connected, then the 
+closure $ is also connected. Let {A,} be a 
family of connected subsets of X such that 
eitherANflAO#@orA,flAp#Oforany 
pair A, and A,. Then the union un A, is con- 
nected. The continuous image of a connected 
set is connected. The +product space n,X, of 
a family of connected spaces {X,} is also con- 
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nected. Let {A,} be a family of connected 
subsets of X and A, be a connected subset of 
X. If  A, n A, # @ for every A,, then the union 
A, U uI A, is also connected. For a point p of 
a topological space X, the union of a11 connec- 
ted subsets containing p is connected and is 
called the connected component of p (F. Haus- 
dorff, 1927). 

The n-dimensional Euclidean space E” 
(n > 0) and the n-dimensional unit sphere S” 
(n > 1) are connected, whereas SO, consisting 
of two points, is not connected. E”\(O) is 
connected for n > 2, whereas E’\(O) is not 
connected. This fact implies that E’ is not 
homeomorphic to E” (n > 2). A connected 
open subset of a topological space X is called 
a domain (or region) in X. 

A topological space X is said to be locally 
connected at a point p if for every open set U 
containing p, there is an open set V containing 
p and contained in the connected component 
of p in ci. X is said to be locally connected if it 
is locally connected at each point of X. A 
space X is locally connected if and only if 
every connected component of every open 
subset is open in X. 

There are connected spaces that are not 
locally connected. For example, the comb 
space{(x,y)~R*~x=l/nandO<y<l(n= 
1,2,3,...)orO~x~landy=O}isnotlocally 
connected at (0,l) (see Fig. 1). 

Fig. 1 
Comb space. 

B. Arcwise Connectedness 

Two points a and b of a topological space X 
are said to be joined by an arc in X if there is a 
continuous map ,f’(t) of the closed interval I= 
[0, l] into X such that f(0) = a and f( 1) = b. 
A topological space X is said to be arcwise 
connected (or patb-connected) if every two 
points of X are joined by an arc in X. For 
a point p of X, the union of a11 arcwise- 
connected subsets in X containing p is arcwise 
connected and is called the arcwise-connected 
component (or patb-component) of p. A topo- 
logical space X is said to be locally arcwise 
connected at a point p if for every open subset 
U containing p, there is an open subset V 

containing p such that every two points in V 
are joined by an arc in U. X is said to be lo- 
cally arcwise connected if it is locally arcwise 
connected at each point of X. 

An arcwise-connected space is connected, 
but the converse is not true. The tsinusoid 
{(x,y)ER*]y=sinl/xandO<x<l orx=O 
and - 1 <y < 1) is connected but not arcwise 
connected. A complete metric space is arc- 
wise connected if it is connected and locally 
connected. 

C. Simple Connectedness and n-Connectedness 

Denote by S” the n-dimensional unit sphere 
and by D”+l the (n + l)-dimensional unit disk. 
A topological space X is said to be n-connected 
if every continuous map f  from S” to X is 
extendable over D”+l (m=O, 1,2, , n). O- 
Connectedness is equivalent to arcwise con- 
nectedness. A 1 -connected space is also called 
simply connected. (For simple connectedness 
and n-ply connectedness of plane domains - 
333 Plane Domains) A topological space X is 
said to be locally n-connected at a point p if for 
every open subset U containing p, there is an 
open subset V containing p and contained in 
U such that any continuous map f: ,Y"--+ Vis 
extendable to a continuous map f: D”+l+ 
U (m=O, 1,2, , n). X is said to be locally 
n-connected if it is locally n-connected at 
each point of X. A space X is said to be w- 
connected (or locally w-connected) if X is n- 
connected (or locally n-connected) for every n. 

S” is (n - l)-connected but not n-connected. 
Similarly for E”+‘\{O}. I f  X is n-connected 
(n > l), then the tsuspension SX is (n + l)- 
connected and the tloop space RX is (n - 1). 
connected. The Hawaiian earring {(x, y) E 
R2~(x-l/n)z+y2=l/n2(n=1,2,3,...)}is 
arcwise connected but not locally simply con- 
nected. The tcone over the Hawaiian earring 
is simply connected, but not locally simply 
connected (Fig. 2). 

Fig. 2 
Hawaiian earring and its cane 

A topological space X is said to be contrac- 
tible if the identity map 1 x is thomotopic to a 
constant map c,” to a point x0 of X (K. Bor- 
suk, Fund. Math., 24, 1935). A topological 
space X is said to be locally contractible at a 
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point p of X, if for every open subset U con- 
taining p, there is an open subset V containing 
p and contained in U such that the inclusion 
i: V c U is homotopic to a constant map to a 
point in U. X is said to be locally contractible 
if it is locally contractible at each point of X. 

A contractible or locally contractible space 
is w-connected or locally w-connected, res- 
pectively. The n-dimensional simplex, the II- 
dimensional disk D”, and the n-dimensional 
Euclidean space E” are contractible. More 
generally, a tconvex set in E” is contractible. 
+Topological manifolds and tpolyhedra are 
locally contractible. 

D. Continua and Discontinua 

A topological space is said to be totally dis- 
connected if each connected component con- 
sists of one point. Divide the closed interval 1 
= [0, l] into three equal parts, and let 1, 1 and 
1, 2 be the closed intervals obtained from 1 by 
removing the middle open interval. As the next 
step, divide 1, 1 and 1, z into three equal parts, 
respectively, and remove the middle open 
intervals. Inductively we obtain 2”+’ closed 
intervalsI,,+,,i(i=1,...,2”1’)from2”closed 
intervals I,, j by removing open intervals lying 
in their middles. Let C’“‘= Ubl In,, and C 
= n.-I C(“). Then C is called the Cantor dis- 
continuum or simply the Cantor set or the 
ternary set (G. Cantor, Math. Ann., 21 (1883)) 
(Fig. 3). 

Fig. 3 
Cantor discontinuum. 

C is a subset of 1 consisting of points with 
coordinates t = (n,/3) + (n2/3’) + + (ni/3’) 
+ , where ni = 0 or 2. As a topological space 
C is homeomorphic to the Cartesian product 
of countably many copies of the discrete space 
D = {0, 1 }. C has the power of the continuum c 
and is a compact, totally disconnected, tperfect 
set. The Cartesian product of infïnitely many 
(countably or not) copies of D is called the 
general Cantor set. The continuous image of a 
general Cantor set is called a dyadic com- 
pactum. Compact metric spaces and compact 
groups are examples of dyadic compacta. 

A continuum is by delïnition a connected 
compact metric space consisting of more than 
one point. A metric space X is said to be well- 
chained if for every two points a, b and E > 0 
there are points x1, x2,. . . , x,~~ such that 
d(xi, xifl) < E (x0 = a, x, = b). A well-chained 

compact metric space is a continum. 
Let K be a continuum containing two 
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points a and b. Then K is said to be irreducible 
between a and b if there is no proper subcon- 
tinuum of K containing a and b (L. Zoretti, 
Ann. Sci. Ecole Norm. SU~., 26 (1909)) (- 93 
Curves). 

A continuum K is said to be indecomposable 
if there are no proper subcontinua K 1, K, 
such that K = K 1 U K, (L. E. J. Brouwer, Math. 
Ann., 66 (1910)). Simple examples of inde- 
composable continua have been given by 
A. Denjoy, C. R. Ad. Sci. Paris, 151 (1910); 
K. Yoneyama, Tôhoku Math. J., 12 (19 17); and 
B. Knaster, Fund. Math., 3 (1922). 

C. Kuratowski conjectured the following: 
If  a plane continuum K is homogeneous (that 
is, for any two points a, beK there exists a 
homeomorphism h : K -+K with h(a) = b) then 
K is homeomorphic to the circle. A counter- 
example for this conjecture has been found by 
R. H. Bing and E. E. Moise. It is an indecom- 
posable, homogeneous, plane continuum and 
is called the pseudo-arc [S]. 
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80 (Vll.4) 
Connections 

A. History 

The geometric notion of connections orig- 
inated with T. Levi-Civita’s parallelism (Rend. 
Cire. Mut. Palerme, 42 (19 17)) and was later 
generalized to the notion of connections of 
differentiable fiber bundles. Notions such as 
affine connections, Riemannian connections, 
projective connections, and conforma1 connec- 
tions cari be described in terms of bundles 
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constructed from the tangent bundles of dif- 
ferentiable manifolds. They are also standard 
examples of the Cartan connections formu- 
lated by E. Cartan and C. Ehresmann. 

B. Connections in Principal Bundles 

Let P = (P, rr, M, C) be a differentiable tprin- 
cipal fïber bundle. (For the sake of conve- 
nience, we assume that differentiability always 
means that of class Cm.) The total space P and 
the base space M are tdifferentiable manifolds, 
and the projection n is a differentiable map- 
ping. The +Structure group G is a +Lie group 
and acts on P from the right as a transforma- 
tion group. On each tïber, G acts transitively 
without fïxed points. For elements a, x in G, P, 
we Write R,(x) = xa. The mappings induced on 
ttangent vector spaces by R, and 7-c Will be 
denoted by the same letters, namely R,: T,(P) 
+T,,(P), rt : T,(P)+ T,,,,(M). The tangent vec- 
tor space T,(P) at each point x of P is mapped 
by the projection rr onto the tangent vector 
space T,(M) at the point p = ~C(X) of M. The 
kernel of this mapping is denoted by V’(P), 
and each vector in V,(P) is said to be vertical. 
The kernel V,(P) is the totality of elements of 
T,(P) that are tangent to the tïber. 

C. Connections 

We say that a connection is given in P if for 
each point x E P, a subspace Q, of the tangent 
space T,(P) is given in such a way that the 
following three conditions are satistïed: (i) 
T,(P) = V,(P) + Qx (direct sum); (ii) R,(Q,) = 
Q,,(Q is invariant under G); and (iii) the map- 
ping x+Q, is differentiable. A vector in Qx 
is said to be horizontal. 

Now suppose that X is an arbitrary tvector 
field on P. By condition (i), the value X, of X 
at each point x of P cari be expressed uniquely 
as X, = Y, + Z,, where Yxe V,(P) and Zxc Q,. 
The vector fields Y and Z defïned by Y, and Z, 
(XE~) are called the vertical and horizontal 
components of X, respectively. Condition (iii) 
implies that if X is a differentiable vector tïeld, 
then its horizontal and vertical components 
are also differentiable vector tïelds. Let X be a 
vector fïeld on the base space M. Since rc de- 
fines an isomorphism of Q, and 7”(M) (p= 
n(x)), we have a unique vector tïeld X* on P 
such that (a) rr(X*) = X and (b) X:E Q,. We 
cal1 X* the lift of X, and it is invariant under 
G by condition (ii). 

Suppose that a connection is given in P. If  C 
is a piecewise differentiable curve in the base 
space M, we cari delïne a mapping <p that 
maps the fiber over the initial point p of C 
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onto the tïber over the endpoint 4 of C as 
follows: Take an arbitrary point x on the tïber 
at p. Then we have a unique curve C?J in P 
starting at x such that (a) ~C(C:)=C, and (b) 
each tangent vector to Cx is horizontal. (Cx is 
called a lift of C that starts at x.) The endpoint 
y  of the curve Cx belongs to the tïber over 4. 
We set C~(X) = y. Because CX, = RO(C,*), the 
mapping cp commutes with transformations of 
G. We cal1 this mapping <p the parallel dis- 
placement or parallel translation along the 
curve C. 

D. Holonomy Groups 

Fix a point p in the base space. If  C is a closed 
curve in M starting from p, the parallel dis- 
placement along C maps the fïber over p onto 
itself. SO if we tïx a point x on the fïber over p, 
x is transformed by the parallel displacement 
to a point xa (a E G). Thus each closed curve C 
starting from p determines an element a(x, C) 
of G. If  C varies over the set of closed curves 
that start from p, the totality of such elements 
of G forms a subgroup of G. This subgroup is 
called the holonomy group of the connection 
defmed over P with the reference point x. I f  A4 
is connected, holonomy groups with different 
reference points are conjugate. In the above, if 
we choose as the closed curves C starting from 
p only those curves that are null-homotopic, 
the elements a(x, C) form a subgroup of the 
holonomy group. This is called the restricted 
holonomy group. The holonomy group is a +Lie 
subgroup of the structure group, and its con- 
nected component containing the identity 
coincides with the restricted holonomy group. 
Holonomy groups are useful in the study of 
the behavior of connections. 

E. Connection Forms 

Let g be the Lie algebra (- 249 Lie Groups) of 
the structure group of G of a principal tïber 
bundle P = (P, TC, M, G). For each A in g, the l- 
parameter subgroup exp tA (-cc <t < CO) of G 
defïnes a +one-parameter group RexptA of trans- 
formations on P, and it determines a vector 
field A* on P (- 105 Differentiable Mani- 
folds). Each element of the vector îïeld A* 
is vertical at each point x on P, and the A* 
(AE~) at x generate V,(P). Moreover, for each 
element a of G we have R,(A*) = (ad(ü’) 

For a connection in P, we defïne the connec- 
tion form w on P with values in g by the fol- 
lowing: (i) w,(AX)= A (AE~), and (ii) w,(X)=0 
(XE Q,). The connection form o thus detïned 
satisfies (iii) R,*(w) = ad(a-‘)w (a~ G), where 
R,*(w) is the tdifferential form induced by the 
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transformation R, from the differential form 
w. Conversely, given a 1-form w with values in 
g that satisfies conditions (i) and (ii), we cari 
detïne a connection in P by defming vectors X 
such that w(X) = 0 as the horizontal, and its 
connection form coincides with w. Thus giving 
a connection in P is equivalent to giving a 
connection form in P. 

In particular, when a principal tïber bundle 
P is trivial, i.e., when P = A4 x G, we cari iden- 
tify the tangent vector space T,(P) at a point x 
= (p, g) of P with the direct sum of T,(M) and 
T,(G). If  we set Q, = T,(M), then Q delïnes a 
connection in P = M x G. Such a connection is 
called flat. When a connection cari always be 
expressed as above locally, it is called locally 
flat. Since each principal tïber bundle is locally 
a product fiber bundle, we see that locally 
there exists a connection. If  the base space M 
is tparacompact, we cari show the existence of 
connections on P. 

F. Extension and Restriction of Connections 

When a principal tïber bundle P = (P, r-c, M, G) 
has a treduced tïber bundle P’, we shall con- 
sider the relation between the connections of P 
and of P’. Let G’ be a Lie subgroup of G and g’ 
its Lie algebra. We shall denote by j both the 
injection of G’ into G and also the injection of 
g’ into g. If  there exist a differentiable principal 
Iïber bundle P’ = (P’, r-c’, M, G’) and a differenti- 
able embedding f  of P’ into P such that rc of 
= rr’ and fo R, = Rjc,) of(a~ G’) are satistïed, 
then (P’,f) is said to be a reduced fiber bundle 
of P. Then we have &(A:) =j(A)& for each 
Acg’ and XEP’. 

Suppose that a connection is given in P’; we 
denote the horizontal space at the point x of 
P’ by Q:. At the point f(x) of P, we take f,(Q:) 
as the horizontal space and transform it by 
right translations of G. Thus we obtain a con- 
nection on P. Let w’ and w be the correspond- 
ing connection forms. Then we have j o w’ = 
f*(w) on P’. Conversely, suppose that we 
are given a connection in P with the connec- 
tion form w. If  the induced form f*(w) on 
P’ has values always inj(g’), we cari Write 
,f*(w) = j o w’, and o’ defines a connection in 
P’. In this case the connection in P is called 
an extension of the connection in P’, and the 
connection in P’ is called the restriction of the 
connection in P. 

G. Curvature Forms 

Suppose that a principal tïber bundle P = 
(P, rr, M, G) has a connection. Let F be a tïnite- 
dimensional vector space and c( be a differen- 
tial form of degree k on P with values in F. We 
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define the covariant differential Da of c( by 

where the Xi are vector tïelds on P and h de- 
notes the projection to the horizontal compo- 
nent. Da is a differential form of degree k + 1 
on P with values in F. 

Let p : G+ GL(F) be a trepresentation of a 
Lie group G on F. A differential form a on P 
with values in F is called a pseudotensorial 
form of type p if a satislïes R:(a) = p(K’)a 
(a E G). In particular, if a pseudotensorial form 
% satislïes t(A*)a=O for any Acg (- 105 Dif- 
ferentiable Manifolds Q), it is called a tensorial 
form of type p. For each representation p of G, 
we cari construct an associated vector bundle 
E over M with fiber F. A tensorial form of 
type p is identilïed with a differential form on 
M with values in E. If  a is a pseudotensorial 
form of type p, then Dec is a tensorial form of 

type P. 
For a connection form w on P, the co- 

variant differential Dw = fi of w is called the 
curvature form of the connection. Since w is a 
pseudotensorial form of type ad, 0 is a ten- 
sorial form of type ad. For the connection 
form we have the structure equation dw = 
- [w, w] + R [4,6]. Let X and Y be vector 
lïelds on M, and let X* and Y* be their lifts, 
respectively. Then we have w( [X*, Y*]) = 
R(X*, Y*), which shows that the curvature 
form R for X*, Y* gives the vertical compo- 
nent of [X*, Y*]. 

It is known that the following three con- 
ditions for a connection are equivalent: (i) The 
connection is locally flat. (ii) The curvature 
form vanishes. (iii) The restricted holonomy 
group is trivial (i.e., the identity group). 

The following two theorems are fundamental: 
(1) Suppose that a connection is given in a 

principal liber bundle P = (P, r-c, M, G). Then 
the structure group of P cari be reduced to the 
holonomy group [4,6]. In fact, for x E P, let 
P(x) be the set of points y  in P that cari be 
connected to x by a piecewise horizontal curve 
in P. Then P(x) gives a reduced lïber bundle of 
P, and the connection in P is an extension of a 
connection in P(x) [4,6]. 

(2) The Lie algebra of the holonomy group 
with a reference point x in P coincides with the 
vector subspace of g spanned by {n,(X, Y)1 
y~ P(x)> X, YE T,(P)} C4,61. 

The curvature form R is used to express the 
tcharacteristic classes of the bundle P [ 1,2] 
(- 56 Characteristic Classes). 

In some cases, a connection in the principal 
liber bundle induces a connection in an tas- 
sociated tïber bundle. In particular, when G is 
GL(n, R) or GL(n, C), we cari delïne a connec- 

tion in any associated vector bundle. The 
notion of connections in vector bundles cari be 
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dehned more algebraically (M. F. Atiyah, 
Trans. Amer. Math. Soc., 85 (1957)) and cari 
also be defined as a kind of differential oper- 
ator on vector bundles [S]. 

H. Affine Connections 

Let M be a differentiable manifold of dimen- 
sion n and P be the tbundle of tangent n- 
frames over M. Then P has the structure 
group GL(n, R), and it is the principal bundle 
associated with the tangent vector bundle of 
M, which consists of a11 tangent vectors of M. 
A connection in the bundle of tangent n- 
frames is called an affine connection (or linear 
connection) on M. An affine connection on M 
defïnes (as well as the curvature form a) a new 
form 0 called the torsion form on P, which is 
given as follows: Let F be an n-dimensional 
vector space with a lïxed basis (ci, &, . . , l,). 
Since the bundle of tangent n-frames P is 
the set of a11 bases (i.e., n-frames) (ei, . . . , e,) 
in T,(M) at each point p of M, every point 
x = (ei, . , e,) of P is given as a mapping x 
of F onto T,(M) (~=X(X)) dehned by ??:<,+ei. 
We detïne differential form 0 of degree 1 with 
values in F on P by B,(X)=X~‘(n,(X)) (XE 
T,(P)). H is called a canonical 1-form of the 
bundle of tangent n-frames of the manifold M 
and has the following property: Any diffeo- 
morphism <p of M onto itself induces a bundle 
automorphism @ of P onto itself, and iJ pre- 
serves 0, that is, 4*(Q) = 6. Conversely, we cari 
show that any bundle automorphism of P that 
preserves 0 is induced by a diffeomorphism of 
the base space M. 

For an affine connection on M, we detïne 
the torsion form 0 by 0 =DB. 0 is a differen- 
tial form of degree 2 on P with values in F and 
satisfïes R,O = a-’ ‘0 (a~ GL(n, R)). Further- 
more, we have the structure equation for 0, 
dB=[w,O]+@ [2,4,6]. 

For each element 5 in F, there exists a 
unique horizontal vector fïeld B(t) on P such 
that fI(B(<))= 5. B(t) is called the basic vector 
field corresponding to 5. At each point XEP, 
B(<,),, . , B(<,), form a basis of Q,. Let 
{A,, , A,) (m = n*) be a basis of g = gl(n, R). 
Then at each point x E P, {(AT),, . , (AZ),, 
B(t,),, . , B(&),} is a basis of the tangent 
vector space T,(P). Thus the bundle P of 
frames is a tparallelizable manifold. The pro- 
jection to M of any tintegral curve of a basic 
vector field is a geodesic, which is defined in 
Section 1 [4]. 

An affine connection on M gives a parallel 
displacement of the tangent vector space of M 
as follows: Let C = pt (0 < t < 1) be a curve in M 
and C* =x, be a lift of C to P. The parallel 
displacement of the tangent n-frame x0 at p,, 
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along the curve C is x,, and the mapping x, o 
X0’ : T, (M) + Tp,( M) is called the parallel dis- 
placemht of the tangent space TP,(M) onto 
TP,(M) along C. It is easily seen that the map- 
ping is independent of the choice of lifts. 

1. Covariant Differentials 

Let C = {p,} (0 < t < 1) be a differentiable curve 
in M. If  we have a vector r; in T,,(M) for each 
t and the correspondence t+ Y, is differenti- 
able, then {x} is called a vector !ïeld along the 
curve C. For {x} we set 

where <P~,~ is the parallel displacement of 
Tpt(M) onto Tpt+,,(M) along the curve C. The 
vector field {r} along C thus obtained is 
called the covariant derivative of {x}. {x} is 
parallel along C; that is, x = qo,J Y,) if and 
only if Y’ = 0. In particular, if the tangent 
vectors to a curve C are parallel along C itself, 
then C is said to be a geodesic. 

Let X and Y be vector tïelds on a manifold 
M with an affine connection. The covariant 
derivative Vx Y of the vector fïeld Y in the 
direction of the vector fïeld X is defïned as 
follows: Let p0 be a point in M, C = {p,} 
(-E < t <E) be an integral curve of X through 
pO, and {cp,} be the parallel displacement along 
C. We set 

(Vx Y)p, = F$ (lb) K’ ( r,) - y,,,. 

Then Vx Y is also a vector field on M. 
The mapping (X, ++Vx Y satishes the 

following three conditions: (i) Vx Y is linear 
with respect to X and Y; (ii) V,, Y=f. Vx Y; 
and (iii) V,(fY)=f.V,Y+(Xf). Y, where fis 
a differentiable function on M. Conversely, if a 
mapping satisfying conditions (i)-(iii) above is 
given, then there exists a unique affine connec- 
tion on M whose covariant derivative coin- 
cides with the given mapping [4,6]. 

Fix a vector field Y. Then the mapping X+ 
V, Y detïnes a ttensor field of type (1,l). This 
tensor held is called the covariant differential 
of Y and is denoted by VY. Now tïx a vector 
field X. Then the mapping Y-V, Y cari be 
naturally extended to tensor tïelds of arbitrary 
type, and it commutes with the tcontraction of 
the tensors. For a tensor lïeld K this is denoted 
by K+VxK. Furthermore, the mapping X+ 
V,K is called the covariant differential of K 
and is denoted by VK. We cal1 VxK the co- 
variant derivative of K in the direction of X. A 
tensor lïeld K is invariant under parallel dis- 
placements if and only if VK =0 (- 417 Ten- 
sor Calculus). 
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J. Curvature Tensors and Torsion Tensors 

For an affine connection on M, the curvature 
tensor R and the torsion tensor Tare delïned 

bY 

RN> Y)(Z)=Vx(V,Z)-Vr(V,Z)-V,,,,,(Z), 

T(X. Y)=V,Y-v,x-[X, Y], 

where X, Y, and Z are vector tïelds on M, and 
R and T are tensors of types (1,3) and (1,2), 
respectively. Also, in terms of the curvature 
form R and the torsion form 0 on the bundle 
of tangent n-frames P over M, they cari be 
defined by 

R,(X, Y)(Z)=xm1.C2JX*, y*).~(z), 

T,(X, Y)=x-‘(0,(X*, Y*)), 

where z(x)=p, X, YE T,(M), and X*, Y* are 
lifts of X, Y, respectively. The curvature tensor 
and the torsion tensor satisfy the relations 
R(X, Y) = - R( Y, X), T(X, Y) = - T( Y, X). 
Moreover, Bianchi’s identities hold: 

WW, Y)(Z))= WTV, Y)> 4 

+(VxT)(Y,Z)) 

and 

~((VxWY,Z)+R(T(X, Y),Z))=O, 

where 6 denotes the sum of terms that are 
obtained by cyclic permutations of X, Y, Z 
[4]. For instance, in the case of a Riemannian 
connection (Section K), we have T=O, and 
Bianchi’s identities reduce to 

RV, Y)(Z)+R(Y,Z)(X)+R(Z,X)(Y)=O, 

(V,R)(Y,Z)+(V,R)(Z,X)+(V,R)(X, Y)=O. 

We now consider a system of coordinates 
(xi, , x”) in an n-dimensional linear space M 
= R”. The vector ftelds (Xi, . . . ,X,) (Xi = a/axi) 
form a basis for vector fields on M. If  we set 
Vx,Xj = 0, we get an affine connection qn R”. 
For such a connection we have R = 0, T= 0, 
and any straight line in R” is a geodesic with 
respect to this connection. The connection is 
called the canonical affine connection on R”. 
An affine connection on a manifold M satistïes 
R = 0 and T= 0 if and only if the connection 
on M is locally isomorphic to the canonical 
affine connection of R”. 

Let <p be a diffeomorphism of a manifold M 
with an affine connection onto itself. We cal1 cp 
an affine transformation of M if the induced 
automorphism 4 on the bundle of tangent n- 
frames preserves the connection. In terms of 
covariant differentials, this condition is equiva- 
lent to the condition V,(,,<p( Y) = <p(Vx Y) for 
any vector lïelds X, Y. An affine transforma- 
tion of the canonical affine connection on R” 
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is an ordinary affine transformation. For an 
affine connection on a manifold M, the set of 
a11 affine transformations forms a Lie group 
and acts on M as a Lie transformation group 

c4,51. 
Let M be a manifold with an affine connec- 

tion. M is called an affme locally symmetric 
space if VR =0 and VT=0 are satisfïed. These 
conditions are satisfted if and only if at each 
point p of M, there exist a neighborhood U of 
p and an affine transformation cp of U such 
that (p2 = 1 and p is the isolated fixed point of 
<p. If  for each point p of M there exists an 
affine transformation of M such that <p2 = 1 
and p is an isolated fixed point, then M is 
called an affine symmetric space. A symmetric 
Riemannian space is a special case of this type 
(- 413 Symmetric Spaces). 

At each point p in a manifold M with an 
affine connection, we cari choose local coordi- 
nates (xi, . ,x”) such that x’(p) = 0 and the 
curve xi = ait (- 6 < t < 6) is a geodesic for each 
(a’, . , a”) with C(a’)’ = 1. Such local coordi- 
nates are called geodesic coordinates at p [4]. 
With respect to geodesic coordinates, we have 
(vxi(xj)),=o (a/axi=xi). 

K. Riemannian Connections 

When a Riemannian metric g (- 364 Rieman- 
nian Manifolds) is given on a manifold M, it 
defines a metric on the tangent space T,(M) at 
each point p of M, and we cari take ortho- 
normal bases in T,(M). The set P’ of a11 ortho- 
normal bases of tangent spaces is a subset of 
the bundle P of tangent n-frames of M and 
forms a subbundle of P; its structure group is 
the +Orthogonal group O(n), and P’ gives a 
reduction of the bundle of tangent n-frames. 
Conversely, when a reduction of the bundle 
of frames to O(n) is given, we cari detïne a 
Riemannian metric on M such that the re- 
duced bundle consists of all orthonormal 
frames. 

For a Riemannian metric g on M, there 
exists a unique affine connection on M such 
that (i) Vg = 0, and (ii) the torsion tensor T 
vanishes [4]. This connection is called the 
Riemannian connection corresponding to g. 
The lïrst condition is equivalent to the invar- 
iance of the Riemannian metric g under paral- 
le1 displacement. Thus the allïne connection 
transforms orthonormal bases on M to ortho- 
norma1 bases and induces a connection in the 
bundle P’. It is known that the restricted holo- 
nomy group of any Riemannian connection is 
a closed subgroup of O(n) [4]. An affme con- 
nection on a manifold M is called a metric 
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connection if it preserves a Riemannian metric 
g on M, i.e., if it satisfies the condition (i). 

L. Representations in Local Coordinates 

(1) Let (x1 , . . . ,x”) be a local coordinate system 
in a manifold M and consider vector tïelds 
Xi = 8/8x,. For an affine connection on M, 
the covariant derivative cari be expressed as 

t 

The l-ik are called coeffkients of the affine 
connection with respect to the local coordinate 
system (xl, . . , x”). We denote by rjk the coefft- 
cients of connection with respect to another 
local coordinate system (y’, . . , y”). Then on 
the intersection of their coordinate neighbor- 
hoods, we have 

Conversely, if the Tjk are given in each local 
coordinate system of M and satisfy this rela- 
tion on each intersection of their coordinate 
neighborhoods, then there exists a unique 
affine connection such that the coefftcients of 
the connection are given by I$. 

(2) The coefficients of the Riemannian con- 
nection corresponding to a Riemannian metric 
g = z g,dx’dxj on a manifold M are given by 

and are called the Christoffel symbols. 
(3) With respect to each local coordinate 

system (xl, . . . . x”), we express the torsion ten- 
sor T and the curvature tensor R of an affine 
connection by 

T=xqkdxj@dxk@Xi, 
ijk 

R = c Rj,, dxj 0 dxk @ dx’ @ Xi. 
ijkl 

The components Y$ and Rj,, are given by 

Tjk=rjk-rLj, 

R;,, = (ar;/axk - arLj/ad) 
+C(r;r;m-r;r;m). 

m 

(4) Let K =(Kj;:::$j be a tensor tïeld of type 
(r, s). Then the covariant differential VK = 
(Kj::::$ is given by 

(5) A curve x’=x’(t) is a geodesic if and only 
if 

i=l,2,...,n 

(- 178 Geodesics, 417 Tensor Calculus). 

M. Cartan Connections 

Let M be a differentiable manifold of dimen- 
sion n. Consider a homogeneous space F = 
G/G’ of the same dimension n, where G is a Lie 
group and G’ is a closed subgroup of G (- 199 
Homogeneous Spaces). Let B = (B, M, F, G) be 
a tïber bundle over M with tïber F and struc- 
ture group G, and P = (P, M, G) be the prin- 
cipal fiber bundle associated with B. Suppose 
that there exists a cross section f  over M to B. 
Then the structure group of P cari be reduced 
to G’. We denote this reduced fiber bundle by 
F”=(R’, M, G’) and the injection of P’ into P 
by j (- 147 Fiber Bundles). 

Suppose that a connection is given in P. Its 
connection form w is a differential form of 
degree 1 on P with values in g, and the in- 
duced form w’ =j*(w) is also a differential form 
of degree 1 on P’ with values in g. We cal1 the 
connection in P a Cartan connection on M 
with the fîber F = C/G’ if at each point x of 
P’, wi gives an isomorphism of T,(P’) onto g 
as linear spaces. Such a connection in P is 
equivalently defined as a 1-form w’ on P’ with 
values in g satisfying the following three con- 
ditions: (i) o’(A*) = A (AE g’ (Lie algebra of 
G’)); (ii) R,*(w’)=ad(ü’)o’ (aeG’); and (iii) WL 
gives an isomorphism of T,(P’) onto g at each 
point x E P’. For such w’, we cari take a con- 
nection form w in P such that o’=j*(o); w 
defines a Cartan connection. 

N. Soudures 

A cross section f over M to B gives a vector 
bundle T’(B) on M dehned as follows: For 
each point p of M, the projection B-+M de- 
fines a mapping Tfc,,(B)+Tp(M). The kernel of 
this mapping is denoted by V&B). Then 
T’(B) = IJ, V’&B) forms a vector bundle over 
M, and the dimension of its tïbers is equal to 
n=dimF. 

A Cartan connection in P gives a bundle 
isomorphism between T’(B) and the tangent 
vector bundle T(M) of M as follows: Let x be 
an arbitrary point in P’, and put p = z(x). The 
projection z:P)+M induces an isomorphism 
of T,(P’)/Vx(P’) onto T,(M). On the other hand, 
wi gives an isomorphism of T,(P’)/VJP’) onto 
g/g’. As a point in P’, x gives a mapping of F 
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= GIG’ onto the fiber in B over p and sends 
the point {G’} in F to f(p). By this map- 
ping, T’,‘,(F) = g/g’ is mapped isomorphically 
onto V&B). Combining these isomorphisms, 
we get an isomorphism between T,(M) and 
V&B) that is independent of the choice of 
x E P’ over p. The set of such isomorphisms for 
~EM defmes a bundle isomorphism of T(M) 
and 7”(B). I f  a fïber bundle B over M has an 
isomorphism such as above through a cross 
section, then B is said to have a soudure [3]. 

Conversely, if a tïber bundle B over M has a 
soudure with respect to a cross section f; then 
there exists a Cartan connection in P such that 
the soudure given by the connection coincides 
with the original one [3]. There are many 
Cartan connections in P with the given sou- 
dure. However, when F = G/G’ is a symmetric 
space of compact type such that G is noncom- 
pact and contains the identity component of 
the group of isometries, we cari determine 
uniquely the so-called normal Cartan connec- 
tion among the Cartan connections which 
gives rise to the given soudure [ 101. 

For the tangent vector bundle T(M) of M, 
the tïber F is an n-dimensional linear space 
and cari be expressed as F = GIG’, where G is 
the tafftne transformation group of F and G 
= GL(n, R). Then T(M) has the O-section over 
M, and there exists a natural soudure. Fur- 
thermore, an affme connection on M canoni- 
cally induces a Cartan connection on M with 
the fiber F = C/C [3]. 

For a Cartan connection on M, we cari 
introduce the notion of development of a curve 
in M into the tïber and also the notion of 
completeness [3]. 

0. Projective Connections 

Let F, = G,/G; and F2 = G2/G2 be homoge- 
neous spaces with dim Fr = dim F2 = n. Sup- 
pose that G, is a Lie subgroup of G2 and G; is 
contained in G; by the injection. Then we have 
a canonical injection F, +F2 (F, is an open 
subset of F2 by the assumption). 

Suppose that a tïber bundle B, with tïber F, 
over M has a cross section fi. Using fi, we 
cari construct a bundle B, with tïber F, over M 
which also has a cross section f2. The prin- 
cipal bundle of B, is given by extending the 
structure groups from the principal bundle 
of B, . We cari show that if B, has a soudure 
with respect to the cross section fi, then B, 
also has a soudure with respect to the cross sec- 
tion fi. A Cartan connection in the principal 
tïber bundle P, associated with B, that is com- 
patible with a given soudure on B, induces 
a Cartan connection in the principal tïber 
bundle Pz associated with B,, which then 
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induces a soudure on B,. The latter is called a 
Cartan connection induced from the former. 

Let F, be an n-dimensional hnear space and 
F2 be the real tprojective space of dimension n. 
Then the affine transformation group of F, 
cari be embedded into the projective transfor- 
mation group of F2. Thus the tangent vector 
bundle of a manifold M induces a tïber bundle 
over M with the n-dimensional projective 
space as its tïber. A Cartan connection in this 
tïber bundle is called a projective connection on 
M. By the argument in this section, we see that 
every affine connection on M induces a projec- 
tive connection on M. 

Given two affine connections on M, we 
denote by V and V’ their corresponding covar- 
iant differentials. The two affme connections 
on M induce the same projective connection 
on M if and only if there exists a differential 
form cp of degree 1 on M such that Vi Y- 
V, Y = <p(X) Y+ (p(Y)X for any vector fïelds X, 
Y[?]. I f  a diffeomorphism cp of M preserves 
the projective connection induced by an affine 
connection in M, then <p maps geodesics of M 
into geodesics. 

P. Conforma1 Connections 

Let F, be an n-dimensional Euclidean space 
and F2 an n-dimensional sphere (a tconformal 
space). We cari embed the group of tisometries 
of F, canonically into the group of tconformal 
transformations of F2. A Riemannian metric of 
the tangent vector bundle of a manifold M of 
dimension n gives a tïber bundle over M with 
fiber F2. A Cartan connection in this fïber 
bundle is called a conforma1 connection on M; 
a Riemannian connection on M induces a 
conforma1 connection on M. 

Two Riemannian metrics g,, g2 on M in- 
duce the same conforma1 connection on M if 
and only if there exists a positive function f  
on M such that g2 =fgr Thus for a Rieman- 
nian manifold M with metric tensor g 1, a dif- 
feomorphism <p of M such that <p*(g)=fg, 
leaves invariant the conforma1 connection 
induced by gr Such a cp is called a conforma1 
transformation of M with respect to the given 
Riemannian metric gl. 

For a Riemannian manifold M with metric 
tensor g, we detïne Weyl’s conforma1 curvature 
tensor W by 

where the R/ik, and Rj, are components of the 
curvature tensor and Ricci tensor, respectively, 
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and R is the scalar curvature (- 364 Rieman- 
nian Manifolds, 417 Tensor Calculus). When 
dim M > 3, the conforma1 connection induced 
by 9 on M is locally flat if and only if the 
conforma1 curvature tensor vanishes [7]. 

Q. Yang-Mills G-Connection 

Let P = (P, n, M, G) be a differentiable principal 
fïber bundle over a compact oriented Rieman- 
nian manifold M with group G. Then liber 
bundles Gp = P x c G and gr = P x Ad g asso- 
ciated with P are induced naturally from the 
group conjugation c: G+Aut(G) and the ad- 
joint representation Ad: G+Aut(g), respec- 
tively. A (local) section of G, is called a (local) 
gauge transformation of P. The set of a11 global 
gauge transformations, which is denoted by 
9p, has a group structure. 

A locally faithful representation p of G to 
an n-dimensional complex vector space F with 
a fïxed basis (tl, . , 5,) defmes a differenti- 
able complex vector bundle E = P x p F asso- 
ciated with P. Every point x of P is identified 
with a linear mapping X of F onto the lïber 
E n(x) defined by X: &-+ei, where ei denotes the 
equivalence class of {x, &} E P x F, 1 < i < n. 

In a manner similar to the case of an affine 
connection, a connection in P with connection 
form w gives a notion of parallel displacement 
of E as follows: Let c = pt (0 < t < 1) be a curve 
in M and c* = xt be a lift of c to P. The map- 
ping X, o X0’ : Epo~ E,, is called the parallel 
displacement of E,. onto Ept along c. 

Let X be a vector iïeld on M and <p be a 
differentiable section of E. The covariant de- 
rivative Vx<p of <p in the direction of X is de- 
tïned as follows: Let p0 be a point of M, c = pt 
( -E < t < -5) be an integral curve of X through 
p,, and c* =x, be a lift of c to P. We set 

1 1 Wxcp),o=lim-(%oxO (<p,,)-cp,J 
1-O t 

Then V, is also a differentiable section of E. 
The mapping (X, q)-V,q satistïes the fol- 

lowing conditions: (i) V,cp is linear with respect 
to X and cp; (ii) V,,cp =fv,<p; and (iii) V,(fq) = 
(Xf)<p +SV,(p, where f  is a differentiable func- 
tion on M. From these conditions it is seen 
that the mapping X+V,(p for a tïxed section 
<p of E defines a differential form of degree 
one with values in E, denoted by Vq. V is 
called a G-connection on E (induced from the 
connection in P). A linear operator dv: r(AP 0 

E)+T@“+’ @E), deiïned by dv(a 0 cp)=daO 
<p + (-l)p cc A Vq for a differential form CI of 
degree p and a differentiable section cp of E is 
called a covariant exterior differentiation. 
Here T(A@ @ E) denotes the set of a11 differ- 
ential forms of degree p with values in E. 
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The curvature form R’ of V is delïned by 

RVW> Y)<p=Vx(V,<p)-Vr(Vx<p)-V,x,,,<p, 
where X and Y are vector tïelds on M and 
cp is a differentiable section of E. In terms of 
the curvature form R of the connection in P, 
it cari be defmed also by 

R;(X, Y)cp=XoQ,(X*, Y*).X-l(q), 

where X and Y are in TP M and x E n-l (p) and 
X*, Y* are lifts of X, Y to P, respectively, and 
<p is an element of E,. Since !2 is a tensorial 
form of type ad and the differential p* of 
p induces a faithful representation of g to 
gI( F), Rv cari be regarded as a differential 
form of degree two with values in the bundle 

!3,=px.,cT 
The curvature form Rv satisfies Bianchi’s 

identity: dvRv = 0, where dV is a covariant 
exterior differentiation with respect to the G- 
connection on gp canonically induced from 
the connection in P. 

We denote by %’ the set of a11 G-connections 
on E. Now let G be a compact semisimple Lie 
group. A functional Y:W+R detïned by V 
-+Y(V)= -il,tr(RVr\ * Rv) is called the 
action integral (Yang-Mills functional) of V, 
where * is Hodge’s star operator, given by the 
fïxed orientation of M. 

The group 4 acts on % by V-f-’ o V of 
for fo ?Zp and then the curvature form is trans- 
formed by this action as R”+Ad(.f-‘)RV. 
Thus 9 is te,-invariant. 

A connection V is called a Yang-Mills G- 
connection if V is a critical point of Y. The 
Euler-Lagrange equation of Y is given by 
dV*Rv = 0 by the aid of the forma1 adjoint 
operator dv* of dv. This equation, called the 
Yang-Mills equation, is a system of non- 
linear second-order elliptic partial differential 
equations. 

When M is a 4-dimensional vector space R4 
with Minkowskian metric and G is the Abelian 
group U(l), the Yang-Mills equation coincides 
with Maxwell% equations for an electromag- 
netic fïeld. Thus the Yang-Mills equation for a 
non-Abelian group G is a natural extension of 
Maxwell’s equations. In fact, the theory of 
Yang-Mills connections has its origin in the 
iïeld theory of physics [l l]. 

In the case of dim M = 4, special Yang- 
Mills G-connections occur. A G-connection 
V satisfying the condition * Rv= RV (resp. * 
R” = - Rv) as a differential form of degree 
two is called a self-dual (resp. anti-self-dual) 
G-connection. From Bianchi’s identity and 
the expression of dV*: dV* = - * odV o *, it fol- 
lows that every self-dual (anti-self-dual) G- 
connection gives a solution to the Yang-Mills 
equation. Since the first Pontryagin number 

p,(E) is given by pl(E)= -(1/47?)~,tr(R”r\ 
R”) by virtue of the Chern-Weil theorem, the 
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action integral satisfïes y(V) > 2r?Ip, (E)I for 
every V in %? and the equality holds if and 
only if V is self-dual or anti-self-dual. 

Explicit forms have been obtained for (anti-) 
self-dual connections over the 4-sphere S4 by 
many interesting methods [12-151. And 
it has been shown that moduli space of self- 
dual G-connections (i.e., the set of ah solu- 
tions to the Yang-Mills equation modulo $,) 
over S4 has the structure of a Hausdorff mani- 
fold of dimension pi (gp) - dim G for every 
principal bundle P with group G [16,17]. It is 
not yet known whether there exists a Yang- 
Mills G-connection over S4 whose holonomy 
group is an open subgroup of G and which 
is neither self-dual nor anti-self-dual [ 181. 
The following is one of the few known facts 
concerning the properties of Yang-Mi& G- 
connections: If  a Yang-Mills G-connection, 
G = SU(2), SU(3), or O(3), over S4 is weakly 
stable, i.e., if the second variation of y  is posi- 
tive semidefïnite, then it is self-dual or anti- 
self-dual [ 193. 
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81 (1.11) 
Constructive Ordinal 
Numbers 

A. General Remarks 

TO extend the theory of trecursive functions to 
translïnite ordinal numbers, A. Church and S. 
C. Kleene [l] considered the set of effectively 
accessible ordinal numbers and detïned the 
concept of constructive ordinal numbers as 
explained later in this article. Their work 
became the basis of fruitful research by Kleene, 
W. Markwald, C. Spector, and others [2-51. 
A constructive ordinal number was origin- 
ally introduced as an “expression” in a tformal 
system utilizing the i-notation. Since such a 
system is “effective,” we cari arithmetize it 
utilizing tGodel numbers and assume from the 
outset that each ordinal number is represent- 
able by a natural number. The notations, 
terminology, and theorems mentioned in this 
article are mainly those for constructive 
ordinal numbers of the tsecond number class. 

B. Definition and Fundamental Properties 

We cal1 a set of natural numbers satisfying 
conditions (1) and (II) a system of notations for 
ordinal numbers, and an ordinal number a 
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constructive ordinal number when it is represent- 
able by a natural number belonging to such 
a system of notations: (1) No natural number 
represents two distinct ordinal numbers. (II) 
There are three +Partial recursive functions 
K(x), P(x), and Q(x, n) delïned as follows: (i) for 
any natural number x representing X, K(x) 
takes the value 0, 1, or 2 according as X is 
zero, an tisolated ordinal number, or a tlimit 
ordinal number, respectively; (ii) when X is the 
ordinal number timmediately after an ordinal 
number Y, P(x) represents Y for any natural 
number x representing X; (iii) when X is a 
limit ordinal number, for any natural number 
x representing X there exists an increasing 
sequence {Y,} of ordinal numbers such that 
X = lim, Y, and Q(x, n) represents Y, for each 
natural number n. 

The system called S, by Kleene is the most 
useful and convenient among systems of nota- 
tions for ordinal numbers. Let no be a tprimi- 
tive recursive function of the variable n delïned 
by 0, = 1, (n + l), = 2”o. The fundamental 
notion a E 0 and relation a < ,,b of the system 
S, are introduced by the following inductive 
definition: (1) 1 E 0; (2) if y~ 0, then 2y~ 0 and 
y  < 02y; (3) if a sequence {y,} of natural num- 
bers has the property that for each n, y,~ 0 

and~~<~y~+,, and if y  is a Gode1 number 
that defines y, recursively as a function of 
no (i.e., y, z {y} (no) (- 356 Recursive 
Functions)), then 3. Sy E 0, and for each II, 
y,, < .3. Sy; (4) if x, y, ZE 0, x < .y, and 
y  < oz, then x < oz; (5) UE 0, a < .b hold only 
when they follow from (l)-(4). 

Now, for brevity, we Write a < .b for 
(a < ob) v  (a = b). The following propositions 
hold for S,: (1) If  a < .b, then b # 1; (2) If  
a < .b, then a, be 0; (3) If  a < 02y, then a < .y; 
(4) If  a < .3. 5y, then there is a natural number 
n such that a < oy,,, where y, = {y} (no); (5) If  
UE 0, then 1 < ou; (6) If  a E 0, then for any 
tnumber-theoretic function u such that cc(O) = 
a and Vn(a(n) # 1 +cc(n + 1) < oa(n there 
is a k such that cc(k)= 1; (7) For each a, 1 
(a < oa); (8) If  CE 0, a < oc, and b Goc, then 
u<oboru=borb<ou. 

Each member a of 0 represents an ordinal 
numberlu~asfollows:~11=0;~2Yl=lyl+1for 
~60; ~3~.5Yl=lim,Iy,l for 3.5”~0, where y.= 
{y} (no). Let b be a member of 0. Then la] < 
1 bl when a < .b; and conversely, for each c( < 
lb/, there is a number a such that lu1 =CI 
and a < .b. Hence the set {u 1 a < ob} is a 
twell-ordered set with respect to x0, and its 
+order type is lb/. The least number t greater 
than la1 for every member a of 0 is the least 
ordinal number that is not constructive. It is 
denoted by ~7~ (Church and Kleene denoted 
it by wi). There is a subsystem of S, that is well 
ordered with respect to <o and contains a 
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unique notation for each constructive ordinal 
number ~1. For such a subsystem we cari take 
a I7: set K such that K is trecursive in 0 (S. 
Feferman and Spector, R. 0. Gandy) (- 356 
Recursive Functions H). 

C. Constructive Ordinals and the Kleene 
Hierarcby 

Let R(x, y) be a tpredicate on natural numbers. 
We Write x < Ry for any natural numbers x, y  
for which R(x, y) holds. We consider only the 
case where GR is a tlinear ordering on the set 
D,= {xl Sly(R(x,y)vR(y,x))}. I f  D, is a well- 
ordered set with respect to GR, we denote its 
tarder type by 1 R 1. (1) For each (constructive) 
ordinal number CL < aTK, there is a tgeneral 
recursive (more strictly, +Primitive recursive) 
predicate R such that 1 R 1 = GL (Markwald, 
Spector, Kleene [3]). (2) Conversely, if R is a 
thyperarithmetic predicate (e.g., R is general 
recursive), then 1 R l< uFK (Markwald, Spec- 
tor). The following theorems are the most 
fruitful ones in the theory of constructive 
ordinal numbers, and they fully support the 
validity of Kleene’s idea of tanalytic hierarchy. 
(3) The set 0 is Z7: (- 356 Recursive Func- 
tions H), and SO is the predicate a < .b. Name- 
ly, for 0, there is a primitive recursive predi- 
cate R(u, x, m) such that 

(Kleene [3]). (4) For each ordinal number a < 
uyK, the set {u 1 CI > lui} is a hyperarithmetic 
set (Spector). (5) 0 is a tcomplete set for Z7:. 
That is, for any II! set E, there is a primitive 
recursive function <p such that a E E o q(u) E 0 
(Kleene [3]). Accordingly, 0 is not a Z: set 
(- 356 Recursive Functions H). 

D. Relativization and Extension 

Given a (number-theoretic) predicate Q of one 
variable (or a set of natural numbers), we cari 
+relativize to Q the notion of constructive 
ordinal numbers. The least ordinal that is not 
constructive relative to Q is denoted by ~1. 
The relativization to Q of the fundamental 
notion UE 0 and relation a < .b of the system 
S, of notations are denoted by a E 0 Q and a < 
oQb, respectively. Then we cari relativize the 
results of the preceding paragraphs to Q. For 
example, as the relativization of (3), we have 
the following: There is a predicate RQ(u, x, CL) 
which is primitive recursive tuniformly in Q 
such that 

When Q is hyperarithmetic, we have no gen- 
eralization of the constructive ordinal numbers 
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by relativizing them to Q, that is, WY = @yK 
holds (Spector). Now by relativizing to 0 the 
concept of constructive ordinal numbers, we 
obtain a proper extension of it (oy’< WY), and 
then, performing such extensions successively, 
we have a (transfmite) sequence 0, O’-‘, 
0 00 , . On the other hand, we cari extend the 
constructive ordinal numbers to those corre- 
sponding to any hke higher number class, 
beyond the second, in which partial recursive 
functions are used at limit levels to provide an 
“accessibility” mapping from previously de- 
fïned number classes. There are several exten- 
sions done by Church and Kleene, H. C. 
Wang, D. L. Kreider and H. Rogers, Jr., H. 
Putnam, W. Richter, A. Kino and G. Takeuti, 
and others. Richter [9] has shown that these 
two ways of extending the constructive 
ordinals are equivalent, provided the sets of 
notations for the higher number classes satisfy 
certain natural conditions. Specifically, the 
ordinals of the Addison and Kleene [6] con- 
structive third number class are exactly the 
ordinals less than WY and the set 02,, of nota- 
tions for those is recursively isomorphic to 
Oo (Richter). 

E. Constructive Ordinals in Higher Number 
Classes 

Putnum [S] has defïned a system C of nota- 
tions for constructive ordinals of the Cantor 
higher number classes, improving that of 
Kreider and Rogers [7], as follows: N, is the 
set of notations for the ordinal number a; if 
for some c(, ~EN,, let Ix( =~<[XE NC], which 
is called a hyperconstructive ordinal; and 
let C, = U { Ni. 15 < a}. Defme i to be a Godel 
number of the tidentity function, and n to be 
an index in C, if 3”. SE C, for some t. There 
are four cases: 
Case 1. CC=~. Then Nu={l}. 
Case 2. c( = b + 1, where N0 is already defïned. 
Then N,={2XlxcN,}. 
Case 3. c( is a limit ordinal such that Nç is 
already defïned for a11 < < c(, and there exists 
an ordinal fi<a such that 3O.5’~ ND for some 
a, and a partial recursive function f’giving an 
order-preserving tcofinal mapping (0.p.c.m.) 
from C, into C,. Then N, is taken to be the set 
of a11 numbers 3O.5” such that 3”.5”eN0 (where 
fi is any ordinal with the above property) and 
{n} is an 0.p.c.m. from C, into C,. 
Case 4. CI is a limit ordinal such that N, is 
already defined for all t < c(, there is no b as in 
Case 3, but there is a number a E C, which is 
not an index in C,. Let /& be the least p for 
which such a’s belong to No. Then N,= 
{ 3”. 5” ) a E Na, and {rr} is an 0.p.c.m. from C, 
into C,}. 
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We have that XE N, only as required by Cases 
1-4. Finally, let wc be the least ordinal num- 
ber which is not hyperconstructive, and let 
c = tac. 

Extending Kleene’s H, for y~0 (- 356 
Recursive Functions H), Putnum has defined a 
hierarchy H, for x E C, and shown that hyper- 
constructive ordinal numbers are uniqueness 
ordinals, i.e., for x,y~C, if 1x1 = Iyl, then H, 
and H, are of the same tdegree of (recursive) 
unsolvability. E, is the type-2 abject (- 356 
Recursive Functions F) introduced by 7: 
Tugué such that E, (tl) = 0 if V/j’3x[a(b(x)) = 01; 
otherwise, E, (a) = 1. It is known that wc = 
a~“$, where ~“1 is the least ordinal which is 
not the order type of any well-ordering recur- 
sive in E, (Richter [lO]). 
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82 (XIII.1 8) 
Contact Transformations 

A. General Remarks 

A transformation of 2n + 1 variables z, xj, pi 
Ci = 42, . ,n), 
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Z=Z(z,x,,..., X”>Pl>PZ> . ..>PA 

Xj=Xj(Z~X1~X~~~~~~X~~P~rP~r~~~rPn)r 

j=1,2 ,..., n, 

q=pj(z,x1,xz, . . ..%.P,,P,, . ..>P.X 

j=1,2 i . . ..n. (1) 

is called a contact transformation in the (n + l)- 
dimensional space R”+’ with the coordinate 
system (z, x1, . , x,,) if the ttotal differential 
equation 

dz-p,dx,-p,dx,-...-p,dx,=O (2) 

is invariant under the transformation, i.e., if 
the equality 

dz-P,dX,-P,dX,-...-P,dX, 

=p(dz-p,dx,-p,dx,-...-p”dx,,) (3) 

holds identically for a suitable nonzero func- 
tion p of z, xj, pj. Here we assume that (1) has 
an inverse transformation. Using Lagrange3 
bracket 

we see that (1) is a contact transformation if 
and only if [X,, X,] = [X,, Z] = [Pi, PJ = 0, 

[pj, X,] =pSj,, [l$, Z] =ppj, where 4, is tKro- 
necker’s delta. 

From this fact it follows that the composite 
of two contact transformations and the inverse 
transformation of a contact transformation are 
also contact transformations. Since the iden- 
tity transformation Z = z, Xj = xj, Pj = pi is a 
contact transformation, the set of a11 contact 
transformations forms an infinite-dimensional 
ttopological group. Given a set of scalars 
pl, , pn, a pair consisting of a point (z, xj) 
and an n-dimensional hyperplane z* -z = 
?$‘=i pj(xT - xj) in an (n + 1)-dimensional space 
is called a bypersurface element, and the set 
of hypersurface elements satisfying (2) is called 
a union of bypersurface elements. Using these 
concepts, we cari state that a transformation 
(1) of coordinates z, xi, pj (j = 1,2, . , n) is a 
contact transformation if it transforms each 
union of hypersurface elements into another 
one. Consequently, if two n-dimensional 
hypersurfaces are tangent at a point (z, xj) in 
the (n + 1)-dimensional space, their images 
under a contact transformation, which are 
again two n-dimensional hypersurfaces, are 
tangent at the image point of (z, xj). The name 
“contact transformation” is derived from this 
fact. 

For instance, the tcorrelation with respect 
to a hypersurface of the second order gives a 

contact transformation. In fact, from the re- 
lation between tpoles and tpolar lines with 
respect to the parabola x2 + 2y = 0 in a plane, 
we have Legendre’s transformation X = -p, 

Y=xp-y, P= -x (p= -x). 

In general, an invertible transformation 
defmed by the three relations Q(x, y, X, Y)= 0, 
asrlax + Pan/a Y = 0, acqax + pan/ay = 0 

derived from a function Q(x, y, X, Y) is a con- 
tact transformation. The function Q is called 
the generating function of this transformation. 
In this transformation, to each point (xc,, y0) 
there corresponds a curve R(x,, y,,, X, Y) = 
0. These results are valid also in the case of 
several variables. For instance, in an (n + l)- 
dimensional space, a transformation Z = z - 

~lP1-~~~-~“P”;~l=P1,...,~“=Pvi~u+l= 

X “+1, . . . . x,=x,; PI = -x ,,..., P,= -x,, 

P”+l=PY+l’~.‘l P, = p, represents a contact 
transformation. Here v  is an integer between 
1 and n. In the case n = 2, v  = 2, this transfor- 
mation reduces to a Legendre transforma- 
tion; and in the case n = 2, v  = 1, it is called 
Ampbre’s transformation (- Appendix A, 
Table 15.W). 

B. Canonical Transformations 

A transformation of 2n variables xj, pj (j = 

1,2, . . ..n) 

j=1,2 ,...,n, (4) 

is called a canonical transformation if the tdif- 
ferential form &1(4dXj-pjdxj) is texact in 
xj, pj, i.e., if there exists a function U of x, p 

such that 

,t (qdXj-pjdxj)=dU. (5) 

Let (1) denote a contact transformation, and 
let Â denote a new variable which is different 
from zero. Set X, = z, p0 = Â, Xj = xj, pj = - Âpj 

(j= 1,2, . . . . n) and delïne a transformation of 
(2n + 2) variables by 

X0(% d = -w, x, PX 

j=1,2 ,..., n, (6) 

where x, p, y, and p denote points (x1, x2, 

. . ..x.X(~~,~~,...,p~),(x~,x,,...,Xn),and(P~, 

pl, , p,,), respectively. Then the identity (3) 
when multiplied by Â on both sides becomes 

P,dX,+P,dX,+...+P,dX, 

=p,dx,+p,dx,+...+p,dX,. (7) 
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Thus the transformation (6) represents a 
canonical transformation (U = constant). 
Moreover, from the definition the relation 
(6) is homogeneous, i.e., for a11 p #O, 

Xj(X, pLp) =X,(X, p), qx, /.a = &x PI, 

j=O,l,..., n. 

Conversely, let a transformation of (2n + 2) 
variables 

xi = Xj(X, F), pj = qx, p), 

j=O, 1 1 . . ..n. (8) 

be a homogeneous canonical transformation. 
Detïne a transformation of (2n + 1) variables 
z, xj, pj (j = 1,2, . . , n) by 

z(z,x,P)=x,(z,~,,...,x,,~, -IP,,..., -ÂP,), 

1lPk x> PI 

=;p,,(z.,,, . ..) X”,/z, -ApI, . ..) - nP”X 

Xj(z,XaP)=xj(z,xl, ...aXn,A, -APl>...> -APnX 

pj(z, x, PI 

= -f5(z,x1, . . . ,&,A, -AP,, . ..) -AP,), 

j=1,2 ,..., n. (9) 

Since the necessary and suffrcient condition for 
(8) to be a homogeneous canonical transfor- 
mation is that (7) hold, it follows that 

a(dz-P,dX,-...-P,dX”) 

=i(dz-p,dx,-...-p,dx,). 

Thus the transformation (9) represents a con- 
tact transformation. Therefore the most general 
contact transformation of (2n + 1) variables 
and the most general homogeneous canonical 
transformation are identical concepts, differing 
only in the choice of notation. 

The necessary and suffrcient condition for 
(4) to be a canonical transformation is ex- 
pressed by the relations 

Cxjt xk) = O, CxjT pk) = 6jka (6, pk) =O, 

j,k=l,2 ,..., n, (10) 

where (. , .) is Poisson3 bracket, i.e., for a pair 
of functions f(x, p), g(x, p), 

Denote Poisson’s bracket in the coordinate 
system X,,X,, . . . . X,, P,,P,, . . . . P,, by (., ,)‘, 
and for f(x, p) and g(x, p) denote their trans- 
formations by f’(X, P) and g’(X, P). Then the 
relation (10) is equivalent to 

(A g) = (S’, g’)’ for a11 f  and g. 

From this fact it follows that the set of all 
canonical transformations forms an infinite- 
dimensional topological group. 

Suppose that we cari take x1, x2, . . . ,x,, X,, 
X,, . . , X, as 2n independent variables. Denote 
by R,(x, X) the function U of (5) represented 
by x, X. By means of this R,, 2n functions 
which give a canonical transformation (4) are 
derived from the relations 

afi, 
pi= -7 

P+ j=1,2 ,..., n. 
I 

Conversely, for Q(x, X) such that det 

# 0, a transformation determined by the 
relations 

an 
Pi= -6’ 

P& j=1,2 , . . ..n. 
I 

represents a canonical transformation. For 
a general canonical transformation, x1, x2, 

.” > x,, X,, X,, . ,X, are not necessarily 2n 
independent variables. But for a canonical 
transformation there exists n new variables 
Xi,, Xi2, . . , Xii, pi,, . . , pi._, such that x1, 

X1,...rX",Xi,,Xi,>...>Xi~r~,>~,>.",Pj,_i 

are 2n independent variables, where (il, i,, 

, . , i,J, (jr, j,, . . . ,jnmk) is a partition of the set 

(L2, . ..> n) to two disjoint subsets. Denote 
by 0, the function U - ZyZ: XjiPji. Then the 
transformation (4) is derived from relations 

afi, 
pj= -w j=1,2 ,..., n, 

xj,= -2, 1=1,2 ,..., n-k, 
JI 

1=1,2 ,...> k. 

These functions R,, Q2 are called the generat- 
ing functions of a canonical transformation. 

Consider a transformation of 2n variables 
depending smoothly on a parameter t: 

j=1,2 ) . . ..n. (11) 

If  (11) represents a canonical transformation 
of 2n variables for each t, then Xi and Pj, 

j=1,2 , . . . , n, satisfy,+Hamilton’s canonical 
equations 

$Qt,x,P), z= -$f.X,P), 
I J 

j=1,2 ,..., n, (12) 

for some +Hamiltonian function H(t, x, p). 

Conversely, for any solution Xj, 4 of Hamil- 
ton’s canonical equations (12) depending on 
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parameters x,, xî, . . . ,x,, plrp2, ,pn, if the 
transformation (11) is a canonical transforma- 
tion for t = 0, (11) represents a canonical trans- 
formation for each t. By a canonical trans- 
formation (4) the solutions of Hamilton’s 
canonical equations 

dP. ~2&t,x,p), &gc,P), 

J I 

j=1,2 r...,nr (13) 

are transformed to the solutions of 

dd:‘=g$(t,X,P), z=-$X,P), 
I I 

j=1,2 ,..., n, (14) 

where the new Hamiltonian function is given 

by KO, X, P) = H(t, x, PI. 

C. Applications to the Integration of 
Differential Equations 

Contact transformations have applications to 
the integration of differential equations since 
they transform each union of surface elements 
into another one. 

Consider Hamilton’s canonical equations (13). 
An example of system (13) is the equation of 
motion for a dynamical system which is de- 
rived from SSL(xj,Xj)dt =O. Here the xj denote 
generalized coordinates, pj = aL/aij and H = 

Z& pjij- L. 

LetS(x,,x, ,..., x,,X,,X, ,..., X,)bea 
solution depending on parameters X,, X,, 
. . . ,X, of the +Hamilton-Jacobi equation 

As an example, we shah describe an outline 
of their application to a partial differential 
equation of the lïrst order 

H t,x,,x, ,...> x,, -;, -$ ,..., 
as 

1 2 
-ax 

n > 

4% Y, z, P> 4) = 0; 
=K(X,,X,,...,X,) (17) 

p E az/ax, q = az/ay. (15) 

For this purpose, we regard (15) as an equation 
detïning unions of surface elements and trans- 
form it into a simpler equation by means of a 
contact transformation. If  the transformed 
equation cari be solved, then the solution of 
the original equation cari be obtained by 
means of the inverse transformation. Now, let 
z = w(x, y, a, b) be a tcomplete solution of (15). 
Then (15) is reduced to Z - c = 0 by the trans- 
formation generated by the function 

such that det 

ical transformation of a generating function S, 
i.e., by a transformation determined by the 
relations 

as 

pj= -FL 
+g, j=1,2 ,..., n, 

J 

the system (13) is transformed to (14). Here 

K(t,X,P)=H 

n=z-z+w(x,y,X, Y)-c=o, Then (14) becomes 

where c is a constant. In this equation the 
solution X = a, Y = b, Z = c, ctP + BQ = 0 (a, b, 

c, CI, p are constants) plays an important role, 
and this line element Will be called a charac- 
teristic line element. The characteristic line 
element satisfies equations that cari be trans- 
formed by means of the inverse transformation 
into Charpit’s suhsidiary equations for (15): 

dXj_ -0, -- 
dt dt 

--g(X), j=1,2 ,..., n, 
J 

and the solutions are 

dx dy dz 

aF/ap aF/aq piwlap + qaFpq 

In particular, a transformation that makes 
K = 0 is called a transformation to an equilih- 
rium system. Thus solving Hamilton’s canon- 
ical equations reduces to tïnding a tgeneral 
solution of the Hamilton-Jacobi equation (17). 

When the variables of the Hamilton-Jacobi 
equation (17) are totally separable we cari 
obtain a general solution of (17) by tquadra- 

-4 -dg 
= aF/ax + paF/az = aFjay + qaF/az 

(16) 

Consequently, if we have p = p(x, y, z; a), q = 

q(x, y, z; a) from the solution G(x, y, z, p, q) = a 

of (16) and F = 0, then the total differential 
equation dz = pdx + qdy is tcompletely inte- 
grable, and the tgeneral solution of this equa- 
tion is a complete solution of (15). Also, if we 
know two independent solutions G(x, y, z, p, q) 

= a, H(x, y, z, p, q) = b of (16) such that [G, H] 
= 0, we cari obtain a complete integral of (15) 
by eliminating p, q among the three equa- 
tions F = 0, G = a, H = b. This method is called 
the tlagrange-Charpit method, which is ap- 
plicable also to the equation F(z, x1, . . . ,x,; 

pl, . . , p,) = 0 (- 322 Partial Differential Equa- 
tions (Methods of Integration)). 

D. Applications to Analytical Dynamics 



82 Ref. 
Contact Transformations 

tures. Then one cari integrate by quadratures 
the system of equations (13). For many im- 
portant problems exact solutions are obtained 
by this method (- 27 1 Mechanics). 

Furthermore, every mapping in an optical 
system is a canonical transformation; in optics, 
the quantity corresponding to S is called an 
eikonal(- 180 Geometric Optics). 
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83 (V.3) 
Continued Fractions 

A. The Notion of Continued Fractions 

Let {b,} (n = 0, , m) and {c,,} (n = 1, , m) be 
finite sequences of elements in a Uïeld F. A 
fraction of the form 

bo+ 
CI 

b, + 
c2 

b,+... 

is called a finite continued fraction. It expresses 
an element in the fïeld F unless devision by 0 
occurs in the process of reduction. Symboli- 
cally, it is also written in the forms 

CI c2 bo+b+b+ ,!+$, 
1 2 ml m 

b 
Cl c2 cm-1 cln 1 o’b,‘b2”“‘b,,-,‘bm ’ 

etc., or more briefly, 
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If{b,}(n=O,l,... )and{c,}(n=1,2 ,... )are 
intïnite sequences, the expression 

ho + 
Cl 

b, + 
c2 

b,+ ... 

C” 
+b,,+... 

is called an infinite continued fraction. By 
analogy with the fïnite case, it is expressed by 

bo+~+~+...+~+... 1 2 n 

orbyb,+ 5 11 
m 

4s n=l’ 

For an infinite continued fraction, the quantity 

CI CII 
kfl=bo+~+...+bn’ - k,=b, 

is called its nth convergent, b, is called the 
initial term, and c, and bn (n > 1) are called the 
partial numerator and partial denominator, 
respectively. I f  F is a ttopological field (e.g., 
the real or complex number tïeld) and the se- 
quence {k,} of its elements converges, then the 
infmite continued fraction is said to converge, 
and the limit is called its value. 

A finite or infinite continued fraction in 
which c, (n > 1) are all equal to 1, b, is a ra- 
tional integer, and b, (n > 1) are a11 positive 
rational integers is called a simple continued 
fraction. It is expressed by [b,, b,, .]. bn is 
often called the nth partial quotient. In the 
following paragraphs we shall mostly discuss 
simple continued fractions. 

For a real number x we mean by [x] the 
greatest integer not exceeding x. [ ] is called 
the Gauss symhol. Let w be any given real 
number, and put 

w,=b,,+‘> b,=Cw,l, n=1,2,.... 
Ilil 

Then an expansion of w into a simple con- 
tinued fraction 

1 1 
w=b,+- 

b,+...+b,,+... 

is obtained. If  w is irrational, this expansion is 
determined uniquely. Conversely, any infinite 
simple continued fraction converges to an 
irrational number. If  w is rational, the process 
is interrupted at a finite step (w, = b,), result- 
ing in 

1 1 
“=bo+b,+...+/,m’ 
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An alternative representation of a rational 
number by a simple continued fraction is given 
by replacing b, above by (b,,, - 1) + l/l. 

Examples of intïnite simple continued frac- 
tions are 

e2’P + 1 
-=p+’ 

1 
e*iP - 1 3p+...+(2n+l)p+...’ 

where p is a natural number (J. H. Lambert), 
and 

1 1 1 
e=2+- - - 1 1 1 

1+2+1+...+i+2n+1+... 

(L. Euler). 

B. Convergents 

Let the nth convergent of a simple continued 
fraction be expressed in the form of an irreduc- 
ible fraction 

“i=b,,+;+,,,+$, 
Qn , n n’o’ 

and for convenience put P-, =O, P-, = 1, 
Q -* = 1, Q-i = 0. Then we have the recurrence 
relations 

Pn=U-, +Pn-2, Q,=bnQ.-,+Q,-2, 

whence follows 

n>O, 

P~Qn~l-P,-lQ,=(-l)“‘l, na -1. 

Any simple continued fraction represents a 
real number w which satisfïes 

in terms of the notation defmed in this and the 
previous section. 

In particular, let w be an irrational number. 
Then each of the fractions 

pI1’- Pnm2 + kP,-, 
Qn,-Qn-2+kQ,-,’ k=L2a...>bn-l> 

which are inserted between two conver- 

gents Pn-*IQnm2 and p./Qn=(Pn-2 + bd’-,Y 
(Qn-* + bnQn-l), is called an intermediate con- 
vergent, while the original convergent PJQ, is 
called a principal convergent. 

I f  a fraction P/Q approximating an irra- 
tional number w satisfies 10 - P/Q I< Iw - p/q 1 
for any other fraction p/q with q < Q, then it is 
said to give the best approximation. The frac- 
tion giving the best approximation of w is 
always a principal or intermediate convergent 
Pik)/QAk) of w with k > b,,/2 or k = b,/2, Q, > 

Qn-,wn. 
The convergents satisfy the relation PJQ, - 

Pn-JQn-, =( -l)“-‘Q,,Q,-,; hence the se- 

wence jP2JQ2.) h-w. ip2,+JQ2.+,)> is 
monotonically increasing (decreasing). Ap- 
proximation by convergents is shown in the 
relations 

m (-1) 
a=lim$=h,+ 1~ 

n-m ” n=oQn+l Qn 

In particular, lw - PJQ.1 < l/Qz. On the other 
hand, if P, Q are relatively prime positive 
integers with 10 - P/QI < 1/2Q2, then P/Q is a 
convergent to w (A. M. Legendre). There are 
several results concerning the measure of 
approximation by convergents. Any w satisfies 
lw - P,/Q,I < l/(,,&Qi) for iniïnitely many n, 
while there exists an w which satisfies 1 o - 
P,,/Q,I < l/(ÂQi) for only a tïnite number of n 

provided that Â > 4 (e.g., o= $, A. Hur- 
witz); at least one of two adjacent convergents 
satishes the inequality Iw - P,/Q,l < 1/(2Qf) (K. 
T. Vahlen); at least one of three consecutive 
convergents satistïes the inequality lw - P,/Q,I 

< l/(&Qt) (E. Borel); Iw-P/QI < l/dQ’ 
has infïnitely many rational solutions P/Q 

whenever w is not tequivalent to (fi+ 1)/2 
(Hurwitz). One calls an irrational number o 
badly approximable if there is a constant c = 
c(w) > 0 such that lw - P/Q I> c/Q’ for every 
rational P/Q. o is badly approximable pre- 
cisely if the partial quotients of the continued 
fraction expansion of w are bounded. In partic- 
ular, real quadratic irrationals have bounded 
partial quotients (- Section C; 182 Geometry 
of Numbers F). 

C. Quadratic Irrationals 

If  an iniïnite simple continued fraction 
[b,, b,, . ] satisfïes b,,,+k+u = b,,, (v = 
0, 1,2, . . ), it is called a periodic continued 
fraction and is denoted by the symbol 

[b,, b,, . , b,,,, . . , b,,,+kml]. According as m = 0 
or m > 1, the periodic continued fraction is said 
to be pure or mixed, and the sequence b,,,, 
b ,,,+r , , b,,,+k-l is called a period. In order for 
the continued fraction of w to be periodic, it is 
necessary and suffcient that w be a quadratic 
irrational number, i.e., a root of ux* + bx + c 
= 0 with rational integral coefficients a, b, c 
and nonsquare discriminant b* - 4ac (J. L. 
Lagrange). In order for w to be represented by 
a purely periodic continued fraction, it is neces- 
sary and sufftcient that w be an irreducible 
quadratic irrational number, i.e., that w satisfy 
w>landO>w’>-l,wherew’istheconju- 
gate root of w (E. Galois). In order for w to be 
equal to the square root of a nonsquare ra- 
tional number, it is necessary and suhïcient 
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that its continued fraction be of the form 
[h,, b,, . , bk-l, 2b,] (Legendre). 

D. Application to Pell’s Equation 

Let ax - by = 1 ((a, b) = 1) be a +Diophan- 
tine equation of the first degree, and a/b = 
[b,,, b,, , b,,,] = P,,,/Qm. Since P,Q,,-, - 
P,,-i Q, = (- l)mml, a solution of the equation 
is given by x0 = (- l)mmiQ,,,, y0 = (- l)“-‘P,,,. 
The general solution is then represented in the 
form x0 + bt, y, + at (te Z). This method of 
obtaining a solution is essentially the same 
as the method which uses the +Euclidean 
algorithm. 

Pell’s equation x2 -Dy’=l (Disanon- 
square integer > 1) was solved by Lagrange in 
terms of continued fractions. If  the length of 
the period of D is k, ail positive solutions of 
Pell’s equation are given by x = PZvk-i, y  = 
QzVkml if k is odd, and by x=P+~, y=Q,,-, 
if k is even (v = 1,2, ), where P,,/Q, denotes 
the nth convergent of the continued fraction 
expansion of fi. Incidentally, x = P~Zu~l~k-l, 
y  = Qc2v-,jk-l (v = 1,2, ) are the positive 
solutions of x2 - Dy* = - 1 provided that k 
is odd. There are no solutions of x2 - Dy2 = 
k 1 other than x,,y,(v = 1,2, . . .) given by 

(x,+JDy,)“=x,+~y,,wherex,,y,is 
the least positive solution. For instance, the 
least positive solution of x2 - 21 ly’ = 1 is x = 
278,354,373,650, y= 19,162,705,353. 

Lagrange made further use of continued 
fractions in order to obtain approximate 
values of roots of algebraic equations. The 
method is especially useful for precise compu- 
tation of neighboring roots. 

The theory of continued fractions may be 
investigated geometrically making use of lat- 
tices ([2,3]; - 182 Geometry of Numbers) (F. 
Klein, G. Humbert). For instance, a measure 
of approximation of P,,/Q, to w in Diophantine 
approximation is represented by the closeness 
of a lattice point (P,,, Q,,) to the straight line y  
= ox on the plane. 

E. Continued Fractions with Variable Terms 

There are few results on continued fractions 
with variable terms. It is noteworthy that 
from the expansion of tanz into a continued 
fraction 

2 2 2 
tan22 2 -z -z 

1+ 3 + 5 + 7 +... 

(Lambert), the irrationality of z and of tanz 
for rational z (#O) cari be deduced (A. 
Pringsheim). 

Among continued fractions with variable 
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terms, those of the form 

ao a1z [a,,a”z]y =- - a,z 
1 + 1 +...+ 1 +... 

are called normal continued fractions. Let the 
convergent of such a continued fraction be 
P,(z)/Q,(z), and for convenience put Pml(z)= 
0, Q i (z) = 1. Then we have the recurrence 
formulas 

P,(z)=P,-,(z)+a,zP,-,(z), 

Qn(4 = Qn-1 (4 +~Qn-,(z)> n> 1. 

There are the further relations 

P~(~)Q,-,(z)-P,-~(z)Q,(z)=(-l)“z” fj a,, v=o 

[ao, a,zll = z (-l)“z” Ib n=oQn-t(z)Q.(z) v=o “’ 

where the latter is formal. Let the tpower series 
expansion of the nth convergent of [a,, a,~]: 
be 

Then b,,,,=b,, (O<v<m<n). If  [a,,a,z]F has a 
power series expansion about the origin, then 

ca,,a,zl? = f hmz” 
Il=0 

I f  the supremum 3 of { [a,[}? is lïnite, then 
[a,,a,z]~ converges uniformly for Izl<(l/4) 3, 
and hence it represents an fanalytic function 
which is holomorphic in 1 z I< (1/4)y. 
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84 (X.2) 
Continuous Functions 

A. General Remarks 

The notion of continuity is defined for a map- 
ping or a function S:X+ Y from a topolog- 
ical space X to a topological space Y (- 425 
Topological Spaces G). In the present article, 
however, we are concerned mainly with the 
case where both X and Y are tmetric spaces 
with the distances px and pr, respectively. The 
most usual case is X = R” (Euclidean space), 
Y= R (real numbers). 

A function f: X -t Y is said to be continuous 
at a point x0 E X if for every positive number E, 
we cari Select a suitable positive number 6 
(depending on E and also on x0) such that 
px(x, x0) < 6 implies py(f(x),f(x,)) < E. This is 
equivalent to the condition that x+x0 implies 
f(x)+f(x,) (- 87 Convergence). We cal1 f  
continuous (on X) if it is continuous at every 
point x0 of X. If  for every positive number a, 
we cari Select a suitable positive number 6 
independent of x and y  such that px(x, y) < 6 
implies py(f(x),f(y))<& for ah x, yeX, we cal1 
f  uniformly continuous on X. 

The tsupremum w(6) of p,(f(x),f(y)) for 
x, y  E X satisfying p,&c, y) < 6 is called the 
modulus of continuity of the function S in X. 
Uniform continuity means that w(d)40 for 
640. 

If  w(6) < M6” for suitable constants M, CL > 
0, that is, if the inequality pt(f(x),f(y))< 
M(p,(x, y))” holds for x, y~ X, then f  is said 
to satisfy the H6lder condition of order GI, also 
known as the Lipschitz condition of order CX. 
If  CI = 1, this condition is called simply the 
Lipschitz condition. A function satisfying one 
of these conditions is uniformly continuous. 
The family of functions satisfying the Lip- 
schitz condition of order CI is sometimes de- 
noted by Lipcc. 

In general, the composite function g of: 
X-Z is continuous if both functions f :X+ Y 
and g : Y+Z are continuous. If  the ranges off; 
g are both the real field R (or the complex lïeld 
C, or more generally a ttopological lïeld), then 
f &- y, fg are continuous if f  and g are contin- 
uous; and f/g is continuous provided that 
g(x) # 0. If  R is the range of both f and g, then 
min(J g) and max(J g) are continuous when f 
and g are continuous. If  X is tconnected (for 
example, an interval I in R) and if f is contin- 
uous, the image f(X) is also connected. 

B. Continuity from One Side 

In this section, we always assume that the 
domain X is an interval 1 in R and f is a func- 

tion from 1 to a metric space Y. A point x0 
of X is called a discontinuity (point) of the 
first kind off if both limits lim,t,,f(x) and 
limxlxO f(x) exist in Y and are different. Then 
we say also that f  has a jump (or gap) at x0. If  
these two limits exist and have the same value, 
then f  is continuous at x0. 

We say that j’has a discontinuity of at most 
the tïrst kind at x,, if f  is continuous at x0 or if 
x0 is a discontinuity of the tïrst kind for 1: 
(Sometimes the phrase “discontinuity of the 
lïrst kind” is used to mean “discontinuity of at 
most the Iïrst kind.“) A discontinuity point off 
(i.e., a point at which f  is not continuous) that 
is not of the tïrst kind is called a discontinu- 
ity point of the second kind.When limxlxO f(x) 
= f (x,), we cal1 f right continuous (or con- 
tinuous from the right) at x0. In this case, 

~im,txof( 1 d t x nee no exist. Replacing X~X,, by 
xTx,,, we cari similarly delïne the concept of 
being left continuous (or continuous from the 
left). I f  a function f has a finite number of 
discontinuity points of the first kind in the 
interval [a, b] and is continuous at a11 other 
points, we cal1 f a piecewise continuous func- 
tion in [a, b]. 

C. Semicontinuous Functions 

In this section, we assume that the domain of 
the functions is a subset E of a metric space X, 
and that the range is the set of real numbers 
extended to include +co. Let x be a point in 
the closure of E. We denote by M(x, 6) and 
m(x, 6), respectively, the supremum and the 
inlïmum of the values of a given function fin 
the fi-neighborhood of x. We put 

M(x) =d’yj M(x, 6), m(x) = d’; m(x, fi), 

and cal1 them the Upper limit function and 
lower Emit function, respectively. We have 
-CO <m(x)<M(x)< +CD. If M(x,)=f(x,) at 
X,,E E, then f  is called Upper semicontinuous at 
x,,. I f  m(x,) =f(xJ at X,,E E (i.e., if -fis Upper 
semicontinuous at x,), then fis called lower 
semicontinuous at x0. The function with one 
of these two properties is said to be semicon- 
tinuous at x0. 

Either of the following two conditions is 
necessary and sutlïcient for the function f  to 
be Upper semicontinuous at x0 E E: (1) f  (x0) = 
+co, or for every constant A. such that f(xJ< 
)&, there exists a fi-neighborhood such that 
M(x,, 6) <Â. (2) For every sequence x, of E 
converging to x0 we have lim supn-tm f  (x,) = 

f  (x0). 
A function f  is called Upper (lower) semi- 

continuous in E if it is Upper (lower) semicon- 
tinuous at every point x E E. A necessary and 
suffcient condition for the Upper semicontinu- 
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ity of the function f(x) in E is that {x If(x) <a} 
be a trelatively open set in E for every real 
number a. We cari delïne semicontinuity for 
functions on a topological space by using this 
latter property. 

A real-valued function f(x) is continuous at 
x0 E E if and only if it is upper and lower semi- 
continuous at x0 and f(xO) is fmite. A function 
f(x) is continuous on E if and only if it takes 
tïnite real values on E and both {x If(x) < a} 
and {x If(x) > a} are relatively open in E for 
any real number a. When E is tcompact, an 
Upper (lower) semicontinuous function on E 
attains its (supremum) infimum at a point in 
E. In particular, a continuous function on a 
compact set E is bounded and assumes its 
maximum and minimum on E (Weierstrass’s 
theorem). Furthermore, if E is connected (e.g., 
the interval 1 in R), it follows from the con- 
nectedness of the image f(E) that if c(, BE 
,f(E) and y  lies between a and 8, then y~f(E) 
(intermediate-value theorem). 

A real-valued function f(x) on a set E of R 
satistïes the Lipschitz condition if it is tdiffer- 
entiable and the derivative is bounded. Such a 
function is also tabsolutely continuous, con- 
tinuous, and of tbounded variation. (For the 
polynomial approximation of real continuous 
functions - 336 Polynomial Approximation.) 

The limit function f(x) of a monotone de- 
creasing sequence of Upper semicontinuous 
functions f,(x) is also Upper semicontinuous. 
The limit function f(x) of a uniformly converg- 
ing sequence of continuous functions is con- 
tinuous. (Regarding the tequicontinuous family 
of functions - 435 Uniform Convergence.) 

D. Baire Functions 

The limit function of a pointwise converging 
sequence of continuous functions defined on a 
metric space X is not necessarily continuous. 
R. Baire (Ann. Mat. Pura Appl., (1899)) intro- 
duced the notion of Baire functions as follows: 
He named continuous functions the functions 
of class 0. Then he called a function that is a 
pointwise limit of a sequence of continuous 
functions a function of at most class 1. A func- 
tion is said to be of class 1 if it is of at most 
class 1 and is not of class 0. He similarly de- 
fined the notion of class n for arbitrary natural 
number n. 

Further, a function is said to be of at most 
class w if it is a pointwise limit of a sequence of 
functions of class n, for a sequence of natural 
numbers n,. A function is said to be of class 
w if it is of at most class w and is not of class 

n for any lïnite number n. In general, using 
ttranstïnite induction, we cari detïne the notion 
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of functions of class 5 for an arbitrary tordinal 
number 5 [4]. 

Al1 these functions are called Baire functions. 
Actually, there is no function of class 5 for an 
uncountable ordinal number 5. If  X is a tper- 
fect set in Euclidean space, then there is actu- 
ally a function delïned on X of class 5 for an 
arbitrary countable ordinal number 5. Here- 
after, we shall be concerned with this case only. 

I f  X has the cardinality of the tcontinuum, 
then the set of a11 Baire functions on X has the 
cardinality of the continuum. On the other 
hand, the cardinality of a11 functions on X is 
actually greater than that of the continuum. 
Hence there exist functions that are not Baire 
functions on X. A function is a Baire function 
if and only if it is tBore1 measurable (H. Le- 
besgue). Therefore a necessary and suftïcient 
condition for a function f  to be a Baire func- 
tion is that the set (x If(x) > LY, XE X} be a Bore1 
set for any real number a (- 270 Measure 
Theory J). The limit of a countable sequence of 
Baire functions is also a Baire function. If  f(x) 
and g(x) are of at most class a on X, then the 
following functions are also of at most class 

a: If(xN f(x) k g(x), f(x). g(x), and f(x)/&) 
(provided that g(x) #O on X). 

The condition that a function fis of at most 
class 1 on X is equivalent to either of the 
following two conditions: (1) For any closed 
subset F of X, the restriction f* off to F has 
a continuity point in F. (2) For every real 
number a, the set {xlf(x)<cc,x~X} is an tF, 
set (Baire). In a tcomplete metric space, a 
necessary and sufficient condition for a func- 
tion f  to be of at most class 1 is that the set of 
continuity points be dense in X. 

For example, the Dirichlet function, which 
takes the value 1 at rational points and 0 at 
irrational points, is expressed as 

lim lim (COS v! 7r~)~~ 
( 

, 
“‘oc k-m > 

which is of class 2. A function f(x, y) of two 
real variables that is continuous in each vari- 
able x and y  separately is a function of at most 
class 1. 
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85 (VI.19) 
Continuous Geometry 

A. General Remarks 

The structure of a tprojective geometry is 
determined by the tlattice (lattice-ordered set) 
of subspaces of the projective space. For this 
reason, this lattice itself is sometimes called 
a projective geometry. The concept of con- 
tinuous geometry was introduced by J. von 
Neumann as an abstraction of lattice-theoretic 
properties from a special class of tlattices 
(lattice-ordered sets) which he encountered in 
his research on toperator rings in Hilbert 
spaces [ 11. Continuous geometry contains 
projective geometry as a special case when the 
dimension is discrete; but more usually the 
lattices are of continuous dimension. 

A continuous geometry is a tcomplete and 
tcomplemented tmodular lattice L (- 243 
Lattices F) that satislïes the following prop- 
erty and its dual (both called properties of 
continuity): For any element a of L and any 
subset W of L which is twell ordered with 
respect to the ordering in L, we have an sup w 
= sup(a n w) (w E W). The tcenter Z of the 
lattice L is called the tenter of the continuous 
geometry L, which is said to be irreducible 
when Z has no elements other than the tleast 
element 0 and the tgreatest element 1; other- 
wise L is said to be reducible. A reducible 
continuous geometry is isomorphic to a sub- 
lattice of a tdirect product of irreducible con- 
tinuous geometries. 

On any continuous geometry L, there cari 
be defined a function d(x) whose values belong 
to a complete lattice-ordered linear space M 
and which satislïes the following four con- 
ditions: (1) d(x) > 0; (2) d(x) =d(y) implies the 
existence of a common complement of x and y; 
(3) d(x u Y) +d(x n Y) = d(x) +d(y); (4) supqw) = 

d(sup w) (w E W) for any subset W of L which 
is well ordered with respect to the ordering in 
L. Such a function d(x) is called a dimension 
function on L. Irreducibility of L is equivalent 
to the property that a real-valued dimension 
function cari be introduced; in this case, if d(w) 
takes only a finite number of values, then L is 
a finite-dimensional projective geometry; on 
the other hand, if d(w) takes every number in 
the closed interval [0, 11, then L is called a 
continuous geometry in the strict sense. An 
example of the latter cari be constructed as a 
limit of a sequence of projective geometries of 
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increasing dimensions; another example is the 
lattice of projection operators of the +von 
Neumann algebra of type II,. I f  a group G of 
tautomorphisms of L is given, there cari be 
introduced a generalized dimension function 
which is invariant under G satisfying slightly 
weaker conditions (T. Iwamura [3]). 

B. Representation of Continuous Geometry 

A ring R is called a regular ring if it has a unity 
element and if, for any element a of R, there 
exists an element x in R such that axa = a. A 
continuous geometry L is isomorphic to the 
lattice (with 2 as its ordering) of +Principal left 
ideals of a regular ring R provided that d(1) 
ZZZ n. d(x) (n > 4) for some natural number n 

and some element x of L. The decomposition 
of R into a tdirect sum of ideals corresponds 
to the decomposition of L into a direct prod- 
uct of lattices. The condition that L is irreduc- 
ible and finite-dimensional is equivalent to 
the condition that R is a matrix ring over a 
tskew fteld; when these conditions hold and L 
is considered as a projective geometry, then 
the coordinates are given by this skew tïeld. In 
continuous geometries, join and meet are often 
denoted by the symbols for sum and product, 
respectively, and sometimes a direct product of 
continuous geometries is called their direct 
sum. Sometimes, the requirement that a con- 
tinuous geometry be complete is weakened to 
the requirement that it be tconditionally o- 
complete. 
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86 (XIX.1 1) 
Control Theory 

A. General Remarks 

The classical theory of automatic control 
mostly deals with linear feedback control 
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systems with single input and single output. 
Mathematical structures of such systems must 
be, in principle, described in terms of ordinary 
linear differential equations with constant 
coefficients. Hence control engineers use block 
diagrams to describe systems, and operational 
calculus based on tlaplace transforms to ob- 
tain response characteristics (- 240 Laplace 
Transform). Thus the input/output relation of 
a system is described in terms of transfer func- 
tions. The main objectives of control theory 
are to ensure system stability, to maximize 
closed-loop response characteristics by choos- 
ing the best feedback, and to obtain a desir- 
able transient response to an impulse or step 
input. One of the remarkable contributions to 
classical control theory is Nyquist’s criterion 
for stability testing of linear feedback systems 
[ 11. The test consists of plotting the Nyquist 
diagram of a transfer function in the frequency 
domain (complex plane), and differs essentially 
from the tRouth-Hurwitz stability test for 
linear differential equations with constant 
coefftcient. Classical control theory was almost 
complete by the end of World War II. 

Revolutionary technological innovations in 
electronics and computers and the invention of 
new control instruments and systems devel- 
oped after World War II have opened the way 
to modern control theory. Around 1960, three 
remarkable contributions were made con- 
currently; they are dynamic programming 
(proposed by R. E. Bellman [2]), Pontryagin’s 
maximum principle (L. S. Pontryagin et al. 
[3]), and linear system theory (R. E. Kalman 
[4]). The lïrst two give rise to mathematical 
tools to solve optimal control problems and to 
design optimal controllers or regulators. In 
contrast to the classical theory of control, 
optimal control problems are formulated in 
terms of the system of linear or nonlinear 
multivariable differential equations with multi- 
input forcing terms called control variables. 
This leads to the state-space approach, which 
has become ubiquitous in modern control 
theory. Linear system theory derives from the 
concepts of controllability and observability. 
The former was introduced by Pontryagin et 
al. [3] and later modilïed by Kalman [S], and 
the latter was introduced by Kalman [SI. 
Controllability and observability are con- 
cerned with the interrelation between interna1 
states of a system and its inputs and outputs. 
Hence linear system theory, profoundly related 
to the state-space approach, remains a prin- 
cipal theme of modern control theory. More 
advanced control theories, such as adaptive 
control or learning control, are mostly de- 
scribed and formulated in the framework of 

linear system theory. 
Modern control theory has stimulated 
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the development of tcybernetics, the science 
of control and communication, and con- 
trol theory is important in the information 
sciences. In fact, current control theory has 
many features that might be considered to 
belong as well to other areas, such as mathe- 
matical programming (- 264 Mathematical 
Programming), operations research (- 307 
Operations Research), game theory (- 173 
Game Theory), prediction and lïltering theory, 
digital signal processing, circuit theory, and 
computer or microprocessor technology. 

Current control theory embodied in modern 
instrumentation and computer technology has 
a vast range of applications. We do not con- 
sider these applications here; we confine our- 
selves to some important theories that con- 
tinue to be major topics in control theory. 

B. Linear Dynamical System 

Let the state of a physical process to be con- 
trolled be represented by a real n-dimensional 
column vector x(t)=(x,(t), . ,x,,(t))‘~R”, 
where T denotes the transpose of a vector or 
matrix. I f  the state is determined by a differen- 
tial system with input ~(Q=(ui(t), . , u,(~))~E 
Rr and output y(t)=(yi(t), , Y,,,(~))~ER”, 

$x(t) = A@)x(t) + B@)u(t), 

y(t) = C(t)x(t), (1) 

then the process is called a linear dynamical 
system or simply a linear system. The dimen- 
sions of the coefficient matrices are given by 

/I(~)ER”~“, B(t)ERnX’, C(t)ERmxn. 

If  A(t), B(t), and C(t) are constant matrices, the 
system described by 

d 
X=z~=Ax+Bu, 

y=cx (2) 

is called a linear time-invariant system. Corre- 
spondingly, the system described by equation 
(1) is called a linear time-varying system. 

Given an initial state x(to) and input func- 
tion u(t) for t > t,, the state of system (1) is 
represented by 

x(t)=@@, to)x(to)+ 
s 

f  @(t,z)B(t)u(z)dz, 
ta 

where @(t, r) is a tfundamental solution to the 
matrix differential equation 

$w,z)=AitP~t>Z), 

U,(r, r) = I (n x n identity matrix). 
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Hence the output of the system is described by 

y(t)= w@(4 to)x(to) 

+ 
s 

f  C(t)aqt, z)B(z)u(z)do. 
‘0 

It is seen from this equation that the input- 
output relation of the system is governed by 

W(t,z)=C(t)~(t,t)B(z)~R*~‘, 

which is called a weighting matrix. As a spe- 
cial case, the weighting matrix for the time- 
invariant system (2) becomes 

w(t,t)=W(t-Z)=CeA”-c)B, 

where e*’ is a matrix exponential function 
delïned by 

t2 t3 
eA’=l+tA+21A2+FA3+... 

The Laplace transform of the weighting matrix 
is 

I 

00 
G(s) = ë”‘W(t)dt=C(sl-A)-‘L3, 

0 

which is called a transfer function matrix of the 
system (2). First we note that the weighting 
matrix W(t, z) for the system (1) is invariant 
under any linear transformation Z(t) = P(t)x(t) 
of the state, and also that the transfer func- 
tion matrix G(s) for the system (2) is invariant 
under 2 = Px. For example, the transformation 
2 = Px yields 

i=PAP-‘X+PBu, 

y=cp-‘2. (3) 

In fact, the transfer function matrix for the 
system (3) becomes equivalent to that for the 
system (2), that is, 

= G(s). 

As a converse to this, there arises the problem 
of whether any linear time-invariant systems 
with the same transfer function matrix are 
similar to each other. TO solve this problem, it 
is necessary to introduce the concept of con- 
trollability and observability for the system (1) 
or (2). 

C. Controllability and Observability 

The concept of controllability and observa- 
bility plays a fundamental role in linear system 
theory. Roughly, controllability implies the 
possibility of steering the state from the input. 

Definition of controllability: The linear sys- 
tem (1) is said to be controllable at time t, if 
for any state x(t,)ER” and x’ER” there exists a 
control input u(t), t E [to, t J, that transfers the 

state x(to) to the state x1 at a lïnite time t, > t,. 
Otherwise, the system (1) is said to be un- 
controllable at time t,. 

The controllability theorem states: The 
system (1) is controllable at time t, if and only 
if there exists a lïnite tl( > to) such that the 
matrix 

s 

fl 
Wo,tJ= @(to, t)B(t)B’(t)a>T(to, t)dt (4) 

to 

is nonsingular. Similarly, the linear time- 
invariant system (2) is controllable if and only 
if the n x (nr) matrix 

D=[B,AB,...,A”-‘B] (5) 

has rank n. The matrix D is called the con- 
trollability matrix of the system (2). 

The concept of observability is dual to that 
of controllability. It implies the possibility of 
estimating the state from the output. 

Definition of observability: The linear system 
(1) is said to be observable at t, if for any state 
x(to) E R” there exists a lïnite t i ( > to) such that 
the knowledge of the input u(t) and the output 
y(t) over the time interval [to, tJ suffices to 
determine the state x(tO). Otherwise, the sys- 
tem (1) is said to be unobservable at t,. 

The observability theorem states: The sys- 
tem (1) is observable at time t. if and only 
if there exists a lïnite tt( > to) such that the 
matrix 

s 

11 
MO,, td= mT(t, to)CT(t)C(t)@(t, t,)dt (6) 

‘0 

is nonsingular. Similarly, the linear time- 
invariant system (2) is observable if and only if 
the n x (nm) matrix 

M=[CT,ATCT, . . ..(A=)“-%=] (7) 

has rank n. The matrix M is called the ob- 
servability matrix of the system (2). 

We deal only with linear time-invariant 
systems for simplicity, although some of the 
main results to be stated here cari be extended 
to linear time-varying systems. If  the controlla- 
bility matrix D has rank n, (<n), there exists a 
linear transformation X = Px with nonsingular 
matrix P which transforms the system (2) into 

SO that the n,-dimensional subsystem 

X, = A,x, + B,u, 

Y =ccxc 
(9) 

is controllable. Clearly this subsystem has the 
same transfer function matrix as the system (2). 
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If the observability matrix M has rank n, ( <n), 
there exists a linear transformation X= Qx 
that transforms the system (2) into 

SO that the n,-dimensional subsystem 

X,=A,x,+B,u, 

Y = Gxo 

is observable. This subsystem also has the 
same transfer function matrix as the system (2). 
Combination of these two properties yields the 
canonical decomposition theorem (found by 
Kalman [SI), which states: There is a nonsin- 
gular transformation X: = Px by which the 
system (2) cari be transformed into the canon- 
ical form 

rd 
4 fO u, 

11 0 

Y = ccc, 0 c, OI X,” i 
XC,, 

Il 
XC,, 
XC,“, 

where the subvector x,, of 2 is controllable 
and observable, x,,, is controllable but not 
observable, x,,, is not controllable but obser- 
vable, and x,,,, is neither controllable nor 
observable. Furthermore, the transfer function 
matrix of the system (2) is equal to that of the 
system (12) which is described by 

G(s)=C,,(sl-A,,)-‘B,,, 
that is, the transfer function matrix of the 
system (2) depends solely on the controllable 
and observable part of the state. 

A linear system (2) is said to be reducible if 
and only if there exists a linear time-invariant 
system of smaller dimension that has the same 
transfer function matrix. Otherwise, the system 
is said to be irreducible. The canonical decom- 
position theorem implies that a linear time- 
invariant system is irreducible if and only if it 
is controllable and observable. 

D. Realization Theory 

Realization theory is concerned with determin- 
ing (1) a linear time-invariant dynamical sys- 

tem that has a prescribed rational function 
matrix or (2) a linear time-varying system that 
has a prescribed weighting matrix. Here we 
consider only the former, although there are 
many interesting results for the latter as well. 

The rational function matrix r?(s) is said to 
be strictly proper if and only if G( CU) = 0. A 
linear time-invariant system with a prescribed 
G(s) as a transfer function matrix is called a 
realization of G(s). A realization of G(s) with 
the least possible dimension is said to be mini- 
mal. A minimal realization should be irreduc- 
ible by definition. The fundamental theorem 
on minimal realization, which answers the 
question raised at the end of Section B, states: 
For a given strictly proper rational matrix 
G(s), any two minima1 realizations of G(s) are 
mutually similar in the sense that there exists a 
linear transformation X = Px that transforms 
one of the systems into the other. 

A minimal realization of a scalar transfer 
function 

Y(s) = 
h,F’+...+b,-,s+b, 

s”+a,s”-‘+...+a,~,s+a” 

is given by 

r 0 0 0 1 0 1 . . . 0 0 
x= 1 . 

1 0 0 0 . 1 

-a” -a,-, -anm2 ,.. -a 

0 
0 

+ ; u, /l 0 
1 

(13) 

J X 

1 

(14) 

y=[b,, b,-, IJ,-~ b,]x. 

It is easy to see that this system is controllable. 
Hence system (14) is called a controllable 
canonical realization. Kalman [4] showed that 
this realization is observable and therefore 
minimal if and only if there is no common 
factor between the denominator and the nu- 
merator of g(s). An observable canonical re- 
alization of g(s) cari be similarly written down 
as a dual of the system (14). 

For a given strictly proper matrix G(s), the 
degree of the least common denominator of 
a11 entries of G(s) is called the degree of G(s), 
provided that there is no common factor be- 
tween the denominator and the numerator 
of each entry. It was shown by Kalman [7], 
together with a realization procedure, that 
the dimension of minimal realization of G(s) 
is equal to the degree of G(s). Other impor- 
tant realization procedures for rational func- 
tion matrices were proposed by B. L. Ho and 
Kalman [S], W. A. Wolovich and P. L. Falb 
[9,10], J. Rissanen and T. Kailath [ll], and 
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B. Dickinson et al. [ 121. Procedures for time- 
varying system realization for prescribed 
weighting matrices were presented by Kalman 
[4], D. C. Youla [ 151, and L. M. Silverman 
[16]. Realization problems for a given impulse 
response matrix were first discussed by C. A. 
Desoer and P. P. Varaiya [ 171, and a fast 
algorithm for discrete-time system realiza- 
tion was proposed by C. T. Mullis and R. A. 
Roberts [ 181. 

E. State Estimation 

When a linear system is observable, it is pos- 
sible to construct a device, called a state esti- 
mator, that approximates the state vector. For 
the given system (2), define a linear dynamical 
system 

i=Dz+Ey+Gy 

2=L,z+L,y (15) 

with imputs y  E R” and u E R’, state z E R4, and 
output XE R”. If  the system (2) is observable, 
rank (C) = m, and q > n - m, there exist matrices 
D, E, G, L,, L,, and M that satisfy 

MA-DM=EC, 

L, M + L,C= I,, (n x n identity matrix), 

G=MB. 

Then it follows that 

i(t)-x(t)=L,eD’[z(0)-Mx(O)]. 

Furthermore, it is possible to choose a matrix 
D which is asymptotically stable, that is, every 
eigenvalue of D has negative real part. Thus 
a(t)-x(t) as t-ta, and system (15) yields a 
state estimator. This result was tïrst shown by 
D. G. Luenberger [ 19,201, and thus the system 
(15) is called a Luenberger observer. 

The Kalman filter proposed by Kalman [21] 
for discrete-time processes and by Kalman and 
R. S. Bucy [22] for continuous-time processes 
is an optimal state estimator for a stochastic 
system. Let 

i(t)=A(t)x(t)+ B@)u(t), 

y(t)= C(tb(t)+ ‘m> (16) 

in which u(t) is a white Gaussian noise (YBrown- 
ian motion) (- 45 Brownian Motion) such 
that 

Eu(t) = 0, Eu(t) cJ(t)&t-S), 

and u(t) is also a white Gaussian noise such 
that 

Eu(t) = 0, Eu(t) Jqt)h(t-S), 

where E and T denote the texpectation and the 
transpose, respectively. In addition, it is as- 
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sumed that 

Ex(t,) = 0, JwobT(kJ = x0, 

and that x(t,), u(t), and L’(S) are uncorrelated. 
Under these conditions, the process x(t) be- 
cornes a wide-sense Gauss-Markov process 
(J. L. Doob [23]). The Kalman-Bucy filter is a 
linear dynamical system described by 

i(t)= [A(t)- L(t)C(t)]X(t)+ L(t)y(t), 

where 

L(t)=P(t)CT(t)V-l(t) 

and P(t) is a solution to the matrix Riccati 
differential equation 

l+)=A(t)P(t)+P(t)A’(t)+ B(t)L’(t)BT(t) 

P&)=X,. 

The Wiener fïlter proposed in 1949 [24] is 
a special case of the Kalman fîlter in which 
the signal process is stationary and of single 
input and single output. Extensions to non- 
linear fïltering were investigated first by 
H. J. Kushner [25] and subsequently by 
W. M. Wonham [26], R. S. Liptzer and A. N. 
Shiryaev [27], and M. Fuzisaki et al. [28]. 

F. Optimal Control 

Consider a nonlinear dynamical system de- 
scribed by a system of differential equations 

x = .f‘(X> 4, (17) 

where x E R” and u E R’. For a given set U in 
R’, a piecewise continuous function u(t) de- 
fïned over [to, tl] is said to be an admissible 
control function if u(t)E U for every tE[tO, tl]. 
When a functional 

J= 21fo(X(t),u(r))dt 
s f” 

is given as a performance index of control 
and two points x0 and x1 are given in R”, the 
optimal control problem consists of fïnding an 
admissible function u(t) that minimizes J and 
simultaneously transforms the state from x(t,) 
=x0 to x(t,)=x’. TO solve this, a necessary 
condition for optimality was developed by 
L. S. Pontryagin and his colleagues [3] and 
termed the maximum principle. It states: In 
order for an admissible control u(t) and a 
corresponding solution trajectory of equation 
(17) to be optimal, it is necessary that there 
exist a nonzero vector $(t)=(t)‘(t), . . . . $,(t))T 
such that (i) t)(t) satisfies 

$@) = _ off(ti(t)> X@L ‘J(t)) 
3x(t) ’ 
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where 

(ii) the function H($(t), x(t), u) of the variable 
u E U attains its maximum at the point u = u(t) 
almost everywhere in [te, ti], and (iii) at the 
terminal time t, it holds that 

When f(x, u) is linear in x and u, fe(x, u) = 1, 
and t, is free, we have the time-optimal control 
problem investigated by Bellman et al. [29] 
and J. P. LaSalle [30]. When fa(x, u) is instead 
a quadratic function of x and u, we have the 
optimal regulator prohlem solved by Kalman 
[31]. The relation between the maximum 
principle and the tcalculus of variations (- 46 
Calculus of Variations) has been pointed out 
by L. D. Berkovitz [32]. Generalizations of 
the maximum principle and other results 
on optimal control problems are found in 
[33-351. 

G. Miscellany 

There are many other areas of control theory. 
For details, we refer the reader to [36] for 
adaptive control, [37] for stability theory, and 
[38] for system identification. 
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87 (11.19) 
Convergence 

A. Introduction 

The notion of convergence was fïrst intro- 
duced in the real number system to deal with 
sequences of numbers, functions, series, or 
delïnite integrals (- 379 Series; 216 Integral 
Calculus). The notion was then extended to 
the case of generalized sequences where the 
index moves over a directed set, and the terms 
are in a topological space. 

B. Convergence of Sequences of Numbers 

A sequence {a,} of numbers is said to be con- 
vergent to a number u or to converge to a, 
written lim,,, a,=a or a,+a as n+co, iffor 
any positive number E we cari choose a (suffi- 
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ciently large) natural number n, such that for 
every n larger than n,, the inequality la,-a1 
CE holds. Then a is called the limit (or limit 
point) of the sequence {a,}. I f  {a.} has a limit, 
it is unique. A sequence which is not conver- 
gent is said to be divergent or to diverge. 

A set A of real numbers is said to be 
bounded from above if there is a real number b 
such that a <b for a11 a E A, bounded from 
below if there is a real number c such that 
a > c for a11 a E A, and bounded if it is bounded 
from above and below. A sequence {a,} of real 
numbers is said to be monotonically increasing 
(monotonically decreasing), written a, t (a, i), 
ifa,<a,<...<a,&u “+l<...(u,>a,>...> 
~,>a,+, 2 . ..). A monotonically increasing or 
decreasing sequence is called a monotone 
sequence. 

C. Criteria for the Convergence of Sequences 
of Numbers 

Every bounded monotone sequence of real 
numbers is convergent; its limit is sup{u.} 
(inf{u,}) (- 355 Real Numbers B) if it is 
monotonically increasing (decreasing). For 
any bounded sequence {a,} of real num- 
bers, setting c~,=inf{a,, a,,,, . } and & = 

suP{~,,%+,,...}, we have LX,T, p.1, and 
a, < a, < /J. Hence lim,,, CI,, = a (= sup {a”)) 
and lim,,, &, = fi (= inf{ /?,,}) exist. a is called 
the inferior limit (or limit inferior) of {a,}, 
written lim inf,,, a, or lim -“+CC a,, while fi 
is called the superior limit (or limit supe- 
rior), written lim SU~“+, a, or hm,,, a,. I f  
lim SU~,,, a, = lim inf,,, a, = a, then lim,,, a, 
exists and equals a. The limit of a conver- 
gent subsequence of a sequence {a,} of num- 
bers is called an accumulation point of the 
sequence. Here we should distinguish an ac- 
cumulation point of a sequence (a,} from 
an accumulation point of {a,} viewed as 
a set (- 425 Topological Spaces 0); for ex- 
ample, if a, = 1 for every n, then the former 
is 1 and the latter does not exist. For any 
bounded sequence of real numbers, its supe- 
rior (inferior) limit is the maximum (minimum) 
of its accumulation points. Moreover, if fi is 
the superior limit of a sequence {a,}, then for 
any positive number E, there exist only a lïnite 
number of n’s for which a, is greater than /I + a, 
while there may exist an inlïnite number of n’s 
for which a, is less than /I-E. The inferior limit 
of the sequence has a similar property. 

Suppose that we are given a sequence {a,} 
of real numbers and that there exist two se- 
quences {u,,} and {un} such that u, < a, < u,, 
lim(u, - u,} =O, {un} is monotonically increas- 
ing, and {an} is monotonically decreasing. 
Then lim a, exists and is equal to lim u, = 
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lim u, (principle of nested intervals). In partic- 
ular, if lim sup a, = lim inf a,, then lim a, exists. 
The converse also holds. 

If  {a,} is convergent, then la, - a,,, +O as n, 
m+cO, and vice versa; that is, {a,,} is conver- 
gent if and only if for any positive number E 
there exists a positive integer n, such that 
1 a, - a, 1 -CE for all n, m 2 n, (Cauchy’s 
criterion). 

D. Infinity 

For a set A of real numbers, the expression 
sup A = +zo means that A is not bounded 
from above; infA= -co means that A is not 
bounded from below. For a sequence {a,} of 
real numbers, lima, = +CC means that for any 
real number b there exists a positive integer n, 
such that a, > b for a11 n 2 n,; the notation 
lima, = -CC has a similar meaning. The sym- 
bols +co and -m are called positive (or plus) 
infïnity and negative (or minus) infinity, res- 
pectively. We say that the limit of {a,,} is 
+CC (-co)iflima,=+co (-co).Inthese 
cases, we customarily say that {a,} diverges (or 
is divergent) to +co (-CD), or that a, becomes 
positively (negatively) infïnite as n+ CO. We 
also defïne lim sup a, = + CO (lim infu, = -CO) 
to mean sup{a,} = +CC (inf{u,} = -co). A se- 
quence {a,} is said to oscillate if lim sup a, > 
liminfu,. 

We now have the following propositions 
concerning sequences of numbers: If  lim a, = a 
and lim b, = b, then lim(ctu, + bb,) = KU + fib, 
lim(u,b,,) = ub, and lim(u,/b,,) = a/b (provided 
that b,, # 0, b # 0). For sequences of real num- 
bers, these formulas also hold when a or b is 
infinity. In those cases we set CC.( *10)= ~CC 
(cc>O),a.(~co)=Tco(a<O),a~co=~GO, 
s(/( +CD) = 0 for a real number CC The cases 
O.( *CO), + CO +(-CO), +a~/( +CD) are 
excluded. 

E. Convergence of Sequences of Points in a 
Topological Space 

A sequence {a,} of points in a topological 
space (- 425 Topological Spaces) is said to 
converge to a point a if for any tneighborhood 
U of a there exists a positive integer n, such 
that a, E U for a11 n > n,. The point a is called 
a limit (or limit point) of {a,} and we Write 

lim,,, u,=u or u,+u as n+co. A sequence 
is said to diverge if it does not converge to any 
point. 

In particular, the set R of a11 real numbers is 
a topological space in which the set of inter- 
vals (a ~ E, a + E) for some E > 0 is a tbase for 
the neighborhood system of a point a, SO that 
the notion of limit in R explained previously is 
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a special case of the same notion in a topolog- 
ical space. By adding the symbols +CC and 
-E to R, we obtain the topological space R, 
in which any set containing {x 1 x > c(, x E R} 
({xlx<cc,x~R}) for some C(ER is a neighbor- 
hood of +CC (-CO), where the ordering is 
defined as -CC <CI-C +CC (aER). Then lima,= 
+CC (-CO) is interpreted as convergence in 

the topological space R. The elements of Ïï are 
called extended real numhers. 

In the case where the topological space is a 
+metric space (- 273 Metric Spaces) with 
metric p, u,*u is equivalent to ~(u~,u)->O. 

For convergence of sequences of points in a 
topological space, the following properties (S) 
hold: (S) (1). I f  a, = a for a11 II, then lima, = a; 
(2) if ~,+a, then unk-)u for any subsequence 
{a”,}; (3) if there is a point a such that any 
subsequence {a,,,} of {a,} has a suitable sub- 
sequence converging to a, then ~,+a. In a 
+Hausdorff space (e.g., a metric space), the 
additional property (S*) holds: If  a sequence 
{a,,} has a limit, this limit is unique, and cari be 
denoted lima,. 

F. Limits of Functions 

Let a real-valued function f(x) of a real vari- 
able x be defïned for x # a belonging to a 
neighborhood of the point a. We say that the 
limit of f(x) is b as x tends to a, and Write 
lim,,,f(x)=b or f(x)-b as x+u, if for any 
positive number E there exists a positive num- 
ber 6 such that 0 # 1 x - a[ < 6 implies If(x) - 
hIcE. ReplacingO#Ix-ai<6 byu<x< 
a+6 (a-6<x<a), we defïnef(x)+b as 
x-u+0 (x+a-0) and say that b is the 
limit on the right (left) of f(x) as x tends to a. 
We define f(x)+ +CC or f(x)* -CC as XUI 
analogously to the case of sequences. The 
expression f(x)-+b as x+ +CE means that for 
any positive number E there is a real number k 
such that If(x) - bl CE for any x > k. There 
are similar definitions for X--P -CO and b = 
*CO. When f(x)+ fco as x-u, we often say 
that ,f  diverges defïnitely at a. 

In general, for a mapping f  from a subset D 
of a topological space X into a topological 
space Y, with a point a in the closure of D and 
a point b in Y, lim,J(x) = b or f(x)+b as 
x-u means that any neighborhood V of b 
contains f(U n D - {u}) for some neighbor- 
hood U of a. I f  Y is a Hausdorff space, b is 
unique (if it exists) for given f  and a. This 
point b is called the limit (or limit value) of f(x) 
as x-u. 

It is easy to see that this definition of 
lim,,,f(x) = b is a generalization of the cases 
where the topological spaces are R or R. Let N 
be the set of a11 natural numbers, and let N = 
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NU { + Q} be supplied with the trelative 
topology as a subspace of R. A sequence {a,} 
of real numbers or points cari be identifïed 
with a mapping f  from N into R (N+R) 
detïned by f(n) = a,. It converges to a if and 
only if lim,,,f(n) = a. 

Suppose, in particular, that fis a mapping 
from a metric space (X, p) into a metric space 
(Y, a). Then, f(x)-+b as x-ta means that 
for any E > 0 there exists a 6 > 0 such that 
a(f(x),b)<~ for a11 XGD such that O<p(x,a) 
~6. Thus f(x)-+b as x-a if and only if f(x,) 
-+b for any {x,} in D with ~,+a. If  we set 
p(zi,zJ=Iz, -z21 for complex numbers zi, 
z2, the function p supplies the set of a11 com- 
plex numbers C with a metric and C becomes 
isometric to the plane R2 (- 74 Complex 
Numbers). Thus the cases X = C or Y= C are 
particular cases of the above generalization. 
Furthermore, we introduce the +Riemann 
sphere C =C U {CO} by adding the +Point at 
infinity cc to C. We cari define a topology 
on C such that any set containing {CD} U 

{z 1 ]z] > r} for some positive number r is a 
neighborhood of CO. Thus we cari delïne the 
notions f(z)-+b as ~+CD, f(x)+co as x*a, 
etc., for a complex-valued function f  by con- 
sidering f  as a mapping from the topological 
space C into itself. Then f(x)+ CO is equiva- 
lent to l/f(x)+O. 

G. Orders of Infinities and Infinitesimals 

Let f  be a complex-valued function detïned 
on a topological space X and a a point of X. 

Then fis called an intïnity (at a) or an in- 
finitesimal (at a) if f(x)+ co as x*a or f(x)+ 
0 as x-a, respectively. Suppose that f  and 
g are intïnities and f/g is an inlïnitesimal. Then 
f  is said to be of lower order than g, and g is 
said to be of higher order than J: If  both f/g 

and g/fare bounded, then f  is said to be of the 
same order as g. This last relation, written f- 
g, is an equivalence relation. An inlïnity fis 
said to be of the nth order with g if f- g”. For 
two inlïnitesimals f  and g, fis called of higher 
order than g and g of lower order than f  if f/g 
is an infinitesimal. For inlïnitesimals, the terms 
of the same order and of the nth order are 
delïned similarly as above. In particular, when 
X = C and a = CO, we usually omit the phrase 
“at CD.” Also, for such a function f; we cus- 
tomarily say that the order of an infinity (in- 
tïnitesimal) is n if f-z” (z-“). 

TO describe the order of an intïnity or an 
inlïnitesimal simply, the following notions, due 
to E. Landau [lO], are in common use. Let 
f  and g be two functions. If  ]f(x)/g(x)] is 
bounded as x-*a, then f  is called at most of 
the order of g as x-a, and we Write f(x) = 
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O(g(x)) as x*a. Second, if f(x)/g(x) is an in- 
finitesimal at a, then f  is said to be of lower 
order than g as x*a, and we Write f(x)= 
o(g(x)) as x-a. The symbols 0, o, indicat- 
ing the word “order,” are called Landau% 
symbols. The notation f(x) = h(x) + O(g(x)) 
means f(x) - h(x) = O(g(x)). When we use the 
symbols 0, o we should indicate clearly the 
phrase “as x-ta,” which is sometimes omitted 
when no confusion is to be feared (e.g., for the 
case of a complex variable with a = CO). These 
symbols are employed for sequences as well, to 
describe their behavior as n+ CO. 

H. Convergence of Nets (Moore-Smith 
Convergence) [ 7, S] 

Let 2I be a (preordered) tdirected set. A family 
of points in a set X with index set ‘LI (namely, a 
mapping from CU to X) is called a net in X. A 
net is denoted by {x,},,~, ({x~},, or {x~}). A net 
{ yajs in X is called a subnet of {xOfP, if there 
exists a mapping <p : %I +‘% such that (1) y, = 
xs(p) and (2) for any cl,, E VI there exists a & E b 
such that /? 2 &, implies cp(fi) > c(e. In particu- 
lar, if B is a cotïnal directed subset of ‘9l, {x~}~ 
is called a cotïnal subnet of {x~}~~. A net is 
called a universal net if either {a 1 X,E Y} or 
{ c( 1 X,E X - Y} is residual in 2I for any subset 
Y of X. For any net there is a universal subnet. 

For a net {x~}‘~, in a topological space X, 
{xa} is said to converge to a point x in X if for 
any neighborhood U of x there is an tue such 
that {xc 1 c( > LZ,,} c U. Then a is called a limit 
of the net {xc}. We then Write x,+x (C(E’%) 
(or simply x,+x). The convergence of se- 
quences of points is the special case where 
CU = N. The notion of convergence using nets 
was introduced by E. H. Moore and H. E. 
Smith. 

Concerning this convergence, we have the 
following propositions (D): (D) (1) If  x, = x for 
a11 c(, then x,+x. (2) If  x,+x and {yp} is a 
subnet of {x}, then y,+~. (3) If  for a net {x,} 
there is a point x such that any subnet {Y~} of 
{x~} has a suitable subnet converging to x, 
then x,+x. (4) Suppose that x,+x (a~%) 
and Y,~-‘x, (BE 8,) for each a. Then let a = 
2I x n 8, be the direct product of directed 
sets with projections P:&+(U and pc:E-tB,, 

and for y  E K delïne zy = y,,,, where a = p(y) and 
B = p,(y). Then zy+x (y E (1;). Furthermore, the 
space-X is a +Hausdorff space if and only if 
we have the condition (D*): Any net in X has 
at most one limit. 

A limit of {x~} is denoted by lim x, or 
lim at<U~,. Then x,+x if and only if x is con- 
tained in the closure of any subnet { ys 1 BE d} 
of {x,}. (We may consider this to be a detïni- 
tion of x,+x.) 
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1. Convergence of Filters [9] 

Let X be a set. A set @ of subsets of X is called 
a filter if the following conditions are satisfied: 
(i) a$@ (0 is the empty set); (ii) AcBcX 
and AE@ imply BE@, (iii) A, BE@ imply 
A n BE@. Let 23 be a set of subsets of X and 
@ be the collection of subsets of X such that 
each element A of 0 contains a subset belong- 
ing to 23. If  @ is a filter, then 23 is called a filter 
base which generates <D. b is a filter base if and 
only if (i) 0#23; (ii) A, BE% implies that there 
is a CE% with AflB1C. A filter CD is called 
an ultrafilter (or maximal filter) if there exists 
no filter which contains @ properly. For any 
fïlter there exists an ultrafilter containing it. I f  
{aA},, is a family of filters, then the intersection 
fi 0, is a filter. I f  5 is a iïlter base in the index 
set A, then UMEa ( nieM Qn) is also a filter. 

We denote by U(x) the tneighborhood sys- 
tem of a point x in a topological space X. A 
fdter @ in X is said to converge to a point a, 
written @+a, if ~(X)C@. A lïlter base 23 is 
said to converge to a if the fïlter generated by 
23 converges to a. 

The convergence of filters just defined has 
the following fundamental properties (L): (1) 
forapointainXthefilter<D,={AlaEAc 
X} converges to a; (2) for two filters @ and 
Y, @--+a and @cY imply Y-N; (3) if Q>n+ 
a for ail members in a family {QA} of filters, 
then fi 0, =@+a; (4) suppose that tïlters 
@,+y are assigned for a11 points y  in a subset 
Y of X, and that we are given a filter Y in X 
which converges to a, generated by a filter 
base 23 in Y; then UBEs (n,J$)+u. Fur- 
thermore, the space X is Hausdorff if and only 
if we have the condition (L*): Each filter in X 
has at most one limit. 

J. Relations among Various Definitions of 
Convergence 

Convergence of sequences of points is a special 
case of that of nets. Properties (l), (2), and (3) 
of(D) imply (l), (2), and (3) of(S), respectively, 
and (D*) implies (S*). Consider a net {xol}% in 
X.Thentheset{{x,~~(~(U,tl~a~}~a~~%}of 
subsets of X is a tïlter base in X which gener- 
ates a filter Q, and O-+x if and only if X,+X. 

In this situation, (L) implies (D), and (L*) 
implies (D*). Suppose that we are given a 
function f: X-+ Y with the domain D and a 
point UEX. Let U(u) be the neighborhood 
system of a and assume that, for any U E U(a), 
UnD-{a}#@.Thentheset{f(UflD- 
{a}) 1 U E U(a)} is 4 filter base. Let @ be the 
filter generated by it. Then f(x)+b as x-+a if 
and only if Q-+b. Consequently, the various 
types of convergence described previously cari 

328 

be expressed by means of convergence of 
Iïlters. 

K. Convergence and Topology 

In a topological space X, the concept of con- 
vergence of nets and that of filters cari be 
defïned. Conversely, convergence of nets in X 
detïnes a topology of X. In fact, let us assume 
that we are given a set X and a definition of 
convergence of filters which satisfies the prop- 
erties (L). Then convergence of nets that satis- 
fies (D) cari be introduced as above. If  À is 
defmed as the set of limits of all nets contained 
in a subset A of X, then ,% satisiïes the axiom 
of closures (- 425 Topological Spaces), and a 
topology cari be defmed on X. Then we have 
the following propositions: (i) a E A if and only 
if there is a net {xa} with X,E A converging to 
a; (ii) U is a neighborhood of a if and only if 
~,-*a implies that there exists an a,, such that 
x, E U for a11 a > a0. Thus, if X is a topological 
space, it carries a “new” topology defined by 
way of convergence of nets. But this “new” 
topology coincides with the original one. 
Similarly, starting from convergence of tïlters 
(or nets), we cari obtain a “new” definition of 
convergence of tïlters (or nets), which coincides 
with the initial one. In conclusion, detïning a 
topology on a space X is the same thing as 
defining convergence of tïlters in X or of nets 
in X. 

We shall describe here a few notions on 
topological spaces in terms of convergence. 
The fact that a topological space X is compact 
is equivalent to the fact that every universal 
net in X converges, and to the fact that every 
ultratïlter in X converges. Also equivalent is 
the fact that every net has a convergent subnet. 
A mapping f  from a topological space X into 
a topological space Y is continuous at a if and 
only if one of the following conditions is satis- 
fied: (1) for any net {x,} in X converging to 
a6X, we have f(x,)+f(u) in Y, (2) for any filter 
@ in X converging to a6 X, we have f(Q) = 
{f(M)IME@}+f(a) in Y; (~)I(X)+~(U) in Y as 
x-a in X (in the sense of the limit of a func- 
tion at a). 

M. Fréchet [6] gave a definition of a topol- 
ogy on a space using the notion of conver- 
gence as a foundation. A set is called an L- 
space (or Frécbet L-space) if convergence of 
sequences of points in it is defïned SO as to 
satisfy conditions (1) and (2) of(S) and (S*) 
(1906). Such convergence is called star conver- 
gence if it also satistïes (3) of(S), and in that 
case the space is called an L*-space. For any 
subset A of an L-space X, defîne A as the set 
of a11 points a such that x, -+ a for some se- 
quence {x.} contained in A. Then the axioms 
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AIA,AUB =AUB,and@=@aresatis- 
tïed, SO that X is a tgeneralized topological 
space (the axiom 2 = A is not necessarily 
satisfied). For a Hausdorff space X with the 
+iïrst countability axiom and convergence of 
sequences defined by means of its topology, 
the closure operation defmed above gives the 
same topology as the initial one. 

L. (o)-Convergence 

A sequence {a,,} of elements of an ordered set 
S is said to be (o)-convergent to an element a of 
S if there exist two sequences {u,} and {u,} 
such that u, < a, < v,, u, d u,+r, and v, > v,+r , 
and a=supu,=infv,. When we Write this 
a,+a, properties (1) and (2) of(S) and (S*) con- 
cerning the convergence of sequences hold. 
Next, a sequence {a,} is said to be (o)-star 
convergent to a if any subsequence of {a,} has 
a suitable subsequence which converges to a. 
Then (o)-star convergence satisfies the prop- 
erties (S) and (S*). 

For any set X the set Fp(X) of a11 subsets of 
X is an ordered set under the inclusion rela- 
tion. The fact that a sequence {A,} of subsets 
is (o)-convergent to a subset A is equivalent to: 

A= fi fi A,,= fi ; A,. 
ni=1 n=m m=1 n=m 

The set A is also equal to lim A,, which is the 
tlimit of a sequence {A,} of subsets. 
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A. Convex Functions 

A real-valued function f(x) detïned on a +Con- 
vex set D in a linear space over R is called a 
convex function if for every x, y  ED and 0 < 
A<1 we have 

f(Ax+(l-Â)Y)~Af(x)+(l-I)f(Y). (1) 

The function f(x) is called a strictly convex 
function if the sign < in (1) is replaced by 
< for x #y except when i is either 0 or 1. I f  
-$(x) is convex (strictly convex), the function 
$(x) is called a concave function (strictly con- 
cave function). The notion of convex function 
was introduced by J. L. W. V. Jensen [1] for 
the case where the domain D is an interval on 
the real line R. 

Sometimes the condition for a convex func- 
tion is weakened in such a way that (1) is as- 
sumed only for Â = 1/2. However, if D is a 
ttopological linear space and f  is continu- 
ous, then the weakened condition implies the 
original one. Hereafter, we mainly consider the 
case where D is an interval on the real line. In 
this case, a convex function f(x) (in the weaker 
sense) is continuous in the interior of the inter- 
val if f(x) is tmeasurable or bounded from 
above on a set of positive measure (the latter 
was proved by A. Ostrowski [2]). In particu- 
lar, suppose that f(x) is defined in the interval 
1 and is bounded from below. Then either f(x) 
is continuous or its graph is dense in the set 
{(x, y) 1 XE I, y  > g(x)}, where g(x) is a suitable 
convex continuous function (Hukuhara [3]). 
We note here that the original definition of a 
convex function f(x) implies the continuity of 
f(x) in the interior of the interval. In such a 
case, f(x) always has tright and tleft deriva- 
tives and satisfïes f:(x) <f;(x) < fl (y) < 
fi (y) for x < y. Hence it is differentiable ex- 
cept for at most countably many points. 

A function f(x) is a continuous convex 
function in a < x < b if and only if it is expre- 
ssible in the form 

f(x)=f(a)+ xdW~~ 
s 0 
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where cp(t) is a monotone increasing function. 
If  f(x) is twice differentiable, then f”(x) 20 
(a < x <b) is a necessary and sufflcient condi- 
tion for f(x) to be convex in (a, b). 

B. Convex Functions and Inequalities 

If f(x) is convex (in the original sense), we 
have, for a, > 0, 

Similarly, we have, for <p > 0, 

The functions x” (a> 1 or a<O), -x0 (O<u< 
1), - logx, x logx are strictly convex for x > 0, 
and the functions x2” (n > 1), exp x, log( 1 + ex), 
JZG (a #O) are strictly convex in -00 K 
x< SOO. Applying the inequalities (2) or (3) to 
these functions, we obtain various inequalities, 
including the inequalities on means (- 211 
Inequalities). 

A continuous convex function f(x) over a 
topological linear space satisfying the relation 
f(ctx) = C$(X) for an arbitrary positive number CY 
is called a subadditive functional and is often 
utilized in functional analysis. 

C. M. Riesz’s Convexity Tbeorem 

Let x = (cl, , 5,) be an n-tuple of com- 
plex numbers, and let v  > 0. We put N,,(x) = 
(Z& 15j11’y)y for V>O and N,(x)=su~~<~~. 
Let (c(,) be an m x n complex matrix, x = 
(5,, . ,5.), z = (il, . . . , i,), v  > 0, and p > 0. 
We put 

Mb,p)= 

Then log M(v, p) is a convex function of (v, p) 
in the following sense: Let 0 <vi < 1,0 <pi < 1, 
and vi+pLia 1 (i=1,2). Then logM((l-t)v, + 
tv,, (1 - t)p, + tpL2) is a convex function with 
respect to t for O< t < 1 [4,.5]. These results are 
called M. Riesz’s convexity tbeorem. Famous 
inequalities such as the tHGlder inequality or 
the +Minkowski inequality follow from this 
theorem. For example, let T be an tadditive 
operator from the tfunction space L,(Q) into 
L,(R) for a11 1 <p < CO. If T is a continuous 
operator for p = 1 and p = CO, and the norm 
of Tis <Cforp=l andp=co,then Tiscon- 
tinuous for a11 p (1~ p < CO), and its norm is 
always <C. 

D. Subdifferentials of Convex Functions 

Currently, convex analysis is playing an im- 
portant role in the study of nonlinear evolu- 
tion equations. This analysis treats convex 
functions on inlïnite-dimensional spaces [9]. 

In convex analysis, it is sometimes conve- 
nient to consider a proper convex function cp 
on a Hilbert space X. A mapping <p from X 
into (-CO, +CD] is called a proper convex 
function if <p is not identically equal to +co 
and if 

for every x, y  E X and 0 < 1, < 1. The convex set 

is called the effective domain of <p. The subdif- 
ferential acp of cp is defined to be a multivalued 
function which assigns to each x in D(q) a11 
elements y~ X Satisfying (p(s) > <p(x) + (y, 5 - 
x) for any ~EX. Then &p is monotone in 
X in the following sense: If  y, ~acp(x,) and 

Y, E @(x2), then 

(Y1 -Yz>xl --x2)>@ 

Under some conditions on cp, acp becomes a 
single-valued function, as is seen in the follow- 
ing example: Let A be a nonnegative self- 
adjoint operator in a Hilbert space X. For the 
tfractional power fi of A, detïne <p by 

1 fQ> otherwise. 

Then D(q) = D(a) and d<p =A. 

E. Convex Functions and Nonlinear 
Semigroups 

Let cp be a lower semicontinuous proper con- 
vex function on a Hilbert space X. Since A = 

- acp is a maximal tdissipative operator in X, 
it generates a nonlinear semigroup { 7; 1 t > 0} 

on the closed convex set D(A): 

7;~=lim(I--zA)~~“‘~x 

(- 286 Nonlinear Functional Analysis, 378 
Semigroups of Operators and Evolution Equa- 
tions). It cari be shown that for any ~ED(A), 

~~ED(A) whenever t>O. Thus the tabstract 
Cauchy problem 

u(+O)=a, 

is considered to be “parabolic.” Furthermore, 
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we have 

Il II $.r;u +u,, (L>O) 
for a11 ~ED(A) (H. Br&is [lO]). 
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Convex Sets 

A. General Remarks 

A nonempty subset X of the n-dimensional 
Euclidean space R” is called a convex set if 
for any elements x, y  in X and any number a 
such that O<a< 1, the element ax+(l -a)y 

of R” is also contained in X. The tinterior 
and the tclosure of a convex set are also con- 
vex. A point x of a convex set X is called an 
extreme point of X if x cannot be expressed as 
(xi +x2)/2 in terms of a pair of distinct points 
xi, x2 in X. A bounded closed convex set is 
called a convex body if it has tinterior points. 
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Given an arbitrary nonempty subset X of R”, 
the minimum convex set containing X exists, 
called the convex bull of X and denoted by 
[X]. Each point x of [X] cari be expressed as 
x = C;&i aixi, where xi belongs to X and the ai 
are nonnegative numbers such that X:&i a, = 1. 
When X is a finite set, [X] is called a convex 
polybedron. If  X denotes the set of extreme 
points (also called vertices) of a convex poly- 
hedron X, then X=[X]. 

For elements x, y  of R”, denote the inner 
product by (x, y). Given a nonzero element u of 
R” and a lïxed number a, the thyperplane H = 

{x 1 (u, x) = u} divides the space R” into two 
thalf-spaces {x 1 (u, x) < a} and {x 1 (u, x) > a}, 

each of which is a closed convex set. I f  a con- 
vex set X is contained in one of the half-spaces 
S determined by the hyperplane H and the 
boundaries of X and H intersect, then we say 
that H is a supporting byperplane of X and S is 
a supporting balf-space of X. A closed convex 
set X is the intersection of its supporting half- 
spaces. A boundary point of a convex set X is 
contained in a supporting hyperplane of X. 
Given mutually disjoint convex sets X and 
Y, the separation tbeorems (1) and (2) hold. 

(1) If  X has inner points, then there exist a 
nonzero element u of R” and a number a such 
that X is contained in the set {x 1 (x, u) > a} and 
Y is contained in the set {x 1 (x, u) <a). 

(2) If  X and Y are closed and X is bounded, 
then we cari replace the signs < and > in (1) 
by < and >, respectively (when the separa- 
tion of convex sets X and Y is described by 
strict inequalities, we say that X and Y are 
strongly separated). 

As an immediate consequence of the separa- 
tion theorems, we obtain the following pro- 
position: Suppose that A is an m x n matrix 
with real entries. For an element z in a Eu- 
clidean space, we Write z 2 0 ( > 0) if each 
component of z is > 0 ( > 0). Now if ‘Ay > 0 
never holds for an m-dimensional vector y  > 0, 
then there exists a nonzero n-dimensional 
vector x > 0 such that Ax < 0 (- 173 Game 
Theory). 

The delïnitions given previously for subsets 
of R” cari be naturally extended to the case of 
treal topological linear spaces (- Section G). 
Also, in the theory of analytic functions of 
several complex variables, various notions of 
convexity of the subsets of C” are considered 
(- 21 Analytic Functions of Several Complex 
Variables). 

B. Helly’s Theorem 

Suppose that we are given an index set A of 
cardinality greater than n + 1, and bounded 
closed convex sets C, (ÂE A) in R”. I f  any n + 1 
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sets of the C, have nonempty intersection, then 
the intersection of a11 the C, is nonempty 
(Helly’s theorem). 

This theorem has a wide range of applica- 
tions. For example, we have propositions (l)- 

(4). 
(1) If  a convex set X of R” is covered by a 

fmite number of half-spaces, then X cari be 
covered by no more than n + 1 half-spaces 
among them. (2) Let X and Y be finite subsets 
of R”. X and Y are strongly separated by a 
hyperplane if for an arbitrarily chosen subset S 
of X U Y consisting of at most n + 2 points, the 
sets S fl X and S n Y are strongly separated by 
a hyperplane. (3) If  the tdiameter of a subset X 
of R” is not greater than 2, then X is contained 
in a tball of radius (2n/(n + 1))“‘. (4) Let X be 
a convex body in R”. There exists a point x 
in X such that Ilx-ull/llu-ull <n/(n+ 1), 
where a, v  are points of intersection of an arbi- 
trary straight line passing through x with the 
boundary of X, and //XII denotes the length 

k 4 u2 of x. 
Helly’s theorem cari also be applied to 

problems of approximation of functions. 

C. Ovals 

The boundaries of convex bodies in R2 and R3 
are called ovals and ovaloids, respectively. An 
oval E is a tJordan curve C(t) which admits at 
every point Pc, = C(t,) left and right “tangents” 
/10 and 5, where ‘pi, is a straight line expressed 
as the set of points P(a), AIZR such that P(Â) 
-P,,=Âa’, with a’=lim,,,,(C(t)-P,)/lC(t) 
- P,,I). There may exist exceptional points P 
on E for which left and right tangents do not 
coincide, but the set of such points is at most 
countable. Each tangent l& shares a point or a 
segment with E. A line satisfying this condition 
is called a supporting line of the oval. It is also 
a supporting hyperplane in R2 of the convex 
body [E] in the sense of Section A. If  we fix an 
interior point 0 of a convex body X and take 
an arbitrary point P different from 0, then the 
boundary E of X admits one and only one 
supporting line l(P) which is perpendicular to 
the line OP and meets the half-line OP. Take a 
rectangular coordinate system with the origin 
0, and let (x, y) denote the coordinates of P. 
Then the points (5, q) on 1(P) satisfy the equa- 
tion 5x + ~y = H(x, y), where H(x, y) is a func- 
tion determined for a11 (x, y) in R2 and satisfy- 
ing the following conditions: (i) H(O, 0) = 0; (ii) 
H(tx,ty)=tH(x,y), for taO; (iii) H(x, +~,,y, 
+ y2) < H(x,, y,) + H(x,, y2). The function 
H(x, y) is called the supporting line function of 
E. The magnitude and shape of E are deter- 
mined by H, and any function satisfying con- 
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ditions (i)-(iii) is a supporting line function of 
an oval. An oval E has a lïnite length L =L(E), 
and the convex body [E] has a fmite area F= 
F(E). I f  OP’ denotes the half-line with direc- 
tion opposite to that of OP and l’ denotes the 
supporting line j(P), the distance between the 
parallel lines I and 1’ is called the breadth of E 
in the direction PP’. Let D = D(E) and A = A(E) 
be the maximum and minimum of the breadth 
of E, respectively. D is the tdiameter of E (or 
[El), and A is called the thickness of E (or 
[El). In particular, if D =A, then the oval E is 
called a curve of constant breadth. In the fol- 
lowing inequalities, equality holds only when 
E is one of the figures mentioned in paren- 
theses: (1) L2 >47rF (circles, J. Steiner (1838)) 
(- 228 Isoperimetric Problems); (2) rrD2 >4F 
(circles, L. Bieberbach (1915)); (3) L < XD 
(curves of constant breadth, W. Blaschke 
(1916)); (4) F>A’/& (regular triangles, J. Pal 
(1921)). See T. Kubota, Tôhoku Sci. Bull., 1, 
12, 13; Tôhoku Math. J., 24,49. 

D. Linear Combinations of Ovals 

Let H, and Hz be supporting line functions of 
ovals E, and E,, and let t, and t, be positive 
numbers. Since the function t, H, + t, Hz satis- 
fies conditions (i)-(iii), given before, it is a 
supporting line function of an oval E(t,, t2). In 
this case, we cari also Write E(t,, t2) = t, E, + 
t, E, and cal1 it a linear combination of E, 
and E,. In particular, the oval (E, + E,)/2 is 
called the mean oval of E, and E,. In general, 
there exists a quantity M, called the mixed 
area of E, and E,, such that F(E(t,, tz))= 
F(E,)t~+2Mt,t,+F(E2)t~. M does not 
depend on the choice of t, and t,, and M2 > 
F(E,)F(E,). Here, the equality holds if and 
only if E, and E, are homothetic and situated 
in a position of homothety. Furthermore, if 
O<r< 1, then the square root of F(E(t, 1 -t)) 
is a tconvex function of t (H. Minkowski). 

E. Specific Ovals 

Suppose that we are given an equilateral 
triangle ABC. Draw three circles Ci, C,, and 
C, with centers A, B, and C and radii equal to 
the length of the sides of ABC. The minor arcs 
AB, BC, and CA of the circles form an oval 
which is called a Reuleaux triangle. This oval 
is of constant breadth. Furthermore, given a 
lïxed breadth D, the area F(E) of an oval E of 
constant breadth D attains its minimum when 
E is a Reuleaux triangle. A Reuleaux triangle 
obtained from a triangle ABC revolves freely 
within the square of side AB and touches each 
side. In general, an oval which revolves touch- 
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ing the sides of a convex polygon from the 
inside is called an inrevolvable oval. Any such 
oval revolves inside some regular polygon (M. 
Fujiwara, S. Kakeya). 

Various properties of an oval already de- 
scribed cari be generalized to the case of a 
boundary of a convex body in R”. For the 
volumes of subsets A, B in R” and A + B = {x + 
y  1 x E A, ye i?} in R”, the Brunn-Minkowski 
inequality 

[vol(A +B)]““g [vol(A)]““+[vol(B)]“” 

holds. 

F. Convex Cones 

A nonempty subset X of R” is called a convex 
cane if for any elements x, y  of X and a non- 
negative number a, ax and x + y  are contained 
in X. A convex cane is a convex set. Given any 
nonempty subset X of R”, the minimum con- 
vex cane K(X) containing X exists. Given two 
convex cones X and Y, a convex cane X + Y, 
called the sum of X and Y, is defïned as the set 
of elements x + y, where x, y  are elements of X, 
Y. The intersection of convex cones X and Y is 
also a convex cane. Given a convex cane X, 
the subset of R” consisting of the elements y  
such that (x, y) < 0 for any element x in X is a 
convex cane which is called the dual convex 
cane (or conjugate convex cane) of X, denoted 
by X*. If  X is a tïnite set, K(X) is called a 
convex polybedral cane. For example, if u 
is a nonzero vector, then the half-line (u)= 
{x 1 x = au, a 2 0} or the half-space (u)* = 
{x 1 (u, x) < 0} is a convex polyhedral cane. A 
convex polyhedral cane is closed. A convex 
cane X is a convex polyhedral cane if and only 
if X is the sum of a finite number of half-lines. 
Given convex cones X and Y, we have pro- 
positions (l)-(3): (1) If  Xi c X,, then Xz c 
x;; (2) (X, +x2)* =Xl r-l x;; (3) xc +x2 c 
(X, n X,)*. I f  Xi and X, are convex poly- 
hedral cones, then X: +X2 =(Xi n X,)*. Gen- 
erally, X c (X*)* =X** for a convex cane X. 
If  X is a closed convex cane, then X=X**. 
Namely, the duality principle holds for closed 
convex cones. A linear subspace of R” is a 
convex polyhedral cane. Also, if A is an m x n 
real matrix, the subsets {x 1 Ax = 0, x 2 0) and 
{x 1 Ax > 0) are convex polyhedral cones. Since 
the duality principle holds for convex poly- 
hedral cones, we obtain the TMinkowski- 
Farkas theorem (i.e., if A is an m x n real 
matrix and v  is an element of R”, then the 
equation Ay = u has a solution y  > 0 in R” if 
and only if (u, x) > 0 for a11 x E R” such that 
‘Ax > 0). (For linear inequalities - 255 Linear 
Programming.) 
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G. Convex Sets in Function Spaces 

The defïnitions of convex sets and convex 
cones in R” cari be naturally extended to the 
case of any real linear space. Some of their 
properties cari be generalized and applied to 
the case of function spaces. 

(1) Let E be a tlocally convex real topolog- 
ical linear space satisfying Hausdorff’s tsepara- 
tion axiom. Let A and B be convex sets in E, 
and assume that B has interior points and 
A fl B is empty. Then A and B are separated by 
a hyperplane. Namely, there exists a nonzero 
tcontinuous linear functional f on E such that 
supf(A)<inff(B). 

(2) Let E be as in (l), and let C be a convex 
set in E. If  a boundary point x of C admits a 
nonzero continuous linear functional f such 
that f(x) = sup f (C), we cal1 such a point x a 
supporting point of C, and f a supporting func- 
tional of C. If  C has interior points, then any 
boundary point x of C is a supporting point of 
C. 

(3) Let C be a closed convex set of a 
tBanach space E. The set of supporting points 
of C is dense in its boundary. 

A convex set C contained in the dual space 
E* of a real topological linear space E is called 
a regularly convex set if for any f. in E* not 
contained in C, there exists a point x0 in E 
such that sup{ f (x,,) ( f l C} <fo(xo). 

Let E be a real topological linear space 
satisfying Hausdorff’s separation axiom, and 
let C be a closed convex cane having 0 as its 
extreme point. Furthermore, assume that C f? 
(-C)={O}. If  we set x<y when y-xeC, 
a partial ordering < is detïned in E. For 
example, if E is R”, then the positive orthant 
C = {x = (xi) 1 xi > 0, i = 1, . , n} satisfïes these 
requirements, and the partial ordering x <y 
defïned by means of C is equivalent to the 
relation xi < yi for a11 i. 

Some of the properties of matrices of posi- 
tive entries or tintegral operators whose tker- 
ne1 functions are positive-valued cari be gen- 
eralized to properties of mappings f: E + E 
such that f(C) c C (- 255 Linear Program- 
ming; for the tKrein-Milman theorem - 424 
Topological Linear Spaces). 
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A. General Remarks 

Suppose that we are given a Euclidean plane 
E2 and two lines XX and Y’Y in E2 per- 
pendicular to each other. Let 0 be the point of 
intersection of X’X and Y’Y. We identify each 
of the straight lines X’X and Y’Y with the set 
of real numbers R; the point 0 on each line is 
identilïed with zero. Let P be an arbitrary 
point in E’. We draw lines PQ, PR parallel to 
Y’Y, X’X, where Q, R are on XX, Y’Y, respec- 
tively. Let x and y  be the real numbers corre- 
sponding to Q and R. Thus we obtain a map- 
ping sending the point P to the ordered pair 
(x, y) of real numbers. This mapping gives a 
one-to-one correspondence between the points 
P of E2 and the ordered pairs (x, y) of real 
numbers in R2. The numbers x and y  are 
called the coordinates of P. 

In general, given a set of mathematical 
abjects, if we have a mechanism that assigns 
quantities to each element of the set, then such 
a mechanism is called a coordinate system on 
the set, and the quantities corresponding to 
each element are called its coordinates. In the 
previous example, the mechanism is called a 
rectangular coordinate system. Coordinate 
systems are also useful in expressing quantita- 
tive concepts by geometric ones which are 
intuitively easier to grasp, e.g., diagrams of 
train schedules and tnomograms. +Map projec- 
tion, tgraphical calculation, tdescriptive geom- 
etry, etc., may be viewed as applications of the 
concept of coordinate systems. 

In many cases, when we introduce a coor- 
dinate system in a space, it is determined 
uniquely by lïxing a basic figure in the space. 
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In the case of a rectangular coordinate system 
on a plane E2, the basic figure consists of X’X 
and Y’Y, which are called coordinate axes (the 
point 0 is called the origin). Sometimes it is 
convenient to consider real-valued functions f  
and g on R and a coordinate system on the 
plane E2 determined by the function that 
sends an arbitrary point P to (f(x), g(y)), 
where (x, y) are the coordinates of P in the 
rectangular coordinate system. Logarithmic 
papers, tprobability papers, and tstochastic 
papers (binomial probability papers), etc., are 
constructed in this way to fit their respective 
purposes. 

In various branches of mathematics there 
are many varieties of coordinate systems. In 
this article we deal with frames and coordi- 
nates, curvilinear coordinates, and local 
coordinates. 

B. Frames and Coordinates 

Suppose that we are given a space M and a 
ttransformation group G acting on M. It is 
desirable to introduce a coordinate system 
that best represents the geometric structure of 
M. Let G, be a set of figures in M such that G 
acts tsimply transitively on G,. Each element 
of G, is called a frame. Utilizing each frame as 
basic figure, we introduce a coordinate system 
that is “G-invariant” in the following sense: 
Let ReG,, XEM, and C,(X) be the coordi- 
nates of X with R as basic figure. Then the 
coordinate system is G-invariant if C,(X)= 
C,,(gX) for any element g in G. If  we have 
such a coordinate system for each RE G,, then 
the expressions of geometric properties of M in 
terms of the coordinates are independent of 
the choice of frames. 

(1) Projective Coordinates. Let M be an n- 
dimensional tprojective space P” over a tïeld 
K, and let G be the tprojective transformation 
group of P”. As a frame we cari take the system 
of n + 1 points (A,, A,, . , A,) in general po- 
sition. The thomogeneous coordinates of an 
arbitrary point XE P” are given by the (n + l)- 
tuple(x,,x,,..., x,) satisfying the equation X 
=&OxjAj, xje K. They are called tprojec- 
tive coordinates. In fact, if (xc,, xi, . . ,x,) # 
(O,O, ,O), then (x0,x,, . . ,x”) and (ix,, Ax,, 
“‘2 1x,,) (Â #O) represent the same point in P”. 
A thyperplane n of P” is expressed as the set 
of points whose coordinates (x,, x i, . . . , x,) 
satisfy a linear homogeneous equation 
X7=0 xju, = 0, ujg K. Therefore, the hyperplane 
n is represented by the homogeneous coor- 
dinates (u,, ul, , u,), called thyperplane 
coordinates of rr. 
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(2) Affine Coordinates. Let M be an n- 
dimensional +aflïne space E”, and let G be the 
tgroup of affine transformations of E”. As a 
frame we cari take the system (0; e,, e,, . , e,), 
where 0, called the origin, is a point in E”, and 
the set of vectors {ei} is a basis of the tstan- 
dard vector space of E”. Then tinhomogeneous 
coordinates of an arbitrary point XE E” are 
given by the n-tuple (x,, x1, . . , x,), where X = 
0 + Cy=, x,e,. They are also called taffine 
coordinates of X in E”. Sometimes we replace 
G above by the group of tequivalent aftïnities 
and consider the frames (0; e,, e2, . , e,) such 
thatthevolumeof[e,,...,e,,]=l. 

Furthermore, if E” has the structure of a 
+Euclidean space, we sometimes replace G 
by the tgroup of motions and consider a sys- 
tem of rectangular coordinates determined 
by an +Orthogonal frame, that is, a frame 
(0; e,, e2, , e,) such that the inner product 
(ei, ej) = 6,, where 6 is the +Kronecker delta. By 
contrast, the general affine coordinate system 
of a Euclidean space is called a system of 
oblique coordinates. In this case the inner prod- 
ucts (e,, ej) = g, are invariants of Euclidean 
geometry, and the distance p between two 
points (xi) and (y,) is given by p = (Clj=i gij(yi 

-xi)(Yj-xj)) . i” We sometimes consider an 
oblique coordinate system satisfying (e,, ei) = 1 
(i = 1, . . , n). In such cases the angle f3, between 
two basis vectors e, and ej is determined by 
gij = COS eij. 

(3) Barycentric Coordinates. In an n- 
dimensional affine space E”, we take n + 1 
linearly independent points A,, A,, . . . , A, and 
denote the position vectors from a point 0 to 
these points by a,, a,, . , a,, respectively. 
Then for any point XE E” there exists a unique 
set of numbers (A0, ii, , A.) such that X = 0 
+ ZJZO Ijaj, & lj = 1. We cal1 these numbers 
barycentric coordinates of X in E”. They are 
independent of the choice of the point 0. 

(4) Piiicker Coordinates. Let V(n, m) be the 
set of a11 m-dimensional subspaces in an n- 
dimensional projective space P”. Then V(n, m) 
has the structure of a +Grassmann manifold. In 
order to introduce a coordinate system on 
V(n, m), we Iïx a projective coordinate system 
on P”. An m-dimensional subspace n E V(n, m) 
in P” is spanned by m + 1 independent points 
B,, B,, . . . , B,EP”. We denote projective co- 
ordinates of these points by (b,), (bij), . . . , (b,J 
and construct the determinants 

Pj,j ,... j,= . . , 

i ! 

O<j,, . . . . j,<n. 

4njo bmj , . . bmj,+, 

Then the subspace rc cari be represented by 
homogeneous coordinates ( . , pjoj, ,__ j,, . ). 
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These coordinates are independent of the 
choice of m + 1 points that span n and are 
called Plücker coordinates (or Grassmann 
coordinates) of rc in V(n, m). In these coordi- 

nates, the Pj,j,...j, are alternating and satisfy 
the Pliicker relations 

where jk means that j, is removed. In partic- 
ular, when n = 3 and m = 1, we have only one 
Plücker relation Q:~~~p~~-p~~p~~+p~~p~~= 
0, which is a homogeneous equation of the 
second degree. In other words, the set V(3,l) 
of a11 lines in a 3-dimensional projective space 
P3 is realized as a quadric surface Q in a 5- 
dimensional projective space P5 that has 

(pal, poz, po3, p12, p13, pz3) as prokctive CO- 
ordinates. Moreover, when P3 is a complex 
projective space, we put 

pal =50+&, poz=51 +iL po3=52+iL 

P23=50-G3, p13= -51+&, PI*=&i55 

and obtain a relation 

corresponding to the Plücker relation. Thus 
every line in P3 cari be represented by homo- 
geneous coordinates (CO, [i, . . . , &), which we 
cal1 Klein’s line coordinates. 

(5) (n + 2)-Hyperspberical Coordinates. Let 

(x0,x,, . ..i x,, xm) be’ projective coordinates in 
an (n + 1)-dimensional real projective space 
P”+I. An n-dimensional tconformal space S” 
is realized as a quadric hypersurface S” in 
P”+I :C;j=l gijxixj-2x,x, =O, where (gij) is a 
positive definite symmetric matrix. A general 
point in P”+I represents a thypersphere of s”. 
That is, a hypersphere represented by a point 
XE P’+l is realized as the intersection of S” 
with the +Polar hyperplane of X with respect 
to S”; according as X lies outside of S”, on S”, 
or inside of S”, it represents a real hypersphere, 
a point hypersphere, or an imaginary hyper- 
sphere. Therefore any hypersphere of S” in 

‘+i is expressed by homogeneous coordinates 
Lx o, i, , x,, xJ, called (n + 2)-byperspberical 
coordinates. When n = 2, they are called tetra- 
cyclic coordinates, and when n = 3, pentaspber- 
ical coordinates. Therefore, if we restrict (n + 2)- 
hyperspherical coordinates for points on S”, 
then they satisfy the quadratic relation stated 
before. In the frame (A,,A,, . . . , A,,, A,) of P”+l 
which defines the (n + 2)-hyperspherical co- 
ordinates, A, and A, are points on S”, and the 
other Ai are real hyperspheres passing through 
the points A, and A,. It is possible to choose 
a frame (A,, A,, . , A,, A,) such that the equa- 
tion for S” becomes x7=, x’ -2x0x, = 0 (i.e., 
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g, = 6,). Among hypersurfaces in S”, one that 
is expressed by a homogeneous equation of 
the second degree with respect to (n + 2)- 
hyperspherical coordinates is called a cyclide. 
It is an algebraic surface of the fourth order 
and is an enveloping surface of the family of 
hyperspheres that are tangent to n fïxed 
hyperspheres. 

(6) Moving Coordinates. When we study the 
differential geometry of an m-dimensional 
surface W in a space A4 on which a transfor- 
mation group G acts, it is often preferable to 
take a frame or frames at each point of W and 
consider a tconnection among them. These 
frames are called moving frames, and the set of 
coordinate systems with respect to moving 
frames is called a moving coordinate system 
(- 111 Differential Geometry of Curves and 
Surfaces). 

C. Curvilinear Coordinates 

Let (x1, x2, . , xn) be a rectangular coordinate 
system on an n-dimensional Euclidean space 
E”. I f  x, = xJu,, u2, , un), i = 1, , n, are func- 
tions of n variables (U u 1, Z,“‘, u,) of class 
c’ (r> 1) and the tfunctional determinant 
D(x,, ,x,)/D(u,, . , un) is not equal to zero 
in some open domain, then (u,, ul, , u,) are 
considered local coordinates in E”. We cal1 
them curvilinear coordinates of E”. A hypersur- 
face ui = constant (obtained by tïxing the value 
of one of the variables ui) is called a coordinate 
hypersurface, and a curve uj = constant (j # i) is 
called a coordinate curve. The line element ds 
of a Euclidean space E” is given by 

ds2 = f  dx; = i gijduiduj, 
!S=I i,j=l 

y,= c ax,ax,. k=l sui auj 
Thus E” is equipped with a +Riemannian 
metric. However, as E” is Ulat, its tcurva- 
ture tensor satisfies Rj,, = 0. If  the metric is 
diagonal, namely, if ds2 =C;=l g,duf, the co- 
ordinates are called orthogonal curvilinear 
coordinates. Moreover, if g1 = =g,, the 
coordinates are called isothermal coordinates. 
The metric is diagonal if and only if coordi- 
nate curves are mutually perpendicular at the 
points of intersection. Actually, curvilinear 
coordinate systems that are often used practi- 
cally are diagonal. The concept of curvilinear 
coordinates has been generalized to the case of 
tdifferentiable manifolds and is utilized to 
determine their local coordinates. 

On any 2-dimensional Riemannian manifold 
there always exist isothermal coordinates in a 
neighborhood of any point [7]. 
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(1) Curvilinear Coordinates on Planes or Spaces 
(- Appendix A, Table 3.V). Let (x, y) be rect- 
angular coordinates of a point in a Euclidean 
plane E2. We have the following coordinate 
systems on E2: 

Polar coordinates (r, O), where 

x=rcosQ, y=rsino. 

Elliptic coordinates (A, p), where 

x2=(n+a2)(p+a2)/(a*-b2), 

y2=(I!+b2)(p+b2)/(b2-a’), 

a>b>O, À> -b2>p> -a’. 

Paraholic coordinates (tl, b), where 

x= -(Cc+/l), y=Jq?, a>O>/3. 

Equilateral (or rectangular) hyperbolic co- 
ordinates (u, v), where 

x=uu, y  = (2 - u2)/2. 

Bipolar coordinates (5, q), where 

x = a sin </(cash 5 + COS q), 

y  = a sin q/(cosh 5 + COS q), 

-co<i’<co, 0<‘1<27c. 

Next we consider the case of a 3- 
dimensional Euclidean space E3 and let (x, y, z) 
be rectangular coordinates on E3. The follow- 
ing systems of coordinates on E3 are some- 
times useful. 

Cylindrical coordinates (r, 8, z), where 

x=rcose, y=rsin& z=z. 

Spherical coordinates (r, 0, cp), where 

x=rsinQcoscp, y=rsinOsincp, z=rcosfl. 

Ellipsoidal coordinates (A, p, v), where 

x2=(~+a2)(p+u2)(~+a2)/(a2-b2)(u2-~2), 

u>b>c>O, A> -c’>p> -b’>v> -a’. 

These coordinate systems are a11 systems of 
orthogonal curvilinear coordinates. Suppose 
that we are given two rectangular coordinate 
systems (&q, [) and (x, y, z) sharing the same 
origin. The correlation of the two is given by 
Euler’s angles (Q, <p, $), where 0, cp, and II/ are 
the angles between the z-axis and [-axis, zx- 
plane and z<-plane, and [t-plane and {z-plane, 
respectively. The Euler angles 8, cp, and $ are 
subject to the inequalities 0 < Q < 7~ and 0 < <p, 
$ < 27~. They are often utilized in the dynamics 
of rigid bodies. 

(2) Multipolar Coordinates. Let P1, P2, , P,,, 
be m points in general position in an n- 
dimensional Euclidean space E”, m <n. If  we 
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denote by pi (2 0) the distance between a point 
X of E” and Pi, then (plrp2, . ..p.) cari be re- 
garded as coordinates of a point X contained 
in a suitable domain of E”. They are called 
multipolar coordinates. In particular, if m = 2 
they are called bipolar coordinates, and if m = 3, 
tripolar coordinates. When m > n, these coor- 
dinates satisfy m-n relations. Next let c(~, 
a*, , a, be m hyperplanes in general position 
in E”, m < n. For an arbitrary point X of E”, we 
denote by si the directed distance of X from 
each hyperplane ai. The m-tuple (5,) &, . , 5,) 
provides coordinates of X that are called 
multiplanar coordinates in E”. When m > n, 
these coordinates satisfy m-n relations. In 
particular, when n = 2 and m = 3, they are 
called trilinear coordinates. In this case, if we 
denote by S the area of the triangle defïned by 
three lines a,, Q, a3, and by ul, a2, a3 the 
lengths of the three sides of the triangle, then 
the trilinear coordinates (5,) t2, &) satisfy a 
linear relation a, t1 + a2 t2 + a3 & = 2s. 

(3) Tangential Polar Coordinates. In a Eu- 
clidean plane E2, we take a directed line 1, 
passing through a point 0. For an arbitrary 
directed line g, let p be the directed distance 
between 0 and g, and let 0 be the angle be- 
tween 1, and g. Then (p, 0) are called tangential 
polar coordinates (Fig. 1). They are useful for 
representing tangent lines to curves in E*. Let 
C be an toval in E2. A line is called a tsupport- 
ing line of C if its intersection with C consists 
of a point or a line segment. In this case we 
take the origin 0 inside C and consider the 
coordinates (p, 0) of the supporting lines of C. 
Then the equation of C cari be represented as 
p = p(Q), where p(0) is a periodic function of 
period 271. The coordinates (p, Q) are especially 
useful when the function p(B) cari be expanded 
in a +Fourier series. In the case of Euclidean 
space E3, the notion of tangential polar co- 
ordinate system cari also be defïned by using 
tangent planes. 

Fig. 1 

Tangential polar coordinates 

(4) Normal Coordinates. Let M be an n- 
dimensional +Riemannian manifold, and let 
T,(M) be the tangent space to M at a point A. 
For each tangent vector VE T,(M), we draw a 
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tgeodesic through A with the initial direction v  
and take a point P on the geodesic such that 
the distance from A to P is equal to the length 
of v. Then the correspondence that sends v  to 
P is a tdiffeomorphism of a neighborhood of 
the zero vector 0 of TA(M) with a neighbor- 
hood of A in M. Therefore the components 
(u’, Y’, , u”) of v  with respect to a basis of 
T,(M) give the coordinates of the points P 
contained in a suitable neighborhood of A. We 
cal1 them normal coordinates about the point 
A of M. In these coordinates, each geodesic 
passing through A is given by equations vi 
= air (i = 1,2, . , n), where the (a’) are compo- 
nents of the unit vector in the direction of Y 
and ris the parameter that represents the arc 
length from A to the point (u’, . . , v”). In partic- 
ular, when n = 2, we fïx a tangent vector v,, at 
A and denote the angle between v  and vo by 0. 
Then (r, 0) are coordinates of P called geodesic 
polar coordinates. The notion of norma1 co- 
ordinates cari also be defïned for +Lie groups 
or differentiable manifolds with tafflne 
connections. 

D: Local Coordinates 

Suppose that we have a space M that has a 
covering by a family of open neighborhoods 
with coordinate systems. If, for each pair of 
neighborhoods with nonempty intersection, 
the coordinate transformation in the intersec- 
tion satisfies certain specified conditions, then 
a mathematical structure on M cari be detïned. 

Let E be a ttopological space. Suppose that 
U, is a family of open sets in E such that the 
union of any number of open sets in @ and the 
intersection of any finite number of open sets 
in @ also belong to Q. A set r of thomeomor- 
phisms is called a pseudogroup of transforma- 
tions on E if r satisfies the following three con- 
ditions: (i) Any homeomorphism fer is de- 
tïned on an open set U E @, and f(U) f@. (ii) 
When an open set U E 0 is expressed as the 
union of a family (Vi} of open sets Ui E 0, a 
homeomorphism f  defined on U belongs to r 
if and only if its restriction to each Ui belongs 
to r. (iii) For any open set U EU), the identity 
mapping on U belongs to r, and if L g E r, 
then the inverse f-’ and the composition g of, 
if it exists, belong to r. 

Let E and M be topological spaces. A 
homeomorphism cp : U + V of an open set U in 
E to an open set Vin M is called a local co- 
ordinate system of M with respect to E. For 
two local coordinate systems <pl : U, * VI and 
<p2 : U, + V,, the homeomorphism 

<p210<pl:4T1wl n V22)‘%?(~1 n V2) 

is called a transformation of local coordinates. 
Let r be a pseudogroup of transformations 
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on E. A set C of local coordinate systems of M 
with respect to E is said to delïne a r-structure 
on M if C satisfies the following two con- 
ditions: (1) the totality of the images of local 
coordinate systems belonging to Z covers M; 
(2) if two local coordinate systems <pi and (p2 of 
C have a transformation of local coordinates, 
it belongs to F. Now suppose that two sets C 
and c’ of local coordinate systems deline F- 
structures on M. If  the union of C and Z 
delïnes a I-structure, then we say that the fïrst 
two I-structures are equivalent. Let F be a 
pseudogroup of tdiffeomorphisms, each de- 
lïned from an open subset of the n-dimensional 
space R” onto another open set. I f  a I- 
structure is delïned on a space M, then M is 
an n-dimensional tdifferentiable manifold. 

On the other hand, let I be a pseudogroup 
of complex analytic homeomorphisms in an n- 
dimensional complex number space C”. If  a F- 
structure is defined on a space M, then M is an 
n-dimensional tcomplex analytic manifold. 
Locally homogeneous spaces, tfoliated mani- 
folds, the Qïber bundles are a11 equipped with 
local coordinate systems with suitable F- 
structures. 
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A. General Remarks 

A continuous mapping p: p+ Y of an tarcwise 
connected topological space p onto a con- 
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nected topological space Y is called a covering 
mapping (covering map) if the following con- 
dition (C) is satislïed: (C) Each point of Y has 
an open neighborhood V such that every 
tconnected component of p-‘( V) is mapped 
homeomorphically onto V by p. Here we note 
that Y is in fact arcwise connected. 

If  there is a covering mapping p : P+ Y, we 
cal1 p a covering space of Y and ( p, p, Y) a 
covering. In particular, for a tdifferentiable 
manifold Y, if Pis also a differentiable mani- 
fold and p is differentiable, then Bis called a 
covering (differentiable) manifold of Y. (In the 
theory of tRiemann surfaces, a tcovering sur- 
face may have some tbranch points violating 
condition (C). Upon removing such points, we 
obtain a covering space as delïned above.) 

Foreach+pathw:I-,Y(I=[O,l])of Y,a 
path $:I-> P with p o i? = w is uniquely deter- 
mined by the point Gap-‘(w(l)), and a 
bijection w# :p-‘(w(l))-ip~‘(w(O)) is deter- 
mined by w# (n( 1)) = n(O). Thus there exists a 
one-to-one correspondence between p-‘(y) 
and ~~‘(y’) for every pair of points y, y’ of Y, 
and (r, p, Y, ~-‘(y~)) is a tlocally trivial fiber 
space with discrete liber ~-‘(y,). When the 
cardinal number of p-‘(y) is a lïnite number n, 
we cal1 (F, p, Y) an n-fold covering. In this case, 
for a +loop ~(1, i)+(Y, y0) with base point y,, 
w# :p-l(yo)+p-l(y,-J is a permutation of the n 
elements in p-l (yo), and we obtain a homo- 
morphism of the tfundamental group rti (Y) = 
rtl (Y, ye) of Y into the kymmetric group G,, 
given by the correspondence w+w#. The 
permutation group 9J& which is the image of 
this homomorphism, is called the monodromy 
group of the n-fold covering. 

Two coverings (x, pi, Y) (i = 1,2) are said to 
be equivalent if there is a homeomorphism 
<p: pl-Fz with pzoq=p,; such a cp is called 
an equivalence. In particular, a self-equivalence 
q : Y-* P of a covering (e p, Y) is called a cover- 
ing transformation. The set 7~ of a11 covering 
transformations forms a group by the compo- 
sition of mappings, which is called the covering 
transformation group of F. We cal1 (y, p, Y) 
a regular covering if for each y  E Y and j,, 
jz~p-‘(y), there exists a unique covering 
transformation that maps jjl to y,. In this 
case, the torbit space y/rc is homeomorphic 
to Y, (F, p, Y, 7~) is a +Principal bundle, and 
the monodromy group 9JI is isomorphic 
to 71. 

For a covering (F, p, Y), we cal1 P a covering 
group of Y if P and Y are topological groups 
and p is a homomorphism. Then (?, p, Y) is a 
regular covering, and its covering transfor- 
mation group is isomorphic to p-‘(e) (e is the 
identity element of Y), which is a discrete 
subgroup lying in the tenter of P(- 423 Topo- 
logical Groups 0). 
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B. Universal Covering Spaces 

For a covering (F, p, Y), we have the following 
relations of the thomotopy groups: p* : ni( P)+ 
rci( Y) is isomorphic (monomorphic) for i > 2 
(i = l), and 7~~ (Y)/p.Jn, (P)) is in one-to-one 
correspondence with p-i (y,,) (y0 E Y). I f  7 
is tsimply connected, p is called a universal 
covering space of Y; if in addition pis a cover- 
ing group, Y is called a universal covering 
group of Y. 

For a tlocally arcwise connected space Y, 
a covering ( p, p, Y) is regular if and only if 
p,(n, (Y)) is a normal subgroup of 7c1 (Y), and a 
universal covering space of Y is a covering 
space of any covering space of Y. Moreover, if 
Y is a topological group, any covering space B 
of Y cari be given a unique topological group 
structure with which pis a covering group of 
Y. 

Let Y be an arcwise connected, locally arc- 
wise connected, and tlocally simply connected 
space. Then the following classification theo- 
rem of coverings holds: The set of equivalence 
classes of coverings of Y is in one-to-one cor- 
respondence with the set of conjugate classes 
of subgroups of the fundamental group rtl (Y); 
in particular, the equivalence class of a cover- 
ing (F, p, Y) corresponds to the conjugate 
class of the subgroup p*(n,( y)). Also, there is a 
unique universal covering space P of Y up to 
homeomorphism. If in addition Y is a topolog- 
ical group, then Pis a unique universal cover- 
ing group of Y up to isomorphism of topolog- 
ical groups. Such a space Y is obtained as 
follows: Consider the tpath space Q( Y; y,,, Y) 
of a11 paths in Y starting from a lïxed point 
yO~ Y, and define two paths we, w,:(I,O)-+ 
(Y, y0) such that we( 1) = w i (1) to be equiva- 
lent if and only if there is a thomotopy w,: 
(1,O)+(Y,y,) with w,(l)=w,(l)(O<t<l). 
Then we obtain the tidentilïcation space P of 
Q( Y; y,, Y) by this equivalence relation and 
the mapping p: y+ Y by p(w) = w(l); this 7 is 
the universal covering space of Y. 

Let (F, p, Y) be a regular covering with the 
covering transformation group rr. Then there is 
a tlocally trivial liber space (Y’, q, B, P) such 
that the total space Y’ has the same t(co) ho- 
mology groups as Y, and the base space B is 
an TEilenberg-MacLane space K(rc, 1). The (CO) 
homology tspectral sequence of this liber space 
is called that of the given regular covering 
(7, p, Y), E, is a bigraded module tassociated 
with a certain filtration of the tsingular (CO) 
homology module H(Y), and E, is the (CO) 
homology module H(n; H(P)) of the group rc, 
where n operates on the coefficient module 
H(Y) via the induced homomorphisms of 
covering transformations (- 148 Fiber 
Spaces). 
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For any group x, there is a regular covering 
(E,, p, B,) with the covering transformation 
group x such that E, is tcontractible; B, is an 
Eilenberg-MacLane space K(n, 1). We cari take 
S’ (1-sphere) as B, of the inlïnite cyclic group 
Z, and the following inlïnite lens space as Bzx 
of the finite cyclic group Z, (- 70 Complexes). 

C. Lens Spaces 

Let k be a positive integer and Ii, . ,1, be 
integers prime to k. Let S’“+’ = {(z,, , Z,)E 
C”~1~~z~~2+...+~z,)2=1} betheunitsphere 
in the (n + l)-dimensional complex linear space 
C”+i, and delïne the rotation y  by y(zO, zr, 

“‘3 z,,) = (z,, exp 2zi/k, z1 exp 27~1, i/k, . . , 
z, exp 2d,i/k). Then the torbit space S2”+l/Zk 
= L(k; I,, , l,), where Z, = Z/kZ is interpreted 
as the cyclic group generated by y, is called 
a lens space. It is an orientable (2n + l)- 
dimensional tdifferentiable manifold. Also, the 
intïnite lens space L”(k)=L(k; 1, . . . , 1, . ..) 
is delïned by taking n = CO; the inlïnite sphere 
S” is a k-fold covering space of L”(k), and 
L”(k) = Bzi = K(Z,, 1). Its tcohomology ring 
is given as follows. 

(1) For integral coefficients, H2’+‘(Lm(k)) = 
0, H2’(L”(k)) = Z, (i > 0), and the tcup prod- 
uct of generators of degree 2i and 2j is a gen- 
erator of degree 2(i + j). 

(2) Let k = pk’ (p is a prime). If  p # 2, or p = 2 
and k’ is even, H*(L”(k); Z,)=p,(e,)@ Z,[e,]. 
I f  p= 2 and k’ is odd, H*&“(k); Z,) = Z, [e,] 
(ei is an element of degree i). Here A indicates 
the texterior algebra over Z,, and Z,[ ] the 
tpolynomial ring over Z,. 

Two lens spaces L(k; I,, . ,1,) and L(k’; /‘, , 
, &) are of the same homotopy type if and 

only if k = k’ and there is an integer m prime 
to k with 

1 . ..l -+m”+‘l 1 n- 1 . . . &(mod k) 

[8]. Furthermore, the condition k = k’, 1~ 
f  1’“(mod k) holds if and only if L(k; I) and 
L(k’; I’) are homeomorphic. (Suhïciency is 
shown in [ 11; necessity follows from the fact 
that the tHauptvermutung is valid for com- 
binatorial 3-manifolds and that the condition 
holds if the polyhedra L(k; 1) and L(k; 1’) have 
isomorphic subdivisions [6].) Also - [7,1 l] 
and 65 Combinatorial Manifolds. 

References 

[l] H. Seifert and W. Threlfall, Lehrbuch der 
Topologie, Teubner, 1934 (Chelsea, 1965). 
[L] N. Steenrod, The topology of liber bun- 
dles, Princeton Univ. Press, 1951. 
[3] S.-T. Hu, Homotopy theory, Academic 
Press, 1959. 



92 A 
Crystallographic Groups 

[4] S. Eilenberg and S. MacLane, Homology 
of spaces with operators II, Trans. Amer. 
Math. Soc., 65 (1949) 49-99. 
[S] J. H. C. Whitehead, On incidence matrices, 
nuclei and homotopy types, Ann. Math., (2) 42 
(1941) 119771239. 
[6] K. Reidemeister, Homotopieringe und 
Linsenraume, Abh. Math. Sem. Univ. Ham- 
burg, 11 (1935), 102-109. 
[7] W. Franz, Über die Torsion einer über- 
deckung, J. Reine Angew. Math., 173 (1935) 
245-254. 
[S] P. Olum, Mappings of manifolds and the 
notion of degree, Ann. Math., (2) 58 (1953) 
458-480. 
[9] W. S. Massey, Algebraic topology; An 
introduction, Harcourt, Brace & World, 1967. 
[lO] 1. M. Singer and J. A. Thorpe, Lecture 
notes on elementary topology and geometry, 
Scott, Foresman, 1967. 
[l l] M. M. Cohen, A course in simple homo- 
topy theory, Springer, 1972. 

92 (IV.1 5) 
Crystallographic Groups 

A. Space Groups ad Point Groups 

Let G be a discrete subgroup of the group of 
+motions 6 in the real n-dimensional Eu- 
clidean space V. If  G contains n linearly inde- 
pendent translations, then G is called an n- 
dimensional crystallographic space group, a 
space group, or a crystallographic group. The 
following assertions are known to be equiva- 
lent to each other: (i) A discrete subgroup G of 
8 is a space group; (ii) B/G is compact; (iii) 
V/G is compact; (iv) There is a compact subset 
P of V such that V= GP = usEcgP [ 11. The 
subgroup T consisting of a11 ttranslations in G 
is called the lattice group of G. T is a normal 
subgroup of G and is generated by n linearly 
independent translations, say, t,, t,, , t,. 
Take a point x of V. Then the T-orbit of the 
point x is called a lattice of G (or T). t,, , t, 
cari be identilïed with a basis of V. Let K be 
the quotient group GIT and k=gT an element 
of K. Then k gives rise to a linear transforma- 
tion k on T via the formula k(t)=gtg-’ (the 
product in G), t E T, and K cari be regarded 
as a subgroup of the +Orthogonal group of 
V via the above identification of T with a 
lattice in V. That is, the set of orthogonal 
transformations stabilizing x, { gl (~(y) = x + 
g(y)-g(x),ye V),ggG} forms a group isomor- 
phic to K. The quotient group K is a finite 
group and is called the point group of G. A 
group isomorphic to a point group of an n- 
dimensional space group is sometimes called 
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an n-dimensional crystallographic group. An 
algebraic characterization of space groups 
among abstract groups is given by “A group G 
is isomorphic to an n-dimensional space group 
c> G has a normal +free Abelian subgroup of 
+rank n, which is maximal Abelian and has 
finite index” [ 11. 

By representing the action of K on T in 
terms of a basis of T, K cari be regarded as a 
subgroup of GL(n, Z). Hence we obtain the 
following crystallographic restriction: If  K 
contains an element of order m, then n > <p(m). 
Here <p is the +Euler function. For example, 
if n=2, 3, then m= 1, 2, 3,4 or 6; and if n= 
4, 5, then m= 1, 2, 3, 4, 5, 6, 8, 10, or 12. The 
number of nonconjugate tïnite subgroups of 
GL(n, Z) is finite (Jordan-Zassenhaus theorem; 
- C2,3,211). 

Two space groups G, and G, are called 
equivalent if they are conjugate via an +afftne 
transformation f  of V, i.e., G, =fG,f-‘. Let 71 
and Ki be the lattice group and the point 
group of Gi (i= 1,2), respectively. Then T, = 
hT, and K, = hK, h-’ for the linear trans- 
formation h induced by ,f: Moreover, there is 
an orthogonal transformation k such that 
K, = kK, km’; this k cari naturally be consid- 
ered as an element of GL(n, Z). G, and G, are 
equivalent 0 G, and G, are isomorphic (as 
abstract groups) [ 11. In applications it is often 
required that in the definition of equivalence ,f 
be an +Orientation-preserving affine transforma- 
tion. Under this delïnition, there cari be a pair 
G,, G, such that G, and G, are mutually iso- 
morphic but not equivalent, since they are 
conjugate only by means of an torientation- 
reversing affine transformation. In this case, 
they are called enantiomorphous to each other, 
or the pair is called an enantiomorphic pair 
(Table 1 below). For a given dimension n, 
there is only a tïnite number of equivalence 
classes of space groups [ 11. We also conclude 
from this that point groups have tïnitely many 
equivalence classes up to conjugacy in the 
orthogonal group O(V) or in GL(n, Z). 

B. Crystal Classes, Bravais Types 

Let T be an n-dimensional lattice in n- 
dimensional Euclidean space V, and K a finite 
subgroup of the orthogonal group O(V). De- 
note by a pair (T, K) a tfaithful linear trepre- 
sentation of K on T, i.e., a tmonomorphism 
of groups K -Aut( A space group G deter- 
mines a pair (T, GIT). Conversely, for any pair 
(T, K) the following holds: “Any group texten- 
sion of K over the tkernel T is isomorphic to a 
space group” (- the algebraic characteriza- 
tions in Sections A and C). Thus to each pair 
(T, K) there corresponds a set of space groups. 
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Two pairs (Tr , K,) and (T,, K2) are called 
arithmetically equivalent (this is denoted by 
(T,, K1)z(T2, K2)) if there exists an invertible 
linear transformation go GL( V) such that T2 
=gT,, K,=gK,g-‘. These pairs are called 
geometrically equivalent or simply equivalent 
(this is denoted by (Tl, K,)-(T,,K,)) if there 
exists a gEGL(V) such that K,=gK,g-r. The 
relation z ( -) is an equivalence relation, and 
equivalence classes are called arithmetic (geo- 
metric) crystal classes. The set of geometric 
crystal classes is in one-to-one correspondence 
with the set of equivalence classes of point 
groups up to conjugacy, and is sometimes 
called the set of crystal classes. The geometric 
crystal class of (T, K) is usually denoted by K. 

Now let T be a lattice. Then the group of all 
orthogonal transformations that leave T in- 
variant is called the Bravais group of T and 
is denoted by B(T), i.e., B(T)={gEO(V)lgT= 

T}. The group B(T) is finite and determines 
a pair (T, B(T)). Two lattices Tl and T2 are 
called arithmetically equivalent (this is denoted 
byT,zT,)if(T,,L?(T,))and(T,,B(T,))are 
arithmetically equivalent. An equivalence class 
is called a Bravais type, and an arithmetic 
crystal class determined by (T, B(T)) is called a 
Bravais class. For each Bravais type, a repre- 
sentative is said to be its Bravais lattice (Fig. 3 
below). 

Detïne an tarder relation on the set of lat- 
tices belonging to an arithmetic crystal class as 
follows. When (T,, K,) z(T2, K2), detïne T, < Tl 

if there exists a g E GL( V) such that T, = g T,, 

K,=gK,gml, and B(T,)EgB(T,)g-‘. Note that 
Tl z T2 o Tl < T2 and T2 < T, In each arith- 
metic crystal class, there is a pair (T, K) with a 
tminimal T with respect to this order relation. 
In this case the Bravais type of T is referred to 
as the Bravais type of the class of (T, K). This 
lattice T is, intuitively, of the most general type 
appearing in the class. Now detïne a relation 
T, -f T2 if there are pairs (71, K,), i= 1, 2, such 
that ( Tl, K,) -(T,, K2) and 71 is minimal in the 
class of (71, Ki). The equivalence class of the 
equivalence relation generated by the relation 
-f is called a crystal family. 

Summarizing, we have defined the following. 
Let Y, &, 9, UA, VF be the set of equivalence 
classes of space groups, arithmetic crystal 
classes, geometric crystal classes, Bravais 
types, and crystal families, respectively. Then 
we have the relations shown in Fig. 1. (Al1 
arrows in Fig. 1 are surjective.) 489 is nothing 
but the tcoproduct of 9 and u8 over JZ?‘, %‘g 
=Y~,% 

Y- d---+9 lifc-..~ 

1 1 LB--+WF W~--+%Y~ 
Fig. 1 Fig. 2 
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Moreover, there are injective mappings &!tc,,Pe 
and ~4 4 Y such that the composites IA çd + 
2 and .dc,Y~d are identities. The first is 
the mapping sending a Bravais type T to the 
arithmetic crystal class deiïned by (T, B(T)). 

The second one sends a class of (T, K) to 
a tsemidirect product of T and K (- 190 
Groups N). A space group belonging to a class 
of the image of ~2 ~5‘ is said to be symmorphic 
or symmorphous. A class which belongs to the 
image 2 of the composite gc,d->te is called 
a holohedral or holosymmetric class, or a holo- 
hedry. Detïne a mapping M of 9 to the power 
set Q(a) by M=(B~xZ).(&+~)-‘. For two 
elements C, and C, of 9, detïne C, mS C, if 
M(C,)= M(C,). Each equivalence class is 
called a crystal system, and the set of crystal 
systems is denoted by %‘Y. Two elements C 
and c’ of 9 belong to the same crystal family 
if and only if there exists a sequence of ele- 
mentsofZ?,C1,C2,...,C~suchthatC,=C 
and C,=C’and M(Ci)flA4(Ci+r)#@ for i= 
1,. , k- 1. Therefore there is a surjective map- 
ping VY+‘ZF (Fig. 2). When n < 4, the com- 
posite X$Y-*wY is bijective. It should be 
remarked that when n > 3, there is no map- 
ping a%&?‘Y such that .dj?Y+%Y and d+ 
a--&?Y coincide. 

The numbers of elements of these sets are 
shown in Table 1. 

Table 1 

n=l 2 3 4 

WF, crystal 
families 1 4 6 23 
WY,” crystal 
systems 14 7 33 
A?, Brava~s types 1 5 14 64 
Y, point groups 
(isomorphic 
ClaSSeS)b 2(2) lO(9) 32(18) 227(118) 
.a’, arithmetic 
crystal 
classes 2 13 73 710 
:Y, space groups 2 17 219’ 4783d 

a When ng4, the number of elements of .Y? coincides 
with that of %?.Y. 

bThe number in parentheses denotes the number of equiva- 
lente classes under algebraic isomorphism. 

f,dThe number of equivalence classes under orientation- 
preserving transformations is 230 and 4895, respectively. 

C. Construction of Space Groups 

Take an element (T, K) of an arithmetic crystal 
class. Since K is tïnite and T is Vïnitely gen- 
erated, the tcohomology groups H’(K, T) are 
tïnite groups (- 200 Homological Algebra G). 
Let CI be a +Second cocycle representing an 
element [a] of H’(K, T). Let (T, K), be the 
textension of K with kernel T correspond- 
ing to [a] (- 190 Croups N). Then the set 
of elements of (T, K), is given by {(t, k) 1 
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t E T, k E K}, and the product is defined by 

(t,,k,)(t,,k,)=(t,+klt*+tcc(kl,kz),k,k2). 
Since H’(K, V)=O, i> 1, there is a tfirst co- 
chain BEC’(K, V) such that cc(k,, k2)=b(kl)+ 

k, /l(k2) -/?(k, k2), and the tfirst cocycle B on 
V/T detïned by p induces an isomorphism 
H’(K, V/T)ZH’(K, T), [/Il H [a]. Define an 
action of (t, k) on V by 

(t,k)(x)=kx+t+fl(k), X~V. 

Then (7; K), acts on V as a space group. Con- 
cerning their equivalence, this result holds: 
“The equivalence classes of (T, K),, [cc] E 

H’(K, T) are in one-to-one correspondence 
with the orbits of N(K), the normalizer of K 

in Aut acting on H’(K, T)” [4]. The action 
of ~EN(K) is given by h~(k)=ha(h-lkh), C(E 

C*(K, T). 

For a pair (T, K) the weight lattice or the 
weight group T* of (T, K) is defined by {UE V 1 

u - kvE T, Vke K}. Let R be an irreducible re- 
duced +root system, Q(R) its lattice, and W(R) 

its tWey1 group. Then for a pair (Q(R), W(R)), 

Q(R)* is nothing but the usual weight lattice 
P(R). (- 248 Lie Algebras). Suppose that K of 
(T, K) does not contain the central inversion 
-I,:uH-v,v~V.Denote thegroup KU 

(- I,)K by & K. Then there is an isomorphism 

ff’( k K, Vb”)zC~‘(K, V/T)12 

x (T*/T)/2( T*/T). 

Here [ .12 denotes the subgroup of elements 
of order not greater than 2 [S]. This isomor- 
phism provides powerful means for the con- 
struction of space groups. 

In constructing a pair (T, K), it is useful to 
take a basis of T in a special form. Let {ti, t,, 
. ..) t,} be a basis of a lattice T, and set a, = 
(ti, tj), where (,) is the inner product in V. The 
n x n matrix A =(a,) is tsymmetric and tposi- 
tive defmite, and the numbers a, are called 
the lattice constants of T. A basis {tl, . . , t,} is 
called a reduced basis if the tquadratic form 
(Ax, x) = C aijxixj is reduced (- 348 Qua- 
dratic Forms). A lattice admits at least one re- 
duced basis, and in this case f  2a, <a,, < ujj, 
i<j [6, Table 5.1; 71. The totality of an n- 
dimensional reduced basis forms in a nat- 
ural manner a semialgebraic set of dimension 
(n + 2)(n - 1)/2 in R(n+1)ni2. Its closure, say Q,, 
is compact. On the other hand, the set L, = 
(R, x O(R”))\GL(n, R)/GL(n, Z) is identi- 
fied with the set of equivalence classes of n- 
dimensional lattices under the relation of 
“same shape.” There is a natural inclusion 
L, U . . . U L, c,Q,, and L, is dense in Q,. More- 
over, the inclusion gives a bijective homeo- 
morphism when n<4 [S]. 

A tïnite subgroup K of the orthogonal 
group O(V) is said to be fully transitive if there 
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isasetS={e,,..., e,} that spans Von which K 

acts ttransitively and if K has no tinvariant 
subspace in V. In this case one cari choose S as 
either of the following: (i) the primitive hyper- 
cubic type, S = {e,, , e,}, (ei, ej) = 6, (tKro- 
necker delta); (ii) the primitive hyperbolic type, 

S={f,,...,f,+l},(~fi,fi)=l,i=l,...,n+l, 
(A,&)= -l/n, i, j= 1, . . . . nf 1, i#j (especially, 
cyz;~=o) [lO]. 

D. Color Symmetry Groups, Twinning 

A color symmetry group, or a colored symme- 
try group, associated with a space group G is a 
pair (G, G’) such that G’ is a subgroup of G 
with finite index. The index r = [G: G’] is called 
the number of colors. We cal1 (G, G’) a white 
group when r = 1, a black and white group or a 
magnetic group when r = 2, and a polychroma- 
tic group when r > 3. G’ is also a space group 
with the lattice group T’= G’n T, where T is 
the lattice group of G. Two color symmetry 
groups (G,, G;) and (G,, G2) are called equiva- 
lent if there exists an taflïne transformation f  
such that G, =fG,f-’ and G; =fG;f-‘. Then 
(G,, Ci) and (G,, C;) are equivalent if and only 
if there is an isomorphism e: G, -+ G, such that 
a(G;)= C;. A color symmetry group (G, G’) is 
called lattice equivalent if T’ = T, K’ c K, and is 
called class equivalent if T’ c T, K’ = K. Take a 
pair (G, G’), and let G” be the tinverse image of 
K’ under the canonical tepimorphism G+ K. 

Then (G, G”) is lattice equivalent and (G”, G’) is 
class equivalent. Fix the color number r. Then 
(i) the equivalence classes of lattice equivalent 
color symmetry groups are in one-to-one 
correspondence with the conjugacy classes of 
subgroups K, of index r, and (ii) the number of 
equivalence classes of class equivalent color 
symmetry groups is finite. When ris prime to 
the order of K, the classes are in one-to-one 
correspondence with K-invariant sublattices 
T, of index r in T. Therefore, when the number 
of colors is given, the set of equivalence classes 
of n-dimensional color symmetry groups is 
finite. 

In case (i), a pair (K, K,) is called a color 
point group, and in case (ii), (T, T,) is called a 
color lattice. In particular, when r = 2, they are 
called a black and wbite point group and a 
black and white lattice, respectively. Their 
equivalence is delïned in a similar way. 

Take a color lattice (T, TJ of color number 
r. Let m be the least natural number such that 
mTc T,, then m is a divisor of r. Let m= 

P? . . pp, pi #pj (i #j) be the decomposition 
of m into its prime factors. Then there is a 
sequence of K-invariant sublattices of T, T, 

i=2 ,..., k-l,suchthat(i)T,cT,...cT,c 
Tkfl = T; (ii) pzvtT,+l c T, i= 1, , k; (iii) the 
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submodules TJp,!Q~+, of i = 1, . . , k, Z” 0 
Z/pltZ are uniquely determined independently 
of the choice of such a sequence { 7;). Thus 
the existence of color lattices is related to the 
tmodular representation of K (- 362 Repre- 
sentations G). For example, if Y is a prime 
number, then the representation of K on T/rT 
e Z” @ Z/rZ is the reduction modulo r of 
that of K on T. 

A mathematical treatment of twinning is 
given as follows. Let 1/ be an n-dimensional 
Euclidean space and T an n-dimensional lat- 
tice in V. The volume of T, vol(T), is detïned 
by vol(T)=(ldetA1)“‘, where A=(a,) is the 
matrix of lattice constants. This detïnition is 
independent of the choice of a basis of T. If  
T’ is a sublattice of index r in T, VOI(T’) = r. 
vol(T) follows. Let K be a finite subgroup 
of O(V), Tl and T2 K-invariant lattices, and 
U a hyperplane in V. Then the quadruple 
( Tl, T2, K, U) is called a twinning structure if 
it satisfies the following: (i) vol(T,) = VO~( T2); 
(ii) the lattice T is minimal in the arithmetic 
crystal class of (71, K), i = 1, 2; and (iii) Tl f? U = 
T2 n U = T,, and T, is an (n - 1)-dimensional 
lattice in U. Two arithmetic crystal classes are 
said to be twinable if there exist representa- 
tives ( Tl, K), (Tz, K), and a hyperplane U such 
that (Tl, T,, K, U) is a twinning structure. Let 
(T, , K) and ( T2, K) be two arithmetic crystal 
classes. If  there exists a K-invariant hyper- 
surface U such that T, = Tl n U = T2 n U is 
an (n - 1)-dimensional lattice in U, then two 
classes ( Tl, K) and ( T2, K) are twinable. 

E. Three- and Two-Dimensional 
Crystallography 

Three-dimensional crystal classes are listed in 
Appendix B, Table %IV. TO name these crystal 
classes, both Schoenflies’ notation and the 
international notation are used. 

Fix an torthogonal tright-handed system 
(x, y, z) in V. For each crystal system, defïne 
three axes as follows. The first axis is the z- 
axis. The second is the line x = y  = z for the 
cubic system and the x-axis for the others. The 
third is the y-axis for orthorhombic, trigonal, 
and hexagonal systems, and the line x = y, z = 0 
for the others. Then a crystal class is expressed 
by its generators with respect to these axes. 
The symbol k (k = 1,2,3,4,6) denotes the rota- 
tion by the angle 2n/k around the axis; k is a 
composition of the rotation k and the central 
inversion (UH -II, u E V), and k/m (k = 2,4,6) 
means the composition of k and the reflection 
about the hyperplane perpendicular to the 
above axis. The symbol m denotes 2. Usually, 
1 is omitted. This is the full international nota- 
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tion and a set of generators cari be read from 
it. The short international notation is also used. 

Schoenflies’ notation consists of the letters 
C,, D,, S,, T, 0, and the subscripts h, v, d. The 
letters denote the group and order: C, is the 
tcyclic group of order n; D, is the dihedral 
group of order 2n; T is the ttetrahedral group 
isomorphic to the fourth talternating group; 0 
is the toctahedral group isomorphic to the 
fourth tsymmetric group; and S, = 7, S, = 4, S, 
= 3. The subscripts h, v, d mean that the group 
is generated by reflections in the hyperplane 
which is horizontal, vertical, or perpendicular 
to a diagonal, respectively. The orientation is 
appropriately given. For example, in C,, and 
D,, there is an nth order rotation around the 
z-axis and the horizontal plane is the xy-plane. 

The above notations are also applied to 
noncrystallographic finite subgroups of the 3- 
dimensional orthogonal group [ 131. 

The symbol for Bravais type is specilïed by 
the name of its crystal system and one of the 
letters P, A, B, C, F, I. Six kinds of simple 
Bravais lattices are given as follows. A simple 
lattice is generated by {a, b, c} and satisfies the 
following condition. Denote the lengths of 
vectors by a= IlaIl, h= IIbll, c= IlcIl, and let a= 
~(b,c), p= ~(c,a), y= ~(a, b) be the angles 
between the indicated pairs of vectors. For 
triclinic P, a#b#c#a, c.t#/~‘#y#cr; for mono- 
clinic P, a#b#c#a, a=y=9o”#p; for or- 
thorhombic P, a#b#c#a, cr=j=y=90”; 
for tetragonal P, a = b #c, c( = fi = y  = 90”; for 
hexagonal P or trigonal P, a = b #c, CI = fl= 90”, 
y= 120”; for cubic P, a=b=c, cr=~=y=90”. 
Let T be one of the above lattices generated by 
{a, b, c}. Then the lattices generated by {a, b, 

(b+W), {@+aP,b,c}, {a,(a+W,c} {(a+ 
b + c)/2, b, c}, {(a + b)/2, (b + c)/2, (c + a)/2} are 
called A, B, C, 1, F lattices determined by T. 
The original lattice T is called the primitive 
lattice. The trigonal R lattice is generated by 
{a’, b’, c’} satisfying a’ = b’ = c’, LY’ = p’ = y’ < 
120”, ~90”. Set a=a’-b’, b=b’-c’, C=a’+ 
b’ + c’. Then the hexagonal P lattice gener- 
ated by {a, b, c} is defined to be the primitive 
lattice of the trigonal R lattice. The fourteen 
Bravais lattices are illustrated in Fig. 3. 

An arithmetic crystal class (T, K) is denoted 
by the symbol of the Bravais lattice T and the 
symbol of K with respect to the action of K on 
T. Let the primitive lattice of T be generated 
by {a, b, c}. Put the vector a on the x-axis, and 
b on the xy-plane. The action of K is then 
determined by the international notation for 
K, except when K = 42m, 32, 3m, 3m, 6m2, 
and T is the primitive or I lattice. In these 
cases two kinds of actions interchanging the 
second and the third symbols are not equiva- 
lent. I f  such is the case, 1 is inserted into the 
third position for trigonal systems. Let (K) be 
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the symbol determined as above and (T) be 
the symbol of 7’. Then the action (T, K) is 
expressed by ((T), (K)). For example, when K 
= 32, there are three arithmetic crystal classes 
(P, 321) (P, 312) (R, 32). 

P P c 
Triclinic Monoclinic 

Orthorhombic 

P 1 R P 
Tetragonal Trigonal Hexagonal, 

Trigonal 

ffjj fg @ 

P 1 F 
Cubic 

Fig. 3 
The conventional unit ce11 for each of the 14 Bravais 
lattices. 

The notation of space groups determined by 
(T, K) is given by writing both the symbol (T), 
and the symbols of actions of elements on V’ 
which appear in the symbol (K) detïned above. 
The symbol (T)(K) denotes the tsemidirect 
product of T and K by the action (T, K), and 
is the symmorphic space group determined 
by (T, K). Other nonsymmorphic groups are 
designated by replacing symbols in (K). I f  k is 
replaced by k, (j = 1, , k - l), then kj is a k- 
fold screw glide with pitch j/k, that is, the com- 
posite of the rotation k and the translation 
jf/k, where fis the vector of minimum length 
of T along the axis of k. I f  m is replaced by 
a, b, c, n, d, then it is a glide reflection, that 
is, the composite of the reflection m and the 
translation in the reflecting hyperplane with 
the direction of a, b, c, a face diagonal and 
a diamond, respectively. See [6] for the pre- 
cise meaning of the notation discussed in this 
paragraph. 

The notations for 2-dimensional point 
groups and space groups cari be adopted from 
the ones for 3-dimensional ones by setting the 
reference plane as the xy-plane and the z-axis 

perpendicular to that plane. In this setting, the 
notation of a plane point group is given by the 
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corresponding point group in 3-space, and 
similarly for plane space groups. There is only 
one glide operation, denoted by y. The motion 
g is the composite of the line reflection about 
an axis and half the translation along the axis 
with the vector of minimum length of T. In 
[ 131, the precise group-theoretic description of 
space groups cari be found. It should be noted 
that the notations for the two groups p3ml 
and p31m are frequently interchanged in the 
literature (including earlier editions of [ 131). 

F. History 

The lïrst mathematical study of the structure 
of crystals was done by the mineralogist J. F. 
C. Hessel (1830). He enumerated the Imite 
subgroups of the 3-dimensional orthogonal 
group. Afterward, his result was rediscovered 
many times. A. Bravais (1850) showed that in 
3-dimensional Euclidean space there are only 
14 different lattices. Al1 space groups consist- 
ing of orientation-preserving transformations 
were determined by C. Jordan (1868,1869) and 
L. Sohnke (1879). Finally, almost a11 the space 
groups were determined independently by E. 
S. von Fedorov (18851889) and A. Schoenflies 
(1887,1889). Probably as a result of com- 
parison of each other’s lists, they established in 
1891 the existence of the 230 space groups. 
Then A. Barlow (1894,1896) derived these 
space groups by adding reflection operations 
to Sohnke’s 65 groups. 

In 1900 in his eighteenth problem D. Hilbert 
raised the question of whether the number 
of equivalence classes of space groups of a 
given dimension is imite. This was answered 
affirmatively by L. Bieberbach (19 10 [ 11). An 
algorithm for determining space groups was 
given by H. Zassenhaus (1948 [4]). Their 
results, including [2,3], and work by C. Her- 
mann (1949 [9], 1952 [lO]) gave a solid 
foundation for n-dimensional crystallography. 

Then followed a concrete treatment of 4- 
dimensional crystallography. A. C. Hurley 
(195 l), using an earlier work of M. E. Goursat 
(1889) on finite subgroups of the 4-dimensional 
special orthogonal group, determined 221 of 
the 4-dimensional point groups. In the 1960s 
A. L. Mackay and G. S. Pawley (1963) and 
others gave 56 of the 4-dimensional Bravais 
types. After E. C. Dade (1965) determined 
9 maximal finite subgroups of GL(4, Z), R. 
Bülow (1967) and H. Brown, J. Neubüser, and 
H. Zassenhaus (1968) independently deter- 
mined 710 arithmetic crystal classes. They 
recontïrmed the result with H. Wondratschek, 
and as a result, 64 Bravais types and 227 
geometric crystal classes were established 
(1971 [ 151). They ran Brown’s computer 
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program for the determination of space groups 
based on [4] and obtained 4,783 space groups. 
Their work culminated in a book (1978 [16]). 
There have been several attempts to establish 
a unifïed treatment of n-dimensional crystal- 
lography [S, 8, 14, 171 and crystallography 
in complex Euclidean spaces. 

Two-dimensional space groups were em- 
pirically known in ancient times, as demon- 
strated by artistic decorations. Al1 the 17 
2-dimensional space groups appear in the 
tile patterns of the Alhambra in Granada. A 
discrete subgroup of the plane motion group 
whose translation subgroup is only rank one 
is called a frieze group. 

The notion of black and white groups was 
introduced by H. Heesch (1930), H. J. Woods 
(1935) and A. V. Shubnikov (1951). Only with 
the introduction of the use of neutron diffrac- 
tion techniques did it become apparent that 
these groups could be used in the description 
of magnetically ordered structures [12]. Color 
symmetry groups were defined by B. L. van 
der Waerden and J. J. Bruckhardt (1961 [l 11) 
for an arbitrary number of colors. A mathe- 
matical treatment of the twinning structure 
is found in papers by T. Ito (1938) and R. 
Sadanaga (1959). 
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Curves 

A. Introduction 

In the beginning of his Elements, Euclid gave 
definitions such as: A line is a length having no 
width; an end of a line is a point. However, he 
left notions such as width and length unde- 
Iïned. Thus his definitions were far from satis- 
factory. Actually, it was only during the latter 
half of the 19th Century that efforts were made 
to obtain exact definitions of lines and curves. 
Euclid, among others, distinguished two kinds 
of curves: straight lines and curves. Nowadays, 
however, lines in the sense of Euclid are called 
curves, and a straight line is considered a 
curve. A first effort to give an exact definition 
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of a curve using analytic methods was made 
by C. Jordan in his Cours d’analyse 1 (1893). 

B. Jordan Arcs and Jordan Curves 

Following Jordan, we delïne a continuous plane 
curve C to be the image of a tcontinuous 
mapping sending the interval [0, 11 into the 
Euclidean plane E2. Namely, C is the set of 
points (x, y) in E2 such that 

x=f(t), y=g(t), O<t<l, 

with continuous functions L y  detïned on 
[O, 11. A continuous curve is also called a 
continuous arc. We cal1 (f(O), g(0)) and (f(l), 
g( 1)) the ends of the arc. Given continuous 
functions L g detïned on (0, l), the set {(x, y) 1 
x = j”(t), y  = g(t), 0 < t < 1) is called an open 
arc. More generally, the image of a continuous 
mapping of [0, l],(O, l), [0, l), or (0, l] is called 
an arc (or curve). Suppose that C is an arc that 
is the image of an interval 1 and P =(x, y) is. a 
point on C to which there correspond two 
elements t,, t, (tl < tz) of 1 such that P is the 
image of both t,, t,. In this case, the point P is 
called a multiple point on C. An arc having no 
multiple point is called a simple arc or Jordan 
arc. 

An arc with one and only one multiple point 
P =(f(O), g(0)) = (f( l), g( 1)) is called a Jordan 
curve or simple closed curve (- Section K). A 
Jordan curve cari be regarded as a topological 
image in a plane of a circle. Let C be a curve 
that is the image <p(Z) of an interval. Then C is 
said to be of class Ck (analytic) if the mapping 
<p is of +Glass Ck (tanalytic). In general, if S is a 
topological space, then the image <p(l) in S of 
an interval is called a curve in S. In particular, 
if S has the structure of a differentiable (ana- 
lytic) manifold, we cari detïne the notion of 
curve of class Ck (analytic curve) in S. 

C. Ordinary Curves 

A tconnected subset of E2 that is the union of 
a fmite number of simple arcs meeting at a 
tïnite number of points is called an ordinary 
curve. An ordinary curve is called a tree if it 
does not contain a subset that is homeomor- 
phic to a Jordan curve. Let p be a point on an 
ordinary curve C. The tboundary of a suff- 
ciently small tneighborhood of p meets C 
at a tïnite number of points, and this number 
is independent of the choice of the small 
neighborhood. We cal1 it the order of p in C. 
A point of order 1 is called an endpoint of C, 
a point of order 2 an ordinary point, and a 
point of order > 3 a branch point. I f  we cari 
represent an ordinary curve C as a continuous 
curve tracing each simple arc of C just once, 
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we say that C is unicursal (Fig. 1). A necessary 
and sufficient condition for C to be unicursal is 
that the number of points of odd orders in C 
be less than or equal to 2 (L. Euler). 

Fig. 1 

D. Further Consideration of Definitions 

Although the set of ordinary curves as defined 
above contains most familiar curves, it does 
not contain a point set detïned by y  = sin 1/x in 
O<x<l and -l<x<O,andby -l<y<l at 
x = 0 (Fig. 2). This point set is called a sinusoid, 
and it is desirable to obtain a definition of 
curves wide enough to contain a sinusoid. On 
the other hand, the notion of continuous 
curves is, in a sense, too wide, because a curve 
such as a Peano curve (- Section J), which 
covers a whose square, is among such curves. 
The notion of simple arcs is too narrow, 
because even a circle is not a simple arc. As a 
point set in E’, a continuous arc is character- 
ized as a tlocally connected tcontinuum and 
is sometimes called a Peano continuum (H. 
Hahn, S. Mazurkiewicz). On the other hand, 
A. Schoenflies. inspired by the statement of the 
Jordan curve theorem (- Section K), consid- 
ered a closed set that divides the plane into 
two parts, forming the common boundary of 
both domains, and called it a closed curve. 
According to this definition, however, a simple 
curve is not a closed curve. Thus as a general 
definition of curves it is not appropriate. 

Fig. 2 

TO give a general notion of curves on a 
plane (containing sinusoids), we may detïne a 
curve as a continuum that is tnowhere dense 
in E* (i.e., a continuum that is a boundary of 
open sets on the plane) (G. Cantor). Further- 
more, to deal with the curves on a topological 
space, P. S. Uryson and K. Menger detïned a 
general curve to be a 1 -dimensional continuum 
(Menger, 1921-1922 Cl]). In E’, the latter 
notion coincides with the notion of curves 
detïned by Cantor, while in E3 a general curve 
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is a continuum that does not divide any 
tdomain (- 79 Connectedness). 

E. Universal Curve 

Consider a 3-dimensional cube Z3 (I = [0, 11). 
Draw two planes parallel to each face SO that 
the two planes parallel to a face trisect the 
edges of the cube meeting the planes. Thus Z3 
is divided into 33 cubes. Let Mi be the closure 
of the subset of I3 that is obtained from l3 by 
deleting the cube If (II = [ 1/3,2/3]) and the 6 
cubes having common faces with 1:. Then Mi 
consists of 20 cubes (Fig. 3). We apply to each 
of the 20 cubes forming M, the same operation 
that we applied to I3 and denote by M2 the 
union of point sets thus obtained (consisting of 
20’ cubes, the length of whose edges equals 
1/3’). Repeating this process, we obtain a 
point set Mn consisting of 20” cubes, the length 
of whose edges equals 113”. Thus we obtain the 
sequence Ml 3 M2 3 M3 3.. . The set U 
= fin=, M,, is a general curve in the sense of 
Uryson and Menger. Moreover, we cari prove 
that an arbitrary general curve is homeomor- 
phic to a subset of U. Hence we call U the 
universal curve. 

Fig. 3 

F. Length of a Curve 

In this section, by a curve we mean a continu- 
ous curve in a Euclidean space E”. Let C be 
a curve in E” delïned by xi=fi(t) (i= 1, 2, ,n; 
a < t < 6; the fi are real-valued continuous 
functions detïned in [a, b]). (We sometimes 
Write this simply as X = f(t), where X = 

(x i, . . . ,x,).) We divide [a, b] arbitrarily and 
denote the dividing points by a = t, < t, < t, < 

<t,=b. Let Xk=f(tk), k=O ,..., r,andlet 

X,-i X, be the length of the straight line seg- 
ment joining X,-i and X,. I f  the length 1 

=Ci=, X,-,X, of the broken line (X,X, X,) 
(Fig. 4) is bounded for any subdivision of 
[a, b], C is called a rectifiable curve, and the 
Upper limit of 1 with respect to the subdivisions 
is called the length of C. For C to be rectilï- 
able, it is necessary and sufficient that the 
fi (i = 1,2, . , n) be of tbounded variation 
(Jordan). Thus if C is a rectifiable curve, then 
each L(t) (i= 1,2, . . . , n) is almost everywhere 
differentiable (H. Lebesgue). In particular, if C 

is of class C’, then C is rectifiable, and its 
length cari be represented by 

(- 246 Length and Area). 

Fig. 4 

G. Shapes of Curves 

In this section by a curve we mean the image 
<p(l) in a Euclidean space E” of an interval I 
(bounded or unbounded), where <p is a continu- 
ous mapping. When a curve C of class Ck is 
given in a Euclidean space E”, it often becomes 
necessary to examine the shape of C globally. 
The determination of the global shape of C 
from the equation of the curve is called the 
curve tracing of C. The problem has been 
thoroughly studied in the particular case in 
which n = 2 and the equation of C is given by 
f(x, y) = 0 in a rectangular coordinate system 
(by F(r, 0) =0 in a tpolar coordinate system), 
where f  (or F) is an analytic function. The 
problems in the case of a rectangular coordi- 
nate system are as follows: 

Let q be a single-valued analytic function 
and 1 a (bounded or unbounded) interval on 
the x-axis. I f  a curve C, represented by y  = 
C~(X) (XE~) is a subset of C, then C,, is called 
a branch of C. According as 1 is bounded or 
unbounded, C, is said to be a tïnite branch or 
infinite branch of C. When a curve represented 
by x=$(y) (YEJ) (+ is a single-valued analytic 
function and J is an interval on the y-axis) is a 
subset of C, it is also called a branch of C. If  it 
is necessary to distinguish these two branches, 
we call the former the x-branch and the latter 
the y-branch. C consists of an at most de- 
numerable set of branches. If  P(x,, y,,) E C and 
f, = af/ay #O at P, then there exists an X- 
branch containing P, if f, = af/ax # 0, there 
exists a y-branch of C. If  afh = 0, af/ay = 0 at 
P, then P is called a singular point of C. Points 
on C that are not singular points are called 
ordinary points of C. 

When P is an ordinary point of C, a branch 
C, of C containing P is determined, and the 
tangent line and normal line to C at P are 
the same as those to C, and are uniquely 
determined. The equations of these are (x - 

xo)L(xo~~o)+(~ -Y~).~J~~~Y~)=O and (x- 
xo~f,(xo~~o~-(y-y,~f~(x~~~~~=~~ respec- 
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tively. I f  we choose a coordinate system with P 
as origin and the tangent line and normal line 
as <-axis and v-axis, respectively, then the 
equation of C with respect to this coordinate 
systemisoftheform~=~,<~+c~<~+...inthe 
neighborhood of P. If  we denote by p the 
tcurvature of C at P, then p = 2c, = - (f,,ft - 

X,Lf, +.f,,L’MfX +fY13’*. When c2 = P = 
0, P is a tstationary point. A stationary point 
of a curve of class C* on C is also called a 
point of inflection. When P is not a point of 
inflection and (5, q) are points on C in a neigh- 
borhood V of P, the sign of q is definite if Vis 
small enough (Fig. 5). However, if P is a point 
of inflection and c3 # 0, then C is of the shape 
shown in Fig. 6. At a point of inflection, if c3 = 

= c,,-r = 0, c, # 0, and v  is even, C is of the 
shape shown in Fig. 5, and if v  is odd, C is of 
the shape shown in Fig. 6. 

Fig. 5 Fig. 6 

In a neighborhood of a singular point, C 
takes various shapes. For example, consider a 
curve represented by y* =x2(x + a), and let P 
be the origin (0,O). If  a > 0, then there are two 
branches of C passing through P, and they 
have different tangents at P (Fig. 7). As in this 
case, if there are a imite number of different 
branches passing through P with different 
tangents, P is called a node of C. If  a < 0, then 
PE C, but there is no other point of C in the 
neighborhood of P (Fig. 8). Such a point is 
called an isolated point of C. If  a = 0, then there 
are two branches of C starting from P, and the 
tangents to these at P are the same (Fig. 9). 
Such a point is called a cusp of C. When C is 

Fig. 1 Fig. 8 

Fig. 9 

an talgebraic curve, we cari examine the shape 
of a curve in a neighborhood of a singular 
point using the tPuiseux series. 

When C has an intïnite branch C, (for 
example, when C, : y  = C~(X) (x E 1) is an x- 
branch of C and I = [a, co)), if the tangent to 
C, at P(x,, y0) (X~E~) has a limiting line for 
x0 + 00, then the limiting line 1 is called an 
asymptote of Ca. In this case, the distance from 
a point P(x,, yo) of C, to 1 converges to zero 
when x0+ 00. An asymptote of an infinite 
branch of C is also called an asymptote of C. 

H. Special Plane Curves 

The following are the well-known curves (for 
ellipses, parabolas, and hyperbolas - 78 
Conic Sections). 

Among curves of the third order, those 
having an equation of the form 

Y 2 = f(4Ax - 4 (1) 

(f(x) is a rational expression of at most the 
third order in x) are symmetric with respect to 
the x-axis and have x = a as an asymptote. In 
particular, if a > 0, f(x) = -x3 in (l), then the 
curve is as shown in Fig. 10 and the origin is a 
cusp. Let a half-line starting from the origin 
meet the curve, the circle with diameter [0, a], 
and the straight line x = a at points X, Y, and 
A, respectively. Then we have 0X = YA. This 
curve is called a cissoid of Diocles. 

If  a = 0, f(x) = c2(c - x) (c > 0) in (l), then the 
curve takes the shape shown in Fig. 11. Let A, 
C be the points whose coordinates are (a, 0), 
(c, 0) (0 <a < c), respectively, and let X, Y be 
the points in the lïrst quadrant at which the 
straight line parallel to the y-axis and passing 
through A meets the curve and the circle with 
diameter OC, respectively (Fig. 11). Then we 
have AX : A Y = OC: OA. This curve is called a 
witch of Agnesi. 

A X 

Y Y 

X 

#ii 

0 a 0 A c 

Fig. 10 Fig. 11 

I f  a < 0, f(x) = -x2(x/3 + u) in (l), then the 
curve takes the shape shown in Fig. 12a. If  we 
rotate it by n/4 and put it in the position 
shown in Fig. 12b, then the equation of the 
curve takes the form x3 + y3 = 3cxy (c = - $ 
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a). I f  we take as parameter t = y/x, then we get 
the parametric representation x = 3ct/( 1 + t3), 
y  = 3c?/( 1 + t3). This curve is called a folium 
cartesii (or folium of Descartes). A curve that 
has a parametric representation of the form 
x = q(t), y  = $(t), where cp, rj are rational func- 
tions, is called an (algebraic) unicursal curve (or 
rational curve). Such a curve is an algebraic 
curve of tgenus 0. 

Fig. 12 

Let r=fi(@, r=fi(Q), . . ..r=f.(@ be equa- 
tions of curves C,, C,, , C, with respect to a 
polar coordinate system with origin 0. A curve 
C having equation r=n,fi(Q)+ +Â&,(Q) 
(the li are constants, usually +l or -1) in the 
same coordinate system is called a cissoidal 
curve with respect to 0. (Fig. 13: r = -fi(Q)+ 
f,(e)). In Fig. 10, let Ci be the circumference 
of the circle with the diameter [0, a], let C, be 
the straight line x = CI, and put 1, = -1, 1, = 1. 
Then we have a cissoid of Diocles. We cari 
regard the folium cartesii as a cissoidal curve 
obtained from a straight line and an ellipse. 
When C, is a circle with tenter at 0, we ca11 C 
a conchoidal curve of C, with respect to 0. In 
particular, when C, is a straight line and 0 is 
not on C,, the conchoidal curve is called a 
conchoid of Nicomedes. 

Fig. 13 

As shown in Fig. 14, when C, is perpendic- 
ular to the initial line of the polar coordinate 
system, the equation of the conchoid is r = 
asec 0 & b (b is the radius of Ci), and the Car- 
tesian equation of the curve is (x - a)‘(~’ + 
y2) = b2x2. According as a > b, a = b, or a <b, 
the curve has a node, cusp, or isolated point, 
respectively. When C, is a circle and 0 is on 
C,, the conchoidal curve of C, with respect to 
0 is called a limaçon (or limaçon of Pascal) 
(Fig. 15). The equation of a limaçon C with 
respect to a polar coordinate system having 

the diameter of a circle passing through 0 as 
its initia1 line is r = a COS 0 k b, while the equa- 
tion of C with respect to a Cartesian coordi- 
nate system is (x2 + y2 - ax)’ = b2(x2 + y’). In 
this case, if a > b, 0 is a node of the curve; if 
a = b, 0 is a cusp. When a = b, the curve is 
called a cardioid (the curve shown by a dashed 
line in Fig. 1.5; see also Fig. 26 below). 

fi’ 
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Fig. 14 

Fig. 15 

The locus of a point X having a constant 
product of its distances from two fixed points 
A, B is called Cassini’s oval (Fig. 16). The 
equation of this curve with respect to the 
Cartesian coordinate system whose origin 0 is 
the midpoint of the segment AB and whose 
x-axis is the straight line Al? is (x2 + y2)2 - 
2a2(x2-y2)= k4-a4 (where AB=2a, k2= 
AX BX). In particular, if a* = k2, then 0 is a 
nodal point of the curve. In this case, the curve 
(shown by the dashed line in Fig. 16) is called a 
lemniscate (or Bernoulli’s lemniscate) (Jakob 
Bernoulli). 

Fig. 16 

The locus of the foot of the perpendicular 
drawn from a tïxed point 0 to the tangent of a 
fixed curve C at each point of the curve is 
called the pedal curve of C with respect to 0. 
The pedal curve of a rectangular hyperbola 
with respect to its tenter is a lemniscate (Fig. 
17), and the pedal curve of a circle with respect 
to a point is a limaçon. 
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0 

Fig. 17 

When a curve c’ rolls on a iïxed curve C 
without slipping and is always tangent to C, 
the locus I of a point X kept fixed with re- 
spect to the curve c’ is called a roulette whose 
base is C, rolling curve is C’, and pole is X. In 
particular, when C is a straight line, C’ is a 
circle, and X is on c’, I is called a cycloid (Fig. 
18). When X is not on C’, I is called a trocboid 
(Fig. 19). A trochoid is represented parametri- 
cally by the equations x = a0 - b sin 0, y  = a - 
bcos 0, where the parameter 0 is the angle of 
rotation of c’. When a = b, the equation repre- 
sents a cycloid. The tevolute and tinvolute of a 
cycloid are also cycloids (Fig. 20). 

Fig. 18 

Fig. 19 

Fig. 20 

Suppose that we are in a gravitational field 
with a given path represented as a cycloid, as 
is shown in Fig. 21. Assuming that there is no 
friction, the time necessary for a particle to 
slide down the path from a point X on the 
curve to the lowest point C of the curve is 
independent of the initial position X (C. Huy- 
gens). Because of this property, the cycloid is 
also called a tautochrone. Suppose that a par- 
ticle starts from a point A in the space and 
slides down to a lower point B along a curve I 
(without friction) under the effect of a gravita- 
tional force. TO minimize the elapsed time, 
we simply take I as a cycloid that lies in the 
vertical plane containing AB and has a hori- 
zontal line through A as the base (Fig. 22). 
Because of this property, the cycloid is called 

also a bracbistochrone, i.e., the line of swiftest 
descent (Johann Bernoulli and others). 

\  I  

!?Il 
C 

Fig. 21 
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r 

Fig. 22 

When the base curve C and the rolling curve 
C’ are both circles and X is on C’, we cal1 I an 
epicycloid if C, C’ are externally tangent (Fig. 
23), and a hypocycloid if C, C’ are internally 
tangent (Fig. 24). When X is not on C’, cor- 
responding to these two cases, we have an 
epitrochoid and a hypotrochoid, respectively. 
Let a, b be radii of C, C’, respectively, c the 
distance from the tenter of c’ to X, and 0 
the angle of rotation of C’. Then the para- 
metric equations of these curves are x = (a f  
b)cosOfccos((afb)/b)Q, y=(~+ b)sin& 
c sin((a + b)/b)Q. (Take the Upper signs when 
the curve is an epicycloid and the lower signs 
when the curve is a hypotrochoid. When b = c 
the equations are equations of epicycloids and 
hypocycloids.) When the ratio a : b is a rational 
number p/q (p, q are mutually prime), then C 
returns to its initial position after rotating 4 
times around C; in this case each I’ becomes 

Fig. 23 

Fig. 24 



351 93 H 
Curves 

an algebraic curve. In particular, when a = 
4b = 4c, the hypocycloid is called an astroid 
(Fig. 25). Its equation (with respect to a Car- 
tesian coordinate system) is xzj3 + y2/3 = azi3. 
The envelope of line segments of length a 
whose endpoints are on the x-axis and y-axis, 
respectively, is an astroid (Fig. 25). When a = 
b = c an epicycloid is a cardioid (Fig. 26). 

Fig. 25 Fig. 26 

When the base C is a straight line, the roll- 
ing curve C’ is an ellipse or a hyperbola, and 
the pole is a focus of c’, then the roulette is 
called a Delaunay curve (Fig. 27). 

Fig. 27 

When C is a straight line, c’ is a parabola, 
and X is the focus of c’, the roulette is called a 
catenary (Fig. 28). When we hold two ends of a 
string of homogeneous density in the gravita- 
tional field, the string takes the form of this 
curve. The equation of the catenary with re- 
spect to a Cartesian coordinate system is y  = 
acoshx/a = a(exiO + e-“‘“)/2. The involute 
starting at the point A(0, a) of this curve is 
called a tractrix (Fig. 29). Let Q be the point of 
intersection of the tangent at P to the tractrix 
and the x-axis; then the length of PQ is con- 
stant and is equal to a. Consequently, when we 
drag a weight at A by a string of length OA 
along the x-axis, the curve described by the 
weight is the tractrix. The parametric equa- 
tions of the tractrix are x = a(log tan t/2 + 
COS t), y  = a sin t. 

Fig. 28 Fig. 29 

Suppose that a point Q moves with constant 
velocity on the x-axis and another point P also 
moves with constant velocity always toward Q. 

The locus of the point P is called a curve of 
pursuit (Fig. 30). When the velocity of Q is c( 
times that of P, the equation of the curve of 
pursuit is 2(x-a)=y’-“/c(l --cc)-~y’+“/(1 +a) 
if SL # 1 and 2(x -a) = (l/c)log y  - ~y’/2 if a = 1. 
We cari consider similar problems when Q 
moves on a general curve instead of on the x- 
axis. 

Fig. 30 

Many plane curves that are called spirals 
cari be expressed by r=f(0) (f monotonie) in 
polar coordinates (r, 0). An Archimedes spiral 
is a curve having the equation r = afI (Fig. 3 1). 
Archimedes found that the area bounded by 
two straight lines (3 = t$, B = t$ (0, < 0,) and the 
curve is a2 (0; - @/6. A logarithmic spiral 
(equiangular spiral or Bernoulli spiral) is a 
curve having the equation r = ke”* (Fig. 32). 
The angle between the straight line 0 = con- 
stant and the tangent to the curve is constant. 
Johann Bernoulli found that the involute and 
evolute of this curve are congruent to the orig- 
inal curve. A curve having the equation r = 
ajl? is called a hyperbolic spiral (or reciprocal 
spiral), and the one having the equation r2 6’ = a 
is called a lituus. These two spirals are shown 
in Figs. 33 and 34, respectively. Let p = q(s) be 
the tnatural equation of a curve. Properties of 
the curves for which the functions C~(S) are 
simple have been investigated. Specifïcally, a 
curve having the natural equation p = ks (k is a 
constant) is a logarithmic spiral. A curve hav- 
ing the equation p = a2/s’is called a Cornu 
spiral (or clothoid; - 167 Functions of Con- 

Fig. 31 Fig. 32 

Fig. 33 Fig. 34 
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fluent Type). Its parametric representation is 

s 

f  2 
X=C+ cas-dt, 

0 2 

y=a& ‘singdt 
s 0 

(TFresnel integral). M. A. Cornu used this 
curve in the representation of diffraction in 
physical optics. 

There are also curves that appear as graphs 
of telementary functions. For example, a curve 
having the equation y  = sin x is called the sine 
curve, and the graphs of equations y  = eX and y  
= log x are called the exponential curve and the 
logarithmic curve, respectively, although they 
are congruent. In contrast to algebraic curves, 
these analytic curves that are not algebraic are 
called transcendental curves. (Regarding the 
differential geometric properties of plane and 
spaces curves - 111 Differential Geometry 
of Curves and Surfaces; for plane algebraic 
curves - 9 Algebraic Curves.) 

1. Envelopes 

Let f(s, t) be a function of class C’ of real vari- 
ables s, t. I f  we lïx t = t,, then r = f(s, to) is the 
equation of a curve C,, with a parameter s. I f  
s(t) is a function of t, then f(s(t,), to) represents 
a point Pc, on CtO. Let E be the locus of Pt, 
when t, moves. If  s(t) is a function of class C’, 
then E is a curve of class C’. I f  E and Ct, are 
always tangent at each point Pr,, we cal1 E the 
envelope of the family of curves C,. When f(s, t) 

is given, to find E we need only determine the 
function s(t). We note that af/as = Âaf/at is a 
condition that must be satisfïed by the func- 
tion s(t). When n = 2 and the equation of Cc, is 
given in the form f(x, y, to) = 0, the point of 
intersection of Cc, and ft(x, y, to) = 0 (f, = af/at) 
is P,,. The equation R(x, y) = 0 obtained by 
eliminating t from f(x, y, t) = 0 and L(x, y, t) = 0 
is called the discriminant of f(x, y, t) = 0. The 
set of points (x, y) satisfying the discriminant 
R =0 is the union of E and the locus of the 
singular points of Cc,. 

J. Peano Curve 

A tcontinuous curve in the Euclidean plane E2 
(i.e., the image f(1) of a segment I = [0, l] 
under a continuous mapping f: 1-t E2) may 
caver a square. We cal1 such a curve a Peano 
curve after G. Peano, who gave the lïrst exam- 
ple. D. Hilbert simplilïed the example and 
constructed a Peano curve as follows (Math. 
Ann., 36(1890), 38 (1891)). 

Divide a square and a segment into four 
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equal parts (Fig. 35) and let each square Di 
correspond to the segment 71 (i =O, 1,2,3). 
Then divide each Di into four equal parts (Fig. 
36) and let D, correspond to Tj (j = 0, 1,2,3), 
and continue this process (Fig. 37). A sequence 
of squares Di = D, 3 D,, 3 . . has the unique 
common point pijk..., and we let this point 
correspond to the unique common point t,,,,, 
of the sequence of segments 71~ rj 3 Tjk 3 . . 
The correspondence tijk...-+pijk.., is a continu- 
ous mapping of the segment [0, l] onto the 
square D, and this continuous curve has 
double points, triple points, and quadruple 
points. The set of multiple points has the car- 
dinal number of the continuum and is a 
tdense set in the square. We cari improve this 
method SO that there are no multiple points 
other than double and triple points, but it is 
impossible to eliminate triple points 
altogether. 

Fig. 35 

Fig. 31 

We cari also construct Peano curves as 
shown in Figs. 38,39, and 40. That is, we 
“bisect” a triangle and a segment [0, l] suc- 
cessively and build a correspondence as fol- 
10~s: Let a point represented by a binary 
number t = O.ijk (i, j, k, . . = 0,l) correspond 
to the unique common point of the sequence 
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Ai 3 A, 3 Aijk 1.. and obtain a continuous 
mapping from the segment [0, l] onto the 
triangle. 

0.0 0.1 1.0 

T ,  

Fig. 38 

0.01 0.11 
/ I I I I 

TO3 TO, TU3 TU 

Fig. 39 

0.011 
++-k-+ 
Fig. 40 

K. The Jordan Curve Theorem 

The Jordan curve theorem states: A Jordan 
curve J in the plane R2 separates R2 into inner 
and outer tregions (C. Jordan, Cours d’analyse, 
2nd ed., 1893). More precisely, R2 -J is the 
disjoint union G, U G, of two regions G, and 
G, whose common tboundary is J. Let p be a 
point of J. Then there is a Jordan arc with p as 
an endpoint such that a11 points of the Jordan 
arc are contained in Gi (i = 1 or 2) except for p 
(A. Schonflies), that is, J is accessible from Ci. 
Conversely, let J be a compact subset of RZ 
suchthatR2-J=G,UG,andG,nG,=@, 
where the Ci are regions such that J is acces- 
sible from both G, and G,. Then J is a Jordan 
curve (Schonflies, 1908). A homeomorphism 
between a Jordan curve J and the circle C 
extends to a homeomorphism (more precisely 
to a tconformal mapping) between a plane 
containing J and a plane containing the circle 
C (- 65 Combinatorial Manifolds G; 77 Con- 
formal Mappings). 
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94 (X.1 1) 
Curvilinear Integrals and 
Surface Integrals 

A. General Remarks 

The integral of a function (or more precisely, a 
tdifferential form) along a tcurve (tsurface) is 
called a curvilinear integral (surface integral). 
Because a curvilinear integral is a special case 
of the Stieltjes integral, we shall first explain 
this notion, formulated by T. J. Stieltjes (1894) 
as a generalization of the tRiemann integral. 
The notion was introduced in connection with 
Stieltjes’s study of tcontinued fractions, and 
led to the idea of integrals with respect to 
general measures. 

B. The Riemann-Stieltjes Integral 

Suppose that f(x), a(x) are real-valued 
bounded functions defined on [a, b]. Take 
a partition of the interval a = x0 <xi <x2 
< . . . <x,-i <x,=b (- 216 Integral Calculus) 
and consider the Riemann sum with respect 
to c?(x): 

“-1 

rf<ri)(C((Xi+L)-~(Xi))’ tiECxi>xi+Il, 

Suppose that the Riemann sum tends to a 
lïxed number as max(x,+i -xi) tends to zero. 
Then the limit is called the Riemann-Stieltjes 
integral (or simply Stieltjes integral) of f(x) 
with respect to ~X(X) and is denoted by 
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jtf(x)dcc(x). The Riemann integral of f(x) is a 
special case, where a(x) = x. 

The Riemann-Stieltjes integral has the ele- 
mentary properties, such as linearity, of the 
usual Riemann integral. We also have the 
following theorem: The integral Jf(x)da(x) 
exists for every continuous function f(x) if and 
only if a(x) is of tbounded variation. Hence 
when we consider the Stieltjes integral of f(x) 
with respect to LY(X), we usually assume that 
f(x) is continuous and CL(X) is of bounded 
variation. However, the Stieltjes integral cari 
be delïned if f(x) is of bounded variation (not 
necessarily continuous) and a(x) is continu- 
ous (not necessarily of bounded variation). I f  
a sequence f,(n) (n = 1,2, . . ) of uniformly 
bounded continuous functions defined on the 
interval [a, b] converges to a continuous func- 
tion f(x) on the interval [a, b], we have 

where C((X) is a function of bounded variation. 
Furthermore, if a(x) and a,(x) (n = 1,2,. . ) 
are functions of bounded variation whose 
+total variations are uniformly bounded and 

lb+, a,(x) = a(x) at every point of continuity 
of a(x), then we have 

F+i 
s 

‘f(x)da,(x)= ‘f(x)da(x) 
r? s n 

for every continuous function f(x) on [a, b] 
(Helly’s theorem). 

Let a(x) be a ktrictly monotone increasing 
continuous function, and let p(y) be its inverse 
function. Then we have 

where the right-hand side is the usual Rie- 
mann integral. A function a(x) of bounded 
variation is represented as the difference of two 
strictly monotone increasing functions al(x) 
and Q(X). If  we denote by pi(y) the inverse 
function of ai(x) (i= 1,2), we have 

~~bf(x)da(x)=~~~~f(Bl(y))dy 

a,(b) 
- 

s 
f(Bz(y))dy. (2) 

%W 

It a’(x) exists and is continuous, we have 

S&(\x)da(x)=Jabf(x)aYx)dx. 

C. The Lehesgue-Stieltjes Integral 

Suppose that a(x) is a monotone increasing 
and right continuous function and 1 =(x1, xJ. 

We define an tinterval function U(I) = a(x2) - 
a(xJ. It is nonnegative and countably addi- 
tive. Hence by utilizing U(I) we cari con- 
struct the outer measure and also a completely 
additive measure (- 270 Measure Theory; 380 
Set Functions). The Lebesgue integral with 
respect to this measure is called the Lebesgue- 
Stieltjes integral (or Lehesgue-Radon integral) 
and is denoted by sz f(x)da(x). I f  a(x) is a 
strictly monotone increasing continuous func- 
tion and b(y) its inverse function, then formula 
(1) is true if the left-hand side is a Lebesgue- 
Stieltjes integral and the right-hand side is a 
Lebesgue integral. I f  a(x) is a function of 
bounded variation, decomposing a(x) into the 
difference of two strictly monotone increas- 
ing functions, we also have formula (2). I f  
a(x) is tabsolutely continuous, formula (3) is 
valid, where the right-hand side is a Lebesgue 
integral. 

The Stieltjes integral has the following two 
properties. 

Integration hy parts: In the interval [a, b], 
we have 

b 

s s 
UdV+ b VdU= U(b)V(b)- U(a)V(a) 

n ll 

if one of U(x), V(x) is continuous and the other 
is of bounded variation. 

Second mean value theorem: If U(x) is mono- 
tone increasing and V(x) is continuous, then 
there exists a 5 in [a, b] such that 

s 

b 

UdV 
a 

= u(N’(5)- V(4)+ U(bW(b)- V(O). 

D. The Curvilinear Integral 

A continuous mapping from an interval a < 
t<b in R’ into R”:cp(t)=(<p,(t), . . ..<p.(t)) is 
an oriented curve. Suppose that a function 

f(x,, . . ,x,) is delïned in a neighborhood U of 
the image C of the mapping q(t) or merely on 
C. The Stieltjes integral 

s 
obf(ql(t), . ..><pn(t))dqi(t). i=l,...,n, (4) 

is called the curvilinear integral of the function 
f(xl, . , x,) along the curve C with respect to 
xi and is denoted by J,fdxi. The curve C is 
called the contour (or path) of the integration, 
p(a) is called the initial point (or lower end), 
and q(b) is called the terminal point (or Upper 
end) of the integration. Let C be a rectifiable 
curve, and denote by s(t) the arc length of C 
from the initial point to the point q(t). Then 
the Stieltjes integral 

s abf(<p(t))dS(f) 
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or simply jcfds is called the curvilinear inte- 
gral with respect to the line element. Here, 
the line element, denoted by ds, means 
,/(~;(t))~ + . . . + (<p;(t))* dt when q(t) is of class 
Cl. I f  the integrand in (4) is of bounded vari- 
ation as a function of t, the curvilinear integral 
is well defmed. If  C is a trectilïable curve, the 
curvilinear integral is defïned for an arbitrary 
continuous function. In the usual case, we are 
concerned mainly with this sort of situation. 
For a differential form w =fi dx, + . . +f,dx, 
defined on U, the curvilinear integral icw is 
defïned by XyZ1 jcJdxi. 

The curvilinear integral is linear with re- 
spect to its integrand. If  the terminal point of 
C, is the initial point of C,, we cari construct 
the joint curve C = C, + C,, and we have 
additivity for the contours 

(a similar formula holds if we replace dxi by 
ds). Monotonicity, which asserts that j,fdxi < 
JC g dxi whenever f  < g, holds if <pi(t) is mono- 
tone increasing, and monotonicity also holds 
for the curvilinear integral with respect to the 
line element. 

I f  n = 2, R2 cari be identifïed with the tcom- 
plex plane C = {z =x + iy}, and we defïne 

JcfWz by 

where f(z) = u(z) + iv(z). The integral is then 
said to be an integral in the complex domain. 
(For the application of integrals in the com- 
plex domain to complex analysis - 198 
Holomorphic Functions.) 

E. The Surface Integral 

By an m-dimensional smooth surface S we 
mean the image S of a tregular mapping of 
class C’ from a domain G in R” into R” (m < 

4, 5(u)= (L(u1 2 ‘.’ >%A, . f’ 2 L(u, i . . f ,  %J). 
Given a continuous function f(xl, . . . ,x,) 
dcfined in a neighborhood U of S in R”, the 
multiple integral 

SS 
... f(tl(4>.~.>S”(4) 

G 

X 
D(xi,~~~~~Xi,)du ,, du 

D(u,,...,u,) l . In’ 

{i l,...,im}~{l, . . . . n}, (5) 

is called the surface integral off along S 
with respect to xi,, . . . , xi, and is denoted by 

ssfdxi, . . . dxi, or j.. Jsfdxi, . . . dxim. This 
definition depends on the choice of the para- 
meters (ul, . . . , u,) in the following way. Let 

tu;, . . . > uh) be another parametrization of S. 
Since 

D(Xil, ...>Xi,)-D(Xi,r ~~~~xi,)D(u~>~‘~>u~) 

D(Ul,...,U,) - D(u>, . ) u;> D(u,, . . . ,u,) 

and 

du; ...dum=l~~~;::::u31du, . ..du., 

thus according as 

D(u 1>...4m)>o 
D(u;, . . ..u.)' ' 

the foregoing expression remains the same or 
changes its sign. Usually we assign to the 
parameters (ul, . . . , u,) positive or negative 
orientation, in which case S is called oriented. 
If  we replace the Jacobian D(xi,, . . . , xi,)/ 

D(u,, . . , u,) in (5) by the quantity 

which corresponds to the surface element of S, 
the integral is called a surface integral with 
respect to the surface element and is denoted 
by &JdS or JJda. The surface integral of a 
differential form of degree m in R” is similarly 
defined. In the case m = 1, the surface integral 
reduces to a curvilinear integral. Just as the 
Stieltjes integral is a generalization of the 
curvilinear integral, there are several ways 
to generalize the notion of surface integral 
without assuming that the mapping t(u) is of 
class Cl. 

F. The Stokes Formula 

Let S be an m-dimensional smooth surface in 
R” (m < n) and &S be the (m - l)-dimensional 
surface corresponding to the boundary of S. 
Let w be a differential form of class C’ of 
degree (WI - 1) and dw be its texterior deriva- 
tive. Then we have Sas w = j,dw, which is called 
the Stokes formula (or the Green-Stokes for- 
mula). (For the Stokes formula on a general 
differentiable manifold - 105 Differentiable 
Manifolds.) As special cases of the Stokes 
formula, we have the following three classical 
theorems: 

(1) The case of a plane domain: Let D be a 
bounded domain on the xy-plane bounded by 
a fïnite number of smooth curves C with posi- 
tive directions. If  w = P dx + Q dy is a differen- 
tial form of class C’ on 0, we have 

.,x+Qdy=jj&~)dxdy. (6) 
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since dw = (ûQ/ax - aP/ûy) dx A dy. This is 
called Green3 formula (or Green% formula on 
the plane). Equality (6) is true if P, Q are totally 
differentiable and the integrand on the right- 
hand side is continuous (even if the functions 
aQ/ax, i3P/ay themselves are not continuous) 
(E. Goursat). This formula remains true under 
the following weaker assumptions: (i) C is 
rectifiable; (ii) P and Q are continuous in D 

and SP/ay and aQ/ax are continuous and 
summable (in the sense of Lebesgue) in D. 

(2) The case of a domain in a 3-dimensional 
space: Let D be a bounded domain in xyz- 
space surrounded by a finite number of 
smooth surfaces S. For a yvector field V = 
(P,Q,R)ofclassC’onfi,weputw=Pdyr\ 
dz+Qdzr\dx+Rdxr\dy.Thensincedw= 
(dP/Ox + aQ/<îy + aR/az) dx A dy A dz, we have 

SS 
Pdydz+Qdzdx+Rdxdy 

s 

ZZZ divvdxdydz 

= dxdydz. 

Equality (7) is called the Gauss formula (Ost- 
rogradskii’s formula or the divergence theo- 
rem). The left-hand side of (7) is equal to the 
surface integral l[,#‘, n)da, which is the tvec- 
tor flux through S (where n means the outer 
unit normal vector of the surface S). This 
formula remains true under the following 
weaker assumptions: (i) S is piecewise of class 
C’; (ii) P, Q, R are continuous in D and aP/ax, 

aQ/ay, and ~?R/i?z are continuous and sum- 
mable in D. 

(3) The case of a bordered surface in a 3- 
dimensional space: Let S: x = x(u, u), y  = y(u, u), 
z = x(u, v) ((u, u) E G) be a smooth surface in 
xyz-space, and suppose that the boundary IY of 
the domain of the parameters G consists of a 
finite number of smooth curves with positive 
direction. The boundary C of the surface S is 
the image curve of r. Now let V = (P, Q, R) be 
a vector fïeld of class C’ on S, n be the unit 
normal vector of S (its direction being canoni- 
cally assigned by the parameter (u, u)), and t be 
the unit tangent vector, and set w = P dx + Q dy 

+ R dz. Then since dw = (i?R/ay - aQ/az) dy A dz 

+ (aP/az - aR/ax) dz A dx + (@/8X - aP/ay). 

dx A dy, we have 

= 
s 

(Pdx+Qdy+Rdz)= (V,t)ds. (8) 
c s c 

Equation (8) is called the Stokes formula (- 
4ppendix A, Table 3.111). 
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95 (XVl.4) 
Cybernetics 

The term cybernetics was invented in 1947 by 
Norbert Wiener [ 1) to denote a field of science 
that treats the system of control and communi- 
cation in animals and machine. The term was 
derived from a Greek word KL$EPV+~~, also 
the source of the word “governor.” The stimu- 
lus for establishing such a new area of science 
came from studies of automatic computation, 
automatic control, and information process- 
ing. These fïelds had given rise to technological 
innovations such as the high-speed electronic 
computer and automatic control instruments. 
Such machines have had a profound influence 
on the information sciences, as well as on 
theoretical investigations in biology. However, 
even now, we cari hardly say that cybernetics 
has been formly established as a systematic 
branch of science or of applied mathematics. 
Nevertheless, it has had far-reaching influence 
on both biology and machine engineering as 
a methodology and as a philosophy. In the 
Soviet Union and in European countries, the 
word corresponding to cybernetics is still 
widely used for the “Grenzgebiete” between 
biology and machine engineering in the wider 
sense. Nonetheless, it is diffïcult to say that 
cybernetics as a whole has undergone system- 
atic development. Systematic theories have 
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been established and developed for separate 
parts of the field, and these have become in- 
dependent disciplines; they are, for example, 
tcontrol theory, tinformation theory, the 
theory of artifïcial intelligence, the theory of 
tautomata, mathematical biology, genetics, 
and ecology. 

The contributions of Wiener to cybernetics 
include not only the invention of the concept 
itself, but also prediction theory or the theory 
of the Wiener lïlter [2]. The latter was sub- 
sequently formalized by R. E. Kalman from 
a different point of view as an estimation 
problem within a linear system, working from 
fmite observation data, and including the non- 
stationary case (- 405 Stochastic Control and 
Stochastic Filtering G). Another contribution 
by Wiener is the input-output identification of 
a nonlinear system using statistical time series 
analysis of the outputs when the inputs are 
white noises [4]. This is achieved by expan- 
sion of the output function in terms of the 
convolution of input functions, which corre- 
sponds to the expansion of functions in terms 
of +Hermite interpolation polynomials. The 
kernel of the expansion is called a Wiener 
kernel. Recently, this method has been applied 
to input-output identification for nervous 
systems; it also fïnds application in nonlinear 
system theory [S]. Wiener also studied brain 
waves [6,9]. 

Cybernetics in the wider sense, although not 
necessarily called by this name, may include 
investigations of the following “Grenzgebiete”: 
information processing of the nervous sys- 
tem [7]; self-organizing systems in the non- 
equilibrium thermodynamics of Prigogine and 
Haken; the self-reproducing machines of von 
Neumann; and the theory of pattern formation 
in biological or chemical systems [S]. 

For related topics - 176 Gaussian Process 
1, 395 Stationary Processes D. 
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Data Processing 

A. General Remarks 

With the development of electronic computers, 
effective systems for data transmission and 
processing have been created on a large scale, 
and there is now a large literature concerning 
data-processing methods and techniques for 
such systems. 

Research on data processing encompasses 
both specific techniques and entire systems of 
processing, for example, the system of pro- 
gramming techniques, as well as mathematical 
problems originating from them, such as the 
complexity of computations (- 71 Complexity 
of Computations). As domains of application, 
we have, for example, information retrieval, 
stock management, program evaluation, and 
review techniques. We denote the set of data 
by D and assume that D is finite. Depending 
on the properties of D, we have various suit- 
able representations and processing problems. 

B. The Notion of Data 

In recent applications of computers, the main 
task has been arranging and searching for 
items or attributes in storage, rather than 
numerical computation. Individual informa- 
tion is called a record. Records arranged and 
stored in the memories of computers are usu- 
ally called data. A collection of such data is 
called a file. A complex, large-scale data collec- 
tion is often called a data base. 

In an abstract sense, the record consists of a 
string of letters, but it is usually convenient to 
view it as consisting of its identifying mark 
followed by a tïnite sequence of items. The 
contents cari be classified according to their 
properties, such as topological relations, order 
relations, or items representing numerical 
values. For each case, there may be different 
suitable representations and operations. 

We often store information after a suitable 
process of information compression. In some 
cases the operations are reversible, and com- 
plete recovery is possible. In other cases the 
operations are not completely reversible, and 
we must throw away part of the information 
in order to compress the rest. An example of 
recoverable information is the replacement 
of a run of 1’s (or 0’s) in a binary code by its 
length. An example of lost information often 
occurs in the graphical manipulation of num- 

bers by means of hashing. In this process we 
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Select a suitable function s =f(n i, . , a,), where 
the vector (a,, . . , a,) corresponds to the repre- 
sentation of the record in such a way that the 
value s cari be monomorphic for the universe 
of the records as often as possible, and the 
data (ai, . . . . a,) is kept in the storage corre- 
sponding to the value s. Generally, the vari- 
able representing the location of data is called 
a pointer. 

In the abstract sense, data bases are simply 
sets of items, but in most cases a base Will also 
exhibit some mathematical structure, such as 
order relations. In order to handle a data base 
efficiently, we must take its particular structure 
into account, and suitably represent that struc- 
ture. Such structures and their representations 
are called data structures. 

C. Linear Structures 

The component of a vector or the stations 
along a single railway line form linearly 
ordered sets. Their most essential feature is the 
notion of immediate predecessor or immediate 
successor. Such a data structure is called a 
linear structure, and the aligned sequence is 
called an array. Multidimensional arrays, such 
as the elements of a matrix, are stored in the 
form of l-dimensional arrays in the memory of 
a computer. 

When the set of data D is a linearly ordered 
set, it is usually represented as a suitable array. 
Here, the problems of ordering and table look- 
up are fundamental. Ordering in this sense 
means putting the given elements of D into the 
order defmed for D. Since, historically, sort- 
ing machines were used to put punched cards 
in order, this process is also called sorting. 
The process of arranging several individually 
sorted data packs into one sorted pack is 
called merging. 

A fundamental data-sorting operation is 
“comparison” with respect to the order for 
D. There have been many investigations of 
the estimation of the lower or Upper bounds 
for the number of comparisons and of devel- 
oping effïcient algorithms. Asymptotically, 
O(nlogn) is the theoretical lower bound for 
n elements, and some algorithms are known 
to achieve this bound (- 71 Complexity of 
Computations). 

I f  there is given a univalent correspon- 
dence f: D-+D’ and the correspondence table 
is stored in the memory in a suitable form, the 
problem of table look-up arises, which requires 
finding f(d) for a given d E D. In this process, a 
fundamental operation is a comparison of 
d E D with some x E D in the table. There have 
been many investigations of effcient arrange- 
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ments and of algorithms with minimal num- 
bers of comparisons. 

D. List Representation 

If the given finite set D has an order satisfying 
the reflexive and transitive laws, addressing is 
often used as a medium for representing the 
order in the memory. Let d,, . . . , d, be a11 the 
immediate successors to an element dED. We 
cari represent them by the following sequence 
of triplets: 

I f  n = 0, we take (d, 0,O); 
If  n= 1, we take (d,d:,O); 
I f  n = 2, we take (d, dr, dz); 
I f  n=3, we take (d,dT,eT), (e,,dz,d:); 
I f  n>4, we take (d,d:, e:), (et, dz, e:), 

where di means the pointer to di, e, is an ele- 
ment introduced for convenience, and e: is the 
pointer to e,. This is called a list representa- 
tion. If  we denote by d-d,, the fact that d, is 
an immediate successor of d, then the total set 
cari be regarded as a tdirect graph. Usually, 
this graph is a ttree, and then the graph is 
called a tree structure and its representation a 
tree representation. The advantage of this 
representation is that addition or deletion is 
quite easy. 

The set of logical formulas is partially 
ordered, with the order given by the rules of 
inference. The set consisting of a series of 
inferences forms an ordered subset. Thus, if 
a tree representation cari be automatically 
treated, SO cari the process of inference. 

In dealing with linguistic data (words or 
sentences, for example), it is often natural to 
consider a noncommutative tfree semigroup D 
generated by a finite number of generators (the 
alphabet or vocabulary). In this case, if there 
exists a natural order for the generators, it 
determines in D a lexicographie partial order- 
ing. Then the tree representation cari be used 
for representing a dictionary whose entires are 
elements of D. This method is not eflïcient with 
respect to speed of table look-up and economy 
of memory, but it sometimes has the advan- 
tage of simplifying the treatment of compli- 
cated data. 

E. Memory Devices for Processing 

In dealing with algebraic formulas or lan- 
guages with parentheses, data maintenance 
methods such as tree representation or push- 
down storage are often convenient as auxiliary 
memory-controlling methods. The character- 
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istic of the push-down storage method is that it 
returns the data in reverse order with respect 
to the time of acceptance and remittance. 
lt is sometimes called a stack or a first-in-last- 
out memory. Contrary to a stack, there is a 
storage that returns the data in the same order 
as the acceptance. It is called a queue or a 
first-in-first-out memory. 

F. Information Retrieval 

A request to obtain a11 the records qualified 
by some property in a data base 0 is called a 
query. The part of the collection of records fi 
qualified for a query, therefore, cari be identi- 
fïed by its characteristic subset of the space of 
a11 possible records. A procedure that deter- 
mines the subset fi4 of a composed of a11 the 
records relevant to a query q is called the 
information retrieval of the query. A system 
which provides such a procedure for every 
query q E Q is called an information retrieval 
system organized for R with respect to Q. 

It is essential to design the system in such a 
way that records cari be retrieved quickly for 
queries in a certain class. Such a selected set of 
queries cari be composed of a11 the first-order 
queries specifying an item and asking for a11 
the records containing the attribute value or 
the key characterizing the item. It cari, in some 
cases, include second- or higher-order queries 
specifying a number of items and asking for a11 
the records in which attribute values or keys 
characterizing the item occur simultaneously. 

In an information retrieval system, the mas- 
ter file of a data base R is usually organized by 
way of auxiliary memories on data structures 
such as sequential files, indexed sequential 
files, virtual storage files, or direct access files, 
using the magnitude of the accession number 
or primary key of each record. Various man- 
agement systems, called SAM (Sequential 
Access Method), ISAM (Index Sequential 
Access Method), VSAM (Virtual Storage 
Access Method), or DAM (Direct Access 
Method), exist. 

In addition to the organization of such a 
master file, various directory files or indexes 
are organized in order to retrieve each query 
q E Q quickly, because there are many relevant 
keys or combination of keys other than the 
primary key. An inverted filing scheme (IFS) is 
a typical scheme for organizing such indexes 
or directory files. A bucket B, or an address- 
able set of secondary memories is provided 
for each canonical query qtEQ in a one-to-one 
way. An index or a list of accession numbers of 
pertinent records is organized in each of the 
buckets contiguously SO as to make it possible 
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to retrieve a11 accession numbers of relevant 
records quickly. The essentials of an IFS is 
to delïne a one-to-one QAT (Query to Ad- 
dress Transformation) from the inverted set of 
queries Q= {qr} to the set of buckets B= {B,}. 

An IFS has efftcient retrieval performance 
with respect to the inverted canonical queries. 
The scheme, however, may in some cases 
require a large number of buckets. Moreover, 
the scheme requires quite redundant storage 
of accession numbers by a number of buc- 
kets because a record may be pertinent to a 
number of canonical queries simultaneously. 
Although higher retrieval performance cari be 
expected by including higher-order queries in 
the inverted set, the space and machine time 
needed for such organization is prohibitive. 
This is one of the reasons why an IFS for lïrst- 
order queries is preferable in almost a11 prac- 
tical cases. Another reason is that if the lïrst- 
order queries are inverted, every retrieval cari 
logically be performed by certain Boolean 
operations executed among a certain number 
of retrieved sets of accession numbers. A trade- 
off of space and time needed for the organiza- 
tion of a scheme and its retrieval performance 
might be the determining factor for the selec- 
tion of the set of canonical queries to be 
inverted. 

An attempt to overcome the limitations 
inherent in the inverted scheme cari be found 
in the work on the balanced file organization 
scheme due to Abraham et al. [7]. By extract- 
ing the essentials, Yamamoto et al. [9,10] 
defined a BFS (Balanced File-organization 
Scheme) in a wider sense as follows: 
(i) Buckets are organized in such a manner 
that every bucket is associated with more than 
one query. 
(ii) Every canonical query is associated with a 
unique bucket. 
(iii) The accession number of a record with 
some additional information is stored in a 
bucket once if and only if it is pertinent to at 
least one of the associated queries. 

The essentials of a BFS is to delïne a many- 
to-one transformation from the set of canon- 
ical queries Q to the set of bucket addresses B, 
or an MQAT (Multiple Queries to Address 
Transformation). An MQAT delïnes a parti- 
tion of Q into mutually disjoint subsets. It is 
a generalization of a QAT which delïnes an 
IFS. If  c is the number of queries to be asso- 
ciated simultaneously with a unique bucket 
in a BFS, then the number of buckets to be 
prepared is l/c, which is a drastic reduction 
from that for an IFS. This reduction makes 
it possible to extend the feasible range of 
canonical queries. Actually, in the system 
HUNDRED (Hiroshima University New 
Documents REtrieval and Dissemination), a 
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51-to-1 MQAT is used for the organization of 
indexes. 

Although some space overload may occur 
by storing some additional information in 
order to tel1 which record is pertinent to which 
query in a bucket, reduction of redundancy 
cari be expected, because a record may be 
pertinent to more than one query simulta- 
neously. The reduction in the number of buc- 
kets and redundancy would contribute much 
in saving time and space needed for the or- 
ganization of indexes. 

Among those BFS’s delïned by MQAT’s 
with a given data base 0, Q, and the number c 
of queries associated with the same bucket, 
one BFS cari be called the best if its redun- 
dancy is the least under some reasonable as- 
sumptions imposed on the distribution of keys. 
Several combinatorial problems have been 
raised and solved in this connection [ 101. 
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97 (1.10) 
Decision Problem 

Suppose that we are given a set S and a propo- 
sition P(x,, x2, . . . , x.) for elements xI of S. 
Then we have the problem of universal validity 
of P, which is the problem of finding a general 
algoritbm (i.e., a fïnitary procedure) by which 
we cari discern whether P(x,, . . . ,x,) is true for 
a11 n-tuples (x 1, . . . , x,). The problem of linding 
an algorithm by which we cari discern the 
validity of P(x,, , x,) for some specifïcally 
chosen n-tuples (x1, . ,x.) is called the prob- 
lem of satisfiability of P. These two problems 
are customarily called decision problems. The 
problems are such that affirmative solution of 
one of them implies negative solution of the 
other. 

TO give a precise defmition of decision prob- 
lems, let us note that a tfree semigroup with 
countable generators cari be identifïed with a 
subset of the set N of natural numbers (by 
virtue of +Gode1 numbering; - 185 Gode1 
numbers). On the other hand, if 6 is a given 
tformal system with countably many symbols, 
the set of a11 tformulas in 6 is a subset of the 
free semigroup generated by the symbols in 6. 
Thus the set of all formulas in 6 is identitïed 
with a subset of N. A subset M of N (or N x 
N x . x N) is (general) recursive if its tre- 
presenting function is general recursive (- 356 
Recursive Functions). By using the concept of 
recursive function, a precise defïnition of the 
decision problem cari be given as follows: Tbe 
decision problem of M is solved affirmatively if 
and only if we cari obtain effectively a proce- 
dure defming the representing function of M, 
and the function is general recursive. The 
decision problem of A4 is solved negatively if 
and only if we cari obtain a proof that A4 is 
not recursive. 

For a set A of formulas in 6, we let g(A) be 
the set of all Gode1 numbers corresponding to 
the elements of A. Let A’ be the set of formulas 
in A that are deducible in 6, and let z(A) = 
g(A’). The decision problem of the set A of 
formulas is said to be solved aflïrmatively 
(negatively) if the decision problem of z(A) is 
solved afflrmatively (negatively). By refïning 
this concept we arrive at the notion of the 
degree of (recursive) unsolvability. Let A and B 
be subsets of N. The relation “A is recursive in 
B and B is recursive in A” (- 356 Recursive 
Functions) is reflexive, symmetric, and transi- 
tive. Hence this relation decomposes the class 
of a11 subsets in N into disjoint nonempty 
equivalence classes. A and B are defmed to 
have the same degree of unsolvability if they 
belong to the same equivalence class. Thus the 
degrees of unsolvability cari be identified with 
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the equivalence classes. The degree of recursive 
sets is 0. 

The relation a <b is defined between the 
degrees a of A and b of B to mean “A is recur- 
sive in B.” Clearly, for any degree a, we have 
0 <a. The partially ordered system of degrees 
constitutes an +upper semilattice. 

Research on the decision problem has been 
done mostly in areas related to the tfirst-order 
predicate calculus L’ and the forma1 systems 
on it. We now list some important results. 

(1) Results concerning L’. The decision 
problem has been solved negatively for the sets 
of formulas of the following forms. (Here it is 
assumed that no function symbols appear and 
that CU represents a formula involving no 
occurrence of V, 3, or free variables.) 
(1) Al1 formulas in L’ (A. Church, A. M. 

Turning), 
(2) 3x, 3x, .3x,Vy, Vyz Vy,, 2I (T. Skolem), 
(3) 3x,3x,3x,VylVy2 . . . Vy,3z ‘i!I (K. Godel), 
(4) 3x,3x,Vyy,Vy, Vy,,3z 2l (L. Kalmar), 
(5) 3x, 3x,Vy gz, 32, 32, 2I (J. Pepis), 
(6) Vx3yVz3u,3u2 3u, 2l (W. Ackermann), 
(7) 3x,3x,3x3Vy ‘I[ or 

3x, 3x,Vy3z <u (J. Suranyi), 
(8) 3xVy,Vy,3z,3z, CU or 

Vx 3yVz3u, 3u, CU (Suranyi). 
The decision problem has been solved 

affirmatively for the sets of formulas of the 
following forms, where it is assumed again 
that no function symbols appear and that <u 
is as above. 
(1) Al1 formulas involving variables only on 

predicates with one argument. (L. Lowen- 
heim, Skolem, H. Behmann), 

(2) Vx, Vx, Vx, VI (P. Bernays, M. Schonfin- 
kel, Ackermann), 

(3) Vx,Vx, Vx,3y,3y2 . . . 3y, CU (Bernays, 
Schontïnkel, Ackermann), 

(4) vx,vx, . vx,3y,3y,vz1vz, . ..vz. ‘a 
(Godel, Kalmar, K. Schutte). 

(II) Results concerning forma! systems on 
L’. Throughout the rest of this article we 
assume that no tfunction variables appear. 
Predicate constants, function constants, and 
abject constants may appear. By the decision 
problem for a forma1 system 2 we mean the 
decision problem for a11 tclosed formulas in 2. 
Most of the results obtained SO far concerning 
the decision problem for forma1 systems have 
been negative. Such results include those for 
forma1 systems formalizing natural number 
theory, the theory of rational integers, the 
elementary theory of tgroups, trings, Qïelds, 
tlattices, and the like, and axiomatic set theory 
(A. Tarski et al.). 

The word problem for groups was solved 
negatively by P. S. Novikov (- 161 Free 
Groups B). In connection with this deci- 
sion problem, there are some investigations 
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by W. W. Boone, G. Higman, and others 
[14-171. 

The decision problem for a forma1 system 
formalizing the elementary theory of +Abelian 
groups has been solved aflïrmatively (W. 
Szmielew). Little is known about the decision 
problem concerning partial systems of for- 
mulas of given forma1 systems except the fol- 
lowing: (1) the decision problem for the set of 
formulas of the form Vx, Vx, Vx,,, CLI in a 
forma1 system (- 161 Free Groups); (2) the 
Hilbert-type problem, which is the decision 
problem for the set of formulas of the form 
3x, 3x, . 3x, (t = s) in a forma1 system. In 
particular, the Hilbert-type problem in a 
forma1 system formalizing natural number 
theory is called Hilbert’s tenth problem (- 
196 Hilbert). The latter is the problem of lïnd- 
ing an algorithm for deciding whether a iDio- 
phantine equation has an integral solution. 

This decision problem was studied by M. 
Davis, H. Putnam, J. Robinson, and others, 
and finally Yu. V. Matiyasevich solved it neg- 
atively by showing that every recursively 
enumerable relation is Diophantine [9]. (A 
relation R(m, , , m,) is called Diopbantine if 
there is a polynomial P(x,, , xj, y,, , yk) 
with integer coefficients such that R(m,, . , mj) 

holdsifandonlyifP(m, ,..., rnj,y, ,..., yk)=O 
has a solution for y,, , y, in natural num- 
bers.) In addition, some investigations have 
been made about the +Second-order predicate 
calculus L’, tintuitionistic logic, etc. [ 1,2]. 
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Dedekind, Julius Wilhelm 
Richard 

Julius Wilhelm Richard Dedekind (October 6, 
1831lFebruary 12, 1916) was born in the city 
of Braunschweig in central Germany and 
studied at the University of Gottingen under 
C. F. +Gauss, who was then in his later years. 
He received his doctorate at Gottingen with a 
thesis on the +Euler integral. He was professor 
of mathematics from 1858 to 1862 at Zürich 
and from 1863 to 1894 at the Technische 
Hochschule in Braunschweig. During his early 
twenties, he wrote papers concerning analysis 
and the theory of probability, but in 1857 he 
began publishing papers on the theory of 
numbers. He edited +Dirichlet’s lectures on 
number theory (Vorlesungen iiber Zahlen- 

theorie, lïrst edition 1863, fourth edition 1899) 
and concentrated on research in arithmetic 
and algebra. The theory of tideals, which he 
founded, was originally set out in a supple- 
ment (1863) to Dirichlet’s Vorlesungen. 

Dedekind treated subjects ranging from the 
axiomatic foundations of the theory of ideals 
to tlattices and tgroups as algebraic systems. 
He was a pioneer of the abstract algebra of the 
20th Century. Among his notable achievements 
are the +Dedekind zeta functions of talgebraic 
number lïelds, +Dedekind cuts in the theory of 
mal numbers, the algebraic theory of +alge- 
brait functions (of which he was a coauthor 
with H. Weber), and the theory of natural 
numbers. He was one of the first to support 
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Kantor’s set theory. His theory of natural 
numbers was founded on the concept of sets 
and included the idea of trecursive functions. 
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Degree of Mapping 

A. Degree of Mapping 

Let M” and N” be n-dimensional +closed 
toriented +C’ manifolds (or tcombinatorial 
manifolds). For example, M”=N” = s” (the +n- 
sphere). Their nth thomology groups with 
integral coefficients HJM”; Z) and H,,(N”; Z) 
are iniïnite cyclic groups generated by the 
fundamental homology classes [M”] and [N”], 
respectively (- 201 Homology Theory). A 
continuous mapping f: M”-+ N” induces a 
homomorphism f,: HE(M”; Z)-+H,(N”; Z), and 
there exists an integer df such that f,([M”]) = 
d,[N”]. This integer df is called the degree of 
mapping (or the mapping degree) of t When 
M”=N”, d, does not depend on the orienta- 
tion of M”. 

If  a continuous mapping y  : M” --P N” is 
thomotopic to f  (fi g), then we have df = d,. 
I f  f  is homotopic to a +Constant mapping 
(fi 0), then df = 0, while if f  is a homeomor- 
phism, then d, = kl. When M”=N”, a homeo- 
morphism f  : Mn-* M” is called an orientation- 
preserving mapping if df = 1 and an orientation- 
reversing mapping if df = - 1. 

Suppose that M” and N” are closed oriented 
n-dimensional combinatorial manifolds and 
that f:  Mn-+ N” is a tsimphcial mapping. Let 
Cio/ and xj$’ (u:, s,? are n-simplexes of M”, 
N”, respectively) represent [M”], [N”I, and let 
pj (resp. qj) be the number of n-simplexes a: 
such that f(a/‘) is equal to sJ (resp. -~y). Then 
pj - qj is independent of the index j and equal 
to df. 

Suppose that f,  g: S”-tS” are continuous 
mappings (na 1). Then ,f=g if and only if df= 
d, (Brouwer mapping theorem). This implies 
that rr,(S”) g Z (- 202 Homotopy Theory). 

B. Local Degree of Mapping 

Suppose that M” and N” are n-dimensional 
oriented C’ (or combinatorial) manifolds and 
f: Mn-+ N” is a continuous mapping. Suppose 
further that a point p of M” has a neighbor- 
hood U such that f(p)#S(q) for any point 4 
contained in CJ - {p). Then f induces a homo- 
morphismf,:H,,(U,U-{p})hH,,(N,N- 
{f(p)}) of n-dimensional tlocal homology 
groups with integral coefficients that are both 
isomorphic to Z. If  u and u are generators of 
the groups H,,(U, U - {p}) and H,(N, N - 
{f(p)}) corresponding to orientations, re- 
spectively, then there exists an integer k such 
that f,(u) = ku. We cal1 this integer k the local 
degree of mapping f  at p. I f  M” and N” are 
closed oriented c’ manifolds (r > 1) and f: M” 
-t N” is a C’ mapping, then there exists a point 
Y of N” such that the set f-‘(r) is a discrete 
subset (pl, . ,pt} of M”, and each pi has a 
neighborhood Ui satisfying the foregoing con- 
dition (Sard’s theorem). If  ki is the local de- 
gree of ,f  at pi, then df = C ki. 

C. Linking Numbers 

Given two mutually disjoint smooth closed 
curves C, and C, in Euclidean 3-space, a quan- 
tity Lk(C,, C,) indicating how closely they 
are interlinked with each other was given by 
Gauss as follows: Let Ci be expressed by the 
parameters xi = xi(ti) (i = 1,2), where xi(ti) are 
tcontinuously differentiable. Then the quantity 

Lk(C,,Cz)= -; 
SS 

1 

c, c,Jx2-x1(3 

xdet 

is an integer called the linking number of Ci 
and C,. 

More generally, let M” be an n-dimensional 
oriented tcombinatorial manifold (or C’ mani- 
fold (r > 1)) and K and K* its tcellular decom- 
positions such that K* is dual to K. Let 2; and 
z2 (r + s = n - 1) be tboundaries belonging to 
the complex K and K*. Suppose that C”l is 
any tchain of K whose boundary is z;. Then 
the tintersection number [C’“] [zs] does not 
depend on the choice of such a chain C’+‘. We 
set Lk(z;, 25) = [C’“] [zi] and cal1 it the link- 
ing number of z; and zi. The linking number 
Lk(Y,, 5;) of tsingular boundaries 21, ii (r + s = 
n - 1) of M” is similarly deiïned by consider- 
ing the approximations z;, zi of z ;̂, z”i belong- 
ing to a suitable cellular decomposition K and 
its dual K*. The number Lk(Z; ,Zi) is bilinear 
with respect to E;, Z;, and we have Lk(É; , 2:) = 
(-l)‘“+‘Lk(Z;, 2;). In the example in 3-dimen- 



99 D 
Degree of Mapping 

sional Euclidean space R3 shown in the left 
half of Fig. 1, we have LI<(E:, 2;) = 1, while 
Lk(Z:, 2;) = 2 for the example shown in the 
right half of the same figure. In particular, if 2; 
is homologous to 0 in M” - 1 z”; 1, then we have 
Lk(Z;, Y;) = 0 (Fig. 2). Generally, if Y; and Z’: 
are homologous in Mn- IZ;l, then Lk(Z;, 2;) 
= Lk(Y;, 2;). 

Fig. 1 

D. Order of a Point with Respect to a Cycle 

Let M” be an n-dimensional oriented com- 
binatorial manifold (or c’ manifold (~2 1)) 
with the nth Betti number b, = 0, Ymi an 
(n - 1)-dimensional singular boundary of M”, 
and o a point of M” that is not contained in 
12”-‘1. We set ord(Z”-‘, o) = Lk(Z”-‘, o) and cal1 
it the order of the point o with respect to Y-‘. 
For example, when M” = R2 and Z’ = { ,f(t) 10 d 
t G l,f(O)=f( l)}, where f’is a continuous 
function, the order ord(?‘, o) is equal to the 
rotation number around o of a moving vector 
of(t) as t varies from 0 to 1. This ord(Z’, o) 
stays invariant as the point o moves in a +Con- 
nected component of the complement R2 - (2’ ( 
(Fig. 3). On the other hand, if Zy ={fi(t)lO< 

t< l,L(O)=fi(l)} (i=O, 1) are closed curves in 
R2 and the distance p&(t), fi(t)) is smaller 
than P(li(t), o) for a11 t in the interval [0, 11, 
then we have ord(Z& o) = ord#, o) (Rouché’s 
theorem). 

-1 

Fig. 2 Fig. 3 
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Denjoy Integrals 

A. History 

For a real-valued function f(x) of a real vari- 
able to be tlebesgue integrable, it is necessary 
and suffcient that there exist an tabsolutely 
continuous function F(x) such that F’(x) =f(x) 
at +almost a11 points x (- 221 Integration 
Theory D). In general, the derivative of a func- 
tion is not necessarily Lebesgue integrable. A 
function f(x) is Lebesgue integrable if and only 
if If(x)1 is integrable. Hence a function which 
has an improper Riemann integral is not neces- 
sarily Lebesgue integrable (- 221 Integration 
Theory A). For this reason, it is desirable to 
extend the concept of Lebesgue integrals. In 
1912, A. Denjoy constructively defïned a new 
concept of integrals (Denjoy integral in the 
restricted sense; - Section D), which is an 
extension of both Lebesgue and Riemann 
integrals. Later, N. N. Luzin provided the 
descriptive theory of this integral. Indepen- 
dently, and nearly simultaneously, A. J. Khin- 
chin and Denjoy defïned a more general in- 
tegration (Denjoy integral in the wide sense 
(1916); - Section D). 

In 1914,O. Perron, independently of Den- 
joy, defmed a concept of integrals (Perron 
integrals) that is equivalent to that of Denjoy 
integrals in the restricted sense. TO establish 
this concept, Perron considered the differen- 
tial equation y’=f(x) and utilized a method 
similar to the one used in the proof of the 
existence theorem for the solution of the dif- 
ferential equation y’ =I(x. y). However, the 
concept of Denjoy integrals is inadequate to 
treat unbounded functions. Thus to extend 
the concepts of Riemann and Lebesgue inte- 
grals, various ideas have been introduced; for 
example, Denjoy (1921), J. C. Burkill (1951), 
and R. D. James (1950) introduced new con- 
cepts as byproducts of investigations concern- 
ing the coefficients of trigonometric series 
[2,3]. The A-integral concept devised by A. N. 
Kolmogorov was meant to deal with the pro- 
blem of the conjugate function of Fourier 
series [4]. As a certain completion of the space 
of functionals of step functions, K. Kunugui 
defined the notion of E. R. integrals (1956), 
which coincides with that of A-integrals in a 
special case [S, 61. 

What has been stated SO far deals only with 
functions of a real variable. Concerning the 
extension of Denjoy integrals to the case of 
several variables, research has been done by 

M. Loomis, S. Kempisty, S. Nakanishi (née 
Enomoto), and others [7,8]. 
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B. Approximate Derivative 

If we have lim,,,,,,,m{Efl(&h, 5 +k)}/(h+ 
k)= 1 at a point 5 of a tmeasurable subset E 
of the real line, where m is the 1-dimensional 
Lebesgue measure, the point 5 is called a point 
of density for E. Almost a11 the points of E are 
points of density for E (Lebesgue’s density 
tbeorem). Let E be a measurable set having x0 
as a point of density, and let F(x) be a measur- 
able function on E. If  there exists a number 1 
such that for each E > 0, x0 is a point of density 
for the set {xl l--.s<(F(x)-F(x~))/(x-x0)< 
1+ E, XE E}, then 1 is called the approximate 
derivative of F(x) at x0 and is denoted by 
AD F(x,). I f  ADF(x,) exists, F(x) is said to 
be approximately derivable at xc,. I f  F(x) is ap- 
proximately derivable at each point of E, then 
F(x) is said to be approximately derivable in 
E. If  F’(x) exists at a point x, then AD F(x) 
exists at x, and we have AD F(x) = F’(x). How- 
ever, there exists a continuous function F(x) 
that is approximately derivable at almost a11 
points of an interval and yet not differentiable 
at any point of a set of positive measure. 

C. Generalized Absolute Continuity 

Let E be a set in R, and let F(x) be a real- 
valued function whose domain contains E. If  
for each E > 0, there is a 6 > 0 such that for 
every sequence {[a,, b,]} of nonoverlapping 
intervals whose endpoints belong to E the 
inequality Z(b,, - a,) < 6 implies C IF(b,) - 
F(a,)1 CE, then the function F(x) is said to be 
absolutely continuous on E. We denote by AC 
the set of a11 functions that are absolutely 
continuous on E. If  F(x) is continuous on E 
and E is the union of a countable sequence of 
sets E, on each of which FEAC, then F(x) is 
called a generalized absolutely continuous 
function, and we Write FE GAC. If FE GAC, 
ADF(x) exists almost everywhere. 

If, for each E > 0, there is a 6 > 0 such that for 
every sequence {[a,, b,]} of nonoverlapping 
intervals whose endpoints belong to E the in- 
equality C(b, -a,)<~ implies z,O{F; [a,, b,]} 
< E (0 {F; [a,, b,] } denotes the oscillation of 
the function F(x) in [a,, b,], i.e., the difference 
between the least Upper bound and the great- 
est lower bound of the values assumed by F(x) 
on [a,, b,]), then F(x) is said to be absolutely 
continuous in tbe restricted sense (or abso- 
lutely continuous (*)) on E; and we Write FE 
AC( *). Just as we defined the notions of gen- 
eralized absolute continuity and absolute con- 
tinuity, SO we define the notions of generalized 
absolute continuity in tbe restricted sense and 
generalized absolute continuity (*). Thus FE 
GAC( *) means that F(x) is a generalized ab- 
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solute continuous (*) function on E. If  FE 
GAC( *), then F’(x) exists almost everywhere. 

D. Definitions of Denjoy Integrals 

Let f(x) be a real-valued function defined on 
I = [a, b]. I f  for f(x) there exists a function 
F(x) that belongs to GAC on I and for which 
ADF(x) =f(x) holds almost everywhere, then 
f(x) is said to be Denjoy integrable in the wide 
sense (or D-integrable) on 1. We cal1 F(b) - 
F(u) the definite D-integral of f(x) over 1, 
and denote the value by (D)snf(x)dx. The 
function F(x) is called an indefinite D-integral 
of f(x) on I. Similarly, we obtain the detïnition 
of Denjoy integral in the restricted sense (or 
D( *)-integral) by replacing GAC by GAC( *) 
and ADF(x) by F’(x) in the definition of the 
D-integral. I f  a continuous function F(x) satis- 
fies the equality AD F(x) =f(x) # +cc (F’(x) = 
j(x) # &co) for a11 except countably many 
points in 1, then F(x) is an indefinite D- 
integral (D( *)-integral) of f(x). A Lebesgue- 
integrable function is D( *)-integrable, a D( *)- 
integrable function is D-integrable, and a D- 
integrable function that is almost everywhere 
nonnegative is Lebesgue integrable. 

E. Constructive Definition of Integrals 

Let S be a functional whose domain lJ1 K(S; 1) 
consists of the union of sets K(S; 1) of real- 
valued functions defined on closed intervals 
I= [a, b]. I f  . f  belongs to K(S; I), we denote 
the value S(f) by S(f; 1). Such a functional S 
is called an integral operator if the following 
three conditions are satislïed: (1) If  fEK(S; 1,) 
and I is an arbitrary interval contained in 10, 
then the trestriction f, to I off also belongs 
to K(S, I). Also, S(f; 1) is a tcontinuous addi- 
tive function of the interval I c I,. (2) Let Ii = 
[a, b], I2 = [b, c], and I = [a, c] (a < b < c). I f  for 
a function ,f defined on I, fi E K(S; I,) and 
f2 E K(S; I,), where fi = fI, and f2 = f,,, then 
f E K(S; I). (3) If  f  is identically 0 on I, then 
~EK(S; 1) and S(f; I)=O. For two integral 
operators S, and S,, we say that S, includes S, 
(or S, is weaker than S,) if K(S,; 1) c K(S,; 1) 
for every I and S, (f; 1) = S,( f; 1) for every 
~EK(S,; I). The D-integral (D( *)-integral) is 
the weakest integral operator containing the 
Lebesgue integral and satisfying the following 
two conditions, (C) and (H) (resp. H( *)): (C) 
Cauchy’s condition. If, for every function f 
defined on I,, we have ~,EK(S; 1) for any I = 
[a + 6, b-a] $I. = [a, b], and also if the finite 
limit lim a-o,,+oS(f; 1) exists, then f EK(S; I,) 
and S( f; I,,) coincides with the foregoing limit 
value. (H) Harnack’s condition. Let E be a 
closed subset of I,, {lk} be a sequence of inter- 
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vals contiguous to the set consisting of the 
points of E and the endpoints of 10, and f  be a 
function on 1, satisfying the following three 
conditions: (i) fE E K(S; I,,), where fE(x) =f(x) 
whenever x E E and fE = 0 otherwise; (ii) fk = 
hIeK(S; Ik) for each k; and (iii) Z,lS(& r,)l< 
+co and lim,,, O(S; fk; 1,) = 0 when the se- 
quence {lç} is infinite. Then it follows that 
/cK(S; 4,) ad SU; 4J=SG 4,)+ CkSt.L; bd. 
(Here O(S;fk; Ik) denotes the variation of S(fk) 
on l,, that is, the least Upper bound of the 
numbers IS(fJ;J)I, where J denotes any sub- 
interval of Ik.) We obtain condition (H( *)) by 
replacing condition (iii) in (H) with a more 
restrictive condition: & O(S;fk; 1,) < +cz>. The 
constructive definition of the Denjoy integral 
in the wide sense (the Denjoy integral in the 
restricted sense) is obtained by ttranslïnite 
induction starting with the Lebesgue integral 
and using two methods, (C) and (H) (resp. 
(H( *)), of extensions. 

F. Perron Integrals 

Given a function f(x) defined on an interval 
[a, b], suppose that F(x) is a function delïned 
on the same interval such that (1) F(x) >f(x); 
(2) F(x)# -cc (resp. (1’) F(~)G~(X); (2’) F(x)# 
+m) at every point x, where F(x) (resp. F(x)) 
denotes the tlower (Upper) derivative of F(x). 
In this case, F(x) is called a major (minor) 
function of f(x). I f  for any E r 0 there is a major 
function $(x) and a minor function <p(x) of 
f(x) such that $(b)-<p(b)<&, thenf(x) is 
said to be Perron integrable. We denote by 
(P)Sif(x)dx the value inf,,,{$(b)-ti(a)} = 

sup,{4@-&4}. 

G. Properties of Integrals 

If  { fn} is a nondecreasing sequence of func- 
tions that are D-integrable on an interval 
[a, b] and whose D-integrals over [a, b] consti- 
tute a sequence bounded from above, then the 
function f(x) = lim,,, f,(x) is D-integrable on 
[a, b], and we have 

s h s h 

(D) f(x)dx= lim (D) f,(x)dx. 
a n-m <1 

If F(x) is a function of tbounded variation 
and g(x) is a D-integrable function on an 
interval [a, b], then F(x)g(x) is D-integrable on 
[a, b]; moreover, denoting by G(x) the inde- 
lïnite D-integral of g(x), the following formula 
is valid: 

=G(b)F(b)-G(a)F(a)- 
s 

b G(x)dF(x), 
a 
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where the last term is the tstieltjes integral 
(integration by parts). 

I f  F(x) is a nondecreasing function and g(x) 
is D-integrable on [a, b], there is a point 5 in 
[a, b] for which the following formula is valid: 

=F(a).(D) ‘g(x)dx+F(b).(D) hg(x)dx 
s a s r 

(the second mean value tbeorem). 
The foregoing theorems remain valid if D 

is replaced by D( *) in the hypotheses and 
conclusions. 
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101 (XXI.1 9) 
Descartes, René 

René Descartes, (March 3 1, 1596-February 
11, 1650), philosopher, mathematician, and 
natural scientist, was born in the province of 
Touraine in France. He became dissatisfied 
with his studies of scholastic philosophy in the 
Jesuit Academy in La Flèche, and later, in 
1619, while stationed in Ulm during a tour of 
duty in the army, he underwent a philosoph- 
ical conversion. He had an idea of methodo- 
logically unifying the various lïelds of interest 
to him using mathematics as a model. He 
returned to Paris in 1621, but moved to Hol- 
land in 1628 to concentrate on his work. Swe- 
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den’s Queen Christina invited him in 1649 
to that country, where he died the next year, 
evidently from a combination of cold and 
overwork. 

Descartes, often considered the founder of 
modern philosophy, discarded early the tra- 
ditional theological view of the world and 
stated that a11 knowledge should be recognized 
as logical only after it has been submitted to 
rational criticism. This ushered in the modern 
view of the world based on mathematics and 
physics. In 1637, he published Géométrie as an 
appendix to his Discours de la méthode, which 
also contained his works on optics and meteo- 
rology. In it, he promoted F. Wiète’s symbolic 
algebra, which he applied to geometric prob- 
lems. His idea that algebra could be used as a 
general method for geometry established him 
as the founder of tanalytic geometry. 

References 

[l] R. Descartes, Oeuvres I-XII, C. Adam, P. 
Tannery, and Léopold Cerf (eds.), 189771910. 
[2] H. Lefèbvre, Descartes, Paris, 1947. 

102 (XVIII.1 2) 
Design of Experiments 

A. General Remarks 

The design of experiments is a part of the 
statistical planning required to collect the data 
appropriate to the purpose of statistical in- 
ference (- 401 Statistical Inference) in various 
tïelds of scient& research and application. 
The main purposes of the design of experi- 
ments are (1) to analyze a given statistical 
linear mode1 (- 403 Statistical Models) and 
(2) to devise a “good” statistical linear model. 
Sometimes this term also refers to a statistical 
method including the tanalysis of variantes. 
Thus the purpose of designing an experiment 
is to provide the most efficient and economical 
methods of reaching valid and relevant conclu- 
sions from that experiment (- 403 Statistical 
Models). 

R. A. Fisher, whose contributions to statis- 
tical theory were remarkable and far-ranging, 
propounded three required principles to con- 
trol the experimental lïeld in order to guaran- 
tee the validity of statistical methods and to 
increase the sensitivity of experiments: (i) re- 
plication, or the repetition of the set of ah the 
phenomena to be compared in the experiment, 
for the evaluation of experimental error Var-. 
iance; (ii) randomization, or the procedure 
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allotting various experimental treatments at 
random, in order to change systematic errors 
into random errors; and (iii) local control, 
or the procedure which makes the variation 
within each experimental block as small as 
possible, in order to minimize or remove sys- 
tematic errors. These are called Fisher’s three 
principles. A design satisfying principles (i) and 
(ii) is called a completely randomized design; it 
enables us to attach a probability statement to 
estimated treatment differences by obtaining 
valid estimate of experimental error variante. 

Let an n-dimensional trandom variable Y = 
(Y,, , x)’ be represented by a linear mode1 

y=xi$+w, (1) 

where X is a given n x s real matrix, 5 = (5 i, 
. . . . &)‘is an s-vector, and W=(W,, . . . . W,)‘is a 
random vector with the texpectation E(W) = 
0. Then Y is called the observation vector, W 
the error vector, 4 the effect vector of Y, and 
X the design matrix. 

According to the properties of the effect 
vector 5, the linear mode1 (1) is separated 
into three classes: (i) The class of fixed-effects 
models for which < is a lïxed unknown para- 
meter. In this case, the component & of 5 is 
called a fixed effect, and a linear function n= 
F’e of & with a given coefficient vector F is 
called a linear parameter or parametric func- 
tion. (ii) The class of random-effects models for 
which the components Ei of < are random 
variables. In this case, each component Ei is 
called a random effect, and 5 is denoted by E. 
(iii) The class of mixed models for which there 
are both fixed effects ti and random effects Zj 
in 5. In this case, the mode1 (1) becomes 

Y=xl~‘+x2~2+w, (2) 

where < i = (5,) . . , 5,)’ is a tïxed-effect vector 
and a’=( Er+i, . , EJ’ is a random-effect vec- 
tor. The conditions frequently assumed for the 
tdistribution law of Y are: (a) The errors w 
(i=l,...,n)areuncorrelatedandE(W,)=... 
=E(W,)=O.(b)Theerrors w(i=l,...,n)have 
a common unknown tvariance 0’. (c) The 
errors & (i = 1, , n) have the tnormal distri- 
bution. (d) The random effects Zj are uncor- 
related and independent of the error vector W. 
(e) The random effects q have a common 
unknown variante c$. (f) The random effects 
Ej have the normal distribution. 

Let L(X) be a tlinear subspace of R” span- 
ned by the column vectors of X. The linear 
mode1 

Y=X(+w (3) 

is called a hypothesis on the linear mode1 (1) if 
L(Z) CL(X). 

The main issues of the theory of design of 
experiments are concerned with (1) statis- 
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tical inferences, such as estimation or testing 
hypotheses, under models (l), (2), (3), (i), (ii), 
(iii); (II) determination of the design matrix X 
satisfying certain optimal conditions; (III) 
construction of a theoretical foundation that 
cari explain the validity of the statistical treat- 
ment of the observed data by means of the 
above models. 

B. Block Design 

The design of experiments is described here in 
terms of the so-called block design. There are n 
experimental units a = 1, , n called plots, and 
an observation Y, is assigned to each plot c(. A 
block is constructed with several plots under 
Fisher’s principle (iii), and the number of plots 
in a block is called the block size, thejth one 
being denoted by kj, j = 1, , b, with Zj kj = 
n. One of u operations, called treatments or 
varieties, is applied to each plot. It is assumed 
that the observation Y, at the plot c( in the 
j th block under the i th treatment has the 
structure 

r,=ti+qj+ w,. 

The ti, i = 1, _. , II, are called treatment effects, 
and the qj, j, , h, block effects. It is also as- 
sumed that Ci ci = 0. In this case, Y is repre- 
sented in matrix notation as 

Y=@g+Yïf+w, (4) 

where Q=(q,J, LX= 1, . . . . n, i= 1, . . . . v, with 

i 

1 when the i th treatment is applied 

<p,i= 
to the plot c(, 

0 otherwise, 

andY=(tiaj),a=l ,..., n,j=l,,.., b,with 

i 

1 when the plot CI belongs to 

Iii, = the jth block, 
0 otherwise. 

Here it is assumed that C, pai = 1, C, <pli = 
r,>l,Ciri=n,Cj$,=l,andC,$,=kj>l. 
We cal1 ri the number of replications of the ith 
treatment. We set N =(n,) = @‘Y. Then ni, is 
the number of observations in the jth block to 
which the ith treatment is applied. The matrix 
N is called the incidence matrix of the block 
design. 

In any experiment, each plot has its own 
effect. The blocks are constructed SO that this 
plot effect in each block becomes as homoge- 
neous as possible, although it is impossible 
to eliminate the effect completely. For this 
purpose, randomization is adopted. Suppose 
that we are given k plots in a block and v  
treatments (k < v). Then randomization is 
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utilized to Select a treatment out of v  treat- 
ments to be allocated to each plot SO that the 
selection is “at random.” Then the plot effects 
are random, and the error term in mode1 (4) 
cari be considered to be the sum of a plot effect 
and an original error. 

A block design satisfying Fisher’s three 
principles is called a randomized block design. 
Blocks that cari accommodate a11 the treat- 
ments to be studied are called complete blocks. 
Those that do not contain aIl the treatments 
are called incomplete blocks. Blocking cari be 
considered to be an extension of pairing. In 
the terminology of block design, we cari say 
that many experiments are block experiments, 
or even (tautologically, if we allow those with 
only one block) that a11 experiments are block 
experiments. 

In a block design N = (n,), treatments i, 
and i, are said to be connected if there exists a 
chain 

of integers such that 1 < i, < v  (p = 0, 1,2, , I), 
1 dj,< b (q= 1,2, . , l), and ni,j, >O, nilj, >O, 

ni,l2 >O,...ani,m,jl > 0, nid, > 0. If  a11 pairs of 
treatments are mutually connected, then the 
design is said to be connected. In this case, the 
rank of the matrix C defined in Section C is 
v  - 1. I f  the design is disconnected, then the 
incidence matrix N cari be partitioned into 
two or more connected portions, e.g., 

N= 

Thus without loss of generality we cari restrict 
ourselves to the connected case. 

C. Estimation under tbe Fixed-Effects Mode1 

Conditions (a) and (b) of Section A are as- 
sumed here. The tnormal equation which gives 
the +least square estimates [ and 6 of < and q, 
respectively, is 

(;:)mY(g=($:)Y. (5) 

Set <D’@ = diag(r 1 ,..., r,)=D,,Y’Y= 
diag(k,,...,k,)=D,, C=D,-NDC’N’, Q= 
(Q’ - NDk’ Y’)Y, where diag( . ) means a 
diagonal matrix with the diagonal elements 
. . . . Then (5) reduces to 

&=Q, rj=D;‘(Y’Y-N’f). (6) 

Let L be an orthogonal matrix that transforms 
the matrix C to a diagonal form; that is, L’CL 
= diag( pi, . . , pV-i, 0) =A, pi > 0 for a11 i. Set 
A* = diag(p;‘, . , p;?, , 0), C* = LA* L’. Then f  
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= C*Q is a particular solution of (6) and Ci fi 
= 0. A parametric function 7~ = F’< with coeff- 
tient vector F = (Fi, F,, . , FJ’ is called a treat- 
ment contrast if the sum CiFi of coefficients 
vanishes. A treatment contrast rr = F’< is called 
a normalized contrast if F’F = 1. It is called the 
elementary contrast if F has only two nonzero 
elements 1 and -1. Elementary contrasts of 
treatment effects show the comparison of 
treatments involved in them. When a design is 
connected, any contrast rc is testimable, and 
the tbest linear unbiased estimate of rr is A = 
F’f. Furthermore, if fi is the eigenvector of 
the matrix C with unit length corresponding to 
an eigenvalue pi and F = Ciaifi, then the var- 
iance of the estimate X is given by a2Cia’/pi. 
The following properties are equivalent: (i) A 
design is connected. (ii) Any treatment con- 
trast is estimable. (iii) The rank of the matrix 
C is v  - 1. (iv) The minimum eigenvalue 0 of 
O;1/2CD;1/2 is simple and other eigenvalues 0i 
satisfy 0 < 8, < 1. (v) The maximum eigenvalue 
1 of D;r/‘NDk’ N’D;“’ is simple and other 
eigenvalues 8, satisfy 0 < 0, < 1. (vi) There 
exists a positive integer p such that each ele- 
ment of (0;” NDk’ IV’D,-~/~)~ is positive. It 
holds that 0, = 1 -Hi. 

D. Test of a Hypothesis H: t1 = . = <, in the 
Fixed-Effects Mode1 

Conditions (a), (b), and (c) of Section A are 
assumed here. The hypothesis H : ri = = 5, is 
represented by 

Y=Yq+W. (7) 

Consider a direct sum decomposition R” = 
L(T) + L:(Y) + L$(a, Y) + L&, of R”, where 
L$(A) and Li stand for the torthocomple- 
ments of L(B) with respect to L(A) and R”, 
respectively, and r = (1, 1, . , 1)‘~ R”. The 
?Projection operator matrices for the decom- 
posed subspaces L(I), L#), L$(@,Y), and 

L&Y are denoted by P,, P2, PS, and P4, respec- 
tively. Then we have 

P, = n-IE,,,, P,=YD;‘Y’-K’E,,,, 

P3=(In-YD~1Y’)@C*W(I,-YD~~‘Y’), 

P4=In-PI-P2-P3, 

where E,, is an a x b matrix whose entries are 
a11 unity and 1, is the n x n identity matrix. 

The analysis of variante for the hypothesis 
(7) in mode1 (4) is given by 

Y’Y=Y’P,Y+YP,Y+Y’P,Y+Y’P,Y. 

This is called an intrablock analysis. A usual 
test for the hypothesis H is given by a critical 
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region with 

F= 
n-v-b+1 Y’P,Y 

~ > constant 
V-l Y’P,Y 

(- 403 Statistical Models). 

E. Optimal Block Design 

A block design is said to be optimal when it 
minimizes the variante of the estimate 7î of a 
normalized contrast rr. Suppose that the num- 
ber u of treatments, the number b of blocks, 
and each block size k,, j= 1, , b, are given. 
Under each of the following criteria the corre- 
sponding block design is optimal in the sense 
indicated: For positive eigenvalues, pi, p2, 
. . . . pV-, , of the matrix C in Section C, (1) 
ny:f pi is maximal (D-optimality); (II) min p, is 
maximal (E-optimality); (III) xyZir pi-’ is mini- 
mal (or the average variante of the estimates 
of a11 normalized contrasts of the parameters 
ti is minimal) (A-optimality). 

Ifp,=...=p,-,=(n-b)/(v-l)(=p,say) 
and n, is either 1 or 0, then the design is opti- 
mal for each of the optimality criteria (I), (II), 
and (III). In this case, we have 

C=P(I,-Ü’E,,). 

Such a design is called a variante-balanced 
block design in which every normalized con- 
trast is estimable with the same variante. If  
Dr’ND,-‘N’-n-‘E,,r’=~(I,-n-‘E,,r’) (or 
C = (1 - PL) (D, - n-r rr’)), every normalized con- 
trast is estimable with the same efftciency 1 -p, 
where r = D, E, r and 0 <p < 1. Such a design 
is called an effciency-balanced block design. 
For a block design, any two of the following 
properties imply the third: (i) The design is 
variante-balanced; (ii) the design is efftciency- 
balanced; (iii) the design is equireplicated. 

When a11 block sizes kj equal some number 
k independent of j, a11 numbers ri of replica- 
tions equal some number r independent of i, 
and Âii. =xjnijnisj (number of times that both 
treatments i and i’ are applied to the same 
block) equals some number i independent of 
i and i’, then the design is combinatorially 
balanced. The design is usually called the 
balanced incomplete block design (BIBD) if 
these three conditions are fultïlled and k < 
u. A BIBD is both variante-balanced and 
efficiency-balanced. If  a11 the treatments are 
replicated the same number of times and the 
blocks are of the same stze in a block design, 
then the only variante-balanced design is a 
BIBD, provided such a design exists. A BIBD 
is often denoted by BlBD(v, b, r, k, Â) and we 
have the relations ur = bk, A(u - 1) = r(k - 1) 
and u < b, among the parameters; the last 
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relation is called Fisher’s inequality. The design 
is said to be symmetric when u = b. Further- 
more, if u = b is even, then r-Â must be a 
Perfect square. If  u = b is odd, then the equa- 
tion x2 =(~-).)y’+( -1)(“-‘)‘2?,z2 must have a 
solution in integers x, y, z not a11 zero. This is 
called the Bruck-Ryser-Chowla theorem. Neces- 
sary conditions for the existence of a BIBD 
have been obtained. One of these conditions 
is stated in terms of the Hasse-Minkowski p- 
invariant C,(A)=(-1, -l),nf=,(& -&i)@, 
where (m, m’)p is the tHilbert norm-residue 
symbol, D, = 1, and Di is the principal minor 
of the n x n matrix A. Another is described in 
terms of the embedding of a quasiresidual 
design into the corresponding symmetric 
BIBD. No effective necessary and sufftcient 
condition for the existence of a BIBD has been 
obtained. In general, it is conjectured that for 
a positive integer k, with hnitely many excep- 
tions, BIBD(v, b, I, k, 1)‘s exist for a11 pairs u, 2 
of positive integers satisfying u > k, i(u - 1) = 0 
(mod k- 1) and A~(U - 1) =O (mod k(k - 1)). 

The known methods of constructing block 
designs are of two main types, direct and re- 
cursive. Recursive methods are a way of con- 
structing designs from smaller ones. Direct 
methods yield easier constructions, but are 
applicable only for special values of the para- 
meters. A direct method of constructing a 
BIBD designates the treatments and blocks, 
respectively, as the points and subspaces of the 
+projective space and the +affine space over a 
tfïnite tïeld. TO explain another method of 
constructing a BIBD, we let G be an tadditive 
group of order n and X(/I, , xi) be m treat- 
ments corresponding to each element xci) of the 
group (i = 1,2, . . , n). The treatment x$) is said 
to belong to the ath class (c( = 1,2, , m), and a 
pair (XI), xi’) of treatments is called a dif- 
ference of type (a, /3, x@)) if x ’ - x(j) = x(p) ( + 0). 

We cari form t blocks of sizé’k 

B, = {x2:), > xy,, , 

L?,={x~;),...,x~~}, 

such that each block Bi contains exactly r 
treatments belonging to the ccth class (a = 
1, , m) and among all pairs of treatments 
in the same block there are 3, differences of 
each type (x, fi, x(“)). Such a set of t blocks is 
called a difference set. The t blocks in a dif- 
ference set are called initial hlocks. Given 
such a difference set, we cari obtain nt blocks 
by joining elements of G to the elements of 
each B, (s = 1,2, , t). These nt blocks form 
a BIBD(u = mn, b = nt, r, k = rm/t, A) (- 66 
Combinatorics). 

As a generalization of Fisher’s inequality, 
for an unequal-replicated block design with 
unequal block sizes, b > u - 6 holds, where is is 
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the multiphcity of the maximum eigenvalue 1 
of the matrix D,~1/2CD~~112. The equality sign 
holds if and only if the projection operator cor- 
responding to zero eigenvalue of D;1i2CDV~1’2 
is a zero matrix. 

F. Estimation in a Mixed Mode1 

Consider a block design (4), where every block 
has the same size k and every treatment has 
the same number r of replications. Let < be a 
tïxed effect and q a random effect denoted by 
H, and assume that W satisfies conditions (a) 
and (b) of Section A and that H satislïes con- 
ditions (d), (e), and (f) (where the 4 are re- 
placed by the coordinates Hj of H). I f  E(Hj) = y, 
j= 1, , b, then, changing the notation H - 
E,, y  to H, we cari rewrite (4) as 

Y=Ty+Q+YH+W, (8) 

with E(H) = 0. The normal equation that gives 
the least square estimate of < is 

(C+d(a2+ko~)~‘C,)< 

=Q+d(02+kof)~1Q1, (9) 

where C and Q are the same as in (6) and 
C, = ND;‘N’-rü’E,,, Q, =(ND;‘Y’- 
ü1 E,, T’)Y. Equation (9) cannot be solved 
unless the ratio o2 : r$ is given. When o2 : 0: is 
not known, substituting in (T’ + kg: its +Un- 
biased estimate given by analysis of variante, 
one obtains a solution of (9) which tends to a 
?Consistent estimate of < as the number of 
blocks tends to intïnity. 

G. Estimation in a Random-Effects Mode1 

Let < (denoted by 9) and H in the mode1 (8) be 
random effects. Suppose that B, H, and W are 
mutually independent, and that the distribu- 
tions of 5, H, and W are N(O,azI,), N(O,ofI,,), 
and N(O, (T’ZJ, respectively. The distribution of 
Y in (8) contains four parameters y, g2, crf, 0;. 
When kj < u, the tminimal sufftcient statistic is 
generally incomplete, and therefore the op- 
timal estimate of y, 02, of, and 02 cannot be 
determined. As an example, the minimal sufft- 
tient statistic for the random-effects mode1 of a 
BIBD(u, b, r, k, A) is 

(Ci y, Y’P,, Y, Y’P,,Y, Y’P,Y, Y’P,Y, Y’P,Y), 

where 

Pzl =k~‘(r-n)-‘BTB-kr(r-Â)-‘n-‘E,,, 

P,,=k((k-l)r+Â)-‘r-l 

x(T-k-‘BT)(T-km’TB), 

P,=k-‘B-k-‘(r-i)-‘BTB 

+d(r-R)-‘n-l&,, 

P,=I,-k-‘B-P,,, P5=rm’T-K’E,,,,, 



313 

with T= @@’ and B = YY’. In this case, 
E(Y’P,Y)=(n-u-ht l)c?, E(Y’P,Y)=(b- 
~)(a* + kaf). From these equations unbiased 
estimates of o2 and c: cari be derived, but their 
optimality is not guaranteed (- 396 Statistic). 

H. Factorial Experiments 

Suppose that there are h factors F,, , F,, 
which affect Y, and each factor F, has si levels 
(i= 1, ,h). It is assumed that U=S~ x s2 x x 
s,, treatment combinations are derived by all 
the combinations of the levels of h factors, and 
that u treatment effects are represented by the 
sum of subeffects called main effects and inter- 
actions, or factorial effects covering both. Such 
an experiment is called a factorial experi- 
ment or factorial design; it allows us to ex- 
amine the effects of two or more factors, each 
factor being applied at two or more levels, 
by testing all possible treatment combinations 
formed from the factors under study. Specifi- 
cally, suppose that we have the case h = 2, 
called a two-way layout. Let main effects be 
denotedby<‘=(tl,..., tJIJ’,<‘=(<: ,..., @‘, 
and interaction by c “=(~::,~:2,...,r~~S,,‘, 
where xi<! =O, ~j5j2=0,Ci5i~2=Cj5~2=0. 
When there is no restriction on the number of 
observations, each of u = s1 x s2 treatment com- 
binations is replicated t times. Components xjk 
of the observation vector Y are represented 
by a linear mode1 

i=l,...,s,; j=l,...,s,; k=l,...,t, 

or, in vector notation, 

The analysis of variante in this case is given by 

Y’Y =cY’PiY, 
1 

where Pi is the projection operator matrix 
on the subspace derived by a direct sum 
decomposition 

where n = s1 s2 t. Denoting by zj. the arith- 
metic mean of yj, over the subscript k and 
using similar notation z.., Fj., and y  ,,,, we 
haveY’P,Y=nY.2,Y’P,Y=s,tC(~..-~..)’, 
Y’P,Y=slt~(rj.-E..)*,Y’P4Y=tC(~j.+ 
~..-~..-~~)2,Y’P5Y=C(~jk-k;i.)2.The 
tanalysis of variante table is given in Table 1. 
For h > 3 similar models cari also be con- 
sidered for dealing with interactions up to h- 
factor. The factorial experiment is said to be 
symmetric if s1 = s1 = . = s,, = s and is called 
the sh factorial experiment. Otherwise it is 
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Table 1 Analysis of Variante 

Source 
Sum of Degrees of 
Squares Freedom 

F, main effects YP,Y s,-1 
F2 main effects Y’P,Y s* - 1 
F, F2 interactions Y’P,Y (~1--~)(~2--~) 

Error YP,Y S1&- 1) 

said to be asymmetric and is called the 
s1 x s2 x x sh factorial experiment. 

1. Fractional Factorial Designs 

Factorial designs require at least an experi- 
ment for a11 the combinations of levels of 
factors under consideration. When there are a 
large number of treatment combinations re- 
sulting from a large number of factors to be 
tested, it Will often be beyond the resources of 
the investigator to experiment with all of them. 
For such cases Finney (Ann. Eugen., 12 (1945)) 
proposed a method in which only a fraction of 
the treatment combinations are experimented 
with. A design of this type is called a fractional 
factorial design. One reason fot the usefulness 
of fractional factorial designs in preference to 
factorial designs is that they involve a smaller 
number of treatment combinations, since, in 
most scientiiïc experiments, it is usually found 
that a large number of the higher-order inter- 
actions are negligible. The crucial part of the 
specification of fractional factorial designs is 
the suitable choice of the defïning or identity 
relationship. Equating the nonestimable fac- 
torial effects for the selected fraction of treat- 
ment combinations with I gives the identity 
relation. Each factorial effect is not estimable 
after selecting a fraction of treatment com- 
binations, and any contrast of the selected 
treatment combinations represents more than 
one factorial effect. Al1 factorial effects repre- 
sented by the same treatment combinations 
are called aliases. In aliases, by assuming that 
other interactions are negligible when com- 
pared to the one of interest, estimation cari 
be made by means of the corresponding con- 
trast of the selected treatment combinations. 
When a11 factorial effects of order higher than 
1 are assumed to be zero, a fractional factorial 
design is said to be of resolution 2f+ 1 if it 
satisfïes the condition that under the usual 
mode1 a11 factorial effects up to order 1 are 
estimable, whereas a fractional factorial design 
is said to be of resolution 21 if it satistïes the 
condition that under the usual mode1 a11 fac- 
torial effects up to order I- 1 are estimable. 

In the beginning, the theory was developed 
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for an orthogonal fractional factorial design in 
which the estimates of various effects of inter- 
est are all uncorrelated. However, these are 
available only for special values of the number 
n of treatment combinations and are in general 
uneconomical in the sense that they require a 
large value of n in comparison with the num- 
ber of unknown effects. As a generalization of 
orthogonal fractional factorial designs, 1. M. 
Chakravarti (Sankhya, 17 (1956)) introduced 
the concept of balanced fractional factorial 
designs. In these designs, the estimates of 
effects are not always uncorrelated. However, 
the tcovariance matrix of the estimates is 
invariant under any permutation of factors. 
Balanced fractional factorial designs are flex- 
ible in the number of treatment combinations, 
with the result that more experimental situ- 
ations cari be handled. These two kinds of 
fractional factorial designs cari be constructed 
by using orthogonal arrays and balanced 
arrays, defïned in Section L. Al1 alias relations 
cari be derived from the identity relation in 
orthogonal designs. 

In the mode1 (1) for a design, the variante of 
the estimates of estimable linear functions of 5 
depends on the matrix X’X which is called the 
information matrix. For eigenvalues of X’X, 
the D-, E-, and A-optimalities of fractional 
factorial designs cari be delïned similarly to (I), 
(II), and (III) given in Section E. An ortho- 
gonal fractional 2h factorial design is D-, E- 
and A-optimal. A fractional factorial design is 
said to be saturated if the number of treatment 
combinations is equal to that of parameters in 
the mode1 to be estimated. However, since 
saturated designs do not provide an estimate 
of experimental error, their use should, in 
general, be conlïned to those situations in 
which a prior estimate of experimental error 
is available. The existence of a symmetric 
BIBD(4t- 1,4t - 1,2t - 1,2t - 1, t - 1) implies 
that of an orthogonal saturated fractional 
24’m’ factorial design of resolution III. 

J. Application of Algehras 

In the theory of design of experiments, the 
ideas of association algebra and relationship 
algebra play an important role. Let Ai be a 
u x v  symmetric matrix with entries 0 or 1 (i = 
0, 1, , m). I f  a set {Ai1 i=O, 1, . . . , m} satisfïes 
the conditions 

A,=I,, i~Ai=Ew 

and there is a nonnegative integer & for every 
i, j, k such that 

AjAk= f  &A,, 
i=O 

then the Ai are called association matrices. In 
this case, there exists a natural number ni for 
every i such that Ai E,, = niE,, holds. If  an (a, 8) 
component ufi of Ai is unity, then the treat- 
ments CI and /J’ are said to be the ith associates. 
The talgebra & over the real number lïeld 
generated by the matrices A,, A,, . , A,,, is 
called the association algebra. JZZ is commuta- 
tive and tcompletely reducible. Ak+P’ =(p,!J 
is the tregular representation of d. There is a 
nonsingular matrix U =(uij) that transforms 
all q into diagonal matrices simultaneously: 

U$ U -’ = diag(z,,, . . J zmi)a i=O,l,..., m. 

ml jEo UijAj, i=O, l,..., m, 

are mutually orthogonal idempotent elements 
of .d. For example, consider the case where 

Ao=& 04i> A, =(Es>,, -Cl)0 k,> AZ= 
h1 Q (Es2s2 - k,b A, =(Eslsl -4,) 0 (Es2sI - 42) 
with m = 3, where 0 means the TKronecker 
product. The algebra J& generated by A,, A,, 
A,, A, is called an F2 type association algebra. 
The association matrices Ao, A,, A,, and A, 
correspond to the relationships between the 
treatments in a two-way layout. The mutu- 
ally orthogonal idempotent elements in this 
case are A$ =s;‘E s,s, 0 S?E s2s2> A? =Us, - 
+%,s,) 0 G1Es2s2> A? =s;‘E.s,s, OK- 
GIESîSJ and A$’ =Us1 -s;lE,l,l)Q(L- 
s;’ ESîSJ. For the factorial experiment with h 
factors (h 2 3), association matrices cari be 
constructed in a similar way. If  h = 3, the num- 
ber m of association matrices is 7. Many types 
of association schemes are known, and some 
of them for m = 2 are classilïed as group divis- 
ible, triangular, Latin square, cyclic type, and 
SO on. For a group divisible type of v  = sr sz, 
A, =I,, A, = Is, 0 ESISZ - A,, A, = E,, - A, - 
A,; A$=V~~E,,, A?=u-‘{(q-l)(A,+A,)- 
A,}, A~=S;‘{@-l)A,-A,}. 

An experimental design consists of a set of 
y1 experimental units called plots. Defïne a 
relationship R between the plots as a set of 
ordered pairs (i, j) of plots. A relationship R 
among a set of n plots cari be expressed as a 
symmetric II x n matrix (F,~) of 0’s and 1’s: 

! 

1 if the ith plot is related to the jth 
r, = plot by the relationship R, 

0 otherwise, 

and this matrix is also denoted by R. If  there 
are k types of relationships Ri, . , R, among n 
plots, the algebra &? over the real number tïeld 
generated by the matrices R t, , R, is called 
the relationship algebra of the design. R is a 
tsemisimple algebra. 

Example (1). The relationship algebra % of 
the factorial experiment with h = 2 and t repli- 
cations is generated by the following matrices 
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over the real number fïeld: B, =A, 0 1,, B, = 

A, 0 (Et, - 0, 4 = A, 0 Et,, 84 =A, 0 Et,, 
B, =A, @ E,,, where Ai, i = 0, 1, 2, 3, are the 
association matrices of F2 type. The mutually 
orthogonal idempotents that correspond to 
the ttwo-sided ideal decomposition of 9 are 
BT =A; @ tC’E,,, B2” = Ay @ t-‘E,,, B-f = 
A; @ tC’E,,, Bf =A; Q t-‘E,,, and BT = 
A, @ (It - t C’E,,). These are the same as the 
projection Pi in the two-way layout design 
given in Section H. 

Example (2). Consider a block design with u 
treatments, each having the same number r of 
replications, and with b blocks, each having 
the same size k (CU). Suppose that association 
matrices Ai, i=O, 1, . , m, are given, by which 
the associations among the treatments are 
detïned. Let J$r be the number of blocks to 
which the ith associate treatments CI and p are 
applied. The design is called the partially bal- 
anced incomplete block design (PBIBD) if À$ 
= ii > 0 independently of c( and 8. When m = 1, 
the design is a BIBD. Let the observation 
vector be represented by (4). The relationship 
algebra 9 of a PBIBD is generated by n x n 
matrices In, E,,, B=YY’, T=@A$‘, i= 1, 
2 , . . . ,m, where NN’=C&ÂiAi=C&piA”, 
pi=~&,~jzij(O<pi<rk;i=O,l,...,m),andp, 
= rk = CEo ni Âi. Write T# =@Ai# @‘. Accord- 
ing as pi = rk, 0 <pi < rk, or pi = 0, L(T#) is said 
to be confounded with the blocks, partially 
confounded with the blocks, or orthogonal to 
the blocks. 9 is noncommutative, completely 
reducible, and isomorphic to the algebra of 
matrices of the type shown in Fig. 1. 

** 0 
*:t 

t 1 

‘.. 
::* 

0 ‘.. * 

Fig. 1 

The analysis of variante of a PBIBD is 
given by a decomposition of Z, into mutually 
orthogonal idempotent elements of W. For a 
PBIBD, the matrix C in (6) is of the form C = 
ziziA,*, where q=r-km’p,. For a connected 
PBIBD, a11 A#<, i= 1, 2,. , m, are estimable. 
If  there exists a group divisible PBIBD(m = 2) 
with ?,, = 1,, + 1, then it is E- and A-optimal. 

K. Design for Two-Way Elimination of 
Heterogeneity 

Consider a design with u treatments in a u x w 
rectangular block. The row effect and the 
column effect of this block are denoted by q 
and v, respectively. Thus the observation vec- 
tor Y is of the form 

Y=ry+aq+Yq+rIv+W, (10) 
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where the delïnitions of r, @, Y and II are 
similar to those for block designs. Set L = @‘II, 
M=@‘Y, Dr=@‘@, F=D,-w-ILL’-u-‘MM’ 
+(uw)~‘LE,,L’. The matrix F plays a role 
similar to that of the matrix C in (6). When the 
rank of F equals u- 1, the design is said to be 
connected. If  

F=z(I,-Ü’E”“), (11) 

then the design satislïes the optimum criteria 
(1), (II), and (III) given in Section E. When u = 
w = u and (11) holds, the design is called the 
Latin square. When u = u and (11) holds, the 
design is called the Youden square. When u > u 
and (11) holds, the design is called the Shrik- 
bande square. In a Youden square design treat- 
ments are grouped into replications in two 
different ways, i.e., rows and columns, where 
rows constitute a BIBD, whereas columns are 
complete blocks. The existence of a Youden 
square design is equivalent to that of a sym- 
metric BIBD. 

If the associations among u treatments are 
delïned in terms of association matrices, the 
partially balanced design for two-way elimi- 
nation of heterogeneity cari be delïned in a way 
similar to the PBIBD. In this case, the equa-’ 
tionF=&ziAK holds,andif&={I,,E,,-I,}, 
then (11) holds, hence the optimum criteria 
are fultïlled. The definition of the relationship 
algebra W of a partially balanced design for 
two-way elimination of heterogeneity is similar 
to that used for the PBIBD. W is isomorphic 
to the algebra of matrices shown in Fig. 2. 

::: *** 
2: 

::* 

Fig. 2 

The analysis of variante of this design is 
given by a decomposition of 1, into mutually 
orthogonal idempotent elements of 9. 

L. Balanced Array and Orthogonal Array 

Suppose that T is an n x h matrix with entries 
from a set A of s (> 2) distinct elements. Con- 
siderthes’lxtmatricesX=(x,,x,,...,x,) 
that cari be formed by giving different values 
to the X,(E A), i = 1, 2, , t. Suppose that asso- 
ciated with each 1 x t matrix X there is a non- 
negative integer Â(x,, xî, ,x,) which is invar- 
iant under any permutation of a given set 

1 x1,x 2, , x,}. If, for every t-columned sub- 
matrix of T, the s’ 1 x t matrices X occur as 
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rows E.(x,,x,, . . . . XJ times, then the matrix T 
is called the balanced array (BA) of size n, h 
constraints, s levels, and strength t having the 
index set {i(x,, , x,)}. Such an array is de- 
noted by BA(n, h, s, t); n is also called the num- 
ber of treatment combinations. In particular, 
when 1(x,, , x,) = Â for every xi, . , x,, such 
an array is called an orthogonal array (OA) of 
size n, h constraints, s levels, strength t, and 
index 1, which is denoted by OA(n, h, s, t). 
We have n = 1s’. Balanced arrays have the 
advantage that they cari be constructed 
with fewer treatment combinations than 
the orthogonal arrays for given h, s, t para- 
meters. The transpose of the incidence ma- 
trix of a BIBD(v, b, r, k, A) is, for A = (0, l}, a 
BA(I>, u, 2,2) with 1(0, 0) = b - 2r + A, A( 1,O) = 
n(O, 1) = r - E., and A( 1,l) = 1. There is a close 
relation between the existence of an OA and 
that of a BIBD. For example, the existence 
of an OA(s2, h, s, 2) is equivalent to that of 
h -2 mutually ?Orthogonal Latin squares of 
order s that is for h = s + 1 equivalent to the 
existence of a BIBD(s’, s(s + l), s + 1, s, 1). The 
existence of an OA(4t, 4t - 1,2,2) is equivalent 
to that of a symmetric BIBD(4t - 1,4t - 1, 
2t - 1,2t - 1, t - 1) which is also equivalent to 
the existence of an OA@t, 4t, 2,3). 

Balanced arrays and orthogonal arrays play 
a vital role in the construction of symmetric 
and asymmetric confounded factorial experi- 
ments and fractional factorial designs. In an 
OA(n, h, s, t), regarding columns and entries as 
h factors and levels of a factor of the column, 
respectively, each row corresponds to a treat- 
ment combination. In this case, this ortho- 
gonal array gives an orthogonal fractional s’ 
factorial design of resolution t + 1 with n treat- 
ment combinations. A necessary and sufficient 
condition for a fractional s* factorial design 
of resolution 21t 1 to be orthogonal (resp. 
balanced) is that the design be an orthogonal 
(resp. balanced) array of strength 21, provided 
that the information matrix of the design is 
nonsingular. 

M. Response Surface 

If a11 the factors represent quantitative vari- 
ables, such as time, temperature, amount of 
ingredients, etc., it is natural to think of the 
yield or response Y of the experimental results 
as a continuous function of the levels of these 
factors. We cari Write a functional relationship 

Y,=f(x Ia>XZa, "',Xha)+ w,, CI = 1,2, ) n, 

where Y, represents the crth observation in the 
designed experiment and xia represents the 
level of the ith factor in the ath observation. 
The function ,f or the surface defïned in (h + l)- 
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dimensional tEuclidean space by f  is called the 
response surface. The residual W, measures the 
experimental error of the ccth observation. A 
knowledge of the function f  gives a complete 
summary of experimental results and also 
enables us to predict the response for values of 
the xia that were not tested in the experiment, 
or to determine such combinations of the 
values of variables xia that give the max- 
imum (or minimum) value off: When the 
mathematical form off is not known, the 
function cari sometimes be approximated 
satisfactorily within the experimental region, 
which is relatively small, by flexible graduating 
functions, such as polynomials of degrees 1 
and 2 in the variables xirr: 

Y,=p,+ i PiXja+ i Biix&+ $, Bijxiaxja+ wa. 
i=l i=l i<j 

The coefficients &, &, . . . are parameters to be 
estimated from the data. Thus, (i) when the 
form of the true fis assumed known, the ob- 
ject is to estimate the parameters; (ii) when the 
form of the true f  is unknown, the abject is’to 
approximate the f  by some graduating func- 
tion. Designs appropriate for (i) and (ii) are 
called designs for estimating parameters and 
designs for exploring a response surface, respec- 
tively. Some experimental designs that have 
been developed for tïtting polynomials of the 
fïrst and second degrees are called first-order 
designs and second-order designs, respectively. 
The problem here is to increase the precision 
of fitting response surfaces by appropriately 
choosing n points in a given experimental 
region S of variable x. That is, how do we fmd 
the experimental region that interests us in the 
sense of lïnding optimum conditions and, 
having found it, how do we design experiments 
to map f  over the region? As optimum criteria 
of allocations, corresponding to (1) and (II) 
given in Section E, consider the following: 
(IV) the tgeneralized variante of the estimates 
of coefficients is minimal; (V) the supremum of 
the variante of estimates of the expectation 
E(Y) of response Y is minimal for a11 variables 
x E S. For example, when an observation Y is 
given by a polynomial regression of a variable 
xas Y,=Bo+B1x,+82x,2+...+Phx,h+W,,if 
for the ilegendre polynomial P*(x) we allocate 
an experiment replicated at x = f  1 and h - 1 
roots of PL(x) = 0 the same number of times, 
then it is an optimum design in the sense of 
(IV) and (V). 

As a design for tïtting first-order response 
planes, we cari use a 2” factorial design (or its 
fraction) of resolution III, since it is suflïcient 
to consider only linear effects for each of h 
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factors. In comparing first-order designs, we 
take as an optimum criterion the minimum of 
the average variante of the estimates of the 
coefhcients, corresponding to (III) of Section 
E. For a design for fïtting second-order re- 
sponse surfaces, we need at least three levels 
of each factor for estimating a11 effects up to 
quadratic ones; then we cari use a 3h factorial 
design (or its fraction) of resolution V for esti- 
mating the linear x linear component of inter- 
actions of two factors. In this case, treatment 
combinations are too large in number, SO we 
cari adopt central composite designs, which are 
constructed by adding further treatment com- 
binations to those obtained from a 2h factorial 
design (or its fraction). I f  the coded levels of 
each factor are -1 and +1 in the 2h factorial 
design, the (2h + 1) additional combinations 
are(O,O ,..., O),(+d,O ,..., O),(O, +d,O ,..., 0), 

. , (0, ,O, k d). The total number of treat- 
ment combinations to be tested is 2h + 2h + 1 
(< 3h for h > 3). The value of d cari be chosen 
to make the coefficients in the quadratic poly- 
nomials as orthogonal as possible to each 
other or to minimize the bias that is created 
if the true form of the response surface is not 
quadratic or to give the design with the prop- 
erty of being rotatable. If  Y,, is the estimated 
response at (xi 0, x2,, , . , xh,,) E S, the response 
surface design is said to be rotatable if and 
only if the variante of Y0 is a function only 
of the distance p = (x:, +x&, + . . . + xh,,) 2 112 of 

(x iO, x2,,, . , xh,,) from the origin, SO that the 
variante contours in the experimental region 
of the variables are circles, spheres, or hyper- 
spheres centered at the origin. Now, when Y= 

Bo+81x1+B2X*+811X:+B22X2+2812X1X1+ 
W with lx,\ < 1 for i= 1, 2, an optimum experi- 
ment in the sense of(V) is given by allocating 
0.0960 at the origin, 0.0802 at experimental 
points (l,O), (-l,O), (0, l), (0, -l), and 0.1458 
at experimental points (1, l), (1, -l), (-1, l), 
(-1, -1) respectively. However, this design is 
not rotatable. Instead of an optimum criterion 
(V), we cari consider a region s” which is not 
always equal to the original experimental 
region S and a criterion: (V’) The supremum 
of the variante of estimatesof the expectation 
E(Y) of response Y is minimal for a11 variables 
x E 3. Within x: + xi < c2, an optimum alloca- 
tion depends on the value of c, and it is shown 
that a rotatable design is obtained only if c 
is in a certain range. 

There are many topics in the theory of ex- 
perimental design besides the ones mentioned 
in this article (- [4] for multiple comparison, 
[9] for confounding designs that are factorial 
experiments in which the block size is reduced 
and in which for each block a fractional of a11 
the treatment combinations are tested, [ 101 for 
split-plot designs in which certain main effects 
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are confounded with blocks, [ 153 for weighing 
designs). 
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A. Definition 

The determinant of an n x n +matrix A = (uik) 
in a tcommutative ring R is detïned to be the 
following element of R: 

C(wPbl,l~2,2 ...anpn, 

where 

( 

1 2 . . n 
P= 

PI P2 “’ P” > 

is a permutation of the numbers 1,2, ,n, 
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sgn P denotes the sign of the permutation P 
(that is, sgn P = 1 if P is an even permutation 
and sgn P = - 1 if P is an odd permutation), 
and the summation extends over a11 n! per- 
mutations of 1,2, . . , n. The determinant of A 
is denoted by 

a11 a12 . . . a,, 
a21 az2 . . . azn 

. . . 

a”1 un2 . . ann 

It is written JaikJ or ) AJ and is also denoted by 
det A. Usually we suppose that R is the field R 
of real numbers or the field C of complex 
numbers, but the following theorems are also 
valid for cases in which R is any commutative 
ring, unless otherwise stated. 

B. Relation to Exterior Algebras 

Consider an texterior algebra (+Grassmann 
algebra) of a linear space (+free module) of 
dimension n over R with a basis (e, , e2, . ,e,). 
Set 

e:=ai,e,+aizez+...tai,e,, 

where aijE R. Then we have e; A e; A A en 
= ) aikJ e, A e2 A . A e,. Conversely, we cari 
define the determinant [a,[ by this relation. 
The properties of determinants cari be easily 
deduced from those of exterior algebras. 

C. Fundamental Properties of Determinants 

(1) The determinant of the ttransposed matrix 
‘A of a matrix A is equal to the determinant of 
A. Hence the theorems stated for rows are also 
valid for columns. 

(2) If  the elements of one row (column) of a 
matrix are multiplied by a factor c, the deter- 
minant of the matrix is also multiplied by c. I f  
the elements of one row (column) of a matrix 
are zero, its determinant is equal to zero. 

(3) If  from a matrix A=(Q), we obtain two 
matrices A’ and A” by replacing one row, for 
instance the ith row, by ail,-. , uin and by 
a, 1 + ail, , ai, + ai,, respectively, then 1 A”I = 
1 Al + IA’I. This relation is equally valid for a 
column. 

(4) If  we obtain A, by a permutation Q on 
the rows of a matrix A, then (A,( = (sgn Q)I A(. 
In particular, if two rows (columns) of a ma- 
trix are interchanged, then the determinant 
changes sign. 

(5) The determinant of a matrix is zero if 
two rows (or columns) are identical. 

(6) The determinant of a matrix is not 
changed if the elements of any row (column), 
each multiplied by the same factor, are added 
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to the corresponding elements of another row 
(column). 

(7) Suppose that R has unity element. Let xik 
(i,k=l , , n) be n2 variables in R, and denote 
a function (having its values in R) of these 
variables by <p(X), X = (xik). Assume that C~(X) 
has the following properties: (i) if the elements 
of one row of X are multiplied by a factor A, 
the value of <p is also multiplied by E.; (ii) if we 
obtain two matrices X’ and X” by replacing 
one row of X, for instance the ith row, by 
xi,,..., xi, and by xi, +xi,, , xin + xi,,, respec- 
tively, then 9(X”) = <p(X) + V(X’); and (iii) if 
two rows of X are equal, C~(X) = 0. Then q(X) 
= ~1x1 for some constant c (in R). 

(8) Suppose now that R is a fïeld K. Assume 
that a function <p(X) (in K) has the following 
properties: (i) if the elements of one row in 
X are multiplied by i, the value of <p is also 
multiplied by 1”; and (ii) the value of cp is not 
changed if the elements of any row are added 
to the corresponding elements of another row. 
Then <p(X)=clXI for some constant c (in K). 

D. The Laplace Expansion Theorem 

Let A = (ai& be an n x n matrix. Take r-tuples 
(i,, . . . . i,) and (k,, . . . . k,), where i, and k, be- 
long to { 1, , n} and i, < ci,, k, < <k,. 
Let (i,,, , , i,) and (k,,, , . , k,) be (n-r)- 
tuples such that ir+l < ci,,, k,+l <. <k, and 
ii,,... ,1,,z,+lr...,in}={k,,...,k,,k,+,,...,k,} 

= { 1, , n}. Let acil ,.., ,i,)(k, ,... ,k,) be the deter- 
minant of an r x r matrix whose (p, q)- 
component is the (ip, k,)-component of A 
for each p and 4. We cal1 this determinant 
a minor of degree r of the matrix A. (The 
corresponding submatrix of A is sometimes 
also called a minor of A.) In particular, if 
(il, , i,) = (k k ) then it is called a princi- ,r..., r> 
pal minor. Furthermore, we define the cofactor 

of the miner a(Ll ,..., i )(k, ,... k ) of A to be r r 

a<L ,..... i,)(kj ,..., k,)=(-l)L+Pa(i,+l ,.... i,)(k,.+ ,...., k,)r 

where1=i,+...+i,.and~=k,+...+k,.In 
the particular case r = 1, the cofactor of aik is 
aik =( -l)‘ikA,k, where Aik is the determinant 
of the (n- 1) x (n- 1) matrix obtained from A 
by eliminating its ith row and kth column. For 
simplicity, we abbreviate (il,. , i,), (k,, , k,), 
and (j,, ,j,) as (i), (k), and (j), respectively. 
Then we have 

~a<O~j~â<k~U~= IA( if(i)=(k), 

0 if(i) z(k), 

;u(j)(k)~(j>(i>= IA1 
1 

ifG)=(k)3 
0 if (i)#(k), 

where Cv, means that the sum is taken over a11 
combinations (j). This is called the Laplace 
expansion theorem. If a matrix A has the form 
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*=(f 0) or A=(: i), 

and B and C are square matrices, then by this 
theorem we have 1 A 1 = 1 Bj 1 CI. I f  we number 
the combinations (i) = (i, , , i,) and (k) = 
(k, , , k,) appropriately (for instance, in lexi- 
cographical order) and regard the numbers 
assigned to them as row numbers and column 

numbers, respectively, to form a matrix (u(~&, 
then the Laplace theorem cari be expressed as 

.(a (I)(k))(a(k)(i))=(a(k)(l))(U~i)(k)) 

In the particular case r = 1, we have 

pijükj={‘; ;y;> 

E. Product of Determinants 

Let A = (uik) and B = (bik) be two n x n matrices. 
For the product AB = C=(Q), where cik = 
C~=la,bj,(i,k=l ,..., n),wehaveIABI= 
1 Al IBI. The tinverse matrix A-’ exists for an 
n x n matrix A=(Q) if and only if JAl$O, and 
then A-’ =(hik) with elements hik=&J Al. 
Moreover, we have 1 A-’ I= 1 Al-‘. (In the case 
where the elements uik are in the commutative 
ring R with unity element, A-’ exists if and 
only if 1 Al is a tregular element of R.) 

F. Theorems on Determinants 

(1) Let Eik be the cofactor of uik in the deter- 
minant of an n x n matrix A=(UJ. Then the 
determinant IZikI is equal to 1 Alnm’. In general, 

l”(t ,,..., i,)(k, ,..., !fril=IAle’i). 

I&i, ,..., i,)(kI . . xr,l=14~~1). 

(2) The determinant of a submatrix of the 
matrix (üik), composed of the i, th, , i,th rows 
and k,th, , k,th columns of (Q is equal to 

‘Al’-‘& 1 <..., i,j(k, . k,). 

be the determinant 

of the (n-r) x (n-r) matrix obtained from an 
n x n matrix A by eliminating its i, th, , i,th 
rows and k,th, , k,th columns. Then 

i<j, k-cl. 
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(4) Sylvester’s theorem. Let hi, (i, k = 1, , 

n-f-1 denote the miner a(1 ,..., r,r+i)(l,..., r,r+k) 

of an n x n matrix A = (aji). Then 

u,, a,, 
IhikJ=IAl 

I l 

n-r-1 

ur, arr 

(5) Let A be an n x m matrix and B an m x n 
matrix. Then AB is an n x n matrix. I f  n > m, 
then jABI=O. Ifn<m, let (i)=(i ,,..., iJ(i, <... 
ci,) be a combination of 1, 2, , m, taken n at 
a time. Let Aci, be the n x n matrix composed 
of the iith, , i,th columns of A, and Bu, the 
n x n matrix composed of the i,th, , i,th rows 
of B. Then 1 ABI = &l Aci,/ 1 Bti,l, where the 
summation extends over ah possible combi- 
nations (i). 

(6) Determinant of a +Kronecker product. I f  
A is an m x m matrix and B is an n x n matrix, 
then IA@BI=IAI”IBI”. 

(7) Let H be an n x n +Hermitian matrix, and 
let H, denote the matrix composed of its first k 
rows and columns. Then H is positive detïnite 
if and only if 1 Hkl > 0 for a11 k = 1, , n. 

G. Special Determinants 

(1) A determinant of the form 

1 1 . ..l 

x 1 x2 “. x, 
x: x; ... xi 

..(-l n-1 n-1 
1 x1 ‘.. x, 

is called a Vandermonde determinant. It is 
equal to the tsimplest alternating function 

ni>k(xi - xk). 

(2) A cyclic determinant is one of the form 

-x0 x, x2 “’ X,-l 
X,-l X” x, “’ X,-2 

where < is a +Primitive nth root of unity. 
(3) Consider the vectors ‘xi =(a,, , ui2, , u;,J 

(i=l,2,..., n), and let (s(,, x,) denote the +inner 
product of xi and Es. Then the following deter- 
minant is called the Gramian of these vectors: 

(x,,a,) h,aJ ... (a,,a,) 
(a2,a1) (a2,a2) ... (h,a,) 

(a,,al) ha21 ... (*cn3ax.) 

‘11 1 u,2 “’ a , ,z 
‘Z21 czzz “’ a,,, ZZZ 

%l an2 “. %, 
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(4) For an talternating matrix (namely, a 
square matrix X such that ‘X = -X), we have 
the identity 

0 x12 Xl3 “’ Xln 

-x12 0 x23 ... X2n 

-x13 -x23 0 x3. 

-Xl” -Xzn -X3” “’ 0 

1 

PJ . . , xi,, . . .)’ if n is even, 
ZZZ 

0 if y1 is odd, 

where P,,( , xij, . ) is a polynomial of vari- 
ables xij, which (equipped with appropriate 
sign) is called the Pfaffïan of these variables. 
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Difference Equations 

A. General Remarks 

Let y  be a function of a real variable x delïned 
on an interval 1 and let Ax be a Iïxed quantity. 
When two points x and x + Ax are in 1, we 
delïne the difference Ay of y  at x by Ay = 
y(x + Ax) -y(x) and the difference quotient 
by A~(X)/A~; Ax is called the difference of x. 
Without loss of generality, we cari take Ax = 
1, for otherwise there is a constant b such 
that Ax’= 1 for the new independent vari- 
able bx = x’. I f  Ax = 1, the second difference 
A’y(x) = A(Ay(x)) is given by 

A2y(x) = Ay(x + 1) -A~(X) 

=y(x+2)-2y(x+ l)+y(x). 

Similarly, the difference of the nth order is 
delïned by A”~(X) = A(A”-’ y(x)), and 

A”~(X)= i(-l)“-’ ; y(x+k). 
k=O 0 

Conversely, y(x + n) is expressed by differences 
as 

Aky(4 

(- 223 Interpolation). 

B. Summation 

Given a function g(x) and Ax, a function y(x) 
that satislïes Ay(x)/Ax = g(x) is called a sum 
of g(x). Summation of g(x) is to lïnd a sum of 
g(x). Given a sum y(x) of g(x), an indefinite 
sum of g(x), written as Sg(x)Ax, is given by 
Sg(x)Ax = y(x) + c(x), where c(x) is an arbitrary 
periodic function of period Ax. In many cases, 
c(x), which corresponds to an arbitrary con- 
stant in an indetïnite integral, is omitted. For 
example, a sum of g(x) = nx”-’ for Ax = 1 is the 
nth-order tBernoulli polynomial B,(x) for 
n#O; a sum of x-’ is $(x), given by +(x)= 
d log I(x)/dx (- 174 Gamma Function). 

When the series - Ax CEOg(x + kAx) or 
Ax CE, g(x - kAx) converges, both cari be 
sums of g(x). Since the requirement of conver- 
gence for these series was found to be too 
strict, the following requirement was given by 
N. E. Norlund instead: Let x be a real variable 
and g(x) be continuous for x > b. Delïne J.(x) 
by n(~)=x~(logx)~(p> 1,420). Then if for a 
positive r) 

s 

cc 
F(x, Ax, q) = dde 7-w) dz 

LI 

-Ax 2 g(x+kAx)e~““‘“+kA”’ 
k=O 

is convergent for a > b, F satisfies AF(x, Ax, 
V)/AX =g(x)exp( - V~,(X)). Accordingly, if 
F(x, Ax, n) approaches a limit F(x) as q-0, 
F(x) is a solution of AF(x)/Ax = g(x). F(x) 
is called the principal solution of AF(x)/Ax = 

g(x). 

C. Difference Equations 

Let Ax = 1. An equation F(x, y(x), A~(X), 
. , A”~(X)) = 0 in x and differences of an un- 

known function y(x) is called a difference 
equation. If  the substitution y  = <p(x) satisfies 
the equation for x in some interval, <p(x) is a 
solution of the equation. Because of the rela- 
tion between y(x), y(x + l), , y(x + n) and the 
differences of y  at x, we cari transform the 
given difference equation in the form G(x, y(x), 

y(x+ l), ...1 y(x + n)) = 0. This form appears 
more often in applications and is called the 
standard form of a difference equation. 
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If the equation is linear in y(x), y(x + l), 

.” / y(x + n), namely, if it is given by 

iJJoPi(x)Y(x+i)=~(x). 

the difference equation is said to be linear. 
When q(x)=O, it is homogeneous; otherwise, it 
is inhomogeneous (or nonhomogeneous). 

D. Linear Difference Equations 

Assume that p,Jx), , p,,(x) are single-valued 
analytic functions without poles and common 
zeros in some domain. Consider the linear 

difference equation 

Ifcpl(X),<p,(4,..., C~,(X) are solutions of(l), 
then a linear combination a r (X)V, (x) + 
a,(x)<p,(x) + . + a,(x)cp,(x) with arbitrary 
periodic functions a,(x), a,(x), . , a,(x) of 

period 1 is also a solution of (1). 
Let &, fi*, . be singular points of pr(x), 

p2(x), . ,p,(x), LX~, LX~, be the zeros of p,(x), 

and yr, y2, be the zeros of p,(x + n). Then the 
set of singular points of the linear difference 
equation (1) is the set {c(~, pi, y,}. 

A function C~,,,(X) is said to be linearly de- 
pendent on the functions ‘pi(x), Q,(X), . , 
(~,,-i (x) with respect to the difference equa- 

tien (1) if<p,(x)=u,(x)cp,(x)+u,(x)<p,(x)+ 
. +a,~,(x)<p,~,(x), where u,(x), Q(X), . . . . 

a,-,(x) are functions of period 1, every one 
of which takes a nonzero lïnite value at least 
at one point not congruent (mod Z) to any of 

the singular points, where Z is the additive 
group of integers. 

A set of m functions is called linearly inde- 

pendent if none of the functions is dependent 
on the other m - 1 functions. When a set of n 
solutions of equation (1) is linearly indepen- 
dent, it is a fundamental system for (1). Any 
solution of (1) cari be expressed as a linear 
combination of n solutions of a fundamental 

system. 
The determinant 

<PI(X) %(X) <p,(x) 
<Pl(Xf 1) qz(x+ 1) ::: V”(X + 1) 

<Pi(X-tFl) qz(x+n-1) . <PJx+n-1) 

formed from n functions <pr (x), <p2(x), . . , <p,(x) 
is called Casorati’s determinant and is denoted 
by D(<pi(x), <p2(x), . , <p,(x)). A necessary and 
sufftcient condition for a given set of n func- 
tions to be independent is that Casorati’s 

determinant be nonzero at every point except 

those which are congruent to singular points 
of (1). Casorati’s determinant is used to deter- 

Difference Equations 

mine whether a given set of solutions is 
fundamental. 

Let $(x) be a solution of a nonhomogeneous 

linear difference equation 

p.x(Y)= C Pi(x)Y(x+i)=q(x). 
i=O 

(2) 

Ifcpl(X),<p,(4,..., C~,(X) are n linearly inde- 
pendent solutions of (l), then an arbitrary 
solution of (2) is given by 

+ %(X)cpn(X) + w> 

where a,(x), . . , u,(x) are arbitrary periodic 
functions of period 1. Then the expression for 
y is called a general solution of (2). If we ab- 

breviate Casorati’s determinant of a funda- 
mental system of solutions cpi(x), (p2(x), . . , 
<p,(x) of (1) by D(x) and Write pi(x) as the quo- 
tient of the cofactor of <pi(x + n) of D(x + 1) by 

D(x + l), we have 

assuming that the summation S on the right- 
hand side is known. This is the analog of 

Lagrange’s tmethod of variation of constants 
in the theory of linear ordinary differential 
equations. 

E. Linear Difference Equations with Constant 
Coefficients 

If a11 the coefficients in 

(3) 

are constants, n linearly independent solutions 
are obtained easily. Indeed, if i is a root of the 

algebraic equation C&pi Â’ = 0,1” is a solu- 
tion of (3). This algebraic equation is called 
the characteristic equation of (3). If it has n 
distinct roots Ai, A,, . . Â,,, then A;, A;, . , Â; 
are n linearly independent solutions. In gen- 
eral, if Â is an m-tuple root of the characteristic 
equation, then Â”, xÂX, ,xm-iAx are solu- 
tions of (3). Accordingly, if Aj is a root of multi- 

plicity mj (&, mj = n, j = 1,2, , s), then Ây, 
x1.7, . ,xrn~-ily (j= 1, . ,s) constitute a set of 

n linearly independent solutions. 
Even if a11 the pi are real, the characteristic 

equation may have complex roots. In such a 
case real solutions are obtained as follows: 
When i = p + iv is a root of multiplicity m, 1= 

p - iv is also a root of the same multiplicity. 
If we Write p = JI*2+v2, tan cp = v/p, then 
~“COS (px, p”sin <px, ~~“COS <px, xp”sin vx, . . , 

Xm-‘pXCOS cpx, x mm’p”sin <px are 2m indepen- 
dent real solutions. 

Nonhomogeneous equations with con- 
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stant coefficients cari be generally solved by 

Lagrange’s method with these solutions. How- 
ever, when the nonhomogeneous term has a 
special form such as 

where p(x) is a polynomial in x and Â is a root 
of multiplicity m of the characteristic equation, 
we cari use the method of undetermined coeffr- 
cients. In this particular case, the substitution 

(A, + A, x + . + A,xk)x”I” with undetermined 
coefficients A,, A,, . . . , A, gives solutions, k 

being the degree of p(x). 

F. Difference and Differential Equations 

The differential operator d/dx acts on the 
family of functions {x” 1 m = 0, k 1, . } accord- 
ing to dx”Jdx = mx”-l, just as the difference 
operator A acts on the family {x(~) = l-(x + 
l)/F(x-m+ l)lm=O, kl, . ..} according to 

Ax(“‘) = mx(“-l). Hence by using the factorial 
series Z a,~(“‘) and its similarity to the power 
series C u,xm, we may obtain some analogies 
with the theory of differential equations. For 
example, the +Frobenius method in the theory 
of tregular singular points cari be applied to 
the system of difference equations 

(Z- 1)A -l’%(Z) = j$ +k(Z)Wj(Zh 

k=l,2 ,..., n. 

However, there are certain essential differences 
between functions detïned as solutions of 
differential and difference equations. For ex- 
ample, Holder’s theorem states that no solu- 

tion of the simple difference equation y(x + 1) 
-y(x)=x-’ satistïes any talgebraic differential 
equation. Consequently, the gamma function, 
which is related to a solution of the equation 

Il/(x) = d log r(x)/dx, cannot be a solution of 
any algebraic differential equation. For the 
numerical solution of ordinary differential 
equations by difference equation approxima- 
tion - 303 Numerical Solution of Ordinary 
Differential Equations. 

G. Geometric Difference Equations 

For an arbitrary complex number 4, an equa- 
tion of the form y(qx) =f(x, y(x)) is called a 
geometric difference equation. For example, the 
ordinary difference equation (1) cari be trans- 
formed into 

k$o PA4 Wqk) = w (1’) 

by the change of variable z = q”. Although it is 
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possible to transform an equation of the type 

(1’) into that of the type (1), there are theories 
developed specitïcally for the type (1’) since 
the coefficients of the equation may become 
more complicated by such a transformation. 
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105 (Vll.2) 
Differentiable Manifolds 

A. General Remarks 

The rudimentary concept of n-dimensional 

manifolds cari already be seen in J. Lagrange% 
dynamics. In the middle of the 19th Century n- 

dimensional +Euclidean space was known as a 
continuum of n real parameters (A. Cayley; H. 
Grassmann, 1844, 1861; L. Schlafli, 1852). The 
notion of general n-dimensional manifolds was 
introduced by B. Riemann as a result of his 

differential geometric observations (1854). He 
considered an n-dimensional manifold to be a 
set formed by a 1 -parameter family of (n - l)- 
dimensional manifolds, just as a surface is 
formed by the motion of a curve. Analytical 
studies of topological structures of manifolds 
and their local properties were initiated and 

developed by Riemann, E. Betti, H. Poincaré, 
and others. TO avoid the diflïculties and dis- 
advantages of analytical methods, Poincaré 

restricted his consideration to those topo- 
logical spaces X that are tconnected, ttri- 
angulable, and such that each point of X 
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has a neighborhood homeomorphic to an n- 

dimensional Euclidean space. We often refer to 
such spaces as Poincaré manifolds; Poincaré 
called them n-dimensional manifolds. In 1936, 
H. Whitney published a monumental paper 
[ 141 on differentiable manifolds in which the 
various fundamental concepts on differentiable 
manifolds were established. This and sub- 
sequent papers written by Whitney during 

nearly twenty years greatly influenced the 
rapid advance of the theory of differentiable 
manifolds since 1950. 

B. Topological Manifolds 

An n-dimensional topological manifold M is by 
delïnition a +Hausdorff space in which each 

point p has a neighborhood U(p) homeo- 
morphic to an open set of R”. 

Let M’ be a Hausdorff space in which 
each point p of M’ has a neighborhood U(p) 

homeomorphic to an open set of H”, where H” 
is the half-space {(x1,x2, . . ..x.)~R”jx,>O}. 

Let 8M’ denote the set consisting of points p 
of M’ such that p corresponds to a point of 
H~={(xl,...,x,)~Hn~x,=O}cH”underthe 
homeomorphism from U(p) to an open set of 

H”. M’ is called an n-dimensional topological 
manifold with boundary if 8M’ # 0, and 3M’ is 
called the boundary of M’. On the other hand, 
M defined as above or M’ with aM’= 0 is 
called an n-dimensional topological manifold 

without boundary. The interior of M’ is the 

complement Mo = M’- aM’ of the boundary. 
The boundary of an n-dimensional topological 

manifold is an (n - 1)-dimensional topological 
manifold. A topological manifold without 
boundary is called closed or open according as 
it is compact or has no connected component 
which is compact. There exist connected topo- 
logical manifolds that are not tparacompact; 
among them, the 1-dimensional ones are called 
long lines. A connected paracompact topolog- 
ical manifold M has a tcountable open base 
and is tmetrizable. 

C. Local Coordinates 

Let M be an n-dimensional topological mani- 
fold. A pair (U, $) consisting of an open set U 
of M and a homeomorphism $ of U onto an 
open set of R” is called a coordinate neighbor- 

hood of M. If we denote by (x’(p), . ,x”(p)) 
(pe U) the coordinates of the point $(p) of R”, 
then xi, x2, , x” are real-valued continuous 
functions delïned on U. We cal1 these n func- 

tions the local coordinate system in the coordi- 
nate neighborhood (U, t,k) and the n real num- 

bers x1(p), , x*(p) the local coordinates of the 
point ~EU (with respect to (U, $)). 
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A set S = { ( UZ, $J},,, of coordinate neigh- 
borhoods is called an atlas of M if { UajatA 
forms an topen covering of M. 

D. Differentiable Manifolds 

Let S = {(U,, t+kJ},,, be an atlas of an n- 

dimensional topological manifold M. For each 
pair of coordinate neighborhoods (U,, $J and 

(U,, tiB> in S such that U, fl U, # 0, +bD o I&I,-’ is 
a homeomorphism of the open set $JU, fl U,) 
of R” onto the open set tiB(U, n Ua) of R”. Let 

x=(x’, . , x”) E $J U, n Us). Then we cari 
Write (~~~~~~I,‘)(X) =($a(~), . . J;‘(x)). If the 
n real-valued functions fs, , fim defined in 

$J U, n UP) are of +class c’ (1 < Y G 00) (resp. 
treal analytic) for any CI, p in A such that 
U, n U, # 0, then we cal1 S an atlas of class C’ 
(resp. CU) of M. When an n-dimensional topo- 
logical manifold M has an atlas S of class 
c’ (1 < r < w), we cal1 the pair (M, S) an n- 

dimensional differentiable manifold of class C 
(or C’-manifold). A C”-manifold is also called 
a smooth manifold, while a C”-manifold is 
called a real analytic manifold. We cal1 M the 
underlying topological space of (M, S), and 
we say that S defines a differentiable structure 
of class C’ (or C-structure) in M. 

In particular, a Ca-structure is called a real 
analytic structure. A C’-manifold whose under- 

lying topological space is compact (tparacom- 
pact) is called a compact (paracompact) C- 
manifold. A coordinate neighborhood (U, tj) of 

M is called a coordinate neighborhood of class 
c’ of (M, S) if the union S U {(U, $)} is also an 
atlas of class c’ of M. In particular, each co- 
ordinate neighborhood of M belonging to S is 
of class c’. The set s of a11 coordinate neigh- 
borhoods of class c’ of (M, S) is an atlas of M 
containing S, and we cal1 s the maximal atlas 
containing S. Let S and S’ be two atlases of 
class C” of M. If ,!?= 8, then we say that S and 
S’ delïne the same differentiable structure of 
class C’ on M and that the differentiable mani- 

folds (M, S) and (M, S’) of class c’ are equiva- 
lent. In particular, (M, S) and (M, .!?) are equiv- 
alent C’-manifolds. Let S and s’ be atlases 

of class C’ and class C”, respectively, where 
1< r < s < w. Since s > r, we cari consider S’ 
an atlas of class C”. If S and S’ defme the same 
C-structure in M, then we say that the C”- 
structure delïned by s’ is subordinate to the 
C-structure delïned by S. If M is paracom- 

pact, then there exists a CO-structure subordi- 
nate to a C-structure of M (Whitney [14]). 

E. Differentiable Manifolds with Boundaries 

Let U and U’ be open sets in the half-space H”, 
and let <p : U + U’ be a continuous mapping. If 
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there exist open sets W and W’ in R” contain- 
ing U and U’, respectively, and a mapping 
$: W+ W’ of class c’ that extends cp, we cal1 q 
a mapping of U into U’ of class c*. Let M be 
a Hausdorff topological space. A structure of 
a C’-manifold on M is defined by a set S = 
{(UC, $J},,,, where { Ua}nEA is an open covering 
of M, and, for each a, tj, is a homeomorphism 

of U, onto an open set of H” such that for 
any a, /?EA with U,n U,#@, t,bPot+boml is a 
mapping of class C’ from tj,( U, n U& ont0 

+a( U, n U,). Let C?M denote the set consisting 
of points p of M such that PE U, and $J~)E Ho = 

I(x 1 ,..., x,)~H”(x,=O}forsomea~A.If 
C?M # 0, the pair (M, S) is called an n-dimen- 
sional differentiable manifold witb boundary of 
class c’ (or C’-manifold witb boundary), and 
dM is called the boundary of M. i3M forms an 
(n - 1).dimensional C’-manifold. If we put 
Ua = U, n aM and denote the restriction of $, 

to Va by &, then s’= {(UL, t,Q},,, is an atlas 
of class c’ of aM. If dM is empty, then (M, S) 

is a C’-manifold. In this sense a C’-manifold 
is sometimes called a C’-manifold without 
boundary. 

F. Orientation of a Manifold 

Let S={WL+acI,)J,,A be an atlas of class c’ in 
M, and for each a let {xi, . , xi} be the local 

coordinate system in a coordinate neighbor- 
hood (U,, ICI,). If U, and U, intersect, then there 
exist n real-valued functions Fi (i = 1, . . . , n) 
defmed on $=(U, n U,) such that x$(p) = 

Fi(~:(p), .,.,x:(p)) for PE U,n U, and i= 
1 , . . . , n. The tJacobian Das = D(F’, , F”)/ 
D(x,‘, , xi) is different from zero at each 
point (xt , , xi) of +,( U, n U,). If we cari 
choose an atlas S of M SO that, for any a, fi 

such that U, f? U, is nonempty, the Jacobian 
Daa is always positive, then we say that the 

C’-manifold M is orientable, and we cal1 S an 
oriented atlas. 

Let S= {WL G&)),,~ and s = I(V,, (~~1)~~~ 
be two oriented atlases of a connected c’- 
manifold M. If M is connected, then the sign of 
the Jacobian D,,(p) of the transformation of 
local coordinates is independent of the choice 

,ofa~A,1~A,andp~U,flV~.WesaythatS 
and s’ defïne the same (opposite) orientation if 
Dan is always positive (negative). Hence if M is 
connected, the set of a11 oriented atlases of 
class c’ is composed of two subsets such that 

atlases belonging to one of them have the 
same orientation, while two atlases belonging 

to different ones have the opposite orientation. 
Each of these subsets is called an orientation 

of the connected C’-manifold M. When we 
assign to M one of two possible orientations, 
M is called an oriented manifold; the assigned 
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orientation is called its positive orientation 
and the other its negative orientation. If S = 
{(U,, tj.)}aEA belongs to the positive orien- 
tation, S and (U,, +a) are called an atlas and 
local coordinate system, respectively, compa- 
tible with the positive orientation. 

G. Differentiable Functions 

Let f be a real-valued function defmed in a 
neighborhood of a point p of a Cm-manifold 
M. Let (U, +) be a coordinate neighborhood of 
class C” such that PE U. If the function fo $ m1 
is of class C’ (1 < r < 00) in a neighborhood of 
the point t,b(p) in R”, then the function f is 
called a function of class c’ at p. This defï- 
nition is independent of the choice of a coor- 

dinate neighborhood of class C”. If we de- 
note the local coordinate system in (U, $) by 
(xl,..., xn), there exists a function f(x’, . , x”) 
of n variables defïned in a neighborhood of 

t,b(p) in R” such that f(q)=f(x’(q), . ,x”(q)) for 
each point 4 in the neighborhood of p. Here 
we use the same symbol f for the function f 
deiïned in a neighborhood of p in M and for 
the function fo t,-’ deiïned in the image of the 
neighborhood by $ in R”. The function f is 
of class C’ at p if and only if f(x’, , x”) is 
of class c’ in a neighborhood of the point 
(x’(p), . , x”(p)) of R”. A function of class C 
(or C’-function) in M is a real-valued function 
in M that is of class c’ at every point of M. 

H. Tangent Vectors 

Let M be a Cm-manifold, and let g(M) be the 
real vector space consisting of a11 C”-functions 
in M. (For the sake of simplicity, we denote a 
manifold (M, S) by M.) A tangent vector L at a 
point p of M is a linear mapping L: g(M)-R 

su& ht Wii) = -W%(p) +f(pWM for aw f 
and g in g(M). For any two tangent vectors 
L,, L, and any pair of real numbers il, Â2 we 

detïne 1,L, +&L, by (1,L, +&L,)(f)= 

Â,L,(f)+A,L,(f),f~~(M). 
Thus tangent vectors at p form a real vector 

space TP, which we cal1 the tangent vector 
space (or simply the tangent space) of M at 
the point p. The dimension of the tangent 

vector space TP equals the dimension of M. 
The set of a11 tangent vectors of M forms a 

tvector bundle over the base space M, called 
the tangent vector bundle (or tangent bundle) 
of M. 

By a tangent r-frame (r < n) at p we mean an 
ordered set of r linearly independent tangent 

vectors at p. The set of all tangent r-frames 
also forms a fïber bundle over M called the 

tangent r-frame bundle (or bundle of tangent 
r-frames) (- 147 Fiber Bundles F). 
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1. Differentials of Functions 

For a C”-function fin M and a point p of M 
we cari deline a linear mapping df,: TP+R by 
df,(L)=L(f) for a11 LE T,,, and we cal1 dfp the 

differeutial off at p. The totality of differen- 
tials at p of Cm-functions in M forms the tdual 
vector space of the tangent vector space TP. 

J. Differentiable Mappings 

Let cp be a continuous mapping of a C”- 
manifold M into a Cm-manifold M’. We cal1 q 

a differentiable mapping of class c’ (or simply 
a C’-mapping) (1~ r < CO) if the function fo <p 
is of class c’ for any C’-function f on M’. If 

<p is a homeomorphism of M onto M’ and q 
and q-i are both of class C’, then we cal1 cp a 
diffeomorphism of class C’. If there exists a 
diffeomorphism of class C” of a Cm-manifold 
M onto a C”-manifold M’, then M and M’ are 
said to be diffeomorphic. 

Let M and M’ be C”-manifolds and rp be 

a Cm-mapping of M into M’. For a tangent 
vector L of M at p, a tangent vector L’ of M 
at cp(p)isdefinedbyL’(g)=L(go<p),g~~(M’). 
The mapping L-+L’ defines a linear mapping 

(dq), of the tangent vector space TP of M at p 
into the tangent vector space T& of M’ at 
q(p). The linear mapping (dq), is called the 
differential of the differentiable mapping q~ at p. 
If (dq), is surjective, p is called a regular point 
of <p. A point on M which is not a regular 
point is called a critical point of <p. A point q 
on M’ which is an image of a critical point is 

called a critical value of cp, and a point on M’ 
which is not a critical value is called a regular 

value. In R”, the diffeomorphic image of a set 
of Lebesgue measure zero has Lebesgue mea- 

sure zero. SO the set of Lebesgue measure 
zero is well defined on a (paracompact) C”- 
manifold. Then Sard’s theorem states: Let 

q:M-+M’ be a C”-mapping; then the set of 
critical values of <p has Lebesgue measure zero 
in M’. 

K. Immersions and Embeddings 

Let M and M’ be C”-manifolds and <p be a 

Cm-mapping of M into M’. If (d<p), is injective 
at every point p of M, then cp is called an im- 
mersion of M into M’. If cp is an immersion, 

then for some neighborhood UP of any point 
p of M the restriction q 1 U, gives rise to a 
homeomorphism from UP into M’. If an im- 
mersion cp is injective, then cp is called an 
embedding (or an imbedding) of M into M’. An 

alternative definition is often used, which says 
that cp is an embedding if, in addition to the 
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above conditions, <p gives a homeomorphism 

from M onto <p(M), where (o(M) has the rela- 
tive topology of M’. If the former delïnition is 

adopted as embedding, then a mapping cp 
satisfying the conditions of the alternative 

definition is sometimes referred to as a regular 
embedding. If M is compact, the two delïni- 
tions coincide. In Sections L and M, embed- 
ding always means regular embeddings. 

The theory of embeddings and immersions 
is mainly concerned with ways to embed and 
immerse a given manifold M into a manifold 
M’ of a particular type with lowest possible 

dimension. M’ is usually the Euclidean space 
R”, the projective space PNR or a certain stan- 
dard manifold. The theory was initiated by 

Whitney (1936). He proved by “general posi- 
tion” argument that an n-dimensional C”- 
manifold M with countable basis cari always 
be immersed in the 2n-dimensional Euclidean 
space and cari always be embedded in the 

(2n + 1)-dimensional Euclidean space as a 
closed set (Whitney’s theorem). 

L. Submanifolds 

A Cm-manifold M is said to be a submanifold 
of a C”-manifold M’ if M is a subset of M 

and the identity mapping of M into M’ is an 
immersion. If the identity mapping of M into 
M’ is an embedding, then M is called a regular 
submanifold of M’. A regular submanifold M 
of M’ is called a closed submanifold if M is a 
closed subset of M’. 

Let cp be a C”-mapping from M into M’ 
and M” be a submanifold of M’. Then for each 
q E M” the tangent space q of M” at q is a 

linear subspace of the tangent space 74 of M 
at q. Denote by 7cq the projection of quotient 

vector space onto Ti/Ti. A C”-mapping <p is 
called transverse to M” if for each p E rp-‘(M”) 

the composite rrVu,) o d<p,: TD -+Ti,,,/Ti&, is 
surjective. If q is transverse to M” then 
cp-‘(M”) is a submanifold of M. For any C”- 

mapping <p : M -* M’ and any submanifold M” 
c M’, we cari find a C”-mapping cp’: M-FM’ 
which is transverse to M” and arbitrarily close 
to cp (transversality theorem). Let M, and Ml 

be submanifolds of M’. Then we say M, in- 
tersects transversely to M, if the inclusion 

M, c M’ is transverse to M2. 
A C”-mapping is called a submersion if it 

has no critical point. Let cp be a submersion 
from M into M’. Then for each point qe M’, 
<p-‘(q) is a regular submanifold of M, and M is 
covered by a mutually disjoint family of sub- 
manifolds: M = u4EM.<p-1(q). 

Let M be a submanifold of an n-dimensional 
Euclidean space R”. We cari identify the tan- 

gent vector space TP of M at p with the geom- 
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etric tangent space of M at p in the Eucli- 
dean space R”. A vector in R” that is ortho- 

gonal to the tangent vector space TP of M at p 

is called a normal vector to M at p. The set of 
a11 vectors normal to M forms a vector bundle 

over M, which we cal1 the normal vector bundle 
(or normal bundle) of M. If M is compact, then 
the totality of vectors normal to M whose 
length is <E (where F is a sufficiently small 
positive real number) forms a neighborhood 
N(M) of M in R” which we cal1 a tubular 
neighhorhood of M. Int N(M) is called an open 
tubular neighborhood. 

M. Vector Fields 

Let N be a subset of a Cm-manifold M. By a 
vector field on N we mean a mapping X that 
assigns to each point p of N a tangent vector 
X, of M at p. We cari consider X as a tcross 
section over N of the tangent vector bundle of 
M. Let X be a vector fïeld in M, and let f be a 
C”-function in M. Then we cari deiïne a func- 
tion Xf in M by (Xf)(p)=XJ We cal1 X a 
vector field of class C’ if the function Xf is 

of class c’ for any C”-function fin M. Let 
(xi, . ,x”) be the local coordinate system in 
a coordinate neighborhood (U, $), and let 
(a/axi),f=(aflaxi)(p) for PE U and ~ES(M). 

Then a/axi (i = 1, , n) are vector lïelds in U, 
and the (a/ax’), form a basis of TP at every 
point ~EU. A vector held X in U is written 
uniquely as XP=Ci~i(p)(i3/i3xi)P at each point 
p E U. Then ci, . , 5” are real-valued func- 
tions delïned in U, called the components of X 
with respect to the local coordinate system 

(x’ , . . . ,xX). A vector field X in M is of class C 
if and only if its components 5’ with respect to 
each coordinate system are functions of class 

C’ (0~ r < CO). Let (x’, , X”) be another local 
coordinate system in a neighborhood U of 

p, and let (f’, . , 5”) be the components of 
X with respect to (y’, . . , X”). Then we have 
1”(4)=Cj(axi/axj)(q)5j(4) at each point q~ U. 

For the rest of this article we mean by a 

vector lïeld in M a vector field of class C”, and 
we denote by 3(M) the set of a11 vector fields 

in M. Then X(M) is an S(M)-tmodule, where 
S(M) denotes the algebra of a11 C”-functions 
in M. In fact, forf, g@(M) and X, YgIIE(M), 

we cari delïne a vector lïeld ,fX +gY by (fX 
+gY),=f(p)X,+g(p)Y,, and this delïnes an 

z( M)-module structure in X(M). 
In a coordinate neighborhood (U, $), we cari 

Write X = C,S’(a/ax’). The right-hand side of 
this equation is sometimes called the symbol of 
the vector field X. A vector lïeld X cari also be 
interpreted as a linear differential operator 

that acts on g(M). 

Let X and Y be vector Iïelds in M. Then 
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there exists a unique vector field Z in M such 
that Zf= X( Yf) - Y(Xf) for any C”-function f 
in M. We denote Z by [X, Y] and cal1 it the 
Poisson bracket (or simply bracket) of X and 
Y. If 5’ and ri denote the components of X 

and Y, respectively, in a coordinate neighbor- 
hood (U, $), then the components ci of [X, Y] 
are given by ii=C,{Sk(arli/axk)-rlk(a5’/axk)}. 
The bracket of vector fields has the following 
properties: (i) [X, Y]f= X( yf) - Y(Xf), (ii) 

CfX, g Y1 =fiCX, Y1 +fWd Y-dyf)X, (iii) 
[X + Y, Z] = [X, Z] + [Y, Z], (iv) [X, Y] = 

-C~~~l~~~~~~~CC~,~1,~l+CC~,~1,~1+ 
[[Z, X], Y] = 0 (Jacobi identity). These iden- 
tities show that X(M) is a Lie algebra (- 248 

Lie Algebras) over R. 
If <p is a diffeomorphism of M onto M’, 

then for any vector field X in M we cari delïne 

a vector Iïeld V*X in M’ by the condition 
(V*X), = d<p,(X,), p = v(q). Then ‘p* is an iso- 
morphism of the Lie algebra X(M) onto the 
Lie algebra 3E(M’). 

N. Vector Fields and One-Parameter Croups 
of Transformations 

A one-parameter group of transformations of 
M is a family cpt (t’c R) of diffeomorphisms 
satisfying the following two conditions: (i) the 

mapping of R x M into M delïned by (t, p)-+ 

<p,(p) is of class C”; and (ii) <pS o vt = <~s+~ for 
s, tER. 

Let cpt be a one-parameter group of trans- 
formations of M. Then we cari delïne a vector 

fia X by Xpf = lim,-df(v,(d) -f(p))lt, 
where p E M and fc g(M). The vector lïeld X 
thus defined is called the infinitesimal trans- 
formation of vt. We also say that <pt is gen- 
erated by X, and sometimes we denote <P, by 
the symbol exp tX. In this case, if (xi,. , x”) is 

a local coordinate system, then at each point p 

of the coordinate neighborhood, we have X, = 

Ci(~x’(v~(P))l~t),=,(a/ax’),. 
If M is compact, then every vector lïeld in M 

is the intïnitesimal transformation of a one- 
parameter group of transformations; that is, 
every vector lïeld generates a one-parameter 
group of transformations. For M noncompact, 
this is not always true. Nevertheless, for each 
vector field X we have the following result 

concerning local properties of X: For each 
point p of M, there exist a neighborhood U of 
p, a positive real number E, and a family cp,( 1 t 1 

CE) of mappings of U into M satisfying the 
following three conditions. (1) The mapping 
of ( -E, E) x U into M defmed by (t, q)+(p1(q) 
is of class C”, and for each Iïxed t, vr is a dif- 

feomorphism of U onto an open set <p,(U) 
of M. (2) If 1~1, Itl, and Is+ tl are all smaller 
than E and q and v,(q) both belong to U, then 
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cp,(rp,(q))=cp,+,(d. (3) x(q)f=lim,-,(f(<p,(q)) 
-f(q))/t for qe U and fi g(M). We cal1 qt the 
local one-parameter group of local transfor- 

mations around p generated by X. 
Let X and Y be vector tïelds in M, and let 

cpt be the local one-parameter group of local 
transformations around p generated by X. 

Then LX, Yl,=lim,+,(Y,-((cp,), Y)#, where 
(q,), Y is a vector field defïned as follows: Let 
U be a neighborhood of the point p where cpt 
(1 tI CE) is detïned. Then (<PJ, Y is the vector 
field on <p,(U) that is the image of Y under the 
diffeomorphism q,. In particular, if X gener- 

ates a one-parameter group of transforma- 
tions of M, then we have [X, Y] = lim,,,( Y- 
(&* Y)/t for any vector tïeld Y in M. 

0. Tensor Fields 

Let y(p) be the vector space consisting of a11 
r-times contravariant and s-times covariant 

tensors over the tangent vector space TP of a 
C”-manifold M, that is, 

where TP* denotes the dual linear space of TP 
(- 256 Linear Spaces). A tensor field (more 
precisely, contravariant of order r and covariant 
of order s, or simply a tensor field of type (r, s)) 

on a subset N of M is a mapping K that as- 
signs to each point p of N an element K, of the 
vector space Tsr(p). In particular, if r = s = 0, K 
is a real-valued function on N, and we cal1 K a 

scalar field. If r = 1 and s = 0, K is a vector 
field, called a contravariant vector field. When 

r = 0 and s = 1, we cal1 K a covariant vector 
tïeld (or differential form of degree 1). If r # 0, 
s = 0 or r = 0, s # 0, we cal1 K a contravariant 
tensor field of order r or a covariant tensor 
field of order s, respectively. A contravar- 
iant or covariant tensor fïeld K is said to be 
symmetric (alternating) if K, is a symmetric 
(alternating) tensor at every point p of M. 

Let (x1, . . ,x”) be the local coordinate system 
in a coordinate neighborhood (U, $). Then at 

each point p of U, the (3/8x’), (i= 1, , n) form 
a basis of the tangent vector space TP, the 
differentials (dx’), (i= 1, , n) form a basis of 
the dual space TP*, and these bases are dual to 
each other. A tensor field K of type (r, s) de- 
tïned on M is written at any point p of U in 
the following form: 

KP=CKj::::jr(p)(a/axil),o 1.. @(c~/c?x’$, 

@ (dx’l), @ . 0 (dxj$,. 

The functions Kf:;:::: defïned in U are called 

the components of the tensor field K of type 
(r, s) with respect to the local coordinate sys- 
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tem (x1, ,x”). If Kj;:::i are the components 
of K with respect to the local coordinate sys- 

tem (Xi, , X”) in another coordinate neigh- 
borhood (U’, $‘) such that U n ci’ # 0, then for 

each q E U II u’, the following relations hold: 

z+:j:(q) = 1 k,J3x’l/uxkl), . .(aX”/axk$ 

x (dx’l/&+), .(ax’~/axj~),K:~‘::;~. 

A tensor tïeld K in M is called a tensor field of 

class C’ (0 < t < CO) if the components are func- 
tions of class CL for any coordinate neighbor- 
hood of M. 

The sum K +L and the tensor product 
K @3 L of two tensor fields K and L are detïned 
by the rules (K + L)P = K, + L, and (K @ L), 
= K, 0 L,, respectively. The contraction of 
two tensor fïelds is also defined by taking the 
contraction pointwise. 

Let q be a diffeomorphism of M into M’. 
Then the differential (d<p), is an isomorphism 

of T, onto TP (p = <p(q)) for each qc M and 
hence induces an isomorphism Qq of the vector 
space T,‘(q) onto the vector space y(p) (- 256 

Linear Spaces). For any tensor iïeld K in M we 
cari detïne a tensor fïeld QK in M’ by (ijK),= 

Q&K,), p=(p(q), qeM. Then ij(K+L)=QK+ 
$L, Q(K @ L) = $K @ @L, and the mapping 
4 commutes with contraction. 

Let K be a tensor field and X be a vector 
fïeld (both of class P) in M. We defme a 
tensor iïeld L,K by (LxK),=lim,,e(K,- 
(+,K),)/t, where qt denotes the local one- 

parameter group of local transformations 
around p generated by X. We cal1 L,K the 
Lie derivative of K with respect to the vector 
tïeld X. The operator L, : K + L, K has the 

following six properties: (i) L,(K + K’) = 
L,K+L,K’;(ii)L,(K@K’)=(L,K)@K’+ 
K 0 L,K’; (iii) the operator L, commutes 
with contraction; (iv) L,f= Xf for a scalar 
fïeld f and L, Y= [X, Y] for a vector tïeld Y; 

(9 L tx, r, = L, L, - L, L,, that is, L,,, yl K = 
L,(L,K)- L,(L,K); and (vi) K is invariant 
under qt, i.e., ij?! K = K for a11 t, if and only if 
L,K=O. 

Let K be a covariant tensor fïeld of order r 

in M. We always assume that K is of class C”. 
The value K, of K at pe M is an element of the 
vector space TP* 0 . 0 TP* (r times tensor 

product of TP*); hence we may consider K, an 
r-linear mapping of TP into R (- 256 Linear 
Spaces). If X,, , X, are vector tïelds in M, 
we defme a C”-function K(X,, . . , X,) by 

KW,, . . , X,)(P) = K,(W,),, . ,(-UP). Then 
the mapping that assigns to each r-tuple 

(Xl 1 . . . / X,) of vector fïelds the C”-function 
K(X, , . . , X,) is an r-linear mapping on the 

a(M)-module X(M) consisting of a11 vector 

tïelds of class C” in M into g(M); that is, 
K(X,, . ..> fXi+gy, 1.1, X,)=fK(X,, . . . . Xi, 



105 P 
Differentiable Manifolds 

. . . . X,)+gK(X, ,..., x ,..., Xv)(i=1 ,..., r)for 
J gE g(M). Conversely any r-linear map- 

ping of the S(M)-module X(M) into S(M) 
cari be interpreted as a covariant tensor fïeld 
of order r in M. If the tensor lïeld K is sym- 
metric (alternating), the corresponding r- 
linear mapping K(X,, . , X,) is symmetric 
(alternating) with respect to X,, . . , X,. For 
the Lie derivative L, K of a covariant tensor 
tïeld of order r of K, we have the following 
formula: (L,K)(X,, , X,)=X(K(X,, . . . ,X,)) 

-C;=, K(X,, . . , [X, Xi], , X,). 

P. Riemannian Metrics 

A symmetric covariant tensor lïeld g of order 
2 and of class C” in M is called a pseudo- 
Riemannian metric if the symmetric bilinear 
form gP on the tangent vector space TP is non- 
degenerate at each point ~EM; and g is called 

a Riemannian metric if gP is positive delïnite 
for all p. If g is a Riemannian metric, the 

length 11 L 11 of a tangent vector LE TP is delïned 
by ~~Ll12=gP(L,L). On a paracompact C”- 
manifold there always exists a Riemannian 

metric. A pair consisting of a differentiable 
manifold and a Riemannian metric on it 
is called a Riemannian manifold (- 364 
Riemannian Manifolds). 

Q. Differential Forms 

An alternating covariant tensor lïeld in M of 

order r and of class C’ (0 < t < CO) is also called 
a differential form (or exterior differential 
form) of degree r. A differential form of degree 
1 is sometimes called a Pfaffan form. Let w  be 

a differential form of degree r. Since each alter- 
nating covariant tensor of order r at a point p 
is an element of A’Tp*, the r-fold texterior 
product of T:, the form w  is a mapping that 
sends each point p of A4 to an element wP of 
A’Tp*. We cari also regard w  as an alternating 
r-linear mapping of x(M) into s(M). Let 

(x1, . ,x”) be the local coordinate system in a 
local coordinate neighborhood (U, I+!J). Since 
(dx’),(i=l,..., n) is a basis of TP* at each point 
p of U, we cari express wp (pe U) uniquely in 
the form 

COI>= c ai,...i,(p)(dxi~),A A(dX’& 
i,<...<i, 

where the sum extends over all ordered r- 

tuples (il, . , i,) of indices such that 1 <i, ci, 

< . < i, < n. For an ordered r-tuple (ii, , i,) 
of indices with repeated indices we put a,,,..i, = 0, 
and for (ii, , i,) with r distinct indices we put 

a~l...~r=(sgn~)~j,...j~~ where 01, . ..J.) (Jo < .-. 
<j,) is a permutation of (i, , . . , i,) and sgn 0 

denotes the sign of the permutation e: ipj, 
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(k= 1, . . . . r). Then we cari Write 

1 E 
Ulp=- 

r!i ,,..., i,=l 

ai,...i,(p)(dxi~)p A A (dx’r), 

The functions ai, ,,,i, are the components of the 
tensor lïeld w, and w  is of class C’ if these 
components are of class C’ for any coordinate 
neighborhood. By the support (or carrier) of a 
differential form w  we mean the closure of the 
subset of M consisting of a11 p such that w,, # 0. 

In the rest of this article, differential forms 
are always of class C”, and we denote by 
D(M) the real vector space consisting of a11 
differential forms of degree r and of class C”. 

In particular, Do(M) = s(M) and D(M) = {0} 
for r>n, n=dimM. 

For differential forms we have the following 
five important operations. 

(1) Exterior product. Let o and 0 be dif- 
ferential forms of degree r and s, respectively. 
The exterior product w  A 0 of w  and 0 is the 
differential form of degree r + s delïned by 
(w~e),=w,~8,,p~M,LetX,,...,X,+,be 
r + s vector lïelds in M. Then we have 

(W A @)(XI a i xr+,) 

where the summation runs over all possible 
partitionsof(l,2,...,r+s)suchthati,<i,< 

ci, and j, <j,< . . . <js, and sgn(i;j) means 
the sign of the permutation (1,2, . . , r + s)+ 

(il,...,Lj j ) In particular, if wi, . , w, ,i”‘> s. 
are differential forms of degree 1, then we have 
(wl A . . . “w,)(X,, . . . . X,)=det(w,(Xj)). 

(2) Exterior differentiation. Let w  be a dif- 
ferential form of degree r, and let w  =( l/r!) 

Gai ,,,, i,dxil A A dx’r in a coordinate neigh- 
borhood (U, i+k). Then we cari deline a differen- 

tial form dw of degree r + 1 by the condition 
dw=(l/r!)~dcq+,ndx’l A . . . r\dx’r in U. The 
differential form do is called the exterior de- 
rivative (or exterior differential) of w. A dif- 
ferential form w  satisfying the condition dw = 0 

is called a closed differential form, and a dif- 
ferential form q that cari be expressed as y~ = 
dw for some w  is called an exact differential 
form. If a, bcR and w, w’ED’(M), then we 

have d(aw + bu’) = adw + bdw’. Therefore the 
set 6’(M) of a11 closed differential forms of 
degree r and the set e(M) of a11 exact differ- 

ential forms of degree r are linear subspaces 
of V(M). 

For the exterior derivative dw, we have the 
following formula: 

kW(X,,...,X.) 

+~(-l)i+~o([xixj],xl, 
i<J 

. . . . gi ,.../ zj /..., X,,,), 
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where the variables under the sign A are to be 
omitted. 

(3) Interior product with vector field. Let 
w  be a differential form of degree r and X a 
vector tïeld. When r > 1, we cari defme a dif- 
ferential form z(X)0 of degree r - 1 by the 

formula (z(X)w)(X,, . . . , X,-J = w(X, Xi, . , 
X,-J for any Y- 1 vector fields Xi, . . . , X,-i; if 
r = 0, we put I(X)~ = 0. The differential form 

I(X)~ is called the interior product of w  with 
X. 

(4) Lie derivative. The Lie derivative L,w of 
a differential form of degree r with respect to 
a vector lïeld X is a differential form of the 
same degree. For any r vector fïelds Xi, , X, 
we have, by defïnition, (L,o) (X,, . , X,)= 

x(w(x,, . ) x,))-CI=, w(x,) > Cx, xJ> 

“‘2 -a. 
(5) Let q be a C”-mapping of M into M’, 

and let q$ : T&,-’ TP* be the ttranspose (or 
+dual) of the linear mapping (dq),: TP-+ Tqcpl 
for PE M, i.e., the mapping defïned by the 
condition ((d<p),L, C()=(L, @cc) for each LE TP, 
RE TpTpj. We denote the linear mapping of 

AT&) into l\Tp* induced by (pp* by q$ also. Let 
w  be a differential form of degree r in M. Then 
a differential form <p*w in M, the pullback by 
cp of o, is defmed by (<P*U)~= q$w,(,), PE M. 

The operations detïned previously satisfy 

the following six important relations: (i) dz = 
0, that is, d(do) = 0; (ii) d(w A 0) = dw A /il + 
(-l)lw A dB, where w  is of degree r; (iii) 

q*(w A 0) = cp*w A cp*Q, q*(dw) =d(cp*w); (iv) 

L,(WA8)=(L,W)AB+OA(L,B); (V) Lx= 

z(X).d+d.z(X), L,(dw)=d(L,w); and (vi) 
L [x,Y,=Lx.LY-LY.Lx, 4cx, YI)=L,.z(Y)- 
z(Y). L,. 

R. De Rbam Cohomology 

Let D(M) = C:=,, a’(M), where IZ = dim M. 

Then B(M) is a tcochain complex with 
tcoboundary operator d. We denote by H’(D) 

the r-dimensional cohomology group of 
this cochain complex, and we cal1 it the r- 
dimensional de Rham cohomology group of the 
differentiable manifold M. If we denote by 
E”(M) and F(M) the subspaces of D(M) con- 
sisting of closed differential forms and exact 
differential forms, respectively, then H’(D) 
= a’(M)/@‘(M) (0 < r < n) by definition. If 
~IIE@(M) and B~crl(M), then WA CIE~‘+‘(M), 

and if ~JE@(M) and BE(Y(M) (or me@(M) 
and OEC(M)), then WA @E@+‘(M). SO if we 

put H(D) = Cr=r H*(B) (direct sum), we cari 
detïne a product in H(D) by [w] [0] = [w A 01 
for each [w] E Hi(D), [Q] E H’(B). With respect 

to this product, H(D) forms an algebra over R 
called the de Rham cobomology ring of M. 
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S. Partitions of Unity 

Let M be a paracompact C”-manifold, and let 
{I$}i,, be a tlocally lïnite open covering of M 

such that the closure of v is compact for each 
index i. Then there exists a C”-function fi in 
M for each i satisfying the following three 

conditions: (i) 0 <fi < 1, (ii) the support of 11 is 
contained in I$ and (iii) C&(x) = 1 for every 
XE M. The family of C”-functions fi, Ill, is 
called a partition of unity of class C” subordi- 
nate to the open covering { v}iE,. 

T. Integrals of Differential Forms 

Integrals over an Oriented Manifold. Let M be 
an n-dimensional paracompact oriented C”- 
manifold and w  a differential form of degree n 

in M with compact support. We cari choose a 
positively oriented atlas S = {(U,, $J}OIEA such 

that {UaJatA is a locally fïnite covering; ü, is 
compact for each a. Suppose fïrst that the 
support of w  is contained in U, for some index 
c(. Then (i+ka-‘)*woI is a differential form of de- 
gree n in $J UJ, and we cari express (tim-‘)*o, 
in the form adx’ A A dx”, where (xi, . , x”) 
are the coordinates in R” such that xi = xi o $, 
(i = 1, , n) give a local coordinate system 
compatible with the orientation of M and a is 

a C”-function with compact support. Then we 
defme the integral of w  over M by 

s s 

C!l= adx’ . ..dx”. 
M v.Wd 

For the general case let {f,},,A be a partition 
of unity of class C” subordinate to { UajatA. 
Then the support of f,w is contained in U,, 
and except for a finite number of the indices CI, 
f,w vanishes identically. Therefore we may 
defïne the integral of w  over M by 

and we cari show that this definition of the 
integral is independent of the choice of or- 
iented atlas S and of a partition of unity sub- 
ordinate to S. 

Integrals over a Singular Chain. We tïx rectan- 
gular coordinates in R’. Let d, be the origin 

and di be the unit point on the ith coordinate 
axis. Let S’ denote the oriented r-simplex 
(d,,d,, . ,d,) with vertices d,, d,, . ,d,. When 

we regard S’ as a point set, we denote it by 
(S’I. An oriented singular r-simplex of class C” 
in M is, by definition, a pair (S’, cp) consisting 
of S’ and a C”-mapping <p of an open neigh- 

borhood of IS’ into M. An element of the free 
Z-module generated by singular r-simplexes of 
class C” is called an integral singular r-chain 
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of class C” in M. We define a real singular r- 
chain of class C” analogously. Let w  be a 
differential form of degree r and (Y, <p) be an 
oriented singular r-simplex of class C” in M. 

Then cp*w is a differential form of degree r in a 
neighborhood of IS’I, and we cari express <p*w 

intheform<p*w=adx1Adx2r\...Adx’.We 
define the integral of w  over (S’, <p) by 

s s 

W= adx’ . ..dx’. 
6s’. a) P’I 

and the integral of w  over a singular r-chain C 
of class C” by 

where C=C,mi(S*,<pi), miEZ (or mieR). 
When r = 0, then w  is a function in M, and 
S” is a point o. In this case we put jcw = 

CiV44d”)). 

Let C,(S, Z) (C,(S, R)) be the Z-module (vec- 

tor space over R) of integral (real) singular 
r-chains of class C” in M, and let w(C) be 
the value of the integral of w  over a chain C. 

Then w  is a linear function in the vector space 
C,(S, R), and hence we cari consider w  a sin- 
gular r-cochain of class C”. 

U. Stokes’s Formulas 

(1) Let D be a tdomain in an n-dimensional 

C”-manifold M, and let 8D and D be the 
boundary and the closure of D, respectively. 

Let S= {(K k))asA be an atlas of class C” of 

M, Ua = U, n D, i& be the restriction of Ics, to 
Ui, and T= {(U:,I&)).~~. If the pair (0, T) is a 
C”-manifold with boundary under a suitable 
choice of S, then the domain D is called a 

domain with regular (or smooth) boundary. 
The boundary dD of (D, T) is then an (n- l)- 
dimensional closed submanifold of M, and if 
M is orientable, dD is also orientable. Now let 
M be a paracompact and oriented manifold 

and D be a domain with regular boundary. 
Let C be a characteristic function of D in M, 
i.e., a function dehned by the condition C(p) = 

lforp~DandC(p)=Oforp$D.LetQbea 
differential form of degree n in M with com- 
pact support. We define the integral of Q over 

D by 

s s O= C.8. D M 
Let u be a differential form of degree n - 1 in 
M with compact support. We then have 

Stokes’s formula: 

s s 

dw= i*w, 
D ?D 

where i denotes the identity mapping of the 

submanifold aD into M with aD having the 

orientation induced naturally from that of M. 
(2) Let C be a singular r-chain of class C” in 

M, and let aC be the boundary of C. Then for 
any differential form w  of degree r - 1, we have 

s s 

dw= w. 
c C?C 

This formula is also called Stokes’s formula. 

V. De Rham’s Theorem 

Let M be a connected paracompact C”- 
manifold. If we consider o as a singular co- 
chain, we have (dw) (C) = w(X); by Stokes’s 
formula, this means that the exterior differen- 
tial dw of w  is equal to the coboundary of the 
singular cochain w. Let w  and C be a closed 
differential form of degree r and a singular r- 
cycle of class C”, respectively, and let [w] and 
[C] be the de Rham cohomology class and the 

singular homology class represented by w  and 
C. Using Stokes’s formula, we cari define the 
inner product ([w], [Cl) by 

([WI> [Cl)= w. 
s c 

Through this inner product, it follows that 
the de Rham cohomology group H’(a) is 

isomorphic to the rth singular cohomology 
group H’(M, R), the dual space of the rth 
homology group of the complex of real sin- 
gular chains of class C”. Moreover, the de 
Rham cohomology ring H(a) is isomorphic to 

the singular cohomology ring H*(M, R) (de 
Rham’s theorem). 

W. Divergence of a Vector Field 

Let M be an n-dimensional oriented C”- 
manifold, and let S be an oriented atlas. Let 
o be a differential form of degree n, and let 

(xl, . . . . x”) be the local coordinate system in a 
coordinate neighborhood in S. Then we cari 

express w  in the coordinate neighborhood 
uniquely in the form w  = adx’ A A dx”. If the 
function a is positive for any coordinate neigh- 
borhood in S, we cal1 w  a volume element of 
M. In a paracompact oriented manifold, there 
always exists a volume element. (We remark 
that an n-dimensional differentiable manifold 
M is orientable if and only if there exists an 
everywhere nonvanishing differential form of 
degree n.) Let f be a C”-function in M with 
compact support. Then ,f. w  is a differential 

form of degree n with compact support, and SO 
the integral 

J .f.w A4 
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is defïned. We cal1 this integral the integral of 
the function f with respect to the volume ele- 

ment w. 
Let g be a Riemannian metric in M and g, 

the components of g with respect to the local 
coordinate system (xl, ,x”) as before. Then 
we cari define a volume element w  in M by 
putting o=fidx’ A . . . ~dx”, G=det(g,) in 
each coordinate neighborhood. The volume 
element thus delïned is called the volume ele- 

ment associated with the Riemannian metric g. 
Let w  be a volume element and X a vector 

fïeld in M. Then the Lie derivative L,w is also 
a differential form of degree n, and we cari 
express L,w in the form L,w =fx. w, where fx 

is a scalar tïeld, i.e., a function in M. We cal1 fx 
the divergence of the vector tïeld X with re- 
spect to the volume element w  and denote it 
by div X. If w  is associated with a Riemannian 
metric, then div X is called the divergence of X 
with respect to ihe Riemannian metric. 

If M is compact, we have 

c divX.w=O 
JM 

for any vector field X. This result is known as 
Green% theorem. 

X. Jets 

Let M and N be C”-manifolds. We defme 
an equivalence relation in the set of all C”- 
mappings of M into N. Let f and g be such 
mappings and p be a point of M. Choosing 

local coordinate systems, we Write f(p) = 

(fi(X), ‘.‘>f.(X)), g(P)=(gl(x)> .‘.>%(X))> x= 
(x 1, . , x,). We say f and y are equivalent at 
p iff(p), g(p), and the values at p of a11 the 
partial derivatives of fi and gi up to the order r 

(r an integer, r > 0) are equal (i = 1, , n). An 
equivalence class with respect to this equiva- 
lente relation is called a jet of order r at p. A jet 
of order r at p represented by a function f is 

denoted by j;A and the points p and f(p) are 
called the source and the target of the jet j;J 
respectively. We denote by JP(M, N) the set of 
a11 jets of order r with source at p and target in 

N and let J’(M, N)= UpsMJL(M, N). For any 

jet j, let n,(j) and n,(j) denote the source and 
the target of j, respectively. We cari introduce 
the structure of a C”-manifold in J’(M, N) 
in a natural way such that the projections 
z,:J’(M,N)+M and q:J’(M, N)-tN are both 
of class C” and J’(M, N) is a fiber bundle over 
M(N) with projection 7~,(zJ. As examples, we 
have: 

(1) Jt (R, N) is identiiïed with the tangent 

vector bundle of N. 
(2) The set Y([) of a11 jets of order r deter- 
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mined by the sections of a vector bundle 5 of 
class C” is also a vector bundle of class C”. 

LetS:M-tNandg:N*LbeC”-mappings. 

We detïne a composition of jets by j;(Pjg. 
jif=jp(gof). A jet j~feJ’(M,N) is inver- 

tible if there exists a mapping g : N-t M such 
that jj(,,>g. jif=ji(l,), where 1, denotes the 

identity mapping of M onto itself. We de- 
note by I’(M, N) the set of a11 invertible jets 
in Y(M, N), and put I;(M, N)=I’(M, N)n 

J;(M, NI. 
(3) Let G’(n) be the set of all invertible jets 

in I’(R”, R”) whose source and target are the 
origin of R”. Then with respect to the compo- 

sition of jets, G’(n) forms a Lie group that is an 

textension of G’(n) = CL (n, R) by a simply 
connected nilpotent Lie group. The projec- 
tion G’(n)+G’(n) is a special example of the 
natural projection J’(M, N)+J”(M, N) (r 2 s), 
which is defined in general. 

(4) We cari identify 1; (R”, M) (m = dim M) 
with the tangent m-frame bundle over M. 
More generally, I;(R”‘, M) is a G’(m)-bundle 

over M. 

Y. Pseudogroup Structure 

Let X be a topological space, and let r be a 

set consisting of homeomorphisms f: Uf- V,, 
where U,, V’ are open subsets of X. We cal1 r a 

pseudogroup of topological transformations if 
r satisfies the following four conditions: (i) r 
contains the identity mapping of X onto X; (ii) 
if fe r, then the restriction off onto any open 
subset U of V, is also contained in r; (iii) if f 

and g are in r and Vf c U,, then g of is con- 
tained in r; and (iv) if fi r, then f-’ : Vf- U, is 
also in r. 

Following the definition of differentiable 
manifolds we defîne a pseudogroup structure of 

M (or, more precisely, a r-structure of M) as a 
set A of bijections, with each member c( defïned 

on a subset U, of M onto an open set Va of X, 
satisfying the following three conditions: (i) 

U,U~=M;(ii)ifcc,B~A,thenaoB-‘Or, 
where the domain of defmition of c( o p ml is 

fl( U, n U,); and (iii) A is the maxima1 set of 
bijections that satisfies conditions (i) and (ii). 
We introduce in M the weakest (coarsest) 

topology such that every bijection CI is a 
homeomorphism. If r’ is a pseudogroup of X 
containing r and A’ is a l-‘-structure of M 
such that A c A’, then we say that A’ is sub- 
ordinate to A. If X = R” (or H”, a half-space of 
R”), r is the totality of diffeomorphisms of 
class c’ of open sets of X ont0 open sets of 
X, and M is a space with Hausdorff topol- 
ogy, then the r-structure is the C-structure 

with or without boundary which we have 

already defïned. We give three examples of r- 
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structures subordinate to J’, where T’ is the 
totality of local transformations of class C’ 
(r > 1) in R”. 

(1) When n is even, we identify R” with C@ 
and denote the totality of holomorphic trans- 
formations of connected open domains by r. 

The r-structure in this case is called a complex 
structure. 

(2) When n is odd, we define T as the totality 
of transformations of connected open domains 

in R” that leave invariant a Pfaftïan form 
~~!lxidxm+i+dx2m+1 (n = 2m + 1) up to scalar 
factors. The r-structure in this case is called a 
contact structure. 

(3) We consider R” = RP x R”-P and define T 
as the set of a11 diffeomorphisms U+ I/ (where 
U, T/ are open in R”) such that each set of the 
form Un (RP x {y}) is mapped onto a set of the 
form Vn(RP x {y’}). The r-structure in this 
case is called a foliated structure. 

The problem of determining whether there 
exists a r-structure for given r and M involves 
widely ranging problems of topology and 

analysis. The classification of r with reason- 
able conditions is another important open 
problem. 

Haefliger has constructed the classifying 

space m for r-structures. 

Z. Infinite-Dimensional Manifolds 

Let B and B’ be Banach spaces and cp be a 
mapping from an open set of B to B’. Then, 
using the notion of Fréchet derivatives, we cari 
define cp to be smooth. For a smooth mapping 
<p, the Jacobian J(<p) at each point x is a linear 
mapping from B to B’, for which the inverse 
function theorem holds true as a straightfor- 
ward extension of the corresponding one in 
the finite-dimensional case. Similar extension 
also holds for the existence and the unique- 

ness theorems of solution of ordinary differen- 
tial equations with value in B. These facts 
permit us to generalize the notion of differ- 
entiable manifolds to infinite-dimensional 
ones. Actually, infinite-dimensional manifolds 
cari be detïned in a way similar to the finite- 
dimensional case, taking open sets of a certain 
Banach space as local coordinate neighbor- 
hoods. Such a manifold is called a Banacb 

manifold. Various forma1 definitions of dif- 
ferentiable manifolds cari also be stated for 
Banach manifolds in extended form. However, 

while differentiable manifolds are locally com- 
pact and admit a partition of unity by smooth 
functions subordinate to a locally tïnite open 
covering, Banach manifolds generally lack 
these properties. Actually, local compactness 

gives a criterion for whether a manifold is 
finite-dimensional or not. Banach manifolds 
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often provide a basic functional-analytic view 
to nonlinear analysis and global analysis. 

The most important category of Banach 
manifolds is provided by the Hilbert manifold, 

that is, a Banach manifold whose local coordi- 
nates are modeled on a Hilbert space. For a 
Hilbert manifold, a partition of unity subordi- 

nate to a locally fmite open covering cari be 
taken from smooth functions. In the follow- 
ing, we refer to a separable Hilbert manifold 
simply as a Hilbert manifold. An intïnite- 
dimensional Hilbert manifold M cari be 
smoothly embedded as an open set of a Hil- 
bert space and thus covered by a single coordi- 
nate neighborhood. Hence, in particular, the 
tangent bundle of M is trivial. Historically, 
this fact was the fïrst instance showing that 

the distinguishing properties are shared by 
infïnite-dimensional manifolds; this was tïrst 
recognized as a consequence of the theorem 

stating that the unitary group of an intïnite- 
dimensional Hilbert space is contractible. Two 
intïnite-dimensional Hilbert manifolds are 
diffeomorphic if and only if they are homo- 

topically equivalent. A typical example of a 
Hilbert manifold is provided by the space of 

L2-loops on a compact Riemannian manifold. 
Morse theory cari be extended in a suitable 

way to a Riemannian Hilbert manifold under 
the Palais-Smale condition, which makes it 
possible for the integral curve of gradfto tend 

to a critical point, where fis a Morse function. 

AA. Gel’fand-Fuks Cobomology 

The space E(M) consisting of a11 the smooth 
vector fields on a smooth manifold M has the 
structure of a Lie algebra under the bracket 
operation [X, Y] = XY- YX, where the vector 
tïelds X and Y are regarded as derivations on 
the algebra Cm(M) of smooth functions on M. 

LE(M) is a topological Lie algebra when en- 
dowed with the topology defined by uniform 
convergence of the components of vector fields 

and a11 their partial derivatives on each com- 
pact set of M. When x(M) acts continuously 

on a topological vector space V, the continu- 
ous cohomology H*@(M), V) of x(M) with 
coefftcients in Vis the cohomology of the 
cochain complex @ { Cp = G’@(M), V), d}. 
Here C” = V, Cp(p> 1) is the space of a11 the 
alternating p-linear continuous mapping cp of 
X(M) x . . . x x(M) (p-times) into V, and d:CP 

+Cp+’ is detïned for cp~C’and X,6X(M) by 

d<p(X,)=X,cp(~=O)anddrp(X,,...,X,+,)= 
Ci<j( -l)‘+‘cp( Cxi, Xj]; x,, ) gi> , dXCj> . . . , 
xp+,)+~i(-l)‘+‘xi<p(xl,...,~i,...,xp+l) 
(p> 1). When Vis a topological algebra and 
the elements of X(M) act on Vas derivations, 

the exterior multiplication of cochains induces 
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a graded algebra structure in H*@(M), V). 
When V= R is the trivial X(M)-module, 
then H*(X(M))=H*(X(M),R) is called the 
Gel’fand-Fuks cohomology of M. Gel’fand and 
Fuks proved that, for any compact oriented 
manifold M, we have dimHP(X(M))< +co 
for a11 p and HP@(M)) = 0 for 1~ p < n (n = 

dimM). For example, if M is the circle Si, 
then the algebra H*(?I$?‘)) is generated by 

two generators CIE HZ, BE H3, which are expli- 

citly described as cochains in the following 
way: 

Localization of the concept of Gel’fand- 

Fuks cohomology naturally yields the co- 
homology of forma1 vector tïelds. Here a 
forma1 vector fïeld means the expression 

CfP(Xl> .'.> X#/~X,,, f, being formal power 
series in xi, . ,x,. The set of a11 the forma1 
vector tïelds forms a Lie algebra a,, and the 
continuous cohomology of a, with respect 
to the Krull topology is denoted by H*(a,). 
Let B, be the universal tclassifying space of 
the unitary group u(n), let (BLI)*” be its 2n- 
skeleton, and let PZn be the canonical principal 
U(n)-bundle restricted to (B&,. Then there is 

an algebra isomorphism H*(a,)= H*(P,,; R). 
This cohomology and its variants play im- 
portant roles in the theory of foliations. 

An important subcomplex @ {Cg, d} of 
0 { Cp, d}, the diagonal complex, is defined as 

Cf;={rpECPIcp(X1,...,Xp)=OifsuppX1n 
fl supp X, = a}. Here, supp Xi denotes 

the support of Xi, that is, {x 1 X,(x) # O}. Let 
PM be the principal U(n)-bundle associated 
with the complexified tangent bundle of M. 
u(n) acts freely on the product PM x Pz, and 
the quotient space E, = PM x P&U(n) is a 

fiber bundle over M with fiber P2,,. Then, if 
M is a compact oriented manifold, the co- 
homology H,*@(M)) of the diagonal com- 

plex is completely determined by the isomor- 
phisms H&I(M)) g HP+“@,; R) for a11 p. In 
particular, if a11 the Pontryagin classes of M 
vanish, then H:(E(M)) = Zi+j=p+n H’(M; R) 0 
Hj( a,,). 

The Gel’fand-Fuks cohomology has a topo- 
logical interpretation: H*(E(M))= H*(T(E,), 

R) as graded algebras, where F(E,) denotes 
the space of a11 the continuous cross-sections 
of E,-+M with the compact open topology. 

Moreover the differential graded algebra 
C*&(M)) has a mode1 in the sense of Sullivan 

constructed purely algebraically from a mode1 
of the de Rham algebra of M and the Pon- 
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tryagin classes of M. This mode1 shows in 
particular that H*@(M)) is not necessarily 
lïnitely generated as a graded algebra. 

The cohomology theory of X(M) in the case 
where the representation is nontrivial has also 
been investigated. The natural representa- 
tion on Cm(M) is a typical example. There is 

also a topological interpretation: H*@(M), 
Cm(M))zH*(YM,R), where Y, is the liber 
product of the evaluation mapping M x T(E,) 

+Ew and the inclusion P,çE, correspond- 
ing to a fiber inclusion U(n)çPzn. 
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106 (X.6) 
Differential Calculus 

A. First-Order Derivatives 

Let y = f(x) be a real-valued function of x 
defined on an interval 1 of the real line R. If for 
a tïxed x0 E 1, the limit 

lim f(xo + 4 -f(xo) 
h-0 h 

x,+keI 

exists and is fïnite, then fis called differenti- 
able at tbe point x0, and the limit is the deriva- 
tive (differential coefficient or differential 
quotient) off at the point x0. If f is differenti- 
able at every point of a set A c 1, then f is said 
to be differentiable on A. The function that 

assigns the derivative off at x to x E A is called 
the derivative (or derived function) of j(x), 
which is denoted by dy/dx, y’, 3, df(x)/dx, 

(d/dx)f(x), f’(x), or D,f(x). The process of 
determining f’ is known as the differentia- 

tion off: The derivative off at the point x0 is 

written f’b,), (df/W(xo), kf(x,), CWdxl,=,o, 
etc. We say that f is right (left) differentiahle or 
differentiable on the right (left) if the limit on 
the right, lim,,+, (f(xo + h) -f(x,))/h (the limit 
on the left, limk,+o(f(xo - h) -f(x,))/h), exists 
and is imite. This limit is called the right (left) 

derivative or derivative on the right (left) and is 
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denoted by Dzf(xo) orf;(xo)(D;f(xo) or 
jY (x0)). For instance, if f is defined on I= 
[a, b), then D,f(a) is identical to D:~(U). 

B. Differentials 

In the detïnitions given above, neither dx nor 
dy in dy/dx has a meaning by itself. In the 
following, however, we give a definition of dx 
and dy, using the concept of increment, SO that 
dy =f’(x) dx. Let Ay denote the increment 

f(x + Ax) -f(x) off corresponding to the in- 
crement Ax of x. Suppose that f(x) is differen- 
tiable at x. We set Ay/Ax =f’(x) + E. Then we 
have lim bX-o E = 0. This cari be written utiliz- 

ing tlandau’s notation as Ay =f’(x)Ax + 

o(lAxl) (Ax-+O); in other words, Ay is the 
sum of two terms, of which the fïrst, f’(x)Ax, is 
proportional to Ax and the second is an tin- 
tïnitesimal of an order higher than Ax. Here 
the principal part f’(x)Ax of Ay is called the 
differential of y =f(x) and is denoted by dy. 
The differential dy thus defined is a function of 
two independent variables x and Ax. In partic- 
ular, if f(x) = x, from the definition we get 
dx = 1. Ax = Ax. Hence, in general, we have 

dy = f ‘(x) dx and f’(x) = dy/dx. 
With respect to the rectangular coordi- 

nates (x, y), the straight line with slope f ‘(x0) 

through a point (x0, f(xo)) on the graph of y = 
f(x) is the ttangent line of the graph at the 
point (x0, f(xo)). A function is continuous at a 
point where the function is differentiable, but 
the converse of this proposition does not hold. 
In fact, Weierstrass showed that the function 
detïned by the infmite series CEo ~“COS b”zx, 
where 0 <a < 1 and b is an odd integer with 

ab > (3/2)n + 1, is continuous everywhere and 
nowhere differentiable on (-CO, CO) [3]. 

C. Differentiation 

For two differentiable functions f and g de- 
tïned on the interval I, the following formulas 
hold: (aif + pg)’ = xf’ + bg’, where CI and p are 
constants; (fg)‘=f’g+fg’; and (f/g)‘=(f’g- 
fg’)/g’ (at every point where g #O). Let y = 
f(x) be a function of x defined on the interval 

(a, b) and x = q(t) a function of t detïned on 
(c(, fl). If q(t)~(a, b) whenever t E(N, b), then the 
composite function y=F(t)=f(<p(t))=(f OP)(t) 

is well defined. Assume further that f and q 
are differentiable on (a, b) and (tl, fi), respectively. 
Then the composite function F(t)=(f oq)(t) is 
differentiable on (tu, p), and we have the chain 

rule, F’(t) = f ‘(x)$(t) (x = q(t)), or dy/dt = 
(dy/dx)(dx/dt). Assume that a function y = 
f(x) is tstrictly increasing or decreasing and 

differentiable at x0. If furthermore we have 



395 106 F 
Differential Calculus 

f’(x)#O, then the inverse function X=~~‘(Y) is 
also differentiable at y, ( =f(xo)) and satisfies 
(dx/dy),=,o(dy/dx),=Xo = 1. However, if f’(x,) = 
0, then even though f-‘(y) is not differenti- 

able at y,,, lim,,,, (f~‘(y,+Ay)-f~‘(y,))lAy 
exists and is +cû or -CO. 

D. Higher-Order Derivatives 

If the derivative f’(x) of a function y =f(x) is 

again differentiable on 1, then (f’(x))‘=f”(x) is 
well defmed as a function of x on 1. In general, 
if f’“-‘)(x) is differentiable on I, then ,f(x) is 
called n-times differentiahle on 1, and the nth 
derivative (or nth derived function) f(“)(x) of 

f(x) is defïned by f(“)(x)=(f(“-‘j(x))’ and is 
also denoted by d”y/dx” or D(“‘y. The nth 
derivative for n > 2 is called a higher-order 
derivative. 

Concerning the nth derivative of the product 
of two functions, Leibniz3 formula holds: 

(fg)‘“‘=f’“‘g+ ‘I f’“-‘)g’+ ,, 
0 

+ 0 ; f(“-k)g(k) + +fg’? 
Analogous to dy = y’Ax, which is a function of 
x and Ax, we cari detïne d’y in the notation 

d2y/dx2 by d’y = d(dy) = d(y’Ax) = (y’Ax)‘Ax 
= y”Ax’. Since Ax = dx, it follows from the 
above that d’y = y” dx*. Similarly, d”y = y(“)dx” 

and is called the nth differential (or differential 
of nth order) of ,f(x). 

E. The Mean Value Theorem 

Let f(x) be a continuous function detïned on 
[a, b], and suppose that for every point x0 on 
(a, h) there extsts a hmtt hm,,, (f(xo + 4 - 
f(x,))/h, which may be infinite. (These condi- 

tions are satisfïed if f(x) is differentiable on 
[a, b].) Then there exists a point 5 such that 

This proposition is called the mean value 
theorem. A special case of the theorem under 

the further condition that f(a)=f(b) is called 
Rolle’s theorem. If we put h-a = h, 5 = a + Bh, 
then the conclusion of the theorem may be 

written asf(a+h)=f(a)+h.,f’(a+Bh) (Oc 
o< 1). 

This theorem implies the following: Let 
f(x) be a function as in the hypothesis of the 
mean value theorem, and assume further that 
A <f’(x) < B holds for ah x with a <x <b. 

Then A<(f(h)-f(u))/(b-u)<B. (French 

mathematicians sometimes cal1 this the “théo- 

rème des accroissements finis.“) Using the 

mean value theorem, the following theorem 
cari be proved: If f(x) is continuous on [a, b] 

and f’(x) exists and is positive on (a, b), then 
f(b) >f(u). Accordingly, if f’(x) > 0 at every 
point x of an interval I, then f(x) is tstrictly 

increasing on that interval. (If f’(x) <O on 1, 

then f is strictly decreasing.) The converse of 
the previous statement does not always hold 
(f’(x) = x3 is a counterexample, since f’(O) = 0). 
Furthermore, from the mean value theorem 

it follows that if f’(x) = 0 everywhere in an 
interval, then f(x) is constant on that inter- 

val. Consequently, two functions with the 
same derivative on an interval,differ only by 
a constant. 

Suppose that f(x) is n-times differentiable on 

an open interval 1. For a tïxed a E 1 and an 
arbitrary x E 1, we put 

f(x)=f(u)+f’o(x-u)+ 
l! 

+f'"-"(fi) 
(n(1)!--nY+R". 

Then R, = f ‘“‘(t)(x - U)“/n! for some < be- 
tween a and x. This is called Taylor% formula, 
where R, is the remainder of the nth order 
given by Lagrange. We also have several other 

forms for R, (- Appendix A, Table 9). If 
f’“‘(x) is continuous at x = a, then <+a as 
x+a, and accordingly, f (“)(5)-f (“)(a). Hence 

f(x)=C~=,,(f’k’(a)/k!)(x-u)k+o((x-a)”). If 
f’“‘(x) is continuous at x = a, then, by Tay- 
lor’s formula, the value of the polynomial 

C&,(f’k’(u)/k!)(x-u)k cari be considered an 
approximate value of ,f(x) for x near a. This 
approximation is called the nth approximation 

of f(x), and its error is given by 1 R,,, 1. By 
applying this formula, it is sometimes possible 
to calculate a limit such as A = lim,,,f(x)/g(x), 
where f(x)+0 and g(x)+0 as x+u. For in- 
stance, if f ‘(x) and g’(x) are both continuous at 

x = a and g’(u) # 0, then by taking the Iïrst 
approximations of f(x) and g(x) it is easily 
seen that A = f ‘(u)/g’(u). A limit of this type is 
often called a limit of an indeterminate form 
O/O. Similarly, we cari calculate limits of such 
indeterminate forms as 0. GO or 0” (for limits 
of indeterminate forms - [SI). 

F. Partial Derivatives 

Let w  =f(x, y,. , z) be a real-valued function of 

IL independent real variables x, y,. , z defined 
on a domain G contained in n-dimensional 
Euclidean space R”. We obtain a function of a 
single variable from f by keeping n - 1 vari- 
ables (say, (x, j, , z), i.e., a11 except y) fïxed. If 
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such a function p(y) =,f’(xo, y, . ,z,J is dif- 
ferentiable, that is, if 

cp,(yo)= ,im d~o+A~)-<p(~o) 

Ay- 
AY 

= ijrnO 
fbo, Y, + AY, , zo)-f(xo>yo> rzo) 

AY 

exists and is Imite, then ,f is called partially 
differentiable with respect to y at (~,,y,, 
. ..) zo), and the derivative is called the partial 

derivative (or partial differential coefficient) 
off(x,y, . , z) with respect to y at (x,,, yo, 

,zO). It is denoted by [~?w/~?y],=, “,,,,, z ==“, 

(~/~Y)~(x~,Y~, , zoX fy(xo, Y,, , zo), or 
DJ(x,, y,, , z,,), etc. We usually assume that 
the point (x, y, , z) where partial derivatives 
are considered is an tinterior point of the 
tdomain of the function. Since in a space of 
dimension higher than 1, the tboundary of a 

domain may be complicated, partial deriva- 
tives at boundary points are usually not con- 
sidered. If a function ,f possesses a partial de- 

rivative with respect to x at every point of an 
open set G, then f, is a function on G and is 
called a partial derivative off with respect to 
x. The process of determining partial deriva- 
tives off is called the partial differentiation of 

.f: 

G. Total Differential 

Let w  =,f‘(x, y, , z) be a function defïned 
on a domain G, and let P = (x, y, , z) be an 
interior point of the domain G of a function 

w=f(x, y, . . . . z). Put Aw=f‘(x,+Ax,y,+ 
Ay, , z. + AZ) -.f(x,, y,, , zo). If there 

exist constants c(, B, , y such that Aw = 
ctAx+/j’Ay+ +yAz+o(p) (p+O), where 

p= Ax2+AyZ+...+AzZ,thenfiscalled 
totally differentiable (or differentiable in the 

sense of Stolz) at P. In this case, f is partially 
differentiable at P with respect to each of the 

variables x, y, . . . , z, and CI =.L(x,, Y,, , zo), /3 
=fy(~o,~O,...,~o)r...i~=.f~(~o,~O,...,~O).The 
principal part of Aw as p+O is stdx + PAy + 
+lAz, which is called the total differential of w  
at P. If f is totally differentiable at every point 

of G, then ,f is said to be totally differentiable 
on G. The total differential of w  is denoted by 
dw. Since the total differentials of x, y, , z are 
dx = Ax, dy = Ay, , dz = AZ, respectively, we 
cari Write dw=,f,dx+f,dy+...+f,dz; and 
dw is a function of independent variables x, 
y, , z, dx, dy, , dz. The total differentiability 
off implies the continuity of ,fi whereas the 
partial differentiability off with respect to 

each variable does not imply that f is continu- 

ous. (Example: Delïne f(x, y) = X~/(X~ + y2) 

for (x, y) # (O,O), and ,f(O, 0) = 0, then the func- 

tion f is not continuous at (O,O), even though 

both ,f, and f, exist at (0, O).) The function f is 
totally differentiable on G if all f,, f,, ,,f, 
exist and are continuous on G, or, more weak- 
ly, if all f,, f,, ,,f, exist and, with possibly 
one exception, are continuous. Suppose that 
w  =f(x, y) is totally differentiable at (x, y), and 
let Ax=pcosO, Ay=psinO. As p-‘O, for a 

fïxed 0 there exists the limit lim,,,(Aw/p) = 
f,(x, y) COS 0 +fY(x, y) sin 0. This limit is called 
the directional derivative in the direction 0 at 

(x, y). The partial derivatives f, and f, are 
special cases of the directional derivative for 

0 = 0 and 742, respectively. Suppose that we 
are given a curve lying in the tinterior of the 
domain off and that the curve passes through 
the point (x, y), where the curve is differenti- 
able. Then the partial derivative of w  =f(x, y) 
in the direction of the normal to the curve at 

(x, y) is called the normal derivative of w  at the 
point (x, y) on the curve and is denoted by 
?w/Cn. Analogous definitions and notations 
have been introduced for functions of more 

than two variables. 
TO see the geometric signitïcance of the total 

differentiability of w  =f(x, y), we consider the 
graph of the function w  =,f(x, y) and a point 

(a, b,f(a, b)) on the graph. Then the plane 
represented by w-f(a, b)=cc(x-~)+/?(y- b) is 

the +tangent plane to the surface at (a, b,f(u, b)) 

if and only if ~=,/;(a, b) and B=,f,(u, b). The 
existence off, and f, depends on the choice of 
coordinate axes, while the total differentia- 
bility off does not. 

H. Higher-Order Partial Derivatives 

Suppose that a partial derivative of a function 
w  =f‘(x, y, , z) detïned on an open set G again 
admits partial differentiation. The latter partial 
derivative is called a second-order partial 
derivative off: We cari similarly detïne the nth 
order partial derivatives. Higher-order partial 

derivatives are denoted as follows: 

a 3, 
( > 

û2W 

c?x ax =,x,=L,(x>Y i..., 4 

a aw 

( > 
=g+x,Y> . ..> 4, ay ax , 

a alw 

! > 
PW 

ûx oxay 
=-=,f,,,(x,y, . ..) z), 

cxdyax 

In general, f,, and ,j& are not equal. (Peano’s 
example: Let f(x, y) = xy(x2 - y2)/(x2 + y2) for 
(x, y) # (0,O) and f(0, 0) = 0. Then f,, = - 1, 
fYX = 1 at (0, O).) However, if both f,, and ,& 
are continuous on an open set G’, then they 
coincide in G’. Furthermore, if f,, fY, and f,, 

exist in a neighborhood U of a point P belong- 
ing to the domain off’ and ,f,, is continuous 
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at P, then fyX exists at P and f,, =f,, (H. A. 
Schwarz). If f, and f, exist in U and are totally 
differentiable at P, then f,, =LX at P (W. H. 

Young). Similarly, if the partial derivatives of 
order > 3 ~,,Xy,,, and x..,,... are a11 continuous, 

then Ly... =i,,,,,,,. Hence we cari change the 
order of differentiation if a11 the derivatives 
concerned are continuous. 

1. Composite Functions of Several Variables 

Let w  be a function of x, y, . . . , z, and let each 
x, y, . , z be a function of t. Suppose that the 
range of (x(t), y(t), . , z(t)) is contained in the 
domain of w. Then w  is a function of t. If fur- 
ther w  is totally differentiable and x, y, , z 
are a11 differentiable, then w  as a function of t 
is differentiable, and we have 

dw aw dx awdy aw dz 

Z-ax dt I aydt +...+ dzdt 

If partial derivatives of order 2 2 are totally 

differentiable, then dz w/dt2, d3 w/dt3, . are 
obtained by repeating the above procedure. A 
similar consideration is valid when x, y, . , z 
are functions of several variables. 

J. Taylor% Formula for Functions of Several 
Variables 

Suppose that f(x, y) is defïned on an open 

domain G, f(x, y) has continuous partial de- 
rivatives of orders up to II, and the line seg- 

ment (a+(x-a)t,b+(y-h)t) (O<t< 1) is 
contained in the domain G. Then there exists a 
number 0 (0 <e < 1) such that 

f (X> Y) 

X~@+(X-a)@ b+(y-b)Q), 

where, for instance, the third term ((x-u). 

(Wx) + (Y - MVa~))2f(~, b) means 
(x-a)2(a2f/ax2)(,, b)+2(x-a)(y-b)’ 

(a2maY)(u, b) + (Y - wbww)(~, b), 
with (a2flax2)(a, b), (a2flaxay)(a, b), and 

(a2fldy2)(a, b) denoting the values of (a’flax’), 
(a’fiaxay), and (a2flûy2) at (a, b), respectively. 

The displayed formula is called Taylor% for- 
mula for a function of two variables. A similar 

formula is valid for a function of n variables 
(n > 3). As in the case of functions of one vari- 
able, we cari derive approximation formulas 
for f from Taylor’s formula. 

K. Classes of Functions 

If a11 the partial derivatives of order n of f(P) 

are continuous on an open set G, then fis said 
to be a function of class c” (or n-times contin- 

uously differentiable) on G. The set of a11 n- 
times continuously differentiable functions is 
denoted by C” (n = 1,2,. . ). A continuous 
function is of class CO. A function of class C’ is 
also called a smooth function. It is obvious 
that C” 3 C’ 2 C2 3.. A partial derivative of 
order r <s of a function belonging to class C 
does not depend on the order of the differenti- 

ation. A function belonging to Cm = (7:, c’ is 
said to be of class C” or infinitely differenti- 

able. We sometimes say that a function has a 
certain “nice” property or is “well behaved” if 
it belongs to some C’ (r > 1). 

Let w  =f(x, y, . . , z) be a function defined on 
an open set G in R” and P=(u, b, . . . . c)EG. If 

f(x> Y, . , 4 = f(a, b, . . > 4 

+,z, . ..~~~n.~~~...,~(x-u)“(~-b)“...(z-<-)” 1 n 
holds in some open neighborhood U of P, 

where the right-hand side of the equality is an 
absolutely convergent series, then f is said to 

be real analytic at P. In this case, fis r-times 
differentiable at P for any r, and we have 

r,!r,! . ..r.! 
Lx 

r1r2”‘rn=(rl +r,+...+r,)! 

,I,+,,+...+‘“f 

’ axrl ayrz . . aZrn (a, b, . , c). 

If f-is real analytic at every point P of the 
domain G, then f is called a real analytic func- 
tion on G. Sometimes, a real analytic function 
is called a function of class C”. A real analytic 

function belongs to C”, but the converse is not 
true (- 58 C”-Functions and Quasi-Analytic 
Functions E). 

L. Extrema 

Let f be a real-valued function delïned on a 
domain G in an n-dimensional Euclidean 
space R” that has the point F. in its interor. 
If there exists a neighborhood U of P,, such 

that for every point P (#P,) of U we have 
f(P)>f(P,), then we say that f has a relative 
minimum at P,, and f(P,) is a relative mini- 

mum off: Replacing > by <, we obtain the 
definition of a relative maximum. f(P,) is 
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called a relative extremum if it is either a rela- 
tive maximum or a relative minimum. 

TO find relative extrema, the following facts 
concerning the sign of the derivative are useful. 
Suppose that a function of a single variable is 
differentiable on an interval I. Then we have 

the following: (1) If f has a relative extremum 
at an interior point xt, of I, then f’(xO) = 0. 

(2) If f’(xO) = 0 and f’(x) changes its sign at x0 
from positive (negative) to negative (positive), 

then j’ has a relative maximum (minimum) at 
x0. (3) If f’(xO) = 0 and f is twice differentiable 
on some neighborhood of x,,, then f has a 
relative maximum or minimum according as 

f”(xo) < 0 or > 0. If f”(x,,) = 0, then nothing 
definite cari be concluded about a relative 
extremum off at x0. In general, if there exists 
a neighborhood of x,, in which f is r-times 
differentiable (r is even) and f(‘) is continu- 

ous, and if f’(xO) =f”(xO) = =f(‘-I)(x,) = 0, 
f”“(x,) > 0 (or < 0), then f has a relative mini- 
mum (maximum) at x0. On the other hand, if 

this condition holds with odd r, then f(xO) is 
not a relative extremum. If f’(xo) = 0, then 
f(xO) is called a stationary value off: 

If a function f on n variables x, y, , z has a 
relative extremum at (~,,,y,, . ,zO), then we 

bave L(X~, Y,, . . . , zo)=o,f,(xo,Yo,...,zo)= 
0, . . . ,fz(xo, y,, , zo) = 0, provided that the 

partial derivatives off exist. Assume that for a 
function f of class C2 of two variables x and y, 

we have fx(xo, yo) = 0 and fY(xo, y,) = 0, and let 

6 =f,,(xo~~o)f,,(xo~~o)-f~(xo~ Y,). Then we 
have the following: (1) If 6 > 0, then according 

as fxx(x,, yo) < 0 or > 0, f has a relative maxi- 
mum or minimum at (x0, y,). (2) If 6 < 0, then 
f does not have a relative extremum at (x0, yo). 
(3) If 6 = 0, then without further information 
nothing definite cari be said about a relative 
extremum off at the point. 

Let xi, ,x, be independent variables. If a 

function f of variables x1, . ,x, has a relative 
extremum at a point P. = (xy, . . ,x,0), then 

f, =fxz(Po) = 0 (i = 1, . . , n), provided that a11 
the partial derivatives off exist. In general, a 
point P. where fis totally differentiable and 

these conditions are satistïed is called a critical 
point off: The value f(P,) at a critical point is 
called a stationary value. If further f is of class 
C’, then consider a tquadratic form of n 
variables Q = Q(X, , . . , X,) = &,&XiXk, 

where .L, =,LL,,(Po). Suppose that I.LA ~0. 
Then according to whether Q is +Positive 
detïnite, tnegative delïnite, or tindetïnite, f 
has a relative minimum, relative maximum, or 

no relative extremum at P,. If &l = 0, then 
nothing cari be said in general. A critical point 

P off is said to be nondegenerate if I&l #O 
and degenerate if l& I= 0. 

We cari also apply the method of differenti- 
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ation of timplicit functions to lïnd relative 

extrema of functions detïned implicitly. Given 
functions <p, , . . , cp, (m < n), the problem of 
finding a relative extremum of f(xi, . . ,x,) 
under the condition that cpi (x i , , x,,) = 0, 
. . . . qm(xl, , x,) = 0 is called the problem 
of finding a conditional relative extremum. 
This problem cari be reduced to the problem 
of tïnding a relative extremum of an implicit 
function. Actually, if the functions f; ‘pi, 

“‘> <P,,, are of class C’ and the +Jacobian 

d(cp,, . , (~~)/a(x,-,,,+i, , x,) does not vanish 
in the domain considered, then y, = x.-,,,+i, 

“‘/ y, = x, cari be regarded as implicit func- 

tionsofx,,...,x,(I=n-m).Hencewecanset 

f(xl,...,xl,~l,...,~,)=f*(xl,...,x,).Thenf 
has a relative extremum at (xl, . , xn) under 
the condition ‘pi = . = qrn = 0 if and only if 
f* has a relative extremum at P. = (~7, . , xp). 

The latter condition implies that a11 af */8x, 
(j=l , . . , I) vanish at Po, which holds if and 

only if for arbitrary constants ii, . , Â, the 

function F(x,, . . . , X")=f+^Iq~+...+Â,<p, 
satistïes aF/axi = 0 (i = 1, . . . , n), and further ‘pi 
= 0, . , qrn = 0 at (XT, , xz). From this system 
of equations we cari often tïnd the values of 
x1, , xn. This method of lïnding conditional 
relative extrema is called Lagrange% method of 
indeterminate coefficients or the method of 
Lagrange multipliers (- 208 Implicit Func- 
tions; 216 Integral Calculus H; 379 Series H). 
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A. Ordinary Differential Equations 

It was Galileo who found that the accelera- 
tion of a falling body is a constant and thence 
derived his law of a falling body x(t) = gt*/2 as 

what we would now view as a solution of the 
differential equation x”(r) = g, where x(t) de- 
notes the distance the body has fallen during 
the time interval t and g is the constant gravi- 
tational acceleration. This pioneering work 
may be regarded as the fïrst example of solu- 
tion of a differential equation. Also, the tequa- 

tions of motion, proposed by 1. +Newton as 
the mathematical formulation of the law of 
motion, including Galileo’s law as a special 
case, are differential equations of the second 

order. Thus differential equations appeared, 
simultaneously with differential and integral 
calculus, as an indispensable tool for the uni- 
tïed and concise expression of the laws of 
nature. Such laws are generally called dif- 
ferential laws. 

Newton completely solved the equations of 
the ttwo-body problem proposed by himself; 

G. W. +Leibniz also succeeded in solving many 
simple differential equations. 

In the 18th Century, many mathematicians, 

such as the +Bernoullis, A. C. Clairaut, J. F. 

Riccati, L. +Euler, and J. L. tlagrange, at- 
tacked and solved differential equations of 
various types independently. In that period, 
the emphasis was on solution by quadrature, 
that is, applying to telementary functions a 
fmite number of algebraic operations, trans- 
formations of variables, and indelïnite inte- 
grations. It was toward the end of the 18th 
Century that new methods, such as integration 

by intïnite series, came to be discussed. A 
method of variation of constants for the solu- 
tion of linear ordinary differential equations 

was invented by Lagrange in 1775. At the 

beginning of the 19th Century, C. F. +Gauss 
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initiated the study of differential equations 
satistïed by thypergeometric series. 

The problem of existence of solutions, which 
supplies a foundation of modern differential 
equation theory, was tïrst treated by A. L. 
Cauchy. His proof of the existence theorem 

was later improved by R. L. Lipschitz (1869). 
Pioneers in the function-theoretic treatment 

of differential equations were C. A. A. Briot and 
J. C. Bouquet, who investigated the singular 

points of a function detïned by an analytic 
differential equation. Also, B. tRiemann pro- 
posed a new viewpoint which influenced L. 
Fuchs in his development of the theory of 
linear ordinary differential equations in the 
complex domain (1865). Works of A. M. Le- 
gendre on telliptic functions and of H. +Pain- 
taré on tautomorphic functions should also be 

mentioned in this connection. 
After the Cauchy-Lipschitz existence the- 

orem for the equation y’ =f(x, y) was known, 

efforts were directed toward weakening the 
conditions imposed on f(x, y). G. Peano lïrst 
succeeded in giving a proof under the continu- 

ity assumption only (1890) and his results 
were sharpened by 0. Perron (1915). 

Regarding the uniqueness of solutions of 
tinitial value problems, there are various re- 
sults by W. F. Osgood (1898) Perron (1925) 
and many Japanese mathematicians. In the 
course of this work the necessary and suftïcient 

condition for uniqueness was successfully 
formulated in a concise form (- 3 16 Ordi- 
nary Differential Equations (Initial Value 

Problems)). 

For linear differential equations with peri- 
odic coefficients, investigations were carried 
out by C. Hermite (1877), E. Picard (1881), 
G. Floquet (1883) G. W. Hi11 (1886), and 
others. For instance, solutions satisfying y(x + 
w) = Ay were found to exist, where o is 
the period of the coefficients. Analogous re- 

sults followed in the case of doubly periodic 
coefficients. 

Techniques of factorization of linear dif- 

ferential equations developed by G. Frobenius 
(1873) and E. Landau (1920) should also be 
noted. Picard (1883), J. Drach (1898) and 
E. Vessiot (1903, 1904) established a remark- 
able result on the solvability (in the sense of 
solution by quadrature) of linear differential 
equations, successfully extending the +Galois 
theory in this new direction. 

The concept of tasymptotic series, which in 

a sense approximate the solution of differential 
equations, was introduced by Poincaré (1886) 
and extended by M. A. Lyapunov (1892) J. C. 

C. Kneser (1896), J. Horn (1897) C. E. Love 
(1914), and others. Poincaré was also the 

founder of topological methods in differential 
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equation theory, and his ideas were developed 
extensively by 1. Bendixson (1900), Perron 
(1922, 1923), G. D. Birkhoff, and others (- 126 
Dynamical Systems). 

In 1890, Picard invented an ingenious tech- 
nique of tsuccessive approximation for the 

proof of existence theorems, and his technique 
is now widely used in every application of 
functional equations. The technique of reduc- 
ing linear differential equations to linear 
tintegral equations of Volterra type was also 
developed. 

On the tboundary value problems and 
teigenvalue problems that appear in many 
areas of physics, there was extensive research 

by mathematicians such as J. C. F. Sturm 
(1836), J. Liouville, L. Tonelli, Picard, M. 
Bôcher (1898, 1921), Birkhoff (1901, 1911), 

and others. In this connection the problem 
arises of expanding a given function by an 
torthogonal system of functions obtained as 
teigenfunctions of a given boundary value 
problem. Those problems were brought into 
unifïed form by D. +Hilbert (1904) in his theory 
of tintegral equations. Subsequently boundary 
value problems of ordinary and partial dif- 
ferential equations came to be discussed in this 

framework. 
Finally, it should be mentioned that the 

tcalculus of variations created by Euler and 

Lagrange gave rise to the study of a certain 
class of differential equations bearing the name 
of Euler (- 46 Calculus of Variations). 

B. Partial Differential Equations 

The origin of partial differential equations cari 

be traced back to the study of hydrodynamic 
problems by J. d’Alembert (1744) and Euler. 

However, perhaps Lagrange and P. S. +La- 
place were the fïrst to investigate the general 
theory. Subsequently, during the 18th and 

19th centuries, it was developed by G. Monge, 
A.-M. Ampère, J. F. Pfaff, C. G. +Jacobi, 
Cauchy, S. +Lie, and many other mathema- 
ticians. The fundamental existence theorem 

for the initial value problem, now called the 
Cauchy-Kovalevskaya theorem, was proved 

by S. Kovalevskaya in 1875 (- 321 Partial 
Differential Equations (Initial Value Problems) 

J-9 
Because of their close connection with prob- 

lems of physics, linear equations of the second 

order have been a chief abject of research. Up 

to the 19th Century, classification into telliptic, 
thyperbolic, and tparabolic types and the 
study of boundary and initial value problems 
for each of these types constituted the main 

part of the theory. 

In the 20th Century, more complicated 
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problems-tnonlinear problems appearing in 
the study of viscous or compressible fluids, or 
the study of equations of tmixed type in con- 
nection with supersonic flow-have emerged 
as important topics; and the newly developed 

techniques of functional analysis have brought 
about remarkable changes. Especially in the 
study of the Schrodinger equations of quan- 

tum mechanics and of more general tevolution 
equations , this method has proved to be a 
powerful tool. 

Finally, we should not fail to mention that 
the development of electronic computers has 
made it possible to obtain numerical solu- 

tions and to discover many important facts. 
+Numerical analysis is now becoming an indis- 

pensable part of the theory (- 304 Numerical 
Solution of Partial Differential Equations). 
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108 (XIX.1 0) 
Diffèrential’Games 

A. Introduction 

The study of differential games arose from the 
study of pursuit and evasion problems and 

various tactical problems. The lïrst work was 
done by R. P. Isaacs [l] in a series of RAND 
Corporation memoranda that appeared in 
1954. He applied to many illustrative examples 
the method of Hamilton-Jacobi differential 
equations (- eq. (4) below). The heuristic 
results of Isaacs were made rigorous by W. H. 
Fleming [2], L. D. Berkovitz [3], A. Friedman 

[4,5], and others. 

B. Zero-Sum Two-Person Games 

Suppose that there are two antagonists, each 
exerting partial control over the state of a 
system. One wishes to maximize a given payoff 
that is a functional of the state and the control 
exerted, while the other wishes to minimize 
this payoff. Let the state of a differential game 
at time t be represented by an n-dimensional 

vector x(t)~R”. In a zero-sum differential game 
between two players 1 and II, we are given a 
system of n differential equations 

dxldt = f (t, x, u, v) (1) 

with an initial condition x(r) = 5 E R”, where 
u E RP is chosen at each instant of time by 
player 1 and DER~ is chosen by player II. We 
assume that the function f(t, x, u, v) is con- 

tinuous in t and continuously differentiable 
on the entire (x, u, u)-space. 

It is usually assumed that both players 
know the present state of the game and that 
they know how the game proceeds; that is, 

they know the system (1). Each player cari take 
the state of the game into account in making 

his choice. Thus player 1 cari let his choice of u 
be governed by a vector function u(t, x) defined 
on D, where D c [0, CO) x R” is a fixed region of 
the (t, x)-space. Similarly, player II cari let his 
choice of v be governed by a vector function 

o(t, x) defined on D. 
A lïnite collection of subregions D,, . . , 0, of 

a region D is said to constitute a decomposi- 
tion of D whenever the following conditions 
hold: (i) Each Di (i = 1, , r) is connected and 

has a piecewise smooth boundary; (ii) Di f’ 
Dj = cp if i #j. A function detïned on D is said to 

be piecewise C’ in x on D if there is a decom- 
position of D such that on each Di the function 
and a11 its derivatives with respect to x are 

continuous in (t, x) on &. Let U and V be 
tïxed closed subsets of RP and R4, respectively. 
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Let SU denote the class of functions u(t, x) that 
are piecewise C’ in x on D and have their 
range in U. Similarly, let S, denote the class of 
functions u(t, x) that are piecewise C’ in x on D 

and have their range in V. 
Let u E S,, and v E S,, and consider the dif- 

ferential equation 

dx/dt =f(t, x, u(t, x), v(t, x)). 

subject to the initial condition 

(2) 

x(z)=(. (3) 

We say that a pair (u, V)E& x S, is playable 
if for every (t, 5) in D every solution of (2) 

satisfying (3) stays in D and reaches a terminal 
manifold F in tïnite time, where F is a smooth 
manifold contained in 0. Let Q, c SU, R, c S, 

be the maximal pair of subclasses such that 
each pair (u, u) E R, x R, is playable. We cal1 the 
functions in a, and Sr, the strategies for the 

players. 
For each strategy pair (u, v) we cari define a 

functional 

s 

11 
=s@l~x(tl))+ W, x(t), 46 x(t)), U(t, x(t)))& 

‘0 

where x(t) is a solution of (2) and (3) and t, is 
the tïrst time that (t, x(t)) reaches the terminal 
manifold F. The functional J is called the 

payoff. 
Let (u*, V*)ER, x Q, be a strategy pair. 

Suppose that for any UEQ, and VE&, the 
inequalities 

hold for a11 (T, 5) ED. We say that (u*, u*) is a 
saddle point relative to the classes 0, and 0,. 
The function 

qt, x) =J(t, x, u*, u*) 

defmed on D is called the value function of 

the game. Berkovitz [3] proved that the 
value function W(t, x) is continuous on D and 
continuously differentiable on each Di and 
satistïes 

fEy P(c x, u, V*I + Ya, ML x, u, V*)I 

= h(t, x, u*, v*) + ngt, x)f(t, x, u*, u*) 

= - qt, x). (4) 

Equation (4) is called the Hamilton-Jacobi 

equation. 
Let x*(t; T, 5) be the optimal trajectory corre- 

sponding to the saddle-point strategies (u*, v*) 
and resulting from an initial point (T, [)ED. 

Then there exists an n-dimensional continuous 



108 c 
Differential Games 

vector function i(t; t, [) such that the following 

hold [3]: 
(i) The functions x* and ,? satisfy the system 

of differential equations 

dx/dt=f(t,x,u*(t,x),u*(t,x)), 

dA/dt = -H,(t, x, Â, u*(t, x), u*(t,x)), 

where 

H(t,x,Â,u,u)=h(t,x,u,u)+itf(t,x,u,o). 

(ii) If x = x*(t; z, 0, t 2 T, then 

w,(t, 4 = w; T,O 

(iii) At t = tl , the transversality condition 

H-+‘Sp--&O 
c?T c3qaT ag8X 

aa atag ôx ao aa 

holds, where the terminal manifold F is given 
parametrically by the relations 

t = T(o), x=X(o), 

0 ranging over a cube in some fïnite- 

dimensional Euclidean space. 
(iv) For all t < t < t, , 

=npll~“x ff(t,x*(t),I(t),u, u) 

= H(t, x*(t), i(t), U*(t, x*(t)), U*(t, X*(t))). 

P. Varaiya and J. Lin [6] and Friedman 
[4,5] have defïned certain special classes of 
differential games, and have shown that under 

their defïnitions the games have nonzero value 
functions. 

C. N-Person Differential Games 

In a differential game between many players, 
the state vector ~(C)GR” is governed by 

dxldt =f(t, x, ul, . . , uJ, x(4 = 5, 

where CQE RP! is chosen at each instant of time 
by player i. Each ui is constrained to lie in a 

fïxed closed subset Ui of RP!. Let Si be the class 
of functions u,(t, x) that are piecewise C’ in x 
on fi and have their range in Lii. 

We say that an element u=(u,, . . ..u~) of 
S, x . . x S, is playable if, for every (7, <)ED, 
every solution of the differential equation 

dx/dt =f(t, x, u1 (L 4, , u,@, x)), x(z) = 5, 
(5) 

stays in D and reaches a terminal manifold 
Finfinitetime.LetR,c&(i=l,...,N)be 

the maximal subclasses such that each ele- 
mentu=(u, ,..., u,)EQ,x...xR,isplayable. 

We cal1 the functions ui~Ri (i= 1, . . ..N) the 

strategies. For each strategy N-tuple we detïne 
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a payoff 

Ji(?5>Ul>~‘.> UN)=!4i(tlrX(tl)) 

s 

fl 
+ h,(t,x(t), ul(t, x(t)), , u,(t, x(t)))dt, 

10 

where x(t) is a solution of (5) and t, is the first 
time that (t, x(t)) reaches the termina1 manifold 
F. Each player i is to choose his strategy uicRi 
SO as to maximize his own payoff Ji. 

There are many definitions of “solution” for 
games involving more than two players. A 
strategy N-tuple u* = (ul *, . , uN*) is called an 

equilibrium point for the game if the 
inequalities 

J,(u,* ,..., ui~,*,ui>ui+,* ,...) 

<Ji(ul* )...> Ui-l*rUi*,Ui+l* /...) (i=l,..., N) 

hold for any u,eQ,, ,u,E!&.. J. H. Case [9] 
has shown that the conclusions drawn for 
zero-sum two-person games also hold for N- 
person differential games. 
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Differential Geometry 

In differential geometry in the classical sense, 

we use differential calculus to study the prop- 
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erties of figures such as curves and surfaces in 
Euclidean planes or spaces. Owing to his 

studies of how to draw tangents to smooth 
plane curves, P. +Fermat is regarded as a 
pioneer in this lïeld. Since his time, differential 
geometry of plane curves, dealing with cur- 

vature, tcircles of curvature, tevolutes, +en- 
velopes, etc., has been developed as a part of 
calculus. Also, the fteld has been expanded to 
analogous studies of space curves and surfaces, 
especially of +asymptotic curves, +lines of cur- 
vature, tcurvatures and tgeodesics on surfaces, 
and truled surfaces. C. F. +Gauss founded the 
theory of surfaces by introducing concepts of 

the tgeometry on surfaces (Disquisitiones circa 

supeyficie curvas, 1827). Gauss recognized 
the importance of the intrinsic geometry of 
surfaces, and it is generally agreed that differ- 

ential geometry as it is known today was ini- 
tiated by him. Thus differential geometry came 
to occupy a firm position as a branch of 
mathematics. The influence that differential- 
geometric investigations of curves and surfaces 

have exerted upon branches of mathematics, 
physics, and engineering has been profound. 
For example, E. Beltrami discovered an in- 
timate relation between the geometry on a 
tpseudo-sphere and +non-Euclidean geometry. 

The study of tgeodesics is a fertile topic deeply 
related to dynamics, the calculus of variations, 
and topology, on which there is excellent 
work by J. Hadamard, H. +Poincaré, P. Funk, 
G. D. Birkhoff, M. Morse, R. Bott, W. Klin- 
genberg, and M. Berger, among others. The 
theory of minimal surfaces initiated by J. L. 

Lagrange was an application of the calculus 
of variations. At the early stages of develop- 
ment, G. Monge, J. B. M. C. Meusnier, A. M. 
Legendre, 0. Bonnet, B. Riemann, K. Weier- 
strass, H. A. Schwarz, Beltrami, and S. Lie 

contributed to the theory. Weierstrass and 
Schwarz established its relationship with the 
theory of functions. J. A. Plateau showed 

experimentally that tminimal surfaces cari be 
realized as soap films by dipping wire in the 
form of a closed space curve into a soap solu- 
tion (1873). The Plateau problem, i.e., the prob- 
lem of proving mathematically the existence 

of a minimal surface with prescribed bound- 
ary curve, was solved by Tibor Rade in 1930 
and independently by J. Douglas in 1931. 
Although the relationship to function theory 
is lost for higher-dimensional minimal sub- 

manifolds, their study is intimately related to 
the calculus of variations and topology. 

Euclidean geometry is a geometry belonging 
to F. Klein’s Erlangen program (- 137 Erlan- 
gen Program). For other geometries in the 
sense of F. Klein we may also consider the cor- 

responding differential geometries. For instance, 
in tprojective differential geometry we study 
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by means of differential calculus the properties 
of curves and surfaces that are invariant under 

projective transformations. This subject was 
studied by E. J. Wilczynski, G. Fubini, and 
others; tafftne differential geometry and +Con- 

forma1 differential geometry were studied by 
W. Blaschke and others (- 110 Differential 
Geometry in Specific Spaces). 

Influenced by Gauss’s geometry on surfaces, 
in his inaugural address at Gottingen in 1854 

Riemann advocated an intrinsic differential 
geometry completely independent of embed- 
dings (Über die Hypothesen, welche der Geo- 
metrie zugrund liegen; Werke, 2nd ed. 1892, 
2722287) (- 364 Riemannian Manifolds). 

Removing the restriction to two dimensions 
and considering abstract manifolds of dimen- 
sion n, he introduced what is now known as 

the Riemannian metric; actually he considered 
the more general metrics that had formed the 
subject matter of the dissertation of P. Finsler 
in 1918 (- 152 Finsler Spaces). Riemann- 
ian geometry includes Euclidean and non- 

Euclidean geometry as special cases, and is 
important for the great influence it exerted 
on geometric ideas of the 20th Century. Under 
the influence of the algebraic theory of invar- 
iants, Riemannian geometry was then studied 
as a theory of invariants of quadratic tcovar- 
iant tensors by E. B. Christoffel, C. G. Ricci, 

and others. Riemannian geometry attracted 
wide attention after A. Einstein applied it to 
the tgeneral theory of relativity in 1916. 

In the same year, T. Levi-Civita introduced 
the notion of +Levi-Civita parallelism, which 

contributed greatly to the clarification of geo- 
metric properties of Riemannian spaces. Ob- 
serving parallelism to be an affine-geometric 
concept, H. Weyl and A. S. Eddington devel- 
oped a theory of Riemannian spaces “afftnely” 
based on the notion of parallelism without 

using metrical methods. Such a geometry is 
called a geometry of an affine connection (- 

80 Connections). 
Every straight line in a Euclidean space has 

the property that a11 tangents to the line are 
parallel. In a space with an affine connection, 
we may detïne a family of curves called tpaths 
as an analog of straight lines. Such curves are 
solutions of a system of ordinary differential 

equations of the second order of a certain type. 
Coefftcients of such differential equations 
determine a parallelism and hence an affine 
connection. H. Weyl discovered transforma- 

tions of coefficients that leave the family of 
paths invariant as a whole, namely, projective 
transformations of an affine connection. A 
geometry that aims to study properties of 
paths or affine connections that are invariant 

under these transformations is called a projec- 

tive geometry of paths. Such geometry was 
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studied by L. P. Eisenhart, 0. Veblen, and 
others. The concept of projective connections 
was an outcome of such studies. Similarly, the 
concept of conforma1 connections was devel- 

oped from the consideration of tconformal 
transformations of Riemannian spaces. 

These geometries cannot in general be re- 
garded as geometries in the sense of Klein. 
Actually, any one of these geometries generally 
has no transformations that correspond to 
tcongruent transformations of geometries in 

the sense of Klein; even if it has such trans- 
formations, they do not act transitively on the 
space. Thus geometries are naturally divided 

into two categories, one consisting of geome- 
tries in the sense of Klein (based on the group 
concept) and the other of geometries based on 
Riemann’s idea. Under such circumstances, 
E. Cartan unified the thoughts of Klein and 
Riemann from a higher standpoint and con- 

structed his theory of connections in a series of 
papers published between 1923 and 1925. He 
developed the theory of affine, projective, and 
conforma1 connections from a viewpoint con- 
sistent with that of Klein. Just as each tangent 

space of a Riemannian manifold is viewed as a 
Euclidean space, an affine connection regards 
the tangent space at each point as an affine 
space and develops it onto the tangent space 
at an intïnitesimally nearby point. In discuss- 

ing projective connections Cartan attached a 
projective space to each point of a manifold as 
an infïnitesimal approximation, and similarly 
for conforma1 connections. More generally, he 

attached to each point of a manifold a lïxed 
Klein space, i.e., a homogeneous space of a Lie 
group, called the structure group. Thus Cartan 
introduced the concept of fiber bundle (- 147 

Fiber Bundles). Then he delïned a connection 

as a development of the fïber, i.e., the gen- 
eralized tangent space, at each point onto the 
fïber at an infïnitesimally nearby point (- 80 
Connections B). If G is the group of congruent 

transformations in Euclidean space, a mani- 
fold with connection having G as its structural 
group is called a manifold with Euclidean con- 
nection. Among manifolds with Euclidean 
connection, Riemannian manifolds are charac- 

terized as those without ttorsion. If we take 
the group of congruent transformations of 
projective (conformai) geometry as G, we have 
manifolds with projective (conformai) connec- 
tion in the sense of Cartan. Among these, there 
are remarkable ones called manifolds with 
normal projective (or conformai) connections, 
which are essentially the same as the ones 
studied by Veblen and others. Cartan’s idea 
had a profound influence on modern differen- 
tial geometry. The method of moving frames, 

created by G. Darboux and extensively used 
by Cartan in his theory of connections, was a 
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forerunner of the theory of fïber bundles. Com- 
bining +Grassmann algebra with differential 
calculus, Cartan developed a powerful com- 
putational tool known as calculus of differen- 
tial forms (- 105 Differentiable Manifolds Q). 
Differential forms have become indispensable 
in topology, algebraic geometry, and in studies 
of functions of several complex variables, as 

well as in differential geometry. 
The work of Lie on transformation groups 

also had a profound influence on Cartan. The 
latter’s work on +Lie groups, particularly on 

simple Lie groups, and on differential geome- 
try culminated in 1926 in his discovery of 
+Riemannian symmetric spaces. These spaces 
are natural generalizations of the spherical 
surface and the unit disk in the complex plane 

with Poincaré metric, and play essential roles 
in unitary representation theory and in other 

areas of mathematics. 
A tangent line to a curve C at a point P of C 

is the limit line of the line PQ, where Q is a 
point on C aporoaching P; hence we cari de- 

fine it locally. A concept (or property), such as 
this, that cari be defined in an arbitrary small 
neighborhood of a point of a given figure or a 
space is called a local concept (or local prop- 
erty) or a concept (or property) in the small. 
In the early stages of the development of dif- 
ferential geometry, differential calculus was 
the main tool of study, SO most of the results 
were local. On the other hand, a concept (or 
property) that is defmed in connection with a 

whole figure or a whole space is called global 
or in tbe large. In modern differential geome- 
try, the study of relations between local and 

global properties has attracted the interest of 
mathematicians. This view was emphasized 
by Blaschke, who worked on the differential 
geometry of tovals and tovaloids. The study of 
trigidity of ovaloids by S. Cohn-Vossen be- 
longs in this category, and many works on 
geodesics and minimal surfaces were done 

from this standpoint. 
From the viewpoint of modern mathemat- 

ics, the basic concepts on which we construct 
Riemannian geometry and geometries of con- 
nections are global concepts of tdifferentiable 

manifolds. However, in Riemann% time the 
theory of +Lie groups and topology were not 
yet developed; consequently, Riemannian 
geometry remained a local theory. In 1925, H. 
Hopf began to study the relations between 

local differential-geometric structures and the 
topological structures of Riemannian spaces. 
However, except for the work of Cartan, Hopf, 
and a few others, differential geometry in the 
1920s was still largely concerned with surfaces 
in the 3-dimensional Euclidean space or local 

properties of Riemannian manifolds, and with 
affine, projective, and conforma1 connections. 
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Gradually the concept of differentiable mani- 
folds was clarified, the global theory of Lie 

groups made progress, and topology devel- 
oped; and the trend toward global differential 
geometry began slowly in the early 1930s. The 
dissertation of G.-W. de Rham published in 
1931 showed that the cohomology of a mani- 

fold cari be computed in terms of differential 
forms (- 105 Differentiable Manifolds R). His 

theorem provides the theoretical foundation 
for expressing cohomological invariants of a 
manifold in terms of differential geometric 
invariants. In a series of papers immediately 
following de Rham’s, W. V. D. Hodge es- 

tablished that, on a compact Riemannian 
manifold, every r-dimensional cohomology 
class cari be uniquely represented by a har- 
monic form of degree r (- 194 Harmonie 
Integrals). 

An important class of complex manifolds 
with compatible Riemannian metric was dis- 
covered by J. A. Schouten, D. van Dantzig, 
and E. Kahler around 192991932. This class of 
manifolds, called Kahler manifolds today, 
comprises the projective algebraic manifolds. 

Hodge’s theory of harmonie integrals is most 
effective when applied to compact Kahler 
manifolds, (- 232 Kahler Manifolds). 

The most celebrated global theorem in 

classical differential geometry of surfaces is the 
Gauss-Bonnet formula (1848) (- 364 Rie- 
mannian Manifolds D). The formula was gen- 
eralized to closed hypersurfaces of Euclidean 
space by Hopf in 1925, to closed submanifolds 

of Euclidean space by C. B. Allendoerfer and 
W. Fenchel in 1940, and lïnally to arbitrary 
closed Riemannian manifolds by Allendoerfer 
and A. Weil in 1943. But the simple proof 
given by S. S. Chern in 1944 contained the 

notion of transgression, which has become 
essential in the theory of characteristic classes 
(- 56 Characteristic Classes). The discovery of 

Pontryagin classes for Riemannian manifolds 
(1944) and Chern classes for Hermitian mani- 
folds (1946) culminated in the +index theorem 
and the tRiemann-Roch theorem of F. E. P. 
Hirzebruch, and tïnally in the +Atiyah-Singer 

index theorem. 
A simple but fruitful idea of S. Bochner, 

relating harmonie forms to curvature, es- 

tablished tvanishing theorems for harmonie 
forms of Riemannian manifolds and for holo- 
morphic forms of Kahlèr manifolds under 
suitable positivity conditions for curvature. 
His idea has led to the vanishing theorems of 
K. Kodaira and others (- 232 Kahler Mani- 
folds D). 

The work of C. Ehresmann in 1950 on con- 
nections in principal fiber bundles established 

a solid foundation to Cartan’s theory of con- 
nections. Gauge theory in physics is largely 
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based on the theory of connections in prin- 
cipal fiber bundle. 

R. H. Nevanlinna’s value distribution theory 

and its subsequent generalization by Chern 
and others cari be best described in differential- 
geometric terms. 

Differentiable manifolds are currently ob- 
jects of research in both differential geometry 
and differential topology. While topology 

studies manifolds per se, differential geometry 
may be considered as the study of differenti- 
able manifolds equipped with geometric struc- 
tures, such as metric tensors, connections, 
(almost) complex structures, and various other 

tensors. Through these geometric structures, 
differential geometry enjoys close contact 
with many branches of mathematics. From 
its early days, differential geometry has had 
close ties to topology (as exemplitïed by the 

Gauss-Bonnet formula) and to partial dif- 
ferential equations and analytic functions 
(through, e.g., the study of minimal surfaces). 
The bonds with topology were strengthened 
by Morse theory and, more recently, by the 

theory of characteristic classes. In the most 
recent proof of the Atiyah-Singer index theo- 
rem, differential geometry is an important 

intermediary between topology and analysis. 
Differential geometry and algebraic geometry 
have enriched each other through Kahler 
manifolds. The theory of functions of several 

complex variables also has points of contact 
with differential geometry, such as value distri- 

bution theory and Cauchy-Riemann struc- 
tures. Contact and symplectic structures are 
basic to mechanics. Lorentz manifolds and 
connections in principal bundles are essential 

mathematical, tools in the general theory of 
relativity and in gauge theory. Topics such as 
minimal submanifolds, manifolds of positive 
curvature, and closed geodesics are active and 
important areas of research belonging to Rie- 
mannian geometry proper; at the same time, 

differential geometry provides a language and 
methods that are important in wider areas of 

mathematics. 
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A. The Method of Moving Frames 

The main theme of this article is the theory of 

surfaces (i.e., submanifolds) in a differentiable 
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manifold V on which a +Lie transformation 

group G acts. 
If a +Lie group G of dimension r acts ttransi- 

tively on a space G, and the tstability group 
for any point of G, consists of the identity 

element only, then G, is called the group mani- 
fold of G, and an element of G, is called a 
frame. If f0 is a fixed frame, then the mapping 

a+& E G, (a~ G) gives a tdiffeomorphism of 
G to G,. Let I(G) be the set of a11 tdifferen- 
tial forms w  of degree 1 on G, that are invar- 
iant under transformations of G. Then Z(G) 
is a linear space of dimension r and is the 
tdual space of the Lie algebra g of G. A basis 
{wl 11 <Â < r} of I(G) is called a set of rela- 
tive components of G. The structure equations 
hold: 

dw,=; i= c,lpvwp AO,, 
I<,” 1 

where Ci,,” are +Structure constants of the Lie 

algebra g. 
Let G be a Lie transformation group of a 

space E. Then a G-invariant submanifold of E 

on which G acts transitively is called an orhit. 
Each point ye E determines an orbit contain- 
ing y. When there exist parameters kj (1 <j < t) 
such that any G-invariant on E is a function of 
k,, . . , k,, then these parameters are called the 

fundamental invariants of E. Let H (c G) be the 
stability group at a point y0 on an orbit M; 
then M is identilïed with the thomogeneous 
space G/H by the diffeomorphism <p: M+G/H, 

<p(ayO) = aH (a E G). Furthermore, a +Principal 
fiber bundle (G,, M, H, 7) is determined by the 
projection 7: G,+M, 7(ufo)=ay, (~CG). The 
tlïber H, on a point y~ M is a group manifold 
of H. H, is called the family of frames on y, 
and an element of H, is a frame on y. Local 
coordinates 0, (1 <p < s) of the group H are 
called the secondary parameters and are used 
to indicate frames in H,. When H is not con- 
nected, let Ho be the connected component 
of the identity of H and fi be the tcovering 

manifold G/H” of M. An element JE M over 
y E M is called an oriented element. Now as- 
sume that the group H is connected. Then the 
family of frames H, on each y~ M is given as 
an tintegral manifold of a tcompletely inte- 
grable system of total differential equations ni 
= 0 (1s i < r - s, r-rie I(G)) on the group mani- 
fold G,. Here the ni are linearly independent 
and are called the horizontal components of M. 

The ni are linear combinations of the relative 
components wi of G, and their coefftcients are 

generally functions of the fundamental invar- 
iants kj. For simplicity, we assume that the 
relative components {mn} are chosen such that 

the horizontal components ni and components 
w, (r-s < LY < r) are linearly independent. Then 
the wp (1~ p <s) are called the secondary com- 
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ponents. The differentials de,, of the secondary 
parameters are linear combinations of the og. 
Furthermore, let {x,} (1~ (r < n) be local co- 
ordinates of E; then the differentials dx, are 
linear combinations of the differentials dkj and 
the horizontal components 7~~. 

Let G be a Lie transformation group of a 
space V. We regard two m-dimensional sur- 
faces WI and W, passing through XE V as 

equivalent if they have a tcontact of order p at 
x. Then an equivalence class of submanifolds 
is called a contact element of order p at the 

point x. Let E, be the set of a11 contact ele- 
ments of order p at x, where x runs over a11 
the points in V. A contact element of order p 
naturally determines a contact element of 
order p - 1, and we denote this correspon- 
dence by ti : E,-+ E,-, . Thus we obtain the 
series of correspondences 

V=E&EI+... +Ep-,;YEp+..., 

where a contact element of order 0 is identilïed 

with a point of V. Since a transformation on 
the space V induces a transformation on E,, 
G is also a Lie transformation group of E,, 

and this transformation commutes with the 
mapping $. The fundamental invariants kj of 
E, are said to be of order p. We use similar 
terminology (such as frames of order p, etc.) 
throughout this article. The fundamental in- 
variants kj of order p (1 <j < tP) cari be chosen 

such that they contain the fundamental invar- 
iants ki (1 <i < t,-,) of order p - 1. The ad- 

ditional t, - t,-, invariants k, (t,-, < c( < tP) are 
called the invariants of order p. The family H! 

(y~ EP) of frames of order p cari be chosen 
such that Hi is contained in the family Hi-’ 
(z = $y~ E,-,) of frames of order p - 1. If neces- 

sary, the family HJ of frames of order p cari be 
made connected by detïning an orientation of 
contact elements of order p. Furthermore, the 
horizontal components rcj (1 <j < r - sP) of 

order p cari be chosen such that they contain 
the horizontal components rri (1 <i < r - sPml). 
The additional sP-i -s,, components rca (r 
- sP-i < tu < r - sP) are called the principal 
components of order p. 

Let W be an m-dimensional surface of a 
space V. The contact element of order p (2 0) 
is determined at every point of W and ex- 

pressed by the family of frames of order p and 
the values of invariants of orders less than or 

equal to p. Let {ui} (1~ i <m) be local coordi- 
nates on W. Then the differentials dui are given 

as linear combinations of linearly independent 
differential forms rci (1~ i < m), where the ni, 
called the basic components of W, are certain 
linear combinations of the differentials of the 
fundamental invariants of V and of the horizon- 

tal components of orbits of V. Let Fp( W) be 
the set of a11 families of frames of order p; then 
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Fp( W) depends on m parameters ui and sP 
secondary parameters 0, of order p. On the 
space P(W), the differentials of invariants of 

orders less than or equal to p - 1 and the prin- 
cipal components of orders less than or equal 

to p - 1 are linear combinations of the basic 
components, whose coefficients are functions 

of the invariants of orders less than or equal 
to p. The differentials of invariants of order 
p and the principal components of order p are 
linear combinations of the basic components: 

dk, = h,, 7~~ + . . . + h,,~,,,, t,-,<u<t,, 

n,=b,,n,+...+b,,q,,, r-s,-,cu<r-s,, 

where the coefficients hNi, bai are functions of 
the invariants of orders less than or equal to p 
and, in general, the secondary parameters Q,, of 
order p. These coefficients are called the coeffi- 
cients of order p. Let Ip be a subgroup of G 
preserving a family of frames of order p and DP 
be a space whose coordinates are coefficients 

(&, bai) of order p. Then Ip acts on DP as a 
transformation group. Knowledge of the prop- 
erties of contact elements of order less than 

or equal to p cari be utilized to obtain infor- 
mation about the invariants of order p + 1, etc. 
In fact, if we cari choose in the I,-space 0, a 
subspace C, that intersects each orbit in D,, at 
one and only one point, then in general the 
secondary parameters of order p associated 

with the points in C, correspond to the frames 
of order p, and the parameters associated with 
the points in C, are the invariants of order p + 
1. The restrictions of the coefficients of order 

p to C, are functions of the invariants of orders 
less than or equal to p + 1; they are indepen- 
dent of the secondary parameters of order p. 

Thus the frames of order p + 1 and the in- 
variants of orders less than or equal to p + 1 
determine the contact elements of order p of W 
and their differentials; generally, the latter cari 

be utilized to determine the contact elements 
of order p + 1. 

This process of obtaining information of 
“order p + 1” utilizing a suitable subspace C, 
of DP is the so-called general metbod of moving 
frames. However, the surface W may contain 
points for which the general method does not 

apply. Actually, there are surfaces W for which 
the method does not apply for any point in W. 
Thus various methods of moving frames are 
necessary to tope with different kinds of sur- 
faces. In the actual application of the method 
of moving frames, we use certain devices that 
help to simplify the calculations. In fact, an 
infmitesimal transformation (S&, abai) of the 
group I, acting on the space 0, is expressed as 

a linear combination of the secondary compo- 

nents of order p; this expression is easily ob- 

tained by means of the structure equations of 
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G. The group I,,,, is a subgroup of I, Iïxing 
every point of the subspace C,, and its in- 
lïnitesimal transformation is such that 6hai = 0, 
Sb,, = 0. The secondary components of order 
p + 1 are immediately obtained from the 

equations for dk, and rr,. Furthermore, when 
m > 2, the condition for the principal compo- 
nents of every order to satisfy the structure 
equations of G is essential to the problem of 
the existence of (m-dimensional) surfaces. 

As we apply the method of moving frames 
consecutively to a surface W, we eventually 
arrive at the order ré having the following 
properties: The families of frames of order 
4 + 1 coincide with those of order q, and the 
invariants k, of order q + 1 are expressed as 

functions cp&k,) of invariants k, of order less 
than or equal to 4. In this case, the families of 
frames of orders q +j (j > 1) are a11 equal, and 

the invariants of orders q + j are partial (j - l)- 
derivatives of functions cpB(k,). The family of 
frames of order q is called the Frenet frame. 
The differential invariants on a surface are 

defined to be differential forms generated by 

the basic components and the invariants of 
each order. 

Specilïcally, assume that the group G is an 
analytic transformation group of V, and the 
m-dimensional surfaces W,, W, are analytic. 

Then there exists an element 9 of G such that 
gW, = W, if and only if W, and W, are of the 
same kind and have the same relations among 
the invariants of orders less than or equal to 
q + 1. These relations are called the natural 
equations of the surface. The theory of sur- 
faces based on the analysis of the natural 
equations of surfaces is called natural geome- 
try. The reduction formula cari be obtained by 
utilizing the Frenet frame; it gives the equation 
of the surface in the form of power series con- 

taining the invariants of each order. 
Various results are known concerning the 

theory of surfaces of the spaces V, , V, sharing 
the same transformation group G. We also 
have a theory of special surfaces whose in- 
variants satisfy specific functional relations. 
Furthermore, we have problems concerning 
the deformation of a surface (preserving some 
differential invariants). Actually, the theory of 
surfaces of dimension m other than curves and 

hypersurfaces is in general quite dihïcult. The 
methods of tensor calculus cari be applied to 
the study of surfaces. The theory of tconnec- 

tions cari be considered to be an outgrowth of 
the study of surfaces by means of the method 
of moving frames and tensor calculus. 

B. Projective Differential Geometry 

The rudiments of differential geometry sub- 
ordinated to the tprojective transformation 
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group, or projective differential geometry, cari 
. be found in the Theory of surfaces by J. G. 

Darboux. The subject has been systematically 

studied by H. G. H. Halphen, E. J. Wilczynski, 
and G. Fubini. The Fubini theory was en- 
riched substantially by E. Cartan, E. Lech, E. 

Bompiani, and J. Kanitani. 
In this section we consider a surface S in a 

3-dimensional projective space. Let A(u’, u’) 
(u’, uz are parameters on S) be a point of S, 

and associate with A a11 the frames [A, A,, 

A,,A,l(IA,A,,A,,A,l=l),whereA,,A,,A, 
are points of the tangent plane to S at A. A 
family of such frames is called the family of 
frames of order 1, and we express its differen- 
tial by 

3 

dA,= 1 w,BAp, a=O,1,2,3, A,=A. 
p=o 

The 0: are tPfaffian forms that depend on two 
principal parameters determining the origin A 
and ten secondary parameters determining the 

frame. Wehavew~+w~+w~+w3=O,w~=O. 
Furthermore, m1 = ~0, re2 = wi are indepen- 

dent of each other and depend on the principal 
parameters only. Let zi, z2, z3 be tnonhomo- 
geneous coordinates with respect to a frame of 
order 1. Then in a neighborhood of the origin, 
S is expressed by z3 = Cz2f*, where the f, are 

homogeneous functions of degree r with re- 
spect to zi, zz. 

If we Write fi =(ao(z’)’ + 2a,z’z2 + az(z2)*)/ 
2, then it follows from the structure equations 
of the projective transformation group that 
w~=aoo1+a,r02,0$=a1c01+a2mZ.Ifwe 

put rp2 = ao( + 2a, w1 w* + a2(W2)*, then 
a curve on S defined by <P* = 0 is called the 
asymptotic curve and its tangent the asymp- 
totic tangent. At any point of this curve, the 
plane tangent to S is in contact of order 2 

with this curve, and there are in general two 
asymptotic curves through any point of S. 
Equations of the asymptotic tangent at A 
are given by z3 = 0, f2 = 0. A point of S at 
which the asymptotic tangents coincide is 
called a parabolic point. If every point of S is 
parabolic, then S is a tdevelopable surface, and 
the general theory is not applicable to such a 
surface. 

Among the family of frames of order 1, a 
frame satisfying a0 = a2 = 0, a, = 1 is called the 
frame of order 2. For this frame, the straight 
lines AA,, AA, are asymptotic tangents. With 

respect to this frame, if f3 = -(bo(z’)3 + 
3b,(z’)‘z* + 3b,z’(z*)* + b3(z2)3)/3, then r$ = 
b,w’+b,w*, -w;+w:+w;-w;=2(b,w’+ 
b,~*), w: = b,w’ + b,u*, and the quadric 
surface z3=z’z2-z3(b,z’ +b2z2+pz3) (with p 
arbitrary) is called Darboux’s quadric at A, an 

especially interesting one among contact quad- 
ries of S. Darboux’s curve is a curve on S such 
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that Darboux’s quadric is in contact of order 3 

at any point of it. Its tangent is called Dar- 
boux’s tangent and is given by z3 =0, b,(z’)3 + 
b3(z2)3 = 0. 

We have bob3 #O, except in the case of 
truled surfaces. We take special frames of 
order 2 determined by b, = b, = 0, b, = b, = 1 

and cal1 them the frames of order 3. If a frame 
of order 3 satisiïes f4= -(c~(z~)~+~c,(z~)~z~ 
+6(c,- 1)(z’z2)2+4c3z1(z2)3+c4(z2)4)/12, 
then c$ - 20: + w$ = cOwl + cl w2, ~3 -WY 
=c1w’+c2w2, w:-w~=c2w1fc302, wg+o; 
- 21~02 = c3w1 + c4w2. With respect to this 
family of frames of order 3, ((w’)~ +(w’)~)/ 
2w’w’ is an invariant associated with two 

neighboring points of S, called the projective 
line element. Also with respect to this frame, 
two straight lines AA,, A, A, are polar with 

respect to Darboux’s quadric. 
Among the families of frames of order 3, a 

frame satisfying c, = c1 = c3 =0 is called a 

frame of order 4. With respect to this frame, 
there exist A, p, v, p such that WY = Âw’ + pw2, 
col = vcd + pw2, coi = pd + 1w2. Hence if we 
put ca = - 3a, c4 = - 3b, it follows that 

TO= -(3/2)(aw’+bw*), 7; =(1/2)(aw’ +bo2). 

Thus the frame of order 4 is the Frenet frame 
and is attached to every point of S. This frame 

is called the normal frame, and the invariants 
a, b, 1, p, v, p are called the fundamental differ- 

ential invariants. The straight lines AA, and 
A, A, associated with the normal frame are 
called directrices of Wilczynski of the Iïrst and 
second kind, respectively. With respect to the 
normal frame, S is expressed by 

+(a(~‘)” + b(z2)4)/4+(z1z2)2/2+ . . . 

A necessary and sufftcient condition for two 

surfaces S, S to be projectively equivalent is 
that there be normal frames having the same 
wl, cu2 and the same six fundamental differen- 
tial invariants. For six quantities a, b, 1, p, v, p 
to be fundamental differential invariants of a 
surface, they must satisfy a certain condition of 

existence [6]. 
A frame of order 1 such that AA, and A, A, 

are polar with respect to Darboux’s quadric 
is called Darboux’s frame. With respect to 
this frame also, a theory of surfaces has been 

established. 
Consider a pointwise correspondence be- 

tween two surfaces S, S, and denote by AES 

the point corresponding to AES. If there exists 
a projective transformation <p that transforms 

110 c 
Differential Geometry in Specific Spaces 

A into A and the image C~(S) is in contact of 
order 2 with S at A, then the pointwise corre- 
spondence is called a projective deformation. 

A necessary and sufficient condition for the 
existence of a projective deformation between 
two surfaces is that these surfaces have the 
same projective line element [6]. A ruled sur- 
face is projectively deformable only to a ruled 

surface. Given an arbitrary surface S, it is 
generally impossible to find a surface that is 
different from S and projectively deformable to 
S; some conditions must be satistïed [6,8]. 

Let pol, po2, po3, p12, p13, p23 be tP1ücker 
coordinate of a straight line in a 3-dimensional 
projective space P3. Then we have pol p23 - 
po2p’3+po3p’2=0, and there is a one-to- 

one correspondence between the ratios of {p”} 
and straight lines (- 90 Coordinates B). If the 
pij are regarded as homogeneous coordinates 
of a 5-dimensronal projective space P5, then 

the previous equation detïnes a hyperquadric 
Q in P5. Thus there is a one-to-one correspon- 
dence between points of Q and straight lines in 
P3. A curve on Q corresponds to a set of one- 
parameter families of straight lines, or a ruled 
surface. Sets of 2-parameter or 3-parameter 
families of straight lines corresponding to 
surfaces of 2 or 3 dimensions on Q in P5 are 
called congruences of lines or complexes of 
lines, respectively. Thus by using a theory of 

surfaces in P5, it is possible to establish the 
theory of congruences and complexes [2,6,8], 
which is an important part of projective dif- 
ferential geometry. 

Specitïcally, if the surface is either a curve or 
a hypersurface, there are numerous interesting 

results [2,4,6]. 

C. Affme Differential Geometry 

The theme of general affine differential geome- 
try is the study of differential-geometric prop- 
erties of a point or set of points in a space 

that are invariant under the action of the 
taffrne transformation group. Affine differen- 
tial geometry is the study of the properties 
invariant under the action of the tequivalent 
affine transformation group, i.e., a subgroup of 
the afftne transformation group formed by 
elements sending (xi) to (Xi) such that 

xi=a,+ c n,xj ,  i=l,...,n, det(aij) = 1. 
j=l 

The latter transformation leaves invariant the 
volume surrounded by an oriented closed 
hypersurface. The method of moving frames is 

effective in affine differential geometry. 
Let C be a plane curve, and associate with 

any point A = A(t) of C a family of frames 
[A, e,, e,], where the area of the parallelogram 
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determined by the two vectors e,, e2 is equal 

to 1. This frame is called the frame of order 0. 
Its differential is expressed by 

dA = ; use,, de, = 5 use,, r=1,2, 
S=I S=I 

co:+o$=o. 

The frames of order 1,2, and 3 are character- 
ized by w2=O; w’=O, wi=o’; and w2=0, 
wf = WI, wi =O, respectively. Then a frame of 
order 3 cari be associated with each point of C 

and coincides with the Frenet frame. We cal1 
a1 = do the affine arc element; the affine curva- 
ture K is delïned by coi = -K~O. Then the 
Frenet formula is given by 

dA=dae,, de, =dae,, de,= -Kdae,. 

With respect to this frame, C is expressed as 

y=x2/2+~x4/8+(d~/da)x5/40+ . . . . 

Further, do and K are given analytically by 

da= IdA,d2A)1’3, ~=[d’AJda’,d~A/da~[, 

where lM, N 1 = det(M, N). M, N are column 
vectors with two entries. We cal1 a the affine 
arc length. The straight line on which e2 is 
situated is called the affine normal, the dia- 
meter of the parabola osculating C at A. If rc is 
constant, then C is a conic section. Further- 
more, C is an ellipse, hyperbola, or parabola 
according as the constant K is positive, nega- 
tive, or zero. In allïne geometry, parabolas play 
a role similar to that played by straight lines in 
Euclidean geometry. 

There are numerous results concerning the 
theory of skew curves and surfaces [ 11. Con- 
cerning the theory of skew curves, results on 

affine length, affine curvature, affine torsion, 
affine principal normais, and affine hinormals 
are similar to those in Euclidean geometry. 

The affine transformation group is situated 
between the projective transformation group 

and the congruent transformation group and 
hence has properties analogous to theirs. The 

theory of surfaces has a character similar to 
that of projective differential geometry [ 11. 
We may also consider the variation of the 
affine area of a surface surrounded by a closed 

skew curve C. We cal1 the extremal surface the 
affine minimal surface. W. Blaschke and others 
obtained many results on the global properties 
of such surfaces. 

D. Conforma1 Differential Geometry 

Let S” be a tconformal space of dimension 
n, and associate with each point A,, ES” a 
frame %[A,, A,, . . , A,, A,] of the +(n + 2)- 

hyperspherical coordinates with origin A, 
(- 76 Conforma1 Geometry). Then denoting 

by A. B the tinner product of hyperspheres 
A, B, we obtain 

A;A,=g,,> cr,fi=O,l,..., n,co, 

where 

(Sa@)= 

i,j=l,..., n, Sij = Sji' 

Let z” be homogeneous coordinates with 
respect to Y?. Then the +Mobius transforma- 
tion z+Z of S” is characterized by Z”=c;za, 
where g,&c,B = gcr, Ici1 #O. The differential of 

the family of the frames is defmed by 

(1) 

where 

There are (n + l)(n + 2)/2 linearly independent 

forms among w, and this is the number of 
parameters of the Mobius transformation 
group. The structure equations of this group 
are 

doi=Co;r\o,P. (2) 

The theme of conforma1 differential geometry 

is the properties of Pfaflïan forms w! satisfying 
(1) and (2). 

Consider a transformation c: C zaA,-* 
C z”(A, +dA,). (1) If a11 o vanish except ~0, 

then a11 the circles through A,, A, are in- 
variant, and any point P is transformed to a 
neighboring point P on the circle, such that 
the cross ratio (P, P; A,, A,) is constant. This 
transformation is called the homothety with 
centers A,, A,. (2) If a11 w  vanish except 00, 
WY =C gikwk, then a11 the circles tangent to a 
lïxed direction at A, are transformed into 

themselves, and any hypersphere through A, 
and orthogonal to those circles is transformed 

into a hypersphere having the same property. 
This transformation is called the elation with 
tenter A,. (3) If a11 o vanish except OF = 

C9ikwkt WA, then the transformation is an 

elation with tenter A,. (4) If a11 o vanish 
except ce{, then the transformation is an in- 
lïnitesimal rotation with tenter A,, with A, 
regarded as a point at infinity. Thus any in- 
lïnitesimal Mobius transformation is de- 

composed into the previous four types of 
transformation. 

TO study the theory of curves and hypersur- 

faces in S”, we again utilize the Frenet frame 
chosen from a family of frames associated with 
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A,. For example, the Frenet formula of a curve 
in S3 is given by 

We cal1 do, IC, and z the conforma1 arc element, 

conforma1 curvature, and conformai torsion, 
respectively. There are many results on con- 
forma1 deformation [S]. 

Concerning Laguerre differential geometry, 

we have results dual to those in conforma1 
differential geometry (a point is replaced by a 
straight line and an angle by a distance be- 
tween the points of contact of the common 

tangents of two oriented circles). 

E. Contact Manifolds 

Consider a (2n + 1)-dimensional differentiable 
manifold M’“+’ with a 1-form q such that 
q A (dq)” #O, where du is the exterior derivative 

of r) and A denotes exterior multiplication. 
(Note that this is true for the 1-form in the left- 

hand side of eq. (2) in 82 Contact Transforma- 
tions A.) Such a manifold is called a contact 

manifold with contact form n. The structure 
group of the tangent bundle of a contact mani- 
fold M”‘+’ reduces to U(n) x 1, where U(n) is 
the unitary group; hence every contact mani- 
fold is orientable. Simple but typical examples 
are given by the unit sphere S”‘+’ in Euclidean 
space E2”‘2 and the tangent sphere bundle of 
an (n + 1)-dimensional Riemannian manifold 

M”+l, both with natural contact forms (S. S. 
Chern [SI). Every 3-dimensional compact 
orientable differentiable manifold is a contact 

manifold (J. Martinet [ 121). 

Now a differentiable manifold M2”+’ is said 
to be an almost contact manifold if it admits a 
tensor lïeld cp of type (1, l), a vector field 5, and 
a 1-form q such that 

<p2x= -X+11(X)5, 1(5)=1, (3) 

where X is an arbitrary vector fïeld on M2”+‘; 

and the triple (<p, 5, q) is then called an almost 
contact structure. (3) implies that (~5 = 0 and 
q(cpX)=O (S. Sasaki [14,1]). The structure 
group of the tangent bundle of an almost 
contact manifold M2”+i reduces to U(n) x 1. 

Indeed, J. W. Gray [lO] took this property as 
his definition of almost contact structure. For 
any pair of vector fields X and Y on M’“+‘, let 

NW, Y) = LX, y1 + <pc<px, y1 

+<pcx~cpyl-c~x~cpy1 

-{X.W- Y~~W))5, 
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where [ , ] is the Poisson bracket; then N is a 
tensor fïeld of type (1,2) over M’“+i, which we 
cal1 the torsion tensor of the almost contact 

structure (cp, 5, q). When N vanishes identically 
on M”“l, we say that the almost contact 
structure is normal. 

An almost contact structure (cp, 5, q) on 
M2”+’ induces naturally an almost complex 
structure J on M2”+’ x R (resp. M2”+’ x S’), 
which reduces to a complex structure if and 
only if (cp, 5, q) is normal. A similar statement is 
also vahd for the product space of two almost 
contact manifolds (A. Morimoto [ 131). 

If M2”+i is an almost contact manifold 
with structure tensor (cp, 5, q), we cari fïnd a 

positive defïnite Riemannian metric g SO that 

g(<pX, <pY)=dX, Wr(XMY) for any pair 
of vector tïelds X and Y, and the set (<p, 5, q, g) 
is then said to be an almost contact metric 
structure. 

When M2”+’ is a contact manifold with 
contact form q, there exists a unique vector 
field 5 which satislïes dq(X, 5) =O, ~(5) = 1 for 
any vector field X. We cari then find a tensor 

fïeld cp of type (1,1) and a positive definite 
metric tensor y SO that (i) dq(X, Y) = g(X, <p Y) 
is satisfïed for any pair of vector fïelds X and 
Y, and (ii) (9, 5, ré, g) is an almost contact metric 
structure. The almost contact metric structure 

determined in this way by a contact form q is 
called a contact metric structure. A differenti- 
able manifold with normal contact metric 
structure is called a normal contact Rieman- 
nian manifold or a Sasakian manifold. Bries- 

korn manifolds are examples of such mani- 
folds. They include, besides the standard 

sphere S2”+‘, all exotic (2n + 1)-spheres that 
bound compact oriented parallelizable mani- 
folds. An almost contact manifold is said to be 

regular or nonregular according as the integral 
curve of 5 is regular or not as a submani- 
fold. A compact regular contact manifold is a 

principal circle bundle over a symplectic mani- 
fold, and it admits a normal contact metric 
structure if and only if the base manifold is 
a Hodge manifold (Boothby and Wang [S], 
Hatakeyama [ 111). 

Many research papers on the topology 
and differential geometry of manifolds with 
the structures defïned above have been pub- 
hshed by S. Tanno, S. Tachibana, D. E. Blair, 

M. Okumura, K. Ogiue, S. 1. Goldberg, and 
others. 
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Il 1 (VII.1 2) 
Differential Geometry of 
Curves and Surfaces 

A. General Remarks 

Let ,f be an timmersion of an m-dimensional 
tdifferentiable manifold M of class c’ into an 
n-dimensional Euclidean space E”. More pre- 
cisely, fis a differentiable mapping of class C’ 

such that the tdifferential df, is injective at 
every point p of M. The pair (M,f) is called 
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an immersed submanifold (or a surface) of E”. 
When m = 1, we cal1 it a curve of E”, and when 
m =II - 1, a hypersurface in E”. The cases of 
n = 2 and n = 3 have been the main abjects of 
study in differential geometry of curves and 
surfaces. The differential-geometric properties 
for the general case of immersion are discussed 
in 365 Riemannian Submanifolds. 

B. Frames in E” 

Every +Euclidean motion in E” cari be ex- 
pressed as the product of a parallel translation 
and an torthogonal transformation that keeps 
the origin of E” fixed. The set of all parallel 
translations is a commutative group that cari 
be identitïed with R”. It is a normal subgroup 
of the group of motions I(E”) of E”. SO we see 
that I(E”) is a tsemidirect product of R” and 

the torthogonal group O(n). The Lie algebra 
of I(E”) is the direct sum of R” and the Lie 
algebra o(n) of the orthogonal group, where 

both are regarded as additive groups. Corre- 
sponding to this decomposition, we cari Write 

the +Maurer-Cartan differential form over 
I(E”) as o+Q, where o belongs to R” and Q 

to o(n). The +Structural equation d(w + 0) = 
-(1/2)(w+R) A (w+Q) cari be divided into 

the following two parts: dw = fi A w; dR = 
-( 1/2)R A R. These are known as the structure 
equations of E”. By an orthogonal frame in 

E” we mean an ordered set (x, e,, , e,) con- 
sisting of a point x and a set of torthonormal 
vectors e,, e2,. ,e,. We denote by 0(n) the set 

of a11 orthogonal frames in E”. If we denote 
the translation identified with XER” by TX, 
then there is a one-to-one correspondence <p: 
I(E”)+e(n)givenbyrp(T,A)=(x,Ae,,...,Ae,) 
(A E O(n)). We cari make 0(n) into a differ- 
entiable manifold SO that cp is a tdiffeomor- 

phism. We denote the differential forms over 
O(n), which are images of w  and R under the 
+dual mapping of <p -‘, by the same letters w  

and R, respectively. For O(n) as a +Principal 
liber bundle over R” with the projection rc: 
X(X, e,, . , e,) =x and n vector-valued func- 

tions <pi: cpi(x, e,, . . . , e,) = e, over &j(n), we have 

w=Cco’e,, R = 1 R”E,, 
r<j 

coi = (d7c, cpi), cYj=(d<pi, <pj), (1) 

dod=pY~/w’, dQU=Cp,,Qki, 
j k 

where {E,} is a basis of o(n) delïned by Eijej=e,, 
Eijei= -ej, E,e,=O (k#i,j) and ( , ) is the 
scalar product of vector-valued forms induced 
from the scalar product of E”. Any diffeomor- 

phism of O(n) onto itself preserving w  and 0 

must be a Euclidean motion. 
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C. Theory of Curves 

Let (M,f) be an immersion of a 1-dimensional 
differentiable manifold M into E”. We identify 

the tangent space of E” at each point with E” 
itself. Then df, maps the origin of the tangent 
space M, to f(x), and the image df,(M,) of M, 
by df, is a straight line passing through f(x) 
in E”, called the tangent line off(M) at f(x). 
By Lof(M) we mean the set of a11 ordered sets 
(x, e,, . , e,), where XEM and {ei} is an ortho- 

normal basis of E” such that e, PDF,. Then 
of(M) cari be naturally immersed in 0(n) by 
the mapping f:f(x,e,, . , e,)=(f(x),e,, . . . ,e,). 

We cari pull back the differential forms w, Q 
w’, Rij over 0(n) to O#f)f* and denote them 
by 0, 0, t?‘, and Oij, respectively; then we have 
f?=O (i> 1). Let fi and f2 be two immersions 
of M into E”. Then in order for there to exist a 
Euclidean motion c( of E” such that fi =CI o f2, 

it is necessary and sufftcient that there exist a 
diffeomorphism cp of of-,(M) onto of,(M) such 
that Q,-] = (p*(t$>), O,, = (p*(Of2). Let 7~~ be the 

projection of the liber bundle or(M), and let ‘pi 
be naturally delïned vector-valued functions 
over 0#4). Then we have d( f o rrf) = 8’ ‘pl, 
d<p,=&, O’jrp,. If we put d?(X)= Ildf,(X)ll’ 
(~EM,.), then we have (0’)‘= $(ds’). For each 

point XE M there are two possibilities for the 
choice of e, corresponding to two orientations 

of the curve. But since (dq,, dq,) = z~(pzds2), 
p2 depends only on the point x of M. We cal1 
p (> 0) the absolute curvature. We now choose 
an orientation of the curve and then e, in 
accordance with the orientation. Thus we get a 

submanifold of Of(M), which we again express 
by the notation Of(M). If we delïne the form ds 
by ds(X)=(df(X),e,), we have Q’=rr,*(ds), and 
ds is called the line element. Any tlocal cross 

section R : rcf o R = 1 of the bundle C!$(M) is 
called a moving frame. Putting 

x=x(t). If cp is a diffeomorphism of a closed 

interval [a’, b’] onto [a, b], then fo cp and f 
are representations of the same arc in E”, and 
cp is called a transformation of the parameter. 

Any curve of class C’ is trectifiable, and its 
arc length is given by s = ~,b(C~=l(dxi/dt)Z)1’2 dt. 
We may choose the arc length s measured 
from a point on the arc as a parameter, called 
the canonical parameter of the arc. Consider 
an arc C of class C” given by the vector repre- 
sentation x=x(s), SE [a, b]. We assume that its 

+Wronskian lx’(s), ,x(“)(s)/ is not identically 
zero (we denote by ’ the derivative with respect 

to the canonical parameter), which means 
that the arc C is not contained in a hyper- 
plane in E”. A point at which the Wronskian 

vanishes is called a stationary point, and we 
assume that there exists no stationary point 
on C. By the +Gram-Schmidt orthonormaliz- 
ing process we obtain an orthonormal basis 

e,,...,e,(le, , . . . , e,l > 0) from n vectors x’(s), 

“‘3 x(“)(s) at each point of C. We cal1 the frame 
thus determined the Frenet frame. With re- 

spect to the Frenet frame, (2) is rewritten as 

e;(s)= -Ki~l(S)ei~l(S)+Ki(S)ei+l(S), 

R*(O’) = ds, R*(@ij) = pij& 

we see that the following equation holds over 
M: 

dei=zpijdsej. 
j 

(2) 

For two immersions (M, fi) and (M, fi), we 
have fi = c( o fi (CI is a Euclidean motion) if and 
only if they have the same ds and pij for some 

moving frames. 

D. Frenet’s Formulas 

In order to study local properties of curves it is 
sufficient to consider them on +Jordan arcs of 
class c’. With respect to orthogonal coordi- 

nates (x’ , , . . ,x”) in E”, such a curve is repre- 

sented parametrically by x’=f’(t) (te [a, b], 
C(dx’/d@ > 0) or by a vector representation 

i=l ,...,n; 

Ko(S) = K,(S) = 0; (3) 

Kj(s) > O, j=l,...,n-2. 

These are called Frenet’s formulas (or the 
Frenet-Serret formulas). We cal1 x1, K~, . . , 
K,-~ the lïrst, second,. . , (n - 2)nd curvature, 

respectively, while we cal1 K,~~ the torsion for 
n > 3. For a curve in a lower-dimensional sub- 
space Em c E”, we set ~~ = 0 (i > m). The curva- 
tures and the torsion of a straight line are 

zero. TO get Frenet’s formulas in these special 
cases, we fix e, (i > m) in the subspace ortho- 
gonally complementary to Em in E” and pro- 
ceed as in the general case. Suppose that C,, 

C, are arcs such that both of their Frenet 
frames are of class C’. If there exists a diffeo- 
morphism of C, to C, that preserves arc length 
andtheK;(i=l,..., n - 1) are equal at corre- 

sponding points, C, and C, are mapped onto 
each other by a motion of E”. This is the fun- 
damental theorem of the theory of curves. 
Given n - 1 functions of class C’ I~~(S) B 0, , 
K,~,(s)>O (we assume that the equality signs 

occur at most at a lïnite number of points) 
and IC,~~ (s) for 0 < s Q L, there exists an arc 
that has rci, . . , K,-~, IC.-~ as its lïrst, , 
(n-2)nd curvatures and its torsion, respec- 
tively. The equations ~~ = rci(s) are called the 
natural equations of the curve. 

E. Plane Curves 

Let x =x(s) be a curve of class C2 in E*, and 
(x(s), e,, e,) its Frenet frame. The tangent and 
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the normal of this curve at x(s) have para- 
metric representations x(s)+ te,, x(s) + te,, 

respectively (with parameter t). Frenet’s for- 
mulas are written as x’ = e, , x” = e’, = rce2, and 
p is called the curvature of the curve C. The 
natural equation is given by K = K(S). If K(S) = 

constant #O along C, C must be a portion of 
a circle. Another way of defïning the curvature 
is as follows: We take a fixed direction (for 
example, the positive direction of the x-axis on 

E’) and denote by Q(s) the angle made by the 
tangent T, of the curve C at x(s) with the direc- 
tion. Then we have K(S) = dQ/ds. If n = 2, the 
curvature cari take both positive and nega- 
tive values. Figs. 1 and 2 suggest a geometric 
meaning of K > 0 and K < 0, respectively. The 

circle with tenter x=x(s) + (l/K)e, and radius 
l/~ has a contact of higher order than any 
other circle in E’. We cal1 this circle the oscu- 

lating circle (or circle of curvature) at the point 
x=x(s), its tenter the tenter of curvature, and 
1,‘~ the radius of curvature. The locus c’ of the 
tenter of curvature of a curve C is called an 

evolute of C. Conversely, C is called an involute 
of c’, the tenvelope of the family of normal 

lines of C. When a curve is given in terms of its 
canonical parameter s, the curvature is given 
by Ix’(s), ~“(S)I; when the curve is given by 
another parameter t as x=x(t), the curvature 
is given by K(t)=Ix’(t),x”(t)l/lx’(t)13, where ’ 

means dJdt. 

Fig. 1 Fig. 2 
K>O. K<O. 

The facts we have just stated concern local 

properties of plane curves. We shall now dis- 
cuss the global theory of curves, which deals 
with properties of each curve as a whole. Let 
C: x =x(s), a <s < b, be a closed curve. Let 
0(s), 0 <O(s) < 27c, be the angle that e(s) makes 
with the x axis. Put 0 = ji o’(s) ds. Intuitively, 
0 measures the total rotation of e, (s) as we 

run along the curve C from a to b. Since C is 
closed, 0 is an integer multiple 1 of 2~. The 

integer 1 is called the rotation number of C, 
and is equal to (1/2n)J,bK(s)ds. Let D be a 

closed domain consisting of points in the inte- 
rior and on the boundary of a simple closed 
curve C. C is called a closed convex curve or 
an oval if D is tconvex in E’. Among ail ovals 
of given length, the circle has the maximum 

area. Various generalizations of this theorem 
have been obtained, and the collection of 

problems of this kind is called the isoperimet- 
rit problem. This problem has intimate con- 
nections with fïelds such as integral geometry. 
The oval has a convenient parameter other 
than the arc length parameter s. Given a num- 

ber t, 0 < t < 2n, there exists a unique point 

x(t) in the oval such that e2 =(COS t, sin t) at 
x(t). When we describe the oval in terms of 
the parameter t, the tangent vector at x(t) is 
parallel to that at x(t + z), and we cari define 
the width W(t) at x(t). W(t) is called the widtb 
of tbe oval. A curve is called a curve of con- 
stant widtb if the curve is an oval whose width 
W(t) does not depend on t. The circle is a 
typical example of a curve of constant width. 
Reuleaux’s triangle is another well-known 
example of a curve of constant width (Fig. 3). 

For a curve of constant width of width W 
and length L, we have L = n W. 

Fig. 3 

There are also some results concerning the 

relations between local properties (for exam- 
ple, curvature) and properties of the whole 
figure. An example is given by the four-vertex 
tbeorem. A vertex on a curve C is by defini- 
tion a point where drc/ds = 0. Then there are at 
least four vertices on an oval of class C3. A 
simple closed curve with K > 0 ( < 0) must be 
convex (- 89 Convex Sets). 

F. Space Curves 

Let x=x(s) (SE [a, b]) be a curve C of class C3 
in E3 deiïned in terms of the canonical para- 

meter s. Let (x(s), e,, e2, e3) be Frenet frames 
along C. Then we have the Frenet formulas 

e;=K,e2, e;= -Klel+K2e3, ej= -rc2e2. 

We cal1 l/~~, l/~~ the radius of curvature and 
the radius of torsion, respectively. The line 
x = x(s,,) + te, is the tangent of C at X(Q). 

The two straight lines through the point x(s,J 
defined by 5 =X(Q) + te, and X=X(Q) + te, 
are called the principal normal and the binormal 
of C at X(Q), respectively. The three planes 
through x(sO) defined by X=X(~,)+ te,+?e,, 

~=x(s,)+te,+~e,,and~=x(s~)+te,+te~ 
are called the normal plane, the rectifying 
plane, and the osculating plane, respectively. 
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At a point x(s,J of a curve x=x(s) of class C”, 
we take e,(s,,), e,(se), and e3(s0) as unit vectors 

of the coordinate axes. Substituting the Frenet 
formulas into the Taylor expansion of x(s), we 
see that the new coordinate x,(s), X~(S), X~(S) of 
C are given by 

x1 =(s-s0)-(~l(s0)/6)(s-s,,)3+..., 

These are called Bouquet’s formulas. Utilizing 

these formulas we cari see the nature of the 
curve with given ICI and ICI. A curve and its 

osculating plane at a point on it have contact 
of order higher than any other plane through 
that point. The family of osculating planes 
of C tenvelops a tdevelopable surface S and 
coincides with the locus of tangent lines to C. 
We cal1 S the tangent surface of C, and C the 
line of regression of S. The family of rectifying 

planes of C also envelops a developable sur- 
face called the rectifying surface, and C is a 
tgeodesic on this surface. The family of normal 
planes of C envelops either a cane or a tangent 
surface of another curve C. When the natural 

equation of a space curve has a special form, 
the shape of the curve is simple. For example, 
rci (s) = constant, K~(s) = constant represent a 
curve, called an ordinary helix, on a cylinder 
which cuts a11 the generators of the cylinder at 
a constant angle. More generally, it is known 
that if K& =Constant, the tangent at each 

point of the curve makes a constant angle with 
a tïxed direction. Such a curve is called a gen- 
eralized helix or a curve of constant inclination. 
Each curve satisfying arc1 + bu* = c (ah # 0) is 
called a Bertrand curve. For a Bertrand curve 

there exists another curve C and a corre- 
spondence of C onto ë such that they have a 
common principal normal at corresponding 
points. Conversely, this property is also a 
sufftcient condition for C to be a Bertrand 
curve. A Mannheim curve is detïned analo- 

gously as a curve having a correspondence 
with another curve C such that the principal 
normal of C and the binormal of C coincide at 
corresponding points. When a correspondence 

of C and Chas the property that tangents at 
corresponding points are parallel, then the 
correspondence is called a correspondence of 

Combescure. 
We have stated mainly local properties of 

space curves. There are also several results 
about global properties of curves in E3 analo- 

gous to the case of plane curves. For a sim- 
ple closed curve C of length L, we cal1 K = 
jh~,(s)ds the total curvature of C. Generally 
we have K <271, while K =2x if and only if C 

is a closed convex curve lying in a plane (W. 
Fenchel) [S, 61. The total curvature is deeply 
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related to the properties of tknots. If a simple 
closed curve in E3 is knotted, then the total 

curvature is at least 47~ [7,8]. We iïx an origin 
0 in E3 and draw a unit tangent vector with 
initial point 0 parallel to the unit tangent 
vector at each point of a space curve C; then 
the endpoint of this vector traces a curve C on 
the unit sphere with the tenter 0. We cal1 C 
the spherical indicatrix of C and the corre- 
spondence of C to ë a spherical representation. 
The total curvature K of a curve C is equal to 

the length of C. Consequently, we have K = 
$cdB, where Q is the angular deflection of the 
tangent line along the closed curve C. 

G. Theory of Hypersurfaces 

Let (M,f) be an immersion of an (n- l)- 
dimensional differentiable manifold M of class 
c’ into E”. Then we cari define on the hyper- 

surface M a positive detïnite differential form 
g of degree 2 induced from the inner product 
of E”:g,(X,X)=(df,(X),df,(X)), ~EM,. Then 
M becomes a TRiemannian manifold with 
tRiemannian metric g. We cal1 g the fïrst fun- 

damental form of (M,f). The Riemannian 
geometry on a surface with its tïrst funda- 
mental form as Riemannian metric is called 
geometry on a surface (- 364 Riemannian 
Manifolds). 

By CO/(M) we mean the set of a11 the ordered 
sets (x,e,, . , e,)EO(n), where XE M and {e,} 
(i=1,2,..., n) is an orthonormal system of E” 
such that eisdf,(Mx) (i= 1, . . . ,n- 1). Then 
O,(M) with natural projection rcJ and natural 

differentiable structure is a ?Principal fiber 
bundle over M and has a natural immersion 
f:f(x,e, ,..., e,)=(f(x),e, ,..., e,)intheprin- 
cipal fiber bundle O(n). We cari tpull back the 
forms on 0(n) to O,-(M) by f* and put f3= 
f*(w), 0 =p(Q); then the structural equa- 
tions of E” are transformed to dB = 0 A 8, 
d 0 = (-1/2)0 A 0. Furthermore, if we put 
fji=f*(wi), @=f^*(@), then fjp=O and fJi, 

@j(i,j < n) depend only on the lïrst funda- 
mental form of (M,f). Let fi and f2 be two 
immersions of M into E”. Then in order that 
there exist a Euclidean motion c( of E” such 
that fi = a ofi, it is necessary and sufftcient 

that there exist a diffeomorphism cp of CJ-,(M) 
onto Of,(M) such that or1 =(p*(+J and OJ1 = 
(P*(@,~). Suppose that M is ?Orientable and 
oriented. Then the unit vector field normal to 
df,(M,) at every point XE M in E” defines a 
mapping of M into the unit sphere in E” called 
the spherical representation of M or the Gauss 

mapping (Gauss map). Regarding the unit 

normal vector tïeld 5 of M as a vector-valued 
function over M, we cari delïne a symmetric 
product of df and dc by -(df d<)(X, Y)= 
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(1/2)C(df(x),dr(Y))+(~f(Y),d5(x))l, cakd 
the second fundamental form of (M,f). 

Two immersions fi and fi of M that induce 

the same fïrst and second fundamental forms 
have a Euclidean motion c( such that fi = 
c( o fi; and the converse is also truc. This fact 
is called the fundamental theorem of the theory 
of surfaces. 

H. Theory of Surfaces in E3 (- 365 Riemann- 
ian Submanifolds; Appendix A, Table 4.1) 

A surface in E” is locally expressed by para- 
metric equations xi = xJu,) (i = 1, , n; c( = 
1, . . , m) or by a single vector equation x = 

x(u,). We are mainly concerned with the case 
n = 3, m = 2, and we express the surface by a 
vector representation x = x(u, 0). The lïrst and 
second fundamental forms are written as 

Edu2f2Fdudv+Gdv2, 

Ldu2 $2M dudv f N dv2. 

If we use the usual notation of +tensor analy- 

sis, then the fïrst and second fundamental 
forms are also denoted by gàp du” du8 and 
I&duaduB, respectively, where ur (n = 1,2) are 

parameters (with Z omitted by +Einstein’s 
convention). We cal1 {sas}, {HaB} the first and 
second fundamental quantities, respectively (- 
365 Riemannian Submanifolds). At the point 

p,, = x(u,, v,-J on a surface S that corresponds 
to parameter values (uO, vo), the curves ex- 
pressed by v = vo and u = u0 are called a u- 
curve and a v-curve through p,,, respectively. 
Let x,, x, denote the tangent vectors 8x/&, 
ax/dv at p,, to the u-curve and v-curve, respec- 
tively, through the given point p0 and [ de- 

note the unit vector orthogonal to x, and x,. 
Then 5 is called the normal vector of S at p,, 
and (x.,x”, 5) the Gaussian frame of S at p,,. 
Although a Gaussian frame is not in general 
an orthogonal frame, it is intimately related 
to local parameters. The plane that passes 
through the point p,, and is spanned by x,, x, 

is called the tangent plane to S at po. The 
coefficients of the second fundamental form 
L(u, v), M(U, v), N(u, v) are expressed by the 
inner products L =(-x,, t,), M =(-x,, c,), 

N = (- X,, 5,) (tu = a&% 5, = atiw. 
Let (X, Y) be the coordinates of a point on 

the tangent space at p. with respect to the 
Gaussian frame. We cal1 the curve of the sec- 
ond order defïned by LX2 + 2MX Y+ NY 2 = E 

(E is a suitable constant) the Dupin indicatrix. 

The point p. is called an elliptic point or a 
hyperbolic point on S according as the Dupin 
indicatrix at the point is an ellipse or a hyper- 

bola. If p,, is an elliptic point, then points near 
p. on the surface lie on one side of the tangent 

plane at po, whereas if p. is a hyperbolic point. 
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points near p. on the surface lie on both sides 
of the tangent plane at p0 (Figs. 4, 5). A hyper- 
bolic point is also called a saddle point, since in 

a neighborhood of the point the surface looks 
like a saddle. A point that is neither elliptic 
nor hyperbolic is called a parabolic point; at a 
parabolic point we have LN - M2 = 0. If at 
least one of L, M, N does not vanish at po, 
then there is a neighborhood of p0 of the sur- 
face that lies on one side of the tangent plane 

at p. (Fig. 6). If a vector (X, Y) on the tangent 
plane of the surface at p0 satisfies the equation 
LX2 + 2MX Y + N Y2 = 0, then the direction of 
the vector is called an asymptotic direction. If 
the point p. is elliptic, such a direction does 

not exist; if p. is hyperbolic, the direction is an 
tasymptotic direction of the Dupin indicatrix 
on the tangent plane at po. A curve C on a 

surface such that the tangent line at each point 
of the curve coincides with an asymptotic 
direction of the surface at the point is called an 
asymptotic curve. 

Fig. 4 
Elliptic point. 

Fig. 5 
Hyperbolic point 

Fig. 6 
Parabolic point. 

Let C: x = x(u(t), u(t)) be a curve through p. 
on the surface x = x(u, v). Then the curvature K 

of C as a space curve is given by 

KCOSe= 
Ldu2$2MdudvfNdv2 

Edu2f2Fdudv+Gdv2 ’ 
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where du du is the direction of C on the surface 
at p0 and B is the angle between the normal of 
the surface at p0 and the principal normal of C 
at pO. The tenter of curvature at a point p,, of 
a curve C of class Cz on a surface of class Cz is 

the projection on its osculating plane of the 
tenter of curvature of the section C* (of the 
surface) tut by the plane determined by the 
tangent to the curve at p. and the normal of 
the surface at the point (Meusnier’s theorem). 

The curvature of the curve C* at p,, is called 
the normal curvature of the surface at the point 
for the tangent direction. Since the normal 
curvature for a direction at a point is a con- 
tinuous function of this direction that cari be 
represented as a point on a unit circle, there 
exist two directions that realize the maximum 

and minimum of the normal curvature. These 
directions are given by the equation 

Edu+Fdv Fdu+Gdv 

Ldu+Mdv Mdui- Ndv 
=o. 

When this quadratic equation in duldv has 
nonzero discriminant, it determines two direc- 
tions delïned by its two roots. These directions 

are called principal directions at the point. A 
curve C on a surface such that the tangent line 

at each point of the curve coincides with a 
principal direction at the point is called a line 
of curvature. When a11 lines of curvature of 
a surface are circles, the surface is called a 
cyclide of Dupin. The two normal curvatures 

corresponding to two principal directions are 
given by l/R, satisfying the following second- 
order equation: 

1 2 

0 

EN+GL-2FM 1 LR-M2 

R - EG-FZ 
-=o. 

i?+ EG-F2 

They are called principal curvatures, and each 
of their inverses is called a radius of principal 
curvature. The mean value H = (ICI + 1c~)/2 of 
two principal curvatures ICI = l/R, (i= 1,2) is 

called the mean curvature (or Germain3 curva- 
ture), and the product K = ici ic2 is called the 
total curvature (or Gaussian curvature). These 
are given by 

lEN+GL-2FM LN-M= 

H=Z EG-F2 ’ 
K=- 

EG-F2 

A point on a surface is elliptic, hyperbolic, or 
parabolic according as K > 0, K < 0, or K = 0 

at the point. A point where the second fun- 
damental form is proportional to the tïrst 
fundamental form is called an umbilical point, 

and a point where the second fundamental 
form vanishes is called a flat point or a geo- 
desic point. If a surface consists of umbilical 

points only, the ratio (L(du)2 + 2M dudu + 
N(du)2)/(E(du)2 + 2F dudv + G(du)‘) is a con- 
stant, and the surface is either a sphere or a 

portion of it. If a surface consists of flat points 
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only, the surface must be either a plane or a 
portion of it. The mean curvature and the 
Gaussian curvature of a sphere are constant, 
and those of a plane are both equal to zero. If 
we use the spherical representation of a surface 
stated in Section G, we cari give to the Gauss- 
ian curvature the following geometric mean- 
ing: Let A be the area of the domain enclosed 

by a closed curve C around a point p,, on a 
surface, and let A* be the area of the domain 

on the unit sphere enclosed by the curve that 
is the image of C under the spherical represen- 
tation of the surface. Then the limit of A*/A 

as the closed curve C tends to the point p. is 
equal to K at po. 

Let us denote by (g”@) the inverse matrix of 
the matrix (gma) whose elements are coefficients 
of the lïrst fundamental form gUs du” dup. We 
easily see that g1 i =G/(EG-F2),g’2=g21= 
- F/(EG - F’), g22 = E/(EG - F2). We intro- 

duce the symbols 

which are called the Christoffel symbols of the 
lïrst and second kinds, respectively. Suppose 
that a surface is given by the vector represen- 

tation x = x(ui , u,), and put x, = ax/&P, x,~ = 
ax,/ad. Then for the derivatives of the Gaus- 
sian frame, we obtain 

X,8 = la= -gYBHBax,. 

We cal1 the former Gauss’s formula and the 
latter Weingarten’s formula. The integrability 

conditions of these partial differential equa- 
tions are 

where 

fJ 
{ Ii 

a - 
YP 60 

are components of the curvature tensor. The 
former are called the Gauss equations, and the 
latter the Codazzi-Mainardi equations. In 
connection with these equations, Bonnet% 
fundamental theorem states the following: 
Suppose that a positive delïnite symmetric 

matrix (g,,J and a symmetric matrix (H,,) are 
given that are functions of class C2 and Ci, 

respectively, defined over a tsimply connected 
domain D in R*. If they satisfy the Gauss 
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equations and the Codazzi-Mainardi equa- 
tions, then there exists a surface x = x(ul, u2) 
with the given (g,& and (H,,) as coefficients of 
its lïrst and second fundamental forms, respec- 
tively. Such a surface is determined uniquely 
if, for an arbitrary lïxed point (uy, ui) of D, 
we assign an arbitrary point p,, and a frame 
(xy, xi, 5’) at p. SO that xy, xi are orthogonal 

to the unit vector 5’ and (x1, xi) = g&uy, u$ as 
the Gaussian frame at po. On the other hand, 
we cari investigate surfaces as Riemannian 

manifolds defined by the lïrst fundamental 
form. 

A tdiffeomorphism between two surfaces 
preserving arc length is called an isometric 
mapping. The condition of preserving arc 
length is equivalent to the condition that the 
lïrst fundamental quantities of the surfaces 

coincide at each pair of corresponding points, 
provided that we have introduced parameters 
on the two surfaces SO that corresponding 
points have the same parameter values. In 

such a case two surfaces are said to be iso- 
metric. From the Gauss equation we cari see 

that the total curvature depends only on the 
lïrst fundamental quantities. SO K is a quantity 
that is preserved under isometric mappings 
(Gauss’s theorema egregium). 

A vector lïeld L=(~)X, defined along a curve 
u’=u’(t) on a surface is said to be parallel in 

the sense of Levi-Civita along the curve if its 
tcovariant derivative along the curve vanishes, 

i.e., if 

Wldt = dP/dt + ÂB duY/dt = 0. 

The length of a vector belonging to a vector 
lïeld that is parallel along a curve C is constant 
along C. The angle of two vectors both be- 
longing to vector fields that are parallel along 
C is also constant along C. Choose two vector 
fields q,,, parallel along a curve C on a surface 
that satisfy g&&, =a,,. Then the tangent 
vector to C is expressed by du”/dt = lTa,v“(t). 
Take a 2-plane and lïx an orthogonal coordi- 
nate system on it; then the integral curve C of 
a set of ordinary differential equations dx”Jdt 

= C&#(t) (Ci = ÂyQ,(Po)) is called the develop- 
ment of C (- 80 Connections). We denote by 
K the curvature of a curve C of class C2 on a 
surface S of class C2 and by o the angle be- 
tween the binormal of C and the normal of 

S at the same point. Then the quantity ICI = 
KCOS o, belonging to the geometry on the sur- 

face, is called the geodesic curvature of the 
curve at the point. A curve with vanishing 
geodesic curvature is called a geodesic. It satis- 
lies the differential equations 

The development of a geodesic is a straight 
line (- 364 Riemannian Manifolds). 

Let us consider a simply connected, orient- 
able bounded domain D on a surface such 
that the boundary of D is a simple closed curve 
C that consists of a finite number of arcs of 

class C’. If we denote by mi (i = 1,2, , m) the 
external angles at vertices of the curvilinear 

polygon C (Fig. 7), we have 

s 

rcSds+ -f ai+ Kdo=2n. 
C i=l 

This is called the Gauss-Bonnet formula. In 
particular, if a11 the arcs of C are geodesics, we 
have 

m 

= 
a,+ Kda=2ir. 

i=l 

This formula implies as special cases the 
following well-known theorems in Euclidean 
geometry and spherical trigonometry: (i) The 

sum of interior angles of a triangle is equal to 
7~. (ii) The area of a spherical triangle is pro- 
portional to its spherical excess. The formula 

also implies the following theorem: On any 
closed orientable surface we have s s K do = 
2n~, where x is the +Euler characteristic of the 
surface. We cal1 s l K do the integral curvature 

(or total Gaussian curvature). 

Fig. 1 

1. Special Surfaces in E3 

A surface is called a surface of revolution if it is 

generated by a curve C on a plane 7~ when 7~ 
is rotated around a straight line 1 in n. Then 
1 and C are called an axis of rotation and 
a generating curve, respectively. A surface 
of revolution having the x3-axis as the axis 
of rotation is given by the equations x1 = 
rcos 0, x1 = r sin 0, x3 = q(r); its lïrst funda- 
mental form is (1 + (p”)dr* + r2 dQ2. The sec- 
tion of a surface of revolution by a half-plane 

through its axis of rotation is called a meri- 
dian. According as the meridian is a straight 

line parallel to the axis of rotation or a straight 
line intersecting the axis nonorthogonally, 

the surface of revolution is called a circular 
cylinder or a circular cane, respectively. If the 



419 

meridian is a circle that does not intersect the 

axis of rotation, it is called a torus. 
A surface of class Cz whose mean curvature 

H vanishes everywhere is called a minimal 

surface (- 275 Minimal Submanifolds). A 
surface of class C’ realizing a relative mini- 
mum of areas among a11 surfaces of class Cl 
with a given closed curve as their boundaries 
is an tanalytic surface such that H = 0. Con- 
versely, a surface of class C2 with vanishing 
mean curvature is an analytic surface. The 
equation of a surface of revolution with a cate- 
nary as its generating line is given by XT + xz = 

ate X@ + e-‘3“‘)/2. This surface is called a cate- 
noid and is a minimal surface. Conversely, a 

minimal surface of revolution is necessarily a 
catenoid. For a surface obtained by rotating a 

+Delaunay curve around its base line, the mean 
curvature H is equal to a constant (#O). Con- 
versely, a surface of revolution with nonzero 
constant mean curvature must be such a sur- 
face. A surface with constant Gaussian curva- 
ture is called a surface of constant curvature, 
and is a 2-dimensional Riemannian spacé of 
constant curvature (- 364 Riemannian Mani- 

folds). A non-Euclidean plane cari be repre- 
sented locally as a surface of constant curva- 
ture (- 285 Non-Euclidean Geometry). Two 
surfaces of the same constant curvature are 
locally isometric to each other. 

Surfaces of revolution of constant curvature 
are classiiïed. The simplest surface of constant 
negative curvature is a pseudosphere, which is 
a surface of revolution obtained by rotating a 
ttractrix x, =acoscp, xs =alogtan((cp/2)+ 

(7r/4)) -a sin cp ( - n/2 < cp < 7c/2) around the 
x,-axis. A surface generated by a 1-parameter 
family of straight lines is called a ruled surface; 
a hyperboloid of one sheet, a hyperbolic para- 
boloid, a circular cylinder, and a circular cane 

are examples. The tïrst two cari be regarded 
as ruled surfaces in two ways. Each of the 
straight lines that generate a ruled surface is 

called a generating line. A surface consisting of 
straight lines parallel to a lïxed line and pass- 

ing through each point of a space curve C is 
called a cylindrical surface with the director 
curve C. A surface generated by a straight line 
that connects a certain point o with each point 
of a curve C is called a conical surface. Both a 
cylindrical surface and a conical surface are 
ruled surfaces such that K = 0 everywhere. For 

ruled surfaces we have K < 0. In particular, a 

surface such that H#O and K = 0 everywhere 
is called a developable surface, A developable 
surface must be either a cylindrical surface, a 
conical surface, or a tangent surface of a space 
curve. There exist ruled surfaces that are not 
developable, for example, hyperboloids of one 

sheet and hyperbolic paraboloids. A nondevel- 

opable ruled surface is called a skew surface. A 

1111 
Differential Geometry of Curves and Surfaces 

ruled surface generated by a straight line that 

moves under a certain rule intersecting a 
lïxed straight line 1 orthogonally is called a 
rigbt conoid. If we take 1 as the x,-axis, the 

surface is given by the equations x1 = u COS v, 
x2 = u sin u, xj =f(o). A surface generated by a 
curve C (C may be chosen as a plane curve) 

that moves in the direction of a fïxed line I 
with constant velocity and turns around I with 
certain constant angular velocity is called a 
helicoidal surface. If we take 1 as the x,-axis, 
the surface is given by the equations x1 = 
ucosu, x,=usinu, x,=f(u)+ku, where k is a 
constant and x3 =f(x,) is the equation of C. In 
particular, if C is a straight line that intersects I 

orthogonally, then f(u) = 0, and the surface is 
called a right helicoid (or ordinary helicoid). 
A right conoid is both a ruled surface and a 

minimal surface. Conversely, a ruled surface 
that is also a minimal surface is necessarily a 
right conoid. A helicoidal surface with a trac- 
trix as the curve C is called a Dini surface and 
is a surface of constant negative curvature. On 
the normal of a surface S two points qi (i = 1,2) 

are centers of principal curvature at p. The 
locus of each of these points is a surface called 
a tenter surface of S. When S is a sphere, two 
tenter surfaces degenerate to a point; if S is a 

surface of revolution, one of the tenter surfaces 
degenerates to the axis of revolution and the 
other is a certain surface of revolution. If S is 

general, each of the tenter surfaces is the locus 
of an edge of regression of the developable 
surface generated by normals of S along a line 
of curvature. 

When a 1-parameter family of surfaces S, is 

given by the equation F(x,,x,,x,, t)=O, a 
surface E that does not belong to this family is 

called an enveloping surface of the family of 
surfaces {St} if E is tangent to some S, at each 

point of E, that is, if E and S, have the same 
tangent plane. The equation of E is obtained 
by eliminating t from F(x1,xZ,x3, t)=O and 

(aF/at)(x,,x,,x,,t)=O. In general, if we de- 
note by V(X,, x2, x3) = 0 the equation ob- 
tained by eliminating t from F = 0 and aF/& = 

0, then the surface delïned by cp = 0 is either 
the enveloping surface of {St} or the locus 
of singular points of S,. The intersection C,, 
of the enveloping surface E of {St} and St, 
is a curve detïned by F(x1,x2,x3, tJ=O, 
(aF/dt)(x,,x,, x3, t,J=O. We cal1 Ct, a charac- 
teristic curve of {S,}. Since {C,} is a family of 

curves on the enveloping surface E, there may 
exist an envelope F on E. In such a case, F is 
called the line of regression of {St}. The equa- 
tion of F is obtained by eliminating t from F = 
0, aF/dt = 0, and a2F/at2 = 0. In particular, 

the enveloping surface of a family of planes is a 
developable surface, and their characteristic 
curves are straight lines. Moreover, the line of 



111 J 
Differential Geometry of Curves and Surfaces 

regression coincides with the line of regression 
of the tangent surface. 

If there exists a diffeomorphism between 

two surfaces such that first fundamental forms 
at each pair of corresponding points are pro- 
portional, then the surfaces are said to be in a 
conforma1 correspondence. In particular, when 

the proportionality factor is a constant, they 
are said to be in a similar (or homothetic) 
correspondence. There exists a local conforma1 
correspondence between any analytic surface 
and a plane. Namely, if we choose suitable 
parameters, we cari reduce the fïrst funda- 
mental form of any analytic surface to the 

form A(<, q)(dt2 +dq’). Such parameters are 
called isothermal parameters. From the exis- 
tence of isothermal parameters we cari see 
that there exists a local conforma1 correspon- 

dence between any two analytic surfaces. The 
assumption of analyticity in these theorems is 
not necessary [ 101. If there exists a diffeomor- 
phism between two surfaces under which geo- 
desics are mapped to geodesics, then the sur- 
faces are said to be in geodesic correspondence. 

A surface has a locally geodesic correspon- 
dence with a plane if and only if it is a surface 

of constant curvature. If two surfaces are in 
geodesic correspondence, then with respect 
to parameters with the same values at corre- 
sponding points, we have the relation 

for coefficients of connections of the two 
surfaces. 

By the +Alexander-Pontryagin duality theo- 
rem, a submanifold M in E3 that is homeo- 
morphic to S2 divides E3 into two domains, 

and two points belonging to different domains 
cannot be connected by a broken segment 
unless the segment meets the surface. Such a 

manifold M is called a closed surface. One of 
the two domains consists of those points with 
bounded distance from a point belonging to 
the domain. Such a domain is called the inte- 
rior of the closed surface M. If the set M* con- 
sisting of M and its interior is convex in E3, 
the surface M is called a closed convex surface 

(or ovaloid). 
The Gaussian curvature of an ovaloid can- 

not be negative at any point. A closed surface 
with K>O must be an ovaloid. Moreover, it is 
known that on any closed surface there exists 

at least one point where K > 0 (J. Hadamard). 
If there exists no umbilical point and K is 
strictly positive in a domain on a surface, then 

the two principal curvatures regarded as con- 
tinuous functions on the domain cannot take 

their local maximum and local minimum 
values at the same point (D. Hilbert). A com- 
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pact, connected surface of class C4 with con- 
stant Gaussian curvature is a sphere. A closed 
surface with K > 0 and H = constant is a 
sphere (H. Liebmann). 

A problem proposed by H. Hopf asks 
whether an orientable compact surface with 

constant mean curvature is a sphere. In con- 
nection with this problem, Hopf showed that a 

closed orientable surface of class C3 of genus 
zero with constant mean curvature is a sphere. 
If there is a certain relation W(k, , k2) = 0 be- 
tween the two principal curvatures k,, k, 
(k, > k2) of a surface, the surface is called a 
Weingarten surface (or W-surface). There are 
many interesting results for W-surfaces. As an 
extension of the convex surface, tight immer- 

sions have been studied (- 365 Riemannian 
Submanifolds). 

The Gaussian curvature K is invariant 

under isometries. Hence a sphere is trans- 
formed to a sphere by each isometry. This 
fact is sometimes described as the rigidity of a 
sphere. More generally, if two ovaloids are iso- 
metric, then they are congruent (Cohn-Vossen’s 
theorem). It is known that if we remove a small 
circular disk from a sphere, then the remaining 
portion of the sphere is isometrically deform- 
able. On the existence of closed geodesics on 

ovaloids, G. D. Birkhoff proved the follow- 
ing theorem: There exist at least three closed 
geodesics on any ovaloid of class C3. It is also 

known that there exist surfaces of revolution 
that are not spheres but whose geodesics are 
a11 closed (- 178 Geodesics). On a hyperbolic 
non-Euclidean compact +space form of genus 
p (p > 2) there exists a geodesic whose points 

are everywhere dense in it (E. Hopf) (for the 
ergodicity of flows along geodesics on this 

surface - 136 Ergodic Theory; also 126 

Dynamical Systems). 

J. Singular Points of a Surface 

Suppose that a neighborhood of a point p0 of 

a surface S in E3 is given by a certain vector- 
valued function ,f of class C’ as r = f(u, u). Then 

a point p,, where two vectors (af/&),O, (af/&& 
are linearly independent is called a regular 

point. A point on S that is not regular is called 
a singular point. If for suitable parameters we 

have (W%&=O but (aflW,o, (a2flau21po, 
(û2f/&&),0 are linearly independent, then 

such a singular point is called a semiregular 

point. In general, shapes of neighborhoods of 
singular points are extremely complicated. 
However, we note the following: (i) by a small 
deformation of the function f (and its deriva- 
tives of orders at most r) we cari reduce p. to a 

regular or semiregular point of the deformed 
surface; (ii) if p. is semiregular, we cari choose 
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suitable parameters and curvilinear coordi- 
nates of class c’ in E3 near p,, SO that the 
surface S in the neighborhood of the origin p0 

is expressed by the equations x1 = u*, x2 = 
v, x3 = UV (H. Whitney’s theorem [lS]). (The 

higher-dimensional case has also been consid- 
ered (Whitney [16]).) 

References 

[l] W. Blaschke, Vorlesungen über Differen- 

tialgeometrie 1, Springer, 1924 (Chelsea, 1967). 
[2] A. Duschek and W. Mayer, Lehrebuch der 
Differentialgeometrie 1, Teubner, 1930. 
[3] L. P. Eisenhart, An introduction to dif- 
ferential geometry, Princeton Univ. Press, 
1940; revised edition, 1947. 
[4] W. Klingenberg, Eine vorlesung über 
differentialgeometrie, Springer, 1973. 

[S] W. Fenchel, On the differential geometry 
of closed space curves, Bull. Amer. Math. Soc., 
57 (19X), 44-54. 

[6] S. S. Chern, Curves and surfaces in Eucli- 
dean space, Studies in global geometry and 
analysis, Studies in math. 4, Math. Assoc. 
Amer. 
[7] 1. Fary, Sur la courbure totale d’une 
courbe gauche fisant un noeud, Bull. Soc. 
Math. France, 77 (1949), 128-138. 

[S] J. W. Milnor, On the total curvature of 
knots, Ann. Math., (2) 52 (1950), 248-257. 
[9] E. Cartan, La théorie des groupes finis et 

continus et la géométrie différentielle traitees 
par la méthode du repère mobile, Gauthier- 
Villars, 1937. 
[ 101 L. Bers, Riemann surfaces, Courant Inst. 

Math. Sci., 1957-1958. 
[ 1 l] S. Sternberg, Lectures on differential 
geometry, Prentice-Hall, 1964. 
[12] A. D. Aleksandrov, Tntrinsic geometry of 
convex surfaces (in Russian), Gostekhizdat, 
1948; German translation, Die innere Geo- 
metrie der konvexen Flachen, Akademie- 
Verlag, 1955. 

[13] S. S. Chern, Topics in differential geome- 
try, Lecture notes, Institute for Advanced 
Study, Princeton, 1951. 

[ 141 H. Hopf, Zur Differential Geometrie 
geschlossener Flachen in Euklidischen Raum, 
Convegne Internazionale di Geometria Dif- 
ferenziale, Italy, 1953,45%54 (Cremona, 1954). 
[15] H. Whitney, The singularities of a smooth 
n-manifold in (2n - 1)-space, Ann. Math., (2) 45 
(1944), 247-293. 

[16] H. Whitney, Singularities of mappings of 
Euclidean spaces, Symposium International de 
Topologia Algebraica, Universidad National 

Autonoma de Mexico and UNESCO, 1958, 

285-301. 

112 A 
Differential Operators 

[ 171 M. P. do Carmo, Differential geometry of 
curves and surfaces, Prentice-Hall, 1976. 

[18] T. J. Willmore, An introduction to dif- 
ferential geometry, Clarendon Press, 1959. 
[19] N. J. Hicks, Notes on differential geome- 
try, Van Nostrand, 1964. 
[20] D. Laugwits, Differential and Rieman- 
nian geometry, Academic Press, 1965. 
[21] B. O’Neill, Elementary differential geome- 
try, Academic Press, 1966. 

[22] J. J. Stoker, Differential geometry, Wiley, 
1969. 

112 (X11.15) 
Differential Operators 

A. Definition 

A mapping (or an operator) A of a function 
space F, to a function space F, is said to be 
a differential operator if the value f(x) of the 

image f= Au (uEF,,~EF,) at each point x is 
determined by the values at x of u and a finite 
number of its derivatives. If u and f are tdistri- 

butions, the definition applies with the deriva- 
tive interpreted in the sense of distributions 

(- 125 Distributions and Hyperfunctions). In 
this article we restrict ourselves to the case of 

linear differential operators and consider only 
those of the form 

where tl denotes n-tuples (tl a 1, 2,“‘i a,) of 
nonnegative integers, called multi-indices; la1 
theIengthofa:~a~=a,+a,+...+a,;andD” 

the differential operator Du= D:l D$l.. D>, 
with Dj=( -i)a/ax,. The coefficient (-i) is 
sometimes omitted. The coefficients a,(x) 
are functions defmed on an open set Q in n- 
dimensional space. We cal1 P(x, D) an ordinary 
differential operator if the dimension n of R is 
1 and a partial differential operator if n > 2. 
Ordinary differential operators and partial 
differential operators behave quite differently 

in many respects. 
We set 

where 5 = (5, , &, . , 5,) E R” or C”. The order 
of P(x, D) is the greatest integer [ai for which 
a,(x) $0. In expression (1) m is assumed to be 
equal to the order, and in that case 

/dl/=lll 

is called the principal part of P(x, D), and the 

corresponding polynomial P,(x, 5) the charac- 
teristic polynomial. 
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Differential operators have been investi- 
gated for a long time in connection with the 
linear differential equations 

P(x,D)u(x)=f(x), XER. (2) 

Except for ordinary differential operators, 
however, it is rather recently that the prop- 
erties of such operators have been studied 
from the general viewpoint. 

We denote a differential operator with 
constant coefficients by P(D). In general, 
P(x, D) is assumed to be a linear differen- 
tial operator with coefficients that are C”- 

functions. However, many of the results for 
Cm-coefficients also hold when the coefftcients 
are sufftciently differentiable. (For tfunction 

w-s WI, W4,4Q), JT4, C(Q), Cm(Q), 
C;(Q), L,(a), d(0), &?(a), etc., - 125 Distri- 
butions and Hyperfunctions, 168 Function 
Spaces). 

Differential operators are classitïed accord- 
ing to their properties. The most important are 
the elliptic, hyperbolic, and parabolic types. 

A differential operator P(x, D) is said to be an 
elliptic operator if the characteristic poly- 
nomial P,,,(x, 5) has no real zero except for 
5 = 0 for each x E fi. Typical examples are 
the Laplacian A = - (0: + . + 0:) and the 

Cauchy-Riemann operator a/& = (1/2)(3/8x + 
iapy). 

A differential operator is said to be hyper- 
holic if the associated Cauchy problem is well 
posed (- 325 Partial Differential Equations of 
Hyperbolic Type). The d’Alembertian 0: - 
(02 + . . + Df) is an example. A differential 
operator of the form ô/ôt + P(t, x, D,) is called 

paraholic if P(t, x, 0,) is strongly elliptic (- 
Section G) in x. The heat operator iDn+l -A is 
typical. 

These three types of operators appear most 
often in applications, and if n = 2, then any 
operator of order 2 with real coefficients in 
(3/8x,), belongs to one of them at a generic 
point. In other cases, however, there are dif- 
ferential operators that do not belong to any 
of them. 

B. Fundamental Solutions 

If a differential operator P(x, D) with g(a) as 

its domain has a left inverse F that is expressed 
as an tintegral operator with tkernel distri- 

bution (in g’,,,; - 125 Distributions and 
Hyperfunctions F), then the kernel is said to be 

a fundamental solution (or elementary solution). 
F is usually a right inverse of the weak exten- 
sion (- Section F) of P(x, D) and maps g(n) 
into s(Q). The image is mapped to the original 

function by P(x, D). Nevertheless, F is not a 

genuine right inverse, and hence the funda- 

mental solution is not unique if it exists. 
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When P(D) is a differential operator with 
constant coefficients, we cal1 a distribution 
E(x) a fundamental solution if it satisfies 

W)W = W, (3) 

where 6(x) is tDirac’s distribution (6 function). 
If E(x) is a fundamental solution in this sense, 
then F(x, y) = E(x - y) is the kernel of a left 
inverse of P(D) and is a fundamental solution 
in the sense of the preceding paragraph. 

Every differential operator P(D) with con- 
stant coefficients has a fundamental solu- 
tion in the sense of (3) (Ehrenpreis-Malgrange 
theorem; see L. Hormander [4] for a proof). 

General operators P(x, D) with variable 

coefficients do not necessarily have funda- 
mental solutions. However, if P(x, D) belongs 
to one of the classical types of operators (ellip- 

tic, hyperbolic, or parabolic), then it has a 
fundamental solution at least locally. (See 
F. John [S] for elliptic operators, J. Leray 
[ 1 l] for strongly hyperbolic operators, and S. 
Mizohata [12] and S. D. Eidel’man [9] for 

parabolic operators.) Leray has generalized 
John% method to strongly hyperbolic opera- 
tors in an enormous work [ 131. 

C. Ranges of Differential Operators 

Let P(D) be a differential operator with 
constant coefficients. Then it follows from 
the Ehrenpreis-Malgrange theorem that 
P(D)GY(Q) 3 S(t2) holds for any open set fi. 
However, there are differential operators 
P(x, D) with variable coefficients such that for 

any Q P(x, D)#(Q) yb 9(Q). H. Lewy first 
devised such an example: 

P(x, D) = -iD, + D, -2(x, + ix,)D,. 

Let C&i(x, D) be the homogeneous part of 
order 2m - 1 of the commutator 

P(x, D)P(x, D) -P(x, D) P(x, D). 

Then in order that P(x, D)LY(Q) 3 SJ(O), it is 

necessary that 

P,(x,O=O impb G,-,(x,5)=0 

for a11 x ER, 5 E R” (Hikmander’s theorem [4]). 
When P(x, D) is a differential operator that 

does not satisfy this condition (e.g., Lewy’s 
operator), choose an ~(X)E~(Q) that is not in 
P(x, D)LY(Q). Then the differential equation (2) 

has no distribution solutions at all. P. Scha- 
pira extended this result to the case of thyper- 
functions (also - 274 Microlocal Analysis). 

Concerning the ranges of differential oper- 

ators P(D) with constant coefficients, we have 
the following detailed results due to L. Ehren- 

preis [28], B. Malgrange [ 141, and Hormander 

c41. 
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An open set fi is said to be P-convex for a 
differential operator P(D) if for each compact 
set K c R there exists a compact set K’ c fi 

such that <p E Cg(Q) and suppP( -D)<p c K 
imply supp <p c K’. Convex sets are P-convex 
for any P(D). Al1 open sets are P-convex if and 
only if P(D) is an elliptic operator. 

Theorem: The following conditions are 

equivalent: (i) R is P-convex; (ii) P(D)iB'(Q) 1 
&(Q); (iii) P(D)G(R) = g(Q). Property (iii), the 
Mittag-Leffler theorem, and the solvability of 
tCousin’s lïrst problem for the solutions of 
~(D)U=O are equivalent. 

An open set Q is said to be strongly P- 
convex if for each compact set K c n there 
exists a compact set K' such that LE& and 
supp P( -D)p c K imply supp p c K'; and 
/J E G’(R) and sing supp P( -D)p c K imply sing 
suppp c K'; where the singular support of p is 

the closure of the set of a11 points at which p is 
not a C”-function. Convex sets are strongly P- 
convex, and strongly P-convex sets are P- 
convex. 

Theorem: fi is strongly P-convex if and only 
if P(D)9'(R)=GY(R). 

R. Harvey has shown that every domain R 

is P-convex in the sense of hyperfunctions, i.e., 
the equation ~(D)U =f always has a hyper- 
function solution u on fi for any hyperfunction 
f on Q. For the treal analytic functions J&‘(D), 
however, P(D)d(Cl)=d(Q) does not hold for 

convex open set R in general. Hormander [ 151 
gave a necessary and suflïcient condition for 
P(D) and 51 in order that this hold. 

D. Hypoellipticity 

A differential operator P(x, D) is called hypo- 
elliptic in R if for any distribution u(x)EZ(R), 

Pu E Cm(n) implies u E C”(Q). Further, a differ- 
ential operator with real analytic coefficients 
P(x, D) is called analytically hypoelliptic in R 
if P is hypoelliptic and if for any distribution 

u(x)Eg’(SZ), PUE&(R) implies u(x)EJzZ(R). 
There are two fundamental facts about 

such operators. Let P have constant coeffi- 
cients; then P(D) is hypoelliptic if and only if 

P((+i~)=0 and 1t+i+m imply that lnl-co 
(Hormander’s theorem [4]). Furthermore, P(D) 
is analytic hypoelliptic if and only if P is ellip- 

tic (Petrovskiï’s theorem [16]). The heat opera- 
tor is not elliptic, but hypoelliptic. If P(D) is 
elliptic, then actually any hyperfunction ~(X)E 

g(R) such that PUE&@) is real analytic (R. 
Harvey, G. Bengel). On the other hand, if P(D) 
is not elliptic, there is a hyperfunction solution 

u of Pu = 0 that is not a distribution. 
Strictly speaking, the notion of the hypo- 

ellipticity for general differential operators 

was first formulated explicitly by L. Schwartz 
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[27]. Before that time, D. Hilbert, E. E. Levi 
and K. 0. Friedrichs, and others investigated 

this problem for some elliptic operators, and 
the hypoellipticity was called Weyl’s lemma 
(- 323 Partial Differential Equations of Ellip- 
tic Type). 

Similarly to the constant coefficient case 
the following two theorems are fundamental: 

Elliptic and parabolic operators P(x, D) with 
C” coefficients are hypoelliptic (Schwartz [27], 
Mizohata [12]). Elliptic operators P(x, D) 
with real analytic coefficients are analytic 

hypoelliptic (1. G. Petrovskiï [16], C. B. Mor- 
rey and L. Nirenberg). The latter holds also 
for hyperfunction solutions (M. Sato and 
Schapira). Moreover, the following result is 
known: If for each compact set K in an open 
set Q there exists a constant C such that 

l/Pkull,<Ck+‘(mk)!, then UE&@), where II.llK 
denotes the L,-norm on K (H. Komatsu, T. 

Kotake, and M. S. Narasimhan). 
However, as seen by the example D, + ix:D, 

in RZ (k is even), the analytic hypoellipticity 
also holds for nonelliptic operators. Such an 
operator is called a subelliptic operator; subel- 
liptic operators have been investigated by 
Hormander, Yu. V. Egorov, F. Treves, and 
others [19]. 

Hormander has obtained a fairly complete 
result on the hypoellipticity of the operators of 
the form 

i=l 

where X0, ,X, are homogeneous tïrst-order 
differential operators with real coefficients 
([ 171; 0. A. Oleïnik and E. V. Radkevich 
[ 181). Hypoellipticity was investigated exten- 
sively after the introduction of pseudodifferen- 
tial operators and Fourier integral operators 
(- 345 Pseudodifferential Operators). 

E. Differential Operators in Banach Spaces 

We consider differential operators P(x, D) de- 
tïned on a domain n as operators in the func- 
tion spaces C(Q) or L,(Q. Differential oper- 
ators of order m> 1 are always unbounded 

operators in the Banach space X =C(Q) or 
L,,@). Moreover, their domains of definition 

as operators in X are not generally determined 
uniquely by the expressions P(x, D) as differen- 
tial operators. 

P(x, D) is a linear operator that maps 
Cc(R) into X. This operator has a closed 

extension. The minimal closed extension P. is 
called the minimal operator of P(x, D) in X. 

We have ueg(P,,) and Pou=f if and only if 
there exists a sequence (pn E C;(Q) such that 
<P~+U, P(x, D)cp,+f: On the other hand, the 
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closed linear operator P, whose domain is 
the set of a11 ueX such that P(x,D)ugX in 
the sense of distribution is called the maxi- 
mal operator (or weak extension) of P(x, D). 
We have u~B(pi) and P,u=f if and only if 

<f-4’% D)<p) = <J <p> for any <PE CZ(Q, 
where ‘P(x, D) is the transposed operator 

Integration by parts shows that Pr is an exten- 
sion of P. and that when X is the tdual space 
of a space Y, the weak extension PI in X is the 
tdual of the minimal operator of tP(x, D) in 

Y. Let X=L,(R) (1~ p < CO), R be a bounded 
open set with smooth boundary, and P(D) 
have constant coefficients. Then P, coincides 

with the smallest closed extension of the oper- 
ator P(D) having as its domain the set of a11 

u~C”(R)llx such that ~(D)UE~. The latter 
closed extension is called the strong extension. 
The difference between the weak and the 
strong extension is not obvious in the vari- 
able coefficient case. 

P. coincides with P, when n is the entire 
space and P(x, D) is an elliptic operator whose 
coefficients are constants or close to constants 
(J. Peetre, Medd. Lunds Univ. Mat. Sem., 16 
(1959); T. Ikebe and T. Kato, Arch. Rational 
Mech. Anal., 9 (1962)). In general, we have 
P0 #P, Let P(x, D) be an ordinary differential 

operator with bounded coefficients such that 
la,(x)1 > 6 > 0 and R be the bounded interval 
(a, b). Then the domain of P, coincides with the 
set of a11 (m- 1)-times continuously differenti- 
able functions u such that the (m- 1)st deriva- 

tive is absolutely continuous and P(x,D)ueX, 
while the domain of P. is the set of a11 func- 
tions u which satisfy in addition the boundary 
conditions 

u(a) = u’(a)= . = u’-(a) 

=u(b)=...=tw’)(b)=O. 

(Moreover, t&“‘)(a) = u(“)(b) = 0 when X = 

C(a, 4) 
Let G(P,), C(PI)( c X x X) be the tgraphs of 

Po, Pl. Then the quotient space a = C(PI)/ 

G(P,) is called the boundary space, and an 
element of the dual B’ of &?, i.e., a continuous 
linear functional on C(PI) which vanishes on 

G(P,,), is called a boundary value relative to 
P(x, D). For the ordinary differential opera- 

tors discussed above, the boundary space is 
the set of a11 linear combinations of u(‘)(a) and 

u(j)(b). When P(x, D) is an ordinary differen- 
tial operator, we cari explicitly determine the 
boundary values also in the case where the 

interval (a, b) is intïnite, the coefficients a,(x) 

are not bounded, or a,(x)-+0 (x-q b); and we 
cari show that B is tïnite-dimensional. When 
P(x, D) is a partial differential operator, YB is 
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generally of inlïnite dimension, and the con- 

crete forms of the elements of B and B’ are 
not known. However, we have some informa- 

tion by M. 1. Vishik (Amer. Math. Soc. Transi., 
(2) 24 (1963)) about the boundary values of 
elliptic operators of the second order. Combin- 
ing this with the results by J.-L. Lions and E. 
Magenes (J. Anal. Math., 11 (1963)), we cari 
obtain information for elliptic operators of 
higher order. 

F. Differential Operators witb Boundary 

Conditions 

A closed operator between the minimal opera- 
tor P,, and the maximal operator P, is deter- 
mined by designating a closed subspace B 
of the boundary space g. This operator is 
called the operator witb tbe boundary condition 
B. Particularly important are boundary condi- 
tions expressed in the form 

Qi(x, D)u(X) = 0, XEC?R, i=l,...,k, (4) 

with differential operators Qi(x, D) (i = 1, . . , k) 
detïned on the boundary aR of fi. 

When P(x, D) is an ordinary differential 
operator delïned on a lïnite interval and the 

orders of Qi are at most m - 1 (or m), (4) always 
has a delïnite meaning. However, for partial 
differential operators, we need an interpreta- 
tion of (4), i.e., (4) does not necessarily deter- 
mine the subspace B of S3 uniquely. 

Let P, be the smallest closed extension of 

P(x,D) with {~~C~@)flX~Q~(x,D)u(x)=0, 
x E 80, P(x, D)u E X} as its domain. P, is called 

the strong extension of the differential operator 
P(x, D) with boundary condition (4). 

On the other hand, when R, P, and Qi 
satisfy suitable conditions, we cari define the 
transposed differential operator ‘P(x, D) with 
the transposed boundary operators Rj(x, D) 

(j=l , . . . , I). Namely, there are differential 
operators Rj(x, D) on the boundary such that 
a necessary and sufficient condition for u E 
Cm(a) to satisfy (4) and PU(~)=~(X) is 

s 
f(x)u(x)dx= 

1‘ 
u(x)‘Pv (x) dx (5) 

R $2 

for a11 u(x) E C”(n) with the boundary con- 
ditions Rju = 0, x E aR. Then the operator P, 
defmed by P+(x) =f(x) for the pairs u(x), 

fox satisfying (5) is called the weak exten- 
sion of the differential operator P(x, D) with 
boundary condition (4). As in the case of 
operators without boundary conditions, the 
weak extension is an extension of the strong 

extension, and generally is the dual of the 

strong extension in the dual space X’ of the 
transposed differential operator with the trans- 
posed boundary condition. 
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Regularity up to the boundary. The funda- 
mental problems for the differential operator 
P(x, D) with the homogeneous boundary 

condition (4) are to determine, for both the 
strong and the weak extensions, the spaces 
of solutions of the homogeneous equations 
Pu = 0 and their ranges. The problems mostly 
reduce to determining when the strong and 
the weak extensions coincide and, including 
this, also to the problem of regularity on the 
closed domain fi containing the boundary 
of the solutions u of the equation P,u =f: 

This problem was solved by Nirenberg for 
strongly elliptic operators in L*(0) with the 

Dirichlet boundary condition 

aj-lu(x)/aP =O, j= 1,2, . . . ,m/2, 

and generalized later by F. Browder, M. 
Schechter [20], S. Agmon, Lions, and others 
for elliptic operators in L,(n) with a kind of 
coercive boundary condition (- Section H). 

Consequently, when 0 is bounded and 
smooth, P, is equal to PS for those operators. 

Write P for P,,,. Then the space N(P) of the 
solutions of Pu = 0 is a subspace of fïnite di- 
mension, and the range R(P) is a closed sub- 
space of lïnite codimension. In particular, 
it follows that the +index of P, dim N(P) - 

codim R(P), is finite. 

G. Strongly Elliptic Operators 

A differential operator P(x, D) is said to be 

strongly elliptic if its characteristic polynomial 
satisfies 

ReP,dx,5)8C151m>0, 5#0. 

Many of the elliptic operators, such as the 
Laplacian, that appear in applications are 
strongly elliptic. L. Garding treated the 
boundary value problem with the Dirichlet 
condition (in the generalized sense) for strong- 

ly elliptic operators. His work initiated the 
general study of differential operators (- 323 

Partial Differential Equations of Elliptic 
Type). His theory is based on the following 
inequality, called Gkding’s inequality: 

H. Coercive Boundary Conditions 

The boundary condition (4) is said to be coer- 
cive if 

/lV”~ll 6 WP4l + llull) (6) 

holds for any u~C~(fi) that satislïes (4). In 
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order that a differential operator P have a 
coercive boundary condition, it is necessary 

that it be a special type of elliptic operator. In 
this case, Agmon, N. Aronszajn, Schechter, 

and others found conditions under which (4) is 
coercive. Agmon, A. Douglis, and Nirenberg 
show that the inequality (6) holds in L,(R) and 
in the normed spaces of Holder continuous 
functions under a suitable condition. The 
classical boundary conditions au + bat+ = 0 
(a 2 0, b > 0, a + b = 1) are coercive for elliptic 

operators of the second order (- 323 Partial 
Differential Equations of Elliptic Type). How- 
ever, problems remain when the coefficients 

of Qj(x, D) are discontinuous. In order to 
have coincidence of the strong and weak exten- 
sions or regularity up to the boundary, it is 
necessary neither that P be elliptic nor that the 
boundary condition be coercive. But it is not 
known to what extent these conditions cari be 
weakened. At present, major contributions are 

Hormander’s work (Acta Math., 99 (1958)) 
dealing with operators with constant coefi- 
cients and flat boundaries, and works by J. J. 

Kohn [21], Nirenberg, and Hormander con- 
cerning noncoercive boundary conditions. 
The latter works are connected with the theory 

of several complex variables, and have at- 
tracted much attention. 

1. Self-Adjoint Extension 

One of the fundamental problems in the case 
X =L,(n) is whether the minimal operator P, 
has a self-adjoint extension. P0 is symmetric 
if and only if P(x, D) is formally self-adjoint: 
P(x,D)=‘P(x,D). Under this condition the 

boundary space B turns out to be the direct 

sum of two subspaces && = {(x, P, x) ( x E i3(P1), 
PI x = + ix} + G(P,,). The numbers n, = dim 99* 
are called the deficiency indices of Pi, and P. 
has a self-adjoint extension if and only if n, 
=?Z_. 

H. Weyl gave a method for computing nl 
for the Sturm-Liouville operators: 

PkD)= - (&~(r)%)+q(x), x+,b). 

We say that a (resp. b) is of limit circle type 

if the solutions u(x) of P(x, D)u(x) + lu(x) = 0 

(IeC) always belong to L, in a neighborhood 
of a (resp. b) and of limit point type if a solu- 
tion does not belong to Z., This classification 
does not depend on the choice of /EC. (1) If 
both a and b are of limit point type, then 
n, = n- = 0 and hence P. is self-adjoint. (2) If 
a is of limit circle type and b is of limit point 
type, then n, = IZ- = 1, and the self-adjoint 

extensions of P. are the operators P, that are 
obtained from P, by assigning the boundary 
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condition 

p(a)u’(a) COS cc + u(a) sin t( = 0. 

The same is true when a and b are inter- 

changed. (3) If both a and b are of limit circle 
type, then n, = n- = 2, and we cari impose two 
boundary conditions to obtain the self-adjoint 
extensions. 

These results have been extended by K. 
Kodaira [23] and N. Dunford and J. Schwartz 

[3] to the case of ordinary differential opera- 
tors of order m. There are formally self-adjoint 
operators that have no self-adjoint extensions. 
For example, the operator -id/dx in Z,,(O, oo) 

has detïciency indices n, = 1 # n- = 0. 
For partial differential operators, it is dif- 

lïcult to determine explicitly a11 self-adjoint 
extensions of a given formally self-adjoint 
operator because the boundary space is com- 

plicated. If the boundary condition (4) is for- 
mally self-adjoint and coercive, then it follows 
from the results of Schechter and others that 

the differential operator with boundary condi- 
tion (4) is self-adjoint. Furthermore, condi- 
tions under which P0 is self-adjoint or has a 
self-adjoint extension are known. The follow- 

ing theorem is often used as a condition of the 
latter type. If a tsymmetric operator delïned on 
a dense subspace of a Hilbert space X is posi- 
tive delïnite: 

(Tx,x)>O, X~wl 

then there is a positive delïnite self-adjoint 

extension 7 (Friedrichs’s theorem). The self- 
adjoint extension obtained by this theorem is 
called the Friedrichs extension. 

J. Generators of Semigroups 

From the point of view of probability theory, 
W. Feller investigated the extensions of the 
Laplacian d2/dx2 and similar operators that 
are the generators of order-preserving semi- 

groups. Recently various attempts have been 
made to generalize his results to the multi- 

dimensional case (- 11 5 Diffusion Processes; 

378 Semigroups of Operators and Evolution 
Equations). 

P. D. Lax and A. N. Milgram proved that 
if P(x, D) is a strongly elliptic operator, then 
-P(x, D) with the Dirichlet condition in L2(R) 
is the generator of a semigroup [l]. 

K. Boundary Value Problems 

There are two methods of solving the inhomo- 
geneous boundary value problem 

w, W(x)=f(x), XEG 

Qi(X, D)U(X) =&(XX XéXl, i= 1, . . ..k. 
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In the first method, we take a function u(x) 
that satistïes Qi(x, D)u(x) = gi(x) and reduce 
the problem to the homogeneous one for u0 = 
u-v. In the second method, we consider the 

pair P(x, D) and Qi(x, D) as an operator that 
maps a function u to the pair of functions 

(Pu, Qiu) and investigate it directly. The latter 
method was adopted by Peetre and Hor- 
mander [4]. 

L. Estimates in Weighted Spaces 

J. F. Treves, Hormander [4], and H. Kumano- 
go obtained estimates similar to (6) in L,- 
spaces relative to the weighted measure 
w,(x)dx instead of the usual L,-spaces, and 
applied them to the proof of the uniqueness 
of Cauchy problems for differential equations 

with variable coeftïcients (- 321 Partial Dif- 
ferential Equations (Initial Value Problems)). 
Hormander [22] applied similar estimates to 

the proof of the tfundamental theorems of 
Stein manifolds. 

M. Eigenfunction Expansions 

When a self-adjoint operator P in the Hilbert 
space L,(Q) is a self-adjoint extension of a 

differential operator P(x, D), the ?Spectral 
decomposition of P is concretely expressed by 
the expansion of functions UE L2(R) into eigen- 
functions of P(x, D). 

If 0 is bounded, P(x, D) is an elliptic oper- 

ator defined on a neighborhood of fi, and 
the boundary condition is coercive, then the 

tspectrum of P is composed solely of eigen- 
values, and the eigenvectors of P are eigen- 
functions of P(x, D) in the classical sense and 
are of class C” up to the boundary. 

N. Asymptotic Distribution of Eigenvalues 

If P = -A, the number v(1) of eigenvalues less 
than i satisfïes the asymptotic relation 

v(4 - 
l”‘ZA 

pn”‘2n~(n/2)’ as Â+cc 

regardless of the shape of the domain and the 
boundary condition, where n is the dimension 
and A is the volume of 0 [2]. This was first 
proved by Weyl and extended by T. Carleman, 

Garding, and others to the case of operators 
of higher order with variable coefficients (- 

323 Partial Differential Equations of Elliptic 

Type). 
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0. Weyl-Stone-Titchmarsh-Kodaira Theory 

When R is unbounded or the coefficients of 
P(x, D) have singularities near the boundary of 
R, the spectrum of P may have a continuous 
part. 

Let P(x, D) be an ordinary differential oper- 
ator on an interval (a, b). Then for each ÂE 
C the equation (P(x,D)-I)<~(x)=0 has m 

linearly independent solutions (pk(x, 1) (k = 

1, , m), and any solution is represented as 
a linear combination of them. Weyl and M. H. 
Stone obtained the spectral decomposition of 

P (of the second order) in the form 

u(x)= f 
s 

cc 

cPjlx> n)dPjk(31) 
j,k=l -m 

s 

b 

X (P~(Y> 4Wdy> 
a 

where the pjk(Â) are functions of bounded 
variation and their variations represent the 

spectral measure. This formula shows that 
linear combinations of the pj(x, Â) form gen- 
eralized eigenfunctions even when Â. belongs to 
the continuous spectrum. Later, E. C. Titch- 
marsh and Kodaira gave a formula to obtain 
the density matrix pjk(lZ) and completed the 
theory (Titchmarsh [6], Kodaira [23], Dun- 

ford and Schwartz [3]). This expansion theo- 
rem makes it possible to deduce in a unifîed 
manner expansion theorems for classical 
special functions, such as the tFourier series 
expansion theorem, the expansions by tHer- 
mite polynomials and tlaguerre polynomials, 
the tFourier integral theorem, and various 

expansions in terms of tBesse1 functions [6,7]. 
The relation between the coefficients of the 

differential operator and the spectral distri- 
bution of P is important in applications and is 

the subject of many papers [3,5,6]. 
For example, let P(x, D) = -d2/dx2 + q(x) 

andR=(-oo,co).Ifq(x)-+co asIxl+co,then 
P(x, D) is essentially self-adjoint, the spectrum 
is entirely composed of the point spectrum, 
and a detailed estimate of thejth eigenvalue lj 
is also known [6]. If q(x) converges rapidly to 

0 as [xl+co, then P(x, D) is essentially self- 
adjoint, and there is only a continuous spec- 
trum for i > 0 and eigenvalues for Â < 0 with 
at most 0 as accumulation point. If q(x) is a 
periodic function of x, then P(x, D) is again 

essentially self-adjoint, and the spectrum con- 
sists of a continuous spectrum decomposed in 

a sequence of nonoverlapping intervals. The 
converse problem of determining q(x) when 
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the spectral measure is given has been studied 
by 1. M. Gel’fand and B. M. Levitan (Amer. 
Math. Soc. Transi., (2) 1 (1955); original in 
Russian, 1951). 

P. Eigenfunction Expansion for Partial 
Differential Operators 

The theory of eigenfunction expansion for 

partial differential operators with continuous 
spectra is not complete, as it is for ordinary 
differential operators. What causes difflculties 
is that the solutions of (P(x, D) - A)u = 0, which 
should be the generalized eigenfunctions, form 
an infinite-dimensional space, and except for 
special cases it is impossible to introduce 
convenient parameters in it. Many proofs are 

known for a general result, saying that any 
self-adjoint elliptic operator has an eigenfunc- 
tion expansion into generalized eigenfunctions 
of the form 

s 

cc kV) 
u(x) = -m jz Vj(xa A)dPj(Â) 

s 
R qOj(Y, Â)u(Y)dY, 

[lO]. There are few operators, however, for 

which we know how to construct cpi(x, A) and 
the measure dpi(Â). The Fourier transform 
gives the expansion for operators with con- 
stant coefficients defined on the whole space. 
By means of a generalized form of the Fourier 
transform, Ikebe gave an eigenfunction expan- 

sion for the Schrodinger operator -A + q(x) 
in R3 under the condition that q(x) EL, and 

O(~X[~~-“) as IxI+cc [24]. Y. Shizuta, Mizo- 
hata, Lax and R. S. Phillips, N. A. Shenk, 
Ikebe, D. K. Fadeev, and others proved the 
same results for similar operators defïned 
on an exterior domain with a bounded set 
deleted from a higher-dimensional Euclidean 
space. These theories are closely related to the 
tscattering theory of the Schrodinger equa- 

tion (-idldt - P)u = 0 or the wave equation 
(d2/dt2 +P)u =0 associated with those opera- 
tors. Lax and Phillips have developed the 

latter scattering theory [26] (- 375 Scattering 
Theory). 

Many of the problems in tquantum mechan- 
ics reduce to finding the spectral distribution 
of self-adjoint partial differential operators. 

Q. Expansion Theorems for Non-Self-Adjoint 

Operators 

A kind of eigenfunction expansion theorem 

may hold for non-self-adjoint differential 
operators or for non-Hilbert spaces. (See 

papers by the Russian school for ordinary 
differential operators and those by Browder, 
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Agmon, and others for partial differential 
operators.) 

R. Systems of Differential Operators 

We have SO far dealt with single differential 
operators that map functions u to functions 

f: A linear differential operator that maps a 
p-tuple (ui, , up) of functions to a q-tuple 

(fi, . , f,) of functions cari be written as 

where P(x, D) = (Pij(x, D)) is a matrix of single 

differential operators. Such a matrix is called 
a system of differential operators. A system 
P(x, D) is said to be underdetermined if p > 4, 

determined if p = q, and overdetermined if p < 
q. Many propositions that hold for single 
operators hold for determined systems under 
appropriate conditions. 

However, there is a fundamental difference 
between overdetermined (underdetermined) 
systems and determined systems, as is seen 
from the theory of several complex variables, 
which is the theory of a typical overdeter- 
mined system a/% = (a/Zi). The theory is 

much more difficult for overdetermined (under- 
determined) systems. The general theory of 
overdetermined and underdetermined systems 
with constant coefficients has been constructed 
by Ehrenpreis [28], Malgrange, V. Palamodov, 
and Hormander [22] for C”-functions and 
distributions. It has been extended by H. Ko- 
matsu to the case of hyperfunctions. T. Miwa 
has discussed the same problem for real ana- 
lytic functions. 

S. Symmetric Systems of the First Order 

Determined systems of the lïrst order are 
important in applications. Many problems in 
mathematical physics are formulated in terms 
of them. Also, single equations of higher order 

cari be reduced to determined systems of the 
lïrst order by regarding the derivatives as 
unknown functions. In some cases determined 
systems of the lïrst order are easier to handle 
than single operators of higher order. In partic- 
ular, a system of differential operators 

is said to be a symmetric positive system if the 
matrices A,(x) and B(x) satisfy the following 
conditions: A* = Ai; B + B* + 2 ôA,/ax, is 

positive semidefinite. Symmetric positive sys- 
tems have been studied in detail by Friedrichs 

[25], Phillips, C. S. Morawetz, Lax, and 
others. 

428 

References 

[l] K. Yosida, Functional analysis, Springer, 
1965. 
[2] R. Courant and D. Hilbert, Methods of 

mathematical physics, Interscience, 1, 1953; II, 
1962. 
[3] N. Dunford and J. T. Schwartz, Linear 
operators II, Interscience, 1963. 
[4] L. Hormander, Linear partial differential 
operators, Springer, 1963. 
[S] M. A. Naimark, Linear differential opera- 
tors 1, II, Ungar, 1967. (Original in Russian, 
1954.) 

[6] E. C. Titchmarsh, Eigenfunction expan- 
sions associated with second-order differential 
equations, Claredon Press, 1, revised edition, 

1962; II, 1958. 
[7] K. Yosida, Lectures on differential and 
integral equations, Interscience, 1955. (Orig- 
inal in Japanese, 1950.) 
[S] F. John, Plane waves and spherical means 
applied to partial differential equations, Inter- 
science, 1955. 
[9] S. D. Èïdel’man, Parabolic systems, North- 
Holland, 1969. (Original in Russian, 1964.) 
[ 101 1. G. Gel’fand and N. Ya. Vilenkin, Gen- 

eralized functions IV, Applications of har- 
monic analysis, Academic Press, 1964. 
[ 1 l] J. Leray, Hyperbolic differential equa- 

tions, Lecture notes, Institute for Advanced 
Study, Princeton Univ. Press, 1953. 
[ 121 S. Mizohata, Hypoellipticité des équa- 
tions paraboliques, Bull. Soc. Math. France, 
85 (1957), 1550. 

[ 133 J. Leray, Problème de Cauchy I-V, Bull. 
Soc. Math. France, 85 (1957), 3899429; 86 

(1958), 75596; 87 (1959), 81-180; 90 (1962), 39- 
156; 92 (1964) 263-361. 
[ 141 B. Malgrange, Existence et approxima- 

tion des solutions des équations aux dérivées 
partielles et des équations de convolution, 
Ann. Inst. Fourier, 6 (1955-1956), 271-355. 
[15] L. Hormander, On the existence of real 
analytic solutions of partial differential equa- 
tions with constant coefficients, Inventiones 
Math., 21 (1973) 151-182. 
[ 161 1. G. Petrovskiï, Sur l’analyticité des 
solutions des systèmes d’équations différen- 
tielles, Mat. Sb., 5 (47) (1939) 3370. 
[ 171 L. Hormander, Hypoelliptic second-order 
differential equations, Acta Math., 119 (1967) 

147-171. 
[18] 0. A. Oleïnik and E. V. Radkevich, 
Second-order equations with nonnegative 
characteristic form, Amer. Math. Soc., 1973. 
(Original in Russian, 1971.) 
[ 191 L. Hormander, Seminar on singularities 
of solutions of linear partial differential equa- 

tions, Ann. Math. Studies 91, Princeton Univ. 

Press, 1979. 



429 

[20] M. Schechter, On Lp estimates and regu- 
larity 1, II, Amer. J. Math., 85 (1963), 1-13; 

Math. Stand., 13 (1963), 47-69. 
[Zl] J. J. Kohn, A priori estimates in several 
complex variables, Bull. Amer. Math. Soc., 70 

(1964), 739-745. 
[22] L. Hormander, An introduction to com- 
plex analysis in several variables, Van Nos- 
trand, 1966. 
[23] K. Kodaira, On ordinary differential 
equations of any even order and the corre- 
sponding eigenfunction expansions, Amer. J. 

Math., 72 (1950), 502-544. 
[24] T. Ikebe, Eigenfunction expansions as- 
sociated with the Schrodinger operators and 
their applications to scattering theory, Arch. 

Rational Mech. Anal., 5 (1960), l-34. 
[25] K. 0. Friedrichs, Symmetric positive 
linear differential equations, Comm. Pure 
Appl. Math., 11 (1958), 333-418. 

[26] P. D. Lax and R. S. Phillips, Scattering 
theory, Academic Press, 1967. 
[27] L. Schwartz, Théorie des distributions, 
Hermann, 1966. 
[28] L. Ehrenpreis, Fourier analysis in several 
complex variables, Wiley-Interscience, 1970. 
[29] J.-E. Bjork, Rings of differential 

operators, North-Holland, 1979. 
[30] L. Hormander, The analysis of linear 
partial differential operators, I-IV, Springer, 

1983-1985. 

113 (111.17) 
Differential Rings 

Let R be a tcommutative ring with a unity 

element 1. If a map 6 of R into R is such that 
for any pair x, y of elements of R, (i) 6(x + y) 
=6x + 6y, and (ii) 6(xy) = 6x. y + x. 6y, then 6 

is called a derivation (or differentiation) in R. A 
ring R provided with a finite number of mutu- 

ally commutative differentiations in R is called 
a differential ring. In this article we consider 
only the case where R contains a subfield that 
has the unity element in common with R. In 

particular, if R is a fïeld, we cal1 it a differential 
field. 

In the above definition of differential ring, it 

is not necessary to mention the tcharacteristic 
of the subfïeld contained in R. However, to 
make it more effectively applicable in the case 

of nonzero characteristics, we may detïne 
differential rings using higher differentiation in 

place of the differentiation detïned above. If a 
sequence 6= {S,} of maps a,,, a,, a,, of R 

into R satisfïes the following conditions (i)-(iv) 

for any pair x, y of elements of R and any pair 
i., p of nonnegative integers, then 6 is called a 
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higher differentiation in R: (i) 6,(x + y) = 6,x 

+ ??,y; (ii) 6,(xy) = C 6,~. &y (the addition is 
performed over a11 pairs a, b of nonnegative 
integers that satisfy a + B = A); (iii) 6,(6,x) = 

6,x =x. Two hlgher dlf- 

ferentialions 6 = {a,} and a’= (&} are said to 
be commutative if and only if 6, and Sh com- 
mute for a11 pairs Â, fl of nonnegative integers. 
Higher differentiations were introduced by H. 

Hasse (1935) for ihe study of the fïeld of +alge- 
brait functions of one variable in the case of 

nonzero characteristics. 
These two defmitions of differential rings 

coincide if the characteristic of R is zero. For 

simplicity, we shall restrict ourselves to that 
case. 

Let 6,) . , S,,, be the differentiations of the 

differential ring R. If x is an element of R, 
Ss,l SP @zx(s,, s2, . . , s, are nonnegative 
integers) is called a derivative of x. We cal1 x 
constant if and only if S,x = = 6,x = 0. An 
tideal a of R with &a c a (i = 1,2, . . , m) is 
called a differential ideal of R. If it is a +Prime 
ideal (semiprime ideal (i.e., an ideal containing 

a11 those elements x that satisfy xQ E a for some 
natural number g)), then a is called a prime 
differential ideal (semiprime differential ideal). 

A subring S of R with S,S c S cari be regarded 

as a differential ring with respect to the differ- 
entiations S,, . . , S,. We cal1 S a differential 
subring of R and R a differential extension ring 
of s. 

Let X,, . . . , X, be elements of a differential 
extension fïeld of a differential field K with the 
differentiations 6 6 l,“.> mr and let &S? . . . 
6s;Xi(sla0,...,s,>0, l<i<n)be+algebra- 
ically independent over K. The totality of their 

polynomials over K, which forms a differential 

ring, is called the ring of differential polyno- 
mials of the differential variables X, , . , X, 
over K, and is denoted by K{X,, . . , X,}. Its 

elements are called differential polynomials. 
For this ring of differential polynomials we 
have an analog of +Hilbert’s basis theorem in 
the ring of ordinary polynomials, Ritt’s basis 

theorem: If we are given any set W of differen- 
tial polynomials of X,, . . . , X, over K, we cari 

choose a fïnite number of differential polyno- 
mials P,, , P, from %!r)l such that each element 
Q of <331 has an integral power Qg equal to a 
linear combination of P,, . . , P, and their de- 
rivatives, where the coefficients of the linear 

combination are elements of K {X, , . , Xx}. 
This theorem implies that in the ring of differ- 
ential polynomials, every semiprime differential 
ideal cari be expressed as the intersection of a 
finite number of prime differential ideals; if this 
expression is tirredundant, it is unique (- 67 

Commutative Rings). 
The equation obtained by equating a dif- 
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ferential polynomial to zero is called an alge- 
brait differential equation. Concerning these 

equations, we are able to use methods similar 
to those used in talgebraic geometry in study- 
ing the usual algebraic equations. J. Ritt made 
interesting studies on solutions of algebraic 
differential equations by such methods, prin- 

cipally in the case when the ground fïeld K 
consists of tmeromorphic functions. 

Since that time, basic study of differential 
rings and fïelds has been fairly well organized 

and has developed into theories such as the 
following two: 

(1) Picard-Vessiot tbeory. This is a classical 
theory of tlinear homogeneous differential 
equations originated by E. Picard and E. 
Vessiot; it resembles the tGalois theory con- 
cerning algebraic equations. The Galois group 
in this case is a linear group, and its structure 
characterizes the solution of the differential 
equation. E. Kolchin introduced the general 
concept of the Picard-Vessiot extension fïeld of 

a differential field and studied in detail the 
group of differential automorpbisms (i.e., the 
group of a11 those automorphisms that com- 

mute with the differentiations and fïx elements 
of the ground field), thus making the classical 
theory more precise and more general. 

(2) Galois theory of differential fields. Gen- 
eralizing the concept of the Picard-Vessiot 
extension, Kolchin introduced the notion of 
the strongly normal extension fïeld and es- 
tablished the Galois theory for such exten- 

sions. In this theory, we see that the Galois 
group is an talgebraic group relative to a 
tuniversal domain over the field of constants 

of the ground iïeld. Conversely, every algebraic 
group is the Galois group of a strongly normal 
extension fïeld. We also see that a strongly 
normal extension cari be decomposed, in a 
certain sense, into a Picard-Vessiot extension 

and an Abelian extension (i.e., an extension 
whose Galois group is an TAbelian variety) 
(- Kolchin [2-51, Okugawa 161). 
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A. General Remarks 

Differential topology cari be defïned as the 

study of those properties of tdifferentiable 
manifolds that are invariant under tdiffeo- 

morphisms. The basic abjects studied in this 
field are the topological, combinatorial, and 
differentiable structures of manifolds and the 

relationships among them. Some of the re- 
markable contributions, such as H. Whitney’s 
embedding theorem [ 11, the triangulation theo- 
rems of J. H. C. Whitehead and S. S. Cairnes 
[2,3], and Morse theory [4], were made in 
the 1930s. In the late 195Os, outstanding re- 
sults were obtained by R. Thom, J. W. Milnor, 
S. Smale, M. Kervaire, and F. Hirzebruch, 
among others. Differential topology thus be- 
came a new, fascinating branch of mathematics. 

B. Differentiable Structures 

We assume that all manifolds are tparacom- 
pact. Let M be a ttopological manifold. A 
C’-equivalence class of tatlases of class C 
(1 < r < CO) on M is called a C’-structure on M. 
Any C-structure on M contains an atlas of 
class C” on M, and its C”-equivalence class is 
uniquely determined (Whitney Cl]). This C”- 
structure is called a differentiable structure on 
M compatible with the given (Y-structure. 
Moreover, any Cm-structure admits a treal 

analytic structure compatible with it in this 
sense (Whitney Cl]). A C”-manifold is also 
called a smooth manifold, and a differentiable 
structure a smooth structure. Let D,, D, be 
differentiable structures on M. If two C”- 
manifolds (M, D,) and (M, Dl) are not tdif- 
feomorphic, we say that the differentiable 
structures D,, D, are distinct (- 105 Differen- 
tiable Manifolds). Milnor defïned a certain 
invariant of differentiable structure using the 
Hirzebruch index theorem (- 56 Character- 

istic Classes) and proved that there are several 

distinct differentiable structures on the 7- 
dimensional sphere S’ (Milnor [SI). Milnor’s 
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example of such structures was: Let fk: S3 -* 
SO(4) be the mapping detïned by &(G)z = 
O*r&, where k is an odd integer, h, j are inte- 
gers determined by h + j = 1, h -j = k, and 
0, z are tquaternions of norm 1. Let Ml be 
the total space of the S3-bundle over S4 cor- 
responding to the mapping fk. This is an 
oriented closed manifold with the naturally 
defïned differentiable structure. Moreover, 

for each k, Ml is homeomorphic to the 7- 
dimensional sphere S7. But if k, / are odd and 

k* f l2 (mod 7), M; is not diffeomorphic to 
Mz. Differentiable manifolds (such as Mz) that 
are homeomorphic, but not diffeomorphic, to 
the natural sphere are called exotic spheres. 
After the discovery made by Milnor, many 
topological manifolds other than the 7- 
dimensional sphere and possessing several 
distinct differentiable structures have been 

found (N. Shimada, 1. Tamura). Moreover, 
topological manifolds admitting no differen- 

tiable structures have been constructed (M. 
Kervaire 161, Smale, Tamura [7], J. Eells and 

N. Kuiper, C. T. C. Wall [SI). On the other 
hand, manifolds of dimension < 3 admit 
unique differentiable structures. 

We cari introduce a TRiemannian metric 

on a CI”-manifold. Let Mt and M; be C”- 
manifolds (k-dimensional and n-dimensional, 

respectively) and f: Mi +M; be an timmer- 
sion. We fix a Riemannian metric on Mz. For 
each point p of Mi, let N,(f) be the linear 
space of a11 tangent vectors of M: at f(p) that 

are orthogonal to the Rangent space of f( U(p)), 
where U(p) is a small open neighborhood of p 
in M:. Then {N,(f)(p~M:j forms an (n-k)- 
dimensional tvector bundle vr over Mi, called 
the normal bundle of the immersion f: The 
equivalence class of vf is independent of the 
choice of Riemannian metric on M;. When f 
is an tembedding, we denote the submanifold 
f(M:) by Lk. Let N,(L’) be the set of a11 points 
whose distances (with respect to the Riemann- 
ian metric) from Lk are <E. If Lk is compact 

and E is sufflciently small, N,(Lk) is an n- 
dimensional submanifold of M; with bound- 
ary and is uniquely determined independently 

of the choice of E up to diffeomorphism. This 
submanifold is called a tubular neighborhood of 
Lk in M; and is denoted by N(Lk). The interior 
of N(Lk) is called an open tubular neighbor- 
hood. The total space E(V/) of the normal 
bundle vr of the embedding S is diffeomorphic 
to the open tubular neighborhood of Lk in h4:. 

C. (Y-Triangulation and the Smoothing 

Problem 

Let (K, f) be a ttriangulation of the c*- 
manifold M” ( 1 < r < 00) (f : ) K 1 d M”) satisfying 
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the following conditions: (i) For any closed n- 

simplex 0 of K, f ( G : 0 --f M” is a C’-mapping; 
(ii) for any point p of o, the tJacobian matrix 

off ( o has rank n at p. Then we say that (K, f) 
is a C-triangulation of the C’-manifold M”, 

and the C’-structure of M” is compatible with 
the triangulation (K,f). Concerning c’- 
triangulations of C’-manifolds, we have the 

following results (S. Cairns [L], J. H. C. White- 
head [3]): (i) any C’-manifold (1 < r < 00) has a 
c-triangulation, and any (Y-triangulation of 

the boundary cari be extended to the whole 
manifold; (ii) for a C’-triangulation (K,f) of 

a C’-manifold M”, the triangulated space 
(K,f; M”) is a tcombinatorial manifold; (iii) for 
two C’-triangulations (K,,f,) and (K2,f2) of 
a C’-manifold M”, the triangulated spaces 
(K,,.f,; M”) and (K2,fZ; M”) are combinatori- 

ally equivalent. 
Conversely, for a combinatorial manifold 

(K,f; M”), a differentiable structure on M that 

is compatible with the triangulation (K, f) is 
called a smoothing of M. The question of 
whether a smoothing of a combinatorial mani- 

fold exists is called the smoothing problem. We 
have some criteria for its solvability. One is 
expressed in terms of transverse fields, and 
another in terms of tmicrobundles (- 147 
Fiber Bundles P). We also have the following 

method using the theory of +Obstruction (J. 
Munkres [9]; M. W. Hirsch and B. Mazur 

[ 101). Let rk be the group of oriented differen- 
tiable structures on the tcombinatorial k- 
sphere (an exact defmition of this group is 

given in Section 1). Let K’ be the i-lskeleton 
of a combinatorial n-manifold (K,f; M”) and 
a a smoothing of a neighborhood U of f(K’) 

in M”. Then there exists an obstruction cocycle 
C,EZ’+’ (K, ri) satisfying the following con- 
ditions: (i) if C&(a’“) =0 for an (i + 1)-simplex 
a’” of K, the smoothing c( cari be extended 

over a neighborhood of f(K’ U oif’), and vice 
versa; (ii) if there exists another smoothing E’ 
of a neighborhood of f(K’) that coincides with 
the smoothing c( of a neighborhood of f(K’-‘), 
then C,. - C, is a koboundary; conversely, for 

any (i + 1)-coboundary b with coeffkients in 
ri, there exists a smoothing LY’ of a neighbor- 
hood of f(K’) such that b = C,. - C,. Using 

this method we cari prove that for n < 7 a11 
combinatorial manifolds of dimension n are 
smoothable. 

D. Embedding and Immersion Theorems 

In the following, M” and Xm are Ca-manifolds 
of dimensions n and m, respectively. Two 

timmersions fO, fi : M”-rX” are said to be 

regularly homotopic if there exists a thomotopy 
f,: M”+X”‘, 0 <t < 1, such that .f, is an immer- 
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sion for each t and the induced mapping (tdif- 

ferential off,) dJ: T(M”)-* T(Xm) on the tan- 
gent spaces naturally gives rise to a continuous 

mapping over T(M”) x 1. Two tembeddings are 
isotopic if they are regularly homotopic and 
the homotopy f, is an embedding for each t. 
Given M” and X”, a fundamental problem of 
embedding (immersion) theory is to classify the 

embeddings (immersions) of M” in X” accord- 
ing to their isotopy (regular homotopy) classes. 
Whitney proved that a continuous mapping 
f: M”-tX” cari be approximated by an immer- 
sion if m > 2n and by an embedding if m 2 2n + 
1 [ 1). The following results are also due to 
Whitney [ 11: Any two immersions of M” in X” 
that are homotopic are regularly homotopic if 

m > 2n + 2, and any two embeddings of M” in 
X” that are homotopic are isotopic if m > 2n 
+ 3. The range m > 2n + 3 is called the stable 

range of embeddings. 
In [ll, 121 (1944) Whitney improved his 

classical theorems and showed that M” cari 
always be immersed in RZnml for n > 1 and M” 

cari always be embedded in R’“. The methods 
used in his proof have played an important 
role in the subsequent development. Classifi- 
cation of immersions of the n-sphere S” in R” 
was determined by Smale [13]. Let p: T(M”)-+ 
M” and p’: T(Xm)+Xm be the projections of 

the tangent bundles of M” and X”, respec- 
tively. A mapping cp: T(M”)-rT(X”) is a linear 
fiber mapping (linear fiber map) if, for each 

~EM”, &-i(x)) is contained in a fïber of 
T(Xm) and <p 1 p-‘(x) is a linear mapping of 
rank n. A linear bomotopy qt: T(M”)+T(X”) 
(0~ t < 1) is a homotopy such that each cpt is a 
linear fiber mapping. The following theorem 
of Hirsch [ 141 is fundamental to immersion 

theory: Assume n cm. If q: T(M”)* T(X”‘) is 
a linear fiber mapping, the mapping (p: Mn+ 

X” induced by <p cari be approximated by an 
immersion f: M”+X” such that df and <p are 
linearly homotopic. Two immersions L g : 

Mn-X” are regularly homotopic if and only if 
df and dg are linearly homotopic. If M” is im- 
mersible in Rm+r, where m > n with r linearly 
independent tïelds of tnormal vectors, then M 
is immersible in R”. In particular, if M” is a rr- 
manifold (- Section I), M” is immersible in 
R”+‘. 

Let C?(M”) be the set of isomorphism classes 
of real tvector bundles over M”, and consider 
tl:G(M”)+KO(M”) (- 237 K-Theory). An 
element 5 E KO(M”) is said to be positive if 5 
is in the image of 8. If &,E fi(M”), the geo- 

metric dimension of tO, written S(<e), is the 
least integer k such that &, + k is positive. Then 
Hirsch’s theorem [ 141 cari be expressed as 
follows: M” is immersible in R”+!+ (k > 0) if and 

only if g(n-z(M”))<k, where t(M”) is the 
tangent bundle of M”. 
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A. Haefliger [ 151 obtained the following 
important result: Let M” be compact and 
+(k - 1)-connected, and let X” be k-connected. 
Then any continuous mapping of M” in Xm is 

homotopic to an embedding if 2k <n, m > 2n - 
k + 1, and any two homotopic embeddings 
of M” in X” are isotopic if 2k < n + 1, m > 2n - 

k + 2. Thus if m > 3(n + 1)/2, any two em- 
beddings of S” in R” are isotopic. The range 
m > 3(n + 1)/2 is called the metastable range. 
Haefliger further classitïed the embeddings of 
S4”-’ in R6” and showed the existence of em- 
beddings of S4”-’ in R6” that are not isotopic 
to the natural one. More complete results for 
the classification of embeddings of thomotopy 
n-spheres in S” were obtained by J. Levine 
[16]. Furthermore, Levine proved the follow- 
ing unknotting theorem in higher-dimensional 

knot theory [16]: Let ,f:Snm2+Sn be a C”- 
embedding for n > 6; then f(Y2) is unknotted 
if and only if Y- f(s”-“) is homotopy equiva- 

lent to S’ (- 235 Knot Theory G; also 65 
Combinatorial Manifolds D). 

We list some results about embeddings and 
immersions. If M” is noncompact, M” cari 
always be embedded in R’“-‘; if M” is a non- 
compact n-manifold, M” cari always be im- 
mersed in R”; if M” is compact and orientable 
and n > 4, M” cari always be embedded in 
R2”Fl 

E. Nonembedding and Nonimmersion 
Tbeorems 

We denote the ttotal Stiefel-Whitney class 
of M” by w(M”) and the ttotal Pontryagin 
class of M” by p(M”) (- 56 Characteristic 
Classes). Then (w(M”))-’ (EH*(M”; Z,)) and 

(p(M”))-’ (eH*(M”;Z)) cari be written as 
W(M”)=CWi(M”) (Wi~Hi(M”;Zz)) and p(M”)= 

C&(M”) (picH4’(M”; Z)). Then the property 
of characteristic classes for the +Whitney sum 

implies the following theorem: If M” cari be 
immersed in R”+k, then W,(M”) = 0 for i > k and 
P,(M”) = 0 for i > [k/2]. Furthermore, if M” cari 
be embedded in Rn+k, then Wk(M”)=O. As an 
application, these results yield the nonembed- 
ding (nonimmersion) theorem for projective 
spaces (- Appendix A, Table O.VII). Sharper 
theorems were obtained subsequently. In 
particular, Atiyah proved the following: Let 
ni (i = 0, 1, ) be texterior power operations 

(- 237 K-Theory), and let yi be the operations 
detïned by the forma1 power series C&,yiti= 
(C&lLiti)(l -t))‘. Then y’(n-$M”))=O for 

i > k (i > k) if M” cari be immersed (embedded) 
in R”+k. Furthermore, we have an interesting 

result for the differentiable case. For any posi- 

tive integer q, there exists a differentiable 
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manifold M” such that M” is immersible in Rk 
but not embeddable in Rk+q. 

F. Handlebodies 

Let W be a C”-manifold with boundary 8kV. 
Then the boundary 8 W has a neighborhood U 
that is homeomorphic to 8 W x R + , where R + 
= [0, CO). Let W,, W, be C”-manifolds with 
boundaries and f: 8 W, -8 W, be a diffeomor- 

phism. Then the quotient space M of WI U W, 
obtained by identifying points corresponding 
under f has a natural differentiable structure. 
This construction of the C”-manifold M from 

the Cm-manifolds WI, W, is called pasting 
togetber tbe boundaries. 

Now we consider the ttopological product 
WI x W, of manifolds W,, W, with boundaries 

aw,, aw,. W, x W,-aw, xaW, has anatural 
atlas of class C”. By introducing a suitable 

atlas of class C” in a neighborhood of 8 WI x 
8 W, in W, x W,, we obtain a C”-manifold 
with boundary homeomorphic to WI x W,. 
More generally, let M be an n-manifold with 
boundary, let N be a finite union of submani- 

folds of dimension <n - 2 in aM, and suppose 
that M has a corner along N. Extension of the 
F-structure of M-N over M as in this para- 

graph is called straigbtening tbe angle. 
Let D” be the oriented unit +n-disk in the 

ir-dimensional Euclidean space R”, it4; and 
Mi be oriented compact C”-manifolds, and 
&:D”-+MF (i= 1,2) be +C”-embeddings, fi 
+Orientation-preserving and .f, torientation- 
reversing. Then, pasting together the bound- 

aries of Mi-Intf,(D”) and Ml-Intf,(D”) by 
the mapping fi of;‘, we obtain an oriented 

C”-manifold, called the connected sum of M; 
and Mi and denoted by MT # Mi. The con- 
nected sum Mf # Ml has the orientation in- 

duced from those of Mr and Mi, and its dif- 
ferentiable structure is uniquely determined 
independently of the mappings fi. Let S” be 
the natural n-dimensional sphere. Then we 
have M” # S” z M” (here z means diffeomor- 

phic), (M, #M,)#M,xM, #(M*#MJ, M, # 
M,zM,#M,. 

Let M” be a manifold with boundary and 
f:(aDs) x D”-“+aM” be a C”-embedding. 

Then we cal1 the quotient space X(M”;f; s) of 
M"U(DS x D”-‘) obtained by the identification 
of corresponding points under f the manifold 

with a handle attached by f: Also, we cal1 the 
construction of X(M”;f; s) from M” attaching 
a handle and cal1 D” x D”-” an s-handle. After 
straightening the angle, X(M”;f; s) is consid- 
ered naturally a C”-manifold with boundary. 
Letfi:dD,S~D~?-taM”(i=l,...,k)beem- 
beddings whose images are mutually disjoint. 

Then similarly, using embeddings fi, . . ,fk, we 
cari define a Cm-manifold with handles X(M”; 
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fi, . ,fk; s). In particular, X(X(. . (X(X(D”; 
fi ; s,); f2; sl) . ); &; sj)) is called a handlebody. 

Let Mn-’ be an oriented (n - l)-mani- 
fold and f: dD” x DneS+(Mn-’ -C?M”-‘) an 

orientation-preserving Cm-embedding. Then, 
by straightening the angle, the quotient space 
of (Mn-’ - Intf(aDs x D”-“)) U (D” x do”-“) 
obtained by the identification of points cor- 
responding under f ) aDs x aDnws is a C”- 
manifold x(M”-I;f). We say this manifold is 
obtained by a spherical modification (or sur- 

gery) of type (s, n-s) from Mn-‘. The manifold 
x(M”-I;f) has a natural orientation, and 
ax(M”-I;f)= aM”-‘. The process of spherical 
modification has the following relation to 

that of attaching a handle: Let W be an n- 
dimensional manifold and f: aDs x DR-‘-+3 W 

an embedding. Then 8X( W; j; s) =x(6 W;f). 
When W= Mn-’ x [0, l] and f: i3Ds x D”-“+ 

M x {l}, aXW;f;s)=idMx {l};fWM x {O), 
and therefore M is cobordant (- Section H) 
to x(M ;f). Conversely, let Ml be cobordant 
to M,. Then we cari obtain M, from M, by 
a fïnite sequence of spherical modifications 

(A. Wallace [17], Milnor). Let M” be an n- 
dimensional C”-manifold and f: M”-*R’ be a 
C”-function. If f satisfies the following con- 
ditions, then it is called a nice function: (i) Al1 

tcritical points off are tnondegenerate; (ii) for 
any critical point p of J the tindex (- 279 
Morse Theory) off at p is equal to f(p). We 
have the following theorems. 

1. Let M be a compact C”-manifold. Then 
there exists a nice function on M (M. Morse, 
Smale [18], Wallace [17]). 

2. Let M be a compact C”-manifold and 
f: M-rR’ a Cm-function a11 of whose critical 
points are nondegenerate. Suppose that the 
number of critical points on f-’ [-E, F] is k 
and that they are a11 contained in f-‘(O). Sup- 

pose further that the indices of these critical 
points are a11 equal to s. Then f-‘( -a, E] is 
diffeomorphic to the manifold with handles 

X(f-‘(-oo, -e];fr, . . . . &;s) (Morse, Thom, 
Smale [18]). 

3. Generalized Poincaré conjecture. Let M” 
be an n-dimensional thomotopy sphere of class 

C” (n> 5). Then M” cari be obtained by past- 
ing together the boundaries of two n-disks. 
Consequently, M” is homeomorphic to the n- 

dimensional sphere s” (Smale [18], H. Yama- 
suge [ 191). 

4. Let M” be a tcontractible compact n- 

dimensional manifold (n > 5), with aM con- 
nected and simply connected. Then M” is dif- 
feomorphic to the n-disk D” (Smale [ 181). 

5. Let MT, Mi be oriented, compact, simply 
connected n-dimensional manifolds (n > 4). If 
M, is h-cobordant (- Section 1) to M,, then 

M, is diffeomorphic to M2 (h-cobordism theo- 

rem; Smale [20]). 
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6. If M; x Rk is diffeomorphic to M; x Rk, we 
say that M; is k-equivalent to MJ. Let Mi, M2 
be compact n-dimensional manifolds of the 
same thomotopy type. Then M, is k-equivalent 

to M, if and only if for a thomotopy equiva- 
lente f: M, -* M2, z(M,) @ ck is equivalent to 
f*z(M,) @ .akr where z(Mi) is the ttangent 
bundle of Mi and &k the ttrivial vector bundle 
of dimension k (Mazur). 

7. In some special cases the classification of 
manifolds by diffeomorphism is completely 
determined. (i) The classification of simply 

connected 5-dimensional manifolds M with 
vanishing second Stiefel-Whitney class wî(M) 
is determined by H,(M). (ii) A 2-connected 
compact 6-dimensional manifold is dif- 
feomorphic to either S6 or the connected sum 

of a lïnite number of copies of S3 x S3 (Smale 
[20]). Besides these, the classifications of 
(n - 1)-connected 2n-dimensional manifolds 
(Wall [S]) and (n - 1)-connected (2n + l)- 
dimensional manifolds (Tamura [21], Wall 
[22]) have been obtained. 

G. Thom Complexes 

Let 5 be a real n-dimensional vector bundle 
over a paracompact space X, A, be the total 
space of the associated bundle of 5 with fiber 

the closed n-disk D”, and A, be the total space 
of the associated bundle of 5 with liber the 
(n - 1)-sphere 8D”. Then the quotient space 
X, = A,/j,, obtained from A, by contracting 
A, to a point, is called the Thom space of the 
vector bundle t. If X is a +CW-complex, then 
the Thom space X, of 5 has the homotopy 
type of a CW-complex and is called a Thom 

complex. The Thom space X, has the canon- 
ical base point pr corresponding to A,. 

For a coefficient group G, denote by G, the 

tlocal system of coefficient groups with stalk G 
associated with the +Orientation sheaf of an R”- 
bundle t. Then we have the Thom-Gysin 
isomorphism: 

W(X; G<) cz H”+q(Xr, pc; G), 

Let G be a closed subgroup of the ortho- 
gonal group O(n) and BG be the base space of 
the universal n-dimensional vector bundle yG 
with structure group G. Then we cari take a 

connected CW-complex as BG. We denote the 
Thom complex of the vector bundle yc by MG 
and cal1 it the Thom complex associated with 
(G, n). The Thom complex associated with 
(G, n) is (n - 1)-tconnected. If G is connected, 
then we have n,(MG)rZ, n,,(M0(n))~Z~, 
H”(MG;Z)=Z, and H”(MO(~);Z,)EZ, (Z, 

stands for the quotient group Z/2Z). The 
generator U of H”(MG; Z) is called the funda- 
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mental (cohomology) class of the Thom com- 
plex MG. For a general Thom space Xc, we 
cari also define the fundamental class of X, 

using the Thom-Gysin isomorphism. 
A C”-submanifold WP of a compact mani- 

fold V” is a +Support of a tsingular cycle and 
represents a homology class z E Hp( I’“; G) 
(G = Z, or Z). In this case we say that the 
homology class z of V” is realizable by a sub- 
manifold. A homology class z E Hn-k( V”; G) is 
realizable by a submanifold if and only if there 
exists a mapping f: V”+MO(k) (or MSO(k)) 

such that f*(U) is the dual cohomology class 
of z (Thom [23]). 

The homotopy group n,+,(MO(n)) (resp. 
n,+,(MSO(n)) (n > k) is determined only by 
k for any n up to isomorphism. It is called 

the k-dimensional stable homotopy group of 
the Thom spectrum MO = {MO(n)} (MS0 
= {MSO(n)}) and is denoted by xk(MO) 
(n,(MSO)). For the tunitary group U(n) and 
the tsymplectic group SP(n), we detïne Thom 
complexes MU(n) and MSp(n) as the Thom 
complexes associated with (U(n), 2n) and 
(Sp(n),4n) by the canonical inclusions U(n)e 
O(2n) and Sp(n) c 0(4n), respectively. The 

k-dimensional stable homotopy groups 
rr,(MU)=limn,,+,(MU(n)), z,(MSp)= 
lim n4n+k(MSp(n)) of Thom spectra MU = { , 

MU(n),SMU(n),MU(n+ 1) ,... }, MSp= 
{ . . . . MSp(n), SMSp(n), S2MSp(n), S3MSp(n), 
MSp(n + l), . } cari be detïned similarly to the 
case of n,(MO), where SMU(n) denotes the 
treduced suspension of MU(n). The stable 
homotopy groups of Thom spectra are cal- 
culated in connection with the cohomology 

groups utilizing the Thom-Gysin isomorphism 
(- 202 Homotopy Theory T) (Thom [23], 
Milnor [24]). 

H. Cobordism 

Cobordism theory is a theory of classification 
of differentiable manifolds initiated by L. S. 
Pontryagin and V. A. Rokhlin, who called it 

intrinsic homology. The theory was brought to 
maturity by Thom [23]. Its fundamental prob- 
lem is to determine whether a given compact 
manifold is the boundary of another manifold. 
Corresponding cobordism theories for com- 

binatorial and topological manifolds are being 
developed (Wall, R. Williamson). 

We consider only compact C”-manifolds 

that are not necessarily connected. Let D 
be the set of a11 diffeomorphism classes of 
C”-manifolds, and let ZD, be the set of a11 
orientation-preserving diffeomorphism classes 
of oriented C”-manifolds. For an oriented 

manifold V, we Write - V for the manifold 
with reversed orientation. 
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For two compact k-manifolds V, WE a,, we 
say that V is cobordant to W if there exists a 
compact (k + 1)-manifold XE a, such that <iX 
= VU (- IV). In this definition, considering 3 
instead of a,, we say that V is cobordant to W 

mod 2. The equivalence class of Vk with respect 
to the cobordism relation (the cobordism 
relation mod 2) is called an oriented (un- 
oriented) cobordism class and is denoted by 
[V”] ([ Vk12). The set of a11 oriented (un- 

oriented) cobordism classes [V”] ([ Vk],) of k- 
manifolds forms an Abelian group fik (%,) by 
the natural addition [ Vk] + [ Wk] = [ Vk U Wk] 

([ Vk], + [ Wk], = [ Vk U Wk],). This is called 
the k-dimensional oriented (unoriented) cobor- 

dism group. Deline the product [V”] x [PV’] = 
[vkXW~]([Vq2X[Wq2=[VkXW~]2). 

Then the direct sum R = 2 nk (?II = C !II,) forms 
an anticommutative (commutative) tgraded 
algebra, which is called the cobordism ring 
or Thom algebra. We have the following 

theorems. 

1. R,, ‘%, are isomorphic to the stable homo- 
topy groups n,(MSO), rrk(MO) of the Thom 
spectra MSO, MO, respectively (Thom’s funda- 

mental theorem) [23]. 
2. For a natural number k not of the form 

2’- 1, there exists a compact manifold P(k), 
and % is a polynomial ring over Z, with gen- 

erators {[P(k)], 1 k # 2’- 1). n @ Q (Q is the 
field of rational numbers) is a polynomial ring 
over Q with generators { [PCZm] 1 m > l}, where 
PC*” is the complex 2m-dimensional projec- 
tive space (Thom [23]). Moreover, Milnor 

[24] proved that the p-component of fik is 

zero for an odd prime p. Wall proved that 
the 2-component of 51, contains no element 
of order 4, using a certain exact sequence 
which contains the natural homomorphism 
Rk+91k [25]. 

3. Let T be the ideal of R consisting of a11 
torsion elements in R. Then RIT is a poly- 
nomial ring over Z with generators {[Y,,] 1 

k > l}, where we cari take for Y,, a complex 
Zk-dimensional nonsingular algebraic variety 
(Milnor). 

Kharacteristic numbers are invariants of 

cobordism classes. Combining the results 
stated in 2, we have the following theorem: 

4. Let V, W be manifolds. Vis cobordant to 
W mod 2 if and only if they have the same 
corresponding Stiefel-Whitney numbers. Let 
V, W be oriented manifolds. V is cobordant to 
W if and only if they have the same corre- 

sponding Stiefel-Whitney numbers and +Pan- 
tryagin numbers. The tindex of an oriented 4k- 
dimensional compact manifold is a cobordism 
class invariant and cari be expressed as a linear 
combination with rational coefficients of +Pan- 

tryagin numbers (- 56 Characteristic Classes). 

A manifold whose +Stable tangent bundle 
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has a complex structure is called a stably (or 

weakly) almost complex manifold. Let V, W be 
2n-dimensional compact stably almost com- 

plex manifolds (n > 1). We say that V is C- 
equivalent to W if they have the same +Chern 

numbers. The set of a11 C-equivalence classes 
[VIC forms the complex cobordism group Il,, 

as in the (real) case of cobordism groups (the 
existence of the inverse of an element is not 
trivial). Introducing multiplication into the 
direct sum U, =C II,, by the product of mani- 

folds, we obtain the complex cobordism ring. 
We have U,, E nZn(A4U) and U, is a poly- 

nomial ring over Z with generators { [ YikIc 1 
k > 1 }, where we cari take for Yik a complex 

k-dimensional nonsingular algebraic variety 
(Milnor [24]). 

1. h-Cobordism Groups of Homotopy Spheres 

A manifold M is said to be parallelizable if its 

tangent bundle r(M) is trivial, and almost 
parallelizable if there exists a lïnite number of 
points xi in M such that M - U {xi} is paral- 

lelizable. A manifold M is called stably paral- 
lelizable (or s-parallelizable) if the +Whitney 

sum t @ a1 of its tangent bundle z(M) and the 
trivial line bundle a1 is trivial. A manifold M” 

is called a rc-manifold if M” has a trivial nor- 
mal bundle when it is embedded into a Eucli- 
dean space RN (N > 2n). A manifold M” is a n- 
manifold if and only if M” is s-parallelizable. 
The concepts delïned in this paragraph are 

related by inclusions as follows: parallelizable 
2 s-parallelizable 2 almost parallelizable. 
For a connected manifold with boundary, 

these three concepts are equivalent. +Group 
manifolds are parallelizable. An n-dimensional 
manifold homeomorphic to the n-dimensional 
sphere is parallelizable if and only if n = 1, 3, 7 
(Milnor [26]). Suppose that we are given an 
(n - 1)-dimensional sphere S”-’ (n even). We 
cari consider the problem of determining the 

maximal number r such that there exists a 
tangent r-frame tïeld over S”-‘. J. F. Adams 
solved this problem using +K-theory (- 237 

K-Theory) as follows: Let n =(2a + 1)2b, b = 
c + 4d, where a, b, c, d are integers and 0 < c < 
3. Put p(n) = 2’+ 8d. Then r = p(n) - 1. On the 
other hand, homotopy spheres are n-manifolds 

~271. 
Let VI, V, be oriented compact manifolds. 

Then we say that VI is h-cobordant to V, if 
there exists an oriented manifold W with 
boundary aIV= VI U (- V,) such that K (i = 1,2) 
is a deformation retract of W. The set of a11 h- 
cobordism classes of oriented homotopy n- 

spheres forms an Abelian group 0, with con- 

nected sum as addition. This is called the (h- 
cobordism) group of homotopy n-spheres. We 
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denote by &,(a~) the subgroup of homotopy n- 
spheres that are boundaries of x-manifolds. 

Kervaire and Milnor gave certain exact se- 
quences that contain the groups /3,, the stable 
homotopy groups G, of spheres, and the stable 
homotopy groups n,(SO). They clarifïed rela- 
tions among these groups and proved that 
O,(&) = 0 for n even, B,(&r) = fïnite group for n 

odd # 3, 0,/@,(&) c Coker J,,, etc. [27], where 
J,:n,(SO)+G, is the +J-homomorphism. From 
these results it follows that the 0, (n # 3) are 

iïnite Abelian groups, 0, =0 for n < 7, # 3, 

Q7 g Z,,, etc. (- Appendix A, Table 6.1). 
By pasting together the boundaries of two 

n-disks 0; and 02, we obtain an oriented 
manifold which is considered as a smoothing 
of the combinatorial n-sphere. The set of all 
orientation-preserving diffeomorphism classes 
of smoothings of the combinatorial n-sphere 
forms an Abelian group r, with connected 
sum as addition. This is called the group of 
oriented differentiable structures on tbe com- 

binatorial spbere. By the generalized Poincaré 
conjecture and the h-cobordism theorem, we 

obtain r, = 0, (n # 3,4). Furthermore, r, = 0 
and r, = 0 (J. Cerf [28]). The group r, cari also 
be defïned as follows: Let Diff + D”, Diff + S”-’ 
be the groups of orientation-preserving diffeo- 
morpbisms of D”, S”-‘, respectively, where 
multiplication is defined by composition. Let 
r : Diff + Dt +Diff + S”-’ be the homomor- 

phism induced by the restriction D”+S”-‘. 
Then the image of r is a normal subgroup, and 
r, = Diff + Snm’/r (Diff ’ D”). 

J. Surgery Theory 

A process of modifying a manifold into an- 

other by a sequence of spherical modifications 
is called surgery on the manifold (- Section 

F). The technique of surgery proved to be a 
powerful tool for the development of differen- 

tial topology in the 1960s. Kervaire and Mil- 
nor exploited this technique in their study of 
homotopy spheres [27]. W. Browder [29] and 
S. P. Novikov [30] used surgery to construct 

differentiable manifolds with the same homo- 
topy type as that of a given Poincaré complex 
in dimension greater than 4. 

TO explain the main points of surgery the- 
ory, we introduce some terminology. A pair 
of finite tCW complexes (X, Y) is called a 
Poincaré pair of formal dimension n if there 
exists a class PE H,,(X, Y; Z) called the funda- 
mental class such that the tcap product p-: 
H4(X; Z)+H&X, Y; Z) is an isomorphism 
for each 4. When Y= @, X is called a Poin- 

caré complex. Let M be an n-dimensional 

smooth manifold. Consider an embedding g 
of M into a Euclidean space R”+k, where k is 
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large enough (i.e., k > n + 2). Then the isomor- 
phism class of the tnormal bundle of g is inde- 
pendent of the choice of embedding, and it 
depends only on M. Any representative of the 
isomorphism class is called the normal k-vector 
bundle of M and is denoted by vh. Let (X, Y) 
be a Poincaré pair of forma1 dimension n, 
and let 5 be a real k-vector bundle over X. A 

normal mapping (normal map) (J b) consists of 
a degree 1 mapping f:(M, aM)+(X, Y) and a 
tbundle mapping b: v&< which covers f: 

A normal mapping (f; b):(M, aM)+(X, Y) is 

normally cobordant to a normal mapping 
(f’, b’):(M’, aM’)+(X, Y) if aM=aM’ and 
there exist a smooth (n + 1)-manifold W and 
a mapping F: W-X such that a W= M U 

(-M’) U 3M x 1, F is covered by a bundle 
mapping B:vb+& and (F, B)I(M, dM)=(f; b), 
(F,B)I(M’,aM’)=(f’,b’). 

The fundamental theorem of surgery theory 
is formulated as follows: Let (X, Y) be a Poin- 
caré pair of formal dimension n. Suppose that 
X is simply connected and n > 5. Let (J b): 
(M,dM)+(X, Y) be a normal mapping that 

restricts to a homotopy equivalence on the 
boundarySIaM:aM*Y.Then(f,b)isnor- 
mally cobordant to a normal mapping (f’, b’): 
(M’, aM’)+(X, Y) with f’: M’+X a homotopy 
equivalence if and only if a well-defined ob- 
struction g(A b) vanishes. a(f; b) is called the 
surgery obstruction. When n is odd, a(f; b) 
always vanishes. When n = 0 mod 4, e(f; b) is 
an integer. If Y= 0, it is given by (I(M)- 
I(X))/8, where I( ) denotes the tindex of the 

manifold or of the Poincaré complex. If ns 2 
mod 4, ~(1; b) is an integer mod 2, called the 
Arf-Kervaire invariant. For a thorough devel- 

opment of simply connected surgery - [31]. 
In the PL or even in the topological cate- 

gories, surgery theory cari be developed simi- 
larly (Browder and Hirsch, R. C. Kirby and 
L. C. Siebenmann [32]). 

In his study of Hauptvermutung for simply 
connected manifolds, D. Sullivan reformu- 
lated surgery in terms of the “surgery exact se- 

quences” involving the classifying spaces G/PL 
or G/O. (These spaces are “homotopy theoretic 
fibers” of BPL-BG or BO+BG respectively.) 

In the special case where X is a closed simply 
connected PL n-manifold, the surgery exact 
sequence cari be formulated as follows (n 2 5): 

1 

Z (n=O mod4), 

O+hT(X)A [X, G/PL]: Z, (n = 2 mod4), 

0 (n odd). 

The set hT(X) is the totality of equivalence 
classes of pairs (M,f), where M is a closed PL 

n-manifold and fis a homotopy equivalence 

M+X. Two such pairs (M’,f’) and (M”,f”) 
are defïned to be equivalent if there exists a PL 
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homeomorphism h: M’-+M” such that f” o h is 
homotopic to f’. The set of homotopy classes 

[X, G/PL] of mappings X+G/PL is appro- 
priately identified with the set of a11 normal 
cobordism classes of normal mappings with 
target X or with the set of a11 PL reductions 
of the Spivak normal fiber space of X as a 

Poincaré complex [31]. The mapping ré cari 
be defined naturally, and the mapping f3 cor- 
responds to the assignment of the surgery 
obstruction. The image n(M,f)~[x, G/PL] 
is sometimes called the normal invariant of 
(M,f). Sullivan reduced the classification 
problem of manifolds within a given homo- 

topy type to a homotopy theoretic problem 
of the classifying spaces G/PL, G/O [33] (also 
- [31,34]). 

In the latter half of the 1960s surgery theory 
was extended by Wall to caver a11 compact 

nonsimply connected manifolds which are 
not necessarily orientable. He introduced a 
certain Abelian group L,(rc; w), now called the 
Wall group, which functorially depends on the 
fundamental group z = rr, (X), with the orienta- 
tion character w  : xi (X)+Z,, and which is of 
period 4 with respect to the forma1 dimension 
n of X. In Wall’s theory, the surgery obstruc- 

tion o(A b) takes its value in this group. The 
group structure of Wall groups has been cal- 
culated in many cases. Sullivan’s exact se- 
quences are extended to the non-simply con- 

nected cases [34]. Making use of the extended 
exact sequences, Wall and W. C. Hsiang and 
J. L. Shaneson classilïeld homotopy tori. The 
result played an important role in the work of 
Kirby and Siebenmann on the tannulus con- 
jecture and stable homeomorphisms which led 
to the solution of tHauptvermutung and trian- 

gulation problems on topological manifolds in 
1969 (- 65 Combinatorial Manifolds). Sur- 
gery theory has many applications to other 
geometric problems. Among them are lïnd- 

ing missing boundaries for open manifolds, 
equivariant surgery, homology surgery [35], 

and surgery on codimension two submanifolds 
[36,37]. 

K. 4-Dimensional Manifolds 

The results in differential topology discussed 
above are mainly concerned with manifolds of 
dimension > 5. For 4-manifolds, however, 

because of their peculiar nature which is not 
observed in other dimensions, many funda- 

mental problems had remained unsolved until 
M. H. Freedman’s epoch-making paper [54] 
appeared in 1982. His paper, together with 
S. K. Donaldson’s theorem [SS] which was 

published a little later, was a breakthrough in 
the theory of 4-manifolds. 
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It was Rokhlin who lïrst discovered a 
strange property of 4-manifolds [38]. Ro- 

khlin’s tbeorem states: Let M be a closed 
oriented smooth 4-manifold. If M is almost 
parallelizable (or equivalently, if M is a spin 4- 
manifold), then the index of M is divisible by 

16. Milnor and Kervaire gave an alternative 
proof of this theorem from the differential- 

topological point of view [39]. Freedman and 
Kirby and Y. Matsumoto gave geometric or 
elementary proofs. 

Until 1981, Rokhlin’s theorem had been a 

constant source of many curious phenomena 
in 4-dimensional topology. The list contains, 
for example: (1) the class (4m + 2,4n + 2)~ 
H2(S2 x S’) E Z @ Z cannot be represented by a 
smoothly embedded 2-sphere in Sz x S* (Ker- 
vaire and Milnor). This result was improved 
by W.-C. Hsiang and R. H. Szczarba, A. G. 

Tristram, and Rokhlin. (2) The h-cobordism 
theorem fails to hold in 4 or 3 dimensions 
(T. Matumoto, Siebenmann [40]). (3) There 
exists a closed smooth 4-manifold M that is 
homotopy equivalent to the real projective 

space RP4, but M $ RP4 (Cappell and Shane- 
son). (4) There exists an open 4-manifold IV4 

properly homotopy equivalent to S3 x R but 
distinct (Freedman). 

Closed, connected, simply connected 4- 

manifolds M and N are homotopy equivalent 
if and only if the intersection forms delïned on 

the 2-dimensional (co)homology groups are 
equivalent as inner product spaces over Z 
[41]. Wall [42] proved that if closed simply 
connected smooth 4-manifolds M and N 
are homotopy equivalent, then they are h- 
cobordant. Moreover, if M and N are h- 
cobordant, then there exists an integer k > 0 
such that M # k(S2 x S2) is diffeomorphic to 

N # k(S’ x S’). 
About 1973, using a certain intïnite repeti- 

tion process, A. Casson constructed a family 

of noncompact smooth 4-manifolds which are 
properly homotopy equivalent to the open 2- 
handle Dz x R’. A 4-manifold belonging to the 

family is called a Casson bandle. He observed 
that if a11 the Casson handles are diffeomor- 
phic to D2 x R2, then theories analogous to 
surgery and the h-cobordism theorem in 

higher dimensions cari also be developed in 
dimension 4. 

In his 1982 paper [54], Freedman proved 
that each Casson handle is homeomorphic to 
D2 x R2. (It was proved later that Casson 

handles are not, in general, diffeomorphic 
to D2 x R’.) This result and the proper h- 
cobordism theorem, also due to Freedman, 

proved many fundamental results on the topo- 
logical structure of 4-manifolds: (1) If closed 

simply connected smooth 4-manifolds M, N 
are h-cobordant, they are homeomorphic. In 
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particular, a 4-dimensional homotopy 4-sphere 
is homeomorphic to the 4-sphere S4. (Proof of 
the 4-dimensional Poincaré conjecture.) (2) A 
topological4-manifold properly homotopy 
equivalent to R4 is homeomorphic to R4. (3) 
Given a nonsingular symmetric bilinear form 
w  over Z, there exists a closed, connected, 
simply connected topological 4-manifold 
whose intersection form is equivalent to w. 

(Therefore Rokhlin’s theorem cannot be ex- 
tended to topological4-manifolds. From this, 
it follows that there exist simply connected 

topological 4-manifolds which are nonsmooth- 
able or even nontriangulable.) (4) The homeo- 
morphism class of a closed connected simply 
connected 4-manifold is determined by the 
intersection form and the Kirby-Siebenmann 
class. (This statement is an improved one by 
F. Quinn [56].) 

Donaldson [SS] revealed a Sharp contrast 
existing between smooth and topological4- 

manifolds. Donaldson’s theorem states: If the 
intersection form of a closed, connected, sim- 
ply connected smooth 4-manifold is positive 

detïnite, then the form is equivalent to the 
standardone(l)@(l)@...@(I).This 
theorem, together with Casson’s theory and 
Freedman’s result (2) stated above, implies 
that there exists an exotic differential struc- 
ture on a 4-dimensional Euclidean space R4. 
Moreover, as an application of Donaldson’s 
theorem, the problem of representing a 2- 
dimensional homology class of S2 x S2 by a 

smoothly embedded 2-sphere was completely 
solved (K. Kuga [57]): the class (p,q)gff2(S2 x 
S2) is represented by a smoothly embedded 
S2ifandonlyif]pl<10rlqlg1. 

Many problems concerning differential 
structures on 4-manifolds remain unsolved. It 
is not known whether an exotic smooth 4- 
sphere exists. 

Among other results, the proof of the 4- 
dimensional annulus conjecture by Quinn [56] 
is remarkable. 

L. Miscellaneous Results 

The Browder-Livesay invariant. Let Z” be a 

homotopy n-sphere, T an involution on .Y’, 
that is, a smooth mapping T:L”+Zn with 
TO T=id,.. Assume that T is free from tïxed 
points. The involution T is said to desuspend 
if there exists a homotopy (n - 1)-sphere C 
smoothly embedded in c” which is invariant 

under the action of T. Browder and G. R. 
Livesay defïned an obstruction U(T) in the 
group O(n: even), Z (n = 3 mod4), Z, (n = 
1 mod4) such that o(T) =0 if and only if T 

desuspends (provided that n > 6) [43]. The 
invariant a(T) is now called the Browder- 
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Livesay invariant. The technique used there 

was equivariant surgery under the action of T. 
De Rham homotopy theory. A new approach 

to topology of manifolds was invented by 
Sullivan [44], who considered the exterior 
algebra of differential forms (with polynomial 
coefficients) on a simplicial complex. Through 
the construction of the minimal mode1 for the 
algebra of differential forms, he recovers the 
rational homotopy type of the complex under 
some reasonable condition on the fundamental 

group. Following upon the classical de Rham 
theorem which recovers the (real) cohomology 

algebra from the algebra of differential forms, 
this approach is called the de Rham homotopy 

theory. This method has proved to be useful 
for the explicit calculation of the algebraic 

topological invariants of +Kahler manifolds, 
tloop spaces, cross-section spaces, talgebraic 
varieties, etc. 

Kirby calculus. Kirby [45] initiated a link- 
theoretic approach to 3- and 4-manifolds. Let 
L be a link in S3. Suppose that each compo- 
nent of L is given a framing, which means a 

trivialization of a tubular neighborhood. Such 
a link is called a framed link. A framing of 
a component is determined by the tlinking 
number between the component and its re- 
placement along the framing. By attaching 

2-handles to the 4-disk D4 along a framed link 
in S3 = 2D4, we obtain a handlebody; here we 

denote it by WL. It is known that each closed 
connected oriented 3-manifold is obtained as 
the boundary of such a handlebody (W. B. R. 
Lickorish, Wallace). Kirby proved that for 
framed links L and L’, the boundaries 8 WL 

and 8 WL. belong to the same orientation- 
preserving diffeomorphism class if and only if 
L is transformed into L’ by a sequence of the 
following two kinds of elementary operations: 
(i) adding or deleting a trivial knot (separated 
from L) with framing kl, (ii) band summation 
of components corresponding to “handle 
sliding.” Kirby’s approach is called Kirby 

calculus on framed links. For applications - 
[45,53]. 
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f2 
P(P(X,,X,+,)>&)dt=ot~) (~10) 

fI 

for every E > 0 [SI. This includes the following 

result due to E. B. Dynkin (1952) and J. R. 
Kinney (1953) as a special case: If in (1) we cari 
replace O(h) with o(h), then {Xt} Will be a 
diffusion process. Specifically, when {X,} is a 
1-dimensional +strong Markov process, the 
latter condition is also necessary for the pro- 
cess to be a diffusion process. 

Diffusion processes are intimately related to 

a certain class of tpartial differential equations. 
Let S be the real line. Assume that the ttran- 
sition probability P(s, x, t, E) (s < t) of the pro- 
cess {X1}041<m satisfies 

l-P(s,x,s+h,(x-E,X+E))=o(h) (h10) 

(24 

for every E > 0 and that the following limits 
exist: 

lim 1 
s 

X+E 

h-O+ h 
(Y - x)*pts, x, s + h, dy) 

X-E 

[57] K. Kuga, Representing homology classes 
of S* x S*, Topology, 23 (1984), 133-137. 

=2a(s,x)>O, (2b) 

lim A s X+E h-O+ h (Y-x)P(s,x,s+b,dy)=bts,x), (2~) X~E 
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lim ‘(P(s,x,s+h,S)-l)=c(s,x)~O. 
h-O+ h 

(24 

A. General Remarks 

Let (!& !Z3, P) be a tprobability space. A tMar- 

kov w-s {X}OGt<m on a ttopological space 

S with tcontinuous time parameter t is called a 
diffusion process if the tsample function X,(w) 
is continuous in t with probability 1 until a 
random time l(o), called the tterminal time. 

After the terminal time, X,(w) stays at the 
terminal point 8. Such a process is said to be 
1-dimensional or multidimensional according 
as S is an interval or a manifold (possibly with 
boundary) with dimension 2 2. Brownian 
motion is a typical diffusion process (- 45 
Brownian Motion). 

Assume further that the transition probability 
is tabsolutely continuous with respect to Le- 
besgue measure: P(s, x, t, dy) = p(s, x, t, y) dy. 

Then under some suitable additional con- 
ditions, p(s, x, t, y) satisfies 

ap 8% 
as- - -~(s,x)~-bts,x)~-c(s,x)P, 

P(t-O,x,LY)=~(x-y), 

and 

(3) 

ôp a2 
~=;iT-zt~t’,i.>p>-~tb(t,v)p)+clt,Y)P, 

TO give conditions for a Markov process to 
be a diffusion process, let us assume that S is a 
tcomplete metric space with metric p. Let {Xt} 
be a Markov process on S with time para- 

meter t ranging over a finite interval [tl, t2] 
and satisfying 

P(& x, s + 0, Y) = S(Y - 4, (4) 

where 6 is the +Dirac delta function. The co- 
efficient c vanishes if {Xt} is tconservative. 
Equations (3) and (4) are called Kolmogorov’s 
backward equation and forward equation, re- 

spectively. They are also called the Fokker- 
Planck partial differential equations. 

sup P(s, x, t, S - U,(x)) = O(h) (h10) (1) 

for every E > 0, where U,(x) is the E-neighbor- 

A. N. Kolmogorov [l] derived equations (3) 

and (4) in 1931, and W. Feller proved that (3) 
(or (4)) has a unique solution under certain 
regularity conditions on the coeff%.zients a, b, 

and c, and that the solution p(s, x, t, y) is non- 
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negative, has an integral with respect to y that 
does not exceed 1, and satisfïes the Chapman- 
Kolmogorov equation 

s Ph x, L YML Y, 4 4 dY = P(% x, 4 4 

for every 0 <s < t < u. Hence p(s, x, t, y) deter- 
mines a +Markov process analytically. How- 
ever, rigorous proof establishing the sufftciency 

of condition (2) for the Markov process {Xt} to 
be a diffusion process did not appear until the 
1950s. 

In the ttemporally homogeneous case, 
p(s, x, s + h, y) does not depend on s and cari be 
written as p(h, x, y). Then U(S, x), b(s, x), and 
c(s, x) are also independent of s, and p(t, x, y) 

satisfïes 

ap 2 
~=u(x)~+b(x)~+c(x)p, 

P(O+,x,Y)=cJ-Y). (5) 

Feller made an intensive study of this case and 
completely solved the problem of existence 
and uniqueness of the solution of (5) assuming 
that p(t, x, y) is nonnegative and that its inte- 
gral with respect to y does not exceed 1 [7]. 
In particular, when t varies in [0, +co) and S 
is an interval [r,, rJ, Feller used the Hille- 
Yosida theory of tsemigroups of operators to 

determine the conditions that should be satis- 
fïed by Y, and r2 in order that the differential 
equation (5) (with the initial condition and his 

additional assumptions) yield one and only 
one solution. Feller also introduced the notion 
of generalized differential operators, which 
expresses the differential operator in the right- 
hand side of (5) in the most general form [S]. 
The probabilistic meaning of his results was 
clariiïed by Dynkin, H. P. McKean, K. Itô, 
D. B. Ray, and others, and a11 1-dimensional 
diffusion processes with the tstrong Mar- 

kov property have now been completely 
determined. 

Since not much research on temporally 

nonhomogeneous diffusion processes has 
been done SO far, we restrict our explanation 
to temporally homogeneous ones. Let s%R = 
(X,, IV, P, 1 XE S) be a Markov process, where 
S is a +state space, W is the tpath space con- 

sisting of a11 paths w  : [0, +co] +S U {a} which 
are continuous in t for 0 < t < c(w) (w(t) = 3 for 
t><(w) while w(t)ES for O<~<[(W)), and P, is 

a probability measure on W under the con- 
dition that the process starts from x at t = 0 
(- 261 Markov Processes). We cari actually 
identify W with the tbasic space R and set 

X,(w) = w(t) for w  E fi. Assume that !N has the 
tstrong Markov property. It follows from 

+Dynkin’s formula for +infmitesimal generators 
(- 261 Markov Processes) that the iniïni- 

tesimal generator 8 of a diffusion process has 
the local property stating that if u and u be- 
long to the domain of 8 and coincide in a 

neighborhood of x0, then BU(~,) = %V(X,). 

B. 1-Dimensional Diffusion Processes 

Let S be a straight line. A point XE S is called 
a right singular point if X,(w) B x for all tu 

[0, i(w)) with P,-probability 1. A left singu- 
lar point is defined analogously, with > re- 
placed by <. A right and left singular point 
is called a trap, while a right singular point 
which is not left singular is called a right shunt 
(a left shunt is defïned analogously). A point is 
called a regular point if it is neither right nor 

left singular. 
The set of a11 regular points is open. Let 

(rl, r2) be a connected component of this open 
set. One of the most important results con- 
cerning this situation is the proof of the exis- 

tence of a strictly increasing function s(x) de- 
tïned on (rI, r2) and two measures m and k 
on (ri, r2) such that the iniïnitesimal generator 
o> of %II is represented as 

Bu(x) = 
u+(dx)-u(x)k(dx) 

m(dx) ’ 
(6) 

where u+(dx) is the measure du+(x) induced by 
the tright derivative u’(x) of u(x) with respect 
to s(x) (i.e., ~+(~)=lim,,,+,{u(x+Ax)- 

u(x)}/{s(x + Ax) - s(x)}). Equation (6) gives a 
generalization of second-order tdifferential 
operator au” + bu’ + CU (a > 0, c < 0) [ 121. Here 

m is positive for nonempty open sets, both m 
and k are tïnite for compact sets in (ri, r2), and 
s, m, and k are unique in the following sense: If 
there are two sets of values of si, mi, and ki (i = 
1,2), then s,(x)=cs,(x)+constant, m,(dx)= 
ë’m,(dx), and k,(dx)=c-lk,(dx) for some 
positive constant c. We cal1 s, m, and k, respec- 
tively, the canonical scale, canonical measure 
(or speed measure), and killing measure for %II. 

They determine the behavior of X,(w) belong- 
ing to W inside the interval (ri, Y~). Conversely, 
given any such set of s, m, and k, we cari fïnd a 
1-dimensional diffusion process !IJI such that s, 
m, and k are, respectively, the canonical scale, 
canonical measure, and killing measure of ‘SR. 
If X,(w) is nonvanishing in (r, , r2) with proba- 
bility 1, the killing measure k is identically 
zero, and the canonical scale s satisfies the 

equation 

Px(%, < %,) = 
4x)-s(xJ 
4x*)-4x1) 

for xi <x < x2, where 4 is the thitting time of 

the point y. 
The motion X,(w) belonging to the process 

%II and contained in (r,, r2) cari be constructed 
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from the Brownian motion by means of a 
topological transformation of the state space 
(interval) based on s, a ttime change based on 
m, and a tkilling based on k. More precisely, 

we fïrst transform the interval (ri, r2) by x + 
s(x) into the interval (s(rl +O), s(r2 -0)) SO 

that the diffusion process on this new interval 
has a canonical scale coincident with x. The 
speed and killing measures are transformed 
accordingly. We cari, therefore, assume that 
the canonical scale is x. Let us consider the 
case (rl, r2) = (-c0, +co) for simplicity. Let 

t(t, x) be the tlocal time of Brownian motion at 
x (- 45 Brownian Motion). Next, we apply 
the ttime change to the Brownian motion by 
means of the tadditive functional 

s 

+Xi 

<p(t)= t(t, x)m(dx), 
-cc 

and fmally tkill the latter process by means of 
the tmultiplicative functional 

(S 

+cO 
cc(t)=exp - t(<p -l W> x)k(W 

-CU > 

Thus we obtain the process sm in (-CO, CO). In 
particular, if m(dx) = a(x)-’ dx and k(dx) = 

IC(~)I dx, we have 

and Bu = au” + CU. 

At a shunt the infïnitesimal generator 6 has 
a form that is a generalization of the fïrst- 
order differential operator bu’ + CU (c < 0), 
with b > 0 or b < 0 according as it is a right 
shunt or a left shunt. At a trap we have Bu(x) 

= - Wl~,(S). 
When S is an interval with endpoints r, and 

r2 and a11 interior points are regular, the left 

endpoint rl is classified into the following 4 
types, according to the bebavior of m near r1 : 

Take’an arbitrary fïxed point r E (rl, rJ, and set 
n(dx) = m(dx) + k(dx) and 

Ct= 
s 

(s(r) -s(x))Wx), 
(r,.r1 

B= 
s 

4(x, r)MW. 
(11.1) 

Then r, is a regular boundary if du < CO, b < 
CO; an entrante boundary if a < CO, fi = co; an 

exit boundary if g= CO, b < co; and a natural 
boundary if u = 00, fi = CO. This classification 
is independent of the choice of r. A similar 
classification of r2 cari be established. X,(w) 
approaches r1 in fïnite time with positive or 

nul1 probability according as fi is finite or infï- 
nite. If a = cc, it never happens that X,(w) 

starts from rl and reaches the interior of the 

interval S even if r, ES, whereas if CI < CO we 
cari construct (adjoining r1 to S if necessary) a 

diffusion process that enters the interior from 
r1 and whose motion in the interior coincides 
with that of X,(w). 

If r1 is a regular boundary for Y.R and r1 ES, 

then there are various possibilities for the 
behavior of X,(w) at r,. They are expressed by 
the boundary conditions satisfïed by the func- 
tions u belonging to the domain of the in- 
iïnitesimal generator 6. The condition is in 
general of the form 

yu(r,)+GBu(r,)+pu+(r,)=O, 

where y, 6, and p are constants, y, 6 < 0, p > 0, 
and 161+~>0. Ify=K=O, then rl is said to be 
a reflecting barrier. If rl is regular for YJI and 

does not belong to S, then X,(w) vanishes 
exactly as X,(w) reaches r,, and r1 is called an 
absorbing barrier. This case corresponds to the 
boundary condition u(rJ = 0. Whatever the 
boundary condition may be, YJI is constructed 
from the Brownian motion with reflecting 

barrier by topological transformation of the 
state space, time change, and killing. Here if 
y # 0, then killing may occur at r, ; if 6 # 0, the 
set of visiting times of r1 has positive Lebesgue 
measure; and if p # 0, the trace of the motion 

may go beyond the point r, and reach the 
interior points of S [2,7-93. 

If we weaken the assumption of continuity 
of paths and admit jumps from r,, the general 
boundary condition becomes 

+ s (u(x) -4r,)Mdx) = 0, 
k,.r*l 

where v is a measure with respect to which 
min(l,s(x)-s(r, +0)) is integrable. 

When S = (rl, rJ, the transition probability 
is absolutely continuous with respect to the 
canonical measure, the density p(t, x, y) has an 
+eigenfunction expansion 

0 
P(Lx,Y)= 

s 
e”‘e(dA; x, y), 

-cc 

and p(t, x, y) is positive, jointly continuous in 3 
variables, and symmetric in x and y. A similar 
result is also known when S is half-open or 
closed [9]. 

If I)31 is trecurrent, i.e., P,(cT~ < +CD) = 1 for 

every x and y in S, then there exists a unique 
(up to a multiplicative constant) +invariant 
measure for S that is finite for a11 closed inter- 
vais in the interior of S. If W is conservative 
and all the interior points of S are regular, 

then the canonical measure is an invariant 
measure, provided that the endpoints are 
either entrante, natural, or regular reflecting. 
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C. Multidimensional Diffusion Processes 

Let the state space S be a domain or the 
closure of a domain in the n-dimensional 
Euclidean space R”. Consider a temporally 
homogeneous diffusion process (Xl}OQt<m on 
S. Under suitable regularity conditions the 
infïnitesimal generator 8 coincides, for suffï- 
ciently smooth functions u in its domain, with 
the following telliptic partial differential oper- 
ator A: 

A= E a”(x) 
i,j=l 

&+ i h’(x)&+c(x), 
i=l 

c<o; (7) 

where S has a boundary, u satistïes a boundary 
condition of the form 

i,$l dqx)~+“~ pyx)T 
i=1 

au(x) +Y(x)u(x)+G(x)Au(x)+~c(x)~=o, (8) 

where, for simplicity, we assume that S is the 
closed half-space defïned by x” > 0, (&j) is a 
symmetric nonnegative detïnite matrix, y < 0, 

6 < 0, p > 0, and a/& is the inward-directed 
tconormal derivative associated with a”. This 
boundary condition was discovered by A. D. 

Venttsel’ [ 133. Conversely, given an operator A 
such as (7) and a boundary condition (8) (if S 

has a boundary), the existence and uniqueness 
of the corresponding diffusion process are 
known for several special cases. If S = R” and 
A has continuous coefficients, there exists at 
least one diffusion process corresponding to A 

[14-161. 
A probabilistic approach to constructing 

diffusion processes corresponding to the oper- 

ator A with c = 0 is given by Itô’s method 
of tstochastic differential equations (- 406 
Stochastic Differential Equations E). A some- 
what different approach was introduced by D. 
W. Stroock and S. R. S. Varadhan [20] under 
the name of martingale problems (- 261 Mar- 
kov Processes C). Let W” = C( [0, CO)+R”) 

be the space of a11 continuous functions w: 
[0, CO)+R” endowed with compact uniform 
topology and d( W”) be the topological o- 
field. Given x E R”, a solution to tbe martingale 

problem for the operator A with c = 0 start- 
ing from x is a probability measure P, on 
(W”, 23( Wn)) satisfying PJw(0) =x) = 1 such 
that f(w(t))-j& Af(w(s))ds is a P,-martingale 
for a11 f~cz(R”), where CF(R”) denotes the set 
of a11 C”-functions on R” having compact 
support. If a=(~“) is uniformly positive de- 
lïnite, bounded, and continuous and if b = (b’) 

is bounded and Bore1 measurable, the martin- 

gale problem for the operator A with c = 0 is 

well posed, i.e., for each x E R”, there is exactly 
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one solution starting from x. (For further 
information related to the theory of martingale 
problems - [ 15,201.) 

Suppose next that S is the closure of a 
bounded domain with a suffïciently smooth 
boundary and A is given with suflïciently 
smooth coefficients. If the boundary condition 
is yu + pLau/ûn = 0, p # 0, then there exists a 
unique diffusion process on S corresponding 
to this situation. Moreover, if y=O, then the 
process is said to have a reflecting barrier. S. 
Watanabe [22] gave a probabilistic condition 

which characterizes the reflecting diffusion 
processes in the normal direction among a11 
reflecting diffusion processes in oblique direc- 
tions. Suppose that a general boundary con- 
dition (8) is given. We Write the left-hand side 
of (8) as Lu. Write u = Hf for the solution of 
Au = 0 with boundary value 1: Under some 

natural additional conditions, T. Ueno proved 
that if LH tgenerates a Markov process on 

the boundary, then there exists a diffusion 
process for A with boundary condition (8) 
[21]. If {X,} has a reflecting barrier, the Mar- 

kov process on the boundary is, conversely, 
obtained from {Xt} through time change by a 

nonnegative continuous tadditive functional 
which increases only when the value of X, is 
on the boundary. Stochastic differential equa- 
tions are also used in constructing diffusion 
processes with boundary condition (8) [ 191 
(- 406 Stochastic Differential Equations). An 
elegant method for constructing diffusion 
processes with boundary condition (8) has 

been introduced by Watanabe [22]. It consists 
of piecing together excursions from the bound- 
ary to the boundary. In this construction, 
the stochastic integrals for tPoisson point 

processes play an important role. There are 
various other results on multidimensional 
diffusion processes with general boundary 
conditions which cannot be covered by the 
method mentioned above (- [23] and M. 

Motoo, Pr-oc. Inter-n. Symp. Stochastic D$ 
ferential Equations, Kyoto, 1976). 

When we have a diffusion process on S 
with infinitesimal generator of the form A, we 
cari obtain a probabilistic expression for the 

solutions of various partial differential equa- 
tions involving A. Let 0 be the hitting time of 
the boundary of S. Then Hf(x) cari be ex- 

pressed as E,(f(X,-,)). The solution of Au= 
-f with boundary value 0 is given by u(x) = 
E,(&f(X,)dt), while the solution U(C,X) of 
au/& = Au with boundary value 0 and initial 

value ~(0, x) =f is E,(f(X,); t < 0). The fïrst 
case gives the solution of a +Dirichlet problem; 
and in this case, the condition for a boundary 
point to be tregular relative to the Dirichlet 

problem cari also be expressed probabilisti- 
cally (- 45 Brownian Motion, 261 Markov 
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Processes). Furthermore, if f(X,) is replaced by 
f(XJexp$,k(X,)ds) in the expressions for U(X) 

and u(t,x), A is replaced by A + k (M. Kac 
[24]). When k<O, this replacement gives rise 
to a killing of the process (- 261 Markov 

Processes E). 
By using the theory of +Dirichlet forms we 

cari investigate a general class of tsymmetric 
multidimensional diffusion processes which are 
not in the framework of the classical diffusion 
processes, i.e., diffusion processes whose in- 
tïnitesimal generators are not necessarily dif- 
ferential operators (M. Fukushima, Dirichlet 

Forms and Markov Processes, 1980)). 

D. Diffusion Processes on Manifolds 

Let M be a tconnected toriented TP-compact 
C” tmanifold of dimension n. Let fi be M or 
MU {a} (= the one-point tcompactifïcation 
of M) according as M is +Compact or non- 

compact. Suppose that we are given a system 
of C”-tvector tïelds A,, A,, , A, on M. 

We consider the following stochastic differen- 
tial equation on M: 

dX,= i AI(XJodwk(t)+ A,(X,)dt 
k=l 

(9) 

(- 406 Stochastic Differential Equations), 
where w(t)=(w’(t), w*(t), . . . . w’(t)) denotes an 
r-dimensional Brownian motion and the tïrst 
term of the right-hand side is understood in 
the sense of the Stratonovich stochastic dif- 

ferential. Let X(t, x, w) be the solution of (9) 
with X0 =x E M defïned on the r-dimensional 

Wiener space (WJ, P”) (- 406 Stochastic 
Differential Equations) and P, be the proba- 

bilitylaw on w(M) of(X(t,x,w)),,,, where 
fi(M) is the space of a11 continuous map- 
pings w  : [0, CO+&? with 8 as a trap. Then 
{P, 1 x E M} defines a diffusion process W on 
M which is generated by the second-order 
differential operator XL=, Az/2+ A,, i.e., a 
diffusion process YJI with the intïnitesimal 

generator 6 such that 

where C$(M) denotes the space of a11 C”- 
functions on M with compact support. By 

appealing to the analytical theory of partial 
differential equations we cari discuss regularity 

properties of the transition probability of 93 
([ 151; L. Hormander, Acta Math., 119 (1967)). 

Recently, P. Malliavin [ZS] also suggested a 
probabilistic method for proving elliptic regu- 
larity results (see also [19]). 

We now assume that a11 linear sums of 

A,, A,, , A, are tcomplete. Then the terminal 

time of !LR is intïnite a.s. Let W(M) be the space 
of ah continuous mappings w  : [0, CO)+ M 

endowed with compact uniform topology, and 
set W,(M)=jwlw~W(M),w(O)=x}. Wede- 
scribe the ttopological support Y(P,) of the 
probability P, on W,(M), i.e., the smallest 
closed subset of W,(M) that carries the mea- 
sure P,. Let Y be the set of a11 piecewise con- 
stant mappings u: [0, CO+R’. For a given 
u=(u’(t), u’(t), . . . , u’(t)) of Y’, we consider a 
system of ordinary differential equations 

i.e., for every C”-function f on M with com- 

pact support, 

$-MtH= Aof( + c (Ak.fk’(t))Uk(t). 
k=l 

Then for every u E Y and x E M, we obtain a 
curve <p = <p(x, u) =(<p,(x, u)) on M by solving 
(10) with V(~)=X. Set Y”={<p(x,u)Iu~Y}. 
Then we have 

vp( PJ = Y” for every x E M. 

Let 5? be the +Lie algebra generated by A,, A,, 

“‘> A,, and set <L”(x) = { k’,] FE f?}. If dim U(x) = 
n for every XE M, then .Y(P,) = W’(M) for every 
XE M. For further information - Stroock and 
Varadhan (Proc. 6th Berkeley Symp. Math. 

Statist. Prob. III, 1972) and H. Kunita (Proc. 

Int. Symp. Stochastic Differential Equations, 

Kyoto, 1976). 

Let A be a smooth tnondegenerate second- 
order telliptic differential operator on M which 
is expressed in local coordinates as 

1 n 
A=j,C a”(x) 

‘., 1 
&+ c bi(x)Y$ 

i=l 

where (a”(x)) is symmetric and tstrictly posi- 
tive defïnite. Then there exist a +Riemannian 

metric g and a Cm-tvector lïeld b on M such 
that 

A=;A,+b, (11) 

where AM is the +Laplace-Beltrami operator 
on the +Riemannian manifold (M, y). We now 

construct the diffusion process generated by 
the operator A, introducing a stochastic dif- 
ferential equation on the tbundle O(M) of the 

torthonormal frames. There exists an tafftne 
connection V +Compatible with the Riemann- 

ian metric g such that for every Cm-function f 
on M, 
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where (L,, L,, , L,) is the system of tcanon- 
ical horizontal vector lïelds (tbasic vector 

lïelds) on O(M) corresponding to the affine 
connection V and rr:O(M)+M is the natural 
projection [ 191. We now consider the follow- 
ing stochastic differential equation on O(M): 

dr,= 1 Lk(r,)odwk(t). 
k=l 

(12) 

Let r(t, r, w) be the solution of (12) with r0 = 

r~0(M) delïned on the n-dimensional Wiener 
space (II$, P”). Now a stochastic curve 

X(t, r, w) on A4 is delïned by X(t, r, w) = 

x(r(t, r, w)). Set X(t, r, w) = i? for t 2 [, where [ 
is the texplosion time of r(t, r, w). Then the 
probability law of (X(t,r, w))~~~ on I?(M) 
depends only on x = n(r), and it defines a diffu- 

sion process cJJ1 on M which is generated by 
the operator A of (11). (For details - [19,26].) 
When A = AM/2, i.e., h = 0 in (1 l), the diffusion 

process %II is called the TBrownian motion on 
the Riemannian manifold M (- 45 Brownian 
Motion). 

Next consider the case when (L,, L,, , L,) 
in (12) is a system of canonical horizontal 

vector lïelds corresponding to the TRiemann- 
ian connection, and let b be a Cm-vector 

lïeld on M. Let 6 be the scalalization of b, 

i.e., g=(b’,b’, . . . . b”), b’(r)=~J’=, bj(x)fi’, and 
(jji)=(ej)-’ for r=(x,e,,e,, . . . . eJEO(M), 

where b = C;=, b’a/ax’ and e, = &, &aJad 
in local coordinates. Suppose that ii(r) is 
bounded on O(M) for i= 1,2, ,n. Then 

is an texponential martingale. The diffusion 
process generated by the operator AM/2 + b is 
obtained from the Brownian motion on M 
constructed above by the ttransformation of 

drift, i.e., the transformation by the tmultiplica- 

tive functional M(t) (- 261 Markov Processes). 
(G. Maruyama (NU~. Sci. Rep. Ochanomizu 

Univ., 15 (1954)) studied this for 1-dimensional 
processes, 1. V. Girsanov [27] and M. Motoo 
(Ann. Inst. Stutist. Muth., 12 (1960-1961)) for 

multidimensional cases.) 
Consider a diffusion process %Il = {P, 1 x E M} 

on M generated by the operator A of (11). Let 
wb be the tdifferential 1 -form defmed from the 
vector field b by 

for every x E M and every C”-vector field V 
on M. Then %71 is symmetrizable if and only if 
wh is texact, i.e., if there exists a function F on 

M such that w,, = dF. The tinvariant measures 

are then of the form const. x exp[2F(x)]m(dx), 
where m(dx) is the TRiemannian volume (E. 

Nelson, Duke Math. J., 25 (1958); Kolmogorov, 
Math. Ann., 113 (1937)). The diffusion process 
I)31 is said to be locally symmetrizable if for 
every tsimply connected domain D c M there 
exists a Bore1 measure vD(dx) on D such that 

s 
TDfbM4vDW= f(x)TDd4vD(W 

D i D 

for all bounded continuous functions f and g, 
where 

Then !RI is locally symmetrizable if and only if 
wb is tclosed, i.e., do, = 0. R. Z. Khas’minskiï 
[28] proved a pair of useful tests for explo- 

sions of diffusion processes on M = R”, similar 
to Feller’s test for II = 1 mentioned in Section B 
(- [ 181). In case of a general manifold we cari 

investigate the possibility of explosions for 9.R 
by appealing to the comparison theorems for 
tcurvatures in the theory of differential geome- 
try [19,29]; S. T. Yau, J. Math. Pures Appl., 57 

(1978)). The diffusion process !RI on M is said 
to be +recurrent if P,[X, E U for some t > 0] = 1 
for any open subset U of M; otherwise it is 

called ttransient. It is well known that an II- 
dimensional Brownian motion on R” is recur- 
rent if n < 2 and transient if n > 3 [9]. There 

also are some results for the criterion which 
determines whether %II is recurrent or transient 
([ 19,281; A. Friedman, Stochustic D#ërentiul 

Equations und Applications 1, II, 1975, and K. 
Ichihara, Publ. Res. Inst. Math. Sci., 14 (1978)). 
Explicit formulas for the transition probability 

of the Brownian motion on a hyperbolic space 
are given in [29]. For information related to 
the asymptotic behavior of diffusion processes 
as tl0 we refer the reader to Varadhan (Comm. 

Pure Appl. Math., 20 (1967)) and S. A. Mol- 
chanov (Russiun Math. Suroeys, 30 (1975)). 

Diffusion approximations for suitably nor- 
malized random sequences have been studied 
extensively beginning with the work of A. J. 
Khinchin [30]. The theory of tlimiting distri- 

butions of sums of tindependent (or weakly 
dependent) random variables is among the 
best-known examples (- 250 Limit Theorems 
in Probability Theory). For information re- 
lated to the theory of diffusion approxima- 
tions, see Yu. V. Prokhorov (Theory of Prob. 

Appl., 1 (1956)), A. V. Skorokhod [ 161, and 
Stroock, Varadhan, and G. Papanicolaou 

(Pro~. 1976 Duke Turbulence Conference). 
Recently, many interesting examples of multi- 

dimensional diffusion processes have also been 
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introduced to describe probabilistic models in 
physics, biology, etc. (e.g., R. L. Stratonovich, 

Topics in the Theory of Random Noise 1, II, 
1963; J. F. Crow and M. Kimura, An Introduc- 
tion to Population Genet& Theory, 1970; and 
K. Sato, Proc. Int. Symp. Stochastic Differential 
Equations, Kyoto, 1976). 

In general, if a diffusion process {X,} is 
given on a noncompact space S and X, has 

no limit points in S as tt<, then some natural 
compactification should be induced by {X,}. 
The notion of a +Martin boundary for Markov 

processes is introduced in this connection. 
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Dimènsiokal Analysis 

The system of units for physical quantities is 

derived from a certain set of fundamental 
units. If the fundamental units are denoted 
by 8, <p, $, etc., any other unit c( (called a de- 

rived unit) cari always be expressed in the form 
a = C@V~$~. (c, 1, m, n, . . . are constants), by 
defmition or by physical laws. The exponents 1, 
m, n, are called the dimensions of c(, and the 
content of the previous statement is expressed 
as [a] = [@‘cp”fi” .], which is called the di- 
mensional formula. The usual practice is to 

take as fundamental units length, time, mass, 
temperature, and energy, which are denoted by 
L, T, M, 0, and H, respectively. Dimensional 

analysis investigates the relation between 
physical quantities by use of the rc theorem 
and the law of similitude given below. 

A. The 7~ Theorem 

If a relationship f(cc, b, ) = 0 holds among n 
physical quantities ~1, p, independently of 
the choice of fundamental units, the equation 
f(cz, b, ) = 0 cari always be transformed into 
F(rc1,z2, . ..)=O. where the ni are n-m dimen- 

sionless quantities (m is the number of funda- 
mental units) of the form ni = x“~~~~. If we 
choose the xi SO that n, = c&‘ly mil and rr2, 

rc3, etc. do not contain a, then j”=O implies 
CI=/?~~~~~ . @(rc,, rcn3, . ..). which clearly shows 
the manner in which the quantity t( is related 

to other quantities ,$ y,. . . 

B. The Law of Similitude 

In general, if two physical systems of the same 
kind have the same values of the rti, then the 
physical states of the systems are similar. If 
we are given a family of mutually similar sys- 

tems, it is sufficient to observe a particular one 

among them (a “model”) in order to estimate 
physical values attached to any one of the 
given systems. 

Consider, for example, the case of the drag 
D acting on geometrically similar bodies 
placed in the flow of a viscous incompressible 
fluid. If u is the velocity, 1 the representative 
length of the body, p the density of the fluid, 

and p the viscosity (which has the dimensional 
formula ML-‘T-i), then the 7~ theorem gives 
D/pv212 =f(pul/p). Hence the drag coefficient 

as given by the left-hand side cari be obtained 
by the experiments performed on a geometri- 

cally similar model. The dimensionless quan- 
tity R = u//v (v = p/p) is called the Reynolds 
number. If the wave resistance due to gravity 
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as well as the effect of compressibility are 
taken into account, gravitational acceleration 

g and sound velocity a must be included, SO 
that we have Dlpv2 l2 = f (vl/v, v2/lg, vJa, C,, 

C 2,. . . ), where C,, C,, . . . are other dimension- 
less quantities depending on the physical 
properties of the fluid. Fr = u2//g is called the 

Froude number, and M = V/a the Mach number. 
Next, consider the case of heat transfer 

between a solid surface and a flowing fluid. 
Let the area of the solid surface be denoted 

by S, the heat transferred per unit time by 
Q (HT-‘), the thermal conductivity of the 
fluid by k (HI!-’ T-i&‘), the specific heat by 

C (HM-’ e-i), the two representative tempera- 

tures by T, and Ti, and the representative 
length by 1, where expressions in parentheses 
represent dimensional formulas. Then we have, 
as dimensionless quantities, the Nusselt num- 

ber Nu = Q/(kS( TI - 7”)/1), the Prandtl number 
Pr = V/K (K = k/pc), the Grashoff number Gr = 

d3g(T, - T’,)/v2T,, and R, SO that from the rc 
theorem we have the relation Nu =f(R, Pr, Gr, 

C, , C,, . ). Furthermore, Pe = vl/rc = Pr R is 
called the Péclet number. 
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A. Introduction 

Toward the end of the 19th Century, G. Cantor 

discovered that there exists a one-to-one corre- 
spondence between the set of points on a line 

segment and the set of points on a square; and 
also, G. Peano discovered the existence of a 
tcontinuous mapping from the segment onto 
the square. Soon, the progress of the theory of 
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point-set topology led to the consideration of 
sets which are more complicated than familiar 
sets, such as polygons and polyhedra. Thus it 
became necessary to give a precise definition 

to dimension, a concept which had previously 
been used only vaguely. In 1913, L. E. J. 
Brouwer [9] gave a definition of dimension 

based on an idea of H. Poincaré. In 1922, the 
foundations of dimension theory for separable 

metric spaces were established by K. Menger 
[ 1 l] and P. Uryson [ 101. Subsequently, P. S. 
Aleksandrov and W. Hurewicz contributed 
much to the development of the theory. The 
foundations of dimension theory for general 
metric spaces were established independently 
by M. Katetov amd K. Morita. More general 
theory for tnormal spaces has also been inves- 

tigated; the same results as in metric spaces, 
however, do not always hold. 

B. Definition of Dimension 

Let X be a normal space. If any finite open 
tcovering of X has an open covering of +order 
<n + 1 as its retïnement (- 425 Topological 
Spaces R) (i.e., if for any open sets Ci (i = 1, 

“’ > s) such that X = G, U U G,, there exist 
open sets Hi (i= 1, . . ..s) such that HicGi, X= 

H,U...UH,,andanyn+2oftheH,haveno 

point in common), then we Write dim X <n. If 
dim X < n but dim X <n - 1 does not hold, 
then we define X to be n-dimensiona and 
Write dim X = n. We cal1 dim X the cover- 
ing dimension, (or Lebesgue dimension) of 

X. The idea behind this definition is due to 
H. Lebesgue. 

There are other delïnitions of dimension 

that are given inductively. Let us delïne 
Ind X = - 1 if X is empty. If for any pair 

consisting of a closed set F and an open set G 
with F c G in X there exists an open set V 

such that F c Vc G and Ind( ii- V) < n - 1, 
then we delïne Ind X < n. Next, we define 
ind @ = - 1. For any point p of X and any 

neighborhood G of p, suppose that there exists 
an open neighborhood V of p such that Vc 

G and ind( v- V) = n - 1. Then we detïne 

ind X < n. As before, we set Ind X = n (ind X 
=n) ifTndX<n (indX<n) but IndX<n 
- 1 (ind X < n - 1) does not hold. (The delï- 
nition of indX is due to Menger.) We cal1 

Ind X (ind X) the large inductive dimension of 
X (the small inductive dimension of X). 

If dim X < n does not hold for any n, then 

X is called infinite-dimensional, written 
dim X = CO; we define Ind X = CO and ind X = 
co similarly. These dimensions are invariant 
under thomeomorphisms. 

The set of irrational points in a Euclidean 

448 

space, the Cantor discontinuum, and +Baire 
zero-dimensional spaces are all 0-dimensional. 

The set of rational points in a separable 
+Hilbert space is 1-dimensional. 

C. Dimension of Metric Spaces 

The following theorems hold for the dimension 
of metric spaces (M. Katëtov, Czechoslouak 
Math. J., 2 (1952); K. Morita, Math. Ann., 128 
(1954)). Let X and Y be metric spaces. The 
equality dim X = Ind X holds. If Yc X, then 
dim Y d dim X. If X is a union of a countable 
number of closed sets Fi (i = 1,2, ), then 
dim X = max(dim Fi) (sum tbeorem for dimen- 
sion). The inequality dim(X U Y) < dim X + 

dim Y + 1 holds. If dim X = n, then X is a 
union of n + 1 0-dimensional subsets (decom- 
position tbeorem for dimension). We have 

dim(X x Y) < dim X + dim Y, where X # 0 
(product theorem for dimension). 

Each of the following is a necessary and 
sufftcient condition for dim X <n: (i) There 
exists a subspace A of a Baire zero- 
dimensional space B (r) and a continuous 
closed mapping f of A onto X such that f-‘(x) 

consists of at most n + 1 points for each point 
x of X (K. Morita, Sci. Rep. Tokyo Kyoiku 

Duiyaku, 5 (1955)); (ii) there exists a metric of 

X which gives the same topology on X such 
that for any positive number E, any point x of 
X, and any n+2 points xi (i= 1, . . ..n+2) 

at a distance less than E from the (.a/2)- 
neighborhood of x, there are at least two 

points xi and xj (i #j) with distance <E (J. 
Nagata, Fund. Math., 45 (1958)). 

Hurewicz’s problem asked whether the 
equality dim X = n + m (m > 0) implies the 
existence of an m-dimensional space A and a 

mapping f of A onto X having property (i). It 
was solved affirmatively for separable metric 

spaces by J. H. Roberts and for general metric 
spaces by K. Nagami (Japun. J. Math., 30 

(1960)). 

If X is the union of a countable number of 
closed tstrongly paracompact subspaces, in 
particular if X is separable, then Ind X = 
ind X [ 1,2]. However, it was shown by P. 
Roy (Bull. Amer. Math. Soc., 68 (1962)) that 
this equality does not hold in general. 

D. Euclidean Spaces and Dimension 

The n-dimensional +Euclidean space R” is 
exactly n-dimensional in the sense mentioned 
above; thus this concept of dimension agrees 
with our intuition. The proof of dim R” > n 

cornes from Lebesgue’s theorem: If each mem- 
ber of a lïnite closed covering of an n-cube has 
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suflïciently small diameter, then the order of 
the covering is not less than n + 1. (The proof 
of dim R” < n is easy.) Let X be a subset of R” 
and ,f a homeomorphism from X onto a sub- 
set f(X) of R”. If x is an interior point of X, 

then ,f(x) is an interior point off(X). Also, if 
an open set A of R” is homeomorphic to a 
subset B of R”, then B is open in R” (Brouwer’s 

theorem on the invariance of domain [SI). 
This theorem holds for any manifold but not 
for general separable metric spaces. By the 
theorem of invariance of domain it cari be 
shown that R” and R”, m # n, are not homeo- 

morphic (theorem on invariance of dimension 
of Euclidean spaces). Any n-dimensional 

separable metric space is embedded in a 
Euclidean space R’“+‘, or, more precisely, in 
the subset of R”‘+’ consisting of all points x 

of which at most n coordinates are rational 
(Menger-Nobeling embedding theorem, G. 
Nobeling, Math. Ann., 104 (1930)). Thus, from 

the topological point of view, any finite- 
dimensional separable metric space cari be 
identified with a subset of a Euclidean space. 
Moreover, it is known that any n-dimensional 
separable metric space is homeomorphic to a 
subset of some n-dimensional compact metric 

space. 
If F is a bounded closed subset of R”, then 

dim F < FI if and only if for any positive num- 
ber E, there exists a continuous mapping f 

from F into an n-dimensional polyhedron in 
R” such that the distance between x and f(x) 
is less than E for each point x of F. 

E. Dimension of Normai Spaces 

Let X be a norma1 space. Then Ind X 2 dim X 
and Ind X > ind X, but the equalities do not 
necessarily hold here. The following theorems 

were obtained by E. Lech, Aleksandrov, C. H. 
Dowker, E. Hemmingsen, and Morita [ 11. If 

dim X d n, then any locally finite open cover- 
ing of X has an open covering of order <n + 1 
as its refinement; if A is an TF, subset of X 
or A is strongly paracompact, then dim A < 
dim X; if X has a ter-locally finite closed cover- 
ing {F,}, then dim X = max(dim F,). 

In order that dim X < n, it is necessary and 
sufftcient that any continuous mapping from a 

closed subset of X into an n-sphere S” cari be 
extended continuously to X. If X and Y are 
tparacompact and X is tlocally compact, 

or if X x Y is strongly paracompact, then 

dim(X x Y) Q dim X + dim Y, where X # 0; if 
X is a tCW complex, then the equality holds 
[14]. M. L. Wage (hoc. Nat. Acad. Sci. US, 
75 (1978)) proved under the continuum hypo- 
thesis (CH) that dim(X x Y) < dim X + dim Y 
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does not hold in general even if X x Y is local- 
ly compact and normal, and dim X = dim Y = 
0; T. Przymusinski (hoc. Amer. Math. Soc., 
76 (1979)) noted that CH cari be avoided by a 
modification of Wage’s construction. Katëtov 
((hopis Pe%t. Mat. Fys., 75 (1950)) proved 

that dim X is determined by the ring C*(X) of 
bounded real-valued continuous functions 
on X. 

F. Homological Dimension 

Aleksandrov contributed much to the develop- 
ment of dimension theory in introducing the 
concept of homological dimension (Math. 

Ann., 106 (1932)). The homological dimension 
of a compact Hausdorff space X with respect 
to an Abelian group G is the largest integer n 

such that the n-dimensional tCech homology 
group &,(X, A; G) is nonzero for some closed 
subset A of X. The cohomological dimension 
D(X; G) is detïned similarly by using the tCech 
cohomology group fi”(X, A; G). If dim X < m, 

then dim X = D(X; Z) (Z is the additive group 
of integers). The cohomological dimension of 

X with respect to an arbitrary Abelian group 
is determined by the cohomological dimension 
with respect to some specitïed groups, and the 

cohomological dimension of the product ;pace 
X x Y is expressed in terms of those of X and 
Y (M. F. Bokshtein, [SI). A compact Hausdorff 

space X has the property that dim(X x Y) = 
dim X + dim Y for any compact Hausdorff 
space Y if and only if dim X = D(X; Q(p)), 
where Q(p) is the additive group of rationals 
mod 1 of the form m/p” for any prime number 
p (V. Boltyanskiï, [SI); this result holds also 
when X is paracompact (Y. Kodama, J. Math. 

Soc. Japan, 18 (1966)). 

G. Dimension and Measure 

Let X be a separable metric space. Then 
dim X < n if and only if X is homeomorphic 
to a subset of a Euclidean space R’“+’ whose 
(n + 1)-dimensional tHausdorff measure is 0 
(E. Szpilrajn. Fund. Math., 28 (1937); also - 

[ 1,2]). The infïmum of c( 2 0 such that the 
Hausdorff measure A,(X) of dimension t( 
vanishes is called the Hausdorff dimension of 
X. 

H. Dimension Type (Fréchet’s Definition) 

In analogy to the theory of tcardinal numbers 

in set theory, M. Fréchet (1909) defmed the 
dimension type of topological spaces as fol- 
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lows: Two spaces X and Y are said to have the 

same dimension type if X is homeomorphic to 
a subset of Y and Y is homeomorphic to a 
subset of X. 

1. Infinite-Dimensional Spaces 

If X is a metric space with 0 < dim X < CC~, 
then for each positive integer m with m< 
dim X, X contains a (closed) subset S with 
dim S = m. Tumarkin asked the following 
question: For an infinite-dimensional com- 

pact metric space X and for each positive 
integer m, does X contain a closed subset 
S with dim S = m? D. Henderson (Amer. 1. 

Math., 89 (1967)) answered this question in the 
negative. Furthermore, J. Walsh (Bull. Amer. 
Math. Soc., 84 (1978)) constructed an infïnite- 
dimensional compact metric space X such 
that if S is an arbitrary subset of X with 
dimS>O then dimS= rx). 
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Diophantine Equations 

A. General Remarks 

A Diophantine equation is an talgebraic equa- 
tion whose coefficients lie in the ring Z of 
rational integers and whose solutions are 
sought in that ring. The name cornes from 
Diophantus, an Alexandrian mathematician of 
the third Century A.D., who proposed many 
Diophantine problems; but such equations 
have a very long history, extending back to 

ancient Egypt, Babylonia, and Greece. As 
early as the sixth Century B.c., Pythagoras is 
said to have partially solved the equation x2 + 
y2=z2 byx=2n+1,y=2n2+2n,z=y+1. 
A general solution is given by the Pythagorean 
numbers x = m2 - n2, y = 2mn, z = m2 + n2. 
+Fermat’s problem also concerns a Diophan- 
tine equation. 

Systematic studies of Diophantine equations 

over Z have been made for the linear equation 
Cy=, a,xi = a (ai, a~ Z) and for the quadratic 
equation ux2 + hxy + cy2 = k (u, h, c, k E Z) in 

two unknowns. The latter forms a principal 
topic of C. F. Gauss’s Disquisitiones urithme- 
ticue and cari be regarded as a starting point of 

modern algebraic number theory. The special 
quadratic equation t2 - Du2 = f4 (DE Z) is 
called Pell’s equation. If D ~0, then Pell’s 
equation has only a finite number of solutions. 

If D > 0, then a11 solutions t,,, u, of Pell’s equa- 
tion are given by k((tl +u,fi)/2)n=(t,,+ 
u,&)/2, provided that the pair t,. u, is a 
solution with the smallest t, + u, fi> 1 [15]. 
Using continued fractions (- 83 Continued 

Fractions), we cari determine t 1, u, explicitly. 
A general quadratic Diophantine equation 
ux2 + bxy + cy2 = k with two unknowns cari 
be solved completely if we use solutions of 
Pell’s equation; this is an application of the 
arithmetic of quadratic fields (- 347 Qua- 
dratic Fields) [ 11. On quadratic Diophantine 
equations of several unknowns, thére are deep 
studies by C. L. Siegel (- 348 Quadratic 
Forms). 

Diophantine problems consist of giving 

criteria for the existence of solutions of alge- 
brait equations in rings and fïelds and even- 

tually determining the number of such solu- 
tions. The fundamental ring of interest is 
Z and the fundamental field of interest is Q. 
One discovers rapidly, however, that to have 
a11 the technical maneuverability necessary for 
handling general problems, one must consider 
rings and fïelds of iïnite type over Z and Q. 

Furthermore, one is led to consider fïnite fields 
and local fields when one deals with a locali- 

zation of the problems under consideration. 
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Techniques from various tïelds of mathematics. 
e.g., algebraic number theory, algebraic geom- 

etry, analysis, Diophantine approximation, 
etc., have been successfully applied to salve 

Diophantine problems. However, much re- 
mains unsolved today. Yu. V. Matiyasevich 
(1970) showed that Hilbert’s tenth problem is 
unsolvable; there is no general method of 
telling whether a Diophantine equation has a 
solution. This theorem in a sense indicates the 
complexity of Diophantine problems. For 
many centuries, no other topic has engaged 

the attentions of SO many mathematicians, 
both professional and amateur, or resulted 
in SO many published papers. For these mis- 
cellaneous results - Dickson [l] and Morde11 

CA. 

B. Equations over Finite Fields 

Let k be a fmite tïeld of characteristic p con- 

sisting of 4 (= p’) elements. Chevalley’s theo- 
rem: Let f be a tform of degree d in n vari- 
ables with coefficients in k such that d < n. 
Then f =0 has a nontrivial solution in k. A 

generalization is Warning’s theorem: Let 

f,, . ,f, be polynomials with coefficients in k in 
n variables of degrees d, , . . , d,, respectively, 

and suppose that d = d, + + d, < n. Then the 
number N of common zeros of SI, . ,f, satis- 

fies N 3 0 (mod p). Warning’s second theorem 
asserts that if N > 0 then N > qnmd. Warning’s 
theorem was also improved by J. Ax (1964) to 

the effect that N E 0 (mod qb) for any integer 
h < n/d [3]. For equations over tïnite fields, 
counting the number of solutions is important. 
Let f(x, y) be an tabsolutely irreducible poly- 
nomial in x and y over k. Let N denote the 
number of zeros in k of ,f(x, y). A. Weil proved 

IN -q1<2y&+c(d), where g is the genus of 
the curve f(x, y) = 0 and c(d) is a constant 
depending on d. Weil’s proof requires the 
use of deep results from algebraic geometry. 
This theorem is equivalent to the tRiemann 
hypothesis for algebraic curves over finite tïelds 

[4]. Later, using Stepanov’s method, W. M. 
Schmidt and E. Bombieri (1973) independently 
gave new proofs which do not depend on 

algebraic geometry [3]. P. Deligne [5] proved 
a far-reaching generalization of Weil’s theorem 
to tnonsingular absolutely irreducible equa- 
tions in n variables. He showed 1 N-q”-’ ( = 
O(q’“-‘“2). This is a part of the tWei1 conjec- 
ture for zeta functions of algebraic varieties 
over tïnite tïelds (- Section E; 450 Zeta Func- 

tions Q). Schmidt obtained in an elementary 
manner a weaker estimate 1 N -qn-’ ( = O(qnm3/*) 

but without the assumption of nonsingularity 
(- Section F). 
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C. Equations over Local Fields 

A method of solving problems in number 
theory by use of embeddings of the ground 
tïeld into its tcompletions is called a local 

method. Such methods have important conse- 
quences when applied to Diophantine equa- 
tions. Let S be a polynomial in n variables 
with rational integer coefftcients. The con- 
gruence f = 0 (mod pk) is solvable for a11 k 2 1 if 
and only if f = 0 is solvable in tp-adic integers. 
This is an easy consequence of the com- 

pactness of the ring of p-adic integers. We 
cari solve f = 0 in p-adic integers provided 
that we cari solve an intïnite sequence of con- 

gruences. It is generally diftïcult to tel1 when 
we may limit our consideration to only a tïnite 
number of these. In this respect, the following 

lemma is most useful. Hensel’s lemma: Let 

r-(x r , . . , x,) be a polynomial whose coeffr- 
cients are p-adic integers. Let yr, , y. be p- 
adic integers such that for some i (1~ i < n) and 

an integer 6 2 0, we have f(y, , . . . , y,) = 0 
(mod pzs+r) and 8f18xi(yI, . , y.) = 0 (modp’), 
+ 0 (mod p6+‘). Then there exist p-adic integers 
tir, . , tI,, such that f(fI,, . ,0”) = 0 and Bi -yi 
(modpdi’)fori=l,...,n.ThecaseS=Ois 

often useful; it implies that a nonsingular 
solution modp cari be extended to a p-adic 

solution. Generalization to simultaneous equa- 
tions is also known [6]. Skolem’s method is 

sometimes useful when we investigate certain 
types of equations over tlocal fïelds. This 
method is based on some simple properties of 
local analytic manifolds over local fields [7]. If 
a quadratic form has zeros in each local freld, 

then it has a rational zero (tMinkowski-Hasse 
theorem). When a theorem of this type holds, 
we say that the tHasse principle holds (- 348 

Quadratic Forms). For forms of higher degree, 
the Hasse principle no longer holds even if the 
forms are absolutely irreducible and nonsin- 
gular. Counterexamples were first found for 
cubic (E. S. Selmer, 1951) and quintic (M. 
Fujiwara, 1972) forms. Asymptotic formulas in 
Waring’s problem (- 4 Additive Number 
Theory E) cari be regarded as an analytic form 
of the Hasse principle. As to the quantitative 

formulation of the Hasse principle, there are 
deep results of Siegel for quadratic forms 
and their generalization by T. Tamagawa. R. 

Brauer (1945) showed that forms in suffïciently 
many variables represent zero in a11 p-adic 
tïelds. Forms of odd degree represent zero in 
the tïeld of rational numbers if the number of 
variables is suffrciently large compared with 
the degree (B. J. Birch, 1957). Let .f be a poly- 
nomial with p-adic integer coefftcients and c, 

(m 3 0) be the number of solutions to the con- 
gruence f = 0 (mod p”). The series q(t) = 
ZZZ,, c,tm is called the Poincaré series of J: 
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J. Igusa (1975) proved, by using his theory of 
asymptotic expansions together with Hiro- 
naka’s tresolution theorem, that <p(t) is a 
rational function of t [S]. 

D. Integral Solutions of Some Diophantine 
Equations 

In this section we are concerned with those 

equations for which some “theory” exists. For 
isolated results - [ 1,2]. 

(1) Binary Forms. Thue’s theorem (1908): If 

f(x) = &, u,x”(a,~Z, n > 2) has distinct roots, 
then the number of rational integral solutions 
of cy=Ou”xUy”~‘= a (Z 3 a # 0) is finite. This 

theorem is a direct consequence of Thue’s 
theorem on Diophantine approximation, 

which says that there are only a fïnite number 
of rational numbers p/y (p, 4 E Z, 4 > 0) with 

la-P/c7 < l/q (“‘)+’ for a given algebraic num- 
ber c( of degree n (n > 2) [9, p. 1221. K. F. Roth 
proved that (n/2) + 1 in this formula cari be 

replaced by 2 + E (E is an arbitrary positive 
number independent of n) (Mathematika, 2 
(1955), l-20). Roth’s theorem was generalized 
to some cases of number fïelds and function 
fields (- 182 Geometry of Numbers) and is 
applied to Diophantine equations [9,10]. 
A. Baker (1968), using a completely different 

method, has given explicit Upper bounds for 
the solutions of Thue’s equations, thus enabl- 
ing one to compute effectively a11 the solu- 

tions. More precisely, if ,f in Thue’s equation 
is irreducible over the rationals, then every 
integer solution (x, y) of the equation satisfies 
max(lxl, 1~1) <exp((nH)~10”~5+(loga)2”+2), 
where H is the theight off: The proof of this 
remarkable theorem is based on his deep result 
concerning the lower bound for the linear 
forms in the logarithm of algebraic numbers 
(Mathematicu, 13 (1966); 14 (1967)). Baker’s 

method has been applied to elliptic, hyperellip- 
tic, and other curves (Baker, H. Stark, J. 
Coates, V. G. Sprindzhuk, etc.). 

(2) Higher-Degree Forms. A natural generali- 
zation of binary forms is a norm form. Let K 

be an algebraic number field of degree t 2 3 
and c(~, . . . . du, be elements of K. Then the norm 
N(a,x,+...+cc,x,)=nr=,(al’x,+...+crl’x,), 
where &) denotes a conjugate of c(, is a form of 

degree t with rational coefficients. Tt is easy to 
see that every form which has rational coeffl- 

cients and is irreducible over Q but which is a 
product of linear forms with algebraic coefi- 

cients is a constant multiple of a norm form 
[7]. A module M in an algebraic number iïeld 

K is called degenerate if M has a submodule N 
such that, for some CI E K, ctN is a full module 
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in some subfield K’ of K, where K’ is neither Q 
nor an imaginary quadratic field. The most 
basic in the theory of norm forms is (W. M.) 
Schmidt’s theorem: Let CI,, , U, be linearly 
independent over Q and suppose that the 
module generated by a 1, , CI,, is nonde- 

generate; then N(cc,x, + +z,x,)=c (cEQ) 
has only tïnitely many solutions in integers 
X ,, ,x,. (Math. Ann., 191 (1971)). The proof 
is based on his remarkable result on tsimulta- 

neous approximation which generalizes Roth’s 
theorem (- 182 Geometry of Numbers G). 

There are investigations on special norm forms 
(T. Skolem, N. 1. Fel’dman, K. Ramanathan, 
K. Gyory, M. Fujiwara, etc.). For general 
forms of higher degree, not much is yet known 
except for the additive forms (- 4 Additive 

Number Theory E). H. Davenport [ 111 proved 
that if .f(x) is a cubic form with rational in- 

teger coefficients in n variables, then .f‘(x) = 0 
has a nontrivial integral solution, provided 
that n > 16. This theorem was proved by 
means of an exquisite application of the tcircle 

method together with some geometry of num- 
bers. A well-known conjecture is that n> 10 

instead of n k 16. It is known that over local 
fïelds, any cubic form in 10 variables has a non- 
trivial zero. There are various results of this 
type for simultaneous additive, quadratic, and 

cubic forms (Davenport, D. Lewis, R. Cook, 
Schmidt, etc.) [ 171. A satisfactory theory of 
forms of higher degree, like that of quadratic 
forms, is not yet known but is quite desirable. 
In this vein, Igusa has obtained some new 

results of considerable interest, e.g., a +Poisson 
summation formula for higher-degree forms, 
using his theory of asymptotic expansions [S]. 

(3) Algebraic Curves. The fundamental re- 
suit is Siegel’s theorem (1929): Assume that 
theequationsA(X,,...,X,)=O(l<i<m) 
determine an algebraic curve with a positive 
tgenus in an tafflne space of dimension n. 

Then the number of rational integral solutions 
ofA(X,, .,.,X,)=0 (1 <i<m) is tïnite. This 
theorem was generalized by S. Lang in the fol- 
lowing form: Let K be a finitely generated iïeld 

over Q and I a subring of K that is lïnitely 
generated over Z. Furthermore, let C be a 
nonsingular projective algebraic curve with a 
positive genus defïned over K, and let <p be a 
rational function on C defined over K. Then 

there are only a fïnite number of points P on C 
with ~(P)EI [lO]. The proof of this theorem is 
based on a generalization of Roth’s theorem in 

the above sense and on the weak Mordell-Weil 
theorem (- Section C). A. Robinson and P. 
Roquette gave another approach to Siegel’s 

theorem from the standpoint oî nonstandard 

arithmetic (J. Number T&ory 7 (1975)). On the 
other hand, a necessary condition for the exis- 
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tente of infinitely many solutions of f(X, Y) = 
0 with rational integral coefficients was given 
by C. Runge (J. Reine Angew. Math., 100 

(1887)). 

(4) Elliptic Curves. An elliptic curve E is an 

TAbelian variety of dimension 1, or what is the 
same, an irreducible nonsingular tprojective 
algebraic curve of tgenus 1 furnished with 
a point 0 as origin. The tRiemann-Roch 

theorem defïnes a group law on the set of 
tdivisor classes of E. Actually, if P, P’ are 
points of E, then there exists a unique point 
P” such that (P)+(P’)-(P”)+(O), where - 
means linear equivalence, i.e., the left-hand 
side minus the right-hand side is the divisor of 
a rational function on the curve. The group 
law on E is then defined by P + P’= P”. If the 

characteristic # 2 or 3, using the Riemann- 
Roch theorem one iïnds that the curve E cari 
be defined by a Weierstrass equation y2 =x3 + 

ax + b with a, b in the ground lïeld over which 
the curve is defïned. Conversely, any homo- 
geneous nonsingular cubic equation has genus 
1 and defines an elliptic curve in the projective 
plane once the origin has been selected. If both 
the curve and the origin are defïned over a 
fïeld k, then the group law is also detïned over 
k, and it becomes a 1-dimensional Abelian 
variety defined over k. If the ground fïeld k is 

the tïeld of complex numbers, the group law 
is the same as that given by the taddition 
theorem of the tweierstrass @-function with 

invariants y2 = - 4a and g3 = - 46 through the 
parametrization x = a(u), y=&‘(u). Much of 
the Diophantine theorems on elliptic curves 
are generalized to Abelian varieties. Here we 
shah deal mainly with elliptic curves delïned 

by Weierstrass equations over Q. Extension to 
algebraic number ftelds usually causes no trou- 

ble. For more general elliptic curves - [ 191. 
The Lutz-Mattuck theorem (- Section E) 
obviously implies that the points of finite order 

in E, (k = Q,) form a finite group. This torsion 
group is computable. In case a and b are in Z 

then any point of tinite order in E, has coordi- 
nates (x, y) in Z and, if y # 0, y2 ( 4a3 + 27b2 
(Lutz-Nagell). The WC group (Weil-Châtelet 
group) of E over k is the birational class of 

principal homogeneous spaces over k. The 
extent of validity of the Hasse principle for 
elliptic curves cari be measured by the Tate- 
Shafarevich group, which is deiïned as the set 

of elements of the WC group that are every- 
where locally trivial. This group is conjectured 
to be a tïnite group. For other results and 

interesting conjectures - [ 12- 141. The num- 
ber of integral points on elliptic curves is finite 
according to Siegel’s theorem on algebraic 

curves. Explicit bounds for the size of these 
points have been given for several types of 
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elliptic curves by using Baker’s method. For 
example, if f(x, y) is an absolutely irreducible 
polynomial with coefficients in Z such that the 

curve f=O has genus 1, then max(lxl, Iy])< 
expexpexp((2H)“), where m= 10d”, d=degf, 

and H is the height of ,f (Baker and Coates, 
1970. The method of proof was to reduce it to 
the Weierstrass equation case, which had been 

treated earlier by Baker, with a better bound.) 
By the tMordell-Weil theorem (- Section E), 
A, r Z’ x tïnite torsion group. Here r is called 

the rank of E over Q. There is a rather doubt- 
ful conjecture to the effect that the rank r is 

bounded. The rank ris conjectured to be equal 
to the order of the zero of L(s, E) at s = 1 (Birch- 

Swinnertou-Dyer conjecture). Much numerical 
and theoretical evidence supports this famous 
conjecture [13]. 

E. Rational Points of Algebraic Varieties 

Let V be an tabstract algebraic variety defined 

over a field k, and let P be a point of V. Then 
P is called a rational point over k of Vif the 
coordinates of the trepresentative P, contained 
in an taffine open set V, of V are in k (- 16 
Algebraic Varieties D). This definition is inde- 
pendent of the choice of the representative P,. 

In particular, if Vis a tprojective variety, the 
point P given by the thomogeneous coordi- 
nates (x0,x1, . . . . x,,) is rational if and only if 
X~/X~E k (0 < i < n, xP # 0). In the following we 

state main results concerning rational points 
of algebraic varieties, especially results con- 

cerning TAbelian varieties, restricting k to be 
either an talgebraic number tïeld of lïnite 
degree, a tp-adic number field, or a tfinite lïeld. 

Mordell-Weil Theorem. Let A be an Abelian 
variety of dimension n defïned over an alge- 

brait number field k of finite degree. Then 
the group A, of a11 k-rational points on A is 
fïnitely generated. This theorem was proved 
by L. J. Morde11 (1922) for the case of n = 1 
and by Weil (1928) for the general case [ 101. 

The assertion that A,/mA, is a finite group 
for any rational integer m is called the weak 
Mordell-Weil theorem; this theorem is basic in 
the proof of the Mordell-Weil theorem and is 
used in the proof of Siegel’s theorem, too. A 
generalization of the Mordell-Weil theorem is 
obtained when k is a field (of arbitrary charac- 

teristic) finitely generated over the tprime field 

ClOl. 
If A is defined over a finite algebraic number 

field k, we have the following conjectures of 
Birch, Swinnerton-Dyer, and Tate on the rank 
of A,. Let p be a prime ideal of k at which A 

has a good treduction, and denote by A,, the 
reduced variety. Let ~CI”, , nez”” be the eigen- 
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values of the N(p)th power endomorphism of 
A, with respect to an [-adic representation, 
where N(p) denotes the norm of p (- 3 Abelian 
Varieties E, N), and put L,(s, A)= nff, (1 - 
$)N(p))‘)-‘. The L-function of A deiïned by 
L(s, A) = n’L&,(s, A), where the product ranges 
over a11 good primes, is the principal part of 
the zeta function of A (- 450 Zeta Functions 

S). Birch and Swinnerton-Dyer conjectured 
that if k = Q and A is of dimension 1, then 
there exists a constant C #O such that L(s, A) 
- C(s - l)g as s+ 1. Tate generalized this con- 
jecture to any A and k. Moreover, the constant 

C, appropriately moditïed by factors corre- 
sponding to the bad primes and the infinite 

primes, is thought to be expressible in terms of 
certain arithmetic invariants of A [ 131. 

Lutz-Mattuck Theorem. The group of rational 
points of an Abelian variety A of dimension n 

over a tp-adic number fïeld k contains a sub- 
group of lïnite index isomorphic to the direct 
sum of n copies of the tring D of p-adic integers 
in k (E. Lutz, J. Reine Angew. Math., 177 
(1937); A. Mattuck, Ann. Math, 62 (1955)). 

Mordell’s Conjecture. In his 1922 paper, in 
which the above theorem on the set of rational 
fïelds on l-dimensional Abelian varieties (i.e., 

on elliptic curves) was established, Morde11 
stated the conjecture: Any algebraic curve of 
genus y > 2 defïned over Q has only a fïnite 

number of rational points. The same cari be 
conjectured for such curves defïned over any 
algebraic number field k of finite degree. This 
had remained as a conjecture until 1983. In 
1961 1. R. Shafarevich conjectured: Let k be 
any algebraic number field of finite degree, S a 
fmite set of finite prime spots of k, and y any 
natural number > 2. Then there are, up to 
k-isomorphism, only a finite number of non- 

singular algebraic curves of genus g defïned 
over k having good reduction at every finite 
prime spot outside S. 

In 1973, A. N. Parshin showed that Mor- 

dell’s conjecture followed from this conjec- 
ture, which was fïnally proved in 1983 by 
G. Fallings [7]. Mordell’s conjecture was thus 
settled in the affirmative. Analogs of these 
conjectures on algebraic function fields over 
tïnite fïelds are easier than the original ones 
and had been proved in the 1960s for Mordell’s 
conjecture by Yu. 1. Manin, H. Grauert, and 

M. Miwa, and for Shafarevich’s conjecture by 
S. Alakelov, A. N. Parshin, and L. Szpiro. 

F. Ci-Fields 

Let F be a tïeld, and let i > 0, d > 1 be in- 
tegers. Let ,f be a homogeneous polynomial 
of n variables of degree d with coefficients 
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in F. If the equation ,f = 0 has a solution 
(x1, , x,,) # (0, ,O) in F for any f with n > d’, 
then F is called a C,(d)-field. If F is a C,(d)-tïeld 
for any d > 1, then F is called a Ci-field. In 
order for F to be a C,-field, it is necessary and 
suffïcient that F be an talgebraically closed 
tïeld. A Ci-field is sometimes called a quasi- 
algebraically closed field. There exists no non- 

commutative algebra over a Ci-fïeld F. A 
finite tïeld is C, (C. Chevalley (1936)). If F, is 
algebraically closed, then F = F,,(X) (rational 
function fïeld of one variable) is a C, -tïeld 
(Tsen’s theorem). A homogeneous polynomial 
,f of n = d’ variables of degree d with coeff- 
cients in F such that f = 0 has no solution in F 

except (0, . . , 0) is called a normic form of 
order i in F. If a C,-field F,, has at least one 

normic form of order i, then (i) FO(X,, ,X,) 
is a C,+,-field; and (ii) an extension of F, of 
lïnite degree is a Ci-field. A complete field F 

with respect to an texponential valuation is a 
C,-field whenever its residue lïeld F, is alge- 
braically closed. The iïeld F of power series of 
one variable over a fmite fïeld F,, is a C,-fïeld 
(Lang). E. Artin conjectured that a p-adic tïeld 
Q, is a C,-fïeld. It was proved by H. Hasse 
(1923) that Q, is a C,(2)-field and by D. Lewis 

(1952) that Q, is a C,(3)-field. However, G. 
Terjanian (1966) [ 171 gave a counterexample 

to Artin’s conjecture; that is, he gave a quartic 
form of 18 variables with coefficients in Q2 
having only trivial zero in Qz. Ax and S. 

Kochen (1965) [18] proved that for any inte- 
ger d > 1 there exists an integer p,,(d) such 
that Q, is a C,(d)-tïeld for p>po(d) (- 276 
Mode1 Theory E). 
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Dirichlet, Peter Gustav 
Lejeune 

Peter Gustav Lejeune Dirichlet (February 13, 
1805-May 5, 1859) was born of a French 
family in Düren, Germany. From 1822 to 1827 
he was in Paris, where he became a friend of 
J.-B. +Fourier. In 1827, he was appointed 
lecturer at the University of Breslau; in 1829, 

lecturer at the University of Berlin; and in 
1839, professor at the University of Berlin. In 
1855, he was invited to succeed C. F. +Gauss 
at the University of Gottingen, where he spent 
his last four years as a professor. 

His works caver many aspects of mathemat- 
ics; however, those on number theory, analy- 
sis, and potential theory are the most famous. 
He greatly admired Gauss and is said to have 
kept Gauss’s Disquisitiones arithmeticae at his 
side even when traveling. 

In number theory, he created the +Dirichlet 

series and proved that a sequence in arithmetic 
progression contains infinitely many prime 
numbers, provided that the tïrst term and the 

common difference are relatively prime. Also, 
using his “drawer principle,” which states that 
if there are n + 1 abjects in n drawers then at 

least one drawer contains at least 2 abjects, he 
clarified the structure of +Unit groups of +alge- 
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brait number tïelds. In tpotential theory he 
dealt with the +Dirichlet problem concerning 
the existence of tharmonic functions. He also 
gave +Dirichlet’s condition for the convergence 
of trigonometric series. 
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Dirichlet Problem 

A. The Classical Dirichlet Prohlem 

Let D be a bounded or unbounded tdomain in 
R” (n > 2) with compact boundary S. The class- 
ical Dirichlet problem is the problem of fmding 
a tharmonic function in D that assumes the 

values of a prescribed continuous function on S. 
This problem is also called the tfïrst boundary 
value problem (- 193 Harmonie Functions 
and Subharmonic Functions). In this article f 
always stands for a boundary function given 
on S. The problem is called an interior problem 
if D is bounded and an exterior problem if D 

is unbounded. In an exterior problem, it is 
further required that when an tinversion 
with tenter at an exterior point P,, of D is per- 
formed on D and a +Kelvin transformation 
is performed on the solution in D (when the 

solution exists), the function thus obtained on 
the inverted image of D be harmonie at P, 
(n > 3). When n = 2, the solution in D, which 

is already regarded as a function on the in- 
verted image of D, is required to be harmonie 
at P,. Thus an interior problem cari be trans- 
formed to an exterior problem, and vice versa. 
We now explain the history of the classical 
problem. 

Let D be a bounded domain with boundary 
S in R3. G. Green (1828) asserted that if S is 
suftïciently smooth, 

u(P)= -; s f(Q) WP> QI -MQ) s an P (1) 
is the solution for the Dirichlet problem, where 
,f is prescribed on S, G(P, Q) is +Green’s func- 

tion with the pole at Q in D, no is the outward- 
drawn normal to S at Q, and da is the +Sur- 
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face element on S. He took for granted the 
existence of Green% function from physical 
consideration of the problem. Thus his dis- 

cussion was not quite rigorous. This defect was 
corrected by A. M. Lyapunov (1898) under a 
certain condition on S. Denote by U, the New- 

tonian potential of a measure with density 
m > 0 on S. Assume that a continuous function 
f on S and a positive constant a are given. In 
1840, C. F. Gauss investigated the existence of 
a density mr 2 0 on S of total mass a which 
satisfies js(u,, -2f)m,da=min,~s(u,- 
Zf)mda, where the total mass of m is equal 
to a. He asserted also that u,,-f is equal to a 
constant b on S. If f-0, then u,~ must be 

equal to a positive constant c on S, and hence 
u ,,,,--bc~i~,~ must be a solution of the ex- 

terior problem for the boundary function f on 
S. However, his discussion was incomplete 
because we cannot always ensure the existence 
of a density that gives a measure minimizing 
the integral. Moreover, even in the case where 
D is a ball, there exists a continuous function 
fa0 on S such that there is no Newtonian 
potential that is equal to f on S up to a con- 
stant (M. Ohtsuka, 1961). Gauss (1840) W. 
Thomson (Lord Kelvin) (1847), and G. L. 

Dirichlet solved the Dirichlet problem by 

making use of the so-called Dirichlet principle, 
which is explained in detail in Section F. After 
K. Weierstrass (1870) pointed out that there is 
a case where no minimizing function exists, D. 
Hilbert (1899) gave a rigorous proof of the 
Dirichlet principle under a certain condition. 
Meanwhile, C. G. Neumann (1870) solved 
the Dirichlet problem rigorously for the lïrst 
time, although he assumed that D is a con- 

vex domain with a smooth boundary. First, 
he considered the potential IV, = (1/27c). 
j,,f(K’/ih)da of a double layer in D; 

then he formed the potential IV, =( 1/27c). 
ssfi (ar -‘/an) do of a double layer with the 
values fi of W, on S and defined W,, W,, . 

similarly. The series W, - W, + W, - W, + . 
plus a suitable constant gives a solution to 

the exterior Dirichlet problem for the bound- 
ary function f In 1887, H. Poincaré also used 

(1) to solve the Dirichlet problem. He ob- 
tained Green’s function with the pole at 0 
in a bounded domain D in the following man- 
ner: Let D’ be the image of D by an inversion 

with tenter 0, S, be a spherical surface sur- 
rounding the boundary aD’ of D’, and n be a 

uniform measure on S, such that the potential 
of ,U is equal to 1 inside S,. By tsweeping out p 
to ?D’, the solution in D’ of the exterior prob- 
lem for the boundary function 1 is obtained. 

A +Kelvin transformation of this solution 
yields the solution h in D of the interior prob- 

lem for the boundary function l/OP. Now 

l/OP- h(P) is Green’s function in D. In 1899 
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Poincaré used another method (without utiliz- 
ing (1)) to solve the Dirichlet problem [8]. He 

observed that it is sufficient to consider the 
case where f is equal to the restriction to S of 
a polynomial g and that g is expressed in D as 

the sum of the Newtonian potential of a signed 
measure T with density - Ag/(4rr) and a func- 
tion that is harmonie in D and continuous on 
DU S. If it is possible to sweep out z to aD, 

then the solution is obtained. He showed that 
this is in fact the case if at every point P of S 
there exists a cane that is disjoint from D and 
has its vertex at P. This condition is called 
Poincaré% condition. In 1900,I. Fredholm 
discussed the Dirichlet problem by reducing it 
to a problem of tintegral equations. A domain 

D is called a Dirichlet domain if the (classical) 

Dirichlet problem is always solvable in D. H. 
Lebesgue (1912) showed that a solution is 

obtained by the method of iterative averaging 
in every Dirichlet domain. 

B. The Dirichlet Problem in a General Domain 

It has been believed that the classical Dirichlet 
problem is always solvable in every domain 
until S. Zaremba observed in 1909 that the 

problem is not always solvable for a punctured 
ball. In 1913, Lebesgue gave a decisive exam- 
ple in which the domain is homeomorphic to 
a bah and bounded by a surface sufficiently 
smooth except at one point. Thus the central 
interest shifted to lïnding a harmonie function 
in D that depends only on a continuous func- 

tion f given on C?D and coincides with the 
classical solution when D is a Dirichlet do- 
main. Extend f to a continuous function in 
the whole space, and denote it by fO. Approxi- 

mate D by an increasing sequence {D”} of 
Dirichlet domains, and denote by U, the solu- 

tion in D, of the Dirichlet problem for the 
boundary function fo. N. Wiener proved in 
1924 that u, coverges to a harmonie function 
that is independent of the choice of the exten- 
sion off and {D,}. The problem of deciding 
where on dD the general solution assumes the 
given boundary values is treated in Section D. 
0. D. Kellogg (1928) found a general method 
that includes Poincaré’s method of sweeping 
out, Schwarz’s alternating method, and the 
result of Wiener. Both Poincarës method of 

sweeping out and Lebesgue’s method of itera- 

tive averaging yield Wiener’s general solution. 

C. Perron3 Method 

We explain 0. Perron’s method (1923) by 

considering the improved method of M. Brelot 
[ 11. For simplicity we assume that the domain 
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D is bounded in R3. Let U be the family of 
subharmonic functions u bounded above and 

satisfying lim s~p~-~ u(P) <f(M) for any 
boundary point M. Define H/(P) as sup,u(P), 

where u runs through CT, if this family is not 
empty; otherwise, set If, = --CO. Cal1 l& a 
hypofunction. Detïne HL by -H-r and cal1 it a 
hyperfunction. If H, = H,, the common func- 
tion is denoted by H,; if H,.(P) < CO, then HJ is 
harmonie. This is called a Perron-Brelot solu- 

tion (Perron-Wiener-Brelot solution or simply 
PWB solution). The method of defining H,. is 

called Perron% method (the Perron-Brelot 
method or the Perron-Wiener-Brelot method). 

Wiener showed in 1923 that the +Daniell- 

Stone integral cari be regarded as a general 
solution if a +Daniell-Stone integrable function 
f is given on the boundary of a Dirichlet 

domain; in 1925, he showed that the same is 
true for a general domain (not necessarily 
Dirichlet). He showed also that his solution 
coincides with the Perron-Brelot solution Hf if 

fis continuous. Unfortunately, however, from 
a wrong example he concluded that IJ, # fi, 
cari hold even for a simple discontinuous J; 
and SO he lost interest in Perron% method. 
Brelot (1939) corrected Wiener’s erroneous 

conclusion and proved that the Daniel1 Upper 
and lower integrals are equal to fiî and fif, 
respectively. TO any continuous f there corre- 

sponds an Hf, and there exists a +Radon mea- 
sure pLp satisfying HJP) = jfdpp. This measure 

is called a harmonie measure or harmonie 
measure function. Brelot showed that fi/= fif 

if and only if f is PL,-integrable for one (or 
every) P. In particular, If D is a Dirichlet 
domain and E is a closed set on the boundary 
aD, then the harmonie measure function pp(E) 

takes the value 1 at an inner point (in the 
space aD) of E and vanishes on aD - E. We 

note that pp is equal to the measure obtained 
by sweeping out the unit mass at P to aD. 

D. Regular Boundary Points 

If Hf(P)+f(M) as P+MedD for any con- 

tinuous function f on aD, then M is called 
regular. The regularity of a point is a local 
property. A boundary point that is not regu- 

lar is called irregular. The regularity of M is 
equivalent to the convergence of pLp as P-M 
to the unit mass at M with respect to the 

+Vague topology. There are many sufficient 
conditions and necessary conditions for a 
boundary point to be regular. The existence 
of a harrier is a qualitative condition that is 
necessary and sufficient for a boundary point 
to be regular. It was used by Poincaré and SO 

named and used effectively by Lebesgue. A 
barrier is a continuous superharmonic func- 
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tion in D that assumes the boundary value 0 
at M and has a positive lower bound outside 
every bal1 with tenter at M. A positive super- 
harmonie function delïned in the intersection 

of D and a neighborhood of M and taking the 
boundary value 0 cari be used as a barrier. A 
necessary and sufficient condition for a bound- 
ary point M to be regular is the existence of a 
Green% function in D assuming the value 0 at 
M. This condition was given by G. Bouligand 
(1925), and it follows from the existence of a 

barrier. Another necessary and suflïcient con- 
dition of a quantitative nature was obtained 
by Wiener. It is equivalent to the requirement 
that the complement of D is not +thin at M 

(- 338 Potential Theory G). Kellogg conjec- 
tured that the set of irregular boundary points 
is of capacity zero and verilïed this in R2 

(1928). The conjecture was proved lïrst by G. 
C. Evans (1933) in R3, and different proofs 
were given by F. Vasilesco (1935) and 0. 
Frostman (1935). The conjecture is also true 
in R” for n>4. 

E. The More General Dirichlet Prohlem 

SO far, we have been concerned with R”. More 

generally, Brelot and G. Choquet [3] obtained 
the following result in a Green space & (- 193 
Harmonie Functions and Subharmonic Func- 
tions): Consider a metric space that contains & 
and in which & is everywhere dense, and de- 
note by A the complement of G with respect to 
the space. Let {F} be a family of +Iïlters on 8 
such that each F converges to a certain point 

of A. Suppose that u < 0 whenever u is sub- 
harmonie and bounded above on & and 
lim sup u < 0 along every F. Assume the exis- 
tence of a barrier u in a neighborhood in & 

of the limit point Q of every F; that is, u is to 
be positive superharmonic, to tend to 0 along 
F, and to have a positive lower bound outside 
every neighborhood of Q. Under these as- 
sumptions, we obtain the PWB solution on & 
as in R3. There are various examples of A and 
F that satisfy these conditions. In particular, L. 

Naïm [6] investigated in detail the case where 
A is the +Martin boundary. More generally, 
it is possible to treat the Dirichlet problem 
axiomatically (- 193 Harmonie Functions 

and Subharmonic Functions). 

F. The Dirichlet Principle 

Let D be a bounded domain with a sufficiently 
smooth boundary in R” and f be a piecewise 

Cl-function on D with imite Dirichlet integral 
Ilfll’=SDIgradflZd~, where dT is the volume 

element. Suppose that f has a continuous 
boundary value <p on i3D. The classical Dirich- 
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let principle asserts that the solution of the 
Dirichlet problem for cp has the smallest Dir- 
ichlet integral among the functions that are 

piecewise of class Ci in D and assume the 
boundary value <p. In a general domain, H, 

minimizes llu-fll among harmonie functions 
u in D. Brelot [2] discussed the principle for a 
family of competing functions that are detïned 
in a domain in & and whose boundary values 

cannot be defined in the classical manner. 
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A. Dirichlet Series 

For z = x + iy, A, > 0, and A,? + CO, the series of 
the form 

f(z)= f ~,ev-47) 
Il=1 

(1) 

is called a Dirichlet series (more precisely, a 
Dirichlet series of the type {A,}). If Â,, = n, then 
(1) is a power series with respect to ë’. If &, = 
log n, the series (1) becomes 

Il anIn’, (2) 

which is called an ordinary Dirichlet series. If 
a, = 1, then (2) is the tRiemann zeta function. 
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Series of the form (2) were introduced by 
P. G. L. Dirichlet in 1839 and utilized in an 

investigation of the problems of tanalytic 
number theory. Later J. Jensen (1884) and 
E. Cohen (1894) extended the variable z to 
complex numbers. The Dirichlet series is not 
only a useful tool in analytic number theory, 

but is also investigated as a generalization of 
power series. The +Laplace transform is the 

generalization of the Dirichlet series to the 
integral, and similar formulas often hold for 
both cases. 

B. Convergence Regions 

If the series (1) converges at z=zO, then it 
converges in the half-plane Re z > Re zO. There- 
fore there is a uniquely determined real num- 
ber S such that (1) converges in Rez > S and 
diverges in Rez < S. If (1) always converges 

(diverges), we put S = -CO (+ CO). We cal1 S the 
abscissa of convergence (or abscissa of simple 
convergence). Similarly, there is a uniquely 
determined real number A such that (1) con- 
verges absolutely in Re z > A and is not ab- 
solutely convergent in Re z < A. We cal1 A the 

abscissa of absolute convergence. Furthermore, 
there is a uniquely determined real number U 
such that (1) converges uniformly in Rez > U’ 
for every U’> U and does not converge uni- 
formly in Rez > U” for every U” < U. The 
number U is called the abscissa of uniform 
convergence. Among these abscissas we always 
have the relations 

A-S<limsupy. 
n-m n 

The latter was proved by Cohen (1894). The 
numbers S, A, U are determined from a,, 1, by 
means of the formulas 

S=limsupllog 
I I 

C a, (3) 
x-m x rxlQl.<x 

A-li_up~log(la~“<~,o.,). (4) 

U=limsupIlog TX, 
x-m x 

TX= sup 1 ~,exp(-kv) , 
-m<y<+a3 [X]<&<X 

(5) 

where [ ] is the +Gauss symbol. Formulas (3) 
and (4) were proved by T. Kojima (1914) and 
(5) by M. Kunieda (1916). In particular, when 
lim,,, (log n)/Â, = 0, we have 

logl4 
S=U=A=limsup---- 

2, 
(6) n-m 

(0. Szasz, 1922; G. Valiron, 1924). 
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The series (1) converges uniformly in the 
angular domain {z 1 larg(z-z,)l <tl <n/2}, 

where the vertex z0 lies on the line Re z0 = S. 
Hence it represents a holomorphic function in 

the domain Re z > S, but it is possible that 
there is no singularity on the line Rez = S. For 

example, if a, =( -l)“, then the series (2) has 
S = 0, but the sum is an tentire function (2’-’ 

- 1) l(z). Taking the analytic continuation f(z) 
of the series (l), the intïmum R of p such that 
f(z) is holomorphic in Rez > p is called the 
abscissa of regularity. It is still possible that 
there is no singularity on the line Re z = R. We 

always have R <S, and R is given by 

R= sup ~~<~<~~‘i~~~~og~og+I<p(x+~Y)I+x), 

m a, exp( - &z) 

q(z)=“; T(l+i ) ’ ” 
(7) 

where log+a=max(loga,O) (C. Tanaka, 1951). 
The infimum B of p such that f(z) is bounded 
in Re z > p is called the abscissa of boundedness. 
We always have R <B < A. H. Bohr proved 
the following three theorems concerning these 

values: (1) If {Ân} are linearly independent over 
the ring of integers, then A = B (1911). (2) If 
(n,,, -A,)-‘=O(expe@) for every E>O, then 
U= B (1913). (3) If limsup(logn)/&=O, then S 
= U = A = B (1913). In the final case, the values 

are given by (6). 

C. Properties of Functions Given by Diricblet 
Series 

The coefficients a, in (1) are given in terms of 
the function f(z) by 

~‘u.=&.~~~l((z~~dz> (8) 
c Lrn 

where c > max(S, 0), 1, < w  ci,,, , and the 
integration contour does not pass through 
{in}. If w= A,, then the term a, in the sum of 
the left-hand side of (8) is replaced by a,/2 (0. 
Perron, 1908). Furthermore, if S < x, then we 
have 

a,=lim’ 
T-LX T s 

mg+7 
f(x + iy)evCJ& + ~Y)I dy (9) 

0” 

(J. Hadamard, 1908; C. Tanaka, 1952). 
Ifx=Rez>S, thenf(z)=o(lyl)((yl-rco).In 

order to investigate its behavior more pre- 
cisely; Bohr introduced 

p(x) = lim sup 
lwIf(x+~Y)l 

IYl-+m 1WlYl 

in his thesis (1910) and called it the order over 
Re z = x. The function p(x) is nonnegative, 

monotone decreasing, convex, and continuous 
with respect to x. Bohr later found that there is 
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a kind of periodicity for the values of f(z) over 
Re z = x; this was the origin of the theory of 

talmost periodic functions. 
As for the zeros of the function f(z), the 

following theorems are known: If f(z) is not 
identically zero, it has only a fïnite number of 
zeros in x >S+E, emM”< y < eMx for arbitrary 
positive numbers E, M (Perron, 1908). If we 

denote by N(T) the number of zeros in x > S 
SE, T<y< 7’+26logT, then limsup,,,N(T)/ 
(log T)2 8 6,‘~ (E. Landau, 1927). 

There have been many investigations into 
the connection between the singularities of j”(z) 

and the coefficients a,. If the a, are real and 
positive, the point z= S is always a singular- 
ity of f(z). Moreover, if S = 0, Re a, > 0, and 

lim,,, (cos(arg4) ii& = 1, then z = 0 is a sin- 
gularity of ,f(z) (C. Biggeri, 1939). Furthermore, 
if Â,/n-, CO, lim infn-oa(&+l - 1,) > 0, then the 
line Re z = S is the tnatural boundary of f(z) 

(F. Carleson and Landau, 1921; A. Ostrowski, 
1923). If S=O, liminf,,,,(A,+, -Â,)=q>O, then 
there always exist singularities on every inter- 
val on the imaginary axis with the length 2n/q 
(G. Polya, 1923). S. Mandelbrojt (1954, 1963) 

gave some interesting results concerning the 
relations between the singularities of (1) and 
the Fourier transform of an entire function. 

If U = -CO, the function f(z) is an entire 
function. Its tarder (in the sense of entire func- 
tion) p is given by 

p = lim sup 
log+ log+ M(x) 

x--cc 1x1 ’ 

M(x)= sup If(x+iy)l. 

There have been many investigations into the 

+Julia direction of f(z) and related topics by 
Mandelbrojt, Valiron, and Tanaka. 

D. Tauberian Tbeorems 

As in the case of power series, if the series 
Ca,, converges to s, then f( + 0) = s (Abel% 
continuity theorem). The converse is not neces- 
sarily true. The converse theorems, with ad- 

ditional conditions on a, and i,, are called 
Tauberian theorems, as in the case of power 
series. Many theorems are known about this 

field. The most famous additional conditions 
are lim,,, &u”/(Â” - A,-,) = 0 (Landau, 1926) 
and a, = O((n,, -in-i)/&) (K. Ananda-Rau, 
1928). 

For the summation of Dirichlet series (es- 
pecially +Riesz’s method of summation) - 379 
Series R. For Tauberian theorems (especially 
the Wiener-Ikehara-Landau theorem) of the 

ordinary Dirichlet series - 123 Distribution 

of Prime Numbers B. 



121 E 
Dirichlet Series 

E. Series Related to Dirichlet Series 

A series of the form 

c n!Ll, 
,=rz(z+l)(z+2)...(z+n)’ 

zzo, -1, -2, . . . 

is called a factorial series with the coefficients 
{a,}. It converges or diverges simultaneously 
with the ordinary Dirichlet series Zu,/n’ 
except at z = 0 and negative integers. The series 

ccI (Z-l)(Z-2)...(Z-n) 

1 n! an= f a, 
z-l 

PI=, n=, i > n 

is called a binomial coeffkient series. It con- 
verges or diverges simultaneously with the 

ordinary Dirichlet series C( -l)na,# except 
at z = 0 and positive integers. 
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Discontinuous Groups 

A. Definitions [l-4] 

Suppose that a group I acts continuously on a 
+Hausdorff space X, that is, for every y E I and 

x E X, an element yx of X is assigned in such 
a way that the mapping X+~X is a homeo- 

morphism of X onto itself and that we have 
y1 (y2x) = (y1 yJx, lx = x, where 1 is the identity 
element of I. Two points x, y~ X are said to 
be r-equivalent if there exists a y E I such 

that y = yx. (I-equivalence for subsets of X is 
delïned similarly.) 

We consider the following conditions of 
discontinuity of I. (i) For every XEX and any 
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inlïnite sequence {y,} consisting of distinct 
elements of I, the sequence {y,~} has no +clus- 
ter point in X. (ii) For every X~X, there exists 
a neighborhood U, such that y U, n U, = @ for 
a11 but finitely many y E I. (ii’) If x, y E X are 
not I-equivalent, there exist neighborhoods 
U,, U, of x, y, respectively, such that y U, n U, 
= 0 for a11 y E I. (iii) For any compact subset 

M of X, yM n M = 0 for a11 but lïnitely many 
YEr. 

It is easy to see that (ii) a(i), (ii) + (ii’) = (iii); 

if, moreover, X is +locally compact, we also 
have (iii) =(ii), (ii’). When (i) holds, I is called 

a discontinuous transformation group of X, 
and when (ii) holds, I is called a properly 

discontinuous transformation group. In partic- 
ular, when X cari be identilïed with a thomoge- 
neous space G/K of a locally compact group 
G by a compact subgroup K, the conditions 
(i), (ii), and (iii) for a subgroup I of G are a11 
equivalent, and they are also equivalent to the 

condition that I is a tdiscrete subgroup of G. 
For a discontinuous group I acting on X, 

the tstabilizer I, = {y E I 1 yx x x} of x E X is 
always a finite subgroup. When Ix = { 1) for 

all XEX, I is said to be free (or to act freely 
on X). If rx = nxeX I,={l},Iissaidtoact 
+effectively on X. A point x E X is called a tïxed 
point of I if Ix # Ix. In the following, we 
assume for simplicity that I acts effectively on 
X, unless otherwise specilïed. 

Since I-equivalence is clearly an tequiva- 

lente relation, we cari decompose X into I- 
equivalence classes, or I-torbits. The space of 

a11 I-orbits, called the quotient space of X by 
I, is denoted by I\X. When I satislïes the 
conditions (ii) and (ii’), the space I\X becomes 
a +Hausdorff space with respect to the topol- 
ogy of the quotient space. If, moreover, I is 
free, X is an (unramified) tcovering space of 
I\X with the tcovering transformation group 
r. (Conversely, a covering transformation 
group is always a free, properly discontinuous 
transformation group.) In general, X may be 
viewed as a covering space of I\X with rami- 

fications, and the ramifying points (in X) are 
nothing but the fixed points of I. 

B. Fundamental Regions 

A complete set of representatives F of I\X in 
X (that is, a subset F of X such that IF= 

X, yF n F = @ for y E I, y # 1) is called a fun- 
damental region of I in X if it further satislïes 
suitable topological or geometrical require- 
ments. Here we assume that F, the closure 
of F, is the closure of its interior Fi. (In this 

case, F or Fi is sometimes called the funda- 

mental region of I instead of F itself.) Such 
a fundamental region exists if I satisfies the 
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conditions (ii), (ii’), and the set of fixed points 
is tnowhere dense in X (R. Baer, F. W. Levi, 
193 1). A fundamental region F is called normal 
if the set {y F} (y E F) is locally finite, that is, if, 
for every x EX, there exists a neighborhood 
Ux such that yF n U, = 0 for a11 but a finite 
number of y E r. If X is tconnected and F is 
normal, then r is generated by the set of YE F 

such that yF n F # 0. Thus it is useful to have 
a fundamental region in order to lïnd a set of 
generators of r and a set of tfundamental 

relations for them. When X has a Yinvariant 
+Bore1 measure n and F is countable, then the 
measure p(F) of F is independent of the choice 
of F. Hence it is legitimate to put n(r\X) = 

p(F); r is called a discontinuous group of the 
first kind (C. L. Siegel CL]) if r is a discontinu- 
ous transformation group which has a normal 
fundamental region F such that {y) yF f? F = 
0) is finite and p(F) < cg. For instance, if X is 

locally compact and F is compact (0 T\X: 
compact), then F is of the first kind. 

When we are concerned only with the quali- 

tative properties of r, it is sometimes conve- 
nient to relax the conditions for a fundamental 

region, replacing it by a fundamental (open) set 
R of F, that is, an (open) subset R of X such 

that TR = X and yR f’R = 0 for ah but a lïnite 
number of y f r [S-9]. 

C. The Case of a Riemann Surface 

Let r be a discontinuous group of analytic 
automorphisms of a tRiemann surface X. In 
virtue of tuniformization theory, it is enough, 
in principle, to consider the case where X is 
tsimply connected. Thus we have the following 
three cases: 

(1) X =C U {CO} (tRiemann sphere). F is a 
finite group. Since r cari also be considered as 

a group of motions of the sphere, it is either a 
cyclic, tdihedral, or tregular polyhedral group 

ClOl. 
(2) X=C (complex plane). r is contained in 

the group of motions of the plane. The sub- 
group consisting of a11 parallel translations 
contained in r is a tfree Abelian group of rank 
v < 2. If v = 0, then r is a lïnite cyclic group. 

When v > 0, r consists of the transformations 
of the following form: 

When v= 1, z+Ekz+mw k m E Zl, 

When v = 2, z-+~~z+rn,w, +m,u, 

(k mi E Z), 

where w, w,, w2 are nonzero complex numbers 
with Im(w,/w,) > 0, and F. = +1 in general, 

except in special cases when v = 2 and 02/wi = 
i4 (resp. & or ib, where <r=exp(2rci/l)), in 
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which cases we may put E = i4 (resp. & or c6). 
For the fundamental regions corresponding to 

these values of .s, see Fig. 1. In the cases v = 1 
and 2, the tautomorphic functions with respect 
to r are essentially given by exponential func- 
tions and elliptic functions, respectively (- 
134 Elliptic Functions). 

(a) (b) 

(cl (di 

Fig. 1 
(a)v=2,~=1.(b)w~=l,cu~=i,~=i.(c)~~~=l, 
~f~,=i,,c=i’,.(d)w,=1,0,=13,~=CVh. 

(3) X = { jz\ < 1) (unit disk) [3,10,11]. By a 
+Cayley transformation, the unit disk cari be 
transformed to the Upper half-plane !$ = {z = 

x + iy 1 y > 0). Any analytic automorphism of sj 
is given by a real tlinear fractional transforma- 
tion (Mobius transformation) z+(az+ b)(cz + 

d)-’ (a, b, c, d E R, ad - bc = 1). The totality of 
real linear fractional transformations acts tran- 
sitively on $. Hence !$ cari be identilïed with 

the thomogeneous space G/K of G = SL(2, R) 
by K = SO(2) (which is the stabilizer of the 

point fi). Hence discontinuous groups r 
of analytic automorphisms of 9 are obtained 

as discrete subgroups of G. Actually, every 
element of G detïnes an analytic automor- 
phism of the whole Riemann sphere, which 
leaves the real axis RU {CD} invariant. For any 

z 6 C U {CO} and a sequence {ri} consisting of 
distinct elements of F, a cluster point of the 
sequence (y,~} in CU { co} is called a limit 

point of F. When only one or two limit points 
exist, r cari easily be transformed to one of 
the groups given in (2). Otherwise, the set f! of 

a11 limit points of F is infinite, and either 2 = 
RU { co} or 2 is a tperfect, tnowhere dense 
subset of R U { co}. When i! is inlïnite, F is 
called a Fuchsoid group. 

Since 5J has a G-invariant +Riemannian 
metric ds2 = y-‘(dx’ + dy’) (called the +Pain- 
taré metric), by which Sj becomes a hyperbolic 

plane (+non-Euclidean plane with negative 
curvature), we cari construct a fundamental 
region F of r which is a normal polygon 

bounded by geodesics, that is, the arcs of cir- 
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cles orthogonal to the real axis. A set of gen- 
erators of r and the fundamental relations for 

them are easily obtained by observing the 
correspondence of the equivalent sides of the 
fundamental polygon. (Conversely, starting 
from a normal polygon satisfying a suitable 

condition, one cari construct a discontinuous 
group r having F as a fundamental region. In 
this manner, we generally obtain a (nontrivial) 
continuous family of discrete subgroups of G.) 

A Fuchsoid group r is finitely generated if 
and only if the fundamental polygon F has a 
fïnite number of sides, and in that case r is 
called a Fuchsian group. (More generally, a 

finitely generated discontinuous group of 
linear fractional transformations acting on 

a domain in the complex plane is called a 
Kleinian group.) A Fuchsian group r is of the 

first kind if and only if L! = R U {CO}; otherwise, 
it is of the second kind. It is also known that a 
discontinuous group r is a Fuchsian group of 
the lïrst kind if and only if P(I-\@ < CO [12]. 
For a real point XER U {CO}, we also denote by 
r, the stabilizer of x (in r). The point x is 
called a (paraholic) cusp of r if rX is a free 
cyclic group generated by a tparabolic trans- 
formation ( # t-1). Cusps of r are represented 
by vertices of the fundamental polygon on the 

real axis. On the other hand, if a tïxed point z 
of r lies in sj, then the stabilizer r, is always a 

fïnite cyclic group generated by an telliptic 
transformation. Hence such a point z is also 
called an elliptic point of r. For a Fuchsian 
group r of the fïrst kind, let {zi, , zS} be 
a complete set of representatives of the r- 
equivalence classes of the elliptic points of r 
(which cari also be chosen from among the 
vertices of the fundamental polygon), and let e, 

be the order of T,?; furthermore, let t be the 
number of the r-equivalence classes of para- 
bolic cusps of r. Then the quotient space T\$j 

cari be compactified by adjoining t points at 
infïnity, and the resulting space becomes a 
compact Riemann surface !Rr if we detïne an 
analytic structure on it in a suitable manner. 
The area #Ir) measured by the Poincaré 
metric is given by the +Gauss-Bonnet formula: 

s dxdy 
Pc%)= ~ 

F Y2 

where y is the tgenus of the Riemann sur- 
face !Il,. It is known that there exists a lower 
bound (=~/21) for P(?R~) [12]. Automorphic 

functions (or Fuchsian functions) with respect 
to a Fuchsian group r, which are essentially 
the same thing as algebraic functions on the 

Riemann surface 91r, have been abjects of 

extensive study since Poincaré (1882). 

D. Modular Groups [ 10,131 

The group 

r=sL(2,z) 

= a,b,c,dEZ,ad-bc=l 

(or the corresponding group of linear frac- 
tional transformations) is called the (elliptic) 

modular group. The modular group r is a 
Fuchsian group of the first kind acting on 5j, 

and its fundamental region together with the 
correspondence of the equivalent sides is 
shown in Fig. 2. Fig. 3 illustrates the trans- 
formations under r of the fundamental tri- 

angle, where r is regarded as acting on the 
unit disk. From Fig. 2 we obtain the gen- 

) and the 

fundamental relations: 

There are two r-equivalence classes of elliptic 
points of r, which are represented by c4 = i 
and c3, with [ri:{ *1,}1=2, &:{S)]=3; 

and only one IY-equivalence class of parabolic 
cusps, which coincides with Q U { co}. The 
corresponding Riemann surface ‘91r is analyti- 

cally equivalent to the Riemann sphere. 

Fig. 2 Fig. 3 

For a positive integer N, the totality T(N) 
of elements in r satisfying the condition 

(c n>=(o :> (mod N) forms a normal 

subgroup of r, called a principal congruence 
suhgroup of level N. (For the case N = 2, see 
Fig. 4.) In general, a subgroup r’ of r contain- 
ing T(N) for some N is called a congruence 

suhgroup of r. (It is known that there actually 
exists a subgroup r’ of r with a imite index, 
which is not a congruence subgroup.) For 

N 23, -&$T(N), SO that T(N) is effective. 
(For N = 1,2, we have T(N)5= { k &}.) If 
N 2 2, T(N) has no elliptic point. The number 

t(N) of the equivalence classes of cusps of r(N) 
and the genus g(N) of the corresponding Rie- 
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mann surface !RrcN> are given as follows: 

t(l)= 1, t(2)=3, 

t(N)=(1/2N)[I-:1-(N)] (N>3), 

9(1)=67(2)=0, 

g(N)= 1 +((N-6)/24N)[r:I-(N)] (N>3), 

where [r:r(N)] = N3 n,,.(l- l/p’). Auto- 
morphic functions with respect to T(N) are 
called tmodular functions of level N. 

Fig. 4 
A fundamental region of r(2) that consists of six 
fundamental regions of r(1). 

E. The Case of Many Variables 

Up to the present time, discontinuous groups 
r and the corresponding automorphic func- 
tions have been studied only in the following 
cases: (2’) X=C”, r2 Z2” (the free Abelian 
group of rank 2n, consisting of parallel trans- 
lations) [14] (- 3 Abelian Varieties); (3’) X is 
a bounded domain in C” and r is a discon- 

tinuous group of analytic automorphisms of 
X. (In this case, conditions (i), (ii), (iii) are 
equivalent.) 

In the case (3’), the group a(X) of a11 (com- 
plex) analytic automorphisms of X, endowed 
with its natural (?Compact-open) topology, 

becomes a tLie group, which has r as a 
discrete subgroup. When r\X is compact, 
it is known by the theory of automorphic 
functions (or by a theorem of Kodaira) that 
r\X becomes a tprojective variety, which is a 
tminimal mode1 [3,14]. In particular, when X 
is a tsymmetric bounded domain, i.e., when X 

becomes a tsymmetric Riemannian space with 
respect to its tBergman metric, the connected 

component G of the identity element of G’= 

J&‘(X) (which incidentally coincides with that 
of the group I(X) of a11 tisometries of X) is a 

tsemisimple Lie group of noncompact type 
(i.e., without compact simple factors), and X 
cari be identifïed with the homogeneous space 
of G by a maximal compact subgroup K of G. 

The theory of discontinuous groups of this 

type, initiated by Siegel (especially in the case 
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where X = .%j, = Sp(n, R)/K, +Siegel’s Upper half- 
space; r = Sp(n, Z), tsiegel’s modular group of 
degree n), 0. Blumenthal, H. Braun, and L.-K. 

Hua, and continued by those in the German 
school such as M. Koecher, H. Maass, and 
others, has undergone substantial develop- 

ment in recent years under the influence of the 
theory of algebraic groups [S, 8,14&17] (- 32 
Automorphic Functions). 

On the other hand, for a symmetric Rieman- 
nian space X of negative curvature, the group 
of isometries G = I(X) is a tsemisimple Lie 
group of noncompact type with a finite num- 
ber of connected components and with a fïnite 
tenter, and X cari be identified with the homo- 

geneous space of G by a maximal compact 
subgroup. Therefore the study of discontinu- 
ous groups of isometries of X cari be reduced 

to that of discrete subgroups of a Lie group 
G of this type. A typical example is the case 
where X is the space of a11 real +Positive def- 
inite symmetric matrices of degree n with 
determinant 1; this space cari be identifîed with 
the quotient space SL(n, R)/SO(n) (A E SL(n, R) 
acts on X by X 3 S+‘ASA). The unimodular 

group r = SL(n, Z) is a discontinuous group of 
the first kind acting on this space X, and a 

method of constructing a fundamental region 
of r in X is provided by the Minkowski reduc- 

tion theory [6,7]. 

F. Discrete Subgroups of a Semisimple Lie 

Group 

Two subgroups r, r’ of a group G are called 
commensurable if r f’ r’ is of fïnite index in 
both r and Y. For a real tlinear algebraic 

group G c GL(n, R) defined over Q, a subgroup 
r commensurable with Gz = G f’ GL(n, Z) is 
called an arithmetic subgroup (in the original 

sense) of G (examples: SL(n, Z), Sp(n, Z)). An 
arithmetic subgroup r is always discrete, and 
when G is semisimple, the quotient space T\G 
is of fmite volume (P(I-\G) < CO) with respect 
to an invariant measure p. Moreover, r\G is 
compact if and only if G is tQ-compact (or +Q- 
anisotropic), that is, if Go or Gz consists of 
only tsemisimple elements (A. Borel, Harish- 
Chandra, G. D. Mostow, and T. Tamagawa 
[6,7]); the same results remain true if G is 
tzariski connected and has no tcharacter 

deiïned over Q. The proofs of these facts (and 
the compactification of the quotient space 
r\X for the noncompact case) depend on a 

construction of fundamental open sets that 
generalizes the reduction theory of Minkowski 

and Siegel [5,8,15-181. 
For a connected semisimple Lie group G 

of noncompact type and a discrete subgroup 

r with p(T\G) < CO, the following density 
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theorem holds (Bore], Ann Math., (2) 72 (1960)): 

(i) For any linear representation p of G, the 
linear closure of p(F) coincides with that of 
p(G); (ii) if G is algebraic, F is +Zariski dense 
in G. Furthermore, suppose that G is a direct 

product of simple groups G, and the tenter of 
G is finite; F is called irreducible if its projec- 

tion on any (proper) partial product of { Gi) is 
not dicrete. For instance, if G is a Qsimple 
algebraic group then F = Gz is irreducible. In 
general, there exists a partition of the set of 
indices {i} such that F is commensurable with 
a direct product of irreducible discrete sub- 
groups of the partial products corresponding 

to this partition, and these irreducible compo- 

nents are unique up to commensurability. 
The method of constructing a discrete sub- 

group F of G = SL(2, R) in a geometric manner 
using the Upper half-plane cari be generalized 

to some extent to the construction of discrete 
subgroups of certain groups using hyperbolic 
spaces of low dimensions (E. B. Vinberg). 
Except for these few cases, today it is known 
that a discrete subgroup r of a semisimple Lie 

group G (of R-rank 22) with p(T\G)< CO is 
arithmetic in a certain sense (- Section G). 
This implies there are only very few discrete 

subgroups for a semisimple Lie group of 
higher rank. Actually a number of facts sug- 
gesting this result were already known in the 
1960s. First, the only subgroups of SL(n, Z) 
(n 2 3), Sp(n, Z) (n 2 2) with tïnite index are 
congruence subgroups (H. Bass, M. Lazard, 
and J.-P. Serre; this result has been generahzed 

to the case of an arbitrary +Chevalley group 
over an algebraic number tïeld by C. C. Moore 
and H. Matsumoto). Second, G, = SL(n, Z), 

Sp(n, Z) are maximal in G [S]. Finally, it is 
known (rigidity theorem) that if a connected 
semisimple Lie group G with a fïnite tenter 

does not contain a simple factor which is 
locally isomorphic to SL(2, R), then any dis- 
crete subgroup F of G with compact quotient 
F\G has no nontrivial tdeformation (i.e., a11 

deformations are obtained from inner auto- 
morphisms of G) (A. Selberg, E. Calabi and E. 

Vesentini, and A. Weil [ 193). This last result 
amounts to the vanishing of the cohomology 
group H’(T, X, ad), and in this connection an 

extensive study has been made by Y. Mat- 
sushima, S. Murakami, G. Shimura, and K. G. 
Raguanathan to determine the +Betti numbers 
of F\X, and more generally the cohomology 
groups of the type H(T, X, p) with an arbi- 
trary representation p of G. These cohomol- 
ogy groups are closely related to automor- 
phic forms with respect to F [S, 201.) For a 
tnilpotent or +Solvable Lie group, a general 

method of constructing discrete subgroups is 

known; see, for example, M. Saito, Amer. J. 

Math., 83 (1961)) 
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G. Rigidity and Arithmeticity 

A discrete subgroup F of a Lie group G with 
p(T\G) < CG is usually called a lattice of G. A 

lattice F of G is said to be uniform if T\G is 
compact. By a theorem of Bore1 and Harish- 

Chandra [7], an arithmetic subgroup of a real 
linear group (dehned over Q) is a lattice. Using 
this result, Bore1 showed further, by a con- 
structive method, that any semisimple Lie 
group has a lattice, especially a uniform one 
(Borel, Topology, 2 (1963)). 

For a long time there were no known ex- 

amples of nonarithmetic irreducible lattices 
in semisimple Lie groups other than those 
locally isomorphic to X,(R). This naturally 

led to Selberg’s conjecture that any irreducible 
(nonuniform) lattice in a semisimple Lie group 
G not locally isomorphic to S&(R) is arith- 
metic (Selberg, International Colloquium on 
Function Theory, Bombay, 1960). The con- 
jecture seemed to be well-grounded by the 
rigidity theorem of Weil and Selberg [ 193. 

However, in 196661967, V. S. Makarov 
and Vinberg constructed nonarithmetic non- 

uniform lattices in So(n, 1) (n = 3,4,5) by a 
geometric method; the lattices are generated 
by treflections [21]. Thus rigidity and arith- 

meticity do not necessarily coincide, and the 
conjecture should be considered under stronger 
conditions. 

As for rigidity of uniform lattices, Mostow 

established in 1970 the following strong rigid- 
ity theorem [22]: If G, G’ are semisimple Lie 
groups with trivial tenter and without com- 
pact factors, and are not locally isomorphic 
to S&(R), and if F, F’ are irreducible uni- 
form lattices, then any isomorphism 0: F+ 

F’ extends to an analytic isomorphism 8: G+ 
G’ (namely, 81 F = e). The previous rigidity 
theorem is now implied by Mostow’s. If X is a 
simply connected symmetric space, then a 
tlocally symmetric space M covered by X is 
expressed as a quotient of X by a fixed-point- 
free properly discontinuous group F in the 
group I(X) of total isometries (when the Lie 

algebra of I(X) does not have a compact fac- 
tor, this condition for r is equivalent to saying 

that it is a torsion-free discrete subgroup of the 
semisimple Lie group I(X)), and the funda- 
mental group n,(M) of M = F\X is isomorphic 

to F. The strong rigidity theorem implies that 
compact locally symmetric spaces M, and 
M2 (of higher dimensions) are isomorphic as 
Riemannian spaces if and only if r-t r (M,) and 
rcl (M,) are isomorphic as abstract groups. 

On the other hand, in 1973, G. A. Margulis 
proved the arithmeticity of irreducible non- 
uniform lattices in semisimple real linear 

groups of R-rank greater than 1 (Russian 
Math. Surveys, 29 (1974) (original in Russian, 
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1974); Functional Anal. Appl. 9 (1975) (original 

in Russian, 1975). M. S. Raghunathan also 
proved independently the same fact under 
a slightly stronger condition. Their results, to- 
gether with the rigidity of nonuniform lattices 
in (higher-dimensional) semisimple Lie groups 
of R-rank 1 established by H. Garland, Rag- 
hunathan, and G. Prasad (Inventiones Math., 

21 (1973)) imply that the strong rigidity theo- 
rem holds similarly for nonuniform lattices. 

The results of Margulis and Raghunathan 
show that the Selberg conjecture in the orig- 
inal sense is affirmative for the case of R-rank 

greater than 1. But neither argument is appli- 
cable to uniform lattices, for they depend deeply 
on the fact (proved by D. A. Kazdan and 
Margulis) that a nonuniform lattice contains a 
nonidentity unipotent element. Previously, in a 
lecture at the international congress of mathe- 
maticians at Moscow, 1966,I. 1. Pyatetskii- 
Shapiro generalized the definition of arith- 
meticity and suggested that arithmeticity of 

lattices should be investigated without the 
distinction of whether they are uniform or 
nonuniform. His detïnition is equivalent to the 

following [9,24]: For a connected semisimple 
algebraic group G detïned over R, a subgroup 

r c G = G, is an arithmetic suhgroup (of G) 
if there is an algebraic group H defïned over 

Q and a surjective homomorphism <p: H+ 
Ad G defined over R such that the Lie group 
(Ker <~)a is compact and that <p(Hz) and Ad F 
are commensurable. The uniform lattice in G 
that is constructed by the method of Bore1 is 

arithmetic in this sense. In 1974, Margulis 
finally established the following arithmeticity 
theorem [23,24]: If the R-rank of G is not 

less than 2, an irreducible lattice F in G is an 
arithmetic subgroup of G (even if it is uni- 

form). In the same lecture, Pyatetskiï-Shapiro 
also extended the Selberg conjecture to such 

“semisimple Lie groups” as those containing 
p-adic Lie groups as factors. Margulis proved 
this Pyatetskiï-Shapiro conjecture atlïrmatively 
by showing that an analog of the strong rigid- 
ity theorem holds for such groups. 

As for semisimple Lie groups of R-rank 1, 
besides the lattices constructed by Makarov 

and Vinberg there are only the few examples 
of nonarithmetic lattices in SU(2,l) presented 
by Mostow (Proc. Nat. Acad. Sci. US, 75 

(1978); Pacific J. Math., 86 (1980)). The prob- 
lem of arithmeticity still remains open for 
groups locally isomorphic to So(n, 1) (n > 6) 

SU(n, 1) (n> 3), Q(n, 11, or F4. 

H. Geometric Discontinuous Groups [ 1,251 

The study of discontinuous groups F acting on 
a Euclidean or projective space X as a trans- 

formation group of a given structure is a class- 
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ical problem. Al1 possibilities for such F have 

been enumerated in low-dimensional cases. 
For instance, there are 230 kinds of discontinu- 
ous groups of +Euclidean motions acting on 
3-dimensional Euclidean space without tïxed 
subspaces, which are classified into 32 tcrystal 
classes (A. Schonflies and E. S. Fedorov, 1891- 
1892; - 92 Crystallographic Groups). Al1 
discontinuous groups of a Euclidean space 
generated by treflections have also been enu- 

merated (H. S. M. Coxeter, 1934 [25,26]). 

1. Kleinian Groups 

The last decade has seen considerable research 
on (tïnitely generated) Kleinian groups. This 
research is closely related to the theory of 
tquasiconformal mappings and the tmoduli of 
Riemann surfaces. 

Making use of Eichler cohomology and 
tpotentials, L. V. Ahlfors established his tïnite- 
ness theorem and L. Bers his area theorem. 
Bers and B. Maskit investigated the bound- 

aries of +Teichmüller spaces and discovered 
Kleinian groups with the property that the 
complement of the set L! of limit points is 
connected and simply connected. 

Numerous mathematicians have subse- 
quently discussed the classification, defor- 
mation, and stability properties of the set 2, 
uniformization and deformation of Riemann 
surfaces with or without nodes, and other 

geometric properties. In their discussions, the 
theory of quasiconformal mappings has played 
an important role. The discontinuous groups 

of motions of hyperbolic 3-space have also 
been studied. 
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123 (V.7) 
Distribution of Prime 
Numbers 

A. General Remarks 

Given a real number x, we denote by n(x) the 
number of primes not exceeding x. A. M. 
Legendre (1808) obtained empirically the for- 
mula n(x) k x/(log x -B) for some constant B, 

and C. F. Gauss (1849) obtained the formula 

n(x)+ “du 
s 2 logu’ 

assuming the average density of primes to be 

l/logx. The Bertrand conjecture, which asserts 
the existence of at least one prime between x 

and 2x, was proved by P. L. Chebyshev (1848), 
who introduced the functions 

Q(x)= g 1 logp 
m=l p<x 

and 

444’ c 1WP 
p”<x 

=O(x)+e(fi)+e(V/X)+.... 

(In this section, p represents a prime number.) 
He thereby proved 

where A =log(21123113511530-1130). G. F. B. 
Riemann (1858) considered the function c(s) 
(where s = o + it is a complex variable), ex- 
pressed by the +Dirichlet series Ls, n-‘, which 

is convergent for o > 1. He found relations 
between the zeros of l(s) (- 450 Zeta Func- 
tions) and n(x). F. Mertens (1874) obtained the 
formulas 

where c is the Euler constant and B is some 
constant. 



467 123 B 
Distribution of Prime Numbers 

B. Prime Number Theorem 

The prime number theorem 

7c(x)logx 
lim -= 1, or =(x)-X 
x-cc X logx’ 

was proved almost simultaneously (1896) by J. 
Hadamard and C. J. de La Vallée-Poussin. 

Without using the theory of +entire functions, 
E. Landau (1908) established the formula 

7-c(x) = Lix + O(X~?J’~~~), 

where 

is the tlogarithmic integral. It cari be shown by 
integration by parts that 

Lix=X+ l!x -+ 
logx 1og*x 

+(k-l)!x+O x 
logkx ( > logk+‘x . 

For example, by taking x = lO’, we get n(x) = 
664,579, Lix k 664,918, and x/logx k 620,417. 

If the Dirichlet series f‘(s) = C:i u,,n-’ 
satisfïes the condition Cnsxan-cx, then its 
abscissa of convergence is 1, and we have 
lim,,,+,(s- l)f(s) = c. The converse is known 

as the +Tauberian theorem. If F(s) = En=, u,,n-’ 
(a, 2 0) converges absolutely for o > 1 and F(s) 
- c/(s - 1) is analytic for 0 > 1, then we obtain 

c n Q x a, - cx ( Wiener-Ikehara-Landau theorem, 

1932). Specifically, if we put - ~‘(s)/~(s) = 
X:i A(n)n-“, then the conditions of the theo- 
rem are satisfied, and we obtain C,..h(n)= 

$4x)-x. 
It is easily seen that the prime number 

theorem is equivalent to $(x)-x or H(x) - x. 
The tnumber-theoretic function A(n) (Man- 
goldt’s function) introduced above satislïes 

Cdln A(d) = logn. It follows from the +Mobius 

inversion formula that A(n) = Cd,,, p(d) log(n/d). 
Hence A(n)=logp (n=p”) and =0 other- 

wise. Thus we obtain $(x)=Cn,\-A(n)= 
O(x). When f(x) = Q(x) or ti(x), it is easy 
to show that ~2(f(t)/t2)dt=logx+0(1) and 
lim inf,,, ~(X)/X < 1 < lim SUP~-~ ~(X)/X. How- 

ever, it is not easy to prove f(x) - x. TO do 
SO, introduce the number-theoretic function 
M(n), which satisiïes xdln M(d) = log2 n. As 

before, we have M(n)=&p(d)log2(n/d); 
hence 

1 

(21- l)logp (n=p’, IZ l), 

M(n)= 210gplogq (n=p’q”, /> 1, m> l), 

0 (otherwise). 

Thus we obtain CnGx M(n)=2xlogx+O(x). 

This leads to A. Selberg’s well-known formula 

(1949): 

O(x)logx+ 1 H(x/p)logp=2xlogx+O(x), 
P<I 

which enabled him to prove O(x) - x. Thus 
he obtained for the first time a proof of the 
prime number theorem that does not use com- 

plex analytic methods. The simple formulas 
Es1 p(n)/n=O and C,,,p(n)=o(x), obtained 

by H. von Mangoldt (1897) were revealed by 
Landau to have a deep meaning concerning 
the prime number theorem. Let x”(x) denote 

the number of integers not exceeding x that 
cari be expressed as the product of r distinct 
primes. In generalizing the prime number 
theorem, Landau (1911) proved that 

1 x(loglogx)‘-’ 
xr(x)-(r- l)! logx 

Let us Write 9(x) = Cz, ëaxn2. Riemann 
proved that 

1- f 0 
1 ; “‘9(~)(~“/2-1 +X-“2-“/2)dX 

s s(s-1) 1 

and obtained the well-known functional equa- 
tion for the zeta function (- 450 Zeta Func- 
tions B) 

71 ~“‘2r(s/2)i(s)=n-“2+S’2r(1/2-s/2)[(l -s). 

This enables us to extend c(s) as a meromor- 
phic function to the whole complex plane. 
Utilizing this extended i(s) and the following 

result of 0. Perron on Dirichlet series, we cari 
estimate $(x). Let e0 (# CO) be the abscissa of 
convergence of F(s) = Cc, f(n)n-‘, and let 
u>O, a>(~,,, and x>O. If 

lim i 
a+iT 

s v+m27ci a-iT 
F(s)- ds 

S 

exists, then the limit is equal to xn,,f(n), 
where C’ means that in the summation the last 

term f(x) is replaced by ,f(x)/2 if x is an in- 
teger. In many cases, F(s) has a pole at s = 1, 

and the principal part of the sum is obtained 
from the residue at s = 1, whereas the residual 
part is given by a certain contour integral. TO 
estimate +(x), we use -[‘(s)/<(s) as F(s); hence 
the problem arises of determining the zeros of 
c(s). Riemann conjectured that ah the zeros 
of c(s) in the strip 0 <e < 1 must be situated 
on the vertical line e= 1/2. If this so-called 

tRiemann hypothesis (- 450 Zeta Func- 
tions) is true, then it follows that x(x) = Lix 
+ O(&logx). The ultimate validity of 

Riemann’s hypothesis remains in doubt. 
Concerning this, the most recent major 
result is the following formula, obtained 

by 1. M. Vinogradov (1958): x(x) = Li x + 
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0(x exp( - clog3’5x/loglog1’5x)). Without 
using Riemann% hypothesis, J. E. Littlewood 
(1918) proved that 

lim sup 
n(x) - Li x 

x-cc (Jx/logx)logloglogx 
> 0, 

lim inf 
~C(X) - Li x 

X-oc (Jx/logx)logloglogx 
<o. 

If we denote by N(T) the number of zeros of 
c(s) in the domain 0 < (r < 1, 0 < t < T, then we 
have 

N(T)=& TlogT- 
1 +log2n 

27l 
T+ O(log T). 

Let N,(T) denote the number of zeros of [(.Y) 
on the interval o = 1/2,0 < t < T. Selberg (1942) 
obtained the impressive result 

N,(T)>cTlogT. 

E. C. Titchmarsh (1936) showed that there 
exist 1041 zeros of i(s) in the domain 0 <o < 1, 
0 < t < 1468 and that a11 lie on the line (T = 1/2. 
Computers have provided further results that 
seem to justify the Riemann hypothesis. For 
example, it has been calculated that there are 
75000,000 zeros of c(s) in the domain 0 < cr < 1, 

0 < t < 32,585,736.4 and that all are simple 
zeros and lie on the line 0 = 1/2 (R. P. Brent, 

Math. Camp., 33 (1979)). N. Levinson proved 
in 1974 by another method that at least one- 
third of the zeros of the Riemann zeta function 

are on the line o = 1/2. The minimum of the 
modulus of the imaginary part of the zeros 
witha=1/2ist=14.13.... 

C. Twin Primes 

Let p, be the nth prime. We know from the 
prime number theorem that p, - nlogn; more 
precisely, p,=nlogn+nloglogn+ O(n). A pair 

of primes differing only by 2 are called twin 
primes. It is still unknown whether there exist 
infinitely many twin primes. There exist in- 
tïnitely many n satisfying pn+t -p.<clogp, (P. 
Erdos, 1940). Suppose that 5( 1/2 + it) = O(1 tl’). 
A. E. Ingham (1937) proved that 

Pn+1 -P,<Prl~ @ 0=(1+4c)/(2+4c)+s, 

by using the following density theorem related 
to the zeros of c(s): If we denote by N(a, T) 
the number of zeros of c(s) in the domain 
r<a<l,O<t<T(1/2<a<l),thenthereis 

a positive constant c such that N(ec, T)= 

O(T 2(1+2c)(‘~a)log5 T). The Lindekif hypothe- 
sis asserts that the constant c cari be made 

arbitrarily small. If the Riemann hypothesis 
holds, then the Lindelof hypothesis also holds. 

It is clear that we cari substitute 1/6+~ (F > 0) 
for c, E being arbitrarily small. W. Haneke 

(1963) showed that c cari be replaced by 6/37 
+ a, and consequently that 0 G 61/98 + E. D. R. 
Heath-Brown and H. Iwaniec (1979) proved 
that 0 < 11/20+~ by using the tsieve method 
and the zero density theorem of L-functions 
(Section E). R. A. Rankin (1935) proved that 

x (logloglogp,)-* 

holds for inlïnitely many n. If we denote by 
n*(x) the number of primes p d x such that p 

+ 2 is also a prime, then it has been conjec- 

tured by Hardy and Littlewood (Acta Math., 
44 (1922)) that 

s x du n,(x)-C ~ 
* 1og* u 

as x+ CO, where 

The numerical evidence provided by the com- 
putation rc2( 109) = 3424506 (Brent, Math. 
Camp., 28 (1974)) tends to indicate the truth of 
this conjecture. At present, 76. 31s9 k 1 seems 
to be the largest known pair of twin prime 
numbers (H. C. Williams and C. R. Zarnke, 

Math. Comp., 26 (1972)). 

D. Prime Numbers in Arithmetic Progressions 

Let k be a positive integer, x(n) be a residue 
character modulo k (- 295 Number-Theoretic 
Functions D), and L(s, x) = xz, x(n)n-” (0 > 1) 
be the +Dirichlet L-function. The function 

L(s, x) of s detïned by this series cari be ex- 
tended to an analytic function in the whole 

complex plane in the same way as the Rie- 
mann zeta function. In particular, when x is 
the principal character, then L(s, x), thus ex- 
tended, is a meromorphic function whose only 
pole is situated at s = 1 and is simple; otherwise 

the function L(s, x) is holomorphic on C. 

Using this function L(s, x) and in connection 
with his research concerning the tclass num- 
bers of quadratic forms, P. G. L. Dirichlet 
(1837) proved that there exist intïnitely many 
primes in the arithmetical progression 1, 1+ k, 

/ + 2k, , where I is the initial term and k a 
common difference relatively prime to 1. This 
result is called the Dirichlet theorem (or prime 

number theorem for arithmetic progressions). 
Suppose that a runs over a11 integral ideals 

in a tquadratic number field K of discriminant 

d. Then the tDedekind zeta function <,(.Y) of K 
is detïned by C(Na)-” for <T> 1. By virture of 

the decomposition law of prime ideals (- 347 
Quadratic Fields C), we have [,(s) = [(s)L(s, x), 
where x(n) = (d/n) is the +Kronecker symbol. 
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Utilizing c,(s), we obtain formulas concerning 
the +class number h(d) of the fïeld K. If d>O, 
then h(d)=(&/2loga)L(l,X), where E is the 
+fundamental unit of K. On the other hand, if 
d<O, then h(d)=(wfl/2n)L(l,X), where w  

denotes the number of the roots of unity 
contained in K. It follows that L( 1, x) > 
21og(( 1 + $)/2)/m. Let x be a character 
modulo k induced by a primitive character 

x0. Since we have L(s, 1) = L(s, x”)Qlk( l- 
x’(p)p-“), it cari be shown that L(l,x)#O for 
a real character x. It is easy to prove that 
L( 1, x) # 0 for a complex character x, These 
statements then lead to the Dirichlet theorem. 
The proof was simplifïed by H. N. Shapiro 
(195 1). Besides Landau’s three proofs for 
L( 1, x) # 0 for real character x(1 908), there 

are elegant proofs by T. Estermann (1952), 
Selberg (1949) and others. For a character 

Xmod k, we always have L( 1, x) = O(log k), while 

L( 1, x)-’ = O(log k) with one possible excep- 
tion, which may occur only if x is a real char- 
acter. Even in this case, we have L( 1, x)-l 

= O(k”) (where E > 0 is arbitrary, but 0 depends 
on E). This result was obtained by K. L. Siegel 
(1934) from his study concerning class num- 
bers of imaginary quadratic number fïelds. His 

proof was simplified by Estermann (1948) and 
S. D. Chowla (1950). The importance of the 

prime number theorem for arithmetic pro- 
gressions was revealed when it was applied to 
the Goldbach problem (- 4 Additive Number 
Theory C). Concerning this problem, the man- 
ner in which the remainder term depends on 

the modulus k became an abject of investiga- 
tion. The Page-Siegel-Wallïsz theorem is 
convenient to use: Denote by TL(X; k, 2) the 
number of primes not exceeding x and of the 
form ky + 1, where (k, l) = 1. If x > exp(k”) 
(where E > 0 is arbitrary), then we have 

n(x; k,~)=$+O(xe-;;k;ogX) 

Further research on the distribution of zeros 
of L(s, x) is necessary for the study of X(X; k, I) 

when x takes smaller values. If x is a nonprin- 

cipal real character, then L(s, x) may have at 
most one real zero pi around 1; this is called 
Siegel’s zero. Because of this fact, when x is 
small we are unable to obtain any formula to 
indicate the uniform distribution of primes. 
However, we have the following deep result, 

obtained by E. Fogels (1962). For a given 
positive E, there exist C~(E) and C(E) such that 
~L(X; k, l)>c(~)x/q(k)k~logx, provided that 

x 2 keo(‘). On the other hand, Titchmarsh (1930), 
using the tsieve method, obtained X(X; k, 1) 

= O(x/<p(k) logx) for x > k’o. A theorem of this 

type is called the Burn-Titcbmarsb tbeorem (- 
Section E). Fogels’s theorem is based on the 
following theorem by Yu. V. Linnik (1947) and 

K. Prachar (1957), which is an extension of 
Page’s theorem (1935): We let 6 be the function 
deiïned by 6 = 1 -pi if L(s, x) has an excep- 
tional real zero bl, and s=c,/log(k(ltI+2)) 
otherwise (where c, is a suitably small num- 
ber). If we denote by p the real part of any zero 

( # &) of L(s, x), then the theorem states that 

fi<l- c1 lw 
cle 

lwMltI+2)) > ~Wk(ltl+-2)) ’ 

provided that 6log(k(ltl+2))<c,. Linnik 
called this result the Deuring-Heilbronn pbe- 
nomenon. Using this theorem and the zero 
density theorem, Linnik (1944) proved that 
p(k, 1)« kL, where p(k, 1) is the least prime in 
the arithmetic progression 1, 1+ k, 1+ 2k, and 
L is a constant. We cal1 L Linnik’s constant. M. 
Jutila (1977) and Chen Jing-Run (1979) proved 
that L < 80 and L < 17, respectively. 

Let s be positive, bj, zj (1 Q j < s) be complex, 
and 1, m be real numbers satisfying max Izil > 1, 

12 s, and m 2 0. Under these conditions P. 
Turan (1953) obtained the following funda- 
mental theorem, which is called the power sum 
theorem: 

max Ib,z;+...+b,z:l 
fTl<&l+t?l 

This theorem is effective in research on the 
distribution of zeros of zeta functions. Based 

on this new method, Turan (1961), S. Knapow- 
ski (1962), and Fogels (1965) reached the re- 
sults cited above. 

Another method of research, considered to 
be a new sieve method, on the distribution of 
primes was introduced by Selberg and A. 1. 
Vinogradov. This method was followed by W. 

B. Jurkat and H. E. Richert (1965). Linnik, A. 
Rényi (1950), and E. Bombieri (1965) founded 

still another method, called the large sieve 
metbod, by which P. T. Batemann, Chowla, 
and P. Erdos studied the value of L( 1, x). 

E. Sieve Method 

Let A be a set of integers, and P a set of 
primes. For each p E P, let R, be a set of resi- 

dues mod p, and w(p) the number of residues 
belonging to 0,. The sieve method is a device 

for estimating (from above or below) the 
number of integers FI belonging to the set 
S(A,P,R,)={nln~A,nmodp~R, for peP}. 

The combinatorial methods of the Brun, Bus- 
tab, and Richert sieves are interesting and 

efftcient but quite complicated. Here, we shall 
briefly describe the Selberg sieve. As an ex- 

ample, denote by S(x; q, I) the number of n 
satisfying n = I mod q, n <x, (n, D) = 1, where q 
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is a prime not exceeding x, z <x, D = & a z p, 
and (I, q) = 1; then 

where A, = 1 and 1, is arbitrary for d > 1. Thus 
the problem reduces to the optimization of Ad. 
Proceeding in this manner, C. Hooley (1967) 
and Y. Motohashi (1975), using analytic 
methods, obtained certain deep results relating 
to the Brun-Titchmarsh theorem. Using the 
large sieve, H. L. Montgomery and R. C. 

Vaughan (1973) expressed this theorem in a 
precise form: n(x, q, I) < 2x/cp(q) log(x/q) for a11 

q<x. 
Let n,, n2,. , ni! be Z natural numbers not 

exceeding N, and Z(p, a) the number of nj’s 
such that nj=amodp. Rényi (1950) proved 
that 

Set u, = 1 for n = nj and u, = 0 otherwise, and 
set ~(CC) = 2 .,,a,exp(2nina); then 

In view of this simple fact, Bombieri (1965) and 
P. X. Gallagher (1968) extended the problem 

and proved that, in general, 

Similar results cari be obtained for character 

sums CM<ngM+Nqn~(n). In this connection 
Montgomery proved that 

S({n;M<n<M+N};P,C$,) 

where 

P(z) = n P. 
PEP 
PS: 

Using these methods, the following estimate 
was obtained by Bombieri: 

c max mpx ~(y, 4,U 
q$x”2(logx)-B yGx m= I 

1 y du 

s l 
~ «x(logx)-A, 

<p(q) 2 bu 

where A is arbitrary and B is a certain func- 

tion of A (Vaughan). These methods, known 
collectively as the large sieve, were tïrst di- 
rected toward proving the Rényi theorem 

stating that every sufficiently large even integer 
cari be represented as the sum of a prime and 
an almost prime integer (M. B. Barban). After- 
ward, combining Richert’s sieve with this 
large sieve, Chen Jing-Run (1973) improved 
this result to a remarkable degree (- 4 Addi- 

tive Number Theory C). Several applications 
of Bombieri’s theorem have been demon- 
strated by P. D. T. A. Elliot and H. Halber- 
stam (1966): e.g., the estimation of the num- 
ber of representations of n as p +x2 + y2 

(Hooley, Linnik) and the estimation of 

C,,,d(n-p) (Linnik, B. M. Bredihin). 
Let N(a, 7; x) denote the number of zeros of 

L(s, x) in the rectangle c( < o < 1, 1 tl < T. Com- 
bining the large sieve with new Fourier in- 
tegral techniques and the Turan +power-sum 
method, Gallagher (1970) proved that there 
exists a positive constant c satisfying 

,&Nk T,x)<<(QT)‘“-“‘, 

q$QxzdqN(r> T>W(QT)“‘-“‘. 

Similar results were also obtained by G. Ha- 
lasz and Montgomery (1969) using another 
method, which was further exploited by Jutila, 
M. H. Huxley, and Iwaniec. In particular, 
Heath-Brown and Iwaniec (1979) deduced that 

~L(X + y) - n(x) 2 cy(logx)-’ if y 2 x1 ‘/20+t. 
Combined with the Deuring-Heilbronn 
phenomenon, the zero density theorem above 

not only establishes the Linnik theory, but 
also yields the following result, due to K. A. 
Rodoskii, T. Tatuzawa, and A. 1. Vinogradov: 

7c(x;q,l)=L “du 
CP@I) s 2 lwu 

if x>exp(logqloglogq), where E= 1 or 0 
according as Siegel’s zero p exists or not, and 
where 

A = Max(logq,(log~)~~~(loglogx)~~~). 

Throughout these researches, estimates of 
the type 

~~<P(4)(l~l+2)~ogc~q(ltl+2)~ 

and 
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are of great importance and have been studied 
by A. F. Lavrik (1968) Linnik (1961), Huxley 

(1972), and K. Ramachandra (1975). 

F. The Prime Ideal Theorem in Algehraic 

Number Fields 

In an algebraic number lïeld of tïnite degree, 
the prime number theorem is replaced by the 
prime ideal theorem (T. Mitsui, 1956, Fogels, 
1962), which is based on the theory of the 
Hecke tlfunction (E. Hecke, 1917; Landau, 

1918). Let K be a lïnite Galois extension over 
an algebraic number fïeld k of tïnite degree. 
Suppose that p is a prime ideal of k and is not 

ramified in K. The TFrobenius automorphism 
of a prime divisor of p in K determines a 
conjugate class C of the Galois group of K/k. 
Let ~I(X; C) denote the number of prime ideals 
in k associated with the class C in the above 
sense and whose norm does not exceed x. 
Then we have 

h(C) 
7-&C)=LK:k, Llx+O(xe -eJlogx 1, 

where h(C) is the number of elements con- 
tained in C and c is a positive constant de- 
pending on K/k. This is an extension of Che- 
botarev’s theorem (E. Artin, 1923). 
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124 (X1.8) 
Distribution of Values of 
Functions of a Complex 
Variable 

A. General Remarks 

Suppose that we are given a function f: A-+B 
and that the variables z, w  take on values in A, 
B, respectively. A value distribution of f(z) is a 

set of points z where f(z) takes on a certain 
value w  (called w-points of f(z)). Value distri- 
bution theory is usually concerned with the 

study of value distributions of complex tana- 
lytic functions. Value distribution theory has 
been developed extensively and deeply for the 
case where A is the lïnite plane Jzl < co or the 
unit disk Jzl < 1 and B is the extended complex 
plane 1 w  (< co, and there are many interest- 
ing results in this case (- 272 Meromorphic 

Functions). Value distributions for analytic 
functions on general domains or on Riemann 
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surfaces or of several complex variables have 

also been studied. 

B. TbeCaseoflz[<R<cc 

For a ttranscendental entire function f(z), 
every value (including CO) is a value of the 
tcluster set of f(z) at the point at infinity 
(tweierstrass’s theorem). This theorem was 

improved in the following way by E. Picard in 
1879: A transcendental entire function f(z) has 
an intïnite number of w-points for any finite 

value w  except for at most one lïnite value 
(+Picards theorem). A value w  for which the w- 
points are at most tïnite is said to be a Picard% 
exceptional value. E. Bore1 gave a precise form 
of this theorem, taking into consideration the 
order of a function, and G. Julia proved the 
existence of Julia’s directions (- 272 Mero- 
morphic Functions; 429 Transcendental En- 
tire Functions). After other results in value 
distribution theory had been obtained by J. 

Hadamard, G. Valiron, and others, R. Nevan- 
linna published an important work in 1925 in 

which he established the so-called Nevanlinna 

tbeory of meromorphic functions in lzl < Rd 
CO, unifying results obtained up until that 
time, and which became the starting point of 

the subsequent value distribution theory (- 
272 Meromorphic Functions). T. Shimizu and 
L. V. Ahlfors gave a geometric meaning to the 
Nevanlinna tcharacteristic function T(r). Ahl- 
fors established the theory of covering surfaces 
by metricotopological methods in 1935, and 
applied it to obtain the Nevanlinna theory 

and many other results on meromorphic func- 
tions. This theory revealed that the topological 
meaning of the number 2 of Picards excep- 
tional values is closely related to the tEuler 
characteristic 2 of the sphere. H. Selberg es- 
tablished the value distribution theory of 
talgebroidal functions and gave a precise form 

of G. Rémoundos’s theorem, which corre- 
sponds to Picard’s theorem for algebroidal 
functions. 

Moreover, as an extension of the value 
distribution theory of meromorphic functions, 
there is the theory of holomorphic curves or of 

systems of entire functions. Let fO,fi, f, 
(n 2 1) be entire functions without common 
zeros for a11 and for which f0 :,fi : . :f, is not 
constant. Put f= (&,f, , . . ,f,). This is a re- 
duced representation of a nonconstant holo- 
morphic curvef:C+P”(C). For cc=(ccO,~i, 
. . ..a.)EC”+‘-{O}, considering the zeros of 

(a,f)=a,fo+alfl+...+a,f, (#OI, 

we cari extend Picard’s theorem and the Ne- 

vanlinna theory for meromorphic functions to 

holomorphic curves. 
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We deline the characteristic function 

W (= V,f)) as 

where r0 is a tïxed positive number and ,4(r)lLo 
=A(r)-A(r,). Using a bivector [ff“] =(Lfj’ 

-,h,h’) off and f’ = (fi, fi, ,,fi), we have 
another representation of T(r): 

*(+A ‘2 s ~ s si 2*lc.B”ll’,,t,, 
i-l ‘“S 0 0 If l2 

fis transcendental when lim T(r)/logr= CO, 
and the number 

A=dim{(c,,c, ,..., c,)EC”“IcO,fO+tClf,+... 

+ cnfn = OI 

is the degeneracy index off: It holds that 0 < 
3, <n - 1. As an extension of Picards theorem, 
J. Dufresnoy stated that, for transcendental 

holomorphic curves f and among a in gen- 
eral position, the zeros of (a,,f) are inlïnite 
exceptforatmostn+~+l.X(cC”+‘-{0}) 
is in general position when any p (<n + 1) vec- 
tors in X are linearly independent. In connec- 
tion with this result, there are many Picard- 
type theorems, and when A. > 0, there are some 
particular results for holomorphic curves. H. 
Cartan, H. and J. Weyl, and Ahlfors extended 
the Nevanlinna theory to holomorphic curves 

as follows. For a=(a,,a,, . . . . a,)~C”+l -{O}, 
we put 

la1 = the length of a, 

Il~flI=l~sf~lll~llfl~ (a,.f)#Q 

and delïne the proximity function 

1 

s 

2n 1 
m(r, CO =z 

0 logmdO 

and the counting function 

N(r,a)=k 
s 

2n 

logl(a,f)ldOl * 
0 10 

Then we have the first main theorem: For any 

a for which (a, f) + 0, 

T(r) + m(r,, a) = N(r, a) + m(r, a); 

and the second main theorem: When Â = 0, for 
any al, a2,. , aq in general position, 

where S(r)=O(logrT(r)) except for r in a set e 
of lïnite logarithmic measure, (i.e., S,dlogr < 
GO). For A > 0, it is conjectured that “4 -II - 

1” cari be changed into “4 -n-i - 1.” This 

is unsolved except for some special cases. 
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Some results show relations between excep- 
tional values and the order as in the case of 

meromorphic functions. Nevanlinna theory 
has been extended to the associated curves fp 
(~=1,2,...,n;f’=f)for/Z=O,andtherehave 
been attempts to extend this theory of holo- 
morphic curves even further by generalizing 
domains or ranges. 

C. The Case of General Domains 

The value distributions of meromorphic func- 

tions delïned in a general domain or an open 
Riemann surface depend on the function- 
theoretic “size” of the set of singularities (- 
169 Function-Theoretic Nul1 Sets) or the type 
of the Riemann surface (- 367 Riemann Sur- 
faces). For instance, we have the following 
theorem of Picard type: A single-valued mero- 

morphic function with a set of singularities of 
tlogarithmic capacity zero takes on every 

value intïnitely often in any neighborhood 
of each singularity except for at most an F,- 
set of values of logarithmic capacity zero 

(Hallstr6m-Kametani theorem). For the study 
of value distribution at general singularities, it 
is useful to investigate cluster sets (- 62 Clus- 
ter Sets). In order to generalize the Nevan- 

linna theory to the case of general domains or 
Riemann surfaces, we take their exhaustions 
depending on a real parameter Y and detïne the 

tcounting function and SO on (- 272 Meromor- 
phic Functions). G. J. Hallstrom established 
the value distribution theory of meromor- 
phic functions delïned in the complementary 
domain D of a compact set E of logarithmic 

capacity zero by taking 0, = {z 1 u(z) < r} as the 
exhaustion of D, where u(z) denotes the Evans 
potential for E, i.e., u(z) is the potential corre- 
sponding to a positive mass distribution p 

on E of total mass 1 which tends to +co as 
z tends to any point of E. Thus the number 
of Picard’s exceptional values is not greater 
than 2 + 5, where 5 =limsup,,, F(r)/T(r) 

with -n(r) = the Euler characteristic of 0, and 

F(r)=&n(r)dr (Hallstrom-Tsuji theorem). J. 
Tamura, L. Sario, and others studied the value 

distributions of meromorphic functions de- 
lïned on Riemann surfaces. Sario succeeded in 
extending the Nevanlinna theory to analytic 
mappings of a Riemann surface !II into another 
Riemann surface 6 by introducing a suitable 
metric in G to delïne the tproximity function. 

In the Nevanlinna theory on general do- 
mains, we must sometimes impose condi- 

tions that the functions must satisfy in order 
to obtain a concrete conclusion, for instance, 
the condition that 5 be fmite in the Hallstrom- 

Tsuji theorem. But it is also important to 

determine the domains where some result cari 
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be obtained without imposing any additional 
conditions on the functions. The Hallstrom- 

Kametani theorem is an example. Although 
the set of exceptional values in this theorem 
cannot be replaced generally by a smaller set 
than an F,-set of logarithmic capacity zero, we 
have the following theorem: Let E be a +Cari- 
tor set with successive ratios 5, = 21,/1,_, , 
where 1, denotes the length of the segments 

that remain after repeating n times the process 
of deleting an open segment from the middle 
of another segment. Then any single-valued 

meromorphic function with E as the set of 
singularities has at most 3 Picard’s excep- 

tional values if lim,,, 5, = 0 and at most 2 if 
i;,+i =o(<z) (L. Carleson, K. Matsumoto). By 
weakening the conditions on E, one cari get 
several improvements of this result. 
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125 (X11.7) 
Distributions and 
Hyperfunctions 

A. History 

The advancement of analysis, particularly in 
the lïeld of partial differential equations and 
harmonie analysis, necessitated the generali- 
zation of the notion of functions and deriva- 

tives. For instance, “functions” such as Dira& 

+delta function and +Heaviside’s function were 
used by physicists and engineering scientists 
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even though the former is not a function and 
the latter is not a differentiable function in the 
classical sense. The fïnite parts of divergent 

integrals, used by J. Hadamard to investigate 
the fundamental solutions of wave equations 
(1932), and the Riemann-Liouville integrals 
due to M. Riesz (1938) were the notions that 
eventually led to the theory of generalized 

functions. The rudiments of the idea of distri- 

bution, however, cari also be found in other 
earlier works. S. Bochner (1932) and T. Carle- 
man (1944) discussed the Fourier transforms of 
locally integrable functions on the reals with 
growth as large as a polynomial. S. L. Sobolev 
introduced the notion of generalized derivative 
and also of generalized solution of differential 
equations by means of integration by parts in 
studying the Cauchy problem for hyperbolic 
equations (1936); J. Leray (1934), K. 0. Fried- 

richs (1939), and C. B. Morrey, Jr. (1940) also 
discussed generalized derivatives. On the other 
hand, L. Fantappié (1943) investigated analytic 
functionals that are elements of the dual of the 
space of analytic functions and applied them 
to the theory of partial differential equations. 
Based on a systematic generalization of these 
investigations, L. Schwartz [l] established the 
theory of distributions (1945), which not only 
provided a mathematical foundation for a 

number of forma1 methods that had been used 
in mathematical physics but also gave new and 

powerful tools for the theories of differential 
equations (L. Hormander [2]) and +Fourier 
transforms. Furthermore, it has been applied 

to trepresentation theory of locally compact 
groups, the theory of probability, and the 

theory of manifolds (G. de Rham [3]). As Will 
be seen in Section B, distributions are defined 

as continuous tfunctionals on a certain func- 
tion space, and it is essential to Select a func- 

tion space appropriate to the problems con- 
cerned. For this reason, 1. M. Gel’fand and G. 
E. Shilov defined various classes of general- 

ized functions [4] as a natural extension of 
Schwartz’s theory. In this direction there are 
also various classes of ultradistributions intro- 

duced by C. Roumieu [S] and A. Beurling. 
Another but completely different approach 

was given by M. Sato [6,15] in the form of the 
theory of hyperfunctions (1958). Intuitively a 

hyperfunction is the sum of (ideal) boundary 
values of holomorphic functions at the real 
axis. We obtain in this way an ultimate class 
of localizable generalized functions. Sato em- 
ployed the relative (or local) cohomology 

theory to define the “boundary values” and to 
prove their localizing property. Such an alge- 
brait approach to generalized functions led 
naturally to an algebraic treatment of systems 

of linear partial differential operators [7], 
called algebraic analysis by comparison with 
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algebraic geometry. Independently, Horman- 
der established a similar theory for distri- 
butions using Fourier analysis (- 274 Micro- 

local Analysis). 

B. Definition of Distributions 

Let C~(X) be a complex-valued function of x = 

(x1, , x”) delïned on an open set fi in the n- 
dimensional Euclidean space R”. By the sup- 
port (or carrier) of cp, denoted by supp <p, we 
mean the tclosure of {x 1 <p(x) # 0} in R. For 
multi-indices p, i.e., n-tuples p = (p, , , p,) of 
nonnegative integers, we set /pi = p1 + . + pn. 
For a function <p(x) of class CiPi, we Write 

In particular, D (‘,...,‘)q = <p. TO indicate the 

variables x we shall adopt the notation 0:. 
s(0) denotes the set of a11 complex-valued 

functions of class C” defïned on R with tcom- 
pact support, which is a +linear space under 
the usual addition and scalar multiplication in 
function spaces. A sequence { cp,} in @fi) is 
said to converge to 0 (the function identically 
equal to zero) as m+ CO, denoted by <P,,, * 0, if 
there exists a compact set E in R such that E 
contains supp <P,,, for every m, and for every p, 
{PV,} converges uniformly to 0 as m-32. 

We sometimes abbreviate g(n) either as 9 

or, when we want to indicate the variables x, 

as &. 
A complex-valued tlinear functional T de- 

fïned on g(Q) is called a distribution on R if it 
is continuous on a(n), i.e., <P* * 0 implies 
T(<p,)+O. The set of all distributions on Q is 
denoted by g’(n) (or 9’). For distributions S 
and T, the sum S + T and scalar multiple ctT 
aredeiïned by(S+T)(cp)=S(q)+T(<p)and 
(ctT)(<p)=aT(<p), respectively, which are also 
distributions. Hence Y(Q) is a tlinear space. 

C. Examples of Distributions 

(1) Let j”(x) be a tmeasurable and tlocally 
integrable function on R. Then a distribution 
T, is delïned by q(<p) = j cp(x)f(x)dx. Here dx 
is the +Lebesgue measure and the domain of 
integration is Q (in fact, supp cp). If T, = T,, 
then ,f(x) = g(x) talmost everywhere. Thus we 
cari identify the distribution 7jj with the cor- 
responding function f; and sometimes T, Will 

be denoted simply by f: 
(2) Let p be a tRadon measure on fi, i.e., 

a complex-valued tregular completely ad- 
ditive set function on the +Bore1 sets in R. 

Then a distribution T, is defïned by T,(q)= 
S <p(x)p(dx). Example (1) is a special case where 
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p(dx)=f’(x)dx. Two Radon measures /J and v 
coincide if T, = T,. If the measure is concen- 
trated at the origin, then T,(p) = C<~(O), denoted 
by ~6, and 6 is called Dira& distribution. 
Sometimes 6 is denoted by 6,, 6,,,, or 6(x) to 
indicate that it operates on functions of x. A 
distribution TE~‘(R) is a measure if and only 

if T(<p,)+O whenever the supports supp<p, of 
a sequence cp, E 9(R) are in a fixed compact 
set in R and <P,,, converges uniformly to zero. 

A distribution T is called a positive distribu- 
tion if T(q)> 0 for any VE~(R) that has non- 

negative values at a11 points x in R. Every 
positive distribution is equal to a T, corre- 

sponding to a positive measure p. 
(3) For given p the distribution 8(P) is deiïned 

by ~‘P’(~)=(-l)/PIDPcp(0).~(o~..~~o)=~. 

(4) Let g(x) be a function defïned but not 
integrable on an interval (a, b), and assume 
that for any positive number E it is integrable 
on (a + E, b). Moreover, assume that 

g(x)= t A,(x-a)-A~+h(x), 
V=l 

where ReÂ, > 1, 1, is not an integer, and h(x) is 
integrable on (a, b). Then 

s 

b 
g(x)dx-CA,&-l))‘a’~‘.“=F(e) 

CI+E 

tends to a Imite value as ~‘0. This limit is 

called the hite part (in French partie finie) of 
the integral Ji g(x) dx, denoted by Pf 1: g(x) dx: 

s 

b 
Pf g(x)dx 

a 

=-c y f++“+ s *h(x)dx. a 
In the same way, for every <p E C@RI), T(q) = 
Pfjig(x)<p(x)dx is defined, and T is a distribu- 

tion which Will be denoted by Pfg, and which 
is frequently called a pseudofunction. This 
notion is extended to the n-dimensional case 
and used to express the fundamental solutions 
(- Section EE; Appendix A, Table 15.V) of 
thyperbolic partial differential equations. 

D. Localization of Distributions 

Let,Q’ be an open subset of R. Every function 

<p E 9(U) cari be extended to a function <p E 
9(n) by setting <p(x) = 0 for x $Q’. Thus if 
TE~‘(R), then a distribution SE~‘@‘) is de- 
fined by S(q)= T(<p) for every VE~@‘), and S 

is called the restriction of T to R’. Two distri- 
butions T and S are said to be equal in Q’ if 
their restrictions to 0’ are equal. If every point 
in R has a neighborhood where T= S, then 

T= S. In this sense a distribution is determined 
completely by its local data, although the 
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notion of pointwise value, having exact mean- 
ing for functions, has no meaning for distri- 
butions. Moreover, we cari construct a distri- 
bution with given local data in the following 
way: Suppose that an topen covering {Q,} of R 
and a set of distributions 7;~9’(R~) are given 
and that 73 and Tk are equal in slj n R, for any 
j and k. Then there exists a unique distribu- 

tion TE~‘(Q) such that T= ‘J in Qj for each j. 
(Define T(q) = C 7Jxjq) for a +Partition of unity 

{cx~} subordinate to {Qj}). Namely, the distri- 
butions 9’ form a +sheaf of linear spaces over 
R”. It is not tflabby but is soft, i.e., for any 
distribution T defined on a neighborhood of a 
closed set F in R”, there is a distribution on R” 
that coincides with T on a neighborhood of F. 

For each distribution TE~‘(Q) there is a 

largest open subset R’ of 0 on which T van- 
ishes. Its complement is called the support (or 
carrier) of T and is denoted by supp T. The 
support of the distribution given in example (1) 

coincides with that of the function 5 The sup- 
port of &‘) is the origin. 

E. Derivatives of Distributions 

In example (1) in Section C, if ,f(x) is a func- 
tion of class Ck, then by integration by parts 

TDpf(<p)=( -l)lp’Ts(Dp<p) for Ip( < k. The right- 
hand side defines a distribution even if ,f is not 
differentiable. In view of this example, we 

defme derivatives DPT of any distribution T by 

(DPT)(cp)=( -l)‘P’T(DP~)> <PE&. (2) 

Any distribution is infinitely differentiable. 
Any locally integrable function is infmitely 
differentiable in the sense of distributions, and 
its derivatives DOT, are called distribution 
derivatives (or generalized derivatives or weak 
derivatives). 

For example: (1) DP6 = @‘); (2) (l-dimen- 
sional case) dx+/dx= 1, dl/dx=& where x, = 
max(x, 0) and 1 (x) is Heaviside’s function, 

which is equal to 1 for x > 0 and to 0 for x < 0. 

F. Tbe Operation of Linear Differential 
Operators on Distributions 

Let T be a distribution and C((X) a C”-function 
on R. Then we cari define the product aT by 
(ET)(~)= T(cw<p), where the right-hand side is a 
continuous linear functional on 9(Q) since the 
multiplication <p~cx<p is continuous in g(0). 

We define the dual operator (or conjugate 
operator) P’(x, D) of a linear differential opera- 
tor P(x, D) = C u,(x)D” by 

P’(x, WP =~(-l)‘P’DP(~p(x)<p(x)), (3) 

where the a,(x) are C”-functions on R. Com- 
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bining differentiation of distributions, multi- 

plication by functions, and addition, we cari 
apply partial differential operators to distribu- 

tions, and we have (P(x,D)T)(<p)= T(P’(x,D)<p). 
Linear differential operators commute with 

restriction mappings. In particular, we have 
suppP(x, D) Tc supp T. In other words, linear 
differential operators are +sheaf homomor- 
phisms on the sheaf 2’ of distributions over fi. 
On the other hand, every continuous sheaf 
homomorphism on 9 is a linear differential 
operator whose order is finite on each com- 
pact set in 0. Even when no continuity is 
assumed, a sheaf homomorphism on 9’ is a 
linear differential operator except on a discrete 

subset of fi (J. Peetre). 

G. The Topology of 9 and 3’ 

LetQ5=K,cK,@Z... beasequenceofcom- 
pact sets in R that exhausts fi. For every 

nondecreasing sequence of positive numbers 
{u} = {a,, a,, } and nondecreasing sequence 

of nonnegative integers {k} = {k,, k, , } we 

set 

P[u),(~)(<P)=~~P s”P s”PujlDp<p(x)l 
j20 IplGk,x$K, 

(4) 

for <p E 9(!2). We define a tlocally convex topol- 
ogy of the space 9(R) by taking the totality 
of the tseminorms plOi,ik) as a fundamental 
system of continuous seminorms. Then 9(D) is 
a tnuclear +(LF)-space, and the convergence 
qrn 3 0 of a sequence (pm is identical to the 
convergence <p,*O in this topology. A sub- 

set B c 9(n) is tbounded in the topology 
if and only if there exist a compact set E c Q 

such that supp <p c E for every cp E B, and 
positive numbers M, for each p such that 
sup 1 D”<p(~)i < M, for every cp E B. 

The topology of the space H(Q) is the 
tstrong topology of the +dual of 9(Q): the 
ttopology of uniform convergence on every 
bounded set in 9(Q). Under this topology 
9(Q) is a +nuclear treflexive linear topo- 
logical space. With respect to this topology, 
the linear differential operators of Section F 
are continuous in 9’. 

By virtue of the following convergence 

theorems, various limiting processes concern- 
ing distributions cari be treated easily. If the 
limit lim T(q)= T(Q) exists for every cpg3, 

where {q} is a sequence of distributions, then 
TE~’ and { 7;) is convergent to the distribu- 
tion T (convergence theorem). Moreover, for 
any p, Dp7; is convergent to DPT (theorem of 
termwise differentiation). Any bounded set in 
9 or 9 is totally bounded. Thus weak conver- 
gence of a sequence { 7;) implies strong conver- 

gence (convergence in the topology of the 

space Y) (strong convergence theorem). 
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H. Distributions Depending on a Parameter 

Consider distributions TA depending on a 
parameter E,, where i, ranges over the real line, 

the complex plane, or more generally an open 
set in Euclidean space. The convergence theo- 
rem and the strong convergence theorem also 

hold in the case of a continuous parameter A. 
Thus T, is continuous (differentiable) with 

respect to the parameter 1. if T,(q) is continu- 
ous (differentiable) with respect to n for any 

<p E 3. If TA is continuous with respect to A, 
then DXT, is also continuous with respect to 

1,. If TA is differentiable with respect to a real 
variable IV, then 0: TA is also differentiable, and 
C?D: T,/ai =D~(I?T~/~~). The same facts hold for 

the case of several real variables. For a com- 
plex parameter 1, TA is holomorphic with re- 
spect to A if T,(q) is holomorphic for any ~~63. 
The fundamental properties of holomorphic 
functions also hold in this case. 

If TA is defined and continuous in an interval 
[a, b], then the integral T=i T,di with respect 
to 2 exists in 9’ and we have 

1. Distributions with Compact Support 

We denote by G(Q) (abbreviated to &) the 
space of a11 complex valued C”-functions 
on 0. &(Q) is a nuclear +Fréchet space with 
the locally convex topology defined by the 
seminorms 

as p ranges over all multi-indices and K ranges 

over all compact sets in fi. 
We denote by &‘(R) (abbreviated to 8’) the 

tstrong dual of 8(Q), i.e., the set of a11 continu- 

ous linear functionals on s(n) equipped with 
the topology of uniform convergence on 
bounded sets in Q(R). G’(R) is a nuclear +(DF)- 
space. If TE&‘@), then its restriction to 9(n) is 
a distribution with compact support. Con- 
versely if T is a distribution with compact 
support in R, then choosing c( E 9(D) which is 
identically equal to 1 on a neighborhood of 
the support of T, we defïne a linear functional 
S on &(Q) by S(Q) = T(E<~). Then SE #(fi), and 

S is independent of the choice of CI. In this 
sense, we cari consider that S is the extension 

of T to G(R) and identify S and T. thus G’(R) 
coincides with the set of a11 distributions with 
compact support in R. 

J. Structure Theorems for Distributions 

A distribution TE~‘(~) is said to be of order at 

most k if IT(<p)l d~~~~,~k)(<p) for {k} ={k,k,k, . ..} 
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and for some {u}. A distribution of order 0 is a 
measure. Every distribution of finite order cari 

be represented as a tïnite linear combination 
of derivatives (in the sense of distributions) of 
measures or locally integrable functions. The 
restriction of any distribution to a relatively 

compact open subset R’ cari be represented 
in this way because it is of finite order. There- 
fore the distributions form the smallest class 
of generalized functions that contains a11 
locally integrable functions, is stable under 
differentiation, and forms a sheaf. Further- 
more, for any distribution T there exists a 
sequence {qj} c 9 that converges to T in the 
distribution sense. 

A closed set F is said to be regular if for 
every point a in F we have a neighborhood U 
of a and constants w  and 13 x > 0 such that 
every pair of points x and y in F n U is con- 

nected by a curve contained in F with length 
less than or equal to ~IX-y[“. If the support 
of a distribution T is contained in a regular 
closed set F, then 

T=x D”jT,, 

(the expression is not necessarily unique, and 
the sum is locally fïnite), where the pj are 

complex-valued measures with support con- 
tained in F. In particular, if the support of a 

distribution T contains only one point a, then 

T cari be represented uniquely as a fïnite linear 
combination 

of derivatives of the distribution &) defined 

by 4-,,(d = d4. 

K. Tensor Products of Distributions 

Let 0, c R” and R, c R” be open sets. If TE 
9’(&) and SE 9’($), then there is a unique 
distribution T @ SE Y@, x Q,), called the 

tensor product (or direct product), such that 

TO S(<P(X)$(Y))= T(v)W) for w  <PEW&) 
and $ E 9($). More directly we have Fubini’s 

theorem: T 0 S(dx, Y)) = T,(S,(dx, Y))) = 
S,,(T,(q(x,y))) for any ~PE~(R, x 0,). If F and 
G are linear spaces of distributions on R, and 
R,, respectively, then the ttensor product 
F @ G is identified with the linear combina- 

tions of tensor products TO S of TE F and 
SE G, which form a linear space of distribu- 
tions on R, x R,. When F and G have tlocally 

convex topologies, the tcompleted tensor 
products F 6 G and F 6 G are also usually 
identified with subspaces of 6Y(Q, x a,,). For 
example, we have 9’(n,) @ 9’(!2,) = 9’(!2, x 
Q,), &‘(Q,) 63 &‘(Q,) = G’(R, x R,) and G(R,) ô 

G(R,) = &(QX x fi,) (including the topologies). 
Similarly, we have 9(fi,) 6 g(fi,) = 9(Q, x Q,), 
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but the left-hand side has a strictly weaker 
topology than the right-hand side. Spaces of 
distributions with parameters (- Section H) 
are often identified with completed tensor 
products of spaces of distributions [8-l 11. 

L. The Kernel Theorem 

Let R, and R, be as ab0ve. Every distribu- 
tion K on R, x R, induces the continuous 
linear mapping LK:9(fi,)-+9’(Q,) deiïned by 

(L,(<p(x)))(~(y))=K(<p(x)~(y)), ti~w&). 
Conversely every continuous linear mapping 
L: .9(!2,)+9’(n,) is equal to L, for a K E 
9’(Q, x fi,) and the correspondence K H L, is 
a topological isomorphism of the locally con- 

vex space #(fi, x fi,) ont0 L(g(R,), 9’@,)) 
equipped with the topology of uniform conver- 

gence on the bounded sets (L. Schwartz’s 
kernel theorem, [S-l 11). K is called the kernel 
(distribution) of the mapping L,. 

L, is a continuous linear mapping S(a,)+ 
&(a,) (resp. 9(QX)-+8’(s2,)) if and only if KE 
9’(Q,) 6 &(Q,) (resp. 9’(!2,) 6 R(Q,)), in which 
case K is said to be regular (resp. compact) in 
y. L, cari be extended to a continuous linear 
mapping Q’(Q,)-+9’(!2,) (resp. &2,)-+9’@,)) 
if and only if K E &(Q,) 6 Y(Q,) (resp. G’(R,) 6 
9’(QY)), in which case K is said to be regular 

(resp. compact) in x. K is said to be regular 
(resp. compact) if it is regular (resp. compact) 
both in x and y. L, cari be extended to a con- 
tinuous linear mapping G’(R,)+E(R,) (resp. 
G(R,)+b’(R,)) if and only if KEF(R, x RY) 
(resp. &‘(Q, x 0,)). Then K is said to be regu- 
larizing (resp. compactifying) [S, 101. 

M. Convolution 

For distributions S and T on R”, assume that 

either S or T has a compact support or more 
generally that supp Tn ({x} - supp S) is locally 
uniformly bounded with respect to x. Then the 
correspondence 

delïnes a distribution called the convolution of 
S and T and is denoted by S * T. In particular, 

T,*T,=T/,,, where f* g is the tconvolution of 
functions ,f and g, and Tf, T,, and q,s denote 

the distributions corresponding to A g, and 
f* g, respectively. For example: T* 6 = 6 * T= 

T, DPT*S=T*(DPS)=DP(T*S). 
Thus a solution of the partial differential 

equation P(D) T= S with constant coefficients 
is given by the convolution S * E of S with a 
+fundamental solution E of P(D), whenever 
the convolution exists. 

If TE 9 and <p E 9, the convolution T* <p 
is equal to a function f of class C” (or the 
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distribution corresponding to f), and f(y) = 
TJ<p(y-x)). fis called the regularization of 
T. For distributions S and T, assume that 
If(x)g(y-x)1 is integrable on R” for any regu- 
larization f= S * <p and g = T* $. Then there 
exists a unique distribution V’such that 

V*(<p*$)= f(x)g(Y-x)dx. 
s 

This distribution V is called the general- 
ized convolution and is denoted by S * T 
(C. Chevalley). 

N. Tempered Distributions Y’ 

We denote by ,rP(R”) (abbreviated to Y) the 
space of all trapidly decreasing functions of 
class C” on R”. SP is a nuclear Fréchet space 
with the locally convex topology defïned by 
the seminorms 

I)p,q(47)=~~PIxp~q<p(x)I, (6) 
x 

as p and 4 range over all multi-indices, where 
xp=xpi 1 xp. We denote by S“‘(R”) (abbre- 

viated to Y”) the strong dual of Y(R”). Its 
elements are called tempered distributions (or 
slowly increasing distributions) and are identi- 
fied with their restrictions to Gn(R”). A distri- 
bution TE~' cari be continuously extended to 
Y if and only if any regularization f = T* cp 
of T is a slowly increasing continuous func- 
tion (i.e., there is a polynomial P(x) such that 
I,f(x)I < IP(x)l). Y”(R”) is a nuclear (DF)-space. 

Let 1 <pc CO, and let q be the tconjugate ex- 
ponent. The strong dual of the tfunction space 
&JR”) is denoted by L!&JR”). Since Y is dense 

in gL,, 9;, is identifïed with a linear subspace 
of 9”. The strong dual of 9i,(R”) is equal to 

gLq(R”). Let &(R”) be the closed linear sub- 
space of %(R”) consisting of a11 functions cp 

such that P’<PE C,(R”) for all p (- 168 Func- 
tion Spaces). It is also the closure of .Y in B. 

The strong dual of 4 is denoted by LSL,(R”). 
Its elements are called integrable distributions 
because the strong dual of &JR”) is equal to 
.%(R”) SO that the integral T( 1) has a meaning. 
Here 1 is the function identically equal to 1. 

+Sobolev spaces Wi(R”) and +Besov spaces 

BP,,(R”) are also linear subspaces of F(R”). 

0. Fourier Transforms 

The Fourier transform 

.Rp(x)=(J%-” <p(?Jexp(-ixc)& 
s 

(7) 

is an isomorphism of Ye onto ÿX, where x5 

=x1 t1 + +x,,[“. The Fourier transform 

.FTEY~ of TE.~?: is detïned by 

(BT)(q)= T(&p), <PEY. (8) 

The inverse Fourier transform is defïned simi- 
larly, except that -i is replaced by i. For 
example: (1) PJ= (&)“a, where 1 is the 

distribution corresponding to the function 1. 
(2)9(Dp T)=i'pl~pcW. 

A function <p of class C” is called a slowly 
increasing C”-function if cp and its derivatives 
of any order are slowly increasing continuous 
functions. The space 0,,,, is the set of all such 
functions. Its image under the Fourier trans- 

form $(CM), denoted by 0&, coincides with 
the set of all distributions T such that any 
regularization f= T * cp is a rapidly decreas- 
ing C”-function. A member of the space 0; 
is called a rapidly decreasing distribution. If 

C(E&,, (BE@;) and TEP', then aT~,Y”and 
.9(aT)=(&)-n~~*9T(~*T~9”and 

9(8* T) = (&)"@FT). If T is a distri- 
bution with compact support in R”, then its 
Fourier transform is the tentire function f(c) = 

(fi)-“T(exp( -~XC)), where [= 5 +iq~C”. 
For a convex compact set K in R”, deiïne its 

supporting function H, by HK(q) = supXGK xv. 
Paley-Wiener theorem. An entire function 

f(c) on C” is the Fourier transform of a distri- 
bution (resp. a function of class Cm) with sup- 
port in K if and only if(i) for any E > 0 there is 
a constant C, such that If([)[ < C,exp(H,(q)+ 
C:I<[) on C”, and (ii) there are constants C and 
N such that If(<)1 < C(l + 151)” (resp. for any 
N there is a constant C such that If(<)1 < 
C(l +l<l)mN) on R”. 

P. Fourier Series and Distributions on Tori 

The n-dimensional +torus T” is the quotient 

space of R” with respect to the equivalence 
relation xi = yj mod Z ( j = 1, , n). The space 

9’(T”) of distributions on T” is defined to be 
the strong dual of 9(T”) = G(T”). The volume 
element dx of T” is defïned from that of R”. 
Thus, for an integrable function A we cari 
define a distribution Tf by 

TJ(<P)= f(xh(4k s <p E S(T”). 
T” 

Consider the family of functions &(x) = 
exp(2xipx), where p ranges over all n-tuples 
of integers. Then any distribution T on T” has 

the Fourier series expansion T = C cpfp(x), 
where the Fourier coefficients cP= T(f-,) are 

slowly increasing, i.e., /cpi <C(l + lpj2)k for 
some k and C. Conversely if {cP} is a slowly 

increasing sequence, then C c,f, converges to 
a distribution T on T”. 
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Q. Substitution 

Let f=(fi, . . ..f.) be a C”-mapping from an 
open set fl in R” into an open set fi in R”, and 
assume that the +rank of the Jacobian matrix 

(af,/ax,) (i= 1, ,m;j= 1, , n) is equal to m in 
a neighborhood of the tinverse image E of the 
support of a distribution S = S,,, E 9’(n). In a 
neighborhood U of E, we cari choose IA, = 
g,(x), . . ..~.~,=g~~,,,(x) SO that the trans- 
formation (y, u) = (f(x), g(x)) has the inverse 
transformation x = $(y, u) of class C”. If the 

support of cp E 9(Q) is contained in U, then 
defining @I by 

we have 4 E 9(n), where J(y, u) is the abso- 
lute value of the +Jacobian of $(y, u), and @ 
is independent of the choice of g1 . . . , gn-,,,. 
Now we detïne T(q) = S(G) if supp<p c U, and 
I’(Q) = 0 if supp <p does not intersect E. Since a 
distribution cari be determined by its local 
behavior, we have a distribution TE 9’(Q) with 
support E, which is denoted by T= S of= S(,f) 

= SfcX> and is called the substituted distribution 
of StYj by y =S(x). It is also called the pullback 
of S by f and is denoted by f *S. The chain 

rule for derivatives of composites 

;(sof)=igg g0.r 
I ( > I 1 

(9) 

also holds. 
For example: (1) If S = S$j (y~ R”), then E is 

the surface fi(x) = f2(x) = . . = f,(x) = 0. Assum- 
ing that (f,, ,f,) satistïes the condition in the 
previous paragraph, we obtain the distribution 

lP'(fi,..., f,) with support contained in a sur- 
face. From the fact @) = Dy46, we cari Write 

a"'~(fl>...>fm) 
‘(‘)(fi a ’ f,) = (afl p (ijf m p 

(Gel’fand-Shilov notation). (2) For the map- 
ping ,f(x) = Ax + b, where A is an n x n regular 

matrix and b is an n-vector, we cari define the 
substituted distribution of S by f = f(x) for any 
,SE~‘(R”). For instance, &,,(<p)=<p(b). 6,X2mC2) 

=(2~)~‘(6~,~,,+6~,+,,)(c>O,x~R~). 

R. Distributions and Currents on a 

Differentiable Manifold 

Let A4 be an n-dimensional tdifferentiable 

manifold of class C”. Let {(U,, $,)} be an 
tatlas. Then a distribution T on M is detïned to 
be a collection of distributions T, on $,(U=) c 
R” such that TO on ti8( U, n UP) is equal to T, o 
($,o$gl) for any CI and fi. Since the distribu- 

tions obey the same transformation law as 
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functions under coordinate transformation, 
this definition has an invariant meaning, and 

every locally integrable function on M is re- 
garded as a distribution. More generally, a 
distribution ‘cross section of a tvector bundle 

of class C” is delïned in the same way. The 
most important is the case of the +p-fold ex- 
terior power of the tcotangent bundle. Its 
distribution cross sections, i.e., texterior dif- 
ferential forms of order p with distribution 
coefficients, are called currents of degree p. If 
M is toriented, then the space of currents of 
degree p on M is identitïed with the dual space 
of the locally convex space c%i(“~p)(M) of a11 

differential forms of degree n-p, of class C” 
and with compact support in M. For example, 
if C is an (n - p)-dimensional tsingular chain, a 

current Tc of degree p is delïned by Tc(cc)=~ccc. 
If M is not +Orientable, we have to consider 
either the double covering fi of M or the cross 
sections of the tensor product of the bundle of 
(n -p)-covectors and the orientation bundle 
[l, 31. Currents were introduced by de Rham 
to prove his celebrated isomorphism theo- 
rem of the +de Rham cohomology groups de- 
fmed by differential forms and the tsingular 

cohomology groups delïned by singular co- 
chains (- 105 Differentiable Manifolds). 

S. Gel’fand-Shilov Generalized Functions 

Let E and F be tlocally convex spaces for 
which a continuous linear injection i: E-+F 

with dense range is defined. Then the dual i’ : 
F’+ E’ is a continuous linear injection with 

weak*-dense range. Therefore if we shrink the 
function space E, we obtain a larger space E 
of continuous linear functionals. Gel’fand and 

Shilov [4] introduced many function spaces 
E, called fundamental spaces or test function 
spaces, and detïned corresponding spaces E’ of 
generalized functions. Their motivations were 
in applications to the theory of partial dif- 
ferential equations, where Fourier transforms 
play an essential role and Schwartz’s frame- 

work of tempered distributions is too restric- 
tive. They considered a pair of function spaces 

E and E” such that the Fourier transformation 
9 : E-+E” is an isomorphism of locally convex 
spaces. Then the Fourier transformation de- 
lïned to be the dual of 9 gives an isomor- 
phism E’+E’ of spaces of generalized func- 

tions. The function spaces E and E” are often 
spaces of entire functions, SO that the Gel’fand- 
Shilov generalized functions are not neces- 
sarily localizable in R”. As typical examples of 
spaces E and E we shah mention only spaces 

of type S in the next section. 
L. Ehrenpreis’s analytically uniform spaces 
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[ 123 are also a class of generalized function 
spaces introduced from a similar point of view. 

T. Spaces of Type S 

Let c(, B, A, B, x, and B be n-dimensional 

vectors. By A > B we mean Aj > Bj ( j = 1, . . , n). 
We use notations AP= A~I A$, pp’ = pfl”l 
pp. (i) For c( > 0, A > 0 the space S,,, consists 

of a11 C”-functions cp such that seminorms 

pq,~(b?)=supsup’x~~‘)’ 
x P 

(10) 

are fïnite for a11 A >A and q. For example, 
S,,, is the space of a11 functions of class C” 
with support in {xl Ixjl < Aj,j= 1, ,n}. (ii) 
For /J 2 0, B > 0 the space SP,B consists of a11 

C”-functions <p such that the seminorms 

y,.,(rp)=supsup’X~q~~)’ 
x 4 

(11) 

are finite for a11 B > B and q. (iii) For X, fi > 0 
and A, B > 0, the space S!.,j consists of a11 C”- 
functions such that the seminorms 

Ix”~4dxl 
Pa,B(<P)=suPsuPsuP ~ ~ 

x P 4 
APBqpPaq4P (12) 

are finite for a11 2 > A and B > B. The topol- 
ogies for these spaces are given in terms of 
the seminorms (lO), (1 l), and (12), respectively. 
These spaces are generically called spaces of 
type S. 

F(sc,A)=Sm~A (c( > 01, 

SqP) = s p,s (P>O)> 

qs,p.j> = $y A p.s b+B> 1). 

F(S,,,) = SO-A’, 

~(s”~B)=so,,~, 

LF(S,4’$ = s;; ;, ’ (x+8=1), 

where A’= Aexp( l/A) and B’= Bexp( l/B). 
We set S, = U Sa,A, SP = U SP,B, and Si = 

u S!,?> where A and B range over a11 positive 
n-dimensional vectors. Si # {0} if and only if 
one of the following conditions is satisfied: (i) 
cr+/?> 1, CC>~, b>O;(ii) c(> 1, D=O; (iii) a=O, 
/3 > 1. In such a case the space S!’ of general- 
ized functions contains the tempered distribu- 
tions F(R”). 

U. Ultradistributions 

The localizing property of distributions is 
proved mainly from the existence of ?Partitions 
of unity by functions in 9. Therefore if a test 

function space admits partitions of unity, the 
corresponding class of generalized functions 

forms a sheaf. Roumieu [S] took the space 
giMO; (fi) of +ultradifferentiable functions of 
class {M,} with compact support. We cari also 
use the space gcMl,(0) of class (M,). The cor- 
responding generalized functions are called 
ultradistributions of class {M,} and of class 
(M,), respectively. Here M, is a sequence of 
positive numbers satisfying the logarithmic 

convexity Mi < Mo-, M,,, and the Denjoy- 
Carleman condition C MP/M,+, < 03. 9jMpl(R) 
(resp. 9,,p>(fl)) is the space of a11 functions 
<PEI such that there are constants k and 
C (resp. for any k > 0 there is a C) for which 

we have ID”<p(x)l< Cki”lMIaI. In particular, 
the Gevrey classes {s} = {p!“} and (s)=(p!‘) 
detïned for s > 1 are important, and they ap- 
pear often in theory of differential equations. 

Almost a11 results for distributions have been 
extended to ultradistributions under appropri- 

ate conditions on M,, which are satisfïed by 
Gevrey sequences p!” (- [ 143 in particular). 
Closely connected are A. Beurling’s test func- 

tion spaces 9,(n) (- [ 13]), where w  is a func- 
tion on R” continuous at the origin, satisfying 
O=ru(O)<w(<+a)<w(t)+~(q) for a11 5 and q 
in R” and such that ~w(<)(1+1<1)~“~‘d~< 10. 
SU(Q) is defïned to be the space of a11 VE~(R) 
such that the Fourier transform @ satistïes 
~[@(~)lexp(iw(~))d<< CU for any 1>0. If w(t) 
=log(1+1<1), then sU=9; ifw(t)=ltllis, then 
gw = GBcsj. Let W(t) =w( - 5). The space 9;(Q) 
of Beurling’s generalized distributions is defïned 

to be the strong dual of 9&). 

V. Hyperfunctions 

In this and the following sections we mean by 
a cane r c R” a convex open cane with vertex 

at 0. For two cones r, A, we Write Ac r if 
An S”-’ is relatively compact in r n S”-‘, where 

S”-‘={~x~=l}.Byawedgewemeananopen 
subset of C” of the form Q + il-, where R c R” is 
an open subset and r c R” is a cane. r is called 

the opening of the wedge and R its edge. By an 
inhitesimal wedge (0-wedge for short) or a 
tuboid of opening r and edge R, we mean a 
complex open set U such that U c R + il- and 
that for any A E r, U contains the part of 

R + iA which is contained in some complex 
neighborhood of the edge 0. The symbol R+ 

il-0 Will represent any one of such open sets, 
and 0(fi + il-O) (the inductive limit of) the total- 

ity of functions holomorphic on some of them. 
A byperfunction f(x) on an open set R c R” 

is an equivalence class of forma1 expressions of 
the form 

f(x) = j$ qx + qo)> (13) 

where c(z) E fl(Q + iQ0). {F;(z)} is called a set 
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of defïning functions of f(x). Here the equiva- 
lente relation is given as 

(14) 

if ‘;n r, #a, that is, we cari contract two terms 
into a single term as above and, conversely, 
cari decompose, if possible, a term in the 
inverse way. These are considered to be modi- 

fications of the expression of the same hyper- 
function. The totality of hyperfunctions on fi 
is denoted by a(Q). It is a linear space by 
virtue of the linear structure naturally induced 
from that of holomorphic functions, combined 

with the above equivalence relation. 
The symbol 4(x + iQO), which represents by 

itself a hyperfunction, is called the boundary 
value of Fj(z) to the real axis. It is merely 
forma1 and does not imply any topological 
limit, though there is some justification for the 
terminology as Will be seen in Section Z. 

In the case of one variable, we have only 
two kinds of wedges R+iR’, hence a hyper- 
function cari be expressed by two terms: 

F+(x+iO)-F-(x-i0). (15) 

Some examples of hyperfunctions of one vari- 

able are 6(x)= -(27~i)~~((x+iO)~~-(x-i0)-‘); 
l(x)= -(27q(log( -x- iO)-log( -x+ i0)); 
Pfx~‘=((x+iO)~‘+(x-iO)-‘)/2. 

W. Localization of Hyperfunctions 

If R’c fi is an open subset, the restriction 
mapping vB(fi)-tB(Q’) is induced from that for 
holomorphic functions. With this structure the 

correspondence RH~(R) becomes a tpresheaf. 
It is in fact a sheaf, because it cari be expressed 
by the terminology of relative (or local) co- 

homology as follows: Let Hn(C”, 9) denote 
the kth relative cobomology group of the pair 
(C’, C” \ 0) (also called the kth local coho- 
mology group with support in R) with coeffl- 
cients in a sheaf .p on C”. (It is by definition 
the kth tderived functor of F H rJCn, S) = 
the totality of sections of .F defïned on a 

neighborhood of R and with support in Q and 
is calculated as the kth cohomology group of 
the +complex ro(Cn, c;P), where Y denotes any 

flabby resolution (i.e., tresolution by tflabby 
sheaves) of 9.) Let Xi.(T) denote the kth 
derived sheaf of 5 to R”. (It is by definition the 

sheaf on R” associated with the presheaf 
RH HA(C”, 9).) Then the cohomological 
definition of the sheaf of hyperfunctions is UA 

=X~~(O) (the orientation being neglected). A 
fundamental theorem by Sato says that R” 
cc” is purely n-codimensional with respect to 

6 (i.e., %$(m) = 0 for k #n), and moreover 
Hk(C”, 0) = 0 for k # n for any open set R c R”. 
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Then by the general theory it cari be shown 

that the remaining Hk(C”, 6) agrees with the 
section module g(Q) of Y?{~(S). Since H”( V, CO) 
=0 for any open set Vc C” (B. Malgrange), it 

follows further that the sheaf g is flabby, i.e., 
its sections on any open set cari always be 
extended to the whole space. 

If U is a ‘%tein neighborhood of R, then 

H&(Cn, 8) cari be expressed using the covering 
cohomology as the quotient space 

O(U#fi) f o("#jR), (16) 
j=l 

where 

U#n={z~UIpr,Jz)$pr,JR) for all k}, 

U#jR={zEUlprk(z)$prk(R) for k#j}, (17) 

and prk is the projection from c” to the kth 
coordinate. Then the isomorphism HA(C”, 0) = 
B(Q) is induced by the correspondence 

=CsgnaF(x+ir,O)E~(n), (18) 
0 

where r, is the a-orthant {y~R”la~y~>O,j= 

1, . , n} and sgn 0 = ol c”. F(z) is called a 
delïning function of the corresponding hyper- 
function. For one variable, any complex neigh- 
borhood U 3 52 is Stein, and the above isomor- 
phism reads o( U \a)/@( U) = a(Q), from which 
the naturality of the sign in (15) follows. 

Thus the notion of support is also legitimate 
for hyperfunctions. The sheaf of hyperfunc- 
tions 33 does not admit partitions of unity as 
for 63’. It is, however, flabby. Consequently, 
given a decomposition of a closed set into 

locally finite closed subsets E = UAEAEA: and 
a hyperfunction f with support in E, we cari 

always fïnd hyperfunctions fi with support in 
E, such that ,f= Ci,,,,&. For distributions this 
property holds only under some regularity 
assumption for the decomposition. 

There are several practical criteria to deter- 
mine whether or not a hyperfunction is zero in 
some open set R. These are called the edge of 
the wedge theorem. A hyperfunction F(x + iT0) 
with single expression is zero if and only if F(z) 
itself is zero. F,(x + iT,O)=F,(x+ ir,O) if and 

only if they stick together to a function in O(n 
+ i(T, + r,)O) (Epstein type). (Note that rl + r, 

is equal to the convex hull of rl U r,, e.g., r + 

(- r) = R” (Bogolyubov type).) z;, 4(x + iqo) 
=0 if and only if there exist Gjk(z)~O(R+t(q+ 
r,)O), j, k = 1, , N, such that Gj,(z) = Gkj(z) 
and Fj = C:=I Gj,, j = 1, , N (A. Martineau 
[ 191). These are interpretations of cohomology 
in terms of coverings and have global variants 

concerning the envelope of holomorphy. 
The real analytic functions <p E &(a) on Q 

are naturally included in &Y(Q) via the ex- 
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pression cp(x + ifO) for any I or with I = R”. 
They form a subsheaf. Let S be a hyperfunc- 
tion on !2. The complement in R of the largest 

open subset R’ c R, where f(x) is real analytic, 
is called the singular support of f(x) and is 
denoted by singsuppf: If R is bounded and 

sing supp f c K, then we cari choose an ex- 
pression of the form (13), where Fj(z) cari be 
continued analytically to 0 \ K. If suppf~ K, 

then these Fj(z) satisfy C Fj(x) = 0 on R \ K in 
the usual sense. 

X. Operations on Hyperfunctions 

The derivatives of a hyperfunction f(x) with 
the expression (13) are defïned through the 

defïning functions as D”~(X) = C(Dj’FJ(x + 
irjO). The product by a real analytic function 

$(x) is defined by Il/(x)f(x)=C(t,hFj)(x+iqO). 
Combining these, we have the operation of a 
hnear partial differential operator with real 
analytic coefficients P(x, D) on hyperfunctions. 
It is a kheaf homomorphism. 

Let fi 8(n) and D c !2 be a compact 
set with piecewise smooth boundary. If 
singsuppfn ÛD = a, then by means of the 
special expression (13) mentioned at the end of 
Section W the definite integral is defmed as 

where Dj is a path deformed from D in such a 
way that 8Dj = I~D and Fj(z) is holomorphic on 
Dj. The result is independent of the choice of 
deformations or of the boundary value ex- 
pression employed. 

If suppfc D, the result is also indepen- 

dent of D; hence it cari be written as jRnf(x)dx. 
If f(x, t) is a hyperfunction of the two groups 
of variables (x, ~)ER x V such that singsuppfn 
C?D x V= @, then the integral sDf(x, t)dxc 

B,(V) is deiïned by the same method. It com- 
mutes with differentiation or integration with 
respect to t. 

If f(x) = C Fj(x + iqO), g(x) = C Gk(x + iA,O), 
then we cari define the product by f(x)g(x) = 
C(F,G,)(x + i’; n AkO) under the assumption 
that 5 n Ak # @ for every pair j, k. Especially, 
the product f(x)g(t) is always legitimate for 

two hyperfunctions depending on different 
groups of variables. (It cari also be interpreted 
as the tensor product.) 

A real analytic coordinate transformation 
x =D(X): fi+fi extends naturally to a holo- 
morphic coordinate transformation z = CD(Z) 
on a complex neighborhood. A 0-wedge R + 
il-0 is transformed by mm1 to a twisted wedge 

containing, for each x E R and Ac I, a O- 
wedge fi2 + i(D@-‘),A0 with some (real) neigh- 
borhood fi2 of X=@-‘(x), where (DW’), is the 
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derivative or the Jacobian matrix of the map- 
ping W’ at x. Thus the pullback @*f(x) = 

.f(@(x))~B(n) off(x)EYB@) by the transforma- 
tion x=@(X) cari be delïned by substituting 
z=@(i) into the defïning functions. It is consis- 

tent with the defmition of the coordinate trans- 
formation for real analytic functions. Also, the 
law of the change of variables for the definite 
integral is the same as that for real analytic 
functions. This cari be extended to the general 
operation of substitution as mentioned in Sec- 
tion Q for distributions or even to much more 
general operations (- Section CC). 

The convolution (f*g)(x)=J,.f(x-t)g(t)dt 
is defïned under the same assumption on sup- 
port as in the case of distributions. It cari be 

detïned either literally as the composition of 
the above operations, or directly by way of the 
defining functions: For example, if g has com- 

pact support e D and C Gk(x + iA,O) is an 
expression as mentioned at the end of Section 
W, then by choosing a suitable deformation Dk 
of D, we have 

cf*m=; 
. FS 

Fj(z-t)G,(z)dt 
4 1 z-x+i(r,+&)ll 

Y. Hyperfunctions and Analytic Functionals 

The totality .%[K] of hyperfunctions with sup- 
port in a compact set K becomes a nuclear 
Fréchet space. It is the dual of the nuclear 
(DF)-space .d(K) of real analytic functions de- 
fined on a neighborhood of K. Thus B[K] is 
the space of analytic functionals with +Porter 
in the real compact set K. The duality is given 

by the definite integral (h vo> = JRnf(x)q(x)dx 
for ~EB’[K] and <PE~T~(K). A sequence {h(x)} 
in g[K] converges if and only if it admits an 
expression (13) for a common fïxed set of O- 
wedges R + iIjO, j = 1, , N, such that the 

defïning functions Fkj6 0(!2 + iq0) are also 
holomorphic on a fïxed complex neighbor- 
hood U of R\ K and converges locally uni- 
formly in R + i?OU U, where !2 is a (real) 
neighborhood of K. 

B[K] is isomorphic to HK(C”, O), and 
the above duality is a special case of the 
Martineau-Harvey duality HR(C”, 0) =O(K)’ 
for a Stein compact set K c c”. In the l- 
dimensional case this is due to G. Kothe. If 
K = [a,, b,] x . x [a,, b,], then HR(C”, 0) cari 

be represented, including the topology, by the 
quotient space 

O(UKK) 
I 

E O(U#jK), j=l 
where Ii is a Stein neighborhood of K and 
U # K, U #j K are detïned in the same way as 

(17).IfwechooseU=U,x...xU,,thenby 
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way of a defïning function F(~)E G( U # K) for 

f~%?[Kl the inner product is given by the 
contour integral 

=(-1)” 
4 f 

. . . F(z)<p(z)dz, . ..dz., 
Y1 Y. 

where yjc Uj is a closed path surrounding 
[a,, bj] once in the positive sense. Similar inte- 

gral formulas are known for some special K 
of various types. 

Starting from analytic functionals we cari 
reconstruct the sheaf of hyperfunctions. For 
example, we cari put @fi) = the totality of 
locally fïnite sums of analytic functionals with 
porter in Q modulo the rearrangement of 
supports by decomposition (Martineau 1171). 
If R is bounded, we cari also put 3??(n) = B[al/ 

B[an] (Schapira [lS]). The proof of local- 
izability and/or flabbiness is based on the 
decomposability of support (which is the dual 
of the exact sequence O+d(KU L)+&(K) @ 

&‘(L)-+d(K nL)+O) and the denseness of 
B[K] c g[L] (which is the dual of the unique 
continuation property O-+&(L)+.&(K)) for a 
pair K c L with the same family of connected 
components. Note that in no way is the topol- 

ogy of UA[K] localizable, or equivalently, B(Q) 
does not admit a reasonable topology. 

Z. Embedding of Distributions 

As the dual of the natural mapping d(K)+ 

g(K) we have the topological embedding 
&‘(K)ç&‘(K)‘=IA[K]. This embedding con- 
serves the support and hence gives rise to an 
embedding of sheaf 3’c+B (R. Harvey). 

For a distribution T with compact support 
a set of its defïning functions as a hyperfunc- 
tion is given by F,(z) = T,( W(z -x, I-J), 0 being 

the multisignature, where W(z, I,) =j& or, 
W(z, w)do and W(z, w) is the component of a 
Radon decomposition of S(x) (- Section CC). 

If supp Tc K = [a,, b,] x . . . x [a,, b,], then 
as a hyperfunction it is represented by the 
following element of O(C” # K): 

( 1 

F(z)=T, (27ri)n(X1-ZJ...(X,-Z”) > 
(19) 

It is in fact in O((P’)” #K) and vanishes at 
infïnity, where P’ =Cl U {a} is the Riemann 

sphere. These formulas are valid also for hyper- 
functions, and they give defïning functions of 
some canonical types. Especially, the one given 
by (19) is called the standard defining function 

and is characterized by the foregoing prop- 

erties. 
For the above-mentioned defïning functions 
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for a distribution T, we have the following 
convergence in the sense of distributions on 
R”: 

TX = 1 sgn 0 hfo F,(x + iay,) for y,EI,. 
c 

More generally if the limit 

Clj$~q(x+kÿi) for yjsTj (20) 

exists in g’(Q), then the distribution deiïned as 
this limit admits {e(z)) as a set of detïning 

functions when it is considered as a hyper- 
function. However, for an arbitrary set of 
defïning functions for a distribution, (20) does 
not necessarily converge in 3’(sZ). (This is be- 
cause we cari add terms with any bad behavior 
which cancel each other formally.) If a distri- 
bution admist the boundary value expression 
with only one term, or if the dimension is one, 

then the convergence of (20) in B’(0) neces- 
sarily holds. 

The convergence of (20) in Y(Q) is equiva- 

lent to the locally uniform estimate for the 
detïning functions of the type 4(z) = O( lyl m”) 
for some M > 0. These assertions cari be gener- 
alized to ultradistributions. For %$M,)(R) 
(resp. glM,r (0)) the last growth condition for 
the deiïning functions reads as follows: 4(z) = 
O(expM*(L/ly[)) for some L (resp. every L>O), 
where M*(p) = sup,log(pPp!M,/M,); espe- 
cially for M,= p!” we have M*(p) - p’““-‘r. 

AA. Hyperfunctions on a Real Analytic 
Manifold 

Sticking the hyperfunctions on coordinate 
patches by the transformation law mentioned 
in Section X, we cari define the sheaf of hyper- 
functions on a real analytic manifold. More 
generally, for a real analytic vector bundle 
over a real analytic manifold, we cari consider 
the sheaf of its hyperfunction local cross sec- 

tions, which is also flabby. Thus, especially 
on a real analytic manifold M, we cari obtain 
a concrete flabby resolution of the constant 

sheaf C, of length dim M by the sheaves of 
differential forms with hyperfunction coeflï- 
cients: O+C,-+~~‘~~~)O,. +@jimM)+O. 

With this sequence we cari calculate the rela- 
tive cohomology groups of open pairs with 
coefficients in C by an analytic method. This 
is an extension of the de Rham theory for 

distributions [ 161. 
If M is a compact manifold equipped with a 

nowhere vanishing real analytic density glob- 
ally deiïned on h4, then we have the topolog- 

ical duality B(M) = d(M)‘. The inner product 
is given by the defïnite integral with respect to 

the density. 
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The Fourier series is an example of hyper- 
functions on real analytic manifolds. The series 

C c,exp(2nipx) converges in B(T”) and defines 
a periodic hyperfunction if and only if cP is of 
infra-exponential growth, i.e., cP = O(&) for 
any E > 0. T” has the global complex neighbor- 
hood (PI)“, and f(x)~@T”) has the corre- 
sponding boundary value expression 

which represents the terms in the Fourier 
series such that ajpj > 0. 

BB. Fourier Hyperfunctions 

In place of Y we take as the basic space the 
space Y* of exponentially decreasing real ana- 
lytic functions in the sense of M. Sato [ 151: 
.f(x)~ Y* if and only if there exist 6 > 0 and 
E> 0 such that for any 6’<6 and L<E, f(x) 

extends holomorphically to the neighborhood 
{ Im z 1 < 6’) of the real axis and has order 
O(e- “IRez’) there. UP, is endowed with the struc- 
ture of nuclear (DF)-space via the inductive 

limit for 6 > 0, E > 0. The classical Fourier 
transform 9 acts isomorphically on Y*. (In 
fact, 6 and E change their roles under F.) The 

strong dual of Y.. is called the space of Fourier 
hyperfunctions and is denoted by 9. It is a 
nuclear Fréchet space. It contains Y” as a 
dense subspace in view of the continuous 

and dense inclusion Y* ~9’. It also contains 
classical locally integrable functions of infra- 
exponential growth, i.e., of order & for any 
E > 0. Thus by the duality we obtain a wider 
extension of Fourier transformation on 9. 

In the following a 0-wedge of the form R”+ 
iT0 Will be called a 0-wedge of the form D” + 

iT0 at the same time if it is a tubular domain 
(i.e., with fïxed imaginary part l-0). Then an 
element f(x) E 02 cari be expressed in the form 
(13), where each Fj(z) is holomorphic in a O- 
wedge D” + irjO and is of infra-exponential 
growth there locally uniformly in Imz. The 
inner product of such f(x) with ~DEP.+ is given 
by the definite integral 

s 
.fwP(x)~x= E 

s 
Fj(z)<p(z)dz> 

j=l h=y, 

where the yje rjO are tïxed. Given a cane A we 

deiïne its dual cane by A”={~ER”I(Q~)>O 
for a11 YEA}. If F,(z) are a11 of exponential 
decrease in Re z locally uniformly with respect 
to ImzETjO and Rez/lRezl$A”, then the de- 
finite integral 

G([)=(&)-n e-‘Xrf(x)dx 
s 

emizrFj(z)dz (21) 
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converges locally uniformly for 5 in some O- 
wedge D” - iA0, and defines there a holo- 
morphic function of infra-exponential growth. 

Thus we obtain a Fourier hyperfunction 
C(c - iA0) that agrees with Ff calculated by 
the duality. For a general f(x)E?& the Fourier 
transform in the manner of Sato is calculated 
as follows: First we decompose f(x) into the 
sum C fk(x) for which the defining functions 
of fk(x) decrease exponentially outside A:. 
Then we calculate G,(c) by (21) and put Ff = 

C Gk(< - iA,O). An example of such decom- 
position is given by multiplication by x,(x) = 

l-I;=, l/( 1 + expajxj), which decreases expo- 
nentially outside r,= {gjxj>O}. 

The relation between 9 and 99 is more com- 
plicated than the relation Yc,9’(R”). The 
growth condition for b! is interpreted as a 
condition concerning germs at infinity. Thus 9 

cari be considered to be a sheaf on the direc- 
tional compactification D”=R” U SQ:’ such 

that -2 1 Rn = B. Just as the sheaf D is obtained 
from fl, the sheaf 2 is obtained as the nth 
derived sheaf X&(d) from the sheaf 8 on 
D”+ iR” consisting of germs of holomorphic 
functions of infra-exponential growth with 

respect to Re z. We have Hk(D” + iR”, 8) = 0 
for k # n for any open set R c D”. Especially, 9 
is flabby, and the decomposition of support is 
available to calculate the Fourier transform. 
The symbol b! employed at the beginning to 
express the global Fourier hyperfunctions 
corresponds to Z?(D”), and O1(R”)=B(R”) by 
detïnition. The canonical restriction mapping 
$(D”)+B(R”) is surjective but not injective. 

As for tempered distributions Y’, we cari 
introduce various subclasses of Fourier hyper- 
functions, e.g., exponentially decreasing Fourier 

hyperfunctions Ua,o exp( -a-)9, real 

analytic functions of infra-exponential growth 
B(D”), etc. ,We cari also consider operations 
such as convolution and multiplication be- 
tween adequate pairs, and apply differential 

operators with suitable coefficients. Concern- 
ing these we cari avail ourselves of the same 

formulas as given in Section 0. 
A hyperfunction with compact support is 

naturally considered as a Fourier hyperfunc- 
tion, and its Fourier transform agrees with the 

inner product (f(x), (fi)-“exp( - ix<)), 
which gives an entire function of exponential 

type. 
Paley-Wiener theorem. An entire function 

f(l) is the Fourier transform of a hyperfunc- 
tion with support in a compact convex set K 
in R” if and only if it satisfïes condition (i) of 
Section 0. 

The theory of Fourier hyperfunctions de- 

scribed above is mainly due to Sato and T. 

Kawai [20]. They are not the largest class of 
generalized functions stable under the Fourier 
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transformation. Following a suggestion of 
Sato, S. Nagamachi and N. Mugibayashi, Y. 
Saburi, and Y. Ito have extended them to the 
modifïed Fourier hyperfunctions in which the 
radial compactitïcation Dz” of C” is employed 
instead of the horizontal compactification 

D”+ iR” in the above theory. If we discard 
the localizing property, they cari be extended 
further to the Fourier ultrahyperfunctions or 

ultradistributions of J. Sebastiao e Silva (1958), 
M. Hasumi (1961), and M. Morimoto (1973). 

CC. Micro-Analyticity of Hyperfunctions 

The boundary value expression (13) for a 
hyperfunction ,f’(x) cari be interpreted con- 
versely as the description of the state of ana- 
lytic continuation of ,f(x) to the complex do- 
main. Thus we say that ,f is micro-analytic at 

(x,,, &,) if on a neighborhood of x0 it admits 
the analytic continuation into the half-space 
(Im z, tO) < 0 in the sense that it admits an ex- 
pression (13) satisfying r,n { (Im z, CO) < 0) # 

0 for every j. The set of points (x,,, <,)EQ x 
SE-‘, where f~g(fi) is not micro-analytic, is 
called the singularity spectrum or singular 
spectrum off and is denoted by S.S.f: We have 
by definition S.S.F(x + iTO)c R x (P n F-l). 
Micro-analyticity cari be characterized by the 

Fourier transformation as follows: fis micro- 
analytic at (x,, &,) if and only if there exists 
a Fourier hyperfunction g(x) such that the 

Fourier transform y(<) decreases exponentially 
on a tconical neighborhood of [, and that 
,f- 9 is real analytic on a neighborhood of 
x0. A hyperfunction f(x) is real analytic in a 
neighborhood of x0 if and only if it is micro- 
analytic at (x0, 5) for any 5 ES”-‘. 

With this notion we cari clarify the oper- 

ations on hyperfunctions. (In the following 
S’-’ is identifïed with (R”\{O})/R+ and + 
denotes the sum in the latter.) We have 

=wg) c { tx, 14 + (1 - 49) I(X> 5)E S.S.L 

(x,~)ES.S.g,06Â.~1}US.S.fUS.S.g, 

=V(W)) = {<K ‘D@Z) I tW35)~ S.S../-)> 

and these operations are legitimate if and only 
if 0 does not appear in the direction compo- 
nent of the right-hand side. We also have 

S.S. f(x,t)dxc{(x,<)1(x,t,&O)~S.S.fforat}, 
s 

S.W*s)= {@+y, t)ltx, 5)ES.S.f, (Y> 5kS.S.B) 

under suitable conditions for support. 
The classical decomposition formula of 

Radon (or the plane wave decompostion of 6) (qx)= b- *Y s dw 

(-27ci)” snm~ (xw + i0) 

cari be interpreted as the decomposition of 
6 into hyperfunctions with S.S. in the single 
direction w. By the convolution, this formula 

supplies similar decomposition for a general 
hyperfunction (called the singular spectrum 

decomposition). (22) cari be generalized to 

qx)= k-l)! 
s 

dettgrad,, Vx, 4) dw 

(-27ci)” snm~ (@(x, OI) + i0)n ’ 
(23) 

where the twisted phase @(x, w) satistïes (i) 

Q(x, w) is a real analytic function of positive 
type (i.e., Re @(x, w) = 0 implies Im 0(x, w) B 0) 

and (ii) @(x, w) is homogeneous of order 1 in w  
and @(O, w) = 0, grad,@(O, w) = w; and the 
vector Y(x, w) is such that (Y(x, w), x) = 
@(x, w). If @(x, w) further satisfies @(x, w) #O 
for x #O, then the component becomes a 
hyperfunction (even a distribution) of x whose 
S.S. is precisely one point (0, w), and this fact is 

useful in theoretical applications [7,21] (- 274 
Microlocal Analysis). 

DD. Structure Theorems of Hyperfunctions 

A hyperfunction whose support is concen- 

trated at the origin is expressed as the infï- 
nite derivative J(D)G(x) = 2 a,DPG(x) of the 
Dirac measure, with the coefficients satisfying 
lim( la,lP!)“lPI = 0. Such an operator J(D) is 
called a local operator with constant coellï- 

cients and acts on g as a sheaf homomor- 

phism. Its total symbol 5(l) is an entire func- 
tion of infra-exponential growth or of type 
[ l,O]. By way of such an operator, a general 
(Fourier) hyperfunction cari be written in the 
form J(D)g(x) with a continuous function on 
R” (of infra-exponential growth). 

IfO’csuppfc{(v,x)>O}, then SSps(O, rtv) 
(Holmgren type theorem of Kashiwara and 
Kawai), and furthermore, the direction compo- 

nent of S.S.f at 0 has the form of { kv} UP-‘(E) 
with some EcS”-‘, where p:S”-‘\{ kv}-+ 
S’-’ is the projection to the equator (the 
watermelon-slicing theorem of Morimoto, 
Kashiwara, and K. Kataoka). E is called the 
reduced S.S. of j” at 0. These theorems have 
many applications in the theory of linear par- 
tial differential equations and also in physics. 

A hyperfunction f(x) with support in the 
hyperplane x, =0 has several further remark- 

able properties in x,. It admits a forma1 ex- 
pansion of the form CgOfk(~‘)fi’k’(~,), where 

x’=(~~,...,x,~~)and,f,(x’)=~~,,f(x)x,k/k!dx,. 
The sum converges in the sense of the topol- 

ogy if f has compact support. It reduces lo- 
cally to a tïnite sum if f is a distribution, and 
the kth term represents the k-ple layer distri- 

bution of mass, electric charge, etc. For a 
general f the coefficients { ,&(x’)} do not neces- 
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sarily determine A though they are determined 

by1: 

EE. Complex Powers of Polynomials 

Among examples of special generalized func- 

tions the most important are those of the form 
y$, where f+ = max { f(x), 0} (or more generally 
it cari be replaced by zero on some connected 

components of {f(x) > O}), and 1. E C denotes a 
holomorphic parameter. (The discussion is the 
same for f- =max{ -f(x), O}.) The simplest 
example, x :, is detïned as the analytic con- 
tinuation of the locally integrable function x$ 
for Re?, > - 1 by repeated use of the formula 
x+ =(À+ l)-‘D,x:+‘, and becomes meromor- 
phic in 3, with simple poles at n = -1, -2, 

As a hyperfunction we have x< = { ( -x + i0)” - 
(-x - i0)“}/2isin rri. At a negative integer À = 
-n, x: has residue (-1)“-‘6(n~‘)(x)/(n- l)! 
and tïnite part [ -(27~i))~z~“1og( -z)]. The 

latter is often denoted by x;“. In general, for 
a germ of a real-valued real analytic func- 

tion ,f(x) we cari tïnd a differential operator 
P(i, x, 0,) with polynomial coefficients in ,? 
and a monic polynomial b(i) of minimum de- 
gree such that 

PG, x, Qf:” = b(4.f: (24) 

(Sato, 1. N. Bernshtein, Kashiwara, J.-E. Bjork 
[22]). This formula gives the analytic con- 

tinuation of ,f$ just as for x: The polyno- 
mial h(3,) is called the h-function or the Sato- 
Bernshtein polynomial and contains valuable 
information regarding the singularity off: It 

has only negative rational roots (Kashiwara). 
We have,f.fi=fi+‘; hence ,f;’ -f:’ (suit- 

ably interpreted as above) gives a solution of 
the division problem u.,f = 1. Thus if f is a 

polynomial, its inverse Fourier transform gives 
a tempered fundamental solution of ,f( -iD). 
Furthermore, when ,f is the relative invariant 
of a tprehomogeneous vector space, we cari 
calculate h(1) explicitly by way of the holo- 
nomy diagram. Also, the Fourier transform of 

f$ cari be calculated exphcitly by way of the 
real holonomy diagram as a hnear combina- 

tion of the corresponding abjects for the dual 
prehomogeneous vector space with coefficients 

similar to the +Maslov index. The simplest 
example is 

Among practical examples are the following 

classical formulas: Let P(x) be a nondegener- 

ate real quadratic form and Q(t) its tdual 
form, and let q denote the number of negative 
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eigenvalues of P(x). Then 

9-p: = -(J2?r)-“22~+“*“‘2~‘r(n+ l)I-(A+n/2) 

x IdetPI-1/2{sinrt(~+q/2)Q;“-“‘2 

Here the arguments in the F-factor (A+ l)(i + 
n/2) give the b-function of P(x). If q = n - 1, 
we further have, letting PT& = P: l( k (x, v)) 

for an eigenvector v corresponding to the 
unique positive eigenvalue, 

.Fpf* =(271)-ni2221+n-l=“12~1r(‘+ 1) 

+,b=i(~+n/2)Q;--fl/2 +Q‘A-“,2), 

From these formulas (taking the fïnite part if 
necessary) we obtain the fundamental solution 
of the wave equation, the Laplacian, and their 
iterations. These are exactly the distributions 

introduced by Hadamard, M. Riesz, and 
others, as mentioned in Section A (- Appen- 
dix A, Table 15.V). 
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Dynamical Systems 

A. History 

The theory of dynamical systems began with 
the investigation of the motion of planets in 
ancient astronomy. Qualitative investigation 
of mechanics in antiquity and the Middle Ages 
culminated in the work of J. Kepler and G. 

Galilei in 17th Century. At the end of that 
Century, 1. Newton founded his celebrated 

Newtonian mechanics, by means of which 
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Kepler’s law on the motion of planets and 
Galileo’s observations of movement cari be 
explained theoretically. Following this, L. 
Euler, J. L. Lagrange, P. S. Laplace, W. R. 

Hamilton, C. G. J. Jacobi, and others devel- 
oped the theory using analytical methods, and 
founded analytical dynamics. From the end of 
the 18th Century through the 19th Century, the 

tthree-body problem attracted the attention of 
many mathematicians. At the end of the 19th 

Century, H. Bruns and H. Poincaré found that 
general solutions of the three-body problem 

could not be obtained by tquadrature, and this 
gave rise to a crisis of analytical dynamics. But 
this was resolved by Poincaré himself. He 

pointed out the importance of the qualitative 
theory based on topological methods, and 
obtained many fundamental results. A. M. 
Lyapunov with his theory of stability and 
G. D. Birkhoff with his many important con- 
cepts of topological dynamics established 
foundations of the new qualitative theory. 

In 1937 A. A. Andronov and L. S. Pontryagin 
introduced the concept of structura1 stability, 

which attracted the attention of S. Lefschetz. 
Lefschetz’s school investigated structura1 sta- 
bility and tnonlinear oscillations, and obtained 
many important results (H. F. de Baggis, L. 
Markus, M. M. Peixoto, and others). In about 

1960, S. Smale initiated study of differentiable 
dynamical systems under the influence of Lef- 
schetz’s school. Smale and his school founded 
a new theory of differentiable dynamical 
systems using tdifferential topology. D. V. 
Anosov generalized the work of E. Hopf and 
G. A. Hedlund on tgeodesic flows of closed 

surfaces of +Constant negative curvature and 
established the concept of Anosov systems, 
which played an important role in Smale’s 
theory. The work of Hopf, Hedlund, and 
Anosov is closely related to tergodic theory. 

Ya. G. Sinai and R. Bowen obtained impor- 
tant results in ergodic theory. The concept of 
structural stability and its generalization are 
essential in the +Catastrophe theory of R. Thom 
(- 51 Catastrophe Theory); the theory of bi- 
furcation of dynamical systems is another 
essential part of catastrophe theory. D. Ruelle 
and F. Takens proposed a new mathematical 
mechanism for the generation of turbulence 

using Smale’s theory and Hopf bifurcation. 
The new theory of dynamical systems devel- 
oped by Smale and others is now applied to 

the mathematical explanation of chaotic phe- 
nomena in many branches of science. Finally, 
we mention that in the 1960s A. N. Kolmo- 
gorov, V. 1. Arnold, and J. Moser obtained 
remarkable results on the existence of quasi- 
periodic solutions for the n-body problem, 

which turned out to salve the long-standing 
problem of the stability of the solar system. 
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B. Definitions of Dynamical Systems 

In the study of the evolution of physical, bio- 

logical, and other systems, we construct math- 
ematical models of the systems. Usually, the 
state of a given system is completely described 

by a collection of continuous parameters, 
which may be related in some cases. Thus the 
space X of a11 possible states of the system cari 
be regarded as a Euclidean space or a subset 
of a Euclidean space detïned by some equa- 
tions. In general, we assume that the space X 
of all possible states of the system forms a 

+topological space, and we cal1 it a state space 
or a phase space. Second, we assume that the 
law of evolution of states in time is given, by 
which we cari tel1 the state xi at any time ri if 
we know the state x,, at time t,. Assigning x1 

to x0, we have a mapping n(t,, t,):X+X for 
any times t, and ri, which satistïes the follow- 
ing conditions: (i) x(t,,t,)ox(t,,t,)=~(t,,t,); 
(ii) n(t,, to) = 1 x, the identity mapping of X. 
Finally, we assume that the mapping n(t , , to) 
depends only on t = t, -t,. Writing n, = 
n(t,, to) if t = t, -t,, we have the following 

conditions from (i) and (ii) above: (i’) rr, o n, = 
n s+f, s, teR; (ii’) rcO= 1,. 

In general, the theory of topological dynam- 
ics cari be regarded as the study of topological 
transformation groups (- 43 1 Transformation 

Groups) originating in the topological investi- 
gations of problems arising from classical 
mechanics. Here, we restrict our attention to 
some important special cases. 

(1) Let X be a topological space and R the 
additive topological group of real numbers. 
Let q :X x R-+X be a continuous mapping. 
For each t E R, we define a mapping <Pu : X*X 
by V~(X)= <p(x, t), X~X. If the family of map- 

piw J<PJ~~~ satisfies the following conditions, 
we say that (X, <p) is a (continuous) R-action, a 

(continuous) flow, or a (continuous) dynamical 
system on X, and that X is the phase space: 

(i) ~oso<p,=<p,+, for all s, tER; (ii) <pO= 1,. 
Let (X, cp) be a flow. Then <p,:X+X is a 

thomeomorphism with (cp,))’ = qmt for each 
t E R. For each x E X, defïne a mapping @: R-+ 
X by <p”(t) = <p(x, t), t E R. The mapping cp” is 
called a motion through x, and its image C(x) 
= {<p”(t) 1 t E R} is called the orbit or the trajec- 
tory through x. An orbit is nonempty, and two 
orbits are either identical or mutually disjoint. 

The family of orbits fills up the phase space X 
and is called the phase portrait. 

Let R, be the additive tsemigroup of all 

nonnegative real numbers. If we replace R by 
R, in the definition of a (continuous) flow, we 
obtain a definition of a (continuous) semiflow. 
For a semiflow (X, <p), the mapping <pr:X-tX, 

t E R + is in general not a homeomorphism but 
a continuous mapping. 
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Let (X, cp) and (Y, $) be flows. A homeo- 
morphism h: X+ Y is called a topological 

equivalence from (X, p) to (Y, $) if it maps 
each orbit of cp onto an orbit of $ preserving 
orientations of orbits (ie., there exists an in- 
creasing homeomorphism cr,:R-rR for each 

X~X such that h<p(x, t) = @(h(x), E,(t)) for a11 
t E R). Two flows are topologically equivalent if 
there exists a topological equivalence from one 
to the other. If two flows are topologically 
equivalent, their phase portraits have the same 
topological structure. Two flows (X, cp) and 

( Y, $) are flow equivalent if there exist a c > 0 
and a homeomorphism h : X + Y such that 
h<p(x, t) = $(h(x), ct) for all t E R. Such an h is a 

topological equivalence from (X, q) to (Y, $). 
(2) Let X be a topological space and Z the 

additive group of integers. If we replace R by 
Z in the definition of a continuous flow, we 

obtain a definition of a (continuous) Z-action, a 
discrete flow, or a discrete dynamical system on 
X. If (X, <p) is a discrete flow, then f= <pi :X+ 
X is a homeomorphism and <p,, =,f” for all 
n E Z. Conversely, for a given homeomorphism 
,f:X+X, define a mapping <p:X x Z-+X by 
<p(x,n)=f”(x), XEX and FEZ. Then (X,<p) is 

a discrete flow such that <P,, =f” for n E Z. SO 
we identify a homeomorphism with a discrete 

flow. Thus the orbit of a homeomorphism 
f:X+X through x is C(x)={,f”(x)In~Z}. 

Let Z + be the additive semigroup of all 

nonnegative integers. If we replace R by Z, in 
the defïnition of a continuous flow, we obtain 
a definition of a discrete semiflow on X. For a 
discrete semiflow (X, cp), the mapping <p,,: X+ 
X, y1 E Z + is in general not a homeomorphism 

but a continuous mapping. We cari identify 
a continuous mapping ,f: X +X with a discrete 

semiflow (X, <p) in a natural way as above. 
Let ,f:X-tX and 9: Y+ Y be two homeo- 

morphisms (continuous mappings). A homeo- 
morphism h:X+Y such that hof=goh is 

called a topological conjugacy from f to g. 
And f and g are called topologically conjugate 
if there exists a topological conjugacy from 
f to g. Topologically conjugate homeomor- 
phisms have the same phase portrait in a topo- 
logical sense. 

(3) Let M be a tdifferentiable manifold of 

class c’ (1 <r Q CO or r = w). A continuous flow 
(M, q) is a flow of class c’, a c’-flow, a differ- 
entiable dynamical system of class c’, or a 
one-parameter group of transformations of 
class c’, if <p : M x R-1 M is of class C. A semi- 

flow of class c’ is delïned similarly. 
Let (M, cp) and (N, $) be c’-flows. A topo- 

logical equivalence h : M -rN from (M, q) to 
(N, $) is called a C’-equivalence if it is a +C’- 
diffeomorphism. Two flows are C’-equivalent if 

there is a C’-equivalence from one to the other. 
Classification of c’-flows by C’-equivalence is 
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difïcult and sometimes too unwieldy to work 
with. On the other hand, there are many prob- 
lems which cari be solved by the knowledge 

of the topological structure of the phase por- 
trait of C’-flows. 

(4) Let (M, 7~) be a discrete flow on a dif- 
ferentiable manifold M of class C’. If 7-c: M x 
Z-+ M is of class C’, then (M, 7~) is called a Z- 
action of class C’, a discrete flow of class C’, a 
discrete C’-flow, or a discrete dynamical system 
of class C’. If (M, z) is a discrete C’-flow, then 
f= 7~~ :M+M is a C’-diffeomorphism. Con- 

versely, a C’-diffeomorphism f: M+M defines 
a discrete C’-flow in a natural way on M, and 
we identify a C’-diffeomorphism f: M+M 

with the discrete C’-flow on M defined by f: 
A discrete semiflow of class C’ is defïned simi- 
Marly, and a +C’-mapping f: M-M is identi- 
iïed with a discrete semiflow of class C’ on M 
defined by f: 

Letf:M*Mandg:NhNbeC’- 

diffeomorphisms (C’-mappings) of differ- 
entiable manifolds M and N of class c’. A 
topological conjugacy from f to g is called a 
C’-conjugacy if it is a C’-diffeomorphism. f and 

y are C’-conjugate if there is a C’-conjugacy 
from f to y. 

C. Examples and Remarks 

(1) Let D be an open set of R” and f:D+R” a 

continuous mapping. Consider the tautono- 
mous system of ordinary differential equations 

dx/dt=f(x), ~ED. (1) 

We assume that for each XED there exists a 
unique tnonextendable solution <p(x, t) with 

the initial condition <p(x, 0) =x defïned on a 
maximal interval (a,, b,), -cc <a, < 0 <b, < CO 
(- 3 16 Ordinary Differential Equations (Ini- 
tial Value Problems)). The set { <p(x, t)) a, < t < 
b,} is called the trajectory through x. By the 
uniqueness assumption, we have <p(cp(x, t), s)= 
cp(x, t + s) whenever both sides of the equality 
are defined. When (a,, b,) = R for a11 x E D, 
then equation (1) is called complete. If (1) is 

complete, the mapping cp : D x R+D defined 
by the solutions <p(x, t) determines a continu- 
ous flow (D, <p). Furthermore, if f is of class 

C’, then (D, cp) is of class C’. If (1) is not com- 
plete, then there exists a continuous positive 
scalar function a:D+R such that 

dx/dt=cc(x)f(x), ~ED, (2) 

is complete. The trajectories of (1) and (2) 
through x coincide for a11 ~ED, and thus the 
phase portraits of (1) and (2) are the same. 

(2) Let M be a differentiable manifold of 

class C”. A tvector tïeld of class C’ on M 
(1 Q r < ~03) gives rise to an autonomous system 
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of ordinary differential equations in a coordi- 

nate neighborhood of each point of M, and it 
generates a tlocal one-parameter group of 
local transformations of class C’. If M is tcom- 

pact, this local one-parameter group of local 
transformations is uniquely extended to a one- 

parameter group of transformations of class 
C’ (- 105 Differentiable Manifolds). Thus 

a vector fïeld of class C’ on M generates a 
unique C’-flow on M if M is compact. There- 
fore, sometimes we identify a vector fïeld of 
class C’ with the C’-flow generated by it. 

(3) Let (M, <p) be a C’-flow. Then ‘pl :M+ 

M is a C’-diffeomorphism, which we cal1 the 
time-one mapping (time-one map) of (M, cp). 
Thus every C’-flow (M, cp) induces a C’- 
diffeomorphism as a time-one mapping. But 
the set of Cl-diffeomorphisms that are time- 
one mappings of Cl-flows is of the tlïrst cate- 
gory in the space of all Cl-diffeomorphisms 
with C’ topology (J. Palis). Thus most Cl- 
diffeomorphisms are not expressed as time-one 
mappings of Cl-flows. 

(4) Let M be a compact differentiable mani- 
fold of class C” with dimension m and (M, cp) a 
C’-flow (1 <Y < CO). An (m - 1)-dimensional 
closed submanifold C of M is called a cross 

section of (M, cp) if the following conditions are 
satisfïed: (i) For any XEX, there exist t, >O 
and t, <O such that C~,,(X), <P,,(x)E~; (ii) Fvery 
orbit intersects .Z ttransversally whenever it 
meets Z. Let C be a cross-section of (M, <p) and 
XEZ. Let t, be the least positive number with 
<p,,(x)~Z. Such a t, exists for every X~X, and 

f:Z-tZ defïned by ~(X)=V,,(X), XGY is a C’- 
diffeomorphism. We cal1 this diffeomorphism f 
the first-return mapping (first-return map) or 
the Poincare mapping (Poincaré map) for Z. 

(5) Let N be a compact differentiable 
manifold of class C” and f: N + N a C’- 
diffeomorphism (1 <r < CO). Defïne an equiva- 
lente relation - on N x R generated by (x, t + 
1) -(f(x), t) for x E X, t E R. Then the quo- 
tient space N(f) = N x R/- has a natural 
tdifferentiable structure of class C’, and a C’- 

flow (N(f), $) is detïned by $( [x, t], s) = [x, t + 
s] for XE N, t, seR, where [x, t] E N(f) is the 
equivalence class of (x, t). The flow (N(f), $) 
thus obtained is called the suspension off: The 

suspension (N(f), II/) has a cross section C= 
{ [x, 0] 1 x E N}, and the Poincaré mapping 
for C is C’-conjugate to f: Conversely, if (M, cp) 
has a cross section C and the Poincaré map- 
ping for Z is f: C+C, then the suspension 
(Z(f), $) is C’-equivalent to (M, <p). 

(6) Let U be an open set of R” and f: U+R” 
a continuous mapping. Consider the tdiffer- 
ence equation 

X m+1 =fk’J, X,E u. (3) 

For each XE U, let <p(x, m) be the solution of (3) 
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with cp(x, 0) =x. If f(U) c U, then cp(x, m) exists 
for a11 m E Z + and XE U, and cp defines a dis- 
crete semiflow on U. If f: U+ U is a homeo- 
morphism, then V(X, m) exists for a11 rns Z 

and XE U, and q defines a discrete flow on U 
(- 104 Difference Equations). 

D. Basic Concepts 

For simplicity we assume that the phase 

spaces of dynamical systems are metric spaces, 
and we denote their metrics by d. 

(1) Let (X, <p) be a continuous flow on a 
metric space X and X~X. A subset A of X is 
called invariant if <p,(A) c A for a11 t E R. A 

subset of X is invariant if and only if it is a 
union of orbits. A subset A of X is positively 
(resp. negatively) invariant if q+(A)= A for all 
taO (resp. t<O). The subset C+(x)={@(t)It~ 

0) (resp. C(x)= {<p”(t)/ t<O}) is called the 
positive (resp. negative) semiorbit or the posi- 

tive (resp. negative) half-trajectory starting 
fromsx. A subset is positively (resp. negatively) 
invariant if and only if it is a union of positive 
(resp. negative) semiorbits. A subset is invari- 

ant if and only if it is both positively and nega- 
tively invariant. 

The union and the intersection of invariant 
sets are invariant. If A is invariant, then its 
closure A, Its interior Int A, its boundary û.4, 

and its complement A’ = X - A are invariant. 
If A is invariant, then <p(A x R)c A and the 
restriction mapping cp (A x R defines a continu- 

ous flow (A, cp 1 A x R) on A. The flow thus 
obtained is called the restriction of (X, cp) on A. 

(2) A point XEX is a singular point, an equi- 

librium point, a critical point, a rest point, or 
a fixed point if C(x) = {x} (- 290 Nonlinear 
Oscillation). A point is regular or nonsingular if 

it is not a singular point. The set of a11 singular 
points is a closed invariant set, and the set of 
all nonsingular points is an open invariant 
set. If A is a positively invariant set which is 
homeomorphic to the closed unit bal1 in R”, 
then there exists a singular point in A (TBrou- 
wer lïxed-point theorem). 

A point XEX is periodic if there exists a 
T#O such that 

<pk t + T) = 44% t) (4) 

holds for all t E R. If x is periodic, the motion 
<p” and the orbit C(x) are said to be periodic. A 
point x is periodic if and only if there exists a 
T# 0 with <p(x, T) = x. A singular point is 
periodic. For a periodic point x, a number T 
satisfying (4) is called a period of x. If x is 
nonsingular and periodic, then there exists 

a smallest positive period T, of x, and any 
period is an integral multiple of TO. An orbit of 

a nonsingular periodic point is called a closed 
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orbit. If C is a closed orbit, then all points of C 
are nonsingular periodic points, and their 
smallest positive periods coincide. A closed 

orbit is compact. 
(3) Let x be a point of X. A point yeX is 

called an w-limit (resp. cc-limit) point or a posi- 
tive (resp. negative) limit point of x if there 
exists a sequence {t,} of real numbers such 
that (i) t,+cc (resp.t,-+ -CO) as I~+Q and 
(ii) p(x,t,)+y as n+co. The set of all w-limit 
(resp. a-limit) points of x is denoted by o(x) 
(resp. E(X)) and is called the w-limit (resp. dc- 

limit) set of x. For each x E X, w(x) and C((X) 
are closed invariant sets, and the following 
equalities hold: C+(x) = C+(x) U w(x), C(x) = 
C- (x) U C((X), and C(x) = C(x) U a(x) U w(x). 

If x is a periodic point, C(x) = C(x) = C((X) = 
w(x). If C is a closed orbit, then C = C = C(x) = 
x(x) = w(x) for a11 x E C. If A is a compact in- 

variant set and XE A, then C((X) and w(x) are 
nonempty. 

Assume that X is tlocally compact and 
XEX. Then w(x) is connected if it is compact, 
and none of the connected components of w(x) 
is compact if w(x) is not compact. 

(4) Let x be a point of X. Let J+(x) (resp. 

J-(x)) be the set of a11 points y satisfying the 
following condition: There exist a sequence 
{t,,} of numbers and a sequence {x”} of points 
in X such that (i) t,+w, (resp. t,+ -CO) as n+ 
CO, (ii) x,+x as n+ CO, and (iii) V(X,, t,)+y 

as n+a. The set J+(x) (resp. J-(x)) is a closed 
invariant set containing w(x) (resp. C((X)), called 
the first positive (resp. negative) prolongational 
limit set of x. If X is locally compact, then 
J+(x) is connected if it is compact, and none of 
the connected components of J+(x) is compact 
when J+(x) is not compact. 

Notions of higher prolongations have been 
defined and investigated by T. Ura, J. Aus- 
lander, and P. Seibert. 

(5) For a discrete flow, we cari similarly 
detïne basic notions such as an invariant set, 
fixed point, periodic point, and SO on deiïned 
in Sections D( 1)-D(4) by replacing R by Z. 
The propositions and theorems stated above 
hold for discrete flows, except those concern- 

ing connectedness. 

E. Recursive Concepts and Dispersive Concepts 

(1) Let (X, cp) be a flow on a metric space X. 
Let X~X be a point such that there exist a 
neighborhood U of x and a T > 0 satisfying the 
condition U n ql( U) = @ for t > T. Then x is 

called wandering. The set of a11 wandering 
points is an open invariant set. A point is 
nonwandering if it is not wandering. The set R 

of a11 nonwandering points is a closed invar- 
iant set and is called the nonwandering set. 
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The following conditions are equivalent: (i) x 

is nonwandering, (ii) x~J+(x), (iii) x~J~(x). 
The nonwandering set R contains a11 singular 

points, closed orbits, and w(x) and x(x) for a11 
XGX. 

(2) A point x E X is positively (resp. nega- 
tively) Poisson stable if x EU(X) (resp. x E C((X)). 
It is Poisson stable if it is both positively and 

negatively Poisson stable. A positively Poisson 
stable point and a negatively Poisson stable 
point are nonwandering. The following con- 

ditions are equivalent: (i) x is positively Pois- 
son stable, (ii) C+(x) = w(x), (iii) C(x) c w(x), (iv) 

for any neighborhood U of x and T>O, there 
exists a t > T with cp(x, L)E CJ. If X is tcomplete 

and XE X is positively Poisson stable but not 
periodic, then w(x) - C(x) is tdense in w(x). 
This implies that if X is complete, then C(x) is 

periodic if and only if C(x) = w(x). 
(3) If a11 the points of the phase space X are 

wandering, then (X, cp) is called completely 
unstable. If all the points of X are nonwander- 
ing, then (X, <p) is called regionally recurrent. If 

A is an invariant set such that the restriction 
of (X, cp) on A is regionally recurrent, then 
(X, <p) is said to be regionally recurrent on A. If 
(X, cp) is regionally recurrent and X is locally 
compact, then the set of all Poisson stable 
points is dense in X. 

For a given flow (X, q), we obtain a se- 
quence of invariant sets {Q,} and a sequence 
of restriction flows {(Q,, cp,)} such that (i) 
(fi,, <PJ =(X, cp); (ii) R,,, is the nonwandering 

set of (fi,, cp,), n > 0; and (iii) (fi,,, , qn+,) is the 
restriction of (X, cp) on R,,,. Then X=0,30, 
~...xQ,x . . . . PutR,=n,R,.ThenR,isan 
invariant set of (X, <p), and we denote the re- 
striction of (X, <p) on fi, by (Q,, cp,). Starting 
from (Q,,, cp,), we obtain similarly a sequence 
of invariant sets {Q,,“} and a sequence of 

fhvs {c4u+,, <p,+,)}. If we obtain an ordinal 

number y such that QY = R,,, # 0 by continu- 
ing this process, then we call fiY the set of 
central motions. In this case, the flow (fi,, <p,) is 
regionally recurrent, and every invariant sub- 

set of X on which (X, <p) is regionally recurrent 
is contained in 0,. When X is tseparable and 

ti, is compact and nonempty, then the mini- 
mum of such ordinal y is an +Ordinal of at 

most the second number class. 
(4) Let OR be the set of all XE X satisfying the 

following condition: For each E, T > 0, there 
exist a sequence {x0 =x, x, , , xk =x} of 
points in X and a sequence {t,, t, , , t,-,} of 

numbers such that ti > T and d(<pJxJ, xitl) <F, 
for 0 < i < k - 1. The set W is a closed invar- 

iant set containing the nonwandering set R 
and is called the cbain recurrent set. If X = .%, 

then (X, <p) is called chain recurrent. The re- 
striction (2, cp 12 x R) of (X, cp) on YR is chain 

recurrent (C. C. Conley). 
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(5) A nonempty closed invariant set is called 
a minimal set if none of its nonempty proper 
closed subsets is invariant. For a nonempty 
compact subset A of X, the following con- 
ditions are equivalent: (i) A is minimal, (ii) C(x) 
= A for a11 XE A, (iii) C+(x)= A for a11 XEA, 

(iv) C-(x)= A for ail XEA, (v) w(x)= A for all 
XE A, (vi) L$X)= A for all XE A. A point x6X is 
positively (resp. negatively) Lagrange stable if 

C+(x) (resp. C(x)) is compact. If C(x) 1s com- 
pact, then x is called Lagrange stable. Every 
nonempty compact invariant set contains a 
compact minimal set. If XE X is positively 
(resp. negatively) Lagrange stable, then o(x) 
(resp. a(x)) contains a compact minimal set. 

A closed invariant set A is called a saddle set 
if there exists a neighborhood U of A such that 
every neighborhood of A contains a point x 

such that C+(x)+ Cl and C-(x)$ U. Otherwise 
A is called a nonsaddle set. For a point x of X, 

let E(x) be the subset of X consisting of the 
points y satisfying the following condition: 
There exist a sequence {x,,} of points in X and 
two sequences {t,,}, {.Y~} of numbers such that 
(i) x,+x, t,+m, s,-, --CO as n+cc and (ii) 
(p(x,, t,)-y, q(x,,s,,)+y as n-a. For a subset 
B of X, put E(B)= UXEBE(x). Let {Sa} be the 
family of all saddle minimal sets and {F,} the 
family of a11 nonsaddle minimal sets. If the 
phase space X is compact, then the nonwan- 

deringsetR=(UpFO)U(U~E(&))=(UpFB)U 
E( un S,) (T. Saito). 

(6) A point X~X is said to be recurrent if for 
any E > 0 there exists a T > 0 such that the +&- 

neighborhood U of cp”( [t, t + T]) contains C(x) 

for a11 t E R. If x is recurrent, the motion <p” 
and the orbit C(x) are said to be recurrent. 
Every orbit of a compact minimal set is recur- 
rent, and if the phase space is complete, then 

the closure of a recurrent orbit is a compact 
minimal set (Birkhoff). 

A set D of real numbers is called relatively 
dense if there exists a T > 0 such that D n 
(t,t+T)#@forall tER.AssumethatxEX is 

Lagrange stable, then x is recurrent if and only 
if for every E > 0 the set {t 1 d(x, rp(x, t)) < E} is 

relatively dense. 
(7) A flow (X, cp) is dispersive if for any x, 

y E X there exist neighborhoods U, of x and U, 
of y and a T > 0 such that U, n cp,( U,) = 0 for 
all t > T. The following conditions are equiva- 

lent: (i) (X, <p) is dispersive; (ii) For any x, y~ X, 
there exist neighborhoods U, of x and U, of y 
and a T>O such that U,n<p,(U,,)=@ if Itl2T; 
(iii) J+(x)=@ for a11 XEX. 

A flow (X, q) is parallelizable if there exist 

a subset S of X and a homeomorphism h: 
X+S x R such that (i) cp(S x R)= X and (ii) 

hocp(x,t)=(x,t)forallxeSandteR.Aflow 
(X, cp) is parallelizable if and only if there is a 
subset S of X satisfying the following con- 
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ditions: (i) For each X~X there exists a unique 
Z(X)ER with cp(x,z(x))~S; (ii) 7:X-R is con- 
tinuous. A parallelizable flow is dispersive. A 
flow on a locally compact separable metric 

space is parallehzable if and only if it is disper- 
sive (V. V. Nemytskiï, V. V. Stepanov). 

An open set U of X is called a tube if there 
exist a T> 0 and a subset S of U satisfying the 
following conditions: (i) <p(S x (- T, T)) = U, (ii) 

For each x E U there is a unique ~(X)E R with 
17(x)1 < T such that (P(x,~(x))ES. The set S in 
the above definition is called a local section. If 

X~X is a regular point, then there exists a tube 
containing x (M. Bebutov, H. Whitney). The 
notion of a local section is a generahzation 
of Poincare’s “surface sans contact” [l] or 
Birkhoff’s “surface of section” [4], and it is 
related to the notion of the cross section. 

(8) For discrete flows (homeomorphisms), 
basic notions, such as a nonwandering set, 
Poisson stability, regional recurrence, central 
motion, and minimal set, are detïned similarly, 
and many of the propositions and theorems in 

Sections E(l))E(5) hold similarly for discrete 
flows (homeomorphisms). 

F. Stability 

(1) Let (X, <p) be a continuous flow on a metric 
space X. A point x E X is called orbitally stable 
if for any E > 0 there exists a 6 > 0 such that 
C+(y) is contained in the a-neighborhood of 
C+(x) for all y with d(x, y) < 6 (- 394 Sta- 
bility). A nonempty set A is called stable if 
every neighborhood of A contains a positively 

invariant neighborhood of A. If A is compact 
(in particular, if A is a periodic orbit), then 
orbital stability and stability for A are equiva- 
lent. A nonempty set A is called asymptotically 
stable if A is stable and there exists a neighbor- 
hood V of A such that o(x) c A for any XE V. 
If A is stable and w(x) c A for a11 XEX, then A 

is called globally asymptotically stable. A point 
x E X is Lyapunov stable if for any E > 0 there 
exists a 6 > 0 such that d(<p,(x), q,(y)) < E for all 
t > 0 and y with d(x, y) < 6. Lyapunov stability 
implies orbital stability. A point x is uniformly 

Lyapunov stable if for any E > 0 there exists a 6 
> 0 such that for ZE C(x) and y with d(y, z) < 6 
we have d(q,(z), v,(y)) <E for all t > 0. Uniform 

Lyapunov stability implies Lyapunov stability. 
For a singular point, the notions of uniform 

Lyapunov stability, Lyapunov stability, orbital 
stability, and stability are equivalent. Assume 

that the phase space X is locally compact and 
A is a nonempty compact subset of X. Then A 
is asymptotically stable if and only if there 
exist a neighborhood N of A and a continuous 

mal-valued function L on N such that (i) L(x) 
=Oifx~AandL(x)>OifxgÇA;(ii)L(<p(x,t)) 

<L(x)ifx$A,t>O,and<p({x}x[O,t])cN. 
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Such a function L is called a Lyapunov func- 
tion for A (- 394 Stability). Assume that X is 
locally compact and A is nonempty, stable, 
and invariant. Then A is asymptotically stable 
if and only if there exists a neighborhood U 
of A such that any invariant set in U is neces- 
sarily contained in A (Ura). Let A be a non- 

empty closed invariant set. A is called an at- 
tractor if it has an open neighborhood U satis- 

fying the following conditions: (i) U is posi- 
tively invariant; (ii) For each open neighbor- 

hood V of A, there is a T > 0 such that cp,( U) c 
V for a11 t 2 T. Condition (ii) implies that 

n tào~,(U)=Aandw(x)cAforallx~U. 
Thus an attractor is asymptotically stable. If A 
is an attractor, the basin of A is the union of 

a11 open neighborhoods of A satisfying (i) and 
(ii). 

(2) Assume that the phase space X is com- 
plete. A motion cp” (x E X) is called almost 
periodic if for any E > 0 there exists a rela- 
tively dense subset {7.} in R such that d(cp”(t), 
cp”(t+r,))<c for a11 teR and 7, (- 18 Almost 
Periodic Functions). If <px is almost periodic, 
then ‘pY is almost periodic for all y~ C(x). If A 

is a compact minimal set and if rp” is almost 
periodic for some x in A, then every motion 
@‘, y~ A, is almost periodic. An almost periodic 
motion is recurrent. The converse is not true. 
But if x is recurrent and Lyapunov stable in 
C(x) (i.e., in the restriction flow (C(x), cp 1 C(x) 
x R)), then cp” is almost periodic. If x is uni- 

formly Lyapunov stable in C(x) and negatively 
Lagrange stable, then (px is almost periodic 
(A. A. Markov). 

G. Singular Points and Closed Orbits 

In this section we assume that the phase space 
is a tparacompact differentiable manifold of 
class C” with metric d. 

(1) Let E be a tïnite-dimensional real vector 

space and L:E+E a linear automorphism. L 
is called byperbolic if it has no teigenvalues of 
absolute value 1. If L: E-E is hyperbolic, 
there are unique vector subspaces E” and E” 
satisfying the following conditions: (i) E = 

E” @ E”, (ii) L(E”) = E” and L(E”) = E”, (iii) if 
II.11 is a tnorm on E, then there exist constants 
c > 0 and 0 <i < 1 such that, for any positive 
integer m, llL”‘(v)ll <ck”Ilull when UEE” and 
~~L~“(U)~~ <~~“//VII when UEE”. The zero 0 of E 
is the only fixed point of a hyperbolic linear 
automorphism. Put s = dim E” and u = dim E”. 
Then s + u = dim E, and s (resp. u) is the num- 
ber of eigenvalues of absolute value < 1 (resp. 

> 1) counted with multiplicity. A topological 
conjugacy class of a hyperbolic linear auto- 

morphism L : E -+E is determined by s, u, and 

the signs of det(L 1 E”) and det(L 1 E”), where 
det(L 1 E”) is the tdeterminant of the restriction 
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L ( E”: Eu+ E” of L on E” (a = s, u). Further 
investigations of topological classification of 
linear automorphisms have been carried out 
by N. H. Kuiper and J. W. Robbin. 

(2) Let f:R”+R” be a C’-diffeomorphism 

(1~ r < CO). Assume that the origin OE R” is a 
tïxed point of 1: Then the tdifferential df, : R” 
+R” off at 0 is a linear automorphism. It is 
given by df,(x)=&(f)x, XER”, where J,(f) is 
the tJacobian matrix off at 0 and x is ex- 
pressed as a column vector. If df, is hyperbolic, 
then fis topologically conjugate to df, in a 
suffïciently small neighborhood of 0 (P. Hart- 
man). Assume that f is of class C”, and let 

Â1, . , À, (possibly repeated) be the eigenvalues 
of&. If&#171... ” A”n for a11 1 < i < n and for \\ 
a11 nonnegative integers m, , . , m, with 2 B 
m, $ . . . + m,, then in a suffkiently small 
neighborhood of 0, f is Cm-conjugate to df, 

(S. Sternberg). 
(3) Let f: M+M be a C’-diffeomorphism 

(1 < r < CO) of a differentiable manifold M of 
class C”. Let p E M be a fïxed point off: Then 

the tdifferential df, off at p is a linear auto- 
morphism of the ttangent space T’,(M) of M at 

p. If df, is hyperbolic, then p is called a hyper- 
holic fixed point off: Let p be a hyperbolic 
fixed point of ,f and 7”(M) = ES 0 E” be the 

direct sum decomposition with respect to df,. 

Put W(p)={x~MIf”(x)-+p as n+co} and 
W”(p)={x~ïMIf-“(x)+p as n-tco}. W”(p) 

and W”(p) are invariant sets and images of 
tinjective immersions of class c’ of vector 

spaces ES and E”, respectively. At the point p, 
W(p) and W”(p) are tangent to E” and E”, 

respectively [21]. We cal1 W”(p) (resp. W(p)) 
the stable (resp. unstahle) manifold off at p. In 
a suflïciently small neighborhood of a hyper- 
bolic fixed point p of J fis topologically 

conjugate to its differential df,. Therefore a 
hyperbolic fixed point is an isolated fixed point 
(i.e., there are no lïxed points in its suffkiently 

small neighborhood except itself). A hyperbo- 
lit lïxed point p is called a source if dim W’(p) 
= 0 and a sink if dim W”(p) = 0. Otherwise it is 
a saddle point. The number of topological 
conjugacy classes of hyperbolic fïxed points on 
an n-dimensional manifold is 4n. 

Let PE M be a periodic point off and m the 
smallest positive period of p. Replacing f by 

f”, we obtain notions of hyperbolicity, stable 
manifold, and SO on for the periodic point p. 

We also obtain propositions and theorems 
similar to those stated above for periodic 

points. 
(4) Let A be a real n x n matrix. Consider the 

system of linear differential equations 

dxldt = Ax, XER”. (5) 

This equation generates a C”-flow (R”, <p), and 
<P,: R”+R” is given by <p,(x) = el”x, where eta is 
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the texponential of the matrix tA. Thus <Pu is a 
linear automorphism for a11 t E R. The origin 
OER” is a singular point of (R”, cp). If none of 
the real parts of the eigenvalues of A are zero, 

we cal1 0 E R” a hyperholic singular point of (5). 
If OER” is a hyperbolic singular point of (5), 
then there exist two vector subspaces E” and 

E” of R” satisfying the following conditions: (i) 
R”= Es@ E”; (ii) A(E”)=E” and A(E”)=E”; 
(iii) E” and E” are invariant sets of (R”, cp); (iv) 
there exist positive constants c and i such 
that for a11 t>O, II<p,(x)ll <ce-“‘Ilxjl when X~E” 
and Il+,(x)11 <cë”ilxll when XEE”, where II./1 
is the norm on R”. The origin 0 is a hyperbolic 
singular point of (5) if and only if the time- 
one mapping ‘pl =eA:R”+R” of cp is a hyper- 

bolic linear automorphism. If 0 is a hyperbolic 
singular point of (5), the above direct sum 
decomposition R”= ES@ E” coincides with the 
one with respect to ‘pl. Put s = dim E” and u = 
dim E”. Then s + u = n, and s (resp. u) is the 
number of a11 eigenvalues of A with negative 
(resp. positive) real parts counted with multi- 

plicity. Also we obtain the following proper- 
ties: (i) XE E” (resp. E”)ocp,(x)+O as t+cO 

(resp. t+ -CO), (ii) x$ ES (resp. E”) =z- l(cp,(x)ll 
+CC as t-cc (resp. t+ -CO), (iii) the origin 0 

is the only singular point. 

Let A and B be n x n real matrices. Let 
(R”, <PA) and (R”, <p,) be the flows determined 
by the equations dx/dt = Ax and dxldt = Bx, 
respectively. Assume that OER” is a hyperbolic 
singular point for both of the equations. Let s 
and u (resp. s’ and u’) be the integers defined 
for (pa (resp. cpB) in the above paragraph. Then 
the following conditions are equivalent: (i) 
(R”, <~a) and (R”, <ps) are flow equivalent, (ii) 

(R”, <~a) and (R”, <ps) are topologically equiva- 
lent, (iii) s = s’, (iv) u = u’, (v) (<PA)~ and (~p~)~ are 
topologically conjugate. Further investigations 
of the phase portrait of the equation dx/dt = 

Ax without the assumption of hyperbolicity 
were done by Kuiper. 

(5) Let D be an open set ofR”andf:D+R” 
a continuous mapping. Consider the system of 
differential equations (l), which we Write down 
again here: 

dx/dt=f(x), ~ED. (6) 

A point p E D is a singular point of (6) if the 
trajectory through p consists of a single point 

p. If (6) generates a flow (D, <p), then p is a 
singular point of (6) if and only if p is a sin- 
gular point of (D, rp). A point p is a singular 

point of (6) if and only if f(p)=O. 

Suppose further that fis a C’-mapping 
(1~ r < 00). A singular point p of (6) is called 
hyperholic if none of the real parts of the eigen- 
values of the Jacobian matrix J,(f) off at p is 

zero. Let p be a singular point of (6). We as- 
sume for simplicity that p = 0 and (6) generates 
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a flow (D, cp). Denote the Jacobian matrix off 
at 0 by A, and let (R”, <PA) be the flow generated 
by the equation dxldt = Ax. If 0 is a hyperbolic 
singular point, then in a sufflciently small 
neighborhood of 0, the flows (D, <p) and (R”, <pA) 
are flow equivalent and hence topologically 
equivalent (Hartman, D. M. Grobman). Let 

3., , . , & (possibly repeated) be the eigen- 
valuesofA.IffisofclassC”andli#m,A,+ 

+ m,/., for all 1 < i < n and for a11 nonnega- 
tive integers m, , , m,with2<m,+...+m,, 
then in a sufficiently small neighborhood of 0, 
two flows (D, <p) and (R”, (PA) are C”-equivalent 
(Sternberg). 

(6) Let M be a paracompact differentiable 
manifold of class C” and V a vector fïeld of 

class C’ (1 < r < CO) on M. For simplicity we 
assume that V generates a C’-flow (M, <p). For 
each point p of M, take a coordinate neighbor- 

hood (U, 2) of class C” around p, where U is 
an open neighborhood of p in M and c( : U +R” 
is a homeomorphism onto an open set D in R”. 

Using (U, x), we cari express the vector iïeld V 
as a system of ordinary differential equations 
of the form (6) in D. The eigenvalues A,, ,& 
(possibly repeated) of the Jacobian matrix off 
at cc(p) are independent of the choice of local 
coordinates (U, c() around p. Thus 3,,, ,A, are 

invariants of the C’-equivalence, but they are 
not invariants of the topological equivalence. 

A singular point p of a flow (M, <p) (or a 
vector field V) is called hyperholic if cc(p) is a 
hyperbolic singular point of the corresponding 

equation (6) (i.e., none of the real parts of the 
above eigenvalues Â,, ,3,,, are zero). A sin- 
gular point of (M, <p) is hyperbolic if and only 
if it is a hyperbolic fixed point of the time-one 
mapping <pl of <p. A hyperbolic singular point 

p is an isolated singular point. 
Let p be a hyperbolic singular point of 

(M, <p) and 7”(M) = E” @ E” the direct sum 
decomposition with respect to ‘pl. Put s= 
dim E” and u = dim E”. Then s (resp. u) is the 

number of a11 eigenvalues ii of negative (resp. 
positive) real parts. Put W(p) = {xc M 1 <p,(x) 

‘pas t-m} and W”(p)={x~Ml<p-,(x)-p 

as t-ta}. W”(p) and W“(p) are invariant sets 
and images of injective immersions of class C 

of vector spaces E” and E”, respectively. At 
the point p, W”(p) and W“(p) are tangent to 
E” and E”, respectively. We cal1 W”(p) (resp. 
W(p)) the stable (resp. unstable) manifold of ,f 

at p. The stable manifold and the unstable 
manifold of (M, cp) at a hyperbolic singular 
point p coincide with those of the time-one 

mapping <pl at p. A hyperbolic singular point 
p is called a source if dim W(p) = 0 and a sink 

if dim W”(p) = 0. Otherwise it is called a saddle 
point. If p is a source (resp. a sink), then W”(p) 

(resp. W”(p)) is a neighborhood of p. A sin- 
gular point p is a source (resp. a sink) if and 
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only if a11 real parts of the corresponding eigen- 
values Â1, , A, are positive (resp. negative). 

(7) Let V be a vector field of class c’ on a 
C”-differentiable manifold M of dimension n 
> 2 and (M, <p) the c’-flow generated by V. Let 
C be a closed orbit of (M, cp), p a point of C, 
and T> 0 its smallest positive period. Then 

p is a fïxed point of the C’-diffeomorphism 
<pT: M+M. Let V(~)ET’,(M) be the value of V 

at p and (dq+)I>: T,(M)+T,(M) the differen- 
tial of (Pu at p. Then (d<p,),(V(p))= V(p), and 
V(p)#O. Therefore 1 is an eigenvalue of (dq,),. 

The other eigenvalues 1,) . . , A,-, (possibly 
repeated) of (dq,), do not depend on a choice 
of pu C and are called the characteristic multi- 
pliers of C. If none of the characteristic multi- 
pliers of C is of absolute value 1, we cal1 C a 

hyperbolic closed orbit. If C is a hyperbolic 
closed orbit, then there exist vector subspaces 
E; and EP for each pe C satisfying the follow- 

ing conditions: (i) T,(M) = L( V(p)) @ Ei @ E$ 

where L( V(p)) is the l-dimensional subspace 
generated by V(p); (ii) (d<p,),(EP)= E;,,,, (a= 
s, u) for a11 tER, where (dq,),: T,(M)-, TqIc,,(M). 

In particular, (dq+),(Ez) = Ez (o = s, u); (iii) 
dim Ef, (resp. dim EP) is independent of pu C 

and is equal to the number of Âi of absolute 
value <1 (resp. >l). Put W”(C)={xeMI 

d(<p,(x), C)+O as t-ta} and W”(C)= {XE M 1 

d(<pq(x), C)+O as t+m}. Then W’(C) (resp. 
W’(C)) is an invariant set and is an injectively 
immersed C’submanifold of M which is tan- 

gent to L( V(p)) @ EP (resp. L(~(P)) @ E;) for 
each PE C. W”(C) (resp. W“(C)) is called the 
stable (resp. unstable) manifold for C. 

Let p be a point of a closed orbit C. An 
embedded (n - l)-dimensional disk D of class 
c’ in M containing p is called a cross section 

for a closed orbit C if V is transverse to D (i.e., 
T,(M)=L(V(x))@ T,(D) for each xeD) and 
D n C = {p}. For a given cross section D for C, 
there exists a neighborhood U of p in D such 
that for any x E U there exists a z(x) > 0 such 

that cp(x,z(x))~D and <p(x,t)#D for Oct-c 

7(x). A mapping f: U +D, deiïned by f(x) = 
<p(x, z(x)), XE U, is called a Poincaré mapping 
for D. The C’-conjugacy class of the tgerm of 
a Poincaré mapping S: V+D at p is indepen- 

dent of the choice of p6C and the cross section 
D for the closed orbit C. The point p is a fïxed 
point of L and the eigenvalues of & coincide 
with the characteristic multipliers of C includ- 
ing multiplicity. Therefore C is hyperbolic if 
and only if p E C is a hyperbolic fixed point of 
f: In a sufflciently small neighborhood of C, 

the flow is C*-equivalent to the suspension off: 
The topological equivalence of the flow in a 
suffïciently small neighborhood of C is deter- 
mined by the topological conjugacy class of ,f: 

The number of topological equivalence classes 
of hyperbolic closed orbits which appear in a 
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flow on an n-dimensional manifolds is 4(n - 1) 

(M. C. Irwin). 

(8) Let V be a vector tïeld of class C’ (1 < rd 

ro) on a compact C”-manifold M. If M has 
a nonempty boundary, we assume that V 
points outward at ah boundary points. Let p 
be an isolated singular point of V and denote 
by i(p) the +index of the vector Iïeld V at the 
singular point P. If a11 singular points are 
isolated, then the sum C, i(p) is independent of 
V and is equal to the +Euler-Poincaré charac- 
teristic x(M) of M (Poincaré, H. Hopf) (- 153 
Fixed-Point Theorems). A vector tïeld (or a 

flow) is called nonsingular if it has no singular 

points. If x(M) #O, then any vector field (and 
hence any flow) on M has a singular point. If 

x(M) = 0, then there exists a nonsingular vector 
tïeld on M. If M is 2-dimensional and without 
boundary, then M admits a nonsingular vector 
tïeld if and only if M is a +torus or a +Klein 

bottle. 
There are many directions in which gen- 

eralizations of the Poincaré-Hopf theorem cari 

be made. For example, an index of an isolated 
closed orbit of a flow has been defïned and 
investigated by F. B. Fuller. 

The phase portrait near a singular point or 
a closed orbit which is not hyperbolic is com- 
plicated. Many results in general situations 
have been obtained for planer flows, but there 
are only a few for higher-dimensional flows. 

H. Generic Properties and Structural Stability 

(1) Let M be a compact C”-manifold without 
boundary. The set T(M) of all vector fïelds of 
class C’ (1 < r < CU) on M forms a real vector 
space in a natural way. We cari give a norm 

11 VII, (called a C’-norm) for VET(M) using its 
expressions in a given suitable system of local 
coordinates of class C” on M and their par- 

tial derivatives up to order r. By virtue of 
this norm, T’(M) is a Banach space with the 

topology of uniform (?-convergence (- 168 
Function Spaces). A subset of a topological 
space is called a residual set or a Baire set if it 

is the intersection of a countable number of 
dense open sets. A residual set in Ut̂ ‘(M) is a 
dense set. A proposition P concerning a vector 

tïeld of class C’ is called generic if the set {VE 
2’(M)) P(V)} contains a residual set for any 
M. The following properties are generic prop- 
erties: (i) Al1 singular points and ah closed 
orbits are hyperbolic [21,22]; (ii) any stable 

manifold (of a hyperbolic singular point or a 
hyperbolic closed orbit) meets transversally 

with any unstable manifold (of a hyperbolic 
singular point or a hyperbolic closed orbit) at 

any point of their intersection [21,22]; (iii) the 

set of a11 periodic points (i.e., the union of all 
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singular points and ah closed orbits) is dense 
in the nonwandering set R for VE%‘(M) [23]; 

(iv) there is no regular first integral for VE 
T’(M), where a regular first integral of a vec- 
tor tïeld V on M is a Cl-function ,f: M-*R 
such that ,f is not constant on any open set of 
M and is constant along any orbit of (the flow 
generated by) V (R. C. Robinson). 

Let V (resp. V’) be an element of X’(M) 
(resp. T(M’)), (M, <p) (resp. (M’, <p’)) the flow 
generated by V (resp. V’), and Q (resp. Q’) the 

nonwandering set of (M, <p) (resp. (M’, cp’)). 
V and V’ are called topologically equivalent 

(resp. R-equivalent) if (M, <p) and (M’, <p’) (resp. 
the restrictions (0, <p 1 R x R) and (Q’, <p’ ( U x 
R)) are topologically equivalent. A vector 

field VE%“(M) (or the flow generated by V) is 
called C’-structurally stable (resp. C’-R-stable) 
if there exists a neighborhood -Af of Vin 
X’(M) such that any V’ in X is topologically 
equivalent (resp. D-equivalent) to V. If VE 
X’(M) is structurally stable (resp. R-stable), 
then the topological structure of the phase 
portrait of (the flow generated by) V in the 
whole space (resp. the nonwandering set) re- 

mains invariant under a sufficiently small C’- 
perturbation of V. The generic properties (i)- 
(iv) above hold for Ci-structurally stable 
vector fields (Markus, Thom, Peixoto, J. Ar- 
raut). The generic properties (i) and (iii) above 
hold for Ci-R-stable vector tïelds. 

(2) Let M be a compact C”-manifold with- 
out boundary. Let F’(M) be the set of a11 
C’-mappings of M into itself with the topol- 
ogy of uniform C’-convergence. Let Diff’(M) 
be the subset of F’(M) consisting of a11 C’- 

diffeomorphisms of M onto itself. Then F’(M) 
is a complete metric space, and Diff ‘(M) is 
open in F’(M). Thus Diff’(M) is a +Baire space 

and also a topological group with respect to 
this topology. A proposition P concerning 
SE Diff ‘(M) is called generic if the set {fg 
Diff’(M) 1 P(f)} contains a residual set. The 
following properties are generic: (i) Every 

periodic point is hyperbolic [21]; (ii) for each 
pair of hyperbolic periodic points p and q, the 

stable manifold W”(p) intersects the unstable 
manifold W”(q) transversally [21]; (iii) for a 
C’-diffeomorphism f~Diff’(M) the set of all 
periodic points is dense in the nonwandering 

set ([23], Robinson). 
Letf:M+Mandg:N-*NbeC’- 

diffeomorphisms and fi(f) and Q(g) their 
nonwandering sets. f and g are called rZ- 
conjugate ifflQ(f):R(f)-fi(f) and gin(g): 
D(g)+R(g) are topologically conjugate. A 
diffeomorphism fE Diff’( M) is called C’- 
structurally stable (resp. C’-fi-stable) if there 
exists a neighborhood M off in Diff’(M) such 

that any g in N is topologically conjugate 

(resp. R-conjugate) to f: Generic properties (i)- 
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(iii) above hold for Ci-structurally stable dif- 
feomorphisms, and (i) and (iii) above hold for 
C’-fi-stable diffeomorphisms. 

1. Low-Dimensional Systems 

(1) Let S’ = {ZEC 1 JzI = 1) be the unit circle in 
the complex plane C and p : R +,Y’ the tcover- 
ing projection detïned by p(x) = elnix, x E R. 

Let f: S’ -*S’ be an +Orientation-preserving 

homeomorphism. Then f cari be lifted to a 
mapping F: R+R satisfying the following 
conditions: (i) poF=fop; (ii) F is monotone 
increasing; (iii) F- la is a periodic function of 

period 1, where 1, is the identity mapping of 
R. The limit p(f) = lim,,, F”(x)/n exists for a11 
x E R, and its tresidue class modulo Z is inde- 
pendent of F and x. We cal1 p(f) the rotation 
number off: Let f, g : S’ +Si be orientation- 
preserving homeomorphisms. If f and y are 
topologically conjugate by an orientation- 
preserving (resp. treversing) homeomorphism, 

then p(f)=p(g) (resp. p(f)- -p(g)) modulo 
Z. An orientation preserving homeomorphism 
f: S’ +S2 has a periodic point of the smallest 
positive period s if and only if p(f) = Y/S, where 
r and s are relatively prime integers. In this 
case a11 periodic points are of the smallest 

positive period s. If p(f) is irrational, then 
the w-limit set w(x) of x E Si is independent 
of x, and E = w(x) is either tperfect and +no- 
where dense or the whole space Si. If p(f) is 
irrational and E = w(x) = S’, then ,f is called 
transitive. If f is transitive, then it is topologi- 
cally conjugate to the rotation rpcn: S’ +S’ 

detïned by rpo)(e2nix) = e2ni(x+p(f)), XER. Let 
f:S’ +S’ be of class C’ with p(f) irrational. If 

its derivative f’ is of +bounded variation, then 
fis transitive (A. Denjoy). In particular, if f 
is of class C? with p(f) irrational, then fis 

topologically conjugate to the rotation r,,(,->. 

However, there are Ci-diffeomorphisms of S’ 
onto itself whose nonwandering sets are not 
the whole space. Those C’-diffeomorphisms 
are never topologically conjugate to C2- 

diffeomorphisms. M. R. Herman gave a suffï- 
tient condition for a diffeomorphism of S’ 
onto itself to be differentiably conjugate to a 
rotation. 

A C’-diffeomorphism f:S’+S’ is structur- 

ally stable if and only if n(f) is finite (hence 
Q(f) consists of a tïnite number of periodic 
points), and a11 periodic points are hyper- 

bolic. The set of ah structurally stable C’- 
diffeomorphisms of S’ onto itself is a dense 
open set in Diff’(S) (Peixoto). 

(2) Let D be an open set in R2 and f :D+R2 
a continuous mapping. We assume that for 

each XCD there exists a unique nonextend- 
able solution <p(x, t) with the initial condition 
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<p(x, 0) =x defïned on (a,, b,) for the equation 
dx/dt = f(x), ~ED. Suppose that for a given 
point XED there exists a compact set K in D 

containing the positive semiorbit C+(x) = 

{V(X, t) 10 < t < b,} of x. Then b, = CO. Further, 
we assume that the w-limit set w(x) of x con- 
tains no singular points. Then we have either 

(i) C+(x) = o(x) and it is a closed orbit, or (ii) 
C+(x) #w(x) and w(x) is a closed orbit. In case 
(ii), w(x) is a +Simple closed curve and C+(x) 
is a spiral which tends the closed orbit w(x) 
(Poincaré, 1. Bendixson). We cal1 such a closed 
orbit W(X) a limit cycle. Let f, and fi be poly- 
nomials of two variables and m the maximum 
of degrees of,f, and f2. Let f=(fl, f2):R2+R2 

be the mapping defïned by fi and f2. The 

equation dxldt = f(x), xcR*, detïned by such 
an fis called a polynomial system of degree 
m. The following is Hilbert’s 16th problem: 1s 
there a number N(m) depending only on m 

such that the number of limit cycles for any 
polynomial system of degree m is bounded by 
N(m)? 

Let M be a closed (i.e., compact, without 
boundary) Cm-manifold of dimension 2 and 

(M, <p) a Cz-flow on M. Then a minimal set of 
(M, <p) is either (i) a singular point, (ii) a closed 

orbit, or (iii) the whole space M. For case (iii), 
M is a torus (Poincaré, Denjoy, C. L. Siegel, A. 
J. Schwartz). Let T be a 2-dimensional torus 

and (T, cp) a c’-flow. Suppose that (T, <p) has a 
cross section C which is Cl-diffeomorphic to 

S’. Let f :Z+C be the Poincaré mapping for 
Z. Then (7’, <p) has a closed orbit if and only if 

the rotation number p(f) off is rational. If 
p(f) is irrational and (T, cp) is of class C2, then 
T is a minimal set. 

Let M be an orientable 2-dimensional 
closed C”-manifold and VE%‘(M). Then Vis 
structurally stable if and only if the following 

conditions are satisfied: (i) There are only a 
lïnite number of singular points, all hyperbolic; 
(ii) There are only a tïnite number of closed 
orbits, ah hyperbohc; (iii) There are no orbits 
which connect saddle points; (iv) The a(x) and 
w(x) for any XE M are singular points or 
closed orbits (Peixoto). The above theorem 
was first proved by Andronov and Pontryagin 

for analytic vector fields on a 2-dimensional 
disk which are transverse to the boundary of 
the disk at any boundary point. The set of a11 
structurally stable vector tïelds of class C’ on 
M is a dense open set in !T’(M) (Peixoto). 

J. Axiom A Systems 

In this section we assume that phase spaces 

are closed C”-manifolds with metric d and 
1~ r < 10 unless stated otherwise. 
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(1) A vector fïeld ~ES’(M) (resp. a C’-flow 
(M, q)) is called a Morse-Smale vector field 
(resp. a Morse-Smale flow) if the following 
conditions are satisfïed: (i) The nonwandering 
set is the union of a tïnite number of singular 

points and a tïnite number of closed orbits; (ii) 
The singular points and closed orbits are a11 
hyperbolic; (iii) The stable manifolds and the 
unstable manifolds of the singular points and 

closed orbits intersect each other transversely. 
If dim M = 2, the Morse-Smale vector lïelds on 
M are exactly the structurally stable ones 
discussed in Section I(2). A Morse-Smale 
vector fïeld is structurally stable [2.5]. The set 
of a11 Morse-Smale vector tïelds on M is open 
but not dense in X'(M) if dim M > 2 (Palis, 
Smale). However, it contains a dense open 

subset of the set of all tgradient vector fields 
with respect to a given +Riemannian metric 

(Smale). In particular, any closed manifold 
admits Morse-Smale vector fields and hence 
structurally stable vector fïelds. For a Morse- 

Smale vector fïeld, the ?Morse inequalities 
hold as they do in the tcalculus of variations 
in the large [24]. 

(2) A vector fïeld VE%“(M) (or the C’-flow 
(M, cp) generated by V) is called an Anosov 
vector field (or an Anosov flow) if the following 
conditions are satisfïed: (i) There is a direct 

sum decomposition T,(M)=L(V(x))@EX@EX 
of the tangent space T,(M) for each x E M 
which depends continuously on XE M; (ii) 

(44xE) = E;,(x) and (d<p,),(EX) = E;,,,, for a11 
x E M and t E R; (iii) There are a Riemannian 
metric on M and constants c, Â > 0 such that, 
for a11 t>O and ~EM, ~~(&p,),(w)lj <cë"'~~wll 
when WEEX, and II(&&(w)ll <ce-*‘Ilwll 
when WEEX, where 11. 11 is the norm induced 
by the Riemannian metric. The suspensions of 
Anosov diffeomorphisms and the tgeodesic 

flows on Riemannian manifolds of negative 
curvature are important examples of Anosov 
flows (J. Hadamard [8]). There are exam- 
ples of Anosov flows other than the ones 
stated above (M. Handel and W. P. Thurston, 

J. Franks and R. F. Williams). The follow- 
ing have been proved by Anosov [S]: (i) An 

Anosov flow is structurally stable; (ii) there 
are countably many closed orbits for an 
Anosov flow; (iii) if there exists a smooth in- 
variant measure (i.e., an +invariant measure 

which has a +smooth density with respect to 
the measure associated with the Riemannian 
metric), then the set of a11 closed orbits is dense 
in M. If we assume further that the flow is of 

class C2, then it is tergodic; (iv) the set of a11 
Anosov vector fields is open in !T(M); (v) {Et}, 
{ E!J} (XE M) define tfoliations on M, which are 
called Anosov foliations. 

(3) A vector field VE!T'(M) (or the C’-flow 
(M, q) generated by V) is called an Axiom A 
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vector tïeld (or an Axiom A flow) if the follow- 
ing conditions are satisiïed: A(a) The non- 

wandering set consists of a finite set F of sin- 
gular points, a11 hyperbolic, and the closure A 
of the union of closed orbits, and F n A = @; 
A(b) The conditions (i)-(iii) in the definition of 
Anosov flow in which we ieplace the terms 

“x E M” by “ x E A.” For each x EM, put W”(x) 

={y~M(d(cp,(x),cp,(y))+Oas t-m} and 

~U(x)={~~MId(cp~,(x),<p~,(~))~O as t+a). 
We cal1 W(x) (resp. W’“(x)) the stable (resp. 
unstable) manifold of V at x. For a subset A 
of M, put W”(A) = UXEA W”(x) (a= s, u). 
For x E M, put Ww”(x) = ~O(C(X)) (g = s, u), 
where C(x) is the orbit of x. If the flow satis- 
fies Axiom A, then W’(x), W’(x), W’““(x), and 
~Y”(X) are injectively immersed submanifolds 

for a11 XE M (M. W. Hirsch and C. C. Pugh). 
If x E M is a hyperbolic singular point, then 
W’(x) and W“(x) defmed above coincide with 
those detïned before. If C(x) is a hyperbolic 

closed orbit, then W’(C(x)) and ~“(C(X)) 
defined above coincide with those defined 
before. 

For an Axiom A flow, there is a decomposi- 
tion of the nonwandering set 0 = R, U U Q, 
(disjoint union), where each Ri is closed, invar- 

iant, and transitive (i.e., has a dense orbit), 
and M = uF1 w’(Q)= UT1 w”(0,) (disjoint 
union) [7]. This decomposition is called the 
spectral decomposition of R, and each Ri is 

called a basic set. Let R = 51, U U R, be the 
spectral decomposition of the nonwandering 
set for an Axiom A flow. Denote ni < fij if 

p(Q) n w”(Q,) # 0. A sequence of basic sets 
Ria, oil, , slit (k > 1) is called a cycle if Ri0 < 
Ri1 < < Rix, Ri0 = Qii, and otherwise sliD # 
Ris for p # 4. An Axiom A flow which has no 
cycles in the above sense is said to satisfy the 
no cycle condition. The R-stahility theorem: 
An Axiom A flow with the no cycle condition 
is R-stable [27]. Q-explosion: If an Axiom A 
flow has a cycle, then it is not R-stable (Palis). 
An Axiom A flow is said to satisfy th’e strong 

transversality condition if Ww”(x) and Ww”(x) 

intersect transversely at any XE M. An Axiom 
A flow with the strong transversality condi- 
tion satisfïes the no cycle condition [7]. The 
structural stability tbeorem: An Axiom A flow 
of class C’ with the strong transversality con- 
dition is structurally stable [29,31]. Morse- 
Smale flows and Anosov flows are Axiom A 
flows with the strong transversality condition. 
There are Axiom A flows other than Morse- 
Smale flows and Anosov flows that satisfy the 

strong transversality condition [7]. Stability 
conjecture: A c’-flow is structurally stable 

(resp. R-stable) if and only if it is an Axiom A 
flow with the strong transversality condition 
(resp. the no cycle condition). S. Newhouse, 

V. A. Pliss, Robinson, R. Mai%, S. D. Liao, 
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and A. Sannami have made important contri- 
butions to the study of the stability conjecture. 

Neither the set of ah Axiom A flows nor the 
set of all R-stable flows nor the set of structur- 
ally stable flows is dense in x’(M) if dim M > 2 
(R. Abraham and Smale, Newhouse). How- 

ever, the set of all structurally stable flows is 
dense in r(M) in the C” topology (M. Shub, 
M. M. C. de Oliverira). 

(4) A diffeomorphism fi Diff ‘( M) is called a 
Morse-Smale diffeomorphism if the following 
conditions are satislïed: (i) The nonwandering 
set R is a lïnite set, and hence it consists of 
periodic points; (ii) all periodic points are 

hyperbolic; (iii) for each pair p, q~sZ, W’(p) 
intersects W”(q) transversally. The Morse- 
Smale diffeomorphisms on the unit circle S’ 
are exactly the structurally stable ones de- 
scribed in Section I( 1). A Morse-Smale dif- 
feomorphism is structurally stable [25]. The 
set of all Morse-Smale diffeomorphisms on M 
is open but not dense in Diff’(M) if dim M > 2 
(Palis, Smale). However, it contains a dense 

open subset of the set of all time-one mappings 
of the flows generated by gradient vector lïelds. 
In particular, any closed manifold admits 

MorseSmaIe diffeomorphisms and hence 
structurally stable diffeomorphisms. For a 
Morse-Smale diffeomorphism, the Morse 
inequalities hold [24]. 

Let A be a closed invariant set of fe 
Diff’(M). A is called hyperbolic if the follow- 
ing conditions are satislïed: (i) There is a split- 
ting T,(M) = EX @ Et of the tangent space 

T,(M) for each XEA, which depends continu- 
ously on XE& (ii) &(Et) = E;,,, and df,(EX) = 
E’j.,,, for all x E A; (iii) There is a Riemannian 
metric on M and constants c > 0,O <Â < 1 such 

that, for any integer m>O and xeA, iidfx(w)ll 

dci”l~w~l when w~EX and ~~df-“‘(w)~l< 
~1.” 11 wII when w  E EX. A diffeomorphism fi 
Diff’( M) is called an Anosov diffeomorphism 
if M itself is hyperbolic for J: Manifolds which 
admit Anosov diffeomorphisms are restricted 
(Hirsch, K. Shiraiwa). Examples of Anosov 
diffeomorphisms are given as follows: Let 
L: R”+R” be a hyperbolic linear automor- 

phism with L(Z”) = Z”, where Z” is the dis- 
crete subgroup of R” consisting of all elements 
with integral coordinates. Then L induces an 

automorphism ,f: T”-, T” of the n-dimensional 

torus T”= R”IZ”, which is an Anosov diffeo- 
morphism. There are similar constructions 

using hyperbolic automorphisms of simply 
connected tnilpotent Lie groups and their uni- 

form discrete subgroups (Smale). A homeo- 
morphism h:X+X of a metric space X is 
called expansive if there is a constant E > 0 

such that x, ygX and d(h”(x),h”(y))<a for all 

n E Z imply x = y. An Anosov diffeomorphism 
is expansive. For Anosov diffeomorphisms, 
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theorems similar to those stated in Section 

J(2) hold. Franks, Newhouse, A. Manning, 
and J. N. Mather obtained important results 
concerning Anosov diffeomorphisms. 

A diffeomorphism fi Diff ‘(M) is called an 

Axiom A diffeomorphism if the following con- 
ditions are satislïed: A(a) The nonwandering 
set fi is hyperbolic; A(b) the set of all periodic 
points is dense in 0. There are examples that 
satisfy Axiom A(a) but not Axiom A(b) (A. 
Dankner, M. Kurata). For XE M, put W’(x) 

={y~Mld(f”(x),f”(y))~Oasn~co} and 
lV(x)={y~Mld(f-“(x),f-“(y))+Oas n+co}. 
We cal1 W(x) (resp. W(x)) the stable (resp. 

unstable) manifold off at x. For a subset A of 

M, put W”(A) = UxeA W(x) ((r = s, u). If f is an 
Axiom A diffeomorphism, W’(x) and W”(x) 

are injectively immersed submanifolds of M. If 
x is a hyperbolic periodic point, W’(x) and 

W”(x) deiïned here coincide with those delïned 
before. For Axiom A diffeomorphisms, notions 
such as spectral decomposition, basic sets, the 
strong transversality condition, and the no 
cycle condition are delïned similarly, and 

theorems similar to those stated in Section J(3) 
hold. 

Let h: X+X be a homeomorphism of a met- 

rit space X and c(, fi > 0. A sequence {xi}itz of 
points in X is an sr-pseudo-orbit if d(h(x,), x,+,) 
< c( for all FEZ. We say that {xi}itz is /?- 
shadowed (or /?-traced) by a point x E X if 
rl(h’(x),xi)<fi for a11 FEZ. We say that h has 
the pseudo-orbit tracing property if for any fi 

> 0 there exists an c( > 0 SO that any a-pseudo- 
orbit is p-shadowed by some point. If f is an 
Axiom A diffeomorphism, then fln(f):n(f) 

-n(f) has the pseudo-orbit tracing property 
(Bowen). Axiom A diffeomorphisms with the 
strong transversality condition (in particular, 

Anosov diffeomorphisms) have the pseudo- 
orbit tracing property (Bowen, K. Sawada, K. 
Kato, A. Morimoto). 

(5) Let S be a discrete topological space with 
n elements (n > 2) and Z(S) = ni,, Si the dou- 

bly infmite product of copies Si of S with the 
product topology. A point x=(x& of C(S) is 
a doubly infinite sequence of points in S. C(S) 
is a ttotally disconnected, Perfect, compact, 

tmetrizable space (i.e., a +Cantor set). Let 

o: L(S)-Z(S) be a mapping delïned by a(x) = 
y, X=(X~), ~=(y~), yi=xi+i (iEZ). Then 0 is a 
homeomorphism of C(S) and is called the shift 
automorphism with n symbols. 

Detïne a diffeomorphism f: S2 -t Sz of the 2- 
dimensional sphere S2 as follows. We consider 
S* as R*U { CQ}. Let U be a region of R* con- 
sisting of the rectangle R (= ABCD) and an 
Upper and a lower cap as shown in Fig. 1. f 
maps U into itself as in Fig. 1 (f(A) = A’,f(B) 

= B’,f(C) = C’,f(o) = D’, and SO on). Here, 

R nf(R)= P U Q is the union of two rectangles, 
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P’=f-‘(P) and Q’=,f-‘(Q) are rectangles, and 
fis taffine on each of P’ and Q’ (stretching in 

the vertical direction and contracting in the 
horizontal direction). The lower cap is con- 
tracted into itself, and every point in it tends to 

a sink x0. The Upper cap is mapped into the 
lower one and stays there. The point CC is the 
only source, and lim,,, f-“(x) = CO for a11 
XE R’- U. Thus the nonwandering set of ,f 
consists of a sink x,,, a source CO, and A = 
&,.f “(R). The mapping f constructed here 
is called the horseshoe diffeomorphism. It is 
an Axiom A diffeomorphism with the strong 
transversality condition (and hence structur- 
ally stable). The restriction ,f 1 A off on a 

basic set A is topologically conjugate to the 
shift automorphism with two symbols. It is 
neither a Morse-Smale diffeomorphism nor an 

Anosov diffeomorphism [7]. 

Fig. 1 

A restriction of a shift automorphism on a 
closed invariant set is called a suhshift. Let A 

=(A,) be an n x n matrix with (i,j)-component 
A,j=O or 1 for a11 i, j = 1, . . . , n. It is irreducible 
if for each i, j there is a positive integer m such 
that A” has a nonzero (i,j)-component. As- 

sume that A is irreducible and S = { 1, . . , n}. 
P~~Z~={X=(X,)EZ(S)~A,~,,+,=~ fora11 

iE Z}. Then 1, is a closed invariant set of L(S). 
The restriction o, = o 1 ZA :C, -ZA is called a 

subshift of finite type or a Markov subshift, and 
A is called the transition matrix. A topological 
classification of the subshifts of lïnite type has 
been investigated by Williams. 

Let fi Diff ‘(M) be an Axiom A diffeomor- 

phism and A its basic set. Bowen constructed a 
tMarkov partition for fi A by generalizing the 

Sinai construction for Anosov diffeomor- 

phisms. The Markov partition connects fl A 
with a suitable subshift of Imite type and is 
applied to the study of Axiom A diffeomor- 
phisms, especially to the ergodic theory of 

Axiom A diffeomorphisms (Bowen, Ruelle). A 
similar theory for flows was developed by 

Bowen, Ruelle, and M. E. Ratner. 
(6) Let x E M be a hyperbolic lïxed point of 
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,fEDifY(M). A point PE IV(x)0 W”(x) (p#x) is 
called a bomoclinic point. If W’(x) and W’(x) 
intersect transversally at a homoclinic point p, 
then p is called a transversal homoclinic point. 
In a neighborhood of a transversal homoclinic 

point, there is a closed invariant set A of ,f m 
for some positive integer m such that f” 1 A is 
topologically conjugate to the shift automor- 
phism with two symbols (Smale). There are 
generalizations of this theorem for semiflows 
by F. R. Marotto, Shiraiwa, and Kurata. 

K. Topological Entropy and Zeta Functions 

(1) The notion of topological entropy was first 
delïned by R. L. Adler, A. G. Konheim, and 
M. H. McAndrew as an analog to measure- 

theoretic tentropy. Let X be a compact topo- 
logical space and CC an topen covering of X. 
Let N(a) be the minimum number of members 
of a tsubcovering of cc Let f: X +X be a con- 
tinuous mapping and c1 an open covering of X. 
Thenlim,,,(l/n)logN(ccvf-‘ccv...vf-”+’a) 
exists, where a vf-’ CI v vf-“” c( is the open 
covering{A,n,f~‘(A,)n...nf~“+‘(A,~,)IA,, 
A,, , A,-, EC(}. We denote the above limit by 

h(f, x) and call it the topological entropy of ,f 
with respect to CC. The topological entropy h(f) 
of ,f is detïned as the sup h(,f, a), where the 

supremum is taken over a11 open coverings tl 
of X. Now assume that X is a compact metric 
space. For an open covering tl of X, put diam c( 
= sup { diam A 1 A E a}, where diam A is the 
tdiameter of A. If {x,},,, is a sequence of open 
coverings of X such that diama,+ as n-+ 10, 
then h(f; cc,)+h(f) as n-1 33. The topological 

entropy of the shift automorphism with n 
symbols is equal to logn. Let L:R”+R” be a 
linear mapping with L(Z”) c L(Z”) and Âi, , 

1., its eigenvalues. Let f: T”-t T” be the in- 
duced endomorphism of the n-dimensional 
torus T” = R”/Z”. Then the topological entropy 
is given by h(f)=&,r logliil. 

Let f: X +X be a continuous mapping 
and M(f) the set of all tf-invariant probabil- 
ity measures on the tBore1 sets of X. For 
each ~EM(J), denote by h,(f) the (measure- 
theoretic) entropy off with respect to n. Then 

h(f)=sup{h,(f)Ip~M(f)} (E. 1. Dinaburg, 
T. N. T. Goodman, L. W. Goodwyn). The 

following properties hold: (i) If ,f: X+X is a 
homeomorphism, then h(f”)=lnlh(f) for all 

n E Z. (ii) If (X, <p) is a continuous flow, then 
h(cp,)=ltlh(<p,) for all VER. (iii) Let A:X,-tX, 
(i = 1,2) be continuous. Then h(,f, x f2) = 
h(,f,)+h(,f,). (iv) Let fi:X,-tX, (i= 1,2) be con- 
tinuous. If there is a continuous mapping 
g:X,-+X, such that g(X,)=X, and gof, = 

f2 og, then h(f,) >h(f2). In particular, if fi and 
f2 are topologically conjugate, then h(f,)= 
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h(f’). (v) If ,f: X-X is a homeomorphism and 
R is the nonwandering set of J then k(f)= 
h(fl0). In particular, R-conjugate homeo- 
morphisms have the same topological entropy 
(Bowen). (vi) If ,f: M-tM is an Axiom A diffeo 
morphism of a closed C”-manifold M, then 

h(,f)=limsup,,,(l/n)logN,(f), where N,(S) is 
the number of all periodic points of period n. 
And h(f) =0 if and only if the nonwandering 
set is tïnite (Bowen). 

Bowen gave alternative definitions of the 
topological entropy and generalized it for 
uniformly continuous mappings of (not neces- 
sarily compact) metric spaces. If 1’: M+M 
is a Cl-mapping of an n-dimensional Rie- 
mannian manifold M, then /I(S) < max { 0, 

nlogsup{ llrlf,ll IxEM)}, where ll&ll is the 
norm of df,: T,(M)+ Tftx,(M), and hence h(f) 
is tïnite (Bowen, S. Ito). 

(2) Let f: M*M be a continuous mapping 
of a closed C” -manifold M and ,f,: H,(M)+ 

H,(M) (resp. f,, : H,(M)+H,(M)) the tinduced 
homomorphism if f on the +homology group 
H,(M) (resp. the ttïrst homology group 
H,(M)) with coefficients in R. The spectral 
radius s(L) of a linear mapping L: E-E of a 
real vector space E is the maximum of the 
absolute values of the eigenvalues of L. The 

following entropy conjecture is still open: 
If f: M+M is a Cl-diffeomorphism (Cl- 
mapping), then h(j‘) 2 logs(,f,). Concerning the 

entropy conjecture, the following are known: 
(i) The conjecture holds for a dense open set of 
Diff’(M) in the CO-topology (Shub); (ii) for 

any continuous mappingf, h(f)>logs(f,,) 
(Manning); (iii) the conjecture fails for a 

homeomorphism (Pugh); (iv) the conjecture 
holds for an Axiom A diffeomorphism with 

the no cycle condition (Shub and Williams); 
(v) the conjecture holds for any continuous 
mapping of the n-dimensional torus (M. 
Misiurewicz, F. Przytycki); (vi) for a Cl- 
mappingf: M+M, h(f)>logldegfl, where 
degfis the +mapping degree off (Misiurewicz, 
Przytycki). 

(3) M. Artin and B. Mazur first defïned the 
zeta function of a diffeomorphism by analogy 
to +Weil’s zeta function. Let ,f: X +X be a 
homeomorphism of a compact metric space 
X. Assume that the number IV, = N,,,(,f) of a11 
periodic points of period m is finite for a11 m. 
Put [(t)=exp(Cz=, N,t”/m) and call it the 
zeta function off: For any closed C”-manifold 
M, there is a dense set E of Diff’( M) such that 

,6fm(,f)<ck” for ,feE, where NM(f) is the 
number of isolated periodic points of period m 
and c and k are positive constants depending 
only on f (Artin, Mazur). Hence, for such ,f’~ E, 

the series exp(C& fim(f)t”‘/m) has a positive 

radius of convergence. Originally, Artin and 
Mazur called this the zeta function of .1: 
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Let <r, :C, -1, be a subshift of fïnite type 
with transition matrix A; then i(t) = l/det(E - 
tA), where E is the unit matrix (Bowen and 0. 
E. Lanford III). The zeta function of an Axiom 
A diffeomorphism has a positive radius of 
convergence and is a rational function (K. 
Meyer, J. Guckenheimer, Manning). 

Let (M, <p) be a nonsingular C’-flow on a 

closed C”-manifold M. Let r be the set of 
all closed orbits and l(y) the smallest posi- 

tive period of y E r. Smale defïned the zeta 
function of (M, cp) by Z(s)=n,,,-n~,(l- 
[expI(y)] msmk). If (M, cp) is the geodesic flow on 
a surface of constant negative curvature, Z(s) 
reduces to the +Selberg zeta function. 

There are generalizations and modifications 
of the notion of zeta function by Ruelle and 
Franks. 

L. Classical Dynamical Systems 

(1) Let M be a C” -manifold without bound- 

ary. A C’-flow (M, q) or a C’-diffeomorphism 
,f: M+M with a smooth invariant measure is 
called a classical dynamical system. Most 

important classical dynamical systems are 
Hamiltonian or Lagrangian systems. In the 

modern formulation, a Hamiltonian system 
consists of M, a symplectic form w  on M (i.e., a 
tnondegenerate +closed 2-form), and the vector 
field X, on M delïned by a C’+‘-function 
H: M +R. We cal1 X, the Hamiltonian vector 

iïeld with energy function H. Let (M, w, X,) be 
a Hamiltonian system. Then the following 

hold: (i) M is of even dimension and there is a 
system of local coordinates (q’ , , q’, pl, , 

p,) such that w  = Cy=l dqi~dpi (J. G. Darboux). 
In these coordinates X, is expressed by 
+Hamilton’s equations dq’/dt = aH/@,, 

dpJdt = - dH/<lq’, i = 1, , n; (ii) the smooth 
measure defined by the +Volume element R = 
(( -l)[“‘*‘/n!)fY is an invariant measure for 

the flow generated by X, (J. Liouville); (iii) 
the energy function H is constant along any 

trajectory of X,. Especially, H-‘(e) (e6R) is 
an invariant set for each e and is called an 
energy surface. Energy surfaces are submani- 
folds of codimension one for almost a11 e E R. 

Important examples of Hamiltonian sys- 
tems are given as follows. Let Q be an n- 
dimensional manifold and T*(Q) the +cotan- 

gent bundle of Q. Then T*(Q) has a canonical 
symplectic form wO. We cal1 Q a configuration 
space and T*(Q) a momentum phase space. For 

any C*+l -function H on T*(Q), we have a 

Hamiltonian system (T*(Q), wo, X,) in which 
X, is of class C’. The Hamiltonian formalism 
is translated into Lagrangian formalism by 

using the +tangent bundle r(Q) instead of 
T*(Q). T(Q) is called a velocity phase space. 
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For a given differentiable function L on T(Q), 
the energy function E on T(Q) and the Lagran- 

gian vector field X, on T(Q) are constructed. If 
L satisfies a certain condition, there is a system 
of local coordinates (ql, . . . . q”,q’, . . . ,y”) such 
that X, is expressed in these coordinates by 
the +Euler-Lagrange equations dq’/dt = yi, 
d/dt(aL/a$)=aL/dq’, i= 1, . . . ,n. The projec- 
tion of an integral curve (i.e., an orbit) of X, 
into Q is called a base integral curve. Under a 
suitable condition, the base integral curve of a 

Lagrangian (or a Hamiltonian) system is the 
geodesic of the Jacobi metric on Q up to a 
reparametrization, and the restriction of the 

flow generated by X, on an energy surface is 
the geodesic flow described below. 

(2) Let M be a tcomplete Riemannian mani- 
fold ofclass C” and S(M)={UET(M)I IIu// = l}. 
Let n:S(M)+M be the projection delïned by 
Z(V) = x for u E T,(M). Then S(M) is a tsphere 

bundle over M, which is called the unit tangent 
sphere bundle over M. Each ~ES(M) deter- 
mines a unique tgeodesic C,: R-+ M such that 

C,(o) = Z(U) and the ttangent vector Ch(O) to C, 
at t = 0 is equal to v. Let u, be the tangent 

vector Ch(t) to C, at t for teR. Then IIu,ll= 1 
and z(v~) = C,(t) for ail t E R. Define a map- 
pingcp:S(M)xR+S(M)by<p(o,t)=u,.Then 
(S(M), <p) is a C”-flow, which is called the 
geodesic flow on M. By the classical Liouville 
theorem, a geodesic flow has a smooth invar- 
iant measure. 

(3) Let T” = R”/Z” be the n-dimensional 
torus and wl, . , w, real constants. Define a 

mapping<p:T”xR+T”bycp([x,,...,x,],t)= 
[x,+o,t ,..., x,+~,t], where [x, ,..., X”]E 
R”/Z” = T” is the residue class of (xl, . . , X,)E 

R” modulo Z”. Then (T”, <p) is a C”-flow. We 
cal1 it the translation flow with frequencies 
wl, . , w,. If wl, , w, are linearly indepen- 
dent over Z, they are called independent. Every 
orbit of the translation flow is dense if and 
only if its frequencies are independent (Poin- 
caré, H. Weyl). A translational flow with inde- 

pendent frequencies is called quasiperiodic. 
Let (M, u, X,) be a Hamiltonian system on 

a 2n-dimensional manifold M. Under a certain 

condition, there exist an open set U of M and 
a diffeomorphism f: ci* T” x R” such that the 
following holds: Identify U with T” x R” by 

J and let (ql, . . . . q”,p,, . . . . p.) be the coordi- 
nates of T” x R”. Then the energy function 

H is independent of q = (ql, . . , q”) SO that 
Hamilton’s equations becomes dq’/dt = aH/ap,, 
dp,/dt = - aHI@‘= 0 for i = 1, . , n. Therefore 

the solutions are given by q’(t) = (aH/api(c))t + 
q’(0) modula Z, p,(t)=pi(0)=ci, i= 1, ,n, 
where C=(C~, . . ..c.). Therefore N,=fml(T” x 
{c}) is an invariant torus (i.e., an invariant 

set diffeomorphic to T”) of (the flow generated 

by) X, for ail CER”, and the restriction flow on 
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N, is the translational flow with frequencies 

w1 = aH/ûp, (c), , w, = cYH/cYp,(c) (Arnold). As- 
sume further that the Hessian det(d2 H/ap,ap,) 
does not vanish at c and ol, . , w, are inde- 
pendent. Let fi be an energy function obtained 
by adding a suffïciently small perturbation to 
H. Then for almost a11 c’ near c, there exists an 
invariant torus fl of X, near N,, such that the 
restriction flow on fl is differentiably equiva- 

lent to the translational flow with the same 
frequencies (Kolmogrov, Arnold, Moser). 

(4) Generic properties for Hamiltonian 
systems were investigated by M. Buchner, 

Markus, Meyer, Pugh, Robinson, Takens, and 
Newhouse. 

M. Bifurcation 

(1) Consider a differential equation with a 
parameter. For example, let X be a domain 
of R”, J=( -1, l), and f:J x X-R” a C’- 

mapping. For each p E J, define f, : X * R” by 
ffl(x) =f(p, x), XE X. Consider the differential 
equation 

dxldt =fJx)> XEX and ~LE.J. (7) 

As p varies, the topological structure of the 
phase portrait of (7) may change. Suppose that 
there exists pLo~J such that the topological 
structure of the phase portrait of (7) changes at 
p = pLo but remains the same when pLo -E < p < 

p,orp,<p<pO+Eforsome&>O.Thenp, 
is called a bifurcation point of (7). 

Hopf bifurcation: Assume that X = R2 and 
the origin OER’ is a singular point of (7) for 

a11 ,u E J. Assume further that the Jacobian 
matrix off, at 0 E R2 has two distinct complex 
conjugate eigenvalues A(p) and n(p) such 
that the real part Rel.(p) of A(p) is positive 
when p > 0, zero when p = 0, and negative 
when p < 0. Then OE R2 is a sink for p < 0 and 
a source for p > 0. Now assume further that 
d/dp(Rei(p))(,=, is positive and OeR2 is a 
“vague attractor.” Then OEJ is a bifurcation 
point, and there exists an asymptotically stable 

closed orbit for (7) near and around OeR2 
which depends continuously on p for p > 0 
[37]. Thus a sink of (7) (pt0) changes to a 

source and an asymptotically stable closed 
orbit (p > 0) when p changes its sign. The Hopf 

bifurcation theorem cari be generalized to a 
higher-dimensional case, and there is a dif- 

feomorphism version of the theorem. 
(2) Bifurcations in more general settings 

have been investigated by many mathema- 
ticians, including Thom, Arnold, R. J. Sacker, 
G. R. Sell, D. H. Sattinger, G. Iooss, Ruelle, 

and Takens. Generic bifurcations of dynamical 
systems have been investigated by J. Soto- 
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mayer, Meyer, P. Brunovsky, and others; 
bifurcations of Morse-Smale systems by New- 

house, Palis, Peixoto, and S. Matsumoto; 
and bifurcations of Axiom A diffeomorphisms 
by Newhouse and Palis. 

N. Miscellaneous Topics 

(1) Let S3 be the 3-dimensional sphere and 
VET~(S~). H. Seifert proved that if V is suftï- 
ciently close (in CO topology) to a nonsingular 
vector fïeld tangent to the tïbers of the +Hopf 
iïbration S3_tSz, then V has a closed orbit. He 
conjectured that every nonsingular vector iïeld 

VE!T~(S~) had a closed orbit. (Seifert conjec- 
ture; - 154 Foliations D). If a nonsingular 
vector fïeld VcX1(S3) is transverse to a codi- 
mension 1 foliation of class C2, then it has a 

closed orbit (S. P. Novikov). Let M be a 3- 
dimensional Cm-manifold. Then there exists a 
nonsingular vector tïeld VE X’(M) with no 
closed orbit in any thomotopy class of a non- 
singular vector field on M (P. A. Schweitzer). 
Thus the Seifert conjecture fails for a vector 
Iïeld of class C’, but the conjecture for a vector 
Iïeld of class C’ (r > 2) is an open problem. 
Related work has been done by Fuller, H. 
Chu, and A. Weinstein. 

(2) Let M be a closed connected C”- 
manifold. A c’-flow (M, <p) (resp. fe Diff’(M)) 
is a minimal flow (resp. a minimal diffeomor- 
phism) if M itself is a minimal set. If M admits 
a tlocally free SI-action of class C”, then it 
admits a minimal Cm-diffeomorphism, and if 

M admits a locally free special (in particular, a 
tfree) T2-action of class C”, then it admits a 

minimal C”-flow (A. Fathi, Herman, A. B. 
Katok). Open problems: What are the topo- 
logical properties of the manifolds admitting 

minimal flows? Does S3 admit a minimal flow? 
(3) E. N. Lorenz studied numerical solutions 

of the following nonlinear equations in R3 
which arose from the convection equation: 

dxJdt= -oxfay,dyJdt= -xz+rx-y,dz/dt= 

xylbz. When o = 10, r = 28, and b = 813, he 
found irregular behavior in this dynamical 
system. R. M. May studied numerical solu- 
tions of the following difference equation in 
connection with the growth of biological popu- 
lations with nonoverlapping generations: 
X n+l =a~,(1 -x,), x,E[O, l] (1 <a<4). He 

found that the dynamical structure of the 
above difference equation was delicate and 
complicated. Y. Ueda and H. Kawakami also 
found similar phenomena in their numerical 
study of Duffing’s equation of the type d2x/dt2 

+ k dxldt + x3 = Bcos t. The phenomena ob- 
served in these investigations were called 

chaos, which exhibits strange attractors. 
These investigations have attracted the 
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attention of many mathematicians and scien- 
tists. For 1-dimensional semidynamical sys- 
tems such as May’s equation, T. Y. Li, J. A. 

Yorke, A. N. Sharkovskiï, J. W. Milnor, Thur- 
ston, and many others have obtained notable 
results, while for Lorenz’s equation we have 

results by Ruelle, Guckenheimer, Williams, 
Sinai, and many others. Chaos arising from 
discretization of differential equations has been 
studied by M. Yamaguti, S. Ushiki, and others 

(- 433 Turbulence and Chaos). 

References 

[l] H. Poincaré, Mémoire sur les courbes 
définies par une équation différentielle, J. 

Math. Pures Appl., (3) 7 (1881), 3755422; 8 
(1882), 251-296. (Oeuvres 1, Gauthier-Villars, 
1928, 3-84.) 
[2] H. Poincaré, Sur les courbes définies par 
les équations différentielles, J. Math. Pures 
Appl., (4) 1 (1885), 167-244; 2 (1886), 151-217. 
(Oeuvres 1,90&158, 1677222.) 
[3] H. Poincaré, Les méthodes nouvelles de la 
mécanique céleste. 1, Solutions périodiques, 

Non-existence des intégrals uniforms, Solu- 
tions asymptotiques. II, Méthodes de MM. 
Newcomb, Gyldén, Lindstedt et Bohlin. III, 

Invariants intégraux, Solutions périodiques du 
deuxième genre, Solutions doublement asymp- 
totiques. Gauthier-Villars, 1, 1982; II, 1893; 
III, 1899; English translation, New methods 
of celestial mechanics IIIII, Clearinghouse 
for Federal Scientific and Technical Informa- 
tion, Springfield, 1967. 

[4] G. D. Birkhoff, Dynamical systems, Amer. 
Math. Soc. Colloq. Publ., 1927. 
[5] A. A. Andronov and L. S. Pontryagin, 

Systèmes grossiers, Dokl. Akad. Nauk SSSR, 
14 (1937), 247-250. 
[6] S. Lefschetz, Differential equations: geo- 

metric theory, Interscience, 1957. 
[7] S. Smale, Differentiable dynamical systems, 
Bull. Amer. Math. Soc., 73 (1967), 747-817. 
[S] D. V. Anosov, Geodesic flows on closed 
Riemannian manifolds with negative curva- 
ture, Proc. Steklov Inst. Math., 90 (1967) 1~ 
235. 
[9] R. Bowen, Equilibrium states and the 
ergodic theory of Anosov diffeomorphisms, 

Lecture notes in math. 470, Springer, 1975. 
[lO] D. Ruelle and F. Takens, On the nature 
of turbulence, Comm. Math. Phys., 20 (1971), 
167-192. 
[ 1 l] J. Moser, Stable and random motions in 
dynamical systems, Ann. Math. Studies 77, 
Princeton Univ. Press, 1973. 

[ 121 L. H. Loomis and S. Sternberg, Advanced 
calculus, Addison-Wesley, 1968. 



503 

[13] V. V. Nemytskii and V. V. Stepanov, 
Qualitative theory of differential equations, 

Princeton Univ. Press, 1960. (Original in Rus- 
sian, 1947.) 
[ 141 N. P. Bhatia and G. P. Szego, Stability 

theory of dynamical systems, Springer, 1970. 
[ 151 W. H. Gottschalk and G. A. Hedlund, 
Topological dynamics, Amer. Math. Soc. 
Colloq. Publ., 1955. 

[ 161 R. Abraham and J. W. Robbin, Transver- 
sal mappings and flows, Benjamin, 1967. 
[ 171 L. Markus, Lectures in differentiable 
dynamics, revised edition, Regional Conf. 
Series in Math. 3, Amer. Math. Soc., 1980. 

[ 1 S] Z. Nitecki, Differentiable dynamics, MIT 
Press, 1971. 

[19] M. Shub, Stabilité globale des systèmes 
dynamiques, Astérisque, Soc. Math. France, 56 
(1978). 

[20] M. C. Irwin, Smooth dynamical systems, 
Academic Press, 1980. 
[21] S. Smale, Stable manifolds for differential 
equations and diffeomorphisms, Ann. Scuola 
Norm. Sup. Pisa, (3) 17 (1963) 977116. 
[22] 1. Kupka, Contribution à la théorie des 
champs génériques, Contributions to Differ- 
ential Equations, 2 (1963) 457-482. 
[23] C. Pugh, An improved closing lemma and 
a general density theorem, Amer. J. Math., 89 
(1967), 1010-1021. 

[24] S. Smale, Morse inequalities for a dynam- 
ical system, Bull. Amer. Math. Soc., 66 (1960) 
43-49. 

[25] J. Palis and S. Smale, Structural stability 
theorems, Amer. Math. Soc. Proc. Symp. Pure 
Math., 14 (1970), 2233231. 
[26] M. W. Hirsch and C. C. Pugh, Stable 
manifolds and hyperbolic sets, Amer. Math. 
Soc. Proc. Symp. Pure Math., 14 (1970), 133- 
163. 

[27] S. Smale, The fi-stability theorem, Amer. 
Math. Soc. Proc. Symp. Pure Math., 14 (1970) 
289-297. 
[28] S. Smale, Notes on differentiable dynam- 
ical systems, Amer. Math. Soc. Proc. Symp. 

Pure Math., 14 (1970), 2777287. 
[29] J. W. Robbin, A structural stability theo- 
rem, Ann. Math., (2) 94 (1971) 447-493. 

[30] J. W. Robbin, Topological conjugacy and 
structural stability for discrete dynamical 

systems, Bull. Amer. Math. Soc., 78 (1972), 
923-952. 
[31] R. C. Robinson, Structural stability of C’ 
flows, Lecture notes in math. 468, Springer, 
1975,262-277. 

1321 M. Shub, Dynamical systems, filtrations 
and entropy, Bull. Amer. Math. Soc., 80 (1974), 
27741. 
[33] M. W. Hirsch, C. C. Pugh, and M. Shub, 

Invariant manifolds, Lecture notes in math. 
583, Springer, 1977. 

127 A 
Dynamic Programming 

[34] R, Bowen, On Axiom A diffeomorphisms, 
Regional Conf. Series in Math. 35, Amer. 

Math. Soc., 1978. 
[35] R. Abraham and J. E. Marsden, Founda- 
tions of mechanics, second edition, Benjamin, 
1978. 
[36] V. 1. Arnold and A. Avez, Problèmes 

ergodiques de la mécanique classique, 
Gauthier-Villars, 1967; English translation, 

Ergodic problems of classical mechanics, Ben- 
jamin, 1968. 
1371 J. E. Marsden and M. McCracken, The 

Hopf bifurcation and its applications, Applied 
math. sci. 19, Springer, 1976. 

127 (X1X.8) 
Dynamic Programming 

A. General Remarks 

There are two types of multistage tdecision 
processes. In one of them, an outcome of the 
whole process is determined at the final stage 
without any consideration of the outcome for 
each intermediate stage. The textensive form 

of a tgame is of this type. In the other type, 
an outcome is assigned at each stage of a 

multistage decision process. The theory of 
dynamic programming, dealing with this latter 
type, has been developed by R. Bellman and 
others since 1950 and is now one of the fun- 
damental branches of mathematical program- 
ming, along with the theories of linear and 
nonlinear programming. The following exam- 

ples illustrate some features of multistage deci- 
sion processes. 

Multistage allocation process. We are given 
a quantity x > 0 that cari be divided into two 
parts y and (x-y). From y we obtain a return 

g(y), and from (x-y) a return h(x-y). In SO 
doing, we expend a certain amount of our 
original resources and are left with a new 

quantity, ay + b(x - y), 0 <a, b < 1, with which 
the process is continued. How do we proceed 

SO as to maximize the total return obtained in 
a finite or unbounded number of stages? 

Multistage choice process. Suppose that we 
possess two gold mines A and B, the first of 
which contains an amount x of gold, while the 
second contains an amount y. In addition, we 
have a single gold mining machine with the 

property that if used to mine gold in the mine 
A, there is a probability Pi that it Will mine 
a fraction rr of the gold there and remain in 
working order, and a probability 1 -Pi that it 

Will mine no gold and be damaged beyond 
repair. Similarly, the mine B has associated 
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with it the corresponding probabilities Pz and 

1 - P2 and fraction r2. How do we proceed in 
order to maximize the total amount of gold 
before the machine is defunct? 

These two processes have the following 
features in common: (1) In each case we have a 
physical system characterized in any state by a 
small set of parameters, the state variables. (2) 
In each state of either process we have a choice 
of a number of decisions. (3) The effect of a 

decision is a transformation of the state vari- 
ables. (4) The past history of the system is of 
no importance in determining future actions 

(tMarkov property). (5) The purpose of the 
process is to maximize some function of the 
state variables. 

A policy is a rule for making decisions that 
yields an allowable sequence of decisions; an 
optimal policy is a policy that maximizes a 
preassigned function of the final state vari- 
ables. A convenient term for this preassigned 
function of the final state variables is criterion 

function. One of the characteristic features of 
Bellman’s methodology of dynamic program- 
ming is the appeal to the principle of optimal- 
ity: An optimal policy has the property that 
whatever the initial state and initial decision 
are, the remaining decisions must constitute 
an optimal policy with regard to the state 
resulting from the tïrst decision. 

In the multistage allocation process the state 

variables are x (the quantity of resources) and 
z (the return obtained up to the current stage). 
The decision at any stage consists of an alloca- 
tion of a quantity 0 <y < x. This decision has 
the effect of transforming x into ay + b(x - y) 

and z into z + g(y) + h(x - y). The purpose of 
the process is to maximize the final value of z. 
Denote by f,(x) the N-stage return obtained 

starting from an initial state x and using an 
optimal policy. Then we have 

fi(X)=o~a<XxCg(Y)+hCx-Y)I, . , 

f.(x)=,a<xxCg(y)+h(x-y) 
\ , 

+"LI(aY+w-Y))l, n>2. 

This recurrence relation yields a method for 
obtaining the sequence {f,(x)} inductively. 

In the stochastic gold-mining process, the 
state variables are x and y (the present level 
of the two mines) and z (the amount of gold 
mined to date). The decision at any stage con- 
sists of a choice of A and B. If A is chosen, 
(~,y) goes into ((1 -r,)x,y) and z into z+r,x, 

and if B is chosen, (x, y) goes into (x, (1 - r2)y) 

and z into z + r2 y. The purpose of the process 
is to maximize the expected value of z ob- 

tained before the machine becomes defunct. 

Denote by f(x, y) the expected amount of 
gold obtained using an optimal sequence of 

choice. Then we have 

.f(x, Y) = max 
L 

Pl~r~x+f((l-rl)x,y)l 
Pz{rzY+f(x,U -rdY)l 1 

The optimal policy cari be described in the 

following way. We choose A or B according as 
p,r,x/(l -pl) is greater or less than p2r2y/(l - 
p2). We cari choose either A or B if equality 
holds. After an operation according to such a 
choice, the machine may become defunct and 
terminate the process. If the machine is usable, 

then we cari apply our policy to a new com- 
bination of the amounts of gold in A and B. 

B. Discrete Deterministic Processes 

By a deterministic process we mean a process 
in which the outcome of a decision is uniquely 
determined by the decision. We assume that 
the state of the system, apart from time de- 
pendence, is described in any stage by an M- 
dimensional vector p constrained to lie within 
some region D. Let T= { T,} (where q runs over 

a set S) be a set of transformations with the 
property that ~ED implies that T,(P)ED for a11 
q E S, i.e., any transformation T, carries D into 
itself. The term “discrete” signifies here that we 
have a process consisting of a lïnite or de- 
numerably inlïnite number of stages. A policy, 
for the lïnite process which we consider lïrst, 
consists of a selection of N transformations 
in order, P = (Ti, T,, . . , TN), yielding succes- 

sively the sequence of states pi = T(p,-,) (i = 

2,3, . . . . N) with p, = T,(p). These transfor- 
mations are to be chosen to maximize a given 

function R of the final state pN. Observe that 
the maximum value of R(p,), as determined 
by an optimal policy, Will be a function of the 
initial vector p and the number N of stages 
only. Let us then detïne our basic auxiliary 
functions &(p) =max R(p,) = the N-stage re- 
turn obtained starting from an initial state p 

and using an optimal policy. This sequence is 
detïned for N = 1,2, . . , and p E D. The essential 
uses of the principle of optimality cari be ob- 
served from the following two features. The 
lïrst is the use of the embedding principle. The 
original process is embedded in a family of 

similar processes. In place of attempting to 
determine the characteristics of an optimal 
policy for an isolated process, we attempt to 
deduce the common properties of the set of 
optimal policies possessed by the members of 
the family. The second feature is the derivation 
of recurrence relations by which the functional 
equations connecting the members of the se- 

quence { fk(p)} are established. Assume that 

we choose some transformation Tq as a result 
of our lïrst decision, obtaining in this way a 
new state vector T,(p). The maximum return 
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from the following k - 1 stages is, by definition, 
fk-,(Tq(p)). It follows that, if we wish to maxi- 
mize the total k-stage return, q must now be 
chosen to maximize this (k - 1)-stage return. 
The result is the basic recurrence relation 

fkb) =maxqdkl (T,(P)), for k 2 2, with fi (P) = 
max,,sR(T,(p)). For the case of an unbounded 

process, the sequence jfk(p)} is replaced by a 
single function f(p), the total return obtained 
by using an optimal policy starting from state 

p, and the recurrence relation is replaced by 
the functional equation f(p)=max,f(T,(p)). 

C. Discrete Stochastic Processes 

We again consider a discrete process, but one 
in which the transformations are stochastic 

rather than deterministic. The initial vector p 
is transformed into a stochastic vector z with 
an associated distribution function dG,(p, z) 
dependent on p and the choice of q. We as- 
sume that z is known after the decision has 

been made and before the next decision is to 
be made. We agree to measure the value of 
a policy in terms of some average value of 
the function of the final state. Let us cal1 this 
expected value the return. Beginning with 
the case of a finite process, we define fk(p) as 
before. The expected return as a result of the 
initial choice of T, is therefore 

I 
.A-, (zWq(P> 4. 

27-D 

Consequently, the recurrence relation for the 

sequence {fk(p)} is 

with fi(p)=max,,,S,,.R(z)dC,(p,z). Con- 
sidering the unbounded process, we obtain the 
functional relation 

D. Continuous Deterministic Processes 

A number of interesting processes require that 

decisions be made at each point of a con- 
tinuum, such as a time interval. The simplest 
examples of processes of this character are 
provided by the tcalculus of variations. Let 
us denote by f(p; T) the return obtained over 
a time interval [0, T] starting from the ini- 
tial state p and employing an optimal policy. 

Although we consider the process as one con- 
sisting of choices made at each point t on 
[O, T], it is better to begin with the concept of 

choosing policies (functions) over intervals, 

and then pass to the limit as these intervals 
shrink to points. Let d be an allowable deci- 

sion made over the interval [0, S], and let pd be 
the state at S starting from the initial state p 
and employing d. The application of the prin- 
ciple of optimality suggests that 

.f(p;S+T)=s;pf(p,, T), (1) 

where the supremum is taken over the set D of 
a11 allowable decisions d. 

The limiting form of (1) as S+O is a non- 

linear partial differential equation (Bellman 
partial differential equation). This expression 
is important for use in actual analysis. For 
numerical purposes, S is kept nonzero but 

small. R. Bellman showed that it is possible 
to avoid many of the quite difficult rigorous 

details involved in this limiting procedure if 
we are interested only in the computational 
solution of variational processes. 

E. Markovian Decision Processes 

Consider a physical system which at any of 
the times t = 0, A, 2A, must lie in one of the 
states S,, S,, . , S,. Let yi(n) be the probability 
that the system is in Si at times nA, and let Pij 
be the probability that the system is in state Sj 
at t + A if it is in state Si at time C. We suppose 
that the transition probabilities Pij are inde- 
pendent of t. We assume that the ej depend 
on a parameter q, which may be a vector, and 

that at each stage of the process q is to be 
chosen SO as to maximize the probability that 
the system is in the state S,. We obtain the 

nonlinear system 

Y,(n+l)=my : Plj(q)Yj(n) 
j=1 

=i$ Yi(n)Pil (q*); 

Yi(n + l) = ,il Pij(q*)Yj(n)t i=2,3 ,..., N, 

where q* = q*(n) in the remaining N - 1 equa- 
tions is one of the values of q that maximize 
y, (n + 1). There are similar processes that cari 

be considered as continuous analogs of this 
type of decision process. These are called Mar- 
kovian decision processes and were discussed 
by Bellman. There is, however, another type 
of Markovian decision process in which a re- 
ward is given at each stage. For each state Si 

of the system there are k alternatives 1,2,3, 
. . , k. If we choose the alternative h among 

these k alternatives, then the transition prob- 
abilities pu (j= 1,2, . . . , n) are determined, and 
a reward ri is associated with each state Sj. 
Let us denote by ui(n) the total expected re- 

turn obtained at the nth stage by appealing 
to an optimal policy when the initial state is Si. 
Then the principle of optimality in the theory 
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of dynamic programming yields 

ui(n+ l)=mp 5 p$($+Uj(n)) 
( j=l > 

A policy-iteration method involving a 
value-determination operation with a policy- 
improvement routine was given by R. A. 
Howard [4]. 

F. Dynamic Programming and the Calculus of 
Variations 

Problems in the calculus of variations cari be 
viewed as multistage decision problems of a 
continuous type. It cari be shown that the 
dynamic-programming approach yields forma1 
derivations of classical necessary conditions 
for the calculus of variations. Let us consider 
the problem of minimizing the functional 

J(y)= hfb>Yww~, 
s Il 

where the function y is subject to y(a) = c. 
We embed this problem within the family of 
problems generated by allowing a and c to be 

parameters with the ranges of variation -CO < 
a < b, -CO CC < CO. Now we detïne the optimal 

value function S(a, c) = min, J(y). Then the 
principle of optimality yields the functional 

equation 

S(a, 4 

= min 
(s 

Cl+‘4 
f(x,Y,y’)dx+S(a+A,c(y)) , 

0 > 

where the minimization is taken over a11 func- 
tions defined over [a, a + A] with y(a) = c and 

c(y) = y(a + A). Then, writing u = y’(a), we get 

as 

( 

as 
-%=min f(a,c,u)+uZ 

” > 

This yields the Euler equation, the Legendre 
condition, the Weierstrass condition, and 

the Erdman corner conditions. Furthermore, 
it cari be shown that the functional equa- 
tion characterization yields the Hamilton- 
Jacobi partial differential equation of classical 
mechanics. 

The dynamic-programming approach cari 
be applied to more general problems in the 
calculus of variations. 

G. Dynamic Programming and the Maximum 
Principle 

In general, the method of dynamic program- 

ming carries a more universaf character than 

the maximum principle of optimal control 
theory. However, in contrast to the latter, this 

method does not have a rigorous logical foun- 
dation. V. G. Boltyanskii [6] has presented a 
justification of the dynamic programming 
method. 

Let L(x, u) (i = 0, 1, , n) be defined for x E 
I/c R” and u E U c R’, where V is an open set, 
and continuously differentiable on Vx U. 

Suppose that two points x0 and x1 are given in 
V. Among a11 the piecewise continuous con- 
trols u(t)=(u,(t), . , u,(t))~ U which transfer 
the phase point moving in accordance with 

dx. 
+(x’U(t))’ i= 1, . . . . n, 

from x0 = x(to) to x1 = x(ti), tïnd the control 
u(t) for which the functional 

J = ” fo(x(t), u(t))dt 

takes the smallest value. 
A continuous function w(x) = ~(xi, . . . , x,) is 

called a Bellman function relative to a point 
a E V if it possesses the following properties: (1) 

w(a)=@ (2) there exists a set M (the singular 
set of w(x)), which is closed in V and does not 
contain interior points, such that the function 

w(x) is continuously differentiable on the set 
V-M and satistïes the condition 

sup 
“CU 

= 0, ~EV-M. 

The following theorem gives a sufficient opti- 
mality condition. 

Theorem: Assume that for dx/dt =f(x, u(t)) 
given in a region VcR” there exists a Bellman 
function w(x) relative to the point aE V with a 

piecewise smooth singular set. Assume, further- 
more, that for any point x0 E V there exists 
a control u(t) which transfers the phase point 
from x0 = x(t,) to a = x(tl) and satistïes the 
relation 

s ‘1 
fo(x(t), u(t))dt = -w(x’). 

‘0 

Then any such control u(t) is optimal in V. 
Recently, Vinter and Levis [7] obtained the 

following general result in this connection. The 
sufficient condition is given in terms of a solu- 
tion to the Bellman partial differential equa- 

tion. It is shown that if this equation is modi- 
tïed SO that it is actually an inequality, and if 
this inequality is required to be satisfied in a 
limiting sense only, then the condition is also 
necessary for optimality. 

H. Characteristic Features of Dynamic 
Programming 

The characteristic features of the dynamic- 
programming approach cari be summarized in 
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the following five points: (1) the advantage of 

lower dimensionality in comparison with the 
enumeration approach; (2) the possibility of 
finding maxima and/or minima of functions 
defined over restricted domains for which 
differential calculus may not work well; (3) the 

availability of numerical solutions in recursive 
form; (4) the possibility of formulating certain 
problems to which classical methods do not 

apply; and (5) the applicability of the method 
to most types of problems in mathematical 
programming, such as tinventory and produc- 
tion control, optimal searching, and some 
optimal and adaptive control processes. 
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A. General Remarks 

The term econometrics cari be interpreted in 
various ways. In its widest sense, it means 

the application of mathematical methods to 
economic problems and includes mathematical 
economics, tmathematical programming, etc. 
However, here we use it to mean statistical 

methods apphed to economic analysis. 
The abject of econometrics is to provide 

methods to analyze relationships between 
economic variables. We classify these methods 
into four categories according to the types of 

relationships involved: (1) Analysis of causal 
relations: If a set of variables Xi, , X, affects 
an economic variable Y, we cari estimate the 
direction and extent of those effects on Y. 
(2) Analysis of equilibrium: When a set of 
economic variables Y,, , Y, is determined 
through a market equilibrium mechanism, we 

cari analyze the structure of relationships 
that determines the equilibrium. (3) Analysis 
of correlation: When a set of economic vari- 

ables is affected simultaneously by some (un- 
known) common factors, we cari analyze the 
correlation structure of the variables. (4) Ana- 
lysis of time interdependence: A process of 

development in time of a set of economic 
variables cari be analyzed. 

There are two types of economic data: (a) 
macroeconomic data, representing quantities 
and variables related to a national economy as 

a whole, usually based on national census; and 
(b) microeconomic data, representing informa- 

tion about the economic behavior of individ- 
ual persons, households, and iïrms. Macro- 
economic data are usually given as a set of 
time series (- 421 Time Series Analysis A), 

while microeconomic data are obtained main- 
ly through statistical surveys and are given as 
cross-sectional data. These two types of data, 
related to macroeconomic theory and micro- 
economic theory, respectively, require differ- 
ent approaches; and sometimes information 
obtained from both types of data has to be 
combined; obtaining macroeconomic infor- 
mation from microeconomic data is called 
aggregation. 

B. Regression Analysis 

The most common technique for the first 
category of problems is tregression analysis, 

which is applied to both microeconomic and 
macroeconomic analysis. However, there are 
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problems peculiar to economic analysis, where 
a factor cari seldom be controlled; and usually 

there are too many highly related independent 
variables. In such cases, if all possible indepen- 
dent variables are taken into the model, the 
accuracy of the testimators of the coefficients 
becomes extremely poor. Such a phenomenon, 

called multicollinearity, brings up the problem 
of selection of independent variables (- 403 
Statistical Models), to which no satisfactory 
solution has been given. Also, assumptions 
about the error terms may be dubious, the 
error terms may be correlated, or the variantes 
may be different. If the tvariance-covariance 
matrix of the errors is given, the tgeneralized 
least squares method cari be applied, but 

usually such a matrix is not available. 

C. Systems of Simultaneous Equations 

The second category of problems is peculiar 
to economic analysis and applies mainly to 
macroeconomic data. Suppose that Y = (Y,, 

“7 Y,) is a vector consisting of G economic 
variables, among which there exist G relation- 
ships that determine the equilibrium levels of 
the variables. We also suppose that there exist 

K variables Z = (Z, , . . , Z,)’ that are indepen- 
dent of the economic relations but affect the 
equilibrium. The variables Y are called endog- 

enous variables, and the Z are called exog- 
enous variables. If we assume linear relation- 
ships among them, we have an expression 
such as 

Y=BY+I-Z+u, (1) 

where B and I are matrices with constant 
coefficients and u is a vector of disturbances or 
errors. (1) is called the linear structural equa- 
tion system and is a system of simultaneous 

equations. By solving the equations formally, 
we get the so-called reduced form 

Y=I;IZ+v, (2) 

where Z7=(1-B)m’r,v=(I-B)-lu. The 
relation of Y to Z is determined through the 

reduced form (2), and if we have enough data 
on Y and Z we cari estimate 17. The problem 
of identification is to decide whether we cari 
determine the unknown parameters in B and 

I uniquely from the parameters in the re- 
duced form. A necessary condition for the 
parameters in one of the equations in (1) to be 
identifiable is that the number of unknown 
parameters (or, since known constants in the 

system are usually set equal to zero, the num- 
ber of variables appearing in the equation) not 

be greater than K + 1. If it is exactly equal to 
K + 1, the equation is said to be just identified, 
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and if it is less than K + 1, the equation is said 
to be overidentitïed. 

If a11 the equations in the system are just 
identified, for arbitrary 17 there exist unique i? 
and I that satisfy I7= (1 -B)-’ I. Therefore, if 
we denote the tleast squares estimator of 17 by 
i?, we cari estimate B and I from the equation 
(1 -@fi= p. This procedure is called the 

indirect least squares method and is equivalent 
to the tmaximum likelihood method if we 
assume normality for u. 

When some of the equations are over- 
identitïed, the estimation problem becomes 
complicated. Three kinds of procedures have 
been proposed: (1) full system methods, (2) 

single equation methods, and (3) subsystem 
methods. In full system methods a11 the para- 
meters are considered simultaneously, and if 
normality is assumed, the maximum likelihood 
estimator cari be obtained by minimizing [(Y - 
I7Z) (Y - I7Z)‘l. Since it is usually difficult to 
compute the maximum likelihood estimator, a 

simpler, but asymptotically equivalent, three- 
stage least squares method has been proposed. 
The single equation methods and the sub- 
system methods take into consideration only 
the information about the parameters in one 
equation or in a subset of the equations, and 
estimate the parameters in each equation 
separately. There is a single equation method, 

called the limited information maximum like- 
lihood method, based on the maximum likeli- 
hood approach, and also a two-stage least 

squares method, which estimates n fïrst by 
least squares, computes Y = fiZ, and then 
applies the least squares method to the mode1 

Y=BP+rZ+ii 

These two and also some others are asymptot- 

ically equivalent. Among asymptotically 
equivalent classes of estimators corresponding 
to different information structures it has been 
established that the maximum likelihood 
estimators have asymptotically higher-order 

efficiency [S] (- 399 Statistical Estimation) 
than other estimators, and Monte Carlo and 
numerical studies show that they are in most 

cases better than others if properly adjusted 
for the biases. 

In many simultaneous equation models 
which have been applied to actual macro- 

economic data, the values of endogenous 
variables obtained in the past appear on the 
right-hand sides of equations (1). Such vari- 

ables are called lagged variables, and they cari 
be treated, at least in the asymptotic theory of 
inference, as though they were exogenous. 
Hence exogenous variables and lagged endog- 

enous variables are jointly called predeter- 
mined variables. When many lagged variables 
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appear over many time periods and when 
some structure among the coefficients of those 
lagged variables cari be assumed, such a mode1 
is called a distributed lag model. 

Sometimes it is necessary to include some 
nonlinear equations in the simultaneous equa- 

tion model. Such nonlinear simultaneous 
equation models are difftcult to deal with, 
partly because the solution of the equation 
may not be unique, and in practical applica- 

tions ad hoc procedures are applied to obtain 
estimates of the parameters. 

D. Multivariate and Time Series Analysis 

Problems in the third category cari be ap- 
proached by tmultivariate analysis techniques. 

Sometimes +Principal component analysis and 
tcanonical correlation analysis have been 

applied to analyze the variations of a large 
amount of data. However, the practical mean- 
ing of the results obtained is often dubious. 

The fourth category is the problem of time 
series analysis. Sophisticated theories of sto- 
chastic processes have Little relevance for 
economic time series, because usually the time 
series do not satisfy such conditions as being 
stationary or having the +Markov property, 
etc. Recently, however, autoregressive moving 
average (+ARMA) and multivariate ARMA 
models [4] have been applied to macro- 

economic data, especially for the purpose of 

prediction and for determining the direction of 
causal relations (- 421 Time Series Analysis). 
Traditionally, fluctuations of economic time 
series have been thought to consist of trend, 
cyclic variation, seasonal variation, and error. 
Various ad hoc techniques have been used to 
separate or eliminate such components, but 
the theoretical treatment of such problems is 
far from satisfactory. 
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Albert Einstein (March 14, 18799April 18, 
1955) was born of Jewish parents in the city of 
Ulm in southern Germany. He became a Swiss 
Citizen soon after graduating from the Eid- 
genossische Technische Hochschule of Zürich 
in 1900. Afterward, he obtained a position as 
examiner of patents at Bern, and while at that 

post, he published his theories on light quanta, 
tspecial relativity, and tBrownian motion. 
After briefly holding professorships at the 

University of Zürich and the University of 
Prague, he became a professor at the Univer- 
sity of Berlin in 1913. His general theory of 
relativity was announced in 1916, and in 1921 
he won the Nobel Prize in physics for his 
contributions to theoretical physics. TO escape 
Nazi persecution, he fled to the United States 
in 1933, and until his retirement in 1945 he 
was a professor at the Institute for Advanced 

Study at Princeton. He advised President 
Roosevelt of the feasibility of constructing the 
atomic bomb, but after World War II, along 
with others who had been connected with the 

bomb, he was active in promoting the nuclear 
disarmament movement and the establishment 
of a world government. 

The theory of relativity raises fundamental 
epistemological problems concerning time, 
space, and matter. The results of the general 
theory were veritïed in 1919 by observations of 
the solar.eclipse. 

Through his latter years, Einstein continued 
to work on tunified field theory and on the 

generalization of relativity theory. 
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A. Maxwell% Equations 

Mathematical formulation of electromagnetics 

leads to tinitial value and tboundary value 
problems for Maxwell% equations according 

to the geometric nature of the medium. Max- 
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well’s equations for a vacuum are written in the 
form 

Es dE/& = rot H - J,, sOdivE=pe, 

p,,aH/&= -rot E- J,, p. div H = p,,,, (1) 

where E and H are the electric and magnetic 
field vectors, pe and p,,, the electric and mag- 
netic charge densities, J, and J, the electric 
and magnetic current densities, Es and p,, con- 
stants, and the quantity II& = c the speed 
of light in vacuum (2.99797 x 10s mis). Charge 
and current densities must satisfy the equations 

of continuity 

ap,lat + div J, = 0, 

ap,/at + div J, = 0. (2) 

Following upon the observation that, appar- 
ently, pm = 0 and J, = 0 in nature, we hence- 
forth set them equal to zero. This causes an 
asymmetry between the electric and magnetic 
quantities. On the other hand, the proposition 

“p,,, = 0 and J, = 0” cannot be deduced from 
the classical theory itself. 

In the presence of matter, additional charge 
and current appear due to the electric and 
magnetic polarization P and M of the material. 

Therefore, in this case, it is necessary to make 
the following substitutions in (1): 

pe+p=pe-divP, 

J,-+J = J, + aP/at + rot M, 

H-+H+M. (3) 

Moreover, if we define the electric flux density 
(or electric displacement) D and the magnetic 

flux density (or magnetic induction) B by 

D=s,E+P, B = P~(H +Ml, (4) 

then Maxwell’s equations (1) are transformed 

into 

aD/at=rotH-J,, divD=p,, 

aB/at = -rot E, divB=O. (5) 

In the electromagnetic lïeld in a vacuum 

there is energy with a density 

u = b-,,/2)EZ + W2)B2, (6) 

and energy flux with a density expressed by 

the Poynting vector 

S=ExH. (7) 

Between these quantities the following relation 
holds: 

aulat + div S = 0. (8) 

An electric charge 4 moving with velocity v 

in an electromagnetic tïeld is subject to the 

Lorentz force 

F=qE+qvxB. (9) 
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This force cari be interpreted as being caused 
by the Maxwell stress tensor 

T,=(E~/~)(-E,E~+~@~) 

+(,~o,/‘2)(-HiHk+26i,H’). (10) 

By introducing the scalar potential V and 

the vector potential A, we cari express the tïeld 
vectors as 

B=rotA, E= -grad V-aA/&. (11) 

Furthermore, if we impose an auxiliary con- 

dition (Lorentz condition) 

divA+~OpOav~at=o, (12) 

then we obtain from (1) the wave equations 

0 v= - dEO> OA= -poJ,, (13) 

where 0 = A-.s,,~~~~/&~ is called the d’Alem- 
bertian and is sometimes written as 0 2. From 

(13) we conclude that the electromagnetic 
fïeld cari propagate in a vacuum as a wave 

with speed c = 116. In tquantum theory 
the potentials V and A are regarded as being 
more fundamental than E and H themselves. 
However, they are not uniquely determined, in 
the sense that the gauge transformation 

v+ v+ a*/at, A+A-grad$ (14) 

with an arbitrary function $ of the space and 

time variables does not affect the fields. 
Maxwell’s equations are invariant under the 

+Lorentz transformation. Therefore they cari 
be written in 4-dimensional tensor form (- 
359 Relativity C). 

Maxwell’s equations cari be regarded as 
the +wave equations for tbosons with spin 1 

(tphotons). The equations of quantum electro- 
dynamics are obtained if we regard the field 
quantities as quantum-mechanical vari- 
ables (q-numbers) and then perform +Second 
quantization. 

B. Concrete Problems 

In solving Maxwell’s equations concretely, 
we usually make additional assumptions for 
polarizations, electric current, and tïeld vectors 

P=xeE, M=x,H, J, = oE, (15) 

where xer x,, and u are called the electric sus- 

ceptibility, magnetic susceptibility, and conduc- 
tivity, respectively. Then we have 

D=EE, B=pH, (16) 

where E = E,, + xe is the dielectric constant and 
p = pO( 1 + x,) is the magnetic permeability. 
Therefore the equations (5) become identical to 

(1) if Es and p,, are replaced by E and p, respec- 
tively. (p, and J, are set equal to zero.) 
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Some cases of practical importance are 
given below. 

(1) Electrostatics. If the lïelds are time- 
independent and there is no electric current, 
then E and H are mutually independent. The 

static electric fïeld is calculated from the solu- 
tion of the boundary value problem of the 
+Poisson equation AV = - P,/E. Specifically, V 

takes a constant value in each conductor. 
(2) Magnetostatics. For zero electric current, 

the problem of magnetostatics is solved in the 
same way as in electrostatics. For the case of 
nonvanishing stationary electric current, the 

problem is reduced to that of solving 

AA= -PJ,, divA=O. (17) 

(3) Electric current in a conductor. A station- 
ary electric current in a conductor is governed 
by the equation of continuity div J =O, Obm’s 

law J = oE, and a special case of Maxwell% 
equation rot E = 0. The electric current pro- 
duces heat (Joule beat) proportional to J. E 
per unit volume per unit time (Joule% law). 
For certain substances, the specific resis- 

tance K1 suddenly becomes negligibly small 
below a critical temperature. This is called 

superconductivity. 
(4) Quasistationary electric circuit. The 

problem appearing most often in electrical en- 
gineering is that of a quasistationary circuit. 

Its characteristic feature is that the electric 
currents exist only in the circuit elements 
(inductors, capacitors, and resistors) and in the 
lines connecting them. The current (both J, 
and aD/&) cari be neglected in a11 other parts 

of the system. (This could be compared to 
the situation in dynamics where we consider 
systems of material points or of rigid bodies 
having a fmite number of degrees of freedom, 
although every material body is essentially 
a continuum.) The system network is con- 

structed as a tlinear graph with the circuit ele- 
ments as its branches. Topological tnetwork 
theory deals with the relation between the 
structure of the linear graph and the electri- 
cal characteristics of the network, whereas 
function-theoretic network theory deals with 
the relation between current and voltage at 
each part of the network. In the latter theory, 
current and voltage are considered as func- 
tions of the frequency of the sinusoidal alter- 
nating voltage applied to some point of the 

network. Together these constitute a unique 
theoretical system in engineering mathe- 
matics for designing system networks (- 282 

Networks). 
(5) Theory of electromagnetic waves. The 

theory of electromagnetic waves deals with the 
case where the changes of a11 field quantities 

are proportional to eiwr, and in addition the 

frequency w  is SO large that the term aD/at in 
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(5) is of the same order as or larger than J,. In 
such a situation the electromagnetic field 
behaves like a wave. 

Problems of various types arise depending 
on the geometry of the conducting and dielec- 
trie substances, on the type of the energy 
source, etc. Important problems are: (i) radi- 
ation of a wave from a point source into free 
space; (ii) scattering of a plane wave by small 

bodies or cylinders; (iii) diffraction of a wave 
through holes in a conducting plate; (iv) reflec- 
tion and refraction of a wave at the boundary 
between different media; (v) wave propagation 
along a conducting tube (wave guide); and 

(vi) resonance of the electromagnetic tïeld in a 
cavity surrounded by a conducting substance. 

Theoretical treatment similar to that for ordi- 
nary networks is possible for microwave cir- 
cuits consisting of wave guides, cavities, etc. 

(6) Wave guides. For electromagnetic waves 
with a harmonie time dependence e-‘“’ propa- 
gating inside a hollow tube of uniform cross 
section extending in the z-direction with per- 

fectly conducting walls (called a wave guide), 
the Maxwell equations become 

rot E = iwB, divB=O, 

rotB= -Q&UE, divE=O, 

with the boundary condition 

(18) 

nxE=O, neB=O, 

where n is a unit normal at the boundary 
surface. A further reduction is gained by 
Fourier analysis in the z-variable. For har- 

monic z-dependence eikr, the transverse com- 
ponents E, = (e, x E) x e, and B, = (e, x B) x e, 
are determined from the z-components E, = 
e;E and H,=e;H by the following part of 

the Maxwell equations: 

ikE, + iwe, x B, = grad, E,, 

ikB, - ipme, x E, = grad, B, (19) 

(where grad, is the transverse components of 
the gradient), up to the solutions for E, = B, 
= 0, called transverse electromagnetic (TEM) 

waves, for which k = CO,,&, B, = + fi e, x 
E,, and E, is a solution of the electrostatic 
problem in two dimensions rot E, = 0, div E, 
= 0. TO have E, # 0 for the TEM solution, it is 
necessary to have two or more surfaces, such 
as a coaxial table (region between two con- 
centric cylinders) or a parallel-wire trans- 
mission line. Nonzero longitudinal compo- 

nents E, and B, are determined from the 
2-dimensional equations 
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with boundary conditions E, = 0 and aB,/an 
= 0 on the wall, where (a/&) denotes the 

partial derivative in the normal direction. The 
solutions with B, = 0 are called transverse 
magnetic (TM) waves (or electric (E) waves) 
and those with E, = 0 transverse electric (TE) 
waves (or magnetic (M) waves); for each of 
these cases the equations determine an eigen- 
wave number k for a given angular frequency 

w  (typically in a waveguide situation) or 
eigenfrequency v = w/(2rr) for a given wave- 
length /1= 2n/k (typically in a resonant cavity 

situation). 
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A. Definition 

A function of a tïnite number of real or com- 
plex variables that is talgebraic, exponential, 

logarithmic, trigonometric, or inverse trig- 
onometric, or the composite of a fmite number 
of these, is called an elementary function. Ele- 
mentary functions comprise the most common 
type of function in elementary calculus. 

J. Liouville [l] delïned the elementary func- 
tions as follows: An algebraic function of a 
finite number of complex variables is called an 
elementary function of class 0. Then eZ and 
logz are called elementary functions of class 1. 
Inductively, we define elementary functions of 

class n under the assumption that elementary 

functions of class at most n - 1 have already 
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been deiïned. Let g(t) and gj(w, , . . , wn) (1~ 
j < m) be elementary functions of class at most 

1 and f(zr , , z,,J be an elementary function 
of class at most n - 1. Then the composite 
functions g(f(z,, . . ,z,)) and f(g,(w,, . . , w,), 
. , g,,,(wr, , w,)) (and only such functions) 

are called the elementary functions of class at 
most n. An elementary function of class at 
most n and not of class at most n - 1 is called 
an elementary function of class n. A function 

that is an elementary function of class n for 
some integer n is called an elementary function. 
In this article, we explain the properties of the 

most common elementary functions. 

B. Exponential and Logarithmic Functions of a 
Real Variable 

Let a > 0, a # 1. A function f(x) of a real vari- 
able satisfying the functional relation 

f(x+Y)=fw(Y)> fU)=a, (1) 

satisfies f(n) = a” for positive integers n and 
j( - n) = l/an for negative integers -n. In gen- 

eral, f(n/m) = p for every rational number 
r = n/m. If we assume that f(x) is continuous, 
then there is a unique strictly monotone func- 
tion f(x) detïned in (-00, CO) whose range is 
(0,co). The function f(x) is called the exponen- 
tial function with the base a and is denoted by 
ax, read “a to the power x” and also called a 

power of a with exponent x. Its inverse function 
is called the logaritbmic function to the base a, 
and is denoted by log,x. The specific value 
log,x is called the logarithm of x to the base a. 

If g(x) = log, x, we have 

dxY)=dx)+dY), sk4= 1. (2) 

Hence we have xy =f( g(x) + g(y)). Therefore 
we cari reduce multiplication to addition by 
using a numerical table for the logarithmic 

function. 

C. Logarithmic Computation 

The logarithm to the base 10 is called the 
common logarithm. If two numbers x, y ex- 
pressed in the decimal system differ only in the 

position of the decimal point (i.e., y = x. 10” for 
an integer n), they share the same fractional 
parts in their common logarithms. The in- 
tegral part of the common logarithm is called 
the cbaracteristic, and the fractional part is 
called the mantissa. (We note that the word 
“mantissa” is also frequently used for the frac- 

tional part a in the tfloating point representa- 
tionx=a.lO”, 10-‘<u<l,or l<a<lO.)The 
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common logarithms of integers have been 
computed and published in tables. 

D. Derivatives of Exponential and Logaritbmic 

Functions 

The function f(x) = uX is differentiable, and 

f’(x) = k,f(x), where k, is a constant deter- 
mined by the base a. If we take the base a to 
be 

e=lim l+! “= f ‘=2.71828..., 
Y-m ( > V V=o v! 

then we have k, = 1. The number C( l/v!) is 

usually called Napier’s number and is denoted 
by e after L. Euler (his letter to C. Goldbach 
of 1731; - Appendix B, Table 6). In 1873, 
C. Hermite proved that e is a transcendental 
number. We sometimes denote eX by expx; the 
term exponential function usually means the 
function exp x. The function eX is invariant 
under differentiation, and conversely, a func- 
tion invariant under differentiation necessarily 

has the form Ce”. The logarithm to the base e 
is called the Napierian logaritbm (or natural 
logarithm), and we usually denote it by log x 

without exphcitly naming the base e (some- 
times it is denoted by lnx). The derivative 
of logx is 1/x, hence we have the integral 
representation 

s “dx 
logx= -. 

1 x 
(3) 

The constant factor k, in the derivative of 11~ 
is equal to log a. The graphs of y = eX and 
y = log x are shown in Fig. 1. The functions eX 

and log( 1 +x) are expanded in the following 
Taylor series at x = 0: 

log(1 +x)= f (-l).+r$. (5) 
V=I 

The power series in the right-hand sides of (4) 
and (5) are called the exponential series and 
the logarithmic series, respectively. The radii 

of convergence of (4) and (5) are CO and 1, 
respectively. 

I v=e” 

,/’ 
I 

/’ Y=logx 

+ 

1 >Y’ 

/‘l 
.o 1 

I 
/ 

/’ 
I’ 

Fig. 1 



131 E 
Elementary Functions 

516 

E. Trigonometric and Inverse Trigonometric 
Functions of a Real Variable 

The trigonometric functions of a real variable 
x are the functions sin x, cosx (- 432 Trig- 
onometry) and the functions tan x = sin ~/COS x, 

cet x = COS x/sin x, sec x = ~/COS x, and cosec x 
= l/sin x derived from sin x and COS x. The 
derivatives of sin x and COS x are COS x and 
- sin x, respectively. They have the following 
Taylor expansions at x = 0: 

m (-1)” 
sinx= C -x 

2”+l 
“=0(2v+ l)! ’ 

m (-1)” 
COS x = c -x2V. 

V=o (2v)! 

The radii of convergence of (6) and (7) are both 
CO. 

The inverse functions of sin x, COS x, and 

tan x are the inverse trigonometric functions 
and are denoted by arc sin x, arc COS x, and 
arc tan x, respectively. (Instead of this nota- 
tion, sin-’ x, COS-~ x, and tan-’ x are also 
used). These functions are infintely multiple- 
valued, as shown in Fig. 2. But if we restrict 
their ranges within the part shown by solid 
lines in Fig. 2, they are considered single- 
valued functions. TO be more precise, we re- 

strict the range as follows: - n/2 < arc sin x < 
n/2,0 < arc COS x < I[, - 7112 < arc tan x < 7~12. 

Fig. 2 

The functions having these ranges are called 

the principal values and are sometimes denoted 
by Arc sin x, Arc COS x, and Arc tan x, respec- 
tively. The derivatives of these functions are 
(1 - x2))1’2, -(1 -x2))11’, (1 +x2))‘, respec- 
tively (- Appendix A, Table 9.1; for the Tay- 
lor or Laurent expansions of tan x, cet x, 
secx, cosecx, arcsinx, arccosx, arc tanx, etc., 
- Appendix A, Table lO.IV). 

F. Hyperbolic Functions 

Let P be a point on the branch of the hyper- 
bola x2 - y2 = 1, x > 0, and let 0 be the origin 
and A the vertex (1,O) of the hyperbola. De- 

note by 012 the area of the domain surrounded 
by the line segments OA, OP, and the arcn 

of the hyperbola. Then we detïne the coordi- 
nates of P to be (cash 0, sinh 0) as functions of 
0. We have 

coshx =(eX+ e-“)/2, 

sinh x = (eX - e-“)/2, 63) 

called the hyperbolic cosine and hyperbolic sine, 

respectively. As in the case of trigonometric 
functions, we detïne the hyperbolic tangent by 
tanh x = sinh x/cosh x, the hyperbolic cotangent 
by coth x = cash x/sinh x, the hyperbolic secant 
by sechx= l/coshx, and the hyperbolic cose- 
tant by cosechx = l/sinh x. They are called 
the hyperbolic functions. The graphs of sinh x 
and coshx are shown in Fig. 3. The trigono- 
metric functions are sometimes called circular 
functions. 

Fig. 3 

We now introduce the Gudermannian (or 
Gudermann function): 

Q=gdu=2arctane”-n/2, 

l+sinO 
u=gd-‘H=log~tan0+sec0l=~log~. 

Then the hyperbolic functions cari be ex- 
pressed in terms of the trigonometric func- 
tions. For example, 

sinh u = tan 8, cash u = sec 0, tanh IA = sin 8. 

G. Elementary Functions of a Complex 
Variable (- Appendix A, Table 10) 

(1) Exponential function. The power series (4) 
converges for a11 lïnite values if we replace x by 
the complex variable z and gives an tentire 
function of z with an tessential singularity at 
the point at intïnity. This is the exponential 
function ei of a complex variable z. It satistïes 
the addition formula (l), e’l+‘2 =eZleZ2, and it 
is also the tanalytic continuation of the ex- 

ponential function of a real variable. For a 
purely imaginary number z = iy, we have the 
Euler formula 

eiY=cosy+isiny. (9) 

The function w  = eZ gives a tconformal map- 
ping from the z-plane to the w-plane, as shown 
in Fig. 4, which maps the imaginary axis of 
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the z-plane onto the unit circle of the w-plane 
(w = u + io). For z = x + iy (x, y are real num- 

bers), we have eZ = e”e’Y; hence eZ is a tsimply 
periodic function with fundamental period 2ni. 

Fig. 4 

w-plane 

(2) Logarithmic function. The logarithmic 
function logz of a complex variable z is the 

inverse function of e’. It is an iniïnitely 
multiple-valued analytic function that has 
tlogarithmic singularities at z = 0 and z = CO. 
Al1 possible values are expressed by logz 
+ 2mi (n is an arbitrary integer), where we 
Select a suitable value logz. The principal value 
of log z is usually taken as log r + 8, where z 
= re” (r = 1~1, 0 is the argument of z) and 0 < 0 
< 27~. (Sometimes the range of the argument is 

taken as - 7~ < 0 < x.) The principal value of 
logz is sometimes denoted by Logz. The 
power series (5) gives one of its tfunctional 

elements. The integral representation (3) holds 
for a complex variable z. The multivalency of 
logz results from the selection of a contour of 
integration; the integral of l/z around the 
origin is 2d, which is the increment of logz. 

(3) Power. The exponential function a’ for 
an arbitrary complex number a is defïned to 

be exp(z log a). Similarly, za is defmed to be 
exp(alogz). The function z’ is an algebraic 
function if and only if a is rational. In other 
cases, the function z’ is an elementary function 

of class 2. 
(4) Trigonometric functions, inverse trig- 

onometric functions, hyperbolic functions. 
The trigonometric, inverse trigonometric, and 

hyperbolic functions of a complex variable are 
deiïned by the analytic continuations of the 
corresponding functions of a real variable. For 
example, sin z and COS z are defined by the 
power series (6) and (7), respectively. They are 
entire functions whose zero points are n7c and 
(n-$-c (n is an integer), respectively. They are 

also represented by tweierstrass’s infinite 
product (- Appendix A, Table lO.VI). 

The functions tan z, cet z, sec z, and cosec z 
are tmeromorphic functions of z on the com- 

plex z-plane, and they are expressed by 
+Mittag-LetTler partial fractions (- Appendix 
A, Tables lO.IV, 10.V). As cari be shown from 
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(8) and (9), we have 

c0s2=(e’“+e~“)/2, sin z = (e” - e-‘“)/2i, 

cash z = COS iz, sinh z = (sin iz)/i. (10) 

Each of these formulas (10) is called an Euler 
formula. For a complex variable, the trig- 

onometric and hyperbolic functions are com- 
posites of exponential functions, the inverse 
trigonometric functions are composites of 
logarithmic functions, and a11 of them are 
elementary functions of class 1. The defmition 
of elementary functions by Liouville described 
in Section A refers, of course, to the functions 
of a complex variable. We remark that the 
inverse function of an elementary function is 

not necessarily an elementary function. For 
example, the inverse function of y =x -a sin x 
is not an elementary function (- 309 Orbit 
Determination B). 

The derivative of an elementary function is 

also an elementary function. However, the 
+Primitive function of an elementary function 

is not necessarily an elementary function. The 
primitive function of a rational function or an 
algebraic function of tgenus 0 is again an 
elementary function. Similar properties hold 
for rational functions of trigonometric func- 
tions. Liouville [l] carried through a deep 

investigation of the situation where the in- 
tegral of an elementary function is also an 

elementary function. 
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Elementary Particles 

A. Introduction 

The word “atom” is derived from the Greek 
word for indivisible. It turns out that an atom 
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is divisible into its constituent nucleus and 

electrons. The nucleus, in turn, consists of 
protons and neutrons (together called nu- 
cleong). Photons (quanta of electromagnetic 

waves), electrons, protons, and neutrons (de- 
noted by y, e, p, and n, respectively), along 

with many other subsequently discovered sub- 
nuclear particles, are called elementary parti- 
cles, while nuclei, atoms, and molecules are the 
composite particles composed of these elemen- 

tary particles. 
States of a particle form an irreducible (uni- 

tary) representation of the tproper inhomoge- 
neous Lorentz group with positive energy (or 
a fïnite direct sum of such representations). 

Thusamass(m>O)andaspin(j=O,),l,...) 
are assigned to each particle (- 258 Lorentz 
Group). For example, e, p, and n have spin f 
and nonzero masses, while y has spin 1 and 
zero mass. 

Many elementary particles are unstable, 
decaying into other particles. The average 

lifetime is denoted by z and its inverse is called 
the half-width. The time in which half of many 
samples of the same particle decays is called 
the half-life, given by T log 2. For example, 
electrons, protons, and photons are supposed 

to be stable (or at least to have very long life- 

times), while a neutron decays into a proton, 
an electron, and a neutrino v (P-decay) with a 
lifetime of about 15 minutes. 

From the study of the relativistic equations 

(Dirac equations) for wave functions of an elec- 
tron, P. A. M. Dirac predicted the existence of 

particles with the same mass as the electron, 
but of opposite electric charge (Dira?s hole 
theory, 1930). These were discovered in 1932 
and called positrons. Every elementary particle 
is now believed to be associated with an anti- 

particle characterized by the opposite sign of 

the particle’s additive quantum numbers, the 
two being connected by the tPCT theorem. 
Hence the positron is the antiparticle of the 
electron. The antiproton, theoretically ex- 
pected for a long time and experimentally 
found in 1955, is the antiparticle of the proton. 
Antiprotons, antineutrons, and positrons are 
constituents of antimatter. The particles whose 
additive quantum numbers are a11 invariant 

under change of sign, such as photons (y), neu- 
tral pions (7-c’), etc., seem to be antiparticles of 
themselves and are said to be self-conjugate. 

Elementary particles have four distinct types 
of interaction: gravitational, weak, electro- 
magnetic, and strong, in increasing order of 
interaction strength. Gravitational and electro- 
magnetic interactions were recognized in 
earlier centuries because these interactions are 

of long range. A. Einstein put forward the idea 

of a light quantum or photon as a lump of 
electromagnetic energy behaving like a par- 
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ticle. Whether a corresponding quantum (grav- 

iton) exists for gravitational interactions is a 
question related to the existence of gravita- 
tional waves themselves, and is not yet settled. 

The nuclear force is an example of a strong 
interaction and is studied to elucidate nuclear 
structure and to derive the tcross sections of 
various collision processes involving nuclei. H. 
Yukawa predicted in 1935 the existence of a 
particle associated with the nuclear force, just 

as photons are associated with the electro- 
magnetic interaction. lts mass was predicted, 
from the range of the nuclear force, to be 

about 200 times the electron mass, which is 
intermediate between the masses of electrons 
and nucleons, and hence the particle was 

named a mesotron or a meson. These were 
found in cosmic rays in 1947 and, in fact, it 
was found that the mesons relevant to the 
nuclear force (now called pions and denoted 
by 7c+, 7~-, no according to their electric charge) 
decay into other kinds of particles called 
muons (denoted by $, fi-) with a charged- 
pion lifetime of 2.6 x 10-s sec (z* +p(+ + v(V); 
the neutral pion 71’ decays, over a shorter life- 

time, into photons). The muons then decay 
into electrons and neutrinos (p’ -+e* + v + V, 
v indicating antineutrinos) with muon life- 

times of about 2.2 x 10e6 sec. Weak inter- 
actions are relevant to these decays as well as 
to the B-decay of the nucleus and the neutron. 
Since 1962 electron neutrinos v, and muon 

neutrinos v# have been distinguished in these 
decays, SO that electron and muon numbers 

may be conserved. 
Since 1949, many new particles (unstable 

under weak interactions) have been gradually 
found in cosmic rays; these are called strange 

particles. Some of the early ones are hyperons 
(A, C,Z), of spin $, and kaons (K, K), of spin 0. 
For such strange particles, the strangeness 
quantum number, which is preserved in the 
strong interaction, has been introduced, and 

the Nakano-Nishijima-Gell-Mann formula 
concerning this number is known to hold. This 
says that Q = 1, + i(B + S) for each elementary 
particle, where Q is the electric charge in units 
of that of the positron, 1, is the third compo- 
nent of the isospin, B is the baryon number, 

and S is the strangeness. 
Quantum-mechanical wave functions for a 

system of identical particles seem to be either 

totally symmetric (Bose statistics) or totally 
antisymmetric (Fermi statistics) under permu- 
tations of particles. Accordingly, particles are 
either bosons (or Bose particles) or fermions (or 

Fermi particles). Al1 bosons seems to have 
integer spins and a11 fermions half-odd-integer 
spins. This is the connection of spin and statis- 
tics and follows from certain axioms in quan- 

tum fieldtheory(- 150 Field Theory). There 
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has been some discussion on intermediate 
statistics (parabosons and parafermions). 

B. Families of Elementary Particles 

Elementary particles are classified into families 
of leptons, photons, and hadrons. 

The family of leptons now consists of elec- 
trons (e), muons (PL), and tau-leptons (T), their 
accompanying neutrinos (v,, v,,, v,), and their 

antiparticles; r was discovered in the late 
1970s. Experimentally, v, is not well estab- 
lished nor has the possibility v, = v, yet been 
excluded. Leptons have spin i. They are char- 

acterized by having no strong interactions. 
The family of photons consists of photons 

and the recently discovered intermediary weak 

vector bosons. Gluons (- Section C (4)), if 
they exist, also belong to this family. 

The family of hadrons has a large number of 

members which are either mesons or baryons, 
the former being bosons and the latter fer- 
mions. We now have, in addition to pions and 
kaons, many resonant mesons (unstable under 
strong interaction) such as p-mesons and w- 
mesons. At present we have, in all, more than 
20 species of mesons. This number does not 
Count spin, charge, and antiparticle degrees of 
freedom. The baryon subfamily includes nu- 

cleons, hyperons, and excited states, now con- 
sisting of more than 30 species, again not 
counting spin, charge, and antiparticle degrees 
of freedom. We have nucleonic resonances 

with spin as high as 11/2. 
Hadrons are now well understood as com- 

posites of subhadronic constituents called 
quarks (and antiquarks), although free quarks 
have not been observed. (Hence the problem of 
quark confinement has been discussed ex- 
tensively.) Mesons are systems made up of 
a quark and an antiquark. Baryons are sys- 

tems made up of three quarks. Therefore, at 
our present level of knowledge, the elemen- 
tary particles might be leptons, photons, and 
quarks (and the corresponding antiparticles). 

C. Metbods in tbe Tbeory of Elementary 
Particles 

(1) ?Quantum Field Tbeory. Application of 
the ideas of quantum mechanics to electro- 
magnetic fields and their interaction with elec- 

trons resulted in the formulation of quantum 
electrodynamics (and more generally quan- 
tum field theory). Application of quantum- 

mechanical perturbation theory to quantum 
electrodynamics with the titre-structure con- 

stant a = e’/(hc) (about 1/137) as an expansion 
parameter resulted in divergent expressions- 
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the so-called divergence difftculties. The ultra- 
violet divergence cornes from integration over 
high momenta (of virtual particles), and the 

infrared divergence is due to the zero mass of 
photons. It was later found that the ultraviolet 

divergence cari be combined with a small 
number of parameters of the theory (i.e., elec- 
tron mass, (possibly nonzero) photon mass, 
and electromagnetic coupling constant e) into 
a revised set of constants (called the renormal- 

ized masses and coupling constant), which are 
then equated to the observed lïnite values of 
these constants-a procedure called renor- 
malization. Physically, this renormalization is 
pictured to be effected by virtual photons (and 

electron-positron pairs) surrounding (bare) 
electrons and photons. The infrared divergence 

is supposed to be a reflection of the fact that 
electrons cari be accompanied by intïnitely 
many photons with negligibly small total 
energy (a situation made possible by the zero 

mass of photons); this cannot be experimen- 
tally analyzed (and is indistinguishable from a 
single electron). 

The relativistically covariant formulation 
of the renormalized perturbation theory of 
quantum electrodynamics proposed by S. 
Tomonaga, J. S. Schwinger, and R. P. Feyn- 
man (independently and in different forms), 
and in particular the Feynman rules and 
Feynman diagrams that lead to the Feynman 
integrals (- 146 Feynman Integrals), made 

possible detailed theoretical computations, 

and the computed values (such as the Lamb 
shift of hydrogen and the anomalous magnetic 
moment of an electron) fit marvelously well 
with observed values-an achievement con- 
sidered a great success of quantum electro- 
dynamics. F. J. Dyson more or less showed 
that the renormalization procedure really 

absorbs all the divergences in a11 orders of the 
perturbation expansion in terms of renormal- 
ized constants, though there were later refme- 
ments and elaborations of the proof. This 
work also leads to the division of quantum 

tïeld theories into two classes: renormalizable 
theories, where (inlïnitely many) ultraviolet 
divergences cari be absorbed into a Imite 
number of constants by renormalized pertur- 
bation theory, and unrenormalizable theories. 
The question of whether perturbation series 
converge in some sense is an unsolved ques- 

tion of quantum electrodynamics. 
In quantum lïeld theory, the central role is 

played by quantum lïelds, which are operator- 
valued generalized functions of a space-time 
point. Particle interpretations of any state at 

intïnite past and infinite future are obtained in 
the theory from the asymptotic behavior of the 

fields (tasymptotic tïelds) at time -CO and time 
+co, and from their relation, expressed by the 



132 C 
Elementary Particles 

tS-matrix, describing how particles scatter by 

collision. Thus any mode1 of quantum tïelds 
makes, in principle, a prediction about what 

particles appear and how they behave (asymp- 
totically) in mutual collisions. 

After the success of quantum electrodynam- 
ics, the perturbation theory of quantum tïelds 
was applied to systems of pions and nucleons; 
this proved to be unsuccessful, possibly due to 
the lack of an appropriate expansion param- 

eter. This has led some people to study the 
mathematically rigorous consequences of 

quantum lïeld theories; these mathematical 
consequences do not require any perturbation 
calculation, simply following from a small 

number of mathematically formulated axioms 
believed to be satisfied by a large class of 
quantum tïeld theories. This approach, re- 
ferred to as taxiomatic quantum tïeld theory, 
has yielded a few physically meaningful con- 
sequences of general nature: analyticity of 

some S-matrix elements, the +PCT theorem, 
and the connection of spin and statistics (- 

Section A). 
While the axiomatic approach provides a 

general framework, the tconstructive fïeld 
theory developed later provides examples of 
quantum tïeld theories that fit into such a 
framework. Because of its concrete nature, it 
cari make statements about detailed properties 
of the model, such as the (non-)existence of 
composite particles, the establishment of per- 
turbation theory as an asymptotic expansion, 

and phase-transitions phenomena and the 

related broken symmetry as the coupling con- 
stant varies. It has, however, been successful 
for only 2 and 3 space-time dimensions. 

(2) Analytic S-Matrix Approach. Due to the 
failure of the perturbation approach in quan- 
tum tïeld theory, a new approach was devel- 
oped based on assumptions about the analy- 
ticity properties of the S-matrix elements. The 

assumed analyticity properties were surmised 
from examination of Feynman integrals and of 
nonrelativistic potential scattering, and par- 
tially follow from axiomatic tïeld theory. In 

this approach, the information that scattering 
amplitudes, or S-matrix elements, possess 
certain analytic properties with respect to 
energies, scattering angles, and SO on is ex- 
pressed by means of integral representations. 
For example, the forward two-body scattering 
amplitude f(s) as a function of s = (energy in 
the center of mass system)’ is written as 

Imf(s) is related to the total cross section by 
the optical theorem, which is a statement of 
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the unitarity of the S-matrix. Hence equation 
(l), called a dispersion relation, gives a relation 

among observable quantities. An integral rep- 
resentation for the general two-body scattering 

amplitude f(s, t, u) (2 incoming and 2 outgoing 
particles) has been proposed by S. Mandelstam 

and is called the Mandelstam representation, 
where s=(p, +p#, t=(pl +p#, and u= 
(pl +p4)’ (squares in a Minkowski metric) 
and p,, p2, p3, p4 are the 4-momenta of the 
incoming and outgoing particles, with sign 

reversed for the latter. (Some relations hold 
among variables: pf = mi2 with mi the mass, 
Cpi=O, S+~+U=C~“.) Under the inter- 
change of incoming and outgoing particles, 
the corresponding f’s are related by analytic 
continuation. This is called the crossing sym- 
metry. The study of the S-matrix directly 

from its analyticity and unitarity is called the 
S-matrix approach (- 386 S-Matrices). 

The analyticity of the two-body scatter- 
ing amplitude f as a function of the angular 
momentum 1 with a lïxed s was investigated by 

T. Regge for nonrelativistic potential scatter- 
ing, and later the idea was applied to the S- 
matrix approach. The poles l= l(s) off (fis 
considered to be a function of 1 for each fixed 
s) are called Regge poles. Regge trajectories 1= 
I(s) for variable s < 0 have been shown to play 
important roles in the high-energy behavior of 
scattering amplitudes for small values of the 
variable t (four-momentum-transfer squared). 

An approximate expression of S-matrix 

elements, with Regge poles and satisfying the 
crossing symmetry, was introduced by G. 

Veneziano and is called the Veneziano model. 
It has developed into the so-called dual reso- 
nance mode1 (dual in the sense that s-channel 
poles are dual to t-channel poles) and has 
subsequently evolved into the string mode1 
of hadrons, according to which hadrons are 
viewed as systems composed of strings joining 
quarks (and antiquarks). 

(3) Group-Theoretical Approach. In connec- 
tion with the symmetry properties shown by 

the spectra and reaction patterns of hadrons, 

a group-theoretical approach has been de- 
veloped. For example, the similarity of the 
behavior of neutrons and protons in nuclei, 
apart from the difference in their electro- 
magnetic properties, was formulated as isospin 
invariance (under the group SU(2)). The sym- 
metry properties are sometimes understood in 
terms of new additive quantum numbers that 
are conserved or nearly conserved, and these 
properties are made more concrete in the final 
stage by the introduction of fundamental 

constituents carrying these quantum numbers. 

Based on the canonical formalism of quan- 
tum field theory, (Noether) currents, as 
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quantum-mechanical generators of the sym- 
metry, are introduced in association with con- 
served quantum numbers. The commutation 
relation of these currents, referred to as a cur- 
rent algebra, shows the structure of a Lie alge- 

bra expressing the symmetry of the Lagran- 
gian of the system of hadrons; for example, 
SU(3) x SU(3) for three species (flavors) of 

massless quarks (the tïrst factor for vector 
currents and the second for axial-vector cur- 

rents). The approach showed remarkable suc- 
cess when combined with the hypothesis of 
the partially conserved axial-vector currents 
(PCAC), which requires the divergence of the 

axial-vector currents to be proportional to the 
pseudoscalar meson fields. 

Even if a theory has a symmetry under a 
group G in its formulation, a vacuum state of 
the theory might not have a symmetry under 

G. If that occurs, we speak of spontaneously 

broken symmetry. Under some assumptions, a 
particle of zero mass (which is connected to the 
vacuum by the current for the spontaneously 
broken symmetry) is associated with the spon- 
taneously broken symmetry. This statement is 
called Goldstone’s theorem, and the relevant 

particle of zero mass is called the Nambu- 
Goldstone boson. The PCAC hypothesis is 
believed to be connected with the spontaneous 
breakdown of the axial SU(3) symmetry with 
pions, kaons, and eta-mesons as Nambu- 

Goldstone bosons. This approach produced 
the Adler-Weisberger sum rule, which relates 
the weak axial-vector coupling constants to 
pion-nucleon scattering cross sections. 

A group-theoretical attempt to treat fer- 
mions and bosons on an equal footing resulted 
in the introduction of super Lie algebras (Z,- 
graded Lie algebras). The basic new ingredient 

in this approach is a special class of generators 
roughly interpreted as the square root of the 
four-momentum, whose anticommutators 
(instead of commutators) are linear combina- 

tions of ordinary generators. A supermultiplet, 
which is an irreducible representation of a 
super Lie algebra, consists of both fermions 
and bosons. Extensions to local super Lie 
algebras (and also incorporation of gravitons 
into the framework) have been tried, with no 
realistic mode1 emerging SO far. 

(4) Non-Abelian Gauge Field Theory. Recently, 

quantum tïeld theory has been revived as non- 
Abelian tgauge theory, resulting in what are 
considered to be successful qualitative and 

semiquantitative predictions. The quantization 
of the theory was at fïrst carried out in terms 
of the +Feynman path integral, where lïctitious 
particles, called Faddeev-Popov ghosts, appear 

through the precise detïnition of the functional 
measure of the path integral. The canonical 
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quantization has also been formulated with 
the explicit introduction of Faddeev-Popov 
ghosts from the beginning. Non-Abelian 
gauge lïeld theory exhibits the very important 

property of asymptotic freedom, which states 
that the interaction at asymptotically high 
energies, or at very short distances, approaches 

that of free (noninteracting) theory. This prop- 
erty is required for the description of hadronic 
systems made of quarks in view of the experi- 
mental observation of the scaling behavior of 
deep inelastic inclusive structure functions. 
Thus gauge theory is believed to describe the 
dynamics of systems of quarks in hadrons. It 
is called quantum chromodynamics, and the 

quantum of the gauge fïeld is called the gluon. 
The recent development of gauge tïeld theory 
has been accompanied by many technical 
relïnements of quantum fïeld theory, which 

include the methods of dimensional regulariza- 
tion and renormalization groups. 

Dimensional regularization starts with 
Feynman integrals delïned for n-dimensional 
momenta with n # 4, in order to give meaning 
to integrals divergent for n = 4. Then Feynman 
integrals have poles at n =4, which are ab- 
sorbed into the unrenormalized constants by 
means of the renormalization procedure. This 

method is particularly suited for non-Abelian 

gauge theory, since it is the regularization 
method that keeps gauge invariance at each 
step of the calculation. 

The trenormalization-group equation has 
been known for a long time. It results from 

the requirement that physical quantities 
should be dimensionally covariant under re- 

normalization of constants in the theory. The 
renormalization-group equation is usually 
written as a differential equation for a Green’s 
function, expressing the fact that a change of 
scale of momenta is balanced by changing 

coupling constants and masses. Further relïne- 
ments are due to C. G. Callan, K. Symanzik, S. 
Weinberg, and G. ‘t Hooft. 

D. Models of Elementary Particles 

Hadrons are now considered to be made of 
more fundamental constituents; at present, at 
least 15 species of subhadronic, fermionic 
constituents (quarks) have been proposed. 
Attempts to understand subhadronic structure 

have a long history, the main landmarks of 
which include the Fermi-Yang mode1 (where 
rr-mesons are supposed to be made of protons 

and neutrons), the Sakata mode1 (where a11 
hadrons are supposed to be made of protons, 
neutrons, and A-hyperons), and a variety of 

quark models developed from the eightfold 
way of M. Gell-Mann and Y. Ne’eman (new 
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assignments of representations of SU(3) to 
particles somewhat different from the Sakata 

model; for example, the octet representation 
for mesons and low-lying baryons, and the 
decuplet for excited baryons). Originally, 
quarks were supposed to corne in 3 species 
(u-quarks, d-quarks, s-quarks), each carrying 
its own quantum number, now called the 
flavor quantum number. Then it was suggested 

that each flavored quark has three additional 
degrees of freedom, i.e., three new quantum 
numbers (called color quantum numbers) in 
order to account for experimental data: (1) the 
spin-statistics problem of baryonic ground 
state wave functions, (2) the decay rate of 
~+2y, (3) the Drell ratio (= total cross section 

for {ë + e+ +anything}, divided by the cross 
section for em + e+ +p- + pL+). Recently, two 
new flavor degrees of freedom besides the old 
3 flavors (u, d, s) have been discovered, the 

carriers of which are c-quarks and b-quarks, c 
being the constituents of J/$-particles, b of 

y-particles. The combination of 5 flavors and 
3 colors results in 15 quarks, as stated earlier. 

The so-called standard mode1 is a quantum 
iïeld theory based on a local, non-Abelian 
gauge group SU(3) x SU(2) x U(1). The group 
SU(3) is called the color SU(3) group, which 
is supposed to be strictly unbroken and ex- 

presses the invariance of the theory under the 
local SU(3) transformation of the three color 
degrees of freedom. Quarks having spin 3 

transform as its 3-dimensional fundamental 
representation, and the vector gauge bosons 
transforming as its 8-dimensional regular 
representation are gluons. This part of the 
theory is quantum chromodynamics (QCD). 
The remaining part of the theory, based on 
the local gauge group SU(2) x U(l), is called 

the Glashow-Weinberg-Salam mode1 or its 
hadronic extension quantum flavor dynamics 
(QFD), and unifies the electromagnetic and 
the weak interactions. This gauge group is 
supposed to be spontaneously broken with the 

only unbroken subgroup U(1)’ corresponding 
to the electromagnetic gauge transformation. 
The underlying mechanism for the spontaneous 
breakdown of the gauge group SU(2) x U(1) is 
not well understood, but conventionally it is 
assumed to occur through the so-called Higgs 
mechanism. This is a mechanism proposed by 
P. W. Higgs, whereby the Goldstone boson 
acquires a nonzero mass if the broken sym- 

metry occurs in the presence of an associated 
massless vector field (called a gauge vector 
field), which also becomes associated with 

massive bosons. The gauge vector bosons are 
identitïed with photons (y) (unbroken sym- 
metry and hence massless) and weak inter- 

mediary bosons (broken symmetry and hence 
massive), usually denoted by W and Z. Quarks 
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and leptons transform under the group SU(2) 
as doublet or singlet representations. The 
renormalizability of the spontaneously broken 

gauge field theory has been established by 
‘t Hooft. Major predictions of the Glashow- 
Weinberg-Salam model, including the existence 
of the gauge bosons W and Z, have been 
borne out experimentally. 

Grand unified models attempt to unify 

QCD and QFD, employing a larger Lie group 
containing SU(3) x SU(2) x U(1) as a sub- 
group. The most popular ones are those based 
on the groups SU(5), SO(10) and on some of 
the exceptional groups. Super grand unifïed 
models attempt to unify QCD, QFD, and 

the gravitational interaction, with super Lie 
groups as a possible basis. Recently, there 
have been attempts to search for subquark 
structures. 
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133 (XIV.9) 
Ellipsoidal Harmonies 

A. Ellipsoidal Coordinates 

If a > b > c, then for any given (x, y, z) E R3, the 
three roots of the cubic equation in 0 

x2 y2 22 
F(O)=- ~ --l=O 

u2+e+b2+Q+C2+B 

are real and lie in the intervals Q > - c2, - c2 > 
0 > - b2, and - bZ > fI > -a’. Denoting these 
three roots by Â, n, and Y (they are labeled 
SO as to satisfy the inequalities 1> - c2 > p > 
-b’>v> -a’), F(Â)=O, F(p)=O, and F(v)=0 
represent an ellipsoid, a hyperboloid of one 

sheet, and a hyperboloid of two sheets, re- 
spectively. They are confocal with the ellipsoid 

x2 y2 22 
aZ+b2+C2-1=0’ 

pass through the point (x, y, z), and mutually 
intersect orthogonally. 

The quantities 1, p, v are called the ellip- 
soidal coordinates of the point (x, y, z). Rect- 
angular coordinates (x, y, z) are expressed in 
terms of ellipsoidal coordinates (1, p, v) by the 
formula 

X2=(u2+Â)(a2+~L)(a2+V) 
(a’-b2)(u2 -c2) ’ (1) 

and two others obtained from (1) by cyclic 

permutations of (a, b, c) and (x, y, z). 

B. Ellipsoidal Harmonies 

When a tharmonic function tj of three real 
variables is constant on the surface A. = con- 
stant, p = constant, or v = constant in ellipsoidal 
coordinates, the function tj is called an ellip- 
soidal harmonie. A solution of Laplace’s equa- 
tion A$ =0 in the form tj = A@)M(p)N(v) 

cari be obtained by the method of separation 
of variables. The equation A$ = 0 is written in 
the form 

where the summation is taken over the even 

permutations of (1, p, v), and 

A,=&a2 +A)(b2+/2)(c2 +A). 

The ordinary differential equation 

4A& AA% =(KA+C)A 
( > 

is satistïed by A and also by M and N if we 

replace 1 by n and v, respectively. Equation (2) 
is called Lamé% differential equation, with K 
and C the separation constants. 

LetK=n(n+l)forn=O, 1,2,....Then 
equation (2), for a suitable value (the eigen- 

value) of C, has a solution that is a polynomial 
in A: or a polynomial multiplied by one, two, or 

three of Jm, Jm, and w. 
Among these solutions 2n + 1 are linearly 

independent. We denote these solutions by A 

=hm(l) (m= 1,2, . . . ,2n+ 1). They are essen- 
tially equivalent to the Lamé functions, to be 
defined at the end of this section. TO be pre- 
cise, by setting 

1+ (a2 + b2 + c2)/3 = 5, 

C = B + n(n + l)(a’ + b2 + c2)/3, 

e, = (b2 + c2 - 2a2)/3, . ; e, +e,+e,=O, 

we have 

n(n+ l)<+B 

=4(5-e,)(5-e2)(T-e3)A’ 

This cari also be written in the form 

(3) 

d2A 
dU2=(n(n+1M4+B)A 

by the change of variable 5 = p(u) with the 
Weierstrass t@-function. 

The differential equation (3) has 5 =ei, e2, 
e3, CO as tregular singular points. A solution of 
(3) that is a polynomial in 5 or a polynomial 

multiplied by one, two, or three of G, 
fi, and fi is called a Lamé function 
of the first kind. 

C. Classification of Lamé Functions 

The 2n + 1 linearly independent solutions 
fn(Â) of (2) are classified into the following 
four families. If n is an even number 2p, then 

p + 1 solutions fnm(n) among the 2n + 1 solu- 
tions are polynomials in 1 of degree p, and the 
other 3p functions are polynomials in 3, of de- 
gree p - 1 multiplied by 

or 

Since a11 these polynomials are products with 
real factors of degree 1, the solutions belonging 
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to the first family are of the type 

f~(n)=(3L-e,)(~-e2) . ..(A-On.,), (5) 

while solutions of the latter kinds are of the 

type 

fnc4= 

x(2-&)(A-Cl,)...@-On,,-,). (6) 

The functions (5) and (6) are called Lamé 

functions of the tïrst species and of the third 
species, respectively. On the other hand, if n is 

an odd number 2p + 1, then 3(p + 1) solutions 
among the 2n + 1 functions j”“‘(i) are of the 

type 

x(~-~l)(~-fl2)“.(Â.-~(,-,,,*)~ (7) 

and the other p functions are of the type 

f~(~)=&‘+~)(b*+ jr)(c* +A) 

X(~-~,)(~-~,)...(~-~(,-,),*). (8) 

The functions (7) and (8) are called Lamé 
functions of the second species and of the fourth 
species, respectively. Hence in either case 
we have 2n + 1 linearly independent Lamé 
functions. 

When n is even, we obtain an ellipsoidal 
harmonie 

4 

by multiplying J,“‘(n), f/(p), and J,“‘(v) belong- 

ing to the tïrst family. Also, in this case, by 
setting 

x* y* z* 1 @,=- ~ ~- 
d+e, +b*+ep+2+e, 

(+s-e,we,) 

= (2 + 0,) (b* + e,) (2 + e,) 

we have 

$~=@,@,...@.,* (9) 

up to constant coefficients. Utilizing Lamé 

functions of the third species (instead of func- 
tions of the tïrst species) and formula (l), we 

find that 

~~=(y~orzxorxy)x@,@,...O,~~-1. (10) 

For even n, every ellipsoidal harmonie ex- 

pressible in terms of polynomials in x, y, z of 

degree n cari be written as a linear combina- 
tion of the functions (9) and (lO), which are 
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called the ellipsoidal harmonies of the first and 
of the third species, respectively. Similarly for 
odd n, the ellipsoidal harmonies of the second 

and of the fourth species 

~~=(~oryorz)0~0~...0~,-,,,~, (11) 

~~=xyzO,@, ...o(“m,,,2 (12) 

are composed of the Lamé functions of the 
second and fourth species, respectively. 

For odd n, these forms are a complete sys- 
tem of ellipsoidal harmonies that are linearly 
independent and expressible in terms of poly- 
nomials in x, y, z of degree n. 

The zeros tl, t2, . . ..tP of the Lamé func- 
tions are real, and ti # tj (i #j). They never 

coincide with any one of et, e2, and es. If e, > 
e, > e3, then tri . ,<, a11 lie between e, and 
e,. If m is an integer such that 0 < m < p, we 

have one and only one Lamé function (with 
the species given) with m of its zeros lying 
between e, and e2 and the remaining p-m 
zeros between e2 and e3 (Stieltjes’s theorem). In 
this way, a complete system of linearly inde- 
pendent Lamé functions of the specifïed type 
may be obtained, since m assumes p + 1 differ- 
ent values. When the constant B appearing 
in the differential equation (3) takes specifïc 

values SO that the equation has Lamé func- 
tions of the fïrst kind as its solution, (3) also 
yields a solution A such that A-+<-(“f’)‘2 as 

c- 00. This function A is called the Lamé 
function of the second kind. 

D. Ellipsoids of Revolution (Spheroids) 

When the fundamental ellipsoid is a spheroid 

x*+y* z* 
-+-= 1, 

a* c* 

(13) 

it is convenient to use the spheroidal coordi- 
nates (5, q, cp) given by 

x=1 (~~-l)(l-)lZ)coscp, 

y=l (t*-l)(l-q*)sin<p, 

z = &L l==JD 

for a2 < c2 (prolate) and 

x=1 g*+ l)(l -$)cos<p, 

y=1J(<2+1)(1-~2)sin<p, 

z = &L l=JX2 (14) 

for a2 > c* (oblate). The solutions of Laplace% 
equation, which are regular at a11 tïnite points, 
are given by 

ti = KYS)CY~)llPnm~ 

in the prolate case, and 

ti = KWEXrl)S,‘,“w 



525 133 F 
Ellipsoidal Harmonies 

in the oblate case. Here Pnm is the tassociated 
Legendre function of the tïrst kind. Solutions 
which are regular outside a tïnite ellipsoid 
cari be composed of the tassociated Legendre 
functions of the second kind, Qn(<) or Qn(i<) 

instead of Pn(<) or P:(i{), respectively. 

E. Spheroidal Wave Functions 

Transforming the tHelmholtz equation in 

prolate spheroidal coordinates (13) we have 

+GY=O, rc=kl. 

(15) 

By separating variables in the form Y = 
X(t) Y(rj);Ftm(~, we have the equations 

t16W 

which X and Y, respectively, must satisfy. The 
only difference between equations (16a) and 
(16b) arises from the fact that the domain of 
(16a) is given by 1~ 5 whereas the domain of 

(16b) is given by -1 CV< 1. For the oblate 
spheroid, utilizing formula (14) we have 

&{$(@+ ug)++‘g) 

( 
1 1 a9 -- 

+ 1-V/* 
52 a<pz +i?Y=O. 

> 1 
(17) 

By separating variables as before, Y(q) satistïes 
the same equation as (16b), while X(t) satistïes 
equation (16a) with 5 replaced by it. Al1 these 
equations are of the type 

A solution of (18) is known as a spheroidal 
wave function. The equation (18) has *I as 

regular singular points and CO as an irregular 
singular point of class 1. Hence spheroidal 
wave functions behave like tlegendre func- 
tions in the interval [ -1, l] and like tBesse1 
functions in the neighborhood of 00. 

F. The Functions pc:(x) and qer(x) 

When we Write a solution of (18), it is custom- 

ary to Write x instead of z when z is contained 
in the interval [ -1, 11. We denote solutions of 

(18) which are regular on the whole domain 

-1 <x < 1 by per(x), and the corresponding 
eigenvalues by A,,,, (assuming the boundary 
condition stated in this paragraph concern- 
ing singularities). In particular, when K+O, 
equation (18) reduces to tlegendre’s associ- 
ated differential equation, the eigenvalues of 1 
become n(n + 1) (n is a positive integer), and 
the corresponding eigenfunctions become the 
associated Legendre functions of the first kind: 

Hence per(x) is a solution whiçh tends to a 
constant multiple of Pn(x) as K+O. Using a 
system of orthogonal functions Pr(x), we cari 
expand pc:(x) as 

w34 = C 4XYx), 
I,m 

Il- n 1 = even number. 

The coefficients A satisfy a recurrence 
formula 

(20) 

( ,212+21-l-2& 
L-W+1)+K (21-1)(21+3) 

> 
4Tl 

&t-m- 1x-4 A” 
(21-3)(21-l) n’f ’ 

-2 
(l+m+ 1)(1+m+2& -o 

(21+3)(21+5) 
n,1+2- (21) 

The functions per(x) and peT(x) are ortho- 
gonal in the domain -1 <x < 1. 

Another solution of (18) exists which corre- 

sponds to the same eigenvalue A,,,, is inde- 
pendent of per(x), and has the opposite parity: 

q434 = IZ-m,C=,,,” AiYIQiYx) 
+ j,m C=oddBTjJI;I(x)~ J < (22) 

where the A$ are the same as in (20) and are 
determined by the recurrence formula (21), 
while for j 2 m + 2, the Br j satisfy the recur- 
rente formula 

km-j(j+ 1)+r22’(~~I~:j~~z)B,j 

+Ic 
,tj-m-l)tj-4 Bm ,_ 

(2j-3)(2j-1) “” ’ 

+K2(j+m+l)(j+m+2) B”, -o, 
(2j+3)(2j+5) 

“,‘+2 - (23) 

Since the associated Legendre function of 

the second kind 

Qf(~)=(l-x~)~‘~d~QJdx~ 

is of the form 

Q:(x) = pl(x)log~~ 

+(l-x2)-“‘2 x (a polynomial in x) 



133 Ref. 
Ellipsoidal Harmonies 

for 1> m, the qer(x) have x = k 1 as singular 

points. 
By expressing the solution of equation (18) 

in integral form we find that pet(x) satisfïes an 

integral equation 

Disregarding a constant factor, this coincides 
with the function detïned by (22) with Q;(z) = 

(z2 - l),‘* dmQ,/dzm in place of the associated 
Legendre function of the second kind. 
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per(z)= fi (z2 - 1)m’2 
%mWrn 

Il- n ( = even number. (27) 

Multiplying this by a constant, we defme 

71 (z’- y’* 
.KW= 2 Zm 

J 

F” =(l+m)! A” 
n,l (lwrn)! “31 

This expression asymptotically assumes the 
form 

je:(z) - sin(rcz - n7~/2)/rcz 

for IzI » 1. In a similar manner we fïnd a 
solution 

7L (z’ - l)m’* 
ne:(z)= - 2 J Zrn 

having the asymptotic form 

ne:(z) - cos(fcz - n7c/2)/K-z. 
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Elliptic Functions 

A. Elliptic Integrals 

Let <p(z) be a polynomial in z of degree 3 or 4 

with complex coefficients and R(z, w) a rational 
function in z and w. Then R(z, m) is called 
an elliptic irrational function. An integral of the 

type j R dz is called an elliptic integral. The 
origin of the name cornes from the integral 

that appears in calculating the arc length of an 
ellipse. Any elliptic integral cari be expressed 

by a suitable change of variables as a sum of 
elementary functions and elliptic integrals of 

the following three kinds: 

SJ 

dz 

(1 -z2)(1 -k*z*)’ 

1 - k2z2 

SF 
~ dz, 

1-z* 

and 

s 

dz 

(l-a2z2) (l-z*)(l-k*z*) 

(- Appendix A, Table 16.1). These three kinds 
of integrals are called elliptic integrals of the 

first, second, and third kind, respectively, in 
Legendre-Jacobi standard form. This classifica- 
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tion corresponds to that of tAbelian integrals. 
The constant k is called the modulus of these 
elliptic integrals, and a is called the parameter. 

Let the four zeros of q(z) be rxl, Q, Q, c(~ (we 
take one of them as a when <p(z) is of degree 
3). The tRiemann surface % corresponding to 
the elliptic irrational function has the zeros 

ml> a 2, x3, ~1~ as tbranch points with degree 
of ramification 1, and is of two sheets and 
of tgenus 1. If the integrand does not have 

a pole with a tresidue, then the integral is 
multivalued only because the value (called 
the periodicity modulus) of the integral taken 
along the normal section (basis of the homol- 
ogy group) is not equal to zero. 

B. Elliptic Integrals of the First Kind 

When R is a function without singularities 
other than branch points, only the topological 

structure of R gives rise to the multivaluedness 
of the integral of R. The standard form is 

s 

i dz 

o J(l -z’)(l -kZzZ) 

where z = sin cp. This integral is the inverse 

function of sn w  (- Section J). The periodicity 
moduli are 2iK’ and 4K, where 

s 1 
K=K(k)= 

dz 

o J(l-2’)(1 -k2z2) 

n/2 d<p = 
s 0 Jm 

=F 

K’= K(k’), k’* = 1 -k2. 

We cal1 K(k) a complete elliptic integral of the 
first kind and F(k, cp) an incomplete elliptic 
integral of the first kind (- Appendix A, Table 

16). Setting 

When R has poles with nonzero residue its 
integral has logarithmic singularities. In this 

case, residues also contribute to multivalued- 
ness of the integral. The standard form is 

sin qpl = 
(l+k’)sin<pcos<p l-k 

JZ’ 
k, =p 

l+k” 
(2) 

s 
z 

F(z) = 
dz 

o (1 -a’~‘) (1 -z’)(l -k2z2) 

we have the relation s <p d<p ZZZ 
0 (l-a’sin’cp)Jw’ 

F(k<p)=U +W’(k,,cpJ/2> and it is expressed as 

which is called Landen’s transformation. Since 
k, <k when 0 <k < 1, this transformation 

reduces the calculation of elliptic integrals 
to those with smaller values of k. For two 
given positive numbers a and b, put a, =a, 

b, = b, and a,,, = (a, + bn)P’> bn+, = $i%i. 
Then the sequences {a,,} and {b,} converge 
rapidly to the common limit, which is called 

the arithmetico-geometric mean of a and 
b, and is denoted by ag(a, b). The complete 

F(z) = s ;log~+u~)+u 
( 

if we set z = sn u and a2 = k2 sn2 a (- Appendix 
A, Table 16). 

E. Elliptic Functions and Periodic Functions 

Historically the elliptic function was first intro- 
duced as the inverse function of the elliptic 

elliptic integral satistïes the relation K(k) = 

dPag(l, &61. 

C. Elliptic Integrals of the Second Kind 

When R has poles with residue zero, its inte- 
gral has no singularities other than poles. 
The standard form is 

F(z)= j;,/Edz 

= ;Jwdcp=E(k,<p), 
s 

where z = sin cp. We have 

(3) 

F(z)= “dn’udu=- 
s 

@Y4 +Eu 

0 O(u) K 

if we set z = sn u. Here, 0 is Jacobi’s theta func- 
tion, and 

where & is a theta function to be described in 
Section 1 and K, K’ are the same as in the case 
of elliptic integrals of the fïrst kind. The 

quantity 

is called a complete elliptic integral of the 
second kind. 

D. Elliptic Integrals of the Third Kind 
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integral. However, since it has been realized 
that elliptic functions are characterized as 
functions with double periodicity, it is now 
customary to define them as doubly periodic 
functions. 

If f(x), delïned on a linear space X, satistïes 
the relation f(x + o) =f(x) for some WE X and 
a11 x E X, the number o is called a period of 

f(x), and f(x) with a period other than zero 
is called a periodic function. The set P of a11 
periods of f(x) forms an additive group con- 

tained in X. If a basis wi, . . , w, of the additive 
group P exists, its members are called funda- 
mental periods of f(x). 

Any continuous, nonconstant, periodic 
function of a real variable has only one posi- 
tive fundamental period and is called a simply 
periodic function. The ttrigonometric functions 
are typical examples: sin x and COS x have the 
fundamental period 27~; tan x and cet x have 

the fundamental period rc (- 159 Fourier 
Series). 

A single-valued nonconstant tmeromorphic 

function of n complex variables cannot have 
more than 2n fundamental periods that are 
linearly independent on the real number fïeld. 
A function of one complex variable with two 

fundamental periods is called a doubly periodic 
function. 

Let w, w’ be the fundamental periods of a 
doubly periodic function. For a given number 
a, the parallelogram with vertices a, a + w, 
a + w’, a + w  + CO’ is called the fundamental 

period parallelogram. The complex plane is 
covered with a network of congruent parallel- 
ograms, called period parallelograms, obtained 
by translating the fundamental period parallel- 

ogram through mw + nw’ (m, n = 0, +l, &2,. . ). 
A doubly periodic function f(u) meromor- 

phic on the complex plane is called an ellip- 
tic function. For simplicity, we usually denote 

the fundamental periods of an elliptic function 
by 2~0, and 2w,, and introduce o2 detïned by 
the relation wi + w2 + w3 = 0. The fïrst, and 
therefore also higher, derivatives of any elliptic 

function are elliptic functions with the same 
periods. The set of a11 elliptic functions with 

the same periods forms a tlïeld. The number of 
poles in a period parallelogram is lïnite. The 

sum of the orders of the poles is called the 
order of the elliptic function. An elliptic func- 
tion with no poles in a period parallelogram is 
merely a constant (Liouville’s first theorem). 

The sum of the residues of an elliptic function 
at its poles in any period parallelogram is zero 
(Liouville’s second theorem). Hence there cari 
be no elliptic function of order 1. An elliptic 

function of order n assumes any value n times 
in a period parallelogram (Liouville’s third 

theorem). The sum of the zeros minus the 
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sum of the poles is a period (Liouville’s fourth 
tbeorem). 

F. Weierstrass’s Elliptic Functions 

Weierstrass delïned 

as the simplest kind of elliptic function. Here 
R = 2mq + 2nw,, with m, n integers. The sum- 
mation C’ extends over a11 integral values (pos- 
itive, negative, and zero) of m and n, except 
for m = n =O. p(u) is an elliptic function of 
order 2 with periods 2~0, and ~CD,, called a 
Weierstrass @-function. The following func- 
tions c(u) and U(U) are called the Weierstrass 
zeta and sigma functions, respectively: 

and 

g(u)=un’((l -i)exp(i+$)). 
These have quasiperiodicity, expressed by 

i(u + 24 = i(u)+ hi, (4) 

c(u + 2q) = - e2vi(u+0Jo(u), (5) 

‘I1+rz+y/3=0> Vi = itwi), i= 1, 2, 3; 

and they satisfy the relations 

aa (4 = - i’(u) (6) 

and 

(7) 

The function m(u) is an even function of u, 
and i(u) and cr(u) are odd functions of u. By 
considering the integral Jc(u)du once around 
the boundary of a fundamental period par- 
allelogram, we have 

~‘~~~~~~}= *Fi, Im(z)20, (8) 

which is called the Legendre relation. 

The derivative 

@f(u)= -2Cl/(u-R)3 

of a @-function is an elliptic function of order 
3 and bears the following relation to m(u): 

(~‘(u))2=4(k3(u))3-92~(u)-93 

=4(M(u)-e,)(M(u)-e,)(p(u)-e,), 

g2=60c’1/Q4, g3=140~‘1/R6, 

ei = @ twi)> i= 1, 2, 3. (9) 
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By differentiating this relation successively, 
we see that M(“)(U) is expressed as a polynomial 
in p(u) if n is an even number and as a prod- 
uct of polynomials in p(u) and p’(u) if n is an 

odd number. 
In particular, writing m(u) = z in (9) we lïnd 

that the p-function is the inverse function of 
the elliptic integral 

lL= :J& s 

(- Appendix A, Table 16.IV). 
Any elliptic function cari be expressed in 

terms of Weierstrass’s functions. Specilïcally, 

let the poles of f(u) and their orders be a,, 
a 2, , a, and hi, h,, , h,, respectively, and 

let the principal part in the expansion of f(u) 
near the pole uk be 

2 A, 
j=l (U - U# ’ 

k=l, 2 ,..., m. (10) 

Then we obtain 

+C---- 

hk (-lYAkj p(j-2)(U-ak) 

j=l (J-l)! 
,  

(11) 

where C is a constant depending on f(u). This 
cari be reduced to 

q(u) = - 
e”‘“o(u-wi) 

c(wi) ’ 

i= 1, 2, 3, (16) 

f(u)= A+B@(u) 

by using the addition theorems (- Appendix 
A, Table 16) for @ and zeta functions, where A 
and B are rational functions of D(u). Therefore, 
given two elliptic functions with the same 
periods, after expressing them as rational 
functions of M and M’ in the above form and 
eliminating p and @, we obtain an algebraic 

equation with constant coefficients. In par- 
ticular, for any elliptic function f(u) we ob- 
tain an talgebraic differential equation of the 
first order by using this method, with f’(u) an 

elliptic function with the same periods. Fur- 
thermore, the functions f(u + o), f(u), and f(u) 
satisfy an algebraic equation. Thus for any 
elliptic function an algebraic addition theorem 
holds. 

are also elliptic functions of the third kind. In 
the case of elliptic functions of the second and 
third kinds, 2w, and 2w, are not periods in 

the strict sense delïned earlier, but are conve- 
niently referred to as the periods. The func- 

tions cri (i = 1,2,3) are called cosigma functions. 

1. Theta Functions 

The theta functions, or more strictly, elliptic 
theta functions, are defined by 

9,(u,r)=2 c (-l)nq(n’112)2sin(2n+l)nv, 
n=o 

9,(u,r)=2 F q(“+1’2)Zcos(2n+ l)m, 
“=O 

9,(u,7)=1+2 =f q”zcos2n7ru, 
“=l 

G. Elliptic Functions of the Second Kind 

As an extension of the definition of elliptic 
functions, if a tmeromorphic function f satis- 

fies the relations 

f(u+24=PLff(Uh .f(u+w=P3p (12) 

(pi and pL3 are constants) with the fundamental 
periods 2w,, 2w,, we cal1 f(u) an elliptic func- 
tion of the second kind. What we have called 
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simply an elliptic function cari now be called 

an elliptic function of the lïrst kind. For con- 
stants p and v, the function 

f(u) = PO(U - u)/a(u) (13) 

is an example of an elliptic function of the 
second kind. In this case 

p.=e2Poi-2u% 
I ) i=l,2. (14) 

Furthermore, for given constants pL1 and p3, 
any elliptic function of the second kind is 
expressed as the product of an elliptic function 
of the first kind and the function (13) with p 
and u determined by (14). 

H. Elliptic Functions of the Third Kind 

If a meromorphic function f satislïes 

f(u+2wi)=eoiu+*lf(u), i= 1, 3 (15) 

(ai and bi are constants) with periods 2w,, 2w,, 
we cal1 it an elliptic function of the third kind 
(- 3 Abelian Varieties 1). 

The Weierstrass sigma function a(u) is an 
example of an elliptic function of the third 
kind. The functions oi, g2, and 03, defined by 
the equations 

(17) 

where q = eiar, Im z > 0. We cal1 (17) the q- 
expansion formulas of the theta functions, and 

we sometimes Write & in place of &. A theta 
function is an elliptic function of the third kind 
with periods 1 and 7. Any elliptic function cari 

be expressed as a quotient of theta functions 
(- Appendix A, Table 16 for specific exam- 
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ples). The q-expansion formula is quite suit- ulus, respectively. Furthermore, the relation 

able for numerical computation because of d sn w/dw = cn w  dn w  holds. The function z 

its rapid convergence; its terms decrease as the = sn w  is the inverse function of the elliptic 

n2 powers of q as n+ m. integral(l) (- Appendix A, Table 16.111). 
An elliptic function with the fundamental 

periods 2w, and 2w, cari also be viewed as 
having the periods 2~; = 20,, 20: = - 2w,. 

Consequently, theta functions formed with the 
parameter 7 = wa/w, cari be expressed in terms 
of the parameter 7’ = w; /a; = -col /w3 = - 117, 

and we have 
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J. Jacobi’s Elliptic Functions 

C. G. J. Jacobi delïned elliptic integrals as 

inverse functions of elliptic integrals of the fïrst 
kind in the Legendre-Jacobi standard form (1). 
They are, in the above notation, 

44 ~3(Wl(4 
snw=JG-= 

03(u) 92Kw4b4 
(20) 

a1(4 %W2(4 

cnw=a,o=92(0)$4(u)’ 

dnw=c2&40=4w3w 
Q3 (4 $3 Kw4(4 ’ 

(22) 

where w=JGu and u=u/2w,. 
These functions satisfy the relations 

sn2w+cn2w=1, kZsn2w+dn2w=1, (23) 

where 

e2 - e3 (92(0))4 kZ=-=- 
el -e3 (-94YW4 

(24) 

The constants k and k’= J1-k2 are called 

the modulus and the complementary mod- 

A. General Remarks 

Suppose that we are given a relation R be- 
tween elements of a set X such that for any 
elements x and y of X, either xRy or its nega- 

tion holds. The relation R is called an equiva- 
lente relation (on X) if it satisfïes the following 
three conditions: (1) xRx, (2) xRy implies yRx, 
and (3) xRy and yRz imply xRz. Conditions 
(1) (2), and (3) are called the reflexive, sym- 
metric, and transitive laws, respectively. To- 
gether, they are called the equivalence prop- 
erties. Condition (1) cari be replaced by the 
following: (1’) For each x there exists an x’ 
such that xRx’. The relation “x is equal to y” 
is an equivalence relation. If xRy means that x 

and y are in X, then R is also an equivalence 
relation. An equivalence relation is often de- 
noted by the symbol -. The relations of con- 
gruence and similarity between figures are 
equivalence relations. If X is the set of integers 

and x = y means that x-y is even, then the 
relation = is an equivalence relation. 
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B. Equivalence Classes and Quotient Sets 

Let R be an equivalence relation. “xRy” is 
read: “x and y are equivalent” (or “x is equiva- 
lent to y”). The subset of X consisting of a11 
elements equivalent to an element a is called 

the equivalence class of a. By (l), (2), and (3), 
each equivalence class is nonempty, the equiv- 
alence class of a contains a, and different 
equivalence classes do not overlap. Namely, 
X is decomposed into a tdisjoint union of 
equivalence classes. This +Partition is called 
the classification of X with respect to R. For 
example, the set of integers is classifïed into the 

equivalence class of even numbers and that of 
odd numbers by the relation = Conversely, 

since the relation “x and y belong to the same 
member of a partition” is an equivalence re- 

lation, we cari regard any partition as a classi- 
fication. An element chosen from an equiva- 
lente class is called a representative of the 
equivalence class. In the example we cari take 
0 and 1 as the representatives of equivalence 
classes of even and odd numbers, respectively. 

X/R denotes the set of equivalence classes of 
X with respect to R, and is called the quotient 
set of X with respect to R. The mapping p:X+ 
X/R that carries x in X into the equivalence 

class of x is called canonical surjection (or 
projection). The idea of equivalence relations 
cari be generalized to deal with the case when 

X is a tclass. 

C. Stronger and Weaker Equivalence Relations 

Let R and S be two equivalence relations on 
X. If xRy always implies xSy, then we say that 
R is stronger than S, S is weaker than R, the 
classification with respect to R is finer than the 
one with respect to S, or the classification with 
respect to S is coarser than the one with re- 

spect to R. The relations “x is equal to y” and 
“x and y are in X” are the strongest and the 
weakest equivalence relations, respectively. 
Any two equivalence relations on X are 
ordered by their strength, and the set of 
equivalence relations on X forms a tcomplete 
lattice with respect to this ordering. 
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Ergodic Theory 

A. General Remarks 

The origin of ergodic theory was the so-called 

ergodic hypothesis, which provided the foun- 
dation for classical statistical mechanics as 
created by L. Boltzmann and J. Gibbs toward 
the end of the 19th Century (- 402 Statistical 
Mechanics). Attempts by various mathemati- 
cians to give a rigorous proof of the hypoth- 
esis resulted in the recurrence theorem of 
H. Poincaré and C. Carathéodory and the 
ergodic theorems of G. D. Birkhoff and J. von 
Neumann, which marked the beginnings of 
ergodic theory as we know it today. As the 

theory developed it acquired close relation- 
ships with other branches of mathematics, for 
example, the theory of dynamical systems, 

probability theory, functional analysis, number 
theory, differential topology, and differential 
geometry. 

The principal abject of modern ergodic 
theory is to study properties of tmeasurable 
transformations, particularly transformations 
with an invariant measure. In most cases, the 
transformations studied are defmed on a Le- 
besgue measure space with a tïnite (or o-finite) 

measure. A Lebesgue measure space with a 
finite measure (cr-lïnite measure) is a tmeasure 
space that is measure-theoretically isomorphic 
to a bounded interval (to the real line) with the 
usual tlebesgue measure, possibly together 

with an at most countable number of atoms. It 
is known that any separable complete tmetric 

space with a complete regular Bore1 tproba- 
bility measure is a Lebesgue measure space 
with a finite measure. We assume, unless stated 
otherwise, that the measure space (X, a, m) is a 
Lebesgue measure space. Al1 the subsets of X 

mentioned are assumed measurable, and a pair 
of sets or functions that coincide almost every- 
where are identified. We use the abbreviation 
“a.e.” to denote “talmost everywhere.” 

B. Ergodic Theorems 

Let (X, g, m) be a a-fïnite measure space. 

A transformation <p defïned on X is called 
measurable if for every BE&?, @LE&?. A 
tbijective transformation <p on X is called 

bimeasurable if both cp and ‘p-l are measur- 
able. A measurable transformation cp is called 
measure-preserving (or equivalently, the mea- 
sure m is invariant under <p) if rn(q-‘(B))=m(B) 

holds for every B. It is called nonsingular if 
m(<p-l(B))=0 whenever m(B)=O, and ergodic 
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ifm((cp-‘(B)UB)-(<p-‘(B)flB))=Oimplies 
either m(B) = 0 or m(X - B) = 0. 

The mean ergodic theorem of von Neumann 
(Pr-oc. Nat. Acad. Sci. US, 18 (1932)) states that 
if cp is a measure-preserving transformation oc 
(X, W, m), then for every function f belonging 
to the +Hilbert space &(X) = L,(X, &?, m) (- 
168 Function Spaces), the sequence 

converges in the tnorm of &(X) as n-* CO to a 
function f* that satistïes f*(rpx) =f*(x) a.e. The 

individual (or pointwise) ergodic theorem of 
Birkhoff (Proc. Nut. Acad. Sci. US, 17 (1931)) 
states that for every f belonging to the tfunc- 

tion space L,(X), the sequence A”~(X) con- 
verges a.e. to f*. From either of these theo- 
rems it follows that for any set E satisfying 
<P~I@)=E and m(E)< CO, the limit functionf* 
satislïes JEf* dm = IJdm. In particular, if m(X) 
= 1 and <p is ergodic, then the limitf* equals 
the constant jfdm a.e. This fact therefore gives 
a mathematical justification to the ergodic 
hypothesis, which states that the “time mean” 

(CkZbf(cp”x))/n of what is observable over a 
suftïciently long time cari be replaced by the 
“phase mean” jfdm. Both von Neumann% 

theorem and Birkhoff’s theorem were sub- 
sequently generalized in various directions by 

many authors. 
(1) Mean ergodic theorems are concerned 

with the tstrong convergence of the sequence 
of averages A,=(Ck$, Tk)/n of the iterates of a 
tbounded linear operator T on some +Banach 
space. A generalization of von Neumann% 
theorem due to F. Riesz, K. Yosida, and S. 

Kakutani dispenses with the assumptions that 
the linear operator T is induced by a measure- 
preserving transformation <p and that Tacts 

on the Hilbert space Z,*(X). A version of this 
generalization states that if a linear operator T 
detïned on a Banach space X satistïes the 
conditions 

then for an element fi% the sequence of 

averages A,f converges strongly to an element 
f* E% if and only if there exists a subsequence 
converging tweakly to f*. From this theorem 
of Riesz, Yosida, and Kakutani follows the 
L,-mean ergodic theorem (1~ p < co) for so- 
called Markov operators: If T is a linear oper- 
ator defïned on each of the Banach spaces 

L,(X) (1 < p < co) by means of the formula 

T~(X) = jf(y)P(x, dy), where P(x, B) is the ttran- 
sition probability of a +Markov process on 

(X, 9) leaving the measure m invariant (i.e., 
IP(x,B)dm=m(i?)foreveryBEUB)(- 261 

Markov Processes), then for every f belonging 
to L,(X) (1 <p < co) the sequence A,f con- 
verges in the norm of L,(X) to a limit function 

f*. 
(2) Birkhoff’s ergodic theorem has been 

extended to the following individual ergodic 
theorem by E. Hopf (1954): If T is a +Positive 
linear operator mapping L,(X) into L,(X) 
and L,(X) into L,(X) with lITIl i < 1 and 

11 T 11 m Q 1, then for every fin L,(X) the se- 
quence A,f converges a.e. to a limitf*. If 
T is a Markov operator, then T maps each 

L,(X) into itself and satislïes //TII,< 1 for 
each p (1 <p < CO), and therefore Hopf’s er- 
godic theorem applies to such T. Special cases 
of this theorem were proved earlier by J. 
Doob and by Kakutani. Later, N. Dunford 
and J. Schwartz showed that the assump- 
tion of the positivity of T cari be dispensed 

with in Hopf’s theorem. For a positive linear 
operator T on L,(X) satisfying II T 11, < 1, R. 
Chaton and D. Ornstein (1960) proved that 
the ratio ergodic theorem holds: For every pair 
of functions f and g in L,(X) with g 2 0 a.e., 
lim n-tm CiZb Tkf(x)/CkZ& Tkg(x) exists and is 
fmite a.e. on the set {x 1 CtZk Tkg(x) > 0). This 
theorem extends earlier results of Hopf and 

W. Hurewicz dealing with special classes of 
operators arising from measurable transfor- 

mations. Hopf’s ergodic theorem cari be de- 
duced from the Chaton-Ornstein theorem, 
while it is known that there are positive oper- 
ators T on L,(X) satisfying II T 11 i < 1 for which 
lim n-m A,f fails to exist on a set of positive 
measure for some feti(X). This shows that 
the assumption 11 T 11~ < 1 is crucial in Hopf’s 
theorem. 

(3) As was the case in the original proof by 
Birkhoff of his ergodic theorem, every known 
proof of an individual ergodic theorem de- 
pends crucially on the so-called maximal 
ergodic lemma (or maximal inequality). For 
the case of a positive linear operator Ton 
L,(X) with 11 T 11 i < 1, Hopf proved the rele- 
vant maximal ergodic lemma: If E(f) is the set 

{xIsupna, A,f(x)>O} for eachfin L’(X), then 
J,,,,fdm > 0. Hopf’s original proof of this 

lemma was quite intricate, but A. Garcia 
(1965) succeeded in giving an extremely sim- 
ple and elegant proof. From the maximal er- 

godic lemma the following so-called domi- 
nated ergodic theorem cari also be obtained: 
Let T be a linear operator mapping each 
L,(X) into L,(X) satisfying II TII,< 1 for each 
p (1 <p < CO). If for f in L,(X) we let f(x) = 
~up~~~~A,,f(x)~, then if 1 <pc CC we have 
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while if p = 1 and m(X) < ro we have 

~i~x~~~s2[~~X)+Sli~x-)lluEi,ilr~ld~]. 

This theorem was obtained first by N. Wiener 
(1939) for the special case of T induced by a 
measure-preserving transformation. M. Ak- 
coglu (1975) proved an isometric “dilation” 
theorem for positive contractions (i.e., positive 
linear operators T for which I/ TII < 1) in the 
space L,(X) for 1 <p < CO, by means of which 

he was able to deduce a dominated ergodic 
theorem for an arbitrary positive contraction 
in L,(X) from the,corresponding theorem for a 
positive linear isometry in L,(X) proved earlier 

by A. Ionescu-Tulcea. From this theorem of 
Akcoglu one cari obtain the following indi- 
vidual ergodic theorem: If T is a positive con- 
traction in L,(X) for some p with 1 < p < CO, 
then for every f in L,(X), the sequence A,f 
converges a.e. 

(4) Both mean and individual ergodic theo- 
rems cari be extended without diflïculty to 

a continuous time parameter semigroup 
{ 7; 1 t > 0} of bounded linear operators such 
that 7; T, = 7;+, (TO=I), under a suitable con- 
tinuity assumption on T with respect to t, by 

replacing the discrete time average (z;zh Tk)/n 

with (St, T,ds)/t. Further extensions to n- 
parameter semigroups were obtained by N. 
Wiener and by N. Dunford and A. Zygmund. 

For mean ergodic theorems, even further 
extensions were possible to tamenable semi- 
groups of bounded linear operators. For l- 

parameter semigroups, the behavior of the 
mean at zero, (JO T,ds)/t as tl0 (local ergodic 

theorem) or lLJ~ëAsT,fds as 210 or L?a 
(Abelian ergodic theorem), has also been in- 

vestigated by Wiener, U. Krengel, E. Hille, 
Yosida, and others. Abelian ergodic theorems 
are related to properties of the tresolvent of 
the semigroup { 7;) (- 378 Semigroups of 
Operators and Evolution Equations). Further 
extensions of ah these theorems in various 

directions have been given by many authors; 
for these extensions and related topics - 
[S-7]. 

(5) J. F. C. Kingman (1968) proved an inter- 
esting and useful extension of (both mean and 

individual) ergodic theorems, called the sub- 
additive ergodic theorem. A real-valued +sto- 
chastic process { Xi,k 10 < i < k, k = 1,2,3, . } 

is called a subadditive process if it satisfies the 
following conditions: (i) Whenever i <j < k, 

Xi,, < Xi,j + Xj,k. (ii) The +joint distribution of 

{Xi+i,j+l} is the same as that of {Xi,j}. (iii) The 
texpectation gk = E(X,,,) exists, and satisfies 

gk > - Ak for some constant A and for a11 
k > 1. Kingman proved that if {Xi,k} is a sub- 

additive stochastic process, then the limit 5 = 

limn+,W%,, exists a.e. and in the mean, 
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and E(t) = lim,,,( l/n)g,,. Note that if cp is a 
measure-preserving transformation on a fmite 

measure space (X, g, m) and if f is an element 
of L,(X), then Xi,k=Cjk:/fo<pjfor O<i< k, 

where k = 1,2,3 detïnes a subadditive pro- 
cess (in fact, X,,k=Xi,j+Xj,k for i<j< k). The 
multiplicative ergodic theorem, proved by V. 
Oseledec, which plays a significant role in 
ergodic theory of tnonhyperbolic smooth 
dynamical systems and which has found ap- 
plications also in talgebraic groups, cari be 
derived from the subadditive ergodic theorem 

Cg, 91. 

C. Recurrence and Invariant Measures 

In this section we assume that the measure 
space (X, a, m) is nonatomic. A nonsingular 
measurable transformation <p defined on 

(X, 8, m) is called recurrent (infinitely recurrent) 
if for every set B and for almost a11 XE B, there 

exists an FEZ’ (inlïnitely many FEZ+) such 
that <~“(X)E B. A set W is called wandering 
under<pif<p-“(W)n<p-k(W)=Oforn#k.The 

transformation <p is called conservative if no 
sets of positive measure are wandering under 
cp, and incompressible if B 3 <p ml B implies 

m(B - <p -‘B) = 0. The following statements 
about a nonsingular measurable transforma- 
tion <p are equivalent: (i) <p is recurrent; (ii) <p is 
inlïnitely recurrent; (iii) <p is incompressible; 

(iv) <p is conservative. An immediate con- 
sequence of this is the following recurrence 
theorem of Poincaré (in the form formulated 
by Carathéodory): A measure-preserving 
transformation on a lïnite measure space is 

infinitely recurrent. In fact, in order for a non- 
singular measurable transformation <p to be 

recurrent (and hence intïnitely recurrent) it 
is suflïcient that there exist a tïnite measure 
/L invariant under <p and equivalent to (i.e., 

mutually +absolutely continuous with) the 
given measure m. 

The invariant measure problem is one of the 
basic problems in ergodic theory and is for- 
mulated abstractly in the following way: Given 
a nonsingular measurable transformation <p on 
a o-lïnite measure space (X, 3, m), lïnd neces- 

sary and sufftcient conditions for the existence 
of a tïnite (or a-finite) measure invariant under 
<p and equivalent to m. The given measure m 

specifies only the class of equivalent measures 
among which an invariant measure is to be 
found. Therefore we cari assume without loss 
of generality that m is a finite measure. For the 
remainder of this section, unless we explicitly 
state otherwise, we always mean by an invar- 

iant measure the one that is equivalent to m. 

The Poincaré recurrence theorem states that 
<p being recurrent is necessary for the existence 
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of a lïnite invariant measure. The recurrence of 
<p is, however, not suftïcient, since an ergodic 
transformation with an infinite but a-tïnite 
invariant measure is recurrent and has no 
tïnite invariant measure. A necessary and 
sufhcient condition for the existence of a tïnite 
invariant measure was given by a theorem of 
A. Hajian and Kakutani (1964) which states: <p 

has a tïnite invariant measure if and only if <p 
has no weakly wandering sets (a set W is called 

weakly wandering under <p if there exists an 

inlïnite subset {nk} of Z+ such that <p?‘k wn 
q -9 W= @, k #j). Hajian also proved that a 
bimeasurable transformation <p has a tïnite 
invariant measure if and only if <p is strongly 
recurrent in the following sense: For every set 
E with m(E) > 0, there exists a positive integer 
k = k(E) such that 

max m(qFjEnE)>O 
O<j<k 

for every n E Z. 
H. Fürstenberg [l l] obtained the following 

striking extension of the Poincaré recurrence 

theorem: If a bimeasurable transformation 
<p possesses a lïnite invariant measure, then 
for every set E with m(E) >O and for every 
integer k > 2, there exists n > 1 such that 
m(E n V”E n q?“E n . . n v(~-‘)“E) > 0. From this 
theorem one cari deduce a diff’cult theorem 
of E. Szemerédi on tarithmetic progressions 

which states: Any subset of the integers having 
positive tupper density contains arithmetic 
progressions of arbitrary length. In fact, it is 
not difficult to show that the theorems of 
Fürstenberg and of Szemerédi are mutually 

equivalent, and for this reason the theorem of 
Fürstenberg is sometimes referred to as the 
ergodic Szemerédi theorem. 

For a nonsingular bimeasurable transfor- 
mation <p, a pair of sets A and B are said to 
be countably equivalent under v if there exist 
countable decompositions {A, 1 k E Z ’ } and 
{i?, 1 k E Z’ } for A and B, respectively, and an 

infinite subset {nk} of Z such that V”~A, = B, 
for each k. A and B are said to be finitely 

equivalent under <p if finite decompositions 

{ Ak} and {Bk} cari be chosen. It was proved by 
Hopf that (i) <p is recurrent if and only if no set 
of positive measure is finitely equivalent under 
<p to one of its proper subsets, and (ii) <p has a 
fmite invariant measure if and only if no set of 
positive measure is countably equivalent under 
cp to one of its proper subsets. It cari be shown 
that if cp is ergodic, then <p has no a-Imite 
invariant measure if and only if every pair of 

sets of positive measure are countably equiva- 
lent under <p. 

The first example of a transformation ad- 

mitting no a-lïnite invariant measure was 

constructed by Ornstein in 1960. Since then, a 

number of simpler examples have been ob- 
tained by L. Arnold, Brunel, and others. It is 
now known that there are many different types 
of transformations having no a-Imite invariant 
measure (- Section F). Furthermore, it was 
shown by Ionescu-Tulcea that in the group of 
a11 nonsingular bimeasurable transformations 
with a suitable metric, those having a a-lïnite 

invariant measure form a subset of the tlïrst 
category. 

Various extensions of results on the invar- 
iant measure problem for nonsingular trans- 

formations to the case of tMarkov processes 
having nonsingular transition probabilities 
were obtained by Y. Ito, J. Neveu, S. Foguel, 
and others [ 121. 

For investigation of detailed properties of 
particular transformations arising from classi- 
cal dynamical systems, problems in number 
theory, and SO on, rather than the existence of 
invariant measures it is more important to 

determine a specitïc form of an invariant mea- 
sure with desirable properties and to develop 

methods to decide when such a measure is 
unique. Various people have considered spe- 

cial classes of transformations; these workers 
have been able to obtain explicit descriptions 

of invariant measures with nice properties for 
the transformations in question and have 
derived interesting consequences. Most im- 
portant among these is the so-called Gibbs 
measure, introduced and investigated by Ya. 
Sinai. He obtained this notion by generalizing 
the concept of the equilibrium Gibbs distri- 

bution, which plays a prominent role in tstatis- 

tical mechanics. It is delïned in the following 
way: Let X be a compact metric space, <p a 
homeomorphism on X, and pLo a probability 
measure on X invariant under cp. For a func- 
tion g belonging to L,(X) and for m, n > 0 let 

and form a sequence of probability measures 
p,,,,(g) absolutely continuous with respect to 
p,,, for which the +Radon-Nikodym derivative 

44Axld =ex~CL.dv~x) 
&dx) %“(Y I /Jo) 

holds. A measure that is a limit point, in the 
sense of tweak convergence, of the sequence of 
measures pL,,, (g) is called a Gibbs measure 
constructed from p0 and g. It is clear that a 
Gibbs measure is invariant under <p. For mix- 
ing topological Markov shifts (- Section D), 
Sinaï showed that if one starts with the invar- 
iant measure pLo of maximal entropy (- Sec- 

tion H), the existence of which was earlier 

shown by W. Parry, one cari determine a class 
of functions g for which the Gibbs measure 
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is unique, i.e., p(g)=lim,,.,,pL,,Jg) exists. 
Sinaï further investigated the properties of the 
unique measure ,n(g) in detail. R. Bowen and 

D. Ruelle, detïning the Gibbs measure some- 
what differently, investigated the existence 
and uniqueness of such measures, thereby 
recapturing the results of Sinaï in the case of 
mixing topological Markov shifts. With the 
aid of Markov partitions (- Section G), these 

results on Gibbs measures were carried over 

to the case of tAnosov and “taxiom A” diffeo- 
morphisms, and they provided essential tools 
in the investigation of the ergodic behavior of 
these transformations. For details - [13,14]. 

The explicit form of the density of the in- 
variant measure with respect to the Lebesgue 
measure for the transformation associated 
with tcontinued fraction expansion was al- 
ready known to Gauss, and one cari draw 

from it numerous conclusions about metric 
properties of continued fractions. The way in 
which Gauss was able to determine this invar- 
iant measure, however, was never explained. 

Recently, Sh. Ito, H. Nakada, and S. Tanaka 
(Keio Eng. Rep., 30 (1977)) developed an inter- 
esting method to describe the mechanism used 
to arrive at this density function for the invar- 
iant measure for the continued fraction trans- 
formation. They employed similar methods in 

subsequent work to determine explicit density 
functions for invariant measures for other 
related number-theoretic transformations and 
for certain classes of continuous mappings 

over an interval; by means of the explicit forms 
of invariant measures they were able to de- 
scribe the metric properties of these transfor- 

mations in detail. 

D. Examples and Construction of Measure- 
Preserving Transformations 

Examples of measure-preserving transforma- 

tions appear in many different contexts. We 
describe some of the important ones. 

(1) Let G be a +locally compact Abelian 

group satisfying the second axiom of tcounta- 
bility (- 423 Topological Groups), IA a o- 
algebra of Bore1 subsets of G, and m its +Haar 
measure (normalized if G is compact). Then 
(G, g, m) is a Lebesgue measure space. For a 
lïxed element go E G, delïne the transforma- 
tion Q:G+G by qgO(g)=g+gO. Then Vu, is 

a bijective measure-preserving transforma- 
tion on (G, &J, m) and is called the rotation 

on G by the element go. If G is compact, then 
the rotation Pu, is ergodic if and only if the 
cyclic subgroup generated by the element go is 

dense in G. If this happens, the element go is 

called the topological generator of G. A group 
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is called monothetic if it has a topological 
generator. 

(2) If <p is a group tendomorphism of a com- 
pact Abelian group G, then q preserves the 
Haar measure m. If <p is a group tautomor- 
phism, thdn it is a bijective measure-preserving 

transformation on (G, %?, m). A continuous 
group automorphism cp induces a group auto- 
morphism cp* of the character group G*. 
The measure-preserving transformation cp is 

ergodic if and only if every character except 
the identity has an infinite orbit under the 
induced automorphism ‘p*. When the group 
is the n-dimensional torus T”, a continuous 
group automorphism <p is uniquely repre- 
sented by an n x n matrix with integer entries 
and with determinant kl. In this case, q is 
ergodic if and only if no roots of unity appear 
among the teigenvalues of the representing 

matrix. 
(3) Let (Y, .zZ) be a measurable space, let 

(Y,, ZZZJ =(Y, &) for each n E Z, and define 

(Y *, a*) to be the tproduct measurable space 
(&z Y,, &,54,). The transformation cp 
defined on (Y*, J&‘*) by 

with y;=~,,+~ for each n is called the shift 
transformation. Let p be a probability measure 
on (Y, .r4) such that (Y, &, p) is a Lebesgue 

measure space, let p, = p for each n, and detïne 
p* to be the tproduct measure I’IntzpL, on 
(Y*, &*). Then (Y*, &*, ,u*) is a Lebesgue 

measure space, and the shift transformation cp 
is a bijective measure-preserving transforma- 
tion. Considered with the product measure, cp 
is called a generalized Bernoulli shift. When the 
set Y is at most countable and the measure p 
on Y is given by a sequence {pj} of positive 
numbers with C pj = 1, <p is called a Bernoulli 
shift. Suppose that P(y, A) is a Markov tran- 
sition function on (Y, &) and n is a proba- 
bility measure invariant under P(y, A). Then 
we cari detïne the Markov measure 7~* on the 

product space (Y*, &*) by setting 

.*,,*,=f~~+....l.+,f~,n(dYII)P(Yo,~Yi) 

x P(Y,,dY,)“‘P(Y,~,,dY,), 

for a cylinder set 

and extending it to a11 of d*. The shift trans- 
formation <p preserves the Markov measure 

rr*. Considered as a measure-preserving trans- 
formation on (Y*, d*, rc*), rp is called a Mar- 

kov shift. 
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A generalized Bernoulli shift is always 
ergodic. A Marko\ shift is ergodic if and only 
if the corresponding Markov process is +irre- 
ducible, which is the case if and only if the 

following property is satislïed: For every pair 
of sets A and B with ~(A)~L(B)>O, there exists 
an FEZ+ such that J,P”(y,B)dn>O. 

There are other measures besides the prod- 
uct measure and the Markov measure that 
cari be detïned on the product space (Y*, &*) 
and are invariant under the shift transforma- 

tion cp. For example, if Y is a Bore1 subset of 
R and d is the o-algebra of Bore1 subsets of Y, 

then any tstationary stochastic process taking 
values in Y induces such a measure on 
(Y*, &*). When considered with a measure of 
this type, the shift transformation <p is called 
the shift associated with the stationary process. 

Properties of the shift associated with a 
tstationary Gaussian process have been inves- 
tigated by G. Maruyama, 1. Girsanov, H. 

Totoki, and others. In particular, it is known 
that the shift is ergodic if and only if the tspec- 

tral measure for the tcovariance function of 
the associated Gaussian process is continuous 

c151. 
(4) Other important examples of measure- 

preserving transformations arise from classical 
dynamical systems, which Will be described in 
Section G. 

(5) There are several ways of constructing 
new measure-preserving transformations from 
given ones. We describe important cases. 

(i) Let cp be a nonsingular, measurable, 
recurrent transformation (not necessarily 
measure-preserving) on a o-tïnite measure 
space (X, 93, m), and let A be a set of positive 
measure. For x~,4, let n(x)=min{n~Z+ 1 
<p”(x)~A}. The transformation <p,:A+A de- 
lïned by <PA(X) = cpncX)(x) is a nonsingular mea- 

surable transformation on the measure space 
(A, B fl A, mA), where m,(B) = m(A f! B)/m(A), 
and it is measure-preserving if <p is. We cal1 

<pa the transformation induced by cp on A. It is 
ergodic if cp is ergodic. 

(ii) Let cp be a nonsingular measurable 
transformation on a a-finite measure space 
(X, a, m), and suppose that {A,} is a countable 
(possibly finite) partition of X. Define a func- 
tion f:X-*Z’ by settingf(x)=n for XE A,, 

and let g={(x,j)lxEX, l<j<f(x)} be a 
subspace of the product measure space (X x 
Z’, 28 x %?, m x p), where %7 is the rs-algebra 
of a11 subsets of Z+, and p is the measure on 
(Z+,%T) defined by ~L((n))=1 for each nEZ+. 

The transformation 4 defïned on 8 by @(x,j) 

=(x,j+l)ifl<j<f(x)and =(cp(x),l)ifj= 
f(x) is a nonsingular measurable transforma- 

tion on the measure space (8, (93 x %‘) n x, (m x 
I~)X), and it is measure-preserving if <p is. We 
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cal1 4 the transformation built from cp with the 
ceiling function f: If <p is ergodic and m(A,)-+O 
as n+ 00, then 4 is also ergodic. 

(iii) Suppose that $ is a measure-preserving 

transformation on (X, 9J, m) and cpx is a 
measure-preserving transformation on 

(Y, d, p) for each x E X. Assume that the map- 
ping (x, y)+(px(y) is measurable with respect 

to the a-algebras 3 x d and &. The trans- 
formation 0 delïned on the product space 

(X x K a x d, m x PL) by W, Y) =(+W, C~,(Y)) 
is measure-preserving and is called the skew 
product of ti and {cpx}. If <px = <p for all XE X, 
then we get a direct product transformation 

w> Y) =wc4, cp(Y)). 
(iv) A measure-preserving transformation cp 

on (Y, &, p) is said to be a factor transforma- 
tion (or a homomorphic image) of a measure- 

preserving transformation $ on (X, a, m) if 
there exists a measurable transformation q 
from X onto Y such that m o q m1 = p and <PV = 

r/$. If 93’ is a o-subalgebra of a and $ leaves 
IA’ invariant (i.e., $ -’ og’ c YB’), then $ induces a 
factor transformation cp on the measure space 
(X, a’, m). Conversely, if a measure-preserving 
transformation <p on (Y, d, p) is a factor trans- 
formation of $ on (X, 93, m) via a mapping q, 
then OB’ = q-l& is a a-subalgebra of YB invar- 
iant under 11/. 

(6) A one-parameter family { q1 ) t E R} of 

bijective measure-preserving transformations 
on a measure space (X, g, m) is called a flow. 

A flow is called continuous if the mapping t-1 
7; is tweakly continuous where { IT;} is the 
one-parameter family of tunitary operators 
on L’(X) induced by the flow {cp,}. A flow is 
called measurable if the mapping (t,x)+cp,(x) 
is a measurable transformation of R x X into 
X. A measurable flow is continuous. A. Ver- 
shik and Maruyama proved that for any con- 

tinuous flow there exists a measurable flow, 
unique in a specifïed sense, which is spatially 
isomorphic (in the sense specitïed in Section E) 
to the given flow. 

Important examples of flows are given by 
classical dynamical systems (- Section G), 
and by continuous-time stationary stochastic 
processes. 

An important tool in the study of flows is 
provided by the theorem of W. Ambrose and 
Kakutani: Every measurable ergodic flow 
without a fixed point is spatially isomorphic to 
an S-flow. A measurable flow {cpt} is called an 
S-flow (special flow or flow built under a func- 
tion) if there exist a measure-preserving trans- 

formation rp of a measure space (X, !?J, m) and 
an R+-valued function f on (X, 23, m) such 
that each <Pu is a measure-preserving trans- 

formation on the subspace rf = {(x, u)) x EX, 
0 < u <f(x)} of the product measure space 
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(XxR’,dx&,mxQgivenby 

44(x, 4 

=(x,u+t) if -u<t< -u+f(x), 

n-1 
<p”(x),u+t- 1 f(<pk(x)) if 

k=O > 

n-1 

-u+ c f(<pk(x))Gt< -u+ c f(<p”(x)X 
k=O k=O 

= cp-“(x),u+t+ $J f(cpk(x)) 
( 

if 
k=-n > 

-u- 2 f(<pk(x))<t< -u- 2 f(<pk(X)), 
k=-n k= -n+l 

n 3 1. Here J%J is the o-algebra of Bore1 subsets 

of R+, and A is the usual Lebesgue measure. 

E. Isomorphism Problems 

In this section we assume that the Lebesgue 
measure spaces considered are probability 
spaces. For simplicity, following the common 
usage among Russian mathematicians, we 
cal1 a measure-preserving transformation on 
(X, VB, m) an endomorphism and a bijec- 

tive measure-preserving transformation an 
automorphism. 

An automorphism ‘p, (a flow {vi’)}) on 

(Xi, g,, mi) is said to be spatially isomorphic 
(or metrically isomorphic) to an automorphism 
<p2 (a flow {(p,“)}) on (X,,og,,m,) if there exist 
sets N, and N, with m,(N,)=m,(N,)=O and a 
bijective measurable transformation f3 from 
Xi-N,toX,-N,suchthatm,oO=m,and 
Ocp, = <p20 (Ocpj’)= q$‘)O for each t). 

Classification of automorphisms and flows 
into isomorphism classes constitutes the cen- 

tral problem of modern ergodic theory. Prop- 
erties of automorphisms and flows that are 
preserved under spatial isomorphisms are 
called isomorphism invariants (or metric in- 
variants). There are several isomorphism in- 

variants that are essential to the study of the 
isomorphism problem. We describe these 
below for the case of automorphisms. There 
are corresponding invarianta for flows as well. 

(1) Spectral Invariants. Two automorphisms <p, 
and <p2 are said to be spectrally isomorpbic if 

the tunitary operators Ti and T2 induced by 
<pi and <p2 on the Hilbert spaces &(X,) and 
&(XJ, respectively, are unitarily equivalent 

(i.e., there exists an isometric isomorphism V 
of &(Xi) onto L2(Xz) such that VT, = T, V). 
Properties preserved under spectral isomor- 

phisms are called spectral invariants (or spec- 
tral properties). If <pi and <p2 are spatially iso- 
morphic, it is clear that they are spectrally iso- 

morphic; but the converse is not true in 

general. 
(i) The property of cp being ergodic is a 

spectral property since cp is ergodic if and only 
if the number 1 is a simple eigenvalue of the 
induced unitary operator T. If cp is ergodic, 

then the set of a11 eigenvalues of the induced 
operator T forms a subgroup of the circle 
group, each eigenvalue is simple, and each 

teigenfunction has constant absolute value. If 
the tspectrum of the induced operator T con- 
sists entirely of eigenvalues, cp is said to have 
discrete spectrum (or pure point spectrum). A 
theorem due to von Neumann and P. Halmos 
-the lïrst theorem on the question of isomor- 
phism-states that two ergodic automor- 

phisms ‘pi and qD2 with discrete spectra are 
spatially isomorphic if and only if they are 

spectrally isomorphic, which is the case if and 
only if the induced operators Tl and T, have 

the same set of eigenvalues. Furthermore, 
every ergodic automorphism with discrete 
spectrum is spatially isomorphic to an ergodic 
rotation on a compact Abelian group [2]. 

Analogous results were obtained by L. 
Abramov for a bigger class of automorphisms, 
namely, for ergodic automorphisms having so- 
called quasidiscrete spectra. 

(ii) An automorphism cp is ergodic if and 

only if for every pair of sets A, B, 

/i; k iil m(<pk(A) n B) 
> 

= m(A)m(B). 

Strengthening this condition, we cari define <p 
to be weakly mixing if for every pair of sets A, 

B, 

strongly mixing if 

and k-fold mixing if for arbitrary choice of sets 

Aj,j=O,l ,..., k, 

limm(A, n V”IA, fl q+A, fl V”~A,) 

= 4%,)m(A,). . . m(A,), 

where the limit is taken as ni, n2, . . , nk-+ 

coinsuchawaythatn,<n,<...<n,and 
min, 4j,k(nj-nj-1)+co. The property of an 
automorphism cp being weakly mixing or 
strongly mixing is a spectral property. For 
instance, <p is weakly mixing if and only if the 

number 1 is a simple eigenvalue and is the 
only eigenvalue of the induced operator T. It 
is also known that <p is weakly mixing if and 

only if the direct product automorphism <p x 9 
is ergodic. The set of a11 weakly mixing auto- 
morphisms forms a dense tG,-set in the group 
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of a11 automorphisms on (X, %, m) considered 
with the so-called weak topology (Halmos’s 
theorem). On the other hand, it was shown 

by V. Rokhlin that the set of a11 strongly mix- 
ing automorphisms is a set of lïrst category 
with respect to the weak topology. However, 
there are only a few known examples of auto- 
morphisms that are weakly mixing but not 
strongly mixing. 

(iii) An automorphism cp is said to have 

countahle Lehesgue spectrum if the maximal 
spectral type of the induced unitary operator 
T restricted to the torthocomplement of the 
subspace of constant functions in L,(X) is 
equivalent to the Lebesgue measure and its 

tmultiplicity is countably infinite. 
(iv) An automorphism <p is called a K- 

automorphism (or Kolmogorov automorphism) 

if there exists a o-subalgebra oA of YB such that 

(a) cp%,=% ad <p%,f%,, (b) V,,EZv”4,=% 
and (c) /j,,,z<pnUWo = Jlr, where N is the o- 
subalgebra of .%’ consisting of nul1 sets and 

their complements. The notion of a K-flow 
(or Kolmogorov flow) is defined similarly. K- 
automorphisms are k-fold mixing for a11 orders 
k and have countable Lebesgue spectra. 

Generalized Bernoulli shifts are all K- 

automorphisms. An ergodic Markov shift is a 
K-automorphism if and only if it is strongly 
mixing, which is the case if and only if the 

corresponding Markov process is tirreducible 
and taperiodic (- 260 Markov Chains B). A 
continuous group automorphism of a compact 
Abelian group is a K-automorphism if and 
only if it is ergodic. In particular, a continuous 
group automorphism of the n-dimensional 
torus T” is a K-automorphism if and only if no 

roots of unity appear among the eigenvalues of 
the representing matrix. Automorphisms and 
flows arising from classical dynamical systems 
also provide examples of K-automorphisms 
and K-flows. In particular, a tgeodesic flow on 

a surface of negative curvature is a K-flow, 
and each automorphism (except the identity) 
of this flow is a K-automorphism. For the shift 
transformation q associated with a stationary 
Gaussian process, it was shown by Maruyama 
[ 151 that cp is (a) weakly mixing if and only if 
it is ergodic, (b) strongly mixing if and only 

if the covariance function of the associated 
Gaussian process tends to 0 as n+co, and (c) 
a K-automorphism if and only if the +spec- 

tral measure of the covariance function is 
absolutely continuous with respect to the 
Lebesgue measure. 

(v) Examples of automorphisms having 
various types of spectra have been constructed 
by a number of authors by using stationary 
Gaussian processes and the theory of approxi- 

mation developed by A. Katok and A. Stepin 

C161. 
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(vi) An ergodic automorphism with quasi- 

discrete spectrum has a mixed spectrum, that 
is, the spectrum of the induced unitary opera- 

tor T has a continuous component and eigen- 
values in addition to 1. Anzai (1951) con- 

structed a special class of skew product auto- 
morphisms having mixed spectra and showed 

that in this class there are automorphisms that 
are spectrally isomorphic but not spatially 

isomorphic. However, the question of whether 
two spatially nonisomorphic automorphisms 
exist among automorphisms having the same 
purely continuous spectrum remained un- 
answered for a long time, until in 1958 Kol- 
mogorov (Dokl. Akad. Nauk SSSR, (5) 119 
(1958)) settled it aftïrmatively by using a new 

isomorphism invariant called entropy. 

2. Generators and Entropy. (i) By a partition 5 
= {A,} of the space X we mean a collection of 
sets A, such that A, n A,. = @ whenever Â # 1. 
and U A, = X. We denote by E the partition of 
X into individual points, and by v the trivial 
partition {X}. A partition into a Imite (count- 

able) number of sets is called a Imite (count- 
able) partition. A partition 5 is said to be 

lïner than another partition [ (or [ is coarser 
than 5) if for every AE [ there is a set BE[ such 
that A c B. For a collection { <,} of partitions 

of X, we denote by Va& the coarsest partition 
that is finer than each t,, and by An& the 
tïnest partition that is coarser than each 5,. If 
& = { Ak,.} is a sequence of countable (or tïnite) 
partitions, then Vk& is precisely the parti- 
tion of X into nonempty intersections of the 
form nk Ak,“, with Ak,n,~& for each k. With 
a partition 5 of X we associate a a-subalgebra 
uA(t) of a which is the a-algebra of a11 .?3- 

measurable sets that are a union of elements in 
5. Two partitions 5 and [ are said to coincide 
a.e. if g(t) = auA([) a.e. (i.e., for every A E&?(S) 

there exists a set B in BS([) such that m(A U 

B - A n B) = 0 and conversely). 
(ii) Suppose that <p is an endomorphism of 

(X, g, m) and 5 a partition of X. By <p-i5 we 
mean the partition {<P~‘(A)I AE<}. If <p is an 
automorphism, we also defme <pt = {q(A) 1 
AE 0. A partition t is called a generator for 
an endomorphism <p if V& <p-“< = E a.s. If 
V,,Z ~m $5 = E a.s., < is called a two-sided gen- 
erator for an automorphism <p. 

An endomorphism cp is said to be periodic at 

a point X~X if there exists a positive integer n 

such that <p”(x) = x and aperiodic if the set of 
points of periodicity has measure zero. If the 
measure space (X, %?, m) is nonatomic, then 
every ergodic endomorphism on it is aperi- 
odic. A theorem of Rokhlin states that every 

aperiodic automorphism cp has a countable 
two-sided generator. This implies that every 
such cp is spatially isomorphic to the shift 
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transformation on the intïnite product space 
(Y*, &*) considered with some invariant mea- 
sure p*, where each coordinate space 3 = Y 
has at most a countable number of points. 

Krieger improved this result by showing that if 
an ergodic automorphism cp has Imite entropy, 
then cp has a Imite two-sided generator [ 171. 

(iii) For a lïnite or countable partition 5 = 
{A,}, define the entropy H(c) of the partition 
to be -&m(A,)log(m(A,)) (the logarithms 

here and below are natural logarithms). We 
denote by d the set of ah partitions 5 with 

H(c)< co. If 5~2, then for any endomorphism 
cp the limit 

exists and is lïnite. The entropy h(q) of the 
endomorphism <p is delïned to be sup { h(<p, 5) 1 
5 E u2”) and is an isomorphism invariant. Prop- 
erties of entropy have been investigated exten- 
sively since the notion was introduced by 
Kolmogorov. We cite a few results. 

(a) If a partition 5 E ut” is a generator for an 
endomorphism <p or a two-sided generator for 
an automorphism <p, then h(v) = h(cp, 5) (Sinai’s 
lemma). (b) For every integer n, h(<p”) = In1 h(q), 
and for a measurable flow {cpt}, h(<p,)= Jtlh(<p,) 

for every real number t. (c) If an automor- 

phism <p is periodic, then h(q) = 0. (d) If <pr is a 
factor transformation of <P*, then h(<p,) d h(qJ. 
(e) h(<p, x <p2)= h(<p,)+ h(q,). (There is a more 
complicated formula (due to Rokhlin) for the 
entropy of a skew product automorphism.) 
(f) If cp is a recurrent automorphism and <pa 

is the automorphism induced by <p on a sub- 
set A with m(A)>O, then h(cp,)= h(<p)/m(A) 
(Abramov’s formula). (g) If cp is a Bernoulli 
shift with probability distribution {p,}, then 
h(p)= -Cnpnlogp,. (h) If cp is a Markov shift 

based on the Markov transition probability Pij 
(delïned on a countable or Imite state space) 
and an invariant measure r-ri, then 

h(p)= -CCrriPijlogPij. 
i j  

(i) If <p is ergodic and has a pure point spec- 
trum, or more generally, has a quasidiscrete 

spectrum, then h(p) = 0. (j) For an ergodic 
group automorphism <p on an n-dimensional 
torus, h(cp) = C log 111, where the sum is taken 
over a11 eigenvalues 2 of modulus > 1 of the 
representing matrix. (k) If an automorphism cp 

has positive entropy, then in &(X) there exists 
a subspace invariant under the induced uni- 
tary operator T such that the spectrum of T 
restricted to this subspace is countable Le- 
besgue (Rokhlin’s theorem). It follows from 
(k) that automorphisms with tsingular spectra 

or spectra of Imite multiplicity must have zero 
entropy. In proving assertion (g), Kolmogorov 

established for the first time the fact that there 
are uncountably many spatially nonisomor- 

phic Bernoulli shifts. 
(iv) An automorphism q is said to have 

completely positive entropy if h(cp, 5) > 0 for 

every partition 5 #v. It was shown by Rokhlin 
and Sinaï that an automorphism <p has com- 
pletely positive entropy if and only if cp is a K- 
automorphism. M. Pinsker proved that for 
every automorphism cp there exists a partition, 
called the Pinsker partition, that is invariant 
under cp and such that the factor transforma- 
tion of <p with respect to this partition has 
zero entropy and is the largest among the 
factor transformations of q with zero entropy. 

(v) Rokhlin showed that h(q) = 0 for an 
endomorphism <p if and only if a11 of its factor 

transformations are automorphisms. An endo- 
morphism <p is called exact if Aso <p -“E = v a.e. 
Rokhlin introduced a way to associate with 
each endomorphism a certain automorphism, 
called the natural extension, which reflects the 
properties of the endomorphism. For example, 
an endomorphism and its natural extension 

are simultaneously ergodic or nonergodic, are 
mixing of the same order, and have equal 

entropy. The natural extension of an exact 
endomorphism is a K-automorphism. 

(vi) Automorphisms cpi and <p2 are said to be 

weakly isomorphic if each of them is a factor 
transformation of the other. Sinaï proved 
(1964) that for each ergodic automorphism 
with positive entropy, there exists a factor 
automorphism having the same entropy and 
isomorphic to a Bernoulli shift, and hence it 
follows in particular that Bernoulli shifts with 

the same entropy are weakly isomorphic. 
Ornstein (Adu. in Math., 4 (1970)) went further 

and succeeded in proving the following re- 
markable result: Two Bernoulli shifts with 
equal entropy are spatially isomorphic. Par- 
tial results in this direction were obtained 
earlier by L. Meshalkin, J. Blum, and D. Han- 

son. In the proof of Ornstein’s theorem, essen- 
tial use was made of the following theorem of 
C. Shannon and B. McMillan, which plays a 
fundamental role in information theory (- 

213 Information Theory): Suppose that <p is 
an ergodic endomorphism on (X, B, m) and 5 
is a partition of X. For a point XEX, let A,(x) 
denote the element in the partition V[:A <pmkc 
that contains x. Then for almost a11 x, 

lim -ilogm(A.(x)) 
“-ta, ( > 

exists and equals h(cp, 5). 
(vii) Techniques and ideas developed by 

Ornstein in his proof of the isomorphism 
theorem have been relïned and extended fur- 
ther by himself, B. Weiss, N. Friedman, M. 

Smorodinsky, and others, and numerous re- 
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sults were subsequently obtained on the iso- 
morphism problem. We describe below some 

of the main results and basic concepts; for 
more detailed accounts - [21-241. 

A sequence {t”} of partitions is said to be 
independent if for every choice of sets A,, . . , A, 
with AL~<,,,, m(&, Ak)=n;=l m(A,) when- 
ever n,, n2,. , n, are a11 distinct. For a fixed 
E > 0, two partitions 5 and [ are said to be E- 
independent if 

A pair (<p, [), where <p is an automorphism 
of (X, g, m) and 5 is a lïnite (or countable) 
partition of X, is called a process (on X). 

@J,,Z -m ~“5) is a o-subalgebra of g invariant 
under cp, and cp restricted to this c-subalgebra 

is a factor automorphism of <p and is isomor- 
phic to a shift transformation on an infinite 
product space, where each coordinate space 

has the same number of points as the number 
of atoms in 5. A process (9, [) is called a Ber- 
noulli process (or an independent process) if the 

sequence of partitions { (p”s 1 n E Z} is indepen- 
dent, and a weak Bernoulli (W.B.) process if 
for every E > 0 there exists a k > 0 such that 
the partitions VF:: (~‘5 and VE-n cpi< are E- 
independent for a11 n à 0. Let J be a tïnite 
set and x, b be two functions from the set 
{ 1,2, , N} to J. By d,(cc, B) we denote (l/N) 
#{n 1 cc(n)#P(n)}, where # denotes the car- 
dinality. d, detïnes a metric on the space 
J{1,2,...,Nl called the Hamming distance. Now, 
foraprocess(cp,[)onX with <={Ajlj~J}, 

we define for x, yeX, dN(x, y) to be equal to 
dJ<t(x), t:(y)), where for X~X, t:(x) is the 

point (j(x),j(q(x)), . . ..j(<pN~1(x)))E5(1.2,...,N} 
and j(x) is the index jE.l for which x~,4~. A 
process (cp, 5) is called very weak Bernoulli 
(V.W.B.) if for any E > 0 there exists an N, 
such that whenever N > N, there is a set G 
with m(C)> 1 -E belonging to 6? (Vj=-, ~“5) 
satisfying the following condition: for any 
AE~ (Vf=mU,<pn<) with AcG and m(A)>O, 
there exists a probability measure v on X x X 

satisfying (i) V(E x X) = m(E) and V(X x F) = 
m,(F) for a11 E,FEIA and (ii) j”xXxd$(x,y)dv< 

E. It is not diflïcult to show that W.B. pro- 

cesses are V.W.B. For processes (<p, 5) on 
(X, #, m) and (cp, 4) on (X, &?, ti), where both 5 
and 4 are indexed by the same fmite set J, we 

define dN((<p, 8, (<p, 5)) to be inf& x xdiv(t~b), 
ct(~))dp(x, x)}, where inf is taken over a11 
probability measures p on X x X satisfying 
P(E x x)=m(E) for a11 EE~ and p(X x É)= 
m(E) for a11 ËE~. d, decreases with N, and 

we define 46 i-),6 T)) to be limN+rn d,((<p, 0, 
(cp, 5)). Finally, a process (cp, [) is said to be 
finitely determined (F.D.) if for any E > 0 there 

exists a 6 > 0 and N such that if (<p, 4) is any 
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process satisfying (i) 5 and 4 are indexed by 
the same set J, (ii) h(cp, [) -h(<p, 5) < 6, and 

(iii) d-,(@A 4, (<p, 4)) -C 4 then dl@, t),(<p, 4)) a. 
Let us cal1 a partition < an F.D. generator for 
an automorphism <p if 5 is a two-sided gen- 
erator for cp and the process (cp, 5) is lïnitely 
determined. A general isomorphism theorem 
proved by Ornstein states: If automorphisms <p 
and (p have the same entropy and both have 
F.D. generators, then <p and (p are isomorphic. 
Ornstein and Weiss proved further that the 

process (cp, 5) is F.D. if and only if it is V.W.B. 
From these basic results a number of results 
cari be deduced. (a) Nontrivial factors of Ber- 

noulli shifts are Bernoulli. (b) Strongly mixing 
Markov shifts have two-sided weak Bernoulli 
generators and hence are isomorphic to Ber- 
noulli shifts. (c) Every Bernoulli shift cari be 
embedded in a flow, which implies among 
other things that Bernoulli shifts have roots of 
a11 orders. (d) It was shown by Y. Katznelson 
that every ergodic group automorphism of an 
n-dimensional torus has a two-sided generator 

which cari be shown to be V.W.B., and hence 
is also isomorphic to a Bernoulli shift. R. Adler 
and B. Weiss earlier proved by entirely differ- 
ent methods that on a 2-dimensional torus, 
two ergodic group automorphisms having the 

same entropy are spatially isomorphic. They 
have done this by constructing a two-sided 
generator 5 for such automorphisms which is 
also a Markov partition (- Section G). 

(viii) Among further positive results there 

are the following: (a) Except for a trivial 
change in the time scale, any two Bernoulli 
flows are isomorphic (Ornstein). (b) Every 

ergodic group automorphism of a compact 
group is isomorphic to a Bernoulli shift 
(Thomas and Miles; Lind). (c) A number of 
automorphisms and flows arising from classi- 
cal dynamical systems are shown to be Ber- 
noulli (- Section G). (d) Examples of exact 
endomorphisms arise in connection with prob- 
lems in number theory; for example, tcon- 
tinued fraction expansion and fi-expansion. 
The natural extensions of the exact endomor- 
phisms associated with continued fraction 

expansion and /J-expansion are now known 
to be spatially isomorphic to Bernoulli shifts. 

(ix) Since many of the automorphisms that 

have been shown to be K-automorphisms are 
now known to be isomorphic to Bernoulli 
shifts, it is natural to expect that every K- 
automorphism is in fact Bernoulli. However, 
Ornstein (1973) constructed an example of a 
K-automorphism that is not a Bernoulli shift. 
A lot of work has since been done to investi- 
gate how bad K-automorphisms cari be. It 

turns out that K-automorphisms share ahnost 
none of the fïner properties of Bernoulli shifts. 
For example: (a) There are uncountably many 
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nonisomorphic K-automorphisms of the same 

entropy (Ornstein and P. Shields). (b) There is 
a K-flow that is not Bernoulli, and there are 
uncountably many nonisomorphic K-slows 
having the same entropy at time one (Smoro- 
dinsky). (c) There exists a K-automorphism 
not isomorphic to its inverse (Ornstein and 
Shields). (d) There exists an automorphism 
that cannot be written as a direct product of a 
K-automorphism and an automorphism with 
zero entropy. This example shows that a con- 

jecture made earlier by Pinsker was false (Orn- 
Stein). (e) There are weakly isomorphic K- 
automorphisms that are not isomorphic (Polit 

and Rudolph). 

F. Weak Equivalence and Monotone 

Equivalence 

(1) Weak Equivalence. In order to construct 
examples of tfactors in the theory of von Neu- 
mann algebras (- 308 Operator Algebras), 

F. Murray and von Neumann considered 
various ergodic groups of bimeasurable non- 
singular transformations on a finite measure 

space. In this context a group 9 = {g} of trans- 
formations is called ergodic if m(( g ml (B)U B) - 

(g-‘(B)n B))=O for every gag implies either 
m(B) = 0 or m(X -B) = 0. A measure p is said 
to be invariant under the group 3 = {g} if p is 
invariant under every transformation g in 8. 
Murray and von Neumann’s construction (the 
so-called group measure space construction) 
gives a type II, tfactor if the group admits a 

finite equivalent invariant measure, a type II, 
factor if it admits an infinite (but cr-finite) equiv- 
alent invariant measure, and a type III factor if 

it has no cr-tïnite equivalent invariant measure. 
In this connection we note that Hajian and Y. 
Itô extended the theorem of Hajian and Kaku- 
tani and proved that an arbitrary group 9 = 
{g} of nonsingular bimeasurable transforma- 

tions admits a Imite invariant measure if and 
only if no set of positive measure is weakly 

wandering under the group 9 (a set W is said 
to be weakly wandering under a group 9 if 
there exists an intïnite subset {g,,lnEZ+} of ?? 
such that gn( IV) n gk( IV) = 0 for n #k). Analo- 

gously to the terminologies used in the theory 
of von Neumann algebras, we detïne ergodic 
countable group 3 (or an ergodic bimeasurable 
nonsingular transformation <p) to be of type 
II,, II,, or III if %# (or <p) has a tïnite equivalent 
invariant measure, a o-tïnite intïnite equivalent 
invariant measure, or no o-fmite equivalent 
invariant measure, respectively. 

For a bimeasurable nonsingular transfor- 
mation <p, define the full group [<p] to be the 

group of a11 bimeasurable nonsingular trans- 

formations IJ such that, for some n = n(x), +(x) 
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= p”(x) for almost all x. Two transformations 
‘pi and <p2 are said to be weakly equivalent if 
there exists a bimeasurable nonsingular trans- 

formation 0 such that Q[q,]Q-’ = [<PJ. H. Dye 
proved that any pair of type II, transforma- 
tions are weakly equivalent. It easily follows 
from this that the same is true for type II, 
transformations. Krieger showed, on the other 
hand, that among type III transformations 
there are uncountably many weakly non- 
equivalent ones. In fact, Krieger [28] intro- 

duced an invariant for weak equivalence, 
called the ratio set, by means of which he 

classifïed type III transformations into mutu- 
ally weakly nonequivalent subclasses III, for 
0 <Â < 1. Krieger showed further that (a) for 
0 < 1. < 1, every pair of transformations in the 
class III, is weakly equivalent; (b) in the class 
III, there are uncountably many mutually 
weakly nonequivalent transformations; and 
(c) two ergodic transformations are weakly 

equivalent if and only if the corresponding 
factors constructed via the group measure 
space construction are t*-isomorphic. An 
ergodic flow of nonsingular transformations 
(not necessarily measure-preserving) called the 

associated flow was constructed independently 
by Krieger [29] and by T. Hamachi, Y. Oka, 
and M. Osikawa [30], and was shown to give 
another effective invariant for weak equiva- 
lente. Krieger showed that the mapping which 
assigns to each ergodic transformation its 
associated flow gives a tbijective mapping 

between the set of all weak equivalence classes 

of ergodic type III, transformations and the 
set of all isomorphism classes of aperiodic 

conservative ergodic flows. In this connection 
the theorem of U. Krengel and 1. Kubo on the 
representation of ergodic flows, extending the 

theorem of Ambrose and Kakutani mentioned 
in Section D, plays a signitïcant role. 

A bimeasurable nonsingular transformation 
0 is called a normalizer of another transforma- 

tion <p if it satistïes O[<p] = [Q]Q. The set of a11 
normalizers N(Q) of a transformation <p forms 

a group called the normalizer group which 
contains the full group [v] as a subgroup. One 
cari introduce a suitable topology to ~V(cp) 
to make it a complete separable metrizable 

group. Hamachi [3l] has shown that, for type 
III transformations cp, the quotient group 
-V(q)/[<p]-, where [VI- denotes the closure of 
[q], is algebraically and topologically isomor- 
phic to the tcommutant of the associated flow. 

Results obtained by Krieger and others 
mentioned above were motivated in part by 
corresponding developments in von Neumann 
algebra theory due mainly to A. Connes (- 

308 Operator Algebras). From the recent deep 

result of Connes on the uniqueness of tapprox- 
imately Imite-dimensional factors of type II, 
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it follows that every approximately tïnite- 
dimensional factor with the exception of type 
III, is *-isomorphic to a factor constructed 
from an ergodic transformation via the group 
measure space construction. 

(2) Monotone Equivalence. The theory of weak 
equivalence discussed above deals with the 
structure of orbits of a transformation or of 

groups of transformations. In fact, transfor- 
mations <p and ti are weakly equivalent if and 
only if there exists a bimeasurable nonsingular 
transformation 0 mapping the cp-orbit of 
almost all x onto the ICI-orbit of O(x). A some- 
what more stringent notion of equivalence 
dealing with orbit structure is called mono- 
tone equivalence or Kakutani equivalence. We 
say that measurable flows {Vu} and {@} of 

measure-preserving transformations on fmite 
measure spaces (X, YB, m) and (X, IA, m), respec- 
tively, are monotonely equivalent if there 

exists a bimeasurable measure-preserving 
transformation 0 on X to X such that for 
almost a11 XEX and a11 tER, O~I~(X)=<P~~~,~~O(X), 

where z(t, x) is a monotone increasing function 
of t. Two S-flows (- Section D) built over the 
same base transformation with different ceiling 

functions are monotonely equivalent, and it 
cari be shown that monotonely equivalent 
ergodic flows are isomorphic to S-flows built 
over the same base transformation. This in- 
duces an equivalence relation on transforma- 
tions, also called monotone equivalence or 

Kakutani equivalence: Two transformations <p 
and <p are monotonely equivalent if they cari 
serve as base transformations of the same (or 
equivalent) flow. This notion of equivalence 
was introduced by Kakutani in [32], where he 
showed that qn and <p are monotonely equiva- 
lent if and only if there are sets E c X and 
E c X such that the induced transforma- 
tions (- Section D) <pE and <PE are isomorphic. 
Abramov’s formula mentioned in Section E 

implies that there are at least three classes of 
transformations (and flows) that are mutually 
nonequivalent: transformations (flows) of zero, 

finite, and infinite entropy. Nothing much was 
done in this equivalence theory for a num- 
ber of years until in 1975 J. Feldman and E. 
Satayev independently showed that there are 
monotonely nonequivalent transformations 

within each class of zero, positive, and intïnite 
entropy. Since then extensive work has been 

done by Feldman, Satayev, A. Katok, Orn- 
Stein, Weiss, D. Rudolph, M. Ratner, and 
others, and numerous results have been ob- 
tained. For detailed accounts of this devel- 

opment - [22,24,33,34]. The main idea 
employed by Feldman and Satayev was to 

introduce a new metric called an f-metric 
and then to define a notion corresponding to 
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V.W.B. of the isomorphism theory described 

in Section E by using an f- instead of a d- 
metric. They then showed that this property, 

called loosely Bernoulli (L.B.) by Feldman and 
monotonely very weak Bernoulli (M.V.W.B.) by 
Satayev, stays invariant under monotone 
equivalence, and that there exist transforma- 
tions with and without this property. An f- 
metric is deiïned by starting off with an fN- 

metric on the space J{1*2,...,Nl instead of the 
Hamming distance d, and proceeding in 
exactly same way as for the definition of d, 

namely, by extending fN to fj and f, and 
finally to 1: For CI and b in J(‘,Z,...,N), fN(c(,/j') 
is defined by setting 1 - fN(cc, fi) equal to l/N 

times the maximal integer n for which there 
are positive integers j, <j, < . < j,, k, <k, < 

<k, with a( ji) = p(kJ, i = 1, . , n. Ornstein 
and Weiss discovered that by substituting f 
for done cari develop a theory of monotone 

equivalence that parallels the isomorphism 
theory described in Section E. One cari detïne 
a process (cp, 5) to be fïnitely fixed (F.F.) by 
substituting ffor din the detïnition of F.D. 
process, and, as was mentioned earlier, to be 

L.B. by doing the same in the detïnition of the 
V.W.B. process. Ornstein and Weiss proved: 

(a) If <p and (p have zero entropy, fmite posi- 
tive, or infïnite entropy and if both have F.F. 
generators, then they are monotonely equiv- 
alent. (b) Let cp have an F.F. generator. If 
h(<p)=O, then cp is monotonely equivalent 
to an irrational rotation of the circle. If 0 < 

h(<p) < co, then <p is monotonely equivalent 
to a Bernoulli shift of lïnite entropy. If h(q)= 

‘x), then cp is monotonely equivalent to a 
Bernoulli shift of infinite entropy. (c) If <p has 

an F.F. generator, then (q,<) is F.F. for a11 
nontrivial partitions 5. (d) (cp, 5) is F.F. if and 

only if it is L.B. It is known further that within 
each entropy class there exist uncountably 
many monotonely nonequivalent transforma- 
tions. A measurable flow { cp,} is called L.B. if 
it cari be represented as an S-flow built over 
an L.B. transformation. The L.B. flows of 

zero entropy are those monotonely equivalent 
to a +Kronecker flow on a 2-dimensional 

torus, and L.B. flows of fïnite positive (infinite) 
entropy are those monotonely equivalent to 
the Bernoulli flow of fïnite (infinite) entropy. 
The direct product of an L.B. flow and a Ber- 
noulli flow is L.B., while it was shown by M. 
Ratner that the horocycle flow (- Section G) 
is L.B. but its direct product with itself is not. 

G. Classical Dynamical Systems 

By a classical dynamical system we mean a 

tdiffeomorphism or a flow generated by a 
smooth +vector held on some tdifferentiable 
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manifold M”. Such a system is nonsingular 
with respect to a measure dehned by any 
+Riemannian metric on M”. For a fixed Rie- 
mannian metric, we cal1 measures smooth 
if they have a smooth density with respect 
to the measure given by the metric. 

(1) Among classical dynamical systems, geo- 

desic flows have been investigated most exten- 
sively. Let 2, (M) be the unitary ttangent bun- 
dle over the manifold M”. A point (x, e) E 
9, (M) defines a unique tgeodesic through x 
in the direction of e. The geodesic flow on 

$i (M) is the flow defïned by cp,(x, e) = (xt, e,), 
where x, is the point in M” reached from x 
after time t under a motion with unit speed 
along the geodesic determined by (x, e), and e, 

is the unit vector at xt tangent to the geodesic. 
The classical tliouville theorem in this con- 
text implies that the measure on dt,(M) that is 
the product of the measure on M” induced by 
the metric and the Lebesgue measure on the 

(n- l)-dimensional sphere gives a smooth in- 
variant measure for the geodesic flow. A wide 
class of systems arising from mechanics cari 
be described as geodesic flows. 

Hopf and G. Hedlund proved that if the 
manifold M” is compact and has constant 
negative curvature, then the geodesic flow is 
strongly mixing. Later, by using the theory of 
group trepresentations, 1. Gel’fand and S. 
Fomin proved that the spectrum of a geodesic 

flow on a compact manifold of constant nega- 
tive curvature is Lebesgue, and is even count- 

able Lebesgue in the case where the mani- 
fold is of dimension 2. F. Mautner and later L. 

Auslander, L. Green, and F. Hahn extended 
this algebraic method to flows obtained under 
the action of some one-parameter subgroup of 
a +Lie group acting on its thomogeneous space 
and obtained extensive results for the case of 
tnilpotent and some tsolvable Lie groups [35]. 

(2) The flow on an n-dimensional torus de- 

fmed by 

=(x1 +w,t,x,+w,t, . . ..x.+w,t) 

is called a translational flow or a Kronecker 
flow. The numbers wi, w2, . . . , w, are called 
frequencies. Every orbit of {qr} is dense in the 

torus if and only if the frequencies are linearly 
independent over Z. The motion under a 

translational flow with independent frequen- 
cies is called a quasiperiodic motion. A trans- 
lation flow for a quasiperiodic motion has 
discrete spectrum. 

(3) Sinai obtained a useful criterion for a 

classical dynamical system to be a K-system. 
Let M” be compact, and suppose that {cp,} is a 

flow on M” defmed by a smooth vector field 
and preserving some smooth measure p. A 
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one-parameter group {&} of transformations 
of the space M”, given by a vector fïeld, is 
called the flow transversal to the flow { cp,} if 
(i) the decomposition of the space M” into the 

trajectories of the flow {$,} is invariant under 
{ cp,}; (ii) the limit lim,,, lim,& lVJt, x) - t)/ts = 
C((X) exists for the function B$(t, x), which is 

defmed to be the time length of the segment 
{C~,&(X) 10 <u d t} of the trajectory of the flow 
{$r}. Sinai’s fundamental theorem states that if 

a flow {cp,} is ergodic and has a transversal 
ergodic flow { &} for which j N(X) dp < 0, then 
{ cp,} is a K-flow. If a(x) < 0, then we cari even 
drop the assumption that {<p,} is ergodic. If 

1 a(x) dp > 0, the theorem holds for the flow 

1%). 
A geodesic flow on a 2-dimensional mani- 

fold of constant negative curvature always has 
a transversal flow, called a horocycle flow. The 

ergodicity of a horocycle flow was proved by 
Hedlund. It follows from Sinai’s fundamental 
theorem, therefore, that a geodesic flow on a 

surface of constant negative curvature is a 
K-flow. Sinaï proved even more: A geodesic 
flow on any surface of negative curvature is 
a K-flow. There is an extension of the notion 

of transversal flow to higher dimensions, 
called transversal tïeld. Using this notion Sinaï 
proved that a geodesic flow on a manifold 
(of any dimension) of constant negative cur- 
vature is a K-flow. Finally, Ornstein and 

Weiss established that geodesic flows on com- 
pact manifolds of negative curvature are 
Bernoulli. 

(4) D. Anosov considered a class of flows 
and diffeomorphisms satisfying a condition 
that characterizes unstable motions such as 
geodesic flows on a manifold of negative cur- 
vature. They are now called Anosov flows (or 
Y-flows) and Anosov diffeomorphisms (or Y- 
diffeomorphisms) (- 126 Dynamical Systems). 
Anosov proved that if an Anosov slow has a 
smooth invariant measure, then it is ergodic 

and either it has a continuous nonconstant 
eigenfunction or it is a K-flow. Anosov diffeo- 
morphisms with smooth invariant measures 

are K-automorphisms. Sinai constructed for 
ttransitive Anosov diffeomorphisms (and for 
Anosov flows) a special partition of the under- 
lying manifold M called a Markov partition 
having desirable properties. The importance of 
such partitions lies in the fact that they enable 
one to represent such diffeomorphisms as 
Markov shifts. Starting with a measure invar- 
iant for such a Markov shift having the maxi- 
mal entropy (- Section H), Sinaï constructed 

a Gibbs measure (- Section C), which turned 
out to be unique in this case and gave rise to 

a natural invariant measure p for the corre- 
sponding diffeomorphism. He proved further 
that the diffeomorphism <p considered as an 
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automorphism of the measure space (M, &?, PL) 
is a K-automorphism. It was shown subse- 
quently by R. Azencott that <p is in fact Ber- 
noulli with respect to p. Sinai investigated 
further the uniqueness of the invariant mea- 

sure attaining the maximal entropy for transi- 
tive Anosov diffeomorphisms, and he was able 

to show among other things that the set of 
transitive C”-Anosov diffeomorphisms that 
do not have an invariant measure absolutely 
continuous with respect to the measure in- 
duced by the Riemannian metric on M con- 

tains an open dense subset. The methods em- 
ployed by Sinaï in these investigations were 
extended further by D. Ruelle, Bowen, and 

others. Bowen, in particular, was able to con- 
struct Markov partitions for a wider class of 
diffeomorphisms, namely, those satisfying the 
so-called axiom A introduced earlier by S. 
Smale, and characterized the Gibbs measures 

for diffeomorphisms in this class by means of 
the variational principle (- Section H). For a 

more detailed account of the results of Sinai 
and Bowen - [13,14]. 

(5) An important example of a system that is 
neither an Anosov nor an “axiom A” system 

because of nonsmoothness has been studied by 
Sinai: the simplest mechanical mode1 due to 

Boltzmann and Gibbs of an ideal gas, which is 
described as a system generated by tiny rigid 
spherical pellets moving inside a rectangular 
box and colliding elastically. Sinaï succeeded 
in proving that this is a K-system, thereby 
giving an affirmative answer to the classical 
question of the ergodicity of the basic mode1 
of statistical mechanics [38]. It was shown 
subsequently by M. Aizenman, S. Goldstein, 

and J. Lebowitz that this system is Bernoulli. 
Sinai also investigated another nonsmooth 
system of classical importance: the system 
describing the motion of a billiard bal1 on a 

square table with a tïnite number of convex 
obstacles. He showed that such a system, is a 
K-system. Ornstein and G. Gallavotti then 
showed that Sinaïs methods in fact show that 
the system is Bernoulh. Sinaï’s methods were 
extended further by L. Bunimovich and 1. 
Kubo to study properties of billiard systems in 
more complicated domains. For more detailed 

account of these matters - [24]. The results 
obtained by Sinaï and Bowen for Anosov 
and “axiom A” systems were extended to 

even wider class of systems by A. Stepin, R. 
Sacksteder, M. Brin, and Ya. Pesin (- [24]). 

H. Miscellany 

(1) An arbitrary aperiodic automorphism cari 
be approximated by periodic automorphisms. 

More precisely, if <p is an aperiodic automor- 
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phism, then for any positive integer n and 

6 > 0, there exists a periodic automorphism tj 
of period n such that m( {x 1 C~(X) # $(x)}) < 
(I/n) + 6 (theorem of Halmos and Rokhlin). 
The question as to how quickly this approxi- 
mation cari be carried out has been investi- 

gated in detail by Katok, Stepin, and others. 
The rate of this approximation was shown to 
have a close relationship with the entropy and 
spectral properties of the automorphism cp. By 
utilizing this relationship, various examples of 
automorphisms with specified spectral prop- 
erties have been constructed [ 163. 

(2) When an arbitrary automorphism <p is 

given on a Lebesgue measure space (X, a, m), 
there exists a unique decomposition 5 = {A,} 
of X such that (i) each A, is invariant under 
<p and (ii) except for a negligible set (in a 

specified sense) of A,, each A, is turned (in a 
natural manner) into a Lebesgue measure 
space, and the restriction of <p to A, is an 
ergodic automorphism. This decomposition is 
called the ergodic decomposition of X with 
respect to cp. There is a corresponding decom- 
position with respect to a flow. A formula also 

exists that enables us to compute the entropy 
h(<p) in terms of the entropies of ergodic com- 
ponents of q. 

(3) Let X be a compact metric space and 
<p:X+X a thomeomorphism. N. Krylov and 
N. Bogolyubov showed that there always 
exists on X a Bore1 probabihty measure p that 
is invariant under cp. Let 9 be the collection of 

a11 Bore1 probability measures on X, and let 
PV be the subset of B consisting of those invar- 

iant under <p. Then p and .9V are both convex 
sets compact with respect to the tweak * topol- 

ogy. If gQ is the set of a11 extreme points in 
PV, then by the +Kreïn-Milman theorem &q is 
not empty. A measure p in 9q belongs to gV 
if and only if cp is ergodic with respect to p. 

When the set 8, consists of a single element, <p 
is called uniquely ergodic; <p is called minimal if 
for every point X~X, the orbit of x under cp = 
orb,(x)= {<p”(x) (ni Z} is dense in X. v, is 
called strictly ergodic if it is both minimal and 
uniquely ergodic. A theorem of J. Oxtoby 
states that q is strictly ergodic if and only if for 
every continuous real-valued function f on X, 

the sequence of averages (C~~~f(~~(x)))/n 
converges uniformly to a constant M(f). 

There are homeomorphisms that are minimal 
or uniquely ergodic but not strictly ergodic. 

(4) R. Jewett proved that any weakly mix- 
ing measure-preserving transformation on a 
Lebesgue space is spatially isomorphic to a 
strictly ergodic transformation. Krieger ex- 

tended the result by showing that if the en- 
tropy of an ergodic transformation cp is fïnite, 
then <p is spatially isomorphic to a strictly 
ergodic transformation. Similar results were 
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obtained for flows by K. Jacobs, M. Denker, 
and E. Eberlein (- [39]). 

(5) A topological analog of the notion of 

entropy, called topological entropy, was in- 
troduced by Adler, A. Konheim, and J. 

McAndrew. This is delïned as follows: For 
every open covering .Ce of a compact topolog- 
ical space X, let N(d) be the number of sets 
in the minimal subcovering of .d. For open 
coverings .d and g, let d va be the open 
covering {A n B 1 A E&, BEOA}. For any open 
covering .d and a continuous mapping <p 
on X, the limit lim,,,(log N(.d v q-l& v 

. . . v cp-(“-‘),d))/n = h,,,(<p, d) exists. Topo- 

logical entropy h,,,(cp) of the continuous 
transformation <p is now defined by h,,,(q) = 

sup { h,,,(<p, -d) 1 d an open covering of X}. 
L. Goodwyn showed that h,,,(cp) 3 h,(q) 

for any <p-invariant probability measure p, 
where h,(p) is the measure-theoretic entropy 
of cp regarded as a p-preserving transforma- 
tion. T. Goodman went further and succeeded 
in proving that h,,,(cp) = sup{h,(<p) 1 p a Q- 
invariant probability measure}. In connec- 
tion with these results there is interest in the 
question of the existence and uniqueness of 
an invariant measure for cp with maximal 
entropy, i.e., a vo-invariant measure p for which 

h,(p) = h,,,(<p). Such a measure does not 
always exist, and even if it does it may not 
be unique. The notions of topological en- 
tropy and of measures with maximal entropy 
are generalized by Ruelle in the following 
way. For an open covering &, a continu- 

ous mapping <p, and a real-valued con- 
tinuous function g on X, let Z,(&‘, <p, y) be 

equal to inf{C,,,sup,,,exp~%50g(<pk(x))}, 
where the inf is taken over ah subcover- 
ingsIofthecovering&‘v<p-‘dv...v 
q -@-‘)&‘. Then a lïnite limit P(&‘, <p, g) = 

lim,,, I/n log Z,,(.&, <p, g) exists, and the 

quantity P(<p, g) = SU~{ P(d, <p, y) 1 cal an open 
covering of X} is called topological pressure. 

When g =O, P(<p, g) reduces to h,,,(<p). Ruelle 
proved for texpansive mappings <p that P(C~, g) 

=sup{h,(cp)+~gd~~ p is a <p-invariant proba- 
bility measure}. This assertion is called the 
variational principle for the topological pres- 

sure. The variation principle was proved for 
general continuous mappings q by P. Walters. 
If a <p-invariant measure p satislïes P(~I, g) 

= h,,(q) + sg dp, then p is called an equilibrium 
state for y with respect to cp. It is known that 
for expansive mappings <p every continuous 

function g on X has an equilibrium state. 
(6) Application of ergodic theory to problems 

in analytic number theory has been made by 
several authors. Ergodic or mixing properties 
of particular measure-preserving transforma- 

tions that arise in connection with various 
problems in number theory have been ex- 
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ploited to give answers to these problems. 

New and more striking applications of ideas of 
ergodic theory to different types of questions 
in number theory have been started by Yu. 
Linnik, Fürstenberg, W. Veech, T. Kamae, and 
others (- [40,41]). 

7. Most of the results discussed in this arti- 
cle dealt with the action of a cyclic group of 
transformations or of one-parameter flow. 
There are signilïcant extensions of many of 
these results to different types of group ac- 
tions. For recent developments - [22]. 
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137 (Vl.18) 
Erlangen Program 

When F. Klein succeeded K. G. C. von Staudt 
as professor at the Philosophical Faculty of 

Erlangen University in 1872, he gave an in- 
auguration lecture entitled “Comparative Con- 

sideration of Recent Geometric Researches,” 
which later appeared as an article [ 11. In it he 
developed a penetrating idea, now called 
the Erlangen program, in which he utilized 
group-theoretic concepts to unify various 
kinds of geometries that until that time had 
been considered separately. 

The concept of transformation is not new; it 
was, however, not until the 18th Century that 
the concept of transformation groups was 
recognized as useful. The theory of tinvariants 

of linear groups and the +Galois theory of 
algebraic equations attracted attention in the 

19th Century. In the same Century, tprojective 
geometry made remarkable progress, for 

example, when A. Cayley and E. Laguerre 
discovered that metrical properties of Eu- 

clidean and +non-Euclidean geometries cari be 
interpreted in the language of projective geom- 
etry. Cayley proclaimed, “Al1 geometry is 
projective geometry.” After learning geometry 
under J. Plücker, Klein made the acquaintance 

of S. Lie. Both men understood the impor- 
tance of the group concept in mathematics. Lie 
studied the theory of tcontinuous transforma- 

tion groups, and Klein studied discontinuous 
transformation groups from a geometric stand- 
point. Klein was thus led to the idea of the 
Erlangen program, which provided a bird’s- 

eye view of geometry. 
Klein’s idea cari be summarized as follows: 

A space S is a given set with some geometric 
structure. Let a transformation group G of S 

be given. A subset of S, called a figure, may 
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have various kinds of properties. The study of 
the properties that are left invariant under a11 

transformations belonging to G is called the 
geometry of the space S subordinate to the 
group G. Let this geometry be denoted by 
(S, G). Two figures of S are said to be congruent 
in (5, G) if one of them is mapped to the other 
by a transformation of G. The geometry (S, G) 

is actually the theory of invariants of S under 
G, with the term invariants to be understood in 

a wider sense; it means both invariant quan- 
tities and invariant properties or relations. 

Replacing G in (S, G) by a subgroup G’ of G, 

we obtain another geometry (S, G’). A series of 
subgroups of G gives rise to a series of geom- 
etries. For instance, let A be a figure of S. The 

elements of G leaving A invariant form a sub- 
group G(A) of G that operates on s’=S- A. 
We thus obtain a geometry (s’, G(A)) in which 
A is called an absolute figure. In this way, 
many geometries are obtained from projective 
geometry. Klein gave numerous examples. 

It is noteworthy that he mentioned even the 
groups of trational and thomeomorphic 
transformations. 

Klein’s idea not only synthesized the geom- 

etries known at that time, but also became a 
guiding principle for the development of new 
geometries. 

In 1854 G. F. B. Riemann published his 
epochmaking idea of Riemannian geometry. 
This geometry has a metric, but in general 
lacks congruence transformations (isometries). 
Thus Riemannian geometry is a geometry 
that is not included in the framework of the 
Erlangen program. The importance of Rie- 

mannian geometry was acknowledged when it 
was used by A. Einstein in 1916 as a founda- 
tion of his general theory of relativity. H. 

Weyl, 0. Veblen, and J. A. Schouten dis- 

covered geometries that are generalizations of 
afftne, projective, and tconformal geometries 
in the same way as Riemannian geometry is 
a generalization of Euclidean geometry. It 
became necessary to establish a theory that 
reconciled the ideas of Klein and Riemann; 

E. Cartan succeeded in this by introducing the 
notion of tconnection (- 80 Connections). 
However, the Erlangen program, which gave 

an insight into the essential character of clas- 
sical geometries, still maintains its role as one 
of the guiding principles of geometry. 
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Error Analysis 

A. General Remarks 

The data obtained by observations or mea- 

surements in astronomy, geodesy, and other 
sciences do not usually give exact values of the 
quantities in question. The error is the dif- 

ference between the approximation and the 
exact value. The theory of errors originated 

from systematic work with data accompanied 
by errors, and the statistical treatment of ex- 

perimental data was the main concern in the 
beginning stages (- 397 Statistical Data Anal- 
ysis). However, due to the recent development 
of high-speed computers it has become pos- 
sible to carry out computations on a tremen- 

dously large scale, and the detailed analysis of 
errors has become an absolute necessity in 
modern numerical computation. Hence the 

analysis of errors in relation to numerical 
computation has become the tenter of re- 
search in error theory. 

B. Errors 

One rarely makes a mistake in counting a 
small number of things; therefore the exact 
value of the Count cari be determined. On the 

other hand, the exact value in decimals is 

never obtainable for a continuous quantity, 
say length, no matter how fine measurements 
are made, and a large or small stochastic error 
is thus inevitable in measuring a continuous 
quantity. A discrete tïnite quantity is a digital 
quantity, and a continuous quantity is an 
analog quantity. The natures of these two 
quantities are quite different. The values of 
a digital quantity are distributed on some 

discrete set, while the values of an analog 

quantity are distributed with a continuous 
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probability. Thus there is the possibility of 

error even for treatment of digital quantities, 
although checking the results for these quan- 
tities is easy. It is preferable to regard digital 
quantities as being analog quantities if the 
possible values are densely distributed. 

On the other hand, when an appropriate 
tanalog computer is not available, analog 
quantities receive treatment similar to digital 
quantities. They are expressed as x times some 

unit, and x is expanded in the decimal or 
binary systems. An approximation to such 

an expansion is obtained by rounding off a 
numeral at some place, the position depending 
on the capacity for computation by available 
methods. There are two ways of rounding off 

numbers, the fïxed point method and the float- 
ing point method. The former specifïes the 

place of digits where the rounding off is made, 
and the latter essentially specitïes the number 
of significant digits. 

Classification of errors. (1) Errors of input 

data are the errors included in input data 
themselves. Such input-data errors include 
the errors that occur when we represent con- 

stants such as 1/3, ,/$ n by lïnite decimals. 
(2) Truncation errors occur in approximate 
expressions for the computation formulas 

under consideration. (3) Roundoff errors occur 
in taking some fïnite number of digits from the 
earlier digits in the numerical value at each 

step. If the computation of an intïnite number 
of digits were actually possible, no errors of 
this type would appear. Recently, it has been 
considered more preferable to cal1 this “com- 
putational error.” 

The difference between tïxed point and 
floating point rounding off is that the former 
is better suited for operations of addition and 
subtraction and the latter is better for multi- 
plication and division. In fïxed point rounding 

off, if a number is multiplied many times by 
numbers less than 1, a so-called underflow may 
occur, and many digits may disappear; a great 
deal of information cari thus be lest. In com- 
putation for scientific research that involves 

frequent multiplication and division, floating 
point rounding off is preferable. It should be 
noted that rounding off for addition and sub- 

traction may also cause a critical loss of in- 
formation. This phenomenon is called cancel- 

ing digits. For instance, in the subtraction 
7.6325071- 7.6318425 = 0.0006646, where the 
subtrahend and minuend share several early 

signifïcant digits, the difference loses those 
digits. Thus, relative errors may be magni- 
lied tremendously. By taking a large number 
of significant digits, such a situation may 
be avoided to some extent. So-called high- 

precision computation shows its effectiveness in 
such cases. Similarly, when a small number h is 
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added to a large number a, the result may be 
just a and the information of b could be lost 
completely. This kind of loss of information 
cari often cause serious trouble. 

C. Methods of Error Analysis 

In order to analyze the propagation of errors, 
let us assume that ah numbers are carried to 

inlïnitely many digits SO that no roundoff error 
occurs. Suppose that we are to evaluate the 
function y=f(x,, . . . . x,) when x1,x2, . . . . x, are 

assigned. Let ré be the truncation error of an 
approximate expression. If an input error hi for 
xi exists, then the corresponding error for y is 

Moreover, suppose that at the final step we 
round off to get a result with a Imite number 

of digits, by which an error E is introduced. 
Then the final error 6 for y is 

This procedure is performed for each step 

needed in the computation. If y = f(xl, ,x,) 
is a specitïed step, then the input error Si for 
that step involves all the errors arising before 
that step, i.e., hi is an accumulated error. For- 

ward analysis is a method to estimate the total 
accumulated error from the initial input data. 
It is usually quite diftïcult to obtain precise 
estimates by means of this method. In con- 
trast, J. H. Wilkinson proposed the following 

hackward analysis. Here, the computational 

value y is considered as the exact result for 
the modilïed initial data Xi, , X,,, say y = 

f(Z,, . . ..X.), and the estimates for Ixi-.Zil 
are given. For example, in the binary floating 
point arithmetic of u bits, we always have the 
relation: 

computational value of a + b 

=a(1 +6)-tb(l +a), 

with 161, lsl<2~“, even when cancellation or 

loss of information occurs. Wilkinson has 
made a deep investigation of error analysis for 
linear computation, algebraic equations, and 
eigenvalue problems by means of backward 
analysis [4,5]. 

D. Proliferation of Errors 

The phenomena usually called “accumulation 
of errors” should more appropriately be called 

the proliferation of errors, where the algorithm 
itself includes a particular mechanism to in- 

crease a small error indefinitely. An example is 
the recursion formula for tBessel functions 
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stated as 

Jr!+1 (x)=(2~Ix)J,(x)-Jn-l(x). 

It is customary to compute J,(x) by this for- 
mula, starting with the values of J,(x) and 
J,(x), with x given. By putting Jn-, (x) = y,, 
J,(x) = z,, the recursion formula cari be re- 
garded as a linear transformation of the 

point !‘,(y,,,~,) in a plane into another point 

Pn+l(~,+l 3 z,+J, where 

Y n+, =z,> z,+1 = -y,+(2n/x)z,. 

The teigenvalues Â i, lb2 of this tdifference equa- 
tion satisfy the following: As long as n < 1 xl, we 
have li,I=li,I=l, whileifn>Ixl, Ai isgreater 
than 1 and increases rapidly as n tends to 
infmity. Consequently, even the slightest dis- 
crepancy in the position of P, gives rise to a 
greatly magnifïed error in the result [3]. 

Many studies have been made of the propa- 
gation of errors and of instability phenomena 
in the numerical solution of ordinary differen- 

tial equations (- 303 Numerical Solution of 
Ordinary Differential Equations; [2]). 

References 

[ 11 J. von Neumann and H. H. Goldstine, 

Numerical inverting of matrices of higher 
order, Bull. Amer. Math. Soc., 53 (1947), 1021- 
1099. 
[2] P. Henrici, Discrete variable methods in 
ordinary differential equations, Wiley, 1962. 

[3] T. Uno, The problem of error propagation 
(in Japanese), Sûgaku, 15 (1963), 30-40. 
[4] J. H. Wilkinson, Rounding errors in alge- 
brait processes, Prentice-Hall, 1963. 
[S] J. H. Wilkinson, Algebraic eigenvalue 
problem, Clarendon Press, 1965. 
[6] L. B. Rail (ed.), Error in digital computa- 
tion 1, II, Wiley, 1965, 1966. 

139 (Vl.3) 
Euclidean Geometry 

A. History 

Attempts to construct axiomatically the geom- 
etry of ordinary 3-dimensional space were 

undertaken by the ancient Greeks; culminating 
in Euclid’s Elements (- 187 Greek Mathemat- 
ics). The fifth postulate of Euclid’s Elements 
requires that two straight lines in a plane that 

meet a third line, as shown in Fig. 1, in angles 
c(, fl whose sum is less than 180”, have a com- 

mon point. In the Elements, two straight lines 
in a plane without a common point are said 
to be parallel. It cari be proved from other 
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axioms in the Elements that if c( + b = 180”, the 
two lines 1 and I’ in Fig. 2 are parallel. Hence 

given a line 1 and a point P not lying on 1, 

Fig. 1 Fig. 2 

there exists a line l’ passing through P that is 
parallel to 1. The tïfth postulate ensures the 
uniqueness of the parallel 2’ passing through 
the given point P. For this reason, the fifth 
postulate is also called the axiom of parallels. 

Utilizing this axiom, we cari prove the well- 
known theorems on parallel lines, the sum of 
interior angles of triangles, etc. The axiom 
plays an important role in the proof of the 

Pythagorean theorem in the Elements. The 
axiom is also called Euclid’s axiom. 

However, Euclid states this axiom in a quite 
complicated form, and unlike his other axioms, 
it cannot be verilïed within a bounded region 
of the space. 

Many mathematicians tried in vain to de- 
duce it from other axioms. Finally the axiom 
was shown to be independent of other axioms 
in the Elements by the invention of non- 
Euclidean geometry in the 19th Century (- 

285 Non-Euclidean Geometry). 
The term Euclidean geometry is used in 

contrast to non-Euclidean geometry to refer to 
the geometry based on Euclid’s axiom of par- 
allels as well as on other axioms explicit or 
implicit in Euclid’s Elements. It was in the 19th 
Century that a complete system of Euclidean 
geometry was explicitly formulated (- 155 
Foundations of Geometry). From the stand- 
point of present-day mathematics, it would be 

natural to define first the group of motions by 
the axiom of free mobility due to H. Helm- 

holtz (- Section B) and then, following F. 
Klein, to detïne Euclidean geometry as the 
study of properties of spaces that are invariant 

under the groups of these motions (- 137 
Erlangen Program). 

B. Group of Motions 

Let P be an tordered fïeld and A” the n- 
dimensional +affine space over P. Let B’ be an 
r-dimensional affine subspace of A”, B’-’ an 

(Y- 1)-dimensional subspace of B’, B’-* an 
(r- 2)dimensional subspace of B’-‘, etc. In 
the sequence of subspaces B’, B’-i, . . . , BO, 

each Bk - Bk-’ consists of two +half-spaces (k = 
r,r-l,...,l).Let Hkbeoneofthesehalf- 
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spaces. Then the sequence of half-spaces H’, 
H’-‘, . , H’ is called an r-dimensional flag, 

denoted by 5j’ (n > r> l), and B’ and H’ are 
called the principal space and the principal 
half-space of !$, respectively. If f is a tproper 
aflïne transformation of A”, f(H’), f(H’-‘), 

. ..> f(H ‘) form an r-dimensional flag R’. We 
Write f(s) = R’. 

Let %” be the group of a11 proper affine 
transformations of A”. The subgroup 23’ of ‘u” 
with the following two properties is called the 
group of motions, and any element of 23” is 
called a motion (or congruent transformation). 
(1) Let r be an integer between 1 and n, and let 
5, Ji’ be any two r-dimensional flags. Then 

there exists an element f of 23” that carries S, 
to H’:f($‘) = si’. (2) Let A y be two elements of 
8” with f(s) = R’, g(s)= A*, and let p be any 
point on the principal space of 5j’. Then f(p) = 
g(p), that is, f; g have the same “effect” on 

the principal space. In particular, when r = n, 
then f =g. That CU” possesses a subgroup 8” 
with properties (1) and (2) is called the axiom 
of free mobility. 

When n = 1, it is easy to see that the ele- 
ments of %i are only those elements f of 2li 
that cari be expressed in the form f(x) = k 

x + a (a~ P). When n > 2, P must satisfy the 
following condition in order that a subgroup 
23” with properties (1) and (2) exists in CU”: If a, 
b E P, then P contains an element x such that 
x2 = a2 + b2. When this condition is satished, 

the ordered lïeld P is called a Pythagorean 
field. Every treal closed field (e.g., the field R of 
real numbers) is Pythagorean. If 23” exists, its 
uniqueness is assured by (1) and (2). Further- 
more, if P contains a square root of every 
positive element (this condition is satislïed, for 
example, by R), then conditions (1) and (2) are 

reducible to the case r = n only, i.e., conditions 
(1) and (2) for other values of r follow from (1) 
and (2) with r = n. Hereafter, we assume the 

existence of 23”. 
Suppose that we have A” 3 B’ 3 Bk (n > 

r 2 k > 0), and let !$ be a flag with the prin- 

cipal space B’:.ff=(H’, . , Hk, . , H’). Let 
si’ be another flag with the same principal 
space B’:H’=(K’, . . . . Kk, . . . . K’), where we 
suppose that Hj= Kj for k > j > 1, whereas for 
r > i > k + 1, we suppose that Hi and K’ are 
different half-spaces on B’ divided by B”. The 
flag H’ is denoted by $ji. An element f of %” 

with f(s) = sjk is called a symmetry (or reflec- 
tion) of B’ with respect to Bk. It leaves every 
point on Bk invariant, and its effect on B’ is 

determined only by Bk independently of the 
choice of half-spaces in 5j’ and R’ (subject to 
the conditions mentioned above). In partic- 
ular, the symmetry of A” with respect to a 
point A0 = p is called a central symmetry with 

respect to the tenter p; and the symmetry of A” 
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with respect to a hyperplane A”-’ = h is called 

a hyperplanar symmetry. They are uniquely 
determined by p and h, respectively, and are 
denoted by S, and S(h), respectively. If H(A”) is 
the set of a11 hyperplanes of A”, then 23” is 
generated by {S(h) 1 he H(A”)}. Furthermore, if 

p, 4 are two points of A”, the composite S,S,, is 
a parallel translation by 2. pg (Fig. 3). The 
parallel translations generate a normal sub- 

group 2” of 23”. For p, qc A”, the element of 2 
that carries p to 4 is denoted by zpq. The x’=&(z) 
A 

P 9 

x X”=&(x’) 

Fig. 3 

subgroup of 23” that leaves a point p of A” 
invariant is denoted by 0;. Obviously, we have 
0; = rpq OPZ~;‘. Thus a11 the 0; (for PE A”) are 
isomorphic. We cal1 0; the orthogonal group 
around p and any element of 0; an orthogonal 
transformation around p. More generally, any 

element of 8” that leaves a subspace Ak of A” 
invariant is called an orthogonal transforma- 
tion around the subspace Ak. 

An element of d” that preserves the orienta- 

tion of A”, i.e., is represented by a ‘proper 
affinity with a positive determinant, is called a 
proper motion. Proper motions form a sub- 
group w0 of 23”. Rotations are, by definition, 
orthogonal transformations belonging to 23:. 

Sometimes %30 is called the group of motions; 
then ‘$3” is called the group of motions in the 
wider sense. In this article, however, we shah 
continue to use the terminology introduced 
above. 

The study of the properties of A” invariant 
under W’ is n-dimensional Euclidean geometry. 

Since QI”1 d”, every proposition in affine 
geometry (- 7 Affine Geometry) cari be con- 
sidered a proposition in Euclidean geometry, 
but there are many propositions that are 
proper to Euclidean geometry. Sometimes the 

subgroup of CU” generated by 8” and the 
homotheties of A”, i.e., elements of ‘%” repre- 

sented by tscalar matrices, is called the group 
of motions in the wider sense, and the study of 
properties of A” invariant under this group is 
called n-dimensional Euclidean geometry in the 

wider sense. 

C. Length of Segments 

Two figures F, F’ in A” are said to be congru- 

ent if there exists an SE 23” such that f(F) = F’. 
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Then we Write F = F’. The congruence relation 
is an tequivalence relation. Let s = ~4, s’ = $4 
be two +Segments in A”. We say that s, s’ have 

equal length when s = s’. Length is an attri- 
bute of the equivalence class of segments. The 
length of s is denoted by (~1. Al1 segments of 

the form @ are congruent, and we defme IpPl 
= 0. If we are given a length and a thalf-line 
starting from a point p, we cari lïnd a unique 
point 4 on it such that lpql = the given length 
(Fig. 4). Let r be a point on the extension of 
p4. The length Iprl is then uniquely deter- 
mined by (pq( and lqr(. It is delïned as the 

4 
q’ 

P’ 

p (a) q 

P 0 7 

(b) 

Fig. 4 

sum of the lengths: \pr( = Ipii\ + l?j?\. With 
respect to the addition thus delïned, lengths of 
segments in A” form a +Commutative semi- 
group with the cancellation law, which cari be 
extended to an +Abelian group M with 0 as 

the identity element (- 190 Groups P). 
Let 1.~1 #O and Is’( be any length. On a half- 

line starting from p, we cari fmd points q, r 

with Ip4/= Isl, IF1 = Is’l. Then the element 
pr/pq = if P (- 7 Affine Geometry) is a posi- 
tive element of P uniquely determined by 1st 
and Is’I. We cal1 A the measure of ls’j with the 

unit IsI and denote it by Is’l: Isl. If P is +Archi- 
medean, Â cari be represented by a real num- 
ber (- 149 Fields N). We have (ls’l+ ~S”I): lsl 
=(~s’~:~s~)+(~s”~:~s~),(~s”~:~s’~)(ls’I:Is”~)= 
Is”I:IsI (if Is’IfO). Thus the mapping ls’l-, 

Is’I : lsl sends the additive semigroup of 
lengths to that of the positive elements of P. 

This is actually an isomorphism, which cari be 
extended to an isomorphism of M onto the 
additive group of the lïeld P. 

Let cp(X, X’, ,X”) be a thomogeneous 
rational function of a lïnite number of vari- 
ables X, X’, . . . , X”. If a relation <p(Â, i’, . ,A”) 
=OholdsforÂ=JsJ:l~~l,Â’=Is’l:ls~~,...,IZ” 

=IsLïI:lsOI, where lsOI is a length #O, then 
<~(Â,,A~,...,Âd;)=OholdsalsoforA,=lsl:ls,l, 
/2;=(s’I:Is11,...,AO;=Isa(:Is11, where Isrl is any 

other length # 0. Hence, in this case, the ex- 
pression <p(lsl,ls’l,...,ls”l)=Ois meaningful. 

D. Angles and Their Measure 

An angle L AOB is a figure constituted by two 
half-lines OA, OB starting from the same point 

0 but belonging to different straight lines. The 
point 0 is called the vertex, and the two half- 

lines OA, OB are called the sides of L AOB 
(Fig. 5). Two congruent angles are said to have 

the same measure, denoted by 1 L AOBI or 
sometimes simply by CI. Let 5jz =(Hz, H’) (Hi 
= half-line QR) be a given 2-dimensional flag 

and the given measure of an angle. Then we 
cari lïnd a unique half-line QP in the given 

half-plane Hz such that 1 L PQRI =CI (Fig. 6). 
The angle L PQR is said to “belong” to $*. 
Let K* be the half-plane separated by the 
line PU Q containing the half-line QR. Then 
HZ n K* is called the interior of the angle 

Fig. 5 Fig. 6 
u’+a”=u. 

L PQR. Let L P’QR be another angle belong- 
ing to a*. If the interior of the latter angle is 
a subset of the interior of L PQR and QR # 

QP’, then 1 LPQRI is said to be greater than 
1 LP’QRI, and we Write 1 LPQRI>I LP’QRI. 

Actually, it cari be shown that > is a relation 
between the measures of L PQR and L P’QR, 
and that the set of measures of angles forms a 

tlinearly ordered set with respect to the rela- 
tion 2 defined in the obvious way. When 

lLPQRI>ILP’QRl,wewriteILPQRl= 
1 L PQP’I + 1 L P’QRI. Actually, these are rela- 
tions between measures of angles. Further- 
more, if the measure E of an angle is given, the 

set of measures of angles < c( forms a linearly 
ordered set order-isomorphic to a segment 
and satisfying: (i) If j3 <y then there exists a S 
such that b+S=y;(ii) fi+6=S+b; (fli +B2)+ 
p3 = /3i + ( /J’* + &) if a11 these sums exist; and 
(iii) Pr + 6 = /j2 + 6 implies /3r = &. When P is 

Archimedean, these properties imply that the 
measure of angles < 1 L PQR 1 cari be repre- 
sented by positive real numbers <k (k is any 
given positive number) such that the relations 
of ordering an addition are preserved. 

This one-to-one correspondence between 
the measures of angles and a subset S of the 

interval (0, k] of real numbers cari be extended 
to a correspondence between the measures of 

general angles and the subset of R obtained 
from S. When P=R, then we have S =(O, k], 
and any real number appears as a measure of 

a general angle. We cari choose L PQR and 
the positive number k arbitrarily, but it is 
customary to choose them as follows. Suppose 
we are given an angle L AOB. Let the exten- 
sions of the half-lines OA and OB in the oppo- 
site directions be OA’ and OB’, respectively. 

The angles L AOB and L A’OB are called 
supplementary angles of each other, and SO are 
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L AOB and L AOB’. The angles L AOB and 
L A’OB’ are called vertical angles to each other 

(Fig. 7). Any angle is congruent to its vertical 
angle, and an angle that is congruent to its 

supplementary angle has a tïxed measure. 

/A 
P 

(I 

B’ (I 0 

* 

B 

P 

A’ 

Fig. 1 

Such an angle (or its measure) is called a right 

angle. In the description of the measurement of 
angles, we usually consider the case where the 
special angle L PQR is a right angle, and we 

set k = 7r/2. (The existence and uniqueness of 
the right angle cari be proved.) An angle that is 

greater (smaller) than a right angle is called an 
obtuse (acute) angle. A general angle whose 
measure is twice (four times) a right angle is 
called a straight angle (perigon). Sometimes we 
choose as the “unit angle” 1/90 of a right 
angle, which is called a degree (hence a right 
angle = 90 degrees, denoted by 90”); 1/60 of a 

degree is called a minute (1’ = 60 minutes, 
denoted by 60’), and 1/60 of a minute is called 

a second (1’ = 60 seconds, denoted by 60”). If, 
as usual, we put the right angle equal to 7r/2, 
then the unit angle is (2/rt)(right angle). This is 
called a radian, and 1 radian = 180”/n = 
57”17’44.806.. .” + 57.3”. 

If a straight line m intersects two straight 
lines 1, l’, eight angles t(, fi, y, 6, CI’, /j”, y’, 6’ 
appear, as in (Fig. 8). In this figure, c( and CI’, fl 

and p’, y and y’, and 6 and 6’ are called corre- 
sponding angles, while CI and y’, /r and 3, y and 
CI’, and S and p’ are called alternate angles to 

each other. When 1 and I’ are parallel, each of 
these angles is congruent to its corresponding 
or alternate angle. 

The Pythagorean theorem asserts that if a 
triangle AA BC is given for which L ABC is a 
right angle (Fig. 9), then jAB12+IBC12=ICA12 
(which makes sense since X2 + Y2 -2’ is a 

homogeneous polynomial). 

Fig. 8 Fig. 9 

E. Rectangular Coordinates 

When two straight lines 1, m intersect, two 

pairs of vertical angles appear. If one of these 
angles is a right angle, then a11 are. Then we 

say that 2 and m are orthogonal (or perpendic- 
ular) to each other, and Write Ilm. Let 1 be a 
line and A’ an r-dimensional subspace of A” 

(1 < r < n - 1) intersecting 1 at a point 0 = A’ n 1. 
If 1 is orthogonal to a11 lines on A’ passing 
through 0, then 1 is said to be orthogonal to 
A’, and we Write II A’ (Fig. 10). If A”-’ is any 
hyperplane in A”, then there exists a unique 
line I through a given point P of A” that is 
orthogonal to A”-‘; this 1 is called the per- 

pendicular to A”-’ through P, and the 

Fig. 10 

intersection 1 tl A”-’ is called the foot of the 
perpendicular through P. When A”-’ is given, 
the mapping from A” to A”-’ assigning to 
every point P of A” the foot of the perpendic- 
ular through P is called the orthogonal projec- 
tion from A” to A”-‘. 

Let@‘=(H”,H”-‘,...,H’)beann- 

dimensional flag of A” and 0 the initial point 
of the half-line H1 Then we cari lïnd a point Ei 

inH’(i=1,2,...,n)suchthatOUE,10UEj 
(i#j,i,j=1,2 ,..., n). Moreover, if le1 is any 
unit of length, then Ei cari be chosen uniquely 
SO that (OE,(=(e( (i= 1,2, . . . . n). Then 0, 
E,, , E, are tindependent points in A”, and 
wehaveA”=OUE,U...UE,.Thuswehavea 
tframe Z = (0; E, , , E,) of A” with 0 as origin 
and the Ei as unit points. Such a frame is 
called an orthogonal frame. A coordinate 
system with this frame, called an orthogonal 

coordinate system adapted to $“, is uniquely 

determined by 8”. A motion is characterized 
as an tafftnity sending one orthogonal frame 
onto another or onto itself. 

Utilizing an orthogonal coordinate system, 
the lengths of segments and the measures of 
angles cari be expressed simply. Let (x1, , x,) 
be the coordinates of X with respect to such a 
coordinate system. Then the length of the 
segment 10x1 (with le1 as unit) is equal to 

(C$l xy2, and when Y is another point, with 
coordinates (y,, . , y,), 0 #X, 0 # Y, then we 

have 

COS/ LXOYI= 
C;=l Xjyi 

(cy=, xy(c;=, Yi)“2’ 

In particular, we have 0 U XI0 U Y if and 
only if Cb, xiyi = 0. 

We may Write x = E for the +location 
vector of X. Then the taffinity Ax + b is a 

motion if and only if A is an +Orthogonal ma- 
trix. Thus the tinner product (x, y) is invariant 
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under motions; it therefore has meaning in 
Euclidean geometry. If we put 1x1 =(x, x)l’*, 
then the right-hand sides of the formulas for 

10x1 and COS[ LXOYI cari be written as 1x1 

and (x,y)/(lxl ‘1~1). More generally, we have 
IXYI=ly-xl. This is the Euclidean distance 
(or simply distance) between X and Y. Then A” 
becomes a tmetric space with this distance, i.e., 
a Euclidean space. Historically, the notion of 
metric spaces was introduced in generalizing 

Euclidean spaces (- 273 Metric Spaces). 

F. Area and Volume 

The subset I” of A” consisting of points 

(x i, . . . , x,,) with respect to an orthogonal co- 
ordinate system, with 0 < xi < 1, i = 1, . , n, is 
called an n-dimensional unit cube. A function 
m that assigns to tpolyhedra in the wider sense 
P, Q, in A” nonnegative real numbers m(P), 

m(Q), . . . is called an n-dimensional volume if it 
satisfïes the following four conditions: (1) m(a) 

= 0. (2) m(P U Q) + m(P n Q) = m(P) + m(Q). (3) 
If P is sent to Q by a translation, then m(P) = 
m(Q). (4) m(l”)= 1. It has been proved that 
such a function is unique and has the property 

that P = Q implies m(P) = m(Q). Thus the con- 
cept of volume cari be dehned in the frame- 
work of Euclidean geometry. More generally, 
if the affinity f(x) = Ax + b sends P onto Q, 
then ~(Q)=C~(P), where c is the absolute 

value of the determinant 1 A(. If P is covered by 
a fïnite number of hyperplanes, then m(P) = 0, 

and if P is a tparallelotope with n independent 
edgesa, ,..., a,, thenm(P)=absla, ,..., a,l, 
where la,, . . , a,,/ is the determinant of the 
n x n matrix with a, as the ith column vector, 

and absx is the absolute value of the real 
number x. If P is an +n-simplex whose vertices 

have location vectors x0, x1, . , x,, then we 
have 

m(P)=labs 
1 1 1 

n! xg x, . x, 

The volume of any polyhedron cari be ob- 
tained by dividing it into n-simplexes and 
summing their volumes. If P is an r- 

dimensional polyhedron in A”, then the r- 

dimensional volume of P is obtained by divid- 
ing P into r-simplexes and summing their 

r-dimensional volumes (in the respective r- 

dimensional Euclidean spaces containing 
them). In particular, when r = 1, we speak of 
lengtb (e.g., the length of a broken line), and 
when r = 2, of area. If V is the r-dimensional 
volume of an r-dimensional parallelotope with 
r edges a,, . . . . a,, we have the formula 

(al,al) ... (al,a,) 
p= . . . 

(a,,aJ (a,, a,) 
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The notion of measure of point sets other than 
polyhedra is a generalization of the notion 

of volume of polyhedra (- 270 Measure 
Theory). 

G. Ortbonormalization 

Let 0, A,, . . , A, be n + 1 tindependent points 
in A”. Then the n vectors zi = a,, i = 1, , n, 
are independent. The points 0, A,, . . . , A, 
determine an n-dimensional flag @ of A” as 

follows. Let Hi be the half-line OA,, H, be the 
half-plane on the plane 0 U A, U A, separated 
by the line 0 U A, in which A, lies, . , H, be 
the half-space on A” separated by the hyper- 

plane 0 U A, U . . . U A,-, in which A, lies. Let 
b, , , b, be the unit vectors of the rectangular 
coordinate system adapted to $9. Suppose 
further that we are given a rectangular coordi- 
nate system. Then b,, . . . ,b, cari be obtained 
from a,, . . ,a” by the following procedure, 
called ortbonormalization (E. Schmidt): First 

put b,=a,/la,I,so that Ib,l=l. Thenc,= 
a,-(a,,b,)b, satisfïes (b,,c,)=O, c,#O. 
Put b,=c,/lc,l. Then we have (b,,b,)=O, 

Ib,l=l.Whenb,,...,b,-iareobtainedin 
this way, SO that (bj, b,)=6, for 1 <j, k<i- 1, 
thenci=ai-(a,,b,)b,-...-(a,,bim,)bim, 
satisfïes (bj, ci) = 0, ci #O. Hence b, = ci/lcil 

added to b,, , b,-l retains the property 
(bi, bk) = Sj, for 1 <j, k < i, and this procedure 
cari be continued to i = n. 

Two vectors u, Y are called orthogonal (de- 
noted ulv) if (u, v) =O, and u is called normal- 

ized when III/= 1. Thus any two of the vectors 
b, , . , b, are orthogonal, and each of them is 

normalized. Between given vectors a,, . . , a,, 
and b,, , b, we have the relation {a,, ,ai} 
(= the linear space generated by a,, , ai) = 
{b, ,..., b,},i=l,..., n. 

Let W,, %R, be two subspaces of the linear 
space W of the vectors of the Euclidean space 
A”. If any element of %Ri is orthogonal to any 
element of W,, then 1151, and %Il, are called 
orthogonal and written %JI, 1Vl,. For any 
proper subspace W, of !Dl, it cari be shown by 

the method of orthonormalization that there 
exists a unique proper subspace !I$ of %R such 
that %Il=!& U9Jl,, !JJI,l!IJI,. Such a subspace 

!III, is called the ortbocomplement of %Ri (with 
respect to !JR). Then mm, n !Ul, = (0) follows, 
and hence !IN = W i + %II,. Every element a of 
%II is therefore written uniquely in the form 
a, +a,, a, E!LR,, a,E%R,; we cal1 a, the mm,- 
component of a and a2 the orthogonal compo- 
nent of a with respect to ‘%II,. The mapping 

from !JJl to %Il, assigning a, to a is called the 

orthogonal projection from %JI to mm,; it is a 
hnear and tidempotent mapping. 
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H. Distance between Subspaces 

Since the Euclidean space A” is a metric space, 

the distance is delïned between any two non- 
empty subsets of A” (- 273 Metric Spaces). 
Let A’, B” be two subspaces of dimensions Y, s 

of A”, and let d be the distance between them. 
Then it cari be shown that there exist points 
PE A’, qE BS such that d=pq, and if P’E A’, 

q’~ B” are any other points with d =p’q’, then 

pq = p’q’: In particular, when r = 0 and s = n - 1 
(i.e., when A’=p is a point and BS= B”-’ is a 
hyperplane), the distance d cari be obtained as 

follows: If (a, x) = b is an equation of B”-’ and 
p is the location vector of p, then d = I(a, p) - 

hl/la]. If la1 = 1 in this equation of B”-‘, 
then d is given simply by [(a, p) - hl. An equa- 
tion (a, x) = b of a hyperplane is said to be in 
Hesse’s normal form if la I= 1. 

1. Spberes and Subspaces 

The set of points in a Euclidean space lying at 
a fixed distance r from a given point is called 

the spbere of radius r with tenter at the given 
point. If p is the location vector of the tenter of 
this sphere with respect to a given rectangular 
coordinate system, then the equation of the 
sphere is Ix-pl=r or (x,x)-2(p,x)+(p,p)- 
rz = 0. The set of points lying at equal dis- 
tances from k + 1 points with location vectors 

p,,, pl, . , pk (k > 1) is a linear subspace of the 
space (which may be @ or the entire space). If 

these points are independent, then the sub- 
space has dimension n-k, where n is the di- 
mension of the entire space. In particular, if 

these points are vertices of an n-dimensional 
+Simplex, then there is a unique sphere passing 

through them, called the circumscribing spbere 
of the simplex. In this case, the simplex is said 

to be inscribed in the sphere. If pO, pl, . . . , p, 
are location vectors of the vertices of the sim- 
plex, then the equation of the circumscribing 
sphere of the simplex is given by 

1 1 . . . 1 1 

po p1 p, x =o. 
p; p: . pi x2 

When n = 2 or 3, there are many classical 
results concerning the circumscribing circle of 
a triangle, the circumscribing sphere of a sim- 

plex, and other figures related to a triangle or 
a simplex. 
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14O(Vl.4) 
Euclidean Spaces 

A space satisfying the axioms of Euclidean 
geometry is called a Euclidean space. An taflïne 
space having as +Standard vector space an n- 

dimensional Euclidean tinner product space 
over a real number field R is an n-dimensional 
Euclidean space E”. In an n-dimensional Eu- 
clidean space E”, we Iïx an torthogonal frame 
C = (0, E, , . , E,), ei = 03, (e,, ej) = 6,. The 
frame C determines trectangular coordinates 

(x1,x 2, , x,) of each point in E”. We cari thus 
establish a one-to-one correspondence be- 

tween E”andR”={(x,,...,x,)lx,~R}.Inthis 
sense we identify E” and R” and usually cal1 R” 
itself a Euclidean space. The 1-dimensional 
space R’ is a straight line, and the +Cartesian 

product of n copies of R’ is an n-dimensional 
Euclidean space (or Cartesian space). Given 
pointsx=(x,,x, ,..., x,,)andy=(y,,y, ,..., y,) 
in the Euclidean space R”, the tdistance d(x, y) 

between them is given by 

Thus the distance d(x, y) supplies R” with the 
structure of a tmetric space. We cal1 xi the ith 
coordinate of the point x, the point (0, ,O) 
the origin of R”, and the set of points {x 1 -cc 

<xi< CD; xj=O, j#i} the x,-axis (or ith co- 
ordinate axis). For an integer m such that 

-1 d m 6 n, we defïne m-dimensional +sub- 
spaces in R”; a -l-dimensional subspace is 
the empty set, a 0-dimensional subspace is 
a point, and a l-dimensional subspace is a 
straight line. If we take an orthogonal frame, 
an m-dimensional subspace is represented 
as an R” (- 139 Euclidean Geometry; 7 Affine 
Geometry). 

As a ttopological space, R” is tlocally com- 
pact and tconnected. A bounded closed set in 

R” is tcompact (Bolzano-Weierstrass theorem). 
Given a point a = (a,, , u,) in R” and a real 

positive number r, the subset {x 1 d(x, a) < r} of 
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R” is called an n-dimensional solid sphere, solid 
n-sphere, hall, n-hall, disk, or n-disk with tenter 
a and radius r, its tinterior {x 1 d(x, a) < r} an n- 
dimensional open sphere, open n-sphere, open 
hall, open n-hall, open disk, or open n-disk, 
and its tboundary {x 1 d(x, a) = r} an (n - l)- 
dimensional sphere or (n - 1)-sphere. In partic- 
ular, a 2-dimensional solid sphere is called a 

circular disk, its interior an open circle, and its 
boundary a circumference. A disk or a circum- 
ference is sometimes called simply a circle. 

The family of n-dimensional open spheres 
with tenter a gives a base for a neighborhood 

system of the point a. Suppose that we are 
given a sphere S and two points x, y on S. 
The points x, y are called antipodal points on 
the sphere S if there exists a straight line L 
passing through the tenter of S such that S n 
L = {x, y}. The segment (or the length of the 

segment) whose endpoints are antipodal points 
is called the diameter of the solid sphere (or 
of the sphere). The notion of tdiameter (- 273 

Metric Spaces) of a solid sphere or of a sphere 
considered as a subset of the metric space 
R” coincides with the notion of diameter of 

the corresponding set defined above. When 
n 2 3, the intersection of a sphere and a 2- 
dimensional plane passing through the tenter 
of the sphere is called a great circle of the 
sphere. For m such that 1 <m < n, we consider 
an m-dimensional solid sphere or an (m - l)- 
dimensional sphere in an m-dimensional 

plane R”. These spheres are also called m- 
dimensional solid spheres or (m- l)-dimen- 

sional spheres in R”. 

In particular, the solid sphere of radius 1 
having the origin as its tenter is called the unit 
disk, unit hall, or unit cell, and its boundary is 
called the unit sphere. (In particular, when we 
deal with the 2-dimensional space R2, we use 
the term circle instead of sphere, as in unit 
circle.) The points (0,. ,O, 1) and (0, ,O, -1) 
are called the north pole and south pole of the 
unit sphere, respectively. The (n - 2)-dimen- 

sional sphere, which is the intersection of the 
unit sphere and the hyperplane x, = 0, is called 

the equator; the part of the unit sphere that is 
“above” this hyperplane (i.e., in the half-space 
x, > 0) is called the northern hemisphere, and 
the part that is “below” the hyperplane (i.e., in 
the half-space x, < 0) the southern hemisphere. 

Let ai, hi be real numbers satisfying a, < bi 
(i=1,2,...,n). The subset {xIai<xi<bi,i= 
1,2, . . , n} of R” is called an open interval of 
R”, and the subset {x ) ai < xi < bi} a closed 
interval. They are sometimes called rectangles 

(when n = 2), rectangular parallelepipeds, or 
boxes. An open interval is actually an open set 
of R”, and a closed interval is a closed set. In 

particular, the closed interval {x 10 <xi < 1, 
i=1,2,..., n} is called the unit cube (or unit n- 
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cube) of R”. We cari take the set of open inter- 
vals as base for a neighborhood system of R”. 

Al1 the tconvex closed sets (for example, 
closed intervals) having interior points in 
R” are homeomorphic to an n-dimensional 
solid sphere. A topological space 1” that is 
homeomorphic to an n-dimensional solid 

sphere is called an n-dimensional (topological) 
solid sphere, (topological) n-cell, or n-element. A 
topological space Y-’ homeomorphic to an 

(n - l)-dimensional sphere is called an (n - l)- 
dimensional topological sphere (or simply 
(n - 1)-dimensional sphere. The spaces 1” and 
S”-’ are +Orientable ttopological manifolds 
whose orientations are determined by assign- 
ing the generators of the (relative) thomology 
groups H”(I”, ?‘) and H,-,(S”-‘), respectively 
(both are inlïnite cyclic groups). By means 
of the tboundary operator a: H,(I”, in)+ 
H,-,(S”-‘), the orientation of 1” or S”-’ deter- 

mines that of the other. 
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141 (XXl.22) 
Euler, Leonhard 

Leonhard Euler (April 15, 1707Xeptember 18, 
1783) was born in Basel, Switzerland. In his 

mathematical development he was greatly 
influenced by the Bernoullis (- 38 Bernoulli 
Family). He was invited to the St. Petersburg 
Academy in 1726 and remained there until 
1741, when he was invited to Berlin by Fre- 
derick the Great (1712-1786). Euler was active 
at the Berlin Academy until 1766, when he 
returned to St. Petersburg. Already having 
lost the sight of his right eye in 1735, he now 

became blind in his left eye also. This, how- 
ever, did not impede his research in any way, 
and he continued to work actively until his 

death in St. Petersburg. 
Euler was the central figure in the mathe- 

matical activities of the 18th Century. He was 
interested in a11 tïelds of mathematics, but 

especially in analysis in the style of +Leibniz, 
which had been passed down through the . 

Bernoullis and was developed by him into a 
form that led to the mathematics of the 19th 
Century. Through his work analysis became 
more easily applicable to the tïelds of physics 
and dynamics. He developed calculus further 

and dealt formally with complex numbers. He 

also contributed to such fïelds as tpartial dif- 
ferential equations, the theory of telliptic func- 
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tions, and the tcalculus of variations. He con- 
tributed much to the progress of algebra and 
theory of numbers in this period, and also did 

pioneering work in topology. He had, how- 
ever, little of the concern for rigorous founda- 

tions that characterized the 19th Century. He 
was the most prolific mathematician of ah time, 
and his collected works are still incomplete, 
though some seventy volumes have already 

been published. 
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142 (XV.1 1) 
Evaluation of Functions 

A. History 

By the evaluation of a function f(x) we mean 
the application of algorithms for obtaining the 

approximate value of the function. The evalu- 
ation methods are classified roughly into two 
groups: (1) evaluation of functions using ap- 
proximation formulas, and (2) evaluation using 
microprogramming techniques. The advent 

of high-speed computers has brought about 

drastic changes in the evaluation of functions. 
Before the introduction of high-speed com- 

puters in the 1940s mathematical tables had 
played a prominent role. The iïrst issue (pub- 
lished in 1943) of the journal Mathematical 
tables and other aids to computation (MTAC), 

the predecessor of the journal Mathematics oj’ 
computation, was primarily concerned with 

tables of mathematical functions. One of the 
aims of this journal was to facilitate the ex- 
change of information on errors in the tables. 

The tables, obtained in the past by tedious 
hand calculation, cari now be easily prepared 
by high-speed computers, and there was a 
period when more accurate and extensive 
tables were published one after another. It 
is ironie, however, that high-speed comput- 
ers revolutionized numerical analysis and 
prompted a shift of emphasis in the tïeld, 
beginning in the 1950s away from the use of 

numerical tables and toward exploration of 
the most efftcient methods of approximation of 
the functions, thus causing a rapid decrease in 

the need for tables. 
Recently, a significant trend in computer 

design has replaced the conventional logic 

control section with “stored logic,” or micro- 
programmed control, stored in high-speed, 
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nondestructive Read-Only Storage (ROS). For 
example, the microprogrammed control used 
for the unifïed COordinate Rotation Digital 
Computer (CORDIC) algorithm is effective in 

calculating elementary functions because of its 
simplicity, accuracy, and capability of high- 
speed execution via parallel processing. It is 

not clear whether the applications of approxi- 
mation formulas heretofore in use Will be 

superseded by microprogramming techniques 
in ah kinds of computers. However, the value 
of the approximation formulas recognized in 

the 1950s has been declining insofar as elemen- 
tary functions are concerned. Recently, as a 

method for the evaluation of functions based 
on a new viewpoint, some “unrestricted” al- 

gorithms have been proposed by Brent [ 11, 
which are useful for the computation of ele- 
mentary and special functions when the re- 
quired precision is not known in advance or 

when high accuracy is necessary. It is expected 
that methods for the evaluation of functions 
using approximation formulas Will be further 
developed as microprogramming techniques 
and unrestricted algorithms see wider use. 

B. Evaluation of Functions Using 
Approximation Formulas 

Suppose we approximate a function f(x) by a 
function g(x) using the following class of func- 
tions p,(x) and qj(x). Let continuous functions 

pi(x), . . . ,p.(x) and ql(x), , q,(x) detïned on 
a closed interval [a, h] satisfy the following 
conditions: (i) p , , . . . ,p, and ql, , q,,, are both 
linearly independent; (ii) there exist at most a 
tînite number of zeros for &‘& b,q,(x) in [a, h] 
for any choice of b,, b,, , b,,,, except for the 
case b, = b, = = b, = 0; (iii) there is a con- 
tinuous function g(x) with a nonzero denomi- 
nator in [a, b] representable as 

g(x)= f uiPi(x) 
1 

5 bjqjlxh (1) 
i=l j=l 

whereai,i=l ,..., n,andbj,j=O,l ,..., m,are 

constants. Then g(x) is called a generalized 
rational function based on a class of functions 
{p,(x)}, i= 1, . . . . n, and {qj(x)}, j= 1, . . . . m. If 
pi(x) = x’-l and qj(x) = xj-l, (1) is reduced to a 
rational function. If m = 1 and q,(x) = 1, (1) 
is a linear combination of p,(x) and is called 

an approximation of linear type to f(x); and 
further, if p,(x) = xi-l, (1) is reduced to a poly- 

nomial. The crux of the approximation prob- 
lem lies in the criterion to be used in choosing 
the approximate constants in (1). There are 

three methods for choosing them, which lead 
to three types of approximation of major 

importance: (i) interpolatory approximations, 
(ii) +least-squares approximations, and (iii) 
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min-max error approximations (sometimes 
called best approximations). As a major aim of 

computer approximation of a function is to 
make the maximum error as small as possible, 
the third type of approximation has been used 

for digital computers. 
For every continuous function ,f(x), there 

always exist min-max error approximations of 
the form (1). In generating a min-max error 
approximation in practice, we essentially 
depend upon the following conditions and 
theorems. Let a function space F be a d- 
dimensional linear space. If for ,feF which is 
not identically zero, there exist at most (d- 1) 

zeros of f(x) in [a, b], then F is called the 
unisolvent space or the Haar space. 

Let one of the best approximations to 

a continuous function f(x) be g(x). If the 
linear space D of a11 the functions of the form 
{C aipi( C b,g(x)q,(x)} is unisolvent, then 
the best approximation is unique. For the 

case where g(x) is an approximation of linear 
type to f(x), Haar [2] proved the following 
theorem. 

Let g(x) be the best approximation to f’(x) 
and g(x) = CF, aipi( A necessary and suflï- 
tient condition for the best approximation to 
be always unique is that the m-dimensional 

linear space generated by the functions p, , p2, 
, pm be unisolvent. In particular, we have 

the best unique polynomial approximation 

(one variable) of f(x) delïned on [a, b]. 
Let the necessary and suhïcient condition 

of the previous theorem be satistïed in a d- 
dimensional linear space D. A necessary and 

sufficient condition for g(x) given by (1) to be 
the best approximation of ,f(x) is that there 

existpointsadx,<x,<...<x,-,<x,db, 
called deviation points, such that ( -l)‘(f(xi) - 
g(x,))=p (i=O, 1, . . . . d). 

A great number of algorithms are known 
by means of which one cari calculate the best 

approximation g(x) of a function f(x) for the 
given values of n and tn and for pi(x) = xi-l 
and gj( x) = x ‘-’ in (1). However, the following 
three kinds of algorithms are used most fre- 
quently for generating min-max approxima- 
tions on computers: Remes’s second algorithm 

[3], the differential correction algorithm, and 
Yamauti’s folding-up method. 

C. Evaluation of Elementary Functions Based 
on Microprogramming 

Chen [6] has given a general algorithm for 
calculating an elementary function z =f(x) as 
follows. Let F(x, y) = yg(x) + h(x), where y is 

some parameter for evaluating z0 = f(xO) = 

F(x,, yo). We assume that (xc,, y,J has been 
given and that z0 is unknown. Suppose that a 
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new point (xk+la yk+l ) is obtained from (xkr yk) 
according to a pair of transformations, xk+, = 

<p(xk, yk) and Ykil = $(xk, Yk)r keeping the 

value of F(x,, ya) invariant. If xk is forced to 
converge to x, and if g(x,) = 1 and h(x,) = 0, 

then ~~=f(x,)=F(x,,y,)=F(x,,y,)= .., = 
F(x,, y,) = y,. In this procedure it is necessary 
to determine g(x), h(x), <p(x), and I,!J(x) for 
the given f(x). Most of the elementary func- 
tions cari be evaluated by Chen’s algorithm, 
which is essentially identical with Specker’s 
Sequential Table Look-up (STL) method 
based on addition formulas [7], e.g., logx = 
log(xa)-loga or eX=eXmpep. The iteration 
equations (2) of CORDIC given later cari also 

be derived by the STL method with complex 
numbers. 

The use of coordinate rotation to evaluate 
elementary functions is not new. In 1956 and 

1959 Volder [S] described the CORDIC for 
the calculation of trigonometric functions, 

multiplication, division, and conversion be- 
tween the binary and the decimal and r-adic 
number systems. Daggett, in 1959, discussed 
the use of CORDIC for decimal-binary con- 
version. It was recognized by Walther [9] in 
1971 that these algorithms could be merged 
into one unified algorithm. Consider coordi- 

nate systems parameterized by m in which the 

radius R and angle A of the vector P = (x, y) 
are delïned as R =(x2 + rny2)“’ and A = m-‘/’ 
arctan(m”“y/x). The basis of Walther’s algo- 
rithm is the coordinate rotation in a linear 
(m = 0), circular (m = l), or hyperbolic (m = - 1) 
coordinate system, depending on which func- 
tion is calculated. Iteration equations of 
CORDIC are as follows. The point (x~+~, y,+i, 
zi+,) is obtained from the point (xi, y;, z,) by 

means of the transformation 

Yi+l =YiAxisi, (2) 

zi+1 = zi + ciij, 

where m is a parameter for the coordinate 
system, tl, = m-ii2 arctan (m”‘&), and hi is a 

suitable value, e.g., f2-‘. The angle Ai+i and 
radius Ri+l are Ai+i =A,-cc,and R,+,=Rix 
Ki E Ri x (1 + m6’)“‘. After n iterations we find 
A,=A,-aandR,=R,xK,andthen 

x,= K{x,cos(am’~2)+y,m’i2sin(am’i2)}, 

y,,= K{y,cos(am1~2)-x,m~‘i2sin(ctm’i2)}, 

z,=z,+cc, 

where c( = x:Zo ai and K =H:Z; Ki. These 
relations are summarized in Table 1 for nr = 1, 
m = 0, and m = -1 in the following special 

cases. (i) The value of A is forced to converge 
to zero; y,-tO. (ii) The value of z is forced to 

converge to zero; z,+O. 
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Table 1. Input and Output Functions for CORDIC 

Function m 

Input 

x0 Y0 ZO 

Quantity 

to be 0 Output 

sint 
COS t 
tan’ t 
xz 

YlX 
sinh t 

cash t 
tanh -’ t 

1 l/K 0 t 
1 l/K 0 t 
1 1 t 0 
0 X 0 z 
0 X Y 0 
-1 l/Km, 0 t 

-1 l/Km, 0 t 

-1 1 t 0 

z,+o 

z,+o 

Y,-+0 
z,-0 

YnA 
z,+o 

Z”-tO 

Y,+0 

y,+sin t 
x,+cos t 
z,+tan-‘t 

Y,+= 
zn+Ylx 
y,+sinh t 
x,+cosh t 
z,-+tanh-‘t 

n-1 n-1 

K, = n (1 +~!?~~)l’~, Km1=n(l-6j2)1’2 
j=O j=O 

D. Fast Fourier Transform (FFT) 

When a function f(x) cari be taken to be 
periodic, it is advantageous to use trigono- 
metric polynomials as least-squares approxi- 
mating functions. The summations arising in 
least-squares approximations based on the 

trigonometric polynomials play an important 
role in various applications, and a quite effi- 

tient algorithm for the evaluation of such 
sums was developed by Cooley and Tukey 
[lO] in 1965, known as the fast Fourier trans- 

form (FFT). Let x,, (0 <m d N - 1) be a set of 
complex numbers, and consider 

N-I 
X, = (l/N) 1 x, exp( - 2nimn/N) 

m=o 

(O<ndN-1). (3) 

Equation (3) is often called the discrete 
Fourier transform (DFT) of the sequence x,, 
it being analogous to the continuous YFourier 
transform, 

Xn=(1/T) 
s 

7 
x(t)exp( -2zint/T)dt 

0 

(O<n<N), (4) 

where x(t) is a periodic function of t with 
period T. X, is called the nth Fourier coeffi- 
cient of a set of N equally spaced samples of 
size N for the function x(t) (t=jT/N,O<jd 

N). In the same way as for the continuous 
Fourier transform, the discrete transform cari 

be inverted to yield 

N-l 
x,= 1 X,exp(2rrinm/N) (O<n<N-1). 

m=o 

Here x, is called the coefftcient of the inverse 

Fourier transform, and X,,, and x, thus form a 
transform pair. 

The FFT algorithm for a lïnite sequence of 
length N in (3) is based on the fact that the 

calculation of (3) cari be performed in stages by 
using the direct product decomposition if N = 

N, N2, with N, and N2 relatively prime. For 

example, the 2-dimensional Fourier transform 
coefficient is given by 

K,,“, = CMN, WI x 
N,-1 N,-1 

(O<n,<N,-1, O<n,<N,-1). 

If by an elementary operation we mean one 
complex multiplication and one complex ad- 

dition, we cari evaluate X,,,,l through (Ni N2)2 
such operations using Horner’s scheme. By 

the direct product decomposition method, 
however, the (Ni N2)2 operations cari be re- 
duced to only N, N2(N1 + N2) operations. 
Because the matrix corresponding to the trans- 
formation mentioned above is a direct product 
of N, x N, and N2 x N2 matrices, we cari per- 
form the calculations in two stages: tïrst to 
obtain &,,,, forO<m,<N,-landO<n,dN, 

- 1 and then to obtain Xnjn, for O< n2 < N2 - 1 
andO<n,<N,-1. Wehave 

N,-1 

5 ml.9 =(W2) 1 exp(-2nin2m2/N2)x,,,,2, 
WI,=0 
AV-1 

xn,,nz =WW c exp(-2~in,ml/N1)5m,,n2. 
In,=0 

This direct product decomposition method is 
well known for 2- or 3-dimensional Fourier 
transforms. Even for a 1-dimensional Fourier 
transform of length N = N, N,, if N, and N2 are 
relatively prime, one cari use the method of 
direct product decomposition. Even when N, 
and N, are not prime, we cari use a method 

of “pseudo”-direct product decomposition to 
reduce the number of operations. Namely, we 
canputm=m,+N,m,(O<m,<N,,0dm2< 
N,);n=N2n,+n2(O<n,<N,,0<n2<N2). 

Then, similarly as before, X, in (3) cari be 
rewritten as 

‘v-1 
X,=(l/N,) 1 exp(-2nin,m,/N,) 

m,=o 

x exp(-2~imln21Wl N2))5m,,n,, 
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where 

N2-1 

5 m,.n2 =U/N21 1 exp(-2nin2m21N2)x,,+.1,2, 
WI,=0 

(5) 

which is a DFT of length N2. If we put 

a,,,, = ew( -2niml U(N1 N2)k,,+ 

then 

N,-1 

(6) 

X,=(Wd c exp(-2~in,mllNl)~~,,,2. 
m,=O 

(7) 

Formula (7) is nothing but a DFT of length 
Nr . Thus an FFT of length N = N, N, cari 
be calculated by decomposing it into three 
stages as follows: (i) obtain N, transforms 
of length N2 in (5); (ii) multiply <,,,,, by 
exp( -2xim, Q/N) in (6) (phase rotation); (iii) 
calculate N, transforms of length N, in (7). 
If either or both of N, and N, cari be factored 

further SO that, e.g., N = N, N2 = N, N,, Nz2 = 

“‘2 an FFT of length N2 cari be calculated 
similarly by decomposing it, and SO on, and 

in this way one cari reduce the total number 
of operations. This is the principle of FFT 
pointed out by H. Takahasi. When N is a 
power of two, it cari be shown that the FFT 
algorithm requires approximately Nlog, N/2 
operations. 

E. Padé Approximation 

Let f(x) - ca + ci x + c2x2 + be a forma1 
power series. For any pair of nonnegative 
integers (p, q), we delïne the (p, q)th Padé ap- 

proximation of f(x) as follows: The Padé ap- 
proximation is a rational function 

(ao+a,x+a2X2+...+apXP) 

/(bo+b,x+b2x2+...+bqxq) 

satisfying the condition that a11 terms in the 
forma1 power series 

(bo+b,x+...+bqx4)(co+c1x+...) 

-(a,+a,x+...+U,XP) 

should vanish up to the term xP+q. An infi- 
nite matrix whose (p, q)th entry is the, (p, q)th 

Padé approximation is called the Padé table 
for f(x). The Padé approximation is uniquely 
determined, provided that every Hankel 
determinant 

C!J cp+1 “’ cP+q 
Cp+i $2 “’ cp+q+1 

. . 

cP+4 Cp+q+1 ..’ Cp+2q 

never vanishes. 
When we expand f(x) into a continued 
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fraction of Stieltjes type, say, 

COI %XI 512x1 
m-K+, 1 +, 1 +..., 

then its 2pth and (2p + 1)th approximate frac- 
tions are the (p,p)th and (p+ 1,p)th Padé 
approximation of f(x), respectively. 
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Extremal Length 

A. General Remarks 

The notable relation between the lengths of 
certain families of curves in a plane domain 
and the area of the domain has long been 
recognized and utilized in function theory. 
L. V. Ahlfors and A. Beurling formulated this 
relation by introducing the notion of extremal 

length for families of curves [ 11. Although 
there are various definitions of extremal 

length, they are essentially the same except for 
one due to J. Hersch [3] and A. Pfluger [2]. 

The image of an interval under a continuous 

mapping is called a curve. We say that it is 
locally rectifiable if every tcontinuous arc 

of the curve is trectitïable. Let C be a fmite 
or countable collection of locally rectifiable 
curves in a plane and p, 0 < p < co, be a +Baire 
function delïned in the plane. Represent C in 
terms of arc length s (- 246 Length and Area), 

and set (C, p) = JC p ds. For a family I of Imite 
or countable collections C, p is called admis- 
sibleif(C,p)>l foreveryCEF.IfnoCEI 
consists of a fïnite or countable number of 
points, then p = cc is always admissible for 
F. Call inf {SSp’dxdy}, where p runs over 
admissible Baire functions, the module of I, 
and denote it by M(I). The reciprocal Â(I)= 
l/M(I) is called the extremal length of F. If 

no Baire functions are admissible for r, we 
set n(I) = 0. The extremal length is defmed 
equivalently in two other ways as follows: 

Let p be a nonnegative Baire function, and 
put L(lY,p)=inf{(C,p)ICEr}, then n(F)= 
supL(F,p)*/~~p*dxdy, where p runs over 

nonnegative Baire functions. Next, let 0 be 
the collection of nonnegative Baire func- 
tions p such that jJp*dxdy< 1; then Â(I)= 
sup{L(T,~)~)p~@}. We obtain the same 
value for Â(I) if werequire an admissible p to 
be tlower semicontinuous. If p is required to 
be continuous, then the extremal length de- 

fined by Hersch and Pfluger is obtained. As is 
shown in example (1) of Section B, there is a 

case where the two definitions actually differ. 
If an admissible p yields M(r)=/Jp*dxdy, 

then pjdsl is called an extremal metric. Beur- 
ling gave a necessary and sufficient condition 
for a metric to be extremal [4]. 

We list four properties of extremal length: 

(i)3,(r,)~l(r2)ifr,cr,.(2)M(U,r,)~ 
C. M(I,). (3) Let {F,} and F be given. Suppose 
that there are mutually disjoint measurable 
sets {E,} such that each C, E I, is contained 

in E,. If each element of Un r, contains at 
least one CE r, then M(F) 2 C. M(I,), and 
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hence 

M ur, =pm. i 1 
\Il / n 

If each CE r contains at least one C, E F, for 
every n, then n(F) 3 x, ,?(F,). (4) Let f be an 
analytic function in a domain Q and {C} be 
given in R. Denote by f(C) the image of C by 
f: Then Â( { C}) < a( { ,f(C)}). The equality holds 

if f is one-to-one. This shows that A( {C}) is 
conformally invariant. 

B. Extremal Distance 

Let 0 be a domain in a plane, 8Q its bound- 
ary, and Xi, X2 sets on RU an. The extremal 

length of the family of curves in Q connecting 
points of Xi and points of X2 is called the 
extremal distance between Xi and X, (relative 
to 0) and is denoted by E.,(X,, X,). 

Example(l).Let~={z~/z~<2},X,=~Q 
and X, be a countable set in )z( < 1 such that 
the set of accumulation points of X, coincides 

with IzI= 1. Then &(X,,X2)= CO, but the 
extremal distance in the sense of Hersch and 
Pfluger is equal to (2n))‘log2. 

Example (2). In a rectangle with sides a and 
b, the extremal distance between the sides of 
length a is b/a. 

Example (3). Let R be an annulus r, < 

IzI <r2. The extremal distance Â. between 
the two boundary circles of R is equal to 
(27r-’ log(r,/r,). The extremal length of the 
family of curves in R homotopic to the bound- 
ary circles is equal to l/i. 

Example (4). Let Q be a domain in the ex- 

tended z-plane such that co E fi. Let z0 E R and 
{ 1 z - z0 I= r} c 0, and denote by Â, the ex- 

tremal distance between { 1 z - z0 1 = r} and a set 
Xc& relative to Q. Then A,-(27~~‘logr 

increases with r. We call the limit the reduced 
extremal distance and denote it by x,(X, 00). 
+Robin’s constant for +Green’s function in Iz 
with pole at z = CO is equal to 2nA”,(aR, CO). 

Extremal length is also delïned on Riemann 
surfaces. Some classical conforma1 invariants 

cari be given in a generalized form in terms of 
extremal length. The notion of extremal length 

has applications in various branches of func- 
tion theory, such as tconformal and tquasi- 
conforma1 mappings, the +Phragmén-Lindelof 
theorem, the tcoeftïcient problem, the +type 
problem of Riemann surfaces, and studies of 
the boundary properties of functions of Imite 
Dirichlet integrals. It is also applied to prob- 
lems in differential geometry. Extending the 
notion of extremal length, M. Ohtsuka con- 

sidered extremal length with weight, and B. 
Fuglede introduced the notion of generalized 
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module in higher-dimensional spaces [S]. 
These notions have useful properties and 
applications. 
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Fermat, Pierre de 

Pierre de Fermat (August 20, 1601 -January 
12, 1665) was born into a family of leather 

merchants near Toulouse, France. He became 
an attorney and in 163 1 a member of the 
Toulouse district assembly. When not engaged 
in such work, he did research in mathematics, 
SO that he consigned his results only to his 
correspondence or to unpublished manu- 
scripts. The manuscripts were pubhshed post- 
humously by his son in 1679 and are known as 

Varia opera mathematica. His research into 
number theory, stimulated by Bachet’s (1581- 
1638) translation of the Arithmetika of Dio- 

lphantus (pubhshed in 1621) made Fermat’s 
name immortal and initiated modern num- 
ber theory. He posed the famous Fermat’s 
Problem, which has yet to be solved (- 145 
Fermat’s Problem). He began analytic geome- 
try by studying the theory of tconic sections of 
Apollonius, and utilizing this theory he dealt 
with the notions of tangent lines, maximal 
(minimal) values of functions, and quadrature, 
which made him a pioneer in calculus. He also 

wrote a precursory work in the theory of prob- 
ability in the course of his correspondence 

with +Pascal. +Fermat’s principle is important 

in the field of optics, where it is known as the 
law of least action. Unlike +Descartes, he em- 
phasized the revival rather than the criticism 
of Greek mathematics. 
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Fermat’s Problem 

The last theorem of Fermat (c. 1637) asserts 
that if n is a natural number greater than 2, 
then 

xn+yn=zn (1) 

has no rational integral solution x, y, z with 

xyz # 0. In the case n = 2, equation (1) has 
integral solutions called Pythagorean numbers 
(- 118 Diophantine Equations). Fermat read 
a Latin translation of Diophantus’ Arith- 

metika, in which the problem of finding all 

Pythagorean numbers is treated. In his per- 
sonal copy of that book, Fermat wrote his as- 
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sertion as a marginal note at the point at which 

n = 2 in equation (1) i, treated and added the 
famous words, “1 have discovered a truly 
remarkable proof of this theorem which this 
margin is too small to contain.” It is not 

known whether Fermat actually had a proof. 
Fermat’s problem asks for a proof or disproof 
of this conjecture, which itself has not been 
solved despite centuries of efforts by many 
mathematicians; but its study has promoted 
remarkable advances in number theory. In 
particular, E. E. Kummer’s theory of ideal 
numbers and the development of the theory of 
tcyclotomic tïelds were originally conceived in 
treating Fermat’s problem. 

In this article, we consider only those in- 

tegral solutions x, y, z of equation (1) with 
xyz #O that are relatively prime. We also 

restrict ourselves to the cases n = 1 (odd prime) 
and n = 4, without loss of generality. 

For smaller values of n, the nonsolvability of 
equation (1) was proved long ago, for n = 3 by 
L. Euler (1770), and later again by A. M. Le- 
gendre; for n = 4 by Fermat and Euler; for n = 5 

by P. G. L. Dirichlet and Legendre (1825); and 
for n = 7 by Ci. Lamé (1839). S. Germain and 
Legendre found some results on more general 
cases, but the most remarkable result was ob- 
tained by Kummer (J. Reine Angew. Math., 40 

(1850), Ahh. Akad. Wiss. Berlin (1857)). 
Let / be an odd prime, [ a primitive Ith root 

of unity, and h the tclass number of the cyclo- 
tomic tïeld Q(i). Then the class number h, of 
the real subfield Q(c + i-i) of Q(c) divides h. 
We cal1 h, = h/h, and h, the tfïrst and +Second 
factors of h, respectively. 

(1) If I is tregular, that is, if (/t, 1) = 1, then 
xl+ y’=~’ has no solution (Kummer, 1850). 

There are infinitely many irregular primes 

[3]; those under 100 are 37,59, and 67. There 
are 7,128 regular primes and 4,605 irregular 
primes between 3 and 125,000. It is not yet 

known whether there are infinitely many regu- 
lar prime numbers, although the beginning 
part of the sequence of natural numbers con- 
tains a larger number of these than the num- 
ber of irregular prime numbers. The condition 
(I, h) = 1 is equivalent to saying that the numer- 
ators of +Bernoulli numbers B,, (m = 1,2, , 
(/ - 3)/2) are not divisible by I (Kummer, 1850). 

Kummer obtained a result on irregular 

primes (1857) which was improved later as 
follows. Note that if 1 is not regular then hi is 
divisible by 1 (Kummer, 1850) (- 14 Algebraic 

Number Fields). 
(2) If (h2, I)= 1 and the numerators of Ber- 

noulli numbers B,,, (m = 1,2, , (l- 3)/2) are 
not divisible by /3, then x’t y’=~’ has no 
solution (H. S. Vandiver, Trans. Amer. Math. 

Soc., 3 1 (1929)). By computation Vandiver 
confïrmed that x’ + y’ = Z’ has no solution for 
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1<619. At present, this procedure has been 
continued for 1~ 125,080 using computers by 

the method of D. H. Lehmer, E. Lehmer, and 
H. S. Vandiver, Proc. Nat. Acad. Sci US, 40 
(1954) (S. S. Wagstaff, Math. Comp., 32 (1978)). 

When the condition (xyz, I) = 1 or (xyz, 1) = 1 

is added, we speak of Case 1 or Case II, respec- 
tively. The following theorems hold for Case 1. 

(3) If XI + y’ = z’ has a solution in Case 1, 
then 

B2mfi-2m (t)=O (modi), m= 1,2, . . . . (l-3)/2, 

(2) 

holds for - t = x/y, yjx, y/z, zJy, xjz, and zjx, 
where f,(t) = Lf.lh r”-’ t’, and B,,, is the mth 
Bernoulli number. This is called Kummer’s 
criterion (D. Mirimanov, 1905). 

A simplification of the’above result is 

(4a) If xf + y’ = z’ has a solution in Case 1, 
then 

(2’-‘-1)/1-O(modl) 

(A. Wieferich, J. Reine Angew. Math., 136 
(1909)). This result created a sensation at the 

time of its publication. It was lïrst shown that 
1093 and 35 11 are the only primes with l< 

3700 for which the above congruence holds; it 
is presently known that no other 1 with 1~ 6 x 
109 satisfies this congruence. The criterion 

(4a) was gradually improved by Mirimanov 
(1910, 1911), P. Furtwangler (1912), Vandiver 
(1914), G. Frobenius (1914), F. Pollaczeck 
(1917), T. Morishima (1931), and J. B. Rosser 
(1940, 1941). For example: 

(4b) If xl + y’ = z’ has a solution in Case 1, 
then 

(m “-l)/l=O(modl) (3) 

holds for a11 m with 2 $ m ~43. By means 
of this result, Rosser (1941) showed for / < 
41,000,000, and D. H. Lehmer and E. Lehmer 

(Bull. Amer. Math. Soc., 47 (1941)) showed for 
l< 253,747,889 that xl + y’= z’ has no solution 

in Case 1. 
We have hitherto been concerned with 

rational integral solutions of xl+ y’= z’. We 
may also consider the problem of proving or 
disproving that LX’ + fl’= y’ has no solution 

*I, fi, y with @y # 0 in the ring of talgebraic 
integers of Q(i). Case 1 means the impossibil- 
ity of 

a’+p’+y’=O, (apy,l)=l, (4) 

and Case II means the impossibility of 

a’+~‘=~/î”‘y’, (aDy,!)= 1, (5) 

where n is a natural number, E is a tunit in 
Q(c), and /1= 1 - [. We have the following 

results: 
(l*) If (h, 1)= 1, then neither equation (4) nor 

equation (5) has a solution (Kummer, 1850). 
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(2*) Under the same conditions as in state- 

ment (2), equation (4) has no solution. If we 
additionally restrict a, fl, y to relatively prime 
integers of Q(c + [-‘) and replace 1. by (l- 
[)( 1 - [-‘), then equation (5) also has no solu- 
tion (Vandiver, 1929). 

(4b*) If equation (4) has solutions a, 8, y in 
Q(c), then congruence relation (3) holds for a11 
m with 2 <m < 43 (Morishima, 1934). 

When I is suflïciently large, we have the 

results of M. Krasner (C. R. Acad. Sci. Paris 
(1934)) and Morishima (Proc. Japan Acad., 11 

(1935)). 
Bibliographies are given in Vandiver and 

Wahlin [1] and Vandiver [2]. 
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Feynman Integrals 

A. Introduction 

As the S-matrix or tGreen’s function in quan- 
tum fïeld theory is usually prohibitively dif- 

fïcult to calculate, perturbative expansions in 
terms of coupling constants have been em- 

ployed since the beginning of the theory (- 
386 S-Matrices). R. P. Feynman (Phys. Reu., 76 
(1949)) invented a way of calculating the series 
in terms of Feynman integrals. His method 
drastically simplified the preceding method 
due to S. Tomonaga and J. S. Schwinger, even 

though, as was later shown, the two methods 
are theoretically equivalent (F. J. Dyson, Phys. 
Reu., 75 (1949)). A Feynman integral is an 
integral associated with a Feynman graph 
according to the Feynman rule explained 
in Section B. Feynman integrals inherit the 

troublesorne problem of divergence, and some 
recipe which systematically provides them 
with a deîïnite meaning is needed. Such a 
recipe is given by the renormalization the- 
ory of Tomonaga, Schwinger, Feynman, and 
Dyson. A mathematically rigorous renormali- 

zation theory was given by N. N. Bogolyubov 
and 0. S. Parasiuk (Acta Math., 97 (1957)), 

later supplemented by K. Hepp (Comm. Math. 
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Phys., 2 (1966)). See also W. Zimmermann 

(Comm. Math. Phys., 15 (1969)) and S. A. 
Anikin et al. (Theor. Math. Phys., 17 (1973)). 
Furthermore, E. R. Speer [l] gave a mathe- 

matically convenient recipe of renormalization 
(under the condition that massless particles 
are irrelevant). Although the series expansion 
in coupling constants is a divergent series 
even after renormalization (- 386 S-Matrices), 
the study of Feynman integrals has given 
much insight into the qualitative aspects of the 
S-matrix, and in particular, into its analytic 

structure (e.g., R. J. Eden et al. [2]). In this 
respect the discovery of the Landau-Nakanishi 

equations, which describe the location of sin- 
gularities of Feynman integrals, was crucially 
important (L. D. Landau, N. Nakanishi, and 
J. Bjorken, 1959; - Section C). Later, R. E. 

Cutkosky found a formula which gives impor- 
tant information concerning the ramification 
of Feynman integrals near their singularities 
(- Section C). It gave impetus to J. Leray’s 
mathematical study of Feynman integrals 

from the viewpoint of integration of multi- 
valued analytic functions (Leray, Bull. Soc. 
Math. France, 87 (1959)). Such studies were 

subsequently carried out by D. Fotiadi, M. 
Froissart, J. Lascaux, F. Pham, etc.; - [3-51 
and references cited there for this topic. An 

extensive study by G. Ponzano, T. Regge, 
Speer, and J. M. Westwater on the mono- 

dromy structure of Feynman integrals is 
closely related to the studies by Pham and 
others (- Regge in [6] and references cited 
there). On the other hand, the progress of 
microlocal analysis has thrown new light on 
the Feynman integrals and has given a unified 
foundation to these various other studies (- 

Section C; also Pham, M. Kashiwara, and T. 

Kawai in [6], M. Sato et al. in [6] and refer- 
ences cited there). 

B. Definitions 

First, the notion of Feynman graphs is intro- 
duced. A Feynman graph is sometimes called a 

Feynman diagram. A Feynman graph G con- 
sists of tïnitely many points (called vertices) 
{ I$}j=i,,,,,,, iïnitely many 1-dimensional seg- 

ments (called interna1 lines) {L,},=,,,,,,, and 
finitely many half-lines (called external lines) 

jw”=l....,“~ all of which are located in a 4- 
dimensional affine space. Each of the end- 
points w’ and IV- of L, and the endpoint of 
L; coincide with some vertex y. A four-vector 
p, = (P,,~, p,, , , p,, *, p,., 3) is associated with each 
external line L; and a constant m, > 0 is as- 

sociated with each interna1 line L,. For sim- 

plicity, we usually suppose, in addition, that 
each interna1 line and each external line are 
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oriented, that M/;+ # IV- and that G is con- 
nected. The orientation of a line is indicated by 

the symbol + Given an orientation, we de- 
fine the incidence number [j: /] to be +l or 
-1 according to whether L, ends or starts from 
5. In other cases, [j: I] is defined to be zero. 
The incidence number [j: r] is defined in the 

same way but with LF replacing L, (Fig. 1). 

Fig. 1 

In this example of a Feynman graph, the interna1 
lines L, and L, do not intersect and this diagram 
should be drawn in R4, not in R2; this is indicated 
by X. For convenience, multiple lines such as L, 
and L, are usually drawn in a curvilinear mariner, 
as shown. 

The Feynman rule associates the following 

integral F,(p) with each Feynman graph G: 

FG(P) = 
s 

nrl,64(C:,1[j:r]p,+C~1[j:llk~) 

l-&(k;-m;+pO) 

x 5 d4k,, (1) 
1=1 

where k: = k; ,, - XI=, ktY. Here l/(kF -m: + 
J-1 0) means lim,,,(l/(k~-rnf +fi E) 
(- 125 Distributions and Hyperfunctions). 

Here we consider the case where the interac- 
tion Lagrangian density does not contain 
differential operators (ie., direct coupling) and 

a11 relevant particles are spinless. In general, 
we should multiply the integrand of F,(p) by a 
matrix of polynomials of the p, and k,. 

F,(P) bas the form KSj,,Cj:rlP,)fdP); we 
often investigate ,fc(p) instead of F,(p). The 
function &(p) is studied on M = def{ peR4” 1 
Cj,,[j:r]p,=O}, and is called a Feynman 

amplitude. The integral(l) is not well defined 
as it stands because of the following prob- 
lems: (a) 1s the product appearing in the inte- 
grand well detïned? (b) 1s the integral conver- 
gent? The fïrst problem is not serious if m, #O 

(- 274 Microlocal Analysis E) However, the 
second problem, called the ultraviolet diver- 
gence, is serious. The renormalization proce- 
dure is intended to overcome this diflïculty. 
When some m, is equal to zero, even the first 
problem, called the infrared divergence, is 
serious. See D. R. Yennie et al. (Ann. Phys., 13 

(1961)) and T. Kinoshita (J. Math. Phys., 3 

(1962)) for analyses of the infrared divergenee. 
In this article we always assume for simplicity 
that every m, is strictly positive, even though 
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such an assumption is too restrictive from the 
physical viewpoint. 

Calculations of Feynman integrals are often 

done by means of the parametric representa- 
tion of the integral (1) of the form 

s 
1 x 6(1 -XE, a,>E, da, 0 U(a)‘(V(p,a)+~0)-N+2”,~2’ 

where U(a) and V(p, c() are determined by the 
topological structure of the graph G. See [7] 
for the derivation of this formula and the 
treatment of the integral written in this form. 

It is useful not only for the study of the sin- 
gularity structure of F,(p) but also for the 
study of spectral representations, etc. (-, e.g., 
[7, SI). Note that several different notations 

are used in the hterature for the parametric 
representation of the integral. Hence one 
should be careful in referring to papers which 
use parametric representations. 

C. Analytic Properties of Feynman Integrals 

The celebrated result of Landau (Nuclear 

Phys., 13 (1959)), Nakanishi (Prog. Theor. 

Phys., 22 (1959)) and Bjorken (thesis, Stanford 
Univ., 1959) asserts that the singularities of a 

Feynman amplitude &(p) are confined to the 
subset L+(G) (called a positive-a Landau- 
Nakanishivariety)ofM={pER4”ICj,,[j:r]p, 
= 0}, defined by the following set of equations 
(called Landau-Nakanishi equations), where u,, 
wj, and k, are real four-vectors and a, is a real 
number, a11 of which are to be eliminated to 
detïne relations among the pr (note, however, 
that a positive-a Landau-Nakanishi variety is 

not strictly a subvariety of M, because of the 
constraint (2e): 

ur=g[j:r]wj (r=l,...,n), (24 

r$ li:rIp,+Ii Cj:llk,=O (j= l,...,n’), 

WI 

z[j:l]wj=alk, (I=l,...,N), (24 

a,(k:-mf)=O (1=1,...,N), 

a1 2 0, 

with some 

(24 

(24 

a,#@ m 

Usually a Landau-Nakanishi variety (resp., 
equation) is called a Landau variety (resp., 

equation) for short. The equation (2a) is 
conventional; (2b) represents the energy- 
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momentum conservation law at the vertex y; 
(2d) corresponds to the mass-shell constraint 
(if CI, 3 0) on the interna1 line L,. Since (2~) 

entails z,~,(C)a,k,=O for a closed circuit 
(= loop) C of G for some set of values Q(C) = 
kl or 0 with Q(C) being 0 if L, does not be- 

long to C, the equation (2~) is usually called 
the closed-circuit condition. By attaching wj to 
the vertex y and associating a,k, to the inter- 
na1 line L,, we get a diagram representing a 
multiple collision of classical point particles, 
since the relations (2a)-(2f) are just the class- 
ical conditions for such a collision (S. Coleman 
and R. E. Norton, Nuovo Cimento, 38 (1965)). 
The fact that the Landau-Nakanishi equations 
admit such an interpretation is neither acci- 
dental nor superfïcial in view of the tmacro- 

scopie causality of the S-matrix. Note also that 
there is another interpretation of the Landau- 

Nakanishi equations, which emphasizes their 
resemblance to +Kirchhoff’s law (Nakanishi, 
Prog. Theor. Phys., 23 (1960)). Such a resem- 
blance cari be used to study the structure of 
Feynman integrals from the viewpoint of 
+graph theory. See [7] and the references cited 
there for this topic. 

An important observation by Pham and 

Sato (1973), which opened a way to the micro- 
local analysis of Feynman integrals and the 

S-matrix, is the following: If we consider the 
Landau-Nakanishi equations to define a sub- 
variety of S*M, the tspherical cotangent bun- 

dle of M, by eliminating only w, k, and a, 

then the resulting variety describes the tsin- 
gularity spectrum of&(p). More precisely, 
S.S.f’(p) is confïned to the set (p; fiu), 

where (p; u) satistïes the Landau-Nakanishi 
equations. The rigorous proof of this state- 
ment was given by Sato et al. in [6]. The 

subset of S*M or fiS*M thus obtained 
is denoted by g’(G) and is also called a 

positive-a Landau-Nakanishi variety. It is 
noteworthy that the microlocalization of the 

classical result of Landau, Nakanishi, and 

Bjorken had essentially been achieved in a less 
sophisticated manner by D. Iagolnitzer and H. 
P. Stapp (Comm. Math. Phys., 14 (1969)) in the 
framework of S-matrix theory. The variety 
defined by (2a)-(2d) and (2f) is denoted by 
L(G) or Y(G) and is a Landau-Nakanishi 
variety. In a neighborhood of p” in L+(G), 
&(p) is the boundary value of a holomorphic 
function &(p) whose domain of defïnition is 
determined by u-vectors (- 274 Microlocal 

Analysis E). Furthermore, in simple cases one 
cari verify that &(p) cari be analytically con- 
tinued to detïne a holomorphen on 

the universal covering space U-L(G)’ of U - 
L(G)’ for a complex neighborhood U of p”, 

where L(G)’ denotes a complexification of 
L(G). Hence we cari discuss the difference of 
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fc(yp) and f&), where y denotes a loop en- 
circling L(G)‘. Cutkosky (J. Math. Phys., 1 
(1960)) observed that it cari be expressed 

(in simple cases) by the integral obtained by 

replacing l/(kF - rnf +GO) in the right- 

hand side of(l) by -2nfl6+(kf-w$‘)=,,, 
-2zflY(k,$(k~-m:), where Y(k,,,) 
denotes the tHeaviside function. A result of 
this type is called a discontinuity formula and 
is now obtained for the S-matrix itself in a 

suitably modified manner, i.e., the discontinu- 
ity formula holds beyond the framework of 
perturbation theory (- 386 S-Matrices). As is 
mentioned in 386 S-Matrices, the discontinuity 
formula is closely related to Sato’s conjecture 
on the tholonomic character of the S-matrix 
(T. Kawai and Stapp in [SI). Actually, M. 

Kashiwara and Kawai (in [6]) proved that 
f&) satistïes a tholonomic system of linear 
differential equations whose characteristic 

variety is confïned to the extended Landau- 
Nakanishi variety L(G). They further proved 

that the system has regular singularities (- 
274 Microlocal Analysis G). Their result gives, 
on one hand, a precise version of Regge’s 
statement to the effect that f&) is a generaliza- 
tion of a thypergeometric function (in Battelle 

Rencontres, C. DeWitt and J. A. Wheeler (eds.), 
Benjamin, 1968), and, on the other hand, a 

rigorous proof of the fact that f&) is a Nils- 
son class function. This fact is closely related 
to the works of D. Fotiadi, J. Lascaux, Pham, 

and others. Kashiwara and Kawai (Comm. 
Math. Phys., 54 (1977)) also showed that the 
holonomic character of the Feynman ampli- 

tude is an important clue for understanding 
the so-called hierarchical principle, which had 
been proposed and studied in connection 
with the tMandelstam representation by the 
Cambridge group (Eden et al. [2]). Further- 
more, Kashiwara et al. (Comm. Math. Phys., 

60 (1978)) gave a useful expression of&(p) at 
several physically important points by analyz- 
ing the microlocal structure of the holonomic 

system that &(p) satisfïes. Thus the use of 
t(micro-) differential equations in analyzing 

Feynman amplitudes has turned out to be 

effective in understanding their singularity 
structures in a unitïed manner. 
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Fiber Bundles 

A. General Remarks 

E. Stiefel [2] introduced certain tdiffeomor- 
phism invariants of tdifferentiable manifolds 

by considering a field of a finite number of 
linearly independent vectors attached to each 

point of a manifold; and H. Whitney [3] ob- 
tained the notion of tïber bundles as a com- 
Pound idea of a manifold and such a fïeld of 
tangent vectors. S. S. Chern [4] emphasized 
the global point of view in differential geo- 
metry by recognizing the relation between the 

notion of tconnections (due to E. Cartan) and 
the theory of fiber bundles. The theory of iïber 

bundles is also applied to various fïelds of 
mathematics, for example, the theory of +Lie 
groups, thomogeneous spaces, tcovering 
spaces, and general vector bundles, vector 
bundles of class c’, or analytic vector bundles. 

Homological properties of fiber bundles are 
studied by means of +Spectral sequences, and 
cohomology structures of several homoge- 
neous spaces and several characteristic classes 
are determined explicitly by means of tcoho- 

mology operations. Also, the group K(X), 
formed by equivalence classes of vector bun- 

dles over a iïnite +CW complex X, is a tgener- 
alized cohomology group, treated in tK-theory, 
in which further development is expected 
(- 237 K-Theory). 

B. Definitions 

Let E, B, F be topological spaces, p: E+ B a 
continuous mapping, and G an teffective left 
topological ttransformation group of F. If 

there exist an topen covering { U,} (c( E A) of B 

and a homeomorphism <p,: U, x F zp-‘(U,) for 
each c( E A having the following three prop- 

erties, then the system (E, p, B, F, G, U,, <p,) is 
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called a coordinate bundle: (1) pcp,(h, y) = b 
(b~u~,y~F). (2) Detïne <~~,~:Fxp-‘(b) (~EU,) 

by v,,d~)=v~(b~~); then ~paW=v&ovo,b~G 
for beU,f? U,. (3) gsa: U,f’U,+C is continu- 
ous. We say that this bundle is equivalent 
to a coordinate bundle (E, p, B, F, G, U;, cp;) 

if y,,(b)= <p;;h o<P.,~E G (hé LJ,n U;) and 
g,,c: U,n U;+G is continuous. An equivalence 

class 5 = (E, p, B, F, G) of coordinate bundles is 

called a fïber bundle (or G-bundle), and E is 
called the total space (or bundle space), p the 

projection, B the base space, F the fïber, and G 
the bundle group (or structure group). Also, UC 
of a coordinate bundle (E, p, B, F, G, Un, cp,) 
belonging to the class 5 is called the coordinate 

neighborhood, cp, the coordinate function, and 
gOa the coordinate transformation (or transition 
function). 

Let 5 = (E, p, B, F, G) and 5’ = (E’, p’, B’, F, G) 
be two liber bundles with the same liber and 
group. A continuous mapping Y: E-t,%’ is 
called a bundle mapping (hundle map) from C: to 
5’ if the following two conditions are satislïed: 

(1) There is a continuous mapping $ : B-B 
with p’oY =Y op. (2) t,hflr,,(b)=&,;! oY ocp,,,~ 
G(bEU,n$-‘(VJ, b’=\lr(b)), and $,or:Ucn 
Ic, -‘( VL)-G is continuous, where {U,, cp,} and 

{Vi, cpi} are pairs of coordinate neighbor- 
hoods and functions of r and c’, respectively. 

Moreover, if $ is a homeomorphism, then Y is 
also a homeomorphism and Y-i is a bundle 

mapping. 
Let 5 =(E, p, B, F, G) and 5’ =(E’, p’, B, F, G) 

be two fiber bundles with the same base space, 
liber, and group. If there is a bundle map- 

ping Y: E+E’ such that $: B-B as described 
before is the identity mapping, then we say 
that < is equivalent (or isomorphic) to 5’ and 
Write 5 = 5’. Take the same coordinate neigh- 

borhoods {U,}, and let gPa and gbdl be the co- 
ordinate transformations of 5 and <‘, respec- 
tively. Then 5 = 5’ if and only if there are 
continuous mappings 1,: U,+G with g;,(b)= 

*p(b)gpaVWa@-’ @E ua n UP>. 
For a system { tfp&} of coordinate transforma- 

tions of a liber bundle, we have gyp(b)gPbl(b) = 
gJb) (b E UC n U, n U,). Conversely, given an 

open covering { Um} and a system of gfiK: U, n U, 
*G satisfying, this condition, there is a unique 
G-bundle (E, p, B, F, G) with { goo} as a system 
of coordinate transformations. Actually, E is 
the tidentification space of ,!? = {(b, y, c() 1 b E U,} 

c B x F x A obtained by identifying two points 

(b, Y, 4, (b’, Y’, B) with b = b’, Y’ = y,&). Y, ad P 

is defmed by p{ (b, y, m)} = b, where the index 

set A = {E} is considered a discrete space. 

C. Principal Fiber Bundles 

A liber bundle n = (P, q, B, G, G) is called a 

principal fiber bundle (or simply principal 
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bundle) if G operates on G by left translations. 
This is also defïned by the following con- 

ditions: G is a right ttopological transfor- 
mation group of P, and there exist an open 
covering {U} of B and homeomorphisms <p: 

U x Gzq-‘(U) with qcp(b,g)=b, <p(b,g).g’= 
cp(h, gg’) (bE U; g, g’ E G). A bundle mapping 
Y: P+ P’ between two principal bundles y~ = 
(P, q, B, G) and 1’ = (P’, q’, B’, G) is also delïned 
as a continuous mapping Y with Y(x g) = 

W) 9. 

D. Associated Fiber Bundles 

Let ré = (P, q, B, G) be a principal bundle, and 
let F be a topological space having G as an 
effective left topological transformation group. 
Then G is a right topological transformation 
group of the product space P x F by (x, y). g = 
(x.g,g-’ .y) (xéP,y~F,geG). Consider the 
+orbit space P x G F = (P x F)/G, and define the 
continuous mapping p:P x,F+B by ~{@,y)} 

=q(x).ThenuxoF=(Px,F,p,B,F,G)is 
a tïber bundle, called the associated fiber 

bundle of ré with liber F. On the other hand, rl 
is called an associated principal bundle of 5 = 

(E, p, B, F, G) if 4 = r xG F. A principal bundle 
q having the same coordinate transformations 
as 5 is an associated principal bundle of 5, and 
two liber bundles are equivalent if and only if 
their associated principal bundles are equiva- 
lent. Therefore, given a fiber bundle 5, there 
exists a principal bundle q such that 5 = 9 xG F. 

E. Examples of Fiher Bundles 

(1) Product bundle. (B x F, pl, B, F, G), where 

pl, the projection of the product space, is 
called a product bundle if there is just one 
coordinate neighborhood B and the coordi- 

nate function is the identity mapping of B x F. 
A bundle that is equivalent to a product bun- 
dle is called a trivial bundle. 

(2) A tcovering (F, p, Y) is a fiber bundle 
whose liber is the discrete space ~~‘(y,) 

(y0 E Y), and the structure group is a factor 
group of the tfundamental group rci(Y,yJ. In 
particular, a tregular covering is a principal 

bundle. 
(3) Hopf bundle. Let A be the real number 

lïeld R, the complex number field C, or the 
quaternion fïeld H, 3, = dim, A, and A”” the 
(n + 1)-dimensional linear space over A. Iden- 
tify two points (z,, , zJ, (~0, ,zL) of the 
subspace A”+I - (0) (0 is the origin) if there is a 
~612 such that zi=ziz (i=O, . . ..n). Then we 
obtain the identification space P”(A), called the 

n-dimensionai projective space over A. Let Si 

(= S’@+r)-‘, the (E(n+ l)- 1)-sphere) be the 
unit sphere in A”+‘. Then Si is the topological 
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transformation group of Si by the product of 
A, and the orbit space SI/S: is P”(A). Fur- 

thermore, (Si, 4, P”(A), Si) (q is the projection) 
is a principal bundle called the Hopf bundle (or 
Hopf fibering). These comments are valid also 
for n = m. When n = 1, P’(A) is homeomorphic 

to S”, and the Hopf bundle is (S’“-‘, 4, S”, S”-‘) 
(1. = 1,2,4). A Hopf bundle is delïned similarly 

for i, = 8 using the +Cayley algebra, and the 
projection q: Y-’ +SA (1. = 2,4,8) is the Hopf 

mapping (Hopf map). 
(4) Let G be a topological group, H its 

closed subgroup, and r:G+G/H, r(g)=gH the 
natural projection. If there exist a neighbor- 
hood U of ~(H)E G/H and a continuous map- 
pingf: U-G such that rof is the identity 
mapping, then we say that H has a local cross 

section fin G, and (G/K, p, G/H, HIK, H/I&) is 
a liber bundle for any closed subgroup K of H 

(where p is the natural projection gK+gH and 
K, is the largest normal subgroup of H con- 
tained in K). The associated principal bundle 
of the latter fiber bundle is (G/K,, p, G/H, 
HIK,). Any closed subgroup H of a +Lie 

group G has a local cross section in G; hence 
the above bundles cari be obtained. 

F. Vector Bundles 

A system < =(E, p, B) of topological spaces E, B 

and a continuous mapping p: E-B is called an 
n-dimensional real vector bundle if the follow- 

ing two conditions are satislïed: (1) p-‘(b) is a 
real vector space for each b E B. (2) There exist 
an open covering { U,} (a~ A) of B and a co- 
ordinate function qDol: U, x F z P ml (U,) for each 
a6A, where F=R”; furthermore, the <P~,~: 

R” z p ml (b) are isomorphisms of vector spaces. 
In this case, goa = (pp,b o <P~,~ :R”zR”( be 

U, f’ U,) is an element of the tgeneral linear 
group GL(n, R). Hence a vector bundle is a 
lïber bundle with liber R” and group GL(n, R), 

and the converse is also true. A l-dimensional 
vector bundle is called a line bundle. A vector 
bundle 5’ = (E’, p’, B) is called a subbundle of a 
vector bundle 5 = (E, p, B) if E’ c E, p 1 E’ = p’, 
and p’-‘(b) is a vector subspace of p-‘(b) for 

each b E B. 
Let <i and t2 be two vector bundles of 

dimension n, and n2 with the same base space 
B. Let E be the union of the direct sum p;‘(b) 
+p;‘(b)forbEB,anddefinep:E-Bby 
p(p;‘(b)+p;‘(b))=b. Take the same coordi- 

nate neighborhoods U, for 5, and c2, and 
define <p,: U, x R”1+“2-*p-‘(UJ by <p,(b,y)= 

(<pb,,+dd~)(~~R “1% = R”i + R”z), where 
the cpi: U, x R”I~ pi-’ (U,) are the coordi- 

nate functions of 5,. Then E is topologized by 

taking the family {q,(O)} (0 is open in U, x 
R”j+Q) as the +open base, and we obtain 
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an (n, + n,)-dimensional real vector bundle 
(E, p, B), denoted by t, @ t2 and called the 
Whitney sum of 5, and c2. Similarly, we cari 

define the tensor product 5, @ t2, the p-fold 
exterior power A”< (or bundle <‘p’ of p-vectors), 
and the hundle of homomorphisms 

Hem([,, 5,) of dimension n,n,, (p), and 

n, nî, respectively, using the tensor product 
R”I @ R”I =R”I”*, the p-fold texterior power 

APR” = R(i) (the space (R”)@) of p-vectors 
in R”), and the space of homomorphisms 
Hom(R”1, R”2) = Rnl”*. (For the last one, we use 

Hom((d J1, d,,) instead of Hom(d,,, db).) 
Hom(& E’)= t* is called the dual (vector) 
bundle of 5, where s1 is the trivial line bundle. 

If we use coordinate transformations, 0, 0, 
A”, and <* are obtained by the direct sum, 

+Kronecker product, matrix of +p-minors, and 
ttranspose of matrices, respectively. If t2 is 

a subbundle of 5,) the quotient bundle 5, /c2 
of dimension n, - n2 is delïned by using the 
quotient vector space R”l/R”2= R”-“*, and 
t2 @ (t1/t2) is equivalent to 5,. These oper- 
ations preserve the equivalence relation of 
bundles. Also, @ and @ are commutative up 
to equivalence and satisfy the associative and 
distributive laws. For each 5 having a lïnite- 
dimensional +CW complex as base space, there 
is a 5’ such that 5 0 <’ is trivial. 

Using the complex number lïeld C or the 
quaternion field H instead of the real number 

lïeld R, we cari deline similarly the complex 
vector bundle or the quaternion vector bundle 
and the operations 0, 0, etc. For a complex 
vector bundle 5, the complex conjugate bun- 
dle 5 is defined by the complex conjugate of 
matrices. 

(5) Tangent bundles, tensor bundles. Let M 
be an n-dimensional tdifferentiable manifold of 

class C’. Consider the ttangent vector space 
T’(M) at PE M, set T(M) = UP,, T,(M), and 
delïne n: T(M)+M by n(T,(M))=p. For a 

tcoordinate neighborhood CI,, of p with local 
coordinate system (x,, ,x,), each point of 
Y’( UP) is represented by C;=i @/3x,, and 

ne1 (U,) has a coordinate system (x1, ,x,, 
fi, ,,fJ. Hence T(M) is a C’-‘-manifold, and 

Z(M) = (T(M), TT, M, R”, GL(n, R)) is an n- 
dimensional real vector bundle. 2(M) is called 
the tangent (vector) bundle, its dual bundle 
2*(M) the cotangent (vector) bundle, and the 
tensor product 2(M) @ . @ 2*(M) 0 . . a 
tensor bundle of M. The line bundle A”X*(M) 
is called the canonical bundle of M. 

For a tcomplex manifold M, T(M) is a 
complex manifold and 2(M) is a complex 
vector bundle. Therefore these bundles are 
delïned as complex bundles. 

(6) Tangent r-frame bundle. In the preceding 
example, the space of all ttangent r-frames of 
M is a bundle space with base space M and 
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group GL(n, R). It is called the tangent r-frame 
bundle (or the bundle of tangent r-frames) of 
M. 

G. Tbe Classification Problem 

For a tïber bundle 5 =(E, p, B, F, G) and a 
continuous mapping $ : B’-t B, consider the 
subspace E’= {(x,b’)~E x ~?I~(X)=~(W)} of 

E x B’ and the projections p’:E’+B’ and Y: 
E’+E. Then I/I#< = (E’, p’, B’, F, G) is a fïber 
bundle, and Y is a bundle mapping from $#t 

to t; $#l is called the induced bundle of 5 by 
$. Let { Uz} and { gpb} be the systems of coordi- 
nate neighborhoods and transformations of 5. 
Then { $ ml (U,)} and { goa o $} are correspond- 
ing systems of $ # <. If Y : E’-t E is a bundle 
mapping from [’ to r having $ : B’+B as the 

mapping of base spaces, then <‘= $#t. Also, 
wehave*#5,~~#52if51r~2;(~o~‘)#5- 
+,Y#($#<). If 5 is a principal bundle, then $#t 

is also principal, and I~/#(V x,F)-(ll/#n) x,F. 
For a tparacompact space B’, $1 t = $2 5 if 
$, , $,: B’dB are thomotopic. 

For a topological group G, a principal 
bundle ((n, G)=(i?(n, G),p, B(n, G), G) is called 
an n-universal bundle if E(n, G) is +n-connected 
(n < 00); its base space B(n, G) is called an n- 

classifying space of G. In particular, <(CO, G) 
= tG = (EG, p, B,, G) is called simply a universal 

bundle and B, a classifying space of G. Then 
we have the classification tbeorem: Let B be a 
CW complex with dim B < n; then the set of 

equivalence classes of principal G-bundles with 
base space 6 is in one-to-one correspondence 
with the thomotopy set n(B; B(n, G)) of con- 

tinuous mappings of B into B(n, G). Such a 
correspondence is given by associating with 

the induced bundle $#<(PI, G) a continuous 
mapping I,!I: B+B(n, G), called the character- 

istic mapping or classifying mapping (charac- 
teristic map or classifying map) of $#<(II, G). 
Furthermore, if G is an effective left topo- 
logical transformation group of F, the set of 
equivalence classes of G-bundles with base 

space B and tïber F is in one-to-one corre- 
spondence with rr(B; B(n, G)). The correspon- 

dence is given by associating $#([(n, G) xGF) 
to *. 

H. Construction of Universal Bundles 

For an arbitrary topological group G, J. W. 
Milnor [6] constructed a universal bundle (E,, 
p, B,, G) in the following manner. The join 
E, = Go o Go of countably infinite 
copies of G is detïned as follows: A point e of 

E, is the symbol ti,gi, 0 @ t,,gi, (1 < i, < 

i,<...<i,,m=1,2,3 ,... ),whereti ,,..., ti,are 
real numbers satisfying tii 3 0, til + + tim = 1, 
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and gi, is an element of the i,th copy of G, 
k = 1, . , m. Here we cari omit ti,gi, if ti, = 0. 
Regard E, as a topological space with a weak 
topology such that the coordinate functions 
es ti, ewg, are continuous. Define the right 
action of G on E, by (ti,gi, @ . . . @ ti,gi,).g= 
ti,(gi, ‘g)@ 0 ti,(gim.g). Let B, and p: EG+ 
B, be the identification space of E, by this 
action of G and the identification mapping. 
Then (EG, p, B,, G) is a universal bundle for G, 

and B, is called the classifying space for G. E, 
and B, are sometimes written as EG and BG. 
In particular, a classifying space B, is a count- 
able CW complex for any countable CW 
group G (i.e., a topological group that is a 
countable CW complex such that the mapping 
g+g-l of G into G and the product mapping 
G x G-G are both cellular). The following 
examples of classifying spaces for Lie groups 

are also useful. Note that every CW complex 
B, of a given G has the same thomotopy type. 

1. Examples of Universal Bundles 

(1) G is either O(n), U(n), or Sp(n): Let A and n 
be as in (3) of Section E. According as A is R, 
C, or H, we Jet U(n, A) be the +Orthogonal 
group O(n), the +unitary group LJ(n), or the 
+symplectic group SP(~). Then the Stiefel 
manifold V,+,,,(A)= U(m+n,A)/I, x U(n, A) 
(Im is the unit element of U(m, A)) is (A(n+ 1) 
- 2)-connected. Hence the principal bun- 

de W(n+ 11-Z U(m+n, N)=(K,+,,,(A), 
M ,+,,,(A), U(m, A)) from (4) of Section E is a 
(A(n + 1) - 2)-universal bundle of U(m, A), 
where the base space M,+,,,(A)= L’(m+n,A)/ 
U@n, A) x U(n, A) is the +Grassmann manifold. 

(2) G is either O(C~), U(m), or S~(OC). The 
examples in (1) are valid for m, n = CO. Con- 
sider the tinductive limit group U(m, A) = 
Un U(n, A) under the natural inclusion 
U(n, A) t U(n + 1, A), and supply the infinite 
classical group U(GO, A) with the weak topol- 

ogy (this means that a set 0 of U(co, A) is 
open if and only if each 0 fl U(n, A) is open in 

U(n, A)). Then the infinite Stiefel manifold 
v ,+,,,(A) and the infinite Grassmann manifold 
M ,+,,,(A) (m = CIZ or n = CO) are detïned as 
before, and we have 

Mvn(A)=U M,+,,m(N> 

and SO on. Furthermore, these manifolds are 

CW complexes, and V,,,(A) (m< CO) is CO- 
connected. Although U( CQ, A) is not a Lie 
group, U(m, A) x U(n, A) has a local cross 
section in U(m + n, A) for m, n < m [7]. There- 

fore, setting n= 10 in (1) ((CO, U(m, A)) is a 
universal bundle of U(m, A), and the infinite 

Grassmann manifold M,,,(A) is a classifying 
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space Bu(m,Ar. Also, ((I(n + 1)-2, U(co, A)) 
in (1) is a (a(n + 1) - 2)-universal bundle of 

U(co,A) (n< CO). 
(3) G is either SO(m) or a general Lie group. 

For the trotation group SO(m), we have [(n- 

1, ~O(~))=(K+.,,(R),P, a,+,,,,SO(m)) and 
B -fi,,,> SO(m) - where fi,,,,, = SO@ + n)/ 
SO(m) x SO(n) is the oriented Grassmann 
manifold. For any compact Lie group G, we 

bave Un- 1, G)=(V,,+,,,,,(W,~,0(mfn)lG x 
O(n), G), where G c O(m). For any connected 
Lie group G, we have <(n, G)= <(n, G,) x,~G, 
where G, is the maximum compact subgroup 
of G (since G/G, is homeomorphic to a Eu- 

clidean space, ((n, G) reduces to <(n, G,)). 

J. Reduction of Fiber Bundles 

Let G be a topological group and H its closed 
subgroup. We say that the structure group of a 
G-bundle r is reduced to H if < is equivalent to 
a G-bundle whose coordinate transformations 
take values in H. For a principal H-bundle 

vo = (P, q, B, H), the associated H-bundle Q, xH 
G=(P xHG,p, B, G) with fiber G is delïned, 
where H operates on G by the product of G; 

it is also a principal G-bundle if we detïne 
an operation of G on P x,G by {(x,g)} .g’= 
{(x, gg’)}. For a principal G-bundle 4, we say 
that q is reducible to an H-bundle if there is a 
principal H-bundle vo with q = yl,, x,G, and 
we cal1 Q, a reduced bundle of ;rl. It is easy to see 

that the group of a G-bundle 5 is reducible to 
H if and only if the associated principal G- 
bundle of 5 is reducible to H. Also, if vo is a 
reduced bundle of II, then $#Q is a reduced 

bundle of $ # tl. 
Now, assume that H has a local cross sec- 

tion in G and G/H is co-connected. Then 

for an n-universal bundle <(n, H) of H, 
<(n, H) x,G is an n-universal bundle of G (n- 

connectedness of E(n, H) x, G is shown by the 
thomotopy exact sequence of +tïber spaces). 
Therefore, by the classification theorem, the 

group of any G-bundle is reducible to H, and 
the equivalence classes of G-bundles are in 
one-to-one correspondence with those of H- 

bundles. 
(1) A G-bundle is trivial if and only if its 

group is reducible to e (identity element). A 2n- 
dimensional differentiable manifold M of class 
C” has an +almost complex structure if and 
only if the group of the tangent bundle Z(M) is 
reducible to GL(n, C), i.e., 2(M) is considered 
as an n-dimensional complex vector bundle. 

(2) Since GL(n, R) z O(n) x R”(“+l)” and 

GL(n, C)z U(n) x R”‘, n-dimensional real (com- 
plex) vector bundles cari be considered as O(n) 
(U(n))-bundles with fïber R”(P). 
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K. Homotopy and Homology Theory of 
Bundles 

Since a tïber bundle is a tlocally trivial tïber 
space, the exact sequence and the spectral 
sequence of fiber spaces (- 148 Fiber Spaces) 
are applicable to tïber bundles. For example, 
the cohomology structures of homogeneous 
spaces of classical groups have been deter- 
mined by A. Borel, J.-P. Serre, and others. 

(1) Characteristic class. For a classifying 
space B, of a topological group G, we have an 

isomorphism rr,( BG) g rr-l (G) of homotopy 
groups and the following classification theo- 
rem of tïber bundles over the n-sphere S”. The 

set of the equivalence classes of principal G- 
bundles or G-bundles with fïber F over the 
base space S” is in one-to-one correspondence 
with the set n,-,(G)/x,(G) of equivalence 
classes under the operation of G on X,-~(G) 
given by the inner automorphisms of G; such a 
correspondence is given by associating with 
each principal G-bundle q = (P, q, S”, G) the 
class (called the characteristic class of II) con- 
taining the image A(z,) of a generator z,~rr,(S”) 
by the homomorphism A: n,(Y) E n,(P, G) 

-rrmI(G). Take U, and U, (the open sets of 

Y’ such that the last coordinates tn+, are > 
-1/2 and < 1/2, respectively) as coordinate 
neighborhoods of q. Then the restriction T= 
y 1 z 1 S”-’ represents the characteristic class 
of 11, where g,2: U, n U, + G is the coordinate 
transformation and S”-’ is the equator of Y. 

(2) For the principal bundle q =(So(n + 

1), q, Y, SO(n)), the mapping T: S”-‘-SO(n) 
is given by 

T(r,,...,r.)=(l.-?(rilj,)(~~’ -1> 

(1, is the unit matrix of degree n). Hence the 

tmapping degree of the composite q’o T:S”-’ 
+,Y-’ (of T and the natural projection q’: 
So(n)+s”-‘) is equal to 0 if n is odd and 2 if 
n is even. From this fact and the homotopy 
exact sequence, we have 

1 

Z ifm=l orniseven 

= z,=z/2z ifm>l andnisodd 

for the real Stiefel manifold V,,+,,,(R), which is 
(n - 1)-connected. 

(3) Sphere bundles. An O(n+ 1)-bundle with 
lïber S” is called an n-sphere bundle. The set of 
equivalence classes of n-sphere bundles with 
base space Y’ is in one-to-one correspondence 
with z,,-,(O(n+ l))/n,(O(n+ 1)). For example, 
any 1 -sphere bundle over S” (m > 3) and any 

n-sphere bundle over S3 is trivial. Every 3- 
sphere bundle over S4 is equivalent to one of 

{&,,. 1 m an integer, n a positive integer}, where 
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r m,n is detïned as follows: Let p, a:S3-t0(4) be 

detïned by p(q)q’ = qq’q-‘, o(q)q’ = qq’ (q, y’ are 
tquaternions of norm 1). Then these mappings 

represent generators of rr3(O(4)) g n3(S3 x 
S3) 2 Z + Z, and &,,, is the 3-sphere bundle 
over S4 corresponding to the element m { p} + 
n{a}~rr,(0(4)) (ie., to the mappingf,,.:S3% 

O(4) defined by f,,Jq)(q’)=qm+“q’q-“‘). (Here 
we use the fact that the operation of the ele- 
ment TE O(4) (r(q) = q-‘) is given by rpr -’ = p, 
ror-’ =pa-‘.) 

L. Cross Sections 

For a tïber bundle 5 = (E, p, B, F, G), a cross 
section f: B, +E over a subspace B, (c B) is a 
continuous mapping such that pof is the 
identity mapping of B,; a cross section over B 

is called a cross section of 5. A bundle 5 is 
trivial if and only if the associated principal 
bundle of 5 has a cross section. More gener- 
ally, given a principal bundle u = (P, q, B, G) 
and a closed subgroup H having a local cross 
section in G, n is reducible to H if and only if 
the associated bundle q( xJG/H) = (P/H, q’, B), 
G/H) with fiber G/H has a cross section. 

Suppose that the base space B of the fiber 
bundle 5 = (E, p, B, F, G) is a tpolyhedron. We 

denote the +r-skeleton of B by B’ and consider 

the problem of extending cross sections ,f,: B’ 
+E successively for r = 0, 1, Clearly, there 

is a cross section fO. For each r-simplex o of B, 
wehave(p-‘(a),p,o,F)-(oxF,p,,a,F)since 
g is tcontractible. Hence there is a bundle 
mapping<p,:axFzp-‘(o)withpocp,=pr. 
Assume the existence of a cross section f,-r : 
B’-’ +E, and consider the mapping h, = p2 o 
<pi’ o(frml 16):6-F (p2:o x F-F is the pro- 

jection and 6 is the boundary of a). Then if 
ho is extensible to h,:a+F, an extended cross 
section f,: o+E of f,-r 10 is dehned by f,(b) = 

<p,(b, h,,(b)) (bEo), and the extension f,: B’+ 
E of f,-r is defïned by f, 10 =f,, f, 1 B’-’ = 
f,-r. If T[,-r (F) = 0, for example, there is an 
extension h, of hb since (a, 6) z (V, Y-r), and 
f,-r is extensible to a cross section f;. 

Now assume that the base space B of a G- 
bundle 5 =(E, p, B, F, G) is an tarcwise con- 
nected polyhedron and F is t(n - 1)-connected. 
Then there is a cross section f: B”+E con- 

structed by the stepwise method of the previ- 
ous paragraph. But if n,(F)#O, we have an 
obstruction to extending f over B”+‘. Now we 

explain how to measure this obstruction. Sup- 
pose that F is +n-simple. Then for each (n + l)- 
simplex (r of B, the mapping ho : 9 + F, detïned 
by f as in the previous paragraph, determines 
a unique element c(f)(o) of the homotopy 

group n,(F). Hence we have a tcochain C(~)E 
C”+l (B; n,(F)), and f is extensible to a cross 
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section over B”+’ if and only if c(f) = 0. Thus 
there is a cross section over B”+’ if and only 

if the set of c(f) for every cross section f over 
B” contains the cochain 0; (c(f)} is considered 
as a measure of the obstruction. 

Let w:I+B be a +path. We consider the 
space 1 x F and the canonical projection p, : 
1 x F+I. Then there is a bundle mapping Q: 
1 x F+E withpoQ=wop,, since w#<= 
(1 x F, p, , I, F); and a homeomorphism w# : F z 

Fis dehned by w#=‘P~,~,oR,oQ~‘o<~,,,,, 
where b,=w(s) (s=O, l), <p,: LJ, x Fsp-‘(U,) is 

a coordinate function of a coordinate neigh- 
borhood U,3b,,andQ(=RIsxF):Fzpp’(b,). 
The homeomorphism w# induces an isomor- 
phism w# :rc,(F)zrt,(F), and x,(F) forms a 

tlocal coefficient on B. Then the cochain c(f) 
is a tcocycle with the local coefftcient n,(F), 
called the obstruction cocycle off: Further- 
more, the set {c(f)) for every cross section 

f: B”+E is a cohomology class C”+~(()E 
H”+l(B; n,,(F)) (local coefficient), and c”+‘(t) 

is called the primary obstruction to the con- 
struction of a cross section. There is a cross 

section over the (n + 1)-skeleton B”+’ if and 
only if c”“(<)=O. The local coefftcient z,,(F) 
is trivial if B is tsimply connected or, for 
example, if the structure group G of 5 is con- 
nected (in which case 5 is called an orientable 

fiber bundle); when this is true, Y’+‘(<) is an 
element of H”+‘(B; n,(F)), where n,(F) is not a 
local coefficient. Furthermore, if Y”([) = 0 
and ni(F) = 0 (n < i < m), then the secondary 
obstruction Om+‘(<)~ H”“‘(B; n,(F)) is de- 
fined similarly (- 305 Obstructions). 

M. Stiefel-Wbitney Classes 

Let 5 =(E, p, B, F, O(n)) be an O(n)-bundle over 
an arcwise connected polyhedron B and let 

5’ be its associated principal bundle. Con- 

sider the Stiefel manifold I/n,nmk = i&,(R) = 
O(n)/I,-, x O(k), which is (k- 1)-connected, 
and the associated bundle 5” = 5’ x O,njVn,n-k 
with fiber V&mk. The primary obstruction 

K+,(S)=Ck” (5k)~Hk+1(B;nk(l/n,n-k))(k= 
0, 1, , n - 1) is called the Stiefel-Whitney 

class of 5. We have 2W,+,(<)=O unless k=n- 
1 and k is odd. Hence we usually consider 
W,+,([)EH~“(B; Z,). 5 is orientable, i.e., the 

group of 5 is reducible to SO(n), if and only if 
W,(t) =O. The Stiefel-Whitney classes of an 
n-dimensional tdifferentiable manifold M 

are detïned to be those of the tangent bundle 
Z(M). Since the orientability of M coincides 

with that of 2(M), M is orientable if and only 
if W,(M)=O. The condition W,+,(M)=0 is 

necessary for the existence of a continuous 
field of orthonormal tangent (n - k)-frames 
over M (if k = n - 1 this condition is also SU~~I- 
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tient). Also, when M is closed, W,(M) is equal 
to x(M)p, where p is the fundamental coho- 
mology class of M and x(M) is the tEuler 

characteristic of M (- 56 Characteristic 
Classes B). 

N. Cbern Classes 

For a U(n)-bundle <=(E,p,i?,F, U(n)), the 
primary obstruction Ck+1(<)=c2k+2(~k)~ 
P+2(B;Z) (k=O, 1 ,...,n-l)oftheassoci- 
ated bundle tk = t” x U~,~V,,,-k(C) is called the 
Chern class of 5. If we consider 5 as an O(2n)- 
bundle by U(n)c0(2n), then IV,,+,(~)=0 and 

IV,,(<) = C,(r) (mod 2). The Chern classes of a 
real 2n-dimensional almost complex manifold 

are defined to be those of the tangent bundle 
2(M) (- 56 Characteristic Classes C). 

0. Bundles of Class c’, Analytic Bundles 

A fiber bundle < = (E, p, B, F, G) is called a fiber 

bundleofclassC’(r=O,l,... co,w)ifE,E,F 
are differentiable manifolds of class C’, G is a 
Lie group and a transformation group of F of 
class c’, and p and the coordinate functions 
are differentiable mappings of class C”. Bun- 
dles of class Ca are usual G-bundles, and those 
of class C” are real analytic fiber bundles. 
Similarly, complex analytic fiher bundles are 
delïned by the notions of complex manifolds, 
+complex Lie groups, and rholomorphic map- 
pings. For example, the universai bundles 

[(n - 1,0(m)) and 9(2n, U(m)) are real and com- 
plex analytic principal bundles, respectively, 
and the tangent bundle 2(M) of a C’+l (or 
complex) manifold is a C’ (or complex ana- 
lytic) vector bundle. The operations of the 
Whitney sum, etc., are defined analogously for 
these vector bundles. 

The equivalence of c’ (complex analytic) 
bundles is detïned by means of bundle map- 

pings that are C’-differentiable (holomorphic). 
Bundles of class C’ (r < CO) are classified by C’ 
mappings into a classifying space in the same 

manner as for bundles of class CO. Also, the 
connection of class C? (- 80 Connections) in 
c’ bundles is an important notion. 

For complex analytic bundles, a similar 
classification has been obtained for restricted 
spaces by K. Kodaira, Serre, S. Nakano [S], 
and others. The classification of complex ana- 

lytic bundles over a Stein manifold is reduced 
to that of bundles of class Ca (Oka’s principle 

[SI), and similar results are valid for C”- 
manifolds. The complex analytic (or holo- 
morphic) connection does not necessarily exist, 

and M. F. Atiyah [IO] found the condition 
for its existence and its relation with Chern 

classes. 
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P. Microbundles 

A system x: BLE2 B of topological spaces E, 
B and continuous mappings i, j is called an n- 
dimensional microbundle over B if for each 
be B, there exist a neighborhood U of b, a 
neighborhood I’ of i(U), and a homeomor- 
phismh:VsUxR”withhoiIU=i,,jII/=p,o 

h(i,:U-UxOcUxR”,andp,:UxR”~Uis 

the projection). Let H,(n) be the topological 
group of a11 homeomorphisms of R” onto itself 
fïxing the origin with compact-open topology. 

Then the equivalence classes of n-dimensional 
microbundles over B are naturally in one-to- 
one correspondence with the equivalence 
classes of H,(n)-bundes with base space B and 
fiber R” [13]. 

In the category of polyhedra and PL (tpiece- 
wise hnear) mappings, the notion of a PL 
microbundle cari be defïned in the same man- 
ner. The structural group of n-dimensional PL 
microbundles is defïned, in a generalized sense, 

as a complete tsemi-simplicial complex [ 111. 
The tangent PL microbundle is delïned for any 

ttopological (PL) manifold. J. Milnor classified 
tsmoothings of PL manifolds by means of PL 
microbundles [ 111 and then showed that the 
ttangent vector bundles and its +Pontryagin 
classes of smooth manifolds are not topologi- 
cally invariant [ 121. 

For a +PL embedding f: M+N between PL 
manifolds, if there is a neighborhood E of 

f(M) in N and a PL mapping p: E+M SO that 
a diagram v:M<E%M is a PL microbundle, 
then v is called a normal PL microbundle of $ 
In this case, f is tlocally flat. 

There is a locally flat PL embedding be- 
tween PL manifolds which admits no normal 
PL microbundle [14]. 

Q. Block Bundles 

As the normal bundle theory for locally flat 
PL embeddings of PL manifolds, the concept 

of block bundle was introduced independently 
by C. P. Rourke and B. J. Sanderson [lS], M. 

Kato 1161, and C. Morlet [17]. Let E be a 
tpolyhedron, and let K be a cell complex. A 
set jEcI 0~ K} of PL balls in E indexed on K is 
called a q-block structure of E if the following 
three conditions are satistïed: (1) lJoEK E, = E; 
(2) for each oc K, there is a +PL homeomor- 
phism h,: o x Iq+E, such that h,(z x Iq) = E, 
for each face r of cr, where 1 = [ -1, 11; and (3) if 

E,nE,#@,then E,nE,=E,,where~=atlp. 
For crû K, E, is called the block over o, and 

h, in (2) is called a trivialization of E,. Then a 

triple (E, K, {E, 1 ~TEK}) is referred to as a q- 
block bundle over K and is denoted by t/K. 
Another block bundle <‘/K =(E’, K, {EL 1 crû 
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K}) over the same complex K is said to be 

isomorphic with </K if there is a PL homeo- 
morphism g:E-E’, called an isomorphism, 
such that g(E,) = Ec (a~ K). A PL embedding 
i : 1 K I+ E is a zero-section of t/K if for each 
TEK, there is a trivialization &:a x 14-t&, 

such that h,(x, 0) = i(x) (x E 0). In this case 
we say that t/K is a block bundle with a zero- 
section i: 1 K l+ E. There is a unique zero- 

section of t/K up to isomorphism of t/K onto 
itself. For every tlocally flat PL embedding 
between PL manifolds M and W of codimen- 
sion q and for any ce11 division K of M, a 
tderived neighborhood N of f(M) in W admits 
a unique q-block bundle v/K = (N, K, {No 1 o E 

K}) with f: M+ N as a zero-section up to 
isomorphism respecting the zero-section [lS]. 
The block bundle v/K is called a normal hlock 
hundle off: M + W. 
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A. General Remarks 

J.-P. Serre [l] generalized the concept of liber 
bundles to that of liber spaces by utilizing the 
covering homotopy property (- Section B). 

He applied the theory of tspectral sequences, 
due to J. Leray, to the (cubic) tsingular (CO)- 

homology groups of liber spaces. These are 
quite useful for determining (co)homology 

structures and homotopy groups of topo- 
logical spaces, and are now of fundamental 

importance in algebraic topology. 

B. Definitions 

Let p:E+B be a continuous mapping between 
topological spaces, and let X be a topological 

space. Then we say that p has the covering 
homotopy property with respect to X if for any 

mapping f: X+ E and thomotopy gl: X+B 
(O<t< 1) with pof=g,, there is a homotopy 
f,:X+E(O<t<l)withf,=fandpof,=g,. 

We cal1 (E, p, B) a fiber space (or fihration) if p 
has the covering homotopy property with 
respect toeverycube I”={(x,,...,x,))O<xi< 
l}, n = 0, 1, . (then p has the covering homo- 

topy property with respect to every tCW 
complex). Then E is called the total space, 
p the projection, B the hase space, and Fb = 
p-‘(b) the fiber over bEB. 

Let E, B, F be topological spaces and p: E+ 
B a continuous mapping. We cal1 (E, p, B, F) 
a locally trivial fiber space if for each b E B, 

there exist an open neighborhood U of b and 
a homeomorphism cp: U x F-p-‘(U) with 
po<p(b’,y)=b’ (b’e U,~EF). In this case, p has 
the covering homotopy property with respect 
to each tparacompact space; hence (E, p, B) is a 
liber space. A tlïber bundle is clearly a locally 
trivial liber space. 
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C. Path Spaces 

Another important example of a lïber space is 
a path space. A path in a topological space 
X is a continuous mapping w: 1 +X (I= 
[O, 11). Given subsets A, and A, of X, the 
path space Q(X; A,, A,) is the space of a11 
paths w:I+X satisfying w(E)EA, (E=O, 1) 
topologized by +Compact-open topology. De- 
fine p,:ti(X;A,,A,)+A, by p,(w)=w(~) (E= 
0,l). Then (Q(X; A,, A,), pE, A,) is a fïber space; 

in fact, pE has the covering homotopy property 
with respect to every topological space. In 

particular, the total space of the tïber space 
(n(X; X, *), po, X) (* EX) is tcontractible, and 
the tïber p;‘( *) = fi(X; *, *) = RX over * is the 

tloop space of X with base point *. For a 
continuous mapping f: Y-*X, consider the 

vace Es={(~, +V)E Y x CW;X,X)If(y)=w(O)} 
and the continuous mapping p:E,+X de- 

fined by ~(y, w) = w(1). Then Y c E,, and Y is 
a tdeformation retract of E,; furthermore, 

(E,, p, X) is a fiber space with f = p 1 Y. 

D. Homotopy Groups of Fiher Spaces 

For thomotopy groups of fiber spaces, the 

Hurewicz-Steenrod isomorphism theorem 
holds: Let (E, p, B) be a fiber space and F = 

p-‘( *) the fïber over the base point *E B. 
Then p* : n,(E, F)+z,,(B) is an isomorphism for 

n > 2 and a bijection for n = 1. By this theorem, 
we have the homotopy exact sequence of a iïber 
space: 

. ..-7c”+l (B)-%,(F)-~Tc,(E)%~,(B)+.... 

Furthermore, the more general exact sequence 

. ..+n(z.RB),wc(Z;F),-rrr(Z;E),%(Z;B), 

is valid for each CW complex Z, where 
n(Z; X), denotes the thomotopy set of map- 
pings from Z to X relative to the base point. 

Example (1). A cross section of a tïber space 
(E, p, B) is a continuous mapping f: B-t E with 
p of= 1. If (E, p, B) has a +Cross section or the 

fiber F is a tretract of E, then z,(E)= x,(B) + 
n,(F). If F is contractible in E, then z,(B) E 

n,(E)+n,-,(F)(nH). 
Example (2). (E, p, B) is called an n- 

connective fiber space if B is tarcwise connec- 
ted, E is tn-connected, and p* :X~(E)+~~~(B) is 
an isomorphism, for i > n. For each arcwise 
connected space B and integer n, there is such 
a fiber space. 

Example (3). For a CW complex X, there are 

topological spaces X,, and continuous map- 
pings f,:X+X,, qn+,:X,+l+X, (n=O, 1, . ..) 

with the following four properties: (i) X, (0 6 
n < m) is a point if X is m-connected; (ii) f.*: 

ni(X)gxi(X,) (i<n); (iii) (X,,q,,,X,-,) is a tïber 

576 

space, and its fiber is an +Eilenberg-MacLane 

space K(n,(X), n); (iv) q, o f, is thomotopic to 
fnml. Such a system {X., f,, q,,} is called the 
Postnikov system of X and is in a sense con- 
sidered a decomposition of X into Eilenberg- 
MacLane spaces. 

E. Spectral Sequences of Fiber Spaces 

The cohomological properties of lïber spaces 
are obtained mainly from the following results 

(which are valid similarly for homology except 
for properties of products). Assume that the 
base space B of a given tïber space (E, p, B) is 
kimply connected and the tïber F=p-‘( *) is 
arcwise connected, and let R be a commuta- 
tive ring with unit. Then the spectral sequence 
(of singular cohomology) of the tïber space 
(E, p, B) (with coefficients in R) is detïned to be 

a sequence {E,, d,} satisfying the following 
properties: 
(i) E, = &,, E1,q are bigraded R-modules, and 
d,= &,qdp,‘J are R-linear differentials such that 
d,(,FW) c E7+V-r+l, 

(ii) EF;\ = KerdP,‘J/Im dpmr,q+r-l 

that E,,, =H(É,). 
r , which means 

(iii) Efxq = 0 for p < 0 or q < 0, Ej’.q = E” = . . 
= Em” for r > max(p, q + 1). 
(iv) E, has a product for which Epq. E$S~’ c 
E~ip’~qtq’ and d,(u. u)=(d,u). v+( -l)P+qu. 
d,u (ut Efsq). Furthermore, the induced prod- 
uct in H(E,) coincides with the product in 

C)+Lm is the tbigraded module associated with 
some filtration of the cohomology module 

H*(E;R);thatis,H”(E;R)=D”~“~D’~“~’~... 
3Dn.03D”+1.-1=0 and ,,774=DP.I/DP+~.4-1. 

Furthermore, the +cup product Q in H*(E; R) 
satisfles DP-4 v DP’,4’ c DP+P’x4+4’ and coincides 
with the given product in E,. 
(vi) E;.q = HP(B; Hq(F; R)), and the product 
in E, coincides with the cup product in 
H*(B;H*(F; R)). 
(vii) The composition of H”(B; R) = E;*‘+ E~V’ 
+...+E,+, - m n,o -E”.o=D”,o c H”(E; R) is equal to 
p*, and the composition of H”(E; R) = Dos”+ 
E”.O=EO.” 

a> n+2 c . . c Ei,” c Ei,” = H”(F; R) is 

equal to i* (i: F c E), where each + is the 
projection onto the quotient module. In the 
sequence 

H”-‘(F; R)%“(E, F; R)h”(B; R), 

we have a*-‘(Imp*)= En*“~‘, Coimp*=Ei*‘, 
and d,: Eisn~’ -, E:,’ is equal to the trans- 
gression z*=p*~108*:a*~1(Imp*)~Coim 
p*. Each element of a*-‘(Imp*) is called 
transgressive. 

In the following examples, we assume that R 
is a principal ideal ring. 

Example (4). Let k be a commutative 



511 

lïeld, and assume that dim, H,(B; k) and 
dim, H,(F; k) are finite. Then for the tPoincaré 
polynomial P,r(t)=x,b,,t”, b,=dim,H,(X; k), 

we have PE(t)=PB(t)PF(t)-(1 + t)cp(t), where 
<p(t) is a polynomial with nonnegative coeffi- 
cients (Leray). In particular, for the tEuler 

characteristic x(X) = Px( -l), we have x(E) 
=x(B)x(F). Also, if &:I&(F; k)+H,(E; k) is 
monomorphic for each n 2 0, then PJi) = 

PB@P&). 
Example (5). Isomorphism theorem: If 

H,(B;R)=O(O<n<r)andH,(F;R)=O(O<n 
<s), then p* : H,,(E, F; R)-+H,,(B; R) is isomor- 
phic for 0 < n <r f s and epimorphic for n = r + 
s, and we have the following homology exact 

sequence: 

. ..+H.(F;R)%H,(E;R)%f,(B;R) 

hml(F;R)+..., n<r+s 

(similarly for the cohomology). 
Example (6). Assume that H”(F; R)g 

H”(S’; R) (S’ is the r-sphere, r 2 1). Let g = Mp 
be the tmapping cylinder of p: E+B and fi: 
.i+B be the continuous mapping defined 
by p. Then the Thom-Gysin isomorphism Lj: 
H”-‘~‘(B;R)~H”(E”,E;R)(n~O) with g(c()= 
P*(U)~ y(1) holds (- 114 Differential Top- 

ology G). Also, we have the Gysin exact 
sequence: 

. ..+H”(B; R)%(E; R)+H”-‘(B; R) 

where g satislïes ,9(a) = c( - 0 = 0~ c1 (a = 

g(l)EH’+i(B; R)). Here R is equal to the 
image of a generator of H’(F; R) = R by the 
transgression r*, and 251= 0 if Y is even. (These 
results hold also for r = 0 and R = Z, .) 

Example (7). Assume that H”(B; R) g 
IF(S’; R) (r > 2). Then we have H”-‘(F; R) cz 
H”(E, F; R) (n > 0) and the Wang exact 

sequence: 

. . +H”(E; R)h”(F; R) 

where B satislïes Q(C~ - 8) = @(CC) -/? + 
( -l)n(r-l)a - W’) (a, BE fW’; RI). 

Example (8). For a lïeld k of odd character- 
istic, if H”(E; k) = 0 (n > 0) and the algebra 
H*(F; k) is generated by a finite number of 
elements of odd degree, then H*(F; k)g 
Ak(x,, . , xr) (the texterior algebra) and 

H*(B; k)r k[y,, . . . ,yJ, where yi=z*(xi) (A. 
Borel). 
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A. Definition 

A set K having at least two elements is called a 
field if two operations, called taddition (+) 
and tmultiplication (.), are delïned in K and 
satisfy the following three axioms. 

(1) For any two elements a, b of K, the sum 
a + b is delïned; the associative law (a + b) + 
c = a + (b + c) and the commutative law a + b = 
b + a hold; and there exists for arbitrary a, b 

a unique element x such that a + x = b; that is, 
K is an tAbelian group with respect to the ad- 
dition (the tidentity element of this group is 

denoted by 0 and is called the zero element of 

K). 
(2) For any two elements a, b of K, the prod- 

uct ab (= a. b) is defined; the associative law 

(ab)c = a(bc) and the commutative law ub = bu 
hold; and there exists for arbitrary a, b with 

a # 0 a unique element x such that ux = b, that 
is, the set K* of a11 nonzero elements of K is 
an Abelian group with respect to multiplica- 
tion. K* is called the multiplicative group of 

K, while the identity element of K* is denoted 
by 1 and is called the unity element (unit ele- 
ment or identity element) of K. 

(3) The distributive law a(b + c) = ub + UC 
holds. In other words, a lïeld is a tcummuta- 

tive ring whose nonzero elements form a 
group with respect to multiplication. 

A noncommutative ring whose nonzero 
elements form a group is called a noncom- 
mutative fïeld (skew tïeld or s-field). It should 
be noted that sometimes a field is delïned as a 
ring whose nonzero elements form a group 

without assuming the commutativity of that 
group, and in this case our “lïeld” delïned 
before is called a commutative lïeld. (The term 
“skew lïeld” is sometimes used to mean either 
a commutative or a noncommutative lïeld.) In 
this article we limit ourselves to commutative 
tïelds (for noncommutative fields - 29 As- 
sociative Algebras). 
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B. General Properties 

Since a field K is a commutative ring, we have 

properties such as a0 = Oa = 0, (- a)b = a( - b) 
= -ab for elements a, b in K. If a kubring k of 
K is a tïeld, we say that k is a subfield of K or 
K is an overfïeld (extension field or simply 

extension) of k. If a lïeld K has no subfield 
other than K, K is called a prime field. 

A map S of a tïeld K into another tïeld K’ is 

called a (lïeld) homomorphism if it is a ring 
homomorphism, i.e., if it satistïes f(a + b) = 
f(u) +f(b), f(ub) =f(a)f(b). Since a tïeld is 
+Simple as a ring, every (lïeld) homomorphism 
is an injection unless it maps everything to 
zero. A homomorphism of K into K’ is called 
an isomorphism if it is a bijection, and K and 
K’ are called isomorphic if there exists an 
isomorphism of K onto K’. An isomorphism of 

K onto itself is called an automorphism of K. 

If there is a natural number n such that the 
n 

sum nl = i+...-ti of the unity element 1 is 0, 
then the minimum of such n is a prime number 
p, called the characteristic of K. On the other 
hand, if there is no natural number n such that 
nl = 0, we say that the characteristic of K is 0. 

C. Examples of Fields 

The rational number lïeld Q consisting of a11 
rational numbers, the real number fïeld R 
consisting of a11 real numbers, and the complex 
number tïeld C consisting of a11 complex num- 

bers, are all fields of characteristic 0. A subtïeld 
of the complex number tïeld C is called a num- 
ber field. The rational number field is a prime 
field, and every prime lïeld of characteristic 0 is 
isomorphic to the rational number tïeld. For 
the ring Z of a11 rational integers, the residue 
class ring modula a prime number p is a lïeld 
Z/pZ = (0, 1,2, , p - 1 (mod p)} of character- 
istic p, called the residue class field for p. Thus 
Z/pZ is a prime lïeld, and every prime lïeld of 

characteristic p is isomorphic to Z/pZ. If the 
number of the elements of a lïeld K is finite, K 
is called a finite field. Z/pZ is an example of a 
finite field. 

D. Extensions of a Field 

In order to express that K is an extension field 
of k, we often use the notation Klk. Subfields 
of K containing k are called intermediate tïelds 

of KJk. Consider two extensions K,lk, and 
K,/k,, and let <p:K,pK, be an isomorphism 

which induces an isomorphism $: k, +k,. 
Then we cal1 <p an extension of $. Suppose that 
k,, K, are given tïelds and K, contains a 

sublïeld k, isomorphic to k, Then there exist 
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an extension field K, of k, and an isomor- 
phism cp : K i -*K, which is an extension of the 
given isomorphism $ : k, +k2; construction of 
the field K, is often called the embedding of 
k, into K,. When K, and K, are extensions 
of k, an isomorphism : K 1 +K, is called a k- 
isomorphism if it leaves every element of k 
invariant. 

In an extension K/k, let S be a subset of K. 

The smallest intermediate tïeld of K/k contain- 
ing S is called the field obtained by adjoining S 
to k or the lïeld generated by S over k, denoted 

by k(S). The lïeld k(S) consists of those ele- 
ments in K each of which is a rational ex- 
pression in a tïnite number of elements of S 
with coefficients in k. An extension tïeld k(t) 

obtained by adjoining a single element t to k is 
called a simple extension of k, and in this case t 
is called a primitive element of the extension. 
The trational function field k(X) with coeflï- 
tient lïeld k is a simple extension of k with a 

primitive element X. 
When sublïelds k, (2~ A) of a Iïeld K are 

given, the smallest sublïeld of K containing a11 
these subfields exists and is called the com- 
posite Beld of the k,. 

E. Algebraic and Transcendental Extensions 

An element CI of an extension field K of a Iïeld 
k is called an algebraic element over k if tl is a 
+zero point of a nonzero polynomial, say, f(X) 
= a, + a, X + . + a,X” with coefficients in k. 

If t( is not algebraic over k, then c( is called a 
transcendental element over k. An algebraic 
element c( is always a root of an irreducible 
polynomial over k which is uniquely deter- 
mined up to a constant factor (ck*) and is 
called the minimal polynomial of c( over k. K is 
called an algebraic extension of k if a11 elements 
of K are algebraic over k; otherwise we cal1 K 
a transcendental extension of k. If K 1 is an 
algebraic extension of K and K is an algebraic 
extension of k, then K, is also an algebraic 

extension of k. In an arbitrary extension lïeld 
K of k, the set of a11 algebraic elements over 
k forms an algebraic extension field of k. A 
simple extension k(t) with a transcendental 
element t is isomorphic to the rational func- 
tion field of one variable with coefftcient tïeld 
k. If t is an algebraic element over k, k(t) is 
isomorphic to the tresidue class fïeld of the 
polynomial ring k[X] modula the minimal 
polynomial f(X) of t over k. 

F. Finite Extensions 

An extension fïeld K of a field k is called a 
Bnite extension if K has no inlïnite set of ele- 
ments that are tlinearly independent over k, 
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i.e., if K is a finite-dimensional linear space 

over k. The dimension of the linear space over 
k is called the degree of K over k and is de- 
noted by (K : k) (or [K : k]). If K is a finite 

extension of k and L is a Imite extension of K, 
then L is also a fmite extension of k and (L : K) 
(K : k) = (L: k). Every fïnite extension fïeld of k 
is an algebraic extension of k and is obtained 

by adjoining a fïnite number of algebraic 
elements to k. Conversely, every field obtained 
by adjoining a fïnite number of algebraic 
elements to k is a fmite extension of k. If K = 
k(a) with an algebraic element c(, then (K : k) is 
equal to the degree of the minimal polynomial 
of c( over k, also called the degree of tl over k. 

Every element of k(a) is expressed as a poly- 
nomial in tu with coefficients in k. On the other 
hand, for any nonconstant polynomial f(X) of 
k[X] there exists a simple extension k(a) such 

that CL is a root of f(X). 

G. Normal Extensions 

An algebraic extension field K of a field k is 
called a normal extension of k if every irreduc- 

ible polynomial of k[X] which has a root in 
K cari always be decomposed into a product 
of linear factors in K [Xl. An extension lïeld K 
of k is called a splitting tïeld of a (nonconstant) 
polynomial ~(X)E k[X] if f(X) cari be decom- 
posed as a product of Iinear polynomials, i.e., 
f(X)=c(X-a,)(X-a,)...(X-a,), cEk, aiEK. 
A splitting field K of f(X) (~(X)E k[X]) is 
called a minimal splitting field of f(X) if any 

proper subfïeld L of K (K 3 L 3 k) is not a 
splitting field of f(X). A minimal splitting field 
of f(X) is obtained by adjoining a11 the zero 
points of f(X). A fïnite extension tïeld of k is a 

normal extension if and only if it is a minimal 
splitting fïeld of a polynomial of k[X]. For 
any given (nonconstant) polynomial f(X) E 
k[X], there exists a minimal splitting field of 
f(X), and a11 minimal splitting fields of f(X) 
are k-isomorphic. 

H. Separable and Inseparable Extensions 

An algebraic element a over k is called a sepa- 
rable element or an inseparable element over k 

according as the minimal polynomial of a over 
k is tseparable or tinseparable. An algebraic 
extension K of k is called a separable extension 
of k if all the elements of K are separable over 
k; otherwise, K is called an inseparable exten- 
sion. An element a is separable with respect 
to k if and only if the minimal polynomial of 
c( over k has no double root in its splitting 
field. If a is inseparable, then k has nonzero 

characteristic p, and the minimal polyno- 
mial f(X) of a cari be decomposed as f(X) = 
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(X-CC,)~‘(X-~J~ . . . (X-a,,$“, r > 1, where 
al, az, . , c(, are distinct roots of f(X) in its 

splitting lïeld; between the degree n of f(X) 
and the number m of distinct roots of ,f(X), 
the relation n = mp’ holds. In particular, if 
ap*E k for some r, we cal1 a a purely inseparable 
element over k. An algebraic extension of 
k is called purely inseparable if a11 elements 
of the field are purely inseparable over k. In 
an algebraic extension K of k the set of a11 

separable elements forms an intermediate 
field K, of K/k. The field K, is called the 
maximal separable extension of k in K. If K is 
inseparable over k. i.e., if K #K,, then the 
characteristic of k is p #O, and K is purely in- 

separable over K,. The degrees d = [K,: k] 
and f=[K:K,,] are denoted by [K:k], and 
[K : kli, respectively. A separable extension 
of a separable extension of k is also separable 
over k, and every finite separable extension 
of k is a simple extension. 

If no inseparable irreducible polynomial in 

k[X] exists, we cal1 k a Perfect field; otherwise, 
an imperfect lïeld. Every field of characteristic 
0 is a Perfect fïeld. A fïeld of characteristic p 
( # 0) is Perfect if and only if for each a E k the 
polynomial Xp - a has a root in k. Every alge- 

brait extension of a Perfect tïeld is a sepa- 
rable extension and a Perfect field. Any imper- 
fect tïeld has an inseparable, in fact purely 
inseparable, proper extension. 

1. Algebraically Closed Fields 

If every nonconstant polynomial of k[X] cari 
be decomposed into a product of linear poly- 

nomials of k[X], or equivalently, if every 
irreducible polynomial of k[X] is linear, k is 
called an algebraically closed fiel& k is alge- 
braically closed if and only if k has no alge- 
brait extension tïeld other than k, and hence 
every algebraically closed field is Perfect. 
For any given tïeld k there exists an algebrai- 
cally closed algebraic extension field of k 
unique up to k-isomorphisms (E. Steinitz); 

hence we cal1 such a fïeld the algebraic closure 
of k. TO proceed further, suppose that we are 
given a tïeld k and its extension K. If there is 
no algebraic element of K over k outside of k, 
i.e., if k is the intersection of K and the alge- 

brait closure of k, then we say that k is alge- 
braically closed in K. The complex number 

tïeld is an algebraically closed lïeld (C. F. 
Gauss’s fundamental theorem of algebra; 
- 10 Algebraic Equations). 

J. Conjugates 

Let k be a field and K an algebraic extension 
of k. Two elements a, fl of K are called conju- 
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gate over k if they are roots of the same irre- 
ducible polynomial of k[X] (or equivalently, 

if the minimal polynomials of c( and fl with 
respect to k coincide); in this case we cal1 the 
subiïelds k(a), k(p) conjugate fïelds over k. The 
conjugate fïelds k(a) and k(p) are k-isomorphic 
under an isomorphism e such that o(a) = 8. In 

particular, if K is a normal extension of k, the 
number of conjugate elements of an element c( 
of K is the number of distinct roots of the 
minimal polynomial ,f(X) of CI, which is inde- 
pendent of the choice of a normal extension K 
containing k. The element CI is separable if and 
only if the number of conjugate elements in K 

is the same as the degree of f(X). On the other 
hand, k(a) is normal over k if and only if k(a) 

coincides with all its conjugate fïelds. 
Let c( be a separable algebraic element over 

k, and let a, = tl, x2, , CI,, be conjugate ele- 

ments of u over k. The product A = a1 ~1~. ct,, 
and sum B=ai +a,+ . ..+cc. are elements of k. 
Indeed, iff(X)=X”+c,X”~‘+ . ..+c. is the 
minimal polynomial of c( with respect to k, we 
have A=(-l)“c,, B= -ci, and A and B are 
called the norm and the trace of c(, respectively, 
denoted by A = N(a), B = T~(N). Let K be a 

finite separable extension of degree n over k, 
and let c( be an element of K. Then the degree 
m of the minimal polynomial of c( is a divisor 
of n; that is, n = mr with a positive integer r. 
We detïne the norm and the trace of c( with 

respect to K/k by N,,,(a) = N(a)‘, Tr&a) = 
rTr(a), respectively. Then these quantities 

satisfy &&44 = ~KIk(4N&B), TrKl& + B) = 
TrKII<(ct)+ 7+,,,(b) for tl, IJEK. (For the Galois 
theory of algebraic extensions - 172 Galois 

Theory.) 

K. Transcendental Extensions 

Let K be an extension of k and ui, , u, be 

elements of K. An element u of K is said to 
be algebraically dependent on the elements 
ui, u2, . , u, if v is algebraic over the fïeld 

k(u,, u2,. , un). A subset S of K is called 
algebraically independent over k if no u ES is 
algebraically dependent on a finite number 
of elements of S different from u itself; S is 

called a transcendence basis of K over k if S is 
algebraically independent and K is algebraic 
over k(S). Furthermore, if K is separable over 
k(S), then S is called a separating transcendence 
basis of K over k. There always exists an alge- 

braically independent basis of K over k, and 
the tcardinal number of S depends only on K 
and k; this cardinal number is called the tran- 

scendence degree (or degree of transcendency) 
of K over k. (When S is an intïnite set, we 

sometimes say that the transcendence degree is 
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iniïnite.) In particular, if K = k(S) with an 

algebraically independent S, K is called a 
purely transcendental extension of k. 

An extension K of k is called a separably 
generated extension, or simply a separable 
extension, if every iïnitely generated intermedi- 
ate field of K/k has a separating transcendence 
basis over k. If K itself has a separating tran- 

scendence basis over k, then K is separably 
generated, but not conversely. 

A purely transcendental extension tïeld of k 
having a finite transcendence degree FI is also 
called a rational function tïeld in M variables 
over k, and a fïnite extension of such a rational 
function tïeld is called an algebraic function 
field in n variables over k. 

Let K and L be extension fields of k, both 
contained in a common extension fïeld. We 
say that K and L are linearly disjoint over k if 

every subset of K linearly independent over k 
is also linearly independent over L, or equiva- 
lently, if every subset of L linearly independent 
over k is also linearly independent over K. An 
algebraic function field K = k(x,, x2, ,x,) 
over k (whose transcendence degree is <n) is 
called a regular extension of k if K and the 
algebraic closure k of k are linearly disjoint. In 
order that K be regular over k it is necessary 
and sufficient that k be algebraically closed in 
K and that K be separably generated over k. 

L. Derivations 

A map D of a tïeld K into itself is called a 
derivation of K if it satisfies D(a + b) = D(a) + 

D(b) and D(ab)=aD(b)+bD(a) for all a,b~K. 
The set of elements c of K for which D(c) = 
0 is a subfield. If the characteristic of K is 
p( #O), then D(xp)=O for all XEK. Let k be a 
subiïeld of K. A derivation D of K is called a 
derivation over k if D(c) = 0 for all c E k; the 
totality of derivations over k is a tk-module. If 
K = k(x,, x2, , x,) is an algebraic function 

iïeld over k, then the k-module of derivations 

over k has finite dimension s( < n) and we 
cari choose s suitable elements ui , u2, , u, of 
K such that K is separably algebraic over 
k(u u i, 2, , us). Generally, the transcendence 
degree r of K over k does not exceed s, and K 
is separably generated over k if and only if 

r=s. 

M. Finite Fields 

Finite fïelds were first considered by E. Galois 

(1830) SO they are also called Galois fields. 
There is no imite noncommutative tïeld (Wed- 
derburn’s theorem, J. H. M. Wedderburn, 
Trans. Amer. Math. Soc., 6 (1905)). A simple 
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proof for this was given by E. Witt (Abh. Math. 
Sem. Unio. Hamburg, 8 (1931)). The character- 

istic of a finite fïeld is a prime p, and the num- 
ber of elements of the fïeld is a power of p. 

Conversely, for any given prime number p and 
natural number c(, there exists a tïnite tïeld 
with p” elements. Such a fïeld is unique up to 
isomorphism, which we denote by GF(p”) or 
F,(q=p”). For any positive integer m, GF(p”“) 
is an extension fïeld of GF(pa) of degree m and 
a tcyclic extension. Every element a of GF(p”) 

satistïes ap” = a; hence a has its pth root in 
GF(p”). Therefore every tïnite field is Perfect. 
The multiplicative group of GF(p”) is a cyclic 
group of order p” - 1. 

N. Ordered Fields and Real Fields 

A tïeld K is called an ordered field if there is 
given a +total order in K such that a > b im- 
plies a+c>b+c for ah c and a>b, c>O im- 
plies ac > hc. The characteristic of an ordered 
fïeld is always 0. An element a of K is called a 

positive element or a negative element accord- 
ing as a > 0 or a < 0. For an element a of K the 
absolute value of a, denoted by lai, is a or -a 
according as a 2 0 or a < 0. If we defïne neigh- 
borhoods ofa by the sets {xla-e<x<a+s} 
with positive elements E, K becomes a +Haus- 
dorff space. If, for any two positive elements 
a, b of K, there exists a natural number n such 
that nu > b, then we cal1 K an Archimedean 

ordered fïeld. Two ordered fïelds are called 
similarly isomorphic if there exists an isomor- 
phism between them under which positive 

elements are always mapped to positive ele- 
ments. The rational number fïeld and the 
real number tïeld are examples of Archime- 
dean ordered fïelds, while every Archimedean 
ordered field is similarly isomorphic to a sub- 
tïeld of the real number tïeld. (For the struc- 
ture of non-Archimedean ordered tïelds, see 
[SI.) A field k is called a formally real field (or 

simply real field) if - 1 (1 is the unity element 
of k) cannot be expressed as a lïnite sum of 
squares of elements of k. The real number field 
is a mode1 of formally real ftelds. More gener- 

ally, every ordered lïeld is a formally real field. 
A formally real field is called a real closed field 
if no proper algebraic extension of it is a for- 

mally real tïeld. The real number tïeld is a real 
closed field. The algebraic closure of a real 

closed field is obtained by adjoining a root of 
the polynomial X2 + 1. If a is a nonzero ele- 

ment of a real closed lïeld, then either a or -a 
cari be a square of an element of the tïeld. 
Every real closed tïeld cari be made an ordered 
tïeld in a unique way, namely, by defining 

squares of nonzero elements to be positive 
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elements. Since it is known that every formally 

real tïeld is a subtïeld of a real closed tïeld, it 
follows that every formally real field is an 

ordered field and therefore is of characteristic 
0. The problem of constructing an ordered 
field out of a formally real tïeld is closely re- 
lated to the existence of valuations of a certain 
type [S]. The notion of formally real fields 
was introduced by E. Artin (Abh. Math. Sem. 

Univ. Hamburg, 5 (1927)). By making use of the 
theory of formally real fïelds, Artin succeeded 
in solving afftrmatively +Hilbert’s 17th prob- 
lem, which asked whether every positive 

delïnite rational expression (i.e., a rational 
expression with real coefftcients that takes 
positive values for a11 real variables) cari be 
expressed as a sum of squares of rational ex- 
pressions. More precisely, it was shown by A. 
Ptïster that every positive detïnite function in 

NX i, . . . , X,) is a sum of at most 2” squares. 
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A. History 

When a quantity $(xX such as velocity, is 
defïned at every point x in a certain region of 
a space, we say that a fïeld of the quantity $ 
is given. This general concept is used in many 
branches of science. Here we confine ourselves 
to some branches of physics, in particular to 
the quantum theory of tïelds, which describes 

telementary particles. 

The ttheories of elasticity and thydro- 
dynamics (in particular, concerning +Euler’s 
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equation of motion) deal with displacement 
and velocity fields, respectively. However, a 
fïeld in a vacuum (ether), which is quite differ- 
ent from a field in a space fïlled with matter, 

fïrst became a subject of physics in telectro- 
magnetism. M. Faraday (1837) introduced the 
electromagnetic fteld and discovered its funda- 
mental laws, and J. C. Maxwell (1837) com- 

pleted the mathematical formulation. On the 
basis of this formalism, A. Einstein (1905) 
established the theory of trelativity and later 
developed the general theories of relativity and 

of gravity. 
Although quantum theory originated from 

the problem of blackbody radiation, the quan- 
tum theory of the electromagnetic field was 
first developed by P. A. M. Dirac (1927) after 

the development of tquantum mechanics. 
Along similar lines P. Jordan and E. P. Wigner 
(1927) quantized the matter wave (electron 

tïeld), and W. Heisenberg and W. Pauli (1929) 
developed the quantum theory of wave tïelds 

in general. Subsequently, Jordan and Pauli 
(1927) Pauli (1939) S. Tomonaga (1943), J. 

Schwinger (1948) and others reformulated the 
theory in a relativistically covariant manner. 
Quantum electrodynamics, dealing with an 
electromagnetic fteld interacting with electrons 
(and positrons), has given excellent agreement 

with experimental measurements when for- 
mulated in this way. Divergence diffrculties 
inherent to quantized tïeld theory were by- 

passed by the renormalization procedure of 
Tomonaga, Schwinger, R. P. Feynman, and F. 
J. Dyson (1947). 

On the other hand, H. Yukawa (1934) ap- 
plied the concept of the quantized tïeld to the 
interpretation of nuclear force and predicted 
the existence of n-mesons. Many kinds of new 

particles have since been found, including 7c- 
mesons and muons. The iïeld theory of n- 
mesons cari explain the qualitative features of 

the meson-nucleon system. Similar theories 
cari be formulated for other types of unstable 
particles that have been found in cosmic rays 

since 1949. 
During the progress of meson theory, vari- 

ous types of tïelds were investigated, and a 
general theory of elementary particles was 

developed. Dirac (1936) proposed a general 
wave equation for elementary particles, and 
Pauli and M. Fierz (1939) proved the con- 
nection of spin and statistics (- the end of 
Section D). Schwinger (195 1) derived quantum- 

mechanical equations of motion and commu- 

tation relations from a unitïed variational 
principle. For the cases where no interaction is 
present, a general theory of elementary par- 
ticles consistent with the requirements of rela- 

tivity and of quantum theory was established 
as the theory of free fields. 
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B. Relativistically Covariant Classical Fields 

Relativistically covariant fïelds q;(x) on the 
level of classical theory are functions of the 

space-time point x with either real or com- 
plex values depending on the index tl (which 
distinguishes different tïelds) [ 11. A fïnite- 

dimensional representation D” of SL(2, C) (- 
258 Lorentz Group) on either a real or com- 
plex vector space is assigned to each CI, and 
the index r of q,!(x) refers to components in 
this representation space. Each mode1 is 
specified in terms of a Lagrangian density 
y(x) that is a function (typically a polynomial) 
of p,!(x), a,,vr(x) (8, denoting a/axU, p=O, 

. . ,3) and their complex conjugates. 9 is 
taken to be invariant under the replacement 

of d(x) and &<pp(x) by C,~akkcpS(4 and 
&D”(A),,A(A)j;a,~~(x)for a11 AeSL(2,C) 
(called the Lorentz invariance of U) and pos- 

sibly under the replacement of p,?(x) and 

ê,d(x) by & Uas<p,%) ad & UmDû,d(x) 
(called an interna1 symmetry). 

The frelds are supposed to satisfy the follow- 
ing partial differential equation, called the tïeld 
equation, and are obtained as the +Euler equa- 
tion of the variational problem for the action 
integral I= S y(x)dx: 

&Y(x)/ê<p,a(x)- ; (a/ax”)(alP(x)/o(a~<(x)) 
p=o 

=o, 

!L’O 

=o 

(the bar indicates the complex conjugate), 
where the second equation is identical to the 
tïrst for a real freld. For complex tïelds. 5!(x) is 
chosen such that 1 = r (possibly except for a 
surface term) in order to ensure that the above 

two equations are complex conjugates of each 
other. 

The invariance of 1 under a Lie group of 
(local and/or volume-preserving point) trans- 
formations of fïelds implies a conservation law 

for a certain quantity (Noether’s theorem; - 
e.g., E. L. Hill, Reu. Med. Phys., 23 (1951)). For 
translational invariance (X”+X’ +a’), the 
energy-momentum (stress) tensor 

T’,(x) 

= -6,3(x)+ 1 {asP(x)la(a,<pP(x))a,<pr(x) 
a,r 

(the complex conjugate terms in a11 equations 
to be suppressed for real tïelds) satistïes the 
differential conservation law C;=, a,T’,(x)=O 

as a consequence of the tïeld equations, which 
in turn implies the time-independence of the 
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following quantity provided that Tk,(x) 
vanishes sufficiently fast at spatial infïnity: 

H= T0,(x)d3x, 
s 

Pk= T0,(X)d3X (xO=t). 
s 

These are the total field Hamiltonian (energy) 
and momentum. 

In a general situation, P”( =&gYPTPpr 
where gPV is the Minkowski metric tensor with 
the signature 1, -1, -1, -1) is not necessarily 
symmetric in p and v. F. J. Belinfante (Physica, 
6 (1939); 7 (1940)) has given a formula (by a 
change of T(x) via so-called 4-divergence) for 

obtaining a symmetrized energy-momentum 
tensor P, for which H and Pk are equal to 
those defmed from the above TP, and for 
which the differential conservation law is 

satisfïed. 
Lorentz invariance implies the conservation 

law x,3,, AP‘““(x) = 0 for the angular momen- 
tum density 

and the time-independence of the total angular 

momentum 

~“2 _ - 
s 

,,,,fO’“d3X (x0 = t), 

where Sf:” is antisymmetric in p, v and D”(A),, 

=&,+&VS~~Y~,,Y/2 for A(A),,=q,,,+c.,, with 
an infinitesimal E,,“. (We have (A(.~)x)~ = 

C,WKx’ ad A(A),,=C,g,,A(A)P,.) 
A continuous one-parameter group U(p) 

of interna1 symmetries implies the conserva- 
tion law C,, &P(x) = 0 for the 4-current den- 
sity (charge (p=O) and current (p= 1,2,3) 

densities) 

and the time-independence of the charge 
lJ”(x)d3x (x’=t), where U’(O)“fl=/2”fl. An 
example of U(p) is the multiplication by 
exp iQ”p (called a gauge transformation of the 
first kind), where Q” is an integer with p = 0 

for real fields q;. 
Examples of Lagrangian densities for non- 

interacting tïelds (called free Lagrangian den- 

sities) are: 

real scalar fïeld: 

(C,“g”‘~,~o(x)~“<p(x)-m2<p(x)2)/2, 
complex scalar fîeld: 

(C,“s”“~~<p(x)~,,cp(x)-m2<p(x)~(x)), 
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Dirac field: 

(6,(x)+= C,&(x)y$, yg=(Y$ are +Dirac’s Y- 
matrices), 

massive real vector tïeld: 

x (~~~,(x)-û”a,(x))+,~C~“~~,(x)A”(x)~ 
PV 

where D” is trivial for scalar tïelds, [l, 0] @ 
[0, 11 for the Dirac tïeld, and [ 1, l] for vector 
fields. 

For interacting tïelds, some interaction parts 
are added to the sum of such free Lagrangian 

densities of relevant helds. Some examples are: 

P(q)(or gq4) interaction: 

WP~N (or sdx)“b 
Yukawa-type interaction: 

SC,,, w4+Ykk(x)A,(x), 
Fermi interactions: 

g Cw GdC V(X)+~~ k%4> rs r 
X(&,. $~‘(x)+sy&!r(x)) 

(Uk = 1 (scalar, no index k), y” (vector, G,,. = gpP.), 
y”~” (tensor, G,,. =gpI<‘gVV.), y5yU (pseudovector, 

G,,, = gpr<.> y5 = iy”y1y2y3), y5 (pseudoscalar, no 
index k). 

C. Heuristic Theory of Quantized Fields 

For free tïelds, a quantization procedure 
similar to the usual quantum mechanics (- 
351 Quantum Mechanics; 377 Second Quan- 
tization) leads to the following type of canon- 

ical commutation or anticommutation rela- 
tions among tïelds (and their fïrst time deriva- 
tives) at time 0; for example, 

real scalar field: 

Cd2 xl, 402 y)1 = id36 - y), 
c4m 4, dO>Y)l- = cm, 4, aKA Y11 - =o, 

Dirac field: 

cim xx bk(O, Y)1 + = &,a3(x -Y), 
cdm Xl> $.a Y)1 + = ccm, 4, im Y)1 + = 0. 

([A,Bli=AB+BA,S,,=Oforr#sandS,,=l, 
d3(x - y) = I& 6(xk - y”).) The free-field equa- 
tions then lead to the following 4-dimensional 
commutation relations: 

real scalar fiel& 

Cdxb P(Y)] = - 4h-y), 
Dirac tïeld: 

[ddx), k(y)+1 + =(C,~i,a, -im4&Mx -Y), 
massive real vector field: 

[A,(x),A,(y)l- =i(g,,+m-*a,a,)A,(x-y). 

Here Ai, is the tinvariant distribution. There is 
a unique representation of such relations for a 
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fïeld (called the Fock representation) with a 

vector fi (called the free vacuum vector) which 

is annihilated by jcp(x)f(x)dx, by J$r(x)f(x)dx 

and 1 $ï(x)f(x) dx, or by 1 A,(x)f(x) dx when- 
ever jeiJ”Xf(x)dx=O for p”>O (here, p.x= 

Cg,,,p’x”), and which is cyclic (i.e., polynomials 
of (smeared-out) lïelds generate a dense subset 

of 0). The free lïelds in the Fock represen- 
tatiog satisfy the Wightman axioms (- Sec- 
tion D). 

In the Fock representation of canonical 
fïelds a translationally invariant vector must 
be a free vacuum vector, up to multiplication 
by a complex number. In order to construct a 
mode1 of a translationally invariant interaction 

among canonical lïelds with a unique vector of 
minimal energy (a vector which is called the 

true or interacting vacuum and which must 
be translationally invariant if unique), one 
must look for some other suitable representa- 
tion. Such a no-go theorem is called Haag’s 

theorem. 
The earliest formulation of interacting quan- 

tized lïelds was developed heuristically by 
forma1 manipulation in the Fock representa- 
tion, described in textbooks of quantum field 

theory [2-61. It cari be mathematically justi- 
fied if the so-called cutoff is introduced by 
limiting the space to a imite volume, possibly 

changing the space into a lattice and smooth- 
ing out fields (effectively cutting off the high- 
energy part of the interaction) (A. M. Jaffe, 0. 
E. Lanford III, and A. S. Wightman, Comm. 
Math. Phys., 15 (1969)). The full theory is then 
expected to be obtained by taking a limit of 
the true vacuum expectation values as various 

cutoff parameters are removed. This is the aim 
of constructive tïeld theory (- Section F), 
which has been achieved for some space-time 
models of dimension 2 and 3. 

In quantum lïeld theory, the S-matrix is 
given in terms of (the mass-shell restriction of 
the Fourier transform of) the vacuum expec- 
tation value of the time-ordered product of 
ftelds, called z-functions (- Section E). In the 
heuristic approach, it is given in terms of the 

following Gell-MannLow formula (its imagi- 
nary time version being mathematically used 
in constructive lïeld theory): If the lïeld C~(X) = 
eiH”“cpo((O,x))e~i”x” with H = Ho + H, (Ho is 
the free Hamiltonian as the generator of the 

time translation for the free fïeld vo(x) and H, 
is the interaction Hamiltonian, such as P(<p,)) 
andxy>...>xz,then 

(Q> cp(Xl) “’ dX”P) 

= Ji-; (eiHTQo, q(x,) cp(x,)emiHTRo) 

/Vo, e -2iHTQO)> 

where fi, is the free vacuum. The numerator 
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cari be written as 

in terms of U(t, s)=ei’H,e-i(t~s)He-isHa and the 

canonical lïeld <p. at time 0. The covariant 
perturbation series due to Tomonaga, Schwin- 
ger, Feynman, and Dyson is obtained by sub- 
stituting the following expansion, which is the 
iteration of the Duhamel formula: 

U(t, 4 

=nfo(-i)” 
s s 

‘dl, ” ‘dr,H,(t,)... H,(t,). 
s s 

Here, H,(t)=eitHOH,emitHa. Each term cari be 
represented by connected +Feynman diagrams 
(the denominator canceling out a11 discon- 

nected graphs) and computed according to the 
tFeynman rule, yielding tFeynman integrals. 
Each expression SO obtained (formally) may 
be a divergent integral (in the absence of the 
cutoff), in which case one tries to cancel it out 
by modifying the original Hamiltonian with 
the alteration of parameters such as mass 
and coupling constant (by an amount called 
the renormalization constant, which is diver- 

gent in the absence of the cutoff) or possibly 
by the addition of terms again involving 
renormalization constants. If this cari be 

achieved in terms of a lïnite number of renor- 
malization constants, the mode1 or the Hamil- 
tonian is called renormalizable [7]. If the 
divergent integral appears only in a tïnite 

number of graphs (counting the same sub- 
graph of an inlïnite number of different dia- 

grams as one graph), the mode1 is called super- 
renormalizable. 

D. Axiomatic Quantum Field Theory 

Relativistically covariant fields <p,(x) on a Hil- 
bert space Z are called Wightman fields if the 
following four Wightman axioms are fullïlled 

[S%lO]: 
(1) The tïelds C~,(X) are operator-valued distri- 

butions: For each C”-function f of rapid de- 
crease on the Minkowski space (f’eY(R4)), 

<p,(f) is an operator delïned on a common 
domain D dense in .Y? and satisfying <p,(f)D c 
D (the domain of q*(f)* contains D), <p,(f)* 1 D 
= vs(f) for another index z and (Y, q,(f)@) 

for any Y, and Q in D is linear and continuous 
in f relative to the topology of the Schwartz 
space sP(R4). 

(2) Relativistic covariance: There exists a 
continuous unitary representation L/(a, A) 
(aeR4 and AESL(~,C)) of the universal cover- 

ing group $1 of the trestricted inhomogeneous 
Lorentz group PJ on .X such that U(a, A)D c 
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where f,,a(x)=f(h(A)-l(x-a)) and (D(A),& is 
a fïnite-dimensional representation of SL(2, C). 
The index a usually consists of tundotted and 
dotted indices, interchanged in E, and of other 
indices, interchanged among them in E.) 

(3) Locality: If the supports off and g are 
mutually spacelike, then 

on D, where E(cI,~)= fl. If E(c(,/~)= -1 exactly 

when D(A),,=D(A)ps= -1 for A= -1 (i.e., 
when both vu and <pp are Fermi fields), they 
are said to satisfy the normal commutation 

relations. 
(4) Spectrum conditions: Let U(a, 1) = eiO.p. 

The joint spectrum of P’ (p = 0, 1,2,3) is in the 
forward cane v+ ={p~R~[p.p>O,p~>O}, 
with a point spectrum of multiplicity 1 at p = 0. 
A vector 0 belonging to the point spectrum 0 
of P’ is called the true (or interacting) vacuum 
and is required to be in D. 

Usually D is taken to be minimal, namely, D 

is the linear hull of R and ~p,~(f,). . cp,,(f,)0 

with a11 possible n, c(~, , c(,,, f, , . . ,f.. By means 
of the nuclear theorem, it is possible to defïne 

a linear operator <poL,,,,..(f) for f(x,, , x”) in 
5f’(R4”), linear and continuous in f on D such 
that it coincides with rp,,(f,) cp,“(f,) if f(x) 
= ny=, J(xj). If such operators are introduced, 
then the linear hull of 52 and (p,,,,.,,(f)0 is 
taken to be D. 

Under the foregoing axiom, the vacuum 
expectation values of the products of fïeld 

operators detïne tempered distributions W,(x) 
= WC, ,,.=” (x1, ,x,), called Wightman functions, 

such that 

w,(nf;)=(52,<p,I(f,).“cp,“(f,)n). 
The notion of a connected graph in pertur- 

bation theory corresponds to the following 
notion of truncated Wightman functions WcT: 

w=T(r)=C(-l)m~l(m-l)! 1 fi W,(I,), 
m (Ix) k=1 

where ! indicates a set of variables xj~M, jE1, 
{Zk} is a partition of 1 into m subsets, with the 

order of the x’s in each I, remaining the same 
as in I, and the sum over {lk} extending over 

a11 possible partitions. If the spectrum of {Pu} 
in R’ is contained in vJ’={p~MIp.p>m~, 

p” > m} for some m > 0 (the mass gap), then 
WuT has an exponential clustering property at 

spatial infïnity. For example WaT(x, + a,, . . , 

x, + a& m’R+O as a distribution in x if m’ cm, 
ay=Ofor alljand R=maxlaj-akl+a. 
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If the mass operator (P P)“’ has an iso- 
lated point spectrum at m with the eigenspace 
Z’,(m), then there are sufflciently many n, a = 

(a,, , a,,), and f(xl, . . ,x,) such that cp,(f)Q~ 
,YiUl(m), and the linear hull of such vectors are 
dense in X1(m). In terms of the fj satisfying 
<p,~,,(fj)Sr~Z’~(m~) (some of the m’s may coin- 

cide) and the solutions gj(x) = Jgj(p)exp i(px - 
wj(p)xo)d3p, wj(p)=(p2 +mf)“‘, of the Klein- 
Gordon equation, then the following limits, 
called out and in states, exist: 

ou, 
Yin (4 . ..h.)=tli~~Qe,(t,sl)...Q.(t,g,)R, 

Qj<t,gj,= 
s 

<pa(,,(X~ +(t,X), ...>Xnj+(GX)) 

X&(X~ + . +xn,)gj(t,x)dx, . ..dx”.dx, 

hj=(27L)3gj(p)cP,,(ns2E~~(mj). 

It delïnes the S-matrix elements as follows: 

S(!I, . ..h.;h; . ..h”.) 

=(Y”“‘(h, . . . h”), Yi”(h; h;,)). 

This is called Haag-Ruelle scattering theory, 

and the existence proof is based on the cluster- 
ing property of WBT and an asymptotic esti- 
mate for the behavior of the g’s for large t 
and a11 x (R. Haag, Phys. Reu., 112 (1958); D. 
Ruelle, Helu. Phys. Acta, 35 (1962)). The out 
and in states cari be interpreted in the limit of 
inlïnite future and past as the state where n 
particles are moving at velocities vj related to 
the spectrum pu of P” through the relation p” = 

mj/( 1 - vf)l”, p = mjvj/( 1 - vj2)li2 (with probabil- 
ity amplitude proportional to h,(p)) (H. Araki 
and R. Haag, Comm. Math. Phys., 4 (1967)). 

Since 

(Y”“‘(h, h”), Y”‘(,; . I?L,)) 

where the sum is over a11 permutations P, Yo”’ 
cari be viewed as a unitary mapping from the 
tFock space X0 over XE X1(m) to the closed 
subspace 2’“’ spanned by Y”“‘(hl h,), n = 
0, 1,2,. . . (Q for n=O, h, itself for n= 1). The 
free tïelds on 8’“’ and Xi” are called (out and 

in) asymptotic fields. Likewise, Yi” is a unitary 
mapping from X0 to 2’“. If 2’” =,X0”‘, then 
the matrix element S cari be viewed as a ma- 
trix element of a unitary operator on X0, 
called an S-matrix. Its unitary transform by 
Yout and by Yi” coincide and detïne a unitary 
operator, sometimes called an S-operator, on 
Xi” = %‘Oout. The equality 2 = ~4”” = Ü+?~~’ is 
called the completeness of the scattering states 

or asymptotic completeness. 

If the scattering states are complete, then 
the following LSZ asymptotic condition, due 
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to Lehmann, Symanzik, and Zimmermann 
(Nuouo Cimento, 1 (1955)) holds: 

where a*(h) is the tcreation operator (a*(h). 
Y(h, . h,)=Y(hh, . h,) for either out or 
in states), ~~~~,,(fj)fi~~,(m~) is not required, 
and (Q, v~,~,(&)Q) = 0 is assumed instead. This 
leads to an explicit expression for the S-matrix 

elements in terms of r-functions, which takes 
the following simple form if a11 particles have 

spin 0, a11 tïelds <p= are scalar (D(A),, = &), and 
ah nj cari be taken to be 1. First define the 

connected part S,(h, . . h,; h; &) from S by 
exactly the same equation as truncated Wight- 
man functions with S to be set to 0 if n = 0, 1 
or n’ = 0, 1 except when n = M’ = 1 (S(h, h’) = 
(h, h’)). Then 

S#I, . . h,; h,,, h,) 

-Pf+l>“.> - PJ 
1 

,J ( - izj”2 hj(Pj) dnj(Pj))> 

where p: = (p/ + mf)112 (the set of such p is 

called the positive mass shell; there the vanish- 
ing factors (p, pi-m*) cancel the poles of fa?), 

dQ,$p) is the Lorentz invariant measure 

(21~ I)-‘d3p(=S(p.p-mj)d4p) on the posi- 
tive mass shell, h E ,rir (m) is represented by a 
measurable function h(p) with the inner prod- 

uct (h, h’)=~h(p)h’(p)dR,(p), Zj is defined by 
(h, <p,,,,(fj)0)=Zj”2(h,~) for a11 h~%‘r(m~) and 
f(p)=(2n)m3’2Jeip’Xf(x)dx, and ?z is the 
Fourier transform of the truncated time- 
ordered function (z-function) detïned by 

s,T(p, ,..., p,)= 
s 

raT(x, ,..., x,)expi C pj’xj 
( > j=l 

x fi (27cm3”d4xj, 
j=l 

P 

in which the sum is over a11 permutations P, T 

indicates the truncated Wightman functions, 
0(x0; C,) is the characteristic function of the 

cane xP,~, 2 xPc2, 2 .a xi<,, (the time ordering) 

possibly smeared out by convolution with a 
C”-function of compact support (SO that it cari 
multiply a distribution), where the formula 
does not actually depend on the smearing 
functions. (Usually fields <p, are normalized SO 
that Zj = 1.) 

The r-functions (0. Steinmann, He[u. Phys. 
Acta, 33 (1960); D. Ruelle, Nuovo Cimento, 19 
(1961); H. Araki, J. Math. Phys., 2 (1961)) are 
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detïned by 

P 

( 
=~e(xoi cPlci)W,a(x) 

> 

(often with an additional factor (-i)“-‘), where 
the Fourier-Laplace transform &q”; C,,) of 
0(x0; C,) is a rational function and 0(x0; C,/Ci) 
is the inverse Fourier transform of its bound- 

ary value as Im 4’ E Ci tending to 0, and the 
cane Ci and hence ri is specitïed by a consistent 

choice of signs of Cj,, Im q,? for a11 nonempty 

proper subsets 1 of (1, . . , n). The Fourier 
transform of ri(x) is a boundary value of an 

analytic function common to a11 ri and coin- 
cides with ?ET for p” E Ci. Making use of this 
relation, some analyticity properties of the S- 
matrix (including TCP symmetry) have been 
proved ([ll, 121; J. Bros, H. Epstein, and 
V. Glaser, Comm. Math. Phys., 1 (1965); 
Epstein, Glaser, and A. Martin, Comm. Math. 

Phys., 13 (1969); Epstein, J. Math. Phys., 8 
(1967)). 

The two-point function for scalar tïelds has 
the following simple expression in terms of 
tinvariant distributions, sometimes called 

the Kallen-Lehmann representation with the 
Kallen-Lehmann weight p: 

(Q>cp(x)<p(~)Q)= 
s 

m &(x-Y)dp(K-2). 
0 

Under the Wightman axiom (with the 
normal commutation relations), there exists 
an antiunitary operator 0, called the TCP 
operator, which satisfïes the relations 

OR=R, OU(a,A)W’=U(-a,A), 

o2 = U(0, -1) 

@<p,(x)@-‘=(-l)V(-i)N<p,(-x), 

where 11 is the number of undotted indices in c(, 
N =0 if D(A),,= 1 for A = -1 (Bose tïelds), and 
N = 1 if D(A),,= -1 for A= -1 (Fermi tïelds). 

The choice of &l for ~(a, a) in the locality 
axiom cannot be opposite to the normal com- 
mutation relations for any a except for the 
trivial case <p,(x) = 0 ([S- 101; G. Lüders and B. 

Zumino, Phys. Reo., 110 (1958); N. Burgoyne, 
Nuouo Cimento, 8 (1958)). This is called the 
connection of spin and statistics. For a general 

choice of k 1 for .$a, fi), the Wightman axioms 
imply existence of a certain number of even- 

oddness conservation laws (i.e., the existence of 
a unitary representation u of a group (Z,)’ for 

some 1 such that u(g)Q=Q u(g)cp,(f)u(g)*= 
Xo,(g)<p,(f) for some characters 1, on the group) 

SO that the Klein transforms Q=(x) = u(g,)qJx) 
(for some choice of g=) of the original tïelds 
satisfy the Wightman axioms with the normal 



587 

commutation relations ([S-10]; H. Araki, 
J. Math. Phys., 2 (1961)). 

E. Theory of Local Observables 

Except for the technical assumption of 
operator-valued distributions, physical con- 
tents of the Wightman axioms have been for- 

mulated in terms of the von Neumann algebra 
d(0) for bounded open sets 0, generated by 
those observables which cari be measured in 

the space-time region 0, as follows: 
(1) Isotony: If 6,~ 0,) then &(Or) 1 Se(@,). 
(2) Covariance: Li(a, A)&(O)U(a, A)* = 
d(A(A)O + a). 
(3) Locality: If Qj~&(oj) and 0, is spacelike to 

0,) then [QI, Q2] = 0. (No signal cari propa- 
gate faster than the speed of light.) 

In addition, the spectrum condition is as 
before (the stability of the vacuum) and, since 
we restrict our attention to the closed span of 

&(O)n for a11 0, R is assumed to be cyclic for 
ufi L$‘(U). (Then the latter is irreducible.) By 
treating Q(x)= U(x, l)QU(x, l)* for QE&(U) 
as a (noncovariant but localized) fteld, Haag- 
Ruelle scattering theory and the analyticity 
properties of the S-matrix described above for 
Wightman fields hold in exactly the same way 
in the theory of local observables. The notion 
of an algebra of local observables has been 
a concern of R. Haag since the late 1950s 

with the consequent analogy to Wightman 
tïelds being demonstrated by Araki in his 
Zürich lectures of 1961-1962. Hence the 

above axioms are sometimes called Haag- 
Araki axioms. 

With the help of the additional axiom 

(a(@,) U &(CV,))” = d(0, U O,), called the addi- 
tivity, the vacuum vector n is cyclic and sep- 
arating for X~(O) for any bounded open 0 
(Reeh-Schlieder theorem) and .d(O) = d(6), 
where 8 is the double cane {x 1 Ix01 + Ix( <L,} if 

8={xIIx”I+IxI<L,Ixl<s}forany.s>0,for 
example (Borcbers theorem). 

A merit of the Haag-Araki axioms is that 
these axioms have direct physical interpre- 

tation. In particular they always imply the 
commutativity at spacelike separation of sup- 

ports, in contrast to the anticommutativity for 
Fermi lïelds. This then necessitates the con- 

sideration of the representations associated 
with some other states, such as states with an 
odd number of fermions and representations of 
the C*-algebra & of quasilocal observables 
(generated by ah d(O)), which are nonequiva- 
lent to the vacuum representation and are 
called superselection sectors. This viewpoint 

was introduced by Haag and D. Kastler (J. 
Math. Phys., 5 (1964)) and the C*-algebra 

150 F 
Field Theory 

version of the Haag-Araki axioms is called the 
Haag-Kastler axioms. 

If 8’ denotes the causal complement of Lo 
(i.e., the set of all points spacelike to O), then 
the assumption .ti(O)’ = d(U) is called duality 
and is proved for a certain type of region, 
which includes the double cane in the case of 
free fields. With the assumption of the duality 
for double cones in the vacuum sector, S. 

Doplicher, Haag, and J. Roberts (Comm. Math. 
Phys., 13 and 15 (1969); 24 (1971); 35 (1974)) 

succeeded in the analysis of superselection 
sectors and clarilïed the connection of spin and 
statistics in a much more satisfactory fashion, 
as well as the anticommutativity of intertwin- 

ing operators for superselection sectors for 
Fermi statistics. 

F. Constructive Field Theory 

An effort to make mathematical sense out of 

the heuristic theory of quantized fïelds and to 
produce examples of Wightman fields and the 
associated system of local observables has 
been pushed forward by J. Glimm and A. Jaffe 
since the mid 1960s and is known as construc- 
tive tïeld theory. Since 1972, the Euclidean 
methods, already known in some sense, have 

become extremely powerful central tools, are 
collectively known as Euclidean field theory 
[13-161. 

The Wightman function W(z, . z,,) is ana- 

lytic at the Schwinger points zj = (ix:, xj) (XE R4) 
if xj # xk for j # k, and its value S(x, . x”) = 

W(z, . . z,) is called the Schwinger function. 
The axioms for Schwinger functions equiv- 
alent to Wightman axioms are known as 
Osterwalder-Schrader axioms (Comm. Math. 

Phys., 31 (1973); 42 (1975)). The positivity 
axiom reflecting the positive defïnite metric 
of the Hilbert space for Wightman fields is 
known as O-S positivity (or T-positivity or 
reflection positivity). 

Since the Schwinger function is symmetric 
in its variables, it cari be viewed as the expec- 

tation value of the product of (commuting) 
random fields, called Euclidean fïelds, if an 
additional positivity holds. This idea was put 
forward by K. Symanzik in the 1960s. E. Nel- 
son then realized that Euclidean fields for free 
fïelds have the Markov property, and he devel- 
oped Euclidean Markov field theory. A work 
of Guerra in 1972 utilizing Nelson symmetry 
revealed the extreme power of this approach, 

and the whole of constructive field theory has 
been studied in Euclidean formulation with 

remarkable results for super-renormalizable 

models in space-time of dimension 2 and 3. 
The key point is the Feynman-Kac-Nelson 
formula, which expresses Schwinger functions 
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as functional integrals and reveals a mathe- 
matical connection between Euclidean field 
theory and classical statistical mechanics. 

G. Gauge Theory 

tElectrodynamics in terms of the 4-vector 

potential ,4,,(x) is invariant under the local 
gauge transformations ,4,(x)-A,(x) + 8, A(x) 
(and the associated transformation of the 

charged fields) for A satisfying the wave equa- 
tion q A = 0. This leads on one hand to com- 
plication in the canonical quantization of the 
ftelds A,(x) and, on the other hand, to the 
necessity of an indelïnite inner-product space 
as exemplified by the Gupta-Bleuler formalism 
of quantum electrodynamics. In such a formal- 
ism, the physical Hilhert space (with positive 
delïnite metric) is introduced by considering 

a specilïc subspace (physical subspace) of a 
semidefinite metric and taking the quotient by 
its nul1 subspace. 

The corresponding theory with a non- 

commutative gauge group is known as the 
theory of Yang-Mills fields. In order to restore 
the forma1 unitarity of the S-matrix in the 
perturbation series in terms of Feynman dia- 
grams, L. D. Faddeev and V. N. Popov (Phys. 

LRtt., 25B (1967)) introduced fictitious particles, 
called Faddeev-Popov ghosts. T. Kugo and 1. 
Ojima (Proy. Theoret. Phys., Suppl., 66 (1979)) 

developed a canonical quantization scheme for 
the Yang-Mills lïeld which naturally intro- 
duces additional fields corresponding to the 

Faddeev-Popov ghosts and specilïes the phy- 
sical subspace by means of the simple condi- 
tion that it be the kernel of the generator of 
BRS transformations, earlier introduced by C. 
Becchi, A. Rouet, and R. Stora. 

Gauge theory cari be formulated on a lattice 
of lïnite volume as a kind of classical statistical 
mechanics. This is known as lattice gauge 
theory, and the important issue currently being 

investigated is whether or not its limit, as the 
lattice interval tends to 0 (the continuum Iimit) 
and the volume tends to inlïnity, produces a 

nontrivial quantum theory of gauge fields. 
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Finite Groups 

A. The Number of Finite Groups of a Given 
Order 

A group is called a finite group if its order is 

lïnite (- 190 Groups). Since the early years of 
the theory of lïnite groups, a major problem 
has been to fmd the number of distinct isomor- 
phism classes of groups having a given order. 

It is almost impossible, however, to find a 
general solution to the problem unless the 
values of n are restricted to a (small) subset of 
the natural numbers. Let f(n) denote the num- 
ber of isomorphism classes of finite groups of 

order n. If p is a prime number, then f(p) = 1 
and any group of prime order is a cyclic group. 
If p is prime, then any group of order p2 is an 
tAbelian group and f( p’) = 2. If p and 4 are 

distinct primes and p > 4, then f( pq) = 2 or 1 
according as p is congruent to 1 modulo 4 or 

not. If p = 1 (mod q), there is a non-Abelian 

group of order pq as well as a cyclic group of 
order pq. For small n, the value of f(n) is as 
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follows: 

n 8 12 16 18 20 24 27 28 30 32 60 
f(n) 5 5 14 5 5 15 5 4 4 51 13 

For any n, f(n)2 1. When p is prime, f( p”) is 
known for m < 6 : f( p3) = 5, f(p4) = 15 if p > 2. 

For f( p5) see 0. Schreier, Abh. Math. Sem. 

Univ. Hamburg, 4 (1926). For f(26) see [ 111. 
Set f (p”) = p’ and 1= Am3. Then A-2127 as 
rn- CO (G. Higman, Proc. London Math. Soc., 
10 (1960); C. C. Sims, Symposium on Group 
Theory, Harvard, 1963). 

B. Fundamental Theorems on Finite Groups 

The following are some fundamental theorems 
useful in studying lïnite groups. 

(1) The order of any subgroup of a lïnite 
group G divides the order of G (J. L. La- 
grange). The converse is not necessarily true. If 
a fïnite group G contains a subgroup of order 
n for any divisor n of the order of G, then G is 
a tsolvable group. Furthermore, if G contains 
a unique subgroup of order n for each divisor 
n of the order of G, then G is a cyclic group. 

Let p be a prime number. Let the order of a 

finite group G be p”m, where m is not divisible 
by p. A subgroup of order p” of G is called a p- 

Sylow suhgroup (or simply a Sylow subgroup) 
of G. The importance of this concept may be 

seen from the next theorem. 
(2) A finite group contains a p-Sylow sub- 

group for any prime divisor p of the order of 
the group. Furthermore, p-Sylow subgroups 
are conjugate to each other. The number of 
distinct p-Sylow subgroups is congruent to 1 
modulo p. In general, the number of distinct p- 

Sylow subgroups of G that contain a given 
subgroup whose order is a power of p is con- 
gruent to 1 modulo p (Sylow’s theorems). 

(3) A p-group is a tnilpotent group (a fïnite 
group is called a p-group if its order is a power 

of p). Thus any finite p-group G of order > 1 
contains a nonidentity element in the tcenter 
of G. Furthermore, any proper subgroup of G 
is different from its tnormalizer. A paper by P. 
Hall (Proc. London Math. Soc., (2) 36 (1933)) is 
a classic and fundamental work on p-groups. 

A group G of order 8 with 2 generators 0, z 
and relations o4 = 1, Z(TT-’ = g-l, oz = 7’ is 
called the quaternion group. This group is 
isomorphic to the multiplicative group consist- 
ing of { kl, fi, Q, +k} in the tquaternion 
tïeld. A generalized quaternion group is a group 

of order 2” with 2 generators 0, z and rela- 
tions 02”-’ = 1, ZUT-’ = o-l, 7’ = 02”-‘. A non- 

Abelian group all of whose subgroups are 
normal subgroups is called a Hamilton group. 
A Hamilton group is the direct product of a 

quaternion group, an Abelian group of odd 
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order, and an Abelian group of exponent 2 
(i.e., p2 = 1 for each element p). 

Let G be a fïnite group, and let G, = G 3 G, 
3.. .X G, = { 1) be a tcomposition series of G. 
The set of isomorphism classes of the simple 
groups Giml /Ci, i = 1, 2, . . , r, is uniquely deter- 

mined (up to arrangement) by the +Jordan- 
Holder theorem. Thus the two most funda- 

mental problems of finite groups are (i) the 
study of the simple groups and (ii) the study of 
a group with a given set of composition fac- 

tors. The fïrst is one of the leading problems of 
the theory, although it has been in a state of 
stagnation until rather recently (- Section J). 
As to the second problem, initial works by H. 
Wielandt and others are under way (partic- 
ularly in the direction of various generaliza- 
tions of Sylow’s theorems). For the class of 

finite solvable groups, the tïrst problem has a 
rather trivial solution; only the second prob- 
lem is important, and even in this case the 
theory seems to leave something to be desired. 

C. Finite Nilpotent Groups 

A finite group is nilpotent if and only if it is 
the tdirect product of its p-Sylow subgroups, 
where p ranges over a11 the prime divisors of 
the order. Any maximal subgroup of a nilpo- 
tent group is normal. The converse holds for 

fïnite groups; that is, a lïnite group is nilpotent 
if and only if a11 its maximal subgroups are 

normal. 

D. Finite Solvable Groups 

One of the most profound results on finite 
groups, an affirmative answer to the long- 
standing Burnside conjecture, is the Feit- 
Thompson theorem (Pacifie J. Math., 13 
(1963)): A finite group of odd order is solvable. 

The index of a maximal subgroup of a finite 
solvable group is a power of a prime number 
(E. Galois). But the converse is not true. The 

unique simple group of order 168 has the 
property that a11 maximal subgroups are of 
prime power index. A finite solvable group 
contains a self-normalizing nilpotent subgroup 

(i.e., a nilpotent subgroup H such that N,(H) 
= H), and any two such subgroups are conju- 

gate (R. W. Carter, Math. Z., 75 (1960); cf. W. 
Gaschütz, Math. Z., 80 (1963), for a generali- 
zation). Such a subgroup is called a Carter 
subgroup and is an analog of a Cartan subal- 
gebra of a Lie algebra. But unlike Cartan 

subalgebras, most simple groups do not con- 
tain any self-normalizing nilpotent subgroups. 
A fïnite solvable group of order mn (m, n are 
relatively prime) contains a subgroup of order 
m; two subgroups of order m are conjugate; if I 
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is a divisor of m, then any subgroup of order 1 
is contained in a subgroup of order m (P. Hall). 
The converse of the first part of this theorem is 

also true: A tïnite group is solvable if it con- 
tains a subgroup of order m for any decompo- 

sition of the order in the form mn, (m, n) = 1 (P. 
Hall’s solvability criterion). This generalizes 
the famous Burnside theorem asserting the 
solvability of a group of order p”qb, where 

both p and 4 are prime numbers. If the se- 
quence of the quotient groups of a tprincipal 
series of a fïnite group G consists of cyclic 
groups, then the group G is called supersolv- 
ahle. A fïnite group is supersolvable if and 
only if the index of any maximal subgroup is a 
prime number (B. Huppert, Math. Z, 60 (1954)). 
If p is the largest prime divisor of the order of 
a fïnite supersolvable group G, then a p-Sylow 
subgroup of G is a normal subgroup. 

E. Hall Subgroups 

A subgroup is called a Hall subgroup if its 
order is relatively prime to its index (see the 
theorems of P. Hall on tïnite solvable groups). 
There is no general theorem known on the 
existence of a Hall subgroup. If a fïnite group 
G has a normal Hall subgroup N, then G con- 
tains a Hall subgroup H that is a complement 

ofNinthesensethatG=NHandNnH=l; 
furthermore, any two complements are conju- 
gate (Schur-Zassenhaus theorem). The analog 
of Hall’s theorem on finite solvable groups 

fails for nonsolvable groups. But if a finite 
group, solvable or not, contains a nilpotent 
Hall subgroup H of order n, then any sub- 
group of an order dividing n is conjugate to a 
subgroup of H (Wielandt, Math. Z., 60 (1954); 
cf. P. Hall, Proc. London Math. Soc., 4 (1954), 
for a generalization). There are some gener- 
alizations of these results for maximal n- 

subgroups which may not be Hall subgroups. 

F. 7r-Solvable Groups 

Let n be a set of prime numbers. Denote the 
set of prime numbers not in n by n’. A tïnite 
group is called a x-group if a11 the prime divi- 
sors of the order belong to K. A Cte group is 
called 7c-solvable if any composition factor is 
either a n’-group or a solvable rr-group. If TC = 
{ p} consists of a single prime number p, we 
use terms such as p-group or p-solvable (in- 
stead of { p}-solvable). Let G be a n-solvable 
group. A series of subgroups P,, = 1 c No 5 

P,~N,$...~P,cN,=Gdelïnedbytheprop- 
erties that Pi/Ni-, is the maximal normal 7c- 
subgroup of GIN,-, and Ni/Pi is the maximal 

normal x’-subgroup of G/Pi is called the n- 

series of G, and the integer 1 is called the 7~. 
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length of G. A solvable group is n-solvable for 
any set 7t of prime numbers. A n-solvable 

group contains a Hall subgroup which is a 7-c- 
group and also a Hall subgroup which is a n’- 
group; an analog of Hall’s theorem on finite 
solvable groups holds. Hall and Higman (Proc. 

London Math. Soc., 7 (1956)) discovered deep 
relations between the p-length of a p-solvable 
group and invariants of its p-Sylow subgroup. 

For example, the p-length is 1 if a p-Sylow 
subgroup is Abelian. 

G. Permutation Groups 

The set of a11 permutations on a set R of n 
elements forms a group of order n! whose 
structure depends only on n. This group is 
called the symmetric group of degree n, de- 

noted by S,. Any subgroup of S, is a permuta- 
tion group of degree n. When it is necessary to 
mention the set R on which permutations 
operate, S,, may be denoted as S(Q), and a 
subgroup of S(Q) is called a permutation 
group on R. The set of n elements on which S, 
operates is usually assumed to be { 1,2, , n), 
and an element o of S, is written as 

CT= ( 1 2 n 

1’ 2’ > n’ ’ 

for example, 
123456 

> 231546’ 

where i’ is the image of i by o: i’= a(i). The 

element g may be written as ( . .)(abc z)( . ), 
which means that CJ cyclically maps a into b, b 
into c, and SO on, and tïnally z back into a. In 
the example, o=(12 3)(45)(6). It is customary 

to omit the cycle with only one letter in it, 
such as (6) in the example. With this conven- 
tion, CJ = (12 3)(4 5) may be an element of S, for 
any n > 5, leaving a11 the letters i 2 6 invariant. 
A cycle of length 1 is an element CT of S, which 

moves I letters c1 I, . , a, cyclically and fixes 
all the rest; i.e., cr = (a1 , . . , uJ. Then an ex- 
pression such as D = (1 2 3)(4 5) is the same as 

the product of two cycles (1 2 3) and (4 5). In 
general, any permutation cari be expressed as 
the product of mutually disjoint cycles (two 
cycles (a,, ,a,) and (b,, . . . , b,) are said to be 
disjoint if ai # bj for a11 i andj). Furthermore, 
the expression of the permutation as the prod- 

uct of mutually disjoint cycles is unique up to 
the order in which these cycles are written. A 
cycle of length 2 is called a transposition. Any 
permutation may be written as a product of 
transpositions. This expression is not unique, 

but the parity of the number of transpositions 
in the expression is determined by the permu- 
tation. A permutation is called even if it is the 
product of an even number of transpositions 
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and odd otherwise. The symmetric group S, 

contains the same number of even and odd 
permutations. 

The totality of even permutations forms a 
normal subgroup of order (n!)/2(n 2 2) called 
the alternating group of degree n and usually 
denoted by A,,. An even permutation is the 
product of cycles of length 3. The alternating 
group A, of degree 5 is the nonsolvable group 
of minimal order. This fact was known to 

Galois. If n #4, then the alternating group A, 
is a simple group and a unique proper normal 
subgroup of S,. If n=4, A, contains a normal 
noncyclic subgroup V of order 4. In this case 
A, and V are the only proper normal sub- 

groups of S,. A noncyclic group of order 4 is 
called a (Klein) four-group. If n 2 5, the sym- 
metric group S,, is not a solvable group. This 
is the group-theoretic ground for the famous 
theorem, proved by Ruflïni, Abel, and Galois, 
which asserts the impossibility of an algebraic 
solution of a general algebraic equation of 

degree more than four. If n < 4, S, is solvable. 
The group S, has a composition series with 
composition factors of orders 2, 3, 2, 2, and 
S, is realized as the group of motions in 3- 

dimensional space which preserve an octahe- 
dron. Hence S, is called the octahedral group. 
Similarly, A,(A,) is realized as the group of 
motions in space which preserve a tetrahedron 
(icosahedron); thus A, is called the tetrahedral 
group and A, the icosahedral group. 

These groups have been extensively studied 
in view of their geometric aspect. The group of 

motions of a plane which preserve a regular 
polygon is called a dihedral group. If a regular 
polygon has n sides, then the group has order 
2n. Sometimes a Klein four-group is included 

in the class of dihedral groups (for n= 2). The 
dihedral groups, octahedral group, etc., are 
called regular polyhedral groups. A lïnite 
subgroup of the group of motions in 3- 
dimensional space is either cyclic or one of 
the regular polyhedral groups. A dihedral 
group is generated by two elements of order 2. 

Conversely, a lïnite group generated by two 
elements of order 2 is a dihedral group. This 
simple fact has surprisingly many conse- 
quences in the theory of finite groups of even 

order [15, ch. 91. A dihedral group of order 
2n contains a cyclic normal subgroup of order 

n, and hence is solvable. 
If n # 6, every automorphism of S, is inner. 

The order of the group of automorphisms of 
S, is twice the order of S,. The index (S,, : H) of 
a subgroup H of S, is at least equal to n unless 

N = A,. If (S, : H) = IZ, then H is isomorphic to 
S,-, If n # 6, S, contains a unique conjugate 
class of subgroups of index n. But S, contains 

two such classes, which are exchanged by an 

automorphism of S, (- Section 1). 
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H. Transitive Permutation Groups 

A permutation group G on a set Q is called a 

transitive permutation group if for any pair 
(a, h) of elements of R, there exists a permuta- 
tion of G which sends a into b. Otherwise G is 
said to be intransitive. Let G be a transitive 
permutation group on a set 0, and let a be an 
element of a. The totality of elements of G 
which leave a invariant forms a subgroup of G 
called the stabilizer of a (in G). The index of 
the stabilizer is equal to the number of ele- 

ments of R, the degree of G. Thus the degree of 
a transitive permutation group G divides the 

order of G (a fundamental theorem). 
The concept of orbits is important. Let G be 

a permutation group on a set Q. A subset I of 
Q is called an orbit of G if it is G-invariant and 
G acts transitively on I. In other words, a 
subset I of Q is an orbit of G if the following 
two conditions are satisfied: (i) If a~rand 
y E G, the image g(a) also lies in c and (ii) if 

a and b are two elements of I, there exists 
an element x of G such that b = x(a). Thus 
each element x of G induces a permutation 
<p,(x) on r. The set of a11 these permutations 

<~~(X)(XE G) forms a permutation group on I, 
which may be denoted by q,(G). Then <p,(G) is 
transitive on I, and <Pu is a homomorphism of 
G onto <p,(G). Thus the number of elements in 
an orbit I is a divisor of the order of G. It is 
clear that the set Q on which G acts is the 

union of mutually disjoint orbits I’i, . , r, of 
G. This implies that the degree of G is the sum 
of the numbers of elements in the orbits ri. 
The resulting equation often contains non- 

trivial relations. If <pi denotes the homomor- 
phism qri defmed before, then G is isomorphic 

to a subgroup of the direct product of the 
groups cpi(G), i= 1, 2, . . . , r. 

A transitive permutation group is called 
regular if the stabilizer of any letter is the 
identity subgroup (l}. A transitive permuta- 
tion group is regular if and only if its order 
equals its degree. Any group cari be realized 
as a regular permutation group (Cayley’s 
theorem). A transitive permutation group 
which is Abelian is always regular. 

Let G be a transitive permutation group on 
a set Q. If the stabilizer of an element a of R is 

a maximal subgroup, G is called primitive, and 
otherwise imprimitive. A normal subgroup, 
which is #{ l), of a primitive permutation 
group is transitive. An imprimitive permuta- 
tion group induces a decomposition of the set 
0 into the union of mutually disjoint subsets 
Ai, . , A, (s > 1) such that each Ai contains at 
least two elements, and if x E G maps an ele- 
ment a of Ai onto an element b of Aj, then x 

maps every element of Ai into Aj: x(Ai) = Aj. 

The set {A,, . , As} is called a system of im- 
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primitivity. A subset A of R is called a block if 
x(A) fi A equals A or the empty set for a11 x in 

G. A block is called nontrivial if A #Q and A 
contains at least two elements. Each member 
of a system of imprimitivity is a nontrivial 
block. A transitive permutation group is 

primitive if and only if there is no nontrivial 
block. 

A permutation group G on a set R is called 
k-transitive (or k-ply transitive, where k is a 
natural number) if for two arbitrary k-tuples 
(a,, . , uk) and (b,, , bk) of distinct elements of 
Q, there is an element of G which maps ai into 
biforalli=1,2,...,k.Ifk~2,Giscalledmulti- 

ply transitive. A doubly transitive permutation 
group is always primitive. The symmetric 
group S, of degree n is n-transitive, while the 

alternating group A, is (n-2)-transitive for 
n 2 3. Conversely, an (n-2)-transitive permu- 
tation group on { 1,2,. . , ri} is either S, or A,,. 

For multiply transitive permutation groups 
which are simple, see the list in Section 1. If 
k 3 6, no k-transitive groups are known at 
present except S,, and A,. If the Schreier con- 
jecture (- Section 1) is true, then there are no 
o-transitive permutation groups except S, and 

A, (Wielandt, Math. Z., 74 (1960); H. Nagao, 
Nuyoya J. Math., 27 (1964); O’Nan, Amer. 
Math. Soc. Notices, 20 (1973)). 

Two 5transitive permutation groups other 
than S, and A, are known: the groups M, 2 and 
M,, of degrees 12 and 24, respectively, dis- 
covered by E. L. Mathieu in 1864 and 1871. 
The stabilizer of a letter in M,,(M,,) is a 4- 
transitive permutation group of degree 11 (23), 

denoted by M, ,(Mz3). No 4-transitive permu- 
tation groups other than S,, A,, Mi (i= 11,12, 
23, and 24) are known. The groups M,,, M,,, 
M,,, M,, and the stabilizer M,, of a letter 
in M,, are called Mathieu groups. They are 

simple groups which have quite exceptional 
properties. For Mathieu groups, see E. Witt, 

Abh. Math. Sem. Univ. Humburg, 12 (1938). A 
k-transitive permutation group G on fi of 
degree n and order n(n - 1). (n-k + 1) has 
the property that no nonidentity element of G 
leaves k distinct letters of R invariant. If k > 4, 
such a group is one of the following: S,, Ak+2, 
M,,, and M,, (C. Jordan). For k=2 and 3, 

see H. Zassenhaus, Abh. Math. Sem. Uriiu. 
Hamburg, ll(l936). 

A multiply transitive permutation group G 
contains a normal subgroup S such that S is a 

non-Abelian simple group and G is isomorphic 
to a subgroup of the group Aut S of the auto- 
morphisms of S, except when the degree n of G 
is a power of a prime number and G contains 
a regular normal subgroup of order n which is 
an telementary Abelian group (W. S. Burn- 

side). Furthermore, in these exceptional cases, 
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G is at most 2-transitive if II is odd, while G is 
at most 3-transitive if n is even but more than 
4. The symmetric group S, of degree 4 is the 
only 4-transitive group that contains a proper 
solvable normal subgroup. 

A transitive extension of a permutation 
group H on fi is defïned as follows. Let cc be a 
new element not contained in R. A transitive 

extension G of H is a transitive permutation 
group on the set {Q CO} in which the stabilizer 

of CO is the given permutation group H on R. 
Transitive extensions do not exist for some H. 
Suppose that a permutation group H admits a 
transitive extension G that is primitive. If H is 
simple, then G is also simple unless the degree 
of G is a power of a prime number. Construct- 
ing transitive extensions has been an effec- 

tive method for constructing sporadic simple 
groups. 

Permutation groups of prime degree have 

been studied extensively since the last Century, 
partly because of their connection with al- 
gebraic equations of prime degree. Let p be a 
prime number. A transitive permutation group 
of degree p is either multiply transitive and 
nonsolvable or has a normal subgroup of 

order p with factor group isomorphic to a 
cyclic group of order dividing p - 1 (Burnside). 

Choose two cycles x and y of length p in S,. If 
y is not a power of x, then the subgroup (x, y) 
generated by x and y is a multiply transitive 

permutation group which is simple. The struc- 
ture of (x, y) is not known despite its simple 
delïnition. More attention has been paid to 

groups of degree p, where p is a prime number 
such that (p - 1)/2 = q is another prime number. 
The problem is to decide if such nonsolvable 
groups contain the alternating group A,. The 
Mathieu groups M, 1 and Mz3 are the only 

known exceptions for p > 7. The search for 
additional exceptions has been aided by the 
development of high-speed computers. It is 
known that there is no exceptional group 

of degree p = 2q + 1 for 23 < p < 4079 (P. J. 
Nikolai and E. T. Parker, Math. Tables Aids 
Comput., 12 (1958); see N. Ito, Bull. Amer. 
Math. Soc., 69 (1963), for further results in this 
direction). 

A Frobenius group is a nonregular transitive 
permutation group in which the identity is the 

only element leaving more than one letter 
invariant. A Frobenius group of degree n 
contains exactly n - 1 elements which displace 
a11 the letters. These n - 1 elements together 

with the identity form a regular normal sub- 
group of order n. This is a theorem of Frobe- 
nius; a11 the existing proofs depend on the 
theory of characters. The regular normal 
subgroup of a Frobenius group is nilpotent 

(J. G. Thompson, Proc. Nat. Acad. Sci. US, 45 
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(1959); [15, ch. 10; 16, ch. 31). A Zassenhaus 
group is a transitive extension of a Frobenius 
group. 

1. Finife Simple Groups 

Ah simple groups of fïnite order were com- 

pletely classified in February 1982 (- Section 
J; 1231). These are divided into the following 
four classes: (1) cyclic groups of prime order, 
(2) alternating groups of degree >5, (3) sim- 
ple groups of Lie type, and (4) other simple 
groups. 

The subclass (1) consists of cyclic groups of 
prime order p for any prime number p. Abelian 

simple groups belong to this subclass. The sub- 
class (4) consists of twenty-six sporadic simple 
groups including hve Mathieu groups. Al1 
sporadic groups, other than the fïve Mathieu 

groups, are of recent discovery. 
Simple groups of Lie type are analogs of 

simple Lie groups, and include the classical 
groups as well as the exceptional groups and 
the groups of twisted type. 

Classical groups are divided into four types: 
tlinear, tunitary, tsymplectic, and +Orthogonal 

(- 60 Classical Groups). Let q =p’ be a power 
of a prime number p. Consider a vector space 
V of dimension II > 2 over the fïeld F, of q 
elements, except in the unitary case where V 

is a vector space of dimension n > 2 over the 
iïeld Fqz of q* elements. Let f be a nondegener- 
ate form on V which is +Hermitian in the uni- 
tary case (with respect to the automorphism 
of order 2 of F,, over F,), +skew symmetric 
bihnear in the symplectic case, and tquadratic 
in the orthogonal case. In the orthogonal case, 
the dimension of Vis assumed >3. Consider 
the group of a11 linear transformations of V 

(linear case) of determinant 1, or the group of 
a11 linear transformations of determinant 1 
which leave the form f invariant (in other 

cases). In the orthogonal case, take the com- 
mutator subgroup. With each of these groups, 
the factor group of it by its tenter is a simple 

group with a few exceptions. 
There are several notations to denote these 

groups. E. Artin’s notation for simple groups, 
which is reasonably descriptive and simple, 

follows the name of the simple group: n and q 
are as described in the preceding paragraph, y 
is the order of the simple group, and (a, b) 
denotes the greatest common divisor of two 
natural numbers a and h. 

Linear simple group, L,(q): 

9=4 n(“ml)‘zfi(qi-l)/d, d=(n,q-1). 
i=2 

Unitary group, U,(q): 

~=q”‘“-“~2i~(qi-(-l)‘)/~, d=(n,q+l). 

The structure of unitary groups does not de- 
pend on the form. 

Symplectic group, S,(q), n = 2m: 

g=q”‘fi(q”-l)/d, d=(2,q-1). 
i-1 

In the symplectic case, the dimension n of the 

space V must be even, SO n = 2m, and the struc- 
ture does not depend on the form. 

Orthogonal group in odd dimension n = 

2m+ 1, 02m+l(q): 

g=qm2 fi (q2i- l)/d, d=(2,q-1). 
i=l 

The structure does not depend on the form in 
odd dimension. 

Orthogonal groups in even dimension n = 
2m: There are two inequivalent forms, one 

with tindex m (which is maximal) and the other 
with index m - 1. The two orthogonal groups 
are denoted by OZm(s, q), F: = If- 1, where E = 1 if 
the form is of maximal index and -1 other- 
wise. Then 

m-1 

g=q’“(“-‘)(q”-8) ,t (q*‘-l)/d, 

d=(4,q”-E). 

The value of E is determined by the formf: 

E= 1 if f is equivalent to C:i x2imlxzi, and 
E= -1 iff-x~+yx,x,+x~+C&~,~-~x~~, 
where the polynomial t* + yt + 1 is irreducible 

over F,. 
There are other ways to denote these 

groups. Let X=X(*, *) be a group of nonsin- 
gular linear transformations of a vector space 
V. Two asterisks indicate two invariants, such 
as the dimension of V and the number of ele- 

ments in the ground fïeld. The notation SX 
stands for the subgroup of X consisting of 
linear transformations with determinant 1, and 

the notation PX stands for the factor group of 
the linear group X by its tenter. Thus PX is 
a subgroup of the group of a11 projectivities 
of the projective space formed by the linear 
subspaces of V. The following list is self- 

explanatory, except the last term in each row, 
which is the notation of L. E. Dickson [l]: 

L(q) = PSW, 4) = LF(n, 4) 

4(q) = PSU@, 4) = ffO(n, 4*) 

.%,(q) = W(n, 4) = Wn, 4). 

(LF: linear fractional group; HO: hyperortho- 

gonal group; A: Abelian linear group.) If f is a 
nondegenerate quadratic form, then the sub- 
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group of GL(n, q) consisting of a11 the elements 
leaving the form f invariant may be denoted 

by O(n, q,f). Let O(n, q,f) denote the commu- 
tator subgroup of O(n, q,f). Set E = 1 if f is of 
maximal index, and E = -1 otherwise. Then 

O”(G 4) = W% 4, f). 

Dickson’s notation for orthogonal groups is 
complicated and seldom used. 

Finite simple groups corresponding to 
Lie groups of some exceptional type were 

studied by Dickson early in this Century, but 
C. Chevalley (Tôhoku Math. J., (2) 7 (1955)) 
proved the existence, simplicity, and other 
properties of groups of any (exceptional) type 
over any fïeld by a unified method. Simple Lie 

algebras over the tïeld C of complex numbers 
are completely classitïed, and according to the 
classification theory they are in one-to-one 
correspondence with the +Dynkin diagrams. 
Let L be a simple Lie algebra (over C) corre- 
sponding to the +Dynkin diagram of type 
X (- 248 Lie Algebras). Let L= L, + x L, 

be a Cartan decomposition of L, where c( 
ranges over the +root system A of L. It is pos- 

sible to choose a basis B of L with the following 
properties (+Chevalley’s canonical basis): 
B consists of e,EL,(ccEA) and a basis of L,; 

the structure constants of L with respect to B 
are a11 rational integers; the automorphism 
x,(t) in the tadjoint group detïned by 

x,t5)=expt5adem) (SEC) 

maps each element of B into a linear combi- 
nation of elements of B with coefficients which 
are polynomials in < with integer coefficients. 
Thus the matrix A,(<) representing the trans- 

formation x=(t) with respect to B has coeflï- 
cients which are polynomials in 5 with integer 
coefficients. 

The elements of B span a Lie algebra L, 

over the ring Z of integers. Let F be a field and 
form L, = F @ ZL,. Then L, is a Lie algebra 
over F, and the set B may be identified with a 
basis of L, over F. Let t be any element of F, 

A,(t) be the matrix obtained from A,(<) by 
replacing the complex variable 5 by the ele- 

ment t, and tïnally x,(t) be the linear trans- 
formation of L, represented by the matrix 
A,(t) with respect to B. The group generated 

by the x,(t) for each root a and each element t 
of F is called the Chevalley group of type X 
over F. The commutator subgroups of the 

Chevalley groups are simple, with a few excep- 
tions which Will be stated after the complete 
list of simple groups of Lie type. Suppose that 
X = A,, D,,, or E, (- 248 Lie Algebras S). 

Then the Dynkin diagram of type X has a 
nontrivial symmetry; let it be a-p. Suppose 

that the tïeld F has an automorphism (r of the 
same order as the order of the symmetry of the 
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Dynkin diagram. Let 0 be the automorphism 
of the Chevalley group which sends x,(t) to 

x0(P). Let U (resp. V) be the subgroup of the 

Chevalley group generated by x,(t) with a > 0, 

téF (x,(t),/?<O), and let U’(V’) be the sub- 
group consisting of all the elements of U(V) 

which are left invariant by 8. The group gen- 
erated by U1 and Vi is called the group of 
twisted type. If the order of (r is i, this group is 
said to be of twisted type IX. In ah but one 

case, the group of twisted type is simple (see 
R. Steinberg, P~C$C J. Math., 9 (1959)). The 
value i is 2 except when X = D4. Since D4 
admits symmetries of orders 2 and 3, there are 
two twisted types. If X = B,, G,, or F4, then 

the diagram has a symmetry. If the character- 
istic p of the ground lïeld F is 2,3, or 2 accord- 
ing as X = B,, G,, or F4 and the tïeld F has an 
automorphism (T such that (Y)“= tP for any 
t E F, then a procedure similar to the one de- 

scribed before is applicable, and the group of 
twisted type X’ is obtained (R. H. Ree, Amer. 

J. Math., 83 (1961)). The group of twisted type 
is simple if the tïeld F has more than three 
elements. 

The following list contains a11 the simple 

groups of Lie type. For each classical group, 
we list the type followed by identification: 

An = L,+,(q) (n2 1) 

24= K+,(q) (na1) 

Bn = O,n+, (4 tn> 1) 

C” = S,,(q) (n>2) 

D”=o,,(Ld (fl>3) 

2Dn=02n(-1>q) (n>3) 

For other groups the type of the group is 
followed by the customary name or notation, 
if any, and the order y: 

B; Suzuki group, Sz(q), q = 2”‘+’ 

.4=q2(4-l)tq2+1) 

3D4 g=q’2(q8+q4+l)(q6-l)(q2-1) 

G2 .4=46t46-l)(qz-1) 

G Ree group, Re(q), q = 32”+1 

9=q3tq3+ l)(q-1) 

F4 
g=qyq1* - 1)(q8 - l)W- 1) 

x(4*-1) 

F4 q=22”+l g=q12(q6+1)(q4-1) 

x(q3+11)(4-1) 

E6 dg=qX6(q’2- l)(q9- l)(qS- 1) 

xkP-1)(q5-1)tq2-~) 

d=(3,q-1) 
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Q6 dg=q36(q’2 - l)(q9 + 1)(q8 - 1) 

x kP- U(s5 + lHq2 - 1) 

d=(3,q+ 1) 

E7 dg=q63(q18 - l)(q’4- l)(q’2- 1) 

x (qlO- lW-lN4-lkZ- 1) 

d=(2,q-1) 

ES y z qyq30- l)(q2”- l)(q2O- 1) 

x(q’S- l)(q’4- l)(q’2- 1) 

x (48 - l)(q2 - 1). 

B;: M. Suzuki, Proc. Nat. Acad. Sci. US, 46 
(1960); G; and FL: Ree, Amer. J. Math., 83 

(1961): G,: Dickson, Trans. Amer. Math. Soc., 2 
(1901), Math. Ann., 60 (1905); other Chevalley 

groups: Chevalley, Tôhoku Math. J., (2) 7 
(1955); twisted types: Steinberg, P~C$C J. 
Math., 9 (1959) J. Tits, Séminaire Bourbaki 
(1958), Publ. Math. Inst. HES (1959), D. Hert- 
zig, Amer. J. Math., 83 (1961) Proc. Amer. 
Math. Soc., 12 (1961). 

Nonsimple cases: L,(2), L,(3), U,(2), and 
Sz(2) are solvable groups of orders 6, 12,72, 

and 20, respectively. The groups O,(2), G,(2), 
G;(3), and F:(2) contain normal subgroups 
of indices 2,2, 3, and 2, respectively. These 
normal subgroups are simple and identifïed as 
L,(9), U,(3), L,(8) in the tïrst three cases. The 
normal subgroup of F:(2) is not in the list of 
simple groups of Lie type and is quite excep- 

tional (Tits’s simple group, Ann. Math., (2) 80 
(1964)). 

Isomorphisms between various simple 

gros: Md= u,(q)= s,(q)= O,(q); O,(q) = 
S,(q); 04u~q)=~,(dx~,(q); o,t-l,q)= 

L2(q2); o,(1>d=L4(d; 06(-1>q)=u,(q); 

O,,+,(q)=&,(q) if q is a power of 2; L,(2)=S,; 
L,(3)= A,; L2(4)=Lz(5)= A,; L2(7)=L3(2); 

L,(9)=A6; L4(2)=A8; U,(2)=&(3). If q is odd 
and 2n > 6, then S,,(q) and 02n+l (q) have the 
same order but are not isomorphic. L,(4) and 
L,(2) have the same order but are not isomor- 

phic. There is no other isomorphism or coin- 
cidence of orders among the known simple 

groups (Artin, Comm. Pure Appl. Math., 8 
(1955)). 

The groups of the automorphisms of simple 

groups belonging to subclasses (1), (2), and 
(3) are known. For the simple groups of Lie 
type, see Steinberg, Canad. J. Math., 10 (1960). 

The following list of twenty-six groups con- 
sists of all the simple groups that belong to 
class (4): 

Five Mathieu groups whose orders are 

M,,:g=7,920=24.3’.5~11 

M,,:g=95,040=26.33.5.11 

M,,:g=443,520=2’.3’.5.7.11 
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The other twenty-one groups have been 

discovered since 1964. Each group is identilïed 
by the symbol (x)~, indicating that it is the ith 
group discovered in the year 19x. The list 

continues with the name or names of dis- 
coverers, the order of the group, and a brief 
description. 

(64),: Z. Janko, g= 175,560=23.3.5.7. 
11.19. A subgroup of the Chevalley group 

G,( 11). See J. Algebra, 3 (1966). 
(67), : M. Hall and Z. Janko, g = 604,800= 

2’. 33. 52. 7, a transitive extension of U,(3) 

of degree 100. 
(67),: D. G. Higman and Sims, g = 

44,352,OOO = 29 32 53 .7. 11, a transitive 

extension of M,, of degree 100. It is a normal 
subgroup of index 2 in the group of automor- 
phisms of a certain graph with 100 vertices. 

(67),: Suzuki, g=448,345,497,600=2r3. 37. 

5’ ‘7.11. 13, a transitive extension of G,(4); 
defïned from the automorphism group of a 
graph of 1782 vertices. 

(67),: J. McLaughlin, g = 898128,000 = 
27. 36. 53. 7.11, a transitive extension of 
U,(3); defmed from a graph of 275 vertices. 

(68), : G. Higman, Z. Janko, and J. McKay, 
g = 50,232,960 = 27. 35 ‘5.17 19, a transitive 

extension of the group which is obtained from 
L,(16) by adjoining the field automorphism of 
order 2. The existence was veritïed by using a 
computer. 

(68),, (68),, (68),: J. H. Conway, 

=4,157,776,806,543,360,000, 

g=2 ‘8.36.53.7.11.23, 

g=2’O.3’.53.7.11.23. 

The big group is obtained from the automor- 
phism group of a lattice in 24-dimensional 
space, and the two smaller ones are subgroups 
of it. The lattice was defïned by J. Leech in 
connection with a problem of close packing of 

spheres in 24 dimensions (Canad. J. Math., 19 
(1967)). 

(68),: B. Fischer,g=2’7.3g.52.7.11.13= 
70,321,75 1,654,400, a transitive extension of 
U,(2) derived by means of a certain graph. 

(69),: D. Held and others,g=2’0.33.52.73. 

17 = 4,030,387,200. 
(69),:B.Fischer~,g=2~~.3~~.5~.7.11.13. 

17.23 =4,089,470,473,293,004,800. 
(69),:B. Fischer,g=221.316.52.73.11.13. 

17.23.29 = 1,255,205,709,190,661,721,292,800. 
(71),: R. N. Lyons and C. C. Sims, g= 

28.37.56.7.11.31.37.67. 

The existence of (69), and (71), was verihed by 
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using computers; (69), and (69), were derived 
by means of certain graphs. For a more de- 
tailed account of these simple groups, see J. 
Tits, Séminaire Bourhuki (1970), No, 375, and 
the references [ 18,19,20.] 

(72),:A. Rudvalis,g=2’4.33.53,7.13.19, 
a transitive extention of Tits’s simple group, 
i.e., a normal subgroup of F>(2) of index 2. 
Concerning this group (72), , see the article 

of J. H. Conway and D. B. Wales, J. Alyebra, 
27 (1973). 

(73),: M.0’Nan,g=29.34.5.73~ll.19.31. 
This group (73), was discovered by O’Nan and 
the existence was verilïed by C. Sims, using a 
computer. 

(73),: B. Fischer, g=24’ ‘313.56.72. 11.13’ 
19.23.31.47. 

(73),: B. Fischer and R. Griess, g = 246. 3”‘. 
59~76~112~133~17~19~23~29~31~41~47~ 
59.71. 

(74),: J. G. Thompson,g=215.3’0.53.72. 
13.19.31. 

(74),: K. Harada, g=2’4.36.56.7. 11.19. 

The existence of (73), was suggested by B. 
Fischer, and then that of (73), by B. Fischer 
and R. Griess. Shortly after this, the exis- 

tence of (74), and (74), was suggested by J. G. 
Thompson, and then Thompson and Harada 
proved the existence of these groups with the 
aid of P. Smith and S. Norton, using com- 
puters. The existence of (73)> was established 
in 1976 by Leon and Sims, using a computer. 
Very recently (July 1980) R. Griess has an- 
nounced that the group (73), is realized as 
a group of automorphisms of a 196,883- 

dimensional commutative nonassociative 
algebra over the rational numbers. 

(75),:Z.Janko,g=221~33~5~7~113~23~29. 

31.37’43. This group (75), was discovered 
by Z. Janko. The existence was verifïed by 
using a computer. 

For a more detailed account of the twenty- 

six sporadic simple groups, see [Zl]. 
Simple groups of order < 1000 are A 5 

(g= 6% b(7) (1681, 403% -h(8) (50% 
and L2( 11) (660). Al1 simple groups of order 

<20,000 are known. 
Among the known simple groups, the fol- 

lowing multiply transitive permutation repre- 
sentations are known: Alternating groups A,, 

(degree n), A, and A, (degree 15), A, (degree 
lO), A, (degree 6), Mathieu groups Mi (degree 

9, Ml 1 (degree 121, L(q) (dewe (qn - l)/ 
(q-I)),L,(p)(degree~for~=5,7,11), u3(q) 
(degree 1 + q3), Sz(q) (degree 1 + $), Re (3”) 
(degree 1 + 33n), S,,(2) (degrees 2n-1(2nk l)), 
and the Higman-Sims group (67), (degree 176) 
and, the Conway group (68), (degree 276). 

Among them, A, (degree n, n > 5), Mi (degree i), 

M,, (degree 12) L,(2m) (degree 1+2”‘), and 
L,(5) (degree 5) are triply transitive. 
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There are several remarkable properties of 
known fmite simple groups which have been 
conjectured to hold for arbitrary Imite simple 
groups. One of the most famous is the Schreier 
conjecture, which asserts that the group of 
outer automorphisms of a simple group is 
solvable. This has been verifïed for a11 known 
cases. Another conjecture says that a tïnite 
simple group is generated by two elements. 

This has also been verified for almost ah 
known groups. In many cases, there is a gen- 
erating set of two elements, one of which has 

order 2. There is no counterexample known to 
disprove the universal validity of this property. 
Except for Sz(q), the orders of known simple 
groups are divisible by 12. 

J. Classification of Finite Simple Groups 

The objective of classification theory is to tïnd 
the complete list of fïnite simple groups; this 
was accomplished in February 1982, following 

the series of important works mentioned 
below. 

The order of a tïnite non-Abelian simple 
group is divisible by at least three distinct 
prime numbers (W. S. Burnside; - Section D). 

The order of a finite non-Abelian simple group 
is even (W. Feit and J. G. Thompson; - Sec- 

tion D). These theorems are special cases of 
the following theorem: If G is a fïnite non- 
Abelian simple group in which the normalizer 
of any solvable subgroup # { 11 is solvable, 

then G=L,(q)(q>3), Sz(2’““)(n> 1), A,, 

L,(3)> U,(3)> Ml 1, or Tits’s simple group. In 

particular, a minimal simple group is isomor- 
phic to L,(p) (p=2 or 3 (mod5), p>3), L,(2p), 
L,(3p), Sz(2!‘), or L,(3), where p is a prime 
number (a fïnite non-Abelian simple group is 
called a minimal simple group if ah proper 
subgroups are solvable). This theorem is 

proved in a series of papers by J. G. Thomp- 
son (Bull. Amer. Math. Soc., 74 (1968), Pucific 
J. Math., 33 (1970), 39 (1971) 48 (1973), 50 
(1974), and 51 (1974)). The method which 

Thompson used in these papers has since been 
generalized in various ways by many authors 

to establish a number of important theorems. 
There are also some interesting consequences 
of this theorem concerning solvable groups. 
For example, a finite group is solvable if and 

only if every pair of elements generates a sol- 
vable subgroup. 

Let G be a non-Abelian simple group of 
even order and S one of its 2-Sylow subgroups. 
Then S is neither cyclic nor a generalized 
quaternion group (W. S. Burnside, R. Brauer, 
and M. Suzuki). If S is a dihedral group, then 

G= A, or L,(q) (q odd 35) (D. Gorenstein and 

J. H. Walter). These theorems deal with the 
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cases where S is “small.” The study in this 
direction has culminated in the classification of 
tïnite simple groups ah of whose 2-subgroups 

are generated by at most four elements (D. 
Gorenstein and K. Harada, Mem. Amer. Math. 
soc., 147 (1974)). 

If a 2-Sylow subgroup of a finite non- 
Abehan simple group G is an Abelian group, 

then G = L,(r) (r = 0, 3 or 5 (mod S), r > 3), or 
else G possesses an element of order 2 whose 
centralizer is isomorphic to Z, x L,(q) (q s 3 or 
5 (mod 8), q > 3) (J. H. Walter). In the latter 
case, G is called a group of Janko-Ree type 
(J-R type for short), and if q # 5, it is called a 
group of Ree type. If q = 5, then G = (64), , the 
Janko’s simple group of order 175,560. The 
Ree groups Re(q) are groups of Ree type. Since 

the discovery of Re(q), it has long been an 
open problem to show that there are no other 

groups of Ree type. Very recently, the com- 

bined work of E. Bombiere, J. G. Thompson 
and others settled the problem (Inventiones 
Math., 58 (1980)). 

A surprisingly short proof of the Walter? 
theorem above is given by H. Bender (Muth. 
Z., 117 (1970)). Bender’s method applies to a 
much larger class of groups. A subgroup A of 

a imite group G is said to be strongly closed if 
AR n N,(A) c A for each g E G. D. M. Gold- 

schmidt proved (Ann. Math., 99 (1974)) that if 
A is a strongly closed Abehan 2-subgroup, 

then the subgroup G, generated by the con- 
jugates of A possesses a normal series G, 2 
G, 3 G, with the properties: G, is of odd order, 
G,/G, is a 2-group and is contained in the 
tenter of G,/G,, and either G, = G, or G,/G, 
is the direct product of simple groups on the 
following list: L,(q) (q E 0, 3 or 5 (mod 8), 
q>3), Sz(2’“-‘), U,(2”) (n> l), and the groups 
of J-R type. Furthermore, AGJG, 1 G,/G, 
and AG,/G, is the tenter of a 2-Sylow sub- 

group of G,/G, This theorem generalizes 

an earlier result of G. Glauberman (the so- 
called Z*-theorem) which states that if A is a 
strongly closed subgroup of order 2, then the 
image of A in the quotient group G/K by the 
maximal normal subgroup of odd order is a 
normal subgroup and hence is contained in 
the tenter of G/K. These theorems of Glauber- 

man and Goldschmidt are of fundamental 
importance in the study of tïnite simple groups 

since they provide an effective tool for showing 
that a given group has a normal Abelian 2- 
subgroup. 

Glauberman obtained a criterion for the 

existence of a strongly closed Abelian p- 
subgroup # { 1) for some prime p [ 15,221. For 
any prime p, the quadratic group Qd( p) is 
defined to be the semidirect product of the 2- 

dimensional vector space I’(2, p) over the tïeld 
of p elements by the special hnear group 
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X(2, p) where the action of SL(2, p) on V(2, p) 
is taken to be the natural one. A finite group G 

contains a strongly closed Abelian p-subgroup 
A # {I } if no section of G is isomorphic to 
Qd( p) (a section is a quotient group of a sub- 
group). Furthermore, if p is odd, then we cari 
choose as A a characteristic subgroup of a p- 

Sylow subgroup S of G which is determined 

only by the structure of S. Therefore a finite 
non-Abelian simple group has a section iso- 
morphic to Qd(2) = S, except when it is one of 
the simple groups mentioned in Goldschmidt’s 

theorem. This theorem generalizes an un- 
published result of J. G. Thompson to the 
effect that 3 divides the order of tïnite non- 
Abelian simple groups except SZ(~~“+‘). 

Let G be a 2-transitive permutation group 

on n + 1 letters, and assume that the stabilizer 
H of a letter contains a normal subgroup K 
which is regular on the remaining n letters. 

Then G contains a normal subgroup N such 
that G is isomorphic to a subgroup of the 
automorphism group of N and either N = 

L2(q), Q(q), Wq) or a group of Ree type, 
or else N is 2-transitive on the n + 1 letters and 
no nonidentity element of N leaves two dis- 
tinct letters invariant (the structure of N in the 
latter case is also known (H. Zassenhaus; - 
Section H). This theorem is proved by E. 

Shult for n even (Illinois J. Math., 16 (1972)) 
and by C. Hering, W. M. Kantor, and G. M. 
Seitz for n odd (J. Algebra, 20 (1972)). Its proof 

depends on the work of many authors who 
considered various special cases, especially the 
work of H. Zassenhaus, W. Feit, N. Ito, and 
M. Suzuki on the classification of Zassenhaus 
groups, and the work of M. Suzuki on the case 
where n is even and HIK is of odd order (Ann. 
Muth., 79 (1964)). In this special case which 
Suzuki handles, the stabilizer H is of even 
order and H n Hg is of odd order for any ge 
G - H. If a proper subgroup H of an arbitrary 

fïnite group G has this property, then H is 
called a strongly embedded subgroup. Extend- 

ing the work of Suzuki, H. Bender proved the 
following theorem (J. Algebra, 17 (1971)): If a 
fïnite group G possesses a strongly embedded 
subgroup, then either (i) a 2-Sylow subgroup 
of G is cyclic or a generalized quaternion 
group, or (ii) G possesses a normal series G = 

G, 1 G, 2 G, such that G,/G, and G, are of 
odd order and G, /G, = L,(2”), U3(2”), or 
SZ(~~“-‘) (n> 1). This theorem generalizes 
another theorem of Suzuki who reached the 

same conclusion under the assumption that 
two distinct 2-Sylow subgroups have only the 
identity element in common. Bender’s theorem 
is of fundamental importance in the classifica- 
tion theory of fïnite simple groups, since a 

strongly embedded subgroup often appears as 
an obstacle to the proofs of classification 
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theorems. For a generalization of Bender’s 
theorem, see a paper by M. Aschbacher (Pro~. 

Amer. Math. Soc., 38 (1973)), which also con- 
tains an alternative proof of Shult’s theorem. 

The theorem of Shult, Hering, Kantor, and 
Seitz may be interpreted as a classification of 

lïnite groups having a split (B, N)-pair of rank 
1. Let G be a finite group and let B and N be 
subgroups of G such that (i) B and N generate 

G, (ii) T= B n N is a normal subgroup of N, 
and (iii) W= N/Tis generated by a set S of ele- 

ments of order 2 such that sBs # B and sBw c 
BwB U BswB for each s E S and each w  E W. 
The subgroups B and N are called a (B, N)- 
pair of G (the quadruplet (G, B, N, S) is called 
a Tits system), and the cardinality of the set 
S is called the rank of the (B, N)-pair. The 
(B, N)-pair is said to be split if B has a normal 

subgroup Cl such that B = TU and Tn CI = { l), 
and is said to be saturated if T= finEN B”. If a 
tïnite group G has a split saturated (B, N)-pair 
of rank 1, and if Z = flgEG Bg, then G/Z is a 2- 

transitive permutation group satisfying the 
assumption of the theorem of Shult, Hering, 
Kantor, and Seitz, and information is obtained 
on the structure of G. In general, the simple 

groups of Lie type are characterized as simple 
groups with certain (B, N)-pairs. For (B, N)- 

pairs of rank 2, see papers by P. Fong and G. 
M. Seitz (Inventiones Math., 21 (1973), 24 

(1974)). J. Tits has developed a satisfactory 
theory on finite groups having a (B, N)-pair of 
rank at least 3 (Lecture notes in math. 386, 
Springer). 

Let G be a tïnite group generated by a 
conjugate class D of elements of order 2, and 
let 7c be the set of positive integers consisting of 
the orders of the products of two distinct 

elements of D. Furthermore, assume that G 
has no nontrivial solvable normal subgroup. 

B. Fischer proved (Inventiones Math., 13 
(1971)) that if n = {2,3}, then G contains a 
normal subgroup isomorphic to one of the 

following groups: A,,, S,,(2), O,,( fl, 2), 
O,,( &1,3), U,,(2), and the three Fischer’s simple 
groups (68),, (69),, (69),. For a generalization 

of this theorem, see papers by M. Aschbacher 
(Math. Z., 127 (1972), J. Algehru, 26 (1973)). 
The most powerful result in this direction is 
given by F. Timmesfeld (J. Algebra, 33 (1975), 
35 (1975)): Suppose T[ consists of 2,4, and odd 
positive integers. Furthermore, assume that if 
d and e are in D and de is of order 4, then 
(de)2 ED. Then G = A,, U,(3), the Hall-Janko 

group (67), , L(q)(n 2 3), 02,,+, kW 2 3), 

02,( k1> db >4), G(q)> 3D&), F,(q)> *4,(q)> 

k,(q), Wd, or Wq), where q = 2”. 
Let G be a simple group of even order and 

let H be the centralizer of an element of order 

2. Then the order of G is bounded by a func- 
tion f of the order h of H (for example, we cari 
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choose ,f‘(h) = { h(h + l))!; R. Brauer and K. A. 
Fowler, Ann. Math., 62 (1955)). In particular, 
there exist only finitely many isomorphism 

classes of fïnite simple groups which contain 
an element of order 2 with a given centralizer 
H. This fact is a ground for Brauer’s program 
of studying simple groups of even order in 
terms of the structure of the centralizers of 
elements of order 2. There are a number of 

important results concerning Brauer’s pro- 
gram [20]. For example, nine sporadic simple 
groups were discovered in related works. Since 
1973, Brauer’s program has been improved 
greatly by M. Aschbacher, D. Gorenstein, and 
others, and the classification of fïnite simple 

groups was fïnally completed in February 1982 
[21,23]. 
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152 (VII.1 8) 
Finsler Spaces 

A. Definitions 

Let T(M) be the ttangent vector bundle of an 
n-dimensional tdifferentiable manifold M. An 
element of T(M) is denoted by (x, y), where x is 

a point of M and y is a ttangent vector of M at 
x. Given a tlocal coordinate system (xi, . , x”) 
of M, we cari obtain a local coordinate system 
of T(M) by regarding (x1, , x”, y’, . . , y”) = 
(xi, y’) as coordinates of the pair (x, y)~ T(M), 
where (x1, . ,x”) are coordinates of a point x 
of M and y = C yja/ôxj. A continuous real- 
valued function L(x, y) defïned on T(M) is 
called a Finsler metric if the following condi- 

tions are satistïed: (i) L(x, y) is differentiable at 
y#O; (ii) L(x,Ây)=IJ”IL(x,y) for any element 
(x, y) of T(M) and any real number Â; and 
(iii) if we put gij(x, y) = (i/2)a2L(x, y)2/ayiayj, 

the symmetric matrix (g,(x, y)) is positive de- 
tïnite. A differentiable manifold with a Finsler 
metric is called a Finsler space. There exists 
a Finsler metric on a manifold M if and only 
if M is tparacompact. We cal1 F(x, y) = L(x, y)2 

the fundamental form of the Finsler space. 
When F(x, y) is a quadratic form of (y’, ,y”), 
L(x, y) is a +Riemannian metric, and F(x, y) = 

Ci, jgij(x)y’yj. Therefore a Finsler space is a 
Riemannian space if and only if g,j does not 
depend on y. The matrix gij is also called the 

fundamental tensor of the Finsler space (i,j = 
l,...,n). 

Thus the notion of a Finsler metric is an 
extension of that of Riemannian metric. The 

study of differentiable manifolds utilizing such 
generahzed metrics was considered by B. 

Riemann, but he stated that a Riemannian 
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metric is more convenient for the purpose 
since “only nongeometrical results cari be 
obtained” by using Finsler metrics [7]. P. 
Finsler initiated the systematic study of Finsler 

metrics and extended to a Finsler space many 
concepts and theorems valid in the classical 

theory of curves and surfaces [S]. 

B. The Finsler Metric 

In a Finsler space, the arc length of a curve 
x=x(t) (a < t < b) is given by it L(x, dx/dt) dt. 
Therefore a tgeodesic in a Finsler space is 
defined as a tstationary curve for the problem 

of +Variation 6 1: L(x, dx/dt) dt = 0, and the 
differential equation of the geodesic is given by 

where yjk(x, y) is the +Christoffel symbol of g,, 
i.e., 

.i.;x(~,y~=;&” 
<1 

where (g’j(x, y)) is the inverse matrix of 

(Yijtx> Y)). 
The distance between two points in a Fin- 

sler space is defined, as in a Riemannian space, 
as the infimum of the lengths of curves joining 

the two points. Many properties of Riemann- 
ian spaces as metric spaces cari be extended 
to Finsler spaces. The topology detïned by the 
Finsler metric coincides with the original 

topology of the manifold. A Finsler space M is 
said to be tcomplete if every Cauchy sequence 

of M as a metric space is convergent. The 
following three conditions are equivalent: (i) M 
is complete; (ii) each bounded closed subset 
of M is compact; (iii) each geodesic in M is 
infinitely extendable. In a complete Finsler 

space, any two points cari be joined by the 
shortest geodesic. 

A diffeomorphism <p of a Finsler space M 
preserves the distance between an arbitrary 
pair of points if and only if the transforma- 
tion on T(M) induced by <p preserves the 
Finsler metric L(x, y). Such a transformation is 
called an tisometry of the Finsler space. In the 
+Compact-open topology the set of a11 isome- 

tries of a Finsler space is a +Lie transformation 
group of dimension at most n(n + 1)/2. If a 
Finsler space admits the isometry group of 

dimension greater than (n(n - 1) + 2)/2, it is a 
Riemannian space of constant curvature [S]. 

C. The Theory of Connections 

An important difference between a Finsler 

space and a Riemannian space relates to their 
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properties with respect to the theory of tcon- 

nections. In the case of a Riemannian space, 
the Christoffel symbols constructed from the 

fundamental tensor are exactly the coefficients 
of a connection, whereas in the case of a Fin- 
sler space, the Christoffel symbols y$x, y) do 

not deiïne a connection, for the fundamental 
tensor 9, depends not only on the points of the 
space but also on the directions of tangent 
vectors at these points. 

When we consider notions such as tensors, 
etc., in a Finsler space M, it is generally more 
convenient to take the whole tangent vector 
bundle T(M) into consideration rather than 
restricting ourselves to the space M. For ex- 
ample, let P be the ttangent n-frame bundle 
over a Finsler space M and Q = p-‘(P) be the 

tprincipal Iïber bundle over T(M) induced 
from P by the projection p of T(M) onto M. 
We cal1 the elements of fiber bundles asso- 
ciated with Q tensors. In this sense, the fun- 
damental tensor g, in a Finsler space is the 
covariant tensor field of order 2. Therefore it is 

natural to consider a connection in a Finsler 
space as a connection in the principal fïber 
bundle Q. The connection in a Finsler space 

defïned by E. Cartan is exactly of this type [3]. 
Namely, he showed that by assigning to a 
connection in Q certain conditions related to 
the Finsler metric, we cari determine uniquely 

a connection from the fundamental tensor SO 
that the covariant differential of the funda- 
mental tensor vanishes. 

Cartan’s introduction of the notion of con- 
nection produced a development in the theory 
of Finsler spaces that parallels the develop- 
ment in the theory of Riemannian spaces, and 
many important results have been obtained. 

0. Varga (1941) succeeded in obtaining a 
Cartan connection in a simpler way by using 

the notion of osculating Riemannian space. 
S. S. Chern (1943) studied general Euclidean 

connections that contain Cartan connections 
as a special case. Noticing that the tangent 
space of a Finsler space is a tnormed linear 
space, H. Rund (1950) obtained many notions 
different from those of Cartan. However, as far 
as the theory of connections is concerned, the 
two theories do not seem to be essentially 

different. The theory of curvature in a Finsler 
space is more complicated than that in a 
Riemannian space because we have three 
curvature tensors in the Cartan connection. 

Using the fact that, in a local cross section of 
the tangent vector bundle of a Finsler space, a 
Riemannian metric cari be introduced by the 
Finsler metric, L. Auslander (1955) [2] ex- 
tended to Finsler spaces the results of J. L. 
Synge and S. B. Myers on the curvature and 

topology of Riemannian spaces. A. Lichnéro- 

wicz extended the Gauss-Bonnet formula to 
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Finsler spaces by considering an integral on 

the subbundle of the tangent vector bundle 
satisfying L(x, y) = 1 [6]. M. H. Akbar-Zadeh 

studied tholonomy groups and transformation 
groups of Finsler spaces by using the theory of 
fïber bundles. 

Connections of Finsler spaces have been 
investigated by many geometers, but most of 
them used methods considerably different from 
those of the modern theory of connections in 
principal fïber bundles. J. H. Taylor and Synge 
(1925) defined the covariant differentïal of a 
vector tïeld along a curve. L. Berwald (1926) 
defmed a connection from the point of view of 
the general geometry of paths. A curve on a 
manifold satisfying the differential equation 

is called a path. The theory was originated by 
0. Veblen and T. Y. Thomas and generalized 
as above by J. Douglas. Characteristically, 
with respect to a Berwald connection, the 
covariant differential of the fundamental ten- 
sor does not vanish. 

A Finsler space is a space endowed with a 
metric for line elements. As a dual concept, we 
have a Cartan space, which is endowed with a 

metric for areal elements [4]. A. Kawaguchi 
(1937) extended these notions further and 
studied a space of line elements of higher order 

(or Kawaguchi space). 
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Fixed-Point Theorems 

A. General Remarks 

Given a mapping f of a space X into itself, a 
point x of X is called a fixed point off if f(x) 
=x. When X is a topological space and f 
is a continuous mapping, we have various 
theorems concerning the fïxed points off: 

B. Fixed-Point Theorems for Polyhedra 

(1) Brouwer Fixed-Point Theorem. Let X be a 
tsimplex and f: X-+X a continuous mapping. 

Then f has a lïxed point in X (Math. Ann., 69 

(1910), 71 (1912)). 

(2) Lefschetz Fixed-Point Theorem. Let H,(X) 
be the p-dimensional thomology group of a 
Vïnite polyhedron X (with integral coeffl- 
cients), T,(X) the ttorsion subgroup of H,(X), 

and B,(X) = H,(X)&(X). The continuous 
mapping f: X+X naturally induces a homo- 
morphism f, of the free Z-module B,(X) into 
itself. Let c(~ be the ttrace off, and A/ = 
ca=,( -l)pc(, (n = dim X). We cal1 this integer 

A, the Lefschetz numher f: 
We have the Lefschetz Iïxed-point theorem: 

(i) Let J y be continuous mapping sending X 
into itself. If 5 g are thomotopic (f=g), then 
AJ = A,. (ii) If A, # 0, then f has at least one 
fïxed point in X (Trans. Amer. Math. Soc., 28 
(1926)). 

The condition A, # 0 is, however, not neces- 
sary for the existence of a fïxed point of ,f: The 
Brouwer fïxed-point theorem is obtained im- 
mediately from (i) and (ii). in particular, if the 

mapping f is homotopic to the identity map- 
ping l,, then tlp is the pth tBetti number of X, 
and A! is equal to the tEuler characteristic 
x(X) of X. Hence, in this case, if x(X) ~0, then 

f has a fïxed point. 
When X is a compact oriented manifold 

without boundary the Lefschetz number A,. of 
f cari be interpreted as the tintersection num- 

ber of the graph off and the diagonal of X. 
More generally, let X and Y be compact 

oriented n-dimensional manifolds without 
boundary. If f and g : X + Y are continuous 

mappings, a point x of X such that f(x) = 
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g(x) is called a coincidence point off and g. 
The intersection number A,,, of the graph 

of ,f and that of g is called the coincidence 
numher off and g. If A,-, 9 # 0, then f and g 
have at least one coincidence point. The coin- 
cidence number Af,s is also expressed as 

Cp=,(-l)Ptr(f*og!IHP(X)), where g,: 
HP(X)+HP(Y) is the tGysin homomorphism 
of g. 

Suppose that a lïnite group G acts on the 
manifolds X and Y. If f: X + Y is a mapping, a 

point x of X such that zf(x) =fi(x) for a11 TE G 
is called an equivariant point off: When G is a 
group of order 2 and acts on X nontrivially, 

the equivariant point index Âr is employed. 
This index was introduced by Nakaoka 
(Japan. J. Math. 4 (1978)), using the tequivar- 
iant cohomology. It has the property that 

Â/ # 0, implying that f admits an equivariant 
point. The prototype of this theorem is the 
Borsuk-Ulam theorem (Fund. Math. 20 (1933)), 
which states that a continuous mapping f: 
S”+R” always admits a point XE~” such that 

.m = .f( - 4. 

(3) Lefschetz Number and Fixed-Point Indices. 

Suppose that 1 K 1 is an n-dimensional homo- 
geneous polyhedron (i.e., any simplex of K 

that is not a face of another simplex of K is of 
dimension n), and f: 1 K I-+ 1 K 1 is a continuous 

mapping. Then there exists a continuous 
mapping g: 1 K 1-1 K 1 homotopic to f and 
admitting only isolated fïxed points {ql, , 
ql}, each of which is an inner point of an n- 
dimensional simplex of K. The tlocal degree 
ii of a mapping y at qi is called the Iïxed- 
point index of g at qi. Then JJ = & ki does 

not depend on the choice of g and is equal to 
(-l)“A,. 

(4) Singularities of a Continuous Vector Field. 
Let X be an n-dimensional tdifferentiable 
manifold and F a tcontinuous vector field on 
X that assigns a tangent vector xp to each 
point p of X. A point p is called a singular 

point of F if xp is the zero vector. The vector 
field F induces in a natural manner a continu- 

ous mapping f: X+X that is homotopic to 
the identity mapping 1,. Then a fïxed point of 
fis a singular point of F, and vice versa. When 

such a singular point p is isolated, there exists 
a tcoordinate neighborhood N of p that is 
homeomorphic to an n-dimensional open bal1 
such that xq is nonzero for every point q in N 
except for q = p. Let N’ be the boundary of N. 
Then we may consider N’ g S”-’ and a map- 
ping FIN’ from S”-’ to R”\{O} ES’-‘. The 

tdegree of a mapping S”-‘z R”\ (0) 39-l 

is called the index of the singular point p. This 
index is equal to the fïxed-point index A,, off 
at p. Hence, when X is compact and has no 
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boundary, the sum of indices of (isolated) 

singular points of F is equal to (-~)“X(X). In 
particular, a compact manifold X without 

boundary admits a continuous vector fïeld 
with no singular point if and only if x(X) = 0 

(Hopf’s theorem, Math. Ann., 96 (1927)). 

(5) Poincaré-Birkhoff Fixed-Point Theorem. In 
certain cases, a continuous mapping f: X +X 
of a iïnite polyhedron X into itself has fïxed 
points even if Af = 0. For example, let X be the 

annular space {(r, 6)) 1 c( d r < /l} ((r, f3) are the 
polar coordinates of points in a Euclidean 

plane) and let f: X *X be a homeomorphism 
satisfying the following conditions: (i) there 

exist continuous functions g(Q), h(O) such that 

d@) < 6 h(Q) > Q, fk 0) =k4 cl(@), f(B> Q) = 
(,$ h(0)); (ii) there exists a continuous positive 
function p(r, 0) defïned for CI < r < b such that 

SS 
p(r, 0) dr dO = 

D SS 
p(f(r, Q)WrdQ 

D 

for all measurable sets D. 
Then ,f has at least two fixed points. This 

theorem was conjectured in 1912 by Poincaré, 
who hoped to apply it to salve the trestricted 

three-body problem. The theorem was later 
proved by G. D. Birkhoff (Trans. Amer. Math. 
Soc., 14 (1913); see also M. Brown and W. D. 
Neumann, Michigan Math. J. 24 (1977)) and 
is called the Poincaré-Birkhoff fixed-point 
theorem or the last theorem of Poincaré. 

C. Atiyah-Bott and Atiyah-Singer Fixed-Point 
Theorems 

There is a far-reaching generalization of the 

Lefschetz formula given by Atiyah and Bott 
(Ann. Math., (2) 86 (1967), 88 (1968)). Let M be 
a compact differentiable manifold without 
boundary and .f: M+M a differentiable map- 
ping with only simple fïxed points; that is, it is 
assumed that det(1 -df,)#O for each iïxed 

point PE M of J where df, is the differential of 
fat the point p. The fïxed points off are finite 
in number. Suppose that an telliptic complex 

over M 

&04-(Eo)3r(E1)~... bLI,I-(Et)+0 

and a sequence of smooth vector bundle 

homomorphismscpi:f*Ei+Ei(i=O,...,l) 
are given such that diT = T+, di for each i, 
where 7;:r(EJ-+T(E,) is defined by T~(X)= 
qq(f(x)) for seT(Ei). The sequence T=(T) 
induces endomorphisms H’T of the homology 
groups Hi(&) of the elliptic complex &. We 
defïne the Lefschetz number L(T) by L(T) = 

&,( -l)i tr H’T. On the other hand, for a 

tïxed point p of,f, let ‘pi p:Ei p’Ei,p denote 1 1 
the restriction of <pi on the fïber E,,, of Ei over 
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p. Under the circumstances mentioned above 
the Lefschetz number L(T) is given by the 
formula 

i (-lYtrvi,p 
L(T)$=0 

p Idet(l -df,)l ’ 

where the summation is over the fïxed points 
off: 

Here are some examples of the above for- 
mula. First, take as B the tde Rham complex 
and as ‘pi the obvious one, i.e., the ith exterior 
power of the transpose of df: In this case, the 
formula reduces to the classical Lefschetz 

formula. As a second example consider the 
+Dolbeault complex 

04°*o(M)ho~1(M)a* ho-(M)+0 

of a compact complex manifold M and a 
holomorphic mapping f: M + M with only 
simple fixed points. In this case the formula 

above reduces to one giving the Lefschetz 
number of the induced endomorphisms 
,f*:H’-*(M)+H’,*(M) of the +Dolbeault 

cohomology: 

uf*)=C l 
B detc( 1 - df,) ’ 

where df, is regarded as a holomorphic 
differential. 

If the assumption that the mapping f has 
only simple fïxed points is replaced by the one 
that f is a diffeomorphism of M contained in 

a compact ttransformation group G, then 
there is also a generalized Lefschetz formula, 
given by Atiyah and Singer (Ann. Math., (2) 87 
(1968)). The lïxed-point set of such a diffeo- 
morphism is a closed submanifold of M (con- 

sisting of several components). Suppose that 
we are given an elliptic complex G over M and 

a lift of the G-action on M to d. The latter 
implies that, if we define T:T(E,)+T(E,) by 
7;s(x)=f -I~(f(x)) for S~T(E~), then diT= 
7;+, di holds for each i. Under these circum- 

stances, the Lefschetz number L(T) cari be 
expressed in the form 

where the summation is over the components 
{Fi} of the fixed-point set Mf off and where 

the number v(F,) is written explicitly in terms 
of the +symbol of the elliptic complex d with 
G-action, the characteristic classes of the mani- 
fold Fi, the characteristic classes of the normal 
bundle of Fi in M, and the action of g = f -’ on 
the normal vectors. The formula is essentially 
a reformulation of the tAtiyah-Singer index 

theorem. In fact, L(T) is the tanalytic index of 
&? evaluated on g and the number v(Fi) is de- 

duced from the ttopological index of & using 
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the localization theorem. The most useful 
elliptic complexes are de Rham complexes, 

Dolbeault complexes, signature operators and 
Dirac operators. In the case of Dolbeault 
complexes, fis assumed to be an analytic 
automorphism, and the number v(Fi) takes the 
form 

Here, the norma1 bundle N of Fi has a decom- 
position N = Ce N(0) into the sum of complex 

vector bundles such that g acts on N(B) as eie, 
and Qe is the characteristic class deiïned by 

where the Chern class of N(B) is written as 
c(N(0)) = ni< 1 + xj); moreover .Y(F,) denotes 

the tTodd class of the complex manifold Fi, 
and N* denotes the dual bundle of N (- 237 
K-Theory H). 

D. Fixed-Point Theorems for Infinite- 
Dimensional Spaces 

Birkhoff and 0. D. Kellogg generalized 

Brouwer’s lïxed-point theorem to the case of 
function spaces (Trans. Amer. Math. Soc., 23 
(1922)). Their result was utilized to show the 
existence of solutions of certain differential 
equations, and has led to a new method in the 

theory of functional equations. 
J. P. Schauder obtained the following theo- 

rem: Let A be a closed convex subset of a 
Banach space, and assume that there exists a 
continuous mapping T sending A to a fcount- 

ably compact subset T(A) of A. Then T has 
fixed points (Studia Math., 2 (1930)). This 
theorem is called the Schauder fixed-point 
theorem. 

A. Tikhonov generalized Brouwer’s result 
and obtained the following Tikhonov iïxed- 
point theorem (Math. Ann., 111 (1935)): Let R 

be a locally convex ttopological linear space, 
A a compact convex subset of R, and Ta con- 
tinuous mapping sending A into itself. Then 
T has fixed points. 

This theorem may be applied to the case 
where R is the space of continuous mappings 
sending an m-dimensional Euclidean space E” 
into a k-dimensional Euclidean space Ek to 
show the existence of solutions of certain 

differential equations. For example, when m = 
k = 1, consider the differential equation 

dyldx =.0x> Y)> Y(x,) = yo. 

We set T(y)=y,+&f(t,y(t))dt to determine a 
continuous mapping T: R + R. Then the fixed 
points of Tare the solutions of the differential 

equation. Now we cari apply the theorem of 
Tikhonov to show the existence of solutions. 

On the other hand, when we are given prob- 
lems of functional analysis, Schauder’s lïxed- 
point theorem is usually more convenient to 

apply than Tikhonov’s theorem. 
The following theorem, written in terms of 

functional analysis, is useful for applications: 
Let D be a subset of an n-dimensional Eucli- 
dean space, F the family of continuous func- 

tions delïned on D, and T: F-F a mapping. 
Suppose that the following three conditions 
are satisfïed: (i) For fi, & E F, 0 < Â < 1 implies 
Â-f, + (1 - Â)fz E F. (ii) If a series { fk} of func- 
tions in F converges uniformly in the wider 
sense to a function J then fi F; and further- 
more, the series { Tfk} converges uniformly in 

the wider sense to T$ (iii) The family T(F) is a 
+normal family of functions on D. Then there 
exists a function fe F such that Tf=$ 

Let R be a topological linear space and T a 
mapping assigning a closed convex subset T(x) 

of R to each point x of R. A point x of R is 
called a fixed point of T if x E T(x). The map- 
ping T is called semicontinuous if the condition 
~,,+a, yn+b (y,~T(x,)) implies that ~ET(U). In 
particular, if K is a bounded closed convex 

subset of a fmite-dimensional Euclidean space 
R and T a semicontinuous mapping sending 

points of K into convex subsets of K, then 
T admits tïxed points (Kakutani fixed-point 
theorem, Duke Math. J., 8 (1941)). This result 

was further generalized to the case of locally 
convex topological linear spaces by Ky Fan 
(Proc. Nat. Acad. Sci. US, 38 (1952)). 
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A. Introduction 

A foliation is a kind of geometric structure on 
manifolds, such as a differentiable or complex 
structure. The study of foliations evolved from 



154 B 
Foliations 

investigation of the behavior of torbits of a 
vector lïeld and also of the solutions of ttotal 

differential equations. Through the early 
works of C. Ehresmann, G. Reeb, and A. Hae- 

fliger, together with the development of mani- 
fold theory in 196Os, it became an established 

lïeld of mathematics. Since then, great progress 
has been made in this lïeld, especially in its 
topological aspects. At the same time it turns 
out that many problems in foliation theory are 
deeply related not only to the geometry of 

manifolds but also to various other branches 
of mathematics, such as the theory of differen- 
tial equations, functional analysis, and group 

theory. 

B. Definitions and General Remarks 

A foliation on a manifold cari be defïned 
within various categories: topological, c*- 
differentiable (1 <r < a), real analytic, and 
holomorphic. For delïniteness, however, we 

restrict ourselves to the C’-differentiable cate- 
gory in what follows. Furthermore, all mani- 
folds are assumed to be paracompact. 

Let M be an n-dimensional C”-manifold, 
possibly with boundary. A codimension q, C’- 
foliation of M (0 <q 8 n, 0 d r < m) is a family 
B = (L, 1%~ A} of arcwise connected subsets, 
called leaves, of M with the following prop- 
erties: (i) L, n L,. = @ if 5z # x’; (ii) lJotA L, = 
M; (iii) Every point in M has a local coordi- 
nate system (U, $) of class c’ such that for 

each leaf L, the arcwise connected components 
of U n L are described by xnmq+’ =Constant, a 
“‘Y x” = constant, where x1, x2, , x” denote 
the local coordinates in the system (U, $). 
In particular, every leaf of .F is an (n-q)- 
dimensional tsubmanifold of M. The totality 
of integral submanifolds of a tcompletely 
integrable nonsingular system of +Pfafflan 
equations on R”, wi=ail(x)dxl +ai2(x)dx2 + 
. . . +a,(x)dx,=O (i= 1,2, ,q) forms a co- 
dimension q foliation, and the totality of inte- 

gral curves of a nonsingular vector fïeld of 
class C’ on M (r 3 1) constitutes a codimension 
n - 1 C’-foliation. 

Let 5 be a codimension q, C’-foliation of M 
(r > 1). Then M admits a (7’ TP-plane lïeld 
consisting of all vectors tangent to the leaves 
of .p, and, dually, a C’-’ q-plane lïeld (p + q = 
n). Denote the former by ~(9) and the latter 
by v(g), and call them the tangent bundle and 
the normal bundle of 9, respectively. v(p) is 

isomorphic to the quotient bundle T(M)/z(T). 
.p is called transversely orientable if v(y) is an 

orientable vector bundle. A C’-mapping .f: 

N-t M is said to be transverse to the foliation 

d if the composite mapping T(N)zT(M)+ 
T(M)/z(P) is epimorphic at each point of N. 
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In this case, ,f induces a codimension q, c’- 
foliation ,f-‘(5) of N whose leaves are the 
arcwise connected components of f-‘(L) 
(LES). 

In particular, if Q is a q-dimensional C’- 
manifold and f: N-Q is a C’-submersion, f 
induces a codimension q, C’-foliation of N 

whose leaves are the arcwise connected com- 
ponents off-‘(x) (x~Q). 

A C’ p-plane field It̂  on M is called involu- 

tive if, for any C’ vector fields X, Y on M such 
that X,, YxcTx (~EM), the ?Lie bracket [X, Yj 

satislïes [X, Y],E%~. This condition is known 
as the Frobenius integrability conditipn for 
.‘r. If ?Z is defïned locally by q Pfafflan equa- 
tions w1 = = wq = 0, the above condition is 
equivalent to the condition that there are 
c’-’ 1-forms 0, (i,j= 1, ,q) such that dq= 
CY=, O,A(U~. A c’ p-plane fïeld % is said to be 
completely integrable if it is a tangent bundle 
of some foliation. When r > 2, Z” is completely 
integrable if and only if it is involutive (Frobe- 
nius theorem) (- 428 Total Differential Equa- 

tions). There is a topological obstruction to 
the complete integrability of It̂  (- Section F). 

A closed C”,-manifold M admits a codi- 

mension 1, C-plane field if and only if the 
Euler number of M vanishes. In 1.944, Reeb 
constructed a codimension 1, C”-foliation of 
the 3-sphere S3 as follows [l]. Let f(x) be a 
C”-even function delïned on the open interval 
(-1, l), such that 

limci=O 
1x1-1 dx’k’,f’(x) 

(k=0,1,2 ,__. ). 

The graphs of the equations ~=f(x)+c (-1~ 
x< l,c~R) together with the lines x= +l 

constitute a codimension 1, C”-foliation of 
[ -1, l] x R. Then by rotating it around the y- 

axis in R3, we obtain a codimension 1, C”- 
foliation of Dz x R, where D2 denotes the 

closed 2-disk. The foliation is invariant under 
vertical translations and therefore delïnes a 
codimension 1, Cm-foliation of Dz x S’. This 
foliation is called the Reeb component of Dz x 
S’. Since S3 is a union of two solid tori inter- 
secting in the common toroidal surface, the 
Reeb components of each solid torus con- 

structed above delïne the so-called Reeb foli- 
ation of S3 (Fig. 1). 

Fig. 1 
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Generalizing the above construction into a 
differential topological method, one obtains 
the following results: Every closed 3-dimen- 
sional manifold admits a codimension 1, C”- 
foliation (S. P. Novikov [3], W. Lickorish, J. 

Wood); every odd-dimensional sphere admits 
a codimension 1, C”-foliation (1. Tamura, A. 
Durfee, B. Lawson). On the other hand, every 
open manifold has a codimension 1, C”- 
foliation induced by a submersion over R (- 
Section F). 

Let M be a total space of a C’-bundle over 
a C”-manifold B with Iïber F. If F is a C”- 
manifold and the +Structure group reduces to a 

totally disconnected subgroup of Diff’F, the 
group of ah C’-diffeomorphisms of F, then the 
local sections, which are defined in an obvious 
manner using the local triviality of this bundle, 
fit together to give leaves of a codimension q, 

C’-fohation (q = dim F). In this case, M is 
called a foliated bundle or a flat F-bundle over 
B. Each leaf of this foliation is diffeomorphic 
to a covering manifold of B and transverse to 
the fïbers of the bundle M-B. Foliated bun- 
dles exhibit a class of foliations; this is espe- 
cially important in connection with the char- 
acteristic classes of foliations (- Section G). 

C. Holonomy 

The notion of the holonomy of a leaf, given by 
Ehresmann, is a generahzation of the +Pain- 
taré mapping in tdynamical systems. Let F be 
a codimension q, C’-foliation of M and L be a 

leaf of 9. Let N(L) denote the total space of 
the normal disk bundle of L in M. Choose a 
C-immersion i: N(L)+M such that i restricted 
to the zero section of N(L) is the natural inclu- 
sion and i maps the Iïbers of N(L) transversely 
to the foliation 9. Then the induced foliation 

i-‘(9) of N(L) has the properties that the 
leaves are transverse to the iïbers of N(L) and 

the zero section of N(L) is a leaf. If y is an 
oriented loop in L based at a point x,,EL, then 
there is a neighborhood ci of 0 in the fiber 
over x0 satisfying the following: for each point 

XE U there is a curve yX: [0, I]+N(L) having 
the properties: (i) y,(O) = x, (ii) Im(y,) lies on a 

leaf of i-‘(F), and (iii) rcoy,(t)=y(t) for any 
tE[O, 11, where rr:N(L)+L is the bundle pro- 
jection. The family of curves {y,1 XE U) gives a 
C’-diffeomorphism H, from U to another open 
set of K1 (x,,), which assigns y,( 1) to x. Let G; 

denote the group of tgerms at 0 of a11 local 
C”-diffeomorphisms of Rq which lïx 0. The 
germ at 0 of the mapping H, depends only on 
the thomotopy class of y, and, by identifying 
nml(xO) with R4, we obtain a homomorphism 

h,:nl(L,x,)+G~. h, is determined by L up to 
conjugacy and is called the holonomy homo- 
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morphism, or simply the holonomy, of the leaf 
L. The image of h, is called the holonomy 
group of L. For r 3 1, by differentiating each 
element of Gy, one has a homomorphism 
dh,: n, (L, x,)+GL(q; R), called the linear 

holonomy of L. The holonomy of a proper leaf 
(- Section D) completely characterizes the 
foliation of a neighborhood of it (Haefliger). 

D. Topology of Leaves 

Let 9 be a codimension q foliation of M. The 
leaf topology is a topology of M defined by 
requiring each connected component of the set 
of the form Un L to be open, where U is an 
open set in M and LEB. Leaves are nothing 

but the connected components of M with 
respect to this topology. A leaf LE p is called 
a compact leaf if L is compact in the leaf top- 
ology. In general, L is called proper if two 
topologies on L induced from the original and 
the leaf topologies on A4 coincide. Any com- 
pact leaf is proper. A leaf L is called locally 
dense if Int L# 0. If a leaf is neither proper 
nor locally dense, it is called exceptional. Since 
we are assuming that M is paracompact, a 
leaf that is a closed subset of M is proper 

(Haefliger). There exists a codimension 1, Ci- 
foliation of the 2-torus T2 that contains 

exceptional leaves. But in the C’ category 
(r > 2) such a foliation does not exist on T2 (A. 

Denjoy, C. Siegel). In higher dimensions, there 
are examples of C”-fohations with exceptional 
leaves (R. Sacksteder). The following result is 
called the Novikov closed leaf theorem [3]: 
Any codimension 1, C’-fohation (r 2 2) of a 
closed 3-dimensional manifold M contains a 
Reeb component if either n,(M) is finite or 
n2(M)#0 (M#S’ x S2,S1 x RP2). In partic- 

ular, every C*-foliation of S3 contains a com- 
pact leaf homeomorphic to T2. The question 
of whether every codimension 2, C’-foliation of 

S3 has a compact leaf is known as the Seifert 
conjecture. There is a counterexample in the 
C’ case (P. Schweitzer [7]), but it remains 
unsolved for r > 2 (- 126 Dynamical Systems 

NI. 
A compact leaf L is said to be stable if it has 

an arbitrarily small open neighborhood that 
is a union of compact leaves. The following 
results are called the Reeb stability theorems: 

(1) Let L be a compact leaf of a C’-foliation 
(r 2 0). If the holonomy group of L is tïnite, 
then it is stable (Reeb Cl]). (2) Let 9 be a 

transversely orientable codimension 1, C’- 
foliation (r > 1) of a compact manifold M 
(tangent to the boundary). If there exists a 
compact leaf L with H~(I!,; R) = 0, then M is a 

hber bundle over Si or [0, 11, and the leaves of 
9 are the fibers of this bundle. In particular, 
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every leaf is compact and stable (Reeb [ 11, 
Thurston [8]). 

The generalization of the stability theorem 
for proper leaves has been investigated by T. 
Inaba and P. Dippolito. 

E. Haefliger Structures 

Let 3; be the tpseudogroup consisting of a11 
C’-diffeomorphisms 9 of an open subset of R4 
to another open subset of R4. We Write Ii for 
the set of all germs [y], of 9 at x, x~domain of 
y, SE~;. The sheaf topology of ri is the to- 
pology whose open base is the family of sub- 
sets of the form u xsdomainof ,{ CYI,). With this 
topology and the multiplication induced from 
the composition of ?3;, ri is a topological 

groupoid, i.e., a tgroupoid whose multiplication 
and inverse mappings are continuous. If one 
identifies a point x in R4 with [idaq],, Ii con- 

tains R4 as a subspace. 
A codimension q, C’-Haefliger structure or 

a ri-structure .&? on a topological space X is a 
maximal covering of X by open sets {U, 1 ieJ}, 

such that for each pair i, jsJ, there is a con- 
tinuous mapping yij: Ui n u,+ry satisfying 

yik(~)=~ij(~)~~jk(~) for x~U,nu~nu,. (*) 

Since yii(x) is the germ of the identity mapping 
for XE Ui, the correspondence x+yii(x) defines 
a continuous mapping fi: Ui+R4= Ii. A co- 

dimension 4, C’-foliation of a C”-manifold M 
is the same as a Ii-structure on M such 
that each ,ji is a C’submersion (Haefliger [SI). 

If f: Y-tX is continuous and Z@ is a 
ri-structure on X, there is an induced ri- 
structure ,j-’ ,Z on Y which is defïned by 

if~‘(Ui),rijofli,j~J}. Two Ii-structures suó 
and 2, on X are said to be homotopic if there 
exists a ri-structure 2 on X x [0, 11 such that 

~Ixxj,)=&(t=O,1). 
Let I;(X) be the set of homotopy classes of 

Ii-structures on X. There exists a space Br;, 

called the classifying space for r;-structures, 
such that there is a natural one-to-one corre- 
spondence between I;(X) and [X, BI;] for 
any paracompact space X, where [A, i?] de- 
notes the set of homotopy classes of continu- 
ous mappings from A to B. By condition (*) 
above, if r > 0, the differentials j&,(x) 1 XE 
Ui n U,, i, jEJ} define a q-dimensional vector 
bundle v(m) over X, which is called the nor- 

mal bundle of 2. The correspondence 3? -t 
v(Z) gives a continuous mapping v: sr;+ 
BGL(q; R) among classifying spaces. If r = 0, 

there is also a similar mapping v: Brt+ 

BTop,. Let Bry be the homotopy tïber of the 

mapping v. BI; is a classifying space for the 
Ii-structures with trivialized normal bundles. 

There is a tight connection between the 
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topology of BTY and the group structure 
of Diff’(R¶), which is stated below. Let 
DiffL(R9) be the topological group of all c’- 
diffeomorphisms of R4 that are identities 
outside some compact sets with the c* to- 
pology. Let DiffL,,(Rq) denote Diffk(R9) with 

the discrete topology and B Diff;(Rq) denote 
the homotopy fïber of the natural mapping 
BDiffk,,(R9)+BDiffL(R9). Then there exists a 
continuous mapping BDI~~~(R~)~@B~~ 

that induces an isomorphism in the ho- 
mology group with integer coefficient for 
0 d r d cc and 4 k 1, where !Z denotes the qth 
+loop space functor (J. N. Mather [ 121, Thur- 
ston [ 101). Further, it has been proved that 
Diffk,,(R9) is a +Simple group (if r # q + 1) and 
that Brq is +(q + l)-connected for r #q + 1 
(Mather and Thurston, Haefliger [SI). The 
group Homeo,,,R4 is tacyclic (Mather), and 
hence Brf is tcontractible. 

F. Existence and Classification of Foliations 

Not every plane fïeld on a manifold is isomor- 

phic to a completely integrable field (R. Bott). 
Thus, in general, the existence of a plane lïeld 
does not guarantee the existence of a foliation 
of a manifold. Haefliger and Thurston solved 
the existence and classification problems in 
foliation in terms of Haefliger structures as 
follows. Two codimension 4 foliations 5, and 

p, of a C”-manifold M are said to be concor- 

dant if there is a codimension 4 foliation 9 on 
M x [0, 11, that is transverse to M x {t} (t = 

0,l) and induces there the given foliation e 
(t = 0,l). They are said to be integrably homo- 
topic if one further requires that the foliation 
9 be transverse to M x {t} for a11 t E [0, l] in 
the detïnition above. Similarly, two subbundles 
&, 5, of T(M) are said to be concordant if 
there is a subbundle 5 of T(M x [0, 11) such 
that 5 1 ,.jl)=<,fort=O,l,andtheyaresaid 
to be homotopic if one further assumes that 

51 M x Ifj is a subbundle of T(M x {t}) for all 
t E [0, 11. The following theorem is of funda- 

mental importance. 
Theorem: Let M be an open (resp. closed) 

C”-manifold. Then for each r=O, 1, . . , CO, the 

integrable homotopy classes (resp. concor- 
dance classes) of codimension q, Cr-foliations 
of M are in a natural one-to-one correspon- 
dence with homotopy classes of r;-structures 
,Z on M together with homotopy classes (resp. 
concordance classes) of subbundles of T(M) 

isomorphic to v(x). (M. L. Gromov, A. 

Phillips, Haefliger [S], Thurston [SI). 
The following are consequences of the 

theorem: (i) A closed manifold A4 admits a 
codimension 1, C”-foliation if and only if the 
Euler number of M vanishes. (ii) If a manifold 
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admits a +q-frame fïeld, then the associated q- 
plane fïeld is homotopic to the normal bundle 

of a codimension q foliation of M. (iii) Every 
dimension q plane field on a C”-manifold is 
homotopic to the normal bundle of a CO- 
foliation with C” leaves. 

G. Characteristic Classes of Foliations 

Let BF; be the classifying space of Fi- 
structures. An element of the cohomology 
group H*(BT;; R) is called a (real) character- 
istic class of codimension q, C’-foliations. If 9 
is a codimension q, C’-foliation of A4 and f: 

M+BIi is the classifying mapping for 9, 
then an element a(9)=f*a~H*(M;R), C(E 
H*(BFq; R), is called the characteristic class 
of 9 corresponding to c(. The first nontrivial 
characteristic classes of foliations are known as 
the Godbillon-Vey classes (C. Godbillon and 
J. Vey [ 131) and cari be detïned as follows. Let 
9 be a transversely oriented, codimension q, 
C”-foliation of M. Then there exists a +q-form 

s2 on M such that on a neighborhood U of 
each point of M, 52 is written as c$ A A WY, 
where au i , , ~4 are linearly independent l- 

forms that vanish on leaves of 8. By the inte 
grability condition, there is a 1-form n such 
that dR = ‘1 A Q. Then the Godbillon-Vey class 
FS of F is the de Rham cohomology class in 

H2q+‘(M;R) represented by the closed 2q+ 1 
form v A (d~)~. 

The following construction provides a wide 

class of characteristic classes of foliations (Bott 
and Haefliger [ 14],1. Bernstein and B. Rosen- 

feld [ 151). Let Jk be the set of +k-jets at 0 of 
local C”-diffeomorphisms of R’i keeping 0 
fïxed. The set {Jk}Eo forms an tinverse system 

of +Lie groups with respect to the natural 
homomorphism pk:J,+, +Jk, and each Jk 
(k 2 1) contains O(q) as a tmaximal compact 
subgroup. Let Pk be the differentiable fiber 
bundle of k-jets at 0 of local diffeomorphisms 
of Rq whose domains contain 0. It is a +prin- 

cipal J,-bundle over Rq. Denote by ,4(P,) the 
tdirect limit of the de Rham complexes of 
{Pk}&,, and let A be the subcomplex of .4(P,) 
consisting of invariant forms with respect to 
the natural action of gqm. A is canonically 

isomorphic to the tcochain complex A(A,) of 
continuous alternating forms on A,, where A, 
is the topological Lie algebra of tformal vector 
tïelds on R4 (- 105 Differentiable Manifolds 
AA). 

Now let g be a codimension q, C”- 
foliation of M. Let Pk(g) denote the differ- 

entiable fïber bundle over M whose fïber 
over XE M is the space of k-jets at x of the Cm- 

submersion f: U+Rq from an open neighbor- 
hood U of x to Rq, satisfying (i) f(x) = 0, (ii) 
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Kerdf= z(9) 1 c. This is a principal J,-bundle 

over M, and its restriction to U is isomorphic 
to the pullback by f of the bundle Pk. Hence 

there are homomorphisms from the set of in- 
variant forms on Pk to A(P,(F)) that induce 
a homomorphism A= A(A,)+l$ A(P,(p)). 

This homomorphism is compatible with the 
action of O(q) and hence induces a homomor- 
phism of O(q)-basic subcomplexes. Thus one 
obtains a homomorphism cpp:H*(A,; O(q))+ 
l$H*(A(P,(.F)); O(q))rH*(M; R). In fact, 
<P,~ depends only on the 2-jet of the foliation 
9, and one cari think of it as a homomor- 

phism <~:H*(A,;0(q))+H*(Bri;R)(r>2). 
The elements in Im cp are called the smooth 
characteristic classes of foliations. 

Let WO, be the differential graded algebra: 

where dui=ci, dc,=O, deg(ui)=2i- 1, deg(c,)= 

2i, and E denotes the texterior algebra over 
R generated by the ui’s, and R denotes the 
tpolynomial algebra of the ci>s truncated by 
the tideal generated by elements of degree 
> 2q. There exists a homomorphism of dif- 

ferential graded algebras WO,+ A(A,; O(q)) 
which induces an isomorphism in cohomology 
(1. M. Gel’fand and D. B. Fuks). For a codi- 
mension q foliation 9 of M, the cohomology 
class determined by cîi corresponds to the ith 
Pontryagin class of the normal bundle v(p) 
of 9, and the cohomology class U, c: corre- 
sponds to the Godbillon-Vey class of .9. In 
particular, the subring of the cohomology 

ring H*(M; R) generated by the +Pontryagin 
classes of v(9) is trivial for degree > 2q (Bott’s 

vanishing theorem). 
Let Nqf’ be a closed (q + 1)-dimensional 

Riemannian manifold of +Constant negative 

curvature. The total space Ti N of the unit 
tangent sphere bundle of N admits a codi- 
mension q, Cm-foliation associated with the 
tgeodesic flow of T, N (+Anosov foliation). It 

has been shown that the Godbillon-Vey class 
of this foliation is nontrivial (R. Roussarie, 

F. Kamber and P. Tondeur, K. Yamato). It is 
known that many of the smooth characteristic 

classes are also nontrivial (Bott and Haefliger, 
Thurston, J. Heitsch). 

A smooth characteristic class aeH*(B& R) 

is called rigid if for any smooth one-parameter 
family {R-1} of codimension q foliations on 
a C”-manifold M, d(cc(e))/dt = 0 holds. 
The elements in the image of the natural 
homomorphism 

are rigid (Heitsch). On the other hand, the 
Godbillon-Vey class is not rigid. In fact, Thur- 

ston constructed a one-parameter family 
of codimension q foliations of a certain 
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(2q + 1)-dimensional manifold for which the 
Godbillon-Vey class varies continuously. The 
characteristic classes of a simple foliation are 
often trivial. For example, the Godbillon-Vey 
class of a codimension 1 foliation of a closed 

manifold vanishes if it is almost without holo- 
nomy (i.e., no noncompact leaves have non- 
trivial holonomy) (M. Herman 1161; T. Mizu- 
tani, S. Morita, and T. Tsuboi [ 171). 

H. Further Topics 

(1) Transverse structures. Let B be a q- 
dimensional manifold and Y a geometric 
structure on it, and let $,, denote the tpseudo- 

group generated by the local diffeomorphisms 
that preserve the structure Y. Replacing 3; 
by YY in the defïnition of a C’-Haefliger struc- 

ture, one obtains definitions of a r,-structure 
and a r,-foliation. A r.,-foliation is called a 
Riemannian foliation, a transversely real ana- 
lytic foliation, or a transversely holomorphic 
foliation if Y is a Riemannian, real analytic, or 
complex structure on R4 (Cq12), respectively. 
The theorics for many such foliations are 

analogous to those for C’-foliations. For 
example, many results are known about the 
characteristic classes of Riemannian or holo- 

morphic foliations. Haefliger showed that there 
is no codimension 1 real analytic foliation on a 
simply connected closed manifold and that the 
classifying space Bry for codimension 1 trans- 
versely oriented transversely real analytic 
foliations has the homotopy type of a +K(n, l)- 
space for some uncountable tperfect group n 

cv. 
(2) Foliated cohordism. Two closed oriented 

n-dimensional C”-manifolds A4, and M, with 
codimension q, C”-foliations are said to be 
foliated cobordant if there exist a compact 

oriented (n + 1).dimensional C”-manifold W 

with boundary 8 W = M, U (- M,) and a codi- 

mension q, C’-foliation of W which is trans- 
verse to 5 W and induces the given foliations of 
M, and M, The resulting foliated cobordism 

classes {F} form a group F-R:,, with respect 
to the disjoint union. It is known that 9-n:; 1 
= {0} and that the Reeb foliation of S3 is 
cobordant to zero. The characteristic classes 

of foliations provide invariants of foliated 
cobordisms. In particular the Godbillon-Vey 
number r,[M] is an invariant of FQ;,,,,, 
(r 3 2, q > l), and a result of Thurston men- 

tioned in Section G implies that the homo- 
morphism 9Q;q+I,y+R defmed by {S}d 
r,[M] is surjective. 

(3) Growth of leaves, transverse invariant 
measure. Let .g be a C”-foliation of a com- 

pact manifold. Fix a +Riemannian metric 
on M. Then each leaf L of 9 has the in- 

duced metric, and one has a function .fl(r) = 
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vol(D(x, r)), where D(x, r) is the set of points 
y EL whose distance along L from a fïxed 

point XE L is not greater than r. The growth 
type of the function fL is determined only by L. 
Many papers have been published that deal 

with the relation between the behavior of 
leaves and their growth types in codimension 1 

foliations (J. Cantwell and L. Conlon, G. Hec- 
tor, T. Nishimori, N. Tsuchiya). On the other 

hand, as a generalization of the notion of 
asymptotic cycles in dynamical systems, the 

notion of foliation cycles, or equivalently a 
transverse invariant measure, has been detïned 
(J. Plante [18], D. Ruelle, D. Sullivan [19]). 
The existence of a transverse invariant mea- 
sure for a foliation is closely connected to the 

growth types of the leaves. The example of 
Denjoy in Section D leads to the study of 
tminimal sets of foliations and the structures 

of foliations (Hector, Cantwell and Conlon). 
The structure of a codimension 1 foliations 

which are almost without holonomy has been 
fairly well investigated (Sacksteder, Hector, 
H. Imanishi, R. Moussou, Roussaire). 

(4) Compact foliation. A foliation whose 

leaves are a11 compact is called a compact 
foliation. D. Epstein proved that if 9 is a 
codimension 2, C2-compact foliation of a 

closed 3-manifold, then the leaves of 9 are the 
fïbers of a +Seifert fïbration of M. In higher 

dimensions, the situation is more complicated 
(Sullivan, R. Edwards and K. Millett). 

(5) Foliated bundles. There are many results 

on foliated bundles. In particular J. W. Milnor 
[20] and J. Wood obtained a condition for a 
circle bundle 5 over a closed surface Z to have 
a foliation transverse to fïbers. More precisely, 
if 5 and C are orientable, then 5 admits such a 
foliation if and only if 1X(5)1< -min{O,x(Z)}, 
where X denotes the Euler number and x the 

Euler-Poincaré characteristic. Kamber and 
Tondeur made an extensive study of charac- 
teristic classes of foliated bundles [21]. 

(6) Transverse foliations. Two foliations F 

and 9 of M are said to be transverse to each 
other if any two leaves K and L of Y and 3 
are transverse to each other. A foliated bundle 
has such foliations. D. Hardorp proved that 
on every orientable closed 3-manifold, there 
exists a triple of codimension 1 foliations 
that are pairwise transverse. Tamura and A. 
Sato classified the codimension 1 foliations 

that are transverse to the Reeb component 
of Dz x S’. 
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Foundations of Geometry 

A. Introduction 

Geometry deals with figures. It depends, there- 

fore, on our spatial intuition, but our intuition 
lacks objectivity. The Greeks originated the 

idea of developing geometry logically, based 
on explicitly formulated axioms, without re- 
sorting to intuition. From this intention re- 
sulted Euclid’s Elements, which was long con- 

sidered the Perfect mode1 of a logical system. 
As time passed, however, mathematicians came 
to notice its imperfections. Since the 19th cen- 
tury especially, with the awakening of a more 
rigorous critical spirit in science and philoso- 
phy, more systematic criticism of the Elements 

began to appear. Non-Euclidean geometry was 
formulated after reexamination of Euclid’s 

axiom of parallels; but it was also discovered 
that even as a foundation of Euclidean geom- 
etry, Euclid’s system of axioms was far from 

Perfect. Various systems of axioms for Eucli- 
dean geometry were proposed by mathemati- 
cians in the latter half of the 19th Century, 
among them one by D. Hilbert [ 11, which 
became the basis of far-reaching studies. 

B. Hilbert’s System of Axioms 

Hilbert took as undelïned elements points 
(denoted by A, B, C, ), straigbt lines (or sim- 

ply lines, denoted by a, b, c, . . . ), and planes 
(denoted by X, /!, y, . ..). Between these ob- 
jects there exist incidence relations (expressed 
in phrases such as “A lies on a,” “a passes 
through A,” etc.); order relations (“B is be- 

tween A and C”); congruence relations; and 
parallel relations. The relations are subject to 
the following fïve groups of axioms: 

(1) Incidence axioms: (1) For two points A, 
B, there exists a line a through A and B. (2) 
If A #B, the line u through A, B is uniquely 
determined. We Write a = A U B and cal1 a the 
join of A, B. (3) Every line contains at least 

two different points. There exist at least three 
points that do not lie on a line. (4) If A, B, C 
are points not on a line, there exists a plane CI 

through A, B, C. (We also say that A, B, C lie 
on a.) For every plane t(, there exists at least 
one point A on c(. (5) If A, B, C are points 
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not on a line, the plane c( through A, B, C is 

uniquely determined. We Write LX = A U BU C 

and cal1 cz the join of A, B, C. (6) If A, B are 

two different points on a line a and if A, B lie 
on a plane m, then every point on a lies on c(. 
(We say that a lies on CI or 51 passes through 
a.) (7) If a point A lies on two planes CI, 8, 
there exists at least one other point B on c( and 

8. (8) There exist at least four points not lying 
on a plane. 

(II) Ordering axioms: (1) If B is between A 
and C, then A, B, C are three different points 
lying on a line; also, B is between C and A. (2) 

If A, C are two different points, then there 
exists a point B such that C is between A and 
B. (3) If B is between A and C, then A is not 

between B and C. 
We defïne a segment as a set of two different 

points A, B, denoted as AB or BA, and we cal1 
A and B ends of this segment. The set of points 
between A, B is called the interior of AB, and 
the set of points of A U B that are neither ends 
nor interior points of AB is called the exterior 
of AB. 

(4) Let A, B, C be three points not lying on a 
line. If a line a on the plane A U BU C does not 
pass through A, B, or C, but passes through a 

point of the interior of AB, then it also passes 
through a point of the interior of BC or CA 
(Pas&% axiom). 

The following propositions are proved 
from the above axioms. Given n points A,, 
A,, . , A, on a line (n > 2), we cari rearrange 
them, if necessary, SO that the point Ai is be- 
tween Ai and A, whenever we have 1~ i-c j < 

k < FI. There are exactly two ways of arrang- 
ing the points in this manner (theorem of linear 
ordering). Let 0 be a point on a line a, and let 

A, B be two points on the line different from 0. 
Write A-B when A= B or 0 is not between A 
and B; Write A-B otherwise. Then - is an 
equivalence relation between points on the line 
different from 0; from A ++ B, A * C it follows 
that B-C. We say that A, B are on the same 
side or on different sides of 0 on a depending 
on whether A - B or A - B. Two subsets a’ 

and a” of a defined by u’ = {A’ 1 A - A’}, a” = 

{A” 1 A * A”} are called half-lines or rays on 
a with 0 as the extremity (or starting from 0). 
Denoting by a, for simplicity, the set of points 

on a, we have a = a’ U { 0) U a” (disjoint union). 
Using axiom 11.4, we cari also prove the 

following: Let u be a line on X, and let A, B be 
two points on a not lying on a. If A = B or if 
the interior of the segment AB has no point in 
common with a, we say that A, B are on the 
same side of a on a, and Write A - B. Other- 
wise, we say that A, B are on different sides of 

a on c( and Write A + B. Then N is an equiva- 

lente relation between points on CI not lying on 
a, and from A *B, A * C follows B - C. The 
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subsets E’ = {A’ 1 A - A’}, CI” = {A” 1 A ré A”} of 
a are called half-planes on CI bounded by a. 

Again, denoting by c( and a the set of points on 
2 and the set on a, respectively, we obtain SL = 
n’ U a U a” (disjoint union). 

(III) Congruence axioms: Two segments AB, 
A’B’ cari be in a relation of congruence, ex- 
pressed symbolically as AB = A’B’. (Segments 
AB and A’B’ are then said to be congruent. 
Since the segment AB is defïned as the set 
{A, B}, the four relations AB E A’B’, BA s 

A’B’, AB = B’A’, BA = B’A’ are equivalent.) 
This relation is subject to the following three 
axioms: (1) Let A, B be two different points on 

a line a, and A, a point on a line a, (a, may or 
may not be equal to a). Let a; be a ray on a, 
starting from A,. Then there exists a unique 
point B, on a; such that AB = A, B, (2) From 
A, B, = AB and A,B, c AB follows A, B, E 
A,B,. (Hence it follows that = is an equiv- 
alence relation between segments.) (3) Let 
A, B, C be three points such that B is between 
A and C, and let A,, B,, C, be three points 

such that B, is between A, and C,. Then from 
AB = A, B, > BC = B, C, follows AC = A, C, 

Now let h, k be two different lines in a plane 

x and through a point 0, and let h’, k’ be the 

rays on h, k starting from 0. The set of two 
such rays h’, k’ is called an angle in c(, denoted 
by L (h’, k’) or L (k’, h’). This angle is also de- 
noted by L AOB, where A, B are points of h’, 
k’, respectively. The rays h’, k’ are called the 
sides and the point 0 is called the vertex of 
this angle. Then h’ is a subset of a half-plane 

on c( bounded by k, and k’ is a subset of a ,half- 
plane on c( bounded by h. The intersection of 
these two half-planes is called the interior of 

this angle, and the subset of c( - 0 consisting of 
points belonging to neither the inside nor the 
sides of the angle is called the exterior of the 
angle. Between two angles ~(h’, k’), L(h’, , k’,) 
there may exist the relation of congruence, 
again expressed by the symbol =, as in the 
case of segments, and subject to the following 
two axioms: (4) Let ~(h’, k’) be an angle on a 
plane s( and h, be a line on czl (x1 may or may 
not be equal to a). Let 0, be a point on h,, hi 
a ray on CI~ starting from O,, and a’, a half- 

plane on x1 bounded by h,. Then there exists a 
unique ray k’, starting from 0, and lying in 
X\ such that L’(h’, k’) = ~(h;, k’,). Moreover, 
~(h’, k’)= ~(h’, k’) always holds. (Hence it 
follows that = is an equivalence relation be- 
tween angles.) (5) Let both A, B, C and A,, B,, 
C, be triples of points not lying on a line. Then 
from AB=A,B,, AC-A,C,,and LBAC- 
L B, A, C,, it follows that L ABC = L A, B, C, 

(IV) Axiom of parallels: Suppose that a, h 

are two different lines. Then it follows from 
axiom 1.2 that if a and b share a point P, such 

a point is the unique point lying on both a and 
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b. In this case we say that a, b intersect at P 
and Write an b = P. On the other hand, if a and 
b have no point in common and if a, b are on 
the same plane, we say that a, b are parallel 
and Write a//b. If A, a are on a plane c( and A 
is not on a, we cari prove (utilizing axioms 1, 

II, and III) that there exists a line b passing 
through A in CI such that a//b. The axiom of 
parallels postulates the uniqueness of such a b. 

(V) Axioms of continuity: (1) Let AB, CD be 
two segments. Then there exist a tïnite number 
of points A,, A,, . , A,, on A U B such that 
CD-AA,-A,A,=...=A,-,A,andBisbe- 
tween A and A,, (Archimedes’ axiom). (2) The 
set of points on a line a (again denoted for 
simplicity by a) is “maximal” in the following 
sense: It should satisfy axioms IL-11.3,111.1, 

V.l, and the theorem of linear ordering. If 
ü is a set of points satisfying these axioms 
such that ü 3 a, then 5 should be = a (axiom 

of linear completeness). Hence follows the 
theorem of completeness: the set of points, 

lines, and planes is maximal in the sense that it 
is not possible to add further points, lines, or 

planes to this set with the resulting set still 
satisfying axioms I-IV and V.l. 

C. Consistency 

In formulating the above axioms and proving 

their consistency, Hilbert assumed the consis- 
tency of the theory of real numbers (- 156 
Foundations of Mathematics). TO prove con- 
sistency, Hilbert constructed a mode1 for the 
above axioms using the method of analytic 
geometry. He defmed points as triples of real 

numbers (x1, x2,x,), lines and planes as sets of 
points satisfying suitable systems of linear 
equations, and relations of ordering, con- 
gruence, and parallelism in the usual way. It is 
easy to verify that such a system satisfies a11 

the axioms 1-V. Thus the consistency of these 
axioms is reduced to the consistency of the 
theory of real numbers (- 35 Axiom Systems). 

A mode1 for I-IV and V.l cari be obtained 
in the countable tïeld R, of a11 real talgebraic 
numbers instead of R. Then R, cari be further 
restricted to its subfïeld P, detïned as follows: 
Let F be an arbitrary tïeld. An textension of F 

of the form F(m) with /Ig F is called a 
Pythagorean extension of F, and F is said to be 
a Pythagorean fïeld if any Pythagorean exten- 
sion of F coincides with F (e.g., R, and R are 

Pythagorean). It is easily verified that I-IV are 
satisfïed in the “analytic geometry over any 
Pythagorean lïeld.” On the other hand, we cari 
construct a minimal Pythagorean field con- 

taining a given field (the Pythagorean closure 
of the field) in the same way as we construct 
the talgebraic closure of a lïeld. The field P,, is 
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defmed as the Pythagorean closure of the field 
Q of rational numbers. 

D. Independence of Axioms 

In Hilbert’s system, the axioms 1 and II are 
used to formulate further axioms. On the other 

hand, it cari be shown that each of the groups 
III, IV, and V is independent from other 
axioms. 

The independence of IV is shown by the 

consistency of non-Euclidean geometry (- 285 
Non-Euclidean Geometry). The following 

mode1 shows the independence of 111.5: In the 
analytic mode1 for I-V, we replace the defï- 
nition of distance between two points 

(X~>X~~X~ (Y~,Y~>YA b 

((x,-Y,+x,-y,)2+(x*-y*)2+(x3-y3)2)1’2. 

Then III.5 does not hold, while a11 other 
axioms remain satisfied. The independence of 
V.2 is shown by the geometry over R, or P,,. 
The independence of V. 1 follows from the 
existence of the non-Archimedean Pythag- 
orean field: the Pythagorean closure of any 
tnon-Archimedean fïeld (e.g., the field of ra- 
tional functions of one variable over Q with a 
inon-Archimedean valuation) is such a iïeld. A 

geometry in which V.l does not hold is called 
a non-Archimedean geometry. 

E. Completeness of the System of Axioms and 
Relations hetween Axioms 

The tcompleteness of the system of axioms I- 
V cari be shown by introducing coordinates in 
the geometry with these axioms and represent- 
ing it as +Euclidean geometry of three dimen- 
sions. Axiom group V is essential for the intro- 

duction of coordinates over R. Moreover, we 
have the following results: 

(i) The geometry with the axioms I-IV cari 
be represented as “Euclidean geometry” of 
three dimensions over a Pythagorean fïeld, 
and the geometry with axioms 1.1-1.3, II-IV 
cari be represented as “Euclidean geometry” of 
two dimensions over a Pythagorean field. 

(ii) The geometry with II, and a stronger 
axiom of parallels IV* (given a line a and a 
point A outside a, there exists one and only 

one line a’ passing through A that is parallel to 
a) cari be represented as an tafine geometry 
over a field K that is not necessarily 
commutative. 

(iii) The field K is commutative if and only if 

the following holds: Suppose that in Fig. 1 
A’UB/AU B’, B’U CJ/BU C’. Then it follows 
that A’U C//A U C’ (Pascal3 theorem). 
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Fig. 1 

(iv) The “two-dimensional geometry” with 
I-1.3, II, and IV* cari be embedded in the 

“three-dimensional geometry” with axioms 1, 
II, and IV* if and only if the following holds: 
Suppose that in Fig. 2 we have AU B//A’U B’, 

BU Ci B’U C’. Then it follows that CU A// 
c’ U A’ (Desargues’s theorem). 

izsissc 
(i .4 .4’ 

Fig. 2 

(v) From 1.1-1.3, II, IV*, and Pascal’s theo- 
rem follows Desargues’s theorem. 

(vi) Desargues’s theorem is independent of 
1.1~1.3,11,111.1~111.4, IV*, and V; that is, we 
cari construct a non-Desarguesian geometry (a 
geometry in which Desargues’s theorem does 

not hold) in which these axioms are satistïed. 
Axioms 1, 11, and IV*, as well as the theo- 

rems of Pascal and Desargues, are propositions 

in affine geometry. Each has a corresponding 
proposition in tprojective geometry, and the 
results concerning them cari be transferred to 
the case of projective geometry (- 343 Projec- 
tive Geometry). 

F. Polygons and Their Areas 

Suppose that we are given a finite number of 

points Ai (i = 0, 1, , Y) in the geometry with 
axioms 1 and II. Then the set of segments (or, 
more precisely, the union of segments together 
with their interiors) A,Ai+I (i=O, 1, . . ..r-1) is 
called a hroken line joining A, with A,. In 
particular, if A, = A,, then this set is called a 
polygon with vertices Ai and sides Ai A,+, A 
polygon with r vertices is called an r-gon. (For 
r = 3,4,5,6, r-gons are called triangles, quad- 
rangles, pentagons, and hexagons, respectively.) 

A plane polygon is a polygon whose vertices ah 
lie on a plane. A polygon is called simple if any 
three consecutive vertices do not lie on a line, 

and two sides A,A,+, and AjAj+, (ifj) meet 

only whenj=i+ 1 or i=j+ 1. In this article, 

we consider only simple plane polygons, and 
refer to them simply as polygons. 

TJordan’s theorem implies that a polygon in 
the sense just defïned divides the plane into 

two parts, its interior and its exterior. This 
special case of Jordan’s theorem cari be proved 

by 1.1-1.3 and II only. A polygon P is divided 
into two polygons P,, PZ by a broken line 
joining two points on sides of P and lying in 
the interior of P (Fig. 3). In this case, we say 
that P is decomposed into P,, P2 and Write P 

= P, + P2. We may again decompose P, , P2 
and thereby arrive at a decomposition of the 
form P = P, + . + Pk. Axiom III is used to 
introduce the congruence relation = between 
polygons. Two polygons P, Q are called de- 
composition-equal if there exist decomposi- 
tionsP=P,+...+P,,Q=Q,+...+Q,such 
that P, = Q i , , Pk = Qk. This is expressed by 
PzQ. We cal1 P, Q supplementation-equal if 
there exist two polygons P’, Q’ such that (P+ 
P’)z(Q + Q’), P’zQ’. This Will be expressed by 

PeQ. If we assume IV, we cari use result (i) of 

Section E. Let K be the ground tïeld of the 
geometry (K is Pythagorean, hence tordered). 
The area of polygon P is defïned as the posi- 
tive element m(P) of K assigned to P such that 
m(P+Q)=m(P)+m(Q), and m(P)=m(P’) if 
P = P’. From PzQ or PeQ, it follows that m(P) 
= m(Q). Under these axioms, it is proved that 
m(P) = m(Q) implies PeQ. If we also assume 
V.l, then ~(P)=~I(Q) implies PzQ. Thus 

the theory of area of polygons cari be con- 
structed without assuming axiom V.2, though 
this result cannot be generahzed to higher- 

dimensional cases. For the case of three di- 
mensions, we cari construct two solids of the 
same volume that are not supplementation- 
equal [2,7]. 

Fig. 3 

G. Geometric Construction hy Ruler and a 
Transferrer of Constant Lengths 

The geometry with I-IV cari be represented 

as 3-dimensional Euclidean geometry over 
a Pythagorean lïeld. Conversely, ah these 
axioms are valid in 3-dimensional Euclidean 
geometry over any Pythagorean iïeld. Thus 
the minimal system of “quantities” whose 

existence is assured in geometry with these 

axioms is the fïeld P,, the Pythagorean closure 
of 0. Hilbert noticed that the existence of a 
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geometric abject under axioms I-IV cari be 
expressed as its constructibility by ruler (i.e., an 

instrument to draw a straight line joining two 
points) and a transferrer of constant lengths. 
The latter, for a constant length x, is an instru- 
ment that permits fïnding the point X on the 
given ray AB such that AX =x. It is not pos- 
sible to construct by ruler and transferrer a11 
the points that cari be constructed by means 
of ruler and compass (- 179 Geometric Con- 
struction). However, it is possible to construct 
all the lengths 1.x, where Â. is any element of P,. 

Hilbert conjectured that an element of P, cari 
be characterized as a ttotally positive algebraic 
number of degree 2”, ~EN. This conjecture was 
proved by Artin [3]. 

H. Related Topics 

While Hilbert’s foundations are concerned 

with 3-dimensional Euclidean geometry, it is 
easy to generalize these results to the case of 
n-dimensional Euclidean geometry (- 139 
Euclidean Geometry). Also, for affine and pro- 
jective geometries, there are well-organized 

systems of axioms (at least for the case of di- 
mensions > 3). Hilbert [ 1, Appendix III] 
showed that plane thyperbolic geometry cari 
be constructed on a moditïed system of 
axioms, but for other non-Euclidean geome- 
tries (in particular, telliptic geometries) there 
are no known systems of axioms as good as 

Hilbert’s for the Euclidean case. On the other 
hand, Hilbert [l, Appendix IV] gives another 
method of constructing Euclidean geometry 
in characterizing the group of motions as the 
topological group with certain properties. 

G. Thomsen [4] rewrote Hilbert’s system of 
axioms in group-theoretical language utiliz- 
ing the fact that the group of motions is gen- 

erated by symmetries with respect to points, 
lines, and planes. Finally, Hilbert’s study of 
the foundations of geometry led him to re- 
search in the tfoundations of mathematics. 
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156 (1.1) 
Fout-dations of Mathematics 

A. General Remarks 

The notion of +Set, introduced toward the end 
of the 19th Century, has proved to be one of 

the most fundamental and useful ideas in 
mathematics. Nonetheless, it has given rise to 
well-known tparadoxes. Based on this notion, 

R. Dedekind developed the theories of natural 
numbers [2] and real numbers [3], defining 

the latter as “cuts” of the set of rational num- 
bers. Thus set theory served as a unifying 
principle of mathematics. 

It has been noted, however, that some of the 
most commonly utilized arguments in set 

theory, which are at the same time the most 

useful in mathematics and belong almost to 
the basic framework of forma1 logic itself, 
resemble very much those which give rise to 
paradoxes. This fact has caused many critical 
mathematicians to question the very nature of 

mathematical reasoning. Thus a new lïeld, 
foundations of mathematics, came into being at 
the beginning of this Century. This field was 
divided at its inception into different doctrines 
according to the views of its initiators: logicism 
by B. Russell, intuitionism by L. E. J. Brouwer, 
and formalism by D. Hilbert. In set theory, 

which was the origin of this controversy, it was 
pointed out that the “definition” of set as given 
by G. Cantor was too naive, and axiomatic 
treatments of this theory were proposed (- 33 
Axiomatic Set Theory). 

B. Logicism 

Russell asserted that mathematics is a branch 
of logic and that paradoxes corne from ne- 
glecting the “types” of concepts. According to 

his opinion, mathematics deals formally with 
structures independently of their concrete 
meanings. Science of this character has been 
called logic from antiquity. According to him, 
logic is the youth of mathematics, and math- 
ematics is the manhood of logic. TO construct 
mathematics from this standpoint, asserted 
Russell, ordinary language is lengthy and 

inaccurate, and some proper system of sym- 
bols should be used instead. Thus he tried to 
reconstruct mathematics using tsymbolic logic. 
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Attempts to reorganize mathematics using 
logical symbols had formerly been made by G. 

Leibniz, who wrote Dissertatio de arte com- 

binatoria in 1666, as well as by A. de Morgan, 
G. Boole, C. S. Peirce, E. Schroder, G. Frege, 
G. Peano, and others. Symbols used by the 
last two authors resemble those of today. 

Russell studied these works and published his 
own theory in a monumental joint work with 
A. N. Whitehead: Principia mathematica (3 

vols., 1st ed. 1910-1913, 2nd ed. 1925-1927), 
in which the theories of natural numbers and 
real numbers as well as analytic geometry are 
developed from the fundamental laws of logic. 

If this work had been completely successful, 
it could have eliminated any possibility of the 

intrusion of paradoxes into mathematics. 
However, the authors were forced to postulate 
an “unsatisfactory” axiom in order to con- 

struct mathematics. They introduced the notion 
of ttype as follows: An abject M detïned as the 
set of a11 abjects of a certain type belongs to a 
higher type than the types of the elements of 
M. This serves to eliminate certain paradoxes 
but brings about inconveniences such as the 
following. Suppose that we are trying to con- 
struct the theory of real numbers from that of 
rational numbers. Each real number cari then 

be considered a tpredicate about rational 
numbers. If this predicate contains only tquan- 
titïers relating to variables running over a11 

rational numbers, then the corresponding real 
number is said to be predicative, otherwise 
impredicative. According to Russell, the latter 
should have a higher type than the former, 
which makes the theory of real numbers 
exceedingly complicated. TO avoid this dif- 
tïculty, Russell proposed the axiom of reduci- 

bility, which says that every predicate cari be 
replaced by a predicative one. With this rather 
artifïcial axiom Russell himself expressed 

dissatisfaction. Russell also postulated the 
taxiom of intïnity and the taxiom of choice, 

which are also problematic. After examining 

the philosophical background of the book, H. 
Weyl wrote about Principia mathemutica, 

“Mathematics is no more based on logic than 
the utopia built by the logician.” Nevertheless, 

logic as formulated in this book, as well as the 
theory of types as developed by F. P. Ramsay 
in the school of Russell and Whitehead, is still 
an important subject of mathematical logic. 

C. Intuitionism 

The intuitionist claims that mathematical 
abjects or truths do not exist independently 
from mathematically thinking spirit or intui- 
tion, and that these abjects or truths should be 
directly seized by mental or intuitional activ- 
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ity. The philosophical standpoints of mathe- 
maticians such as L. Kronecker and H. Poin- 
caré in the 19th Century or E. Bore], H. 

Lebesgue, and N. N. Luzin at the turn of this 
Century cari be assimilated to intuitionism, but 
those of the latter three are often said to be- 

long to semi-intuitionism or to French empiri- 
cism. Brouwer took a narrower standpoint, 
strongly antagonistic to Hilbert’s formalism. 
Today the word “intuitionism” is generally 
interpreted in Brouwer’s sense. 

Brouwer sharply criticized the usual way of 
reasoning in mathematics and claimed that 
indiscriminate use of the law of excluded mid- 
dle (or tertium non datur) P v 1 P cannot be 
permitted. According to him, the proposi- 
tion “Either there exists a natural number 

with a given property P, or else no such num- 
ber exists” is to be regarded as proved only 
when an actual construction of a natural num- 

ber with the property P is given or when the 
absurdity of the existence of such a natural 
number cari be constructively proved. When 
neither of these two results cari be shown, then 
one cari say nothing about the truth of the 
above proposition. Thus the usual method of 

proof, known as the method of reductio ad 
absurdum, i.e., of proving a proposition P by 
proving its double negation 11 P, is not 
generally considered valid. It is a difficult but 

important problem of mathematical logic to 
determine which parts of usual mathematics 
cari be reconstructed intuitionistically, though 
it does not seem easy to reconstruct any part 

of mathematics elegantly from this standpoint. 

D. Formalism 

TO eliminate paradoxes, Hilbert tried to apply 
his axiomatic method. From Hilbert’s stand- 

point, any part of mathematics is a deductive 
system based on its axioms. In the deductive 
development, however, “logic,” including set 

theory and elementary number theory, is used. 
Paradoxes appear already in such logic. Hil- 
bert’s idea was to axiomatize such logic and 
to prove its consistency. Thus one must tïrst 
formalize the most elementary part of mathe- 
matics, including logic proper. 

Hilbert proved the consistency of Euclidean 
geometry by assuming the consistency of the 
theory of real numbers. This is an example of a 

relative consistency proof, which reduces the 
consistency proof of one system to that of 
another. Such a proof cari be meaningful only 
when the latter system cari somehow be re- 
garded as based on sounder ground than the 

former. TO carry out the consistency proof of 
logic proper and set theory, one must reduce 
it to that of another system with sounder 
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ground. For this purpose, Hilbert initiated 
metamathematics and the iïnitary standpoint. 

The finitary standpoint recognizes as its 

foundation only those facts that cari be ex- 
pressed in a Imite number of symbols and only 

those operations that cari be actually executed 
in a Imite number of steps. Essentially, it does 
not differ from the standpoint of intuitionism. 
The methods based on this standpoint are also 
called constructive methods. 

Metamathematics is also called proof theory. 
Its subject of research is mathematical proof 
itself. Hilbert was the tïrst to insist on its im- 
portance. The theory is indispensable for con- 
sistency proofs of mathematical systems, but it 
may also be used for other purposes. In fact, 
the same idea cari be seen in the +duality prin- 
ciple of projective geometry, which dates from 
long before Hilbert’s proclamation of formal- 
ism. This is not a theorem of projective geome- 
try deduced from its axioms; rather, it is a 

proposition about the theorems in projective 
geometry, based on the type of axioms and 
proofs in this subject. 

According to Hilbert’s method, one must 
develop proof theory from the tïnitary stand- 
point with the aim of proving the consistency 
of axiomatized mathematics. For this purpose, 
one must formalize the mathematical theory in 
question by means of symbolic logic. A theory 

thus formalized is called a formal system. 

E. Some Results of Formalist Theory 

One of the most remarkable results hitherto 

obtained with Hilbert’s method is the con- 
sistency proof of pure number theory by G. 

Gentzen [7]. This consistency proof covers 
the largest domain for which an explicit 

consistency proof has SO far been obtained. 
However, the methods of formalist proof 
theory have proved to be most effective in 
studying the logical structure of mathematical 
theories and have led to various results on the 

consistency of formalized mathematical sys- 
tems, on symbolic logic, and on axiomatic set 

theory. We give some examples. 

(1) Godel’s Incompleteness Theorem. K. Gode1 
[6] showed that if a system obtained by for- 
malizing the theory of natural numbers is 
consistent, then this system contains a tclosed 
formula A such that neither A nor its negation 
1 A cari be proved within the system. He 
originally proved this under the assumption 
that the system is w-consistent. This is a stron- 

ger condition for the system than simple con- 
sistency, but J. B. Rosser [13] succeeded in 
replacing this by the latter. This result shows 

the incompleteness not only of the usual 
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theory of natural numbers but of any consist- 

ent theory (from the fïnitary standpoint) con- 
taining the theory of these numbers. 

At the same time, Gode1 also obtained the 
following important result: Let S be any con- 
sistent forma1 system containing the theory of 
natural numbers. Then it is impossible to 
prove the consistency of S by utilizing only 
arguments that cari be formalized in S. This 

means that a consistency proof from the Iïni- 
tary standpoint of a formal system S inevitably 
necessitates some argument that cannot be 

formalized in S. 

(2) Consistency Proofs for Pure Number 

Theory. Gentzen [7] called pure number theory 
the theory of natural numbers not depend- 
ing on the free use of set theory (differing con- 
sequently from the usual theory of natural 
numbers based on +Peano axioms; - 294 
Numbers) and proved its consistency. W. 

Ackermann [14] proved the consistency of a 
similar theory admitting the use of Hilbert’s 
+s-symbol. G. Takeuti [15] showed that Gen- 
tzen’s result cari be obtained as a corollary 

to his theorem extending +Gentzen’s funda- 
mental theorem on tpredicate logic of the Iïrst 
order to a ttheory of types of a certain kind. 

According to the result of Gode1 mentioned 
in (1) above, some reasoning outside pure num- 
ber theory must be used to prove its consis- 
tency. In a11 consistency proofs of pure number 
theory mentioned above, ttranslïnite induction 

up to the fïrst te-number cc, is used, but all the 
other reasoning used in these proofs cari be 

presented in pure number theory. This shows 
that the legitimacy of transtïnite induction up 
to E,, cannot be proved in this latter theory. A 
direct proof of this fact was given by Gentzen 

[ 131. On the other hand, the legitimacy of 
translïnite induction up to an ordinal num- 
ber < E,, cari be proved within pure number 
theory. 

Again, transtïnite induction is not the only 
method by which to prove the consistency of 

pure number theory. Actually, Gode1 [ 171 
carried out the proof utilizing what he called 

computable functions of Imite type on natural 
numbers and what we cal1 primitive recursive 
functionals of tïnite type. 

By restricting pure number theory further, 

one obtains weaker theories of natural num- 
bers whose consistency cari be proved with 

tïnitary methods without recourse to such 
methods as transtïnite induction up to sO. M. 

Presburger [ 1 S] proved the consistency of a 
theory in which only the addition of numbers 
is considered an operation. Ackermann [ 191, 

J. von Neumann [20], J. Herbrand [21], and 

K. Ono [22] proved the consistency of theo- 
ries in which some restrictions are placed 
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on the use of the axiom of tmathematical 
induction. 

On the other hand, K. Schütte [23] gave a 

consistency proof for number theory including 
what he called “infinite induction” from a 

stronger standpoint than Hilbert’s tïnitary one; 
he attempted to lïnd a basis that makes such a 
proof possible. 

(3) The Consistency of Analysis. No delïnitive 
result has yet been obtained from the stand- 
point of formalism, though many attempts are 
being made, among which a recent one by C. 
Spector [24] should be mentioned. 

(4) Axiomatic Set Theory. There are different 
kinds of axiom systems (- 33 Axiomatic Set 
Theory). TO give a consistency proof for any of 
these systems is considered a very difficult 

problem today, but many interesting results 
are known concerning the relative consistency 

or independence of these axioms. 

(5) The Skolem-Lowenheim Theorem. The 

metamathematical Skolem-Lowenheim 
theorem states: Given a consistent system of 
axioms stated in the first-order predicate logic 

whose cardinality is at most countable, there 
always exists an tobject domain consisting of 
countable abjects satisfying a11 these axioms. 

For example, axiomatic set theory is stated 
in predicate logic of the lïrst order, and the 
cardinality of its axioms is countable. Thus 
there exists an abject domain consisting of 
countable abjects satisfying a11 these axioms, 
provided that they are consistent. Such a do- 

main is called a countahle mode1 of axiomatic 
set theory. On the other hand, from the axioms 
of this theory one cari prove that there exists 

a family of sets that is more than countable. 
This should also hold in a mode1 of the theory, 
in which each abject represents a set. This 
situation is known as the Skolem paradox. 

This does not imply, however, the inconsis- 
tency of axiomatic set theory. In fact, the term 
“countable” is to be interpreted in its math- 
ematical sense when one says “there exists a 

family of sets that is more than countable,” 
while it should be interpreted in its metamath- 
ematical sense when one speaks of a countable 
mode1 of the theory. It is the confusion of these 

two different interpretations that leads to the 
“paradox.” 

(6) Skolem’s Theorem on the Impossihility of 
Characterizing the System of Natural Numbers 
by Axioms. T. Skolem [27] proved that it is 
not possible to characterize the system of 

natural numbers by a countable system of 
axioms stated in the predicate logic of the Iïrst 
order. More precisely, given any consistent 
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countable system of axioms satistïed by the 
system of natural numbers, there always exists 
another tlinearly ordered system satisfying a11 

these axioms and yet not isomorphic to the 
system of natural numbers as an ordered 
system. 

Godel’s incompleteness theorem and the 
Skolem paradox, as well as this result, seem 
to indicate that there is a certain limit to 
the effectiveness of the formalist method. On 
the other hand, nonstandard analysis has 
originated in this result. 
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Four-Color Problem 

A. Brief History 

It is obvious that four colors are necessary to 

color some geographical maps on a sphere (or 
plane), but are four colors sufhcient to color 

every map? This is the so-called four-color 
problem. The precise formulation of this prob- 
lem Will be given in Section B. The conjecture 

was made by Francis Guthrie and communi- 
cated through his brother Frederick Guthrie 
to A. De Morgan in 1852 [4]. A. Cayley called 

attention to the problem in 1878. It became 
famous after J. P. Heawood pointed out a 
mistake in the proof by A. B. Kempe (1879). 
Heawood also studied the problem of coloring 
maps on arbitrary surfaces (- Section E). 

157 B 
Four-Color Problem 

Though there have been various approaches 
to the four-color problem, the main stream of 
investigation has concentrated on obtaining an 

unavoidable set consisting of reducible ar- 
rangements (- Section D) in order to correct 
the mistake made by Kempe. G. D. Birkhoff 

[7] lïrst discovered the simplest nontrivial 
reducible arrangement, nowadays called 
Birkhoff’s diamond (Fig. 1). Using a11 reduc- 
ible arrangements known up to that time, P. 
Franklin showed that every map with up to 25 
countries must contain a reducible arrange- 
ment, SO that such a map is four-colorable [S]. 
This limit has been gradually increased; in 
1975 a reducible arrangement for 25 countries 

was found. 

Fig. 1 
Birkhoff’s diamond. 

H. Heesch invented the method of discharg- 
ing (- Section D), found criteria for reduci- 

bility, and tïnally conjectured the existence of 
an unavoidable set of reducible arrangements 
with several thousand elements, but this was 
too large to construct by hand. W. Haken and 
K. Appel with J. Koch worked with high- 
speed computers for a total of 1,200 CPU 
hours over a period of four and a half years 
and tïnally succeeded in constructing and 
checking an avoidable set of reducible ar- 

rangements with 1,834 elements, which proved 
the four-color problem afhrmatively (1976; 
[9,10]). For early investigations of the four- 

color problem - [S]; for results up to the 
1930s - [3]. 

B. Precise Formulation of tbe Problem 

TO formulate the problem precisely, we must 
state the following two conditions: (i) Every 
country on a map is a tconnected domain; a 
connected part of the sea is considered to be a 
country. (ii) Two countries sharing boundary 

lines must be colored differently. On the other 
hand, if two countries share only a finite num- 
ber of points, then they may share the same 

color. 
Actually we cari modify the map SO that no 

more than three countries meet at the same 
point. A map with this condition is called a 
trivalent or cubic map. In the study of the four- 
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color problem, we cari restrict ourselves to 

trivalent maps without two-sided countries. In 
the remainder of this article, we shall assume 
that the maps considered have these 
properties. 

In recent investigations, it has become 
customary to convert maps into their tdual 
graphs, where each country is replaced by its 
capital lying inside, and for each adjacent pair 
A, B (Fig. 2) the boundary is replaced by a 

line connecting the representative points of A 
and B in such a way that it meets the bound- 

ary only once. 

Fig. 2 
Dual graph. 

The forma1 extension of the four-color prob- 
lem to higher dimensions is trivial, since we 
cari easily construct arrangements needing 
arbitrary many colors for coloring. By con- 
verting to a dual graph, one cari see that this is 
not surprising, since the planarity of a graph 
is a strong restriction, while the condition 

of representability of a linear graph in 3- 
dimensional space imposes no restriction. 

C. Tait’s Algorithm 

Suppose that a planar trivalent map M is four- 
colored. Denote the four colors by 0, 1, 2, and 
3. (In Fig. 3, we use A, B, C, and D instead of 0, 
1, 2, and 3, respectively). Here we take the 
operation a @ b-c. Represent the integers 
a, b = 0, 1, 2, or 3 in the binary (2-adic) number 
system as 2-digit numbers a, a, and b, b,, 
where ai and bi are 0 or 1. For each digit we 

take the operation ai 0 bi = ci to be binary 

Fig. 3 
An example of Tait’s algorithm. At the vertices, . 
stands for + and 0 for -. Within the domains, A, 
B, C, and D stand for four colors corresponding to 
0, 1, 2, and 3, respectively. 

618 

addition without carrying, i.e., the operation is 
that of the logical (exclusive) “or.” The number 
c = ci cg in the binary system represents the 
result of the operation. TO each boundary line, 

we give the number corresponding to a @ b, 
where a and b are the colors for the two coun- 
tries meeting at the boundary. Then we have 
the numbering 1,2, and 3 for each edge, where 
1, 2, and 3 are labeled once and only once for 
each triple of edges emanating from each 

vertex. Such numbering for edges is called Tait 
coloring for edges. Then we give the signature 

+ or - to each vertex, according as the order 
of the edge numbering is counterclockwise or 

clockwise. Then the algebraic sum of the signa- 
tures along the boundary of each country in 
the map is always a multiple of 3. Conversely, 
if we give the signature + or - to each vertex 
in such a way that the algebraic sum of the 
signatures is always a multiple of 3 along the 
boundary of each country, then we get a four- 
coloring of the map by reversing the above 

procedure. This is called Tait% algorithm, 
which shows that the four-coloring of a planar 
map is an TNP problem. As for five-coloring, it 

is known that an algorithm of polynomial 
complexity exists. 

Tait’s algorithm also shows that the four- 

color problem is equivalent to the following 
apparently elementary geometric proposition: 
“For any convex polyhedron, we cari always 
tut near some of its vertices in such a way that 
the resulting polyhedron has only faces such 
that the number of sides is a multiple of 3.” 

Many other equivalent statements of the four- 
color problem are known [ 1,2]. 

D. Solution of the Four-Color Problem 

For a given planar trivalent map, denote by 
V, the number of the countries with n sides 
(n à 3). From Euler’s theorem on polyhedra, 

we have immediately the relation 

&(6-n)I’“=12. (1) 

We easily see from this that every planar map 

must contain 3-, 4-, or 5-sided countries. A 
family F of the arrangements of countries with 
the property that every planar map must 
contain at least one arrangement belonging to 
F is called an unavoidable set. The family con- 
sisting of 3-, 4-, and 5-sided countries is the 
simplest example. In order to obtain an un- 

avoidable set, Heesch invented the method of 
discharging. Let us assume the existence of a 

map A4 that contains no arrangement of a 
family F. We give a signed charge of (6 -n) to 

every n-gon in M. Next we divide and move 
the charges SO that the pluses and the minuses 

cancel out. If a11 positive charges disappear, 
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according to the assumption of the existence of 
the map M, then we have a contradiction of 
(l), SO we cari conclude that no such map M 

exists. 
A 3-sided country cari be ignored in four- 

coloring. As for a 4-sided country A, Kempe 
proved (by means of a deiïnite modification 
procedure) that after four-coloring outside A, 
we also have a total four-coloring including A. 
An arrangement of a country or countries A is 
called reducible if, as in the above case, after 

four-coloring outside A, we get a total four- 
coloring including A by suitable modifications. 
If we have an unavoidable set consisting only 
of reducible arrangements, then by defmition, 

every planar map Will be four-colorable. 
Kempe believed that he had proved the 

reducibility of a pentagon (5-sided country), 
but unfortunately, he missed a particular case. 
Even though the pentagon is not reducible, 
much effort has been given to finding other 
reducible arrangements. Many useful criteria 

for reducibility have also been studied. If we 
have enough reducible arrangements, then 
we cari either eventually obtain an unavoid- 
able set, which proves the four-color problem 
affïrmatively, or iïnd a “minimal counter- 

example” without reducible arrangements, 
which disproves it. 

Haken obtained an unavoidable set consist- 
ing of arrangements without certain kinds of 
reduction obstructions. (He called these “geo- 
graphically good arrangements.“) He firmly 
believed that, applying certain “probabilistic 
conjectures” to such arrangements, he would 
conquer the problem by considering arrange- 

ments of up to 14 countries. With repeated 
improvements on the discharging process and 
on the criteria for reducibility, he fïnally was 
able to conclude that his speculation was 

correct, as recounted in Section A. His inves- 
tigation is not only an example of the use of 
high-speed computation in pure mathematics, 
but also one inviting reassessment of the 
meaning of mathematical proof. 

E. Coloring Maps on Arbitrary Surfaces 

On a ttorus, seven colors are suffïcient to color 
any map and that many colors are necessary 
to color some maps. Heawood (1890) inves- 

tigated the problem of coloring maps on 
closed surfaces with tEuler characteristic x < 2, 
orientable or not. The least number of colors 
sufficient to color any map on a surface is 
called the chromatic number of the surface. 
Heawood proved that the chromatic number 

is less than or equal to 

p = C(7 + &=GY21 (x < 3, (2) 
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where [a] means the largest integer a < CI. After 
this was proved in various special cases, J. W. 
T. Youngs and G. Ringel lïnally proved in 
1968 that the number p equals the chromatic 

number except for a Klein bottle (a non- 
orientable surface with x = 0) [6]. Franklin 
proved in 1934 that the chromatic number for 
a Klein bottle is 6. 
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Fourier, Jean Baptiste 
Joseph 

Jean Baptiste Joseph Fourier (March 21, 
1768%May 16, 1830) was born in Auxerre, 
France, the son of a tailor, and was orphaned 

at the age of eight. In 1790, he was appointed 
professor at the Ecole Polytechnique. In 1798, 
Napoleon took him on his Egyptian campaign 

together with G. Monge. On his return to 
France, he was made governor of the depart- 
ment of Isère. With the downfall of Napoleon, 
he lost his position; however, he was later 
appointed to the French Academy of Science 
as a result of his research on the transmission 
of heat. In 1826 he was elected a member of 

the Académie Française. 
His research on heat transmission was 

begun in 1800. In 1811, he presented a prize- 
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winning solution to a problem put forth by the 
Academy of Science. He solved the equation 
for heat transmission under various tboundary 
conditions. Fourier also stated (without rigor- 
ous proof) that an arbitrary function could be 
represented by ttrigonometric series (- 159 
Fourier Series), a statement that gave rise to 
subsequent developments in analysis. 
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Throughout this article, we assume that f(x), 

g(x), . f. are real-valued functions and that 
integrals are always Lebesgue integrals. 

A. Introduction 

The set of functions 

Y&, COS xl&, sinx/&,..., 

COS kx/&, sin kx J&, . , 

which is called the trigonometric system, is 
an torthonormal system in ( - rr, x) (- 3 17 
Orthogonal Functions). Let f(x) be an ele- 

ment of L, ( -n, n) (i.e., +Lebesgue integrable 
in ( - rr, rr)). We put 

1 R 
ak=- ~@)COS ktdt, 

7l s -TE 

h,=l 
s 

I 
j(t) sin kt dt, k=O, l,..., (1) 

71 -li 

and cal1 ak, bk the Fourier coefficients off: The 
forma1 series 

fao + 5 (uk COS kx + bk sin kx) (4 
k=l 

is called the Fourier series off and is often 

denoted by G(f). TO indicate that a forma1 
series G(f), as above, is the Fourier series of a 
function L we Write 

f(x)-;a,,+ 2 (akcoskx+bksinkx). 
k=l 

The sign - means that the numbers ak, bk are 

connected with f by the formula (1); it does 
not imply that the series is convergent, still less 

that it converges to jI Generally, trigonometric 

series are those of form (2), where the akr bk are 
arbitrary real numbers. Since the trigono- 

metric series have period 2n, we assume that 
the functions considered are extended for 
a11 real x by the condition of periodicity 
f(x + 27~) =f(x). The study of the properties 
of the series S(f) and the representation off 
by 6(f) are major abjects of the theory of 
Fourier series. Since eiX = COS x + i sin x, if we 
set 2c,=a,-ib,, cmk=ck (k=O, 1,2, . ..). we 
have 

ck=; 
s 

1 f(t)e-ik’dt, k=O, fl, 
ii 

Then G(f) is represented by the complex form 
Ckm, ~m ckeikx, and {eikX} (k=O, kl, . ..) is an 
orthogonal system in (-X, rc). In this complex 
form, we take symmetric partial sums such as 
C;=-“c,e’kx (n= 1,2, . ..). 

Consider the power series +a0 +C& (uk - 
ibk)zk on the unit circle z = eiX in the complex 
plane. Its real part is the trigonometric series 

(2) and the imaginary part (with vanishing 
constant term) is 

uk sin kx - bk COS kx), (3) 

which is called the conjugate series (or al- 
lied series) of .f and is denoted by g(f). In 
complex form, the conjugate series is 
-iCE-co(sgnk)ckeik”. 

If f and y belong to L, (- n, n) and 

f(x)- f ckeikx, S(X)-k=~a dkeikx, 
k=-m 

then 

f(x-t)g(t)dt- 2 ckdkeik” 
k=-m 

The function 

f*dx)=& 
s 

~‘fMWf 

is called the convolution off and g. 

If f is tabsolutely continuous, then the de- 
rivative f’(x) satishes 

f’(x) - i,f?, kckeik” 

= kE, ‘db, COS kx - ak sin kx). 

If F(x) is an indelïnite integral of ,fi then 

a a,sinkx-b,coskx 
=c+ c 

k=l k ’ 

where C is a constant of integration and the 

symbol ’ indicates that the term k=O is 
omitted from the sum. 

If fi L, (- rr, n), then the Fourier coefficients 



621 159 c 
Fourier Series 

c, converge to 0 as n--+ CO (Riemann-Lebesgue 
theorem). If f satistïes the tlipschitz condition 
of order c( (0 <tu < l), then c, = O(nP), and if f 
is of tbounded variation, then c, = O(n-‘). 
When f~,!,,( - rr, n), 

L k=l 

which is called the Parseval identity. If C (ck)* 

< 00, then there exists a function ~EL*( - rr, 7-c) 
which has the ck as its Fourier coefficients. 
This converse is implied by the +Riesz-Fischer 
theorem (- Appendix A, Table 11.1). 

B. Convergence Tests 

The nth partial sums s,(x) = s,(x;f) of the 

Fourier series G(f) cari be written in the form 

sJx)=; s 1 f(x+t)D.(t)dt, R 
where 

D,(t) = {sin(n + 1/2) t)/2 sin(t/2). 

The function o,(t) is called the Dirichlet kernel. 
For a lïxed point x we set <p,(t) =f(x + t) + 
f(x - t) - ~Y(X); then 

%<X>-nx>=; ; cp,@P&)~~. 
s 

Hence if the integral on the right-hand side 
tends to zero as n+ CO, lim,,, s,(x) =f(x). If f 
vanishes in an interval I= (a, b), then G(f) 
converges uniformly in any interval 1’ = (a + 
E, b -E) interior to 1, and the sum of S(f) is 
0. This is called the principle of localization. 

Here we give four convergence tests. (1) If f 

is of bounded variation, S(f) converges at 
every point x to the value { f(x + 0) +f(x - 
0)}/2. In addition, if f is continuous at every 
point of a closed interval I, G(f) is uniformly 
convergent in 1 (Jordan’s test). As a special 

case of this test, bounded functions having a 
lïnite number of maxima and minima and no 
more than a finite number of points of dis- 
continuity have convergent Fourier series 
(Dirichlet’s test). (2) If the integral jc I<p~(t)l/tdt 
is finite, then S(f) converges at x to ,f(x) 
(Dini’s test). (3) If 

s 
ohl<pxlw~=o(~) 

and 

,im 
s 

“I<p,O)-<px(t+rlIl dt=O 
q-0 >I t 

then S(f) converges at x to f(x) (Lebesgue’s 
test). Jordan’s and Dini’s tests are mutually 
independent, and both are included in Le- 
besgue’s test, which, although not as conve- 
nient in certain cases, is quite powerful. (4) If 
f(x) is continuous in (a, b) and its modulus of 
continuity satisfïes the condition w(6). log( 1/6) 
-0 as &O in this interval, then S(f) con- 

verges uniformly in (a + E, b-c) (Dini-Lipschitz 
test). 

C. Summability 

Let s,(x) be the nth partial sum of the Fourier 
series G(S), and ~~(x)=~,,(x;f) be the tïrst 
arithmetic mean ((C, 1)-mean) of s,,(x) (i.e., g,,(x) 

= (sa(x) + si (x) + . + s,,(x))/@ + 1)). Then we 
have 

u”(x)-f(x)=L 
s 

n <p&)K(t)& 
n. 0 

where 

1 
K,(t)=- 

2(n+l) ( 

sin((n+ l)t/2) 

> 

’ 

sin(t/2) . 

The expression K,(t) is called the Fejér kernel, 
and the u,(x) are often called Fejér means. If 
the right and left limits f(xfO) exist, G(f) is 
+(C, l)-summable at the point x to the value 
(f(x +O)+f(x -0))/2. If f is continuous at 
every point of a closed interval 1, G(f) is 

uniformly (C, l)-summable in 1 (Fejér theorem, 
1904). As we explain in Section H, there exist 
continuous functions whose Fourier series 

are divergent at some points. Thus the sum- 
mability of G(f) is more important than its 
convergence. Fejér’s theorem remains true 
if we replace (C, l)-summability by (C, c()- 
summability (c( > 0). More generally, if fE 
L,( - rc, rc), then G(f) is (C, a)-summable for 
a > 0 to the value f(x) almost everywhere (H. 
Lebesgue). Since (C, cc)-summability (a > 0) 
implies tsummability by Abel% method, the 
result of Fejér’s theorem is valid for +A- 
summability. However, the direct study of A- 

summability is also important. Let f(r, x) be 
Abel’s mean of S(f); that is, 

= 1 f(x+t)P(r,t)dt, 
n 

where P(r, t)=(l -r2)/2(1 -2rcos t+?), O< 
r < 1. We cal1 P(r, t) the Poisson kernel. The 
function f(r, x) is tharmonic inside the unit 
circle and tends to f(x) as r + 1 almost every- 

where. Hence f(r, x) gives the solution of the 
+Dirichlet problem for the case of the unit 

circle. 
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D. The Gibbs Phenomenon F. Mean Convergence 

Let f(x) be of bounded variation and not 
continuous at 0 :f(O) = 0, f( +O) = I > 0, f( -0) = 
- 1. Then the partial sum s,(x) converges to 
f(x) in the neighborhood of 0, but not uni- 

formly. Moreover, 

lim s, - =1G, 
0 n-m )j 

G2 
s 

“sint 
-&=1.1789.... 

net 

Hence as x tends to 0 from above and n tends 
to CO, the values y = S,(X) accumulate in the 
interval [0, IG], while s,( -x)= -s,,(x) in the 
neighborhood of 0. This phenomenon is called 

the Gibhs phenomenon. If f is of bounded 
variation, then G(f) exhibits the Gibbs phe- 
nomenon at every point of simple discontinuity 

off: However, the (C, 1)-means of G(f) do not 
exhibit this phenomenon. 

E. Conjugate Functions 

For any integrable fi L 1 ( -z, n), the integral 

m = 

(f(x+t)-f(x-t)) 

exists almost everywhere. The function y(x) 

is called the conjugate function of f(x). The 
conjugate series G(f) is (C, cc)-summable (a > 

0) to the value y(x) at almost every point, 
and a fortiori summable by Abel% method. 
Even if fE L, ( -x, 7-c), f does not always be- 
long to the class L, ( - 71, x). For example, 
Cz2 COS nx/log n is the Fourier series of a 

function fi L, (- n, z), but its conjugate series 
CE2 sin nx/log n is not the Fourier series of a 
function in L,( -n, 7~). However, if both f and 

fare integrable, e(f) = G(f). If fc L, (p > l), 

then ~“EL~ and llf”llp~ApIlfllp; aIso, %f) 
= G(f). If If1 log+lfl is integrable (such a 
function is said to belong to the Zygmund 
class), then 7 is integrable and g(f) = G(f). 
Moreover, in this case there exist constants A 

and B such that 

If f is merely integrable, SO is IfiP for any 0 < 

pc 1, and llfll,,<BPIlfll (O<~C 1). IffeLipa 
(0 < a < l), then fé Lip a, but the theorem fails 
for a = 0 and a = 1. The conjugate function is 

important for convergence of partial sums of 
Fourier series. 

The theorems on conjugate functions enable 

us to obtain some results for the tmean con- 
vergence of the partial sums s, of G(f). If fE 
L,(p>l), then lif-~J~+O;iff~L~, then 
~~f--snll,-O, Ilf”-Snll,-O for every O<p< 

1. Also, if Ifllog+lflEL1, then Ilf-s,J-0, 

Ilf-Z,ll +O. As a corollary of this result, we 
obtain the following theorem, which is a gen- 
eralization of the Parseval identity: If the 
Fourier coefficients of functions fi L, and gE 
L, (l/p + l/q = 1) are a,, b, and un, bn, respec- 
tively, we have the Parseval formula 

1 

s 

2a 
- 
n 0 

fgdx=$,&+ f (a,a;+b,,b;), 
n=1 

where this series is convergent. 

G. Analytic Functions of the Class H, 

Let p > 0. A complex function <p(z) holomor- 
phic for IzJ < 1 is said to belong to the class 
HP (Hardy class) if there exists a constant A4 
such that 

When <P(Z)E HP, the nontangential limit q(e”) 
= lim n-te,O~(~) exists for almost all 0. We Write 

this as <P(e”)=f(0)+$(@, wheref(O),f(O) 
belong to the class L,. Also, ,7(o) coincides 
with the conjugate function of f(0) for p > 1. 

For 1 <pc CO, HP is isomorphic to L,, but 
for p = 1 and p = 00, HP and L, are different 
classes. Using the theory of functions of H,, we 

cari discuss some properties of Fourier series. 
If q(e”) =f(f3) + [f(O) is of bounded variation, 
then q(e”) is absolutely continuous and its 

Fourier series converges absolutely. We set 

> 
ll.7 

g(O)= (1 -r)l<p’(rei8)12dr , 

s*(o)= 

(j;(I-r)drjo2 )“‘, Iqf(reicBm’))12P(r, t)dt 

where P(r, t) is the Poisson kernel. Then g(8) < 
29*(O), and there exist constants A,, B, C, 

and A,, such that 

s 
ozz lg(B)IPdOd A,, 

s 
2x IcP(e’W’dO, P>O, 

0 

P> 1, 
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Denote by s,,(O) and q,(0), respectively, the 
partial sums and arithmetic means of the 
Fourier series of <à, and set 

( 
m Is”(e)-o,(e)l’ u2 

Y(@= c n Il=1 > 
Then O#A, <g*(fI)/y(B)<A,# CO. From these 
relations, we cari prove that if the indices 
nk satisfy the conditions p > nk+, /nk > tl> 
1, s,,(Q) converges almost everywhere to 
<p(e”) for <p(e”)EH, (1 <p). If we set A,(@= 

CL~,+lc,eiv8, s(e)=(C~,lAk(0)12)1’2, where 

cp(ei8)-C~Ocyei’8, then l16(~)llp~ApIIdlp 
(p>l). Ifcp(~)EH~(O<p<l), thenCc,e’“‘is 

(C,p-’ - 1)-summable to <p(e”) almost every- 
where. These functions and relations were 
introduced mainly by J. E. Littlewood and 

R. E. A. C. Paley and were later generalized by 
A. Zygmund. There are more precise results 
by E. Stein [7], G. Sunouchi [S], S. Yano [9], 
and others. 

H. Almost Everywhere Convergence and 

Divergence 

P. du Bois Reymond (1876) tïrst showed that 
there exits a continuous function whose 

Fourier series diverges at a point, but the 
problem of whether Fourier series of continu- 
ous functions converge almost everywhere 
(the so-called du Bois Reymond problem) re- 
mained unsolved for many years. At last in 
1966, L. Carleson [lO] proved that the Fourier 
series of a function belonging to L, converges 

almost everywhere; hence the du Bois Rey- 
mond problem was solved affirmatively. Using 

Carleson’s method, R. A. Hunt [12] proved 
that 

which implies that the Fourier series of fE L, 
(1 <p < m) converges almost everywhere. Hunt 
also proved that 

j;‘(s;Pl+)dx 

s 

2n 

SA If(Mog+ If(xN’dx+A. 
0 

Moreover, P. Sjolin proved that if 

s 

2n 

If\. log+ If\ .log+ log+ (fldx< 00, 
0 
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then the Fourier series of f(x) converges 
almost everywhere. 

On the other hand, A. N. Kolmogorov 
gave an integrable function with Fourier 
series diverging everywhere (more precisely, 
limsup,,, ls2”(x)l = co almost everywhere). 
Using this example, J. Marcinkiewicz showed 

that there is an fe L, such that s,(x;f) oscil- 

lates boundedly almost everywhere. Moreover, 
there exists an integrable function with inte- 

grable conjugate and almost everywhere diver- 
ging Fourier series [SI. For any given tnull set 

E, we cari construct a continuous function 
whose Fourier series diverges on every x E E. 

1. Absolute Convergence 

The convergence of the series (1) C(la,l +jb,l) 
implies the absolute convergence of the trig- 

onmometric series (2) a,/2 + x(a, cas nx + 
b, sin nx). Conversely, if the series (2) con- 
verges absolutely in a set of positive mea- 
sure, the series (1) converges (Denjoy-Luzin 
theorem). For the absolute convergence of 
Fourier series, we have the following tests: If 
fi Lipx (c( > 1/2), then S(f) converges ab- 
solutely, but for c( = lj2, this is no longer true. 
If f(x) is of bounded variation and belongs to 
Lip CI (c( > 0), G(f) converges absolutely. 

Suppose that the Fourier series of a function 

S(x) is absolutely convergent and the value of 

f(x) belongs to an interval (a, b). If C~(Z) is a 
function of a complex variable holomorphic 

at every point of the interval (a, b), the Fou- 
rier series of cp { f(x)} converges absolutely 
(Wiener-Lévy theorem). As a corollary we 
obtain that if G(f) converges absolutely and 
f(x) # 0, then G( l/j) converges absolutely. The 
converse of the Wiener-Lévy theorem was 
proved by Y. Katznelson [6]. For a given q(x) 
detïned in [ -1, 11, if the Fourier series of 
q { f(x)} converges absolutely for every f(x) 

with absolutely convergent Fourier series 
(If(x)/ < l), then q(z) is holomorphic at every 
point of the interval [ -1,l). 

Many problems concerning this topic still 
remain unsolved. In particular, the determi- 
nation of the structure of the functions with 
absolutely convergent Fourier series has not 
been completed. 

J. Sets of Uniqueness 

If a, COS nx + b, sin nx converges to 0 on a set 
of positive measure, then a,, b,+O (Cantor- 

Lebesgue theorem). A point set E c (0,27r) is 
called a set of uniqueness (or U-set) if every 

trigonometric series converging to 0 outside E 
vanishes identically. A set that is not a U-set is 
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called a set of multiplicity (or M-set). G. Can- 
tor showed that every lïnite set is a U-set, and 

W. H. Young showed that every denumerable 
set is a U-set. It is clear that any set E of posi- 
tive measure is an M-set, but D. E. Men’shov 

showed that there are tperfect M-sets of mea- 
sure 0. Moreover, N. K. Bari showed that 
there exist Perfect sets of type U. However, the 
structure problem of sets of uniqueness has not 
yet been solved completely. 

A set E is said to be of type H (or an H-set) 
if there exists a sequence of positive integers 
n,<n,<... and an interval 1 such that for each 
x E E, no point of {nkx}& is in 1 (mod 27r). H- 

sets are sets of uniqueness, a fact given by A. 
Rajchman. 1. 1. Pyatetskiï-Shapiro generalized 
H-sets to HC”‘)-sets [3]. 

Lacunary trigonometric series are series in 
which very few terms differ from zero. Such 
series cari be written in the form 

il (a,cosn,x+b,sinn,x)=~, 4(x). 

S. Sidon established some of the characteristic 
properties of such series; he generalized them 
further and obtained the notion of Sidon sets 

(- 192 Harmonie Analysis). We often delïne a 
lacunary series more specilïcally as a series for 
which the nk satisfy Hadamard’s gaps; that is, 

nk+, /n, > 4 > 1. Then if CE, (a: + bt) is finite, 
the series Cg1 A,(x) converges almost every- 
where. Conversely, if XE1 A,(x) is convergent 

in a set of positive measure, then CE, (a: + bk) 
converges. This theorem is related to the 
Rademacher series and random Fourier series 

c41. 

K. Multiple Fourier Series 

Routine extensions to multiple Fourier series 

from the case of a single variable are easy, but 
signilïcant results are difftcult to obtain. Re- 
cently, however, there have been several im- 

portant contributions in this tïeld. 
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A. Fourier Integrals 

In this article we assume that f(x) is a 
complex-valued function detïned on R = 
(--CO, m) and t(Lebesgue) integrable on any 

lïnite interval. If the integral 

s 

03 
f(x)ëiXtdX=lh& Bf(x)e?‘dx 

-00 s B-m * 

exists, it is called the trigonometric integral 
or Fourier integral. We have a general result: 
Iff(x)ELi(-co, CO), K(x) is bounded on 
(-CO, CO), and SgK(x)dx=o(T) (T-t &co), then 
J?,f(x)K(xt)dx exists and 

lim 
s 

a f(x)K(xt)dx=O. 
t-*m ~oc 

In particular, it follows that if S(x)E L, (- CO, 
ao), then jFmf(x)eitxdx exists and 

s 

“I 
lim 

r-*0, -cc 
f(x)em”“dx=O 

(Riemann-Lebesgue tbeorem). 
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B. Fourier% Integral Theorems 

Suppose that f(x) is of tbounded variation in 

an interval including x, or more generally 
satisfïes the assumption for any one of the 

convergence tests for Fourier series (- 159 
Fourier Series B). Then Fourier% single inte- 
gral theorem 

(1) 

holds if one of the following three condi- 
tions is satisfïed: (1) f(x)/( 1 + 1x1) belongs to 
L,( -CO, CO); (2) ~(X)/X tends to zero mono- 

tonically as x-+ *co; (3) f(x)/x=.q(x)sin(px+ 
q), where g(x) tends to zero monotonically 
as x-+ +co (S. Izumi, 1934). The right-hand 
side of (1) is called Dirichlet’s integral. 

Let f(x) be of bounded variation in an inter- 
val including x (or satisfy some other conver- 
gence test for Fourier series). Then Fourier’s 
double integral theorem 

f(u)cost(u-x)du (2) 

holds if one of the following three conditions 

is satisfied: (4)f(x)gL1( -a, CO); (5)f(x)/(l 
S(~~)EL~(-00, CO), andf(x) tends to zero 
monotonically as x+ fco; (6) f(x)/( 1 + 1x1)~ 
L,(-CO, CD) andf(x)=g(x)sin(px+q), where 
g(x) tends to zero monotonically as x+ fco. 
Iff(x)EL1(-co, CO), the formula 

1 a: 
f(x) = lim - 

s 
f(t) 

sin’ A(t -x) 

~-ma4 -co A(t -x)~ 
dt 

holds almost everywhere, and in particular at 
any x where f(x) is continuous. More gener- 
ally, the formula 

s 

cc 
f(x)= lim A 

A-CC 
~mf@WWxW~ 

(3) 

holds at any point x where f(x + 0) and f(x - 

0) exist, if K(t)EL,(-cq co), JZmK(t)dt= 
1, IK(t)l<M, K(t)=o(t-‘) as Itl+co, and 
f(x)EL1(-c~,~),orifK(t)EL~(-co,co), 
j-a K(t)dt = 1, and f(x) is bounded. Similarly, 
the formula lj$ s 0 y ; K(x)dx=%R{f} “K(x)dx 0 s 0 
holds if Y.R{ f} = lim,,, T-’ jlf(t)dt exists, 

K(x) is differentiable, Ix’K(x)l<C (1 <x), and 

x-l JO If(t)1 dt < D, where C, D are constants 
(Wiener% formula). 

C. Fourier Transforms (- Appendix A, 

Table 11.11) 

Let f(x)~L~(0, CO). Then 

F(t)= 2 
Js 

“f(u)cosutdu 
n 0 

is called the (Fourier) cosine transform of f(x). 
Under the same condition as for the validity of 

(2), the inversion formula of the cosine transform 

f(x) = &qo” W) COS xt dt holds where we 

suppose that f(x) = $(f(x + 0) +f(x - Oj). If we 

defïne f( - x) =f(x), then this is equivalent to 
the formula (2). Analogously, 

G(t)= 2 
Js 

m 
f(u) sin ut du 

710 

is called the (Fourier) sine transform of f(x). 
Under the same condition as for the validity 

of (2), we get the inversion formula f(x) = 
&lo G(t)sinxtdt. More generally, for any 

fW~1(-~, ml, 

F($ -;/(x)e?~>dx 
5 

is called the Fourier transform of f(x). Under 
the same condition as for the validity of (2), the 
Fourier inversion formula 

f(x)=1 lim 
s 

T F(t)e’“‘dt 
ST- -T 

holds. The cosine transform and the sine 

transform coincide with the Fourier trans- 

form when f(x)=f(-x) and -f(x)=f( -x), 
respectively. 

Ifforanyf(x),F(t)ELq(-a,co)(lGq<m) 
exists, for which 

f’(x)e-‘“‘dt-F(t) ‘dt+O 

is valid (i.e., ( l/&)~TTf(t)emi”‘dt converges 
to F(x) as T-+ CO in the mean of order q), then 
we say that f(x) has the Fourier transform F(t) 
inL,(--co,cO). Iff(x)E&(-a,co)(l<p<2), 
then f(x) has the Fourier transform F(t) in 

L, (l/p + l/q = l), and F(t) has the Fourier 
transform f( -x) in L, (E. C. Titchmarsh). 
Moreover, 

s 
m IF(t)lqdx 
-cc 

1 /l-m \ u(P-1) I 
~(2n)“!Z’-l LJ I.fWl”dx 

-a: j 
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Iff(x), G(~)EL&-CO, co) (1 <p<2) and their 
Fourier transforms in L, are F(r), g(t), respec- 
tively, then the Parseval identity 

s 

m 
m F(t)G(t)dt = f(xM - wx 

-m s -02 

holds. The Fourier inversion formula holds, in 

the sense that 

The theory of Fourier transforms is valid for 
cosine and sine transforms. Specitïcally for p = 

2, iffEL,(O, m), then filif(x).cosxtdt 
+Converges in the mean in L,(O, CO) to the 
cosine transform F(t) as T+ co, and con- 

versely, the cosine transform of F(t) in L, is 
f(x). The transforms f(x), F(x) are connected 

by the formulas 

j-i F(u)du =gj: f(t)Fdt, 

j-;f(t)dt=&j”: F(u)Fdu, 

s 

cc 
If(x)12dx= 

s 
m IF(t)l’dt. 

0 0 

The theory of Fourier transforms was gen- 
eralized as follows by G. N. Watson (Roc. 
London Math. Soc., 35 (1933)). We suppose 

that x(x)/x E L,(O, CO) and 

s m Xb4X(Y4 ‘2 du = min(x, y). 
cl 

Iff(x)EL,(O, CO), then there exists an F(~)E 
L,(O, CO) such that 

and the inversion formula 

and the Parseval identity 

j: IfW12dx=j-~ ,F(t)12dt 

hold. F(t) is called the Watson transform of 
f(x). For any fe L,, equality (4) is necessary 
for the existence of the Watson transform F(t) 
for which the inversion formula holds. S. 
Bochner (1934) generalized this theory further 

to tunitary transformations in L, (- 192 

Harmonie Analysis). 

D. Conjugate Functions 

Corresponding to Fourier’s double integral 

theorem (2), the integral 2. m 
lim L dt s s i-mn 0 

sint(u-x)f(u)du 
~m 

is called the conjugate Fourier integral of the 
integral in the right-hand side of (2). Formally, 
this is written lim,,, t-‘JO(1 -cosIt)tC’(f(x 
+ t) - f(x - t))dt. If f(x) is a sufficiently regular 
function, the part involving cosit tends to 0 as 

i+ CO. Now let 

g(x) =1 lim s Afb+w(x-t)dt, 
nA-m c t 

t-0 

For any fi L, (0, CO), the integral exists almost 
everywhere, and g(x) is called the conjugate 
function or Hilbert transform of f(x). If fE L, 
(p > l), then g(x)E L, also and we have 

1 
f(x)= -- lim 

s 

AB(x+th(x-t)dt 

?CA-m E t e-0 

and s-m lg(x)lPdx <MP~?, If(x)lPdx, where 
M, is a constant depending only on p. In 
particular, 

s 

cc 
lf(x)12dx= = 

s 
Ig(x)12dx for p=2. 

-m -02 

E. Boundary Functions of Analytic Functions 

Suppose that a complex-valued function f(z) 

(z =x + iy) is tholomorphic for y > 0, f(x + iy) 
converges as y-0 for almost a11 x to f(x) 
(which is called the boundary function), and 

~(X)E L,,( -CO, 00) (p> 1). Moreover, suppose 
that f(z) is represented by +Cauchy’s integral 
formula or +Poisson’s integral of f(x) on the 
real line. If either fi L, (p> 1) and has F(t) 
as its Fourier transform or f(x) is an L,- 
Fourier transform of F(I)EL, (q > l), then a 
necessary and sufficient condition for the 
function f(x) to be the boundary function of 
an analytic function is that F(t) be 0 almost 
everywhere for t > 0 (N. Wiener, R. E. A. C. 
Paley, E. Hille, J. D. Tamarkin). 

F. Generalized Fourier Integrals 

Let If(x)l/(l +IX~“)E L,( -a, CO) for a positive 
integer k and 

k-1 (- itx)” 
c- Lk=Lk(t,X)= u=lJ 

{ 

v! ’ 
IxlG 1, 

0, Ixl>l, 

Ek(t)=; 

-ifx _ L 

; .ftxle k dx. 
m ( - iX)k 
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The function Ek(t) or one that differs from 

EJt) by a polynomial of degree at most k is 
called the kth transform of ,f(x). We Write 
formally f(x) =JTC, eiX’dkEk(t). Actually, if we 
give an appropriate meaning to the integral, 
this formula itself is valid (H. Hahn, Wiener 

Berichte, 134 (1925); S. Izumi, Tôhoku Science 

Rep., 23 (1935)). (For the theory and applica- 
tions of kth transforms - [2, ch. 63.) 

G. Applications of Fourier Transforms 

Suppose that f(x)~L,( -CO, nr>), F(t) is its 
Fourier transform, and f(x) = o(e-H(x)), where 
O(x) is positive and increasing. If SF 0(x)x-‘dx 

= CU and F(t) vanishes identically in an 
interval, then F(t)=0 over (-CO, CO). If 
sy 0(x)x-‘dx < GO, then there exists a function 
f(x) such that F(t) vanishes identically in an 

interval, but F(t) does not vanish identically in 
( -ZJ, CO) (Wiener, Paley, N. Levinson). These 
results are applicable to the theory of tquasi- 
analytic functions. 

Let f(x)~L~(-CO, 10). Then a necessary 

and sufficient condition for any function in 
L, ( -CO, m) to be approximated as closely as 

we wish by linear combinations of the trans- 
lations XF= 1 akf(x + hk) of f(x) with respect 
to the L,-norm is that the Fourier transform 
of f(x) does not vanish at any real number. 
When ,f(x)~&( -n3, x), a necessary and suffi- 
tient condition that an arbitrary function in 

L2(-CO, ~0) cari be approximated as closely 
as we wish by zr=, ak,f(x + h,) with respect to 
the L,-norm is that the zeros of the Fou- 
rier transform of f‘(x) have measure zero 

(Wiener). This result was used by Wiener to 
prove the generalized Tauberian theorem: 
Suppose that gl(x)EL,(-co, CO) and its Fou- 
rier transform never vanishes. Moreover, let 

gZ(x)EL1(-a, GO) and p(x) be bounded over 
(-co, CU). Then lim,,, jZZ y, (x -t)p(t)dt = 

Aj?m gl(t)dt implies that lim,,, s?a g2(x - 

t)p(t)dt=AlT,g2(t)dt. Another type of 
Wiener theorem is concerned with +Stieltjes 
integrals. Suppose that 

i: sup IY,(X)l< a 
n= -02 n<x<n+, 

(hence gl(x)EL,) and that the Fourier trans- 
form of g1 (x) never vanishes. Moreover, let 

5 sup Is*(x)l< 30 
n=-K ncx<n+l 

and let JC” Ida(t)1 be bounded. Then 33 CO 
lim s .4,(x-t)dcc(t)=A s s,(Odt 
x-3; ~(u -m 
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implies 

s 

cc m 
lim g2(x-t)dtl(t)= A gz(t)dt. 
x-= ~m -0 

From these general theorems, we cari prove 
various +Tauberian theorems about the sum- 
mation of series. Also, these results were applied 
to the proof of the +Prime number theorem by 

S. Ikehara and E. Landau (Wiener [ 11). In the 
general Tauberian theorem, the boundedness 
of p(t) cari be replaced by one-sided bounded- 
ness (H. R. Pitt, 1938). In fact, the iïrst form of 
the theorem still holds if we replace the con- 

dition by the following one: g1 and y2 are 
continuous, g,(x) > 0, the Fourier transform of 
y1 (x) does not vanish, g2(x) satisfies the con- 
ditions of the second theorem, and p(x) > C. 

(Concerning Fourier transforms on the topo- 
logical groups - 192 Harmonie Analysis; 
and concerning Fourier transforms of the 

distributions - 125 Distributions and 

Hyperfunctions). 

H. Fourier Transforms of Distributions 

The Fourier transform is defined in higher- 
dimension R” by 

F(f)=(s)-” emi”cf(x)dx, 
s 

~EL~, 

x5=x,51+x,(*+...+x,ii,. 

One denotes it by f(f). The inverse transform 
is detïned by 

FÏ(g)=(&)-’ eiXrg(<)d& 
s 

Differentiation under the integral sign gives 

O”f(<) =(&)-” 
s 

emixr( - ixyf(x)dx, 

D”=(i3/i3X,)011 . ..(a/aX.,p, 

under the assumption (1 +l~l)~‘!f(x)~l, (lai= 
CC, + + cc,). Roughly speaking, the decreas- 

ing order of f(x) when Ix I-, CO is reflected in 
the differentiability of f(t). In the same way, 

(i<)af([)=(fi)mn e-‘x”D4f(x)dx, 
s 

which shows that the differentiability of f(x) 
is reflected in the decreasing order of f(t). 
The same statements cari evidently be made 
for the relation between y(<) and its inverse 

Fourier transform. 
Let .Y be the space of rapidly decreasing 

functions <p(x), i.e., such that for a11 positive 
integers k and c( 3 0, (1 + I~l)~D”cp(x) remains 
bounded (- 125 Distributions and Hyperfunc- 

tions). From the facts above, it follows that the 
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linear mapping f(x)wF(,f) is a topological 
isomorphism from Y! onto rYe. Let Y’ be the 

dual space of Y. Usual function spaces in 
classical analysis are contained in Y’, for 

instance, the L,-space and that of functions 
increasing at most of polynomial order at 
infinity. 

Let TE cYd. Then the mapping <p E rYc~ 

T(.Fq) is continuous, and ~TEY; is defined 
by BT(v)= T(8<p). 9 is also a topological 
isomorphism from Y; onto YP;. Take as an 

example the distribution p.v.l/x. This is no 

longer a function; however, its Fourier trans- 
form cari be calculated as follows: 

n. 
A sin(xodx = 

5>0, 
x lim ~ s J 2”’ 

‘4-m 0 x r n 
- 

J 
-i, <CO, 
2 

where the limit is taken with respect to the 
topology of Y’. 

Using the definition above, classical results 
cari be extended to .Y’ almost automatically. 
For example, .F(D” T) = (it)“9( T), 9(( - ix)b T) 
=W.F(T). Moreover, if TE&‘, then FT= 
fi-“T(ë’“~). In particular, .F6 =(27r)‘@. 

The Plancherel theorem says that if for 

~(X)E L, one defines its Fourier transform by 

then the correspondence Foy is a uni- 

tary mapping from L, ont0 L,, i.e., 

This result cari be extended. For any non- 
negative integer m, the element of H” (- 
168 Function Spaces) is characterized by its 
Fourier transform: ~(X)E H” if and only if 

(1 +]Q)mf(r)~ L,. Furthermore, for arbitrary 
real s, the space H” cari be detïned as the set of 
all elements of Y’ whose Fourier transform 

f(t) satisfies (1+151)sf([)~L~. H” and H-” are 
dual to each other. 

ForfEL,,gELz,orl;ggL,,theconvo- 
lution makes sense as a function, and it holds 
that F(,f * g) = y(,f)F(g). This relation cari be 
extended to distributions, to state 

F(S * T) = (cPS)(FT). 

This holds for (S, T)E &’ x Y’, SI, x &, (&, 
is the dual of sL2), etc. 

Fourier transforms are also often defined by 

f(t)= ëiXcf(x)dx 
s 

or = e-‘“‘“sf(x)dx. 
s 

In the former case, the inversion formula takes 
the form 

f(x)=(2n)-” ei”tfA(<)d<, 
s 

and the Parseval identity becomes 

s 
lf(x)12dx=(2~)m” l&)12d5. 

s 
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161 (IV.3) 
Free Groups 

A. General Remarks 

A group F is called a free group if it is the +free 

product (- 190 Groups M) of tinfïnite cyclic 

groups G,, , G,, generated by a,, . . , a,, re- 
spectively. Then n is called the rank of F. A 
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free product of tsemigroups is delïned similarly 
to that of groups, and the free product of 

infinite cyclic semigroups Ci = { 1, ai, a?, } 
(i= 1 , ..., n) is called a free semigroup gener- 
ated by II elements ai (i= 1, . . ..a). 

If a group G is generated by subgroups 
Hi (i = 1, , n) isomorphic to Gi, then G is a 

homomorphic image of the free product of 
the groups Ci. A subgroup #{e} of the free 
product F of groups Ci is itself the free prod- 

uct of a free group and several subgroups, 
each of which is conjugate in F to a subgroup 
of some Gj (A. G. Kurosh, 1934). Notably, a 
subgroup # {e} of a free group is itself a free 
group (0. Schreier, Abh. Math. Sem. Univ. 

Hambury, 5 (1927)). A subgroup of index j of a 
free group of rank n is a free group of rank 

1 +j(n - 1) (Schreier). 
Let F be the free group generated by n ele- 

ments a,, . , a,, and let G be a group gen- 

erated by n elements b,, . , b,,. Then there is a 
homomorphism of F onto G. Let N be its 
kernel. If the class of a tword ~(a,, ,a,) 
belongs to N, then we have w(b,, , b,,)= 1. 

We cal1 w(b,, . . , b,) = 1 a relation among 
the generators b,, . . . , b,. If N is the minimal 
normal subgroup of F containing the classes 
of words wi(a,, . . . ,a,), , ~,(a,, . . . . a,), then 
the relations wi (b, , , b,) = 1, . , w,(b,, , 

b,) = 1 are called defining relations (or funda- 
mental relations). If generators a,, . . , a, and 
words ~,(a,, . . . ,a,), . . . . w,(ai, . . . ,a,) are 
given, then there is a group generated by 

a,, , a, with delïning relations wi (ai, . . . , 
a,)= 1, . . . . ~,,,(a,, . , a,)= 1. In fact, let F be the 
free group generated by a,, , a, and N the 

minimal normal subgroup containing the 
classes of words wi(a,, . . . . a,), . . . , ~~(a,, . . . , 
a,). Then the factor group FIN is such a group. 
A free group is a group with an empty set of 
defining relations. In the preceding discussion, 

n and m are not necessarily finite. If both n 
and m are lïnite, then G is called finitely 
presented. 

B. The Word Problem 

If a finitely presented group G is given, then a 
general procedure has to be determined by 
which it cari be decided, in a tïnite number of 

computational steps, whether a given word 
equals the identity element as an element of G. 
This is called the word problem (- 190 Groups 
M). A solution to the word problem does not 
always exist (P. S. Novikov [S], 1955); in fact, 

there is a group with two generators and 32 
delïning relations for which the word problem 
cannot be solved (W. Boone [7]). However, it 

was shown by V. A. Tartakovskii that the 
problem cari be solved for a large class of 

161 Ref. 
Free Groups 

groups. W. Magnus (193 1) showed that it is 
solvable for any group with a single delïning 
relation. The word problem is an example of 
decision problems (- 97 Decision Problem). 

The word problem for groups is closely related 
to that for semigroups (A. M. Turing, 1937; E. 
L. Post, 1947; A. A. Markov, 1947). Similar 
problems for other algebraic systems cari also 

be considered. The problem of determining a 
general procedure by which it cari be decided, 
in a Imite number of steps, whether two given 
words interpreted as elements of G cari be 

transformed into each other by an (inner) 
automorphism of G is called the transforma- 
tion problem. 

Let F be a free group of rank n and F = Fi 
3...3F,.3Fr+, I... be the tlower central 
series of F. Then FJF,,, is a tfree Abelian 
group of rank ~L,(r)=(l/r)C,,,~(r/d)nd, where p 

is the tMobius function (E. Witt). The intersec- 
tion of all subgroups of F of lïnite index is the 
identity element. 

C. The Burnside Problem 

The original problem of Burnside is: If every 
element of a group G is of finite order (but not 
necessarily of bounded order) and G is Iïnitely 
generated, is G a tïnite group? E. S. Golod [6] 
(1964) showed that this problem for p-groups 
has a negative solution. The following is the 

more usual form of the Burnside problem: If a 
group G is lïnitely generated and the orders of 
elements of G divide a given integer r, is G 
lïnite? Let F be a free group of rank n, N be 
the normal subgroup of F generated by a11 the 
rth powers x” of elements of F, and B(r, n) = 

FIN. Then the problem is the same as the 
question of whether B(r, n) is finite. For r = 

2, 3,4, 6 the group is certainly lïnite (1. N. 
Sanov, M. Hall). The restricted Burnside prob- 
lem is the question whether the orders of 

lïnite factor groups of B(r, n) are bounded. It 
was solved affirmatively for r a prime (A. 1. 
Kostrikin [5], 1959). 

A group generated by two generators x, y 
and satisfying the relations xU = y” = (xy)” = 1 

(where u, u, w  are integers) is inlïnite if l/u + I/v 
+l/w-l<O,andisofordergifO<l/u+l/u 

+l/w-1=2/g. 
There is also a lïnitely presented group 

which is isomorphic to its proper factor group 
(B. H. Neumann). 
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162 (X11.1) 
Functional Analysis 

The origin of functional analysis cari be traced 
to the 1887 work of V. Volterra. He stressed 
the important notion of operations or opera- 
tors, that is, generalized functions of which 

the domains as well as the ranges are sets of 
functions. A typical example is the operator 
assigning to a function ,f its derivative ,f’. An 

operator is called a functional if its values are 
numbers, as in the case of the operator assign- 
ing to a function f the value f’(a) or the value 
&f(t)dt. In 1896, Volterra considered the 
operator mapping a continuous function f to 
a continuous solution <p of the integral equa- 

tien f(x)= <p(x)-j”tK(x,~My)dy, where 
K(x, y) is a continuous function. Defining 

I<p=<p and (K<p)(x)=.fZK(x,~) <p(y)dy, he 
showed that <p is given by <p = (1 -K))if= 
f+Kf+K’f+..., where K”f=K(K”-if). 
Following this lead, I. Fredholm studied in 

1900 the integral equation f(x) = <p(x)- 
1.C K(x,y)<p(y)dy containing a parameter ‘. 
He proved the so-called talternative theorem: 
For a given n,, the operator equation (I- 

Wh=f, (K<p)(x)=S,hK(~,~)<p(y)dy, either 
admits a uniquely determined continuous 
solution q for every continuous function f or 

else (1 -&K)V~ = 0 admits a nontrivial con- 
tinuous solution <pO ~0. D. Hilbert discussed 
(1904- 19 10) a +continuous linear operator K 

delïned on the +Hilbert space L, with values 
in L,, and he called a complex number 1, a 
tspectrum of K if (1 - Â,,K) does not have a 

continuous linear inverse. He proved that if 

K is +Hermitian, then K admits a +Spectral 
resolution with real spectra only. One of his 
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outstanding contributions was the discovery of 
the tcontinuous spectrum. In 1918, F. Riesz 
proved that Fredholm’s alternative theorem 
holds for a tcompletely continuous linear 
operator in the space of continuous functions, 
and later the result was extended to Banach 
spaces. 

In 1932, three important books by S. Banach 

Cl], J. von Neumann [2], and M. H. Stone [3] 

were published. These books treated tclosed 
linear operators that are not necessarily con- 
tinuous. The notion of +Banach space was 
introduced: a tnormed linear space complete 
with respect to the distance dis(x, y) = I~X - 

yll. By making use of the +Baire-Hausdorff 
theorem and the +Hahn-Banach theorem, 

Banach proved, for closed linear operators 
in Banach spaces, the fundamental principle 
consisting of the topen mapping theorem, the 

tclosed graph theorem, the tuniform bounded- 
ness theorem, the tresonance theorem, and the 
tclosed range theorem. These theorems were 

modilïed to be applicable in locally convex 
topological linear spaces by the Bourbaki 
group beginning in the late 1940s. 

In 1929, von Neumann proved, as a mathe- 

matical foundation of quantum mechanics, 
that a closed linear operator T in a Hilbert 
space admits spectral resolution with real 
spectra if and only if T is a +Self-adjoint opera- 
tor (- also Stone [3]). The condition that a 

closed linear operator is a tfunction of a self- 
adjoint operator was given by von Neumann, 

F. Riesz, and Y. Mimura (193441936). K. Frie- 
drichs (1934) proved that a tsemibounded 
linear operator admits a self-adjoint extension. 
T. Kato [4] (1950) proved that a Schrodinger- 
type Hermitian operator is tessentially self- 
adjoint. 

Von Neumann’s +mean ergodic theorem 
in the Hilbert space (1932) was extended to 
Banach spaces by K. Yosida, S. Kakutani, and 
Riesz in 1936. G. D. Birkhoff’s tpointwise 

ergodic theorem (193 1) was extended by N. 
Wiener (1939) Yosida (1940) E. Hopf (1954), 
N. Dunford (1955) R. V. Chaton and D. S. 

Ornstein (1960), and others in various ways. 
The +Abelian ergodic theorems were discussed 
by E. Hille and R. S. Phillips [S] and Yosida 

C61. 
The notion of +Banach algebra was intro- 

duced by M. Nagumo in 1936.1. M. Gel’fand 

proved that a commutative Banach algebra 
with multiplicative unit e satisfying Ile11 = 1 
(= the normed ring) admits a representation 
by an algebra of complex-valued continuous 

functions (1941). 
The treflexivity as well as the tduality of 

Banach spaces were studied by S. Kakutani 
(1939), V. L. Shmul’yan (1940), and W. T. 
Eberlein (1941). 
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The notion of tvector lattice (= +Riesz space) 
was introduced in analysis by Riesz (1930). This 
was followed by the work of L. V. Kantrovitch 

(1935) and H. Freudenthal (1936). Kakutani 
gave two standard types of +Banach lattice: 
the tabstract (M) space (1940) and the +ab- 
stract (L) space (1941). M. Krein and S. Krein 
(1940) and Yosida and M. Fukamiya (1940) 
discussed the (M)-type vector lattices, and 
Yosida (1941), the (L)-type vector lattices. H. 
Nakano (1940- 1941) and T. Ogasawara and 
F. Maeda (1942) studied the spectral resolu- 
tion of the Banach lattice. 

The connection between +Brownian motion 
and tpotential theory was clarified by Kaku- 
tani (1942), and extended by J. L. Doob (1956) 

and G. A. Hunt (1957-1958). 
The tone-parameter semigroup of continu- 

ous linear operators in Banach spaces was 
studied by Hille and Yosida, and they gave in 
1948 a characterization of the +intïnitesimal 
generator of such semigroups. Its dual was 
given by Phillips (1955). The one-parameter 
semigroup of nonlinear tcontractive operators 
in Hilbert spaces was studied by Y. Komura 

(1967) who obtained a nonlinear version of 

the Hille-Yosida theorem. This has been ex- 
tended considerably in Banach spaces by 
many scholars, e.g., Kato (1967), M. G. Cran- 

dal1 and A. Pazy (1969), Crandall and T. Lig- 
gett (1971) 1. Miyadera and S. Oharu (1970), 
H. Brezis (1973), P. Bénilan (1973), and others. 

In 1936, S. Sobolev gave a generalization of 
the notion of functions and their derivatives 
through integration by parts. This general- 

ization has been extended by L. Schwartz 
(1945-) [9] to the notion of tdistributions, 

which are continuous linear functionals delïned 
on the function spaces 9(R”) and Y’(R”), and 
this extension gives, e.g., a reasonable inter- 

pretation of Dirac’s S-function. Since 1959, 

Gel’fand [lO] has been publishing, with his 
collaborators, books on the distribution the- 
ory pertaining to function spaces other than 
9(R”) and Y(R”). M. Sato introduced (1959- 
1960) [ 1 l] the theory of thyperfunctions, as a 
generalization of distribution theory. In the 

case of one independent variable, a hyper- 
function f may be delïned as a generalized 
boundary value on the real axis R of a holo- 
morphic function F detïned in C’ -R’. Hyper- 

function theory has been refined to tmicro- 
local analysis and studied extensively by Sato, 

A. Martineau, H. Komatsu, P. Schapira, T. 
Kawai, M. Kashiwara, M. Morimoto, A. Ka- 

neko, and others (- [12]). 

References 

[ 11 S. Banach, Théorie des Opérations Lin- 
éaires, Warsaw, 1932. 

163 A 
Functional-Differential Equations 

[2] J. von Neumann, Mathematische Grund- 
lagen der Quantenmechanik, Springer, 1932. 

[3] M. H. Stone, Linear transformations in 
Hilbert spaces and their applications to analy- 

sis, Amer. Math. Soc., 1932. 
[4] T. Kato, Perturbation theory for linear 
operators, Springer, second edition, 1976. 
[S] E. Hille and R. S. Phillips, Functional 
analysis and semigroups, Amer. Math. Soc., 
1957. 

[6] K. Yosida, Functional analysis, Springer, 
sixth edition, 1980. 

[7] N. Dunford and J. Schwartz, Linear opera- 
tors, Interscience, 1, 1958; II, 1963; III, 1971. 
[S] H. Brezis, Opérateurs Maximaux Mono- 
tones et Semigroupes de Contractions dans les 

Espaces de Hilbert, American Elsevier, 1973. 
[9] L. Schwartz, Théorie des Distributions, 
Hermann, 1966. 
[lO] 1. M. Gel’fand, Generalized functions I- 

III (with G. E. Shilov), IV (with N. Ya. Vilen- 
kin), V (with M. 1. Graev and N. Ya. Vilenkin), 
Academic Press, 196441966. 
[ 1 l] M. Sato, Theory of Hyperfunctions 1, II, 
J. Fac. Sci. Univ. Tokyo, sec. 1, 8 (1959), 1399 
193; 8 (1960) 3877437. 
[ 121 M. Sato, T. Kawai, and M. Kashiwara, 

Microfunctions and pseudodifferential equa- 
tions, Lecture notes in math. 287, Springer, 
1973. 

163 (XIII.1 6) 
Functional-Differential 
Equations 

A. General Remarks 

In many models, it is assumed that the future 
behavior of a system under consideration is 
governed only by its present state and not by 
past states. However, for various systems 
arising in practical problems we cannot ignore 
the effect of the past on the future. Such a 
phenomenon is often observed in population 

problems, epidemiology, chemical reactions, 
system engineering, and SO on. 

The description of such phenomena may 
involve difference-differential equations 

x(t)=f(t,x(cXx(t-h,), “‘,.a-&)), (1) 

or integrodifferential equations 

-w=g(t,x(t))+ *fks>x(tXx(s))~~. 
s 

(2) 
0 

An enormous variety of equations is discussed 
in the literature, but most of them cari be 
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expressed in the form 

W) =AL x(s)), (3) 

which is usually called the functional differen- 
tial equation; here s varies in an interval 1, and 

f depends on the function x of &. If t is the 
right or left endpoint of the interval 1,, then 
(3) is said to be of retarded or advanced type, 
respectively. Most of the results obtained have 
been from work on equations of retarded type. 
In this case, the maximal length of the interval 
1, is called the retardation (delay, lag, deviation, 
etc.), and (3) is often called the retarded dif- 
ferential equation, delay differential equation, 
or differential equation with lag (retardation, 

deviating argument). 

B. Historical Remarks 

Functional differential equations of a sort were 

studied by Johann Bernoulli in the 18th cen- 
tury in connection with the string problem. 
Since then, a good deal of work has been done 
in this tïeld by many people; some of this work 
was done before the beginning of this Century. 

Among the investigators, Volterra [l, 21 is 
noteworthy for his systematic study on rather 
general equations related to problems of 
predator-prey populations and viscoelasticity, 
though his results were ignored by his con- 

temporaries. In the early 194Os, Minorsky 
[3], in his famous study of ship stabilization, 
pointed out the importance of delay effects in 
control theory, with many of the modern 
issues first appearing in his work [4]. Mishkis 
[S] studied linear systems extensively, and 
Driver [6] gave a unifïed representation for 
functional differential equations. Important 

achievements were given by Krasovskii [7] 
and Bellman and Cooke [SI. They laid the 
foundation for the qualitative theory of func- 

tional differential equations. Inspired by these 
works, many books (such as [9-141) were 
published. Owing to these books together with 
many articles on this iïeld, the theory of func- 
tional differential equations has become an 
important branch in the theory of differential 

equations. 
Equations of advanced type are treated in, 

e.g., [S, S], but qualitative theory for them has 
hardly been established. The equation 

i(t)=ax(t)+bx(lt) on O<t<m (4) 

is of advanced type if A> 1, and its analytic 
solution has been studied in detail. Equation 
(3), whose right-hand side involves differential 
operators, e.g., i(t) =f(t, x(t), x(t - h), i(t - h)), 

is said to be of neutral type [S, 8,141, and is 

generally considered to be of neither retarded 
nor advanced type because of its distinctive 
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features. However, Hale [14] originated the 
study of a class of equations of neutral type for 
which the general qualitative theory cari be 

developed in the same manner as for equations 
of retarded type. 

For the case of infinite retardation, proper 

choice of the space of functions x contained 
in the right-hand side of (3) is of great signifi- 

tance. A general treatment of the phase space 
for equations with infinite retardation in an 

axiomatic setting is given in [ 1.51. 

C. Phase Space 

For simplicity, let & always be the interval 
[t-h, t] with a iïnite retardation h >O. A 

solution of (3) starting at t = r is a function 
defïned on [z-h, a) for a > 7 such that the 
solution coincides with a preassigned function 
(the initial function) on [z-h, ~1 and is con- 
tinuously differentiable and satistïes (3) on 
[z, a). Since a solution starting at t = z must be 
continuous for t > z, it is quite natural, as is 
done in much of the literature in order to 
develop a qualitative theory, to choose the 

space C( [t - h, t], R”) of continuous R”-valued 
functions on [t-h, t] as a space of functions x 
involved in the right-hand side of (3). Intro- 

ducing a symbol x, which represents an ele- 
ment of C = C( [ - h, 01, R”) detïned by X~(S) = 
x(t + s) (SE C-h, 0]), we cari rewrite (3) in a 
more convenient form: 

WI =fk XC)> (El 

where the function ,f(t, cp) is detïned on R x C 
(or on its subspace). Here C is considered 
to be a Banach space with the norm ll<pII = 
max,,I-h,Ol~&)~, 1.1 being a norm in R”. The 

space C is said to be the phase space of(E), 
and the initial condition cari be written as 

x,=5, (z,<&R x C. (5) 

D. Initial Value Prohlem 

Let f(t, <p) be a continuous functions deiïned 
on an open domain D c R x C. The initial value 
prohlem is to find a solution of (E)-(5) for a 
given (7, <)ED. Many fundamental results hold 

as for ordinary differential equations: (a) There 
always exists a solution of (E)-(5) under the 
continuity off on D. Here, the solution means 
the one to the right. No general existence 

theorem is given for the solution to the left. (b) 
The solution of (E)-(5) is unique, if f satisfies 

the Lipschitz condition: If(t, cp)-f(t, $)I <L 11 <p 

-G 11 in a neighborhood of each point of D, 
where L is a constant depending on the neigh- 

borhood. (c) If f varies in the space C(D, R”) 



633 

equipped with the compact open topology and 
if the solution of (E)-(5) is unique for every 
(r, 5) ED, then the solution is continuous as a 
function of (r, <,f). (d) If f is completely con- 
tinuous on D, that is, f is a continuous map- 
ping of bounded subsets of D into bounded 
sets in R”, then every solution cari be con- 
tinuable to the right as long as it remains 

bounded or stays away from the boundary of 
D. This assertion is no longer true in the 

absence of complete continuity. 
TO prove the existence theorem, Schauder’s 

+fixed point theorem is utilized; the Picard 

successive method is also effective under the 
Lipschitz condition. Consider the case when 

fk cp) cari be writty- as fk CPI = sk v(O), CPI, 
where g(t, x, <p) is detïned for (t, x, (P)ER x R” x 

C, and dt, x, <PI =dt, x, $1 if <p(s) = $(SI on 
[ - h, -81, 6 > 0. Equation (1) is one such case, 
where h = max h,, 6 = min h,. Then, g(t, x, xr) is 
a function of (t, x) alone on [r, z + S] under the 
given condition (5), that is, (E) is reduced to 

an ordinary differential equation. This makes 

it possible to fïnd a solution of (E))(5) by 
matching successively the solutions of ordi- 
nary differential equations on [z, z + S], [r + 
6,Tf26],.... This is the step-by-step metbod, 

which is effective even for equations of neutral 
type with the same property. 

Under uniqueness, the solution x(t) of(E) 
induces a mapping T(t, r): G(t, r)-*C, t 2 t, 
which maps X,E G(t, z) to X~E C, where G(t, r) c 

C is the set of 5 for which the solution of (E)- 
(5) is continuable up to t. Then 

T(t, s) T(s, T) = T@, t) for t>s>z, (6) 

and T(t, t) is strongly continuous in t. If(E) is 
autonomous, that is, f(t, cp) is independent of t, 

then there exists a mapping T(t), t > 0, satisfy- 
ing T(t-r)= T(t,z), and {T(t)},>, becomes a 
one-parameter semigroup. 

E. Linear System 

When f(t, <p) is continuous on 1 x C for an 
interval 1 and is linear in cp, equation (E) is 
said to be a linear system (denoted by (L)). In 

this case, f(t, <p) satislïes the Lipschitz con- 
dition with L = L(t) on 1 x C for a continuous 
function L(t) of I, which also implies that f is 

completely continuous. Thus the solution of 
(L) - (5) uniquely exists over [r, CO) n 1 for any 
(T, 5)~ I x C, and the mapping (the fundamental 
or solution operator) T(t, z) is a tbounded 
linear operator on C for any t, r E 1, t > r, and 
+Compact if t > r + h. 7(t, r) corresponds to the 

fundamental matrix for ordinary linear dif- 
ferential equations, but it is not invertible in 

general. 
A continuous function f(t, <p) linear in cp 
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may be expressed in the form 

’ fk <PI = r CdAt> s)l<pM 
J -h 

where ~(t, s) is an n x n matrix detïned on 1 x 
C-h, 01, which is measurable in (t, s) and of 
tbounded variation in s with a ttotal variation 
less than L(t), and the integration is that of 
Stieltjes with respect to s. From this fact it 

follows that the range of the initial functions 
cari be extended to the space of tpiecewise- 

continuous functions, and the solution x(t) of 
the nonhomogeneous linear system x(t) = 
f(t,xJ+p(t) through (r, 0~1 x C cari be rep- 
resented by the constant variational formula 

x(t) = IXL +3 (0) 

where T(s) = E (the unit matrix) for s = 0, and 
I(s) = 0 (the zero matrix) for s < 0. 

F. Autonomous Linear System 

Let (L) be an autonomous linear system 

w  =fW (AL) 

In this case, (7) is not different from the Riesz 
representation theorem f(cp)=ph[dq(s)]~(s). 

For (AL) the fundamental operator T(t) plays 

an extremely important role. As was seen, 

{T(AJ,>, is a one-parameter semigroup of 
bounded linear operators T(t) which is strong- 

ly continuous in t > 0 and compact for t > h. 
Thus the asymptotic behavior of the solutions 
of (AL) are determined by the distribution of 
the spectra o(A) of the inlïnitesimal generator 
A of T(t), which is given by AV = yi with the 

domain D(A)={~EC~~EC and Cp(O)=f(cp)}. 
The properties of T(t) assert that: (a) a(A) 
consists of point spectra alone. (b) The number 
of A, = (16 o(A) 1 Re Â > CX} is at most lïnite for 
any CCER. (c) For every ~EU(A) the dimension 
of the generalized eigenspace of i is finite. (d) 
The spectra of A coincide with the roots (cbar- 

acteristic roots) of the characteristic equation of 

(AL), 

together with their multiplicities. (e) 8~ 
o( T(t)), t > 0, if and only if Â. E a(A). 

Let P,, CCER, be the linear space spanned by 
the generalized eigenfunctions corresponding 
to a LEA,. Then, (a) P, is invariant under T(t), 

that is, T(t)P, c P, for t 2 0; (b) the restriction 
of T(t) to P, is invertible and hence extend- 

able over VER; (c) if HEP,, then [T(t){](O)= 

CIE,,pA(t, oe”‘, where pA(t, 5) are polynomials 
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in t and linear in 5; (d) there is a direct-sum 
decomposition C = P, + Q, such that Q, is in- 
variant under T(t), the projection along Qana: 

C+P, is bounded, and there exist positive 
constants K, E for which // T(t)511 <Ke(JLmE)rIIIII, 
t 2 0 if 5 E Q,. Hence for any 5 E C the solution 
x(t) of (AL) through t at t=O satisfies 

and D+ denotes the Upper-right Dini deriva- 
tive. Furthermore, the Lyapunov function cari 

be endowed with a Lipschitz condition 1 V(t, cp) 

-V(t,$)I<L,l/q-$11 forsomeconstantL, if 
f in (E) is uniformly Lipschitzian, that is, the 
coefficient L is constant over the domain. The 
Lipschitz condition together with (ii) makes it 

possible for a solution y(t) of the perturbed 
equation 

t>O, (8) 

where ll~~ll denotes the operator norm of na. 

The set Q = natR Q, may contain an element 5 

WI =fk Y,) + JYL Y,) 

to satisfy 

(10) 

D + VL Y,) G - cW Y,) + L, I PU, y,)l. 
other than the zero element, but T(t)5 must be 
identically zero for t > hn. 

For a linear system (L) with f(t, <p) w- 
periodic in t, similar conclusions result, with 
T(w, 0) in place of A; and relation (8) holds, 
where A, is defïned similarly by replacing a(A) 

by j(l/w)log~lI~a(T(w,O))) andp,(t,t)are 
polynomials with w-periodic coefficients. This 
corresponds to tFloquet’s theorem for ordi- 

nary periodic linear systems. p E o( T(w, 0)) and 
(1,‘~) log p are said to be the characteristic 
multiplier and the characteristic exponent, 

respectively. 

By using this fact, the stability of (10) cari be 
discussed. 

However, for functional differential equa- 
tions it is quite a diflïcult problem to con- 
struct a suitable Lyapunov function for a 
given (E). 

Many of the attempts to improve the SU~~I- 
ciency condition that have been made up to 
now are such that a stability property cari be 
verifïed by means of a simple Lyapunov func- 
tion. The main effort has been devoted to 

replacing condition (ii) by another type of 
condition. One of them is 

(ii*) D+V(t,x,)< -c(lx(t)l) 
G. Stability Problem 

The concept of stability cari be deiïned and 
studied in the same spirit as for ordinary dif- 
ferential equations, and the Lyapunov second 
method also turns out to be effective. For 
instance, the zero solution of(E) with .f delïned 

onD,=[O,c;o)x{<p~C~ll<pl~<H}forH>Ois 
said to be uniformly asymptotically stable if 
there are a constant c( > 0 and positive func- 
tions 6(~) and O(E) of c: > 0 such that any solu- 
tion x(t) of(E) satisfies 

under the uniform boundedness of ,f(t, <p), 
where c(r) is a continous function with c(v) > 0 
for r > 0. Another one is for the case when 

V(t, <p) = W(t, <p(O)), where W(t, x) is defmed for 
(t, X)E R x R”. In this case, (ii) cari be replaced 

by 

(ii**) D’l/(t,x,)~ -~V(&X,) 

Ix(t)1 <E as long as x(t) exists, (9) 

whenever //x,11 C~(E) and t>~ or llx,II <a and 
t > z + o(6) for z 2 0. In the above detïnition, if f 
is completely continuous on D, and if 0 <E < 

H, then the phrase “as long as x(t) exists” is 
redundant, and (9) is equivalent to the claim 
that x(t) exists for a11 t > z and Ix(t)1 CE. Under 
the Lipschitz condition and the complete 

continuity on f in (E), the zero solution of(E) 
is uniformly asymptotically stable if and only if 
there exists a continuous R-valued function 
(Lyapunov function) V(t, <p) defined on DH1 for 
0 < H, <H such that 

whenever V(t + s, x,+,) < F (V(t, x,)) for SE 

[-II, 01, where c > 0 is a constant and F(r) is a 
continuous function satisfying F(r) > r for r > 0. 

The condition (ii**) was given by B. S. Razumi- 
khin and provides an easier way to construct 

a Lyapunov function. 
For a linear system, uniform asymptotic 

stability implies II T(t, z)ll < 1/6( 1) for t > z and 
llT(t,+ < 1/2 for t>z+rr(cc/2)+h. These facts 
together with (6) show that the zero solu- 

tion is exponentially stable, that is, Ix(t)\ < 
Ke-Y(‘-T)~~~TII for t >t, where v=(log2)/(~(a/2)+ 
h), K = 2/S( 1). From (8) it follows that the zero 

solution of (AL) is uniformly asymptotically 
stable if and only if 

{iEa(A)IRei>O}=@. (11) 

0) a(l<p(O)l)d~(t,<p)$h(II<pl/), 

(ii) D+V(t,x,)< -cV(t,x,) 
H. Equations of Neutral Type 

as long as (&X~)E&, for a solution x(t) of(E), 
where a(r), b(r) are continuous functions with 
a(r) > 0 for r > 0, b(0) = 0, c > 0 is a constant, 

TO deal with an equation of neutral type, such 

as 

44 =“Oc x,, &), (12) 
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a phase space such as C’=C’([-h,O],R”)of 
continuously differentiable functions should 

be chosen. The solution of(E) Will become 

smooth as time elapses if f in (E) is suffkiently 
smooth. However, this property cannot be 
expected for (12), and the solution of (12) - (5) 
need not belong to Ci even if 5 E C’ without a 

specitïc condition on 5 such as f(O) =f(r, 5, [). 
Such a restriction on initial functions is an 
obstruction to the development of the general 

theory. Equations of the form 

$o(r, x,1 =fk xc) PJ) 

caver a fairly general class of equations of 

neutral type, where D(t, cp) and f(t, <p) are 

delïned on an open set D c R x C and a solu- 
tion of (N)-(5) means a continuous function 
x(t) defined on [r-h, a), a > z, which satislïes 

(5) and 

s 

f 
D(t, x,) = D(z, 5) + f(s, x,)ds on CT, 4. 

r 

(E) corresponds to the case where D(t, <p) = 
p(O), while x(t)= G(t,X,)+g(t,x,) is reduced 
to the form (N) if G(t, <p) is linear in <p and 
continuously differentiable with respect to t by 

setting D(t, q) = <p(O) - G(t, <p) and ,f(t, cp) = 

dt> CPI -(~lWW, <pl. 
A continuous function D(t, cp) linear in cp is 

said to be atomic at 0 if in the representation 

s 

0 
D(t, d = Cd,Pk S)I&) 

-h 

(see equation (7)) P(t)=p(t,O)-p(t, -0) exists 
and is nonsingular, which is equivalent to 

with a nonsingular matrix P(t) and a matrix 
&t, s) whose total variation with respect to s 
on C--c, 0] tends to 0 as o-0 locally uni- 
formly in t. A nonlinear function D(t, cp) is said 
to be atomic at 0 if D(t, q) has a continuous 
+Fréchèt derivative D,(t, cp) with respect to <p 
and D,(t, cp) is atomic at 0. In equation (N), 
D(t, <p) is always assumed to be atomic at 0, 
and many of the fundamental theorems for (E) 

are also valid for (N). Let T(t) be the operator 
solution of the autonomous linear equation 

$DbJ=/(xt). (14) 

Then iW)l,,, is a strongly continous semi- 
group of bounded linear operators, and the 
corresponding Wïnitesimal generator A has 
the domain D(A)={~EC~@EC and D(rj)= 

f(p)}. The properties of the spectra e(A) are 
the same as for (AL), except that the character- 
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istic equation is now given by 

[ s 

0 
det Â(P+ 

-Il 
e”dp,(~))-S-~E”‘d>l(s)]=O 

and the property (b) is true if tl> a,, where 
D(p), f(<p) are assumed to be of the forms (13) 

and (7) respectively, without the argument t, 
and where a, is given by 

Similarly, the decomposition C = P, + Q, is 

possible if CI > a,. Hence, to obtain the uniform 
asymptotic stability of the zero solution of (14) 
the condition a, < 0 should be assumed in 
addition to (11). The linear function D(p) is 

said to be stable if a, < 0. If D(q) is stable, then 
the Lyapunov method is also applicable, as a 

suflïcient condition, to the stability problem of 
(N) with linear D(v) instead of general D(t, <p), 
but in this case condition (i) for V(t, rp) should 
be replaced by 

1. Infinite Retardation 

There are some basic differences between cases 

of finite retardation and of inlïnite retardation. 
For example, in the delïnition of stability, the 
inequality Ix(t)1 <E in (9) cari be replaced by 
IIxtll <a with no difference in the case of lïnite 

retardation, but this replacement yields a 
different concept deeply connected with the 
choice of the phase space in case of infinite 

retardation. 

There are several ways to define a phase 
space for a functional differential equation 

with infinite retardation. One of those phase 
spaces generally used is a linear space X of 
functions: (-co, 0] +R” with a seminorm II IIx 

such that if a function x:( -00, a)-+R” satislïes 
x, E X and it is continuous on [z, a], then 

6) X,E X for a11 t E [z, a), 

(ii) x, is continuous as a function [z,a)+X, 

(iii) mlx(t)lG ll~tll~~~~~~,,~,,,ll~~~~l 

+~M(~-~Hx,llx> 

where m and K are positive constants and 

M(t) is a continuous function. 
If X satistïes the foregoing conditions and if 

f(t, cp) is continuous on an open domain D c 

R x X, then the local properties (a)-(c) in Sec- 
tion D hold, and SO does (d) when D=R x X. 
On the other hand, if X has a fading memory, 
namely, 

(iv) M(t) < Me-“’ in (iii) for positive con- 

stants M, ,u, 
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then the procedure in Section F is applicable 
by restricting a(A) to a,,(A)= {1.~g(A)IRe1> 
-p} and, hence the zero solution of (AL) with 
inlïnite retardation is uniformly asymptotically 
stable under (11). 

ForO<h<co andO<y<co,boththespace 
C,,, of continuous functions <p:( - h, 0] +R” 

with a lïnite limit lim,,-,eY”<p(s) and the space 

Mh,? of measurable functions cp:( - h, 0] +R” 
with &,e’“l<p(s)l ds< m satisfy the foregoing 
conditions, where the norms are given by 

ll<pllc,,y= ~~wh.oleY”ld~)l and lI~llMh,,=IdO)I 
+&eYS(cp(s)Ids. These spaces have a fading 
memoryifhcco ory>O. 

In much of the literature in which the equa- 
tion of infïnite retardation has a form like 

(2) or (4), the space CB of bounded continu- 
ous functions or the space C,, of continuous 
functions with compact supports are suffi- 
tient as a phase space under the norm 11 <pli = 

s~p~~~l<p(s)l. However, it is to be noted that 
C, is not complete when CB does not satisfy 

condition (ii). When CB is chosen as the phase 
space, in order to show the existence theorem, 
f(t, xt) should be continuous for any bounded 
continuous function x in addition to the cont- 
inuity in (t, cp). This condition is satislïed if 1, 
= [g(f), t] in (3) for a continuous function 
g(t) < t. Equation (2) or (4) with 0 <A < 1 give 
rise to such a case, but g(t) must be equal to 0 
in (2) and (4) with 1=0. If g(t)+co as t+m, 

the Razumikhin condition (ii**) D+ V(t, x,) < 
-c v(t, x,) whenever V(s, x,) < F (V(t, x,)) 
(SE [g(t), t]) for a Lyapunov function is effec- 
tive, but one cari conclude only that x(t)-+0 as 

t-t CO without uniformity. 
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A. Definition Cl-31 

Let C(X) be the tBanach algebra of a11 con- 

tinuous complex-valued functions on a com- 
pact Hausdorff space X with pointwise oper- 
ations and tuniform norm. A function algebra 

(or uniform algebra) on X is a closed sub- 
algebra A of C(X) containing the constant 

functions and separating the points of X, i.e., 
for any x, yeX, x#y, there exists feA with 
f(x)#f(y). If cpx, XEX, denotes the evaluation 
mapping ,f+f(x) of A, the correspondence x+ 
<p, is a homeomorphism of X into the +maxi- 
mal ideal space W(A) of A. Since f(<p,)=f(x) 
for any x E X and fi A, the tGel’fand represen- 

tation of A is an isometric isomorphism. By 
identifying x with <px, we regard X as a closed 
subset of m(A) and the Gel’fand transform j 
f’~ A, as a continuous extension off to !JJl(A). 

B. Examples [ 1,3,4] 

For a compact plane set K let P(K) (R(K)) be 
the subalgebra of a11 functions in C(K) that 
cari be approximated uniformly on K by poly- 
nomials (rational functions with poles off K). 

A(K) denotes the subalgebra of all functions in 

C(K) that are analytic in the interior of K. 
These are function algebras on K and P(K)ç 
R(K) E A(K). When K is the unit circle T = 
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{ IzI = l}, P(T) is called the disk algebra, the 
most typical concrete example. 

The theory of function algebras emerged 
from attempts to salve, by means of functional 
analysis, certain problems in complex analysis, 
especially problems of uniform approximation, 

e.g., when does A(K) = P(K) or A(K) = R(K) 
hold? 

Another important example is given by the 
algebra H,(U) of a11 bounded analytic func- 
tions on a bounded plane domain U with the 
supremum norm IlfIl, =sup{ If(z)1 1 ZE U} [SI. 
Since the Gel’fand representation is an iso- 
metric isomorphism of H,(U) into the algebra 

C(YJl(H,(U))), H,(U) is viewed as a function 
algebra on the space %n(H, (U)). Further 
examples result if we take K or U in a Rie- 
mann surface or in the complex n-space. 

We list a few abstract function algebras that 
reflect certain relevant properties possessed 
by concrete examples. A is called a Diricblet 
(resp. logmodular) algebra if the set Re A = 

Wflf~A) (rev. logIA-‘l={loglflIf;f-‘~ 
A}) is dense in C,(X), the space of a11 con- 
tinuous real-valued functions on X. It is called 
bypo-Diricblet if the closure of ReA has lïnite 
codimension in C,(X), and the linear span of 
log IA m1 1 is dense in C,(X). 

In the following, A denotes a function alge- 
bra on X unless otherwise specilïed. 

C. Boundary and Representing Measure 

Cl-41 

A subset E of X is a boundary for A if for any 
fgA there exists XEE such that ]~(X)I= ii,fll. 

A closed boundary is a boundary closed in 
X. G. E. Shilov proved that there is a smallest 
closed boundary, 3A, which is called the Shilov 
boundary for A. A positive Bore1 measure p on 

X is a representing measure for <PEW(A) if f(<p) 
=jf(x)dp(x) for allfEA. Each ~E!U~(A) has a 

representing measure supported by dA. The 
Choquet boundary, c(A), consists of a11 X~X 
such that the evaluation qn, at x has a unique 
representing measure. Then c(A) is a bound- 
ary, whose closure is dA. If X is metrizable, 
c(A) is a G, set in X and supports a represent- 

ing measure for every member of !Dl(A). 
For <~E!D~(A), M, denotes the set of repre- 

senting measures for cp. It is a tweak* com- 
pact convex subset of the space of measures 
on X. M, is a singleton if A is Dirichlet or log- 

modular. It is fmite-dimensional if A is hypo- 
Dirichlet. The case dim M, < +cc has been 
studied in detail. Extensive studies for the case 
dim M, = +m have been done only for con- 
crete examples related to polydisks, inlïnitely 

connected domains, etc. 
The notion of boundary reflects the tmaxi- 
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mum modulus principle for analytic func- 
tions, and representing measures corne from 
+Poisson’s integral formula. The most relevant 
maximum principle is H. Rossi’s local maxi- 

mum modulus principle: For any closed set K 

in WA), we bave IlfIl,= IlfllbdKV~KnPA~ for a11 
fi A, where bd K is the topological boundary 

of K and llills=sup{lP(s)lIs~S}. A corre- 
sponding result for function spaces was con- 
sidered by Y. Hirashita and J. Wada. Closely 
related to representing measures are the or- 
thogonal measures for A, i.e., complex Bore1 

measures p on X such that jfdp = 0 for a11 
fi A; they are often useful in studying func- 
tion algebras by means of the duality tech- 
nique. The set of orthogonal measures is 
denoted by A’. 

D. Peak Sets Cl-31 

A subset K of X is a peak set for A if there 
exists fe A such that f(x) = 1 for x E K and 
If(y)/ < 1 for ~vEX-K. K is a generalized peak 
set if it is the intersection of peak sets. A point 

XEX is a (generalized) peak point if the set 
{x} is a (generalized) peak set. The set of 
generalized peak points equals the Choquet 
boundary for A. If X is metrizable, the peak 
sets and generalized peak sets coincide. There 

exist X and A such that X is metrizable: X = 

‘%I(A) = c(A), but A #C(X) (B. Cole). A sub- 
set E of X is interpolating for A if for any 

bounded continuous function u on E there 
exists fi A with f 1 E = u. Then a closed G, set 
K in X is an interpolating peak set if and only 
if pEA’ implies I,uI(K)=O (E. Bishop). 

E. Antisymmetric Decomposition [l-3] 

A subset F of X is a set of antisymmetry for A 
if every function in A which is real-valued on F 
is constant on F. Bishop’s antisymmetric de- 

composition then appears as an extension of 
the +Weierstrass-Stone theorem on uniform 
approximation. It is a relïnement of Shilov’s 
decomposition and reads as follows: If {E,} is 
the family of maximal sets of antisymmetry for 

A, it is a partition of X into generalized peak 
sets such that fi C(X) with fl E,E A 1 E, for a11 

x belongs to A. An interesting connection was 
found by J. Tomiyama between the maximal 
antisymmetric decomposition of X relative to 
A and that of ‘m(A) relative to Â. 

F. Parts and Analytic Structure [l-4] 

A. M. Gleason defïned an equivalence relation 

- in YJl(A) by setting rp-$ if sup{lp(cp)- 

f($)l lf~A, Ilfil < 1) ~2. Each equivalence 
class for this relation is a part (or a Gleason 
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part) for A. Two points cp, $ belong to the 
same part if and only if there exist mutually 
absolutely continuous representing measures p 
for <p and v for I/I such that c-l < dp/dv -c c for 
some constant c > 0 (Bishop). An analytic 

structure in m(A) is a pair (V, t), with an tana- 
lytic set 1/ in some open subset of C” and a 

nonconstant continuous mapping 5: V-m(A) 
such that fo z is analytic on 1/ for a11 fe A. 
For such a structure, z(V) is always within a 
part. But there cari be a nontrivial part with 
no analytic structure, as was shown by G. 

Stolzenberg. A topological characterization 
of parts was obtained by J. Garnett. Sample 
results in the positive direction are: (1) If the 
ideal A, = {fi A 1 j(<p) = 0) is fïnitely generated, 

there is an analytic structure (V, z) such that z 
is a homeomorphism of V onto an open neigh- 
borhood of <p (Gleason); (2) if <p has a unique 

representing measure and if the part P of cp is 
not a singleton, there is a bijective continuous 
mapping z of the open unit disk onto P such 
that /oz is analytic for ~EA (J. Wermer, K. 
Hoffman and G. Lumer); (3) if A is hypo- 
Dirichlet and if a part P is not a singleton, P 
cari be made into a 1-dimensional tanalytic 
space SO that each fg A is analytic on P (J. 

Wermer and B. V. O’Neill). Analytic structures 
in tpolynomially convex hulls of curves in C” 
have also been studied [3,4]. 

G. Abstract Function Tbeory [ 1,6-91 

Let <p l %I1(.4), and choose m E M,, which is 
fïxed. The generalized Hardy class H,(m), 0 

<p< a, associated with A is the closure 
(weak* closure, if p = CO) of A in the +L, space 
L,(m) on the measure space (X, m). Under 

suitable restrictions on A, cp, or m, we cari 
recapture some of the important classical facts, 
most of which have their origins in the works 

of A. Beurling, R. Nevanlinna, F. and M. 
Riesz, and G. Szego. In this area, H. Helson 
and D. Lowdenslager came up with a powerful 
method using orthogonal projections in Hil- 
bert space and gave together with S. Bochner’s 
remark, a strong influence for subsequent 
development. The modification argument was 
then devised by Hoffman and Wermer, in- 
spired by F. Forelli. After Hoffman’s detailed 

study of logmodular algebras, Lumer observed 
that most results remain valid when cp has 
a unique representing measure. T. P. Srini- 

vasan and J.-K. Wang (- [8]) introduced the 
notion of weak* Dirichlet algebra and showed 
that some major theorems are mutually equiv- 

aient and are in fact measure-theoretic. With 
the Hoffman-Rossi complement, their result 

now states that for fïxed rnE M, the following 
are equivalent: (i) A +A is weak* dense in 
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L,(m), i.e., A is a weak* Dirichlet algebra on 
(X, m); (ii) if IIE M, is absolutely continuous 
with respect to m, then p = m; (iii) if a closed 
subspace M of L,(m) is simply invariant in the 

sense that A,M E M and A,M is not dense in 
M, then M=qH,(m) with qEL,(m), 191=1 

a.e.; (iv) the set log 1 H,(m)-’ 1 coincides with 
L,(m; R), the set of real-valued elements in 
L,(m);(v) for every w~L,(m), w>O, we have 
infiJI -fJ2wdmJfeA,} =exp(Jlogwdm); (vi) 
the linear functional h-j h dm on H,(m) has a 
unique positive extension to L,(m). Further 
extensions were subsequently made by use of 
the conjugation operator (- Section K) by 
T. Gamelin, H. Konig, Lumer, K. Yabuta, 
and others. Some more properties of weak* 

Dirichlet algebras have been obtained by T. 
Nakazi. 

H. Generalized Analytic Functions [l, 101 

Let r be a dense subgroup of the additive 
group R of the reals with discrete topology, 
and let G be the tcharacter group of r. Each 
a~ r, as a character of G, detïnes a continuous 
function x0 on G. Let A be the closed sub- 

algebra of C(G) generated by ix,) a~ r, a > O}. 
A is a Dirichlet algebra but is far more difficult 
to describe than the disk algebra. The study of 

this algebra, especially that of invariant sub- 
spaces, has evolved from papers by Helson 
and D. Lowdenslager. Let o be the +Haar 
measure of G and H,(o) the closure of A in 
L2(o). A closed subspace M of L,(a) is called 
invariant if xa M c M for a11 a E r, a 2 0. M is 
called doubly invariant if x0 M c M for a11 a E 

r. Otherwise, it is called simply invariant. In 
fact, only the latter is interesting. Let e, E G 

with t E R be the character of r defïned by 
e,(u) = e”“. Then the mapping t-e, is a faith- 
fui representation of R into G. A cocycle on 

G is detïned to be a Bore1 function B on G x 
R such that (i) 1 B(x, t)l = 1, (ii) B(x + e,, t) = 
B(x, s) B(x, s + t) for XE G and s, t E R. Two 
cocycles are identified if they differ only on 
a nul1 set in G x R. For a cocycle B, let M, 

be the set of fEL2(o) such that B(x, t)f(x + 

e& H,(dt/( 1-t t’)) for almost all x E G, where 
H2(dt/(l + t2)) is the closure, in the space 
L,(dt/( 1 + t’)) on R, of the set of boundary 
value functions on R of bounded analytic 

functions on the Upper half-plane. Then the 
mapping B+ M, is a bijection from the set of 

cocycles onto the set of simply invariant sub- 
spaces M of L2(o) such that M=~{x,M(uE 

r, a < 0). Moreover, M, = qH,(o) for some 
q~L,(a), lqf= 1 a.e. if and only if B(x,t)= 
q(x) q(x + e,), i.e., B is a coboundary. When r # 

R, there is a cocycle that is not a coboundary. 
Further studies have been done by Helson, 
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Gamelin, J. Tanaka, and others. On the other 
hand, F. Forelli observed that tflows in com- 
pact spaces give rise to a kind of analyticity. 

In the above case, the algebra A consists of a11 
fi C(G) that are analytic with respect to the 
flow T,(x) = x + e, for x E G and t E R. General- 

ized analytic functions induced by flows in 
general have been studied by Forelli and P. S. 
Muhly. 

1. The Unit Disk [ 1,6,7,11,12] 

Let A be the disk algebra P(T), D the open 
unit disk { IzI < l}, and m the normalized Le- 
besgue measure on T. The algebra A has been 

the m&t important mode1 in the theory of 
function algebras, and we lïnd here the origin 
of many abstract results. Some typical results: 

(i) every orthogonal measure for A is abso- 
lutely continuous with respect to m (F. and M. 
Riesz); (ii) a closed set E in T is an interpolat- 
ing peak set for the tGel’fand transform Â 
of A if and only if m(E) = 0 (W. Rudin and L. 
Carleson); (iii) A is maximal among the closed 

subalgebras of C(T) (Wermer); (iv) a function 
fi C(C1 D) belongs to Â if f is analytic at every 
ZED with f(z)#O (T. Rade). 

The generalized Hardy class H,(m), 0 < p < 
m, associated with A is viewed as the set of 
nontangential boundary value functions of 
elements in the classical +Hardy class H,,(D). 
Here we fïnd the origin of invariant subspace 
theorems: A closed subspace A4 (# {0}) of 
H,(m) is invariant, i.e., AM c M, if and only 
if M=qH,(m) with q~H,(m), lq[= 1 a.e. 
(Beurling). 

The algebra H, = H,(m) is a weak* Diri- 
chlet algebra, whose Shilov boundary is identi- 
fïed with the maximal ideal space X of L,(m). 

We have L,(m;R)=logl(H”)-‘1, and afortiori 
H, is logmodular on X. The mapping z+<pZ 
embeds the disk D in W(H,) as an open set. 
The structure of W(H,) was studied in detail 
by 1. J. Schark, Hoffman, and others. We finish 
with three remarkable results: (i) D is dense in 
!Dl(H,) (Carleson). This is the corona theorem 

and was proved in the following equivalent 
form: For any fi,. . . &EH,(D) with If1 I+ . + 
If;I>~>OonD,thereexistg,,...,g,~H,(D) 

withf,g,+ . . . +,f,g, = 1. A simple proof was 
discovered by T. Wolff [ 121. (ii) The convex 

combinations of tBlaschke products are uni- 
formly dense in the unit bal1 of H,(D) (D. 
Marshall) [12]. (iii) Every closed subalgebra B 

between H, and L,(m) is a Douglas algebra, 
i.e., B is generated by H, and the complex 

conjugates of a family of inner functions (S.-Y. 
Chang and Marshall) [ll]. The proof of (iii) is 

an interesting application of the theory of 

tbounded mean oscillation. 
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J. Rational Approximation [ 1,2] 

The problem of rational (polynomial) approxi- 
mation on a compact plane set K asks when 

A(K)=R(K) (A(K)=P(K)) holds. An impor- 
tant tool for such problems is Cauchy’s trans- 
form of measure p: fi([) = j(z - [) m1 dp(z). Using 
this, one cari show, for instance, the following: 
(1) A(K)=P(K) if and only if K has a con- 
nected complement (S. N. Mergelyan); (2) fc 
C(K) belongs to R(K) if each point ZEK has a 
closed neighborhood V with fi KnvcR(K n V) 
(Bishop); (3) A(K) = R(K) if the diameters of 

the components of C - K are bounded away 
from zero (Mergelyan); (4) C(K)=R(K) if and 
only if almost all points of K are peak points 

for R(K) (Bishop). The last result cannot be 
extended much because there is a set K such 
that A(K) # R(K), while A(K) and R(K) have 

the same peak points (A. M. Davie). 
A complete characterization for A(K) = 

R(K) was obtained by A. G. Vitushkin: (5) 
The following are equivalent: (i) A(K) = 

R(K); (ii) for any bounded open set D in C, 
E(D-K)=a(D-Ko); (iii) for any z~bdK, 
there exists r > 1 such that lim supado S((A(~; S) 
-K’)/a(A(z;r6)-K)< +a, where A(z;6) is 
thedisk{wEClIw-zl<s}anda(E),forany 

bounded set E in C, is the continuous ana- 
lytic capacity of E, which is the supremum of 
If’(a)/ for a11 continuous functions f on the 

Riemann sphere CU {a} such that If1 < 1, 
f( CO) = 0, and f is analytic off a compact sub- 
set of E. As for uniform or asymptotic ap- 
proximation on noncompact closed subsets 

in C, Carleman’s classical study has recently 
been extended by N. U. Arakelyan, A. A. 
Nersesyan, A. Stray, and others in an interest- 
ing way. 

In connection with rational approximation, 
we should note detailed studies on pointwise 

bounded approximation in H,(U), U being 
a bounded open set in C, by 0. J. Farrell, L. 
Rubel and A. Shields, Gamelin and J. Garnett, 
and Davie. 

K. Further Topics 

(1) Conjugation operator [9,13]. Take any 
m E M,, <p E W(A). The conjugation operator 
then associates with each UE Re A the unique 
element *u in C,(X) such that u + i *u E A and 

l *u dm = 0. After the classical inequalities of 
Kolmogorov and M. Riesz, we consider the 
following conditions with constants c, and d,: 
(K)(~I*uIPdm)“P<cp Jluldm for O<p< 1; (M) 
(~I*uIPdm)liP~d,(~IuIPdm)l’P for 1 <p-c CO. Let 
m be arbitrary. Then the inequality (K) is valid 

for u E Re A, u > 0. The inequality (M) is valid 

for a11 u E Re A if p is an even integer > 2; it is 
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valid for a11 UE Re A, u > 0, if p is not an odd 
integer. Al1 remaining cases have counter- 
examples. On the other hand, M, always con- 

tains an m such that logI,~(<p)ld~log(fldm for 
~EA (Bishop). Such a representing measure is 
called a Jensen measure for <p. If m is Jensen, 
(K) is valid for all uEReA and all O<p< 1, 
and (M) is valid for a11 u~Re A and a11 1 < 
p-CCD. 

(2) Riemann surfaces. For a compact bor- 
dered Riemann surface R, let A(R) be the 
algebra of functions, continuous on Cl R and 

analytic on R. Then A(R) is hypo-Dirichlet on 
the border bd R of R, and many results for the 

disk algebra are extended to A(R). Most of the 
basic results are described in [ 141. The maxi- 
mality of A(R) in C(bdR) was obtained by H. 
Royden; extreme points of related Hardy 
classes were discussed by Gamelin and M. 
Voichick; and invariant subspaces were deter- 
mined by Forelli, M. Hasumi, D. Sarason, and 
Voichick. A further extension to infïnitely 

connected surfaces has been obtained by C. W. 
Neville, Hasumi, and M. Hayashi in the case 
of open Riemann surfaces R of Parreau- 
Widom type, which is defined as follows: Let 

C(a, z) be tGreen’s function for R, and let 

B(a, a), c1> 0, be the iïrst tBetti number of 
the domain {ZER 1 G(a, z) > a}; then R is of 
Parreau-Widom type if JB(a, cc)& < +co. For 
such surfaces the situation looks favorable: 
For instance, the Cauchy-Read theorem is 
valid, and the Brelot-Choquet problem con- 
cerning Green% lines is solved affirmatively. 

As for the generalization of approxima- 

tion theorems of Mergelyan and Arakelyan, 
we refer to the work of Bishop and L. K. 
Kodama for compact sets and to that of S. 
Scheinberg for noncompact closed sets. 

(3) Higher-dimensional sets. Much attention 
has been paid to algebras of analytic functions 
on domains in C”, n 2 2, e.g., polydisks, unit 

halls, and general pseudoconvex domains. 
Polydisk algebras and bal1 algebras have been 
studied extensively by W. Rudin, P. Ahern, 
Forelli, and many others [ 15,161. Approxi- 
mation theorems of Mergelyan type were ob- 
tained by G. M. Henkin, N. Kerzman, and 1. 
Lieb for strictly pseudoconvex domains with 

smooth boundary and by L. Hormander and 
Wermer and L. Nirenberg and R. 0. Wells, Jr., 
in the case of totally real manifolds. Further 

improvements have been obtained by R. M. 
Range, A. Sakai, and others. 
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A. History 

Leibniz used the term finction (Lat.functio) in 
the 1670s to refer to certain line segments 

whose lengths depend on lines related to 
curves. Soon the term was used to refer to 

dependent quantities or expressions. In 17 18, 
Johann Bernoulli used the notation cpx, and by 
1734 the modern functional notationf(x) had 
been used by Clairaut and by Euler, who 
detïned functions as analytic formulas con- 
structed from variables and constants (1728) 
Cl]. tCauchy stated (1821) [2]: “When there is 
a relation among many variables, which deter- 
mines along with values of one of them the 

values of the others, we usually consider the 

others as expressed by the one. We then call 
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the one an ‘independent variable,’ and the 
others ‘dependent variables.“’ TDirichlet consi- 
dered a function of x E [a, b] in his paper (1837) 

[3] concerning representations of “completely 
arbitrary functions” and stated that there was 
no need for the relation between y and x to be 
given by the same law throughout an interval, 
nor was it necessary that the relation be given 
by mathematical formulas. A function was 
simply a correspondence in which values of 
one variable determined values of another. 

B. Functions 

Today, the word “function” is used generally 
in mathematics in the same sense as a tmap- 
ping (- 381 Sets C) or, which is the same 
thing, a tunivalent correspondence (- 358 
Relations B). But this word is sometimes used 
in a wider sense, to mean a general (not nec- 
essarily univalent) correspondence, called a 

many-valued (or multivalued) function; in that 
case a univalent correspondence is called a 
single-valued function. 

Specialists in each branch of mathematics 

have their respective ways of using the Word. 
In analysis, values of a function are often 
considered real or complex numbers; such 
functions are called real-valued functions or 
complex-valued functions, respectively. Fur- 
thermore, if the domain of the function is also 

a set of real or complex numbers, then it is 
called a real function or a complex function, 
respectively (- 131 Elementary Functions; 84 
Continuous Functions; 198 Holomorphic 
Functions). If the domain of a real- or 
complex-valued function is contained in a 
tfunction space, the function is often called a 

functional; the tdistribution is an example. In 
algebra we often lïx a ttïeld, tring, etc., and 

consider functions whose domains and ranges 
are in such algebraic systems. Special names 
are given to functions having special prop- 
erties, which cari be defïned according to the 
structures of the domain and the range. For 

example, when both domain and range of a 
functionfare sets of real numbers,fis called 
an even function if f(t) =f( - t), and an odd 

function if f(t) = -f( - t). A function f that pre- 
serves the order relation between real num- 

bers, i.e., such that t, <t, implies f(t,)<f(tZ), 
is called a tmonotone increasing function. 

A mapping from a set 1 to a set F of func- 
tions, cp : I+F, is called a family of functions 
indexed by Z (or simple family of functions), 
and is denoted, using the formf, instead of 

cp(4, ‘v LM~eI or {fi} (LE 1). In particular, if 

Z is the set of natural numbers, the family is 

called a sequence of functions. 
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C. Variables 

A letter x, for which we cari substitute a name 
of an element of a set X, is called a variable, 

and X is called the domain of the variable. An 
element of the domain of a variable x is called 
a value of x. In particular, if the domain is a set 
of real numbers or complex numbers, the 
variable is called a real variable or a complex 

variable, respectively. On the other hand, a 
letter that stands for a particular element is 
called a constant. 

When the domain and range of a functionf 

are X and Y respectively, a variable x whose 
domain is X is called the independent variable, 
and a variable y whose domain is Yis called 

the dependent variable. Then we say y is a 
function of x, and Write y =f(x). When a con- 
crete method is given by which we make a 
value of y correspond to each value of x, we 
say that y is an explicit function of x. When a 
function is determined only by a tbinary re- 
lation such as R(x, y) = 0, we say that y is 

an implicit function of x (- 208 Implicit 
Functions). 

Given functionsf; g with an independent 
variable t, suppose that y is regarded as a 
function of x defined by relations x =f(t), 
y = g(t). Then we say that y is a function of x 
with the variable t as a parameter. A function 
whose range is a given set C with variable t as 
its independent variable is often called a para- 

metric representation of C by t. 
If the domain of a functionfis contained in 

a Cartesian product set X, x X, x . . x X,, 
the independent variable is denoted by 

(x,, x2, ,x,), andfis often called a function 
of n variables or a function of many variables 
(when n 2 2). 

D. Families and Sequences 

A function whose domain is a set 1, cp : 1 +X, is 
called a family indexed by 1 (or simply family), 
and I is called the index set. In the case cp(/z) = 
~~(1.~1) the family is denoted by {x~}~~, or 
{x2} (1~1). If the range X of a function <p is a 

set of points, a set of functions, a set of map- 
pings, or a set of sets, then the family {x~}~~, is 
called a family of points, a family of functions, 

a family of mappings, or a family of sets, res- 
pectively. If the set 1 is a tdirected set, the 
family is called a directed family. Generally, if 

J is a subset of 1, the family {x~} IEJ is called a 
subfamily of {x~}~.,. In particular, if 1 is a 
lïnite or infmite set of natural numbers, the 
family indexed by 1 is called a tïnite sequence 
or intïnite sequence, respectively. Sequence is a 

generic name for both, but in many cases it 

means an inlïnite sequence, and usually we 
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have I= N. Then the value corresponding to 
n E N is called the n th term or, generally, a 
term. For convenience, the 0th term is often 
used as well. If each term of a sequence is a 
number, a point, a function, or a set, the se- 
quence is called a sequence of numhers, a se- 
quence of points, a sequence of functions, or a 
sequence of sets, respectively. A sequence is 
usually denoted by {a,}. If it is necessary to 
show the domain of n explicitly, the sequence 

is denoted by {u~},,~,. If J is a subset of 1, a 

semence (4 JntJ is called a suhsequence of the 
sequence {an}na,. And if 1 = N, the composite 
{Q} of {a,} and a sequence {k,} of natural 
numbers with k, < k, <k, . is usually called a 
subsequence of {a,}. 
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166 (X.5) 
Functions of Bounded 
Variation 

A. Monotone Functions 

A function (or mapping) f from an tordered 
set X to another ordered set Y is called a 
monotone increasing (monotone decreasing) 

function if 

x1 <x2 implies f(x,)<.f(x2) 

(Xl <x2 implies f(xl)af(x2)). (1) 

A monotone increasing (decreasing) function is 
also called a nondecreasing (nonincreasing) 

function. In either case, the function Sis called 
simply a monotone function. If X and Y are 
+totally ordered sets and the inequality < (>) 
holds in (1) instead of < (a), then f is called a 
strictly (monotone) increasing (strictly (mono- 
tone) decreasing) function. In either case, f is 

called simply a strictly monotone function. 
In particular, when X and Y are subsets of 

the real line R, a monotone function is contin- 
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uous except for at most a countable number 
of points. Hence it is +Riemann integrable in a 
fïnite interval provided that it is bounded. A 
continuous real function ,f(x) defïned on an 
interval in R is tinjective if and only if it is 
strictly monotone. In such a case, the range of 
the function f(x) is also an interval, and the 
inverse function is also strictly monotone. 
Furthermore, a differentiable real function f 

defmed on an interval is monotone if and only 
if its derivative S’ is always 20 (monotone 
increasing) or always <O (monotone decreas- 

ing). If f’> 0 ( < 0), f is strictly monotone 
increasing (decreasing). 

B. Functions of Bounded Variation 

Let f(x) be a real function defined on a closed 
interval [a, b] in R. Given a subdivision of the 
intervala=x,<x,<x,<...<x,=h,wede- 

note the sum of positive differences f(xi)- 
f(xi-,) by P and the sum of negative differ- 

ences f(xi)-,f(xi-,) by -N. Then we easily 
obtain 

P-N =f(b) -fb), 

P+N=CI.f(Xi)-f(xi~~)l. 
t 

The suprema of P, N, and P + N for a11 pos- 
sible subdivisions of [a, b] are called the posi- 
tive variation, the negative variation, and the 

total variation of the function f(x) in the inter- 

val [a, b], respectively. If any of these three 
values is fïnite, then a11 three values are finite. 
In such a case, the function f(x) is called a 
function of bounded variation. Every function 
of bounded variation is bounded, but the con- 
verse is not true. The positive and negative 
variations n(t), v(t) of the function f(x) in the 
interval [a, t] are monotone increasing func- 
tions with respect to t, and we have 

f(x) -f(u) = 44 - 44 (2) 

if f(x) is a function of bounded variation. 
Hence every function of bounded variation has 
both left and right limits at every point. A 

monotone function is a function of bounded 
variation, and the sum, the difference, or the 
product of two functions of bounded variation 

is also a function of bounded variation. Hence 
f(x) is a function of bounded variation if and 
only if it is the difference of two monotone 
functions. The representation (2) (representing 

a function of bounded variation as the differ- 
ence of two monotone increasing functions) 
is called the Jordan decomposition of the func- 

tion f(x). A function of bounded variation is 

Riemann integrable, continuous except for at 
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most a countable number of points, and dif- 

ferentiable talmost everywhere. 
A continuous function detïned on a closed 

interval is bounded but not necessarily of 
bounded variation (e.g., f(x)= xsin(l/x) (XE 
(0, l]), 0 (x = 0)). A discontinuous function 
may be a function of bounded variation on 
a closed interval (e.g., sgn(x)). However, an 
tabsolutely continuous function, a differenti- 
able function with bounded derivative, or a 

function satisfying the +Lipschitz condition is a 
function of bounded variation on a closed 
interval. 

The notion of functions of bounded vari- 
ation was introduced by C. Jordan in connec- 
tion with the notion of the length of curves (- 
246 Length and Area). 

C. Lebesgue-Stieltjes Integral 

Let f(x) be a right continuous function of 
bounded variation on a closed interval [a, b], 

and f(x) = n(x) - v(x) the Jordan decomposi- 

tion of f(x). Then Z(X) and v(x) are monotone 
increasing right continuous functions and hence 
delïne bounded measures drr(x) and ~V(X) on 
[a, h], respectively (- 270 Measure Theory L 
(v)). The difference dn - dv of these two mea- 
sures is a tcompletely additive set function 
on [a, b] which is often called the (signed) 
Lebesgue-Stieltjes measure induced by A written 
d& For every function g integrable with respect 

to the measure dp = dz + dv, we detïne jEg df 

to be equal to JEgdn -jEgdv and call it the 
Lebesgue-Stieltjes integral. In this case, h(x) 
= Jtn,bl y df is of bounded variation on [a, b] 

and the Lebesgue-Stieltjes measure db(x) 

is denoted by g(x)df(x). If f, and f2 are of 
bounded variation on [a, b], then SO is the 
product f = fi fi, and we have 

df(x)=f,(x~O)df,(x)+f,(xTO)df~,x). (3) 

The Lebesgue-Stieltjes integral for a continu- 

ous integrand is often called the Riemann- 
Stieltjes integral, because it cari be defïned in 
an elementary way similar to the defïnition of 
the Riemann integral. 

The notion of bounded variation cari also be 

delïned for interval functions on R” and set 
functions on an abstract space (- 380 Set 
Functions). 

References 

[l] H. L. Royden, Real analysis, Macmillan, 
second edition, 1963. 
[2] W. Rudin, Real and complex analysis, 

McGraw-Hill, second edition, 1974. 

167 B 
Functions of Confluent Type 

167 (XIV.7) 
Functions of Confluent Type 

A. Confluent Hypergeometric Functions 

If some singularities of an ordinary differential 
equation of +Fuchsian type are confluent to 
each other, we obtain a confluent differential 
equation whose solutions are called functions 

of confluent type. The equations that appear 
frequently in practical problems are the con- 

fluent bypergeometric differential equations 

d2w dw 
zdz2+(y-z)dz-cIw=o (1) 

and related equations. Equation (1) corre- 

sponds to the thypergeometric differential 
equation for which a tregular singular point 

coincides with the point at inlïnity and is an 
tirregular singular point of class 1. For (1) 
z = 0 is a regular singular point, and a series 

solution (radius of convergence CO) is given by 

where y is not a nonpositive integer. The func- 
tion ,F, in (2) is a tgeneralized hypergeometric 
function due to Barnes and is called a byper- 
geometric function of confluent type or Kum- 
mer function. If y is not equal to a positive 
integer, the other solution of (1) independent of 

(2) is given by z ‘-F(l +CC-y,2-y;z) (- Ap- 
pendix A, Table 19.1). 

B. Wbittaker Functions 

Equation (1) with w  = er’2z-y’2 W, y - 2a = 2k, 

y2 - 2y = 4mZ - 1 reduces to Whittaker’s dif- 
ferential equation 

w=o. (3) 

If 2m is not equal to an integer, (3) has two 
series solutions for any lïnite z: 

Mk,m(z)=z(1~2)ime~Z~ZF(~+m-k, 1 +2m;z), 

Mk -m(z)=z(1~2)-me-2~2F(~-m-k, 1 -2m;z). 

If 2m is an integer, since the functions n/r,,, 
and Mk,-,, are linearly dependent, E. T. Whit- 
taker considered a solution of the form 

s 

(o+) 
X 

(-t)-k-(1/2)tm a> 
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If k-f-m is equal to a negative integer, this 
integral does not exist. The function 

e-‘dt 

for Re(k --i - m) < 0 is defined for any m, k, 
and for any z except when z is a negative real 
number. We cal1 Mk,,, and W,,, the Whittaker 
functions. +Bessel functions are particular cases 
of these functions, and the relation 

is satisfied. In Whittaker’s differential equation, 
since W_,,,( - z) is also a solution and 
W,,,(z)/W,,,( -z) is not equal to a constant, 

Wk,,,(z) and W-,,,( -z) cari be considered a 
pair of fundamental solutions (- Appendix A, 
Table 19.11). 

C. Parabolic Cylinder Functions 

Putting x = (c2 - a2)/2 and y = 511, the curves 
corresponding to 5 = constant and to y~ = 
constant, respectively, constitute families of 

orthogonal parabolas. The curvilinear coordi- 
nates (5, q, z) in three dimensions are called 
parabolic cylindrical coordinates. By using 

parabolic coordinates, separating variables in 
Laplace3 equation into the form f(~)g(~)e”‘, 
and making a simple transformation, we iïnd 
that f and g satisfy a differential equation of 
the form 

d2F 
x+(n+f-;z2)F=0. 

By means of the Whittaker function Wk,,,(z), a 

solution D,(z) of (4) is represented by 

D”(Z) = 2 n~+(1/4)~-112 w 
n,2+(l,4).~l,4(+z2)~ 

Equation (4) is called Weber% differential 
equation or the Weber-Hermite differential 
equation, and D,(z) the Weber function. An- 
other solution of (4) is D-,-l(iz) or D-,-, (- iz). 
The solutions of (4) are called parabolic cyl- 
inder functions. In particular, if n is equal to 
a nonnegative integer, then 

H,(z) = 2-“12 exp(fz2)D,(JZ z) 

is the tHermite polynomial of degree n. Solu- 
tions of differential equations for harmonie 
oscillators in quantum mechanics are of this 

form. 
In general, suppose that three regular sin- 

gular points are confluent to the point at inlïn- 

ity, and that they are reduced to an irregular 
singular point of class 2. Suppose further that 

there are no other singularities. Then differen- 
tial equations of order 2 with these conditions 
are transformed into the form (4), whose solu- 
tions are represented by parabolic cylinder 

functions. Differential equations of the form 
(4) are reduced to confluent hypergeometric 
differential equations if z2 is chosen as an 
independent variable (- Appendix A, Table 

20.111). 

D. Indefinite Integrals of Elementary 
Functions 

Since exponential and trigonometric functions 
cari be represented by particular types of 
Kummer functions, their indefïnite integrals 
that cannot be represented by elementary 
functions, e.g., tincomplete r-functions and 
the error function Erfz = 10 exp( - t2) dt, cari be 

represented by Kummer or Whittaker func- 
tions. They are included in a family of tspecial 
functions of confluent type. The functions 
defmed by 

are called Fresnel integrals, which are also 

represented in terms of the Whittaker function 

as 

C(z) - iS(z) 

Fresnel integrals tïrst appeared in the theory of 
the diffraction of waves. More recently they 
have been applied to designing highways for 
high-speed automobiles. Furthermore, the 

functions 

C(u)=J;cos(;s2)ds, 

S(u)= [‘sin(cs’\ds 
Jo \’ / 

(obtained by a change of variables z = nu2/2) 
are also called Fresnel integrals. Numerical 
tables are available for them. The curves x = C 
and y = S with a parameter z or u are called 
Cornu’s spiral (Fig. 1). The functions Lix= “dt s o logt’ 

Eix= 
s 

x gdt, 
-cc t 

where a +Principal value must be taken at t = 0 
if x > 0, 

Six= s “sint 
-dt, and Cix= - 

0 t s 

“cost 
-dt 

x t 
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Fig. 1 

are called the logarithmic integral, exponential 
integral, sine integral, and cosine integral, or 
integral logarithm, integral exponent, integral 
sine, and integral cosine, respectively. They 

satisfy the relations 

Eix=Lie”, Eiix=Cix+iSix+(n/2)i. 

They have important applications: Ei x in 
quantum mechanics, Six and Ci x in electrical 
engineering, and Li x in estimating the number 
of +Primes less than x (- 123 Distribution of 
Prime Numbers). Li x is also denoted by Ii x 
(- Appendix A, Table 19.11). 

E. Stokes’s Equation 

Consider a linear differential equation of the 

second order with iïve regular singular points 
including the point at infïnity such that the 
difference of the characteristic indices at every 
singularity is equal to 1/2. Such equations are 

called generalized Lamé’s differential equa- 
tiens. F. Klein and M. Bôcher have shown 
that every linear differential equation that is 
commonly treated in mathematical physics is 

represented by a confluent type of generalized 
Lamé’s equation. Among these equations, if 

a11 five singularities are confluent to the point 
at infinity, the resulting equation is called 
Stokes’s differential equation, which is applied 
to the investigation of diffraction. This is re- 
duced to +Bessel’s differential equation of order 
1/3 by suitable transformations of the inde- 
pendent and dependent variables. 
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168 (X11.6) 
Function Spaces 

A. General Remarb 

It is a general method in modern analysis to 
consider a set X of mappings of a space R into 
another space A as a space (- 381 Sets) and 
its elements (namely, mappings of Q into A) as 
points of the space X, and to investigate them 
as geometric abjects. In particular, it is impor- 
tant to consider the case where 0 is a ttopo- 

Iogical space, a fmeasure space, or a fdiffer- 
entiable manifold and X is a set of real- or 

complex-valued functions defmed on Q and 
satisfying certain conditions, such as continu- 
ity, measurability, and differentiability. Such 
spaces are generally called function spaces; 
they usually form ttopological linear spaces 
(- 37 Banach Spaces; 197 Hilbert Spaces; 424 
Topological Linear Spaces). 

B. Examples of Function Spaces 

The following are important examples of func- 
tion spaces. Throughout this section, a11 func- 
tions are real- or complex-valued, and two 
functions on a measure space are identified 
whenever they are equal to each other talmost 
everywhere. 

(1) The Function Spaces C(O), C,(Q), and 
C,(Q). The totality of continuous functions 
f(x) defined on a compact tHausdorff space Q 
is denoted by C(Q). Let f+ g and of (c( a real 

or complex number) be the functions f(x) + 
g(x) and af(x), respectively. Then C(Q) forms 
a tlinear space. Furthermore, defïne the norm 

off by Ilfll = supxen If(x)l. Then C(Q) becomes 
a +Banach space since it is complete in (the 
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metric defined by) the norm. The norm is 
called the supremum norm or uniform norm 

because lim,,, Ilf,-fil=0 means that f,(x) 

converges to f(x) uniformly on R as II+ 00. 
Define ,f.g to be the function f(x)g(x). Then 
clearly Ilf,gll < IlfIl Ilgll. Hence C(Q) is also a 
+Banach algebra. 

Suppose that a subset R of C(Q) satislïes the 
following three conditions: (i) R is an talgebra 
over the complex number tïeld with respect to 

the addition and multiplication delïned above 
and contains the function identically equal to 
one. (ii) For any two distinct points x and y 
of a, there exists a function fc R satisfying 
f(x) #f(y). (iii) For any fe R, there exists an 

f* E R such that f*(x) =f(x) on R. Then R is 
dense in C(n) with respect to the supremum 
norm (namely, in the sense of uniform conver- 

gence). This fact is known as the Weierstrass- 
Stone theorem (or Stone-Gel’fand theorem). 

A subset E of C(Q) is tprecompact (i.e., any 
sequence of functions in E contains a sub- 
sequence that converges uniformly on fi) if and 
only if E is tuniformly bounded and tequicon- 
tinuous (Ascoli-Arzela theorem). Since C(n) is 
not a treflexive Banach space except for trivial 
cases (- Section C), precompact sets and 

relatively compact sets are different in the 
tweak topology. For important characteriza- 
tions of the latter sets - [2,5]. 

When fi is a topological space that is not 
necessarily compact, the totality of bounded 
continuous functions on R (denoted by K(R)) 
is also a Banach space with respect to the 
supremum norm Il fil = supXen I~(X)[. Let R be 
a locally compact Hausdorff space. Then the 
space C(R) of a11 continuous functions on R is 

endowed with the topology of uniform conver- 
gence on the compact sets, i.e., the tlocally 
convex topology detïned by the tseminorms 

~up,,~jf(x)j as K ranges over the compact sets 
in R. C(Q) is always a complete locally convex 
space. It is a +Fréchet space if 0 is o-compact 
(i.e., fi is the union of a countable family of 
compact sets). We denote by C,(Q) the sub- 
space of all functions f(x) E C(0) that converge 
to zero as x tends to infinity (i.e., given an E > 
0, there is a compact set K such that If(x)1 < 
E for x$K). C,(Q) is a Banach space with the 

norm sup,,nIf(x)l. It cari be regarded as a 

closed linear subspace of K(a). 
The totality of continuous functions with 

compact support is denoted by C,(Q) or X(R), 
where the support (or carrier) of a function f 
is the tclosure of the set {x 1 f(x) # 0} in R and 
is usually denoted by suppf: If s2 is not com- 
pact, C,(n) is not complete with respect to the 

supremum norm, but when R is o-compact 
C,(Q) is complete with respect to the strongest 

locally convex topology with the property 
that for each compact set K in R the embed- 
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ding in C,(Q) of the linear subspace XK of a11 
functions with support in K equipped with 

the supremum norm is continuous. Usually 
X(0) denotes the space C,(n) equipped with 

this topology. 

(2) The Lebesgue Spaces L,(R) (0 < p < CO). Let 
(Q p) be a tmeasure space. We denote by L,(Q) 
the totality of tmeasurable functions f(x) on R 
such that [~(X)I~ is integrable. A function f de- 
lïned on (Q, p) is called square integrable if fE 
L,(R, p). If R is the interval (a, b) equipped 
with the Lebesgue measure, it is sometimes 
denoted by &(a, b). We delïne the norm I\f\\, 

Y;,, = l,~,,,=(~~llol~dl<(x))liP. 

If 1 <p < CO, then L,(R) is a Banach space. The 
triangle inequality for this norm is precisely 

the +Minkowski inequality. If 0 <p < 1, the 
norm no longer satistïes the triangle inequal- 
ity but does satisfy the quasinorm inequality 

lIf+~ll,~~lip~l~llfllp+ llsll,b and ifC lILll~< 
CO, then Cf, converges unconditionally in 
L,(sZ). Hence L,(a), 0 <p < 1, is a tquasi- 

Banach space. If lim,,, Ilf,-flI,=O, we say 
that the sequence {f,} converges to f in the 

mean of order p (or in the mean of power p), 
and Write 1.i.m .“+,f, =f: If {f.} converges to 
fin the mean of order 2, we simply say that 
(f,} converges to f in the mean. (The nota- 
tion 1.i.m. means the limit in the mean and is 
used mostly when p = 2.) For any f; g E &(a), 
(i g) =iof(x)s(x) dp(x) is well detïned, by the 
Schwarz inequality, and has the properties of 
the tinner product. Hence, L2(Q) is a +Hilbert 

space. If 1 <p < CQ, then L,(Q) is a tuniformly 
convex Banach space and is in particular 
treflexive. Deepest results on L,(r), 1 < p < CO, 

are often derived from the Littlewood-Palay 
theory due to J. E. Littlewood and R. E. A. C. 
Paley, A. Zygmund [6], and E. M. Stein [7]. 
Its starting point is the inequality 

~pllfll,~ ll.Y(f)ll,~~Pllfll,~ 

where g(f) is the function 

g(f)(x)= 
(s 

m lgrad,u(x,t)lZtdt 
112 

0 > 

obtained from the Poisson integral 

0, t) 

l-((n + 1)/2) 
ZZZ 

7L(“+1w 
s 

t(t*+IX-yl*)-(“+l)‘*f(y)dy, 
R” 

The L, spaces, 1 <p < CO, are generalized 
in the following way. Let Q(s) be a convex 

and nondecreasing function on [0, 00) satisfy- 
ing ù>(O) = 0 and Q(s)/s- CO as s+ CO. Denote 
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by Le(Q) (L$(R)) the set of a11 functions f(x) 
such that a>(lf(x)l) is integrable (@@[~(X)I) is 

integrable for some k > 0). L,@) = L;(R) if 
@(2s) < Ca>(s). L$,(R) is a Banach space, called 
the Orlicz space, under the norm 

IlfIl =inf I>O 
{ 1s 

@(A-‘lf(x)l)dp(x)<l 
1 

. 

L,(R), 1 < p < CO, is the Orlicz space for a>(s) 
=sp. 

(3) The Function Space M(R) = L,(R). Let R 
and p be as in (2). A measurable function f(x) 
on R is said to be essentially bounded if there 
exists a positive number c( such that If(x)1 <cc 
almost everywhere on R. The inlïmum of such 

a is called the essential supremum off; denoted 
by esssup,,,If(x)l. The totality of essentially 
bounded measurable functions on R (denoted 
by M(R)) is a Banach space with respect to 

the norm Ilfil = llfll,=~~~~~p,,,lf~~~l. If 
p(n) < CO, then M(R) c L,(Q) for any p > 0, and 

Ilfll,=lim,+, Ilfil, for any feM(R). From 
this point of view, M(R) is also denoted by 
L,(R) even when p(Q)= CO. This is also the 
reason why the notation II.11 m is used for the 
norm in M(0). 

(4) The Lorentz Spaces &,JR) (0 < p, q < CO). 
The Lebesgue spaces L,(R), 0 < p < CO, are 
rearrangement invariant. Namely, deiïne for a 
measurable function f on a measure space 
(CI, PL) the distribution function pff(s) =~L(X E 

Q 1 If(x)1 > s}, s > 0, and the rearrangement 
f*(t)=inf{s>OI~~(s)< t}, t>O. Then ~EL,@) 
if and only iff*EL,(O, CO) and ilfIl,= ilf*li,. 
Another important class of rearrangement in- 
variant spaces are the Lorentz spaces &,&2), 

O<p, qd co (G. G. Lorentz, 1950; R. A. Hunt 

[SI), which is defïned to be the quasi-Banach 
space of all measurable functions f on s1 such 

that 

Ilf II (p,@= lltl'pf*(m< CO3 

where ~5: is the L,-space on (0,~) relative 
to the measure dt/t. &JR) = L,(R) with 
equal norms. If 1< p < CO and 1 <q < co, then 
&,,,(Q) is a Banach space under the equiva- 

lent norm lltl’pml &f *(s)dsll,:. Except for 
these cases, &JR) is not equivalent to 

a normed space in general [SI. If q. < ql, then 
L u,40)(Q)c LcP,4ij(R) with continuous embed- 

ding. In case P(Q) < Q, L(Po,40)t~) c L(p1,4,)tQ) 
for po>pI and any qo, ql. The Lorentz spaces 

play an important role in interpolation and 
approximation theory (- 224 Interpolation of 
Operators). 

(5) The Function Space s(Q). Let (Q, PL) be a 
measure space with p(n) < CO. Denote by S(Q) 
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the totality of measurable functions on R that 
take tïnite value almost everywhere. Then II f 11 
=Sn(lf(x)IM1+If(x)l))d~L(x)forf~S(R)has 
the properties of the tpseudonorm and S(R) 
is a +Fréchet space (in the sense of Banach) 

that is not locally convex in general. We have 

lim,,, II fn - f II = 0 if and only if 

~‘m,~(rxII~(x>-f(x>l~E~)=O 

for any positive number E. Convergence of this 
type is called convergence in measure (or as- 
ymptotic convergence) and is the same notion 
as +Convergence in probability of a sequence 
of trandom variables (- 342 Probability 
Theory). If {f,} E L,(Q) converges to ~EL,(R) 

in the mean of order p, then { fn} converges to 
f asymptotically, but the converse is not true 
in general. If a sequence {f,} ES(O) converges 

to f ES(Q) almost everywhere, then { fn} con- 
verges to f asymptotically. Any sequence { fn} 
that converges to f asymptotically contains a 
subsequence {f,,} that converges to f almost 
everywhere. 

(6) The Sequence Spaces c, c,,, 1, (0 < p < CO), 
m=lm, and s. The totality c (resp. c,,) of se- 

quences x = {&} that converges (resp. con- 
verges to zero) as n+ cc forms a Banach space 

with respect to the norm I~X II = sup I&l. c,, 
(resp. c) is the space C,(Q) (resp. C(Q)) when R 

is (resp. the one-point compactification of) the 
discrete locally compact space { 1,2,3, }. The 
sequence space I,, 0 < p < cc (resp. m = I,), is 
defined to be the spaces L,(R) (resp. M(Q)), 
where R is the space { 1,2,3, , n, . . }, of 
which each point has unit mass, while s de- 
notes the space S(Q), where s1= { 1,2, . , n, . . . }, 
provided with the measure assigning mass 
1/2” to the point n. s is the set of a11 sequences 
equipped with the topology of pointwise con- 

vergence (s is also used to denote the space of 
rapidly decreasing sequences; - Section (16)). 

Assume that the space &(a) mentioned in 
(2) is tseparable and that { cp,} is a tcomplete 
orthonormal set in L,(s2). Then putting 

5. = 

(+Fourier coefficients) for any f 6 L,(R), we have 
{<,}~l~ and Czi l&,l’= II f 11’. Conversely, for 
any { &} E I, there exists an f= CE1 <,,(p, E 

L2(Cl) whose Fourier coefficients are the given 
5” (Riesz-Fischer theorem). By means of this 
correspondence, separable spaces L2(R) and 
1, are mutually isomorphic as Hilbert spaces. 
Sometimes we denote by I,(Q) the function 
space L,(R), where 51 is an arbitrary set en- 

dowed with the measure assigning mass 1 to 
each point. 
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(7) The John-Nirenherg Space BMO. A locally 
integrable function f(x) on R” is said to be of 
hounded mean oscillation if 

llf Il BMO=~~PI~lrl If(4-fsl~x<~, 
s 

(1) 
s 

where the supremum is taken over a11 (solid) 

spheres S in R”, fs is the mean ISJ mlJsf(x)dx, 

and [SI denotes the measure of S (F. John and. 
L. Nirenberg, 1961). The set BMO(R”) of aIl 

functions on R” of bounded mean oscillation 
forms a Banach space under the norm men- 
tioned above if two functions f and g are iden- 

tified whenever ,f-g is equal to a constant 
almost everywhere. Condition (1) is equivalent 
to 

UP 
sup ISI-’ 

( 1 
If(x)-f$‘dx 

s > 
<CO 

for any 1< p < CO. There are constants B and 
K > 0 such that 

for any sphere S and Â. > 0. BM0 is a slightly 

larger space than L, (e.g. log 1x1 E BMO) 
and has better properties. For example, the 
Calderon-Zygmund operators are bounded in 
BMO(R”). We have 

BMO(R”)=L,(R”)+ f RjL,(Rn), 
j=l 

where Rj are the +Riesz transforms [9]. This is 

called the Fefferman-Stein decomposition. The 
Riesz transforms cari be replaced by more 
general families of singular integral operators 

(A. Uchiyama, Acta Math. (1982)). 

(8) The Hardy Spaces HP (0 < p < a). The 
classical theory of Hardy classes (- 159 
Fourier Series G) has been reconstructed by 

the real-analysis method and extended to 
higher-dimensional cases by E. M. Stein, G. 
Weiss, C. Fefferman, and others. According to 

their terminology the elements of the Hardy 
space H, are (the complex linear combinations 
of) the real parts of the boundary values of 

holomorphic functions of the Hardy class. 
Let fc Y’(R”) be a ttempered distribution. 

For a <p E Y(Rn) detïne the radial maximal 
function M,ff and the nontangential maximal 
function M,*f relative to <p by 

f>O 

qf(x)=, ypt*.f(Y)l, 
x , 

where C~,(X) = t -“cp(x/t) and * denotes convo- 

lution. Then the Hardy space H,(R”), 0 <p < 

10, is detïned to be the space of all tempered 

distributions ,f which satisfy the following 
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equivalent conditions: (i) MGfcL, for a <p 

with s cp(x)dx # 0; (ii) M:~E L, for a <p with 
s <p dx # 0; (iii) M:~E L, for any <p; (iv) M:~E 

L, for any: <p. If a distribution f satistïes (one 
of) these conditions, then its Poisson integral 
u(x, t) = <Pu *f(x) is a function, where C~(X) = 
const(1 +IX~~))(~+*)~~, and its radial maximal 
function u+(x)= SUP,,~ I~(X, t)I and nontangen- 
tial maximal function u*(x) = s~p,,_~,<, lu(y, t)I 
both belong to L,. Conversely if u(x, t) is a 
harmonie function on the Upper half-space 

t > 0 and if either u+ or u* belongs to L,, 

then its boundary value f= u(. ,O) exists in the 
sense of tempered distribution and f satisfies 
the above conditions. Detïne the norm of an 
,f~ H,(R”) by ~~u*/~~. Then H,(R”) becomes 
a quasi-Banach space. If 1 <p < CO, then 
H,,(R”)= L,(R”) with equivalent norms. H,(R”) 
is a Banach space strictly smaller than L, (R”). 
An fi L,(R”) belongs to H,(R”) if and only if 
a11 the Riesz transforms Rif are in L, (R”), and 

ll.fllH, is equivalent to IlfIl, +C IiRjfll i. Simi- 
lar characterizations of H,(R”) are also known 

for p > 0 (Fefferman and Stein [SI). 

Let 5, j= 1, . , m, be +proper convex open 
cones in R” such that the +Polars IjO caver 

R”. Then an fi Y’(R”) belongs to H,(R”) if 
and only if there are holomorphic functions 

F,(x + iy) on R” + iq such that SU~{ Ile(. + 
iy)ll,ly~I~}<m andf=C4(.+iIjO)(D.L. 
Burkholder, R. F. Gundy, and M. L. Silver- 
Stein for n = 1 and L. Carleson for n > 1). Let 0 
< p d 1. A measurable function u on R” is said 

to be a p-atom if there is a sphere S such that 
suppacSand /lall,,~ISI-“PandifSa(x)x”dx 
=0 for all multi-indices cx with ICI[ <FI(~-‘- 1). 

Here a multi-index a is an n-tuple (c(i , , cc,,) 
of nonnegative integers, 1 a[ = %i + . + a, and 
Xm=Xl=’ . ..x a” 

H,(R”), 0 < p 2 

A distribution ,f belongs to 
;, if and only if there are a 

sequence of p-atoms uj and a sequence of 

numbers ij > 0 in 1, such that f = C ijuj in the 
sense of distributions, and the norm IlfliH, is 
equivalent to the infimum of llljllr, (R. R. Coif- 
man for II = 1 and R. H. Latter for n > 1). The 
theory of HP and BM0 has been generalized 

to more general situations (- Coifman and 
Weiss, Bull. Amer. Math. Soc. (1977)). 

From now on we assume that R is a domain 
in the n-dimensional Euclidean space R” (or 
more generally a differentiable manifold). D” 
stands for Dl’1 D,,““, where Dj = c~/c?x,. 

(9) The Function Spaces C’(0) and Ch(Q) (1= 
0, 1,2, , CO). The totality of I-times continu- 

ously differentiable functions in Q (namely, 
differentiable functions of tclass C’ in fi) is 
denoted by C’(D). We say that a sequence 

{f,} of functions in C’(Q) converges to 0 in 

C’(Q) if ID”~,(X)/ converges to 0 uniformly on 
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every compact subset of R for every GL satisfy- 

ingO<laI<I(O<lal<coif1=m).C’(R)isa 
Fréchet space. The totality of functions in 

C’(Q) whose supports are compact subsets of 
R is denoted by CA(Q). We say that a sequence 

{fy} of functions in Ch(n) converges to 0 in 
Ch(Q) if suppf, (v = 1,2,. . ) is contained in a 
compact subset of R independent of Y and {f,} 
converges to 0 in C’(Q). Ch(Q) is an t(LF)- 
space. 

When R is a locally closed set in R” (or a 
differentiable manifold with boundary), we 
denote by C’(Q) the totality of functions f(x) 
on R together with their continuous forma1 

derivatives D”~(X), la1 ~1 (la1 < CO if I= 00) on 
fl such that for every a and m with 1 a1 < m < 1 
(m<co if1=co), 

D4f(x)-,p,<;-,c, D”+Bf(Y)(x -YYlP! 

=0(1x-y[“-‘“‘) 

locally uniformly in R as lx - y1 tends to 0. 

Convergence in C’(Q) is delïned in the same 
way as above. 

If Sz is a closed set in R” with a finite number 
of connected components in each of which 
two points x and y are connected by an arc of 

length < Clx-y1 with a constant C indepen- 
dent of x and y, then every f in C’(Q) cari be 
extended to an f in C’(R”) (Whitney’s extension 

. theorem). 

(10) The Lipschitz Spaces A”. Let s >O, and 
let k be the least integer greater than s. The 
Lipschitz (or Holder) space k(R”) is the totality 

of functions f(x) on R” which satisfy 

“fllA”=sx~,p j$o ; (-l)jf(x+jy) lYl”< CO. 
1 0 Il 

When s< 1, this is exactly the tlipschitz (or 

Holder) condition of order s. But when s = 1, it 
is strictly weaker than the tlipschitz condition. 
A function f E A’ is said to be smooth in the 
sense of A. Zygmund [6]. Suppose 0 < h <s is 
an integer. Then a function f belongs to A” if 
and only if it is h times continuously differenti- 
able and a11 the derivatives O"f of order h are 
in IA-~. A”(R”) is a Banach space of functions 
modulo the polynomials of degree < k - 1. 

Suppose that 1 Q q < CO and f is a measur- 
able function on R” such that 

where the supremum is taken over a11 spheres 
in R” and the infimum over a11 polynomials of 
degree <s. Then f(x) is equal to a function 
f(x) in A’(R”) almost everywhere and the su- 
premum is equivalent to the norm jjfll*s. 

Conversely every f E A”(R”) satislïes the above 

inequality (S. Campanato). 
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(11) The Sobolev Spaces kV’,‘,@), H’(R), and 
E@n) (l= 0, 1,2, . . . ) l<p<cc or -co<l<co, 

l<p<co).Let1>0beanintegerandl<p< 
CO. The Sobolev space II$@) is the totality of 

functions f(x) such that for a11 a satisfying 
JaI < 1, the derivatives D”f(x) in the sense of 
distribution (- 125 Distributions and Hyper- 
functions) belong to L,(R) with respect to 
Lebesgue measure in Q. II$(Q) is a Banach 
space with the norm 

Clearly II$‘(Q) = L,(Q). II’:@) is a Hilbert 

space with respect to the inner product 

(.Ld= 
s 
no<;<lD=fWD"godx. 

. . 

Sometimes W:(R) is denoted by H’(a). Its 
closed linear subspace obtained as the comple- 
tion of C?(0) is denoted by HA(R). We have 
Hi(R)= W~(Cl)=L,(Cl). However, if I> 1, we 
have H;(o)c Ii$Q), and identity does not 

hold unless R = R”. 
The delïnition of Sobolev spaces has been 

extended to those with fractional and also 
negative order -00 <s < CO in many different 
ways. When 1 < p < CO, it is natural to delïne 

W;(R”) to be the space of a11 tempered distri- 
butions f on R” such that (1 - A)s@f = F r (( 1 
+~~~')"'2Ff)~Lp(R"). If s>O, then W;(R”) thus 
delïned coincides with the space of a11 fi 

L,(R”) whose Poisson integral u(x, t) satislïes 

Il(s 

cc Il2 
t4k~2S~‘IAk~(.,t)12dt <co 

0 > Il P 

for some (and any) integer k > 42. 

The Poisson integral cari be replaced by 
other regularizations, and thus the definition 
of Sobolev spaces of fractional orders is ex- 
tended to arbitrary open set s2 with the cane 
condition (T. Muramatu [ 131). Here R is said 
to satisfy the cane condition if there are a 
bounded and uniformly continuous mapping 

Y:R”+R” and an E>O such that for any XER 
the convex hull of the e-bal1 with tenter at x + 

Y(x) and {x} is included in Q 

(12) The Besov Spaces B”p,q (-CO <s< cql <p, 
q < 00). The effort to make the Sobolev em- 
bedding theorem [lO] more precise led S. M. 

Nikol’skiï and 0. V. Besov [l l] to the other 
classes of “Sobolev spaces” of fractional order. 
Let s > 0 and 1 < p, q < CO. The Besov space 
B&(R”) is the totality of functions f EL,(R”) 
such that 

If IB;,r= 
(Ill 

j$o ; (-l)‘f(.+AJ) qdy lk4 
( > Il > plYlqs+” 

<CO 
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for some (and any) integer k > s. In terms of 
the Poisson integral an feL,(R”) belongs to 
BS,,,(R”) if and only if 

for some (and any) integer k > 42. The first 

definition is obviously extended to an arbi- 

trary domain R in R”. If R satislïes the cane 
condition, then the functions in B&(fi) are 

characterized similarly as above by using a suit- 
able regularization u(x, t) of f(x) (Muramatu 

[13]). Let R be a domain with the cane condi- 
tion. When 0 <h <s is an integer, an f belongs 
to B;,,(a) if and only if fE w;(n) and all 
the derivatives O”f of order h are in B;;:(n). 
BP,,@) is a Banach space with the norm ~~f~~, 

+ IflB;,,. If p = 2, then B;,,(Q) coincides with 
the Sobolev space IV,(Q). But in the other 

cases, BP,@) is different from w;(Q) for any q. 
However, BP,JR) or Ba, ,(0) is often called a 
Sobolev space of order s and denoted by 
R$(D). Clearly we have B& m =L, f? A”. 

The Besov space B&(S2) of order s < 0 is de- 
fmed to be the totality of distributions f which 
cari be represented as f= &Qk O”f, with 
f, E B”(fi) for some (and any) integer k 
such that s + k > 0. The norm is delïned to be 

XZ, lIf,llB~~~,,,. In terms of the Poisson in- 

tegrals or other regularizations the same char- 
acterization holds as above. 

If R is a domain in R” with the cane con- 

dition, then the restriction BL,,(R”)-+BP,,(Q) 
(resp. W;(R”)+ W$2) for 1< p < CO) is a 

bounded linear surjection with a bounded 
right inverse [ 131. 

From now on we denote by B;+ etc., 
B&(52), etc. for a domain R c R” with the cane 

condition. If q < r, then B& c BP,,. If 1~ p < 2, 
then BP,,c W~CBP,~. If2<p<co, then BP,,c 
Wp c B&. Ifs > t, then BP, co c BP, 1. 

Sobolev-Besov embedding theorems: (i) Let p 

<pi and s- n/p = SI- nlp’. Then B& c Bgr,q, 

KP, c W$, WlcBp.,, and, ifp’< CO, then W;c 

Wi,‘. (ii) Let 0 <s < n/p and n/p’ = n/p -s. 
Then BSp,q c L(,,,,,, and Wp c Lcp,,pJ( c Lps). (iii) 
Let s = nlp. Then BP, 1 c BC for any p and BP, ~ 
cBMOforp<co.(iv)LetO<n’<nandO< 

s’ = s -(n - n’)/p. Then there is a bounded trace 
operator Tr:B~,,(R”)~Bs;.,,(R”‘) that extends 
the restriction mapping 9’(R”)+9’(R”‘). Tr 
is surjective and has a bounded linear right 
inverse [11-131. 

(13) The Function Spaces 9,8, BLD, 3, and Y. 
The spaces of inlïnitely differentiable functions 
Cg(Q) and Cm(Q) are also denoted by 9(Q) 

and 8’(n), respectively. The totality of func- 
tions f(x) in C”(Q) such that, for a11 c(, D”~(X) 

belongs to L,(R) with respect to tlebesgue 
measure is denoted by BLD(a). The neighbor- 
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hood l& of 0 in 9@) is delïned to be the 

totality of functions f(x) such that 11 O”f11 p < E 
for any cL satisfying [xl< 1. In particular, 9$,(Q) 

is also denoted by a(Q). (99(Q) is also used to 
denote the space of hyperfunctions.) 

A function f(x) is called a rapidly decreas- 
ing C”-function if it belongs to P(R”) and 
satislïes 

for any c( and any integer k > 0. The totality of 
rapidly decreasing C”-functions is denoted by 
Y. The neighborhood v,k,E of 0 in Y is defïned 
to be the totality of functions f(x) such that 

(1 +Ix~~)~ID~~(x)I<E for any c( satisfying la1<1. 
The spaces in this section are tnuclear except 

for 9L and %, and are employed in the theory 
of distributions [14] (- 125 Distributions and 
Hyperfunctions). When R = R”, we usually 

omit (R”); for example, 9(R”) and gLP(R”) are 
denoted by 9 and 9r+ respectively. 

(14) The Function Spaces gIMP), gfM,), JYiMpj, 

& (Mp), and d = C”. Let {M,} be a sequence of 
positive numbers satisfying the logarithmic 

convexity Mz < M,-, M,,, giMpi(Q) (resp. 
&cM,j(Q)) denotes the totality of C”-functions 
f on R such that for any compact set K in fi 
there are constants k and C (resp. for any k > 0 
there is a constant C) satisfying 

1 Daf(x) 1< Ck’“‘M IH) XEK, lal>O. 

G?~,,!)(R) is the totality of keal analytic func- 
tions on R and is denoted by d(Q) or C”(Q). 
If {M,} satistïes the Denjoy-Carleman condi- 

tion C M,IM,+, <CO, then 9jMp,(Q)=9(Q)n 

gpp)(fi) and %,,)(Q) = W4 n ~cM,)(~) are 
dense in 9(Q). Conversely, if 91Mpl(R) is differ- 
ent from {0}, then {M,,} satislïes the Denjoy- 

Carleman condition. In this case an fg 
&lMB1(Q) (resp. GcMp)(Q)) is sometimes called 
an ultradifferentiahle function of class {M,} 

(resp. (M,,)). The most important is the case 
where M, = p!” for an s > 1. Then an fi 
GrM,l(Q) (resp. G,,P,(s2)) is called a function 

of Gevrey class {s} (resp. (s)). The topological 
properties of &(a) (resp. &l,l,(fi), etc.) have 

been discussed by A. Martineau (resp. H. 
Komatsu). 

For function spaces of S type - 125 Distri- 
butions and Hyperfunctions. 

(15) Tbe Function Spaces O(Q), OP(Q) = A,,(R), 
and A(R). Let R be an open set in C”. The 
totality of tholomorphic functions on s2 is 

denoted by 0(Q). 0(Q) is a tnuclear Fréchet 
space with the topology of uniform conver- 
gence on compact sets. It is a closed linear 

subspace of C(Q) and also of Cm(Q). 
For any p 2 1, the totality of functions f 
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holomorphic in Q and satisfying JnIf(z)IPdxdy 

< CO (z =x + iy; dx dy is Lebesgue mea- 

sure), denoted by UP(Q) or A,(Q), is a Ba- 
nach space with respect to the norm ilfil,= 

(jnIf(z)[Pdxdy)lip. In particular, it is a Hil- 
bert space when p = 2. 

The totality of functions bounded and con- 
tinuous on the closure of R and holomorphic 
in fi (denoted by A(Q)) is a Banach space 
with respect to the norm Il fil = supZEn If(z)I. 

(16) The Ki3he Spaces n Â(c&~)) and x1” (LY(~)). 
Let {teck)} be an increasing sequence of se- 

quences tltk) = (c(y), CC~), ) of positive numbers. 
The echelon space n I(“(k)) of G. Kothe [ 151 
is the totality of sequences x=(5,,&, . ..) 
such that P(~)(X) = C cc{“) 1 &l< CO for any k. 

It is a Fréchet space with the topology deter- 
mined by the seminorms pck). The co-echelon 
space’x Â. ’ (oc) is the totality of sequences y = 
(ql, qZ,. . . ) such that Iqil< Caik) for some C 

and k. The space s of rapidly decreasing se- 
quences and the space s’ of slowly increasing 

sequences are the echelon space and the co- 
echelon space for the sequence ai”) = ik. If RI”) = 
k’, then we obtain the space of power series 

with infinite radius of convergence and the 
space of convergent power series. More gener- 
ally, let du = (Es) be a sequence of positive num- 
bers. The echelon spaces for a{“)= exp(ka,) and 
exp( - k-lai) are called the infinite type power 
series space and the finite type power series 
space and are denoted by A,(E) and Al(a), 
respectively. Echelon spaces and co-echelon 
spaces have been employed to construct exam- 

ples and counterexamples in the theory of 
tlocally convex spaces by Kothe [ 151, Grothen- 
dieck, Y. and T. Komura, E. Dubinsky, D. 

Vogt, and others. 

C. Dual Spaces 

When 0 is a compact Hausdorff space, any 
bounded linear functional @ on C(Q) is ex- 
pressed by the tstieltjes integral 

with a tRadon measure <p, i.e., a (real- or 
complex-valued) tregular tcountably additive 

set function delïned on the Bore1 sets in 0. 
Since <p is of bounded variation, the totality of 
such cp is denoted by B1/(R). Conversely, any 
cp E BP’(n) gives a bounded linear functional on 

C(0) detïned by (2), and //@Il = the total varia- 
tion of <p over R. Hence the dual space of C(n) 

is isomorphic to the Banach space Bv(Q) with 
the norm /\@Il. 

Let R be a locally compact Hausdorff space. 

Then the dual space of C,(Q) is again the 

Banach space BP’(n) of Radon measures of 
bounded variation. On the other hand, the 

dual space of C,(Q) is the space of a11 Radon 
measures on R. N. Bourbaki takes this fact as 
the defmition of measure. 

Any bounded linear functional @ on tl(Q) 
is expressed as 

with a suitable (~EM(R); and Il@// = ~I(P~I~. 

Conversely, any <p E M(R) defïnes a bounded 
linear functional on L1(Q) by means of (3). 

Accordingly, the dual space of L,(Q) is isomor- 
phic to M(R). 

The dual space of L,(R) (1 <p < CO) is iso- 
morphic to L,(R), where q is the real number 
defmed by (l/p) + (l/q) = 1 (accordingly, 1 <q < 

m) and is called the conjugate exponent of p. 

Any bounded linear functional on L,(R) is 
expressible by the formula in (3) (where fi 

J44) with cp~~%Jfi), and Il@ll = lldlq. 
The dual space of M(R) is isomorphic to the 

normed linear space of a11 (real- or complex- 
valued) lïnitely additive set functions cp detïned 

on a11 measurable sets in R, of bounded vari- 
ation over R, and absolutely continuous with 
respect to the measure p given in s2 (i.e., p(N) = 
Oimplies<p(N)=O).Ifl<p<coandl<q< 
CO, then the dual space of L~,,,,(Q) is isomor- 
phic to LcP,.q,)(fi), where p’ and q’ are conjugate 
exponents of p and q, respectively. 

If R is nonatomic (i.e., R has no set of posi- 
tive measure that cannot be decomposed into 
two subsets of positive measure), then no con- 
tinuous linear functionals exist other than 

zero on S(Q) and on L,(R) and L(,,,,(fl) for 
O<p<l. 

The sequence spaces c,,, 1, (1~ p < CO), m, 

and s (the space defmed in Section B (6)) are 
special cases of C,(n), L,(R), M(R), and S(Q), 
respectively. Hence their dual spaces cari be 
described explicitly. For example, the dual 

space of cg (resp. II) is 1, (resp. m), and if 1 < 
p < CO, the dual space of 1, is 1, (where (l/p) + 

(l/q) = 1). The coupling of x = (5.) and y = 
(II,) is given by C &,r,. The dual space of s is 
the totality of sequences (q,) such that q,, = 0 
except for a lïnite number of IL. 

Let VMO(R”) denote the closure of CO(R”) in 
BMO(R”). Then the dual space of VMO(R”) is 
identifïed with H1 (R”). This cari be considered 
to be a generalization of the TF. and M. Riesz 
theorem. On the other hand, the dual space of 
H,(R”) is BMO(R”) [9]. Hardy spaces HJR”), 
0 <p < 1, are not locally convex but have suffi- 
ciently many bounded linear functionals, and 
their dual spaces are identifïed with Lipschitz 
spaces A”(R”), where s= n(p-’ - 1). 

Let 1 <p, q < CO. Then the dual space of 
Wi(R”) is isomorphic to H$“(R”) and that of 
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B&(R”) to B;f,.(R”), where p’ and q’ are conju- 

gate exponents of p and q, respectively. The 
dual space 9’ of 9 is defined to be the space of 
tdistributions; the dual spaces of B, gLL,, and 

9 are (algebraically) linear subspaces of g. 
Similarly, the dual spaces of gjMp) and scM,> 
are called the spaces of tultradistributions 
of classes {M,} and (M,), respectively. The 
dual space of & is identifïed with the space of 
thyperfunctions with compact support (- 125 
Distributions and Hyperfunctions). A continu- 
ous linear functional on o(Q) is called an 
analytic functional. For each analytic func- 

tional ù> there is a compact set L c R such that 

I@(f)[ d C ~up,,~lf(z)I. A compact set K is 
called a porter of @ if every compact neighbor- 

hood L of K satisfies this condition. Porters 
are similar to supports of generalized func- 
tions, but an analytic functional does not 
necessarily have a smallest porter. 

The dual space of an echelon space is the 
corresponding co-echelon space. 
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169 (XI.1 9) 
Function-Theoretic Nul1 Sets 

A. General Remarks 

By a function-theoretic nul1 set we mean an 
exceptional set that appears in theorem as the 
one asserting that a certain property holds 

with a “small exception.” We give below some 
of the more important examples of exceptional 
sets. For simplicity, we limit ourselves to the n- 
dimensional Euclidean space R” (n > 2). 

B. Sets of Harmonie Measure Zero 

Denote by xE the characteristic function of 
a set E on the boundary aD of a bounded 
domain D in R”. We cal1 the thypofunction 
Hx, and thyperfunction i?,E (- 120 Dirichlet 
Problem) the inner and outer harmonie mea- 
sures of E (with respect to D), respectively. 
When they coincide, the function is called the 
harmonie measure of E. A necessary and suflï- 
tient condition for E to be of inner harmonie 
measure zero is that u < 0 hold in D whenever 

a tsubharmonic function u bounded above in 
D satisfies lim sup u(P) < 0 as P tends to any 
point of C?D-E. This theorem implies the 
following uniqueness theorem: If h is boundeg 
and harmonie in D, if E is a set of inner har- 
monic measure zero on C?D, and if h(P)+0 as P 
tends to any point of C~D -E, then h = 0. A 
necessary and sufflcient condition for E to be 
of outer harmonie measure zero is that there 
exist a positive tsuperharmonic function u in D 
such that v(P)+ CO as P tends to any point of 

E. (Concerning the existence of a limit for a 
subharmonic or tharmonic function at every 
boundary point except those on a set of har- 

monic measure zero, - 193 Harmonie Func- 
tions and Subharmonic Functions.) 

C. Sets of Capacity Zero 

Although there are many kinds of capac- 
ity (- 48 Capacity), here we consider only 

tlogarithmic capacity and cc-capacity (c( > 0). 
Let K be a nonempty compact set in R”. Set 
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W(K)=inf,,jjPQ-“d@)&(Q), where p runs 

through the class of nonnegative +Radon mea- 
sures of total mass 1 supported by K, and 
Write C,(K)=(W(K))-““. Defïne C,(a)=0 
for an empty set 0. For a general set E c R”, 
detïne the inner capacity by supKcE C,(K) and 
the outer capacity by the infïmum of the inner 
capacity of an open set containing E. When 
the inner and outer capacities coincide, the 

common value is called the cr-capacity (or 
capacity of order ~1) of E and is denoted by 

C,(E). We denote the logarithmic capacity of E 
by C,(E). In order that C,(K)=0 (n=2) or the 
+Newtonian capacity C,_,(K) = 0 (n 2 3) for a 
compact set K, it is necessary and suftïcient 
that the harmonie measure of K with respect 
to G-K vanish for any bounded domain G 
containing K. Then K is removable for any 
harmonie function that is bounded or has a 
lïnite +Dirichlet integral in G - K. In general, 
K is said to be removable for a family F of 
functions if for any domain G containing K 

and fi F defined in G-K, there exists gE F 
defined in G such that g = f in G-K. Let K be 
a compact set in RZ with C,(K)=0 and G be a 
domain containing K. Let f be a holomorphic 
function defined in G-K for which every 
point of K is an tessential singularity. Then the 
set of texceptional values for f at every point 
of K is of logarithmic capacity zero. If f is 
tmeromorphic in jzj < 1 and 

then f has a fïnite limit in any angular domain 

with a vertex at every point of lzl = 1 except for 
those belonging to a set of a-capacity zero 
(logarithmic capacity zero if CI = 0). 

D. Hausdorff Measure 

Let CL > 0 and a set E be given in R”. Denote by 
(r a covering of E by a countable number of 
balls with radii d,, d,, . . . , a11 of which are 
smaller than E (> 0). As s-0, inf,C,dk in- 

creases. The limit is called the Hausdorff mea- 
sure of E of dimension c( and is denoted by 

A,(E). In order for a compact set K to be 
removable for the family of harmonie func- 
tions detïned in a bounded domain and satisfy- 
ing the +Holder condition of order CI, it is 

necessary and suff’cient that Anm2+,(K)=0. 
Next, suppose that K is a compact set in a 
plane and the complement G of K with re- 

spect to the plane is connected. Set IlfIl,= 
(JJG1flqdxdy)l’q for f holomorphic in G and 
q, 1 <q< CO, and IlfIl, =supelf(. Denote by 

Hq thefamilyofffo with (/fll,<co. Ifpis 
defined by l/p+ l/q= 1, then &,(K)< CQ 
impliesHq=@forq,2cq<~,andA,(K)=0 

implies H” = 0. Moreover, HZ = @ if and 

only if C,(K) = 0, and Hq = 0 implies C,-,(K) 
=Oforq,2<q<cc Cl]. 

E. Nul1 Sets Defined with Respect to Families 
of Functions 

Conversely, L. V. Ahlfors and A. Beurling 

characterized the size of sets in a plane by 
means of families of functions [2]. Let D be a 

domain, and let f represent a holomorphic 
function in D. Fix a point z0 in D. Set 

E={fltheareaofR’>n}, 

where RC is the complement of the trange R 
of (f(z) -f(z,,))-‘. Denote by 623, 63, 66 
the families consisting of constants and +univa- 
lent functions in d, a, 6, respectively. Use 

the notation 5 to represent any one of these 
six families, and detïne Mg = Mg(zo; D) by 
sup{lf’(z,)l~f~~}.Then M,=M,>M,= 

M,, 2 MG, = MG,, and M8(zo; D) = 0 im- 
plies M8(z;D)=0 for any zeD. 

Denote by Na the class of compact sets K 
such that the complement K’ of K is con- 

nected and M8(z; K’) = 0. We cal1 K E N8 a 
nul1 set of class Na. In order for K to be re- 

movable for 23 or 9, it is necessary and SU~~I- 
tient that K E Nar or EN,, respectively. We in 
general have 

If A1 (K) = 0, then K E Ns. There exists a set 
K E Nn with A,(K) > 0 (A. G. Vitushkin, Dokl. 
Akad. Nuuk SSSR, 127 (1959); J. Garnett, Proc. 
Amer. Math. Soc., 21 (1970)). When K is a 
subset of an analytic arc A, K E NB implies 
A,(K)=O, Nr, is equal to Na,, and K be- 
longs to N, if and only if C,(A)=C,,(A-K). 
If an tanalytic function has an essential sin- 
gularity at every point of K E N,, then any 

compact subset of the set of exceptional values 
at every point of K belongs to NB. A necessary 
and sufficient condition for K E ND is either 
that the complement of any one-to-one +Con- 
forma1 image of K’ be of plane measure zero 
or that any tunivalent analytic function in K’ 
be reduced to a tlinear fractional function. If 
the union of at most a countable number of 
Nar or ND sets is compact, it belongs to the 
same class. But it not true for Naai sets [3]. 

F. Analytic Capacity 

For a compact set K, let D, be the unbounded 
connected component of K’. The quantity 
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M%(~O, DK) is called the analytic capacity of K 
and is denoted by a(K). If cc(K) > 0, there exists 

an extremal function fo(z)=cc(K)zm’ + . . . , 
called the +Ahlfors function, that maps D, 

onto a covering surface of the unit disk. In 
general, a(K) is not greater than the logarith- 
mit capacity C,(K). If K is a continuum, then 
a(K)=C,(K), and cc(K) is attained by and only 
by f&), which maps DK onto 1 WI < 1 conform- 
ally and z = cx to w  = 0. For a linear set K, 
a(K) is equal to a quarter of its length (C. 

Pommerenke, Arch. Math., 11 (1960)). The 
concept of analytic capacity is basic for the 
theory of rational approximation on compact 
sets. 
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170 (1X.2) 
Fundamental Groups 

A tcontinuous mapping f from the interval 
I= {t 10 Q t d 1) into a topological space Y is 

called a path connecting the initial point f(0) 
and the terminal point f( 1). In particular, a 
path satisfying f(0) =f( 1) = y, is called a loop 

(or closed path) with y, as the hase point. For a 
path L the inverse path f off is defïned by f(t) 
=f( 1 - t). When the terminal point off and 
the initial point of g coincide, the path F de- 
lïned by F(t) =f(2t) for 0 < t < 1/2 and F(t) = 
g(2t - 1) for 1/2 < t < 1 is called the product 
(or concatenation) off and g, and is denoted 

by f. g. With [f] standing for the equivalence 
class of a path f under the relation of thomo- 
topy relative to 0, 1 (E 1) (i.e., by homotopy 

with 0 and 1 being fïxed), the inverse [If]-’ = 
[f] and theproduct [f].[g]=[f.g] are 
defïned. In particular, in the set of homotopy 
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classes of loops with one common base point 
y,, the product is always defined, and the set 
forms a group n1 (Y, yo). This group is called 
the fundamental group (or Poincaré group) (H. 
Poincaré, 1985) of Y (with respect to yo). If Y is 
tarcwise connected, then 7~~ (Y, y0) r n, (Y, yl) 
for an arbitrary pair of points y,, yl, and the 
structure of the group is independent of the 
choice of the base point. This group is de- 
noted simply by nl( Y). A continuous mapping 

<p: (Y, y&( Y’, yo) induces a homomorphism 

<P,:~~(Y,Y,J+~,(Y’,YO) by sending Cfl to 
<p* [fl = [<p of], and (cp’o q), = cpi o ‘p* holds 
for the composite <p’ o <p of mappings. Thus 
n,(Y) is a ttopological invariant of Y. If 7c1 (Y) 
consists of only one class (the class of the 
constant path), we say that Y is simply con- 
nected. For example, cells and spheres S” 
(n > 2) are simply connected. The famous 
+Poincaré conjecture states that a simply con- 

nected 3-dimensional compact tmanifold is 
homeomorphic to the 3-dimensional sphere. 
We have van Kampen’s theorem: Let P be a 

connected polyhedron, P, and Pz be its con- 
nected subpolyhedra such that P, fl P2 is con- 
nected, and P = P, U P2. Then 7~~ (P) is isomor- 
phic to the group (tamalgamated product) 
obtained from the +free product of nl(P,) and 
n1 (PJ by giving the relations that the images 
of each element of n,(P, n PJ in n,(P,) and in 
n1 (Pz) are equivalent. Also, the fundamental 
group of the tproduct spaces is the direct 

product of the fundamental groups of the 
spaces involved. Any group is the fundamental 
group of some +CW complex. The Abelization 

rc1/[7c1,n,] of the fundamental group 7~~ = 
n,(Y) (Y arcwise connected) is isomorphic to 
the 1 -dimensional integral thomology group 

H,(Y). For example, the fundamental groups 
of a circle S’ and a ttorus T” are an inlïnite 
cyclic group and a free Abelian group of rank 
n, respectively; the fundamental group of a l- 

dimensional CW complex is a free group; and 
the fundamental group of an orientable 2- 

dimensional closed surface of +genus p is a 
group having 2p generators {a,, . . . , a,,, b,, . . . , 
b,} and a relation a, b,a;‘b;’ . . . a,b,ap’b;’ = 

1. If x0 is a fïxed point of the circle S’, then 

the fundamental group cari be defïned as the 
set of a11 homotopy classes of continuous map- 

pingsf:(S’,x,)~(Y,y,). 

Extending the defïnition of the fundamental 

group by replacing 1, S’ with I”, S”, we obtain 
the n-dimensional homotopy group (- 202 
Homotopy Theory; 91 Covering Spaces). 
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171 (XXl.25) 
Galois, Evariste 

Evariste Galois (October 25, 1811-May 31, 

1832) was born in Bourg-la-Reine, a suburb of 
Paris. In 1828, while still in junior high school, 
he published a paper on periodic tcontinued 
fractions. Although he published four papers, 
his most important works were submitted to 
the French Academy of Science and either lost 
or rejected. He was unsuccessful in his attempt 
to enter the Ecole Polytechnique and instead 
entered the Ecole Normale Supérieure in 1829. 
Active in political affairs, he was expelled from 

school, imprisoned, and died in a duel soon 
after his release. 

The night before the duel, he left his re- 
search outline and manuscripts to his friend, 
A. Chevalier. These were published by J. 
Liouville in J. Math. Pures Appl., fïrst series, 

11 (1846). The contents include the concept 
of groups and what essentially became the 
+Galois theory of algebraic equations. The 
manuscript also contained expressions such as 
“theory of ambiguity,” which seems to indicate 
that Galois intended to study the theory of 
algebraic functions along the same lines. 
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172 (111.7) 
Galois Theory 

A. History 

After the discovery of formulas giving the 
general solutions of algebraic equations of 

degrees 3 and 4 in the 16th Century, efforts to 
salve equations of degree 5 remained unsuc- 
cessful. Early in the 19th Century P. Ruffini 

and N. H. +Abel showed that a general alge- 
brait solution is impossible. Shortly after- 
ward, E. +Galois established a general prin- 
ciple concerning the construction of roots of 

algebraic equations by radicals. The principle 

was described in terms of the structure of a 
certain permutation group (the Galois group) 
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of the roots of the equation. Even in this 

original form of the theory (Galois theory), 
Galois not only completed the research started 

by J. L. Lagrange, P. Ruffini, and Abel, but 
also made an epochal discovery that opened 
the way to modern algebra. J. W. R. Dedekind 
(Werke III, 1894) interpreted this result as a 
duality theorem concerning the automorphism 
groups of a field. It was shown later that 
Galois theory plays an important role in the 
general theory of commutative tïelds estab- 
lished by E. Steinitz. In the 1920s W. Krull 
generalized the idea of Dedekind, using the 
concept of topological algebraic systems, and 

obtained the Galois theory of infinite alge- 
brait extensions (Math. Ann., 100 (1928)). The 

Galois theory gives a mode1 for a successful 
theory summarizing the essentials of separable 
algebraic extensions and has led to analo- 
gous theories for other algebraic systems. For 

example, E. R. Kolchin constructed an analo- 
gous theory for differential fïelds where the 
Galois groups are algebraic groups (- 113 
Differential Rings, Galois theory of differential 

fïelds). Another line of development of this 
theory, also originated by Dedekind (Werke 

III, 1876/77), led to the Galois theory of rings, 
an abject of active research by N. Jacobson 
(Ann. Math., 41 (1940)), T. Nakayama, and 

others since the 1940s. Also, recently, the 
Galois theory for some general algebraic sys- 
tems containing inseparable tïelds has been 
constructed by M. E. Sweedler, U. S. Chase, 
and others in which Galois groups are re- 

placed by Hopf algebras or bialgebras (- 203 
Hopf algebras). 

B. Definitions 

Given a group G of tautomorphisms of a given 

+fïeld L, the subfield F(G)={uELIu”=~,~EG} 
is called the invariant field associated with G. 
For any extension fïelds L, L’ of K, an isomor- 
phism of L into L’ whose restriction to K is 

the identity is called a K-isomorphism. If L is a 
tnormal extension of K, any K-isomorphism 
of L into L’ is a K-automorphism of L. If an 
algebraic extension L of K is normal, the 
group G(L/K) of a11 K-automorphisms of L is 

called the Galois group of L/K. A tseparable 
normal algebraic extension of K is called a 
Galois extension of K. Let L/K be a tïnite 

normal extension; then there exist intermedi- 
ate lïelds M and N of L/K such that MIK is a 
Galois extension and N/K is a tpurely insep- 
arable extension and L = M OK N (- 277 
Modules J). Further, G(L/K)=G(L/N)= 

G(M/K) and the order of G(L/K) is equal to 
the tseparable degree of L/K, i.e. [M: K]. A 

necessary and suffïcient condition for L/K to 
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be a Galois extension is that the invariant field 
associated with G(L/K) be K. A Galois exten- 
sion L/K is called an Abelian extension or a 

cyclic extension when G(L/K) is +Abelian or 
tcyclic, respectively (- 149 Fields). 

C. Fundamental Tbeorem of Galois Tbeory 

Let L/K be a lïnite Galois extension and G its 
Galois group. Then there exists a tdual lattice 
isomorphism between the set of intermediate 
fields of L/K and the set of subgroups of G, 
under which an intermediate lïeld M of L/K 
corresponds to the subgroup H = G(L/M); 
conversely, a subgroup H of G corresponds to 
M =F(H). The degree of extension [L: M] is 

equal to the order of the corresponding sub- 
group H (in particular, [L: K] is the order 
of G), and [M: K] coincides with the index 

(G: H). If sublïelds M and M’ are konjugate 
over K, then the corresponding subgroups 

G(L/M) and G(L/M’) are conjugate to each 
other in G, and vice versa. In particular, M/K 

is a Galois extension if and only if the sub- 
group H corresponding to M is a +normal 

subgroup of G, and in this case, the Galois 
group G(M/K) is isomorphic to the factor 
group G/H. 

D. Extensions of a Ground Field 

Let L/K be a lïnite Galois extension, K’/K any 
extension, and L’ the tcomposite lïeld of L and 
K’. Then L’/K’ is also a Galois extension, and 
its Galois group is isomorphic to G(L/L n K’) 
by the restriction map. 

E. Normal Basis Theorem 

Let L/K be a lïnite Galois extension with 

Galois group G. Then there exists an element u 
of L such that {u”I ~EG} forms a basis for L 

over K called a normal basis. If we denote by 
K[G] the +group ring of G over K, a +K[G]- 
module structure cari be introduced in L by 
the operation C a,a(x) = Z a&‘; the existence 
of a normal basis implies that L is isomorphic 
to K[G] itself as a K[G]-module, or in other 
words, that the K-linear representation of G 
by means of L is equivalent to the tregular 
representation of G. 

F. Examples of Galois Extensions 

(1) Cyclotomic Fields. Let m be a positive 
integer not divisible by the tcharacteristic of K; 
1 a +Primitive mth root of unity, and L = K(c). 

Then L/K is an Abelian extension, and its 
Galois group is isomorphic to a subgroup of 
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the treduced residue class group (Z/mZ)*; 
in particular, if K = Q, the subgroup coin- 
cides with (Z/mZ)*, by the irreducibility of 
tcyclotomic polynomials. Hence the degree 
[Q(<):Q] is equal to q(m), where cp is +Euler’s 

function. 

(2) Finite Fields. A tfinite lïeld K has nonzero 
characteristic p, and the number q of elements 
of K is a power of p. Also, K is uniquely deter- 
mined by q (up to isomorphism), hence it is 
denoted by GF(q) or F,. Thus GF(q”) is the 
only extension of GF(q) of degree n; moreover, 

it is a cyclic extension. 

(3) Kummer Extensions. Assume that K con- 
tains a primitive mth root [ of unity and the 

characteristic of K is 0 or is not a divisor of m. 
Denote by K* the multiplicative group of K. 
An extension L of K cari be expressed in the 

form L = K(G, . . , fi) (air K) if and only if 
L/K is an Abelian extension and a11 e E G(L/K) 
satisfy frm = 1; in this case L/K is called a Kum- 
mer extension of exponent m. There exists a 

one-to-one correspondence between Kum- 
mer extension L of exponent m over K and 
lïnite subgroups H/(K*)” of the factor group 
K*/(K*)‘“, given by the relations H= L”‘n K*, 
L = K($?). Moreover, there exists a canon- 

ical isomorphism between H/(K*)“’ and the 
tcharacter group of G(L/K), SO that H/(K*)m is 
isomorphic to G(L/K). Let L= K(Q) be a cyclic 

Kummer extension of degree m of K, and let 0 
be a generator of the Galois group G(L/K). 
Then the Lagrange resolvent (6 fI) = 0 + [eu 
+ . . +yecm-’ satislïes ([, 0)+ = cm1 ([, O), 
([, Q)m~K, and B and its conjugates cari be 
expressed in terms of ([,6). In particular, L is 
generated by ([, 0) over K. 

(4) Artin-Schreier Extensions. Assume that K is 
of characteristic p # 0. For any element a of an 

extension of K, we denote by Ya the element 
ap-u and by (l/YP)a a root ofBX-a=O. 
A lïnite extension L of K is of the form L = 
K((l/B)a,,...,(l/~)a,.)(a,~K)ifandonlyif 
L/K is a Galois extension whose Galois group 
is an Abelian group of texponent p; in this 

case, L/K is called an Artin-Schreier extension. 
There exists a one-to-one correspondence 

between Artin-Schreier extensions L over K 
and lïnite subgroups HJPK of the additive 

group K/YK, given by the relations H = 
,YLClK, L=K((l/B)H); moreover, H/PK is 
isomorphic to the character group of G(L/K) 
(therefore also to G(L/K) itself). More gen- 
erally, for Abelian extensions L of exponent p” 
(i.e., Galois extensions whose Galois groups 

are Abelian groups of exponent p”), we obtain 
similar descriptions by using the additive 
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group of +Witt vectors of length n instead of 

K (- 449 Witt Vectors). 

G. Galois Group of an Equation 

L/K is a lïnite Galois extension if and only if L 
is a tminimal splitting tïeld of a tseparable 

polynomial f(X) in K [Xl. In this case, we cal1 
G(L/K) the Galois group of the polynomial 

f(X) or of the algebraic equation f(X) = 0. The 

equation f(X) = 0 is called an Abelian equa- 
tion or a cyclic equation if its Galois group is 
Abelian or cyclic, respectively, while f(X) = 0 is 

called a Galois equation if L is generated by 
any root of f(X) over K. Generally, G(L/K) 
cari be tfaithfully represented as a permutation 
group of roots of f(X) = 0. If this group is 
+Primitive, then f(X) = 0 is called a primi- 
tive equation. The index of the group in the 

group of a11 permutations of roots is called 
the affect of the equation f(X) = 0; if the affect 
is 1, the equation f(X)= 0 is called affect- 
less. Let ui, , u, be +algebraically indepen- 
dent elements over K. Then for the polyno- 

mialF,(X)=X”-u,X”-‘+...+(-l)“u,in 

K(M , , , un) [Xl, the equation F,,(X) =0 is 
called a general equation of degree n. The 
Galois group of F,(X) = 0 is isomorphic to the 
tsymmetric group G,, of degree n, and if K is 
not of characteristic 2, then the quadratic 
subfield corresponding to the talternating 
group 2l, is the field K(fi) obtained by 
adjoining the quadratic root of the tdiscrimi- 
nant D of F,,(X). 

H. Solvability of an Algebraic Equation 

Assume that K is of characteristic 0, ~(X)E 

K [Xl, and L is the minimal splitting tïeld of 
f(X). We say that the equation f(X) = 0 is 

solvable by radicals if there is a chain of sub- 
lïeldsK=L,cL,c...cL,.=LsuchthatLi= 
Li-l (&) with some ail Liml, and this is the 
case if and only if the Galois group of f(X) 
is tsolvable (Galois). In particular, Abelian 
equations are solvable by radicals. Cyclic 

equations are solved by using the Lagrange 
resolvent, and theoretically the general solv- 

able equation cari be solved by repeating this 
procedure. Since 6, is solvable if and only if 
n < 4, it follows that a general equation of de- 
gree n is solvable only if n = 1, 2, 3, 4 (Abel). 
(For a method of solving these equations 
- 10 Algebraic Equations D.) Also, a poly- 

nomial is solvable by square roots if and only 
if the order of the Galois group is a power of 
2. This fact enables us to answer some ques- 

tions concerning geometric construction prob- 

lems such as trisection of an angle or division 
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of a circumference in equal parts (- 179 
Geometric Construction). 

1. Infinite Galois Extensions 

If a Galois extension L/K is infinite, then its 

Galois group is an intïnite group. Let {MY} be 
the family of intermediate tïelds of L/K that 

are tïnite and normal over K, and put H, 
= G(L/M,). Then by taking {H,} as a +base of 
a neighborhood system of the unity element, G 

becomes a ttopological group. This topology is 
called the Krull topology (Krull, Math. Ann., 
100 (1928)). G is then isomorphic to the +Pro- 

jective limit of the family of tïnite groups 
JG/H} and is +totally disconnected and +com- 
pact. There is a one-to-one correspondence 
between the set of intermediate fields of L/K 
and the set of closed subgroups of G given by 
the map (Galois group)u(invariant field), and 

thus we have a generalization of Galois theory 
for lïnite extensions as described in Section C. 

Various theories, including the theory of Kum- 

mer extensions, cari be generalized to the case 
of inlïnite extensions (- 423 Topological 

Groups). 

J. Galois Cohomology 

Let L/K be a finite Galois extension and G its 

Galois group. Then both the additive group 
L and the multiplicative group L* have G- 

module structures. The tcohomology groups 
of G with coefficient module L are 0 for a11 
dimensions because of the existence of a 

normal basis (- 200 Homological Algebra). 
As for the multiplicative group L*, we have 
L?‘(G, L*) r K*/N(L*) (N is the tnorm N,,,), 
H ‘(G, L*) = 0 (Hilbert’s theorem 90 or the 
Hilbert-Speiser theorem). In particular, if G is a 
cyclic group with generator U, then every 
element a such that N(a) = 1 cari be expressed 
in the form a = b’ -“. H’(G, L*) is isomorphic 
to the +Brauer group of +Central simple alge- 
bras over K which have L as a tsplitting lïeld. 
In the case of number tïelds, a number of 
G-modules arise, such as +Principal orders, 

+Unit groups, +ideal groups, +idele groups, and 
SO on, whose cohomological considerations 
are important (- 6 Adeles and Ideles; 59 Class 
Field Theory). Further, let A be a group (not 
necessarily commutative), and suppose that G 
acts on A. We denote by “a the action of (TE G 
on a E A. A is called a G-group if “(ab) = baob 
for a11 a, bE A and cr E G. Then, in the same way 
as for G-modules, we cari detïne the 0th coho- 
mology group H”(G, A) to be the subgroup A’ 

of A consisting of a11 elements of A left fixed by 
G. The map a:g++a, from G into A such that 
a,, = aaba, (0, z E G) is called a 1 -cocycle with 
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values in A. Denote by Z’(G, A) the set of 
the 1-cocycles of G with values in A. Two l- 
cocycles a and a’ in ZI(G, A) are called co- 

homologous if there exists an element be A 
such that a; = b m’a,“b for a11 UE G. This is an 
equivalence relation in ZI(G, A) and the l- 
cohomology set H’(G, A) of G with values in 

A is delïned to be the set of cohomologous 
classes of Z’(G, A). H’(G, A) does not have the 

structure of a group in general, but there does 
exist an element called an identity, namely, the 
cohomologous class containing the trivial l- 
cocycle. In general, a set X with an element p 
of X is called a pointed set; for any two pointed 

sets (X, p) and (Y, q), a map f: X -, Y is called 
a morphism of pointed sets if f( p) = q. For 
pointed sets (X, p), (Y, q), and (Z, r), a sequence 

of morphisms XL YSZ of pointed sets is 
called exact if Imf = Ker g. The 1 -cohomology 
set H’(G, A) with the identity cari be regarded 
as a pointed set. Therefore, exact sequences of 
these sets make sense and possess some of the 
properties of cohomology groups in the com- 

mutative case. For example, let 1 -+A+B+ 
C-t 1 be an exact sequence of G-groups (and 
A is central in B); then 

H’(G,A)-H’(G,B)+H’(G,C) 

+H’(G, A)+H’(G,B)+H’(G,C) (+H2(G, A)) 

is an exact sequence of pointed sets. For 

a Galois extension L/K with Galois group 
G, a linear algebraic L-group delïned over 

K(- 13 Algebraic Groups) has naturally 
the structure of a G-group, and we have 
H’(G, GLJL)) = 0. Applying the above exact 
sequence to l-+SL,(L)+GL,(L)‘3L*+l, 

we have H’(G,SL,(L))=O. Also, we have 
H’(G,Sp,,(L))=O for any integer n> 1. It is 
diftïcult to delïne higher cohomology sets 

naturally, but various methods to defïne them 
have been obtained. 

In many cases, we are more concerned with 
the tcategory of Galois extensions of K with 
K-isomorphisms between them than with a 
single extension L/K. In other words, we con- 
sider a tfunctor L+s(L) of the category of 

Galois extensions of K into the category of 
(Abelian) groups, and study the cohomology 

related to G(L/K)-module or G(L/K)-group 
structures derived from g(L). In the case of 
inlïnite algebraic extensions, we consider the 

inductive limit of cohomology of subfields 
of lïnite degrees, making use of continuous 
cocycles of Galois groups relative to the Krull 
topo1ogy [S, 91. 

Let L/K be a Galois extension with Galois 
group G. Consider abjects X, Y delïned over K 

on which the extension of the ground fïeld is 

delïned (such as K-linear spaces with certain 
tensors on them, algebras over K (associative 
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or not), K-varieties, or K-algebraic groups 

defined over K). When X and Yare isomor- 
phic over L, Y is called a L/K-form of X. Let 
E(L/K, X) be the set of a11 isomorphism classes 

of X over L. Let A be the group of a11 auto- 
morphisms over L of X. For a L/K-form Y 
of X and an isomorphism f: X + Y over L, 
since G acts on X and Y, one cari define the 
isomorphism “f: X-r Y over L that satishes 
“(f(x)) = “f(“x). In particular, A is a G-group 

by this action. Further, for on G, delïne a, 
=f-‘.“feA, then U:~HU, is a 1-cocycle of G 
with values in A that corresponds to a L/K- 
form Y of X. This induces a bijection from 

E(L/K, X) onto H’(G, A). Thus L/K-forms 
of X cari be classifïed if one cari determine 
H’(G, A). For example, H’(G,Sp,,(L))=O is 
equivalent to saying that an L/K-form of a 
skew-symmetric bilinear form on a K-linear 
space of dimension 2n is unique up to K- 
isomorphisms. L/K-forms of a semisimple 
Lie algebra g over K cari be classified by the 
1-cohomology set of the algebraic group 
Aut(g 0 KL). (For the L/K-forms of algebraic 
groups - 13 Algebraic Groups M.) This de- 

scent theory cari also be discussed for more 
general categories. 

K. Galois Theory of Rings 

The theory of tcentralizers in simple algebras 
cari be interpreted as the theory of a certain 
Galois correspondence with respect to inner 
automorphism groups. Also, by using tcrossed 
products, we cari deduce from the theory of 
centralizers in simple algebras the Galois 
theory of commutative fïelds. On the other 
hand, Jacobson obtained a Galois theory of 

tdivision rings with respect to lïnite groups of 
outer automorphisms that is similar to the 
commutative case. Since then, many alge- 
braists have proceeded with investigations that 
aim either at unifying these two theories by 
admitting inner automorphisms in the group 

of automorphisms, at extending the theory 
from division rings to general rings such as 

simple rings, +Primitive rings, or tsemiprimary 
rings, or at weakening the lïniteness con- 
ditions. One principal method in these theories 

lies in considering fïrst the endomorphism ring 
Horn,@, S) for an extension SIR and then the 
roles of endomorphisms (or derivations) in it 
[6] (- 29 Associative Algebras). 

Let K be a lïeld of characteristic p > 0 and 
L/K be a lïnite purely inseparable extension 
such that LPc K. The set of a11 tderivations of 
L/K forms a restricted Lie algebra D(L/K) 
over K. Then there exists a one-to-one and 

dual lattice isomorphic correspondence be- 
tween the set of intermediate iïelds M of L/K 
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and the set of restricted Lie subalgebras H of 
D(L/K), given by the relations H = D(L/M) 
and M={a~LJd(a)=o, ~EH} (Jacobson [7]). 
Namely, in the case of purely inseparable ex- 
tensions, derivations or higher derivations play 
the role of automorphisms, and the bialge- 
bras defmed by such derivations correspond 
to Galois groups of Galois extension. Now, 

the group algebra KG of a group G over K 
and the (restricted) universal enveloping alge- 
bra of a (restricted) Lie algebra over K both 
have the structure of a tHopf algebra. From 
this fact, unifying the Galois theory of Galois 
extensions and Jacobson’s theory for purely 
inseparable extensions and using bialgebras 
or Hopf algebras, one cari construct Galois 
theories of more general abjects containing 
certain nonseparable field extensions (see M. 

E. Sweedler, Ann. Math., 87 and 88 (1968); S. 
U. Chase and Sweedler, Lecture notes in math. 
97, Springer, 1969). 
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Game Theory 

A. Introduction and Historical Highlights 

Game theory consists of mathematical models 

used in the study of decision making in situ- 
ations involving conflict and cooperation. A 

conflict arises when each player in a game 
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selects from a list of alternatives one which, 
possibly together with chance and random 
events, leads to various outcomes over which 

the players have different preferences; thus the 
behavior of one player aiming at his own 
favorable outcome might induce unfavorable 
outcomes for others. Although the potential 
outcomes usually bring about conflicts among 

the players, there may be room for cooper- 
ation among some of them. Game theory 
attempts to extract that which is common and 

essential to such situations, to handle them by 
means of mathematical methods, and to pro- 
vide a normative guide to rational behavior 
for each of the players. Game theory thus goes 

beyond classical theories of probability and 
dccision making that are sufhcient to solve 
games involving just one player and chance. 

Modern game theory started in 1944 with 
the publication of the monumental book by 

von Neumann and Morgenstern [ 11. These 
authors presented many logical classifications 
of games, including a distinction between two- 
person and n-person games, between constant- 
sum (zero-sum) and general-sum games (de- 
pending upon whether the sum of payoffs 
to the players is constant (zero) or not), and 
between noncooperative and cooperative games 
(depending upon whether any collaboration 

among the players is prohibited or allowed). 
The second edition included a remarkable 
expected utility theory, which has become a 

mainstay of game theory. Von Neumann and 
Morgernstern also gave three representations 
of games. The fïrst representation is the so- 
called extensive form; this representation has 
been slightly modifïed by Kuhn [2]. The sec- 
ond representation is the normal-form game; 
this is the form which the minimax theorem 
for two-person zero-sum games was estab- 
lished [3]. This theorem was generalized to n- 
person general-sum noncooperative games by 
Nash [4]. Finally, the characteristic-function 

form was the one in which the authors devel- 
oped the theory of stable sets. Several other 
solution concepts, such as the tore, the Shap- 

ley value, and the bargaining set, have since 
been delïned for games in characteristic- 
function form. Historically, the development of 

game theory has been closely related to vari- 
ous areas of pure mathematics, such as analy- 
sis, topology, geometry, and the foundations of 
mathematics. A survey of game theory up to 
1957 was presented by Luce and Raiffa [SI. 
In the 1950s and early 196Os, several major 

papers appeared in lïve issues of the Ann& of 
Mathematics Studies [6]. Lucas [7] has pre- 
sented a good survey of developments to 1972, 

and Shubik [S] has surveyed the development 
of the field through 198 1. Current articles 
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appear mainly in the International Journal 
of Game Theory, and also in the journals in 

fields such as operations research, manage- 
ment science, economics, political science, and 
psychology. 

B. The Extensive Form 

An n-person game in extensive form is repre- 

sented by a game ttree (i.e., a connected graph 
with no cycles (- 186 Graph Theory)) having 
the following properties: There is one special 
vertex corresponding to the starting point of 

the game. Each nonterminal vertex corre- 
sponds either to a move of one of the n players 
or to a chance move. The edges ascending from 
a vertex denote the alternatives of the player at 
this vertex. For each terminal vertex there is 
an n-dimensional vector whose components 
represent the payoffs to each player. The state 
of a player’s information at any stage cari be 

described by certain subsets of the set of a11 his 
vertices, called information sets. At each of his 
moves, player i knows which information set 

he is in, but not which vertex he occupies 
within this set. A local strategy for player i is a 
tprobability distribution over the set of a11 
alternatives at each of his information sets. A 
behavior strategy for player i is a function 
which assigns a local strategy to a11 of his 
information sets. A pure strategy is a special 

behavior strategy that assigns a particular 
choice to each information set. Kuhn [2] 
showed the existence of pure optimal strategies 
for n-person general-sum noncooperative 
games with Perfect information (ie., games in 

which a11 information sets contain a single 
vertex) as a generalization of the result for 
two-person zero-sum games given in [ 11). 
Kuhn also proved the existence of equilibrium 
behavior strategies for games with Perfect 
recall (i.e., games in which player i at any of his 
information sets remembers ah his prior moves 

but is not aware of the prior choices of the 
other players). The definition of “equilibrium 
strategy” is given in the next section. Because 
of the complexity of n-person general-sum 
games, research on them has been minimal 

since the work of Kuhn. Recently a new attack 
on them has begun; for example, the Nash 
equilibrium point in extensive forms has been 
reexamined by Selten [9]. 

C. The Normal Form (or Strategic Form) 

An n-person game in normal form is specitïed 

by {N, {Xi}isN, {Fi}iEN}, where N = { 1, . , n} 
is a set of players, Xi is the set of player i’s 

strategies, and F’ is a real-valued function on 
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the Cartesian product H:=i Xi, called player i’s 
payoff function. Chance is incorporated by 

invoking an extra set X0 of chance moves and 
a probability distribution on X0. A two-person 

zero-sum game or matrix game is the simplest 
case in which the existence of an equilibrium 

point has been established. Equilibrium fol- 
lows from von Neumann% minimax theorem: 
Let Ml={1 ,..., m,}, M’={l,..., m,} be the 
sets of pure strategies that may be chosen by 
two players. Let a, be player 1’s payoff when 
strategies i and j are taken by players 1 and 2. 

A mixed strategy for player i is a probability 
distribution on Mi. Sets of mixed strategies 
for players 1 and 2 are thus given by X1 = 

{~~R”~~C~~x~=l,x~~O~‘i~M’}andX~= 
{~~R~~~~~~~x~=1,x~>O~i~M~}.Ifplayers 
1 and 2 use the mixed strategies x1 and x2, 
respectively, the expected payoff for player 1 
is F’(x’,~~)=~~~~x~a~~x~, which is a pay- 

off function for player 1. Von Neumann [3] 
proved 

We say that a pair (Xi, X2) satisfying the 
foregoing minimax theorem is an equilibrium 
point. This pair (X1, X2) turns out to be a saddle 
point (- 292 Nonlinear Programming A) of 
F’(x’, x2). The duality theorem (- 255 Linear 

Programming B) is mathematically equivalent 
to this minimax theorem. A generalization of 

this equilibrium to n-person general-sum non- 
cooperative games was presented by Nash [4]. 
An n-tuple (X’, ,X”) (X’EX~) is a Nash equilib- 
rium if, for each i, 

F’(2, , xi-1,X’, 5?+1, . ,A”) 

>P(I?‘, ,A’-‘,x’,X’+‘, ,,-Y) for all xieXi. 

That is, no player cari improve his payoff by 
changing his strategy if a11 other players con- 
tinue to use the same strategies. Nash demon- 
strated the existence of this equilibrium for n- 
person general-sum noncooperative games 
with finite pure strategies. The existence of 
Nash equilibria for wider classes of nonco- 
operative games is proved by means of fixed- 

point theorems (- 153 Fixed-Point Theorems). 
Recently, multistage games, such as super- 
games and stochastic games in which games 

are played repeatedly, have become a major 
research topic of noncooperative game theory 

(with work being done on both extensive and 
normal forms). In two-person general-sum 

games or bimatrix games, there arise possibil- 
ities of cooperation (or bargaining) between 
two players. A solution concept for such situa- 
tions, the Nash bargaining solution, was pro- 

posed by Nash [lO]; this solution was sub- 

sequently discussed by Luce and Raiffa [S]. 
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D. The Characteristic-Function Form (or 
Coalitional Form) 

An n-person cooperative game in characteristic- 
function form is given by a pair (N, a), where N 
= { 1, , n} is a set of players and u is a real- 

valued function on a set of a11 subsets of N 
with v(a) = 0, called a characteristic function. 
Sometimes v is assumed to be superadditive, 
i.e., U(S U T) > v(S) + u(T) ‘SS, T5 N with S n 
T# 0. u(S) represents the worth or the power 
achievable by the subset (coalition) S when 
its members cooperate regardless of the be- 
havior(s) of the players in the complement of 
S. An n-dimensional vector x =(x i , , x,) is 

said to be an imputation if it satisfïes (i) x, > 
u( {i}) ‘iE N (individual rationality) and (ii) 
CitNxi= u(N) (group rationality). The set of a11 

imputations, denoted by A, represents a11 
reasonable or realizable ways of distributing 
the available gains among the n players. An 
imputation x is said to dominate another im- 
putation y if there is some nonempty coalition 
S such that (i) ~,>y, ‘iES and (ii) CiESxi< 
u(S) (the effectiveness of S with respect to x). 
The original solution concept for games in 

characteristic-function form given by von 
Neumann and Morgenstern [l] is now called 
the stable-set or von Neumann-Morgenstern 

solution. A subset K of A is a stable set if(i) 
no dominante relation exists between any 
two elements of K (interna1 stability) and (ii) 
any imputation outside K is dominated by 
some imputation of K (external stability). The 
existence of stable sets was settled negatively 
by the ten-person example of Lucas [Il]. This 
example, however, is rather specialized, and 
thus the existence of stable sets may yet be 
proved for a large class of games. Stable sets 

have been characterized for several classes 
of games, and these sets accurately reflect 

the coalition-forming processes among the 
players. Thus stable-set theory remains a ma- 
jor research topic in the theory of games in 
characteristic-function form. Many other 
solution concepts have been developed since 
that of the stable set. One of these is the tore, 
defined by Gillies in [6] (its naive idea had 

already appeared in [ 11). The tore is the set 
C={XEAI&.X~>U(S) !SZ N}. This says that 
no coalition cari protest against or block an 
imputation in the tore on grounds that the 
coalition cari expect more. For superadditive 

games the tore coincides with the set of un- 
dominated imputations, and thus the tore is a 
subset of any stable set if both exist. The con- 
dition for nonemptiness of the tore was de- 
rived by Shapley [ 121 using the duality theo- 
rem. Another solution concept, detïned by 

Shapley in [6], is known as the Shapley value. 

The Shapley value is a function <p(v) = (<p, (u), 
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, <p,(u)) sending an arbitrary characteristic 
function u on N into an n-dimensional Eucli- 

dean space satisfying the conditions (i) <p,Jrcu) 
= <pi(u), where 7~ is any permutation of N and 
~(~S)=U(S) ‘,SZ N; (ii) ~i,s<p,(u)=u(S) ‘,SZ N 

such that u(T)= U(S n T) “Tg N; and (iii) 
<~~(u+w)=<p~(u)+cp,(w) ‘iE N and for any two 
games u and w. These three axioms uniquely 
determine the value 

<p,(u)= c (S-lY(n--sY 

I MS)-u(S-{iJ)) 
SSN n! 

S3i 

for each i, where s is the number of players in 

S. The Shapley value is an imputation, and 
cari be viewed as a fair-division solution since 
the three axioms are desirable properties for 

any equitable allocation scheme. From the 
above formula, the Shapley value cari also be 
interpreted as the average of the marginal 
contributions of the players in a coalition. 
A bargaining-set concept was proposed by 
Aumann and Maschler in [6]. This set de- 
scribes what payoffs are stable once a partic- 
ular coalition structure (a +Partition of N) has 
formed. Briefly, a payoff associated with a 

coalition structure is stable or in a bargain- 
ing set if there is no objection to it from any 
player; or, even with an objection, if there 

exists a counterobjection to such an objection 
from other players. For details - [6]. Since 
there are many different ways to detïne objec- 

tion and counterobjection, there are various 
types of bargaining sets. Some of them are 

known to be nonempty. Two additional solu- 
tion concepts, the kernel and the nucleolus, 

derive from investigations into particular 
bargaining sets. The kernel, introduced by 
Davis and Maschler [ 133, is always a non- 
empty subset of its bargaining set. More impor- 

tant is the nucleolus defïned by Schmeidler 
[14], which is a unique imputation in the 
kernel and thus in the bargaining set. It is 
also in the tore if the latter is nonempty. The 
“excess” of any nonempty S 5 N for an imputa- 
tion x is deiïned by e(x, S) = u(S)- &xi. The 
excess represents the dissatisfaction or the 
complaint of the coalition S with respect to x. 
The nucleolus is the imputation which mini- 
mizes the largest excess. If we have a tie, i.e., 
if the maximum excess attains a minimum 

at several imputations, then the next largest 
excess is to be compared, and SO on. That 

is, the nucleolus is the tlexicographical mini- 
mum in the ordering of these arrangements. It 
cari be computed by solving a series of linear 
programs. 

Several generalizations and variations of 
the classical von Neumann-Morgenstern for- 

mulation of games in characteristic-function 
form have also been investigated, such as the 
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games without side payments studied by 
Aumann and others (- e.g., M. Shubik (ed.), 
Essays in Mathematical Economies: In honor of 

Oskar Morgenstern, Princeton Univ. Press, 

1967); the games in partition-function form 
proposed by Thrall and Lucas (R. M. Thrall, 

and W. F. Lucas, Naval Res. Logistics Quart., 

10 (1963), 281-298); and the games with in- 
finitely many players, in connection with which 

the Shapley value theory has become a major 
research topic [l S]. 

E. Applications; Related Areas of Mathematics 

Game theory has been applied to many fields, 
such as economics, political science, manage- 
ment science, operations research, information 

theory, and control theory, as well as to pure 
mathematics. Games in extensive form are 
now important tools for analyzing the effects 
of information, and thus for solving many 

decision problems with uncertainty. Non- 
cooperative games in normal form and Nash 
equilibria have been used in the study of many 
phenomena, including oligopolistic markets 
(Friedman [15]), bidding processes, electoral 
competition, resource allocation, and arms 

control. Cooperative games have been success- 
fully applied to economics, and the relation 
between the tore and competitive equilibria 
sheds further light on the theory of competi- 

tive economy. It is generally true that com- 
petitive equilibria are contained in the tore. 

Debreu and Scarf [ 163 demonstrated that 
if the number of players approach iniïnity 
in a certain manner, the tore shrinks to the 
set of competitive equilibria. By working in 
measure-theoretic terms, Aumann [ 171 was 
able to identify the tore with the set of com- 
petitive equilibria. It was also demonstrated 
by Aumann and Shapley [ 1 S] that the set of 
competitive equilibria (and hence also the 
tore) converges to the Shapley value under 

such formulations, provided certain conditions 
are satisfïed. Another major application of 
cooperative game theory has arisen ir, pc!itical 
science, wherein value-type sollltions, such as 

the Shapley value, are widely used as indices of 
the power of each participant in various voting 
situations. Major applications are to problems 
of cost allocation for public goods such as 
water resources [ 191, public transportation 
systems, and telephone systems; in such appli- 
cations the tore, the Shapley value, and the 
nucleolus have a11 been employed. The books 
[S, 20-221 are good references to the most 

recent applications of game theory. 
Game theory also has many close relations 

with various areas of pure mathematics. The 

following are typical examples. The study of 
certain types of games in extensive form has 
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increased our understanding of the axiom of 
choice (- 34 Axiom of Choice and Equiva- 
lents A) and other foundational questions. 
Nash equilibrium is closely related to tïxed- 
point theorems (- 153 Fixed-Point Theorems) 
and to separation theorems (- 89 Convex Sets 

A). Cooperative game theory also has many 
connections to functional analysis and to 
convex analysis. 

Finally, we mention that the study of dif- 
ferential games (- 108 Differential Games) is 
also highly developed and widely used in areas 
such as economics and control theory. 
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174 (XIV.4) 
Gamma Function 

A. The Gamma Function 

The function I(x) was defined by L. Euler 

(1729) as the inlïnite product 

Legendre later called it the gamma function or 
Euler’s integral of the second kind. The latter 
name is based on the fact that for positive real 

x, we have 

I-(x)= 
s 

Oc ë’t”-’ dt. 
0 

This function satistïes the functional relation 

I-(x+ l)=xI-(x), 

and hence for positive integral x, we have 
I(x + 1) =x!. C. F. Gauss denoted the function 
r(x + 1) by n(x) or x!, even when x is not a 
positive integer. The function x! is also called 
the factorial function. The gamma function 
cari also be delïned as the solution of the func- 

tional equation F(x + 1) = XT(x) satisfying the 
conditions 

r(i)= 1, lim r(x + 4 
-= 1. - r(ny 

Furthermore, we have 

1 -=xeCX m 1 +X 
r(x) 4 -1 

e-xin, 
n=1 n 

This expression is known as the Weierstrass 
canonical form. Here C is Euler’s constant 

C=lim l+i+...+l-logn 
r-rm ( n 1 

=0.57721566490153286060651209 . . . . 

which is conjectured to be ttranscendental, 

but as yet even its irrationality remains un- 
proved. However, it is known, that if C were 
rational, the numerator and the denominator 

would be integers of more than 30,000 digits 
(R. P. Brent, 1980). 

The numerical value of C was calculated 
by Adams (1878) to 260 decimal places, and 

recently it has been calculated to more than 
20,000 decimal places by means of an elec- 

tronic computer. Seven thousand digits have 
been computed by W. A. Beyer and M. S. 
Waterman (Math. Camp., 28 (1974)), and 

20,000 digits have been computed by Brent 
et al. (1980). 

I(x) is tholomorphic on the complex x- 
plane except at the points x = 0, -1, - 2, . , 
where it has simple tpoles. When Rex > 0, we 
have Hankel’s integral representation 

w= -& s (- t)x-‘e-‘dt, 
c 

x # integer, 

where the contour C lies in the complex plane 
tut along the positive real axis, starting at cc, 
going around the origin once counterclock- 

wise, and ending at cc again. 
Among various properties of this function 

(- Appendix A, Table 17.1), the following two 
formulas are especially useful for numerical 
calculations: Binet’s formula 

+2 
s 

m arc tan(t/x) dt 
e2”f-1 ' Rex>O, 

0 

and the tasymptotic expansion formula that 
holds when largxl <(rr/2)--6 (6>0), 

i0g r(x) - 1 ( > log 27c x-5 logx-x+- 
2 

+ f (-Y’B,, 

*=12n(2n- 1)x2”-’ 

(Stirling’s formula), where the B, are tBernou1li 

numbers. This last formula cari be rewritten as 

rtx + 1) =x! - xXemX&, 

which is used for large positive integers x. 
The integrals 

s 

ri 
em’txm’ dt, 

0 s 

00 
eë’t*-’ dt, Rex>O, 

A 

are known as the incomplete gamma functions 
and are used in statistics, the theory of molec- 
ular structure, and other fields. The texponen- 

tial integral and the terrer function (- 167 

Functions of Confluent Type D) are special 

cases of the incomplete gamma function. 
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B. Polygamma Functions 

The derivatives of the logarithm of the gamma 
function are named the digamma function (or 

psi function) tj(x) = d log r(x)/dx; the trigamma 
function $‘(x); the tetragamma function I/I”(X); 
the pentagamma function $Y(x), etc. These 
functions are called polygamma functions. In 

particular, $(x) is the solution of the functional 
equation 

$(x-t 1)-$(x)=1/x, $(l)= -c, 

lim(ti(x+n)-$(l+n))=O. 
n-cc 

C. The Beta Function 

Euler’s integral of the first kind 

s 

1 
B(x, Y) = t”-‘(1 -t)Y-‘dt, 

0 

Rex>O, Rey>O, 

is called the beta function and is an analytic 
function of two variables x, y. This function is 
related to the gamma function as follows: 

WWY) 
%Y)= r(x+y). 

If the Upper limit 1 in the integral is replaced 
by CI, the result is called the incomplete beta 
function B,(x, y). 
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175 (Xx1.26) 
Gauss, Carl Friedrich 

Carl Friedrich Gauss (April 30, 1777- 

February 23, 1855) was born into a poor 
family in Braunschweig, Germany. From 

childhood, Gauss showed genius in mathe- 

matics. He gained the favor of Grand Duke 
Wilhelm Ferdinand and under his sponsorship 
attended the University of Gottingen. In 1797, 

on proving the tfundamental theorem of alge- 
bra, he received his doctorate from the Univer- 
sity of Halle. From 1807 until his death, he 

was a professor and director of the Observa- 
tory at the University of Gottingen. 

On March 30, 1796, he made the discovery 
that it is possible to draw a 17-sided tregular 
polygon with ruler and compass, which moti- 
vated his decision to devote himself to mathe- 

matics. The publication of his Disquisitiones 

arithmeticae in 1801 opened an entirely new 
era in number theory. In pure mathematics, 
he did excellent research on tnon-Euclidean 

geometry, thypergeometric series, the theory of 
functions of a complex variable, and the whole 
theory of telliptic functions. 

In the field of applied mathematics he made 
outstanding contributions to astronomy, ge- 
odesy, and electromagnetism; he also studied 
the tmethod of least squares, the theory of 
surfaces (- 11 1 Differential Geometry of 
Curves and Surfaces), and the theory of tpo- 
tential. He considered perfection in papers for 
publication to be of utmost importance; thus 

his published works are few relative to his 
amount of research. However, the scope of his 
work cari be seen in his diary and letters, some 

of which are included in his complete works, 
comprising 12 volumes. He is generally consid- 
ered the greatest mathematician of the tïrst 
half of the 19th Century. 

References 

[1] C. F. Gauss, Werke I-XII, Konigliche 
Gesellschaft der Wissenschaften, Gottingen, 
186331933. 

[2] C. F. Gauss, Disquisitiones arithmeticae. 

German translation, Untersuchungen über 
hohere Arithmetik, Springer, 1889 (Chelsea, 
1965); English translation, Yale Univ. Press, 
1966. 
[3] F. Klein, Vorlesungen über die Entwick- 
lung der Mathematik im 19. Jahrhundert 1, II, 
Springer, 192661927 (Chelsea, 1956). 

176 (XVII.1 3) 
Gaussian Processes 

A. Gaussian Systems 

A system X = {X,(o) 1 ie A} of real-valued 
random variables on a probability space 
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(0, B, P) is said to be Gaussian, or X is a Gauss- 
ian system, if any fïnite linear combination 

of elements X, of X is a +Gaussian random 
variable. 

Any subsystem of a Gaussian system is 
again a Gaussian system. In particular, the 
joint distribution of (X, , X,, . , X,,) for any 
lïnite subsystem {Xj 1 1 <j < n} of a Gaussian 
system X is a multidimensional Gaussian 

distribution. This distribution is supported on 
the whole of R” or on a hyperplane (at most 
(n - l)-dimensional). Let mj be the expectation 

of Xi, and let V=( VJ be the (positive definite) 
tcovariance matrix of {Xj} given by 

&=E{(Xj-mj)(Xk-m,)}, l<j, k<n. 

Suppose that the rank of the matrix Vis r. 
Then the distribution of (X,, X,, _. , X,) is 
concentrated on an r-dimensional hyperplane 
of R”: 

m + VR”, m=(m,,m, ,..., m,). 

When V is nondegenerate, that is, when r = n, 
the distribution is supported by the whole of 
R” and has a density function of the form 

(2~)~““1 V1-‘/‘exp 
[ 

-$x-m)V-‘(x-m)’ , 1 
wherex=(x,,x,,...,x,)ER”, [VI and V-’ are 
the determinant and the inverse, respectively, 
of V, and where (x - rny denotes the (column) 
vector transpose to the (row) vector (x-m). 

The above expression is the general form of 
the density of an n-dimensional Gaussian 
distribution. The characteristic function C~(Z) of 

this distribution is given by 

&)=exp 
L 

i(m,z)-$Vz,z) , 
1 

z=(z1,z2 >..., z,&R”, 

where ( , ) denotes the inner product on R”. 
This distribution is denoted by N(m, V). If, in 
particular, m = 0 and if V is the identity matrix, 
then it is called the n-dimensional standard 

Gaussian distribution. 
For a general Gaussian system X = {X, 1 

1~ A} we are given the mean vector m, = 

E(X),), 3, E A, and the covariance matrix VA,, = 
E{(X,-m,)(X,-m,)}, Â, ~LEA, which is posi- 
tive defïnite; for any n 2 1, complex numbers 

il>%,...> S(“EC, and i,,Ã,, . . . . Â,EA, we have 

Conversely, given m,, AE A, and a positive 
definite V= ( F,,fl 11, p E A), there exists a Gaus- 
sian system X = {X, 1 Â E A}, the mean vector 

and the covariance matrix of which coin- 

cide with (ml) and V= (V,,,), respectively. If 
there exists another system X’ with the same 
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property as X, then X and X’ have the same 
distribution. 

A necessary and suff~cient condition for the 

X, in a Gaussian system to be independent is 
that Vi.,@ = 0 for every pair 1. #p. For a Gauss- 

ian system X = {X, ( n > l}, the +Convergence 
in probability of the sequence {X,} is equiv- 

alent to +Convergence in the mean square. 
The limit of the sequence in this case is again 
Gaussian in distribution. Also for this system, 

the talmost sure convergence of the sequence 
implies the convergence in mean square. 

There are many characterizations of Gauss- 
ian distributions and of Gaussian systems. 
(i) A necessary and sufficient condition for a 
distribution to be Gaussian is that cumulants 
(tsemi-invariants) yk of a11 orders exist and 
satisfy yk = 0 for a11 k > 3. (ii) Gaussian distri- 
butions have a self-reproducing property: If 
X and Y are independent Gaussian random 
variables, then their sum S = X + Y is also 

Gaussian. A converse to this property holds: If 
the sum is Gaussian, then, assuming that they 

are independent, X and Y are both Gaussian 
as well (P. Lévy, H. Cramér). (iii) If X, and X, 
are independent and if Y1 = aX, + bX, and 

Y, = cX, + dX, are also independent, then 
both X, and X, are Gaussian except for the 
trivial case b = c = 0 or a = d = 0. (iv) If for X 
and Y there exist ci independent of X and V 
independent of Y satisfying Y = aX + U, X = 
h Y + V for some constants a, b, then there are 

only three possibilities: (1) (X, Y) is Gaussian, 
(2) X and Y are independent, (3) there is an 

ailïne relation between X and Y. (v) Suppose 
that a distribution has a finite mean m and a 
density function of the form ,f(x -m). If the 
tmaximum likelihood estimate of the mean is 
always given by the arithmetic mean of the 
samples, then the distribution is Gaussian 
(C. F. Gauss). 

For any element X, of a Gaussian system X 
and for a subsystem X’ of X, the conditional 

expectation E(X,,B’) is the orthogonal projec- 
tion of X, onto X’, where B’ is the smallest o- 
tïeld with respect to which a11 the X,, in X’ are 

measurable and where X’ is the closed linear 
subspace of L’(Q P) spanned by X’. 

A system X = {X, 1 A. E A}, X, = (Xj , . . , Xi), 
of d-dimensional random variables is said 
to be Gaussian if the collection {Xj 1 AE A, 
1 < j < d} is Gaussian. 

B. Complex Gaussian Systems 

Let Z be a complex-valued random variable 
with mean m, and denote it in the form Z = 

X+iY+m,i=fl,X, Yreal.IfXand Y 

are independent and have the same Gaussian 
distribution with zero mean, then Z is called a 
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complex Gaussian random variable. A system 
Z = {ZA 1 AE A} of eomplex-valued random 
variables is said to be complex Gaussian if any 
lïnite linear combination C cjZAj, cj6 C, is 

complex Gaussian. A complex Gaussian sys- 
tem has properties similar to those of a Gaus- 

sian system discussed above. For instance, two 
complex Gaussian random variables are inde- 

pendent if and only if they are uncorrelated. 
Convergence properties are also similar. Fur- 
thermore, one cari delïne complex Gaussian 
systems consisting of higher-dimensional ran- 
dom variables. 

C. Gaussian Processes 

A real-valued stochastic process {Xt} is called 

a Gaussian process or a normal process if it 
forms a Gaussian system. If {X,} is a complex 
Gaussian system, it is called a complex Gauss- 

ian process. The most important example 
of a Gaussian process is +Brownian motion 
{B, 1 t > 0) with the properties E(B,) = 0 and 
E(B, - R,)’ = 1 t -si. There are several gener- 
alizations of this process, among them: (i) 
+Brownian motion with a d-dimensional time 
parameter, (ii) a +Wiener process with d- 
dimensional time parameter, which is a Gaus- 
sian system {X0 1 a = (a,, , ad), a11 aj > 0) with 

E(X,)=O and E(X,,X,,)=n,min{ut,aj2}, 
ai=(af / . . . , u;,, i = 1, 2. 

Since a multidimensional Gaussian distri- 

bution is completely determined by its tmean 
vector and the tcovariance matrix, a Gaussian 
process is strongly stationary if it is weakly 
stationary (- 395 Stationary Processes); and 

such a process is called a stationary Gaussian 
process. The mean value m and the spectral 

measure F(dÂ) are associated with a weakly 
stationary process. The measure F(dÂ) is sym- 
metric with respect to the origin since each X, 

is real-valued. Conversely, given such F(dA) 
and m, we cari construct a real weakly station- 
ary process {X,} with mean value m and spec- 

tral measure F(dA). Generally, such a process 
{X,} is not determined uniquely; however, if 
{X,} is Gaussian, then there exists only one 
stationary Gaussian process with given m and 
F(dl). In view of this fact, stationary Gaussian 
processes cari be regarded as being typical 
among weakly stationary processes. 

The discussions SO far on stationary Gauss- 
ian processes are generalized to the case of 

stationary complex Gaussian processes, for 
which symmetry of F(dA) need not be assumed. 
The trandom measure {M(A)} in the +Spectral 

decomposition of a complex Gaussian process 
{Xt} again forms a complex Gaussian system. 
Weakly stationary Gaussian random distri- 
butions cari also be introduced. 
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D. Wbite Noise and Gaussian Random 
Distributions 

A real-valued weakly stationary process with 
discrete parameter is called a white noise if the 
mean m = 0 and the tcovariance function p(t) 
= 1 (t = 0); = 0 (t # 0). Obviously the +Spectral 
measure F(dÂ) is the tlebesgue measure dÂ. 

In the continuous parameter case, a weakly 
stationary random distribution (- 407 Sto- 
chastic Processes C) is called a white noise if m 
= 0 and p = 6 (S is +Dirac’s delta function: 6((p) 
= q(O)). The spectral measure is, therefore, 
the Lebesgue measure. In both cases Gauss- 
ian white noise {X,} or {X,} is determined 
uniquely. It has independent values at every 

point in the following sense: In the discrete 
parameter case, Xcl, XI1, . , X,” are mutually 
independent for any mutually distinct t i, 

t,, . . , t,. For a continuous parameter Gauss- 
ian white noise, often called simply white 
noise if no confusion occurs, X,,, XV*, ,X,” 
are mutually independent if the supports of 
<pl, (p2, . , <P” are disjoint. In the latter case 
Gaussian white noise is realized by taking the 
derivative of a Brownian motion. The tcharac- 
teristic functional c(q) is given by 

44 = exp L 1 +Il2 3 
where 11 I/ is the L’(R’)-norm. 

Characteristic functionals of general Gauss- 

ian random distributions are expressed in the 
form 

c(<p)=exp [ im(v)-iK(v,ql , 1 
where m is the mean functional and K is the 

covariance functional. 

E. Representations of Gaussian Processes 

The family of tstochastic integrals X, = 
jiF(t,u)dB,, t>a(t>aifa= --CO), based 

on Brownian motion, delïnes a Gaussian 
process {X, 1 t 2 a}. The converse problem 
is, however, not obvious. Given a Gaussian 
process {X, 1 t > a} with E(X,) = 0, the problem 

is to lïnd a Brownian motion {i?,} and a kernel 
F that give a representation of the above form 
(P. Lévy [lO]). A more specilïc problem dis- 
cussed below is important. If, in addition, the 
representation is formed in such a way that 

B,(X) = B,(B) holds for every t, then the repre- 
sentation is called canonical, where B,(X) is the 
smallest o-lïeld with respect to which a11 the 

X,, s < t, are measurable. The canonical repre- 
sentation, if it exists, is unique up to equiva- 
lente, i.e., F(t, u)’ is unique. The existence of 
the canonical representation is, however, not 
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always guaranteed. Mean continuous, zero 
mean, purely nondeterministic stationary 
Gaussian processes have tbackward moving 
average representations, which are nothing but 

the canonical representations. Once the canon- 
ical representation of {X!} is obtained, the 
kernel, together with known properties of {B,}, 

tells us important properties of the given pro- 
cess, e.g., sample function properties, Markov 
properties, and SO forth. 

Let {X, 1 t > u} be a general Gaussian process 
with E(X,) = 0, and let M,(X) be the subspace 
of L’(R, P) spanned by the X,, s < t. Assume 
that (i) {X,} is separable, i.e., M,(X) is sepa- 
rable and (ii) {XI} is purely nondeterministic 
in the sense that n,M,(X)= {O}. Then X, is 

expressed as a sum of stochastic integrals: 

x,=x &4)dB;, s j <I 
where the {Bi}, j = 1,2, . , N (N cari be CO), 
are mutually independent tadditive Gaussian 
processes. In addition, the B’, cari be taken in 
such a way that the measures du’(u) = E(dBj,)‘, 
j=1,2 , . , N is decreasing in j (i.e., du’ » 
du’» . ..) and that B,(X)=VjB,(Bj) holds for 
every t. Such a representation is called a gen- 

eralized canonical representation of {Xc} [3]. It 
always exists under the above assumptions (i) 
and (ii), although it is not unique when N > 2. 

The number N, called the multiplicity of {X,}, 
is independent of the choice of a generalized 

canonical representation. It is a good question 
to ask when {Xc} has a simple unit multiplicity 
or when {Xc} has the canonical representation. 
No interesting answer to this question has 
been given SO far except for stationary Gauss- 
isn processes. 

F. Gaussian Markov Properties 

A tsimple Markov Gaussian process {X, 1 t > a} 

has the canonical representation if it is sepa- 
rable and purely nondeterministic and if its 
covariance function never vanishes. It is of the 
form 

f(t)#O, [‘g(u)‘dufO for t>a. 
Jll 

A generalization of the simple Markov prop- 
erty of a Gaussian process is given in the 

following manner (suggested by P. Lévy [ 101). 
If the tconditional expectations E(XJB,(X)), 

for any choice of distinct t 1, t,, . , t,+j > t 
(j > 0) span an N-dimensional subspace of 
L*(R, P), then the process {X,} is called an N- 

ple Markov Gaussian process. If the canonical 
representation of an N-ple Markov Gaussian 

process exists, then it is expressed in the form 

Xr= t J(t) s ‘gj(u)dBu, j=l o 
where det(fj(ti)) never vanishes for any choice 
of distinct ti (> a), 1 < id N, and where the 

g, are linearly independent vectors in L*([a, t]) 
for any t > a. Conversely, a Gaussian process 
given by the above expression is N-ple Mar- 
kov. A stationary N-ple Markov Gaussian 
process has a ?Spectral density function f(Â) of 
a specific form, namely, it is expressed in the 
form [3] 

f(Â) = IQ(u)/P(iÂ)l’; P, Q polynomials, 

degP=N and degQ<N 

(rational spectral density function). Y. Okabe 

[ 141 proved that the roots of P(x) = 0 are a11 
real, and introduced a multiple Markov prop- 
erty of a stationary Gaussian process {Xt} in 
a much wider sense to prove that {Xc} enjoys 
this property if and only if it has a rational 
spectral density. 

A somewhat restricted definition of multiple 
Markov properties for a Gaussian process 
uses differential operators. Assume that X, is 

(N - 1)-times differentiable with respect to the 
L*(R, P)-norm. If there is an Nth order dif- 
ferential operator L = Cf=, ak(t)DNmk with 

D=dJdt such that 

LX, = B,, fi, = dB,/dt white noise, 

then {X,} is called an N-pie Markov Gaussian 
process in the restricted sense. Such a process is 
naturally N-ple Markov, and the canonical 
representation always exists. The kernel of the 
representation is the tRiemann function of the 
differential operator L that was used in the 
definition. The spectral density function corre- 

sponding to this process is of restricted form, 
namely, it is expressed in the form l/lP(U)[*, 
where P is a polynomial of degree N, and 

P(U) = 0 has no root in the lower half-plane. 
Many attempts have been made to defïne 

a Markov property of a Gaussian random 
field, namely, a Gaussian system with a multi- 
dimensional time parameter; however, only 
two signifïcant approaches are mentioned here. 
Let {Xa 1 a E Rd} be a Gaussian random fïeld 

with d-dimensional time parameter. H. P. 
McKean [ 121 gave a Markov property in the 
following manner. Let 9” be the o-fïeld gen- 
erated by the X,, x E U, U( c Rd) open. For 

a closed set C, we set gc = na pc,, where C, is 
the &-neighbourhood of C. If, for any open 
set U, &, and & become independent under 
the assumption that & is known, then {X0} 

is called a Markov Gaussian random field in 
the McKean sense. It has been proved that 

a Brownian motion with d-dimensional time 
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parameter is Markov in this sense if d is odd, 
while it is not Markov if d is even. Further 

detailed investigations of Markov properties 

for Gaussian random lïelds have been given 
by L. Pitt, S. Kotani, Y. Okabe [17], and 

others. 
Another deiïnition of Markov properties 

of Gaussian trandom tïelds, in fact those of 
Gaussian random distributions, has been given 
by E. Nelson [ 131 in connection with Eucli- 
dean tïelds (invariant under Euclidean mo- 

tion) in quantum theory. Let X, be a Gauss- 
ian random field. For a smooth surface F in 
Rd let Pr be the a-field generated by X,, @ = 
11/ @ 6(n), $ being a smooth function with 
compact support and n being normal to I. If 

9j and 9Dc become independent under the 
assumption that Fr, F = ao, is given, then 
{X,} is called a Markov Gaussian random 
field in the Nelson sense. Given a Gaussian 
Euclidean tïeld which is Markov in the Nelson 
sense, then under some reasonable assump- 
tions, one cari form a Iïeld (in the sense of 

tquantum tïeld theory) satisfying the tWight- 
man axiom by changing imaginary time to 

real time. 

G. Sample Function Properties 

Some lïner results about the smoothness of 
sample functions have been obtained for station. 
ary Gaussian processes. G. A. Hunt proved that 
if the spectral measure F(dl) of a stationary 
Gaussian process {X,} has finite moment of 
order a, then almost a11 its sample functions 

satisfy the following tHolder condition of 
order c( [S]: For every lïnite interval 1 and 
every constant C, there exists a sufficiently 
small h, = h,(Z, C) such that 

for any tu 1 and lhl ch,. The following result i 
due to Yu. K. Belyaev: Sample functions of a 
stationary Gaussian process are with proba- 
bility 1 either continuous or unbounded on 
every tïnite interval. 

Other conditions for continuity of sample 
functions are given in terms of the tcovariance 
function. Let U(S, t) be the covariance func- 
tion of a Gaussian process {X, 1 t E [O, l] }. If v 

satislïes 

l~~~~,~~-v~S*,t)l~CIS~-S*I” 

(O<a<l, v(O,s)=O, S,,S,E[O,l]), 

P limsup 
( 

IX,, -x*,1 
alo,ltl-tll~sI~,-~,l=‘2110glt,-t*l11’2 

qc1/=/51= = 
> 

where c, is a constant. This result is due to Z. 
Ciesielski. 

Conditions for continuity of sample func- 

tions have also been given for Gaussian pro- 
cesses with multidimensional time. parameters. 

For {X*l te[O, l]“}, set d(s, t)=E[(XS-X,)Z]1’2. 
If there exists a function cp monotone increas- 
ing on some interval 0 < u < CI such that 

where /I 11 is the metric in R”, and such that 

s 

+Zl 
<p(e-“*)dx< 00, 

then almost a11 sample functions are continu- 
ous (X. Fernique [2]). Conversely, if there 
exists a monotone increasing function cp satis- 

fying d(s, t)= cp( 11s - tll) and if sample functions 
are continuous with positive probability, then 
the above integral should be tïnite. 

Suppose that {X,} is a stationary Gaussian 
tïeld. R. M. Dudley [ 1 l] proved that if there 
exists a number q > 1 and a neighborhood 
V= V(0) in R” such that 

where N( V, E) is the minimum number of E- 
balls (relative to the metric d) that caver V, 

then almost a11 sample lïelds of {X,} are con- 
tinuous, and Fernique Cl83 proved that the 
converse statement is also true. Thus the 
problem of continuity of the sample fields of 
stationary Gaussian lïelds has been completely 
solved. 

H. Gaussian Measures 

Let {Xt, tE T}, T an interval, be a Gaussian 
process. It gives a probability distribution on 

the measurable space (R“, B), where &J is the 
<r-field of Bore1 subsets of RT. Such a mea- 
sure P is called a Gaussian measure. Let P’, 
i = 1, 2, be Gaussian measures induced by 

Gaussian processes {Xi, t E T}, i = 1,2, respec- 
tively. Then for these measures concepts such 

as tabsolute continuity, tequivalence, and 
tsingularity are introduced in the usual man- 

ner. The most signilïcant property for Gauss- 
ian measures is that two measures P’ and P2 
are either equivalent or singular. A powerful 

criterion for testing this dichotomy is the 
tentropy of P2 with respect to P’, given by 

H(P2 1 P’) = supc 
d i 

where the sup is taken over a11 finite parti- 

tions m={Al, . . . . A,}, A,E&?, UAi=RT (Yu. 
A. Rozanov [15]). The measures P’ and P2 

are equivalent (resp. singular) if and only if 
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H(P’ 1 Pi) < CU (resp. = CO). This statement cari 
be paraphrased in terms of the Hilbert spaces 

H(X’), i= 1, 2, spanned by {Xi}, i= 1, 2, respec- 
tively. For simplicity, assume that E(X1) =O. 
Then, P’ and P* are equivalent if and only if 

the following two conditions hold: (i) A map- 
ping A determined by AX: = X: is extended 

to an invertible linear transformation from 
H(X’) to H(X’); (ii) There exists a symmetric 

operator B of +Hilbert-Schmidt type such that 

(AS, 41, = (U- BE, dl, where (5, rh= E(t%) is 
the inner product in H(X’). Next, suppose that 
{Xi], i= 1, 2, are not centered. Set E(Xi)=mf, 
i= 1,2. Then Pi and P2 are equivalent if and 

only if {Xj} with Xi = X,i - mf satisfy the fol- 
lowing condition: (iii) in addition to conditions 
(i) and (ii) above, there exists an element &, in 
H(X’) such that rn: -mf =E[&,X:], tu T. 

Given equivalent Gaussian measures P’ 

and P2 on (RT, 93) T= [0, t,], it is in general 
not easy to obtain the +Radon-Nikodym de- 

rivative; however, if one of them, say P’, is the 
+Wiener measure, then one cari obtain <p = 
dP’/dP’ explicitly (M. Hitsuda [4]). Assume 
that P2 is derived from {XC}. By assumption, 
X, has the tcanonical representation 

f 
X,=B,- 

sis 

s 
QS, u) dB, + a(s) 

0 0 1 
ds, tET, 

where {B,} is the +Brownian motion from 
which P’ is assumed to be derived and where 
IEL~(T~), ~EL’(T). With this notation, we cari 

Write 

QS, u)dB, + a(s) dB, 

1 to s 

--s (S 

2 

2, 0 l(s,u)dB,+a(s) > 1 ds 

This result yields a remark about general 
Gaussian measures: If P’ and P2 are equiva- 
lent, {X:, t E T} has a canonical representation 
if and only if {X:, t E T} does. 

1. Nonlinear Functionals 

Start with nonlinear functionals of a Brownian 
motion {B,, t E R’ }, and cal1 them Brownian 
functionals. If {(in} is a complete orthonormal 

system in L2(R1), then the collection {Xn= 
l <p,(u)dB,} of tstochastic integrals forms a 
Gaussian system of independent standard 
Gaussian random variables. A Fourier- 
Hermite polynomial based on { cp,} is a poly- 
nomial in X, expressible as a fïnite product in 

the form 

CH Hn,(Xj/$), c a constant. 
i 

The sum n = C nj is the degree of this polyno- 
mial. If n > 0, its mean is zero and the variante 

is [cl2 nj(nj! 2”~). Taking c to be nj(,! 2”j))1/2, 

the collection of a11 Fourier-Hermite polyno- 
mials based on {cp,} forms a complete ortho- 
normal system in the Hilbert space (L’) con- 

sisting of all Brownian functionals with fïnite 
variante. Denote by ,g” the subspace of (L’) 

spanned by a11 the Fourier-Hermite polyno- 
mials of degree n. Then the Hilbert space (L2) 
admits a direct-sum decomposition: 

which is called the Wiener-Itô decomposition 

[7]. The subspace &?n is eventually indepen- 
dent of the choice of a complete orthonormal 

system { cp,}. A member X of 2” is referred to 
as a multiple Wiener integral of degree n and is 
expressed in the form 

X= 
SS 

f(s,,s, ,..., s,)dB,,dB, *,.. dB,, ” 
R” 

where f is a symmetric L2(R”)-function. In ad- 
dition, E(X2)=n! IlfIl’, /) 11 being the L2(R”)- 

norm. 
Brownian functionals cari be expressed as 

functionals of white noise, SO that the Hilbert 

space L2(p) is viewed as a realization of (L2), 
where p is the probability distribution of the 
Gaussian white noise introduced in Section D. 

Nonlinear functionals of a general Gaussian 
process cari be dealt with in a similar but 
somewhat more complicated manner. If the 
process has a canonical representation, then 
the functionals cari easily be rewritten as 
Brownian functionals. 

J. Applications to Prediction Theory 

If a Gaussian process {X, 1 t 3 a} has the canon- 
ical representation 

X,= ‘F(t,u)dB., 
s LI 

then the best tpredictor E(X,/B,(X)), s < t, is 

given by 

s 

s 
F(t, u)dB,. 

a 

This is in agreement with the best tlinear 
predictor. 

No systematic approach for nonlinear pre- 

diction theory has been established SO far. We 
illustrate this theory only in a typical case that 

arises from a stationary Gaussian process. Let 
{X,} be a real-valued stationary Gaussian 
process. Without loss of generality, we cari as- 
sume that E(X,) = 0. We consider the continu- 

ous parameter case, since the discrete param- 
eter case is easier and cari be inferred from it. 

Let M,(X) be the subspace of L2@, P) de- 
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tïned in the same way as in Section E, and let 
L, = L’(a, B,(X)). If the process is purely non- 

deterministic in the sense that n, M,(X) = {0}, 
then X, has the backward moving average 
representation 

where {Bt} is a Brownian motion. Further- 
more, this representation is canonical, i.e., 
B,(X) = B,(B). Since B is assumed to be Vt$, 
every Y in (L’) cari be expressed in the form 

, s,)dB,,dBs2.. dBsp, 

in terms of multiple Wiener integrals. The 
predictor of Y based on the known values 
X,, s < 0, that is, the projection of Y on L, is 
given by truncating the domain of the integral 
as 

. . . . s,)dB,,dBs2. dBsp. 

K. Extrapolation and Interpolation 

Extrapolation of a stationary Gaussian pro- 

cess is used to fmd the best estimate of the 
unknown values of a given process when we 
have been given the only some of the past 
values of the process. M. G. Kreïn [S] ob- 
tained some results by using the theory of the 
inverse spectral problem discussed by 1. M. 

Gel’fand and B. Levitan. 
In contrast to extrapolation is the interpola- 

tion of a stationary Gaussian process. There 
is an important contribution to this prob- 
lem by H. Dym and H. P. McKean [l] who 
developed the Kreïn theory by applying the 

de Branges method to the theory of entire 
functions. 
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A. General Remarks 

A power series y(t) = En=,, a,t” in t that con- 

verges in a certain neighborhood of t = 0 de- 
fines the sequence of numbers {a,}. The func- 

tion g(t) is called the generating function of 
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the sequence. Similarly, the series K(x, t) = 
C~of.(x)t” that is convergent for x and t 
in a certain domain in (x, t)-space is called the 
generating function of the sequence of func- 
tions {f”(x)}. Sometimes the function g(t)= 
C~,(a,/n!)t” is called the exponential generat- 
ing function of the sequence {a,). For exam- 

ple, the generating functions of the tbinomial 
coefficients and ilegendre polynomials 
are (1 + g and (1 - 2tx + t’)-“‘, respectively. 

When a generating function of {a,> or {f.(x)} 
is given, we cari obtain a, or f,(x) by integral 
expressions; for example, in the latter case we 
have 

where the contour C is a suflïciently small 
circle going counterclockwise around the 
origin. A generating function cari be continued 
beyond the domain of convergence of the 

power series. Simple generating functions are 
known for many important orthogonal sys- 

tems of functions (- 3 17 Orthogonal Func- 
tions). Generating functions are widely used 
because they enable us to derive analytically 

the properties of sequences of numbers or 
functions. For a system of numbers or func- 
tions depending on a continuous parameter 
instead of the integral parameter n, we deîïne 
the generating function in the form of a tLa- 
place or +Fourier transform. In particular, 
for a probability tdistribution function F(x), 

the exponential generating function f(t) = 
jYm eëfXdF(x) for the moments {a,} of F(x) 
is called the moment-generating function of 
F(x). There is another kind of generating func- 
tion for the sequence a,: C a,nP in the form 
of +Dirichlet series; it is frequently used in 

number-theoretic problems. 

B. Bernoulli Polynomials 

A system of polynomials 

is delïned by the generating function 

B,(x) is called the Bernoulli polynomial of 

degree n. Since Bk(0) is the coefficient of 
tk/k! in 

we have B,(O)= 1, B,(O)= -1/2, f?*(O)= 1/6, . . . . 

B,,+,(0)=0forn~1;and(-1)“~‘B,,(0)>0for 
n > 1. The nth Bernoulli number B, (- Ap- 

pendix B, Table 3) is usually delïned by IBJO)l. 

Sometimes other delïnitions, such as B, = B,(O) 

or B, = BZn(0), are used. Bernoulli polynomials 

satisfy the relations 

B,(x+ l)-B,(x)=nx”-‘, 

dB,(x)/dx = nB,m,(x), 

which are used in tinterpolation. For example, 
a polynomial solution of the tdifference equa- 

tion f(x + 1) -f(x) = ZF=, a,x” is given by 

f(x) = En=, a,B,+1 (x)/(n + 1) + (arbitrary con- 
stant). In particular, we have 1” + 2” + + p”= 

(B,+,(P+~)-B,+,(l))/(n+l). 

C. Euler Polynomials 

A system of polynomials 

En(x)=kzo ; akXn-k 

0 

is defined by the generating function 

We cal1 E,(x) the Euler polynomial of degree n. 
Here ak is defïned by ak = Ek(0) and 

sothatwehavea,=l,a,=-1/2,a,=1/4,...; 
a Zn = 0 for n 2 1. The nth Euler number is 
sometimes taken as un, but more often it is 

detïned by 

En=(-1)” C 2’ n au, 
p=0 0 P 

i.e., by 

2 
-=sechx= 5 (-1)“:~’ 
ex + eëx fi=0 

(- Appendix B, Table 3). Al1 the E, are inte- 
gers, E,,+,=O (m=O, 1, . ..) and E,,>O(m= 
0, 1, ); in the decimal expressions for E, the 
last digit is 5 for Eh,,, (m> 1) and 1 for Edrn+* 

(m>O). Sometimes E,, is denoted by E,. We 
have the relations 

n E,x” 
secx= 1 ~ 

n=O n! ’ 

E,(x) + E,(x + 1) = 2x”, 

E,(l -x)=(-l)“E,(x), 

dE,Sx) -=nE,-,(x), 
dx 

and in particular, 

-l”+2”-3”+4”-...+(-1)Pp” 

=((-lY’Eh+ l)-L(l))P. 
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D. Application to Combinatorics 

. Let p(n) denote the number of ways of dividing 

n similar abjects into nonempty class. This 
is called the number of partitions of n. Euler 
noticed that the following formula is valid for 
the generating function of p(n): 

l+fp(n)x”= fi(l-x’) r 1 
-1 

, 
n=1 Ln=1 J 

whence we obtain p(n)=p(n- l)+p(n-2)- 
p(n-5)-p(n-7)+p(n-12)+p(n-15)-...= 
Z&(-l)k-1[p(n-(3k2-k)/2)+p(n-(3k2+ 
k)/2)] (- 328 Partitions of Numbers). Let 
B(n) denote the number of ways of dividing n 
completely dissimilar abjects into nonempty 
classes. These are called Bell numbers. The 

fïrst few are 1, 1, 2, 5, 15, 52, 203, 877,4140, 
21147, . . [2]. For this sequence with B(O)= 1, 
the forma1 generating function CE,, B(n)x” 
does not converge except at x = 0. However, 

the exponential generating function g(x) = 
X:0 B(ri)(n!)-‘x” is convergent for a11 complex 
numbers x and is equal to eex-‘. The differen- 

tial equation g’ = e”g gives rise to a recursive 
formula 

B(k). 
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A. General Remarks 

In the study of global differential geometry, 
geodesics play an essential role because the 
behavior of geodesics on a complete Riemann- 
ian m-manifold (m 2 2) M without boundary 
heavily influences its topological structure. A 

signifïcant merit of using geodesics is that one 
cari make elementary and intuitive observa- 
tions on M (as in Euclidean geometry), which 
often yields fruitful results. 

Riemannian structure induces in a natural 
way a distance function d on M, and hence M 
is a metric space. A smooth curve y of constant 
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speed is by detïnition a geodesic if and only if 
every point on y is contained in a nontrivial 
subarc whose length realizes the distance be- 

tween its endpoints. M is equipped with the 
Levi-Civita connection V (- 80 Connections) 
by means of which a geodesic is characterized 
as an autoparallel curve. In local coordinates, 

y is obtained as a solution of an ordinary 
differential equation of order two (- 80 Con- 
nections L). It follows from the properties of 
solutions of the equation for geodesics that 
every point PE M has a neighborhood in which 
every two points cari be joined by a unique 
shortest geodesic that depends smoothly on 
both of the endpoints. A classical result of J. 
H. C. Whitehead (Quart. J. Math., 3 (1932)) 

states that every point PE M has a metric bal1 
B centered at p such that every two points in B 
are joined by a unique shortest geodesic whose 
image is contained in B. Let M, be the tangent 
space to M at p, and let fi,c M, be the set 

of a11 vectors u E M, such that the solution of 
geodesic y with initial condition y(0) = p, y(O) = 
u is well defined on [0, 11. fi, contains an 
open neighborhood of the origin and is tstar- 
shaped with respect to the origin. The ex- 

ponential mapping exp,: fi,- M is defined to 
be exp, v = y( 1). This mapping exp, is smooth 
and has the maximal rank at the origin. Small 
balls around p are obtained as the image 
under the exponential mapping of the corre- 

sponding halls in fiD centered at the origin, 
and the restriction of exp, to these halls are 
diffeomorphisms. Thus the topology of M as a 
metric space is equivalent to the original one 
of M. The fundamental Hopf-Rinow theorem 

(Comment. Math. He/u., 3 (1931)) states that (1) 
M is complete as a metric space if and only if 

ap= M, for some PE M; (2) M is complete if 
and only if every closed metric bal1 is compact; 
and (3) if M is complete, then every two points 
cari be joined by a shortest geodesic, namely, a 
geodesic with length realizing the distance 
between the endpoints. 

In the following discussion M is assumed to 

be connected, complete, and without boundary. 
Let y : [0, l] -t M be a geodesic. A piecewise 
smooth 1-parameter variation 1/ along y is a 
continuous mapping T/: [0, l] x (-E, E)+M 
withatïnitepartitionO=t,<t,<...<t,=l 

such that VJ [ti, ti+l] x (-F, E) is smooth and 
v(t, 0) = y(t) for all t E [0, 11. Then the fïrst and 
second variation formulas for V are 

L’(O)= < y> Y) l OIW 

and 

L”(0) = i 
i=l 

((Y, Yi’)-<Wi,1%4 Yi))dt 

+<V,,,yi>T9l:j-, Ii L(Y)? 
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respectively, where y(t) = 8 v(t, s)/& 1 s=0 for 
te [tirnI, ti] is the variation vector iïeld as- 

sociated with 1/1 [timl, ti] x (-6, E), L(s) is the 
length of the variation curve t+ V(t, s), and 
c = Vy x and R is the curvature tensor. 

A smooth vector field J along a geodesic 
y : [O, l] +M is called a Jacobi tïeld if and only 
if it satisfies Y’ + R(J, j)f = 0. The set of a11 
Jacobi fïelds along y forms a vector space iso- 
morphic to M,(,, x MYo, by the natural corre- 

spondence &Q(O), J’(O)). Every Jacobi fïeld 
is associated with a 1-parameter geodesic varia- 
tion I’ along y. Namely, every variation curve 
of V is a geodesic, V is smooth, and J(t) = 
3 V(t, S)/as 1 S=. for a11 tE [O, 11. Conversely, 
the variation vector fïeld of any 1-parameter 
geodesic variation V along y is a Jacobi field. 
Especially, if A is a tangent vector to M, at 
y(O), then d(exp&,, A = J( l), where J is the 

Jacobi fïeld associated with the 1-parameter 
geodesic variation V(t, s) = exp,t(y(O) +SA), 
and A is identifïed under the canonical parallel 
translation in M,. A point y(t,) is said to be 

conjugate to p = y(0) along y if and only if there 
exists a nontrivial Jacobi fïeld along y that 
vanishes at 0 and t,. A theorem of Morse and 
Schoenberg states that if the sectional curva- 
ture K of M satisfies O<A<K d B< CO, then 

every unit speed geodesic y : [0, I] +M has a 
point conjugate to y(0) if 13 n/fi and has no 
point conjugate to y(0) if I < ~/fi. Especially, 
every geodesic y on M with K<O contains no 
conjugate point on it, and exp, is locally regu- 

lar for any PE M. Thus a complete and simply 
connected M with K ~0 is diffeomorphic to 
R” (Hadamard and Cartan). 

Let y be a unit speed geodesic with y(O) = p. 
If t 1 > 0 satisfies d(p, y(t)) = t for a11 t E [0, tl) 

and d(p, y(t)) < t for a11 t > t,, then the point 
y(tI) is called a tut point to p along y. It ap- 

pears no later than the fïrst conjugate point to 
p along y. The set C(p) of all tut points to p is 

called the tut locus of p. Let U be the set of 
vectors IIIE M,, O<t< 1, where exp,u is the tut 
point to p along y(t) = exp, tu. U is a nonempty 

open set and exp, 1 U: U+ M - C(p) is a diffeo- 
morphism, where M-C(p) is diffeomorphic 
to an m-disk. The tut locus possesses essential 
information on the topology of M. 

The metric comparison theorems of H. 
Rauch (Ann. Math., (2) 54 (195 1)) and M. Ber- 

ger (Illinois J. Math., 6 (1962)) are stated as 
follows: Let inf, K = 6 > -CO and SU~~ K =A < 
m, and let y: [0, l]+M be a nontrivial geo- 

desic. Let M(c) be a complete and simply 
connected space form of constant curvature 
c. Fix geodesics ya, yA: [0, Il-M(h), M(A), re- 

spectively, with the same speed as y. If J, J8, 
and J, are Jacobi tïelds along y, ya, and yh 
respectively such that J(0) = Ja(0) = J,(O) = 0 

ad llJ’(O)ll = IIJNII = lIJk(O)II, then lIJA(t)ll d 
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liJ(t)li < IIJ8(t)ll holds for all te[O, tJ, where 

ya is the fïrst conjugate point to ya along 
ya (Rauch). If the Jacobi fields satisfy IIJ(O)il = 

IIJ8(0)ll = IIJ,(O)ll and J’(O)=J~(O)=.$(O)=O, 

then llJA(t)ll < llJ(t)II < lIJ&II holds for ail 
t E [0, ti], where ti is the fïrst zero point of 
Jb (Berger). They are often applied to compare 
curve lengths as follows. Let c:I+R” be a 
piecewise smooth curve with Ilc(t <t,. Fix 
points PE M, par M(6), and par M(A) with 
fïxed isometric identifications of the tan- 
gent spaces with R”. Then L(exp,&oc)< 

L(exp, o c) d L(exppd o c). If P, Pa, and PA are 
unit parallel lïelds along corresponding geo- 
desics u, cr,, 0,: I+M, M(d), M(A), respec- 
tively, which have the same speed, and if 
(P, 0) = ( Pa, tia) = (92, a,), then for every 
piecewise smooth function ,f: I+[O, ti] the 
curves U(S) = exp,&s)P(s) and u,(s), u,(s) de- 
fined in the same way on M(6), M(A), respec- 
tively, have lengths L(u,) d L(u) < L(u,). They 

play important roles in the theory of geodesics. 
A geodesic triangle is a triple (yo, yl, y2) of 

shortest geodesics (for convenience they are 

parametrized on [O, 11) such that yi( 1) = yi+i (0) 
for a11 i = 0, 1, 2 with mod 3. The vertices p,,, 

p,, p2 and the angles O,, 0,) Q2 of a geodesic 
triangle (y,,, y,, y2) are defïned by pi+i = y,(O) 
and O,+, =COS-’ {<?it”h -Yiki(l)>/llYill llji-1 II}> 
where angles are always taken in [0, ~1. The 
triangle comparison theorem of Toponogov 
(Amer. Math. Soc. Transi., 37 (1964)) is stated 
as follows. Let K > 6 > -CO be satisfied on 
M. For any geodesic triangle (yo, yl, y2) on M 

there is a geodesic triangle (&, yl, y,) on M(6) 
such that L(Ti) = L(yi) and the angles Hi of this 
triangle satisfy ei < Qi for i=O, 1, 2. It turns 
out that if 6 > 0 then the circumference of 
any geodesic triangle on M does not exceed 
2nlJ6. 

For details of the basic facts stated above we 
refer the reader to [l-3]. 

B. Curvature and Fundamental Groups 

The fundamental group n,(M) of M(- 170 

Fundamental Groups) is influenced by the 
curvature of M. A basic idea, going back to 
Hadamard (J. Math. Pures Appl., 4 (1898)) 
and Cartan, states that every nontrivial tfree 
homotopy class 6 E 71, (M) of loops on a com- 
pact M contains a closed geodesic of minimal 
length whose preimage under the covering 
projection n : fi + M in the universal Riemann- 
ian covering @ is either closed (when 6 is of 
fïnite order) or a straight line (when 6 is of 

inlïnite order) that is translated along itself by 

the tdeck transformation 6. 
(1) By using the second variational formula, 

an even-dimensional compact M with K > 0 
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either is simply connected or has n,(M)= Z, 
(Synge, Quart. J. Math., 7 (1936)). A beautiful 
result of Myers (Duke Math. J., 8 (1941)) states 

that if the Ricci curvature Rit of M is bounded 
below by 6 >O, then the diameter d(M) is not 
greater than rc/& and hence M is compact 

and n,(M) is finite. It is proved in [3] that if 
K > 0, then there exists a finite normal sub- 
group @ of n,(M) such that X~(M)/@ is a 
Bieberbach group (- 92 Crystallographic 
Groups). The splitting theorem (- Section 
F(2)) is used in the proof. 

(2) When K Q 0 is satisiïed on M, fi is dif- 
feomorphic to R”, and hence n,(M) = 0 for a11 
i 2 2. A basic tool used in the study of rc, (M) in 
this case is that the displacement function X-t 

d(X, S(X)), 26 fi, of every isometry 6 on M is 
convex [4], where a function on M is said 
to be convex if and only if its restriction to 
every geodesic is convex. A classical result of 
Preissmann (Comment. Math. Helu., 15 (1943)) 
states that every nontrivial Abelian subgroup 
of rci (M) of a compact M with K<O is an 
intïnite cyclic subgroup. It is proved in [4] that 
if K <0 holds on A4 and if every deck trans- 
formation on fi translates some geodesic 
along itself, then Z,(M) is a disjoint union of 
inlïnite cyclic subgroups, and any two com- 

muting elements belong to the same cyclic 
subgroup. Moreover, if M is compact and 

K < 0 and if n,(M) is a direct product I, x F, 
such that nl(M) is tcenterless, then M is iso- 
metric to the Riemannian product M, x M2, 
and nl(Mi)=ri holds for i= 1,2 [5,6]. It is 
shown in [7] that the fundamental group of 

M with K < 0 occurs as that of an (m + l)- 
dimensional M’ with K <c < 0, which is diffeo- 
morphic to M x R. The warped product [4] 
is used to construct such a metric on M x R. 

c. Cut Locus 

The injectivity radius i(M) of M is defïned to 
be the infïmum of the continuous function 
X+~(X, C(x)), XE M. As is seen in Section D, 
the estimate of injectivity radii provides many 
fruitful results on the topology of Riemannian 
manifolds. It follows from Synge’s result that 
an even dimensional compact and orientable 
M with 0 <K < 1 has its injectivity radius 
i(M) > rc [3]. However, such an estimate can- 

not be obtained in odd dimensions. The ex- 
amples discussed in [S] show that there are 
inlïnitely many homotopically distinct homo- 
geneous Riemannian 7-manifolds of posi- 
tive curvature. The injectivity radii of such 
examples are estimated precisely in [9], ac- 
cording to which there is no positive lower 

bound for them. The sphere theorem of Kling- 
enberg (Comment. Math. Helv., 35 (1961)) 
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states that if M is compact and simply con- 
nected and if 1/4 < K < 1, then i(M) 2 n, and 
M is a topological sphere. This extends the 

pioneering work by H. Rauch (Ann. Math., (2) 
54 (1951)). A rigidity theorem of M. Berger 
(Ann. Scuola Norm. Sup. Pisa, 14 (1962)) states 

that if dim M is even, M is simply connected, 
and 1/4 < K < 1, then M is homeomorphic to 
S” (if d(M) > rc) or isometric to one of the sym- 
metric spaces of compact type of rank 1 (if 
d(M) = rc). A slight generalization of the trian- 
gle comparison theorem is used to prove that 
for given positive constants d, V, and S, there 
exists a constant C,,,(d, V, S) > 0 such that if K, 
d(M) and the volume v(M) satisfy 1 K I< S, 

d(M)<d, and u(M)> V, then i(M)>C,(d, V,S) 

ClOl. 

D. Finiteness Theorem 

Finiteness theorems are a natural extension 
of the sphere theorem. They provide a priori 
estimates for the number of various topolog- 

ical types of manifolds (for instance, homology, 
homotopy, homeomorphism, diffeomorphism 
types, etc.), which admit certain classes of 
Riemannian metrics characterized by geo- 
metric quantities. The basic idea of the esti- 

mates is to lïnd a constant c > 0 that depends 
only on geometric information which char- 
acterizes the class of manifolds SO that if M be- 
longs to the class, then i(M) > c. Then a number 
N is found from the information given a priori 

such that every element M of the class has an 
open caver of at most N balls whose radii are 
ah less than c. It is proved in [ 1 l] that for 
given 6 E (0,l) and m, there exists a number 
N(6, m) such that there are at most N(6, m) 
homotopy types for the class of a11 simply 
connected 2mdimensional manifolds with 

6 <K < 1. Furthermore, for given positive 
numbers d, V, and S, there are at most finitely 
many homeomorphism (or diffeomorphism) 
types for the class of a11 m-manifolds M, each 
of which has the property that d(M) < d, u(M) 
> V, and 1 K 1 <S [ 101. This result is applied to 
obtain a result in [12], which states that there 
exists for given m, V> 0 and an E > 0 such that 
ifMiscompact, -1-s<K<-l,andu(M)> 
V, then M admits a metric of constant nega- 
tive curvature. 

For an ~30, M is said to be c-flat if and only 
if supw K. d(M)2 <E is satisfied for M. Every 
compact flat manifold is s-flat for a11 E 2 0. M is 
called a nilmanifold if and only if it admits a 
transitive action of a tnilpotent Lie group. It 
is shown in [ 131 that for a compact M with 
dim M=m, there exists a number E(m) > 0 such 

that if M is E(m)-flat, then (1) there is a maxi- 
mal nilpotent normal divisor N c ni (M), (2) 
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the order of rc, (M)/N is bounded by a constant 
which depends only on m, and (3) the fïnite 
caver of M which corresponds to N is diffeo- 

morphic to a nilmanifold. Moreover, if M is 
a(m)-flat then M is diffeomorphic to R”. If M is 
a(m)-flat and if n,(M) is commutative, then M 
is diffeomorphic to a ttorus. 

E. Uniqueness Theorem 

Uniqueness of topological structures (as in the 
sphere theorem) of certain classes of compact 
Riemannian manifolds is discussed here. 

The discovery of texotic 7-spheres by J. 
Milnor (Ann. Math., (2) 64 (1956)) gave rise to 
the question of whether in the sphere theorem 

the conclusion (homeomorphism to the sphere) 
could be replaced by diffeomorphism. Since 
the number of differentiable structures on a 
topological sphere depends on its dimension 
(- 114 Differential Topology), it has been 
thought that in order to get the standard 
sphere in the sphere theorem the best possible 
restriction for the curvature might also depend 
upon dimension. The appropriate differenti- 

ahle pinching prohlem is to fïnd a sequence 
{Am} SO that if M is compact and simply con- 
nected and if 6 <K < 1 for some 6 >A,, then 
M is diffeomorphic to S”, and A, is the least 
possible with this property. D. Gromoll and Y. 

Shikata proved independently [ 14,151 that A, 
< 1 holds for a11 m > 2. Later it was proved 
that there exists a 6, E (1/4,1) such that A, < 6, 

holds for ah ma 2 [16]. The diffeotopy theo- 
rem, which plays an essential role in the proof 
of tïnding such a 6,, provides a suffïcient con- 
dition for a diffeomorphism on S”-’ to be 
tisotopic to the identity mapping. 

A different idea is put forth in [17], which 

imitates the Gauss normal mapping of a 
closed convex hypersurface in R”+I. It is 
proved that if the curvature operator is suff- 

ciently closed to the identity, then M is diffeo- 
morphic to S”. This idea is used to obtain a 
diffeomorphism between M and a spherical 
space form. A generalization of the sphere 
theorem states that if M is compact and if 
(d( M)/7-c)2 inf, K > 1/4, then M is a topological 
sphere [18]. 

F. Noncompact Manifolds 

Let M be noncompact. It is due to the nature 

of noncompactness that through each point on 
M there passes a ray y : [0, CO)-+ M, e.g., y is a 
unit speed geodesic any of whose subarc is 
minimizing. 

(1) Busemann Functions. A Busemann function 
F,: M+R with respect to a ray y is detïned by 
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F,(x) = lim,,, [t -d(x, y(t))]. The original defi- 
nition of it was used by H. Busemann to defme 
a parallel axiom on straight G-spaces (- Sec- 
tion H). F, has the property Fy’(( -CO, t,])= 

{~~~;‘~~-~,~,l~ld~x,~~y’~~-co,t,l))~ 
t,-t,} for any t,>t,, and hence F,(x)=t,- 
d(x, aFyi(( -CO, t2])) for a11 t, and x with 
F,(x) < t,. It has been proved, by using the 
second variation formula, that if Rit > 0, K > 
0 [ 191 or if, in the case where M is Kahlerian, 
the holomorphic bisectional curvature [20] 
is nonnegative, then F, is subharmonic (sh), 
convex or tplurisubharmonic (psh), respec- 
tively, where the holomorphic bisectional 

curvature is defined as R(X, JX, J Y, Y) for the 
complex structure J and orthonormal vectors 
X and Y. If the holomorphic bisectional curva- 
ture [20] is positive, then F, is strictly psh. If 

K 3 0, then the triangle comparison theorem 

implies that F = sup{F, 1 y(0) = p} is convex and 
is an exhaustion [21], where the sup is taken 
over ah rays emanating from a point PE M, 
and a function f is said to be an exhaustion if 
and only if f-‘(( -co, a]) is compact for a11 
UER. A well-known theorem of H. Grauert 
(Math. Ann., 140 (1960)) states that if M admits 
a strictly psh exhaustion function, then M is a 
Stein manifold (- 21 Analytic Functions of 
Several Complex Variables). In this context, 
various conditions for curvatures on Kahler 

manifolds under which they become Stein 
manifolds have been found [20]. 

Let H be complete and simply connected, 

and K < 0. Busemann functions on H are 
differentiable of class C2, and the thorosphere 

F;’ ({t}) is a C2-surface [22]. On a parabolic 
visibility manifold (- Section F(3)) the nega- 
tive of every Busemann function is Ci-convex 
without minimum [7]. 

(2) Ends and Splitting Theorems. Ends of a 
noncompact M are dehned as follows: If A, 
and A, are compact subsets of M with A, c 

A,, then any component of M - A, is con- 
tained in a unique component of M - A,. An 
end is the limit of an inverse system {compo- 
nents of M-A; A} directed by the inclusion 
relation as indicated above and indexed by 
{~I~compact}. 

It has been shown that if Rit > 0 [23] (or 

20 [19]), then M has exactly one end (or at 
most two ends). A visibility manifold has at 

most two ends if it is not Fuchsian [7]. If M 
admits a locally nonconstant convex function, 
then M has at most two ends [24]. 

If M has more than one end, then there 
exists a straight line y: R+ M which is by 

definition a nontrivial geodesic any of whose 
subarcs is minimizing. A classical result of 

Cohn-Vossen (Mut. Sb., 1 (1936)) states that if 
dim M = 2, K 20 and if M contains a straight 
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line, then the total curvature is 0 and hence M 
is isometric to either a plane or a cylinder Si x 
R. Generalizations of this result state that if 
M admits k independent straight lines and if 
K > 0 (Toponogov, Amer. Math. Soc. Tran& 
37 (1964)) (or if Rit > 0 [ 19]), then M is iso- 
metric to the Riemannian product N x Rk. 

(3) Structure Theorems. The structure theorem 
of 2-dimensional M with K>O was proved by 
Cohn-Vossen (Compositio Math., 2 (1935)). It 
has been shown that M is diffeomorphic to R” 
if K > 0 [23] and that if K > 0, then there 

exists a compact totally geodesic submanifold 
S without boundary such that M is homeo- 
morphic to the total space of the tnormal 
bundle over S [21]. Here, homeomorphism 
cari be replaced by diffeomorphism, and if 
K > 0 outside a compact set of M, then M 
is diffeomorphic to R” [26]. 

For a ray y and a point x on H, if o is a 
ray with ~(0) =x and if Q(t), o(t)), t > 0, is 
bounded above, then Q is called an asymptotic 
ray (a ray asymptotic) to y. The asymptotic 

relation is an equivalence relation on the set 
of a11 geodesics on H. A point at infïnity of H 
is an equivalence class on geodesics on H, 
and the set of a11 points at inlïnity of H is 
denoted by H(m). With a suitable topology, 
the set of a11 points at inlïnity of H constitutes 
a bounding sphere such that H = H U H( CO) 
is a closed m-cell. For a properly discontin- 
uous group D of isometries acting on H, a 

closed D-invariant limit set L(D) is obtained 
in H(m) as the set of a11 accumulation points 

of 6(p), SED. M = H/D is a visibility manifold 

if and only if H satisfies the following axiom: 
any two distinct points on H(m) cari be joined 
by at least one geodesic. If K < c < 0 is satisfied 
on M, then M is a visibility manifold [Il. 
By investigating limit sets, visibility manifolds 
are classified into three types [l]. (1) M is 
parabolic; M is diffeomorphic to N x R and 
is characterized by the fact that it has a convex 
function without minimum. (2) M is axial; M 
is a vector bundle over S’, and hence it is 
diffeomorphic to either S’ x Rm-i or the prod- 

uct of a Mobius strip with R”-‘. (3) M is 
Fuchsian; M has more than two ends, and a 
strong algebraic restriction is imposed on the 

fundamental group of M. 

(4) Convex Functions. Some elementary prop- 
erties of C” convex functions on M have 
been investigated and it was proved in [4] 
that if M admits a C” convex function with- 
out minimum and if K < 0, then M is diffeo- 
morphic to N x R, where N is a level hyper- 

surface. When K > 0, F cari be replaced by a 
strongly convex exhaustion function. Namely, 
for every compact set A c M there is a 6 > 0 
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such that the second difference quotient along 

every geodesic at any point on A is bounded 
below by 6 [20]. A standard tconvolution 
smoothing procedure yields smooth convex 
approximations in neighborhoods of compact 

sets for every strongly convex function such 
that their second derivatives along every geo- 
desic is positive. Global approximations cari 
be constructed [27]. Let cp: M+R be a convex 
function which is not constant on any open 
set. It has recently been proved that (1) if b > 
inf,cp> -CO, then there is a homeomorphism 

H:<p-‘({b})x(inf,cp,co)-+M-{minimum 
set of cp, if any} such that <p o H(y, cc) = CI for a11 
yErp-‘({b}) and for a11 ac(inf,<p, CO); (2) if cp 
takes a minimum, then the continuous exten- 
sion H: [inf,,, cp, CO)+ M of H is proper and 
surjective [24]. 

G. Manifolds All of Whose Geodesics Are 
Closed 

As is well known, every symmetric space of 

compact type of rank 1 (it is abbreviated 
CROSS as in [28]) has the property that a11 
geodesics are simply closed and of the same 
length. Let M be a compact Riemannian mani- 
fold with the property that a11 geodesics on M 
are simply closed and that they have the same 

length (SC property). The problem discussed 
here is whether such an M is isometric (or at 

least the topology of such an M is equivalent) 
to some CROSS, or if it is possible to classify 
a11 such manifolds. 

An example of a nontrivial SC-manifold 

was first constructed by Zoll (Math. Ann., 57 
(1903)) on S2 as a surface of revolution in R3, 
which is not isometric to a standard sphere. 
Blaschke conjectured that every SC-structure 
on PR2 is the standard real projective space. 
This has been solved affirmatively by L. W. 
Green (Ann. Math., 78 (1963)). In higher di- 
mensions it has been proved that every in- 
tïnitesimal deformation of the standard SC- 
structure on PR” is trivial [29]. A general 

result for a SC-manifold M states that the 
volume of M (with dim M = m) with period 2~ 
is the integral multiple of the volume of the 

standard unit m-sphere and this integer is a 
topological invariant [30]. For a point PE 
M, if every geodesic segment with length 1 

emanating from p is a simple geodesic loop at 
p, then M is called a SP-manifold. It has been 
proved that the tintegral cohomology ring of 
every SC’-manifold is isomorphic to one of the 
CROSS [31], which is a generalization of 

Bott’s theorem (Ann. Math., 60 (1954)). 
An essential difference between the metrics 

of a Zoll surface and a standard sphere is seen 
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on the tut locus and the conjugate locus of a 
point. The (tangent) tut locus of any Iïxed 

point of a CROSS coincides with the (tangent) 
tïrst conjugate locus; however, this does not 
hold on a Zoll surface. This observation gives 

rise to the definition of a Blaschke manifold: 
For distinct points p, q E M, let A(p, q) c M, be 
the set of a11 unit vectors tangent to the mini- 
mizing geodesics from q to p. M is said to be 
a Blaschke manifold at a point p if for every 
qE C(p), A(p, q) is a great sphere of the unit 
hypersphere in M, centered at the origin. M is 
called a Blaschke manifold if it is SO at every 

point of it. The following statements are equiv- 

alent [28]: (1) M is a Blaschke manifold at 
p, (2) the tangent tut locus C, at p is spher- 
ical in M,, (3) along every geodesic starting 
from p, the Iïrst conjugate point p appears 
at a constant length and the multiplicity of 
it is independent of the initial direction. Then 
such an M cari be exhibited as DU, E, where 
D is a closed bah with tenter p, E a C”-closed 
k-disk bundle over an (m - k)-dimensional 

P-compact manifold with boundary aE dif- 
feomorphic to S”-‘, and a:aD-taE an tattach- 
ing diffeomorphism. Conversely, if M is ex- 

hibited as DU, E then there exists a metric g 
on M such that (M, g) is a pointed Blaschke 

manifold at p, where p is the tenter of D. A 
generalized Blaschke’s conjecture states that 
every Blaschke manifold is isometric to a 
CROSS. A partial solution to this conjecture 

has been obtained by M. Berger and states 
that if (Y, g) is a Blaschke manifold, then it is 
isometric to a standard sphere [28]. 

H. G-Spaces 

G-spaces were created by Busemann to show 
that many global theorems of differential 
geometry are independent of the Riemannian 
character of the metric and also of smooth- 
ness. This approach naturally led to novel 
questions and results. (Many facts hold even 
when the distance is not symmetric; - [34].) 

The symbol G suggests that the principal 
property of G-spaces is the existence of geo- 
desics with the same properties as in complete 
Riemannian manifolds without boundary 
except for differentiability. A G-space X is 

defined as follows: (1) X is metric with (sym- 
metric) distance d; (2) every bounded intïnite 
set has at least one point of accumulation; (3) 
given two distinct points p, TEX, there is a 
point q E X such that p # q #Y and d(p, q) + 

d(q, r) = d(p, r); (4) to each point x E X a posi- 

tive number p, is assigned such that for any 
p, q E X with d(p, x) < px, d(q, x) < px there is 

a point r with d(p,q)+d(q,r)=d(p,r); (5) if 
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db, d+ db, 4 =d(p, 4 and if db, 4) + db, 4 = 
d(p, r’), then d(q, r) = d(q, r’) implies r = r’. 

From (2) and (3) it follows that any two 
points on X cari be joined by a curve called a 

segment whose length realizes the distance 
between them. A geodesic arc (or for simplicity 
geodesic) y : [a, b] +X is a curve such that any 
subarc contained in a p,-bal1 around some 
point XE X is a segment. From (4) and (5) it 
follows that every geodesic arc has a unique 
intïnite extension to both sides. If a geodesic 
arc is extended inlïnitely to both sides, then it 
is called a geodesic line. 

The absence of smoothness causes an essen- 

tial difference in the fact that the distance 
function to a lïxed point on X is not necessar- 
ily convex in a small bal1 around it, in contrast 

to the Whitehead theorem (- Section A) for 
Riemannian manifolds (or +Finsler spaces). 

Here a function on X is called convex if and 
only if its restriction to every arc length- 
parametrized geodesic line is convex. 

Every two points on X have neighborhoods 

which are homeomorphic to each other. Thus 
the topological dimension of X(- 117 Dimen- 

sion Theory) is well delïned. A 1 -dimensional 
X is either a circle S’ or the whole real line. If 
dimX = 2 [33] or if dim X = 3 [36], then X is a 

topological manifold. 
It should be noted that G-space theory not 

only proves known Riemannian theorems 
under weaker conditions, but also leads to 
many facts which were either not considered 
previously or well understood in (or thought 
to be very different from) the Riemannian case. 

Among many fruitful topics discussed by 
Busemann [33], only two are included below. 

(1) G-Surfaces. For each point p on a l-dimen- 

sional G-space Y, which is called a G-surface, 
let S,={xeYId(x,p)=p}, where O<p<p,/4 is 
a lïxed number. SP is homeomorphic to a circle 

and bounds a 2-disk. An angle A at p is the set 
of a11 segments emanating from p and passing 
through the points on a connected subarc of 
SP. An angular measure 1.1 for the angles at 
p is a nonnegative function whichsatisfies: 
(1) 1 A 1 = 7c if and only if p is the midpoint of 
the segment joining two points on SP which 
bounds A; (2) if the intersection%f two angles 

A, and A, is a unique segment, then IA, U A, 1 

= 1 A, I+ 1 A,]. If a triple of points (po,p1,p2) on 
Y are contained in a suftïciently small bah, 
then the three segments joining them define 
a triangle, and each vertex pi has the angle 
Ipi-Ipipi+, 1 determined by the two segments. 
An excess c(popI p2) of a triangle (po, pl, p2) is 

defined to be~(p,p,p,)=lp~p~p,l+(p,p,p,l 
+ IpzpOpl 1-7~. A degenerate triangle has 
excess 0. If a triangle (a, b, c), which consists 
of geodesic arcs, is simplicially decomposed 
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into a tïnite number of triangles (a,, bi, ci), i= 
1, . . . , k, then +bc) = xf=, c(aibici), and this 
is independent of the choice of finite decompo- 
sition. If 9 is compact and orientable, the 
total excess E(Y) of 9 is detïned by E(Y) = 
xi=, E(aibici), where Y is simplicially decom- 
posed into nondegenerate tïnite triangles 
(ai, bi,ci), i= 1, . . . . k. Then &(9)=2n~(y), 

where ~(9) is the +Euler characteristic of 9. 
The results obtained by Cohn-Vossen [35] on 
the ttotal curvature of complete open surfaces 
have also been generalized to G-surfaces with 
angular measure uniform at n. Although no 
angular measure leading to a true analog of 
the +Gauss-Bonnet theorem exists even in G- 
surfaces [34], many of its applications, in 
particular the results by Cohn-Vossen, cari be 

proved by using angular measures which are 
uniform at 7c [33]. 

If every two points on X cari be joined by a 

unique geodesic line, then all geodesic lines on 
X are simultaneously either straight lines or 
circles of the same length 1. If in the latter case 
dim X > 1, then X has a two-fold universal 
covering space r? whose geodesic lines are a11 
circles of the same length 21, and they have the 
property that a11 geodesics through a point on 
2 meet at the same point at length 1. For the 
Riemannian case it is a Blaschke manifold (- 
Section G). If every two points on Y cari be 
joined by a unique geodesic line, then Y is 

either a plane or a projective plane. 

(2) G-Spaces with Nonpositive Curvature. Let 
(pO, pl, p2) be a triple of points on X which are 
contained in a small hall. X, by detïnition, is of 
nonpositive curvature if and only if for any such 
triple of points 

d(Pl,Pi+l)~2d(P;,Pl+,) for i=O, 1,2, (*) 

where pi is the midpoint of the unique segment 
joining pi-1 to P~+~. If the above inequality is 
strict for any nondegenerate small triangle, 

then X is said to be of negative curvature. X of 
curvature 0 is defined in the same way. It 

should be noted that a G-space of curvature 0 
is a locally Minkowskian space [33]. The 
sectional curvature of a Riemannian manifold 
M is nonpositive if and only if (*) holds for a11 
small triangles on it. Because of d(p,, ~0) < 

~(P,,P;)+~(P;,P~)~(~(P,,P,)+~(P,,P,))/~, 
the distance function to a point x E X of non- 

positive curvature is convex on a small bal1 
around x. X is called straight if and only if all 
nontrivial geodesic lines on X are straight 
lines. If X has nonpositive curvature, then 
the universal covering space r? is straight. 

Moreover, for any two geodesic lines y, 0 : R-r 
X, the function t-+d(a(t), y(t)) is convex. In 
particular, the distance function to every fixed 
point on 2 is convex, and (*) holds for any 
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triangle on 3. Thus x is contractible. Every 

nontrivial element of the homotopy class of 
loops on X with base point x6X contains a 

geodesic loop at x which has the minimum 
length. This fact and the strict convexity of 
t*d(cr(t), y(t)) for any two arc length para- 
metrized geodesic lines y, (T on the universal 
covering ri of X with negative curvature imply 

that if X is compact, then every Abelian sub- 
group of the fundamental group ni(X) of X is 
infinite cyclic. This is a generalization of the 

Preissmann theorem (- Section B). 
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479 (Vl.5) 
Geometric Construction 

A. General Remarks 

A geometric construction problem is a problem 
of drawing a figure satisfying given conditions 
by using certain prescribed tools only a finite 

number of times. If the problem is solvable, 
then it is called a possible construction problem; 
if it is unsolvable, even though there exist 

figures satisfying the given conditions, then it 
is an impossible construction problem. If there 
does not exist a figure satisfying the given 
conditions, then we say that the problem is 
inconsistent. 

Among problems of geometric construction, 
the oldest and the best known are those of 
constructing plane figures by means of ruler 
and compass. In this article, we cal1 these 
problems simply problems of elementary geo- 
metric construction. The following are some of 

the more famous problems of this kind; the 
lïrst four are possible construction problems. 

(1) Suppose that we are given three straight 
lines 1, m, n and three points P, Q, R in a plane. 
Draw a triangle A BC in such a way that ver- 
tices A, B, C lie on 1, m, n and sides BC, CA, 
AB pass through P, Q, R (Steiner3 problem). 

(2) Suppose that we are given a circle 0 and 
three points P, Q, R not lying on 0. Draw a 

triangle ABC inscribed in 0 in such a way that 
the sides BC, CA, AB pass through P, Q, R 
(Cramer-Castillon problem). 

(3) Draw a circle tangent to a11 of three 

given circles (Apollonius’ problem). 
(4) Suppose that we are given a triangle. 

Draw three circles inside this triangle. in such a 
way that each is tangent to two sides of the 
triangle and any two of the circles are tangent 
to each other (Malfatti’s problem). 

(5) Let n be a natural number. For the divi- 
sion of the circumference of a circle into n 
equal parts (consequently, the construction of 
a tregular n-gon) to be a possible construction 

problem, it is necessary and suflïcient that 
the representation of n as a product of prime 
numbers take the form n = 2”p, . pk, where 

13o,p, ,..., pk are a11 different prime numbers 
of the form 2h + 1 (tFermat number) (C. F. 

Gauss, 1801). 
(6) The following are three famous impos- 

sible construction problems of Greek origin: (i) 
divide a given angle into three equal parts 

(trisection of an angle); (ii) construct a cube 
whose volume is double that of a given cube 
(duplication of a cube or the Delos problem); 

and (iii) construct a square whose area is that 
of a given circle (quadrature of a circle). P. L. 

Wantzel(l837) proved that problems (i) and 
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(ii) are impossible except for the special cases 
of n/2, 7r/4, etc. for (i); and C. L. F. Lindemann 
(1882) proved the impossibility of (iii) while 
proving that the number rt is ttranscendental. 

B. Conditions for Constructibility 

A problem of elementary geometric construc- 

tion amounts to a problem of determining a 
certain number of points by drawing straight 
lines that pass through given pairs of points, 
and circles having given points as centers and 
passing through given points. Let (a,, b,), 
(a*, b2), . ,(a,, b,) be rectangular coordinates 
of given points, and let K be the smallest 

+number tïeld containing the numbers a,, 

“‘> b,. Straight lines that join given pairs of 
points and circles that have given points as 
centers and that pass through given points are 

represented by equations of the lïrst or second 
degree with coefficients belonging to K. Con- 
sequently, the coordinates of points of intersec- 
tion of these straight lines and circles be- 
long to a quadratic extension K’= K(,,h) of 
K. Let A be the set of coordinates of the points 
that are to be determined. Then the problem is 

solvable if and only if any number c( in A is 
contained in a lïeld L = K(fi, Jd,, . , ,,&), 

whered,+iEK(& ,..., &)(i=O,l,..., r-l). 
Thus L is a tnormal extension lïeld of K whose 
degree over K is a power of 2. Using this 

theorem we cari prove the impossibility of 
trisection of an angle and duplication of a 
cube. 

Since the 18th Century, besides the problem 
of construction by ruler and compass, prob- 
lems of construction by ruler alone or by 
compass alone have also been studied. We 
state here some of the more notable results: 
(1) If by drawing a straight line we mean the 

process of finding two different points on that 
line, then we cari solve a11 the problems of 

elementary geometric construction by means 
of compass alone (G. Mohr, L. Mascheroni). 
(2) If by drawing a circle we mean the process 
of fmding its tenter and a point on its circum- 
ference, and if a circle and its tenter are given, 
then we cari solve any problem of elementary 
geometric construction by means of ruler 
alone. (3) It is not possible to tïnd the tenter of 
a given circle by ruler alone (D. Hilbert). (4) It 
is impossible to bisect a given segment by ruler 
alone. (5) When two intersecting circles or 

concentric circles are given, we cari find the 
centers of these circles by ruler alone. When 
nonintersecting and nonconcentric circles are 
given, it is not possible to tïnd their centers by 
ruler alone (D. Cauer). 

Cases have been considered in which the 
radius of a circle we cari draw by compass or 
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the length of a segment we cari draw by ruler 
is required to satisfy certain conditions. Also, 
various considerations have been made con- 
cerning cases in which we cari use tools other 
than ruler and compass. For example, it is 

known that although not a11 possible elemen- 
tary geometric construction problems are 
solvable by ruler alone, a11 these problems are 
possible if we have either a pair of parallel 

rulers, a square, or a triangle having a lïxed 
acute angle. If we use a square and a compass, 
then the trisection of an angle and the dupli- 
cation of a cube are possible (L. Bieberbach). 
Also, when a conic section other than a circle 
is given, the trisection of an angle and the 

duplication of a cube become possible by ruler 
and compass (H. J. S. Smith and H. Kortum). 
By ruler and ttransferrer of constant lengths, 
we cari solve Malfatti’s problem but not Apol- 

lonius’ problem (Feldblum). 
Even when a problem is possible, the 

method of construction may be rather com- 
plicated and impractical. In these cases, vari- 
ous methods of highly accurate approximate 
construction have been investigated. 
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180 (XX. 15) 
Geometric Optics 

A. General Remarks 

Geometric optics is a mathematical theory of 
light rays. It is not concerned with the prop- 
erties of light rays as waves (e.g., their wave- 

length and frequency), but studies their prop- 
erties as pencils of rays that follow three laws: 
the law of rectilinear propagation, the law 
of reflection (i.e., angles of incidence and re- 
flection on a smooth plane are equal (Euclid)), 
and the law of refraction (i.e., if 0 and 8’ are 
angles of incidence and refraction of a light 
ray refracted from a uniform medium to a 

second uniform medium and if n, n’ are the 
refractive indices of the first and the second 
medium, respectively, then n sin Q = 11’ sin 8’ (R. 

W. Snell, Descartes)). These three laws follow 
from Fermat’s principle, which states that the 

path of a light ray traveling from a point A’ to 
A in a medium with refractive index n(P) at P 
is such that the integral si. n(P)ds attains its 



180 B 
Geometric Optics 

extremal value, where ds is the line element 
along the path. This line integral is called 
the optimal distance from A’ to A. Therefore 
Fermat’s principle cari be taken as a foun- 

dation of geometric optics and is, in a way, 
similar to the tvariational principle in particle 
dynamics (Maupertuis’s principle), 

6 J2h-2uods=O, 
s 

which is satisfïed by the path of a particle of 
unit mass having constant energy h passing 
through a fïeld of tpotential U(P). The quan- 
tity J2h-2u corresponds to the refractive 
index n. 

In an optical system, express the position 
of a point on the path of a light ray by ortho- 
gonal coordinates (x, y, z), and defïne the +La- 
grangian L = nJm (X = dx/dz, j = 

dy/dz), optical direction cosines p = C~L/&?, q = 

13L/aj, and the THamiltonian H = Xp + $4 - 

L = - Jz. Then the tcanonical 
equations of the path are obtained as in parti- 
cle dynamics; x, y and p, q are called tcanon- 
ical variables. Due to the variationai prin- 
ciple, the integral of the linear differential form 
p dx + q dy - H dz = wd along a light path is a 
function S(A’, A) of the endpoints A’, A of the 
path, and the optical direction cosines and the 

Hamiltonians of the system at A and A’ are 
given by 

ôS 
-=- ’ 

as , as 

0X’ 
- H’, P> z=-q’ z- 

as as &Y 
-z-H. a,=p> ,îy=q, aZ 

Hence we obtain +Hamilton-Jacobi differential 

equations 

As a corollary to these relations we obtain 
Malus’s theorem, which states that a pencil of 
light rays perpendicular to a common surface 
(locally) at a given moment is also perpendic- 
ular to a common surface (locally) after an 
arbitrary number of reflections and refractions. 

Suppose that light rays travel from an ob- 
ject space into an image space through an 
optical apparatus. If a11 the rays starting from 

any one point of the abject space converge to 
a point of the image space and if the mapping 
given by this correspondence is tbijective, then 
we say that this imaging is Perfect. Examples 

of Perfect imaging systems are realized by 
optical apparatus such as Maxwell’s fisheye 
(having refractive index n(r) = a/(b + r’), where 
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r denotes the distance from the tenter of the 
system) and Luneburg’s lens (n(r) = m). 

Perfect imaging conserves optical distance, 
yields the relation n(A’)ds’ =n(A)ds, and gives 
a tconformal mapping, with the magnification 
inversely proportional to the refractive index. 

B. Gauss Mappings 

Consider an optimal system with a symmetri- 
cal axis of rotation, its optical axis. A ray of 
light that is near the optical axis and has a 
small inclination to the axis is called a paraxial 
ray. A mapping realizable by paraxial rays 
where the canoriical variables x, y, p, q cari be 

considered to be infinitesimal variables whose 
squares are negligible, is called a Gauss map- 
ping (Gauss map). When the positions of an 

abject point and its image under a Gauss 
mapping are represented by homogeneous co- 
ordinates, the mapping is represented as a 
linear transformation, i.e., a tcollineation, 
which maps a point to a point and a line to a 

line. A point in one space corresponding to 
the point at infïnity in the other space is called 

a focus. If we take a focus as the origin of a 
coordinate system in each space and use the 

thomogeneous coordinates xi such that x = 
x,/x4, y=x,lx,, z=x3/x4, then a Gauss 

mapping cari be represented as x1 = xi, 

x2 =XL, x3 =fxi, ,f’x4 =x;. The ratio of x to 
x’, i.e., the lateral magnification, is x/x’ = z/f = 
f ‘/z’, where x’ is the length of an abject ortho- 

gonal to the axis and x is the length of its 
image. The distance f between a focus and a 

point where the lateral magnification is 1 (such 
a point is called a principal point) is called 

focal length in each space. The telescopic 
mapping, i.e., x1 = xi, x2 =x2, ’ x,=ux;, 
x4 = bxi, is also a Gauss mapping, in which 
the lateral magnification is constant. 

C. Aberration 

When a mapping is realized not only by par- 

axial rays but also by rays having larger incli- 
nations, a departure from the Gauss mapping 
arises. This departure is generally called aber- 
ration. Suppose that a light ray that passes 
through the point (x’, y’, z’) of a plane perpen- 
dicular to the optical axis at a tïxed z’ and has 

optical direction cosines p’, q’ is transformed 
by the optical apparatus into a light ray that 

passes through the point (x, y, z) of a plane 
perpendicular to the optical axis at a fixed z 
and has optical direction cosines p, q there. 

Then by the variational principle, pdx + q dy - 

p’ dx’ - q’dy’ = d W (d W is an texact differen- 
tial). Therefore the transformation (x’, y’, p’, y’) 

+(x, y, p, q) is a tcanonical transformation. The 
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mapping cari be described by 

aw aw 
P’X’ 

q=ay’ 

ôw , aw 
PI= -z’ 

q=-ay’ 

in terms of W and cari also be represented in 
terms of V= W+p’x’+ q’y’ or U = W+p’x’+ 

q’y’ - px - qy. For a given optical system, 
one of these functions W, U, V (called a char- 
acteristic function or eikonal) cari be used to 
estimate the aberration. By developing such a 
characteristic function in power series of 
canonical variables and observing its terms 
of less than the fifth power, we cari single out 
five kinds of aberration: spherical aberration, 
curvature of image tïeld, distortion, coma, and 

astigmatism in a rotationally symmetric opti- 
cal system. TO eliminate these aberrations an 
optical system must satisfy Abbe’s sine con- 

dition (the elimination of spherical aberration 
and coma), Petzval’s condition (the elimination 
of astigmatism and curvature of image fïeld), 
and the tangent condition (the elimination of 
distortion). 

The path of a charged particle in an electro- 
magnetic fïeld cari be treated in the same way 
as the path of a light ray. Let F: represent the 

specific charge of the particle, h the energy, 
A, the electrostatic potential, and A,, A,, A, 

vector potentials. Then the index of refrac- 

tion is Jm+c(A,dx/ds+Aydy/ds+ 

A,dz/ds). In this case, the index of refraction 

shows the anisotropy caused by the existence 
of the magnetic field. The paths of paraxial 
rays are determined by a set of linear differ- 
ential equations of the second order, and the 
Gauss mapping is realized as in geometric 

optics. 
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Geometry 

The Greek word for geometry, which means 

measurement of the earth, was used by the 

181 
Geometry 

historian Herodotus, who wrote that in an- 
tient Egypt people used geometry to restore 
their land after the inundation of the Nile. 

Thus the theoretical use of figures for practical 
purposes goes back to pre-Greek antiquity. 
Tradition holds that Thales of Miletus knew 

some properties of congruent triangles and 
used them for indirect measurement, and that 
the Pythagoreans had the idea of systematiz- 

ing this knowledge by means of proofs (- 24 
Ancient Mathematics; 187 Greek Mathemat- 
ics). tEuclid’s Elements is an outgrowth of this 
idea [l]. In this work, we cari see the entire 

mathematical knowledge of the time presented 
as a logical system. It includes a chapter (Book 
V) on the theory of quantity (i.e., the theory of 
positive real numbers in present-day termi- 
nology) and chapters on the theory of integers 

(Books VII-IX), but for the most part, it treats 
figures in a plane or in space and presents 

number-theoretic facts in geometric language. 
Geometry in today’s usage means the 

branch of mathematics dealing with spatial 
figures. In ancient Greece, however, a11 of 
mathematics was regarded as geometry. In 
later times, the French word géomètre or the 
German word Geometer was sometimes used 
as a synonym for mathematician. In a fragment 

of his Pensées, B. Pascal speaks of the esprit de 

géométrie as opposed to the esprit de finesse. 

The former means simply the mathematical 

way of thinking. 
Algebra was introduced into Europe from 

the Middle East toward the end of the Middle 

Ages and was further developed during the 
Renaissance. In the 17th and the 18th cen- 
turies, with the development of analysis, geom- 
etry achieved parity with algebra and analysis. 

As R. Descartes pointed out, however, tïg- 
ures and numbers are closely related [2]. 
Geometric figures cari be treated algebraically 
or analytically by means of tcoordinates (the 

method of analytic geometry, SO named by 
S. F. Lacroix [3]); conversely, algebraic or ana- 
lytic facts cari be expressed geometrically. Ana- 
lytic geometry was developed in the 18th cen- 

tury, especially by L. Euler [4], who for the 
fïrst time established a complete algebraic 

theory of tcurves of the second order. Previ- 
ously, these curves had been studied by Apol- 
lonius (262-200? B.c.) as tconic sections. The 
idea of Descartes was fundamental to the 
development of analysis in the 18th Century. 

Toward the end of that Century, analysis was 
again applied to geometry. For example, G. 
Monge’s contribution [S] cari be regarded as a 

forerunner of tdifferential geometry. 
However, we cannot say that the analytic 

method is always the best manner of dealing 
with geometric problems. The method of treat- 
ing figures directly without using coordinates 
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is called synthetic (or pure) geometry. In this 
vein, a new field called tprojective geometry 

was created by G. Desargues and B. Pascal in 
the 17th Century. It was further developed in 
the 19th Century by J.-V. Poncelet, L. N. Car- 

not, and others. In the same Century, J. Steiner 
insisted on the importance of this fïeld (- 343 
Projective Geometry). 

On the other hand, the taxiom of parallels 
in Euchd’s Elements has been an abject of 
criticism since ancient times. In the 19th cen- 
tury, by denying the a priori vahdity of Eu- 
clidean geometry, J. Bolyai and N. 1. Loba- 
chevskiï formulated non-Euclidean geometry, 

whose logical consistency was shown by 
models constructed in both Euclidean and 

projective geometry (- 285 Non-Euclidean 

Geometry). 
In analytic geometry, physical spaces and 

planes, as we know them, are represented as 
3-dimensional or 2-dimensional Euclidean 
spaces E3, E’. It is easy to generalize these 
spaces to n-dimensional Euclidean space E”. A 
“point” of E” is an n-tuple of real numbers (x1, 
. ..) x,), and the distance between two points 

(xl,...,x,),(~l,...,~,)is((~l-~l)2+...+(~, 
-~~)‘)i’~. The geometries of E2, E3 are called 
plane geometry and space (or solid) geometry, 
respectively. The geometry of E” is called n- 

dimensional Euclidean geometry. We obtain 
n-dimensional projective or non-Euclidean 
geometries similarly. F. Klein [7] proposed 
systematizing a11 these geometries in group- 
theoretic terms. He called a “space” a set S on 
which a group G operates and a “geometry” 
the study of properties of S invariant under the 
operations of G (- 137 Erlangen Program). 

B. Riemann [6] initiated another direction 

of geometric research when he investigated n- 
dimensional tmanifolds and, in particular, 
+Riemannian manifolds and their geometries. 

Some aspects of Riemannian geometry fa11 
outside of geometry in the sense of Klein. It 
was a starting point for the broad Iïeld of 
modern differential geometry, that is, the geom- 
etry of tdifferentiable manifolds of various 

types ( - 109 Differential Geometry). 
The reexamination of the system of axioms 

of Euclid’s Elements led to D. Hilbert’s tfoun- 
dations of geometry and to the axiomatic ten- 

dency of present-day mathematics. The study 
of algebraic curves, which started with the 
study of conic sections, developed into the 

theory of algebraic manifolds, the algebraic 
geometry that is now developing SO rapidly (- 
12 Algebraic Geometry). Another branch of 
geometry is topology, which has developed 
since the end of the 19th Century. Its influence 
on the whole of mathematics today is con- 

siderable (- 114 Differential Topology; 426 
Topology). Geometry has now permeated a11 
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branches of mathematics, and it is sometimes 
diffcult to distinguish it from algebra or anal- 
ysis. The importance of geometric intuition, 
however, has not diminished from antiquity 

until today. 
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A. History 

H. Minkowski introduced the notions of lat- 
tice and convex set in the talgebraic theory of 
numbers. He developed a simple yet powerful‘ 
method of arithmetic investigation using these 

geometric notions to simplify the analytic 
theory of +Diophantine approximation, which 

had been developed by P. G. L. Dirichlet and 
C. Hermite. His theory, the geometry of num- 
bers, has continued its development and con- 

tributed to various fïelds of mathematics (- 
83 Continued Fractions). 

B. Lattices 

Let E” be an n-dimensional Euclidean space 
identified with the linear space R”. For a point 
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P in E”, we denote the corresponding vector in 

R” by u(P)=‘(x,, . . ..xJ. A subset A of E” is 
called an n-dimensional (homogeneous) lattice 

if there exists a basis {ui, , u,} of R” such that 
A={PEE~u(P)=~~~,A,u,,~~EZ}. The set of 
points {Xi, . . ..X.,} such that v(Xi)=ui (i= 

1, . , n) is called a basis of the lattice A. A 
typical example of a lattice is the point set 
corresponding to Z” in R”. The tfree module 
generated by vi (i = 1, , n) is denoted by A* 
and is called the lattice group of A. We have A* 
={u~R”~~=u(P),PEA}. If{u, ,..., un} isan- 

other basis of the free module A*, then there 
exists an element (tlij) of GL(n, Z) (i.e., ccijeZ 
and Idet(cc,)( = 1) such that uj=C;=i mijuj. 

Hence the quantity ldet(v,, , u,,)l is inde- 
pendent of the choice of the basis {ui, . , u,}. 
We denote this quantity by d(A) and cal1 it the 

determinant of the lattice. We denote the mini- 
mum distance between the points belonging to 
A by S(A). 

A subset L of the space E” is called an in- 
homogeneous lattice if there exists a homo- 
geneous lattice A in E” and a point Pc, in En 
such that L={PEE”Iu(P)-u(P~)EA*}. Thus 
an inhomogeneous lattice is obtained from a 
homogeneous lattice by translation. In this 
article we restrict ourselves to the case of 

homogeneous lattices and henceforth omit the 
adjective “homogeneous.” 

Suppose we are given a sequence of lattices 
A,, AZ, , in E” with bases {X{i’}, {Xl’)}, . 
If the sequence of points Xi”) converges to 
Xi(i=1 ,..., n)andtheset{X, ,..., X,}forms 
a basis of a lattice A, we cal1 A the limit of 
tbe sequence {A”}; we also say that the se- 
quence {Ay} converges to the lattice A. In this 

case we have d(A,)-+d(A), 6(A,)+&A). The 
notion of convergence of lattices gives rise to a 
topology of the space M,, of a11 the lattices in 

E. A sequence {AV} of lattices is said to be 
bounded if there exist positive numbers c and 
c’ such that d(A,) < c, S(A,) > c’ for a11 v. A 

bounded sequence of lattices has a convergent 
subsequence. 

Let S be a subset of the space E”. A lattice A 
is called S-admissible if we have A fl S’ = {O}, 
where Si is the interior of S and 0 is the origin. 
We denote the set of S-admissible lattices by 

A(S). Given a closed subset M of M,, we put 

W\W = i4Ea~s)nw d(A) if A(S) n M is non- 
empty, while if .4(S) n M is empty, we put 
A(S\M)= CO. When M=M,,, we Write A(S\M) 
=A(S) and cal1 it the critical determinant of S. 

Generally, a lattice A in M is said to be critical 
in M with respect to S if AeA(S) and d(A)= 
A(S\M). Suppose that we have O<A(S\M)< 
co. Then for a lattice critical in M with respect 
to S to exist it is necessary and sufficient that 

there exist a bounded sequence {A,} such that 

A,E M n A(S) and d(A,)+A(S\M). 
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C. Successive Minima and Minkowski’s 
Theorem 

A subset S of the space E” is called a bounded 
star hody (symmetric with respect to the 
origin) if there exists a continuous function F 

delïned on the space E satisfying the following 
four conditions: (i) F(0) = 0; (ii) if X # 0, then 
F(X)>O; (iii) for an arbitrary real number t 
and a point X, we have F(tX) = 1 tlF(X); (iv) 

S= {X 1 F(X)< 1). A bounded closed tcon- 
vex body that is symmetric with respect to the 
origin is a bounded star body. If we are given 
a star body S, the associated function F, and a 
lattice A, there exist a set of points {P,, . , P,} 
in A and a set of positive numbers {p, , . . . , p,} 
satisfying the following four conditons: (1) 

v(Pl), , u(P,,) are linearly independent; (2) 

F(Pi)=pi (i= 1, . . . . n); (3) pi < <pn; (4) if P is 
a point in A and u(P) is not contained in the 
subspace spanned by {u(Pl), . . , u(P,-,)}, then 
F(P)>p,. The set {pl, . . ..p.} is uniquely 
determined by S and A. The numbers pi are 
called the successive minima of S in A; the 
points Pi are the successive minimum points of 
S in A. 

Minkowski’s theorem: Let A be a lattice in a 

Euclidean space E” and S a bounded subset of 
E”. Then we have the following: 

(1) If the volume V(S) is larger than d(A), 

then there exist points Xi and X, in S such 
that X, #X, and V(X,)-u(X,)eA*. Suppose, 
moreover, that S is convex and symmetric with 
respect to the origin. Then, if V(S) > 2”d(A), 
there exists a point X in S n A different from 
the origin. Hence we have 2”A(S) > V(S) (n = 
dim E”). 

(II) Let S be a bounded closed convex body 
that is symmetric with respect to the origin, 
and let p, , . , p,, be the successive minima of S 
in A. Then we have p, p; V(S) < 2”d(A). 

D. Minkowski-Hlawka Theorem 

Suppose that we are given a subset S of the n- 
dimensional Euclidean space E” such that the 
characteristic function x(X) of S is tintegrable 
in the sense of Riemann. Then we have the 
Minkowski-Hlawka theorem: (i) If n > 2 and S 
is open, then A(S) < V(S), and (ii) if, moreover, 
S is symmetric with respect to the origin, 
then 2A(S) < V(S); (iii) if S is a symmetric 

star body with respect to the origin, then 
2[(n)A(S)d V(S), where i(n) is the tRiemann 
zeta function. 

A proof for the theorem was given by E. 
Hlawka (1944); (iii) and (iv) were conjectured 
by Minkowski. C. L. Siegel obtained another 

proof (194.5), and C. A. Rogers simplified the 
original proof by Hlawka (1947). There are 
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results concerning the estimation of A(S),&‘(S) 
for various subsets S. 

E. Siegel’s Mean Value Theorem 

In an attempt to obtain a proof for the latter 
half of the Minkowski-Hlawka theorem, Min- 
kowski observed the necessity of establishing 
the arithmetic theory of the linear transfor- 
mation groups. Siegel was inspired by this ob- 

servation and obtained the following theorem, 
Siegel’s mean value theorem, which implies the 
Minkowski-Hlawka theorem: Let F be a tfun- 

damental region of the group SL(n, R) with 
respect to a discrete subgroup SL(n, Z). Let w  
be the tinvariant measure on SL(n, R) such 
that jFda = 1 (- 225 Invariant Measures). Let 
f be a bounded Riemann integrable function 
with compact +Support detïned on the space 
R”. Note that the lattice Z” is stabilized by the 
subgroup SL(n, Z). We have 

where the right-hand side of the equation is 

the usual Riemann integral of the function f 
A. Weil considered this theorem in a more 
general setting (Summa Brasil. Math., 1 (1946)). 

F. Diophantine Approximation 

Minkowski initiated the notion of Diophan- 
tine approximation in reference to the prob- 
lem of estimating the absolute value If(x)1 of a 

given function L where x varies in Z or in a 
given ring of talgebraic integers. (A +Diophan- 
tine equation is an equation f(x)=O, where x 
varies in Z.) Today Diophantine approxima- 
tion (in the wide sense) refers to the investiga- 
tion of the scheme of values f(x), where x 

varies in a suitable ring of algebraic integers. 
The geometry of lattices is a powerful tool in 
this investigation. A typical problem in this 
lïeld of study is that of approximating irra- 
tional numbers by rational numbers; here 
tcontinued fractions play an important role (- 

Section G). For the problem of uniform distri- 
bution considered by H. Weyl, the analytic 

method, especially that of trigonometric series, 
is useful (- Section H). Dirichlet’s drawer 

principle (to put n abjects in m drawers with 
n > m, it is necessary to put more than one 

abject in at least one drawer) is one of the 
basic principles used in the theory of Diophan- 
tine approximation. Recently, the theory has 
been applied to the theory of ttranscendental 
numbers and the theory of +Diophantine 

equations. 
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G. Approximation of Irrational Numbers by 

Rational Numbers 

Given an irrational number 8, we have the 
problem of finding rational integers x (> 0) 
and y such that 10 - y/xl < E/X, where F is a 
given positive number. Suppose that we are 

given a positive integer N. Using Dirichlet’s 
drawer principle we cari show the existence of 

x(<N)andysuchthatlQ-y/xl<l/xN.Let 
M(B) be the supremum of positive numbers 
A4 such that the inequality 18 - y/x I< l/Mx’ 
holds for infïnitely many pairs of integers x, y. 

We have 1 <M(B) (Q CO). Two irrational num- 
bers f3 and B’ are said to be equivalent if there 
exists an element (nij)~ GL(2, Z) such that 
8’=(a,, ~+~lJl(%l 0 + azz). In this case we 
have M(O) = M’(0). 

If the irrational number 6 satisfies the qua- 
dratic equation a@ + bO + c = 0 (a, b, c are 
rational integers), then we have M(B)= 
k-’ Jbz-4ac, where k = min {ax’ + bxy + 
cy2 1 x, y E Z, x # 0, y #O}. In general, for an 
irrational number 0 of degree two, we have 

M(O)> $. The equality M(O) = & holds if 0 
is equivalent to 19~ = (1 + fi)/2. If Q is not 
equivalent to 0i, then M(B) > J8; the equality 
holds if 0 is equivalent to 0, = 1 + 4. Simi- 
larly, we have &, O,, . .; and M(O,,+3 (n* a). 
If M(Q) < 3, there exists a 0, such that Q is 
equivalent to 0,. The set of irrational numbers 
B satisfying M(0) = 3 is uncountable (A. A. 
Markov [ 133). We have no information about 

M(B) for the general algebraic irrational num- 
ber 8. Let ~(0) be the supremum of real num- 
bers ,u such that the inequality le-y/xl<l/xP 
holds for intïnitely many pairs of integers x, y. 

Given a number K > 2, it cari be shown that the 
tlebesgue measure of the set of real numbers 6’ 

such that ~(0) > K is zero. If 0 is a real alge- 
brait number of degree n, then ~(0) <n (J. 

Liouville). Concerning p(e), results have been 
obtained by A. Thue, Siegel, A. 0. Gel’fond, 
and F. J. Dyson. K. F. Roth (1954) proved that 
~(0) = 2 (Roth’s theorem [12]), which settled 
the problem of p(e). Roth’s theorem means 
that if K is larger than 2, then there exist only a 
lïnite number of pairs x, y satisfying 10 - y/xl 

< 1/x”. This cari be generalized to the case of 
the approximation of an element H that is 
algebraic over an A-field k by an element of 

the lïeld k (S. Lang [SI). (An A-tïeld is either an 
algebraic number field of tïnite degree or an 
algebraic function field in one variable over a 
tïnite constant lïeld.) 

In 1970 W. M. Schmidt [ZO] obtained 
theorems on simultaneous approximation 

which generalize Roth’s theorem. Thus, if 
c(, , . . . , M, are real algebraic numbers such that 

1, x,, ,E, are linearly independent over the 
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tïeld of rational numbers, then for every E > 0 

there are only fïnitely many positive integers q 
with 

1/4% II “’ /14a”l141+te<L 

where (( 5 1) denotes the distance from a real 
number 5 to the nearest integer; in particular, 
we have 

(ai-pi/ql<q-(“+l)i”-&, i=l,...,n, 

for only tïnitely many n-tuples of rationals 

p, /q, . , p,/q. A dual to this result is as follows. 
Let CL r, . , CI,, E be as before. Then there are 
only fïnitely many n-tuples of nonzero integers 
ql, . . ..q., with 

This last theorem cari be used to prove that if 
CI is an algebraic number, k a positive integer, 

and E > 0, then there are only finitely many 
algebraic numbers w  of degree at most k such 
that Icc-o)<H(cumkml-‘, where H(w) denotes 
the height of w. See also [ 16,223. 

The work of Thue, Siegel, and Rotli had the 
basic limitation of noneffectiveness. A. Baker 

(1968) succeeded in proving that for any alge- 
brait number 0 of degree n 2 3 and any JC > 

n, there exists an effectively computable 
number c = ~(0, K) > 0 such that le - y/x] > 

CX-” exp(logx)‘/” for a11 integers x, y (x > 0) 
[15]. This result is an immediate consequence 
of the following effective version of a classical 
theorem on binary Diophantine equations 
(Thue, 1909): Let f=f(x, y) be an irreducible 
binary form of degree n 2 3 with integer coeffi- 

cients, and suppose that K > n. Then for any 

positive integer in, a11 integer solutions x, y of 
the equation f(x, y)=m satisfy max(]xl, ]y\) < 
c exp(logm)“, where c z 0 is an effectively com- 
putable number depending on n, K, and the 
coefficients of J: Baker obtained this result by 
making use of his theorems which give effec- 
tive estimates of moduli of linear forms in the 
logarithms of algebraic numbers with alge- 
brait coefftcients. A typical theorem reads as 
follows: Let Mi, . , x,, be nonzero algebraic 

numbers with log a,, . . , log CI, linearly inde- 
pendent over the rationals, and Iet &, . . , p, be 
algebraic numbers, not a11 0, with degrees and 

heights at most d and H, respectively. Then for 
anyK>n+f,wehave)&,+~,loga,+...+ 
&loga,J>cexp(-(IogH)“), where c>O is an 
effectively computable number depending only 
onn,k,logcr, ,..., loga,, and d [14,19]. 

Results of this kind have many important 
applications in number theory. For instance, 
we obtain a generalization of the Gel’fond- 
Schneider theorem on transcendental num- 

bers. Furthermore, the imaginary quadratic 

number ftelds of class number 1 cari be com- 
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pletely determined on the basis of Baker’s 
result. This was actually done by Baker (1966) 
and independently by H. M. Stark (1966) 

(- 347 Quadratic Fields). 
Refinements and generalizations of Thue’s 

theorem on the finiteness of solutions of bi- 
nary Diophantine equations have been ob- 

tained by Baker and his collaborators. (- 
[ 171, and also [ 161). Also, p- and p-adic ana- 
logs of Baker’s results are known [ 181. 

There are a number of unsettled problems 
on the irrationality of particular numbers, 

such as the +Euler constant C, ne, or [(2k + 1) 
with k a positive integer. R. Apéry (1978) 
proved that there exist a positive number E 
and a sequence of positive integers {q,,} such 
that 0 < 11 q, ((3) (( < eé’” for a11 n > 1, SO that ((3) 
is irrational. 

H. Uniform Distribution 

Let 0 be a real number, x a positive integer, 
and [0x] the maximum integer not larger than 

0x. We Write (0x)= 0x - [0x] = fIx(mod 1). 
Jacobi showed that if 0 is irrational then 

the set {(0x) 1 x E N} is densely distributed in 
the interval (0,l) (N is the set of positive in- 
tegers). In general, let f be a real-valued func- 
tion defined on N. We say that f(x) (mod 1) is 
uniformly distributed in the unit interval, or 
f(x) is uniformly distributed (mod l), if the 
following condition is satisfïed: Let a, /? be an 

arbitrary pair of real numbers such that 0 < 
a < fi < 1, and let N be a given positive integer. 
Let T(N) be the number of positive integers x 

such that x < N, a <(f(x)) -C/I, where (f(x)) = 
f(x) - [f(x)]. Then lim,,, T(N)/N = /J - a. In 

order for f(x) (mod 1) to be uniformly dis- 
tributed, it is necessary and sufficient that 
lim N-m N-‘C$, eznihfcx)=O for any non- 
zero integer h (Weyl’s criterion, 1914). Weyl 
proved that if 0 is an irrational number, then 

6x (mod 1) is uniformly distributed. 
The following theorem, given by J. G. van 

der Corput, is often useful: Let f be a real- 
valued function dehned on N. Consider the 
function fh(x) =f(x + h) -f(x) for an arbitrary 

positive integer h. If fh(x) (mod 1) is uniformly 
distributed (mod 1) for a11 such h, then f(x) 
(mod 1) is also uniformly distributed (mod 1). 

Utilizing this theorem, it cari be shown that 
if ~(X)=&X~ + O,-,xr-’ + . . . +8,x, where at 
least one of the coefftcients 0, is irrational, then 
S(x) (mod 1) is uniformly distributed. 

The notion of uniform distribution of se- 
quences of real numbers has an analog in 

compact Hausdorff spaces and in various top- 
ological groups. A systemmatic treatment of 
such generalized notions of uniform distri- 

bution cari be found in [21]. 
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Global Analysis 

Mathematics that treats, by using functional 
analytical techniques, various problems con- 
cerning the +calculus of variations, tsingular- 
ities, infinite-dimensional Lie groups, or +non- 

linear partial differential equations, such as 

equations of fluids or of gravitation in general 
relativity, may be called global analysis if it 
uses as a main tool an infinite-dimensional 
version of differential geometry and topology 
analogous to that for finite-dimensional mani- 
folds. The term global analysis therefore has no 

precise definition. However, it cari be said that 
it is analysis on manifolds, and the concept of 

+infinite-dimensional manifolds is the central 
abstract idea in it. 

Suppose one considers a nonlinear differen- 
tial operator on a lïnite-dimensional manifold. 

Then by using functional analytical techniques 
it often happens that its domain is neither a 
linear space nor its open subset but an infmite- 
dimensional manifold, and that such a non- 
linear operator cari be regarded as a tdifferenti- 
àble mapping between infinite-dimensional 
manifolds. The tdifferential at a point in that 
source manifold is called a linearized operator, 
to which one cari apply various theories of 

linear functional analysis. 
“Global analysis” seems to have lïrst ap- 

peared in the literature in the late 1960s [ 1,2]. 
However, the phrase “infinite-dimensional 
manifold” has been used widely since about 
1960. By that early date, local theories of 
infinite-dimensional manifolds, sometimes 
called “general analysis,” such as delïnitions of 
differentiability, the timplicit function theorem, 
+Taylor’s theorem, the existence and unique- 
ness of tordinary differential equations, and 
the +Frobenius theorem, had already been 

established in +Banach spaces [3]. Therefore, 
with these regarded as a local theory, the con- 

cept of infinite-dimensional manifolds could be 
delïned naturally, and the concept of infinite- 
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dimensional Lie groups as well [4]. A few 
years later, R. Palais and S. Smale [S] and J. 
Eells and J. Sampson [6] showed that such 
concepts are useful in the calculus of varia- 
tions, and R. Abraham and J. Robbin [7] re- 

marked that ttransversality theorems initiated 
by R. Thom cari be easily proved by using an 
infinite-dimensional version of +Sard’s theorem 

ca 
The so-called +Atiyah-Singer index theorem 

[9], announced in 1963, gave impetus to the 
field as people sought the theorem’s most 
natural expression; the work finally resulted in 
the theorem classifying separable +Hilbert 
manifolds by homotopy type (- 105 Differen- 

tiable Manifolds). 
After the appearance of these theorems an- 

nouncing the nonexistence of differential topol- 
ogy on separable infinite-dimensional Hilbert 

manifolds, global analysis moved toward 
more concrete problems and applications to 

various branches of mathematics. However, 
many of these applications are formulated not 
on +Banach or Hilbert manifolds, but on mani- 
folds modeled on Fréchet spaces (+Fréchet 

manifolds) or on tnuclear spaces. For such 
situations we have in general no local theories. 

Neither the implicit function theorem nor the 
Frobenius theorem holds on such manifolds. 
However, since these theorems are crucial for 
nonlinear problems, various kinds of suffrcient 
conditions for the validity of these theorems 

are being studied by many people (- 286 
Nonlinear Functional Analysis). 

As for the calculus of variations, Yamabe’s 
problem is being studied extensively, for this 
seems to be a typical problem not satisfying 
the so-called +Condition C. The original paper 
of H. Yamabe [13], insisting that every com- 

pact Riemannian manifold cari be conformally 
deformed into a manifold of constant scalar 
curvature, contains a serious gap, and the 

problem is still open, though many cases are 
known where the statement holds (- 364 
Riemannian Manifolds H). The harmonie 

mappings dehned in [6] are also being studied 
extensively (- 195 Harmonie Mappings). 

In differential geometry or the tgeneral 
theory of relativity delïnitions of various cur- 
vatures, such as Riemannian, Ricci or scalar, 
or Gauss, cari be sometimes regarded as non- 

linear differential equations on manifolds. 
Proof of the global existence of solutions to 
these equations has long been sought, and 
several theorems have recently appeared [ 14- 

161. 
Infinite-dimensional groups such as GL(E), 

or G&(E) with uniform topology, are called 
+Banach-Lie groups, and they have been 

studied in the operator calculus. On the other 
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hand, infinite groups studied by S. Lie and 
E. Cartan were in fact inlïnite-dimensional 
germs of transformation groups defïned on a 
neighborhood of a point in a manifold. These 
were not groups in the strict sense. Recently, 
H. Omori [ 171 has given a definition of ab- 

stract intïnite-dimensional Lie groups that in- 
cludes Banach-Lie groups and many infinite- 

dimensional transformation groups studied 
by Cartan. An application of these groups to 
Wuid dynamics cari be found in [ 1 S]. More- 
over, tunitary representation theories of these 
groups are now being constructed [19,20]. 

Though global analysis consists at pre- 
sent of a rather disorganized combination of 
many nonlinear problems in analysis on mani- 
folds and in mathematical physics, it is never- 
theless one of the most active branches of 

mathematics. 
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184 (Xx1.27) 
Godel, Kurt 

Kurt Gode1 (April28, 1906-January 14, 1978) 

was born in Brno, Czechoslovakia (at that 
time Brünn, Austria-Hungary). He studied 
mathematics and physics at the University 
of Vienna, where he took the Ph.D. degree 
in 1930. After he had taught mathematics at 
the University of Vienna from 1933 to 1938, 
he was invited to the Institute for Advanced 
Study at Princeton, where he became professor 
in 1953. In 1976, he was named professor 
emeritus; he died in Princeton in 1978. 

Gode1 contributed important fundamental 

results covering a11 aspects of mathematical 

logic. Among his famous works are the proof 
of the tcompleteness of the tïrst-order predi- 
cate calculus, the incompleteness of the con- 
sistent axiomatic system containing Peano’s 

arithmetic (incompleteness theorem), and the 
tconsistency of the axiom of choice and the 
generalized continuum hypothesis. He also 
introduced the notion of irecursive functions 
and found the Gode1 solution of Einstein’s 
equations of relativity. In addition to mathe- 
matical works, he left philosophical papers on 

set theory and the foundations of mathematics. 
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185 (1.8) 
Gode1 Numbers 

A. General Remarks 

K. Gode1 [l] devised the following method to 
prove his incompleteness theorems (- Section 

Cl. 
Let 6 be a tformal system. In this article, we 

cal1 its basic symbols, tterms, tformulas, and 
forma1 proofs the “constituents” of 6. Let y be 
an tinjection from the constituents of G into 
the natural numbers satisfying the following 

two conditions: (1) Given a constituent C, we 
cari compute the value g(C) in a finite number 
of steps. (2) Given a natural number II, there 
exists a finitary procedure to fïnd out whether 

there exists a constituent C of 6 such that 
g(C) = n; furthermore, when such a C exists, it 
cari actually be specified in a tïnite number of 
steps. 

If such a mapping y is given for the system 
G, then the mapping g is called a Gode1 num- 
bering and the number g(C) is called the Gode1 
number of the constituent C (with respect to g). 

B. An Example of Gode1 Numbers 

(1) Let mg, SL~, be the basic symbols of 6. 
With each cli we associate a distinct odd num- 

ber qi: g(ai)=qi (i=O, 1, . ..). (2) Let F be a con- 
stituent of 6. If F is constructed from any 
other constituents F,, F,, . . , Fk of 6 by a rule 
peculiar to 6 (for convenience we Write this 
F =(F,, F,, , FJ), and if, for each Fi, g(F,) is 
already defined, then we put g(F)= (g(F,), 

g(F,),...,g(F,)),where(a,,a,, . . ..a& 
denotes the number p2 p;l pp (pi is the 
(i + 1)st prime number). For example, suppose 

that 6 contains 0, =, vj (variables), and 
1 (negation) among the basic symbols, and let 

their Gode1 numbers be 7, 9, 1 lj+i, and 13, 
respectively. Since the formula 1 (0 = v,) cari 
be analyzed in the form (1, (0, = , vj)), its 
Gode1 number is (13, (7,9,11j”)). For 
details - [1,4]. 

C. Godel’s Incompleteness Theorems 

By means of a Gode1 numbering any meta- 
mathematical notion about the constituents of 

a forma1 system 6 cari be interpreted as a 
number-theoretic notion. For example, the 
notion “formula” is interpreted as the number- 
theoretic predicate Form(x) which means 
that x is the Godel number of a formula. The 

provability of a formula is interpreted as the 
number-theoretic predicate Prov(x), which 
means that x is the Godel number of a prov- 
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able formula; accordingly, for any formula A 
of 6, the proposition Prov(g(A)) means that A 
is provable. This interpretation is called the 
arithmetization of metamathematics. 

Let the formai system U include forma1 
elementary number theory. Then many meta- 

mathematically useful number-theoretic predi- 
cates cari be expressed by the respective for- 
mulas of 6; for example, there exist formulas 

Form(x) and Prov(x) expressing the predicates 
Form(x) and Prov(x), respectively. Further- 

more, Godel proved the existence of a closed 
formula ci such that the formula 

1 Prov(y( CI)) u U is provable. This closed 
formula U is one of the so-called formally 
undecidable propositions, and in fact it is shown 

that neither U nor 1 U is provable in 6 if G is 
consistent in a strong sense. This result is 
called Godel’s fïrst incompleteness theorem. 

By use of the formulas Form(x) and Prov(x) 
the consistency of the formal system 6 is 
expressed by the formula Consis which is an 
abbreviation of 3x(Form(x)~ lProv(x)). 
Godel obtained the result that the formula 
Consis is not provable in S if 6 is consistent, 

on the basis of the following three facts: (1) U 
is not provable in 6 if 6 is consistent; (2) 
Consis+ lProv(g(U)) is provable in 6; (3) 
lProv(g(U))+U is not provable in 8. This 

result is called Godel’s second incompleteness 
theorem. 

The method of arithmetization is important 
and useful in the study of mathematical logic. 
The notion of Godel numbers of recursive 
functions is one of its applications (- 356 
Recursive Functions). 

D. Tarski’s Theorem Concerning Truth 
Definitions 

Let a consistent forma1 system 6 and a +model 

of 6 be given. By means of a Gode1 number- 
ing, the truth notion of closed formula is inter- 
preted as the number-theoretic predicate 
Tr(x) which means that x is the Godel number 

of a true closed formula; accordingly, for any 
closed formula A of 6, the proposition 
Tr(g(A)) means that A is true. 

In relation to the foregoing fact, if there 
exists a formula Tr(x) of a single variable and 
the formula Tr(g(A))tt A is provable for every 

closed formula A, then that formula Tr(x) is 
called a truth definition. A. Tarski proved the 

fact that there is no truth definition in 6 if the 
formai system 6 is consistent. 
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186 (XVI.1 2) 
Graph Theory 

A. Overview of Graph Theory 

Two aspects of graphs are the abject of graph 
theory. One is that a graph expresses a binary 
relation over a set V, and the other is the fact 
that a graph is a CW-complex of 1 dimen- 
sion, an abject of study in algebraic topology. 
Because of its special natural as an abject of 1 
dimension, we cari consider various concrete 

properties in detail. Hence graph theory has 
close connection with other areas, such as 
network theory, system theory, automata 

theory, and the theory of computational pro- 
cesses, and it has many useful applications. 

The notion of a “graph” as currently used in 
graph theory was first discussed by L. Euler 
Cl]. It is said that J. J. Sylvester coined the 
word “graph” as we presently understand it. 
However, up to now, there were few unifying 
principles, and graph theory seemed like a 
large collection of miscellaneous problems and 

ad hoc techniques. The terminology has not 
yet been standardized; different usages prevail 
in different schools. The resulting confusion 

cari be seen in references books such as [2]- 
[S]. Recently, inlïnite graphs have also been 
studied. But here we restrict ourselves to finite 

graphs, since only they give a typical theory. 

B. Definition of Graph 

The notion of a graph G =(V, E, 8, U-) is a 
composite notion of two lïnite sets V and E 
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andtwomapsa+:E+Vandd-:E+V.An 
element of V is called a vertex, and an element 

of E is called an edge. The maps d* are called 
incidence relations. The terms point, or node 

instead of vertex, and arc, line, or branch in- 
stead of edge have also been used (sometimes 
with slightly different meanings). For an edge 
eE E, a+eE V is called the initial vertex and 
ô-es Vis called the terminal vertex. Both are 
called the end vertices of e. The inverse map 6 * 
of a*: V+2E is defined by G’v={eEEla*e= 
u} and has the following properties: (i) If 
uzu’, then 6+un6+u’=6~ufl6-u’=~. (ii) 

Uvev6+u= UV,,G-u=E. Conversely, if the 
maps 6’ : V+2E have the properties (i) and (ii), 
then there exist corresponding maps a*. For 

a vertex VE V, [S+U~ is called the outdegree or 
positive degree, )6-ul is called the indegree or 
negative degree, and the sum j6tul + 16-ul is 
called the degree. We always have the relation 

~vtVI~f~I=C,,ylfi~uI=lEl, and ~v~v(16+ul+ 
Ifimul)=21El. The number of vertices with 

odd degree is always even. Two end vertices of 
an edge are called mutually adjacent, and two 
edges with at least one common end vertex are 
also called mutually adjacent. An edge satisfy- 
ing a+e = 8-e is called a self-loop, and a vertex 

satisfying 6+v = S-v = 0 is called an isolated 
vertex. 

When permutation groups Pv operating 
over V and PE operating over E are given, we 
cari naturally delïne the permutation (rry, 7~~) 

over the graph G(rry E Pv, ~C~E PJ. A graph is 
classitïed into equivalence classes by PV, PE. 
When PV, PE are all the permutations of V, E, 

respectively, each equivalence class is called an 
unlabeled graph, whereas when PV, PE consist 
only of an identity transformation, G is called 

a labeled graph. 
ForagivengraphG=(V,E,6+,6-)anda 

subset E’ c E, we cari delïne the reoriented 
graph of edges in E’ by G’ =(V, E, a’+, a’-), 
wherea’*e=a*eife$E’and8*e=a’eif 
eeE’. We have an equivalence relation by 
identifying the reoriented graphs. Each class 
by this equivalence relation is called an un- 
directed graph or an unoriented graph. In con- 

trast, the graph in the original sense is called a 
directed graph or an oriented graph. 

C. Examples of Special Graphs 

(1) A complete graph is a graph such that there 
exists one and only one edge with end vertices 
u and u’ for every different pair of vertices v 
and u’. (2) A bipartite graph is a graph with a 
partition V’ U V- = V such that V+ n V- = 0 
and for every eE E, we have i3+eE V+ and 

5ec Vm. If there always exists an edge e with 

Z+e = v, d-e = v’ for every pair VE V+ and 
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U’E V-, it is called a complete bipartite graph. 
(3) A regular graph is a graph whose degree 

at each vertex is the same. (4) A partial graph 
is delïned as follows: Let E’ be a subset of E 
inagraphG=(V,E,a+,û-).ThegraphG’= 

(V’, E’, a’+, a’-) is called a partial graph of 
G, where V’ = i3+ E’U a-E’, and a’* are the 
restrictions of O* on E’, respectively. When 
E’= E, the partial graph is the graph obtained 
by deleting all isolated vertices from G. Simi- 
larly, for a subset V’ of V, the graph G” = 

(V”, E”, a»+ , rî”-), delïned by E” = 6+ V” U 6- V” 
and with a”* being the restriction of a* on E”, 

is called a section graph of G. 

D. Representation of a Graph 

When we want to process by computer a 
problem concerning a graph, we must repre- 
sent a graph in a suitable form (- 96 Data 
Processing). A commonly used method is the 
following list representation: Let V = { vl, v2, 

“‘> v,,,} and E={e,,e, ,..., e,}. Foreachu,EV 

(c( = 1, , M), we arrange the edges in 6+v, 
and in KV, in suitable orders. Then (i) for 

each v,EV, record 16’v,I, 16-0,1, Bz, B,i, B;, 
and B; , where B’ and i?$ are the lïrst and 
the last index of the edges in 6 *v,, respectively. 
We define the corresponding values to be 0 if 
the 6’v, are empty. (ii) For each e,E E, record 
a:,a,,E:,E:,E;) - and E; , where 3: are 
the number of vertices a*e,, and E:, ,i?’ are 
the number of edges immediately after or 
before eX among the edges with the same initial 
(for ‘) or terminal (for -) vertex as that of eK. 
If e, is the last or the lïrst among such edges, 

we defme the corresponding values to be 0. 

E. Deformation of a Graph 

Let G =(V, E, a+, a-) be a graph. A graph ob- 
tained by opening an edge e is the graph G’= 
(V, E - {e}, a”, a’-), where a’* is the restric- 

tion of a* on E- {e}. The graph obtained by 
deleting all isolated vertices from G’ is a partial 

graph of G over E- {e}. A graph obtained by 
shortening an edge e is the graph G” =(V”, E - 
{e},6”+,8-), where V”=(V-{a+e,Fe})U 

{û}, 0 being a new vertex not contained in V, 
and a”* =<~.a*, cp: V+V” being delïned by 
cp(v)=v for v#a*e, and =û when u=Se, 
or v= a-e,. A graph obtained by opening 
and shortening several different edges is simi- 
larly detïned, and the result is independent 
of the order of opening or shortening process. 
A graph obtained by opening edge(s) or by 

shortening edge(s) or by both processes is 
called a subgraph, a contraction, or a sub- 

contraction, respectively. 
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F. Connectedness 

Let G = (V, E, û+, a-) be a graph, and let v, and 
vp be two vertices. A path from u, to v,, of 
length 1 is a sequence P=(v~=v~,,E~~~,,v,,, 
&2eK2, . . . ,~,e,[, v,~=v~), where ci are +l or -1, 
and for every i= 1, . . . . 1, we have ii+en,=v,Zm,, 
a-eKL = v,~ if &i = + 1, and (7?+eK, = v,~, a-e, = v, I 
if ci= -1. When u,=uB, it is called a closed 
path considering P as a cyclic sequence. If 
in the sequence P of a path no edge appears 

more than once, it is called a simple path. 
Similarly, if no vertex appears more than once, 
it is called elementary. If a11 &i = + 1, it is called 

a direct path. Direct closed paths, etc., are 
similarly defined. 

If we detïne v-v’ by the existence of a path 
from v to v’, this - is an equivalence relation. 
Let us denote the equivalence classes by V,, 

, V,. The section graph Gi = (y, Ei, a+, 8;) 
determined by y is called a connected com- 
ponent, or simply a component, of G. The sets 
E, , , E, are mutually disjoint and the union 

is E. If we denote by V+U’ the existence of a 
direct path from v to v’, the relation --$ is a 
tpseudo-order. The relation v et v’ defïned by 

V~U’ and v’+v is an equivalence relation in V, 
and the equivalence classes p,- , c or the 

section graphs Gi = (c, Ei, a:, &) determined 
by E are called strongly connected components 
of G. I?,, , É, are mutually disjoint, but their 
union is not always E. Among the sets PI, 

, E, we cari defïne an order relation c- q 
- - 

by the existence of VE I$ V’E q, v-tu’. Classi- 
fication by H is a reîïnement of that by -. 

When s = 1, the graph G is called connected, 
and when t = 1, G is called strongly connected. 

For a different pair v, U’E V, a set S c V- 
{u, u’} is called a separator of u and u’ if every 
path from v to v’ contains at least one vertex of 
S. When every separator S for any pair v, v’ 
has at least k elements, the graph G is called k- 

connected. For k > 3, there are several vari- 
ations of the definition of k-connectedness. l- 

connectedness is equivalent to connectedness 
in the sense defined above. 

A simple path containing all edges of a 

graph is called an Euler path. Euler direct 
paths, etc., are similarly defined. A graph with 
an Euler path is called an Euler graph. A graph 

is an Euler graph if and only if(i) it is con- 
nected, and (ii) the number of vertices with 

odd degrees is 0 or 2 (Euler’s unicursal graph 
theorem [ 11). Similar results are known for 

Euler closed paths or Euler direct paths. An 
elementary path containing all vertices of 
a graph is called a Hamilton path. Hamil- 
ton closed paths. etc., are similarly detïned. 

The criteria for the existence of a Hamilton 

path for any given graph is unknown. This is 
known to be an +NP-complete problem (- 71 
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Complexity of Computations). Various suftï- 

tient conditions or necessary and sufficient 
conditions for special graphs have been given 

(- cg., [SI). 

G. Tieset, Cutset, Tree, and Cotree 

For a graph G =( V, E, a+, Z), we define its 
incidencematrix[&cc=l,...,M(=IV/),rc= 
l,...,n(=IEl))] bydefming&tobe 1 ifo,= 

û+e,#d-e,, -1 if v,=a-e,#d+e,, and 0 if 

a+e,=a-e, or e,$8+v,Ub-0,. Similarly we 

defïne its adjacement matrix [ri (a, /J’ = 1, . , 
M)] by defïning r; to be 0 if v, and vg are not 

mutually adjacent and 1 if v, and vp are mutu- 
ally adjacent. 

A set of edges forming a closed path is called 
a tieset. A set of edges of the form {e) 8+e E W, 
d-eEV-W}U{elZe~W,a+e~V-W}fora 
partition (W, V - W) of V is called a cutset. A 
maximal subset of edges containing no tiesets 
is called a tree, and a maximal subset of edges 

containing no cutsets is called a cotree. A tree 
is sometimes called a spanning tree of G. Every 
tree is the complement (with respect to E) of a 
cotree, and vice versa. 

The number of elements of a tree is always 
the same and equal to the +rank m of the in- 
cidence matrix. This value m is called the rank 
of the graph G. Similarly, the number k of 
elements of a cotree is always the same, which 
is called the nullity or the cyclomatic number of 
the graph G. Always, k = n - m. 

Let K be a field, K”, KM be vector spaces 
over K of dimensions n and M, respectively, 
and K”*, KM* be the tdual spaces of K”, KM. 

The incidence matrix defines two mutually 
contragradient linear mappings a: K”+KM 
and 6: KM*+ K”* with respect to their canon- 
ical bases. A minimal set among the family of 
supports (in E) of nonzero vectors in the kernel 
Ker 8 is a tieset corresponding to an elemen- 
tary closed path. Similarly, a minimal set 
among the family of supports (in E) of nonzero 
vectors of the image Im 6 is a minimal cutset. 

Let T(cE)beatreeand T=E-Tbea 

cotree. Let us renumber the edges SO that T= 

{e,, ,e,}, T= je,,, , , e,}. For each em+pE 
z there is a unique vector RP(p = 1, , k( = n - 

m)) in Ker a whose support is in {em+,} U T 
and whose em+pm equals +l. Similarly, for 

each e, E T (a = 1, , m), there is a unique vec- 
tor 0: (a = 1, , m) in Im 8 whose support is in 

{e,} U T and whose e,- component equals +l. 
{R;, . . , R[} is a basis of Ker 8, and (D:, , 
0:) is a basis of Im 0. Both matrices RE(k x n) 
and &(m x n) are totally unimodular, i.e., every 
minor determinant is 0, + 1, or -1. Further- 

more, the following relations hold: RP+¶= 
SJ(p,q=l,..., k),D~=6~(a,b=l,..., m),Rg+ 
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DZ,+, =O(u=1 ,..., m;p=l,..., k).Thematrices 

RF and Dl are called the fundamental tieset 
matrix and the fundamental cutset matrix, 
respectively, with respect to the tree-cotree 
pair (T, T). The minor of the matrix RF con- 
sisting of a11 rows and k columns IC, , . , ICI 
is flor -lifandonlyif{e,l,...,e,,}isa 
cotree, and 0 otherwise. Similarly, the minor 
of the matrix Dl consisting of a11 rows and m 

columnsK-,,...,K-,is +lor -lifandonlyif 
{eK,, , eKm} is a tree, and 0 otherwise. 

H. Planarity of a Graph 

Let there be a natural one-to-one correspon- 
dence between the sets of edges of two graphs 

G,=( v, Ei, a+, ni-) (i= 1,2), and suppose that 
under the correspondence a tree T, in G, cor- 
responds to a tree T2 in G, and that the fun- 
damental cutset matrices D, and D, with re- 

spect to (71, Ei - T) are mutually equal. Then 
G, and G, are said to be 24somorphic. The 

definition is equivalent to the one given by 
the equality of fundamental tieset matrices. 
2-isomorphism is an equivalence relation. If 
G, and G, are 2-isomorphic, the families of 

trees, cotrees, tiesets and cutsets are mutu- 
ally corresponding. The coincidence of one 

of the families is a sufficient condition for 
the 2-isomorphism of G, and G, as undi- 
rected graphs. A 3-connected graph has no 
2-isomorphic graph other than itself. 

Similarly, when a tree Tl of G, corresponds 
to a cotree T, of G, and if the fundamental 
cutset matrix of G, with respect to ( Tl, E, - TJ 
is equal to the fundamental tieset matrix of G, 
with respect to (E2 - T2, TJ as matrices, then 
we say that G, is dual to G,. In this case, G, is 
dual to G, also. If G, is dual to G, and G, is 
dual to G,, then G, and G, are 2-isomorphic. 
The duality is a relation among the equiva- 

lente classes of graphs by 2-isomorphisms. 
Any graph G =( V, E, a+, a-) cari be “drawn” 

in 3-dimensional Euclidean space in the fol- 
lowing sense: Each vertex is a (distinct) point, 

and an edge e is an arc connecting two points 
a+e and 3-e with a direction pointing from 
a+e to ô-e in such a way that no two arcs 
intersect. A graph representable on a plane or 
on a 2-dimensional sphere in the above sense 
is called a planar graph. A graph G is planar if 
and only if it has a dual graph (H. Whitney 
[7]). Another necessary and sufhcient con- 
dition is that as an undirected graph, neither 

the complete tïve-point graph K, nor the bi- 
partite complete graph of three-three points 
K 3.3, appear in any subcontraction of the 

graph G. (This is a version of the criterion of 

C. Kuratowski [SI.) 
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1. Coloring of Graphs 

A coloring of the vertices of a graph G = 
(V,E,a+,a-)isamapping$fromVtotheset 
of integers N satisfying the condition $(u) # 
$(u’) for ah adjacent vertices v and u’. y(G)= 

min{ I$( V)I I$ is a coloring of the vertices of 
G} is called the chromatic number of G. If 
the graph G is drawn over a 2-dimensional 
closed surface with a 1-dimensional +Betti 

number b, we have y(G)< L(7 + J-)/2], 
where L ] denotes the integral part. Except 

for the +Klein bottle (with b = 2), where y(G) < 
6, this is the best possible, i.e., there exists a 

graph whose y(G) equals the Upper bound on 
the right-hand side. As for b 2 1, the inequality 

was tïrst proved by P. J. Heawood (1890), 
and final results were established by J. W. T. 
Young and G. Ringel [lO]. When b=O, y(G)< 
5 was shown by A. B. Kempe (1879), but the 
four color conjecture: “y(G) <4?” has remained 
unsolved for more than a hundred years. The 

conjecture is believed to have been solved 
affirmatively recently through checking a 
huge number of cases on a large computer 
[ll, 121. 

A subset WC Vis called an independent set 
or an internally stable set if no two vertices in 
W are mutually adjacent. a(G) = max{ 1 WI 1 W 
is an independent set of G} is called the num- 
ber of independence of G. A subset W of Vis 

called a dominating set or externally stable 
set of G if every vertex v E V is either u E W or 
adjacent to a vertex of W. fi(G) = min{ 1 WI 1 W 
being a dominating set of G} is called the num- 

ber of domination of G. For every graph G, 
we have cc(G)>/?(G) and y(G).a(G)>I VI. 

J. Decision Problems and Graphs 

There are many interesting topics in decision 

problems concerning graphs, especially from 
the standpoint of tcomplexity of computa- 

tions (- e.g., [ 133). The following are some 
typical problems: (i) Problems for which algo- 

rithms of polynomial order are known: 1s 
the given graph k-connected, strongly con- 
nected, a Euler graph, or a planar graph? (ii) 
+NP-complete problems: 1s the given graph a 
Hamilton graph? Do we have a(G) = k, /J’(G) = 
k, or y(G)=k? 

Let G, and G, be two graphs. The problem 
of whether they coincide as unlabeled graphs 
is called the isomorphism problem, and has 
been studied for many years in connection 
with problems concerning the structure of 
chemical compounds. Unfortunately, no al- 

gorithm of polynomial order is known; nor 

do we know whether this is an NP-complete 
problem. As for the isomorphism problem for 
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planar graphs, algorithms of polynomial order 
are known. 

K. Perfectness Theorem 

Let the number of independence and the chro- 

matic number of a graph G = (V, E, a+, ~7) be 
a(G) and y(G), respectively. Let VI, , V, be 
a disjoint decomposition of V. We denote by 

B(G) the minimal number of r such that every 
section graph of G over v contains a com- 
plete graph. Furthermore, we denote by ru(G) 
the maximum value of) WI for a subset WC 
V such that the section graph of G over W 

contains a complete graph. We always have 
a(G and y(G)<w(G). Gis called CI- 
Perfect if every section graph H of G satistïes 
x(H) = O(H). Similarly, G is called y-Perfect 

if y(H) = w(H) for every section graph H of 
G. The conjecture that y-perfectness and c(- 

perfectness are equivalent has recently been 
solved affirmatively [ 141. This is called the 
perfectness theorem. 

References 

[l] L. Euler, Solutio problematis ad geo- 
metriam situs pertinentis, Commentarii Aca- 

demiae Petropolitanae, 8 (1736) 128-140. 
[2] F. Harary, Graph theory, Addison-Wesley, 
1969. 

[3] C. Berge, Graphes et Hypergraphes, 
Dunod, second edition, 1974. 
[4] A. A. Zykov, Finite graph theory (in Rus- 
sian), Nauka, 1969. 
[S] M. Iri, Network flow, transportation and 
scheduling, Academic Press, 1969. 
[6] H. Walther and H.-J. VO~S, Über Kreise in 
Graphen, VEB Deutscher Verlag der Wissen- 
schaften, 1974. 
[7] H. Whitney, Non-separable and planar 
graphs, Trans. Amer. Math. Soc., 34 (1932), 

339-362. 
[S] C. Kuratowski, Sur le prcbième des 

courbes gauches en topologie, Fund. Math., 
15 (1930), 271-283. 
[9] F. Harary and W. Tutte, A dual form of 

Kuratowski’s theorem, Canad. Math. Bull., 8 
(1965), 17-20, 373. 
[lO] G. Ringel, Map color theorems, Springer, 
1974. 
[ 1 l] K. Appel and W. Haken, Every planar 
map is four colourable, 1. Discharging, Illinois 
J. Math., 21 (1977), 429-489; K. Appel, W. 

Haken and J. Koch, II. Reducibility, Illinois 
J. Math., 21 (1977), 490-567. 

[ 121 S. Hitotumatu, Four color problem (in 
Japanese), Kodansha, 1978. 

187 
Greek Mathematics 

[13] A. V. Aho, J. E. Hopcroft, and J. D. Ull- 
man, The design and analysis of computer 
algorithms, Addison-Wesley, 1974. 
[ 141 L. Lovas~, Normal hypergraphs and 
Perfect graph conjecture, Discrete Math., 2 
(1972), 253-267. 

187 (Xx1.2) 
Greek Mathematics 

It is generally believed that theoretical mathe- 
matics originated with the Greeks. The Greeks 
learned the arts of land surveying and com- 
mercial arithmetic from earlier civilizations; 

but they developed theoretical mathematics 
themselves, toward the middle of the 4th cen- 

tury B.C. The creation of a mathematics that 
transcends practical purposes was one of 

the most remarkable events in the history of 
human culture, and one that had an immense 
impact on the development of a11 branches of 
science. We owe the reestablishment of impor- 
tant Greek mathematical texts and the re- 
construction of the development of Greek 
mathematics to the historians of the 19th 
Century (the oldest extensive exposition of the 

history of mathematics before Euclid is due to 
Proklos (Proclus) (410-485)). 

The earliest known Greek mathematicians 
are Thales of Miletus (c. 639-546 B.c.) and 

Pythagoras of Samos (fl. 510? B.c.). Both were 
Ionians, but the latter went to what is now 
southern Italy and founded a semireligious 
school whose members called themselves 
Pythagoreans. Their motto was “Everything 
is number”; their studies were called mathema 

(“what is learned”) and consisted of music, 
astronomy, geometry, and arithmetic (the 
subject group called the quadrivium, which 
formed the tore of medieval and later higher 
education) “for the purification of SOU~.” Their 
research delved into the theories of proportion 

(in relation to music) and tpolygonal numbers 
(triangular numbers, square numbers, etc.), 
and more generally into the theory of numbers 
and geometric algebra. It is said that they 
knew of the irrationality of fi, though no 
evidence of this has been found. Even after the 
demise of the Pythagorean school, its followers 
continued to promote mathematics in col- 

laboration with the Academy of Plato. 
Another significant school was the Eleatic. 

Among its members Zeno (c. 490-c. 430 B.c.) is 
especially important. +Zeno’s paradoxes are 

arguments leading to absurdity. Some see 
within them the origin of logical reasoning 

and, consequently, of theoretical mathematics 
[3]. It is chronologically ditlïcult to attribute 
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to Zeno the consideration of the continuum 

and irrational numbers, but we cari fïnd in him 
the impetus toward atomistic reasoning. The 

computation of the volume of pyramids (by 
dividing them into “atomistic” laminae) by 
Democritus (fl. 430? B.C.) and the atomistic 
calculation of the area of circles by Antiphon 
(fl. 430 B.C.) came shortly after the time of 

Zeno. 
The middle decades of the 4th Century B.C. 

are known as the Age of Pericles, the Golden 
Age of Athens. The ttrisection of an angle, the 

tduplication of a cube, and the tquadrature of 
a circle, known at that time as the “three big 

problems” (- 179 Geometric Construction), 
were studied by the Sophists. Hippias of Elis 
(fl. 420 B.C.), Hippocrates of Chios (fl. 430 B.C. 

in Athens), Archytas of Taras (c. 430-365 a.~.), 

Menaechmus (fl. 350 B.C.), and his brother 
Dinostratus (fl. 350 B.c.) solved these problems 

using conic sections and the quadratrix (a 
transcendental curve whose equation is y= 
xcot(xx/2)). 

By 400 B.C. Athens had lost its political 
influence, but it remained the tenter of Greek 
culture. It was during this time that Plato’s 
Academy flourished, and Plato (427-347 B.c.) 

and his followers laid particular importance 
on mathematics. Archytas, Menaechmus, and 

Dinostratus belonged to or were closely as- 
sociated with this school. During the first tïfty 
years of the Academy, research in the follow- 

ing fïelds was pursued: methodology of mathe- 
matics or science in general (i.e., dialectics, 
analysis, synthesis); geometric reconstruction 
of Mesopotamian algebra; the theory of irra- 
tionals in relation to the geometrization of 
algebra (Theodorus of Cyrene (5th Century 
B.C.), who was Plato’s teacher, as well as Theai- 
tetus of Athens (415?-369 B.c.) contributed to 
this study, and the general theory of propor- 

tion by Eudoxus of Cnidos (c. 408-c. 355 B.c.) 

also belongs to this field); the method of ex- 

haustion (by Eudoxus); and studies of the 
“three big problems” and conic sections. It was 
this school in which the term muthema came 
to be used in its present sense of “mathemat- 
ics” rather than in the sense of disciplines in 
general. 

The conquests of Alexander the Great ac- 
celerated the already considerable cultural 
influence of Athens. Later, during the Ptole- 
maie period, the tenter of culture moved to 

Alexandria. The Mouseion at Alexandra, the 
combined library and university, is said to 
have possessed hundreds of thousands of 

volumes. 
At Alexandria, Euclid (c. 300 B.c.) com- 

piled his Elements, which became a mode1 

for scientitïc works for centuries to corne- 
Newton% Principia as well as Spinoza’s Ethics 
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are modeled on it. Most historians say that 
Euclid’s method derives from Aristotle (3844 
322 B.C.), who, after studying at Plato’s Acad- 
emy, founded a new school, the Peripatetics, 
whose doctrines are at many points opposed 
to those of the Academy. Others, however, see 
the origin of Euclid’s axiomatic method in 

the Eleatics [S]; we cari fïnd prototypes of 
some parts of the Elements in both Oenopides, 
who lived during the time of Zeno, and in 
Hippocrates. 

The third Century B.C. was the Golden Age 
of Greek mathematics. Archimedes of Syracuse 
(c. 282-212 B.C.) was the greatest mathema- 
tician, mechanic, and technician of antiquity. 
He did important work in mathematics, study- 
ing the exact quadrature of the pardbola. 
According to his ephodos (method), he would 
obtain a result by mechanical experiments and 

then prove it by the method of “exhaustion.” 

He also computed the value of n; studied 
spirals and other curves, spheres, and circular 
cylinders; contributed to the development of 
statics and optics and their application; and 
had a profound influence on later mathema- 
ticians. During the same period, Apollonius of 
Perga (fl. 210 B.C.) wrote Konikon biblia (Books 
on Conics) in eight books, of which the last 
has been lost. The geometric theory of +conic 

sections contained in this work is not much 

different from the one we know today; it had a 
great influence on 17th-Century scientists es- 
pecially. Other mathematicians of this period 
worth noting are Eratosthenes (c. 275-195 
B.C.), who conceived the tsieve method of tïnd- 
ing prime numbers and who measured the 
earth, and Hipparchus (fl. 150 B.c.), called the 
father of astronomy, who made a table of 
sines. 

Hellenistic influence began to decline in the 
first Century B.c., and the influence of Alex- 

andria decreased. The Mouseion burned in 
48 B.C., but was rebuilt. Among the mathe- 
maticians of this time, we may Count Heron 

(fl. 60? A.D.); Menelaus (fl. 100 A.D.), who wrote 
Sphaerica; Theon of Smyrna (fl. 125 A.D.); 

Ptolemy (fi. 150 A.D.), the author of Almagest; 
Nicomachus (50?-150‘? A.D.), the author of 
Arithmetike eisugoge; Diophantus (fl. 250? 
A.D.), whose career is not fully known but who 
wrote Arithmetiku, of which six of the original 
thirteen books remained to influence +Fermat; 
and Pappus (fl. 300 A.D.), the last creative 

mathematician in Greece, who left eight books 
of the Synagoge, which influenced iDescartes 

and which still exist today. 
The period following the fall of the Western 

Roman Empire was a diffïcult one for Greco- 
Egyptian science. The Mouseion was de- 

stroyed for the second time in 392 A.D. Theon 
of Alexandria (fl. 380) and his daughter, Hy- 
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patia (c. 370-415) were at that time working 
on commentaries on the classics. Among the 
few remaining works of the period is Proclus’ 

(410-485) commentaries on the lïrst book of 
Euclid’s Elements. The Athenian Academy was 
closed in 529 by order of the Emperor Justi- 

nian; the last director was Simplicius, who 
commented on Aristotle. Soon afterward, 
Alexandria fell into the hands of the Moors, 
and many scholars fled as refugees to Constan- 
tinople, the capital of the Eastern Empire. 
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A. General Remarks 

Green’s functions are usually considered in 
connection with tboundary value problems 

for ordinary differential equations and also 
with telliptic and tparabolic partial differen- 
tial equations. For example, consider bound- 

ary value problems for the tlaplacian in 3- 
dimensional space: L[u] =(?/ox~ + ?/axi + 
a2/ax$u. Let D be a bounded domain with a 
smooth boundary S and the boundary con- 
dition B on S be either u(x) = 0 (x E S) (the tïrst 
kind) or au/&+ + ju = 0 (X ES) (the third kind), 
where n is the outer normal of unit length, 
b(x) > 0, and p(x) $0. We say that the function 

g(x,,x,,x,; [,, &, &) is the Green% function of 

L (or the partial differential equation L[u] =0) 
relative to the boundary condition B, when (i) 

g(x, 5) satisfïes L,[g(x, l)] = 0 except for x = {; 
(ii) g(x, l)= -1/47cr+w(x, 0, where r=(Cf’=,(xi 

- <i)2)“2 and w(x, 5) is a regular function, i.e., 
of class C” for a suitable value v; (iii) g(x, 5) 
satisfies the boundary condition B, i.e., g(x, 0 
= 0, XE S (the lïrst kind), or (a/& + 8) g(x, 5) 
=O, xeS (the third kind). Conditions (i) and 
(ii) mean that g(x, 5) is a tfundamental solution 

of L, i.e., L,[g(x, c)] = 6(x - 0, where 6(x - 5) 
is +Dira& measure at the point x = 5. Note 
that if g(x, 0 is a fundamental solution, then 
by adding any solution u of the equation L[u] 

= 0 to g, we obtain another fundamental 
solution g + u. Thus Green’s function is the 
fundamental solution that satisfies the given 
boundary condition. TO be more precise, in 
the boundary value problem, if the boundary 
condition is of the tïrst kind, g(x, 5) cari be 
obtained by adding to a fundamental solution 
-1/4nr the solution (0(x, jr) of the following 
Dirichlet problem: A,c~(x, 5) = 0, w(x, 5) = 
1/4rcr (XE S). We remark that there are slightly 
different definitions for Green’s function. For 

example, there are cases where g(x, 5) is de- 
tïned by g(x, [) = 1/4nr + o(x, 5) or by g(x, 5) = 

l/r + (0(x, 5). 
In the case in the previous paragraph, 

Green% functions satisfying the boundary 

conditions are uniquely determined. In gen- 
eral, if we are given a Green’s function, then 
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for any regular function u(x) the function 

JD 

represents the solution of L[u] = u with the 
boundary condition B. More precisely, if u(x) 
satisfïes the tH6lder condition 1 u(x) - v(x’)I < 
L]x -x’l’ (0 < c( < 1) (L, a positive constants), 
then u(x) is of class C?. Conversely, if u(x) 
satisfies the equation L[u] = u and the bound- 
ary condition B, it is represented by the for- 
mula for u(x). This means that if we denote 
the operator that associates u to u by G, then 
G is the inverse operator of the Laplacian L 
with the boundary condition B, and Green’s 

function is the tintegral kernel of the operator 
G. Using this property, the boundary value 
problem relative to L cari be reduced to a 
problem of tintegral equations. For example, 
the differential equation with the boundary 
condition B containing the complex parameter 
î,, L[u] + iu =A is equivalent to the integral 

equation u + ‘G[UI = G[.f], which is obtained 
by letting G act from the left on the above dif- 

ferential equation. In this way, the problem 
cari be simplifïed. 

In the case of general boundary value 
problems for higher-order elliptic operators, 
Green’s functions are defïned in the same way 

as before (- 189 Green’s Operator). The im- 
portant case is when L and the boundary 
condition B defïne a tself-adjoint operator. 
In this case, Green’s function is symmetric 
(g(x, <)=g(<,x)). TO obtain Green’s function 
is not easy in general. However, in some cases 
such functions cari be obtained fairly easily 

(- Appendix A, Table 15.N). 

B. Self-Adjoint Ordinary Differential 
Equations of the Second Order 

Consider the operator L[u] ~(p(x)u’)‘+q(x)u 

(p(x) > 0) deiïned in the interval a <x db, with 
boundary conditions of the form EU’ + bu =0 
at the two endpoints. Then Green’s function 
g(x, <) is detïned in the following way: (i) For 

X#L L[g(x,<)]=O; (ii) [ng(x,[)/ax]XZ:!O= 
l/p(Q (iii) for 5 fixed, g(x, 5) satisfies the homo- 
geneous boundary conditions at x = a and 
x=/x 

Conditions (i) and (ii) mean that L[g(x, <)] 
=6(x - 5). We cari construct g(x, 5) in the 
following way: Let u1(u2) be the solution of 
L[u] = 0 satisfying the boundary condition at 
x = a (at x = h). If u1 and u2 are linearly inde- 
pendent, we cari satisfy P(U; u2 -u, u;) = 1 by 
choosing the constants suitably. Then Green’s 
function g(x, 5) is defined by g(x, 5) = u1(x)u2(<) 

for x<& and g(x,t)=u,([)u,(x) for [<x. Ifu, 
and u2 are linearly dependent, there exists no 

Green’s function that satisfies conditions (i), 

(ii), and (iii). However, by modifying the defï- 
nition, we cari get a generalized Green’s func- 

tion playing a similar role [2]. This method 
cari be applied to the case of ordinary dif- 
ferential equations of higher order. 

C. The Laplace Operator 

When the domain D is the n-dimensional 
sphere of radius a with tenter at the origin, 
Green’s function of the Laplacian relative to 
the boundary condition u = 0 is obtained in 
the following way. Let E(r) be the following 

fundamental solution of the Laplacian: E(r) = 
(27~~‘logr for FI=~ and E(r)= -((n-2). 

w r”m2)-1 for n>3, where w,=27~““T(n/2) is 

the (n - 1)-dimensional surface area of the n- 
dimensional unit sphere. Then Green’s func- 

tion g(x, 5) is defined by 

gk 0 = Wr) - Wpr’la), 

where p = (CyE1 r,2)“‘, r’ = (Cycl (xi - [~)2)“2, 

5: = Wp)’ h. 

D. Helmholtz’s Differential Equation 

Let D be an exterior domain with a smooth 
boundary S in R3. In mathematical physics, 
the boundary value problem of finding a solu- 
tion u(x) of Helmholtz’s differential equation 

(A + !X*)~(X) =.f(x) (k > 0) satisfying u(x) = 0 
(XE~) is of particular interest. In this case, 
concerning the behavior of u(x) at infïnity, 

we usually assume Sommerfeld’s radiation 
condition: 

When Ix[+ +co, u(x)=o(IxI-l), 

where d/ar is the derivative along the radial 
direction. It is known that this condition en- 
sures the uniqueness of the solution (Rellich’s 
uniqueness theorem). We cari construct Green’s 
function G(x, 5) for any k( > 0) SO that for 
smooth f‘(x) with bounded tsupport, 

u(x) = 1 G(x> SM5)& 
JD 

represents the solution satisfying u(x)=0 (XE~) 
and Sommerfeld’s radiation condition. Then, 
with 

&klx-<l 
G(x, 5) = -~ 

4nlx--;l+KC(X’~), 

where 
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K,(x, 5) cari be obtained by solving an integral 
equation of tFredholm type [3,4]. In this case, 
there exists no Green’s operator in L, space, 

and G(x, t) cari be considered to be a general- 
ized Green’s function [4]. 

E. Stokes’s Differential Equation 

Let D be a bounded domain in R3 with 
smooth boundary S, and consider Stokes’s 
differential equation in D 

pAui=&pxi, i= 1,2,3, 2 3=0, 
L j=1 axj 

where p, p are positive constants. In hydro- 
dynamics, we consider the boundary value 

problem of finding solutions (u,(x), u,(x), u3(x), 
p(x)) of Stokes’s equation satisfying the bound- 
ary condition ui(x) = 0, x E S (i = 1,2,3). In this 
case, Green% tensors Gij(x, 0, gi(x, <) cari be 
constructed, and for smooth functions X,(x) 
(i = 1,2,3) the unique solution of this bound- 
ary value problem is represented by 

u;(x) = P 5 
s 

Gij(x, 5)Xj(5)dt, 
j=l jj 

P(X) F P $J 
s 

gj(x, 5)Xj(5)d5 
j=l D 

c51. 

F. Parabolic Equations 

Consider the boundary value problem (the 
initial boundary value problem): 

Î 
L[u,+2~=f(x;r), t>o, a<x<h, 

4x, 0) = 444~ 

where at x = a and x = b, u(x, t) satistïes 
some homogeneous boundary conditions. 

In this case, we cari construct the function 
g(x, t; 5, z) (t > r) satisfying the following con- 

ditions: (i) L [g] = 0 except for x = 5. t = r; 
(ii) 

g(x t,5 T)=exp(-(x-5)2i4cz(t-~)) 
/, > 

2cJ55j 

+(regular function) 

in a neighborhood of x = 5, t = z; and (iii) 

g(x, t; 5, r) satisfies the given homogeneous 
boundary conditions at x = a and x = h. Then 

+ *dx,WMi)d5 
s ll 

represents the solution of the problem stated 

in this section for regular functions A cp. The 
function g(x, t; 5, r) is called Green? function 
relative to the boundary value problem. De- 

tailed consideration of such elementary cases is 
found in [6]. 

G. Kernel Functions 

The kernel function is closely related to 
Green’s function of A (the Laplacian) rela- 
tive to the lïrst boundary value problem in a 
domain in R’. 

First we explain the general detïnitions of 

the kernel function. Let E be a general set, and 
let 5 be a +Hilbert space of complex-valued 
functions defined on E with a suitable inner 

product (A g). Suppose that we are given a 
function K(x, y) defined on E x E satisfying 

the following conditions: (i) For any fixed y, 
K (x, y) regarded as a function of x belongs to 

5; ad (ii) for aw f(x) E 5, (f(x), K(x, Y)), = 
f(y). Then K(x, y) is called a kernel function 
or reproducing kernel. The kernel function, if it 
exists, is unique and is tpositive detïnite Her- 
mitian; that is, 

Conversely, any positive detïnite function is 
a reproducing kernel of some Hilbert space. 
A necessary and sutficient condition for the 
existence of the kernel function is that for 
any y~ E, the linear functional f-f(y) be 
bounded. In this case, the minimum of IlfIl 
under the condition f(y) = 1 (fi 3) is attained 
by the element K(x, y)/K(y, y), and its value is 
K(y,y)m”2. When 3 is a tseparable space, then 

by an torthonormal system {q,(x)}, we cari 
represent K (x, y) as 

K(x> Y) = f <IOWA. (2) 
V=I 

As an example of kernel functions, the fol- 
lowing case is of particular importance. Let E 
be an n-dimensional tcomplex manifold, <p and 
$ be holomorphic tdifferential forms of degree 
n on E, and let the following inner product be 
given: 

Now 3 is given by s={<pl<p,<p)< +co}, and 
the kernel function is called the kernel dif- 
ferential. When E is a domain in C”, regarding 
the coefficients of the differential form as func- 
tions, we cal1 the kernel function Bergman% 
kernel function. Moreover, if E cari be mapped 
onto a bounded domain by a one-to-one 

holomorphic mapping, then 
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is positive detïnite and gives a Kiihler metric 
which is called the Bergman metric. 

H. Kernel Functions for Domains in the 
Complex Plane 

Let E be a domain D in the complex plane 
(z = x + iy). Let K(z, [) be Bergman’s kernel 
function of D, and let G(z, <) be Green’s func- 
tion of A relative to the fïrst boundary con- 
dition with a pole at <. Then we have 

K(z, i) = -(2/n)13’G(z, [)/rlzcY[. (3) 

Next, let U(z, [) be the kernel function of 
the Hilbert space consisting of the holomor- 
phic differential forms whose integrals are 
single-valued, and let N(z, [) be Neumann% 
function of A, i.e., the function that is har- 
monic in D - {[}, has the same singularity as 
G at 5, and whose derivative in the normal 
direction aN/dn is constant along the bound- 
ary. Then we have 

U(z, i) = (2/n)aZN(z, i)Jaza[. (4) 

Now the kernel H(z, [) =(N(z, [) - G(z, [))/27~ 
is the kernel function relative to the Hilbert 

space consisting of a11 real tharmonic functions 
whose integral mean value along the boundary 

r is 0 and having the inner product 

CCP,*)= 

The kernel H(z, 5) is called a harmonie kernel 
function. 

Suppose that the boundary r is tpiecewise 
smooth, and consider the space of a11 holo- 
morphic functions in D that are continuous on 

the boundary of D. The inner product of such 
functions q and $ is given by (<p, $) =SI-& 
ds (ds is the element of the arc length of r). 
Hence we have a Hilbert space. Then the 
kernel function relative to this Hilbert space is 
called Szego’s kernel function, which has a 

close relation with tbounded functions. 
The kernel functions enable us to represent 

holomorphic mappings that map the domain 

D onto various canonical domains (- 77 
Conforma1 Mappings). 
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189 (X111.29) 
Green’s Operator 

A. General Remarks 

Consider the fïrst and the third boundary 

value problems for the elliptic equation 

A[u]= -Au+ c ai(x)&+c(x)u=f(x) 
i=l I 

(- 323 Partial Differential Equations of Ellip- 
tic Type). Let D be a bounded domain of R” 
whose boundary S consists of a fïnite number 

of smooth hypersurfaces. By the tmethod of 
orthogonal projection, we take the domain 

g(A) as follows: (i) {u(x)Iu(x)EH’(D) and 
u(x)=0 for ~ES} or (ii) {u(x)Iu(x)~H~(D) and 
au/& + P(~)U = 0 for x E S} according as we are 
considering the tïrst or third boundary value 

problem, where Hz(D) is the +Sobolev space 
(- 168 Function Spaces). If the operator A is 
a one-to-one mapping from g(A) onto the 
function space L,(D), we cal1 the inverse 

operator A-’ Green% operator relative to the 
boundary condition, and we denote it by G. In 
general, the existence of A-’ is not guaranteed. 
However, if we take real t large enough, G, = 
(A + ~1)~’ exists. 

Consider the general case where Â is a com- 
plex parameter: (n1- A) [u] =f(x), ,f(x)~l,~(D). 
Letting G, act from the left, we have (1 -(A + 
t) G,) [u] = - G,f: Conversely, if u E L,(D) is 

a solution, clearly ~(X)E~(A), and u(x) satis- 
fies the lïrst partial differential equation and 

the boundary condition. Since G, is a +com- 
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pact operator in L,(D), the +Riesz-Schauder 
theorem cari be applied (- 68 Compact and 
Nuclear Operators). In particular, if 3, + t is not 
an teigenvalue of G,, U(X)=@-A))l,f= -(I- 

(E.+t)G,)-‘G,f represents a unique solution. 
In the equations in the first paragraph of 

this section, if ai(x)= 0 and c(x) and /j’(x) are 
real, then G, is a +Self-adjoint operator in 
L,(D), and therefore the +Hilbert-Schmidt 
expansion theorem cari be applied. Namely, let 
{Âi} be the eigenvalues of A such that Au,(x) = 

Âiwi(x), where {wi(x)} is an torthonormal 
system in L,(D). Then for any ~(X)E&(D), f(x) 
=C?i(f; wi)wi(x), where the right-hand side 
is taken in the sense of tmean convergence. 
Furthermore, for ~(X)E~(A), we have the 
expansion (@)(X)=C:~ ÂJ~;oJw~(x) in the 
same sense. 

When G, is not self-adjoint, let Cl be the 
tadjoint operator of G, in L,(D). Then GF 
represents Green? operator relative to the 
equation 

(A*+tl)Cul= +$&(oijx)u) 
1 

+ (c(x) + t)u 

=Y(x), 

corresponding to the boundary conditions (i) 

u(x) = 0, x E S (lïrst boundary condition) and (ii) 
(a/an)u+~(x)u=O, XE& where 

~<x)~~<x)+i~ui(X)CoSnXi~ 

with n the outer normal (third boundary con- 
dition) [2]. 

B. Elliptic Equations of Higher Order 

Green’s operator cari be defined for elliptic 
equations of higher order. Consider the 
equation 

A(x,a/ax)u(x)=f(x), XED; 

Bj(x,a/ax)u(x)=o, XES, 

j=1,2 >...>H=m, (1) 

where A is an telliptic operator of order m and 

the boundary operators {Bj} satisfy: (i) At 
every point x of S, the normal direction is not 
tcharacteristic for any Bj; and (ii) the order mj 
of Bj is less than m, and mj # mk (j # k). The 
domain 9(A) of A is defmed by 

9(A) = {u(x) 1 UE H”(D) and 

Bj(x, û/ûx)u(x) = 0 for x~S, 

j=1,2 ,..., b}. 

When A is a one-to-one mapping from 9(A) 
onto L,(D), the inverse G = A-’ is called 

Green% operator. 

This general boundary value problem, es- 
pecially the existence theorem, was treated 
under some algebraic conditions on A and 
{Bj) by M. Schechter [S] who showed that 
G[u]EH”(D) if ~(X)E&(D) and that G[u] 
depends continuously on u. In particular, if 

m > n/2, then by Bobolev’s theorem, G is a 
continuous mapping from L,(D) into C’(D), 

and G is represented by an tintegral operator 
of Hilbert-Schmidt type (L. Garding [SI). 
Namely, for any ~(X)E L,(D), 

(W(x)= 
s 

W> 5)f(WL 
D 

In general, the function G(x, t), obtained by 
the kernel representation of Green% operator 
G, is called Green% function. 

On the other hand, consider, for exam- 
ple, the +Dirichlet problem of A in R3. Then 
Green’s function is defined in the following 

way (- 188 Green’s Functions): G(x, t)= 
-(47r]x-51))’ +u(x,<), where u(x, 5) satistïes 
(i) A,u(x, 5) =O, and (ii) G(x, <)lXss = 0. The 
function delïned in this manner coincides with 
Green’s function defïned as a kernel represen- 
tation of Green’s operator [ 1,2]. 

Suppose that in problem (1) the telliptic 

operator A(x, 3/3x) is independent of x, and let 
E(x) be a tfundamental solution, i.e., E(x) 

is a distribution solution of A (~/~X)E(X) = 6(x) 
(6(x) is +Dirac’s 6-function; - 112 Differential 
Operators). Then E(x) is a C”-function away 

from the origin. Moreover, in a neighborhood 
of the origin the following estimates hold: For 

IKI cm, 
rC,Xl~-n-t/, m-n-lal<O, 

[C> m-n-lal>O, 

where c is some positive constant. When prob- 
lem (1) has Green’s operator G, we cari say 
the following, using the fundamental solution: 

Green’s function G(x, 5) exists and cari be 
written as G(x, [) = E(x - 5) + u(x, t), where for 

any lïxed <ED, u(x, 5) satislïes (i) A(a/ax)u(x, 5) 
=0 and (ii) Bj(x,d/3x)G(x,<)=0, xcS, j= 
1,2 ,.../ b. 

C. Hypoelliptic Operators 

Let 

A(x,û/ûx)= 1 a,(x) ; a, la1 <m 0 
a 3L 

(-> - 
alul 

ÛX axy . ..ax.' 
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be a general partial differential operator with 
C”-coefficients. If the kernel E(x, 5) satisfies 
,4(x, a/ax)E(x, 5) =6(x - c), that is, if we have 
the relation (E(x, l), !4(x, ~/&X)C~(X)), = ~(5) 
for any q(x) E 3, then E(x, 5) is called a funda- 
mental solution of A, where !4 is the transposed 
operator of A: 

‘A(.& a/ax)u(x)= c (-1)‘“’ ; n(a,(x)o(x)). 
lai <m 0 

Now if there exists a fundamental solution 

E’(x, 5) of !4(x, 3/8x) such that (i) E’(x, 5) de- 
fines a kernel that gives rise to two continuous 
mappings, one of which maps the space g< 
into G,, and the other of which maps the space 
aX into Cç (- 168 Function Spaces), and (ii) 
for x + <, E’(x, 0 a C”-function of (x, 0, then 
any distribution u(x) satisfying A(x, a/ax)u(x) 
=g(x) is a C”-function, where g(x) is of class 
C”. In general, an operator A with the prop- 

erty that any solution u(x) of A(x, a/dx)u(x) = 
g(x) is of class C” whenever g(x) is of class 
C”, is called hypoelliptic. Elliptic and para- 

bolic operators are both hypoelliptic. L. Hor- 
mander characterized the hypoelliptic dif- 
ferential operators with constant coefficients 
[8] (- 112 Differential Operators). 

A kernel E(x, 5) such that 

with a(x, 5) a C”-function, is called a para- 
metrix of A. TO prove the hypoellipticity of A, 

it suffices to show the existence of a parametrix 
E’(x, 5) of the operator ‘A having the prop- 
erties (i) and (ii) mentioned in the previous 

paragraph. 
TO explain the notion of the fundamental 

solution for the tevolution equations, suppose 
that we are given an evolution equation 

L[UI =$(x, t) 

- 

+ C aa, jtx> t, 2T 

0 

a aj 
- u(x, t) = 0, 

j<m ax atl 

XER>I, t,gt<T. A kernel E(x,t;& t,J (to< 
t < T) is called a fundamental solution to the 

evolution equation if 

L,,,(~(x,t;~,bJ)=O, t>to, 

and 

f linl, $(x, t; <, to) = 
{ 

0, O<jdm-2, 

-0 6(x-(), j=m-1. 
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Groups 

A. Definition 

Let G be a nonempty set. Suppose that for any 
elements a, b of G there exists a uniquely deter- 
mined element c of G, which is called the prod- 
uct of a and b, written c = ab. We cal1 G a 

group or multiplicative group if(i) the associa- 
tive law a(bc)=(ab)c holds, and (ii) for any 
elements a, b E G there exist uniquely deter- 

mined elements x, y~ G satisfying ax = b, 
ya= b. Then the mapping (a, b)+ab is called 
multiplication in G. Condition (ii) is equivalent 
to the following two conditions: (iii) There 
exists an element e (called the identity element 
or unit element of G) such that ae = ea = a for 
any element a of G; and (iv) for any element a 
of G there exists an element x such that ux = 

xa=e. 
The element x in condition (iv) is called the 

inverse (or inverse element) of a, denoted by 
u-l. The uniqueness of the identity element e 

and the inverse a- ’ follows readily from the 
axioms. The identity element of a multiplica- 
tive group is sometimes denoted by 1. If ab 
= bu, then we say that a and b commute. The 
commutative law, ah = ba for any elements a, 
bE G, is not assumed in general. A group satis- 
fying the commutative law is called an Abelian 
group (or commutative group) in honor of N. 
H. Abel, who made use of commutative groups 
in his study of the theory of equations. The 
product in a commutative group is often writ- 

ten in the form a + b, and in this case the 

mapping (a, b)-+a + b is called addition. The 
element a + b is called the sum of a and b, and 
G is called an additive group. In an additive 
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group the identity element is usually denoted 
by 0 and called the zero element, and the in- 
verse of a is denoted by -a (- 2 Abelian 
Groups; 277 Modules). TO describe the +law of 
composition, we sometimes use notation differ- 
ent from multiplication or addition (- 409 

Structures). 

B. Examples 

A tlinear space over a Yteld K is an additive 
group with respect to the usual addition of 

vectors (- 256 Linear Spaces). A iïeld is an 
additive group with respect to the addition, 
and the set of nonzero elements of a tïeld 
forms a group with respect to the multiplica- 
tion, which is called the multiplicative group 
of the fïeld (- 149 Fields). 

Al1 tinvertible n x n matrices over a ring R 
form a group with respect to the usual multi- 

plication of matrices. This group is called the 
+general linear group of degree n over R (- 60 
Classical Groups). 

Al1 one-to-one mappings from a set A4 onto 
itself (i.e., a11 permutations on M) form a group 
with respect to the composition defïned by 
(f’og) (x)=f(g(x)) (~EM). (Sometimes the 
product fo g is denoted by gfand ,f(x) by xf 
Then x(gf) = (xg)jJ The group of a11 permuta- 
tions on M is called the symmetric group on 
M. A group G is called a permutation group 

(on M) if every element of G is a permutation 
on M. For instance, the general linear group of 
degree II over a field K may be regarded as a 
permutation group on the set of n-dimensional 
vectors, and it is also regarded as a permuta- 
tion group on a ttensor space. 

Al1 tmotions in a Euclidean space form a 
group with respect to the usual composition of 
motions. Al1 invertible n x n matrices over K 
leaving a given +quadratic form invariant form 
a group with respect to the usual multiplica- 
tion of matrices. This group is called the 

+Orthogonal group belonging to the given 
quadratic form. If K is the tcomplex number 
fïeld or the real number iïeld, then these 
groups are Lie groups (- 13 Algebraic 
Groups; 151 Finite Groups; 161 Free Groups; 
249 Lie Groups; 423 Topological Groups). 

C. Fundamental Concepts 

If a group G consists of a finite number of 

elements, then G is called a finite group; other- 
wise, G is called an infinite group. The number 
of elements of G is called the order of G. A 

nonempty subset H of G. is called a subgroup of 
G if H is a group with respect to the multipli- 
cation of the group G. Hence a nonempty sub- 
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set H is a subgroup of G if and only if a-‘bE H 
for any a, bE H. For a family {HA} of sub- 
groups of G, the intersection ni. H, is also a 

subgroup. 
The associative law of multiplication says 

that elements a,, a,, a3 of G determine the 
product ala2a3, which is the common value of 

(ula2)u3 and a,(a,a,). This law cari be gen- 
eralized to say that any ordered set of n ele- 
ments a,, a2, , a,, (n > 2) of G determines their 

product a, a, a, (general associative law). 
When a, = a2 = ... = a,, = a, we denote the 
product au a by a”. If we define a-” for n > 0 
by a0 = e and a-” = (a”)-‘, we then have a”am 
= an+m, (u”)~ = anm for any n, m E Z. If there 
exists a positive integer n such that a” = e, then 
the smallest positive integer d with ad = e is 
called the order of the element a. If there is no 
such n, then a is called an element of infinite 

order. If a is of infinite order, then its powers 
u”(=e),u*l,ai2 / *‘.. are a11 unequal. If a is of 
order d, then the different powers of a are ao 

(=e),a, a2 )...> a dm1 Al1 the powers of a form 
a subgroup (a) of G, called a cyclic subgroup. 
The order of an element a is the same as the 
order of the subgroup (a). The group (a) 
itself is called a cyclic group and is an example 
of an Abelian group (- 2 Abelian Groups). 

Let S be a subset of a group G. Then the 

intersection of a11 subgroups of G containing S 
is called the subgroup generated by S and is 

denoted by (S). It is the smallest subgroup 
containing S, and if S is nonempty, (S) con- 
sists of a11 the elements of the form 

ulla22...a~(aiES,mi~Z). If (S)=G, the 
elements of S are called generators of G. When 
G has a finite set of generators, G is said to be 
fïnitely generated. When S = {u}, then (S) 
coincides with (a), and the element a is the 
generator of the cyclic group (a). Suppose 
that elements a,, , a, of G satisfy an equa- 
tion of the form aria y* an” = 1. This equa- 
tion is then called a relation among the ele- 

ments a,, , a,,. If we have a system of gen- 
erators and a11 relations among the generators, 
then they defme a group (- 16 1 Free Groups). 

It is, however, still an open problem to tïnd a 
general procedure to decide whether the group 
determined by a given system of generators 
and the relations among them contains ele- 

ments other than the identity (- 161 Free 
Groups B). 

For a subset S and an element x of a group 

G, the set of a11 elements x ml sx (s E S) is de- 
noted by x-‘Sx or S”, and S and S” are called 
conjugate. We have (abjx=axbx, (a~‘) 
=(ax)-‘. If H is a subgroup, then H” is also a 

subgroup. For a subset S, the set of all ele- 
ments x satisfying S”= S forms a subgroup 

N(S), called the normalizer of S. The set of all 
elements that commute with every element of 
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S forms a subgroup Z(S), called the centralizer 
of S. The centralizer Z of G is called the tenter 
of G. The set of all elements conjugate to a 
given element a of G is called a conjugacy class. 

A group G is the disjoint union of its conju- 

gacy classes. 
Let H be a subgroup of a group G and x an 

element of G. The set of elements of the form 
hx (h E H) is denoted by Hx and is called a 
right coset of H. A left coset xH is defïned 
similarly. G is the disjoint union of left (right) 
cosets of H. The cardinality of the set of left 
cosets of H equals that of the set of right cosets 
of H; it is called the index of the subgroup H 

and is denoted by (G: H). Given two subgroups 
H and K of G, the set HxK={hxkIhEH,kEK} 
is called the double coset of H and K, and G is 

the disjoint union of different double cosets of 
H and K. If the left cosets of a subgroup H are 
also the right cosets, i.e., if Hx = xH for every 
x E G, then H is called a normal subgroup (or 
invariant subgroup) of G. An equivalent con- 
dition is that H = H” for a11 x E G. The tenter of 
G is always a normal subgroup of G. If H is a 
normal subgroup of G, the set of a11 products 
of an element of Ha and an element of Hb 
coincides with Hab. Thus if we detïne the 

product of two cosets Ha and Hb to be Hab, 
then the set of cosets of H forms a group. This 
group is denoted by G/H and is called the 

factor group (or quotient group) of G modulo 
H. (When G is an additive group, C/H is also 
denoted by G-H and is called the difference 
group.) The group G itself and {e} are normal 
subgroups of G. If G has no normal subgroup 

other than these two, then G is called a simple 
group. A subgroup of fïnite index contains a 

normal subgroup of fïnite index. If H is a 
subgroup of tïnite index, then we cari lïnd a 
common complete system of representatives of 

the left cosets and the right cosets of H. If G is 
finitely generated, then SO is any subgroup of 
G of finite index. 

Let R be an +equivalence relation dehned in 
a group G. If xRx’ and yRy’ always imply 
(xy)R (~‘y’), then we say that R is compatible 
with the multiplication. The tquotient set GIR 
is a group with respect to the induced multipli- 
cation. This group is called the quotient group 

of G with respect to R. The equivalence class 
H containing e is a normal subgroup, and 
xRx’ if and only if x -~X>E H, i.e., x and x’ are 

contained in the same coset of H. Thus GIR 
coincides with G/H. 

If G is a tïnite group of order n, then the 
order and the index of any subgroup of G, the 
order of any element of G, the cardinal number 
of any conjugacy class of G, and the number of 

different conjugate subgroups of any subgroup 
of G are a11 divisors of n. 
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D. Isomorphisms and Homomorphisms 

If there is a one-to-one mapping a t-) a’ of the 

elements of a group G onto those of a group 
G’ and if a w  a’ and b H b’ imply ab u ab’, then 
we say that G and G’ are isomorphic and Write 

C=G’. If we put a’=f(a), thenf:G-rG’ is a 
tbijection satisfying f(ab) =,f(a)f(b) (a, b E G). 
More generally, if a mapping f: G + G’ satisfies 
f(ab) =f’(a),f(b) for a11 a, b E G, then ,f is called a 
homomorpbism of G to G’. An tinjective (kur- 
jective) homomorphism is also called a tmono- 
morphism (tepimorphism). If there is a surjec- 
tive homomorphism G-G’, then we say that 
G’ is homomorphic to G. The composite of two 
homomorphisms is also a homomorphism. If a 

homomorphism f: G-G’ is a bijection, then f 
is called an isomorphism. In this case f-’ is 
also an isomorphism, and we have G g G’. 

For a subgroup H of a group G, the in- 
jective homomorphism f: H +G deiïned by 

f(a) = a (a EH) is called the canonical injection 
(or natural injection). For a factor group GIR 
of G, the surjective homomorphism f: G+G/R 

such that a~,f(a) (ag C) is called the canonical 
surjection (or natural surjection). 

Let f: G+G’ be a homomorphism. Then the 

image f(G) of ,f is a subgroup of G, and the 
kernel H = {a E G 1 f(a) = e’ (the identity of G’)} 

off is a normal subgroup of G. The equiva- 
lente classes of the equivalence relation given 
by f(x) =,f(y) are just the cosets of H, and J 
induces an isomorphism f: C/H -f(G). The 
latter proposition is called the homomorphism 
theorem of groups. This theorem is extended in 
the following way: For simplicity let f: G-G’ 
be a surjective homomorphism. (i) If H’ is a 
normal subgroup of G’, then the inverse image 
H =f-‘(H’) is a normal subgroup of G, and f 
induces the isomorphism f: G/H+G’/H’. (ii) if 

H is a subgroup and N is a normal subgroup 
ofG,thenHN={hnIhEH,nsN}isasubgroup 
of G, and the canonical injection H+ HN 

induces an isomorphism H/H n N-tHN/N. (iii) 
If H and N are two normal subgroups of G 
such that H 3 N, then the canonical surjection 
G+G/N induces an isomorphism G/H+ 
(G/N)/(H/N). Propositions (i), (ii), and (iii) are 
called the isomorphism theorems of groups. 

A homomorphism of G to itself is called an 
endomorphism of G, and an isomorphism of G 

to itself is called an automorphism of G. The 
set of automorphisms of G forms a group with 
respect to the composition of mappings, called 

the group of automorphisms of G. Given an 
element a of G, the mapping x + a -’ xa (x E G) 
yields an automorphism of G which is called 
an inner automorphism of G. The set of inner 

automorphisms of G forms a normal subgroup 
of the group of automorphisms of G, called the 
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group of inner automorphisms of G, which is 

isomorphic to the factor group of G modulo its 
tenter. The factor group of the group of auto- 

morphisms of G modulo the group of inner 
automorphisms of G is called the group of 
outer automorphisms of G. 

If a mapping f: G + G’ from a group G to 

another group G’ satisfies f(ab) =f(b)f(a) 
(a, b E G), then f is called an antihomomor- 
phism. A bijective antihomomorphism is called 
an anti-isomorphism. When G = G’, S is called 
an anti-endomorphism or anti-automorphism 
(e.g.,f:G+G detïned byS(a)=ü’ is an anti- 
isomorphism). 

E. Groups with Operator Domain 

Let R be a set and G a group. Suppose that for 

each 8 E R and x E G, the product 0x E G is 

defmed and satistïes O(xy) = H(x)(Qy). Then fi is 
called an operator domain of G, and G is called 

a group with operator domain fi, or simply an 
fi-group. (We sometimes Write x0 instead of 
ex.) The mapping (0,x)+0x from 0 x G to G is 
called the toperation of R on G. If G is an fi- 
group, then any element 0 of fi induces an 
endomorphism 0,:x+0x of G. Conversely, if 

we are given a mapping Q-+0, of 0 to the set 
of endomorphisms of G, then we may regard G 
as an R-group. Any group may be regarded as 

an fi-group with R equal to the empty set or 
to the set consisting of the identity automor- 
phism of G. Thus the general theory of groups 
cari be extended to the theory of groups with 
operator domain, and in some cases effective 
use of suitable operator domains cari be fruit- 
fui in the investigation of the properties of 
groups themselves. (- 2 Abelian Groups; 277 

Modules). 

A subgroup H of an R-group G is called an 
fLsubgroup (or admissible subgroup) if BXE H 
for any OEQ and XE H. In this case, H is also 
an Q-group. If an equivalence relation R de- 

fïned in G is compatible with the multiplica- 
tion and also compatible with the operators, 
namely, if xRx' implies (Qx)R(Ox') for any 
OCR, then the quotient group GIR is also an 

R-group. The equivalence class containing e is 
an admissible normal suhgroup. Conversely, if 

H is an admissible normal subgroup, then the 
equivalence relation defined by H is compat- 
ible with the operators, and the factor group 
G/H is an R-group. A homomorphism f’: G 
+G’ of an fi-group G to an R-group G’ is 

called an R-homomorphism (admissible homo- 
morphism or operator homomorphism) if f(0x) 
=Of(x) for any OE R and x E G. If f is an iso- 
morphism, then f is called an R-isomorphism 
(admissible isomorphism or operator isomor- 
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phism). We have the homomorphism theorem 
and the isomorphism theorems of R-groups if 
we consider only admissible subgroups and 

admissible homomorphisms. 

F. Sequences of Subgroups 

Let H,, H, be an intïnite sequence of 
(normal) subgroups of a group G. If Hi$ Hi+l 
(i = 1,2, _. ), then the sequence is called an 
ascending chain of (normal) subgroups. If Hi 
2 Hi+l (i = 1,2, . ), then it is called a descend- 
ing chain of (normal) subgroups. If there is no 
ascending (or descending) chain of (normal) 
subgroups of G, we say that G satistïes the 
ascending (or descending) chain condition for 
(normal) subgroups. These conditions are the 
same as the ascending (or descending) chain 

condition in the ordered set of a11 (normal) 
subgroups of G (- 311 Ordering C). A group 
G satistïes the ascending chain condition for 
subgroups if and only if every subgroup of 
G is tïnitely generated. Also, for groups with 

operator domain we have similar results. The 
structure of Abelian groups satisfying the 
ascending (descending) chain condition is 

completely determined (- 2 Abelian Groups). 
It is not known whether there is an intïnite 
group satisfying both the ascending and de- 
scending chain conditions for subgroups. A 

group satisfying the descending chain con- 
dition for subgroups has no element of infinite 
order, but the converse is not true. There is an 
intïnite group which is tïnitely generated and 
has no element of infmite order (- 161 Free 
Groups C). 

G. Normal Chains 

AtïnitesequenceG=G,,~G,~G,~...~G, 

= {e} of subgroups of a group G is called a 
normal chain if Gi is a normal subgroup of Gi+, 
for i = 1,2, , r. We cal1 r the length of the 
chain. The sequence G,/G,, GJG,, , G,-,/G, 

is called the sequence of factor groups of the 
normal chain. A normal chain G = H, 3 H, 2 
H, 3 .X H, = {e} is called a refinement of 
thechainG=G,~G,~...~G,={e}ifeveryG, 
appears in this chain. Two normal chains with 
the same length are called isomorphic if there 

is a one-to-one correspondence between their 
sequences of factor groups such that corre- 
sponding factor groups are isomorphic. Any 
two normal chains have reiïnements which are 
isomorphic to each other (Schreier’s retïne- 

ment theorem). A normal chain is called a 
composition series (or Jordan-HoIder sequence) 
if it consists of different subgroups of G and in 
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any proper refmement there appear two suc- 
cessive subgroups which are the same. The 

sequence of factor groups of a composition 
series is called a composition factor series, and 
the factor groups appearing in this series are 
called composition factors. Any composition 
factor is a simple group. As a direct conse- 
quence of the refïnement theorem we see that if 
a group G has a composition series, then the 
composition factor series is unique up to iso- 
morphism and the ordering of the factors. 
(This theorem is due to 0. Holder. C. Jordan 
proved that if G is a finite group, then the 

set of orders of composition factors is inde- 
pendent of the choice of composition series. 
Hence we cal1 the theorem the Jordan-H6lder 
theorem.) 

For an R-group G, if we consider only R- 
subgroups, we have definitions and theorems 
similar to those in this section. When we take 

the group of inner automorphisms of G as 0, 
then a composition series of the R-group G is 
called a principal series. If we take the group of 
automorphisms of G as R, then a composition 
series is called a characteristic series. An in- 

fïnite group G does not always have a compo- 
sition series. Even if G has a composition 
series, G may have an infinite normal chain 
G, c G, c c G such that each Gi is a normal 
subgroup of G,,, and u Gi = G. In fact, there is 
a simple group which has such an infinite 
normal chain (P. Hall). Two groups which 
have isomorphic composition series are not 
necessarily isomorphic. A subgroup of a group 

G is called a subnormal subgroup of G if it may 
appear in some normal chain. The intersection 
of two subnormal subgroups is also sub- 
normal, but their join (i.e., the subgroup gen- 
erated by both of them) is not necessarily 

subnormal in an infinite group. The set of 
subgroups and the set of normal subgroups of 
a group form tlattices with respect to the inclu- 
sion relation (for the relationship between 
these lattices and the group structure - [SI). 

H. Commutator Subgroups 

Given two elements a and b of a group G, we 
cal1 ü’b-‘ab = [a, b] the commutator of a and 
b. The subgroup C generated by a11 commu- 

tators in G is called the commutator subgroup 
(or derived group) of G. The subgroup C is a 
normal subgroup of G, and the factor group 
C/C is Abelian. On the other hand, if B is a 
normal subgroup of G and G/B is Abelian, then 

B contains C. For two subsets A, B of G, the 
subgroup generated by the commutators [a, b] 

(a E A, b E B) is called the commutator group of 

A and B and is denoted by [A, B]. If A and B 

are normal subgroups of G, then C’ = [A, B] is 

708 

also a normal subgroup of G, and A/C’ com- 
mutes with BIC’ elementwise in the factor 
group C/C’. Furthermore, [A, B] is the mini- 

mal normal subgroup with the property. The 
subgroup [G, G] is the commutator subgroup 
of G. 

If the commutator subgroup of G is Abelian, 
then G is called a meta-Abelian group. If a 
group G has a normal chain G( = G,) 1 G, 3 
G2( = {e}) of length 2 and the factor groups 

G/G,, G,/G, are Abelian, then G is meta- 
Abelian. Meta-Abelian groups are special 

cases of solvable groups, discussed in Section 1. 

1. Solvable Groups 

Suppose that we are given a series of subgroups 
Gi(i=0,1,2,...)ofGsuchthatG=G,and 

[Ci, Gi] = G,+, Then we have a normal chain 
G=G,xG,=~G,~....IfG,={e}forsome 
r, then G is called a solvable group. For the 
normalchainG(=G,)xG,x...G,(={e})the 
factor groups G,/G,+, (i = 0, 1, . , r - 1) are all 
Abelian. A finite group G is solvable if and 
only if G has a composition series G = H, 1 

ff,~Hz 3.. .I H, = {e} such that the factor 
groupsH,/H,+,(i=O,l,...,s-l)areallof 
prime order. An tirreducible algebraic equa- 

tion over a field of tcharacteristic 0 is solvable 
by radicals if and only if its Galois group is 
solvable (- 172 Galois Theory). 

J. Nilpotent Groups 

The sequence of subgroups G = G, 2 G, 1 
G, 1. defïned inductively by setting G, = 

[G,G,m,](r=1,2,...)iscalledthelower 
central series of G. If G, = {e} for some n, then 
G is called a nilpotent group, and the least 
number n with G, = {e} is called the class of the 
nilpotent group G. A nilpotent group is solv- 
able. Let Z, be the tenter of G, Z,/Z, be the 
tenter of G/Z,, and SO on. Then we have a 
sequence of subgroups Z, = {e} c Z, c Z, c , 
called the Upper central series of G. A group G 
is nilpotent if and only if Z, = G for some m, 
and the least number m with Z, = G is the 
class of G. For the subgroups G, and Z, (r = 

1,2 ,... ),wehave[Gim,,Zi]={e}.IfGisa 
+Lie group, then G is nilpotent if and only if 
the corresponding ?Lie algebra g is nilpotent, 

Le., g” = 0. 

K. Infinite Solvable Groups 

The concepts of solvability and nilpotency are 

generalized in several ways for infinite groups. 
For instance, a group G is called a generalized 

solvable group if any homomorphic image of G 
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which is unequal to {e} contains an Abelian 

normal subgroup unequal to {e}, and G is 
called a generalized nilpotent group if any 
homomorphic image (f {e}) of G has tenter 
unequal to {e}. These defïnitions coincide with 
the previous ones for tïnite groups but not for 

iniïnite groups [7]. 

L. Direct Products 

Let G,, , G, be a tïnite number of groups. 

The set G of a11 elements (x,, ,x,) with X~E Ci 
(i = 1, , n) is a group if we deiïne the prod- 
uct of two elements x=(x,, . . ..x.) and y= 

(yl,...,y,)tobexy=(x,y,,...,x,y,).We 
cal1 G the direct product of groups G,, . . . , G, 

and Write G = G, x x G,. If ej is the identity 
element of G,, then e=(el, , e,) is the identity 
element of G. The mapping (x,, , x,)-xi 
from G to Ci is a surjective homomorphism, 
called the canonical surjection. The subgroup 
Hi={(c ,,..., eiml,xi,ei+, ,..., e,)IxiEGi}is 
isomorphic to Ci. The subgroups Hi (i= 

1, , n) satisfy the following conditions: (i) Hi 

is a normal subgroup of G. (ii) Hi commutes 
with H, elementwise if i #j. (iii) Any element of 
G cari be written uniquely as the product of 
elements of H,, , H,. Conversely, if a group 

G has subgroups H, , , H,, satisfying these 
three conditions, then G is isomorphic to H, 

x x H,. In this case we also Write G= H, 

x x H,, and we cal1 this a direct decompo- 

sition of G. Each Hi is called a direct factor of 
G. Conditions (i), (ii), and (iii) are equivalent 
to condition (i), (ii’) G = H, H, H,, and 
H,...H,-,nHi={e}(i=2 ,..., n). 

A group G is called indecomposable if G 
cannot be decomposed into the direct product 
of two subgroups unequal to {e}, and com- 
pletely reducible if G is the direct product of 
simple groups. If G satisfies the ascending or 

descending chain condition for normal sub- 
groups, then G cari be decomposed into the 

direct product of indecomposable groups. 
Such a decomposition is not unique in general, 
but if G has two direct product decompo- 
sitionsG=G,x...xG,=H,x...xH,,where 
G, and H, are indecomposable and not equal 
to {e}, then m = n and the factors Ci are iso- 
morphic to the factors H, for some j; moreover, 
if G, corresponds, say, with H,, then we have 
G = H, x G, x . . x G,,,. This fact was first 
stated by J. H. M. Wedderburn, and a com- 

plete proof of the theorem was given by R. 
Remak and 0. Schmidt. Later W. Krull ex- 
tended it to more general groups (with opera- 
tor domain), and we cal1 it the Krull-Remak- 
Scbmidt tbeorem. 0. Ore formulated it as a 

theorem on tmodular lattices. 
For an infinite number of groups G, (1~ A) 
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we deiïne the direct product ni.,, G, of these 
groups similarly. The set of a11 elements 

( , xjr ) (xi, E G,) such that almost all xi (i.e., 
a11 except a fïnite number of n) are identity 
elements is a subgroup of the direct product, 

called the direct sum (or restricted direct prod- 
uct) of {G,). 

M. Free Products 

Given a family of groups {G,},,,, we defïne 
the most general group G generated by these 
groups, called the free product of {G,}, to- 
gether with canonical injections ,fn: G,+G. 

Let S be the disjoint union of the sets 

(G,},,,, and regard G, as a subset of S. A 
word is either void or a fïnite sequence a,, 
a*, , a, of elements of S, and we denote the 

set of a11 words by W. The product of two 
words w  and w’ is defined by connecting w  
with w’ SO that the tassociative law holds. We 
Write w>w’ when two words w  and w’ satisfy 

one of the following two conditions: (i) The 
word w  has successive members a, b which 

belong to the same group G,, and the word w’ 
is obtained from w  by replacing a, b by the 

product ah. (ii) Some member of w  is an iden- 
tity element, and w’ is the word obtained from 

w  by deleting this member. For two words w  
and w’, we Write w  = w’ if there is a finite se- 
quenceofwordsw=w,,w,,...,w,=w’such 
that for each i (1 <i<n), either wiml>y or 
y>wiml. This relation is an equivalence rela- 
tion and is compatible with the multiplica- 

tion. Thus we may defïne a multiplication for 
the quotient set G of W by this equivalence 

relation, and then G is a group whose identity 
element is the equivalence class containing the 
void Word. Any x E G, is regarded as a Word, 
and we have an injective homomorphism 
fA : GA+G by assigning the corresponding class 

to each element of G,. The group G is called 
the free product of the system of groups 

{G~,,A> and f’ is called the canonical injection. 
The free product G of {G,},,, is characterized 
by the following universal property: Given a 
group G’ and homomorphisms fi: G,+G 
@SA), we cari fïnd a unique homomorphism 

9: C+G such that gofi.=fZ:. The free product 
is the dual concept of direct product and is also 

called the tcoproduct (- 52 Categories and 
Functors). If each G, is an infïnite cyclic group 
generated by a,, then the free product of the 

G, is the tfree group generated by {uI} (- 161 
Free Groups). 

The concept of free product is generalized in 
the following way. Let H be a fïxed group. We 
consider the family of pairs (G,j), where G is a 

group and j: H + G is an injective homomor- 
phism. A homomorphism of pairs ,f:(G,j)+ 
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(G’,j’) is defmed to be a group homomorphism 
f: G+G’ such that ,foj=j’. For a given family 
of pairs {(G,, j,)}, we have the amalgamated 
product (G,j) of the family and the canonical 
homomorphism fA:(G,,j,)+(G, j), which is 
characterized by the following universal prop- 
erty: Given a pair (G’J) and homomorphisms 
.&‘:(G,,j,)+(G’,j’), we have a unique homo- 
morphism g:(G,j)+(G’,j’) such that gof’= 

fi. If H = {e}, then the amalgamated prod- 

uct is the same as the free product. Now fA is 
an injection. If we regard G, as a subgroup of 
G, then G is generated by the subgroups G, 

and G,flG,,=j,(H)=j,(H) (l#p). 
The notion of the amalgamated product is 

useful in constructing groups with interesting 
properties. For instance, we have a group 
whose nonidentity elements are a11 conjugate 
(B. H. Neumann and G. Higman), and a group 

generated by a tïnite number of elements such 
that its homomorphic image (f {e}) is always 
an inlïnite group (Higman) SO that we have an 

intïnite simple group generated by a lïnite 
number of elements. 

N. Extensions 

Let N and F be groups. A group G is called an 
extension of F by N if G has a normal sub- 

group N isomorphic to N and GIN g F. The 
problem of lïnding a11 extensions was solved 
by Schreier (Monatsk. Math. Pkys., 34 (1926); 

Ahk. Math. Sem. Univ. Hamburg, 4 (1928)). 
Suppose that (1) to each (TE F there corre- 

sponds an automorphism s,, of N; (2) there 
exist elements c,,, ( (T, z E F) of N such that 

s,(s,(a))=c,,,(s,,(a))c,‘, (~EN); and (3) ~~~~~~~~~ 
=&T(c,,pk,,,p. Then the set G of a11 symbols as, 
(aE N, CE F) is an extension of F by N if we 
define multiplication by as; bs,=(as,,(b)c,,,)s,,. 

In fact, the set of a11 elements a = ac,‘, s1 (a EN) 

is a normal subgroup N of G such that GIN 
g F. Any extension cari be obtained in this 

way. A system (s,, c,,,) satisfying (l), (2), and (3) 
above is called a factor set belonging to F. 

Two factor sets (s,, c,,,) and (t,, d,,,) are said to 
be associated if there exist elements a, (a~ F) 

of N such that t,(a) = s,,(a,aa;‘) and d,,, = 
a,(so(a,))c,,,a~z’. In this case, two extensions 
determined by these factor sets are isomorphic. 
If(s,, c,,,) is associated with (t,, d,,,) (d,,, = 1 for 
any o, ZE F), then we say that the correspond- 
ing extension is a split extension. In this case, 
the extension G contains a subgroup F BO- 

morphic to F, and G = FN, F n N = {e}. We 
cal1 such an extension a semidirect product of 

N and F. 

If N is Abelian, then condition (2) is simply 

s&,(a)) = s,,(a), since the only inner automor- 
phism of N is the identity mapping. The con- 
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ditions of associated factor sets and split ex- 
tension are also simplitïed. If N is contained 
in the tenter of G, then G is called a central 
extension of N. 

0. Transfers 

Let H be a subgroup of fmite index in G and yi 
(i = 1, . . , k) be representatives of the right 

cosets of H. For bE Hgi we Write gi =b. Then 
for XEG an element X= H’nf=, gix(gix)-’ of 
H/H’ is determined uniquely (independent of 

the choice of representatives), where H’ is the 
commutator subgroup of H. The correspon- 
dence G’x+X yields a homomorphism of G/G’ 
to H/H’, which is called the transfer from G/G’ 
to HJH’. 

P. Generalizations 

The concept of group cari be generalized in 

several ways. A set S in which a multiplication 
(a, b)-+ab satisfying (ab)c = a(bc) (the associa- 
tive law) is detïned is called a semigroup. If S is 
a commutative semigroup in which ax = bx 

implies a = b (the cancellation law), then S cari 
be embedded in a group G SO that the multi- 
plication in S is preserved in G and any XE G is 
the quotient of two elements of S: x = a-l b = 

ba-’ (a, bc S). Such a group G is determined 

uniquely by S. We cal1 it the group of quotients 
of s. 

The notion of semigroup is obtained by 

taking only associativity from the group 
axioms. On the other hand, if Q is a set with a 
law of composition (a, b)-tub which is not 
necessarily associative but satislïes the con- 
dition that any two among a, b, c in the equa- 
tion ab = c determine the third uniquely, then 
Q is called a quasigroup. A quasigroup with an 
identity element e such that ea = ae = a for 
every element a is called a loop. For loops, we 

have an analog of the structure theory of 
groups (R. H. Bruck, Trans. Amer. Math. Soc., 

60 (1946)). 
If we give up the possibility of forming 

products for a11 pairs of elements or the 

uniqueness of the product in the axioms for 
groups, then we have the following generaliza- 
tions of groups. A set M with multiplication 
under which to any elements a, be M there 

corresponds a nonempty subset ab of M is 
called a hypergroupoid. Moreover, if the asso- 
ciative law (ab)c = u(bc) holds and for any 
elements a, b6 M there exist x, YE M such 
that boxa, beay, then M is called a hyper- 
group. 

A set M is called a mixed group if (1) M cari 

be partitioned into disjoint subsets M,, M,, 

M, ,... ;(2)foraEM,,bEMi(i=0, 1,2 ,._. ), 
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elements ab, a\b of Mi are detïned such that 
u(a\b) = b; (3) for b, CE Mi, an element b/c of 

M, is defined such that (b/c) c = b; and (4) the 
associative law (ab)c=a(bc) (a, bs M,,cgM) 

holds (A. Loewy, 1927). 
A set M is called a groupoid if (1) M cari be 

partitioned into disjoint subsets M, (i,j= 

1,2,...);(2)foruEM,andbEMjk,anele- 
ment ub E Mi, is defïned; (3) for u E M, and 
bG Mi,, an element a\bE Mjk is delïned such 
that a(u\b)= b; (4) for UE M, and bE M,, an 
element u/bE Mi, is defined such that (u/b)b 

=a; and (5) for ~EM,, bcMj,, and ~EM~~, the 
associative law a(bc) = (ab)c holds (H. Brandt, 
1926). These generalized concepts also have 
some practical applications (- 2 Abelian 

Groups; 13 Algebraic Groups; 60 Classical 
Groups; 69 Compact Groups; 92 Crystallo- 
graphie Groups; 122 Discontinuous Groups; 
151 Finite Groups; 161 Free Groups; 243 
Lattices; 249 Lie Groups; 277 Modules; 362 
Representations; 422 Topological Abelian 

Groups; 423 Topological Groups; 437 Unitary 
Representations). 

Q. History 

The concept of the group was Iïrst introduced 
in the early 19th Century, but its rudiments cari 
be found in antiquity; in fact, it was virtually 
contained in the concept of motion or trans- 
formation used in ancient geometry. From the 
time it took explicit form in the late 19th cen- 
tury, it has played a fundamental role in a11 

fields of mathematics. 
In their study of algebraic equations in the 

late 18th Century, J. L. tlagrange, A. T. Van- 
dermonde, and P. Ruffini saw the importance 

of the group of permutations of roots; using 
this idea N. H. Abel showed that a general 
equation of degree > 5 cannot be solved alge- 
braically. A. L. +Cauchy studied the group of 
permutations of roots for its own interest, but 

a complete description of the relationship 
between groups and algebraic equations was 
hrst given by E. +Galois. C. Jordan developed 
a detailed exposition of the theory given by 
Abel and Galois in his Traité des substitutions 

(1870) [l]. Up to that time, a group meant a 

permutation group; the axiomatic defïnition of 
a group was given by A. Cayley (1854) and L. 
Kronecker (1870). F. +Klein emphasized the 
signilïcance of group theory in geometry in his 
+Erlangen program (1872), and M. S. +Lie 
developed the theory of +Lie groups in the 
1880s. In 1897, W. Burnside published his 
Theory qfgroups [3], whose second edition 

(1911) is one of the classics in group theory 
and is still valuable. Since 1896, G. Frobenius 

[2] and others have developed the theory of 
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representation of groups by matrices (- 362 
Representations). By that time, the theory of 

Imite groups had acquired all its essential 
features. Among the branches of abstract 

algebra, the theory of groups was the tïrst to 
develop; it led to the progress of abstract alge- 
bra in the 1930s. Since the latter half of that 
decade, the theory of fmite groups has been 
developed further; there has been increased 
interest in the theory, and many significant 
results have been obtained, especially since 
1955 (- 151 Finite Groups). 
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G-Structures 

Differential geometry studies differentiable 

manifolds and geometric abjects or structures 
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on them. Among the geometric structures, the 
Riemannian and complex structures, with their 
contacts with other fïelds of mathematics and 

with their richness in results, occupy a central 
position in differential geometry. Perhaps it is 
impossible to say precisely what a differential 

geometric structure is or should be. However, 
the notion of G-structure allows a unilïed 
description of many of the interesting known 
geometric structures, such as Riemannian and 
complex structures. 

A. The Notion of G-Structures 

Let M be an m-dimensional C”-manifold, and 
let r: T(M)+M be its ttangent bundle. For 
XE~, Tx(M)=rm’(x) is the vector space of 

tangent vectors at x. Let rc: F(M)+M denote 
the iframe bundle of M. It is a GL(m; R)- 

principal bundle on M and F,(M) = Z-I (x) is 
the set of linear isomorphisms (called frames at 
x) of R” onto T,(M). Here GL(m; R) is the 
general linear group of R”. Hence F,(M) cari 
be naturally identilïed with the set of ordered 

bases of T,(M). Write 0 =(e’, , Om) for the 
canonical form of F(M), which is the R”- 
valued 1-form on F(M) defined by H(u)= 
p-‘(n,(v)) for any VE T,(F(M)). Given a dif- 
feomorphism f: Mg N of M onto another 

C” -manifold N, we cari naturally detïne the 
bundle isomorphism f(i): F(M) g F(N) by 

f”‘(P) =.f* OP. 
Let G be a +Lie subgroup of GL(m; R). A 

principal G-subbundle np: P+M of the frame 
bundle 7~: F(M)+M is called a G-structure 
over M. Thus P is a regular submanifold of 

F(M) satisfying the following three conditions: 
(Al) n(P)= M. 

(A2) for peP and rr~GL(rn;R), pa~P if and 
only if ~JE G. 

(A3) for any x E M, there exist an open 
neighborhood ci of x and a C”-mapping 
s: U-P such that n(s(y))=y for any y~ U. 

Conversely, if a regular submanifold P of F(M) 

satislïes the above three conditions (Al), (A2), 
and (A3), then np = T[ 1 p: P-+M is a G-structure 
over M. When G is closed, then condition (A3) 
is automatically satisfied. The restriction of 0 
onto P is called the canonical form of P and is 
also denoted by 8. For an open subset U of M, 

the restriction P 1 U = ng’( U) is a G-structure 
over U. 

Let n,:P+M and no:Q-fN be G-structures 
over M and N, respectively. A diffeomorphism 
f: M r N is called a G-isomorphism of P onto 

Q if f(‘)(P) = Q. When such an f exists, we say 
that the G-structures P and Q are equivalent. A 
G-isomorphism of P onto itself is called a G- 

automorphism of P. Write Aut(M, P) for the 
group of G-automorphisms of P. 
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Let g be the Lie algebra of G. Since G acts 
on P from the right, we have the natural Lie 

algebra homomorphism z : g+ r( P, T(P)). Here 
r(P, T(P)) is the Lie algebra of C”-vector 
fields on P. Actually 1 is injective, and we Write 

A* for I(A) (AES). We cal1 A* the fundamental 
vector tïeld corresponding to A. 

For XER”‘, delïne pO(x)~FX(Rm) by 
&(X)((V~)) = x& uj(ê/êxj),, where xi, , xm 
are the natural coordinates of R”. Any open 
subset D of R” has the natural G-structure 
P(D,G) defmed by P(D,G)={p,(x).aeF,(R”); 
x E D, oc G}. We say that a G-structure np: 
P-, M over M is integrable if for each x E M, 

there exists a local coordinate system (U, q, D) 

around x such that cp is a G-isomorphism 
of P 1 U onto P(D, G). Equivalently, if we set 
‘p=(x’ , . , xm), then the frame {(8/8x’),, , 

(8/6xm),} belongs to P for each y~ U. 

B. Examples 

The following examples (Bl))(B7) show that 
some classical geometric structures cari be 
treated uniformly from the viewpoint of G- 
structures. 

(Bl) An absolute parallelism on M is, by 

definition, a system {Xi, , X,} of C-vector 
fields on M such that at each point XE M 

{X,(x), , X,(x)} is a basis of T(M),. Clearly 

this is equivalent to giving an {e}-structure 
rcp: P+M, where e stands for the identity 

matrix of GL(m; R). Then P is integrable if and 
only if [X,, Xi] = 0, 1 d i, j < m. In this case, 
Aut(M, P) is a tïnite-dimensional +Lie trans- 
formation group on M. 

(B2) Let E be a k-dimensional tdistribution, 

namely, E is a k-dimensional vector subbundle 
of T(M). Write R” = Rk @ Rmmk. Set GL(k, m; R) 

={cr~GL(rn;R);a(R~)cR~} and P={pgF(M); 

p(Rk) c E}. Then P is a GL(k, m; R)-structure 
over M. This gives a bijective correspondence 

between the k-dimensional distributions on M 

and the GL(k, m; R)-structures on M. More- 
over, P is integrable if and only if E is +in- 
volutive (Frobenius theorem). 

(B3) Let g be a Riemannian metric on M. 

Set O(m)={cEGL(m;R);tocT=e}. Delïne P(g) 

bY P(Y)= {<OI / > uJEF(M); S(ui, uj) ~6,). 
Then P(g) is an O(m)-structure on M. This 
gives a bijective correspondence between the 
Riemannian metrics on M and the O(m)- 

structures over M. Then Aut(M, P(g)) is 
the group of tisometries of g, and a tïnite- 
dimensional Lie transformation group on M. 

Moreover, P(g) is integrable if and only if g is 

flat in the sense that the Riemannian curvature 
tensor of g is zero. 

(B4) Two Riemannian metrics g, and gZ are 
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called conformally equivalent if there exists a 

C”-function p > 0 with gi = pg2. This is an 
equivalence relation among the Riemannian 
metrics on M. An equivalence class {g} is 
called a conforma1 structure on M. Set CO(m) 
={aA;A~0(m),a~R-(0)). Defme P({g}) 

bY P({g})={(Ul,...,u,)EF(M);g(Ul,uj)= 
a6,,a~R-{O}}. Then P({g}) is a CO(m)- 
structure on M. This gives a bijective cor- 

respondence between the conforma1 struc- 
tures on M and the CO(m)-structures over 

M. Then Aut(M, P( { g})) is the group of tcon- 
forma1 transformations of {g} and is a finite- 
dimensional Lie transformation group. More- 

over P( { g}) is integrable if and only if the 
conforma1 structure {y} is conformally flat in 
the sense that at each point XE M, there exists 
a local coordinate system (xi, . , xm) around x 
such that .g(a/ax’, a/axj) = PS,, where p is a 
positive function. 

(B5) Assume that m is even, say m = 21. By an 
almost symplectic structure on M, we mean a 
differential 2-form R of maximal rank, i.e., 
R A A Sz (1 times) never vanishes. Let A be 
the standard skew-symmetric bilinear form on 

R2’ delïned by A((ui),(uj))=(u1v2-u2u1)+ 

+(u 
21-1 u21 -u~‘Ü~‘-~). The symplectic group 

Sp(l; R) is defined by Sp(l;R)= jo~GL(21;R); 
A(~U, cru) = A(u, u), u, usR2’}. Set P(0) = 

{NEF; p*A=Q,,x=n,(p)}. Then P@)is 
an Sp(l; R)-structure over M. This gives a 
bijective correspondence between the almost 
symplectic structures on M and the Sp(l; R)- 
structures over M. Then Aut(M, P(a)) is the 
group of symplectic transformations of n, 

which is never a fïnite-dimensional Lie trans- 
formation group. Moreover P(D) is integrable 
if and only if R is a symplectic structure, i.e., 
dfi=O. 

(B6) Assume that m is even, say m = 21. We 
identify C’ with R2’ as a real vector space. 
Then GL(m; C) is a Lie subgroup of GL(21; R). 
Let J be an almost complex structure on M. 
Set P(J)={p~F(M);.fp(u)=p(iu),u~R~‘=C~}. 

Then P(J) is a GL(I; C)-structure on M. This 
gives a bijective correspondence between the 
almost complex structures on M and the 

GL(1; C)-structures over M. Then Aut(M, P(J)) 
is the group of J-analytic transformations 
on M. Furthermore, Aut(M, P(J)) is a finite- 

dimensional Lie transformation group when 
M is compact. Moreover P(J) is integrable if 
and only if J is a complex structure. 

(B7) It is easy to see that there is a bijec- 
tive correspondence between the SL(m; R)- 
structures over M and the set of volume ele- 
ments on M. Any SL(m; R)-structure over M is 
always integrable and Aut(M, P) is the group 

of diffeomorphisms preserving R, which is 
never a imite-dimensional Lie transformation 
group. 
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C. Structure Functions 

Let G be a Lie subgroup of GL(m; R) and g the 
Lie algebra of G. For convenience, we Write V 
for R” and V* for the dual space of V. Then 
VO A2 V* cari be considered as the space of 
skew-symmetric bilinear mappings from Vx V 
into V, and g @ V* cari be identified with the 
space of linear mappings from V into g. Delïne 
a linear mapping a : g 0 V* + V @ A2 V* by 

(aq(u,~)= -~+)U+T(~)~ 

Put 

for TEg@V*, u,v~V. 

H2.1(g)=V@A2V*/a(g@ V*). 

Let 7~~: P+M be a G-structure over M and 
0 the canonical form of P. Take any frame p in 
P. An m-dimensional linear subspace H of 
T,(P) is said to be a horizontal subspace of 
P at p if 0,: H + V( = R”) is a linear isomor- 
phism. Then we Write fH for (3;’ : V-+H. Write 

$(T,(P)) for the set of horizontal subspaces of 
P at p. For Heb(T,(P)), defme c(p, H)E V@ 
A2 V* by 

c(P,H)(~,u)=~~(~,(U),~,(U)) for U,UE v. 

Then we have 

for H,, H2 E~~(T~(P)). 

Therefore we have a well-defined element 
c(p)~H’~‘(g) by c(p)={c(p, H)}. We cal1 the 

mapping c:P+Hzz’(g) the structure function of 
the G-structure rcp: P-+ M. 

Let Q+N be another G-structure over N 

and f: M g N be a G-isomorphism of P onto 
Q. Then we have c(f(‘)(p)) = c(p) for p E P. In 
particular, it is easily seen that if P is inte- 
grable, then c = 0. However, the converse is not 
true in general. 

D. Prolongation of Linear Lie Algebras and 
Groups 

Let K denote either R or C. Let g be a Lie 
subalgebra of gl(m; K). For k = 0, 1,2, . , let gk 
be the space of K-symmetric multilinear 
mappings 

t:K”x xKm+Km 
c * I 

(k + 1) times 

such that for each fixed u i , , uk E Km, the 
linear transformation 

u~K~~t(u,u~,...,u~)~K~ 

belongs to g. In particular, go = g. We cal1 gk 
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the kth prolongation of g. If gk=O, then gk+l 
= gk+2 = . = 0. The first integer k such that gk 

= 0 is called the order of g. If gk #O for all k, 

then g is said to be of infinite type. When g 
contains a matrix of rank 1 as an element, then 
g is of infinite type. When K =C, the converse 
is also true [3]. However, when K = R, the 
converse is not true in general. In fact, if we 
consider gl(1; C) as a real Lie subalgebra of 
gI(21; R) (example (B6)), then gl(l; C) is of in- 
iïnite type, having no matrix of rank 1 in it. In 
general, a Lie subalgebra g of gl(m; R) is said 
to be of elliptic type if g contains no matrix of 
rank 1 as an element. We consider g1 as an 

Abelian Lie subalgebra of gl(K” @ g) by the 
correspondence tEg, H~E~I(K~ @ g), where 7 
is defmed by 

t(u)=t(.,u) for UEK”, 

t(A)=0 for AEg. 

More generally, we consider gk+l to be an 
Abelian Lie subalgebra of gI(K” @ g,, @ . . . @ 
gk) by virtue of the correspondence t Egk+l H 
t E gI(K” @ go @ . . . @ gk), where t is defined by 

F(u)=t(. ,..., .,u)egk for UEK~, 

t(A) = 0 for AEgo@ @gk. 

Identifying gl((K” @ g,, @ @ gkml) @ gk) with 

gl(K” @ go @ . . @ gk), we have the important 
identity 

(Dl) (cd, =gk+li k=O, 1,2, . . . . 

Let G be a Lie subgroup of GL(m; R) and g 
the Lie subalgebra of gl(m; R) corresponding to 
G. For k = 1,2, , let Gk be the connected 
Abelian Lie subgroup of GL(R” @ g,, @ . . @ 
gkel) corresponding to the Abelian Lie sub- 

algebra gk; namely, Gk consists of the linear 
mappings a(?) (t E gk) defïned by 

o(t)(u)=u+t(., . . . . .,u) for UER~, 

g(t)(A)=.4 for .4Eg0@ . ..@gk-.. 

We cal1 Gk the kth prolongation of G. We say 
that G is of fïnite (resp. infinite) type if g is of 

finite (resp. infinite) type. We say that G is of 
elliptic type if g is. From (Dl), we have 

(W (GA = G+l. 

We know all irreducible Lie subalgebras g of 
gl(m; K) with order > 2 [3,6]. 

(D3) An irreducible Lie subalgebra g of 
gI(m; C) is of infïnite type if and only if g is one 

of 

NWC), 5l(m;C), c5t.+c), 5P(;;c)> 

where csp(m/2; C)=C @ sp(m/2, C). 

(D4) An irreducible Lie algebra g of gl(m; R) 

is of infinite type if and only if g is one of 

where csp(m/2; R) = R @ sp(m/2; R). 

(D5) Let S be an m-dimensional irreducible 
Hermitian symmetric space of compact type, 

which is different from the complex projective 
space. Let L(S) be the identity connected com- 
ponent of the group of biholomorphic trans- 

formations of S. Take any point o E S and set 
&,(S)={o~L(S);a(o)=o}. Let g(S) be the 
linear isotropy Lie subalgebra of gl(m; C) cor- 
responding to L(S). Then g(S) is an irreduc- 
ible Lie subalgebra of gI(m; C) of order 2. Con- 
versely, every irreducible Lie subalgebra g of 

gl(m; C) of iïnite type with order > 2 is equal to 
g(S) as given above. 

(D6) Let S be an m-dimensional irreducible 

symmetric space of compact type. Assume that 
S admits a finite-dimensional connected Lie 

transformation group L(S) which strictly con- 
tains the connected component of the group of 
isometries of S. Take any point OES, and set 
L,(S)={~EL(S);O(O)=O}. Let g(S) be the 
linear isotropy Lie subalgebra of gl(m; R) cor- 
responding to L,(S). If (S, L(S)) #(sphere, pro- 
jective transformation group) or (S, L(S))# 
(complex projective space, complex projective 
transformation group), then g(S) is an irre- 

ducible Lie subalgebra of gl(m; R) of order 2. 
Conversely, every irreducible Lie subalgebra 
g of gI(m; R) of iïnite type with order > 2 is 

equal to g(s) as given above. For example, if 
we take an m-dimensional sphere as S and the 
group of conforma1 transformations of S as 
L(S), then g(s) = ca(m). 

E. Prolongation of G-Structures 

Let G be a Lie subgroup of GL(m; R) and let g 

be the Lie subalgebra of gI(m; R) correspond- 
ing to G. We choose once and for a11 a linear 
subspace C of V@ A2 V* such that 

In general there is no natural way of choosing 
such a C. 

Let nP: P-+M be a G-structure on M. For 

each horizoantal subspace H of P at p (i.e., 

HEO(T,(P)), we defme the frame (p, H)EF,,(P) 
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to be a linear isomorphism (p, H): R” @ g+ 
T,(P) given by 

(p,H)(u@A)=f,(v)@A,* for UER”‘, AEg, 

where A* is the fundamental vector tïeld on P 
induced from AE~. Let Pi ={(p,ff)~F(P); 
HE~(T~(P)),c(~,H)EC}. Then P,+Pis a 
G,-structure over P. We cal1 P, +P the first 

prolongation of P. The kth prolongation Pk of 

P is delïned inductively by Pk = (Pk-,)l = the 
lïrst prolongation of Pk-i. From (D2), Pk is a 
G,-structure over Pk-l. 

Take any f EAut(M, P). It cari be proved 
that f”‘EAut(P, P,). Since Pk = (Pk-l)l, we cari 
detïne ,ffk)~ Aut(Pk-i, Pk) inductively by ftk)= 
(f(k-“)‘l). By the correspondence ftiftk), we 
cari consider Aut(M, P) as a subgroup of 

AUt(Pk-1, pk). 
If G is connected, then 

(El) Aut(M,P)=Aut(P,m,, Pk), k= 1,2, . . . 

Let Q+N be another G-structure. By a similar 

argument to that above, we see that P+ M 
and Q+N are equivalent if and only if Pk + 
Pkml and Qk+Qk-, are equivalent. In Cl], E. 
Cartan studied general equivalence problems 

of two G-structures. In that problem the above 
prolongation procedure plays an important 
role. 

F. Automorphisms of G-Structures of Finite 

Type 

S. Kobayashi proved the following: 
(Fl) Theorem [4]. Let P+M be an {e}- 

structure over M. Then Aut(M, P) is a tïnite- 
dimensional Lie transformation group on 

M such that dim Aut(M, P) < dim M. More 
precisely, for any point XE M, the mapping 
aeAut(M, P)H~(x)E M is injective, and its 
image {O(X); oEAut(M, P)} is a closed sub- 
manifold of M. The submanifold structure on 

this image makes Aut(M, P) into a lïnite- 
dimensional Lie transformation group on M. 

Now let G be a Lie subgroup of GL(m; R) 
of lïnite type, say G, = {e}. Then Pk-+Pkel 
is an {e}-structure. From theorem (Fl) 
above, it follows that Aut(Pkml, Pk) is a tïnite- 
dimensional Lie transformation group. As 
explained in Section E, Aut(M, P) is a sub- 
group of Aut(Pkml, Pk). Clearly Aut(M, P) is 
closed in Aut(Pk-i, P&. Since every closed 
subgroup of a Lie group is again a Lie group, 
we have the following: 

(F2) Theorem. Let P-M be a G-structure 
over M. If G is of lïnite type, then Aut(M, P) is 

a Lie transformation group of dimension 
<dim(R”@g@g,@...@g,-,). 
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G. Automorphisms of G-Structures of Elliptic 

Type 

The following theorem of R. Palais allows us 
to prove that the automorphism groups of 
many general geometric structures are lïnite- 
dimensional Lie transformation groups. 

(Gl) Theorem [SI. Let L be a group of C”- 
transformations of a C”-manifold M. Let 1 be 

the set of a11 vector lïelds X on M which gener- 
ate global 1 -parameter groups qt = exp tX of 
transformations of M such that qr E L. If the 
set 1 generates a lïnite-dimensional Lie alge- 

bra of vector fields on M, then L is a tïnite- 
dimensional Lie transformation group, and 1 is 
the Lie algebra of L. 

Let P+M be a G-structure over M. For any 

representation p: C+G,!,(V), we Write E(p) for 
the associated vector bundle of P with respect 
to p. Let pi : G+GL(gl(m; R)) be the represen- 
tation delïned by p,(o)A=aAoml for agG, 

AE gl(m; R). Let p2 : G-+GL(g) be the represen- 
tation delïned by p,(o)A=~Aa~’ for OEG, 
AE g. Then p2 is a subrepresentation of pl, 
since pl(a)A=p,(o)A for ~CG, AE~. We re- 
mark that E(pi) = Hom( T(M), T(M)). We 
Write g(M) for E(p,). Then g(M) is a vector 
subbundle of Hom(T(M), T(M)). We Write F 
for the quotient vector bundle Hom(T(M), 
T(M))/g(M). Let a: Hom(T(M), T(M))+F be 
the natural projection. We lïx an affine con- 

nection V on M which preserves P. We Write 
T for the torsion tensor held of V. For each 
vector field XET(M, T(M)), we delïne a C”- 

section VX + T(X, .) in T(M, Hom(T(M), T(M)) 

by 

LIET(M),I+V,X+T(X(X),U)ET,(M). 

Then define a lïrst-order linear differential 

operator 

D:l-(M, T(M))+T(M,F) 

by D(X) =@(VX + T(X, .)). It is easy to see 
that 

(G2) l(M,P)ckerD, 

where I(M, P) is the Lie algebra of a11 vector 

fields XET(M, T(M)) which generate global 
1 -parameter groups <pt = exp tX of transforma- 

tions of M such that <P,EA~~(M,P). Then we 
cari show: 

(G3) D is an elliptic operator if and only if G 
is of elliptic type. 

Now suppose M is compact. Then from the 
standard fact on linear elliptic operators on 
compact manifolds, we know the dimension of 

ker D is lïnite if D is elliptic. Thus from (G2), 
(G3), and theorem (Gl), we have the following: 

(G4) Theorem [7]. Let P+M be a G- 
structure on an m-dimensional compact mani- 
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fold M. If G is of elliptic type, then Aut(M, P) 
is a finite-dimensional Lie transformation 
group. 

H. Local Equivalence Problem 

Let n,:P-+M and z~:Q-+N be two G- 
structures. We say that P+M and Q+N 
are locally equivalent if the following holds: 

(H 1) For arbitrarily given (p, q) E P x Q, there 
exists a local G-isomorphism f: U E V of P 1 U 

onto Q 1 V such that f(‘)(p) = q, where U (resp. 
V) is an open neighborhood of zp(p) (resp. 

Q(4)). 
From now on, we assume that the structure 

function cp (resp. cQ) of P (resp. Q) is constant. 
If such an f as in (Hl) exists, we must have 
~~(,f(‘)(p’))=c,(p’) for p’cPI U. Therefore cp 
and c, must be the same constant. Cartan 
reduced the local equivalence problem be- 
tween P and Q to that of certain differential 

systemsonPxQ.Infact,let8,=(8’,...,Bm) 
and 0, = ($‘, , II, “) be the canonical forms of 
P and Q respectively. Let c( : P x Q +P, /l: P x 

Q-Q be the canonical projections such that 
a(p,q)=p, fi(p,q)=q. Let Z be the differen- 
tial system on P x Q generated by {a * 0’ - 
/S*$I’, . . ..a*Cl*-p*$“‘}. IfX is the m- 
dimensional regular submanifold of P x Q 
given by the graph of f(l) in (Hl), i.e., X = 

{(p’,f”‘(p’))~P x Q;p’gP( U}, then X is an 
m-dimensional integral submanifold of L 

satisfying the following conditions: 

W) (P> 4) E X, 

(H3) tc * O’, . . , a * 8” are linearly indepen- 
dent on 7;D,4JX). 

Conversely any m-dimensional integral sub- 
manifold of C satisfying (H2) and (H3) is the 
graph of a local G-isomorphism f required in 
(Hl). Therefore the local equivalence problem 
between P and Q is equivalent to the problem 
of fïnding an m-dimensional integral submani- 

fold X of Z satisfying (H2) and (H3) for any 

(P> & P x Q. 
We say that G is involutive if there exist 

linear subspaces 0 = Vo c VI c c V, = R” 
such that 

(H4) dimVk=k (k=O,...,m), 

(H5) dimg, = f dimg(b), 
k=O 

where g is the Lie algebra of G and g( V,) = 
{Aeg;A(u)=O for UE Vk}. Now we have: 

(H6) Proposition. Let P+M and Q-N be 
two G-structures such that their structure 

functions are constant and equal. The dif- 
ferential system Z on P x Q defïned as above 

is involutive at any m-dimensional integral 
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elementEofZonwhicha*B’,...,a*fY 
are linearly independent if and only if G is 
involutive. 

Combining proposition (H6) above with the 
classical tCartan-Kahler theorem, we obtain 
the following theorems: 

(H7) Theorem (Cl], also see [SI). Let P+ M 
and Q+N be two real analytic G-structures 
over M and N, respectively, such that their 
structure functions are constant and equal. 
Suppose G is involutive. Then P-+M and 

Q+N are locally equivalent. 
(H8) Theorem. Let P+ M be a real analytic 

G-structure over M. Suppose G is involutive. 
Then P is integrable if and only if the structure 
function of P is zero everywhere. 

Einally, we remark that for a general Lie 
subgroup G c GL(m, R), Gk is involutive for 

k > k, [SI. 

1. Cartan-Ktibler Tbeorem on Differential 

Systems 

Let Cl be an open subset of R”. We Write 
Ak( U) for the space of real analytic differential 
k-forms on U. Put A*(U)=.4’(U)@ . @ 
A”(U). Then A*(U) is a graded R-algebra 
with respect to the usual exterior product. By 
a differential system on U we mean an ideal 
Z of A*(U) such that 

(Il) r=.4o(u)nZ@.4’(u)nr@ . 

oznP(U), 

(12) d(C) cc, 

(13) C is iïnitely generated as an ideal. 

For convenience we Write Zck) = C n Ak( U). 
When C(O) = {0}, we cal1 Z a restricted dif- 

ferential system. 
Let C be a differential system on U c R”. By 

a k-dimensional integral manifold of C, we 
mean a k-dimensional regular real analytic 
submanifold of U such that for any acL, we 
have a 1 X = 0. In the above detïnition, it is 
suffïcient to know that a 1 X = 0 for any CI E Cck). 

For XE U, we Write G,(T,(U)) for the set of 
a11 k-dimensional linear subspaces of T,(U). 

Set %(T(U))= Uxeu G,(T,(U)) (disjoint union); 
then G,(T( U)) is naturally a real analytic 
manifold of dimension m + m(m - k). Let Z 
be a differential system on U. A k-plane EE 
G,( T,( U)) is called a k-dimensional integral ele- 
ment of Z at x if for any a EZ(~), we have CL 1 E 
= 0. Thus X is a k-dimensional integral sub- 
manifold if and only if T,(X) is a k-dimensional 

integral element of Z for each XEX. We Write 

I,(L) for the set of k-dimensional integral ele- 
ments of L. In general I,(Z) is a real analytic 

subset of Gk( T( U)). For any k-dimensional 
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integral element E at XE U, we defme the polar 
space H(E) by 

for ccEZtk+l),ul, . . . . ukEE}. 

Then EcH(E). Moreover FE Gk+r(Tx(U)) 

with F 2 E is in 1,+,(L) if and only if F c H(E). 
Let E be a k-dimensional integral element of 
L. We choose cpl, . . ..cpk~A1(U) such that 
<pi1 E, . _. , <pk 1 E are linearly independent. Detïne 

@(<pl,...,<pk) by 

q((p’, . . . . <pk)={F~Gk(T(U));qllF, . . . . ‘pklF 

linearly independent}. 

Then %(<p’, , <pk) is an open neighborhood 

of E in G,( T( U)). For any element F~Ull(<p’, 
. . . , <p”), delïne Fi, ,F,EF by <p’(F,)=6;. Thus 
{F, , , F,} is the dual basis of <pl 1 F, . , ‘pk 1 F. 

Any element CL E Ztk) defines a real analytic 
function c(* on @((p’, . . . . (pk) by a,(F)=a(F,, 

, Fk). We cal1 E regular if there exist il, , 
ar,Cck’ and an open neighborhood v of E in 
%(cp’, , <pk) such that 

(14) Ik(Z)flV={F~“Y;a*(F)=...=a~(F) 

=q, 

(15) dai , . , da: are linearly independent 
on ^Y-, 

(16) dim H(F) is constant for any FE Y. 

We say that E E~~(L’) is an ordinary element if 
E contains a (k - 1)dimensional regular in- 
tegral element. 

The following is the well-known theorem 
due to Cartan and Kahler [7]. 

(17) Theorem. Let Z be a restricted dif- 
ferential system on U c R”. Let X be a k- 
dimensional integral submanifold of C. Sup- 
pose that T,(X) is regular for a point x6X and 
that there exists a (k + 1)-dimensional integral 
element F at x with F 2 T,(X). Then there 

exists a (k + 1)-dimensional integral submani- 

fold Y of C such that XE Y, T,(Y) = F, and 
Xc Y in a neighborhood of x. 

We say that C is involutive at E E Ik(C) if 
there exist 0 = E” c E’ c . . c Ekm’ c E such 

that E’ is a j-dimensional regular integral 
element of C (j = 0, 1, , k - 1). Applying 

theorem (G7) inductively, we obtain: 
Corollary. Let C be a restricted differential 

system on U c R”. If E is a k-dimensional 
involutive integral element of C at x, there 

exists a k-dimensional integral submanifold of 
C such that XE X and T,(X) = E. 

In view of this corollary, it is important to 
know when Z is involutive at EEI~(C). 

(18) Lemma [9]. Let Z be a restricted dif- 

ferential system on U c R”, and E be a k- 
dimensional integral element of L. Then Z is 
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involutive at E if and only if there exist 0 = E” 
c E’ c c Ek-’ c E such that Ik(.Z) is a sub- 

manifold of Gk( T(U)) near E with dimension m 
+k(m-k)-L”dtj, where tj=m-dimH(Ej). 
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A. Fourier Transforms 

Let f(x) be an element of the tfunction space 
L,( -CO, CD) and t a real number. Then the 
integral 

flt)=(2n)-“2 ~f(x)e”‘dx 
s 

(1) 

converges, and the function f(r) is continuous 
in (-CO, CO). We cal1 f the +Fourier transform 

off:Itf(x)E&-coa),thenf(x)ELi(-a,a) 
for any Imite interval (-a, a), and if we set 

&=(27$“2 ;af(x)r-‘=dX, 
s 

then f, +Converges in the mean of order 2 as 

a+ CO to a function ,fin L,. In this case, we 
delïne f to be the +Fourier transform of S 
(EL~). Furthermore, in this case, if we set 

f,(~)=(2n)-“~ 
s 

’ &eirXdt, 
-a 

then l.i.m.,,,fo(x)=f(x) (Plancherel theo- 

rem). Moreover, we have +Parseval’s identity: 
j?mIf(x)12dx=~Zm If(t)l’dt (- 160 Fourier 
Transform). 

Suppose that f(x) is periodic with period 2x 
and fi L2( - n, n). We set 

n 
a”=(27L-r 

s 
J(x)e-‘“‘dx 

(+Fourier coefficients). The nth partial sum of 
the +Fourier series s,(x) = Et= ~.a,eiYx con- 
verges in the mean of order 2 tof(x), and 
Parseval’s identity 

; s ; If(x)I’dx= f Id2 II n=-CC 
holds. On the other hand, if {a,} is a given 
sequence such that Zz-m la1l2 < CO, then 

C~=-naveivX converges in the mean of order 2 
to a function f(x), the Fourier coefficients of 

f(x) are {a,}, and Parseval’s identity holds 
(- 159 Fourier Series). 

B. Bochner’s Theorem and Herglotz’s Theorem 

A complex-valued function f(x) defined on 
(-CD, CD) is said to be of positive type (or posi- 
tive definite) if ~‘&f(~~-x~)~~~~~O for any 
finite number of reals x1, x2, , x, and com- 
plex numbers tl, c2, , 5,. If f(x) is measur- 
able on (-CO, CO) and of positive type, then 

there exists a tmonotone increasing real- 

valued bounded function a(t) such that 

f(x)= m 
s 

e”“da(t) (2) 
-cc 

for almost a11 x. If a( -00) = 0 and a(t) is right 
continuous, then a(t) is unique (Bochner’s 
theorem). Conversely, if a(t) is nondecreasing 
and bounded and f(x) is defmed by (2) then 
f(x) (called the Fourier-Stieltjes transform of 

a(t)) is continuous and of positive type. 
A sequence {a,} (-cc <n < CO) is said to 

be positive definite (or of positive type) if 
C&i uj-,tj& 30 for Iïnitely many arbitrarily 
chosen complex numbers <,, t2, , 5,. If {a.} 
is of positive type, then there exists a mono- 
tone increasing bounded function a(t) on 

C-n, x] such that 

un= 
s 

$7 
eintda(t) 

-II 

(Herglotz’s theorem). Conversely, if a(t) is 
monotone increasing and bounded and a, is 
defined by the above integral, then the se- 
quence {a,} is of positive type. 

C. Poisson’s Summation Formula 

If f(x) EL i ( -CO, CO) is of tbounded variation 
and continuous and if f(t) is its Fourier trans- 
form, then we have 

where ab = 2n (a > 0). This is called Poisson’s 
summation formula. 

D. Generalized Tauberian Theorems of Wiener 

Suppose that we are given a function ~(X)E 
L,( -CO, CO) whose Fourier transform y(t) is 
never zero. Then the set of functions given by 

h(x)= m 
s 

f(x-Mddx 
-a, 

where geL,( -co, CO), is dense in L,( --CO, co). 
Hence we cari deduce the tgeneralized Tauber- 
ian theorem of Wiener: If the Fourier trans- 

form c,(t) of k,(x)~L,(-CD, CO) does not van- 
ish for any real t and 

m cc 
lim s k,(x-y)f(y)dy=C s k,Mdy 
x-cc -m -cc 

for a function f(x) that is bounded and 
measurable on (--CO, CO), then for any k, E 

L-Q, QX 
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(- 160 Fourier Transform G). Hence we cari 

deduce TTauberian theorems of the Littlewood 

type C31. 

E. Harmonie Analysis 

Let x(n) be a complex-valued function on 
(-CO, CO) that is of bounded variation and 

right continuous. If we have the expression 

m= “3 
s 

e’“‘dc((3,), (2’) 
--o 

then we say that the function f(t) is repre- 
sented by the superposition of harmonie oscil- 
lations e’“‘. Conversely, when f(t) is given, we 
have the problem of finding a function m(n) as 

above such that f(t) cari be expressed in the 
form of (2’). When such a function ~(1) exists, it 

is also an important problem (in harmonie 
analysis) to fmd the amplitude U(A)- n(&0) of 
the component of a proper oscillation. Con- 
cerning this problem, we have the following 
three theorems: 

(1) A necessary and suftïcient condition for 

,f(x) to be representable in the form (2’) is 

(II) For a function ,f(t) expressed in the form 
(2’), we have: (i) for any Â,,, 

a(>.,)-CC(+~)= lim L 
s 

T 

T-~T mT 
f(t)e8+dt, 

and (ii) if a(a) is continuous at >. = A, - o and 
J”=&+ri(a>O), then 

X(i, + fJ) - LY(& -a) 

(III) In (2’), suppose that the discontinuity 
points of c@) are A,, 3,,, , and set a, = @.,) - 
a(].,-O)(n= 1,2, . ..). then 

hi; 
s 

‘f(t+s)fods= f ~un~2eiA~t. 
0 >1=1 

F. The Paley-Wiener Theorem 

In formula (l), if we change the variable from t 
to a complex variable [ = t + io, then we have 

s 

cc 
F(i) = (27$“2 __f(x)em’@dx, (3) 

which is called the Fourier-Laplace transform 

of f(x). In particular, if f(x) has bounded tsup- 
port, then F(c) is an tentire function. Concern- 

ing Fourier-Laplace transforms, Paley and 

Wiener proved the following theorems: 

(1) A necessary and sufficient condition for 

an entire function F(c) to be the Fourier- 
Laplace transform of a tfunction of class C” 
having its support in a tïnite interval C-B, B] 
is that for any N, there exists a constant C, > 0 
such that IF(c)l<C,(l +l[l)mNeBlal for a11 [= 
t+icr. 

(II) If g(t)E&(O, m), then its one-sided tLa- 
place transform 

f(z)=(27cm”’ 
s 

m g(t)e-“dt 
0 

satisfïes: (i) f(z) is holomorphic in the right 
half-plane Rez > 0, and (ii) 

s CU 
sup If(x+iy)j’dy<m. 
x2-0 -cc 

Conversely, if f(z) =f(x + iy) (x > 0) satislïes 
(i) and (ii), then the boundary function f(iy)E 
L2( -CO, CO) exists and is such that 

s 
cc 

x,0 If(iy) -f(x + N2 dy =O, 
-m 

its Fourier transform in L, 

s N 
g(t)=l.$m.(27q1’2 f(iy)eifYdy 

-N 

vanishes at almost a11 negative t, and f(z) is the 

one-sided Laplace transform of g(t). 

G. Harmonie Analysis on Locally Compact 
Abelian Groups 

The general theory of harmonie analysis on 

the real line was extended to a theory on lo- 

cally compact Abelian groups by A. Weil, 1. 
M. Gel’fand, D. A. Raikov, and others. The 
theory of normed rings was utilized for the 
development of the theory (- 36 Banach 
Algebras). This theory is called harmonie 
analysis on locally compact Abelian groups, 
and it has been developed as described in the 
following sections. 

H. Group Rings 

Let L, =L,(G) be the set of all integrable 
functions with respect to a tHaar measure on a 
locally compact Abelian group G. If we define 

the norm and multiplication in L,(G) by 

Il.fll = IfMldx, 
s G 

.f.dx)= [ fGW’)gMdy, 
JG 

respectively, then L, has the structure of a 
commutative tBanach algebra. (We call f.g 

the convolution (or composition product) off 
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and 9.) If the topology of G is not tdiscrete, 

L,(G) does not have a unity for multiplication. 
Hence, adjoining a formal unity 1 to L,(G), 
we set R = { ctl + f 1 CI is a complex number, 

.f6L,(G)J, and 

(El +f)+W +s)=(a+P)l +(f+sX 

Then R is a commutative Banach algebra with 
unity. When G is discrete, R =L,(G). The 

Banach algebra R is called the group algebra of 
G. The group algebra R of G is tsemisimple. R 
is algebraically isomorphic to a subalgebra of 
C(Y.R), which is the associative algebra of a11 
continuous functions on the compact Haus- 
dorff space !IX consisting of ah maximal ideals 
in R (- 36 Banach Algebras). By this corre- 
spondence, if <p E R corresponds to v(M), 

which is a function on YJl, then supMtwl~(M)I 
< llcpll. L,(G) belongs to %II if and only if the 
group G is not discrete. 

1. Fourier Transforms 

According as the group G is discrete or not, we 
set ‘%=XII or !R=%I-{L,(G)}. Then there 
exists a one-to-one correspondence between 
the elements ME X and the elements x of the 
+character group G of G such that the follow- 
ing formulas are valid: 

f(M) = 
s 

X(X).~(X) dx> ,f‘ELl, (4) 
G 

x(~)=f,(W/fW), (5) 

where ,fJx) =f(xy-‘) and f is a function such 
that f(M) # 0. This correspondence M tt x 
gives a homeomorphism between the locally 
compact space sJ1 and G. Hence if we identify 
M with x and set f(M)=?(x), then ,fis a con- 
tinuous function on e, called the Fourier trans- 

form of S(x). Since f-f(M) is an algebraic 
isomorphism, (fg)*(x) =&)~(x). If ,f(x) E 
i(x), then f‘ is equal to g in L,(G). This is the 
uniqueness tbeorem of Fourier transforms. 

From it we cari deduce the tmaximal almost 
periodicity of locally compact Abelian groups. 

If G is not discrete, then L,(G)EYX, and 

.f’W,(G))=O for fE L,(G). Hence {xl I~(~>I~E} 
is a compact subset of G. This means that fis 

a continuous function vanishing at intïnity on 
G. (This is a generalization of the tRiemann- 

Lebesgue theorem concerning the cases G = R’ 
or T’ =R/Z.) Any continuous function u(x) on 
G vanishing at infinity is approximated uni- 
formly by f(x), which is the Fourier transform 

offEL,(G). 
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J. Positive Detïnite Functions 

A function <p(x) defmed on G is said to be 
positive detïnite (or of positive type) if the in- 
equality L&, <p(xjx~‘)ajEk>O holds for arbi- 
trary elements x i , . ,x, in G and arbitrary 
complex numbers c( i,...,t(,. Wedenoteby Pc 
the set of all positive detïnite functions on G. If 
<p E Pc, then cp(e) > 0 (e is the identity of G), 
1 V(X)~ <<p(e), and <p(x-‘) = Q(X). If G is locally 
compact, we further assume that <p E PG is 
measurable with respect to the Haar measure 
of G. Then for any JE L,(G), 

Any C~EP~ is equal almost everywhere to a 
continuous ‘p, EP~. (Concerning positive de- 
finite functions on locally compact groups and 
their relation with unitary representations - 
437 Unitary Representations B.) 

K. Harmonie Analysis and tbe Duality 
Tbeorem 

If G is a locally compact Abelian group, then a 
function C~(X) on G belongs to Pc if and only 
if there exists a nonnegative measure PL(G) < 
a on G such that <p(x)=J&x)d&). (When 
G = R’, this theorem is +Bochner’s theorem, 
whereas when G = Z, it is Herglotz’s theo- 

rem.) Hence we cari prove a spectral resolu- 
tion of unitary representations of G: U(x) = 
Jcx(x)dE(x) (a generalization of +Stone’s 

theorem). IffgL,(G)fl Pc, then f(x)>O, ,?E 
Ll(e), and the inversion formula of Fourier 
transforms f(x) =jemf(x)& holds, provided 
that the Haar measure on G is suitably chosen. 
Iff’ELi(G)flL,(G), thenfEL,(G),andPar- 
seval’s identity JG [~(X)I’ dx = si; I~(X)[~ dz holds. 
If we put Uj”=fand V”=A then U is extend- 
able uniquely to an isometry of L,(G) onto 
L,(G) and Vis extendable uniquely to its 
inverse transformation, respectively (Plan- 

cberel’s theorem on locally compact Abelian 
groups). By the inversion formula and Plan- 

cherel’s theorem, we cari prove that the char- 
acter group 8 of G is isomorphic to G as a 
topological group. This is called the Pon- 
tryagin duality theorem of locally compact 
Abelian groups (- 422 Topological Abelian 
Groups). In particular, if G is compact, G is a 
discrete Abehan group. Then we cari normal- 
ize the Haar measure of G and G SO that the 

measure of G and the measure of each element 
of G are 1. Plancherel’s theorem implies that 
the set of characters of G is a tcomplete tortho- 

normal set in L,(G). 
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L. Poisson’s Summation Formula 

Suppose that G is a locally compact Abelian 
group, H is its discrete subgroup, and G/H is 
compact. Then the tannihilator r of H is a 
discrete subgroup of G. For any continuous 

function ,f(x) on G, if C,,,f(xy) is convergent 
absolutely and uniformly (hence fi L, (G)) 
and &,rf(<) is convergent absolutely, then 
CYEHf(y) = c&rf([), where c is a constant 

depending on the Haar measures of G and G. 
This is called Poisson% summation formula on 
a locally compact Abelian group (a generali- 
zation of +Poisson’s summation formula on 
G=R). 

M. Closed Ideals in L, (G) 

In the following, the group operations in G 
and G are denoted by +, and the value of the 
character y(x) (XE G, y E G) is written as (x, y). 

For a function .f defined on G and any y~ G, 
the translation operator ~~ is detïned by zJ(x) 
=f(x-y). A closed subspace of L,(G) is an 
ideal in L,(G) if and only if it is invariant 
under a11 translations (N. Wiener). A closed 
ideal 1 coincides with L,(G) if and only if the 
set of zeros of 1, i.e., Z(I) = r)rE,f^-r (0), is 
empty (Wiener3 Tauberian theorem). A closed 
ideal 1 is maximal if and only if Z(I) consists of 
a single point. If the dual G of G is discrete, 
then the closed ideals in L,(G) are completely 

characterized by the zeros; that is, +Spectral 
synthesis is possible, but this situation does 
not hold generally. P. Malliavin’s theorem 

states that if G is not discrete, then there exists 
a set E in G and two different closed ideals 1 
and J such that Z(I) = Z(J) = E. Such a set E is 
called a non-S-set. For example, if G = R3, the 
unit sphere is a non-S-set (L. Schwartz). 

N. Operating Functions 

Denote by A(G) the set of a11 Fourier trans- 
forms of the functions in L,(G). Let fi A(G) 
and @ an analytic function in a neighborhood 
of the range off Furthermore, assume that 
O(O) = 0 if G is not discrete. Then there exists 

a QE.~(G) such that ,&y)=@(&)) for y~6 
(Wiener-Lévy theorem). In general a function 
@ detïned on a set D in the complex plane is 
said to operate in a function algebra R or to be 
an operating function on R if ù>(f) E R for all 
ftzR whose range lies in D. The converse of 
the Wiener-Lévy theorem holds in the follow- 
ing form. Let G be an infinite Abelian group 

and u> a function on the interval [ -1, 11. If <D 
operates in A(G), then @ is analytic in a neigh- 

borhood of the origin if G is compact, and 
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analytic in a neighborhood of [ -1, l] if G is 

not compact [14,15]. Let E be a subset of G, 
and 1, the set of all ~EA(G) such that f=O on 

E. Let A(E)=A(G)/I, be the quotient algebra. 
The set E is called a set of analyticity if every 
operating function on A(E) is analytic. For a 
characterization of such a set - [ll]. 

0. Measure Algebras 

For a locally compact Abelian group G, let 
M(G) be the set of all tregular bounded com- 
plex measures. For Â and p in M(G), the 
convolution i * p is detïned by (Â * p)(E) = 
jcl(E-y).dp(y), where E is a Bore1 set in 
G. Then M(G) is a semisimple commutative 
Banach algebra whose product is detïned to be 
the convolution. The Fourier-Stieltjes trans- 
form of ~EM(G) is defïned by 

B(y)= (x,y)&(x), FG. r 
JG 

A continuous function on G is positive detïnite 
if and only if it is the Fourier-Stieltjes trans- 
form of a positive measure in M(G) (Bochner’s 
theorem). Assume that G is not discrete. A 
function on the interval [ -1, l] that oper- 
ates in the Fourier-Stieltjes transforms of 

measures in M(G) cari be extended to an entire 
function, and a function on the whole complex 
plane that operates in the +Gel’fand repre- 

sentation of M(G) is an entire function [IS]. 
From this fact, it follows that M(G) is asym- 
metric and nonregular. Furthermore, there 

exists a measure ~EM(G) such that fi(y)> 1 
but l/fi is not a Fourier-Stieltjes transform of 

M(G). (See also Wiener and Pitt [16], Shreider 
[ 171, and Hewitt and Kakutani [ 181; for the 
general description of measure algebra, see 

Rudin [l l] and Hewitt and Ross [ 121.) 

P. Idempotent Measures 

A measure 1 E M(G) is called idempotent if p * p 
= p, that is, fi(y) = 0 or 1 for a11 y E G. Then $ is 
the characteristic function of the set {y~ G 1 $(y) 
= 1). The smallest ring of subsets of G that 
contains all open cosets of subgroups of G is 
called the coset ring of G. The characteristic 
function of a set E in G is the Fourier-Stieltjes 
transform of an idempotent measure in M(G) 
if and only if E belongs to the coset ring of G 
[19]. A simple proof of this theorem is given 
by T. Ito and 1. Amemiya (Bull. Amer. Math. 

Soc., 70 (1964)). When G is the unit circle, the 
coset ring consists of sequences periodic except 

at a fïnite number of points, and for this case 
the theorem was obtained by H. Helson. Let 
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n, , n2, , nk be distinct integers and @L(x) = 
Cg=, ei”jx.dx. Then p is an idempotent mea- 
sure on the unit circle. J. E. Littlewood conjec- 
tured that the norm of p exceeds c log k, where 
c is a positive constant not depending on the 
choice of { rrj}. A partial answer was given 
by P. J. Cohen [19] for compact connected 
Abelian groups and was improved by H. 

Davenport (Mathematika, 7 (1960)) and E. 

Hewitt and H. S. Zuckerman (hoc. Amer. 
Math. Soc., 14 (1963)). 

Q. Mappings of Group Algebras 

Let G and H be two locally compact Abelian 
groups and p a nontrivial homomorphism of 
L,(G) into M(H). Associated with <p there is a 
mapping <p* of a subset Y of fi into G such 
that <p(f)(y)=f(r~*(y)) for y~ Y and =0 for 

y& Y, or symbolically <p(f)=,f(<p*). A con- 
tinuous mapping CI of Y into G is said to be 
piecewise affine if there exist a finite number 
of mutually disjoint sets Sj, j = 1, . , n, in the 
coset ring of fi and mappings aj such that (i) 
Y=&,S,;(“) .’ df d II 2, 1s e me on an open coset 
K, of fi, where Kj 2 Sj; (iii) 01~ = CI on Sj; and 
(iv) ctj(i/ + y’ -y”) = ~~(y) + ~,(y’) - ~,(y”) for all y, 

y’, y” E Ki, j = 1, , n. P. J. Cohen’s theorem is: 
If <p is a homomorphism of L,(G) into M(H), 

then Y belongs to the coset ring of fi and <p* is 
a piecewise affine mapping of Y into G. Con- 
versely, for any piecewise affine mapping c(, 
there is a homomorphism <p of L r (G) into 

M(H) such that q* = cx. Related theorems have 
been studied by A. Beurling, H. Helson, J.-P. 
Kahane, Z. L. Leibenson, and W. Rudin [l 11. 

R. Exceptional Sets 

Let G be a locally compact Abelian group. A 
subset E is said to be independent if n, x 1 + 
. . . + nkxk = 0, where the nj are integers and xje 
E implies njxj=O, j= 1, . . . . k. A set E in G is 
called a Kronecker set if for every continuous 
function <p on E of absolute value 1 and E >O 
there exists a yeG such that I<~(X)-(x,y)(<.s, 
x E E. Every Kronecker set is independent and 
of infinite order, but independent sets are not 
necessarily Kronecker sets. For a group G 
whose elements are of finite order p, a set E is 
called of type K, if for every continuous func- 

tion es on E with values exp(2nik/p), k = 0, , p 
-l,thereisayEGsuchthatcp=yonE.IfEis 
a compact Kronecker set in G and p is a mea- 
sure with support in E, i.e., ~EM(E), then IlplI 

= ~~p~~ I>. A compact set E is called a Helson set 
if there is a constant C such that I/ p // < C 11 fi 11~ 

for FE M(E). Every K, set is also a Helson set. 
For a Helson set E, C(E) = A(E). A discrete 
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analog of a Helson set is a Sidon set. A subset 
F of a discrete group G is called a Sidon set if 
there is a constant C such that CytF ]a,] $ 

Csup,IC,,,a,(x, y)] for every polynomial 
C a,(~, y). For example, a tlacunary sequence 

Ink)r nk+l /nk > 4 > 1, of integers is a Sidon set. 
These sets are deeply connected with har- 
monic analysis on groups, and measures con- 

centrated on these sets have some unexpected 
pathological properties (- e.g., [ll, 131). 

S. Tensor Algebras and Group Algebras 

Let X and Y be compact Hausdorff spaces, 
and denote by V(X, Y) the projective tensor 
product C(X) 6 C(Y) of continuous func- 
tion spaces C(X) and C(Y). The norm of 

V(X, Y) = Cj’h h(X)Yj(Y) is defined by Il v Il 
=infC,z, Il&$, llgjll r, where the infimum is 
taken for a11 expressions of cp. If G is an infi- 
nite compact group, then there exist two sub- 

sets K, and K, such that (i) K, and K, are 
homeomorphic to the +Cantor ternary set; (ii) 
the expression y, + y2 of an element of E = K, 
+ K, is unique, where y, E K, and y2 E K,; (iii) 
K, n K, # 0; and (iv) K, U K, is a Kronecker 
set or a set of type K, for some p. Varopoulos’ 
theorem states that the algebra V(K,, K2) is 
isomorphic to A(E) which denotes the algebra 
of restriction of functions in A(G) on the set E. 

By this theorem, the problems of spectral 
synthesis and operating functions of group 
algebras are transformed into problems of 

tensor algebras. For a more precise discussion 
- [20]. 
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193 (X.29) 
Harmonie Functions and 
Subharmonic Functions 

A. General Remarks 

A real-valued function u of tclass Cz delïned in 
a domain D in the n-dimensional Euclidean 
space R” is called harmonie if it satislïes the 
Laplace equation 

ah <i2U 
Au(P)=~+...+~=O (P=(x,, . . . . x,)) 

1 n 

in D. A harmonie function is, by definition, 

twice continuously differentiable, but turns out 
to be real analytic. It is not true, however, that 
the solutions of the Laplace equation are real 
analytic. For example, for the function u(x, y) 

=Reexp(-z~4)(z=x+iy#O),u(0,0)=0,u,, 
and uyy exist everywhere, and u satisfies the 

193 c 
Harmonie Functions and Suhharmonic Functions 

Laplace equation, but is not continuous at the 
origin. 

The fundamental properties of harmonie 
functions do not depend essentially on n. 

A real-valued function u of class C2 satisfy- 
ing the inequality Au 2 0 is called suhharmonic. 

For a more general definition of subharmonic 
functions and their properties - Sections P- 
U. 

B. Invariance of Harmonicity 

Harmonicity in R2 is invariant under any 
tconformal transformation. Namely, when 

there exists a conforma1 bijection sending a 
domain D in the xy-plane onto a domain D’ in 
the (q-plane, every harmonie function u(x, y) 

on D is transformed into a harmonie function 
of (<, 11) on D’. In R” for n 2 3, harmonicity is 
not generally preserved under conforma1 
transformations. However, harmonicity is 
preserved in the following special case: Let D 
be a domain in R” (n > 3), and consider the 
inversion f:D-D’ defined by f(xr , ,x,) = 
(X;,...,x;)=(a2x,/r2 ,...,a2X,/r2),r=(X;+ 

+ x~)“‘. Let u(xi, , x,,) be a harmonie 
function on D, and let V(X’, , , XL) be the func- 
tion on D’ obtained by applying the Kelvin 

transformation to u. Namely, V(X;, . , XL) = 
(a/r’~~2u(u2x~/r’2 , . , a2x~/r’2), where rf2 = 
xl2 + +XL’. Then the function u is harmonie 

on D’. A function u that is harmonie outside 
a compact set is called regular at the point 
at infïnity if any Kelvin transform of u is har- 
monic in a neighborhood of the origin, in 

which case u(P)+0 as OP+ GO. Now Iet T: 
xk =X~(X’, , , xi), 1 <k < n, be a one-to-one 
analytic transformation of a domain D’ onto 
another domain D. If there exists a posi- 
tive function V(X’, , . , XL) in D’ such that 

V(x;, , xk)u(xl (xi, , xn), . . ,x,(x;, . . . , XL)) is 
harmonie for any harmonie function u(xi, 
. . . . xn) in D, then T is conformal. A conforma1 
transformation as it is known in differential 
geometry is either (i) a tsimilarity transforma- 
tion, (ii) an inversion with respect to a sphere 
or a plane, or (iii) a fmite combination of trans- 
formations of types (i) and (ii). 

C. Examples of Harmonie Functions 

(l)Ifuisapolynomialinx,,...,x,andhar- 
monic in R”, then the terms of degree k in u 
form a harmonie function for each k > 0. A 

harmonie homogeneous polynomial is said to 
be a spherical harmonie. (2) logr in R2 and rzmn 

in R” (n > 3) are harmonie except at r = 0. (3) 

Every tlogarithmic potential in R2 and every 
+Newtonian potential in R” (n > 3) is harmonie 
outside the tsupport of the measure. Con- 
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versely, any harmonie function delïned on a 
domain D is represented in an arbitrary rela- 
tively compact domain D’ in D as the sum of 
a logarithmic (n = 2) or Newtonian (n > 3) 

potential of a measure on 8D and the poten- 
tial of a tdouble layer. (4) Both the real part u 
and the imaginary part u of an analytic func- 

tion of a complex variable are harmonie. We 
cal1 u a conjugate barmonic function of u. If LI is 

harmonie on a tsimply connected domain D, 
then the conjugate u of u is given by 

4x, Y) = 
where (a, b) is a Iïxed point in D and the path 
of integration is contained in D. When D is a 

tmultiply connected domain, u may take many 
values in accordance with the thomology 
classes of the paths of integration. 

D. Green% Formulas 

In the following one should substitute “curve” 
for the term “surface” when n = 2. Let D be a 
bounded domain whose boundary S consists 
of a finite number of closed surfaces that are 
piecewise of class C’. Let u and u be harmonie 
in D, and suppose that a11 the lïrst-order par- 

tial derivatives of u and u have fmite limits 
at every boundary point. We cal1 D the inside 
of S. Let n be a normal on S toward the out- 
side of D. Then the relation 

follows immediately from +Gauss’s formula, 
where do is the +Surface element on S. In par- 
ticular, when v is identically equal to 1, for- 
mula (1) gives 

s 

1 
-do=O. 

si3n 
(4 

Equations (1) and (2) are called Green% and 
Gauss’s formulas, respectively. Conversely, u is 
harmonie in D if u is a function of class C2 

in D and at every point ~ED, there is a se- 
quence {Y~} decreasing to zero and such that 
jstP,,,,(&/&)da=O (k = 1,2, .), where S(P, r,J 

is the spherical surface with tenter at P and 
radius r,. Another suftïcient condition for u to 
be harmonie is that u is of class C’ and, at 
every point P E D, there be an r, > 0 such that 

~S~P,,,(~u/&z)da=O for every r, O<r <r, 
(Koebe, Bocher). 

E. Mean Value Tbeorems 

We assume that u is a harmonie function, D 
the domain of delïnition of u, and S the bound- 

ary of D. The mean value of u on the surface 
or the interior of any bal1 in D is equal to the 
value of u at the tenter of the ball. Namely, 

where T,, and o, are the volume and surface 
area of a unit bal1 in R”, respectively, B(P, r) is 
the open bah with tenter at P and radius r, 
and dz is the volume element. These relations 
are called mean value tbeorems. Conversely, if 
v is continuous in D and at every point PE D, 
there is a sequence {rk} decreasing to zero and 
such that the mean value of u over B(P, rJ or 
S(P, rk) is equal to v(P) for each k, then u is 
harmonie in D. This result is called Koebe’s 

tbeorem. From the mean value theorems the 
maximum principle for harmonie functions 
follows: Any nonconstant u assumes neither 
maximum nor minimum in D. If both u and u 
are harmonie in D and have the same tïnite 
boundary value at every point on S, then u = v 
in D by the maximum principle. This is called 
the uniqueness tbeorem. 

F. Boundary Value Problems 

The lïrst boundary value problem (or Dirichlet 
problem) is the problem of finding a harmonie 

function detïned on D that assumes boundary 
values prescribed on S (- 120 Dirichlet Prob- 

lem). The second boundary value problem (or 
Neumann problem) is the problem of lïnding a 

harmonie function u whose normal derivative 
Zu/&t is equal to a function f prescribed on the 
piecewise smooth boundary S. The solution, if 
it exists, is uniquely determined up to an addi- 
tive constant. In order for the solution to exist, 

f should satisfy the condition jsfdo = 0. The 
third boundary value problem is the problem of 
lïnding a harmonie function u on D that satis- 

fies du/& = hu + f on S, where h and f are 
functions prescribed on S. All these problems 

cari be reduced to certain +Fredholm integral 
equations. There is also the boundary value 

problem of mixed type, in which the boundary 
values are prescribed in a part of S and the 

normal derivatives are prescribed on the rest. 

G. The Poisson Integral 

Let D be a bounded domain with smooth 
boundary S and u a function harmonie in 
D and continuous on DU S. Let G(P, Q) be 
Green’s function in D. Then (1) yields 

u(P)= -$ s 
aW’> QI Ut WQ). s Q 
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In particular, if D = i?(O, Y), then r2 - OP2 u(P)=- allr s s,o,r>~WQ). 
Conversely, given an integrable function f on 
S(0, r), we set 

r’-OP’ 
u(P)=- 

‘T”Y s 
f(Q) do(Q). 

s(o,r, PQ” 

Then u(p) is harmonie in D(O, r) and converges 
to f(Q) as P tends to any point Q on S(0, r) 

where f is continuous. We cal1 u a Poisson 
integral. Sometimes it is possible to represent a 

harmonie function u in D(O, r) in the following 
form, which is more general than the Poisson 

integral: 
- 

r2 - OP2 
u(P)=- 

s 
'd,(Q), 

w sco,r, PQ" 
(3) 

where CI is a signed +Radon measure on 
S(0, r). In order for u to admit such a repre- 
sentation, it is necessary and sufficient that 
JscO,,,, Iul do be a bounded function of r’ for 0 < 
r’ < r, or equivalently, that the tsubharmonic 
function IuJ have a tharmonic majorant. Fur- 
thermore, if cx is absolutely continuous, then 

the Poisson integral representation of u is 
possible, and vice versa. A necessary and SU~~I- 
tient condition for the function u to admit the 

Poisson integral representation is that there 
exist a positive convex function cp(t) on t>O 

such that cp(t)/t-*co as t-ca and cp(lul) has a 
harmonie majorant. 

When D is a general domain in which 
Green% function exists, every positive har- 

monic function u(P) is represented uniquely as 
the integral sK(P, Q)dp(Q), where K(P, Q) is a 

+Martin kernel and u is a Radon measure on 
the Martin boundary B whose support is 
contained in a certain essential part of B, each 
point of which is called a minimal point. A 
similar integral representation appears in the 
theory of Markov processes (- 260 Markov 

Chains 1). The representation sK(P, Q)dp(Q) is 
a generalization of (3). In terms of a function 
similar to <p(t), we cari give a necessary and 

sufftcient condition for u(P) to be represented 
in the form sK(P, Q)f(Q)dv(Q), which corre- 
sponds to the Poisson integral representa- 
tion and in which v is determined by 1 = 

sK(P, Q)dv(Q). This condition is equivalent 
to the condition that u(P) be quasibounded, 
i.e., that there exist an increasing sequence of 
bounded harmonie functions that converges to 

u c71. 
A positive harmonie function u is said to be 

singular if any nonnegative harmonie minorant 
of u vanishes identically. Every positive har- 

monic function cari be expressed as the sum of 

a quasibounded harmonie function and a 
singular one. 

193J 
Harmonie Functions and Subharmonic Functions 

H. Expansion 

Let P. =(x7, , xf) be a point in D, and de- 
note the distance from P, to S by r. Then a 

harmonie function u is expanded uniquely into 
a power series 

k ,,... ,k,>O, 

in B(P,,(&- l)r). Thus u is (real) analytic in 
D. If u vanishes on an open set in D, then u = 0 
in D. If the power series is written as Ckhk with 
spherical harmonies h, of degree k = 1, 2, . . , 

then this series converges over a11 of B(P,, r). 

1. Sequences of Harmonie Functions 

In this section, {u,,,) is a sequence of harmonie 

functions in a bounded domain D. First, if 
each u, is bounded and continuous on D US 
and {um} converges uniformly on S, then 
{u,,,} converges uniformly in D, and the limit- 
ing function u is harmonie in D. Moreover, 
ak~+-+knu,laXI;~ ..ax: converges to 8kx+...+k~u/ 
8x:1 . ax,km uniformly on any compact subset 

of D (Harnack’s first theorem). Second, if ui d 
u2 < . in D and there is a point of D at which 
{um} is bounded, then {um} converges uni- 

formly on any compact subset of D (Harnack’s 
second theorem). The following Harnack’s 
lemma is useful: If u is positive harmonie in D, 

P. is a point of D, and K is a compact subset 
of D, then there exist positive constants c and 

c’, depending only on P, and K, such that 
cu(P,)~u(P)<c’u(P,,) on K. 

Any family of (locally) uniformly bounded 
harmonie functions is tnormal. A family of 
positive harmonie functions that is bounded 

at a point is also normal by Harnack’s lemma. 
If jDIuk-u,,,IPdz+O as k, m-cc for p> 1, then 
+Holder’s inequality implies that {u,,,) con- 
verges uniformly on any compact subset of D. 

It follows that if J,lgrad(u,--u,)lPdz-tO as k, 

m+c.c and {un} converges at a point in D, then 
there exists a harmonie function u in D such 
that J,Igrad(u,-u)lPdrdO as m-cc and u, 

converges to u uniformly on any compact 
subset of D, where P. is any point in D. Finally, 
if l,lu,,lPdz (p> 1) are bounded, then {un} 

forms a normal family. 

J. Level Surfaces and Orthogonal Trajectories 

The set {P 1 u(P) =Constant} is called a level 
surface (niveau or equipotential surface). When 

a is given as the constant, the level surface is 
called the a-level surface. Assume that u is not 

a constant. A point where grad u vanishes is 

called critical. The set of critical points consists 
of at most countably many treal analytic 
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manifolds of dimension <n - 2 (n = dim D, and 
a manifold of dimension 0 is understood to be 

a point). Any compact subset of D intersects 
only a fïnite number of such manifolds; we 
express this fact by saying that the manifolds 
do not cluster in D. Each of these manifolds is 
contained in a certain level surface. The 
complement of the critical points with respect 
to any level surface consists of real analytic 

manifolds of dimension n - 1 that do not 
cluster in D. 

For each noncritical point there exists an 
analytic curve passing through it such that 
gradu is parallel to the tangent to the curve at 

each point on the curve. A maximal curve with 
this property is called an orthogonal trajec- 
tory (or line of force). Along every orthogonal 
trajectory, u increases strictly in one direction 
and hence decreases in the other, SO that none 
of the orthogonal trajectories is a closed curve. 
There is exactly one orthogonal trajectory 
passing through any noncritical point. There- 
fore no two orthogonal trajectories intersect, 

and no orthogonal trajectory terminates at a 
noncritical point. Moreover, the set of limit 
points of any orthogonal trajectory in each 
direction does not contain any noncritical 

point. When u is a Green’s function G(P, Q), 
every orthogonal trajectory is called a Green 
line, and a Green line that originates at the 
pole Q and along which u decreases to 0 is 
called regular. For any suffkiently large a, the 
a-level surface Z0 is an analytic closed surface 
homeomorphic to a spherical surface. Let E be 
a family of orthogonal trajectories originating 
at the pole. If the intersection A of E and a 
closed level surface Za is an (n - 1)-dimensional 

measurable set, then the tharmonic measure 
of A at Q with respect to the interior of ,& is 
called the Green measure of E. M. Brelot and 

G. Choquet proved that all orthogonal trajec- 
tories originating at the pole except those 
belonging to a family of Green measure zero 
are regular. Consider a domain D bounded by 

two compact sets, and denote by u the har- 
monic measure of one compact set with re- 
spect to D. Assume that u is not a constant. 
Then u changes from 0 to 1 along ail ortho- 

gonal trajectories except those belonging to a 
family that is small with respect to a measure 
similar to the Green measure (see “flux” de- 
fined in Section K). 

K. Harmonie Flows 

Denote by Za the a-level surface for a harmonie 
function U, and by Zj the complement of the 
set of critical points with respect to L,. Let o 
be an (n - l)-dimensional domain in Lj such 

that the (n - 2)-dimensional boundary of 0 is 

piecewise of class C?. Suppose that u assumes 
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the value h (> a) on each orthogonal trajec- 
tory passing through 0. Consider the union of 
orthogonal trajectories that pass through o. 
The subset of this union on which u assumes 

values between a and h forms a set called a 
regular tube. The parts of the boundary corre- 

sponding to a and b are called the lower and 
Upper bases of the tube; accordingly, o is the 

lower base. The integral ~(&/&)da on any 
section (i.e., the part of a level surface in the 
tube) is constant and is called the flux of the 
tube. The family of orthogonal trajectories 
passing through an (n - l)-dimensional domain 

(not necessarily bounded by a smooth bound- 
ary) in 2: is called a barmonic flow, and a 
subfamily is called a harmonie subflow if its 

intersection A with .Zi is measurable (in the 
(n - 1)-dimensional sense). The flux of a har- 

monic subflow is dehned to be r,(h/h)do. 
Then the Green measure of family E of Green 

lines originating at the pole is equal to the flux 
of E divided by ré”. We cari compute the exact 

value of the textremal length of any harmonie 
subflow. 

L. Isolated Singularities 

Let u be harmonie in an open bal1 except at 

the tenter 0. It is expressed as the sum of a 
function h(P) harmonie in the entire bal1 and 

Izm=, Hm(P)/oP2m+1, where H,,, is a kpherical 
harmonie of degree m. If OP%(P)+0 as P+O 
for u > 0, then u(P) is equal to h(P) + c/OP + 
+ H,(P)/mzm+’ with m < c( - 1. In particular, 

if u is bounded in a neighborhood of 0, then 0 
is a removable singularity for u. If u is bounded 
above (below), then u(P) = h(P) + c/OP”-‘, 
where cd 0 (c 3 0). (When II = 2, we have u(p) 
= h(p) + clog l/OP. For the removability of a 

set of capacity zero - 169 Function-Theoretic 
Nul1 Sets). 

If u is harmonie near the point at infïnity, 
i.e., outside some closed ball, then 

where the fïrst sum is regular at the point at 

infinity and U,,, is a spherical harmonie of 
degree m. If OP-%(P)+0 as OP+co with 
2 à 0, then U, = 0 for a11 m > c(. If u is bounded 
above or below, then U,,, = 0 for a11 m > 1. If u is 
harmonie in R” and OP-%(P)+0 as OP-cc 

with c( > 0, then u is a polynomial of degree m 
( <IX). If u is harmonie and bounded above or 

below in R”, then u is constant. Brelot called a 
function u harmonie at the point at intïnity if 

m 4nU’) 
u(P) = constant + c, Op2m+i 

(note that m> 1) near the point at inhity Cl]. 
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M. Harmonie Continuation 

If u vanishes in a subdomain of D, then u = 0 in 
D. If uk is harmonie in Dk (k = 1,2), D, n D, # 
@,andu,-u,inD,nD,,thenu,andu,de- 
fine a harmonie function in D, U D,. If the 
boundaries of mutually disjoint domains D, 
and D, have a surface S, of class C’ in com- 
mon, uk is harmonie in Dk (k = 1,2), u1 = u2 

on SO, and au,/& and -au,/& exist and 
coincide on S,, then ui and u2 delïne a har- 
monic function in the domain D, U SO U D,. 

We express this fact by saying that one of ui 
and u2 is a harmonie continuation of the other. 
It follows that u = 0 in D if the boundary of 
D contains a surface S, of class Ci and u = 
aujan = 0 on S,. Consider the case n = 2. If the 
boundary of a Jordan domain contains an 
analytic arc C and u (or au/&) vanishes on C, 
then a harmonie continuation of u into a cer- 

tain domain beyond C is possible. If n = 3, 
however, nothing is known except in the case 
where S, is a part of a spherical surface or a 

plane and u = 0 (or au/& = 0) on S,. 
Boundary values of u do not always exist, 

but in some special cases, u has limits. For 
instance, a positive harmonie function in a bah 
has a tïnite limit at almost every boundary 
point Q if the variable is restricted to any 
angular domain with vertex at Q. 

N. Green Spaces 

As a generalization of tRiemann surfaces, 
Brelot and Choquet introduced &-spaces [3]. 

It is required that G be a separable connected 
topological space and satisfy the following two 

conditions: (i) At each point P there exists a 
neighborhood V, of P and a homeomorphism 
between V, and an open set Vi in the +Alexan- 
drov compactification R”U {CO}; (ii) if A = Vp, n 
VF, # 0 and AL is the part of Vjl that corre- 
sponds to A (k = 1,2), then the correspondence 

between A; and A; via A is a conforma1 (pos- 
sibly with the sense of angles reversed) trans- 

formation when n = 2 and an tisometric trans- 
formation (which keeps oc invartant) when 

n à 3. If a +Green’s function exists on 8, then 
& is called a Green space. Harmonie functions 
and the +Dirichlet problem on a Green space 
have been discussed from various points of 

view. 

0. Biharmonic Functions 

A function u is called polyharmonic if Ako = 0 

(k > 2) and biharmonic if AAu = 0; sometimes, 

polyharmonic functions are also called bi- 
harmonie. A biharmonic function in a plane 
domain D is written as Re(yf(z) + g(z)), where ,f 
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and g are complex analytic in D (Goursat’s 
representation). Biharmonic functions are used 
in the theory of elasticity and hydrodynamics. 

P. Subharmonic Functions 

Let D be a tdomain in the n-dimensional Eu- 
clidean space R” (n > 2). A real-valued function 

u(P) in D is called subharmonic if (1) -CO < 
u< +co, uf -CO; (2) u is tupper semicon- 
tinuous; and (3) at every point P0 of D, the 

mean value of u over the surface of any closed 
+ball in D with tenter at P. is not smaller than 

u(P,), i.e., 

where a, is the area of the surface of a unit bah 
in R”. Condition (3) cari be replaced by: (3’) 
The mean value A(P,, r) of u over the closed 
bah is >u(P,). In order that an Upper semi- 

continuous function u be subharmonic it is 
necessary and sufficient that, for any sub- 
domain D’ of D and for any harmonie function 
h in D’, the maximum principle hold for u-h. 

We cal1 -u superharmonic when u is sub- 
harmonie. A harmonie function is subhar- 
monic and superharmonic. The converse is 

also true (- Section E). 
When u is of Mass C2, then u is subhar- 

monic if and only if 

Au=$+...+$,o (P=(x~, . . . . x,)). 
1 ” 

When u is an Upper semicontinuous function 
that is not necessarily differentiable, u is sub- 
harmonie if and only if Au interpreted as a 

tdistribution is a positive tmeasure. 
If ui, . . . , uk are subharmonic and a,, ,uk 

are positive constants, then a, ui + . . + akuk 
and max(u,(P),u2(P), ,uk(P)) are subhar- 
monic. If a subharmonic function u is replaced 
by the +Poisson integral for the boundary 
function u inside a closed bal1 in D, then the 

resulting function in D is subharmonic. If f(t) 
is a monotone increasing convex function, 
then f(u) is subharmonic. If u > 0 and log u is 

subharmonic, then v is subharmonic. If f(z) is 
a holomorphic function of the complex vari- 

able z and n > 0, then /I log If(z)1 and hence 
If(z)l” are subharmonic. If h is harmonie, then 

[hi is subharmonic. Any tlogarithmic potential 
(n= 2) or +Newtonian potential (n>3) is super- 
harmonie in R”. 

Q. Properties of Mean Values 

Condition (3) (resp. (3’)) cari be replaced by the 
condition that there exists an r(P,J > 0 at any 
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P0 such that u(P,)~L(P,,r)(u(P,)~A(P,,r)) 
for every r, 0 < r < r(P,). The relation -03 < 
A(P,,r)<L(P,,r) always holds, and both 
A(P,, r) and L(P,,, r) decrease to u(P,J as rJ0. 
On any tcompact subset of D, u is tintegrable. 
Both A(P,, r) and L(P,, r) increase with r and 
are convex functions of - log r (n = 2) and r2 mn 
(n > 3); hence they are continuous functions of 

r. If D’ is relatively compact in D and r, is the 
distance between i3o’ and aD, then A(P, r) is a 
continuous subharmonic function of P in D’, 
where r is fïxed in the interval (0, ro). By taking 
the average of A(P, r) k times, a subharmonic 
function of class Ck is obtained that decreases 

to u as rl0. If cp,((x: + +x:)~/‘) is suitably 
chosen, then the tconvolution u * <pI is a sub- 
harmonie function of class C” and decreases 
to u as rJ0. 

R. Sequences of Subharmonic Functions 

The limit of a decreasing sequence or a 
downward-directed net of subharmonic func- 

tions is subharmonic or equal constantly to 
-CO. The limit of a uniformly convergent 
sequence of subharmonic functions is sub- 
harmonie. If u 1, u2, . . are subharmonic, then 
max(u,, . , uk) is subharmonic for every k, but 
sup(u,, u2, . . . ) may not be subharmonic. Let U 

be a family of subharmonic functions in D that 
are uniformly bounded above on every com- 
pact subset of D. Then the Upper envelope of 
U, i.e., the function defined by supueuu in D, 

coincides with a subharmonic function except 
on a set of tcapacity zero. 

S. Harmonie Majorants and Riesz 
Decompositions 

Suppose that we are given a subharmonic 
function u in D. If there is a harmonie function 

h satisfying h > u in D, then h is called a har- 
monic majorant of u. When there is a harmonie 
majorant of u, there exists a least one among 

them, denoted by h,. For any relatively com- 
pact subdomain D’ of D, h,. always exists and 
equals the +Perron-Brelot solution in D’ for the 

boundary function u. As D’ increases to D, h,, 
increases to a function h that is either har- 

monic or equal constantly to CO. If h, exists, it 
coincides with h, and hence h is harmonie. 

Conversely, if h is harmonie, then h, exists and 
equals h. Generally, there is a unique +Radon 
measure p in D with the following property: 
Let 6 be any subdomain of D such that h, and 
the +Green’s function G6 exist in 6 (6 may 

coincide with D). Then h, - u is equal to the 
potential sd G, dp, and u = h, -SS G, dp. In gen- 

eral, a representation of a superharmonic 
(subharmonic) function as the sum (difference) 
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of a harmonie function and a potential is 
called a Riesz decomposition. 

T. Boundary Values 

Let D be a domain in which a Green’s function 

exists, and consider the +fïne topology on the 
+Martin compactification of D. Any negative 
subharmonic function u in D has a fïnite limit 

with respect to the fine topology at every point 
of the +Martin boundary A except at the points 
of a subset of A of harmonie measure zero 
(J. L. Doob). When D is a hall, u has a limit 
in the ordinary sense along almost every 
radius. However, it may happen that even if u 
is bounded there exists no angular limit at 
any point of the boundary. If the mean value 
of 1 u 1 on every concentric smaller bal1 in D is 

bounded, then u cari be decomposed into the 
sum of a nonnegative harmonie function and a 
negative subharmonic function by the Riesz 
decomposition, and hence u has a limit both 

radially and with respect to the fine topology. 
Let D be a domain and K be a compact 

subset of D of tcapacity zero. If a function u is 

subharmonic and bounded above in D-K, 
then u cari be extended to be a subharmonic 
function in D. A function that is equal to a 
subharmonic function almost everywhere is 
called almost subharmonic, and an almost 
subharmonic function satisfying condition (3’) 
is called submedian. 

Subharmonic functions cari be discussed in 
a space more general than R”, e.g., a tRiemann 
surface (n = 2), or more generally, an +d-space 

of dimension n (2 2) in the sense of Brelot and 
Choquet. 

U. The Axiomatic Treatment 

+Newtonian potentials were the main abject of 
interest in the early stages of tpotential theory. 
A major part of potential theory cari be dis- 

cussed on the basis of the theory of superhar- 
monic functions [S]. For example, a +Polar set 
is defined as a set on which some superhar- 
monic function assumes the value CO, and a set 
X is tthin at a point P0 $X if and only if P,, has 
a positive distance from X or there exists a 
superharmonic function u(P) in a neighbor- 
hood of P. such that lim supu > u(PJ as 
PEX tends to P,. Moreover, we cari discuss 
tbalayage, defïne potentials, and obtain Riesz 
decompositions. Generalizing results of Doob 

(1954) and starting from a family of harmonie 
functions defined axiomatically in a locally 

compact Hausdorff space, M. Brelot detïned 
superharmonic functions and potentials and 

discussed balayage, Riesz decompositions, and 
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the +Dirichlet problem (1957). Further pro- 
gress in axiomatic potential theory has been 
made by Brelot, H. Bauer, C. Constantinescu, 

A. Cornea, and others [Il, 141. 
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194 (VII.1 1) 
Harmonie Integrals 

A. Introduction 

+De Rham’s theorem shows that the coho- 
mology group with real coefftcients of a +dif- 

ferentiable manifold of class C” is isomorphic 
to the cohomology group of the cochain com- 
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plex of tdifferential forms with respect to the 
exterior derivative d. Thus every element of the 
cohomology group cari be represented by a 
class of tclosed differential forms. Harmonie 

forms enable us to choose one defïnite dif- 
ferential form in each cohomology class. The 

theory of harmonie forms, called the theory of 
harmonie integrals, is modeled after the theory 
of holomorphic differentials and their inte- 
grals (Abehan integrals) in function theory 

C2,4,5,81. 

B. Delïnitions 

Let X be an oriented n-dimensional differ- 
entiable manifold of class C” with a +Rie- 

mannian metric ds2 of class C” (- 105 Differ- 
entiable Manifolds, 364 Riemannian Mani- 
folds A). For every (Cm) p-form <p on X we 
defïne an (n -p)-form * cp on X as follows: 
First denote the +Volume element of X by 
du. If we choose a basis {oi, . . . , w,,} of the 

space of 1-forms on an open set U of X such 
that d? = Ci wf and du = w, A.. . A w,, then 

<p cari be expressed on U in the form cp = 
(l/p!)C<pi ,,,,,, i w. 

P ‘1 
A...Aw~ 

P 
Ifwelet *‘p= 

(ll(n-P)!)C(*cp)jl,... _ oj,A”‘AO’ , where 

<*~)j,...j,~p=(l/P!)~~~~~~~~nj,...j.~ Vi:n); then 
* cp is an (n - p)-form on C? that d:es n$ 
depend on the choice of (w, , . , w,,) and is 

determined only by <p. Since X is covered by 
open sets as above, * detïnes a linear map- 
ping that transforms p-forms to (n - p)-forms. 
If we let ds2 = C gjkdxjdxk in terms of the 
local coordinate system (xi, ,x”) and <p = 

(l/p!)cpii ,,__, ipdxil A A dxip, then, in the nota- 
tion of tensor calculus, we have 

*<~=(l/(n-p)!)(*<p)~~.,,~,_~dxj’A . ..A dxjn-P, 

(*cP)j ,.,. j,m,'Ji'dk,i~~i~j ,... jn-p~ki."kp 

For two p-forms <p and $, we detïne the 
inner product by (<p, $) = sx <p A *ti if the right- 
hand side converges. In order for the inner 
product (<p, $) to be detïned, it suffices that 
either <p or $ has compact tsupport. Then 
(cp, $) is a symmetric, positive defïnite bilinear 
form. 

If we let 6 =( - l)npfn+i *d * operate on p- 

forms, where d is the texterior derivative, then 
d and 6 are adjoint to each other with respect 
to the inner product. That is, if either cp or 

$ has compact support, we have (dq, $) = 
(<p, 6$) (Stokes’s theorem). We cal1 A = dh + 
6d the Laplace-Beltrami operator, which is 

a self-adjoint telliptic differential operator. 
These operators satisfy relations such as 
,.=(-l)p@-p), dd=O, S6=0, *A=A*, 
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*6=(-1)Pd*,and6*=(-1)“~p’1’ *d (when 
they operate on p-forms). 

A differential form <p is said to be harmonie 

if dp = 0 and 6<p = 0. Then A<p = 0. Since A is 
an elliptic operator, a tweak solution cp of the 
equation A<p =p is an ordinary solution of 

class C” on the domain where p is of class C”. 
Therefore, if <p is harmonie (as a weak solu- 

tion), <p is of class C”. 

C. Harmonie Forms on Compact Manifolds 

On a compact manifold X, any cp with A<p = 0 
is harmonie, since (<p, A<p) = (LEq, dqo) + (Q, fi<p). 
Let L,(X) be the linear space of p-forms of 
class C” on X, and denote by U,(X) the com- 

pletion of L,(X) with respect to the inner 
product (<p, +). Then Q,(X) is the Hilbert space 
of square integrable measurable p-forms. Then 

jj,(X)= {~EP,,(X)IA<P=O (in the weak sense)} 
is a fïnite-dimensional subspace of Q,(X) and 
is contained in L,(X), as we have seen before. 
Also, e,(X) is closed in Q,(X), and the +Pro- 

jection operator H:f!,(X)+Sj,(X) is an tinte- 
gral operator with kernel of class C”. The 
orthogonal complement of a,,(X) in Q,(X) is 
mapped onto itself by A and has the inverse 

operator G of A, which is a continuous oper- 
ator of the Hilbert space. By letting G=O 
on b,(X), we cari extend G to an operator 

from f?,(X) to P,(X) that is called Green% 
operator. It is also denoted by G, maps L, into 
itself, commutes with d and 6, and satisfies 
CH = HC = 0, H + AG = 1 (= identity map- 
ping). Therefore, for <PE L,,(X) we have cp = Hq 
+ GGdcp +dGG<p, which shows that H is +homo- 
topic to the identity mapping of the tcochain 
complex (2, L,(X), d). From this we infer that 

every cohomology class of de Rham cohomol- 
ogy contains a unique harmonie form that 
represents the cohomology class. However, 
since products of harmonie forms are not 

always harmonie, it is trot appropriate to use 
harmonie forms to study the ring structure of 
cohomology. G is also an integral operator 
with kernel of class C” outside the diagonal 
subset in X xX. 

D. Harmonie Forms on Noncompact 

Manifolds 

If X is a noncompact manifold, let L,(X) be 

the space of p-forms of class C” with compact 
support, and let f?,(X) be its completion. Let 

23,,(X) and %3:(X) be the respective closures of 
dL,-,(X) and fiL,+,(X) in c,(X), and let 
3,,(X) and i-j:(X) be the respective orthogonal 

complements of 8,(X) and $%;(X) in P,(X). 

Then 3,,(X) n :3;(X) = g,(X) is a subspace of 
the square integrable harmonie forms, and we 
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have the direct sum decomposition f?,(X) = 

‘B,(X) + BP(X) + s,,(X). In this decomposition 
any component of a form of class C” is also of 
class C”. 

If X is an open submanifold of another 
manifold Y, X 1s compact, and 3X =X--X is a 
closed submanifold of Y, then the theory in 

this section is just a generalized potential 
theory with boundary condition cp = 0 on 3X. 
We sometimes treat decompositions of other 
Hilbert spaces that correspond to other bound- 
ary conditions. 

E. Generalization to Complex Manifolds 

If X is a complex manifold, we consider 
complex-valued differential forms (- 72 Com- 

plex Manifolds C). Then the space L,,(X) of p- 
forms is the direct sum of the spaces L,,,(X) of 
forms of type (r, s), and the exterior derivative 
d has the expression d = d’ + d”, where d’ is of 

type (1,O) (i.e., L,,,(X)+L,+,,,(X)) and d” is of 
type (0,l). If we are given a holomorphic vec- 
tor bundle E on X, we cari define an operator 
d” on differential forms with values in E, and 
we have the generalized +Dolbeault theorem. If 
X is compact and has a +Hermitian metric, we 

cari defïne a Hermitian inner product on E as 
follows: There is an open covering {q} such 
that over each U, the vector bundle E is iso- 
morphic to U, x C4. A point of E over U, is 

represented by (x, tj), where XE U, and tj~Cq. 
For x E U, n U, we have (x, tj) = (x, &,) (the sides 
are the respective expressions over Uj and U,) 
if and only if tj=gjk(x)&, where gjk(x) is a 

holomorphic mapping from qn U, to GL(q, C) 
satisfying gjkgk, = gjr on Uj n U, n U,. A differen- 

tial form cp with values in E is expressed as a 
family {cpj} of differential forms on Uj with 

values in Cq such that V~(X) = gjk(x)qk(x) on 
Uj fl U,. If we take a positive detïnite Hermitian 
matrix hi whose components are C”-functions 

on Uj such that ‘gjk hj?jj, = h, on Uj n U,, then 
{‘<jhjzj} determines a Hermitian inner product 
on each fïber of E. We cari also endow the 
space L,,,(E, X) (of forms of type (r,s) of class 
C’” with values in E) with a Hermitian inner 
product by setting (<p, $) = sx X,.0 h,,,& A * t+bf 
for <p, $EL,.,(E,X) (where the ‘pg (a= 1, . . . . q) 
are the components of cpj). If we denote by b 
the adjoint operator of d” with respect to this 
inner product and let A = d”ù + bd”, then A is a 
self-adjoint elliptic differential operator, and 

results similar to those for A mentioned above 
hold for A. For example, the space b,.,(E, X) 
of harmonie forms of type (r, s) is of fïnite 
dimension, and there is a continuous linear 
operator G on P,,,(E, X), the completion of 

L,,,(E, X), that satisiïes 1 = H + AG, HG = 
CH = 0, d” G = Gd”, and bG = Gb. Here H 
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denotes the projection 2-5, which is an 
integral operator with kernel of class C”. 
Also, G maps L,,,v(E, X) into itself. Therefore 
H is homotopic to the identity on the co- 
chain complex (C,L,,,(E, X), d”), and any ele- 
ment of +Dolbeault’s cohomology groups (d”- 
cohomology groups) is represented by a uni- 
que harmonie form (- 232 Kahler Manifolds 

W 

F. Other Generalizations 

Even if a manifold X is not of class C”, if X is 
a manifold of class Ci, we cari develop the 
theory of harmonie forms [6]. We say that X 
is of class Ci if it is of class C’ and has a set of 

local coordinate systems whose transition 
functions have derivatives satisfying the +Lip- 
schitz condition. 

If X is a real analytic manifold with a real 
analytic Riemannian metric, then harmonie 
forms are also real analytic. Using this fact, we 
cari embed real analytically a compact mani- 

fold with a real analytic Riemannian metric 
into a Euclidean space (P. Bidal and G. de 

Rham; this result is now included in the 
theorems of C. B. Morrey and H. Grauert). 

We cari consider the theory of harmonie 
forms with singularities [4,5], a generalization 
of the theory of differential forms of the second 
and third kinds. Here the notion of tcurrent is 
very useful. 

G. Cohomology Vanishing Theorems 

Since the operator A is closely related to the 
Riemannian metric, some metrics may admit 
no harmonie forms of certain degrees except 
zero. This is important since it means that the 

corresponding cohomology group of the mani- 
fold vanishes. The condition for this phenom- 
enon to occur cari be described in terms of 
the curvature of the metric. This study has its 
origin in S. Bochner’s results [2]. 

Here is an example of a vanishing theorem: 
Let B be a holomorphic line bundle on a com- 
pact complex manifold X of dimension n. If 
the +Chern class of B is expressed by a real 

closed differential form of type (1,l) as w  = 
fl z ~dz’ A d8, where the Hermitian 
matrix (Q) is positive delïnite at every point of 

X, then H4(X, @‘(B)) = 0 for p + 4 > n. In this 
case, ds* = 2 C amp dz” A dz” is a +Hodge metric 
on X (- 232 Kahler Manifolds D). 
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A. General Remarks 

The theory of harmonie mappings between 
Riemannian manifolds has its origin in the 

study of +Plateau’s problem. The basic prob- 
lem in the theory is to deform a given map- 
ping into a harmonie one, which is a problem 
of the tcalculus of variations and tglobal ana- 
lysis (- 46 Calculus of Variations, 183 Global 

Analysis). Recently, the theory of harmonie 
mappings has been applied to problems in 
various branches of geometry [779,11]. 

B. Definitions and Examples 

Let (M, 9) and (N, h) be +Riemannian mani- 
folds with metrics g=Cy,dx’dxjand h= 
Ch,,dy”dy”, respectively. We defme the energy 
of a Cl-mappingf:M+N by 

W)=; Idfb)l*dx, 
s M 

where Idf(x)I is the +Hilbert-Schmidt norm of 
the differential df,: TX(M)+Tf,,,(N) off at 
x E M and dx is the canonical Lebesgue mea- 
sure delïned by y on M (assumed compact). 
Thus E(f) cari be considered to be a generali- 
zation of the classical +Dirichlet integral for 
functions. The integrand e(,f)(x) = Idf(x)l’ is 
called the energy density off; it measures 

the sum of the squares of elements of length 
stretched on a complete set of mutually per- 
pendicular directions. 
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The +Euler-Lagrange differential equations 

of the energy functional E(f) yield a vector 
field r(f) along J i.e., a section of the bundle 
f” T(N) induced from the tangent bundle 

T(N) of N by f: In fact, given a family ,f, of 
mappings depending differentiably on t with 
f. =f, we have 

where ( , ) denotes the inner product of 
tangent vectors along 1: The vector field r(f) is 

called the tension field of the mapping f; it 
indicates the direction in which the energy off 
decreases most rapidly. 

The Euler-Lagrange differential equations 
z(f) = 0 are a system of tquasilinear elliptic 
partial differential equations of the second 
order. In local coordinates, these cari be writ- 
ten in the form 

where A is the tlaplace-Beltrami operator on 
M and the F’&,(f)(x) are the +Christoffel sym- 
bols on N at f(x). (The f” are local coordi- 

nates of the point f(x), and (9”) is the inverse 
matrix of (gij).) A C2-mapping f: M+N is said 
to be harmonie if its tension fïeld r(f) vanishes. 
Thus, if M is compact, a Cz-mapping f: M+N 
is harmonie if and only if it is an extremal of 
the energy functional E(f). 

Examples of harmonie mappings appear in 
various contexts of differential geometry. For 

instance: 
(1) If N = R, then the harmonie mappings 

M-tR are the tharmonic functions on M. 
(2) If M is the circle S’, then a harmonie 

mapping S’ + N is a closed tgeodesic of N 

parametrized by arc length. 
(3) Let f: M+N be an tisometric immersion 

of M into N. Then fis harmonie if and only if 
it is a tminimal immersion. 

(4) If M and N are +Kahler manifolds, then 
every tholomorphic or antiholomorphic map- 
ping M -+ N is harmonie, where by an anti- 

holomorphic mapping is meant a mapping 
whose differential mapping carries a differen- 
tial form of type (1,0) into that of type (0,l). 

We note that each (anti-)holomorphic map- 
ping is an absolute minimum for the energy in 
its homotopy class. There are also examples of 
nonholomorphic (and nonantiholomorphic) 
harmonie mappings between Kahler manifolds 

(- Section D). 

C. Fundamental Properties 

(1) Regularity. Since a harmonie mapping is a 

solution of a second-order quasilinear elliptic 
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system of partial differential equations 7(f) = 0 

(- Section B), it is a smooth (ie., of class Cm) 
mapping. More generally, it is known that a 
continuous mapping that satishes 7(f) = 0 in 
a weak sense is smooth [4,6]. 

(2) Unique continuation property. The follow- 
ing unique continuation theorem is valid for 
harmonie mappings: If two harmonie map- 

pings of M into N agree up to intïnitely high 
order at some point of M, then they are iden- 

tical (M being assumed connected). In partic- 
ular, a harmonie mapping that is constant on 

an open set is a constant mapping. 
The global natures of harmonie mappings 

are closely related to the curvatures of the 

manifolds under consideration. For instance, 
suppose that M and N are compact and that 
the sectional curvatures of N are nonpositive 
everywhere. Then we have: 

(3) Uniqueness. Let f: M j N be a harmonie 
mapping, and assume that there is a point of 
f(M) where the sectional curvatures of N are 
negative. Then f is unique in its homotopy 
class unless f(M) is a closed geodesic y of N; 

and in this case we have uniqueness up to 
rotation of y, i.e., an isometry of y which moves 
each point of y a fixed oriented distance along 

Y. 
(4) Degeneracy. Suppose further that the 

+Ricci tensor (R,) of M is positive semidetïnite 
everywhere. Then the energy density e(f) is a 
tsubharmonic function for every harmonie 
mapping. This implies that any harmonie 

mapping f: M+N is ttotally geodesic. More- 
over, if N is of negative sectional curvature, 

then f is either constant or maps M onto a 
closed geodesic of N; if (R,) is positive deiïnite 
at some point, then f is constant. 

(5) Finiteness. Assume now that N is of 
negative sectional curvature. Then, for each 
K 2 1, there are only fïnitely many noncon- 
stant harmonie mappings ,f: M+N of dilata- 
tion bounded by K. Here, we say that the dila- 
tation off is bounded by K if and only if at 
each point of M we have df=O or (/?,/Â,)“* < 
K, A1 2 1,, > . > 0 being the positive eigen- 
values of the pullback quadratic form f*h(x) 
on T,(M) induced from the metric h of N by 1: 

D. Harmonie Mappings of a Surface 

Let M be a compact surface. Then the energy 
of a mapping M+N is the +Dirichlet-Douglas 
functional, and harmonie mappings are closely 
connected with solutions of Plateau% problem 
(- 334 Plateau’s Problem). In fact, if a +Con- 
forma1 mapping M-N minimizes the tarea 

functional, then it also minimizes the energy 

functional. 
Now let M and N be compact orientable 
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surfaces whose genera are denoted by p and q, 
respectively. Then the problem of existence (or 

nonexistence) of harmonie mappings is well 
understood. In fact: 

(1) When q # 0, for any metrics g and h on 
M and N, every homotopy class of mappings 
M+N contains a harmonie mapping. 

(2) When q = 0 (i.e., N is the 2-sphere S’), 
every harmonie mapping whose tdegree d 

satisfïes Id] > p is holomorphic or antiholo- 
morphic with respect to the complex struc- 
tures associated with g and h. For example, 
consider the homotopy classes of mappings 
from the 2-torus T2 to S* with any metrics. 
Then a11 classes with degree Id[ > 2 have har- 
monic representatives, and any such is holo- 
morphic or antiholomorphic; and the classes 
with d = fl have no harmonie representatives. 

(3)Whenq=OandIdl<p-l,wehave,for 
every such p and d, a surface M of genus p and 
a metric h on S2 such that there exists a har- 
monic nonholomorphic (and nonantiholo- 

morphic) mapping of degree d from M to S2. 

E. Existence Theorems 

The basic problem in the study of harmonie 

mappings is to prove their existence in general 
geometric contexts. 

(1) In regard to this problem, translating the 
problem of the elliptic system r(f) = 0 into the 
tinitial value problem of the corresponding 

nonlinear tparabolic system af/ôt = r(f), J. 
Eells and J. H. Sampson [l] proved that if 
M and N are compact and if N has nonposi- 
tive sectional curvature everywhere, then every 

homotopy class of mappings M+N contains 
a harmonie mapping that minimizes the energy 

in that class. Subsequently, the uniqueness of 
these harmonie mappings was established 

by P. Hartman [L] in the form stated in Sec- 
tion C. 

(2) For harmonie mappings of surfaces, 
more general existence results have been 

known. 
First, by the tdirect method of the calculus 

of variations, L. Lemaire (1977) and others 
proved that if M and N are compact and if M 

is 2-dimensional, then every conjugacy class of 
homomorphisms nl(M)+n,(N) of the funda- 
mental groups is induced by a minimizing 
harmonie mapping. It follows that if, in partic- 
ular, the second homotopy group rc2(N) of N 
is zero, then every homotopy class of map- 
pings of a compact surface M to N contains 

a harmonie representative realizing the mini- 
mum of the energy in that class. 

On the other hand, by making use of the 
generalized +Morse theory for a perturbed 
energy functional, J. Sacks and K. Uhlen- 
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beck [S] succeeded in giving a satisfactory 
answer to the structure of rc2(N), which is a 

ni(N)-module, in terms of harmonie mappings. 
They proved that there exists a generating set 

for n,(N) consisting of harmonie mappings of 
spheres that minimize energy and area in their 
homotopy classes. We note that these har- 
monic mappings are minimal immersions with 

tbranch points. 
(3) Next, we mention the case of harmonie 

mappings of manifolds with boundary. In this 
case, we cari naturally formulate the +Dirichlet 
and the +Neumann boundary value problem 
for harmonie mappings. 

In his study of Plateau% problem on Rie- 
mannian manifolds, C. Morrey (1948) dis- 

cussed the Dirichlet problem for harmonie 
surfaces with boundary. 

The problem in arbitrary dimensions has 
been studied by R. S. Hamilton [3], who 

extended the result of Eells and Sampson 
mentioned above to the case where M and N 

have boundaries. In fact, let M and N be com- 
pact Riemannian manifolds with boundary, 
and assume that N has nonpositive sectional 
curvature and that the boundary ON of N is 
tconvex (or empty). Then there exists a unique 
minimizing harmonie mapping in each Irela- 
tive homotopy class determined by the pre- 
scribed Dirichlet boundary value. We note 

that if aN is not convex, then it is easy to 
formulate Dirichlet problems with no solu- 
tions. Hamilton also treated the Neumann 

problem. 
Subsequently, S. Hildebrandt, H. Kaul, and 

K.-O. Widman [4] gave another existence 
proof of solutions of the Dirichlet problem 
that covers the case where N admits positive 
sectional curvature. 
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David Hilbert (January 23, 1862-February 14, 
1943) was born in Konigsberg, Germany. He 
attended the University of Konigsberg from 
1882 to 1885, when he received his doctoral 

degree with a thesis on the theory of invar- 
iants. It was there that he established a life- 
long friendship with H. Minkowski. In 1892 he 
became a professor at the University, and in 
1895 he was appointed to a professorship at 

the University of Gottingen, a position he held 
until his death. He obtained his basic theorem 
on invariants between 1890 and 1893, and next 

began research on the foundations of geometry 
(- 155 Foundations of Geometry) and the 
theory of talgebraic number fields. Concerning 
the former, he published Grundlagen der Geo- 

metrie (fïrst edition, 1899), in which he gave the 
complete axioms of Euclidean geometry and 
a logical examination of them. Concerning 
the latter, he systematized a11 the important 
known results of algebraic number theory in 

his monumental Zahlhericht (1897). In number 
theory, he enunciated his signifïcant conjecture 

on tclass lïeld theory. At the international 
congress of mathematicians held in Paris in 

1900, he put forth 23 problems as targets for 
mathematics of the 20th Century (Table 1). 
Between 1904 and 1906 he conducted research 

on the +Dirichlet principle of tpotential theory 
and on the direct method in the tcalculus of 

variations. Around 1909 he established the 
foundations of the theory of THilbert spaces. 
After 1910 he was chiefly involved in research 

on the tfoundations of mathematics, and he 

advocated the standpoint of tformalism. He is 
one of the greatest mathematicians of the lïrst 
half of the 20th Century. 
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Table 1. The 23 Problems of Hilbert 

(1) TO prove the continuum hypothesis (- 33 
Axiomatic Set Theory D). 

(2) TO investigate the consistency of the 
axioms of arithmetic (- 156 Foundations of 
Mathematics E). 

(3) TO show that it is impossible to prove 
the following fact utilizing only congruence 

axioms: Two tetrahedra having the same alti- 
tude and base area have the same volume. 
Solved by M. Dehn (1900). 

(4) TO investigate geometries in which the line 
segment between any pair of points gives the 
shortest path between the pair (- 155 Foun- 
dations of Geometry). 

(5) TO obtain the conditions under which a 

topological group has the structure of a Lie 
group (- 423 Topological Groups M). Solved 

by A. M. Gleason and D. Montgomery and L. 
Zippin (1952) and H. Yamabe (1953). 

(6) TO axiomatize those physical sciences in 

which mathematics plays an important role. 

(7) TO establish the transcendence of certain 
numbers (- 430 Transcendental Numbers B). 
The transcendence of 2Jz, which was one of 
the numbers put forth by Hilbert, was shown 
by A. Gel’fond (1934) and T. Schneider (1935). 

(8) TO investigate problems concerning the 

distribution of prime numbers; in particular, to 
show the correctness of the Riemann hypoth- 
esis (- 450 Zeta Functions). Unsolved. 

(9) TO establish a general law of reciprocity (- 

59 Class Field Theory A). Solved by T. Takagi 
(1921) and E. Artin (1927). 

(10) TO establish effective methods to deter- 
mine the solvability of Diophantine equations 
(- 97 Decision Problem; 182 Geometry of 

Numbers). Solved affïrmatively for equations 
of two unknowns by A. Baker, Philos. Trans. 

Roy. Soc. London, (A) 263 (1968); solved nega- 
tively for the general case by Yu. V. 
Matiyasevich (1970). 

(11) TO investigate the theory of quadratic 
forms over an arbitrary algebraic number tïeld 
of fïnite degree (- 348 Quadratic Forms). 

(12) TO construct class fields of algebraic num- 
ber fields (- 73 Complex Multiplication). 

(13) TO show the impossibility of the solu- 
tion of the general algebraic equation of the 
seventh degree by compositions of continu- 
ous functions of two variables. Solved nega- 
tively. In general, V. 1. Arnold proved that 

every real, continuous function S(x,, x2, x3) 
on [0, l] cari be represented in the form 

Xy=, hi(gi(x, ,x2), x3), where hi and g, are real, 
continuous functions, and A. N. Kolmogorov 

proved that f(x,, x2, xj) cari be represented 
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in the form Z&l hihi, (~1) + gi2(X2) + gi~(x~))~ 
where hi and g, are real, continuous func- 
tions and g, cari be chosen once for a11 inde- 

pendently off (Dokl. Akad. Nauk SSSR, 114 
(1957) Amer. Math. Soc. Tran& 28 (1963)). 

(14) Let k be a tïeld, x1, . ,x, be variables, 

and ,fi(xi, . ,x,) be given polynomials in 

kCx 1 )...> x,](i=l,... , m). Furthermore, let 
R be the ring formed by rational functions 
F(X, , . . , X,) in k(X, , . . , X,) such that F( fi, 

, f,) E k [x1, , x,]. The problem is to deter- 
mine whether the ring R has a tïnite set of 
generators. Solved negatively by M. Nagata, 
Amer. J. Math., 8 1 (1959). 

(15) TO establish the foundations of algebraic 

geometry (- 12 Algebraic Geometry). Solved 
by B. L. van der Waerden (193881940) A. 
Weil (1950), and others. 

(16) TO conduct topological studies of alge- 
brait curves and surfaces. 

(17) Let ,f(x, , , x”) be a rational function 
with real coefficients that takes a positive value 

for any real n-tuple (x1, . ,x,,). The problem is 
to determine whether the function f cari be 
written as the sum of squares of rational func- 
tions (- 149 Fields 0). Solved in the affirma- 
tive by E. Artin (1927). 

(18) TO express Euclidean n-space as a disjoint 

union UA PJ,, where each PA is congruent to 
one of a set of given polyhedra. 

(19) TO determine whether the solutions of 
regular problems in the calculus of variations 
are necessarily analytic (- 323 Partial Differ- 

ential Equations of Elliptic Type). Solved by 

S. N. Bernshteïn, 1. G. Petrovskiï, and others. 

(20) TO investigate the general boundary value 
problem (- 120 Dirichlet Problem; 323 Par- 
tial Differential Equations of Elliptic Type). 

(21) TO show that there always exists a linear 

differential equation of the Fuchsian class with 
given singular points and monodromic group 
(- 253 Linear Ordinary Differential Equa- 
tions (Global Theory)). Solved by H. Rohrl 
and others (1957). 

(22) TO uniformize complex analytic functions 
by means of automorphic functions (- 367 
Riemann Surfaces). Solved for the case of one 
variable by P. Koebe (1907). 

(23) TO develop the methodology of the 
calculus of variations (- 46 Calculus of 
Variations). 
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A. General Remarks 

The theory of Hilbert spaces arose from prob- 
lems in the theory of +integral equations. D. 
Hilbert noticed that a linear integral equation 

cari be transformed into an infinite system of 
linear equations for the +Fourier coefficients 
of the unknown function. He considered the 
linear space 1, consisting of all sequences of 
numbers {x,} for which CE, Ix,/’ is finite, 

and detïned for each pair of elements x = {x.}, 
y = {y,} E 1, their inner product as (x, y) = 
C;;i x,7,. The space 1, cari be regarded as 

an intïnite-dimensional extension of the notion 
of a Euclidean space. F. Riesz considered the 
space of functions now termed L,-space and 
succeeded in giving a satisfactory answer to 
the Fourier expansion problem. In his book 
[3], J. von Neumann established a rigorous 
foundation of quantum mechanics employing 
Hilbert spaces and the spectral expansion of 
self-adjoint operators. The following axiomatic 

definition (- Section B) of Hilbert spaces is 
due to von Neumann. H. Weyl later justitïed 
the +Dirichlet principle of Riemann by the 

method of orthogonal projection in a Hilbert 
space, and thus paved the way for the function- 
analytic study of differential equations. 

B. Definition 

Let K be the field of complex or real numbers, 
the elements of which we denote by x, b, 
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Let H be a tlinear space over K, and to any 
pair of elements x, y~ H let there correspond a 
number (x, y)~ K satisfying the following iïve 

conditions:(i) (x, +x,,y)=(x,,y)+(x,,y); (ii) 

(ax, y) = CG, Y); (iii) (x, Y) = (Y, XL (iv) (x, xl 30; 
and (v) (x, x) = 0 o x = 0. Then we cal1 H a pre- 
Hilbert space and (x, y) the inner product of x 
and y. 

With the norm /~XII =m, H is a 
tnormed linear space. If H is tcomplete with 

respect to the distance Ilx-yll (i.e., IIx,,-x,ll’ 
0 (m, n - m) implies the existence of lim x, =x), 
then we cal1 H a Hilbert space. According 

as K is complex or real, we cal1 H a complex 
or real Hilbert space. A Hilbert space is a 

+Banach space. 
A normed linear space with norm I~X// cari 

be made a pre-Hilbert space, by defming an 
inner product (x, y) SO that //XII = m, if 
andonlyiftheequality ((~+y((~+((x-y(j~= 

2(llx/12+ llyl12) holds for any x, y. 

C. Orthonormal Sets 

Two elements x, y~ H are said to be mutu- 
ally orthogonal if (x, y) = 0. A subset L of H is 
called an orthogonal set (or system) if O$Z’ and 
every distinct pair x, ygL is mutually ortho- 
gonal. If every element of an orthogonal set C 
is of norm 1, then C is called an orthonormal 
set. Any orthogonal set L = {xi} cari be normal- 
ized into an orthonormal set {X~/~~X~II}. A 
maximal orthonormal set is called a complete 

orthonormal set or an orthonormal basis. Al1 
the complete orthonormal sets of a given H 
have the same cardinal number, which we cal1 

the dimension of H. Two Hilbert spaces are 
isomorphic if and only if they have the same 

dimension. 
Let Z= {xi} be an orthonormal set. Then for 

every XE H, its Fourier coefficients (x, xi) van- 
ish for all but a countable number of i, and the 

Bessel inequality llx/1’ aCi I(x, xi)12 holds. The 
following three statements are equivalent in a 
Hilbert space: (i) L is complete; (ii) Parseval’s 
equality ~~x~~~=~~~(x,x~)~~ holds for every x; 

(iii) every x cari be expanded in a Fourier series 
x =Xi(x, X~)X, (- 317 Orthogonal Functions). 

D. Examples of Hilbert Spaces 

The space 1, (- Section A) is a Hilbert space 
of dimension K,. The tfunction space L, on a 
measure space (X, PL) is a Hilbert space if the 

inner product of A y E L, is defined by (A g) = 
SXfýdpL. In the case of the +Lebesgue mea- 

sure in a Euclidean space, L, is of dimension 
Eç,, SO that it is a Hilbert space isomorphic 

to 1,. Further examples of Hilbert spaces are 
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A2(0), w:(n) (= H'(Q)), and H$) (- 168 
Function Spaces). 

E. Closed Linear Subspaces and Projections 

Let M be a closed linear subspace of a Hilbert 
space H, i.e., a linear subspace that is closed in 

the norm topology of H. It is a Hilbert space 
with respect to the restriction of the inner 
product in H. For a given M the set of a11 

x E H such that (x, y) = 0 for every y~ M forms 
a closed linear subspace M’ called the orthog- 
onal complement of M. The orthogonal com- 
plement of M’- is M (i.e., Ml’ =M), and H is 
the direct sum of M and ML (i.e., every XE H 
cari be uniquely represented as x = y + z, y E 
M, ~EM’, and /~XII~= l/~j/~+ ilzll’). Thus the 
quotient space H/M is isomorphic to ML and 

is also a Hilbert space. The operator P,,, that 
maps x to y is called the projection (or ortho- 
gonal projection or projection operator) to M. 
A bounded linear operator P is a projection if 

and only if it is idempotent (P’ = P) and self- 
adjoint ((Px,y)=(x,Py) for any x, y~ H) (- 
251 Linear Operators). 

F. Conjugate Spaces 

A linear operator from H to K is called a 
linear functional. The set H’ of a11 continuous 

linear functionals f on H forms a Hilbert 
space with norm IlfIl =sup{lf(x)lI ~~XII = 1). 
For every fi H' there exists a unique y~ H 
such that ,f(x) = (x, y) for a11 x E H (Riesz’s 
theorem), and the correspondence ,f+y gives 
an tantilinear isometric operator from H' onto 
H (for tlinear operators on Hilbert spaces 
- 68 Compact and Nuclear Operators; 251 
Linear Operators; 390 Spectral Analysis of 
Operators). 
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198 (X1.1) 
Holomorphic Functions 

A. Differentiation of Complex Functions 

Let f(z) be a tcomplex-valued function defïned 
in an open set D in the +complex plane C. We 
say that f(z) is differentiable at z if the limit 

!y (f(z + 4 -f(z)M =.fW (1) 

exists and is fïnite as the complex number h 

tends to zero. We cal1 f’(z) the derivative of 
f‘(z) at z. This detïnition is a formal extension 
of the defïnition of differentiability of a func- 
tion of a real variable to that of a complex 
variable (- 106 Differential Calculus), but it is 
a much stronger condition than the differentia- 
bility of a real function, since z + h in (1) may 
be an arbitrary point in a 2-dimensional neigh- 

borhood of z. Hence many results essentially 
different from those for functions of a real 
variable follow from it. 

If a function f(z) is differentiable at each 

point of an open set D, it is said to be holo- 
morphic (or regular) in D, or ,f(z) is a holo- 
morphic function on D. (For the defmition of 
holomorphy of a complex-valued function 
of several complex variables - 21 Analytic 
Functions of Several Complex Variables C.) 

Let E be an arbitrary nonempty subset of C. 
We say that ,f(z) is holomorphic on E if it is 
defined in an open set D containing E and is 

holomorphic on D. Some results valid for 
differentiable real functions also hold for 
holomorphic functions. For instance, the de- 

rivative of a sum, product, or quotient is given 
by the usual rules. The derivative of a com- 
posite function is determined by the chain rule. 
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The set of a11 functions holomorphic in a 
tdomain D forms a +ring. 

Suppose ,f(z) is holomorphic on D and 
S’(z,,) # 0, z0 E D. Then two curves that form 
an angle at z,, are mapped by f to two curves 
forming the same angle at f(zc). Because of 
this property, the mapping .f’ is said to be 
conforma1 at a11 points z with f’(z) ~0. 

The following four conditions are equivalent 

for a function ,f = u + iv defïned on an open 
set D. (1) f is holomorphic in D. (2) u = u(x, y) 
and u = V(X, y) are ttotally differentiable at 

each point z = x + iy and satisfy the Cauchy- 
Riemann differential equations 

au/ax = ovpy, aulay= -dvpx. 

(3) fis represented by a tpower series CEo c,,(z 
-a)” in a neighborhood of each point a of D; 
that is, f(z) is analytic in D. (4) ,f is continuous 
and J,--(z) dz = 0 for every rectifiable Jordan 
closed curve C whose interior is contained, 

together with C, in D. The proposition that (1) 
implies (4) is called Cauchy’s integral theorem, 
and the proposition that (4) implies (1) is called 

Morera’s theorem. 
The hypothesis of Morera’s theorem cari be 

weakened as follows: Let f(z) be continuous in 
a domain D. If Icf(z) dz = 0 for every rectangle 
C in D with sides parallel to the axes and 
whose interior consists of only points of D, then 

f(z) is holomorphic in D. In the statement of 
this theorem, if we let C be an arbitrary circle, 

we get the same conclusion. 
The following complex differential operators 

are often useful: 

Generally, (dq/az) = a@/&? The Cauchy- 
Riemann equations above cari be expressed in 
a single equation : afi% = 0. If f is holomor- 
phic, af/az=,f'(z). 

In order to show that ,f = u + iv is holomor- 

phic in D, assumption (2) cari be weakened. 
Actually, we have the Looman-Men’shov 
theorem: Suppose that u and v are continuous 

in D, &.@x, &.@y, ôv/&, and dv/ay exist at 
every point of D except for at most a count- 
able number of points, and the Cauchy- 
Riemann equations hold in D except for a set 
of 2-dimensional tmeasure zero; then f = u + iv 
is holomorphic in D. D. E. Men’shov extended 
this theorem and obtained various conditions 
for holomorphy. For example, he proved the 
following theorem: If f is a topological map- 

ping of D and S is conforma1 in D (i.e., 

@wAf(z+h)-fWh 

exists) except for at most a countable number 
of points, then ,f is holomorphic in D. 
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As another type of sufhcient condition for 
holomorphy, we have the proposition : If f is 
locally +Lebesgue integrable in D and satis- 
t’es the Cauchy-Riemann equation ,fi = 0 in 
the sense of tdistribution, then there exists a 
holomorphic function g in D such that 9 =f 
talmost everywhere. 

B. Cauchy’s Integral Theorem 

Cauchy’s integral theorem cari be stated as 
follows: If ,f(z) is a holomorphic function in a 
+simply connected domain D in the complex 
plane, the equality ~cf’(z)dz = 0 holds for every 
(rectifiable) closed curve C in D. In particular, 
the integral jaf(z)dz (c(, /~ED) is uniquely deter- 
mined by s( and [3 provided that its path of 

integration lies in D. The function F(z)= 
[:f([)d[ (~CD) is called the indefinite integral 
of ,j: F(z) is holomorphic in D and F’(z) =.f(z). 

In the proof of his integral theorem, Cauchy 
assumed the existence and continuity of the 
derivative f’(z) in D. However, E. Goursat 

proved the theorem utilizing only the existence 
of f’(z), Actually, by virtue of the integral 
formula (2) in this section, the existence of .f’(z) 
in D implies the continuity off’(z). This is 
sometimes called Goursat’s theorem. 

Let C, Ci, C,, . . . , C,, be rectifiable Jordan 
curves. Suppose that Ci, C,, . . . . C, are in the 
interior of C and that each one lies in the ex- 
terior of the others. If f(z) is holomorphic in 

the region D bounded by these n + 1 curves 
andcontinuousonDUCUC,U...UC,,=D, 
then we have 

Here the curvilinear integrals are taken in the 
positive direction (i.e., we take the direction 
such that sc(z -a))’ dz = Sc,(z - a)-’ dz = 2ni for 

a point a in the interior of C or C,, respec- 
tively). Henceforth, an integral along a closed 
curve is taken in the positive direction unless 
otherwise noted. Cauchy’s integral theorem 

under the assumption that f is holomorphic 
in D and is continuous on D 1s sometimes 
called the stronger form of Cauchy’s integral 
theorem. 

Under the same assumptions as in the 
stronger form, we have Cauchy’s integral for- 

mula for z E D: 

(2) 

This integral formula expresses the value of 

,f(z) at a point z in the domain D in terms of 
the values off on the boundary of D. In par- 
ticular, when n = 0, the integral formula reads 

as 

f(z)x’ ;-d(. 
2ni s ci-z 

(3) 

Furthermore, if C is a circle Iz/ = R (i.e., D is 
the disk IzI <R), we obtain Poisson’s integral 

formula: 

f(z) = 1 
- s 2n f(Reh) 

R2 -r2 

27 0 R2+rZ-2Rrcos(0-<p) d<p, 

.f(z) = 1 s 277 Re”@+z 
- 
271 0 Ref(Reig)=dq + iImf(O), 

z = re’“, O<r-c R. (3) 

Formula (3)’ is valid for a tharmonic function. 

Let C be a rectifiable curve and f(i) be a 
continuous function deiïned on C; then the 
integral of Cauchy type 

E(z)=& s f(i)& 
Ci-z 

is holomorphic outside C. The nth derivative 

F’“’ of F is given by (n!/2ni) Fcf (c)/(c - z)n+' d<; 
moreover, F cari be expanded in a Taylor 

series about every point a outside C: 

F@‘)(a) 
F(z)= f U,(Z-a)“, U”=T, 

n=o 

which converges in (z - a( < p, p being the 
distance from a to C. In particular, formula (3) 
implies that a holomorphic function f is in- 
lïnitely differentiable and is expanded in a 

Taylor series about every point of D as above. 
Let C be a closed curve not passing through 

a point a. Then the integral (1/2ni)lcdz/(z - a) 

is an integer. It is called the winding number of 
C about a and is denoted by n(C; a). A cycle y 

(a finite sum of oriented closed curves) in an 
open set D is said to be homologous to zero 
in D if n(y; a) = 0 for a11 points a in the com- 

plement of D. The general form of Cauchy’s 
integral theorem is stated as follows. If ,f is 
holomorphic in D, then J,f(z)dz=O for every 
cycle y which is homologous to zero in D (E. 

Artin). From this we have the general form of 
Cauchy’s integral formula: if f is holomorphic 

in a domain D, then 

n(y;z).f(z)=& gdz, 
s 

~ED-Y, 
Y 

for every cycle y which is homologous to zero 

in D. 
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C. Zero Points 

Let f(z) be a holomorphic function not identi- 
cally equal to zero. If f(a) = 0, we cal1 a a zero 
point off: Every zero point off is an isolated 
point, and there exists a unique positive inte- 
ger k and a function h holomorphic at a such 

that 

.f(z) = (z - 4ks(4> Cl(4 + 0. (4) 

We cal1 k the order of the zero point a and a 

a zero point of the kth order. The equality (4) 
implies that the +Taylor series of ,f(z) at a 
begins with the term ck(z - a)k. Suppose that a 
is a zero point of ,f(z) - y of the kth order; then 
we cal1 a a y-point of the kth order. 

For a function f(z) defined in a neighbor- 
hood of the +Point at infïnity, we set ,f( l/w) = 

g(w) (f(co)=g(O)) and cal1 f holomorphic at 
10 if y is holomorphic at 0; ,f is said to have a 
zero of order k at CO if g has a zero of order k 

at 0. If two functions f and g are holomorphic 
in D and f(z) =g(z) on a subset E that has an 
taccumulation point in D, then fis identically 

equal to g in D (theorem of identity or unique- 
ness theorem) since the zeros of holomorphic 
functions must be isolated. 

D. Isolated Singularities 

Let ,f(z) be holomorphic in an annulus D 

={zIR,<~z-u~<R~,O~R,<R~~+~}. 
Then f(z) is expanded in the tlaurent series 

f(z)= ” C,(Z-a)“. (5) 
>1=-a> 

This is called the Laurent expansion off 
about a. The coefficients cn are given by c, = 
(l/2ni)Scf(i)di/(i--a)“” with C={zIIz-ai= 

r}, R 1 < r < R,. In particular, if f(z) is holo- 
morphicinD={zIO<lz-al<R}(or,ifu= 
co,inD={z(R<IzI<+~})butnotholomor- 

phic in DU {a}, we cal1 a an isolated singular 
point (or isolated singularity) off: By utilizing 
the tlocal canonical parameter t = z-u (or 

t = l/z for a = CU), the Laurent expansion (5) 
of ,f is then written as f(z) = x;d 33 c, t” + 
C&: c, t”. The second sum is an ordinary 
power series, called the holomorphic part of 
f(z). The fïrst sum is a power series of l/t with 
no constant term, called the singular part of 
f(z) at a or the principal part of the singularity 
(or of the Laurent expansion at a). 

If we have lim 1-0 tf(z) = 0, the Laurent 
expansion (5) of f(z) lacks its singular part, 
and the limit of f(z) exists as t+O (z-a) and is 

equal to c,,. If we set S(a) = cg, then the func- 
tion f(z) is holomorphic in DU {a}. In this 

case, the point a is called a removahle singular- 
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ity. If f(z) is bounded in a neighborhood of a 
singularity a, then a is removable (Riemann% 
theorem). Usually, we assume that the remov- 
able singularities of a function have already 
been removed in this way. 

When the singular part of S(z) at a exists 
and consists of a fïnite number of terms, the 

point a is called a pale; wheri it consists of an 
infinite number of terms, the point is called. 
an essential singularity. If a is a pale, f(z) is 

represented by the Laurent series XE -k c, t” 
(cmk#O) and J’“(z)+co as z-u. In this case, the 
index k is called the order of the pole a. Then a 
relation such as (4) holds, where the index k is 
replaced by -k. Hence the point a is some- 
times called a zero point of the - kth order. If a 
is an essential singularity, then for an arbitrary 

number c there exists a sequence z, converging 
to a such that lim,,, f(zJ = c (the Casorati- 

Weierstrass theorem or simply Weierstrass’s 
theorem). Related to Weierstrass’s theorem, 
we have +Picard’s theorem, which gives a de- 

tailed description of the behavior of a function 
around its singularities. 

E. Residues 

Let a( # CO) be an isolated singularity of f(z). 
Then the coefficient cm, of (z - a)-’ in the 
Laurent expansion (5) of f(z) is called the 

residue of ,f(z) at a and is denoted by Res[f],, 
R(U;~), or R(u) if we need not indicate $ We 

have 

R(U)=~-, =A 
I 

f(i)& 
l<-*l=, 

where the integral is taken in the positive 
direction along a path for 0 < r < R. If f (z) is 
holomorphic at z = a, then R(u) = 0. If ,jjz) has 
a pole of the first order at a, 

The residue at the point at infïnity is defïned to 

be -a-,, where a-, is the coefficient of l/z of 
the Laurent expansion of f(z) at 03 :f(z) = 

Cz ~ a,z”, and we have 

Thus the notion of the residue of f(z) is actu- 
ally related to the differential form f(z) dz and 
not to f(z) itself. 

From the first formula in this section and 

the formula for - a m1, the residue theorem 
follows (Cauchy, 1825): Let C be a rectitï- 
able Jordan curve in the complex plane. Let 
a,, , a, be a finite number of points inside C, 

and let D be a domain containing C and its 
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interior. If f(z) is a function holomorphic in D 

-{a r,...,a,},wehave 

Furthermore, if f(z) is holomorphic in the 
extended complex plane (including the point at 
intïnity) except for a finite number of poles, the 
sum of a11 residues is equal to sera. 

F. Calculus of Residues 

The calculus of residues is a tïeld of calculus 
based on application of the notion of residues. 
For example, we have methods for the calcu- 
lation of detïnite integrals. Actually, one of the 

reasons why Cauchy studied the theory of 
complex functions was that he believed that 
the theory would provide a unified method of 

computing detïnite integrals. For example, if 
q(z) is a rational function without poles on 
the real axis and with a zero point at infinity 
whose order is at least 2, then we have 

s 
= <p(x)dx=2?7i c R(u; q(z)), (6) 
--c lItlU> 

s 

cc 
eiX<p(x)dx=2ni 1 R(a;e”<p(z)). (7) 

-Ix: hLZ>O 

Here the sums are taken over a11 the poles in 
the Upper half-plane. Formula (7) is valid also 
for a rational function <p(z) with a simple zero 

at infïnity. If <p(z) has simple poles at ak (k= 
1, , n) on the real axis, then we take the 

principal values of the integrals at those poles 
and add niR(a,) (k = 1, . . , n) to the terms on 
the right-hand side of (6) and (7). Sometimes 
we use the residue theorem to obtain the value 
of the sum of a series (e.g., the +Gaussian sum) 
by expressing it as an integral. 

Let ,f(z) be a single-valued function that is 

tmeromorphic and not identically equal to 
zero in a domain D, and let <p(z) be a function 
holomorphic in D. Draw a rectifiable Jordan 
curve C in D such that the interior of C is 
contained in D and f(z) has neither zeros nor 

poles on C. Let mi, . . . . cc,and&,...,/3,bethe 
zeros and poles inside C, respectively (where 
each of them is repeated as often as its order). 

Then we have 

If <p(z)= 1, we get 

& .dargf(z)=N-P. 
s L 

This is called the argument principle. Next, 

let f(z) be a function meromorphic for IzI < 
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R< +io,f(O)#O, #CO, and set <p(z)=logz. 
Take C as a closed curve consisting of the 
boundary of an annulus 0 < p < IzI <r < R 

(where p is sufficiently small) and two sides of 
a suitable +crosscut joining a point of IzI =p 
and 1 zI = r. Then we obtain Jensen’s formula: 

qhrh:::::“l 
=logIf(O)l +(N-P)logr 

1 

-4 

2n 

27L 0 
log If(reiv)l dt,h. 

The argument principle cari be utilized to 

prove Rouché’s theorem: Let f(z) and g(z) be 
functions holomorphic in a domain D that 
contains a rectifiable Jordan curve C and its 

interior. Suppose that f(z) + ng(z) never van- 
ishes on C for any A with 0 <Â Q 1. Then the 
number of zeros of f(z) in the interior of C is 

equal to that off(z)+g(z). If If(z)1 > Ig(z)l on C 
or argS(z)-argg(z)#(2n+ 1)~ (n is an integer), 
the hypothesis of Rouché’s theorem is satisfied. 
This theorem is useful in proving the existence 
of a zero of a complex function (for example, a 
polynomial) and in finding its position. 

G. Analytic Continuations 

Let f(z) be a holomorphic function in a do- 
main D of the complex plane C and D* be a 
domain containing D as a proper subset. If 
there exists a function F(z) holomorphic in D* 

that coincides with f(z) in D, then F(z) is called 
an analytic continuation (or analytic prolonga- 
tion) of ,f(z) from D to D*. By the theorem of 
identity an analytic continuation of F(z) is 

uniquely determined if it exists. 
The function f,(z) detïned by the power 

series P(z; a) = Es, a,(z-a)” with the radius 
of convergence ri > 0 is holomorphic in the 
domain D, : Iz - a1 <ri, and at a point b of D, 

it cari be expanded into a power series P(z; b) 

= XE, b,,(z - b)” with the radius of conver- 
gencer,(>r,-lb-al).Ifr,>r,-lb-al,the 
domain D, : Iz - hi< r2 is not entirely contained 
in D,. Let f;(z) be the function defined in D, 

by P(z; b). Then the function F(z) that is equal 
to f;(z) in D, and to ,fz(z) in D, is an analytic 
continuation of fi(z) from D, to D, U D, (a 
direct analytic continuation by power series). 

We have the following classical theorems 

about analytic continuations: 
Let D, and D, be two disjoint domains, and 

suppose that their respective boundaries Ci 
and C, are trectifiable simple closed curves 

and that the intersection of C, and C, contains 
an open arc r. If two holomorphic functions 
f,(z), f*(z) defined in D, and D,, respectively, 

have finite common +boundary values at every 
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point of I, then there exists an analytic con- 
tinuation F(z) of fi(z) and f2(z) to D, U r U D, 

(Painlevé’s theorem). We sometimes cal1 fi(z) 

a continuation of fi(z) beyond I. If I is not 
rectifiable, the continuation beyond I does not 

exist, in general. 
Let f(z) be holomorphic in a tJordan do- 

main D lying in the half-plane on one side of 

the real axis and containing an open interval 1 
of the real axis in its boundary. If ,f(z) has 
finite real boundary values at every point of 1, 
then it cari be continued analytically beyond 1 
to the other side of the real axis; there the 
continued function is given by f(z) (Schwarz’s 

principle of reflection). This theorem cari be 
generalized to the case where the real interval 
is replaced by an tanalytic curve. 

A harmonie continuation of rharmonic func- 

tions is delïned analogously to analytic con- 
tinuation. Let D be a Jordan domain lying in 
the half-plane on one side of the real axis and 

having an open interval 1 on the real axis as a 
part of its boundary. If u(z) is harmonie in D 
and has the boundary value 0 at every point 
of 1, then u(z) has a harmonie continuation 
beyond 1. 

For other properties of holomorphic func- 
tions - 43 Bounded Functions; 429 Tran- 

scendental Entire Functions. 

H. Analytic Functions 

A real-valued function f(t) of a real variable t 
is said to be analytic at t = t, if it cari be repre- 
sented by a tpower series in t-t, in a neigh- 
borhood of t, in R. If f(t) is delïned on an 
open set of R at every point of which it is 

analytic, then f(t) is called an analytic function, 
or, more precisely, a real analytic function. 

Analogously, a complex-valued function f(z) 
of a complex variable z detïned on a tdomain 
D of the complex plane C is said to be analytic 
at z = z0 (ED) if it cari be represented by a 
power series in z -zO in a neighborhood of z0 
in C, and f(z) is an analytic function in D if it is 

analytic at every point of D. In the remainder 
of this article, we are concerned with analytic 
functions in this sense. TO distinguish them 
from the real case, they are also called complex 
analytic functions. A complex analytic function 
f(z) defined on D is tdifferentiable in D; there- 

fore it is tholomorphic in D. The converse is 
also true. Thus the term “analytic function” is 
synonymous with “holomorphic function” 
insofar as it concerns a complex function (i.e., 
a complex-valued function of a complex vari- 

able) on a domain, but in the theory of func- 

tions it takes on an additional meaning that is 
explained in the following section. 
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1. Analytic Functions in the Sense of 
Weierstrass 

Let a be a point of the tz-sphere and t the 
tlocal canonical parameter at a; i.e., t = z - a if 

afco and t=z- l if a = co. If a power series 
P(~;n)=C~~c,t” has a positive radius r, of 
convergence, we cal1 P(z; a) a function element 

with tenter a on the z-sphere, after K. Weier- 
strass. P(z;a)=Cg,~~(z-a)” if a# 03, and 
P(z;u)=Z~,c,z~” if a= CO. These represent a 
holomorphic function in lz - a/ < r, or in ra’ < 
1~1 $ CO, respectively. If h is a point inside the 

circle of convergence of the function element 
P(z; a), by the fTaylor expansion of P(z; a) at 
z = b, we obtain the power series P(z; b) in 
z-b, which is a direct analytic continuation 

of P(z; a). Let a and b be two points on the 
z-sphere, and let C:z=z(s) (O<s< l,z(O)= 
a, z( 1) = b) be a curve joining a and b. We say 
that P(z; a) is analytically continuahle along 

C and that we obtain P(z; b) at the end point b 
by the analytic continuation of P(z; a) along C 
if the following two conditions are satistïed: (i) 
TO every s E [0, l] there corresponds a function 
element P(z;z(s)) with tenter z(s); (ii) for every 
s0 E [0, 11, we cari take a suitable subarc z = 
z(s) (1 s - s0 1 <E, E > 0) of C contained inside 

the circle of convergence of P(z; z(sJ) such 
that every function element P(z; z(s)) with 
1 s -s,, 1 d E is a direct analytic continuation of 
P(z; z(s,,)). When P(z; a) and the curve C are 
given, the analytic continuation along C is 

uniquely determined (uniqueness theorem of 
the analytic continuation). 

Given a function element P(z; a) with tenter 
a, the set of a11 function elements obtained by 
every possible analytic continuation along 
every curve starting from a is called an ana- 
lytic function in the sense of Weierstrass deter- 
mined by P(z; a). In this defmition, we cari 
restrict the curves to polygonal lines. An ana- 
lytic function in this sense is completely deter- 
mined by a single arbitrary function element 

belonging to it, SO two analytic functions are 
identically equal if they have a common func- 
tion element. 

A tgerm of a holomorphic function is iden- 
tical to a function element, and the set of a11 
germs has the natural structure of a tsheaf d. 
In the terminology of sheaves, an analytic 
function is a connected component of 8, and 
an analytic continuation along a curve C is a 
continuous curve I in 0 whose projection is C. 

J. Values and Branches of Analytic Functions 

The value of an analytic function at a point b 
is, by definition, the value at b of its function 
elements with tenter b (whose existence is 
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assumed; there may be several such elements). 
An analytic function is, in general, a multiple- 

valued function because analytic continua- 
tions along different curves with the same end 

points may lead to different function elements. 
For a given analytic function f(z), if the max- 
imal number of its function elements with the 
same tenter is n, we say it is n-valued, and if 
n > 2 we say it is multiple-valued (or many- 
valued). The number of function elements of 
f(z) with the same tenter is at most tcountably 
infinite, SO the value of f(z) at a point is a 
countable set (Poincaré-Volterra theorem). By 
introducing a tRiemann surface instead of the 
complex plane as the domain of definition of 

an analytic function, we cari regard multiple- 
valued analytic functions as single-valued 

functions defmed on a suitable Riemann sur- 
. face (- 367 Riemann Surfaces). 

Let f(z) be an analytic function and P(z; a) be 
a function element belonging to ,f(z), where a is 
a point of a domain D. The set of all function 

elements obtained from P(z; a) by every pos- 
sible analytic continuation along all curves in 
D is called a hranch of f(z) in D determined by 
P(z; a). When D coincides with the whole com- 
plex plane, the branch of f(z) in D is the func- 
tion ,f(z) itself. A function holomorphic in a 

domain D cari be expanded in a power series 
with any point of D as its tenter, and the set of 
these power series (function elements) consti- 
tutes a branch of an analytic function. 

If analytic continuations of a function ele- 
ment are possible along all curves in D, then 
the analytic continuations along two tho- 

motopic curves in D lead to the same result 
(monodromy theorem). In particular, if D is 
tsimply connected and if analytic continua- 
tions of P(z; a) are possible along a11 curves in 
D starting from a, then the branch of f(z) in D 

determined by P(z; a) is single-valued. 

K. Invariance Theorem of Analytic Relations 

Suppose the following four conditions hold: (1) 
F(z, w) is a holomorphic function of two vari- 
ables for ZEA, and WEA,, where A,, A2 are 
domains in the complex plane. (2) A curve C: 

z=z(s)(O<s< l,z(O)=a,z(l)=b) and two sets 
of function elements P(z; z(s)) and Q(z; z(s)) 
delïned for every s (O$s < 1) are given. (3) 

P(z; a) and Q(z; a) cari be continued analyti- 
cally along C using P(z; z(s)) and Q(z; z(s)), 
respectively. (4) There exists a positive number 
R(s) for every s (O<s< 1) such that, if [z-z(s)1 
<R(s), the values of P(z; z(s)) and Q(z; z(s)) 
belong to A, and AZ, respectively. Under these 

conditions, if F(P(z; a), Q(z; a)) = 0 holds for 

Iz-al<R(O), then F(P(z;b), Q(z; b))=O holds 
for Iz-b(<R(l). In other words, an analytic 
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relation between function elements belonging 
to two analytic functions that holds in a neigh- 
borhood of the starting point of a curve C is 

conserved for function elements with tenter at 
the terminal point b of C. This is called the 
invariance theorem of analytic relations. The 

same statement is valid for relations among 
more than two analytic functions and their 

derivatives (differential equations). 

L. Inverse Functions 

Suppose that P(z; a) (a # m) belongs to an 
analytic function f(z) and P’(u; a) #O. We 
consider the inverse function of P(z; a) in a 

neighborhood of a and let !R(w; c() (a = P(u; a)) 
be its expansion as the power series in w  - c(. 
We call B(w; a) the inverse function element (or 
simply inverse element) of P(z; a) and the ana- 
lytic function determined by ‘B(w; a) the inverse 
analytic function (or simply inverse function) of 

f(z). The inverse function is completely deter- 
mined by S(z) and is independent of the choice 

of P(z; a). For example, analytic functions rep- 
resented by & or log w  are defined as the 
inverse function of z2 or e’, respectively. 

M. Singularities of Analytic Functions 

Hereafter, when we speak of a curve C: z = z(s) 

(0 <s < l), it is always supposed that C is a 
curve in the complex plane starting at a and 

ending at w. Let K, be the open disk Iz - OI< 
r; we denote by C, the connected component 
of C n K, that contains w. If analytic continu- 
ations of P(z; a) are possible along any subarc 
of C with a terminal point arbitrarily near w  

but impossible along the whole C, we say that 
the analytic continuation of P(z; a) along C 
defines a singularity R of the coordinate w, and 
that R lies over w. For example, if P(z; a) has 
a tïnite radius of convergence, for a suitable 
point w  on the circle of convergence the ana- 
lytic continuation of P(z; a) along the radius uw 
defmes a singularity over w. Now take a point 
z, on C, and denote by F,(z) the branch of an 
analytic function determined by P(z; z,) in K,. 
Let fi be a singularity determined by C and 

P(z; a), and suppose that we are given another 
singularity R* over w  determined by C* and 
P*(z; a*). If they delïne the same branch F,(z) 

for every K,, by delïnition, we put R =R*. 
Thus F,(z) defines an tunramified covering 
surface W, of K, - {w}, and it is single-valued 
on W,. 

Singularities are classified according to the 
geometric structure of W, and the value distri- 
bution of F,(z) on it. First, if W, has no trela- 

tive boundary over 0 < Iz - WI <Y for a suitable 
r, then s2 is called an isolated singularity of the 
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analytic function. In this case, the number k of 
points of W, lying over a point z in K,- {w} 
is constant. If k = CO, W, has a tlogarithmic 
branch point over w, and R is called a loga- 
rithmic singularity. If k < CO, F,(z) cari be repre- 

sented as a single-valued holomorphic func- 
tioninO<Itl<rl’k b y putting z = w  + tk. In this 
case, if we introduce an additional point P0 

corresponding to z = w, then W, U {P,} has 
only an talgebraic branch point over w. Now, 

taking into account the value of w  = F,(z), we 
cal1 R an algebraic singularity if lim w  exists. In 

this case, we have F,(z)= Cz,c,t”, and if we 
admit analytic continuations in the wider 
sense (- Section 0), P(z; a) is analytically con- 
tinuable along the whole C. 

N. The Natural Boundary 

Given a domain D and an analytic function 

f(z) holomorphic in D, if a11 boundary points 
of D are singularities of f(z) and f(z) is not 
continuable to the exterior of D, the boundary 
of D is called the natural boundary of f(z). This 

phenomenon was first discovered for telliptic 
modular functions. Many results are known 
about power series for which the circle of 
convergence is the natural boundary (- 339 

Power Series). For any given domain D in C, 
there exists an analytic function whose natural 

boundary is the boundary of D. The original 
proof of this fact, given by Weierstrass, con- 
tained a defect that was corrected by J. Besse. 

0. Analytic Continuation in the Wider Sense 

Let two tlaurent series (with parameter t) z = 
P(t)=~~ku,,t” and w=Q(t)=CElbnt”(k 

and 1 are integers, and ak h, # 0) converge in 

0~ Itl <r, and let (P(t,),Q(t,))f(P(ta),Q(tz)) 
if t, ft,; then we say that the pair (P, Q) de- 

fines a function element in the wider sense. If a 
changeofparameterz=r,t+r,t2+...(r1# 
0 and the radius of convergence > 0) gives 
P(t) = n(z), Q(t)= K(7), we say that (n, K) and 
(P, Q) deiïne the same function element. By a 
suitable choice of parameter, any function 
element cari be given in the form z = tk + a (or 
a = t mk), w  = Xz, b,,t”, and the elimination of t 
gives the representation of w  as a tPuiseux 
series of z. SO if k = 1 and 12 0, it reduces to a 
holomorphic function element. When k = 1, 

with 1< 0 not excluded, the above element is 
called a rational element. If k > 1 it is called a 

ramified element, and if l< 0 it is called a polar 
element. 

If P’, Q’ are the direct analytic continuations 

of P and Q at t, (0 < ( t, I< r), i.e., their Taylor 
expansions at t,, the function element (P’, Q’) is 
called a direct analytic continuation of (P, Q), 
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which is also considered its own direct analytic 
continuation. For a fïxed r, the set of a11 direct 
continuations of (P, Q) thus obtained is called 
an analytic neighborhood of (P, Q), and these 
neighborhoods defme a topology in the set of 

a11 function elements. A curve in this topolog- 
ical space is called an analytic continuation in 
the wider sense, and a tconnected component 

of this space is called an analytic function in 
the wider sense. An analytic function in the 
wider sense is a set of function elements in the 
wider sense, but it cari also be regarded as a 
function w  =,f(z) (with an independent variable 
z and a dependent variable w) deiïned by each 
function element p(z, w): z = P(t), w  = Q(t). 
An analytic continuation in the wider sense, 

P(S) = Pk w  4; 

z = z(s) + tk@‘, w= f c,(s)t”, O<s< 1, 
“=,(.Y, 

is sometimes called an analytic continuation 
along the curve C: z = z(s) (0 <s < 1) in the 

complex plane. If a11 p(s) are holomorphic 
function elements, this coincides with the 
analytic continuation along C in the original 
sense, but if this is not the case, p(0) and C do 

not necessarily determine p( 1) uniquely. Actu- 
ally, an analytic function in the wider sense is 
just an analytic function in the original sense 

with at most a countable number of ramified 
or polar elements added. 

P. Singularities of Analytic Functions in the 
Wider Sense 

Suppose the following three conditions hold: 
(1) For every point on C except w, that is, for 
z(s) (0 <s < l), a function element in the wider 
sense p(z, w; s) is given. (2) For every Â (< l), 

p(z, w; s) (0 d s < /2) constitutes an analytic con- 
tinuation in the wider sense. (3) Tt is impossible 

to iïnd a function element p(z, w; 1) such that 
p(z, w; s) (0 d s d 1) is an analytic continuation 
in the wider sense. When these three condi- 
tions are satisfied, we say that p(z, w; s) (0 <s < 
1) defmes a transcendental singularity R with 
w  as its coordinate. The method of determin- 
ing a branch w  = F,(z) in an open disk with 
tenter w  is completely parallel to the case of 
holomorphic analytic functions. Because of the 
appearance of function elements in the wider 

sense in F,(z), the covering surface W, of K, 
defïned by F..(z) may have algebraic branch 
points. If W, has a logarithmic branch point 

over w, R is called a logarithmic singularity. If 
W, has no point over o for suitable r, !2 is 

called a direct transcendental singularity; other- 
wise, it is called an indirect transcendental 
singularity. The logarithmic singularities are 
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direct singularities. The inverse function of z = 

w  sin w  has a direct singularity over z = CO 
that is not logarithmic, and the inverse func- 
tion of z = (sin w)/w has an indirect singularity 
over z = 0. Taking into account the value of 
w  = F,(z), if the tcluster set of F, at Q: S, = 
n,,,m consists of only one point, it is an 
ordinary singularity; if not, it is an essential 

singularity. 

Q. History 

A function of a complex variable is monogenic 
in the sense of A. L. Cauchy if it is differenti- 

able at every point of its domain of definition. 
It was B. Riemann who succeeded in develop- 
ing Cauchy’s concept. Riemann considered an 
analytic function as a function defined on a 
tRiemann surface, that is, a 1 -dimensional 
complex analytic manifold. On the other hand, 
Weierstrass constructed the theory of analytic 

functions starting from power series. When we 
speak of single-valued functions detïned in a 
domain of the complex plane, the monogenic 

functions of Cauchy and the analytic functions 
of Weierstrass are identical. Although the 
analytic functions are very special functions, 
the study of complex analytic functions is 

usually called the theory of functions of a 
complex variable, or simply the theory of 
functions. 

By considering the following point set C, 
which is more general than a domain, E. Bore1 
showed that a monogenic function on C is not 
necessarily holomorphic in the ordinary sense. 

Take a countable dense subset in a subdomain 
LY of a domain D and a double sequence of 
positive numbers {rn”)}. Put Sihf={zllz-z,,I< 
r-Ah)} and Cch) = D - IJF=~ SAhI. By a suitable 
choice of rAh’, we cari suppose that the Cch) are 

connected and monotone increasing with 
respect to h. Put C = u& Cch’. A function 
defïned in C is by defïnition monogenic if it is 
differentiable in Cch) for every h. For such a 
monogenic function, Cauchy’s tintegral for- 
mula in a generalized form holds, and the 

function is infinitely differentiable. If f(z) and 
g(z) are monogenic in C and coincide on a 

curve in C, then they are identical in C. Let D 

be the set {zlO<Rez< l,O<Imz<l} and {z,} 
be a11 rational points in D (z, = (p + iq)/m). For 
a natural number h, we defme Cch’ to be the set 
D minus the union of open disks with radius 
exp( - em2)/h and tenter (p + iq)/m. The 
function 

is monogenic in C in the above-mentioned 
sense, but not holomorphic in C. The study of 
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these functions developed into the theory of 

tquasi-analytic functions. 
The concept of tanalytic functions of several 

complex variables cari also be defmed analo- 
gously to the case of one variable. Then non- 
uniformizable singularities appear that lead to 

a generalization of the concept of tmanifolds 
(- 23 Analytic Spaces). 
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Homogeneous Spaces 

A. General Remarks 

Let M be a tdifferentiable manifold. If a +Lie 
group G acts ttransitively on M as a +Lie 
transformation group, the manifold M is said 
to be a homogeneous space having G as its 

transformation group (- 43 1 Transformation 
Groups). The tstabilizer (isotropy subgroup) 
H, of G at a point x of M is a closed subgroup 

of G, and a one-to-one correspondence be- 
tween G/H, and M preserving the action of G 
is defined by associating the element sH, (SE G) 
of G/H, with the point s(x) of M. This corre- 

spondence is a tdiffeomorphism between the 
manifold M and the quotient manifold G/H, if 

the number of connected components of G is 
at most countable. Under this condition we 
may therefore identify a homogeneous space 

M with the quotient manifold G/H of a Lie 
group G by a closed Lie subgroup H (- 249 
Lie Groups). However, H is not uniquely 

determined by M, and it may be replaced by 
Hstxj = sH,sF’(s E G). Each element h of the 

stabilizer H, at a point x induces a linear 
transformation fi on the ttangent space V’ of 

M at the point x. The set ii, of a11 E is called 

the linear isotropy group at the point x. 
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If we represent the homogeneous space M 
as GIH, we obtain the canonical map n:s-+sH 
of G onto M, which we cal1 the projection of G 

onto M. Let g be the +Lie algebra of G, and h 
the Lie subalgebra corresponding to the closed 
subgroup H. When we identify g with the 

tangent space at the identity element e of G 
and h with its subspace, the projection rc in- 
duces a linear isomorphism of g/b with the 
tangent space VX of M at the point x = n(e). 
The tadjoint representation of G gives rise to a 
linear representation h+Ad(h) modulo b of the 
group H on the linear space g/b. Through the 
linear isomorphism between g/h and the tan- 
gent space VX detïned by the projection rc, this 
representation of H is equivalent to the one 

which associates with h the linear transforma- 
tion fi delïned by h on the tangent space Vx. 

The homogeneous space G/H is said to be 
reductive if there exists a linear subspace m of 
g such that g = h + m (direct sum as linear 
spaces) and (Ad H)m c m. H is said to be re- 
ductive in g if the representation h+Ad(h) of 
H in g is tcompletely reducible. 

If a ttensor Iïeld P on the homogeneous 
space M = G/H is G-invariant (namely, invar- 
iant under the transformations delïned by the 
elements of G), then the value of P at the point 

x = n(e) is a ttensor over the tangent space Vx 
at x which is invariant under the linear iso- 
tropy group fi. Conversely, such a tensor 
over Vx is uniquely extended to a G-invariant 
tensor Iïeld on M. If G/H is reductive, then G- 
invariant tensor tïelds over M are in one-to- 
one correspondence with fi-invariant tensors 
over m. For instance, if H is compact, then H 
is reductive in g and an fi-invariant positive 
definite quadratic form on m delïnes a G- 

invariant +Riemannian metric on G/H. 
We say that the homogeneous space M = 

G/H is a Riemannian (linearly connected, 
complex Hermitian, Kahler) homogeneous 

space if there exists on M a G-invariant Rie- 
mannian metric (tlinear connection, +Her- 
mitian metric, +Kahler metric). Concerning 

such homogeneous spaces, there are various 
results on their structures and geometric prop- 
erties [l-5] (- 412 Symmetric Riemannian 
Spaces and Real Forms; 427 Topology of Lie 
Groups and Homogeneous Spaces). 

B. Examples 

Stiefel Manifold. A k-frame (1 < k < n) in a real 
n-dimensional Euclidean vector space R” is an 
ordered system consisting of k linearly inde- 
pendent vectors. If we regard the real tgen- 
eral linear group of degree n, GL(n, R), as the 

regular linear transformation group of R”, 
GL(n,R) acts transitively on the set V$(R) of 



199 Ref. 
Homogeneous Spaces 

a11 k-frames in R”. Therefore, if H denotes the 
subgroup of GL(n, R) consisting of the ele- 

ments which leave tïxed a given k-frame ~0, 
we may identify the set V& and the quotient 
set GL(n, R)/H. Transferring the differenti- 
able manifold structure of GL(n, R)/H to V.:, 
through this identification, we see that L$(R) 

= GL(n, R)/H becomes a homogeneous space 
(the differentiable manifold structure of V.:, is 

defined independently of the choice of vi). 

The space V”:,(R) is called the (real) Stiefel 
manifold of k-frames in R”. 

A k-frame is called an orthogonal k-frame 
if the vectors belonging to the frame are of 
length 1 and are orthogonal to each other. The 
set V+(R) of a11 orthogonal k-frames is a sub- 
manifold of V&(R). The +Orthogonal group 
O(n) acts transitively on V&(R), which is a 
homogeneous space represented as V,,,(R) = 
O(n)/Zk x O(n-k). The manifold V,,,(R) is 
actually the (n - 1)-dimensional sphere. We cal1 

I&(R) the (real) Stiefel manifold of orthogonal 
k-frames (or simply Stiefel manifold). The 

complex Stiefel manifold V,,,(C) = U(n)/Zk x 

U(n-k) is defined analogously. 

Grassmann Manifold. Let M,,,(R) (1 <k < n) 

be the set of a11 k-dimensional linear sub- 
spaces of R”. The group O(n) acts transitively 
on M,,,(R), SO that we may put M,.,(R)= 
O(n)/O(k) x O(n-k). Here O(k) and O(n-k) 

are identified with the subgroups of O(n) con- 

sisting of all elements leaving fixed every point 
of a fixed (n - k)-dimensional subspace and of 
its orthogonal complement, respectively. In 

this way, M,,,(R) is a homogeneous space, 
which we cal1 the (real) Grassmann manifold. 

The tproper orthogonal group SO(n) acts 
transitively on M,,,(R), and M,,,(R) may be 
represented as a homogeneous space having 
SO(n) as its transformation group. It follows 
that M,,,(R) is connected. The homogeneous 
space n,,,(R)=SO(n)/SO(k) x So(n-k) is 
called the Grassmann manifold formed by 

oriented subspaces. Mn, i(R) and fin, i (R) may 
be identified with the (n - 1)-dimensional real 

projective space and the (n - 1)-dimensional 
sphere, respectively. 

Applying the above process for real Grass- 
mann manifolds to the complex Euclidean 
vector space C” instead of R”, we see that the 
set Mn,k(C) of ail k-dimensional linear sub- 
spaces in C” is a homogeneous space with 
the tunitary group U(n) of degree n as its 
transformation group, and we represent it as 
U(n)/U(k) x U(n-k). This space is called the 

complex Grassmann manifold. The mani- 
fold Mn,k(C) is a simply connected complex 

manifold and has a cellular decomposition 
as a +CW complex whose cells are Schubert 

varieties (- 56 Characteristic Classes E). On 
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the other hand, Mn,k(C) may be regarded as 
the set of a11 (k - 1)-dimensional linear sub- 
spaces in the (n - 1)-dimensional complex 

projective space. Then, by using the +Plücker 
coordinates of these subspaces, Mn,k(C) cari be 
realized as an talgebraic variety without sin- 
gularity in the projective space of dimension 

n 

0 k 
- 1 (- 90 Coordinates B). Sometimes 

M,,,(R) is denoted by G,,,(R) or G(n, k). In the 

same way, the homogeneous space represented 
as Sp(n)/Sp(k) x Sp(n - k) is called the tquater- 
nion Grassmann manifold and is denoted by 

~AH). 

Flag Manifold. Let k,, , k, be a sequence of 
integers such that n > k, > . > k,> 0, and let 

F(k i, . . . , k,) be the set of a11 monotone se- 
quences Vi 3. I> V,, where y(i= 1, . , I) is a 

k,-dimensional linear subspace in R”. For the 
two sequences V, 3 . .T V, and V,’ 3 . .I V,’ 

belonging to F(k,, , k,), there exists an ele- 
ment SE GL(n, R) such that s(v) = y’ (i= 
1,. _. , Y). Therefore F(k,, , k,) is a homogene- 
ous space with GL(n, R) as its transforma- 

tion group, and is called the proper flag mani- 
fold. Since the unitary group U(n) of degree n 

acts transitively on it, F(k,, , k,) is also re- 
garded as a homogeneous space admitting 
U(n) as its transformation group. In this case, 
putting F(k,, . . . , k,)= U(n)/H, H is isomorphic 
to the direct product U(k, - k2) x U(k, - k3) 

x _. x LJ(k,). In particular, when r = n - 1, 
ki = n - i, the homogeneous space is the quo- 

tient space of the compact Lie group U(n) by a 
maximal ttorus T. In general, the quotient 
space GIT of a compact connected Lie group 
G by a maximal torus of G is called a flag 
manifold. If G acts effectively on GIT, G is a 
tsemisimple compact Lie group. The complex 
Lie group GC is a Lie transformation group of 
tbiregular transformations which acts transi- 
tively on the flag manifold G/T, a simply con- 
nected Kahler homogeneous space. Here GC is 

a complex Lie group having G as a maximal 
compact subgroup. If B is a maximal tsolvable 

Lie subgroup (+Bore1 subgroup) of G”, G/T is 
represented as GC/B. 
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A. General Remarks 

Homological algebra is a new branch of math- 
ematics that developed rapidly after World 
War II. The introduction of the theory was 

motivated by the observation that some alge- 
brait ideas and mechanisms that arose in 
the development of talgebraic topology, in 
particular, thomology theory, cari provide 
powerful tools for treating from a uniiïed 
viewpoint various problems in algebra that 

previously were treated differently. One of its 
characteristic features lies in emphasizing, 
from the‘standpoint of categories and functors 
(- 52 Categories and Functors), the functional 
structure of the abjects to be investigated 
rather than their inner structure. Thus the 
theory of derived functors constitutes the main 
theme of homological algebra. This new 
theory turned out to have wide applications in 
other areas of mathematics, and the philos- 
ophy embodied in the theory has been influen- 

tial in the general progress of mathematics. 
For general references - [2,5,6]; for +sheaf 

cohomology - [3,4,8]. 

B. Graded Modules and Graded Objects 

Let A be a +ring with unity element and X be a 
+unitary A-module. If we are given a sequence 
of A-submodules X, (nez) such that X = 
CneZXn (tdirect sum), we cal1 X a graded 
A-module and X, the component of degree n 
of X. Each element x of a graded A-module 

X has a unique representation x = CntZ x, 
(x, E X,); we cal1 x, the component of degree n 

of x. An A-submodule Y of a graded A-module 
X is called bomogeneous if x E Y implies x, E Y 
(n E Z). In this case, Y = C, Y, and the quotient 
module X/ Y = C, X,/ Y, are graded A-modules, 
where Y, = Yn X,. Let X=x,X, and Y= x, Y. 
be graded A-modules and f: X+ Y be an A- 

homomorphism. If there is a fïxed integer p 

such that f (X,) c Y,+, for any ni Z, ,f is called 
an A-bomomorpbism of degree p. In this case, 
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Ker f = C, Ker,f, and Imf= C,, Im f,-, are 
homogeneous A-submodules of X and Y, 

respectively, where f,: X,-> Y,,, is the restric- 
tion off on X,. 

Sometimes, by a graded module we mean 
only a sequence {X,,} of A-modules X,,, with- 
out considering the direct sum C, X,,. Simi- 
larly, we have the notion of a graded abject 
{C,} in any category %?. 

C. Chain Complexes and Homology Modules 

By a chain complex (X, a) over A we mean a 

graded A-module X=x,X, together with an 
A-homomorphism d: X+X of degree - 1 such 
that a o o? = 0. Hence a chain complex over A is 

completely determined by a sequence 

p,+, F. 
-x,+1 --+x”+x,~,~... 

of A-modules and A-homomorphisms such 
that û,o&+, = 0 for a11 n. We cal1 3 the bound- 

ary operator. For a chain complex (X, a), we 
Write Ker a = Z(X), Ker 8, = Z,(X), Im a = B(X), 
Ima n+l = B,(X). Then Z(X) = C, Z,(X), B(X) 
=C, B,(X) are homogeneous submodules of 

X, called the module of cycles and the module 
of boundaries, respectively. B(X) is a homog- 

eneous submodule of Z(X), and the quotient 
modules Z(X)/B(X), Z,(X)/&(X) are denoted 

by H(X), H,(X), respectively. We cal1 H(X) = 
C”H,,(X) the homology module of the chain 
complex (X, a). 

If (X, a), (Y, a’) are chain complexes over 
A, an A-homomorphism f: X+ Y of degree 
Osatisfyinga’of=foa(i.e.,aaf,=f,_,a,) 
is called a chain mapping of X to Y. For a 
chain mapping A we have f (Z,,(X)) c Z,( Y), 
f(B,(X)) c B,( Y), and hence f induces an A- 

homomorphism f, : H(X)+H( Y) of degree 0, 
which is called the homological mapping in- 
duced byf: We have (l,),= l,(,,, and (gof), 
= g* of, for chain mappings f: X+ Y and g : 
Y-Z. 

Let J; g : X + Y be two chain mappings. If 
there is an A-homomorphism D :X + Y of 

degree tl such thatf-g=Doû+a’oD, we 
say that f is chain homotopic to g and Write 

f = g; D is called a chain homotopy off to g. 
If f is chain homotopic to g, we have f, = 
g*: H(X)-+H( Y). For chain complexes X 

and Y, if there are chain mappings f: X+ Y 
andg:Y+Xsuchthatfog=l,andgof=l,, 
we say that X is chain equivalent to Y. In this 
case f, : H(X)+H( Y) is an isomorphism and 
g* : H( Y)+H(X) is its inverse. 

Let (X, a) be a chain complex over A and 
Y = C, x be a homogeneous A-submodule 

of X such that aYc Y. Then Y and X/Y are 
chain complexes over A with the boundary 
operators induced by 0. Y is called a chain 
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subcomplex of X, and X/Y is called the quo- 
tient chain complex of X by Y or the relative 
chain complex of X mod Y. For a chain com- 

plex X and its subcomplex Y we have an 
texact sequence O-, Y~X~X/Y~O, where i is 
the tcanonical injection andj the tcanonical 

surjection. 
Let (IV, a’), (X, d), (Y, 8”) be chain com- 

plexes over A, and f: W+X, g:X*Y be chain 
mappings such that O+ W-ftX-% Y+0 is 
exact. Then an A-homomorphism 8, : H(Y)+ 
H(W) of degree - 1, called the connecting 
homomorphism, is delïned by a*(y + B(Y)) 

=f-‘080gm1(y)+B(W)(yEZ(Y)),andwe 
have the exact sequence of homology: 

. ..2Hn(W)1.Hn(X)-tHn(Y) 

bm,(W)b-,(X)%-,(Y)%... 

For a kommutative diagram 

O+W+X-tY-+O 

consisting of chain complexes and chain 

mappings in which each row is exact, we have 
~3,oi+b,=cp,od,:H(Y)-tH(W’). 

For the tinductive limit 15X, of chain com- 
plexes X, over A, we have 

H(I$ X,) = l@H(X,). 

A chain complex X is said to be positive if X, 
= 0 for a11 n < 0. If X is a positive chain com- 
plex over A and M is an A-module, then we 
mean by an augmentation of X over M an A- 

homomorphism .s:X,*M such that the com- 
position X,%X,=M is trivial:c:oa, =O. A 
positive chain complex X together with an 
augmentation E of X over M is called an aug- 
mented chain complex over M. It is said to be 

acyclic if the sequence 

is exact, namely, if H,(X) = 0 (n #O) and E 
induces an A-isomorphism H,(X) z M. In this 
case X is also called a left resolution of M. 
Moreover, if each X,, is a tprojective A- 

module, X is called a left projective resolution. 
For any A-module M, there exists a left pro- 
jective resolution of M. 

Let a: M +M’ be an A-homomorphism of A- 

modules, and X, X’ be augmented chain com- 

plexes over M, M’ having augmentations E, E’, 
respectively. Then a chain mapping f: X+X’ 

satisfying E’ ofa = tl o E is called a chain map- 
ping over a. If X, X’ are left projective reso- 
lutions of M, M’, respectively, then there exist 

chain mappings of X to X’ over x, and any 
two such mappings are chain homotopic. In 
particular, a left projective resolution of an A- 
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module M is uniquely determined up to chain 
homotopy. 

D. Tor 

Given a right A-module M and a left A- 

module N, Z-modules Tari (M, N) (n = 
0, 1,2, ), called the torsion products (or Tor 
groups), are defined as follows: Let 

Y:...-tY,-tY,-,-,...-:Y,=N~O 

be a projective resolution of N, and consider 

the chain complex 

obtained by forming the ttensor product of M 
and Y. Then we see that the homology module 

H,( M 0 A Y) is uniquely determined for any 
choice of left projective resolution of N. We 
detïne Torf(M, N) = H,,(M @ A Y). In partic- 
ular, we have Tort(M, N)g M @ .N. 

Properties of Tor. (1) If M is a tflat A-module, 

we have Torn(M, N)=O (n= 1,2, . ..). 
(2) An A-homomorphism f: M, +M, in- 

duces a homomorphism f, : Tori(M, , N)’ 
Tor/(M,, N). We have (l,), = 1, and (go&= 
g*of,forf:M,-tM,,g:M,+M,. 

(3) For an exact sequence O+MI-J*M2> 

M, 40, we have the following exact sequence 
of Tor: 

. ..-.Torn(M,, N)kTort(M,, N) 

~Tor~(M3,N)~Tor;f_i(M1,N)~... 

+Torf(M,, N$M, @ *N-M2 @ .N 

-tM,@.N+O, 

where O* are the connecting homomorphisms. 

(4) For a commutative diagram 

O+M,+M,+M,+O 

1v 1 l’y 

of A-modules and A-homomorphisms with 
exact rows, we have 8, o $, = ‘p* o 0,. 

(5) Torf(C,M,, N)=C,Torf(M,, N) 
(6) Torf(l$ M,, N)rl&Torn(M,, N). 

On the other hand, take a left projective 
resolution X of M and consider the chain 
complex X @ ,,N. Then we have H,(X @ AN) 

g Tort( M, N) for n = 0, 1, Therefore 
properties similar to (l))(6) hold with respect 
to the second variable N of Torf(M, N). 

(7) If A0 is a ring +anti-isomorphic to A, 

then Tort(M, N)ET~~: (N, M). In particular, 
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if A is commutative, then Torf(M, N) is an A- 

module and we have Tori(M, N)E TO$(N, M). 
(8) Let A be a tprincipal ideal ring. Then 

Torf(M,N)=O (n=2,3, . ..) and Tort(M,N) is 

also denoted by M * *IV. For an exact se- 
quence O+M,+M,-+M,+O, we have the 

exact sequence O+M1 * .N+M, * AN+ 
MJ*.N~M,O.N-tM,O.N~M,O.N~ 

0. In particular, Z*,N=O and (Z/PIZ)*~NE.N 
(={x~NInx=0}). 

Universal Coefficient Theorem for Homology. 
If (X, 8) is a chain complex over A and N is a 

left A-module, then (X @ .N, 8 @ 1) is a chain 
complex. If A is a principal ideal ring and each 
X,, is a ttorsion-free A-module, then we have a 

formula 

gH,(X)@,,,N+H,-,(X)*,N, 

called the universal coefficient theorem. 

E. Double Chain Complexes 

By a double chain complex (X,,,, a’, a”) over 

A we mean a family of left A-modules X,,, 
(p, 4 E Z) together with A-homomorphisms 

I&:X,,,+X,-,., and ôp,,:XP,4+XP,4m, such 
that ~~-,,,~a~,,=ap,,-,oap,,=a~,,~,oap,, 
+ Cp-l ,4 o Z$, = 0. We detïne the associ- 
ated chain complex (X,, 8) by setting X, = 

~:,+,=nXp,4, ô,=IZ,+,=,a~,,+a~,,. We cal1 8 
the total boundary operator, and a’, a” the 
partial boundary operators. 

Given a chain complex X consisting of right 

A-modules and a chain complex Yconsisting 
of left A-modules, a double chain complex 
(Z,,,, a’, a”) is defïned by setting Z,,, = 
X,@,r,, a;,,=ô,o 1, a;,,=(-l)pl oa,, 
where aP, as are the boundary operators of X, 
Y, respectively. It is called the product double 
chain complex of X and Y and the homology 
module of its associated chain complex is 
denoted by H(X @ A Y). With respect to this 
homology module, the following facts hold. If 
X is a left projective resolution of a right A- 

module M and Y is that of a left A-module N, 
then H,,(X @ .Y)=Tor/(M, N). If A is a prin- 
cipal ideal ring and each X, is a torsion-free A- 

module, then we have the formula 

+ c H,(x)*.Hqm, 
p+q=n-1 

the Kiinneth theorem. 

F. Cochain Complexes 

By a cochain complex (X, d) over A we mean a 

graded A-module X together with an A- 
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homomorphism d:X+X of degree + 1 such 
that do d = 0; d is called the coboundary oper- 
ator or differential. For a cochain complex 

(X, d), we denote by X” the component of 
degree n of X, and by d”, X”+X”+’ the restric- 
tion of d on X”. Then a chain complex (Y, a) is 
detïned by Y, = X -’ and a,, : Y, -+ Y,-i is equal 
to d-“:X-“-tX-“+‘. 

For a cochain complex (X, d), we Write 

Kerd”=Z”(X), Kerd=Z(X) (Z(X)=xZ”(X)), 
Im d”-’ = B”(X), Im d = B(X) (B(X) = C B”(X)), 
and Z”(X)/B”(X) = H”(X)), Z(X)/B(X) = 
H(X) (H(X) = C H”(X)). These modules 

Z(X) V’(X)), B(X) (B”(W), and H(X) W”(W) 
are called the module of cocycles, the module of 

coboundaries, and the cohomology module of 
X, respectively. If we consider the associated 

chain complex (Y, a) of (X, d), then H-J Y) 
corresponds to H”(X). In this way, results on 
chain complexes give results on cochain com- 
plexes. Thus the concepts of cochain mapping, 
cochain homotopy, cochain equivalence, cochain 
subcomplex, and relative cochain complex cari 
be defïned as in the case of chain complexes in 

B, and we have corresponding results. In par- 
ticular, given an exact sequence O+ WLXA Y 
-0 of cochain complexes and cochain map- 

pings, the connecting homomorphism d, : H”(Y) 
+H”+i(W) is defïned, and the exact sequence 

of cohomology 

. ..o.Hn(W)kHn(X)%Hn(Y) 

~;H~+~(W)~H~+~(X)-;H"+~(Y)~;... 

exists. For a commutative diagram 

o+w+x-tY~o 

of cochain complexes and cochain mappings 
with exact rows, we have d, o tj, = <p* od,. 

A cochain complex X is said to be positive if 
X” = 0 for n < 0. If X is a positive cochain 
complex over A and M is an A-module, we 
mean by an augmentation of X over M an A- 
homomorphism E: M+X” such that the com- 
position M=X’=X’ is trivial. If the sequence 

O+M~X”bS . ..+x”d.x”+l+... 

is exact, X is called a right resolution of M. 
Moreover, if each X” is an tinjective A- 

module, X is called a right injective resolution 
of M. For any A-module M, there exists a 

right injective resolution of M, and any two 
such resolutions are cochain homotopic. 

G. Ext 

Given left A-modules M and N, Z-modules 
Ext>(M, N) (n = 0, 1,2, .), called the Ext 
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groups, are delïned as follows: Let X: .-X, 

-+x,-, - . ..*X.+M+O be a projective reso- 
lution of M, and consider the cochain complex 
Hom,(X, N): 

->Hom,(X,,N)->... 

obtained by forming the +module of A- 

homomorphisms. Then we cari show that the 
cohomology module H”(Hom,(X, N)) is 
uniquely determined for any choice of projec- 
tive resolution of M. We detïne ExtA(M, N) 
= H”(Hom,(X, N)). This cari also be defïned 

as the cohomology module H”(Hom,(M, Y)) 
of the cochain complex Hom,(M, Y):O+ 
Hom,(M, Y”)~...~HomA(M, Ynml)+ 
Hom,(M, Yn)d... , where Y:O+N+ Y’+...+ 
Y”-l+Yn-+... is a right injective resolu- 
tion of N. Furthermore, for a left projective 
resolution X of M and a right injective re- 
solution Yof N, we see that Ext\(M, N) is 
isomorphic to the cohomology module 
H”(Hom,(X, Y)) of the associated cochain 

complex of the double cochain complex 
Hom,(X, Y)=(Hom,(X,, Y¶),d’,d”), where 
dP,,:Hom,(X,, Y4)+Hom,(X,+1, Yq) and 
di,,:Hom,(X,, Yq)+Hom,(X,, Y¶+l) 

are given by dp,,(u)=uoi3,+,, di,q(~)= 
( -l)p+q+‘dqo~ (u~Hom,(X,, Y’)) by using 

the boundary operator 8 of X and the co- 
boundary operator d of Y. 

Properties of Ext. (1) We have Exta(M, N) g 
Hom,(M, N). 

(2) If M is a projective A-module or N is 
an injective A-module, then ExtA(M, N) = 0 
(n = 1,2, ). 

(3) An A-homomorphism f: M, +M, 
(resp. f: Ni + NJ induces a homomor- 
phism f* : Ext;(M,, N)+Ext:(M,, N) (resp. 
f,:Ext;(M, N,)+Extt(M, N2)). We have 
lM=l and(gof)*=f*og* forf:M,-M,, 
g:M,+M,(resp. l,,=l and(gof),=g,of, 
forf:N,+N,,y:N,+N,). 

(4) For an exact sequence O*M1->M,+M, 
-0 (resp. O+N,+N,+N,+O), we have the 
exact sequence of Ext: 

O+Hom,(M,, N)+Hom,(M,, N) 

+Hom,(M,, N)+ExtA(M3, N) 

-tExt;(M,, N)+... 

(resp. O+Hom,(M, N,)-rHom(M, N,) 

+Hom(M, N,)+ExtA(M, Ni) 

+Ext;(M, N2)+...) 

(5) 

152 

(6) If A is a principal ideal ring, then 

Ext;(M, N)=O(n=2,3, . ..). and Exti(M, N) 
is also denoted by Ext,(M, N). In particu- 
lar, Ext,(Z, N) = 0, Ext,(Z/nZ, N) g N/nN, 

Ext,(M, Q/Z) = 0, Ext,(M, Z/nZ) = fi/nfi, 
where fi = Hom,(M, Q/Z). 

Universal Coefficient Theorem for Coho- 
mology. If X is a chain complex over a prin- 
cipal ideal ring A such that each X, is a free A- 

module, then for any A-module N we have the 
formula 

E Hom,W,,W, NI + Ext,(H,-, (Xl, NI, 

the universal coefficient theorem. This is gen- 
eralized as follows: Let X be a chain complex 
and Y a cochain complex, both over a prin- 
cipal ideal ring A. Assume that each X, is a 
free A-module or that each Y” is an injective 
A-module. Then we have the formula 

zp;z” 
HomAWpW), Hq(Y)) 

+ 1 Ext, W,(X)> H’(Y)) 
p+q=n-1 

(- 201 Homology Theory). 

H. Complexes in Abelian Categories 

We mainly consider general +Abelian cate- 
gories w. Consideration may, however, be 

restricted to the tcategory (Ab) of Abelian 
groups (whose tobjects are Abelian groups and 
whose tmorphisms are homomorphisms) or 

the tcategory .&? of R-modules. 
A (cochain) complex C in an Abelian cate- 

gory %? is a graded abject {C”} in %7 with 

differentials d”: C”+C”+’ subject to the con- 
dition that d”+’ o d”= 0 (n E Z). The nth coho- 

mology H”(C) of C is delïned by the texact 
sequence O+E’(C)+Z”(C)+H”(C)+O, where 

B”(C) and Z”(C) are abjects representing 
Im d”-’ and Ker d”, respectively. The complex 
C is called positive (negative) if C” = 0 for n < 0 
(n > 0). We sometimes interchange positive 
superscripts and negative subscripts and Write 

C, instead of C”. Then the differentials 
become d,: C,,-sC-i, and C is then called a 
chain complex. The quotient of Ker d, = Z, by 
Imd n+l =B, is called the nth homology H,(C). 
Negative complexes are usually described in 
this manner. When C”, Z”, B”, and H” are 
sets, as in the category .J% of R-modules, 
their elements are called cochains, cocycles, 
coboundaries, and cohomology classes, respec- 

tively. Similarly, in the group C, of chains, 

residue classes of cycles (EZ,,) modulo bound- 
aries (EB,) are called homology classes (EH,). 
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A morphism (or chain transformation) 1‘: C+ 
c’ is a tnatural transformation of the com- 
plexes considered as tfunctors Z-t%‘; i.e., 

f is a family of morphisms f” : C”+C’” (n E Z) 
satisfying ,f”+’ od”=d”of”. It induces a 
morphism of cohomology H”(C)+H”(C’). 
A suhcomplex of C is an equivalence class 
of tmonomorphisms D+C, usually denoted 

by any representative D of the class. A (chain) 
homotopy between two chain transforma- 
tions J y : C-c’ is a family of morphisms 

h”:C”~C’“-’ (nez) satisfyingf”-g”= 
h”+’ od” + d”-’ o h”. If there exists a homo- 
topy between ,f and 9, then f and g induce the 
same morphism of cohomology. A morphism 
f: C+c’ is called a (chain) equivalence if there 
exists a morphism ,f’: C+C such that f’o,f 
and ,fof’ are homotopic to the identities of C 
and C’, respectively. In this case we have 
H”(C) g P(C’). An exact sequence of com- 
plexes O-tc’+C+C”+O gives rise to the 
connecting morphisms H”(C”)+H”+l(C’) 

(PIE~), and the resulting sequence -) 
H”-l(C»)+H”(C’)-+H”(C)+H”(C>‘)+ 

H”+l(C’)+. is exact (the exact cohomology 
sequence), and similarly for homology instead 
of cohomology. An abject A EV defines a 
complex (also denoted by A) such that A0 = A, 
do = 0. A positive complex C together with a 
morphism E: A + C is called a complex over A, 
and E is the augmentation. A complex C over A 
isacyclicifO~A~C”~C1-t... isexact. An 
acyclic positive complex over A is called a 
right resolution of A. Let {C, E}, {C’, E’} be 

complexes over A and A', respectively, and c( a 
morphism A+ A’. Then a morphism f: C-C’ 
satisfying fo E = E’ o tl is called a morphism 

over a. For a negative complex C, we detïne 
similarly augmentations E: C-A, acyclicity, 
left resolutions, etc. 

A hicomplex (or double complex) C in %? 
consists of abjects Cp,* (p, qgZ) and two dif- 
ferentials d,: Cp.4+C P+l4, d,.CP4+CP.4+1 

subject to df = d; = 0 and d,d,, = d,,d, (some- 

times replaced by anticommutativity, d,d,, + 
d,,d, = 0). Morphisms of bicomplexes are de- 
fined as for single complexes. A bicomplex 

C becomes a (single) complex if we put C”= 
C,+,=, Cp*4 (when the sum exists) and detïne 
the differential d to be d, + (- l)Pd,, on Cp,4. 

Then d is called the total differential and d,, d,, 
the partial differentials. On the other hand, Cp 

= {CpQ~Z), d,} constitutes a complex for 
each q, whose cohomology HP(CP) is denoted 
by HF(P). Then d,, induces morphisms HP(P) 
+H[(P”), SO that we obtain a complex 
HP(C). The cohomology of HP(C) is denoted 
by HP,(HP(C)). We delïne Hf(HP,(C)) similarly. 
The cohomology of C with respect to the total 

differential is denoted simply by H"(C). Similar 

constructions are applied to double chain 
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complexes {C,,,} and further to multiple 
complexes, as we shall show in the case of 
bicomplexes. 

Let T be a tbifunctor %‘, x Ce,+%” and Ci be 
complexes in Vi (i = 1,2). Then T(C, , C,) is a 
bicomplex in 97’. For instance, Hom(C’, C) is a 
positive (bipositive) complex if C(C’) is a posi- 
tive (negative) complex in %7. If C, c’ are com- 
plexes in JZR, R 1, respectively, the ttensor 
product C 0 ,$Y is a complex in (Ab) (the 

product complex). There is a canonical mor- 

phism H,(C)@H,(C'+H,+,(C@ C'). If C,, 
and B, are tflat for a11 116 Z, we have the fol- 

lowing exact sequence (Kiinneth’s formula): 

(for the definition of Tor - Section D). For C’ 

= AE&', Künneth’s formula reduces to the 
exact sequence O+H,,(C) @ A+H,,(C 0 A)+ 

Tor, (H,-,(C), A)-+0 (universal coefficient 
theorem). The corresponding exact sequence 
for cohomology is 

O+Ext’(H,m,(C), A)+H"(C, A) 

+Hom(H,,(C), A)+0 

(- Section G; 201 Homology Theory). 

1. Satellites and Derived Functors 

Let %? and w  be Abelian categories. Al1 func- 

tors in this section are tadditive. A tcovariant 

functor T:Vj%’ is called exact if Tmaps 
every exact sequence in %? to an exact sequence 
in V. T is called half-exact, left exact, or right 
exact if for every short exact sequence O+ A 
+B+C*O, the sequence T(A)-+T(B)+T(C), 
O+T(A)-+T(B)+T(C), or T(A)+T(B)+T(C) 
-0, respectively, is exact. Similar definitions 
apply for tcontravariant functors. The functor 
Horn:% x %+(Ab) (which defines the category 
%?) is left exact in both factors. An abject P is 
projective if h,( .) = Hom(P, .) is exact, while Q 

is injective if hQ( .) = Hem(. , Q) is exact. If 
every abject A admits an tepimorphism from 

a projective abject P+A (resp. tmonomor- 
phism into an injective abject A-Q), W 
is said to have enough projectives (injec- 
tives). An abject G is called a generator (cogen- 
erator) if the natural mapping Hom(A, B)+ 

Hom(h,(A), h,(B)) (Hom(h’(B),h’(A))) is 
one-to-one. 

An Abelian category % is called a Gro- 
thendieck category if (1) %? has a generator, (2) 
tdirect sums always exist, and (3) the identity 
(u Ai)flB= u(AiflB) holds for any abject A, 

its tsubobject B, and a ttotally ordered family 
{Ai} of subobjects. A Grothendieck cate- 
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gory has enough injectives (R. Baer, 1940, 
for (Ab); A. Grothendieck, 1957, for general 
V). A monomorphism into an injective ob- 
ject f: A+Q is called an injective envelope if 
Imf n Im g # 0 for any nonzero monomor- 
phism g: B-Q. Every abject A in a Grothen- 
dieck category admits an injective envelope, 
which is unique up to isomorphism (B. Eck- 
mann and A. Schopf, 1953, for Ré; B. Mit- 
chell, 1960, for general V). 

We say that a covariant &functor %+%?’ is 

given if we have a sequence of covariant func- 
tors T= { T’:~&~%?‘} and the connecting mor- 
phisms d: Ti(A”)+T’+i(A’) for an arbitrary 
short exact sequence O+A’+A+A”+O satis- 
fying the following conditions: (i) do Ti(f”) 

= T’+‘(f”) o a for a morphism f of short 
exact sequences; and (ii) the sequence + 
T”(A”)~tT’(A’)~T’(A)~T’(A”)-tT’+’(A’)~ 

constitutes a complex. T= {T’} is called a 
covariant a*-functor if instead of û there are 

given a* : T’(A”)+ T’-‘(A’) satisfying similar 
conditions (i*) and (ii*). By taking duals, we 

define the notion of contravariant a- and a*- 
functors. They are also called connected se- 
quences of functors. A &(a*-)functor defined 
for - cû <i < + CO is called a cohomological 
functor (homological functor) if the sequence in 
condition (ii) (resp. (ii*)) is always exact. A 
morphism of a-functors f: S+ T consists of 
natural transformations fi: Si-> T’ that com- 
mute with the connecting morphisms. A a- 

functor S delïned for a <i < b is called universal 
if for any a-functor T defined in the same in- 
terval and any natural transformation <p: Sa* 

T”, there exists one and only one morphism 
f:S+T such that f"=<p. Let F:W+W’ be a 
covariant functor and b any positive integer. A 
universal covariant a-functor S defined for 
0 < i < b is called a right satellite of F if Sa = F 
(S is then denoted by {S’F}). If such an S 
exists, then it is unique and satistïes S’+‘(F)= 
S’(S’F). If %? has enough injective abjects, 

the right satellites always exist, and if F is left 
exact, then {Si F} is a cohomological functor. 

The universality of d*-functors is delïned by 
reversing the arrows; the satellites {SiF} are 
then written as {S-‘F} and called the left 
satellites. 

Let %Y be an Abelian category with enough 
injectives. An injective resolution of an abject A 
is a right resolution Q = { Qi} such that a11 Qi 

are injective. Every A admits an injective reso- 
lution, which is unique up to chain equivalence 

(H. Cartan, 1950). For a covariant functor F: 
cg+%“, the functor A+H’(F(Q)), called the ith 
right derived functor R’F of F, is independent 

of Q. {R’F} is a cohomological functor. By the 
universality of satellites, there exists a mor- 

phism of a-functors {S’F}+{R’F} which is an 
isomorphism if and only if F is left exact. The 
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left derived functors L,F of a contravariant 
functor F are deiïned similarly and are isomor- 

phic to the left satellites when F is right exact. 
If (e has enough projectives (instead of injec- 

tives), we delïne left (right) derived functors of 
covariant (contravariant) functors via projec- 
tive resolutions. For a multifunctor, we define 
partial derived functors as well as (total) de- 
rived functors of the functor viewed as a func- 
tor defined in the tproduct category. For 
instance, let T(A, B):V, x %-%?’ be contra- 

variant in A and covariant in B. When $Y2 has 
enough injectives, we obtain Ri T(A, B) = 
Hi( T(A, Q)) using an injective resolution Q 
of B. Suppose that T satisfies condition (i) 
A+ T(A, B) is exact for any injective B. Then 

for a fixed injective B, Ri, T(A, B) is a cohomo- 
logical functor in A. When A has a projec- 

tive resolution P in Vi, we obtain Ri T(A, B) 
= H’(T(P, B)) as well as the equation for the 
total derived functor R’T(A, B) = H’(T(P, Q)). 

We say that a functor T is right balanced if it 
satisfies (i) and also (ii) B+ T(A, B) is exact for 

any projective A. In this case, the three derived 
functors are isomorphic. The left balanced 
functors are defined similarly. When the right 
derived functors of the functor Horn (which 
delïnes the category) exist, they are denoted by 
Ext’(A, B). 

J. Spectral Sequences 

In this section, we deal with cohomology in 
the category Rd of R-modules. A similar 

theory for homology is obtained by modifying 
the theory in a natural way. Similar construc- 
tions are also possible for general Abelian 
categories [3, S]. 

A filtration F of a module A is a family of 
submodules { FP(A) 1 PE Z} such that FP(A) 3 
Fpt’(A). We say that the filtration F is con- 
vergent from above (or exhaustive) if UPFp(A) 
=A, and F is bounded from below (or dis- 
crete) if FP(A) = 0 for some p. The +graded 

module G(A)={GP(A)=FP(A)/FP+l(A)Ip~Z} 
is said to be associated with A. A morphism of 

Iïltered modules ,f: A+ A’ is a module homo- 
morphism such that f(FP(A))c FP(A’). It in- 
duces a homomorphism of the graded modules 
G(A)+G(A’). A filtration of a complex C= 
{C”, d} consists of subcomplexes FP(C) = 
{Fp(Cn)} such that Fp(C)xFP+‘(C). We 
assume that the complex C satisfies UP F’(C) 
= C, and is bounded from below; i.e., for every 
n there exists some p such that FP(C”)=O. In 
particular, if F’(C) = C, Fp+l (Cp) = 0, the com- 

plex C is called canonically bounded. Writing 

Cp,¶ = GP(CP+q), we obtain a tbigraded module 
{ Cp,q}, in which p, 4, and p + q are called the 
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filtration degree, the complementary degree, 
and the total degree, respectively. 

A spectral sequence {E,} with a graded 
module D = {D”} as its limit (denoted by 

E;s4 3 pDn) consists of a family of doubly 
graded modules E, = { EP.q 1 p, 4 E Z} (r > 2 or 
sometimes r > 1) and differentiations d,: E,P,q+ 
Ep+r,q-ri’ (p, 4 E Z) of degree (r, 1 -Y) satisfy- I 
ing d,? = 0 and satisfying the following two 
conditions: (i) H(E,) (with respect to d,) is 
isomorphic to E,,, (hence there exists a se- 

quence of graded submodules of E, : 0 = B, c 
B, c c Z, c Z, = E, such that ZJB, g E,); 
and (ii) there are submodules Z, and B, such 

that Uk B, c B, c Z, c nk Z,, and E, = 
Z,/B, is isomorphic to the doubly graded 

module associated with a certain filtration F of 
D (i.e., Egqg GP(DP+q)). We assume that Z, = 
nk Z, and B, = Uk B, (weak convergence). 
Suppose that F is convergent from above and 
bounded from below and that Zk(Eg3q) is 

stationary for every p, 4. Then {E,} is called 
regular. {E,} is bounded from below if for every 
n there exists a p. such that E$‘,n-P = 0 for 

p-cp,,. In particular, if E2,q=0 (p<O,q<O), 
then {E,} is called the first quadrant (or cobo- 
mology spectral sequence). In the latter case, 
the edge bomomorpbisms E~“+E~o, Emq+ 
E2.q are detïned through base terms Ere and 
tïber terms EfBq, respectively. A morphism 

of spectral sequences 1’: {E,, D} -{ EL, D’} con- 
sists of ,f, : E,+ E: of degree (0,O) and f: D + D’ 

of degree 0 which preserve the mechanism of 

spectral sequences. When the spectral se- 
quences are regular, a morphism .f‘ is an iso- 
morphism if one of the 1; is an isomorphism. 
Addition is naturally introduced in the set of 
morphisms SO that spectral sequences form an 
additive category. An additive functor from 
an Abelian category % to this category is 
called a spectral functor. A filtered complex 
{C, F} gives rise to a spectral sequence E;,q a 

G(H(C)) if we put Z,P={UEF~(C)I~U~F~+~(C)}, 
Bj’= dz;-‘, E; = Z;/(Zf:,’ + B;mI), E, = &, E;. 
A double complex C = { Cp,q, d,, d,,} admits two 

natural filtrations F,: F~(C)=C,,,~qCs~q 
and F,,:FP,(C)=C,,,C,CP.‘. By the pro- 
cedure above, these filtrations give rise to 
spectral sequences H[(Hfi(C)) *,H”(C) and 
HP,(H/(C)) *$f”(C), respectively. Compari- 
son of these sequences yields many useful 
results. Let T be an additive covariant func- 
tor from an Abelian category %? to R.,&‘r C be 
a complex in %‘, and Q = {Q”“} be an injec- 
tive resolution of C. The double complex Q 
gives rise to spectral sequences HP(R4T(C)) * 

H(T(Q)) and RPT(Hq(C))=>H(T(Q)). The 
limit H(T(Q)) is independent of Q and is 
called the hypercohomology of T with respect 

to C [2, S]. We cari similarly define hyper- 
cohomology of multifunctors. The theory of 
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spectral sequences was initiated by J. Leray 
(1946), and suitable algebraic formulations 
were given by J. L. Koszul(l950). 

K. Categories of Modules 

The category ,&! (resp. AR) of left (right) R- 
modules over a tunitary ring R is not only an 

Abelian category but also a Grothendieck 
category (- 277 Modules). The tfull embed- 
ding theorem permits us to deduce many pro- 
positions about general Abelian categories 
from the consideration of RA. An abject P of 
,&? is projective if and only if it is isomorphic 
to a direct summand of a tfree module. Any 
projective module is the direct sum of count- 

ably generated projective modules (1. Kap- 
lansky, 1958). It follows that any projective 
module over a tlocal ring is free. Finitely 
generated projective modules Pi and P2 

are said to be equivalent if there exist lïnite- 
ly generated free modules FI, F2 such that 
P, 0 F, g P2 @ F2. The equivalence classes 
then form an Abelian group with respect to 
the direct sum construction called the projec- 
tive class group of a ring R. The category of 
complex tvector bundles over a compact space 
X is equivalent to the category of projective 
modules over C(X), the ring of complex- 

valued continuous functions on X, and simi- 
larly for other types of spaces and bundles. 
Many investigations have been made involv- 

ing the problem of whether every projective 
module over a polynomial ring is free (J.-P. 
Serre, 1955). This problem was settled aflïrma- 
tively by D. Quillen [13] and independently 
by A. Suslin. It has been observed that “big” 
projective modules are often free: for example, 
nonfïnitely generated projective modules over 
an tindecomposable weakly Noetherian ring 
are free (Y. Hinohara, 1963). 

The nth right derived functor of Hom,(A, B) 
is denoted by Ext;(A, B) (- Section G). This is 
a bifunctor R& x &+(Ab), contravariant in 

A and covariant in B. Extg is isomorphic to 
and identified with Horn,. An exact sequence 
O+A’+A+A”+O gives rise to the con- 
necting homomorphisms A”: Ext;(A’, B)+ 

Exti+‘(A”, B), and the following sequence 
is exact: . ..+ExtRi(A’.B)~Ext;(A”,B)+ 
Ext;(A,B)+Ext;(A’,B)~Ext”,t’(A”,B)+... 
(the exact sequence of Ext). Similarly, an exact 
sequence O+B’+B+B”+O gives rise to 

A”:Exti(A, B”)-+Ext”‘(A, B’) and to an exact 
sequence of Ext. An extension of A by B (or of 

B by A) is an exact sequence (E):O+B+X+ 
A+O. The set of equivalence classes of exten- 

sions of A by B is in one-to-one correspon- 

dence with ExtA(A, B) by assigning to (E) its 
characteristic class xE = A’( 1)~ Extk(A, B), 
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where 1 denotes the identity of Hom,(B, B). In 

this correspondence, the sum of two extensions 
is obtained by a construction called Baer’s 
sum of extensions. Similarly, Ext;(A, B) is 
interpreted as the set of the equivalence classes 
of n-fold extensions O+B+X,_,+...+X,+ 
A+0 (exact). This point of view permits us to 

establish a theory of Ext, etc., in more general 
(additive) categories lacking enough projec- 
tives or injectives (N. Yoneda, 1954, 1960). 

The tensor product A Q RB is a right exact 
covariant bifunctor As @ ,&+(Ab). If the 
functor tP( .) = . @ P is exact, P is called a Vlat 
module. A projective module is flat. In general, 
a flat module is the tinductive limit of lïnitely 

generated free modules (M. Lazard, 1964). A 
flat module P is called tfaithfully flat if P # mP 
for every maximal ideal m of R. The functors 
@ and Horn are related by tadjointness (- 52 
Categories and Functors). From this view- 

point 0 cari be introduced in more general 
categories. Left-derived functors of A @ RB are 
denoted by Torf(A, B) and are called nth tor- 
sion products of A and B. Torf(A, B) is often 
denoted by A * RB. The functor OR is left 
balanced, hence Tor is calculated by using 
projective resolutions of A, B, or both A and 
B. We have Tort = OR. An exact sequence O-+ 
A’+A+A”-+O gives rise to A,:Torf+,(A”, B)+ 
Torf(A’, B) and the inlïnite exact sequence of 
Tor, and similarly for the second variables. 

From the various relations between Horn 
and 0 follow the corresponding relations 
between their derived functors. When A and F 

are algebras over K and R = A @ I, we cari 
delïne the external product (T -product), which 
is a mapping 

T :Torp(A, B) 0 Tori(A’, B’) 

+Toe+,(A @ A’, B @ B’). 

In particular, if A and I are K-projective and 
Tod(A, A’) = 0 (n > 0), then we cari deline the 

wedge product (V-product) V: Exti(A, B) @ 

Ex$(A’, B’)+Extg+4(A 0 A’, B 0 B’). The latter 

is described in terms of the composition of 
module extensions. When K = A= r = R, 
the T-product reduces to the interna1 product, 
called the m-product. If A is a tHopf alge- 

bra over K, the tcomultiplication A-+ A @ A 
induces Ext,,@,, -+Ext,. This, combined with 

the V-product, yields the cup product (-- 
product)-: Ext;(A, B) 0 Ext4,(A’, B’-* 
Exthq(A @ A’, B @ B’). We define similarly 
I -product, A-product, w-product, and - - 
product (cap product) [Z]. Let A, F, and C be 

algebras over K, with A K-projective; let 
AE&,,@~, BE,,&,, CE&~@~, and assume 
Torn(A, B) = 0 (n > 0). The natural isomor- 

phism Hom,&A, Hom,(B, C))g Horn,@, 
(A 0 .B, C) then yields a spectral sequence 
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JW&,,V, WHB, (3) -PExt;Bz (A 0 ,,B, C) 
by the double complex argument in Section D. 

The homological dimension h dim, A, 
dh, A, or projective dimension proj dim, A of 
A E sA is the supremum ( < CO) of n such 
that Extz(A, B)#O for some B. The relation 

h dim, A < 0 means that A is projective. The 
injective dimension inj dim, B of BE R.k’ is 
delïned similarly by means of the functor 

Exti( ., B), and the weak dimension w  dim, C 
of CE ,+V by the functor Torf(., C). The 
common value sup{projdim, Al AE,&‘} 
= sup { inj dim, B 1 BE s&‘} is called the left 
global dimension 1 gl dim R of R. It is identical 
with the supremum of homological dimensions 
of tcyclic modules (M. Auslander, 1955). The 
right global dimension r gl dim R is delïned 
similarly. The common value sup{wdim, Al 

A~As}=sup{wdimsCI CesA} is called the 
weak global dimension w  gl dim R of R. We 

have w  gl dim R < 1 gl dim R, r gl dim R. The 
equality may fail to hold (Kaplansky, 1958). If 
R is TNoetherian, the three global dimensions 
coincide (Auslander, 1955) and are called 
simply the global dimension of R : gl dim R. The 

condition 1 gl dim R = 0 (or r gl dim R = 0) 
holds if and only if R is an tArtinian semi- 

simple ring, while w  gl dim R = 0 if and only 
if R is a tregular ring in the sense of J. von 
Neumann (M. Harada, 1956). A ring R is 
called left (right) hereditary if 1 gl dim R < 1 

(r gl dim R < l), and left (right) semihereditary 
if every lïnitely generated left (right) ideal is 
projective. A left and right (semi)hereditary 
ring is called a (semi)hereditary ring. Since 

projectivity and tinvertibility of an ideal of a 
(commutative) integral domain R are equiva- 
lent, R is hereditary if and only if R is a tDede- 
kind ring. In this case, the projective class 
group of R reduces to the tideal class group. 
An integral domain R is semihereditary if and 
only if w  gl dim R < 1 (A. Hattori, 1957), and in 

that case R is called a Priifer ring. A tmaximal 
order over a Dedekind ring is hereditary. A 
commutative semihereditary ring R is charac- 

terized by the property that flatness of R- 
modules is equivalent to torsion-freeness (S. 
Endo, 1961). A Noetherian ring R is left self- 
injective if and only if R is tquasi-Frobenius 
(M. Ikeda, 1952), and the global dimension of 
a quasi-Frobenius ring is 0 or CO (S. Eilenberg 
and T. Nakayama, 1955). A polynomial ring R 
= K [Xi, , X,] over a commutative ring K 
satisfies gl dim R = gl dim K + n. When K is a 

field, this is a reformulation of Hilbert’s theory 
of syzygy sequences (- 369 Rings of Poly- 

nomials). In this sense, the study of the global 
dimension of rings and categories is sometimes 

called syzygy theory (Eilenberg, 1956). The 

homological algebra of commutative Noe- 
therian rings has been studied extensively and 



151 

is useful in algebraic geometry. Since gl dim R 
= sup, gl dim R,,, (R,,, is the +ring of quotients 
relative to m), with m running over the max- 
imal ideals of R, the problem of determining 
gl dim R reduces to the case of tlocal rings. A 
fïnitely generated flat module over a local ring 

R is free. If K denotes the residue fïeld R/m, 
where m is the maximal ideal of the local 
ring R, To?(K, K) has the structure of a 

Hopf algebra (E. F. Assmus, Jr., 1959). De- 
tailed results concerning the Betti numbers 
dimTorf(K, K) of R have been obtained (J. 
Tate, 1957, and others). In particular, R is 
+regular if and only if gl dim R < CO (Serre, 
1955). A local ring R is called a Gorenstein 
ring if the injective dimension of R-module R 
is finite. This is a notion intermediate between 
regular rings and +Macaulay rings (- 284 

Noetherian Rings). 
Consideration of a ring R in relation to a 

subring S leads to relative homological algebra. 

Foundations for this theory were established 
by Hochschild (1956). An exact sequence of 
R-modules that +splits as a sequence of S- 
modules is called an (R, S)-exact sequence. 
An R-module P is called an (R, S)-projective 
module if Hom,(P;) maps any (R, S)-exact 
sequence to an exact sequence. (R, S’)-injective 
modules are defined similarly. Based on these 
notions, Exto,,, and Tor’R*s) are defïned as the 

relative derived functors of Horn, and OR, 
respectively. We also have a relative theory 
from a different viewpoint (S. Takasu, 1957). 

Relative theory is extended to general cate- 
gories from various viewpoints [6,14] (- 
Section Q). 

L. Cohomology Theory for Associative 
Algebras 

Let A be an talgebra over a commutative 

ring K and A a +two-sided A-module. Let 
C” be the module of a11 n-linear mappings 
of A into A called n-cochains (CO = A). De- 

fine the coboundary operator 6”: C~C”+ 

by(W)(4>...,4,+, )=n,f(a*, . . ..A+.)+ 
CL-lYf(Â,, . . . . aiA î+1, . . . . &+I)f 
(-l)““f(>“,, . ,a,)&+,. 

We thus obtain a complex whose coho- 
mology is denoted by H”(A, A) and is called 
the nth Hochschild’s cohomology group of A 
relative to the coefficient module A (Hochs- 
Child, 1945). A cochain f is called normalized if 

f(n,, ,a,) =0 whenever one of the ni is 1. We 
obtain the same cohomology group H”(A, A) 
from the subcomplex of normalized cochains. 

{H”(A, .)) is a cohomological functor from the 
category &/8,, of two-sided h-modules to the 

category ,&Y. Using the enveloping algebra A’ 
=A 0 K A’, where A0 is an anti-isomorphic 
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copy of A, i\cAA cari be identifïed with ,,r.,&’ 

(and kl,,e). If A is K-projective, {H”(A;)} is 
isomorphic to {Exti.(A, .)}. (In [2], H”(A, A) is 
defmed as Extip(A, A) in general.) We have 

H’(A,A)={uEAIÂ~=~~.,V~EA}. Wecall l- 
cocycles derivations (or crossed homomor- 

phisms) of A in A and 1 -coboundaries inner 
derivations. Thus H’(A, A) is the derivation 
class group and is related to the tramification. 

When K is a fïeld, H’(A, .) = 0 if and only if A 
is a tseparable algebra. In general, an alge- 
bra A over a commutative ring K is called a 
separable algebra if A is A’-projective, i.e., if 
Exti,(A, .) = 0 (Auslander and 0. Goldman, 
1960). This is a generalization of the notion of 
+maximally central algebras (Nakayama and 

G. Azumaya, 1948). We have a one-to-one 
correspondence of H’(A, A) to the family of 
algebra extensions of A with kernel A (i.e., K- 
algebras I containing A as a two-sided ideal 

such that T/A =A) satisfying A2 = 0. Any 
extension of an algebra A over a tïeld K such 
that H’(A, .) = 0 splits over a nilpotent kernel 
(J. H. C. Whitehead and G. Hochschild). This 
holds in particular for a separable algebra, and 
we obtain the +Wedderburn-Mal’tsev theorem. 
There are some interpretations of H3(A. A) in 
terms of extensions. 

The supremum (<CO) of n such that 
H”(A, A) # 0 for some A is called the cohomo- 

logical dimension of A and written dim A. For 
a finite-dimensional algebra A over a fïeld K, 

dim A < cû if and only if A/N is separable and 
gl dim A < CO, where N is the +radical of A (N. 
Ikeda, H. Nagao, and Nakayama, 1954). 

The homology groups H,(A, A) of A relative 
to a coefficient module A are detïned similarly. 

If A is K-projective, {H,(A;)} is isomorphic to 
{Tort’(.,A)}. 

M. Cohomology of Groups 

The pair consisting of an algebra A over K 

and an algebra homomorphism E: A-, K is 
called a supplemented algebra [2] (or aug- 
mented algebra [SI), of which E is the augmen- 
tation. The +group algebra Z[C] of a group G 
over the ring of rational integers is a supple- 
mented algebra, in which the augmentation is 

defined by c(x) = 1 (x E G). The category of left 
G-modules is identified with the category of 

left Z[G]-modules. For a fmite group G, a 
finitely generated projective G-module is not 

necessarily free (D. S. Rim, 1959) and is iso- 

morphic to the direct sum of a free module 
and a left ideal of Z[G]. It follows that the 
projective class group of Z[G] is a tïnite group 
(R. G. Swan, 1960). The cohomology groups 
and homology groups of G relative to AE,# 
(Eilenberg and S. MacLane, 1943) are defïned 
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by H”(G, A) = Ext;,,,(Z, A) and H,(G, A) = 
TorZrC1(Z, A), respectively. Their concrete 
deslription is given usually via the Z[G]- 

standard resolution of Z. 
(1) Homogeneous formulation. The group of 

homogeneous n-chains is the free Abelian group 
with basis G x x G (n + 1 times), on which 
G operates by x(x0, , x,) = (xx,,, . . . , xx,), 
and the boundary operator is defined by 
d(x,, . , X”) = CYzo( - 1)’ (x,, , xi, )X”). 

(2) Nonhomogeneous formulation. The group 
of nonhomogeneous n-chains is the Z[G]-free 
module with basis G x x G (n times), and 

the boundary operator is defined by d(x,, 

“‘> x,)=x1(x2 )...) x,)+c;::(-l)i(xl >...) 

XiXi+l>"'r x,)+(-I)“(x ,,..., x,-,).Anon- 

homogeneous 2-cocycle is sometimes called 
a factor set. H’(G, A) is the submodule A’ 
of A consisting of the G-invariant elements, 

while H,(G, A) is the largest residue class 
module A, of A on which G acts trivially. 

Given two groups G and K, an exact sequence 
of group homomorphisms 1 +K+E+G+l is 

called a group extension of G over the kernel 
K. When K is Abelian, the extension canoni- 

cally induces a G-module structure on K, and 
the deviation of K from being a semidirect 
factor of E is measured by a factor set. The 

group H*(G, A) is thus in one-to-one corre- 
spondence with the set of equivalence classes 
of the tgroup extensions of G over A which 
induce the originally given G-module structure 
onA(- 190 Croups N). This point of view is 
essential in the proof of the +Schur-Zassenhaus 
theorem (- 151 Finite Groups). H3(G, A) is 
interpreted as the set of obstructions for exten- 
sions (Eilenberg and MacLane, 1947). For a 

+free group F, H”(F, A) =0 (n> 1). If a group 

G is represented as a factor group F/R of a 
free group F, we have a group extension l+ 
K+E+G+l,whereK=R/[R,R]and E= 

F/[R, R]. Let teH’(G,K) correspond to this 
extension. Then for any G-module A, the cup 

product x-x-5 followed by the pairing 
Hom(K, A) @ K + A provides isomorphisms 
H”(G,Hom(K, A))zH”“(G, A) (n>O) (the cup 
product reduction theorem of Eilenberg and 
MacLane, 1947); similarly, we have the reduc- 

tion theorem for the homology. The Z-algebra 
H(G, Z) = CEo H”(G, Z) under the multipli- 
cation defïned by the cup product is tïnitely 

generated if G is a fmite group (B. B. Venkov, 
1959; L. Evens, 1961). 

The following are mappings relative to a 

subgroup H. 
(1) The inner automorphism by x E G in- 

duces an isomorphism of H”(H, A) and 
H”(xHxml, A) which reduces to the identity 

of H”(G, A) if H = G. Hence if H is a normal - 
subgroup, H”(H, A) has the structure of a G/H- 

module, and similarly for H,(H, A). 
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(2) When H is a normal subgroup of G, the 
mapping (x lr ,x,)-+(xIH, . . . . x,H) of non- 
homogeneous chains induces the inflation 

(or lift) Inf:H”(G/H, AH)+H”(G, A) and the 
deflation Def:H,,(G, A)+H,(G/H, AH). 

(3) The embedding of nonhomogeneous 
chains induces the restriction Res: H”(G, A) 

+H”(H, A) and the injection Inj (or corestric- 
tion Cor):H,,(H, A)+H,,(G, A). The theory of 

tinduced representation gives another con- 
struction of these mappings; that is, if we put 
I~(A)=H~~,~~,(Z[G], A), Res is obtained by 
the isomorphism H”(G, l’(A)) r H”(H, A) com- 
bined with the homomorphism induced by A 

-l’(A); while if we put lG(A)=ZIG] @ zlH,A, 
Inj is obtained by the isomorphism H,(H, A) E 
H,,(G, I~(A)) followed by the homomorphism 

induced by l,(A)+A. 
(4)If(G:H)<co, we have tG(A)gzC(A). 

The composition of H”(H, A)+H”(G,l,(A)) 
+H”(G, A) defines on the cohomology groups 

the Inj:H”(H, A)+H”(G, A), while the compo- 
sition H,(G, A)+H,(G,I’(A))+H,(H, A) gives 
the Res:H,(G, A)+H,(H, A). In particular, 
Res: H,(G, Z)+H,(H, Z) coincides with the 
ttransfer G/[G, G]+H/[H, H]. 

(5) Let H be a normal subgroup of G. 
Consider the additive relation p (the corre- 

spondence) between hEZ”(H, A)’ and fi 
Z”+‘( G/H, AH) determined by p(h, f) if and 
only if there exists a gE C”(G, A) such that h = 
Res y and Inf.f= 6g. If the relation induces a 
homomorphism H”(H, A)‘+H”+‘(G/H, AH), 
then it is called the transgression. If H’(H, A) 
= 0 (0 < i < n), the sequence O+H”(G/H, AH) 
+H”(G, A)+H”(H, A)‘+H”+‘(G/H, AH)+ 

Hn+l(G, A) composed of inflation, restric- 
tion, and transgression mappings is exact 

(Hochschild and Serre, 1953) and is called 
the fundamental exact sequence. This exact 

sequence cari be derived from a certain spec- 
tral sequence H”(G/H, Hq(H, A)) +,H”(G, A) 
(R. C. Lyndon, 1948; Hochschild and Serre, 
1953). 

The relative (co)homology theory relative to 
a subgroup (1. T. Adamson, 1954) cari be dealt 
with in terms of the relative Ext and the rela- 
tive Tor (Hochschild, 1956). Many results in 
the absolute case are generalized to the rela- 
tive case: for example, the fundamental exact 

sequence (Nakayama and Hattori, 1958). The 
relative theory is further generalized to the 

cohomology theory of +Permutation represen- 
tations of G (E. Snapper, 1964). 

Non-Abelian Cohomology. For a non-Abelian 
G-group A, the cohomology “set” H’(G, A) 
(and HO(C, A)) is delïned as in the Abelian case 
by means of the nonhomogeneous cochains 

(- e.g., [9]). Some efforts are being made 
toward the construction of a more general non- 
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Abelian theory (J. Giraud, Cohomologie non 
ubeliénne, Springer, 1971). 

N. Finite Groups 

Let G be a Imite group and A a G-module. 
Define the norm N : A + A by N(a) = ZxeGxa, 
and denote KerN by ,,,A. The kernel of the 

augmentation E: Z [G] + Z is denoted by 1. Put 
I?(G,A)=H”(G,A) (n>O), fi’(G,A)=A’/NA, 
l?‘(G, A)=.A/IA, and fimn(G, A)=H,-,(G, A) 
(n > 1). Then {@(G, .)} forms a cohomological 
functor, called the Tate cohomology (E. Artin 
and J. T. Tate), that cari be described as the set 
of cohomology groups concerning a certain 

complex called a complete free resolution of Z. 
(Similar arguments are valid more generally 
for quasi-Frobenius rings (Nakayama, 1957), 
and a theory of this kind is called complete 
cohomology theory.) We have fi”(G, A)=0 

(n E Z) if and only if h dimzlcl A < 1 (Naka- 
yama, 1957). If A satisftes the conditions (i) 

l?‘(G,, A) = 0 for any Sylow p-subgroup G, 
of G, and (ii) there exists a <E fi’(G, A) such 
that RestEAZ(Gp, A) has the same order as G, 

and generates ah of fi’(G,, A), then the homo- 
morphisms I?“(H, B)+fi”+‘(H, A @B) (FEZ) 
defïned by the cup product with Res 5 are 
isomorphisms for every subgroup H and every 
G-module B such that Tor(A, B)=O (Naka- 

yama, 1957; for B=Z, Tate, 1952). If G is 
cyclic, the mappings fi”(A)+fi”‘2(A) (FEZ) 

dehned by the cup product with a generator 
of fi2(Z) are isomorphisms. (The notation is 

abbreviated by omitting G.) If the orders of 
f?‘(A) and f?‘(A) are finite, their ratio is called 

the Herbrand quotient h(A) of A. If O+ A’+ A 
+A”+0 is exact, then h(A)=h(A’)h(A”). If A is 
finite, then h(A) = 1. By combining these two 

facts we obtain Herbrand’s lemma: If A’ is a G- 
submodule of A of fïnite index and h(A’) exists, 
then h(A) also exists and h(A)=h(A’). The 
periodicity fin(A)= fin+P(A) (FEZ, AE~&) 
holds if and only if every Sylow subgroup is 
cyclic or a tgeneralized quaternion group 
(Artin and Tate; [2]). 

Let L/K be a finite +Galois extension with 
the +Galois group G. The cohomology groups 

of various types of G-modules related to L/K 
are called the Galois cohomology groups (- 
172 Galois Theory). Using continuous cocycles, 

a cohomology theory (Tate cohomology) is 
developed for intïnite Galois extensions as well 
[9,10]. By means of Galois cohomology (- 59 
Class Field Theory), the cohomology theory of 
finite groups and of ttotally disconnected 

compact groups (which are tprofïnite groups) 
plays an important role in class lïeld theory 
and its related areas. 
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0. Cohomology Theory of Lie Algebras 

Let g be a +Lie algebra over a commutative 
ring K, and assume that g is K-free. The +en- 
veloping algebra U = U(g) is a tsupplemented 

algebra over K. For a g-module (= U-module) 
A, Extt(K, A) and Tory(K, A) are called the 
cohomology groups H”(g, A) and homology 
groups H,(g, A), respectively, of g relative to 
the coefficient module A. They are usually 
described by means of the U-free resolution 
U @ AK(g) of K (called the standard com- 
plex of g) constructed by C. Chevalley and 
Eilenberg (1948), where &(g) is the exterior 
algebra of the K-module g and (denoting 
1 @(x,A...~x,) by (xi, . . . ,x,)) the differenti- 

ation is given by 

4x ,,"', x,)= i ( -l)‘+‘xi(x,, . ..> xi, . ..> x,) 
i=l 

+I<C,,,(-l)i+j(Cxi,xjl, x1> ...1 
, \ 

ii, . . , x,, . . , X”). 

Forn>[g:K], H”(g,A)=H,(g,A)=O.Ifgisa 

tsemisimple Lie algebra over a field K of char- 
acteristic 0, we have H’ (g, A) = 0, H2( g, A) = 0, 
while H3(g, K)#O. H’(g, A)=0 is equivalent to 
Weyl’s theorem, which asserts the complete 
reducibility of finite-dimensional representa- 

tions (- 248 Lie Algebras E). H2(g,A) and 
H3(g, A) are interpreted by means of Lie 
algebra extensions as in the cohomology of 

groups. The theorem on +Levi decomposition 
is derived from H2(g, A) = 0. Chevalley and 

Eilenberg constructed this cohomology by 
algebraization of the cohomology of compact 
+Lie groups. They also introduced the notion 
of relative cohomology groups H”(g, 6, A) 
relative to a Lie subalgebra h of g, which cor- 
respond to the cohomology of homogeneous 

spaces. H”(g, h, A) does not always coincide 
with Extbc,),uth)(K, A) (Hochschild, 1956), but 
does SO in an important case where K is a field 
of characteristic 0 and b is treductive in g (- 

248 Lie Algebras). 
For ttransformation spaces of tlinear alge- 

brait groups G over a field K, the rational 
cohomology groups are introduced using the 
notion of rational injectivity (Hochschild, 
1961). In particular, if G is a Qnipotent alge- 
brait group over a tïeld K of characteristic 0, 
then H(G, A) is isomorphic to H(g, A), where g 
is the Lie algebra of G. There is also a relative 

theory. 

P. Amitsur Cohomology 

Let R be a commutative ring, and F a co- 
variant functor from the category ?ZR of com- 
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mutative R-algebras to the category of Abelian 
groups. For SE ‘e, and n = 0, 1,2, , we Write 
S(“) = S @ . . .@ S (n-fold tensor product over 

R). Let&i:S(“‘1)~S(n’2)(i=0,1,...,n+1)be 
Ce,-morphisms detïned by ei(xO @ 0 x,) = 

x0 @ . . 0 xi-i @ 1 @xi @Q . . . 0 x,. Delïning 
d”:F(S(“+‘))+F(S(“+2)) by d”=C;:;(-l)‘F(a,), 
we obtain a cochain complex {F@“+i)), d”}. 
This complex and its cohomology groups are 

called the Amitsur complex and the Amitsur 
cohomology groups, and are usually denoted 
by C(S/R, F) and H”(S/R, F), respectively. 

If SIR is a lïnite Galois extension with 
Galois group G, then the group H”(S/R, U) 
of the unit group functor U is naturally iso- 
morphic to H”(G, U(S)). If SIR is a finite pure- 
ly inseparable extension, then H”(S/R, U) =0 
for n 2 3. The group H’(S/R, U) is related to 
the tBrauer group B(S/R) (- 29 Associative 

Algebras K). 

Q. Relative Theory 

In the course of the development of homolog- 
ical algebra, it has been recognized that the 
notion of projective (resp. injective) resolutions 
should be generalized ([14,4]; Hochschild, 
1956). In the meantime, a method has been 
introduced that utilizes simplicial abjects in 
order to delïne the derived functor of an arbi- 
trary functor with Abelian category as its range 
([15,17]; J. Beck, 1967). As a consequence of 

these developments, there emerged a view- 
point, which we describe below, making it 
possible to unify various known definitions of 

(co-)homology theories that has been designed 
for particular cases. 

Let d be a category and 9 a class of ob- 

jects in &. In this section, we denote the 
set Hom,d(A, B) of morphisms by d(A, B). 
A morphism ,f: A+B in &’ is called a y- 
epimorphism if the induced mapping &(P,f) 
(= Hom(P,f)):&‘(P, A)+&(I’, B) is surjective 

for any PE UP. The class .S’ is called a projective 
class in d if there exist an abject PEY and a 
YP-epimorphism f: P-t A for each abject AE d. 
TO any category ~2, we associate a preaddi- 
tive category Zd, adding a zero abject to d if 

necessary: Put ObZd = Obd, Zd(A, B) = free 
Abelian group generated by the set &(A, B). a2 
is regarded as a subcategory of Zd by the 
natural inclusion J:&+Zd. Any functor T 
from d into an Abelian category !?8 has a 

unique additive extension T: Zd+.G? such 
that T= FJ. If & is an additive category, 
there is a canonical projection O:Zd-+d 
such that BJ = Id. If furthermore T is additive, 

then T= TO. 
Now suppose that a projective class .y in d 

is given. For AE~, an augmented chain com- 
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$ex X.-t A in Zd, 

+X,,b=Xn/...!%X$A, didi+, =O, 

is called a Y-projective resolution of A if(i) 
X,E~ (n>O), and (ii) it is Sacyclic (i.e., the 

sequence 

~z~(P,x”)b:z~d(P,X,~l)~... 

rf;Z&‘(P, X,) rf=Z,zZ(P, A)+0 

is exact for any PEY [16]). Note that the 
y-acyclicity in this case implies the existence 
of a contracting homotopy 

h,:Z.d(P, X,)-+Z4P, X.+1), 

na-l,Xm,=A, 

satisfying d,+i h, + h,-, d, = 1. 
Comparison theorem: Given two %y- 

projective resolutions X. + A and Y. -+ A, we 
have that the chain complexes X, and Y. are 
chain equivalent in Zd. 

Let T:&‘-93 be a (covariant) functor with % 
an Abelian category. The nth left derived func- 

tor L,T:&+B (naO) of T, with respect to 
OP, is delïned by L, T(A) = H,,( TX.) for a UP- 

projective resolution X.+ A. The derived func- 
tors L, T Will remain unaffected if we replace 
the projective class 9 by its enlargement @= 
{abjects in B together with their retracts}. 

We cari easily verify that (i) L, T(P)= T(P) 
and L,T(P)=O (n>O) for PEYP, and (ii) a 
short exact sequence O-T’+ T-+ T”-0 of 
functors : .d +.%’ induces a long exact sequence 

of derived functors 

-+L,T”+O. 

If SS! is preadditive and has a zero abject 
and kernels, then it is routine to give a y- 
projective resolution of any abject. If d has 
lïnite tlimits (i.e., tlïnite products and tequal- 
izers), it cari be proved that there exists a 
y-projective resolution for any abject [ 173. 

There is a standard functorial construction 

which provides canonically a projective class 
UP in a category .d and a YP-projective reso- 

lution of any abject in d. Let (G, E, 6) be a 
cotriple (or comonad [ 1 S] or functor coalge- 

bra) in d. Here G:d-+d is an endofunctor, 
E: G-Id and 6: G+G* = GG are natural trans- 
formations such that GE o 6 = EG o 6 = 1 e and 
Gfi o 6 = 6G o 6. A cotriple cornes usually from 
a pair (F, U) oftadjoint functors U:&+W, 
F:%?-+.c4 with natural bijection À:.d(F(C), A) 
5%(C, U(A)). Putting G=FU:.d+d, E(A)= 
/1-‘(l,,,,):FU(A)+A, r/(C)=Â(l&:C+ 
UF(C), we have a cotriple (G = FG, E, 6 = FqU) 

in &. Conversely, it is known that any cotri- 

ple in d is induced from a suitable pair of 
adjoint functors. 
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Given a cotriple (G, E, 6) in .d, we delïne a 
projective class YG = {G(A) 1 AEJZZ} (or its 
enlargement $c) in .d, and an augmented 

simplicial abject G,(A)+.4 for any abject A as 
follows. Put G,(A)= C”+l(A) (n>O), ai=$= 
Gi~Gn-i(A):G,(A)+Gnm,(A) (face operator) 
and 6i=&‘=GiGG”-‘(A):Gn(A)+Gn+,(A)(de- 
generacy operator) for 0 <i < n, G-,(A) = A. 
Then G,(A)-+A gives rise to a Upc (or equiva- 
lently &Pc)-projective resolution of A in Zd 
with differentials d, = C&( - l)‘Z,. This is 
the bar resolution (or standard resolution) 
in a generalized sense, and there are many 

(co-)homology theories delïned by means of 
such constructions. 

Most of the above defmitions and construc- 
tions cari be dualized SO as to give injective 

classes 3, Y-injective resolutions, and right 
derived functors with respect to Y, triples (or 
manads), etc. (See also [ 191 for generalized 
(co-)homology). 
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Homology Theory 

A. History 

Homology theory is the oldest and most ex- 
tensively developed portion of talgebraic to- 
pology. Historically, it started with measuring 

the higher-dimensional connectivity of a space 
in the sense that the 0-dimensional connectiv- 
ity is the number of tconnected components of 
the space. For example, take a +2-sphere S2 
and a +2-torus T2. Then T2 is distinguished 
from S* by the fact that on T2 a closed curve 

cari be drawn without forming a boundary, 
while this is not true for S2. In fact, a curve (ci 
or c’, in Fig. 1) cari be drawn on T2 SO that it 

does not form a boundary of an embedded 2- 
disk. On more complicated +Surfaces there are 
many kinds of such closed curves. The maxi- 
mum number of such closed curves is the l- 
dimensional connectivity of the surface; this is 
a topological property of the surface. For 
example, the 1 -dimensional connectivity of S2 

is 0, that of T2 is 2, and that of the surface in 
Fig. 2 is 6. A more general consideration of the 

bounding properties of q-dimensional tclosed 
submanifolds of a manifold led E. Betti (Ann. 
Mat. Pure Appl., 4 (1871)) to introduce the 

notion of the q-dimensional connectivity of the 
manifold, which was a precursor of homology 

theory. 

e d c, 
Fig. 1 

Fig. 2 

The foundation of homology theory was 

laid by +H. Poincaré [l]. He started his study 

of homology with analytic treatment of mani- 
folds, which led to a series of complications. 
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Poincaré then introduced a new method for 
the study, now called tcombinatorial topology: 
He decomposed the manifold into elementary 
pieces or tcells, which adjoin one another in 
a regular fashion; he then substituted the 
algebraic notions of +Cycles and tboundary 
operators for the geometrical notions of closed 
submanifolds and boundaries. Thereby the 

notion of homology groups acquired an exact 
logical meaning, and the fundamental for- 
mulas, which are now called Poincaré for- 

mulas, were proved. 
After Poincaré, much of the development of 

homology theory centered around the ques- 
tion of the topological invariance of homology 

groups, that is, the independence of the ho- 
mology groups on the choice of tcellular de- 
composition. Through the development of 
+simplicial complexes and their techniques, 
J. W. Alexander (Trans. Amer. Math. Soc., 28 

(1926)) gave the fïrst fully satisfactory proof for 
topological invariance of the homology groups 
of tpolyhedra. In those days, the homology 
groups themselves were barely recognized; 
instead, one dealt with numerical invariants 
such as the tBetti numbers and the ttorsion 
coefficients [2,3]. 

During the period 1925-1935 there was a 
gradua1 shift of interest from the numerical 
invariants to the homology groups themselves, 
and homology theory developed intensively 
[4,5]. S. Lefschetz (Trans. Amer. Math. Soc., 28 

(1926)) added the theory of the tintersection 
products to the homology of manifolds. He 
also invented trelative homology theory (Proc. 
Nat. Acad. Sci. US, 13 (1927)) and generalized 
the tduality theorems of Poincaré and Alex- 
ander (ibid., 15 (1929)). G. de Rham (J. Math. 
Pures Appl., 10 (1931)) obtained a duality 

theorem that relates the texterior differential 
forms in a manifold to the homology groups of 

the manifold. L. S. Pontryagin (Ann. Math., 
(2) 35 (1934)) proved the complete group- 

invariant form of the Alexander duality theo- 
rem. These duality theorems seemed to reflect 

the existence of a theory dual to homology 
theory, and the genesis of this dual theory, 
now called tcohomology, occurred in 1935, in 
the work of Alexander and A. N. Kolmo- 
gorov. It was discovered subsequently by 
Alexander (Ann. Math., (2) 37 (1936)), E. Lech 
(ibid.), and H. Whitney (ibid., 39 (1938)) that 
the cohomology of a polyhedron cari be made 
into a ring. 

On the other hand, after L. Vietoris (Math. 
Ann., 97 (1927)) and P. S. Aleksandrov (Ann. 
MA., (2) 30 (1928)), many devices were inven- 

ted to extend the homology theory of poly- 

hedra to general +topological spaces, and 
numerous variants of homology theory ap- 
peared at the hands of Lech (1932), Lefschetz 
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(1933), Alexander (1935), and Kolmogorov 
(1936). This development served to clarify the 
relations between combinatorial and set- 

theoretic methods in topology (- 426 Topol- 
ogy), whereas it produced complexity and 
confusion in homology theory [6]. S. Eilen- 
berg and N. E. Steenrod (Proc. Nut. Acud. Sci. 
US, 31 (1945) and [7]) cleared the air by treat- 

ing homology axiomatically. 
Roughly speaking, a homology theory as- 

signs +Abelian groups to ttopological spaces 
and thomomorphisms to tcontinuous map- 
pings of one space to another. In this way, a 
homology theory is an algebraic image of 
topology; it converts topological problems to 
algebraic problems. Starting from this view- 
point, Eilenberg and Steenrod selected some 

fundamental properties as axioms to charac- 
terize homology theory. This unified homol- 
ogy theories and allowed systematic treatment 

of homological problems which had previ- 
ously been done separately “by hand” in each 
case. Moreover, it motivated the birth of a 
new branch of mathematics, called thomo- 
logical algebra. 

B. Homology of Chain Complexes 

A chain complex C = {C,, O,} is a collection of 
(additive) Abelian groups C,, one for each 
integer q, and of homomorphisms a4 : C,-t C,-, 

such that a4 o a,,, = 0 for each q. Elements of 
C, are called q-chains of C, and a4 is called the 
boundary operator. A subcomplex C’ = {Ci, 8;) 
of C is a chain complex such that Ci c C, and 
0: = d, 1 Ci for each q. 

The tkernel of a4 is denoted by Z,(C), and its 
element is called a q-cycle of C. The tirnage of 

a4+, is denoted by B,(C), and its element is 
called a q-boundary of C. The relation a4 o a4+1 

= 0 implies B,(C) c Z,(C). The tquotient group 
Z,(C)/B,(C) is denoted by H,(C), the qth ho- 
mology group of C. Elements of H,(C) are 
called q-dimensional homology classes of C. 

Two cycles representing the same homology 
class are said to be homologous. The tdirect 
sum C,&(C) is denoted by H,(C) and is 
called the homology group of C. 

If C = {C,, 3,) and C’= {Ci, 8;) are chain 
complexes, a chain mapping (chain map) cp : C 
+C’ is a sequence of homomorphisms ‘~4: C, 
+Ci such that 3; o <p4 = <p4m1 o 3, for each q. If 

p : C-C’ is a chain mapping, then <p4 sends 
Z,(C) to Z,(C’) and B,(C) to B,(C’), and hence 
<p induces a homomorphism of H,(C) to 

Hq(C’). 
If H,(C) is Qïnitely generated, it cari be de- 

composed into the direct sum of a free Abelian 
group B,(C) and a fïnite Abelian group T,(C). 
B,(C) and T,(C) are called the qth Betti group 
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of C and the qth torsion group of C, respec- 
tively. The trank p4 of B,(C) is called the qth 
Betti number of C. T’,(C) is isomorphic to the 

direct sum of t(q) finite cyclic groups of orders 
07, 02, , OP,,,, where 0; > 1 and Of divides OF+, 

for i = 1, . , z(q) - 1 (- 2 Abelian Croups). The 
numbers OP, @, , O& are called the qth tor- 
sion coefficients of C. 

If H,(C) is lïnitely generated, then the num- 
ber x(C) = &( - l)¶p, is called the Euler num- 
ber, the Euler cbaracteristic, or the Euler- 
Poincaré cbaracteristic of C. In this case a 

+polynomial C, p4 tq with variable t is called 
the Poincaré polynomial of C. 

Let C be a chain complex such that, for each 
q, C, is a tfree Abelian group of lïnite +rank. 
Then the qth Betti number and the qth torsion 
coefficients are well defined for each q. Denote 
the ranks of C, and B,(C) by c(~ and p,, respec- 
tively. Then it holds that p4 = c(~ - flq - bqml, 
and hence x(C) = C,( -~PU,. (Euler-Poincaré 
formula). Moreover, there exists a set of bases, 
one for each C,, with the following properties: 

For each y, the base for C, is composed of 
lïve types of elements, a: (1 < i d 8, - r,), bj 
(l~i~r,),c,e(l~i~p~),dp(l~igt,-,),ande,p 
(1 <i</3,-, -tqml); aq satislïes aaF=O, abp=O, 
8,: = 0, ad; = Oi4-i bp-‘, and &,Y = a!-‘. Such a 
set of bases is called the canonical basis of C. 

Let C be a chain complex such that each C, 

is a free Abelian group with a given base {ci”}. 
Then the incidence number [a:: a;P-‘1 E Z is 
delïned by aq(~~)=~j[o~:aj4~1]~~-1. This 
notion was commonly used in the early days 

of topo1ogy. 

C. Homology of Simplicial Complexes 

Let K be a tsimplicial complex. An oriented q- 
simplex (r of K is a q-simplex SE K together 
with an equivalence class of +total orderings of 
the vertices of S, two orderings being equiva- 
lent if they differ by an even permutation of 
the vertices. If a,, , a4 are the vertices of s, 

then [a,, a,, . . , a,] denotes the oriented q- 
simplex of K consisting of the simplex s to- 

gether with the equivalence class of the order- 
ing a, <a1 < , < a4 of its vertices. For every 

vertex a of K there is a unique oriented O- 
simplex [a], and to every q-simplex with q à 
1 there correspond exactly two oriented q- 
simplexes, which are said to be opposites of 
one another. 

Let C,(K) denote the Abelian group 
generated by the oriented q-simplexes of K 

with the relations o + 0 = 0 if o’ is the oppo- 
site of <T. If we choose an oriented q-simplex 
0,” for each q-simplex SP of K, then each 

element of C,(K) is written uniquely as a 
finite sum Cigi@ with integers gi #O, and 
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C,(K) is a free Abelian group generated by 
the set {OF}. We delïne a homomorphism 

~,:~,(K)-c,-,(K) by aqCa,,a,,...,~,7= 
x&( -l)‘[a,, ,~~~~,a~+~, . ,aq]. Then 
cqoaq+l- - 0 holds, and we have a chain com- 

plex C(K) = {C,(K), a,} (C,(K) = {O> if q < 01, 
called the (oriented) simplicial chain complex. 
The homology group H,(C(K)) is denoted by 
H,(K) and is called the (integral) homology 
group of the simplicial complex K. 

Let K, and K, be simplicial complexes, and 

let ,j”: K, + K, be a tsimplicial mapping. Then 
for each q, a homomorphism ,f,,: C,(K,)+ 

C,(K,) cari be defmed byf~q([ao,ul, . . ..a.])= 
[f(u,),f(a,), ,f(u,)], where the right-hand 
side is understood to be 0 if f(a,), f(u,), , 
f(a,) are not distinct. The sequence & = {f#,} 
is a chain mapping of C(K,) to C(K,), and it 

induces a homomorphismf,:H,(K,)~H,(K,). 
If K is a +lïnite simplicial complex, then the 

Betti numbers, the torsion coefficients, and the 
Euler characteristic of K are delïned to be 
those for the chain complex C(K). 

Let K, and K, be a subcomplexes of a sim- 
plicial complex K. Then we have the follow- 
ing texact sequence which relates the homol- 

ogy group of K, U K, to the homology groups 
ofK,, K,,and K,flK,:...~Hq(K,flK,)~ 

H,V$)+HqW$H,K W-;H,-,K f- 
K*)+... , where ~1, fi, and 8, are defïned as 
follows. Let i,:K, flK2+K, andj,:K,jK, U 
K, (I = 1,2) be inclusion mappings; then cc(u) = 

(il.(4 -Ma)) and B(~l,~,)=~l~(~l)+~2*(~2). 
If z=ci fc, (c[EC(K~)) is a cycle of C(K, U K,) 
then o’(c,) = - a(c,) is a cycle of C(K, n K,); 8, 
sends the homology class of z to the homol- 
ogy class of a(c,). The sequence is called the 

Mayer-Vietoris exact sequence of the couple 

{K,, K2}, and 8, is referred to as the connect- 
ing homomorphism. The prototype of the 
Mayer-Vietoris exact sequence was obtained 
by W. Mayer (Monatsh. Math. Phys., 36 (1929)) 
and L. Vietoris (ibid., 37 (1930)). The present 
form is due to Eilenberg and Steenrod [l]. 

D. Homology of Polyhedra 

If K is a kimplicial complex and K’ is a tsub- 
division of K, then there exists a canonical 
isomorphism H,(K) z H,(K’). This proves that 
if K, and K, are tsimplicial decompositions of 
a tpolyhedron then H,( K i) and H,(K,) are 
isomorphic, because there exists a common 
subdivision of K, and K,. Thus we may de- 
fine the (integral) homology groups H,(X) of 
a polyhedron X to be the homology group 
H,(K) of a simplicial decomposition K of X. 

Let X and Y be polyhedra, and let ,f:X-+ Y 
be a continuous mapping. Take a tsimplicial 
approximation <p : K +L off: Then a homo- 
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morphism of H,(X) to H,(Y) given by the 
induced homomorphism ‘p* : H,(K)+H,(L) is 
independent of the choice of <p, and is denoted 
by f,. The following properties hold: (i) l* 
= 1: H,(X)+H,(X), where 1 is the identity; (ii) 
If ,f:X+ Y and g: Y-t2 are continuous map- 

piw, then (sof),=g*of,:H,(X)~H,(Z); 
(iii) If ,J f’: X+ Y are homotopic, then f, = 
fi : H,(X)+ H,( Y). These imply the homo- 

topy invariance of the homology group stated as 
follows: If X and Y are polyhedra which are 

thomotopy equivalent, then H,(X) and H,(Y) 
are isomorphic. Specifically, the homology 
group is a topological invariant. Thus if X is 
a ttriangulable space (for example, if X is a 
tdifferentiable manifold), then its homology 
group H,(X) cari be defined to be the homol- 
ogy group H,(K), where (K, t) is a ttriangu- 

lation of X. This homology group is referred 
to as the simplicial homology group of X. 
Similarly, if X is a compact triangulable space, 
the Betti numbers p,(X) of X, etc. cari be de- 
lïned to be those for the chain complex C(K). 

If we denote by pt a single point, then H,,(pt) 
= Z (the group of integers) and H,(pt) = 0 if 

q#O. For an n-sphere S”, a 2-torus T’, and a 
treal projective plane P*, the homology groups 

cari be computed as follows by means of their 
triangulations: (1) H,(s”) g HJS”) r Z, and 

H&S")=O ifq#O, n;(2)Ho(T2)gH,(T2)gZ, 
H,(T')gZ+Z, and H&T’)=0 if q#O, 1,2; 
(3) Ho(P2)~Z,H,(P2)gZ2, and H,(P’)=O if 
q #O, 1, where Z, = 2122. 

Two surfaces are homeomorphic if and only 
if their integral homology groups are isomor- 

phic (- 410 Surfaces). 

E. Singular Homology 

There are various devices for defining ho- 
mology groups of general topological spaces. 
A familiar one is the singular homology theory 

initiated by S. Lefschetz (Bull. Amer. Math. 
Soc., 39 (1933)) and improved by S. Eilenberg 
(Ann. Math., (2) 45 (1944)). 

The standard q-simplex is the convex set 
A4~R4+’ consisting of ah (qf 1)-tuples (t,,t,, 

..‘, tY) of real numbers with ti 2 0, t, + t, + 
+ t, = 1. Any continuous mapping of A4 to 

a topological space X is called a singular q- 
simplex in X. The ith face of a singular q- 

simplex (r: A¶+X is the singular (q - 1)simplex 
0 o Es: Aq-’ +X, where the linear embedding 
~~:A~-‘~A~isdefinedby~~(t,,...,t~~,,t,+~, 

t “‘> q )=(to, . . . , ti-,,O, ti+,, . ..) fq). 
For each integer q, let S,(X) denote the free 

Abelian group generated by the singular q- 
simplexes in X (S,(X) = 0 if y < 0), and detïne a 
homomorphism a,:S,(X)+S,-i(X) by a,(~)= 
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J$y=,( -l)‘ao~,. Then we have a chain com- 
plex S(X) = {S,(X), a,}, called the singular chain 
complex of X. The homology group H,(S(X)) 
is denoted by H,(X) and is called the integral 

singular homology group of the topological 
space X. 

Given a continuous mapping ,f: Xj Y, a 

chain mapping f, : S(X)-tS( Y) is delïned by 
sending each singular simplex (r: A4dX to the 
singular simplex fo o: A4* Y, and it induces 
the homomorphism f, : H,(X)+ H,( Y). The 

properties (i), (ii), (iii) off, in Section D hold 
for continuous mappings of topological spaces, 
and hence the singular homology group is a 
homotopy invariant. 

The homology group H,(K) of a simplicial 
complex K is isomorphic to the singular ho- 
mology group H,( 1 K 1) of the polyhedron 1 K 1. 

Therefore the simplicial homology group of a 
triangulable space is isomorphic to the sin- 
gular homology group of the space. 

If {Xi} is the set of tarcwise connected com- 
ponents of a topological space X, then H,(X) 
g Ci H,(Xi). If X is arcwise connected, then 
H,(X)? Z. If {A,} is the collection of all the 

compact subsets of X directed by inclusion, 
then H,(X) is isomorphic to the tinductive 
limit li$ H*(A,). It is not true that there is a 
Mayer-Vietoris sequence in singular homology 

for any couple {X, , X,} of subsets of X. How- 
ever, for certain couples {Xi, X,}, there is a 

M$yer-Vietoris exact sequence of {Xi, X,} : 
. . ..H.(X, nX,)sH,(X,)+ H,(X&H,(X, U 

X2)~Hq~l(XlnX,)%.... Forexample, this 
holds if X = Int X, U Int X,, where Int denotes 
the tinterior. 

Let c:X+pt be the mapping of a topolog- 
ical space to a single point. Then the kernel 
of c* : H,(X)+ H,(pt) is denoted by fi,(X) 
and is called the reduced homology group of 
X. It holds that H,(X)gfi,(X)+ H,(pt). 

Regard the +Suspension SX as the union of 
two copies of the tcone over X. Then the 

connecting homomorphism in the Meyer- 
Vietoris sequence gives an isomorphism 
&(SX) s %-i(X) for any q. The inverse of 
this isomorphism is called the suspension iso- 

morphism for homology. 
Let M be a +C”-manifold. A C”%ingular q- 

simplex in M is a singular q-simplex 0: Aq% M 
such that 0 extends to a C”-mapping from an 
open neighborhood of A4 in {(t,, t,, . . ..QE 
Rqfl)tO+t,+...+fq=l}toM.Thetotality 
of C”-singular simplexes in M generates a 

subcomplex of S(M), denoted by S”(M). The 
inclusion S”(M) c S(M) induces an isomor- 
phism H*@“(M))= H,(M). 

Let M be an n-dimensional ttopological 
manifold. Then H,(M) = 0 unless 0 < q d n, and 

H,(M) is iïnitely generated if M is compact. 
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F. Homology of CW Complexes 

Homology theory is tractable in the category 
of +CW complexes by virtue of the facts stated 
below. 

Let X be a topological space and A its sub- 
set. Then we denote by X/A the quotient space 
obtained from X by shrinking A to a point, 
understanding X/@ to be the disjoint union 
X U pt, If X,, X, are tsubcomplexes of a CW 

complex, then the Mayer-Vietoris exact se- 
quence of {Xi, X,} and the excision isomor- 
phism i, : H, (X,/(X, n X,)) g H,((X, U X,)/X,) 
(i: inclusion) are valid. If A is a subcomplex of 
a CW complex X, then we have the following 
reduced homology exact sequence of (X, A):. 

PHq(A)I:Hq(~)Ift~q(X/A)a;%-,(A)~..., 
where i, and j, are induced by the inclusion 
i: A-+X and the collapsing j:X+X/A, and 
3, is given by a commutative diagram 

E~,(x/A)~H,~,(A) 
-p* -1s 

H,(X; CA)!%$SA). 

Here CA is the cane over A, S is the sus- 
pension isomorphism, and h : X U CA +(X U 
CA)/CA=X/A and h’:XUCA-(XUCA)/X= 

SA are collapsings. More generally, if A, B 
are subcomplexes of a CW complex X and 

A 3 B, then we have the following reduced 
homology exact sequence of (X, A, B) : .fZ 

~~(A/B)“E~,(~/B)~;~(~/A)~~~~~(A/B)I; 
. Furthermore, the homology group H,(X) 

of a CW complex X cari be computed in the 
following manner. 

Let X4 denote the q-skeleton of X, i.e., 

the union of a11 cells of dimensions <q. Put 
C,(X) = $(X4/X4-‘), and let a4: C,(X)+ 
C,-,(X) be the connecting homomorphism 
a,:~q(Xq/Xq-l)~~q_,(Xq~l/Xq~Z) in the re- 

duced homology exact sequence of (X4, X4-‘, 
X4-*). Then C(X) = {C,(X), a,} is a chain com- 
plex such that C,(X) is a free Abelian group 
with one generator for each y-cell of X. If X is 
a polyhedron 1 K 1, then C(X) coincides with 
the simplicial chain complex C(K). The ho- 

mology group H,(C(K)) is called the cellular 
homology group of the CW complex X. This is 

isomorphic to the singular homology group 

f&(X). 
Since a CW decomposition frequently re- 

quires fewer cells than a simplicial decompo- 

sition, the cellular homology groups are use- 
fui in calculating the homology groups. For 
example, the tcomplex n-dimensional projec- 
tive space CP” has a CW decomposition with 
a single 2i-ce11 for each i = 0, 1, , n, and hence 
we see immediately that H,(CP”) E Z if q = 2i 

(0 d i d n) and = 0 otherwise. 
If X is a tïnite CW complex and c(~ denotes 
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the number of q-cells of X, then we have the 
Euler-Poincaré formula x(X) = &( -1)4c(,. In 
particular, if X is homeomorphic to S2 then we 
have the Euler theorem on polyhedra: Q - c(, + 
Y(~ = 2. This was the lïrst important result in 
topology (L. Euler, 1752). 

G. Homology with Coefficients in Abelian 
Groups 

Given a chain complex C and an Abelian 
group G, we have a new chain complex C 0 G 
given by (C 0 G)q = C, 0 G and a,(c @ g)= 
c?,c @ g (CE C,, gE G), where 0 is the ttensor 
product of Abelian groups. For a topological 
space X, the homology group of the chain 
complex S(X) @ G is denoted by H,(X; G) and 

is called the singular homology group of X 
with coefficients in G. The homology group 
H,(K; G) of a simplicial complex K with coeffï- 

cients in G and the cellular homology group 
H,(C(X); G) of a CW complex X with coeffi- 
cients in G are similarly delïned. The ho- 
mology group with coefficients in Z is the 
integral homology group. 

The previous results for the integral ho- 
mology groups generalize in a straightforward 
fashion to homology groups with coefficients 
in G. 

We have the homomorphism K: H,(X) @ 
G+H,(X; G) sending ~@~EH,(X)@ G to the 

homology class of z @ gEZ,(S(X) @ G), where 
z is a representative cycle of a. The follow- 
ing theorem is known as the universal coeffi- 

cient theorem for homology, since it expresses 
H,(X; G) in terms of H,(X), H,-,(X), and G: 
There is an exact sequence O+H,(X) @ G$ 
H,(X; G)+Tor(H,-i(X), G)-0, and this se- 
quence is split (- 200 Homological Algebra). 
Universal coefficient theorems of this type 

were first shown by S. Eilenberg and S. Mac- 
Lane (Ann. Math., (2) 43 (1942)). 

Let A be a tring with a unit 1. Then a chain 
complex over A is a chain complex C such that 
each C, is a +A-module and each i3q is a +A- 

homomorphism. The homology groups H,(C) 
of a chain complex C over A are A-modules. If 
C is a chain complex, C @ A forms naturally a 
chain complex over A. In particular, if X is a 
topological space, then S(X) @ A is a chain 
complex over A, and H,(X; A) are A-modules. 
In this case, the induced homomorphisms 
f, : H,(X; A)+ H,( Y; A) are A-homomorphisms. 
The homology groups with coefficients in a 

field k are tvector spaces over k and are useful 
in applications. If H,(X) is lïnitely generated, 

then x(X) = C,( -1)4dimk H,(X; k) holds for 
any tïeld k. 
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H. Cohomology 

A cochain complex C = { Cq, 84) is a collection 
of Abelian groups Cq, one for each integer q, 
and of homomorphisms a4 : Cq+ Cqtl such 

that fi4+’ o P=O. Elements of Cq are called q- 
cochains, and hq is called the coboundary 
operator. The notions of subcomplex of a co- 
chain complex, cocycle, coboundary, coho- 
mology group, and cochain mapping are de- 
lïned as in chain complex. Let Hom(A, B) 

denote the tgroup of homomorphisms from an 
Abelian group A to an Abelian group B. Given 
a chain complex C and an Abelian group G, a 

cochain Complex C* = Hom(C, G) is defïned 
by Cq=Hom(C,, G) and (6qu)(c)=u(~q+1c) 
(uECq,CECq+J. 

For a topological space X, the cochain 
complex Hom(S(X), G) is called the singular 
cochain complex of X with coefficients in G, 
and elements of Hom(S,(X), G) are called 
singular q-cochains of X. The cohomology 
group of Hom(S(X), G) is denoted by H*(X; G) 

and is called the singular cohomology group of 
X with coefficients in G. We Write H*(X) for 
H*(X; Z); this is called the integral cohomol- 
ogy group of X. Similarly, the cohomology 

group H*(K; G) of a simplicial complex K 
with coefficients in G and the cellular coho- 
mology group H*(C(X); G) of a CW complex 
X with coefficients in G are defmed. There are 
isomorphisms H*(K; G)zH*(IKI;G) and 
H*(C(X); G)gH*(X; G). 

If j: X+ Y is a continuous mapping, then a 
cochain map ,f# : Hom(S( Y), G)+Hom(S(X), 
G)is defïned by (f#~)(c)=u(f#c) with UE 

Hom(S,( Y), G) and CG~,(X). Therefore f in- 
duces the homomorphism f* : H*( Y; G)+ 

H*(X; G). The following properties hold: (i) 
l*= 1; (ii) (gof)*=f*og*; (iii) Iffandf’ are 
homotopic, then f* =f’*. In particular, the 

singular cohomology groups are homotopy 
invariants. -i‘he tcokernel of c*: H*(pt; G)+ 

H*(X; G) induced by the mapping c : X +pt 
is denoted by R*(X; G) and is called the re- 

duced cohomology group of X. 
For (EH~(~; G) and ~EH,(X), the Kro- 

necker index (5, a) E G is defïned naturally in 

terms of representatives of 5 and a. We have 
the following universal coefficient theorem for 
cohomology: There is an exact sequence O+ 
Ext(H,-,(X), G)+Hq(X; G)$Hom(H,(X), G)+ 
0, and this sequence is split, where K is given 
by the Kronecker index (- 200 Homological 
Algebra). 

If A is a ring with 1, then a cochain complex 
over A is defïned analogously to a chain com- 

plex over A. The singular cochain complex 
Hom(S(X), A) forms naturally a cochain com- 
plex over A, and Hq(X; A) are A-modules. For 
5 E Hq(X; A) and a E H,(X; A), the Kronecker 
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index (5, a) E A is defïned naturally. If k is 
a tïeld, then the vector spaces Hq(X; k) are 

identified with the dual space of H,(X, k) by 

means of the Kronecker index. 
If M is a C”-manifold, then there is a co- 

chain complex CD(M)= {aq(M),d} over the 
iïeld R of real numbers, where Zlq(M) is the 
real vector space consisting of the tdifferen- 
tial forms of degree q on M, and d: Dq(M)-+ 
aq+l (M) is the texterior differentiation. The 
cochain complex D(M) is called the de Rham 
complex of M, and its cohomology group 
H*(a(M)) is called the de Rham cohomology 
group of M. A cochain mapping 9: D(M)+ 
Hom(P’(M), R) is defmed by 

V(4)(4= c cJ*w, 
Jaq 

where OE Dq(M), c: Aq% M is a C” singular q- 
simplex in M, and o*w denotes the tpullback 
of o by CT. We have isomorphisms 

H*(B(M))~H*(Hom(S”(M),R))&H*(M;R), - 

where i* is induced by the inclusion Y(M) c 
S(M). This result is called the de Rham theo- 
rem on the cohomology of manifolds (- 105 

Differentiable Manifolds). 

1. Cohomology Rings 

Given a topological space X and a ring A, the 
cup product u - UE Hom(S,,+,(X), A) of co- 

chains u E Hom(S,(X), A) and UE Horn@,(X), A) 
is defïned by (u-v)(~)=u(cJoE)u((ToE’), where 
<T: Apfq-tX is a singular (p + q)-simplex, E: AP+ 
Aptq and &:Aq+APfq are given by E(t,,, t,, 
“‘Y fp) =(b, t, , , t,,, 0, . ,O), ad Q$,, t,+l, 

, t,,,) = (0, ,O, t,, t,,, , . . , t,,,). The prod- 
uct operation is bilinear, and the formula 
6(u - v) = 6u - u + ( - l)Pu ti 60 holds. There- 
fore it gives rise to the cup product <ti VE 
Hptq(X; A) of cohomology classes 5 E HP(X; A) 
and q E Hq(X; A). This cup product operation 
makes H*(X; A) into a ring, which is called 
the singular cohomology ring of X with coeff% 
cients in A. If A has 1, the cohomology class 
represented by the 0-cocycle taking the value 
1 on each singular O-simplex serves as 1 of 

H*(X; A). If A is commutative, then &= 

( - l)Pqqc holds. The induced homomorphism 
f*: H*( Y; A)+H*(X; A) preserves the prod- 
uct, and hence the cohomology ring is a ho- 
motopy invariant. 

If K is a simplicial complex, the cup prod- 
uct operation v:HP(K; A)@ Hq(K; A)+ 

Hpfq(K; A) is induced from the opera- 
tion - : Hom(C,(K), A) 0 Hom(C,(K), A)+ 

Hom(C,+,(K), A) defined as follows. Adopt- 
ing a +linear ordering of vertices of K, we Write 

a11 oriented simplexes in this ordering. Then, 
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for uEHom(C,(K),A) and uEHom(C,(K),A), 
we detïne u-VEH~~(C,+,(K),A) by (u- 

u)(Ca,,a,,...,a,+,l)=u(Ca,,a,,...,a,l)~(Ca,, 
a ,,+r , . , a,+,]). The canonical isomorphism 
from the cohomology of K to the singular 
cohomology of 1 K 1 preserves the cup product. 

On the de Rham complex B(M) of a C”- 

manifold M, we have the texterior product 
WA~EZ)~+~(M) of WEB~(M) and ~~ED~(M). 
This makes H*(a(M)) into a ring, which is 

called the de Rham cohomology ring. The 
canonical isomorphism of H*(a(M)) to 
H*(M; R) preserves the product (- 105 Dif- 
ferentiable Manifolds). 

Examples. (1) Let T” = S’ x . x S’ denote 
the n-dimensional torus, and let 7~~: T”+S’ 
denote the projection to the ith factor (1~ 
i < n). Take a generator 5 of the A-module 
H’(S’;A), and put &=~$(<)EH’(T”;A). Then 

H*(T”; A) is the texterior algebra over A gen- 
erated by ci,. , <,. (2) If we denote by CP” 
the complex n-dimensional projective space, 

then Hq(CP”; A) is A if q = 2i (0 <i < n) and 0 
otherwise. If 5 is a generator of the A-module 
H’(CP”; A), then 5’ generates the A-module 
H”(CP”; A) (0 < i < n). Thus H*(CP”; A) is the 
quotient ring A[~]/(~““) of the tpolynomial 
ring A[(] by the tideal (5”“). (3) If P” denote 
the real n-dimensional projective space, then 
H*(I’“; Z,) E Z, [(]/((““), where 5 is the gen- 
erator of H’(P”; Z,). 

J. Homology of Product Spaces 

If C and D are chain complexes, their tensor 

product C 0 D is a chain complex given by 

(C 0 D), = C,+,=, C, 0 D,, and a,(c 0 d) = 
a,(c)@d+( -l)pc@ a,(d) (c~C~,deD~). The 
following Eilenherg-Zilher theorem (Amer. J. 

Math., 75 (1953)) is the link between the alge- 
bra of tensor products and the geometry of 
product spaces: For the product space X x Y 

of topological spaces X and Y, there is an 
isomorphism p.+:H,(X x Y; G)r H,(S(X) @ 
S(Y) 0 C) induced from a chain mapping p : 
S(X x Y)+S(X) @ S(Y) defmed as follows: 
Given a singular n-simplex cr:A”+X x Y, 

we detïne for each p (0 < p < n) a singular p- 
simplex 0; in X to be the composite AP&Ano> 

Xx Y2X, where .a(tO, t,, . . . , rp)=(to, t,, , 
t,, 0, . ,O) and ni is the projection to the first 

factor. Similarly, we detïne for each q (0 < 
q Q n) a singular q-simplex 0; in Y to be the 
composite AqsAn->X x Y? Y, where e’(t,-,, 
. . , tn) = (0, . ,O, tnmq, , t,) and rc2 is the pro- 
jection to the second factor. Then p is delïned 

by p(o) = Cp+,=,a~ @ cri and is called the 
Alexander-Whitney mapping (Alexander- 
Whitney map). 

Given a ring A, a chain mapping p : (S(X) @ 

201 J 
Homology Theory 

A) 0 (S(Y) 0 A)+s(X) @ S(Y) @ A is de- 
fined by P((C 0 n’) @ (d 0 A”)) = c 0 d @ 1,‘L”; it 
induces homomorphisms ,LL.+ : H,(X; A) @ 

H,(Y; A)+H,+@(X) 0 S(Y) 0 A). The cross 
product a x bE H,+,(X x Y; A) of ue H,(X; A) 
and bE H,( Y; A) is delïned to be p;‘(~,(u x b)). 
If A is a commutative ring with 1, then the 

cross product defines a A-homomorphism x : 

H,(X; A) On H,( Y; A)+H,+,(X x Y; A), and 
satislïes(axb)xc=ux(bxc), T,(uxb)= 

(-l)Pqbxu,(fxg),(uxb)=f,(u)xg,(b), 
where T: X x Y-* Y x X is the mapping inter- 
changing factors, and f:X-+X’, y: Y+ Y’ are 
continuous mappings. If A is a ?Principal ideal 
domain, there is an exact sequence 

O-,+T=. H,(X; 4 @,H,(Y; N:Hn(X x Y; A) 

-p+C-1 
Tor,W,W; 4, H,(Y; NW, 

and this sequence is split (- 200 Homolog- 

ical Algebra). In particular, if k is a lïeld we 

have the following isomorphism of vector 
spaces: 

x :pCIIHp(X;k)oHy(Y;k)~H,(Xx Y;k). 

This is called the Künneth theorem, since the 

prototype was proved by D. Künneth (Math. 
Ann., 90 (1923); ibid., 91 (1924)). The present 
form was given by H. Cartan and S. Eilenberg 

CU. 
The tensor product C 0 D of cochain com- 

plexes C and D is delïned analogously to that 
of chain complexes. Given topological spaces 
X, Y and a ring A, a cochain mapping p : 
Hom(S(X), A) @ Hom(S( Y), A)+Hom(S(X) 
0 S( Y), A) is detïned by (P(U 0 v)) (c 0 d) 
=~(C)v(d), where u~Hom(S,,(x),A), VE 
Horn@,(Y), A), CES,(X), deS,( Y), and u(c)u(d) 
is understood to be 0 if (p, q) # (s, t). We then 
have the composite HP(X; A) 0 Hq( Y; A)2 
Hpfq(Hom(S(X) @ S(Y), A))zHP+q(X x Y; A), 
where p is the Alexander-Whitney mapping. 

For 5 E HP(X; A) and n E Hq( Y; A), the cross 
product 5 x 4 E Hptq(X x Y; A) is defined to be 
p*,n,(< 0 a). The cohomology cross product 

satistïes the properties analogous to the homol- 
ogy cross product. 

The cup product and the cohomology cross 
product are given in terms of each other: 5 - ré 
=d*(< x q), 5 x q=zT(&-@(q), where d:X+ 
X x X is given by d(x) = (x, x), and rrl :X x Y + 
X, rt2 :X x Y-t Y are projections. 

We have the following Kiinneth theorem for 
cohomology: If A is a principal ideal domain 

and each H,(X; A) is lïnitely generated over A, 
then there is an exact sequence 

O-tp& HP(X; A) 0, Hq(Y; A):H”(X x Y; A) 

-p+z+* 
Tor,(HP(X; A), Hq( Y; A))+O, 
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and this sequence is split (- 200 Homological 
Algebra). For 5 E HP(X; A), ré E H4( Y; A), 5’~ 
H”(X; A), $EH!( Y; A), the formula (5 x y~) - 

(5’ x $)=( -l)q”(c- 5’) x (II -PI’) holds. There- 
fore, if k is a lïeld and dim,H,(X; k) < CO for 

each q, then the cohomology ring H*(X x Y; k) 
is determined by the cohomology rings 

H*(X; k) and H*( Y; k). 
tFiber bundles cari be considered as gen- 

eralized product spaces. Let E be the total 
space of a liber bundle with base B and liber F. 
The following Leray-Hirsch theorem (J. Math. 

Pures Appl., 29 (1950)) asserts that, under 
certain conditions, the cohomology of E is 
additively isomorphic to that of B x F: Let A 
be a principal ideal domain, and assume that 

H,(F; A) is free and tïnitely generated over A. 
Furthermore, assume that there is a homo- 

morphism 0: H*(F; A)+H*(E; 4) such that the 

composite H*(F;A)%H*(E;A)%H*(p-‘@);A) 
is an isomorphism for each h E B, where p : E + 

B is the projection and i,:p-‘(h)cE. Then 
an isomorphism @:H*(B;A)@*H*(F;A)g 
H*(E; A) is given by Q(< 0 q)=p*r -Q(q), 

where ~EH*(B;A), ~EH*(F;A). 
A general connection between (co)homol- 

ogy of E and B x F is given by means of spec- 
tral sequences (- 148 Fiber Spaces). 

K. Cap and Slant Products 

There are other products closely related to the 

cup product or the cross product that involve 
cohomology and homology together. 

Given a topological space X and a ring 

A, the cap product v fi c E S,(X) 0 A of a co- 
chain veHom(S,(X),A) and a chain c=Cioi@ 
ÂiESP+,(X)@A is detïned by v-c=Cioio 
E 0 v(ai o a’)&, where ci are singular (p + q)- 

simplexes in X, &EA, and a:AP+APfq, s’:Aq+ 
Ap+4 are the mappings used in the definition 
of cup product. For any UE Hom(S,(X), A), 
the formula (u -v, c > = (u, uh c) holds. The 
cap product satisfies i3(v - c) = ( - 1)P6u A c + 

u-. ac, and hence it induces the cap product 
<- a E H,(X; A) of a cohomology class 5 E 
Hq(X; A) and a homology class UE H,+,(X; A). 

If A is a commutative ring with 1, then the 
cap product operation is bilinear and satislïes 
the following properties: (5 - 5’) ,-. a = 5 ,-. 

(i”-a),f*(f‘*rl^u)=9^f*(a),l,a=a, 
(~x~)~(axb)=(-1)~“~~‘(~~.)x(~“b), 
where <E H”(X; A), 5’~ HP’(X; A), VE H4( Y; A), 
u~H,(X;A),b~H,(Y;A),andf:x+Yisa 
continuous mapping. 

Given topological spaces X, Y and a ring 

A, the slant product w/de Hom(S,(X), A) of 

a cochain w  cHom(S(X) 0 S(Y)),+,, A) and 
a chain d = Ci ri @ Âi E S,(Y) 0 A is detïned 
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by (w/d)(o)= Ci(w(a 0 TJ)&, where g is a 
singular p-simplex in X, ri are singular q- 

simplexes in Y, and ni E A. The slant operation 
satislïes 6(w/d)=(6w)/d-( -l)Pw/Od. There- 
fore, under the identification H*(X x Y; A) = 
H*(Hom(S(X) @ S(Y), A)), it induces the 
slant product [/b E HP(X; A) of a cohomology 
class [ EH p’q(X x Y; A) and a homology class 
bu H,( Y; A). For any a~ H,(X; A), it holds that 

(ilb, a> = Ci, a x b). 
Let G, G’ and G” be Abelian groups. Given a 

homomorphism G’ @ C”+G, we Write g’g” for 
the image of g’ @ y” E G’ @ G” in G. Then the 

cap product - : Hq(X; G’) @ H,+,(X; G”+ 
H,(X; G) cari be detïned in the same way as 

before. Similar delïnitions are valid for the cup 
product, the cross products for homology and 
cohomology, and the slant product. 

L. Relative Homology 

If c’ is a subcomplex of a chain complex C, 

then we have a chain complex C/C’ = { C,/Ci, 
a,}, where C,/Cl denotes the quotient group 
and 13~ is induced from a4 by passing to the 
quotient. C/C’ is called the quotient complex of 
C by C’. 

A topological pair (X, A) is composed of a 
topological space X and its subset A. Given a 
topological pair (X, A) and an Abelian group 
G, we have the chain complex (S(X)/S(A)) @ G 

and the cochain complex Hom(S(X)/S(A), G). 
The homology group of (S(X)/S(A)) @ G is 
denoted by H,(X, A; G) and is called the rela- 

tive singular homology group of X modula A 
with coefficients in G or the singular homology 
group of (X, A) with coefficients in G. The 
homology group H,(X; G) = H,(X, 0; G) is 
sometimes called the absolute homology group. 

Similar definitions are made for the coho- 
mology group H*(X, A; G) of the cochain 
complex Horn@(X)/?(A), G). 

A simplicial pair (K, L) is composed of a 
simplicial complex K and its subcomplex 

L, and a CW pair (X, A) is composed of a 
CW complex X and its subcomplex A. The 
relative homology group H,(K, L; G) = 

H,((C(K)/C(L)) @ G) of a simplicial pair 
(K, L) is isomorphic to H,(IKI, IL/; G). For a 
CW pair (X, A), there is an isomorphism 
H,(X, A; C)g &(X/A; G). Similar statements 
hold for the cohomology groups. 

A continuous mapping f:(X, A)-+( Y, B) of 
topological pairs is a continuous mapping f: 
X+Y such thatf(A)cB. Iff:(X,A)+(Y,B) is 

a continuous mapping, then f, :S(X)+S( Y) 

sends S(A) to S(B), and hence f induces homo- 
morphisms .f, : H,(X, A; G)+ H,( Y, B; G) and 



769 

f* : H*( Y, B; G)->H*(X, A; G). Since the prop- 
erties are analogous, we state them below 

only for the case of relative homology. 
The following six properties are fundamen- 

tal. (i) 1* = 1. (ii) (g o,f), = g* o,f*. (iii) Homo- 
topy property: If f; f’:(X, A)+( Y, B) are +ho- 

motopic, then f, =fi. (iv) Exactness property: 
There exists a homology exact sequence of 
(X,A):...2H,(A;G)-rH,(X;G)i;H,(X,A;G)-; 

Hqm,(A;G)k..., where i:AcX,j:(X,@)c 

(X, A), and d, sends the homology class of a 
cycle of (S(X)/S(A)) 0 G represented by a 
chain CES(X) @ G to the homology class of dc 
which is a cycle of S(A) 0 G. a, is called the 
boundary homomorphism or the connecting 
homomorphism. (v) Naturality of a*: For any 

continuous mapping f: (X, A)+( Y, B), it holds 
that O* o,f, =(f‘l A), o a,. (vi) Excision pro- 
perty: If U is a subset of X such that the clo- 

sure Ü is in Int A, then the excision isomor- 
phism H,(X-U,A-U;G)rH,(X, A;G) is 
induced by inclusion. 

The exactness property extends to the 
homology exact sequence of a triple (X, A, B): 

.l.. %H~(A, B; G)~H,(x, B; G)%H,(x, A; G$ 

k,-,(A,B;G)-*....A couple {Xi, X,} of sub- 
sets of X is said to be excisive if H,(X, , X, n 

X,) z H,(X, U X2, X2) is induced by inclusion. 

If {Xi, X,} is excisive, SO is {X,, X, }. For ex- 
ample, if X = Int Xi U Int X, or if Xi and X, 

are subcomplexes of a CW complex, then 
{Xi, X,} is excisive. If {Xi, X,} and {A,, AZ} 

are excisive couples such that A, c X, and 
A, c X,, then we have the relative Mayer- 
Vietoris exact sequence: . +H,(X, n X,, A, n 

A2;G)~Hq(X,rA,;G)+Hq(X2>A2;G)~Hq(XlU 
X2,AlUA2;G)'Hq~l(X1nX,,A,nA,;G)~.... 
For the case of relative cohomology, we use 
terms such as cohomology exact sequence and 
coboundary homomorphism, correspondingly. 

The universal coefficient theorems are 
valid for the relative (co)homology groups. 
Given a homomorphism G’ @ G”+G, if 
{A, B} is excisive in X, then the cup product 
v : HP(X, A; G’) @ Hq(X, B; G”+Hp+q(X, A U 

B; G) and the cap products .-. : Hq(X, B, G’) @ 

Hp+q(X, A U B, G”+H,(X, A; G) cari be de- 
tïned. The product (X, A) x (Y, B) is defined 
tobethepair(XxY,AxYUXxB).Givena 
homomorphism G’ @ G”->G, the homology 
cross products x : HJX, A; G’) @ H,( Y, B; G”) 

+H,+,((X, A) x (Y, B); G) and the slant prod- 
ucts /: HP+q((X, A) x (Y, B); G’) @ H,( Y, B; G”) 

+HP(X, A; G) cari be defïned. If {A x Y, X x 

B} is excisive, then the cohomology cross 
products x : HP(X, A; G’) @ Hq( Y, B; G”+ 

HP+4((X, A) x (Y, B); G) cari also be defined. 
If {A x Y, X x B} is excisive, the Künneth 
theorems are valid for the relative 

(co)homology groups [9,10,11]. 

201 M 
Homology Theory 

M. Lech Homology Theory 

Another homology theory is commonly used 

along with the singular theory. The theory was 
originated by E. Lech (Fund. Math., 19 (1932)) 
and was moditïed by C. H. Dowker (Ann. 

Math., (2) 51 (1950)). 
Given a topological space X and an Abelian 

group G, the Lech homology group H,(X; G) 
and the Lech coliomology group fi*(X; G) are 
defined as follows. We take the family of all 
topen coverings of X directed by +relïnement, 
and we consider the +nerve K(U) of each open 

covering U, that is, the simplicial complex 
whose simplexes are fïnite nonempty subsets 
of U with nonempty intersection. If II’ is a 
retïnement of U, then a simplicial mapping 
x(U, U’): K(U’)+K(U) is obtained by assign- 

ing to each U’E II’ an element U E Il such 

that U’C U. The induced homomorphisms 
~L(U, U’),:H,(K(U’); G)+H,(K(U); G) and 
n(U,U’)*:H*(K(U); G)+H*(K(U’);G) are inde- 
pendent of the choice of n(U, II’), and we have 

the tinverse system {H,(K(U); G), n(U, u’),} 

and the +direct system {H*(IC(U); G), TZ(U, Il’)*}. 

We now define fi,(X; G)=l@H,(K(U); G) 
and H*(X; G)=l$H*(K(U); G). 

A continuous mapping f: X-t Y induces 

homomorphisms f,: g,(X; G)-tfi,( Y; G) and 
j’*: fi*( Y; G)+H*(X; G) as follows. If !II is an 
open covering of Y then a simplicial mapping 

fr,:K(fm’(%))-K(23) is detïned by J&-‘(V)) 
= V ( I’E )21). The induced homomorphisms 

.h~:ff,(KV’(V); G)+H,(K(BI); G) for 
aIl open coverings !-II of Y gives rise to f, : 
fi,(X; G)+H,( Y; G). Similarly f induces f*. 

Another approach to Lech cohomology 
theory is called the Alexander-Kolmogorov 
construction (Proc. Nat. Acad. Ci., 21 (1935) 
and C. R. Acad. Sci. Paris, 202 (1936)). The 

approach was improved by E. H. Spanier 
(Ann. Math., (2) 49 (1948)) and the theory is 
now called the Alexander (or Alexander- 

Kolmogorov-Spanier) cohomology theory. 
The Alexander cohomology group I?*(X; G) 

is detïned as follows. Let Qq(X; G) be the 
Abelian group of aIl functions from the (q + 1). 

fold product space X q+l to G with addition 
defined pointwise. An element cp E Q4(X; G) 

is said to be locally zero if there is an open 
covering U of X such that V(X,, . . ,x4) van- 
ishes if x,,, , xq are contained simultaneously 
in some U E II. The subgroup of Bq(X; G) con- 
sisting of locally zero functions is denoted by 

0:(X; G). We define a homomorphism 64: 
Qq(X; G)+Qq+l(X; G) by (dq<p)(x 0, l>“‘> x 

Xq+l)=C~~~(-l)i<p(Xg,...,Xi~]rXi+l,...rXq+l)- 
Then @(X; G) = {@“(X; G), hq} is a cochain 
complex, and @a(X; G)= {(I$(X; G), bq} is its 

subcomplex. We now detïne H*(X; G) to be 
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the cohomology group of the quotient com- 
plex @(X; G)=@(X; G)/O,(X; G). 

If f: X-t Y is a continuous mapping, then a 
cochain map f# :@(Y; G)+@(X; G) is defined 

by(f”<p)(x,,x,,...,x,)=<p(f(x,),f(x,),..., 
,j’(x,)), and it induces the homomorphism f* : 

H*( Y; G)*H*(X; G). There is a natural iso- 
morphism H*(X; G) g H*(X; G). 

The (co)homology group of a simplicial 
complex K is isomorphic to the Lech (CO)- 
homology group of 1 K 1. If X is a manifold or 
a CW complex, then its singular (co)homology 
group and its Lech (co)homology group are 
isomorphic. However, even for compact met- 
rit spaces X, the singular (co)homology group 
of X is not necessarily isomorphic with the 
Lech (co)homology group of X. 

If {X,1 is an tinverse system of compact 

Hausdorff spaces and X =I&n X,, then there 
are isomorphisms l$-fi,(X,; G) E fi,(X; G) 
and 15 H*(X,; G) g H*(X; G). This is called 

the continuity property for Lech theory. If A is 
any closed subset of a manifold M, then there 
is an isomorphism 15 H*( W; G) g I?*(A; G), 
where W varies over neighborhoods of A in M 

directed downward by inclusion. If the tcover- 
ing dimension of X is n, fiq(X; G) = 0 for q > n. 

The cup product in the Lech cohomology is 
introduced simply by passing to the limit with 
cup products in simplicial complexes, and the 

cup product in the Alexander cohomology is 
induced from the operation - :@“(X; G’) 0 
@4(X;G”)-t@P+q(X; G) defined by (<p-$)(x,, 

Xlr...rXp+q)=~(XO,X,I...,Xp)~(XprXp+,r 
...‘xp+q. 1 

The relative Lech homology group fi,(X, 
A; G) and the relative Lech cohomology group 
H*(X, A; G) are defmed as follows: An open 
covering of (X, A) is a pair (U, !!In) of an open 

covering II of X and an open covering !II of 
A such that %IL c II. TO such a pair (U, !II) we 
assign a simplicial pair (K(U), K’(s)), where 
K’(%) is the nerve of 5% n A = {N n A 1 N E~L). 

Considering the family of all open cover- 

ings of (X, A), we detïne now fi,(X, A; G)= 

I&n H,(K(U), K’(s); G) and 8*(X, A; G)= 
I&I H*(K(U), K’(S); G). 

The relative Alexander cohomology group 

H*(X, A; G) is defïned to be the cohomology 
group of the cochain complex which is the 

kernel of the cochain mapping i#: &(X; G)+ 
@(A; G) induced by inclusion. There is a nat- 
ural isomorphism fi*(X, A; G) g H*(X, A; G). 

The relative Lech (co)homology groups 
satisfy the properties analogous to the relative 

singular (co)homology groups except the 
exactness property for homology (- Section 
Q). In certain cases, the excision property is 

strengthened for Lech (co)homology. For 
example, we have the following theorem: As- 
sume that X and Y are compact Hausdorff 
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spaces, A and B are closed subsets of X and Y, 
respectively, and f: (X, A)+( Y, B) is a continu- 
ous mapping which maps X -A onto Y - B 

homeomorphically. Then ,& : fi,(X, A; G) E 

fi,(Y,B;G)andf*:ti*(Y,B;G)rfi*(X,A;G) 
hold. 

N. Fundamental Classes of Manifolds 

For a topological space X and a point x of X, 
the local homology groups H,(X, X -x) repre- 
sent a topological property of X around x. 

The notion of +Orientation for differentiable 
manifolds and triangulable manifolds general- 
izes to ttopological manifolds by using local 
homology groups as follows. Let M be an 
n-dimensional (topological) manifold with 
tboundary 8M. If x is a point of the interior 

M,=M-dM, then H,(M,M-x)zH,(R”,R” 
-O)isZforq=nandisOforq#n.Wedefine 
a local orientation o, for M at XE Mo to be a 

choice of one of the two possible generators 
for H,,(M, M-x), and we then detïne an orien- 
tation for M to be a function which assigns to 
each x E M, a local orientation o, which varies 
continuously with x in the following sense: For 
each x there should exist a compact neighbor- 

hood N c Mo and an element oN E H,,( M, M - 

N) such that i,,(o,) = oy for each y~ N, where 
i,:(M, M-N)c(M, M -y). If there is an ori- 

entation for M, then M is said to be orient- 
able, and the pair of M and an orientation is 
called an oriented manifold. If M is a nonorient- 
able manifold without boundary, the set of 
local orientations for M forms an orientable 
manifold doubly covering M, called the orien- 
tation manifold of M. 

If M is an oriented n-dimensional manifold, 
then for any compact subset K of M there is a 
unique element oK E H,,( M, (M - K) U C?M) such 
that i,,(o,) = o, for each x E K n M,,, where 

i,:(M,(M-K)UaM)c(M,M-x). The ele- 
ment oK is called the fundamental homol- 
ogy class around K. In particular, if M is it- 

self compact, o,,, E H,( M, OM) is usually de- 
noted by [M] and is called the fundamental 

homology class of M. A connected compact 
n-dimensional manifold M is orientable if 

and only if H,,(M, aM)#O, and in this case 
H,(M, 8M) is a free cyclic group generated by 
a fundamental class [Ml. If M is an orientable 
compact n-dimensional manifold, then aM is 

an orientable compact (n - 1)-dimensional 
manifold without boundary, and the boundary 

homomorphism cY,:H,(M,~M)-+H,~,(~M) 

sends a fundamental class [M] to a funda- 
mental class [aM]. 

An n-dimensional manifold M is orientable 
if and only if there exists an element U E H”(M 

x M, M x M -dM) such that, for each XE Mo, 
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j:(U) is a generator of H”(M, M-x), where 
dM is the diagonal in M x M, and j,:(M, M 

-x)+(M x M, M x M -dM) is given byj,(y) 

=(~,y) (y~ M). In fact, U corresponds to an 
orientation which assigns to each XE Mo a 

local orientation o, such that ( jx( U), 0,) = 1. 
The element U is called the orientation coho- 
mology class of M. If M is a compact manifold 
without boundary, it holds that (d*(U), [M]) 
=X(M),whered*:H”(MxM,MxM-dM)+ 
H”(M) is induced by the diagonal mapping. 
The element d*(U)EH”(M) is called the Euler 
class of M. 

If we work with the (co)homology groups 
with coefficients in Z,, the fundamental classes 
are dehned for an arbitrary manifold without 

making any assumption of orientability. If 
M is connected and compact, then H,(M, 
8M; Z,) g Z, is generated by [M]. 

0. Duality in Manifolds 

Let M be a compact n-dimensional manifold, 
and let M,, M, be compact (n - 1)-dimensional 
manifolds such that M, U M2 = SM and M, 0 

Mz = ÛM, =C?M,. Assume either that M is 
oriented or that G = Z,. Then for each q, an 
isomorphism D:Hq(M, M,; G)zH,-,(M, 

M2; G) is deiïned by D(t) = 5 AM]. In par- 
ticular, there are the isomorphisms D : Hq(M, 

aM;G)zH,-,(M;G) and Hq(M; G)gH,-,(M, 
C?M; G), where the cap product is taken with 
respect to the homomorphism G 0 Z-G 
detïned by multiplication. This theorem is 

called the Poincaré-Lefschetz duality theorem, 
and the special case for 8M = @ is often 
referred to as Poincaré duality. 

Poincaré duality implies the following con- 
sequences for a compact n-dimensional mani- 
fold M without boundary. If M is orientable, 

then the qth Betti number is equal to the (n- 
q)th Betti number, and the qth torsion coef- 
ficients are equal to the (n-q - 1)th torsion 
coefficients. If n is odd, then x(M) = 0, and if M 
is orientable and n = 2 mod 4, then x(M) is 
even. 

Poincaré duality generalizes to the following 
duality theorem. Let M be an n-dimensional 
manifold without boundary, and let K be a 

compact subset of M. Assume either that M is 
oriented or that G = Z,. Then there is an iso- 
morphism D:fiq(K; ~)EH,-,(M, M- K; G) for 
any q, which is given as follows: For each open 

neighborhood W of K, define D,: Hq( W; G)+ 

fL,W, M - K G) by WO= k,(i--. k;‘(4), 
where k, is the excision isomorphism induced 

byk:(W,W-K)c(M,M-K).NowDisde- 
fïned to be the limit of D,, where W varies 

over open neighborhoods of K. The inverse of 
D up to sign is given in terms of the slant 
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product with the fundamental cohomology 

class U of M as follows: For each open neigh- 
borhood W of K, we delïne a homomorphism 
yw:H,mq(M,M- W;G)+Hq(W;G) byy,(a)= 

j*(U)/a,wherej*:H”(MxM,MxM-dM)+ 
H”( W x (M, M - W)) is induced by inclusion. 
Then, passing to the limit, these yw deiïne the 
desired one. 

If we take an n-sphere S” as M in the above 
duality theorem and use the homology exact 
sequence of (,Y, S”- K), then we have the fol- 
lowing Alexander duality theorem (Trans. 
Amer. Math. Soc., 23 (1922)): If K is a closed 
subset of Y’, then the qth reduced Lech coho- 

mology group of K is isomorphic to the (n - 
q - 1)th reduced singular homology group of 

S” - K for any coefficient group G and any q. 
In particular, if K is a tneighborhood retract, 
Aq(K; G)r fin-,_, (S” - K; G) holds. This shows 
that H,(S” - K) depends only on K and not on 
the way K is embedded in S”. The Alexander 
duality theorem for n = 2 and K = S’ gives the 
classical tJordan curve theorem. 

In view of the duality theorems, certain 
classical definitions in the homology of mani- 

folds cari be given in terms of cohomology. 
For example, if f: M+M’ is a continuous 
mapping of oriented closed manifolds, then the 

Umkehr homomorphism or Gysin homomor- 
phismf!:H,(M’;G)+H,+,(M;G) (d=dimM - 
dim M’) (W. Gysin, Comment. Math. Helu., 14 
(1941)) cari be defined by D of! =f* o D. In co- 
homology we have ,f;: Hq(M; G)+Hqmd(M’; G). 
Similarly, if M is an oriented n-dimensional 
closed manifold and UE H,(M), ~EH,(M), then 

the intersection product a. ~EH,+,-,,(M) of 
Lefschetz cari be defïned by a. b = D ml a - b = 
D(D-‘a -D-lb). If P+q=n, the number a. 

bs H,(M) g Z is called the intersection numher 
of a and b. The classical defïnitions are still 
meaningful today, since they are closer to 
geometric intuition and therefore possess con- 
siderable heuristic value. For example, the 

following fact serves to compute cup products 
in manifolds. If M is an oriented closed differ- 

entiable manifold and a, bEH*(M) are repre- 
sented by closed submanifolds N,, N2 which 

intersect ttransversally, then fa. b is repre- 
sented by N, n N, [ll]. See [12] for a rigor- 
ous discussion of classical intersection theory. 

P. Cohomology with Compact Supports 

Let X be a topological space. A subset V of X 
is said to be cobounded if X? is compact. A 
singular q-cochain u~Horn(S,(X), G) is said 

to have compact support if there exists a co- 
bounded set V such that u(o)=0 for every 
singular q-simplex o in V. The singular co- 

chains with compact support form a subcom- 
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plex of the cochain complex Hom(S(X), G). 

The cohomology group of this subcomplex is 
denoted by H,*(X; G) and is called the singu- 

lar cohomology group of X with compact sup- 
ports. There is an isomorphism Hc(X; G) g 

l$ H*(X, k’; G), where F varies over co- 
bounded subsets of X. 

Let K be a simplicial complex. A q-cochain 
u~Horn(C,(K), G) is called a finite cochain 
of K if u(o) = 0 except for a finite number of 

oriented q-simplexes 0 of K. If K is a tlocally 
finite simplicial complex, then finite cochains 
of K form a subcomplex of the cochain com- 

plex Hom(C(K), G) whose cohomology group 
is isomorphic to Hc( 1 K 1; G). 

Let X be a +locally compact Hausdorff 

space, and let X U { co} denote the tone-point 
compactification of X. Then the Lech coho- 
mology group of X with compact supports, 
denoted by @(X; G) is defined to be the re- 
duced Lech cohomology group of X U {a) 

with coefftcients in G. There is an isomorphism 
fic(X; G) g lim 8*(X, V; G), where V varies 
over cobounded subsets of X. If X is a mani- 
fold or a CW complex, then H:(X; G) E 

@(X; G). If X is a compact Hausdorff space 
and A is closed in X, then fic(X - A; G) E 

H*(X, A; G). The Alexander-Kolmogorov con- 
struction gives a direct approach to fii(X; G) 

[lO, 131. 
A tproper continuous mapping f: X+ Y of 

locally compact Hausdorff spaces induces 

homomorphisms f*: Hc( Y; G)-HC(X; G) and 
f*:Hé(Y;G)-r@(X;G),andiff,f”:X+Yare 
properly homotopic, then they induce the 
same homomorphisms. 

The cohomology with compact supports is 
useful in order to extend results in the coho- 

mology of compact spaces to noncompact 
spaces. For example, the conclusion of the 
duality theorem on a compact set K c M in 
Section 0 generalizes to the case of a closed 
set K c M as follows: There is an isomorphism 
@(K;G)EH,-,(M,M- K;G) for any q. This 

implies the following generalization of Poin- 
caré duality: Hj(M; G) g H,_,(M; G) holds for 
an orientable n-dimensional manifold M with- 
out boundary. 

There are homology theories associated 

with the cohomology theories with compact 
supports [13]. 

Q. Eilenberg-Steenrod Axioms 

Let H* be a collection of the following three 

functions: (1) A function assigning to each 
topological pair (X, A) and each integer q an 
Abelian group H4(X, A). (2) A function assign- 

ing to each continuous mapping f: (X, A)+ 

(Y, B) and each integer q a homomorphism 
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,f*: H4( Y, B)+Hq(X, A). (3) A function as- 
signing to each topological pair (X, A) and 

each integer q a homomorphism 6* : Hq(A)+ 

H4+‘(X, A). Then H* is called a cohomology 

tbeory on the category of topological pairs if 
the following seven axioms are satistïed [7]. 
(i) 1, = 1, where 1 is identity. (ii) (gof)* = 
f* o g* : Hq(Z, C)-tH4(X, A) for continuous 
mappings f:(X, A)-+(Y,B) and y:(Y, B)+ 
(Z, C). (iii) Homotopy axiom: If ,fi ,f’:(X, A)+ 

(Y, B) are homotopic, then ,f, =& : H4( Y, B)+ 
H4(X. A). (iv) Exactness axiom: The seauence 

. ..%Hq(X‘ A&H”(X):H”(A$H’-‘(x A)‘* .,. 2 + 
is exact, where i: A c X and j: (X, a) c (X, A). 

(v)f*06*=6*o(flA)*:Hq(B)+Hq+‘(X,A)for 

a continuous mapping f: (X, A)+( Y, B). (vi) 
Excision axiom: If U is an open set of X such 

that U c Int A, then i* : Hq(X, A) z Hq(X - U, A 

- U), where i is the inclusion. (vii) Dimension 
axiom: Hq(pt) = 0 if q #O. Axioms (i)-(vii) are 
called the Eilenberg-Steenrod axioms, and the 
group Ho(p) is called the coefficient group of 
the cohomology theory H*. 

A cohomology theory on the category of 
pairs of compact Hausdorff spaces is defined 
similarly. A cohomology theory on the cate- 

gory of CW pairs (or finite CW pairs) is de- 
fined similarly except that axiom (vi) is re- 
placed by the following excision axiom: If 

{Xi, X2} is a couple of subcomplexes of a CW 
complex, then i* : Hq(X, U X,, X,) z Hq(X,, 

X, f’ X,), where i is the inclusion. Two coho- 
mology theories H* and H’* on the same 
category are isomorpbic if there is an isomor- 
phism h,: H4(X, A)z H4(X, A) for each (X, A) 

and each q, and they commute with j* and 
6*. A homology theory on various categories 
is defined similarly by dualization. 

A singular (co)homology theory with coef?ï- 
cients in G is an example of a (co)homology 
theory on the category of topological pairs. 

The i’ech cohomology groups with coefficients 
in G cari be made into a cohomology theory 
on the category of topological pairs. However, 
the Lech homology groups do not constitute a 
homology theory on the category of topolog- 
ical pairs; the homology sequence of any pair 
(X, A) is detïned, but it cari be proved only 
that the composite of any two successive 
homomorphisms is zero. The Lech homology 

groups with coefficients in a field constitute a 
homology theory on the category of compact 
Hausdorff pairs. The Alexander cohomology 

groups constitute a cohomology theory on the 
same category of topological pairs, and it is 
isomorphic to the Lech cohomology theory if 
their coefficient groups are isomorphic [lO]. 

The Lech (co)homology constitutes a (CO)- 
homology theory on the category of CW 

pairs, and it is isomorphic to the singular 
(co)homology theory on the same category if 



173 

the coefficient groups are isomorphic. (CO)- 
homology theories on the category of tînite 
CW pairs are determined, up to isomorphisms, 

by their coefficient groups. This fact is called 
the uniqueness theorem of homology theory 

on the category of tïnite CW pairs. Coho- 
mology theories on the category of pairs of 
compact Hausdorff spaces which satisfy the 
following continuity axiom are determined, up 

to isomorphisms, by their coefftcient groups: If 
{(X,, A,)} is an inverse system of pairs of com- 
pact Hausdorff spaces, then Hq(l@X,, l@ A,) 

gl@Hq(X,, A,). The Lech cohomology the- 
ory satisfies this axiom. 

During recent years, many (co)homology 
theories have been developed which satisfy the 
lïrst six Eilenberg-Steenrod axioms but fail to 
satisfy the dimension axiom. These are called 
generalized (co)homology theories, and include 
various TK-theories, tbordism theories, and 
tstable homotopy theories (- 202 Homotopy 
Theory). 

R. Homology with Coeftïcients in Local 
Systems 

N. E. Steenrod (Ann. Math., (2) 44 (1943)) in- 
troduced the (co)homology group with coef- 
ficients in a local system of Abelian groups, 
which is useful in +Obstruction theory and in 

the homology theory of +lïber spaces. 
A local system KI of Abelian groups on a 

topological space X is a set of Abelian groups 
G,, one for each XEX, together with an iso- 
morphism l*:GrO,+G,(,, for each tpath /:[O, 1] 

+X subject to the following conditions: (1) 
If two paths 1 and 1’ are homotopic with 

endpoints lïxed, then I* = I’*. (2) If 1 and m 
are paths such that 1(l) = m(O), then (1. m)* = 
m* o 1*, where I. m denotes the tproduct of 1 
and m. An example is provided by the +homo- 
topy groups x,(X, x) for n k 2. Let M be an 
n-dimensional topological manifold. Then 
x+H,(M, A4 -x) is a local system of intïnite 
cyclic groups. It is called the orientation sheaf 
of M.‘A local system 8 is said to be trivial if 
/* = 1’* for any paths I, 1’ with the same initial 

and final points. 

Given a local system (5 of Abelian groups 
on a topological space X, a chain complex 
S(X; 8)= {S,(X; CF>), a,} is delïned as follows: 
If q < 0, then .S,(X; 6) = 0, and if q > 0, then 

.S,(X; KJ) is the Abelian group of forma1 finite 
sums C gc~, where o: A4+X are singular q- 

simplexes in X and gb~G,,(l,O,..,,O); the bound- 
ary operator d4:S,(X; (T>)+S,-, (X; Cc>) is given 

by L;,(.4,0)=lb(g,)aoBo+~~=~(-l)ig~~o~i, 

where o o si is the ith face of (r, and 1,: [0, 11 
+X is given by l,(t) = o( 1 - t, t, 0, ,O). The 
homology group of the chain complex S(X; 8) 
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is denoted by H,(X; 0) and is called the sin- 
gular homology group of X with coefficients in 
6. 

Similarly, a cochain complex S*(X; 8) = 
{S4(X; Cc), K4} is defined as follows: If 4 < 0, 
then S4(X; 8) = 0, and if q b 0, then S4(X; 8) is 
the Abelian group of functions u assigning to 

every singular q-simplex 0 in X an element 
u((T)EG,,~,,~,,.,,~~; the coboundary operator 
hq:S4(X; S)+Sq+‘(X; 6) for q>O is given by 
(~~u)(o)=I~~‘U(~O&~)+C~:;(-l)i14(oO&i), 
where o is a singular (4 + 1)-simplex in X. The 

cohomology group of the cochain complex 
S*(X; 8) is denoted by H*(X; 8) and is called 
the singular cohomology group of X with coef- 
ficients in 6. 

If ch is trivial, then the (co)homology group 
with coefficients in 8 coincides with the (CO)- 
homology group with coefficients in G z G,. 
The various notions and theorems on the 
ordinary (co)homology cari be extended to 

(co)homology with coefficients in 8. The Lech 
(co)homology group with coefficients in 8 is 
also detïned [ 101. The cohomology groups 

with coefficients in 8 are generalized to the 
cohomology groups with coefficients in a sheaf 
[lO, 141 (- 383 Sheaves). 
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A. General Remarks 

Given a topological space X, we utilize the 
concept of homotopy to detïne the tfunda- 
mental group, homotopy groups, and co- 
homotopy groups of X. These groups, to- 

gether with (co)homology groups, are useful 
tools in topology. 

Since the research of H. Hopf, W. Hurewicz, 

and H. Freudenthal in the 1930s homotopy 
theory has made rapid progress and now plays 
an important role in topology. 

B. Homotopy 

Ifafamilyf~:X-,Y(t~I={t(O<t<l})of 
tcontinuous mappings from a ttopological 
space X into a topological space Y is also 
continuous with respect to t, that is, if the 
mapping F from the product space X x 1 into 

Y delïned by F(x,t)=f,(x) (xcX,tsl) is con- 
tinuous, then {f;} or F is called a homotopy. In 

this case, fa and fi are said to be homotopic. 

This relation between f0 and fi is indicated by 
f0 =,fi :X + Y, or simply f0 =fi, and is called 
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the relation of homotopy. Denote by Y’ the 
set of all continuous mappings from X into 
Y. The homotopy relation is an tequivalence 
relation on Y’, and the equivalence class [f] 
of a mapping f: X* Y is called the homotopy 
class (or mapping class) off: The set of a11 
homotopy classes of mappings of X into Y is 
called the homotopy set and is denoted by 
x(X; Y) or [X, Y]. A function y of continuous 

mappings fi Y’ is called a homotopy invariant 
iff=g implies y(f)=?(g). When X consists of 
a point * we Write 7c( *; Y) = n,(Y). If a11 con- 
tinuous mappings in Y’ are homotopic to each 

other, we Write x(X; Y) = 0; rcO( Y) = 0 means 
that Y is tarcwise connected. A mapping f 
from a compact space into an n-dimensional 

sphere S” is called essential if any mapping g 
homotopic to f satistïes g(X) = S”. A mapping 
is inessential if and only if it is homotopic to 
the constant mapping. 

These concepts are generalized as follows: 
Let Ai and Bi (i = 1,2,. . ) be subspaces of X 

and Y, respectively, and denote by YX(A,, A,, 
; B,, B,, ) the set of continuous mappings 

fe Y’ satisfying f(Ai)c Bi. If a homotopy { 1;) 
is such that ft~ YX(Ai; Bi), then {,h} is called a 
restricted homotopy with respect to Ai, Bi or a 
homotopy from a system of spaces (X, A,, 

A, ,... )intoasystemofspaces(Y,B,,B, ,... ). 
The notation f0 *fi :(X, A,, A,, . .)+(Y, B,, 
B *, . . .) and the homotopy set n(X, A,, A,, . . ; 

Y, B,, B,, ) are defïned accordingly. 
For the composite gofsZX(Ai; Ci) of 

fe YX(Ai; Bi) and gEZY(Bi; Ci), f=f’ and 
g e g’ imply y of = y’ of’. Thus the composite 

/i’oa=[gof]m(X,Ai;Z,Ci) of [f]=uE 
~L(X, Ai; Y, Bi) and [g] = BE n( Y, B,; Z, Ci) is 

defined. By putting g,[f] = [gof] =f*[g] 
we induce two mappings, 

g* :~L(X, A,; Y, Bi)+n(X, Ai; Z, Ci), 

f* : TC( Y, Bi; Z, C,)+n(X, A,; Z, Ci). 

Then f=f’ implies f* =f’* and g ?y’ implies 

y*=&. Also(gof),=g,of,,(gof)*=f*o 
g*, and h* o g* = g* o h*, where h~x”‘(Q; Ai). 

The category of pointed topological spaces 

is detïned to be the tcategory in which each 
abject X, which is a topological space, has a 
point lïxed as a base point and each mapping 

X + Y carries the base point of X to. the base 
point of Y. In this category, we define a homo- 

topy set, denoted by ~L(X; Y)0 or [X; Y&,, as 
follows: Denoting the base points by *, we 

have ~L(X, Ai, *; Y, Bi, *)= x(X, Ai; Y, Bi)o. A 
continuous mapping f homotopic to the 

constant mapping X+ * E Y is said to be 
homotopic to zero (or null-homotopic). This 

is indicated by f= 0, and rc(X; Y), = 0 means 

that a11 continuous mappings are homotopic 
to zero. Let S” be a set of two points; then 
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rr(X; SO), =0 means that X is tconnected. In 
contrast to these specific homotopies, the 
usual homotopy is sometimes called a free 
homotopy. 

Suppose that a homotopy {f,} (f;: X-t Y) is 
such that the restriction off, to a subspace A 
of X is stationary, that is, f,(a)=fo(a) (uEA, 
t~1). Then fo, fi are said to be homotopic 
relative to A, indicated by f. =Si (rel. A). If a 
homotopy {f;} (f,: X-t Y) is such that each 
f, is a homeomorphism into Y, then {f,} is 

called an isotopy and f. is called isotopic to fi 
(- 235 Knot Theory). 

Research done by L. E. Brouwer, H. Hopf, 
W. Hurewicz, K. Borsuk, L. S. Pontryagin, 
and S. Eilenberg has contributed to the theory 
of homotopy, an important tïeld of topology 
still in the process of development. 

C. Mapping Spaces 

We endow the set Y’ of a11 continuous map- 
pings f: X+ Y, with the +Compact-open topol- 
ogy. The topological space Y’ is called a 

mapping space. In particular we denote Y’ (0,l; 
*,*)(*~Y)byR(Y)=n(Y,*)andcallitthe 
space of closed paths (or loop space) of Y. Two 
points L g of Yx are connected by a tpath 

in YXifandonlyiff=g:X~Y.Thusno(YX) 
= n(X; Y) and n,( Y’(& B,)) = n(X, A,; Y, Bi). 

D. Retracts 

Let A be a subspace of a topological space X. 

If there exists an fe AX such that the restric- 
tion fl A is the identity mapping of A, then A 
is called a retract of X, and Sa retraction. If A 
is a retract of X, any continuous mapping of A 
into any topological space cari be extended to 
a continuous mapping of X. If A is a retract 
of some neighborhood U(A), A is called a 
neighborhood retract or NR of X. If for any 
thomeomorphism of a metric space A onto a 

closed subspace A, of any metric space X, A, 
is a retract (neighborhood retract) of X, then A 
is called an absolute retract or AR (absolute 

neighborhood retract or ANR). For example, 
an n-dimensional simplex or an n-dimensional 
Euclidean space is an AR. If a retraction fis 

homotopic to the identity mapping of X (resp. 
U(A)), we cal1 A a deformation retract (neigh- 

borhood deformation retract) of X. Moreover, 
if f= 1, (rel. A), then A is called a strong de- 

formation retract. In particular, if a point x0 is 
a (strong) deformation retract of X, we say 
that X is contractible to the point x0. For 
example, any tpolyhedron P and any com- 

pact n-dimensional ttopological manifold are 
ANRs; any polyhedron P. contained in P in a 

strong deformation retract of some neighbor- 
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hood in P. X is called locally contractible if 
each point x of X has a contractible neighbor- 
hood U of x. 

E. The Extension Property 

Let X, Y be topological spaces, A c X, fo, 

f, E Y’, and {g,: A-+ Y} a homotopy such that 
gi=jilA(i=O,l). Wecanextend {y,} toa 

homotopy {ft} of X if and only if the mapping 
F:(XxO)U(AxI)U(Xxl)~Ydetïnedby 

F(x, i) =L(x), F(a, t) = g*(a) cari be extended to 
a continuous mapping sending X x I into Y. 
Therefore the problem of whether f. =fi cari 
be reduced to the problem of whether a con- 
tinuous mapping delïned on a subspace cari be 
extended to the whole space. If for any homo- 
topy { gt : A+ Y} and any continuous mapping 
fo: X-t Y into any topological space Y satisfy- 

ing f. 1 A = go there exists a homotopy {f,: X+ 
Y} satisfying f, 1 A =gt, then we say that (X, A) 
has the homotopy extension property. This 

occurs if and only if (X x 0) U (A x 1) is a re- 
tract of X x 1. A pair (X, A) of ANRs, where 

A is closed in X, and a pair (P, PJ with P a 
+CW complex and P. a subcomplex of P have 
this property. Given a continuous mapping 
h: B+ A of a subspace B of a topological space 
Y into a topological space A, we identify bu B 
with h(b)E A in the tdirect sum A U Y and 
obtain the tidentifïcation space denoted by 
A U, Y, which is called an attaching space 

under h. If (Y, B) has the homotopy extension 
property, then (Y x X, B x X) and (A U, Y, A) 

also have the same property. When A consists 
of a point * , we Write * U, Y = Y/B and cal1 
the space Y/B a space smashing (shrinking or 
pinching) B to a point. If Y= B x 1, B = B x 0, 
then we cal1 A U,(B x 1) a mapping cylinder of 

h, (A U,(B x I))/(i3 x 1) a mapping cane of h, 
and the mapping cylinder and mapping cane 
of h : i? + * the cane over B and suspension of B, 
respectively. 

F. Homotopy Type 

For systems (X, Ai), (Y, Bi) of topological 

spaces, if there exist fi YX(Ai; Bi), SEXY(&; Ai) 
such that g of and fo y are homotopic to the 
identity mappings of (X, Ai) and (Y, Bi), respec- 
tively, then we say that (X, Ai) and (Y, BJ have 
the same homotopy type or are homotopy 
equivalent. Such mappings f and g are called 

homotopy equivalences. For a homotopy 
equivalence L the induced mappings ,f, and 
f* are bijective. Therefore, in homotopy 

theory, systems of spaces having the same 
homotopy type are considered equivalent. 
If A is a deformation retract of X, then A 

and X have the same homotopy type, and the 
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injection of A into X and the retraction of X 
onto A are homotopy equivalences. A con- 
tractible space has the same homotopy type 
as a point. Spaces having the same homo- 
topy type have isomorphic homotopy groups 

and t(co)homology groups. Since the mapping 
cylinder Zf = YU,(X x 1) of ,f’E Yx contains Y 

aq its deformation retract, it has the same 
homotopy type as Y. By this homotopy equiva- 
lente, f cari be replaced by the injection of X x 

1 into Zf. If to each topological space there 
corresponds a value (which may be some ele- 

ment of R or some algebraic structure) and 
the values are the same for homotopy equiva- 
lent spaces, then the value is called a homotopy 
type invariant. A homotopy type invariant is a 
+topological invariant; for example, n(X; Y) is 
a homotopy type invariant of X. If a continu- 
ous mapping f: X + Y induces isomorphisms 

of the homotopy groups of each tarcwise con- 
nected component, then f is called a weak 
homotopy equivalence. Conversely, if X and Y 

are CW complexes, then a weak homotopy 
equivalence is a homotopy equivalence (J. H. 
C. Whitehead). 

Now we consider the category of pointed 

topological spaces. Let A and B be pointed 
topological spaces. Then the tdirect sum in this 
category is the one-point union (or bouquet) 

A v B obtained from the disjoint union A U B 
by identifying two base points *A and *B. 

A v B is identitïed with the subspace (A x 

*B)u(*.4 x B) in A x B. The reduced join (or 

smash product) of A, B is the space obtained 
from A x B by smashing its subspace A v B 
to a point and is denoted by A A B. We cal1 
A AS’ the (reduced) suspension of A and de- 
note it by SA. Repeating the suspension n 
times, we have the n-fold reduced suspension of 
A.WecallCA=AAI(I=[O,l])thereduced 

cane of A (1 has the base point 1). For a con- 
tinuous mapping f: X+ Y, the space obtained 
by identifying each point (x, 0) of the base of 
CX with f(x) E Y is called the reduced mapping 
cane and is denoted by C, = Y U,CX. The 

reduced join (or smash product) of mappings 
f: Y+X and f ‘: Y’GX’ is the mapping fi f ': 
Y A Y’+X A X’ induced from the product 

mapping f x f ‘: Y x Y’-tX x X’. The reduced 
join off: Y+X and 1: S’ +S’ (identity map- 
ping) is written as Sf = f A 1 and is called the 
suspension of ,f: 

G. Puppe Exact Sequences 

Forf:X-*Yandy:Y+Z,wehavegofzOif 
and only if y cari be extended to a continuous 
mapping from C, into Z. In other words, the 

sequence 

7r(Cr; Z)&r( Y; Z),L(X; Z), 
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is exact (i.e., Imi* = Kerf * =.f*-‘(O), where 
i: Y-C, is the canonical inclusion and 0 is the 

class of the constant mapping). The inclusion 
i: Y*C, gives rise to the reduced mapping 
cane Ci. We also have the canonical inclusion 
i’: Cf-Ci. Adding the term ~L(C~:Z)~~ to the 
left-hand side of the sequence above, we have a 

new exact sequence. Continuing this process, 
we obtain an exact sequence of inlïnite length. 
If X, Y satisfy a suitable condition (e.g., X, Y 

are CW complexes), then Ci has the same 
homotopy type as the reduced suspension 

SX of X; i’* is equivalent to p* : n(SX; Z),+ 
n( C,; Z), induced by a mapping p : C,+SX 
smashing Y to a point; and furthermore C, has 
the same homotopy type as SY, and the inclu- 
sion i, : SX - C,, is equivalent to the suspension 

Sf: SX -tS Y of J: Thus the following Puppe 
exact sequence is obtained: 

. ..%(sc.;z),%@Y;z),%(sx;z), 

In this exact sequence, if Y is a CW complex, 

X is a subcomplex of Y, and ,f is the inclusion 
i : X - Y, then Ci = C, = Y U C, is homotopy 

equivalent to the space C,/CX = Y/X obtained 
by smashing CX to a point, and an exact 

sequence of the following type is obtained: 

. ..~7L(sx.z)ooli7L(Y/x;z)~-‘~(Y;z)o 

%I(X; Z),. 

A sequence equivalent to the sequence 
XL YAC, is called a cofibering, for which a 
similar exact sequence is obtained. For a con- 
tinuous mapping f: X -i Y, consider the sub- 

space E/ = {(x, 9) 1 f(x) = p(O)} of the product 
space X x Y’. By identifying X with {(x, cp,) 1 
<p,(l) = f(x)}, we cari regard X as a deforma- 

tion retract of Ef. By putting pl(x, cp) = <p(l), 
we obtain a 0ïber space (Es, pl, Y). The liber 

Tf = p 1’ ( * ) is called a mapping track off: 
Using the tcovering homotopy property, we 
see that the sequence 

n(W; TJ)o%c(W;X),,%c(W; Y), 

is exact, where p(x, QD) = x. This sequence is 
also extended infinitely to the left as 

. ..~=(W.RX),~,(W;RY),~(W; Tf),,P;, 

where i is the inclusion of the loop space QY 
into T/ and Qf: RX +R Y is the correspon- 

dence of the loops induced from f: 

H. Homotopy Sets that Form Groups 

If X = SX’ or Y = fi Y’ (or, generally, if Y is a 

thomotopy associative +H-space having a 
thomotopy inverse), then z(X; Y),, forms a 
group. In the general case the product of the 
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loops induces the product of ~L(X; OY’),. We 
represent a point of SX by (x, t) (x E X, t E 1) 
and delïne the mapping Q,g : X -0 Y for each 

g:SX+Y by Q,g(x)(t)=g(x,t). Hence an 
isomorphism R, : n(SX; Y)a z n(X; Q Y)a is 
obtained. Each of the following pairs of homo- 
morphisms is equivalent: f, : rc(SX; Y), + 
n(SX; Y’), and Rf,:~(X;nY),~~(X;RY’),; 

and h*:rc(X’;QY),-trc(X;RY), and 
Sh*:n(SX’; Y),-wT(SX; Y),. 

If S” is an n-dimensional sphere, then n,(X) 
= rt(S”; X), is the n-dimensional homotopy 
group (- Section J). Let n”(X) = ~L(X; S’& If 
X is a CW complex of dimension less than 2n 
- 1, ~L”(X) is the cohomotopy group isomor- 
phic to rc(X; fiS”+‘)O (- Section 1). Let K, be 
an TEilenberg-MacLane space of type (ZZ, n). 

Then we have K, = RK,,, , and if (X, A) is a 
pair of CW complexes, then rr(X/A; KJ,, coin- 
cides with the cohomology group H”(X, A; n). 
For the tclassifying space i?o(B,) of the inlïnite 
orthogonal group 0 (infinite unitary group U) 

(- Section V), rc(X/A; Bo) (~L(X/& B,)) may be 
considered the KO-group KO(X, A) (K-group 
K (X, A)) (- 237 K -Theory). 

1. Cohomotopy Groups 

K. Borsuk detïned a sum of mapping classes of 
X into S” (1936) which was named Borsuk’s 

cohomotopy group by E. Spanier. Spanier also 
studied the duality of the cohomotopy group 
with the homotopy group and its relations to 
the usual cohomology groups. A cohomotopy 
group of (X, A) is defined to be ~L”(X, A) = 
rc(X, A; S”, *), which forms a group if dimX/A 
< 2n - 1. A mapping F: X/A -+S” x S” given 

by F(x)=(f(x),g(x)) with,f, g:X/A-rS” is 
homotopic to a mapping into S” v S”. If we 
compose F with a folding mapping of S” v 
s” onto S”, we obtain a mapping that repre- 
sents the sum [f] + [g]. With each homo- 

topy class of a continuous mapping f of an 
n-dimensional tpolyhedron K” into an n- 
dimensional sphere S”, we associate the image 

f*(u) of the fundamental class u E H”(S”; Z) 
under the induced homomorphism f* : 
H”(S”; Z)-+H”(K”; Z). We then obtain a bijec- 
tive relation TC”(K”)+W(K”; Z), called Hopf’s 

classification theorem. 

J. Homotopy Groups 

Let X be a topological space with a base point 

*,P={t=(t1,t2 )...) t,))O<t,,t, ,...,t,<l} be 

the unit n-cube, and i” its boundary. Write 
fin(X, *) = X’“(in, *) (in particular, P(X, *) is 

the loop space), and denote by x,(X, *) or 
simply ~C,(X) the set of arcwise connected 
components of Q’(X, *), i.e., the homotopy 
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classes [f], Using the notation of homotopy 
sets, we have x,(X, *)=x(1”, i”; X, *). If we 

choose the constant mapping as the base 
point * of Q”(X, *), then Q”(Q”(X, *), *)= 
Q”‘+“(X,*). Thus ~m(n”(X,*),*)=~,+,(X,*). 
Since ni is the tfundamental group, n,(X,*)= 
rc,(fin-‘(X), *) is also a group, called the n- 

dimensional homotopy group of X with base 
point *. “Multiplication” in homotopy groups 
is defined as follows: Given fi, fz E fi”(X, *) 
we define ,fi + f2 ECJ”(X, *) by 

(f1 +f2N)= 

fi(2~l,b,...>L)> 
{ 

O<t,<), 
f2(2t1 - l,t*, ,t,), f<t,<l 

(Fig. 1). Then the product or sum of [fi] and 
[fi] is given by [f, + f2]. The identity is the 
class of the constant mapping (denoted by 0), 
and the inverse of [f ] is [f], represented by 

,f(t)=f(l-t,,t, ,..., t,). ThespaceR”(X,*)is 
an tH-space, where multiplication is given by 
the correspondence (fi, f2)+ fi +f2. Since the 

fundamental group of an H-space is commuta- 
tive, x,(X, *) is an Abelian group for n B 2. 

Fig. 1 Fig. 2 

LetS”={t=(t,,...,t,+,)~~t~=l} bethen- 
sphere, and take * = (l,O, . . ,O) as its base 

point. Suppose that we are given a continuous 
mapping $,:(Z”,i”)+(S”,*) such that t//,:Z”- 

in-+,??- * is homeomorphic. Then the corre- 
spondence $n : rc(S”; X), +rc,(X, *) determined 
by t,@ [g] = [go ICI.1 is bijective. Thus we cari 
identify the homotopy group x,(X, *) with 

7c(S”; X),. 

K. Relative Homotopy Groups 

Suppose that we are given a topological space 
X and a subspace A of X sharing the same 
base point * Identify In-’ with the face t, = 

0 of I”, and let J”-’ be the closure of i” - 
In-’ (Fig. 2). Denote by rc,(X, A, *) the set of 

homotopy classes of continuous mappings 
f :(Y, in, J”-l)-+(X, A, *). Let Q’(X, A, *) be 
the mapping space consisting of such map- 

pings i and let rc,(X, A, *) = n,(W(X, A, *)). 
Since O*(Q”(X, A, *), *) is homeomorphic to 
Qm+“(X, A, *), we have q,,(CY’(X, A, *), *)r 
71,+,(X, A, *). Thus n,(X, A, *) is a group for 
n > 2 and an Abelian group for n à 3. This 

group is called the n-dimensional relative 
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homotopy group of (X, A) with respect to the 
base point *, or simply the n-dimensional 

homotopy group of (X, A). In the same man- 
ner as in Section J multiplication in this group 

cari be detïned using fi +f2. Since Q”(X, *, *) 
and Q”(X, *) are identical, we have ~L”(X, *, *) 
= n,(X, *). Hence homotopy groups are spe- 
cial cases of relative homotopy groups. 

Let g:(X, A, *)-( Y, B, *) be a continu- 
ous mapping. Then a correspondence y* : 
n,(X, A, *)-trr,(Y, B, *) is obtained by g,[f] = 
[gof], with y* a homomorphism of homo- 
topygroupsforn>2andforn=l,A=*.We 

cal1 g* the homomorphism induced hy y. Let 
E”={t=(t,,...,t,)I~t~=l}betheunitn-ce11 
with boundary S”-‘. Utilizing a suitable rela- 
tive homeomorphism $L:(l”,J”-‘)+(En, *), 

$k(p) = S”-‘, we obtain a one-to-one corre- 
spondence I,&,*:~~(E”,S”~~;X, A)o+n,(X, A,*), 
and @‘(X, A, *) is homeomorphic (via I&) to 
the mapping space XE”(S”-‘, * ; A, * ). 

L. Homotopy Exact Sequences 

Given an element c( = [f] E n,(X, A, *), and 
letting acr= [,f1I’-‘]~n,~,(A, *), we obtain 
a homomorphism (n>2) a:rr,(X, A,*)+ 

x,-,(,4, *), which is called the houndary 

homomorphism. Furthermore, we have the 
following exact sequence involving homomor- 

phisms i,,j, induced by two inclusions i:(A, *) 
+(X, *),j:(X, *, *)+(X, A, *): 

. ..~tn.(A,*)l;~“(X,*)~~,(X, A,*) 

-~...~~,(x,*)~;~~(x,A,*)<~*~~(A)I;TL~(x). 

This sequence is called the homotopy exact 

sequence of the pair (X, A). A system of topo- 
logical spaces X 3 A 3 B 3 * is called a triple. 
In this homotopy exact sequence, if we replace 

(4 * 1, (X, *) by (A, 4 * 1, W, 4 * 1, respectively, 
we obtain an exact sequence, called the homo- 
topy exact sequence of the triple (X, A, B). 

The homotopy group n,(A x B) of the prod- 
uct space is isomorphic to the direct sum 
q,(A)+qJB), and the projections p(p’): A x B 
+A(B) of the product space induce the pro- 
jections from n,(A x B) onto the direct sum- 

mands n,(A), n,(B). This is a special case of the 
+Hurewicz-Steenrod isomorphism theorem in 
fiber spaces (- 148 Fiber Spaces). Setting 
AvB=(A x *)U( * x B), we obtain a direct 

sum decomposition n,(A v B) z x,(A) + n,(B) + 
7-c,+, (A x B, A v B). Next we consider a fixed 
pair (X, A) and move the base point * to inves- 
tigate its effect on the elements of the homo- 
topy group. Suppose that we are given a path 
h: Ik.4 with termina1 point * = h( 1) and an 

element a~rr,(X,A,*) (M=[f],S:(ln,in,Jn-i) 

-*(X, A, *)). By the homotopy extension prop- 
erty, we cari construct a homotopy fs: (I”, in) 
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-t(X, A) satisfying &(J”-‘) = h(B) and fi =f: 

Then the homotopy class [fol of f0 with re- 
spect to the base point * ’ = h(0) is determined 
only by a and the homotopy class w  of the 

path h. We denote the homotopy class [fol by 
?“~rr,(X, A, *‘). The correspondence cl+tl” is 
a group isomorphism, and (C(~)““=C?“. Thus 
if A is arcwise connected, 7(,(X, A, *) is isomor- 
phic to x,(X, A, *‘). Hence, in this case, we may 
simply Write rr,(X, A) instead of ~L”(X, A, *). 
When * = *‘, the correspondence C(+CC~ deter- 
mines the action of the group ~L~(A, *) on 
x,(X, A, *). Given an element aEz,(X, *) and a 

class w  of paths in X, we defïne aWcn,(X, e’) 
as for relative homotopy. Specifically, if WE 
n, (X, *), then aw - a coincides with the White- 

head product [w, a] (when n= 1, we have au. 
r(~‘=[w,a]=waw~‘a-‘)(- Section P). 

A pair (X, A) consisting of a topological 
space X and an arcwise connected subspace A 
of X is said to be n-simple if the operation of 
rtr (A) on x,(X, A) is trivial. Similarly, an arc- 
wise connected space X is called n-simple if the 
operation of rr, (X) on ~C,(X) is trivial. For 
example, a pair (X, A) consisting of an H-space 
X and an H-subspace A is simple, i.e., n-simple 

for each n. If a topological space X satistïes 
n,(X)=0 (O<i<t~), then X is said to be n- 

connected. 0-connectedness coincides with 
arcwise connectedness and 1-connectedness 
means +Simple connectedness. S” is (n - l)- 
connected. A pair (X, A) is said to be n- 
connected if 7-co(A)=n,(X)=ni(X, A)=0 (1 < 
i < n), and (E”, S’-‘) is (n - 1)-connected. 

M. Homotopy Groups of Triads 

Let (X; A, B, * ) be a system, called a triad, 

of a topological space X and its subspaces 
A, B satisfying A fl BS * (base point). Let 

n,(X;A,B,*)=n,~,(R’(X,B), R’(A,AnB),*) 
(n > 2); rc”(X; A, B, *) is a group for n > 3 and an 
Abelian group for n > 4. We cal1 n,(X; A, B, *) 
the homotopy group of the triad. From the 
homotopy exact sequence of the pair, we ob- 
tain the following homotopy exact sequence of 
the triad: 

il 
L;71i(X;A,B,*)~*?li-1(A>Ar)B,*)~ . . . . 

Assume for simplicity that An B is simply 

connected, X = Int A U Int B (Int A is the +in- 
terior of A), (A, A n B) is m-connected, and 
(B, A n B) is n-connected. Then (X; A, B) is 
(m + n)-connected, i.e., rtj(X; A, B, *) = 0 (2 < 
j < m + n) (Blakers-Massey theorem). 

Furthermore, in this case we have a replica 
of the texcision isomorphism in homology 

theory for j < m + n; that is, we have the iso- 
morphism i,: nj(A, A fl B, *)r 5(X, B, *) in- 
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duced by the inclusion i:(A, A flB)+(X, B). On 
the other hand, 7~,+.+i (X; A, B, *) is isomor- 
phicton,+,(A,AnB,*)o~,+,(B,AnB,*). 
This shows that the excision isomorphism 
does not always hold for homotopy groups, an 

important difference from homology theory. 
However, if we replace the excision axiom by 
the Hurewicz-Steenrod isomorphism theorem, 
which is valid for tïber spaces (- 148 Fiber 

Spaces), then we cari construct homotopy 
theory axiomatically in the same manner as 
homology theory (- 201 Homology Theory). 

N. The Hurewicz Isomorphism Theorem 

The Hurewicz homomorphism 7 of x,(X, A) 
into the n-dimensional integral homology 

group H,(X, A) is defïned by T( [f])=f,(s,) 
(where E, is a generator of W,,(ln, p)). Then we 
have the Hurewicz isomorphism theorem: Sup- 
pose that the pair (X, A) is n-simple (e.g., A 

= *) and (n - 1)-connected. Then we have 
Hi(X, A) = 0 (i < n) and the isomorphism T : 
n,(X, A) g H,(X, A) (for n = 1 - 170 Funda- 
mental Groups). Let X, Y be simply connected 
topological spaces, and let f: X+ Y be a con- 
tinuous mapping. Then the following two con- 
ditions are equivalent: (1) f, : xi(X)+ni( Y) is 

injective for i < II and surjective for i < n. (2) 

f. : Hi(X)+Hi( Y) is injective for i < n and sur- 
jective for i < n (J. H. C. Whitehead3 theorem). 

J.-P. Serre generalized these theorems as 
follows: A family w  of Abelian groups satisfy- 
ing condition (i) is called a class of Abelian 
groups: (i) If a sequence F+G + H of Abelian 
groups is exact and F, HE%?, then GEV. Fur- 

thermore, we consider the following condi- 
tions: (ii) The tensor product G @ F of an arbi- 
trary Abelian group F with an element G E 55 
also belongs to (e. (ii’) If both F, GEV?, then 
F@ G, Tor(F, C)E%?. (iii) If GE%?, then its 

thomology group H,(G)E%? (i>O). Condition 
(ii’) is implied by (ii). A homomorphism f: 
F+G is called w-injective if KerfEV, %- 
surjective if Cokerf= G/ImfE %?, and a V- 
isomorphism if f is V-injective and %‘- 
surjective. Two Abelian groups G and G 
are called %‘-isomorphic if there exist V- 
isomorphisms f: F+G and f’: F+G’. In 
particular, if the class ‘e, consists of only the 

trivial group 0, then concepts such as %$- 
isomorphism coincide with the usual concepts 
of isomorphism, and SO on. Let %?p be the class 

of tïnite Abelian groups whose orders are 
relatively prime to a tïxed prime number p. 

Here, instead of the terms %?r-isomorphism and 
SO on, we use the terms modp isomorphism 

and SO on. Let 3 be a class of fmitely gen- 
erated Abelian groups. Then %,, satistïes con- 
ditions (ii) and (iii), and On satislïes (ii’) and (iii). 
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We have the following generalized Hurewicz 
theorem: (A) Suppose that a class V satislïes 

(ii) and (iii) and we are given a 2-connected 
pair (X, A) of simply connected spaces X, A. 
If ni(X, A)E%? (icn), then Hi(X, A)E%?, and 

7:71,(X, A)+H,,(X, A) is a 9?-isomorphism. (B) 
Suppose that A = *, V satistïes conditions (ii’) 
and (iii), and X is simply connected. Then an 
assertion similar to (A) holds. In particular, a 
simply connected space X having tïnitely 

generated homology groups (e.g., a simply 
connected tïnite polyhedron) has fînitely gen- 

erated homotopy groups. As a corollary to 
theorem (A), we obtain a generalized White- 
head theorem. In particular, applying the 
theorem to the class @ n %?r,, we obtain the 
following frequently used theorem: Suppose 

that we are given simply connected spaces X, 
Y whose homology groups are lïnitely gen- 
erated and f: X + Y satisftes f,nz(X) = rc2( Y). 
Then the following two conditions are equiva- 
lent: (1) f, : rci(X)+ni( Y) is a modp isomor- 

phism for i < n and a mod p surjection for i = n. 

(2) f, : H,(X, ZP)+Hi( Y, Z,) is an isomorphism 
for i < n and a surjection for i= n (where Z, = 
Z/pZ). The theory above, which makes use 
of the notion of class %‘, is an example of 
Serre% %‘-theory. Concepts such as tspectral 
sequences for Iïber spaces and tn-connective 

tïber spaces are important tools in Serre’s V- 
theory (- 148 Fiber Spaces). 

TO calculate homotopy groups, we use 
notions such as exact sequences, fïber spaces, 
(co)homology groups of n-connective tïber 
spaces, and tPostnikov systems. Given an 
arbitrary group (more generally, a Postnikov 

system), there exists a CW complex having the 
given group (system) as its homotopy group 
(Postnikov system) (realization tbeorem of 
homotopy groups). For an arbitrary arcwise 
connected topological space X there exist 

topological spaces (X, n) and continuous map- 
pings pn:(X,n+ l)+(X,n) (n= 1,2, . ..) satisfy- 
ing the following two conditions: (i) ((X, n + l), 
p,,, (X, n)) is a liber space whose fïber is an 
tEilenberg-MacLane space. (ii) (X, 1) =X, and 
((X, n + l), p1 0 . 0 pn, X) is an n-connective 
tïber space. The method of obtaining the 
homotopy group n,(X) g H,((X, n)) by com- 
puting (co)homology groups of (X, n) is called 
a killing method. 

0. Homotopy Operations 

Let X, Y, X’, Y’ be topological spaces. If to 
each continuous mapping fe Y’ there corre- 
sponds a homotopy class Q(f) E ~L(X’; Y’) that 

is a homotopy invariant off (satisfying a 
certain naturality condition), then @ is called 
a homotopy operation. More generally, we 
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may consider the case where @ is a mapping 
from x(X,; Y,) x x x(X,; K) into 7c(X’; Y’). 

The naturality of Q, is defined as follows: Con- 
sider the tcategory V of topological spaces (or 
its subcategory). Let Y= Y’ be an arbitrary 
tobject of %?, and fix X and X’. In this case, 

the naturality of @,,:z(X; ~)+X(X’; Y) is de- 
tïned to be the commutativity of the diagram: 

7c(X; Y)%n(xI; Y) 

lu* ls* 
7z(X;Z)-,n(X;Z) 

i.e., g* o @ y = <Dz o g* for an arbitrary tmor- 
phism (i.e., continuous mapping) g: Y+Z of 

the category %‘. Similarly, when abjects Y, Y’ 
of the category %? are tïxed and X = X’ is an 
arbitrary abject of %?, to say that a homotopy 
operation Qx:z(X; Y)+n(X; Y’) is natural 

means that h* o Dx = mw o h* for an arbitrary 
morphism h: W-tX. 

We have the following theorem: In the 
category of topological spaces and continu- 
ous mappings, the homotopy operations @Y: 
n(X; ~)+X(X’; Y) and the elements of n(X’; X) 
are in one-to-one correspondence. The corre- 
spondence is obtained by associating a homo- 
topy operation @(P)=~~OE (~Ex(X; Y)) with 
each c(E~L(X’; X). Similarly, the homotopy 

operations Ox:z(X; Y)+n(X; Y’) and the ele- 
ments of x( Y; Y’) are in one-to-one corre- 

spondence. This theorem holds also for the 
case involving several variables if we consider 
x(X’;X,vX,v...)or7c(Y,x Y,x...;Y’)in- 

stead of ~L(X’; Y) or ~L(X; Y’). The theorem 
remains valid if we replace the spaces X, Y by 
systems of spaces. 

P. Homotopy Operations in Homotopy Groups 

(1) If X, X’ are spheres S”, SP with base points 
and Y, Y’ are topological spaces with base 
points, a homotopy operation @y:n,,(Y)+ 

np( Y) is said to be of type (n, p). By the theo- 
rem in Section 0, the homotopy operations 
of type (n, p) are in one-to-one correspondence 
with the elements of the homotopy group of 
the sphere n,,(Sn). 

(2) As an example of the 2-variable homo- 
topy operations Q: n,(Y) x zLn( y)-+~,( Y) of 

type (m, n; p) we have the Whitehead product 
delïned as follows: Suppose that EE~L,,,( Y), 
/1~ n,(Y) are elements represented by f: (I”, im) 

-(Y, *) and g:(1”, &( Y, *), respectively. 
Delïne a continuous mapping F from the 
boundary jm+” = (1” x in) U (im x 1”) of 1”+” = 
I” x I” into Y by F(x, y) =f(x) for (x, y) E 1” x 
i” and F(x,y)=g(y) for (x,y)gim x I”. Since 

1 ‘m+” is homeomorphic to Sm+nml, we cari iden- 

tify them. The homotopy class represented by 

F is an element of 7t m+n-l( Y) determined by c( 
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and /?, denoted by [a, /?] and called the White- 
head product of E and p (J. H. C. Whitehead, 
Ann. Math., (2) 42 (1941)). The Whitehead 

product is a homotopy operation of type 
(m, n;m+n- 1). Let +,,,:(lm,im)+(Sm, *) be a 
mapping that smashes im to a point. The pro- 

duct of I/J, and ICI. delïnes a mapping $,,,. : 
Sm+“~l+SmvS”=(Sm x *)U( * x Sn). Let 1~ 
z,,,(Sm v S”), z’~n,(S~ v S”) be the homotopy 
classes of the natural inclusions of S”, S” into 
S” v S”; then the homotopy class of $,,,, is 
[z, 1’1. G. W. Whitehead showed that a direct 
sum decomposition n,(S” v S”) = l,z,(Sm) + 

z*7cp(Sn) + [z, z’]*~L~(S~+“~~) (z.+, zi, [z, z’]* are 
injective) holds for 1 < p <m + n + min(m, n) - 

3. Furthermore, P. J. Hilton showed that for 

general p > 1, zp(Sm v Sn) is the direct sum of 
the images of injections z*, &, [r, z’]*, [[I, 
1’1, l],, [[z, 1’1, I’]*, etc. The homotopy 
operations of type (m, n; p) are in one-to-one 
correspondence with the elements of n,(S” v S”); 
hence such operations cari be constructed by 
means of composition and the Whitehead 
product. The last proposition is also valid for 
homotopy operations of type (m, , , m,; p). 

The Whitehead product [a,/?] (aen,(X), BE 
n,(X)) is distributive with respect to CI (resp. 8) 

for m> 1 (n> l), and we have [/?,a]=(-1)“” 

[cc,/31 andf,[a,B]=[f&f*B] forf:X+Y. 
Moreover, for y E q(X) the Jacobi identity 

holds: ~-~~“‘CC~,~~,Y~+~-~~““CCB,Y~,~~+ 
(-l)‘“[[y,a],P]=O (M. Nakaoka and H. Toda; 
H. Uehara and W. S. Massey; Hilton). 

Q. Suspensions and Generalized Hopf 
Invariants 

We denote by CI A fl E n(X A X’; YA Y’), the class 
of the reduced join off; g, where f represents 
nsn(X; Y),, and g represents ,~EK(X’; Y’),. 

We cal1 a A /l the reduced join of a and fi. In 
particular, if Y= Y’ = S’, b is the identity 
mapping of S’, and a is represented by 5 then 
a A b is called the suspension of a and is de- 
noted by Sa. Sa is the class of the suspension 
$f off and belongs to n(SX; SY),, where SX 
indicates the reduced suspension of X. The 
suspension Sa is often denoted by Ea in ref- 
erence to the German term Einhtingung. The 

identity mapping 1 of SY gives rise to an in- 
jection i = Q, 1 sending Y into the loop space 
n(SY) determined by the formula i(y)(t)=(y, t). 

Then we have 

i, =R, oS:7r(X; Y),+7c(SX; SY), 

and S and i, are equivalent. Let Y, be the 
identifying space Yk/ -, where Yk is the prod- 
uctspaceYx...xYofkcopiesofYand- 
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is the equivalence relation determined by 

-(Y,>...,Yk-,,*). 

Denote by Y, = lJk yk the limit space with 
respect to the injection Y,-, + Yk given by 
(yi, ,y,-,)+(~,, . . . ,y,-,, *) and cal1 it the 
reduced product space of Y. Let Y be a CW 
complex of O-+Section * The mapping i: Y= 
Y, -&SYcan then be extended to i: Y, + 
fiSY, where iis a weak homotopy equiva- 
lente. If X is also a CW complex, then K&’ o 

i,: n(X; Y,),+x(SX; SY), is bijective. By 
smashing the subset Y of Y,, we have YA Y= 
Y2/Y. This smashing mapping cari be extended 

to h: Y, -( YA Y), (1. M. James). Utilizing 
h, : n(X; Y,),-tn(X; ( YA Y),), and the bijec- 
tion fi;’ oi,, we obtain a correspondence 
H:n(SX;SY),~n(SX;S(Yr\ Y)),. We cal1 H(a) 
the generalized Hopf invariant of cc When X = 
S’“-‘, Y=S”-‘, H is equivalent to the Hopf 

invariant y : 7czn-, (S”)-+Z (- Section U). In 
general, we have Ho S = 0, and the exactness 
of -% 3 holds under various conditions. 

Denote also by o the composition of homo- 
topy classes; then we have S(a o 8) = Sao S/I 
and H(E o SP) = Ha o SP. Also, H@E o fl) = 

S(a A a)o H/I. Under the condition i < 3n - 3, 
we have (a, +cc,)oB=cc, ofl+sc,op+[cc,, 
a21 o H(p) for ~(i, a2~nn(X) and Peni(S”) (G. 
W. Whitehead). Thus the composition CI o /i’ is 
not always left distributive but is always right 
distributive, and CI o fl is left distributive if p = 

S[y. The composition is defïned over the stable 
homotopy groups G,. of spheres (- Section U): 
ao/?~G,+, (REG,,,BEG~). It is distributive and 

satisfies ~occ=(-l)pqcco~. 
When Y and Y’ are Eilenberg-MacLane 

spaces, BO, and B,, we have tcohomology 
operations on cohomology groups H”( ; Z7), 
KO groups, and K groups, respectively. As 
typical examples there are +Steenrod square 
operations Sq’: H”(X; Z,)-+Hn+i(X; Z,), +Steen- 
rod pth power operations 9’: H”(X; Z,)+ 

Hn+2i(p-1)(X; Z,), +Chern characters ch”: K(X) 

+H’“(X; Q) (Q : rational fïeld), +Adams opera- 
tions @i:KO(X)+KO(X) (K(X)+K(X)). They 
are a11 homomorphisms (- 64 Cohomology 
Operations; 237 K-Theory). 

R. Secondary Compositions 

Suppose that aop=O, aoy=O for y~n(W; 
X),, /l~n(X; Y),, c(E~L(Y;Z)~. In the com- 
mutative diagram of Puppe exact sequences 

%L(SW;Y),sc(C,; Y),L(X; Y),? 
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the set of elements p m n(SW; Z) such that 

p*(B)Ea,i*m’(/?) is denoted by {sc,p,y} and 
is called a secondary composition or Toda 
hracket. If 0, q are elements of rc(SW; Y),, 

n(SX; Z),, respectively, then we have {a, b, y} 

+“*8={4B,Y}, {“,B,r)+SY*~={C(,B,Y). 
Hence we may consider the set {a, 8, y} to be a 
residue class modula a submodule generated 

by c(,@W; Y),, and Sy*n(SX; Z),. 
The secondary composition {a, 8, y} has the 

following properties: (i) {a, /l, y} is linear with 
respect to c(, /l, y (if the sum is defïned); (ii) 

ao{B,r,6}={~,8,~}o(-~~);(i~i)~{~,8,~}~ 

-{Sa,SB,Sy};(iv)ao{B,y,6}-{aoB,y,6}, 
{~oB,Y,6}~{a,BoY,~},...;(v){{~,B,Y}, 

S6, SE} + { % {B, y> 6}, Se} + 1% 8, {Y, 6, E} } = 
0. Suppose that the spaces X, Y, Z, W are 
spheres. Then by (iii) the secondary composi- 

tion ~~,B,Y)~G~+~+~+~I(~oG~+~+~ +~oG,+,+d 
is defined in the stable homotopy groups G,= 

lim n-co n”+,(S”) of spheres. From this we obtain 
(vi) {y, fi, a} = ( -l)pq+qr+rp+’ {a, b, y} and (vii) 

(-1)~‘{~,~,Y}+(-1)~~{B,Y,~}+(-~)rq{Y,~,8} 
EO. 

S. Functional Operations 

Let ù, be an operation corresponding to CI and 
y be the class of J: We put Qf(fi) = {a, B, y} and 
cal1 Qf a functional @-operation. When @ is a 
cohomology operation, @, is called a func- 
tional cohomology operation. Then QI(b) is 

dehned for /J satisfying f*(b) =@(fi) = 0, and 
m,.(b) is determined modulo ImSf* + Im @. 

For f: Sn+k ->S”, k = 2i(p - 1) - 1, we denote by 

H,(f). ~,,+~+i E Hn+k+l(Sn+k+‘; Z,) the image 

of a generator E, of H”(S”; Z,) under the 
functional Vp; operation. Then the Hopf in- 
variant modulo p (or modp Hopf invariant) 
Hp:z,+k(Sn)+Zp is obtained (we use Sq*’ for p 
= 2). The following statements are equivalent: 
(i) The mod 2 Hopf invariant is not trivial 

(Hz #O); (ii) there exists a mapping: SZkil + 
Sk+’ of Hopf invariant 1; (iii) Sk is an H-space; 
(iv) the Whitehead product [l, z] of a genera- 

tor I of nk(Sk) vanishes. Also, H, #O if and 
only if k = 2,4, 8 (J. Adams), and for an odd 
prime p, H, # 0 if and only if k = 2p - 3 (A. L. 
Liulevicius; N. Shimada and T. Yamanoshita). 

T. Stable Homotopy Groups and Spectra 

The homotopy set n(S”X, S’Y), for n-fold 
iterated suspensions S’X = X A S”= SS’~‘X 
and S’Y, forms a group (an Abelian group) if 
n > 1 (n 3 2). The limit n”(X; Y) = lim $?‘X; 

S’Y), with respect to the suspension homo- 
morphisms S:n(S”X; S”Y),~n(S”“X;S”“Y), 

is called a stable homotopy group of X and 
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Y. For an r-connected space Y and a CW- 

complex X, S:rr(X; Y),+n(SX;SY), is bijec- 
tive if dim X < 2r and surjective if dim X < 
2r + 1 (generalized suspension theorem). Thus, 
if X is a imite-dimensional CW-complex, 
?(X, Y) is isomorphic to rr(S”X, S”Y), for suf- 
tïciently large n. TO discuss stable homotopy 
groups more generally, the following concept 
of spectra is used. A system E = {&, Es} which 
consists of CW-complexes E, and continuous 

mappings ck:SEk-+Ek+, is called a spectrum. 
When E,=Sk and Q= lk+,:SSk+Sk+‘, S= 
{Sk, lk+r} is called a sphere spectrum. When 

E, = K(G, k) (+Eilenberg-MacLane complex) 
and Es induces a homotopy equivalence K(G, 
k) = RK(G, k + l), HG = {K(G, k), Es} is called 
an Eilenherg-MacLane spectrum. As in the 
latter, a spectrum E in which ck induces a 
homotopy equivalence E, =RE,+, is called an 
R-spectrum. By Bott’s periodicity, R-spectra 
KU={ZxB,,U,ZxB,,U ,... }andKO= 

{Z x B,, U/O, ~P/U, SP, Z x BS,, U/Sp, SO/U 
0, Z x B,, . } are obtained (- Section V). 
Also, using +Thom complexes, Thom spectra 
MU, MO, etc. are obtained. Given a spectrum 

E, by putting E”(X, A) = lim rc(Sk(X/.4); E,,,), 
for each pair (X, A) of CW-complexes, we 
obtain a generalized cohomology theory with 
E-coefficient; and by putting E,(X, A) = 
limn,(E,-“A(X/A)), we obtain a generalized 
homology theory with E-coefficient. +Gener- 
alized (co)homology theory on (tïnite) CW- 

complexes cari be represented by a suitable 
spectrum (Ci. W. Whitehead, E. H. Brown, 
Adams). Corresponding to E=S, HG, KU, 
MU, etc., we have stable (co)homotopy 

groups, G-coefficient (co)homology groups, 
K-groups, +(co)bordism groups, etc., respec- 

tively (- 201 Homology Theory). 

U. Homotopy Groups of Spheres 

The spheres S” and their homotopy groups are 
basic abjects in homotopy theory. Although 
much research has been done concerning these 
abjects, there are still open problems. 

S” is (n - l)-connected: ni(S”) = 0 (i < n). The 
fact that rc,,(S”) g Z (infinite cyclic group) was 
obtained from the +Brouwer mapping theorem. 

Also, ni(S’) = 0 (i> 1) follows from the fact that 
the tuniversal covering space of S’ is contrac- 
tible. Suppose that we are given a continuous 
mapping f: S’“-’ -tS”. We approximate it by a 
tsimplicial mapping <p. Then the inverse image 
q-‘( *) of a point * in the interior of an n- 
simplex of S” is an (n - 1)-dimensional tpseudo- 
manifold which is orientable by means of 

a suitable generator .s~H,-t((p-~( *)). The 

boundary isomorphism a: &(S’“-‘, q-‘( *)) z 
H,-,(<p-‘( *)) and the homomorphism <p*: 
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HJS’“-’ ,cp-‘( *))+H,(S”,*) give rise to an in- 

teger y(cp) determined by the relation ‘p.$ -I(E) 

= y(<~)&, (E, is an orientation of S”). This inte- 
ger is independent of the choice of <p, SO we 

cari set ?(~)=Y((P). Then S= y implies that 
y(f) = y(g). We cal1 y(f) the Hopf invariant of 
f: H. Hopf detïned y and showed y: rr;(S’) z Z 
(1931); y(n,,-,(S”))=O for odd n; y(rrZn-r(Sn))3 
22 for even FI; and y(rczn-, (S”)) = Z for n = 4, 8 
(1935). H. Freudenthal defïned a homomor- 
phism E:~(Y)+z~+~(S”+‘), E[f] = [S’], and 
proved the Freudenthal theorem: (1) E is an 

isomorphism for i < 2n - 1; (2) E is a surjection 
for i = 2n - 1; and (3) the image of E coincides 
with the kernel of y for i = 2n. Furthermore he 

obtained q,+,(S”)~Z, (n>3) (1937). For n= 
2,4,8, a mapping f:S’“-‘+S” (+Hopf map- 
ping) such that y(f) = 1 (given by Hopf) is the 
projection of a tfiber bundle SZnml over the 
base space s”, and the correspondence (CZ, p)- 
Ecc +f,fi gives an isomorphism 7c-r (S’-‘) + 
ni(S2”-‘) (direct sum) g ni(Sn). Hence we ob- 
tain n,(S*) = Z,. It was shown by G. W. 

Whitehead and L. S. Pontryagin that r~,+~(Sn) 
(n 2 3) is isomorphic to Z, (1949). Whitehead 
also detïned a generalized Hopf homomorphism 

H:TT~(S”)+TT~(S ‘“-l) for a range of i < 3n - 3, 
and this restriction on the dimension was 

removed by P. J. Hilton and 1. M. James. 
Using H, many nontrivial results concerning 

rci(S”) have been obtained. Serre obtained the 
following (1951-1953): rci(S”) is fïnite except 

when i = n or i = 4m - 1 and n = 2m. Further- 
more, r~~~~r(S’~) is the direct sum of Z and 
a fïnite group. Let p be an odd prime and 
n be even. Then rri(S”) is %$-isomorphic to 

ni_,(S”-‘)+~i(S2”~1). Let n be odd. Then 
~~+~(S”)e(ep (k<2p-3), and ~c,+~~~~(S~) is vD- 
isomorphic to Z,. Serre and H. Toda deter- 
mined ~c,+~(S”) for k = 3,4, 5, and Serre further 

determined it for k = 6, 7,8. Utilizing the re- 
duced product space of S”, James gave the 

sequence 

. ..+ni(sn)%ri+l(S”+‘)%ci+l(S2n+‘) 

and showed that it is an exact sequence if n is 
odd and an exact sequence mod 2 if n is even 
(1953). Using this exact sequence and the 

secondary composition, Toda determined 
~c~+~(S”) for k d 19 (- Appendix A, Table 6.VI). 

By the Freudenthal theorem (l), the z,+~(S”) 
(n > k + 1) for a tïxed k are isomorphic to each 

other. We cal1 z,+~(S”) (n > k + 1) the stable 
homotopy group of tbe k-stem of the sphere 
and denote it by Gk. For k=O, 1,2, , 15, . . . , 

Gk~~,~,,~,,~,,,~,~,~,,~,,,,~,~~,, 

Z,+Zz+Z,,Z,,Z,,,,O,Z,,Z,+Z,,Z,,,+ 
Z,, For the computation of Gk, the notion 

of n-connective fiber spaces is important. By 
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utilizing the Adams spectral sequence, we cari 

show that G, is closely related to the cohomol- 
ogy of the +Steenrod algebra. Let p be an odd 
prime. There exist the following sequences 
of elements of order p: {ccieG, (k=2i(p- l)- 
l)j,{l?i~Gk(k=2(ip+i-l)(p-l)-2))andfor 
p>3{yi~G,(k=2(ip2+(i-l)p+i-2)(p-l)- 
3)}. The p-component of Gk is determined for 
k < 2p2(p- 1) - 3 by using Steenrod algebra. 

TO compute G, for higher k, relations such as 
ut /If = 0, /$bp = 0 (i > 1) are necessary. In gen- 
eral, each element of Gk (k # 0) is nilpotent 
(G. Nishida). Let n,(S”: p) be the p-component 
of r&S”). TO survey this group for the nonstable 
case (i > 2n - l), we utilize Serre’s mod p direct 
sum decomposition (for n even), and we have 
the following two exact sequences for the case 
of odd n: 

. ..-7ci(s”)%i+2(Sn+2)‘7Li(R2(Sn+2).Sn)L, 

. ..+7ci+3(Sp”+p+‘.p)%ci+l(SP”+P-‘:p) 

-+71i(R2(S”+~),S”:p)-+TLi+2(S~n+~+’:p)0,..., 

where E’=EoE and AE’(cr)=pa(- Ap- 

pendix A, Table 6.VI). 

V. Homotopy Groups of Classical Groups 

Consider the classical group U(n, A), which is 
either the orthogonal group O(n) (A = R); the 
unitary group U(n) (A = C); or the symplectic 
group Sp(n) (A=H). The infinite classical 
group U(co, A) is delïned to be the inductive 

limit group of {U(n, A) 1 n = 1,2,. . } with re- 
spect to the natural injection U(n, A) c U(n + 

1, A). We cal1 U(ro,A) the infinite orthogonal 
group, infinite unitary group, and infinite sym- 
plectic group for A = R, C, and H, respectively. 
The dimensions of the cells of U( CO, A) - 
U(n,A) are >A(n+ 1)- 1, where i=dim,A 
(=1 (A=R), =2(A=C), =4(A=H)).It 
follows that rck( U(n, A)) is isomorphic to 
rrk(U(co,A)) for k<Â(n+ 1)-2, which is called 
the kth stable homotopy group of the classical 
group.LetO=U(oo,R),U=U(co,C),Sp= 

U(c0, H). The homotopy groups of the clas- 
sical groups are periodic (k > 0): 

x,(u)~~,+,(u)~z, k odd, 

ZO, k even, 

~k(O)~7Lk+4(SP)~71k+s(o), 

=Z, k = 3, 7 (mod 8), 

ZZ,, k=O, 1 (modS), 

ZO, k#O, 1, 3, 7 (mod8). 

This is called the Bott periodicity theorem. The 
relations are deduced from weak homotopy 

equivalences U+R(B,), Bu x Z-O(U), BO x Z 

+wJlO), U/O+fi(Sp/U), Sp/U+fi(Sp), SP 
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~qB,,)> Bsp x Z+wJ/SP), U/SP+wOlU)3 
O/U-&(O). This result is applied to non- 
stable cases; for example, rc,,(U(n)) is a cyclic 
group of order n! (- Appendix A, Table 6.VI). 
The 2-dimensional homotopy group n,(G) of 
any Lie group is trivial. 

Let sc~rt,(O(n)), where a=[f],f:S”-O(n). 
We delïne 7: Sk x Y’ +S”-’ by f(x, y) =,f(x) . y 
and identify Sk+” with the boundary (Ek+’ x 
YL)U (Sk x E”) of Ek+l x E”. We extend f to 

f:sk+n +S” SO that it maps Ek+’ x S’-‘, Sk x 
E” into the Upper and lower hemisphere of 

S”(S”-’ = the equator), respectively. Let J(~)E 
z,+~(S”) be the class of the mapping thus ob- 
tained. This homomorphism J:rc,(O(n))+ 
~c,+~(S”) is called a J-homomorpbism of Hopf 
and Whitehead. For the stable case, J:r~,(o)+ 
Gk is injective for k = 0, 1 (mod S), and the 
order of the image of J is the denominator 
of B,,/4t (i?2t is a +Bernoulli number) or its 

double for k = 4t - 1 (Adams). 
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A. General Remarks 

The concept of Hopf algebras arose from two 
directions. First in the lïeld of algebraic topol- 
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ogy the notion of Hopf algebras arose from 
the study of homology and cohomology of Lie 
groups or, more generally, H-spaces. It was 
introduced by H. Hopf [ 11, whose basic struc- 
ture theorem was generalized and applied to 
several problems by A. Bore1 [2]. These Hopf 
algebras are graded as algebras and coalge- 
bras, and they are now used as standard tools 

in algebraic topology. On the other hand, 
Hopf algebras without grading were studied in 
connection with affine algebraic groups and 
forma1 groups. The study of nongraded Hopf 
algebras as an algebraic system was initiated 
by M. E. Sweedler [3], and many results on 
Hopf algebras of this type have been applied, 
not only to the theory of algebraic groups but 

also to the Galois theory of field extension and 
to combinatorial theory. 

Although these two types of Hopf algebras 
have similar structures, and the same termi- 

nology is used to describe their properties, 
they are somewhat different from each other. 
SO to avoid confusion in this article, we dis- 
tinguish between graded Hopf algebras and 

Hopf algebras. 

B. Graded Algebras 

A tgraded module A = CnbOAn over a fïeld k is 
said to be of finite type when each A, is hnite- 

dimensional, A is connected when an isomor- 
phism r) : k z A, is given. The ttensor product 
of two graded modules A and B is a graded 

module with A@B=C,(A@B),,(A@B),= 
C,, A, 0 B,-,. We cal1 A* = 2 An (where An 
is the +dual module of A,) the dual graded 
module of A. When A and B are of finite type, 
A 0 B and A* are also of fïnite type, and we 
have (A @ B)* = A* @ B* and A** = A. When 
A and B are connected, A* and A Q B are also 
connected. 

Let A be a graded module. If there exists a 
degree-preserving hnear mapping cp : A @ A + 
A, we cal1 (A, <p) a graded algebra, whereas if 
there exists a degree-preserving linear mapping 

++k : A +A 0 A, we cal1 (A, $) a graded coalgebra. 
We cal1 cp a multiplication, and $ a comultipli- 
cation (or diagonal mapping). Usually we Write 

cp(a @ b) = ab (the product of a, bu A), and cal1 
$(a) the coproduct of a. Multiplication and 
comultiplication are dual operations. If A is of 
finite type and (A, <p) is a graded algebra, then 

(A*, cp*) (where cp* is the dual mapping of cp) is 
a graded coalgebra, and vice versa. A multi- 
plication cp is called associative (commuta- 

tive)ifcp(l@<p)=<p(cp@l)(<poT=<p),where 
T:A @ A+ A @ A is the mapping defined by 
T(a@b)=(-l)Pqb@uforaEA,andbEAq. 

Associativity and commutativity of a comulti- 
phcation are defïned dually. Let (A, $) be a 
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graded connected coalgebra of imite type, 
and identify k with A, via q. Then the graded 
algebra (A*, +*) has the unity of k as unity if 
and only if t,k satisfïes $( 1) = 1 0 1 and +(x) = 

1 @x+x@ l+Cix~@x~(O<degx~<degx) 
for deg x > 0. In this case we say that $ has the 
unity of k as counity. For graded algebras 
(A,cp)and(B,rp’),ifcp”=(cp@rp’)o(l@T@l): 
A 0 B @ A Q B-+A 0 B, then (A @ B, cp”) is 

also a graded algebra, which we denote by 
(A @ B, $‘)=(A, <p)@ (B, cp’). The tensor prod- 
uct of graded coalgebras is defïned as the 

dual notion of (A, cp) 0 (B, q’). 

C. Graded Hopf Algebras 

For simplicity we assume that graded mod- 

ules are defïned over a fïeld, connected, and 
of fïnite type. Let a graded module A be 
equipped with a multiplication <p and a co- 

.multiplication $. If cp and $ have the unity 

of k as unity and Ic, :(A, <p)-+(A, <p) @ (A, cp) is an 
algebra homomorphism, then we cal1 (A, cp, +,k) 

a graded Hopf algebra. The last condition for a 
graded Hopf algebra is satisfied if and only if 
V:(A, $)@(A, $)+(A, tj) is a homomorphism 

of graded coalgebras. The dual (A*, $*, <p*) is 
also a graded Hopf algebra, called the dual 
Hopf algebra of (A, cp, I/I). 

D. H-Spaces 

Let X be a topological space. The tcoho- 
mology group H*(X) (thomology group 
H,(X)) considered over a field k has a multi- 

plication d* (comultiphcation d,), which is 
induced by the diagonal mapping d: X +X x X 
and becomes a commutative and associative 
graded algebra (coalgebra). The groups H*(X) 
and H,(X) are dual to each other (- 201 
Homology Theory 1, J). When X is equip- 
ped with a base point x0 and a base point- 
preserving continuous mapping h:X x X+X 

such that ho zi = 1, (thomotopic) for i = 1 and 
2 (where ~i(x)=(x,xa) and z2(x)=(x0,x)), we 
cal1 (X, h) an H-space, h a multiplication, and 

x0 a homotopy identity of X. Then h induces, 
through a +Künneth isomorphism, a co- 

multiplication h* : H*(X)+H*(X) @ H*(X) 
(Hopf comultiplication) and a multiplication 

h,: H,(X) @ H,(X)+H,(X) (Pontryagin 
multiplication). Then h*(E) (a~ H*(X)) is 

called the Hopf coproduct of c(, and h,(/? 0 y) 
(/j’, y E H,(X)) is called the Pontryagin product 
of B and y. When X is tarcwise connected and 
H,(X) is of fïnite type, (H*(X), d*, h*) and 
(H,(X), h,,d,) are graded Hopf algebras dual 

to each other. In particular, when h is homot- 

opy associative, i.e., h o (h x 1 x) = h o (1 x x h) 
(homotopy commutative, i.e., h = h o 7; where 
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T(~,,xJ=(x~,xr) for X~E~), then h* and h, 
are associative (commutative). +Topological 
groups and +loop spaces are homotopy as- 
sociative H-spaces. If a continuous mapping 
9:X-X satisfies ho(l, xg)Zho(g x l,)gc 
(constant mapping X+{x,}), then g is called a 

homotopy inverse for X, h. 
Suppose that a graded Hopf algebra A is 

defïned over a fïeld k of characteristic p and 
equipped with associative and commutative 

multiplication, and A is generated by a single 
elemen t a E A,. Then A is a tpolynomial ring 
k[a] (n! is even when p # 2) or a tquotient ring 
k[a]/(a’) (n is odd when pf2) or k[a]/(d’) 
(only when p # 0; II is even when p # 2). These 
are called elementary Hopf algebras. Every 
graded Hopf algebra over a tperfect fïeld k 
with associative and commutative multiplica- 
tion is isomorphic (as a graded algebra) to a 
tensor product of elementary Hopf algebras 

(Borel’s theorem) [2]. In particular, the coho- 
mology algebra over a tïeld of characteristic 0 
of a +Compact connected Lie group is isomor- 

phic to a +Grassmann algebra generated by 
elements of odd degrees [ 11. 

E. Steenrod Algebras 

The +Steenrod algebra &‘p over Z, is generated 
by Steenrod operations Sq’ (p = 2), 9’ (p > 2), 

and the +Bockstein operation A,, (p > 2), with 
composition of operations defined as multi- 
plication. Then &‘p is a connected associative 

graded algebra of fïnite type (not commuta- 
tive). Defïning a comultiplication $ of &,, by 
~(Sq”)=CSq’osq”-‘, lj(P)=Capi@.Pm’, 
and $(A,,) = 10 A,, + A,, @ 1, .&‘,, becomes a 
graded Hopf algebra with an associative and 
commutative comultiplication. Thus its dual 
&‘p is a graded Hopf algebra with an associa- 
tive and commutative multiplication, and we 
cari apply Borel’s theorem to .&‘P in order to 

investigate the structure of &‘,, [4]. 
Let (A, <p, $) be a graded Hopf algebra 

with associative multiplication and comulti- 

plication. Putting c( 1) = 1 and c(a) = -a - 
C ai. ~(a:) for dega > 0 (where $(a) = 1 @ a + 
a @ 1 +x ai @ a:), we obtain a linear map- 
ping c: A+ A satisfying c<p = ~(c @ c) T. We 
cal1 c the conjugation mapping of A. When the 

multiplication or comultiplication is commuta- 
tive, we obtain the relation cz = 1, and L’ is a 
bijection. The conjugation mapping is utilized 
in studying Steenrod algebras [4,5]. 

F. Coalgebras 

Now we turn to nongraded cases. Let A be a 
vector space over a tïeld k, and let p: A 0 k A+ 

A and q : k+ A be linear mappings. Then the 
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triple (A, p, y~) is said to be an algebra over k if 

~o(~Ol,)=~00(1~O~)and~o0(1~Or)= 
,uo(~ @ lA)= l,, where 1, is the identity 

mapping of A, and A @ kk and k @ k A are 
identitïed naturally with A. We cal1 p the multi- 
plication and q the unit mapping of the alge- 
bra. Dually a triple (C, A, E) with C a vector 
space over k, linear mappings A : C+C 0 k C, 

and E: C+k is said to be a coalgebra over k if 
(lc@A)oA=(A@ 1,)oA and(lc@s)oA= 
(E 0 1,) o A = 1,. We cal1 A the comultiplica- 

tion or the diagonal mapping and E the aug- 
mentation or the counit of the coalgebra. 

An algebra (A, p, q) is called commutative 
if p o T= p, where T is the twist mapping 
a @ b H h @ u. A cocommutative coalgebra is 
detïned dually. Definitions of the tensor prod- 
uct of two algebras or coalgebras are similar 
to the definitions in the graded case. If D is a 
subspace of a coalgebra (C, A, E) over k satisfy- 

ing A(D)cD@,D, then (D,AID,&ID) is a co- 
algebra and is said to be a subcoalgebra of C. 
A subspace 1 of a coalgebra (C, A, E) over k is 

called a coideal of C if A(I) c C @ ,J + 1 @ k C 
and E(I) = 0. Then the quotient space C/I has a 
coalgebra structure induced naturally from 
(C, A, E) and is said to be a quotient coalgebra 
of C. The intersection and the sum of sub- 
coalgebras of C are again subcoalgebras of 
C. If S is a subset of C, then the intersection 
of a11 subcoalgebras containing S is said to 

be the subcoalgebra generated by S. The 
subcoalgebra generated by any finite set or 
finite-dimensional subspace of C is tïnite- 
dimensional. 

If (C, A, E) is a coalgebra over k, then the 
dual space C* of C has an algebra structure 
over k with multiplication p and unit mapping 
>1 detïned naturally from the +dual mappings of 

A and E respectively. (C*, p, ‘1) is called the dual 
algebra of (C, A, E). Suppose that (A, p, il) is an 
algebra over k, and let A0 be the subset of the 
dual space A* of A consisting of elements f 
whose kernel contains an ideal 1 such that A/I 
is tïnite-dimensional. Then (Ao, A, E) is a co- 

algebra over k, where A and E are the linear 
mappings induced from the dual ones of p and 
n, respectively. (Ao, A, E) is called the dual co- 

algebra of (A, p, il). The tfunctors ( )* and ( )” 
are adjoint to one another in the sense that 
there is a natural bijective correspondence 
between the set of algebra homomorphisms 

of A to C* and that of coalgebra homomor- 
phisms of C to A0 for any coalgebra C and 

algebra A, where coalgebra homomorphisms 
are detïned as the dual notion of +algebra 

homomorphisms. 

A nonzero subcoalgebra D of a coalgebra C 
is called simple if D has no nonzero proper 

subcoalgebras, and the sum of a11 simple sub- 
coalgebras of C is called the coradical of C. If 
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C coincides with its coradical, then C is said to 
be cosemisimple. If C has only one simple 
subcoalgebra, then C is called irreducible. C is 
called pointed if a11 simple subcoalgebras of C 
are 1-dimensional. An element g of a coalgebra 

(C, A, E) is called grouplike if A(g) =g @ g and 

s(g)= 1. The set G(C) of grouplike elements in 
C is linearly independent over k. 

G. Bialgebras 

A system (H, p, q, A, s) with an algebra structure 
(H, p, n) and a coalgebra structure (H, A, E) is 

said to be a bialgebra over k if A and E are 
algebra homomorphisms. This last condition 
is equivalent to saying that p and yl are coalge- 
bra homomorphisms. If K is a subspace of a 

bialgebra (H, p, n, A, E) which is simultaneously 
a subalgebra and a subcoalgebra of H, then 
we cal1 K a subbialgebra of H. An ideal1 of 
(H, p, y~) which is also a coideal of (H, A, E) is 

called a biideal of H and the quotient space 
H/I has a bialgebra structure which is said to 

be a quotient bialgebra of H. A linear mapping 
between bialgebras is a bialgebra bomomor- 
phism if it is simultaneously an algebra homo- 
morphism and a coalgebra homomorphism. A 
bialgebra (H, p, n, A, E) is called commutative 

(cocommutative) if (H, ,u, u) ((H, A, E)) is com- 
mutative (cocommutative). 

Examples. Let kG be the vector space with a 
set G as free basis over a lïeld k. If we detïne 
linear mappings A:kG+G@,kG by A(x)= 
x@xands:kG+kbys(x)=l forxinG, 
then (kG, A, E) is a cocommutative coalge- 
bra over k such that the set G(kG) of group- 
like elements is equal to G. Moreover if G 

is a tsemigroup with unit element, then 
(kG, p, q, A, E) is a cocommutative bialgebra 
over k, where p(q) is the multiplication (unit 

mapping) of the tsemigroup algebra kG. This 
bialgebra is called a semigroup bialgebra over 
k. If L is a +Lie algebra over k and U(L) the 
tuniversal enveloping algebra of L with multi- 
plication p and unit mapping y~, then Lie alge- 
bra homomorphisms x+x @x (L+L@ L) 
and x-0 (L+(O)) induce algebra homomor- 

phisms A: U(L)+U(L@ L)g U(L)@ U(L) and 
E: CJ(L)+k, respectively. Then (U(L), p, y~, A, E) 
is a cocommutative bialgebra over k, called the 
universal enveloping bialgebra of L. 

H. Hopf Algebras 

Let (A, p, n) be an algebra over k and (C, A, E) 

a coalgebra over k. If f and g are in R = 
Hom,(C,A), thenf*g=po(f@g)oA is 

called the convolution off and g. Detïning 
~‘:ROkR~Rand~‘:k~Rby~‘(fQg)=f*g 
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and $(a) = aq o E, then (R, p’, q’) is an algebra 
over k. If H is a bialgebra over k with underly- 

ing coalgebra HC and algebra HA, then R, = 
Hom,(HC, HA) is an algebra over k in the 
same manner as above. If the identity mapping 

1, of H has the inverse S in R, under the 
multiplication p’, then H is said to be a Hopf 
algebra over k with antipode S. Then S satistïes 
the following: S(gh) = S(h)S(g) for g, h in H, 
SO?=?, &OS=E and To(S@S)oA=AoS, 
where T is the twist mapping a 0 b+b @a. If 
H is commutative or cocommutative, then 
sos= 1,. 

If H’ is another Hopf algebra over k with 

antipode S’, then a bialgebra homomorphism 
f of H to H’ such that SIf=fS is called a Hopf 
algebra homomorphism. If H and H’ are both 

commutative (cocommutative), then any bi- 
algebra homomorphism of H to H’ is a Hopf 
algebra homomorphism. The tcategory whose 
abjects are commutative and cocommutative 
Hopf algebras over a tïeld k and whose mor- 
phisms are Hopf algebra homomorphisms is 
an +Abelian category (A. Grothendieck). If H is 
a commutative Hopf algebra over a tïeld of 
characteristic zero, then the underlying algebra 

HA has no tnilpotent elements (P. Cartier). 
If G is a tgroup, then the group bialgebra 

kG given above has an antipode S delïned 

by S(x) = x-’ for x in G, and hence kG is a 
cocommutative Hopf algebra over k. Another 
example of Hopf algebras is the tcoordinate 
ring of an talgebraic group detïned over k. 
More generally, let X = Spec(A) be an +aflïne 

group scheme over k. Then algebra homomor- 
phismsA:A-tA@,A,s:A-,k,andS:A+A 

are naturally induced from the group structure 
of X, and (A, p, y~, A, E, S) is a commutative 
Hopf algebra over k, where p and q are the 
multiplication and unit mapping of A, respec- 
tively. Conversely, if (A, p, n, A, E, S) is a com- 

mutative Hopf algebra over k, then X = 
Spec(A) is an affine group scheme over k 

with the group structure induced from A, E, 
and S. Hence a commutative Hopf algebra 
over k is nothing but a cogroup abject of the 
category of commutative algebras over k (i.e., 
a tgroup abject of the +dual category). Dually 
a cocommutative Hopf algebra over k is 
nothing but a group abject of the category of 
cocommutative coalgebras over k. 

1. Hyperalgebras 

If (C, A, E) is a pointed irreducible coalgebra 
over k, then C contains a unique grouplike 
element y, and kg is the unique simple sub- 
coalgebra of C. An element a of C satisfying 

A(a) = CI @ y + g 0 a is called primitive. The set 
P(C) of primitive elements in C is a vector 
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subspace of C. A cocommutative coalgebra C 

is called colocal if C is irreducible, i.e., if the 
dual algebra C* of C is a tquasilocal ring. The 

tdimension of P(C) of a colocal pointed coalge- 
bra C is tïnite if and only if the dual algebra 
C* of C is a +Noetherian complete local ring. 
A bialgebra (H, p, 4, A, E) over k is said to be a 
hyperalgebra over k if the underlying coalgebra 

is colocal. Then the unique simple subcoalge- 
bra (grouplike element) of H is q(k) (n(l)), and 
P(H) has a Lie algebra structure delïned by 
[x, y] = xy - yx for x, y in P(H). 

The universal enveloping bialgebra U(L) of 
a Lie algebra L over k is a hyperalgebra over k 
such that the set P(U(L)) of primitive elements 
in U(L) is equal to L. Conversely, if the char- 
acteristic of k is zero, any hyperalgebra H over 

k is isomorphic to the universal enveloping 
algebra U(t’(H)) of the Lie algebra P(H). But 
in positive-characteristic cases U(P(H)) is 

generally a proper subbialgebra of H. Another 
important example of hyperalgebras is the 
dual coalgebra hy(X) = Ao of the +stalk A at 
the neutral point of the +Structure sheaf of an 
talgebraic group scheme X over k. In addition, 
hy(X) has an algebra structure detïned from 
the group structure of X and is a hyperalgebra 
over k such that P(hy(X)) is equal to the Lie 
algebra L(X) of X. Although L(X) plays an 

important role in the infinitesimal theory of 
algebraic groups over a lïeld of characteristic 
zero, it does not give any information on in- 

lïnitesimals of orders higher than p in the case 
of positive characteristic p. In the case of char- 
acteristic zero we see hy(X)= U(L(X)) and 
L(X) = P(hy(X)), and SO hy(X) is a natural 
substitute for L(X) in positive-characteristic 
cases. From this viewpoint many interesting 
results on hy(X) of an algebraic group scheme 
X which are parallel to those on L(X) in the 
case of characteristic zero have been obtained 
[6&8]. 
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A. General Remarks 

Mathematical analysis of the motion of fluids 
(- 205 Hydrodynamics) gives rise to various 
kinds of mathematical problems; the equations 
that govern flows are amongst the most im- 
portant and most extensively studied of the 
nonlinear partial differential equations. Here 
we review only basic and noteworthy results. 

Sections B-E are concerned with incompress- 
ible fluids, while Sections F and G deal with 
compressible fluids. 

B. Nonstationary Solutions of the Navier- 
Stokes Equation 

Let R be a bounded domain in R” (m = 2 or 3) 
occupied by a fluid, with smooth boundary 
ZQ. If the fluid is viscous and incompressible, 
its motion cari be described by means of the 

velocity u = u(t, x) and the pressure p = p(t, x) 
with t >O and XGR the time variable and the 
space variable, respectively. For simplicity, we 

assume that external forces are absent. Then a 
and p satisfy the Navier-Stokes equation 

;+(uV)u=vAu-Vp, (1) 

and the equation of continuity 

divu=O, (2) 

where the positive constant v stands for the 

(kinetic) viscosity. On I?JR, u is subject to the 
boundary condition 

u I FR = m, 4. (3) 

The initial value of u is also prescribed: 

u 1 f=() = uo(x). (4) 
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If R is unbounded, e.g., if 0 is an exterior 
domain outside compact surfaces, then 

uk.+4dt) (IXl-+~) (3’) 

is imposed in addition as the boundary con- 
dition at inlïnity. 

The problem of finding u and p that satisfy 
(l))(4) for given /l and t10 is called the Navier- 
Stokes initial value problem (abbreviation, NS 
initial value problem). Pioneering mathemat- 

ical studies of this problem were initiated by 
J. Leray, and since the 1950s various contri- 
butions have been made by many authors, 
including E. Hopf, 0. A. Ladyzhenskaya, H. 
Fujita, T. Kato, and S. Ito (- [ 13,17,21]). We 

state here the result in terms of regular (class- 
ical) solutions under the simplifying assump- 
tion that fi is bounded, p = 0, and u0 is sole- 
noidal (div u,, = 0) and smooth. The situation 
depends nontrivially upon the dimension m. 
Namely. if m = 2, then a regular solution of the 
NS initial value problem exists uniquely and 

globally, i.e., for all time. If m = 3, we cari prove 
only a local existence theorem (i.e., one hold- 
ing in a Imite interval) of a regular solution. 
This solution is unique in the interna1 of its 

existence; however, it cari be extended over 
the whole interval when the Reynolds number 
is sufftciently small. In other words, the ques- 
tion of well-posedness of the 3-dimensional 
NS initial value problem is open at present. 

C. Weak and Strong Solutions of the Navier- 
Stokes Equation 

In 1951 Hopf introduced the notion of weak 
solutions of the NS initial value problem and 

succeeded in proving their global existence 
(without uniqueness). We here give the delïni- 
tion of Hopf’s weak solution: Let C& be the 
set of vector functions u E Cz(fi) with div u = 0. 
By H we denote the closure of C& under the 
Lz-norm, and by V the closure of Ciy, under 
the IV: (R)-norm (or equivalently, the Dirichlet 
norm for bounded n). Then an H-valued func- 
tion IA = u(t) is a weak solution of the NS initial 

value problem with /1= 0 in [0, 7) (0 < T< 
+m) if 
(i) u~L~‘(0, T;H)flL2(0, ~0; V), 

(ii) u is weakly continuous from [0, T) to H, 
and 
(iii) u satislïes the weak equation 

T 

11 
tu> <Prhn, - v(Vu, vqLz(n) 

0 

+ (tu. WA t*)~~~n~ dt = -tuo> dO)hn, 
1 

(5) 

for all <PE C$( [0, T) x 0) with div cp = 0. 

Note that the pressure p has been eliminated 
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in the weak equation. In general, the unique- 

ness of Hopf’s weak solution is not known 
except for m = 2. However, when a regular 
solution does exist, then the weak solution 
coincides with it (a.e.), and is unique. Solutions 
of the NS initial value problem which are 
stronger than the weak solution to the extent 
that the uniqueness cari be proved have been 

introduced, for instance, by A. A. Kiselev and 
Ladyzhenskaya [ 121 and Fujita and Kato 
[SI. Actually the existence and uniqueness 
theorems of the aforementioned regular solu- 
tions are proved using existence theorems 

of such strong solutions. Recently, Y. Giga and 
T. Miyakawa succeeded in generalizing the 
Fujita-Kato theory from L2 to Lp, and thus 
they have shown that if u,EL”‘(R) and is sole- 
noidal, a unique strong solution exists at least 

locally for any m. 
Those strong solutions that satisfy unique- 

ness, and hence are regular solutions of the NS 

initial value problem, turn out to be smooth 
for t > 0; they are analytic in t > 0 and x ER. 

D. Stationary Solutions of the Navier-Stokes 

Equation 

If the flow is steady, u and p are solutions of 
the boundary value problem consisting of (1) 
with ch/& omitted, (2) and (3) with /I indepen- 
dent of t (and, in addition, (3’) with a constant 
U, if R is an exterior domain). The existence 
of solutions of this boundary value problem 
for the case of bounded n was established by 

Leray as one of the earliest applications of 
his lïxed-point theorem. For the case of un- 
bounded R, Leray’s study was completed and 

extended by R. Finn, H. Fujita, and others to 
yield theorems on existence, regularity, and 
asymptotic behavior in the wakes of solutions 
(- [4,13,21]). These stationary solutions are 
unique if the Reynolds number is sufficiently 
small. On the other hand, under certain cir- 
cumstances that involve Quette flow, non- 
uniqueness or bifurcation of stationary solu- 
tions for large Reynolds numbers has been 

positively proved. 

E. Euler’s Equation 

If the fluid is inviscid and incompressible, the 
Navier-Stokes equation is reduced to Euler’s 
equation 

Then the boundary condition is replaced by 
the frictionless boundary condition, which, in 
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the homogeneous case, takes the form 

&l12Ci=0, (7) 

where u, is the normal component of u. Regu- 

lar solutions of the initia1 value problem con- 
sisting of (6) with (2), (4), and (7) have been 
proved to exist for all t if m = 2 and in a finite 
timeifm=3 [l,ll]. 

F. The General Navier-Stokes Equations 

If the fluid is compressible, viscous, and heat- 
conductive, its motion is described in terms of 
the density p, the velocity u, and some thermo- 

dynamic quantity, say the absolute tempera- 
ture 8, and is governed by the following system 
of equations, sometimes called the general 
Navier-Stokes equations: 

ûo 0 Y 
z+(u.V)O=&AOf$divu)pO+=. 

” ” Y 
(10) 

Here the pressure p is regarded as a function 
of p and 0 through the equation of state. The 
viscosity coefficient p, the coefficient of heat 
conduction IC, and c,,, the specific heat at 
constant volume, are positive constants. We 
have for simplicity assumed that the external 
force is absent, and that the Stokes condition 
for viscosity is satisfïed. Finally, Y is the dis- 

sipation function: 

If fi is the whole space, then the initial values 
pO, uO, 0, of p, u, Q are given at t = 0, and we 
obtain the Cauchy problem for the general 
Navier-Stokes equation. Mathematical study 
of this Cauchy problem has become active 
since J. Nash [19] and N. Itaya [S] proved the 
existence of unique regular solutions local in 

time. Following Itaya’s argument, A. Tani 
constructed a unique regular solution local in 
time for the initial boundary value problem 

consisting of (8)-( 10) and boundary conditions 
imposed on u and 0. When it cornes to the 
global existence of solutions, only restricted 
results are known. The global existence of a 
regular solution in the 1-dimensional version 
of the Cauchy problem has been established 
by Ya. Kane]’ [ 101 and Itaya under certain 

simplifying assumptions, such that the fluid 

is a barotropic gas, i.e., one obeying p = Cpy, 
where C and y > 1 are positive constants. The 

1-dimensional initia1 boundary value problem 
cari also be solved globally if the gas is ideal 
and polytropic, i.e., one for which p = RpB, and 

with the interna1 energy proportional to 0 and 
[9]. For the 3-dimensional case, we cari only 

refer to [18], where existence of global solu- 
tions of the Cauchy problem has been proved 
for initial data close to constants under the as- 
sumption that the gas is ideal and polytropic. 

G. Equations for Inviscid Ideal Gases 

When the gas under consideration is inviscid, 

ideal, and barotropic, we put p = 0 and p = Cp y 
in (9). The equation thus obtained is combined 

with (8) to yield the following quasilinear 
hyperbolic system, which admits conservation 
laws: 

g+div(pu)=O, 

(1’) 

It the initial data p. and u0 are smooth to 

some extent, then the Cauchy problem for (11) 
has a regular solution local in time. Generally, 

we cannot expect existence of regular solu- 
tions global in time, namely, discontinuity is 
likely to take place in a tïnite time, which cor- 
responds to the occurrence of shock waves. 
Therefore we have to introduce weak solutions 
that admit discontinuity. By definition a piece- 
wise continuous function {p, u} is a weak 
solution of (11) if it satisfïes (11) in the distri- 
bution sense and if its discontinuity is sub- 

ject to a certain jump condition, called the 
Rankine-Hugoniot relation as well as another 
condition, called the entropy condition, which 
two conditions allow us to distinguish a physi- 

cally realizable solution among many possible 
discontinuous solutions [3,14]. Global exis- 
tence of the weak solution has been proved 

SO far only for the 1-dimensional problem with 
initial data close to constants in the sense that 

their oscillations and total variations are suflï- 
ciently small. Actually in this case we cari 

apply J. Glimm’s method [6] to construct 
weak solutions by means of a difference ap- 
proximation which involves random numbers. 

Little is known regarding the uniqueness of 
weak solutions. Finally, if we are concerned 
with steady-state solutions of an inviscid com- 
pressible fluid and assume that the flow is 
irrotational, then we are led to a quasilinear 
partial differential equation of mixed type for 
the velocity potential @, which is elliptic in the 

subsonic region and hyperbolic in the super- 
sonic region. Classical results concerning these 
equations may be found in [2,3]. 
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A. General Remarks 

Gases and liquids are easily deformed, and 
they share many kinetic properties. They are 
examples of fluids. By delïnition, a fluid is a 
continuous substance having the property that 
when it is not moving, any part of the sub- 
stance separated from the rest by a surface 
exerts an outward force that is perpendicular 

to the given surface. 
Hydrodynamics (or fluid dynamics) is con- 

cerned with the equilibrium and the motion of 
gases and liquids without considering their 

molecular structure. In particular, the branch 
of the theory concerning fluids in equilibrium 
is called hydrostatics, and hydrodynamics 
sometimes refers to the branch concerning 
fluids in motion. 

There are two methods of describing the 
motion of a fluid. One regards a fluid as a sys- 
tem consisting of an inlïnite number of par- 
ticles and discusses the motion of each parti- 

cle as a function of time. This is Lagrange3 
method. For example, suppose that a fluid 
particle with the coordinates (x, y, z) = (a, b, c) 

at the moment t = 0 has coordinates x = 

.f, (a, b, c, 0, Y =f2(a, b, c, 0, z =.f&, 6 c, t) at 
an arbitrary time t. Then the motion of the 
fluid is perfectly determined by the functions 

.I; 1 .f2 3 and .L. 
The other is Euler’s method, which discusses 

the values of the velocity V(U, v, w), the density 
p, the pressure p, etc., of the fluid at arbitrary 
times and positions. From this standpoint 
each quantity of the fluid is regarded as a 

function of a space-time point (x, y, z, t). 
The rate at which any physical quantity F 

varies while moving with the fluid particle is 
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the Lagrangian derivative DF/Dt, which is 

related to the ordinary partial derivatives by 

DF CF r?F i?F i?F 

The three components (u, u, w) and the two 
state quantities (p, p) (in general, other state 
quantities, for example, the temperature T and 
the tentropy S, are assumed to be determined 
by equations of state such as T= T(p, p), S = 
S(p, p)) are determined by five ( = I + 3 + 1) 

relations derived from the conservation laws of 
mass, momentum, and energy, namely, the 

equation of continuity, which corresponds to 
the conservation of mass, 

c?p/r’t + div(pv) = 0; (1) 

the equation of motion, which corresponds to 
the conservation of momentum, 

L?(p)/% +div(pv @ V-p)=pK, (2) 

where K is the external force per unit mass, p 
is the stress tensor, and @ denotes the ttensor 
product, while +divergence is applied to each 

row vector, and by virtue of(l), the equation 
(2) cari be expressed component-wise as 

and the energy equation, which corresponds to 
the conservation of energy, 

i?(pv2/2+pE)/dt 

+div(pv(a2/2+E)-v.p+h)=pv.K, (3) 

or the equation of entropy production, which is 
another expression of (3), 

pTDS/Dt= -divh+Q, (3’) 

where E is the interna] energy per unit mass, Q 
the heat generated per unit time and volume, 
and h the heat flux. Here K, pik, h, and Q or 
their relations with other quantities (e.g., h= 

-K grad T, where IC is the thermal conductiv- 
ity) are assumed to be known. 

B. Perfect Fluids 

When there is a velocity gradient in the flow, 

a tangential stress appears which tends to 
make the velocity uniform, SO that p is not a 
diagonal tensor (-PC~,,, Le., pressure). This 

property is called fluid viscosity. Generally, Q 

and h do not vanish in this case. However, in 
order to simplify the problem we consider a 

nonviscous (sometimes also adiabatic) fluid, 
which is called a Perfect fluid and is a good 
approximation in the large of actual fluids. 
The motion of a Perfect fluid is determined by 
Euler’s equation of motion 

p Dv/Dt = - grad p + pK, (4) 

which is obtained from (1) and (2) by replacing 
pik by the pressure only, and also by the ther- 
modynamic relation DS/Dt = 0 obtained from 
(3’) by putting Q = 0 and h =0 or its integral 

S = constant in homentropic flow, which is 
governed by the adiahatic law pocp’, where y 
denotes the ratio of specific heat at constant 

pressure to that at constant volume. In partic- 
ular, for a liquid, the density variation cari be 

neglected. Putting p =Constant in (l), we have 

divv=O, (5) 

which, in conjunction with (4), determines four 

unknowns (u, II, w, p) as functions of (x, y, z, t). 
A fluid of constant density is called an in- 

compressible fluid, and one of variable density 
a compressible fluid. Even though it might 

seem natural to consider gases as examples of 
compressible fluids, they cari be treated as 
incompressible fluids if the speed of the flow 
of the gas q = Iv1 is small compared with the 
velocity c = m of sound propagating in 
the gas. We cal1 q/c = M the Mach number. 

The vector ~(5, q, 0, which is derived from 
the velocity vector Y as w  = rot v, is called the 
vorticity. A small part of the fluid rotates with 

angular velocity w/2. If w  = 0, the flow is called 
irrotational, otherwise rotational. The curves 
dx:dy:dz=u:v:wanddx:dy:dz=<:tl:[are 

called, respectively, stream lines and vortex 
lines. The line integral &.v,xd.~ along a closed 
circuit C is called the circulation around C. 

In irrotational flow, the velocity is expressed 
as v = gradm, where U, is called a velocity poten- 
tial. When the external force K has a potential 
0 (K = - grad n) and p is a defïnite function 
of p, we have the pressure equation au, 1 

s dp 
x+Tq2+ -+R=constant, 

P 

which is valid everywhere in the flow. In a 
steady slow, 1 p2+ s dp 

y + fi = constant 

is valid along each stream line or each vortex 
line; this is called the Bernoulli theorem. These 
two equations correspond to tenergy integrals 
of the equation of motion. Furthermore, cor- 
responding to the conservation of tangular 
momentum, we have Helmholtz’s vorticity 

theorem: When K = - grad R and p = f(p), 

vorticity is neither created nor annihilated in 
the fluid. 
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For the irrotational motion of an incom- 
pressible fluid, +Laplace’s equation A@ =0 is 
derived from (5). Hence the problem reduces to 
the determination of a tharmonic function @ 

under appropriate boundary conditions (e.g., 
for a tïxed wall, normal velocity u, = aO/& = 
0). For the 2-dimensional problem a stream 

function Y is introduced to satisfy (5) by the 
relation u = aY/ay, u = - aY/ax. Since the 
+Cauchy-Riemann equations a@/& = aY/ay, 
a@/ay = - aY/ax are valid in this case, f= 
Q + iY is an tanalytic function of z = x + iy. 
Therefore the theory of 2-dimensional irro- 
tational motion is essentially equivalent to the 

theory of complex tanalytic functions, and 
consequently the theory of tcomformal map- 
ping is a powerful method in the theory of 
such fluid motion. 

For irrotational steady flow of a compress- 
ible fluid in which R = 0, c is determined from 

(6) as a function of q. Then (1) and (4) yield a 
tnonlinear partial differential equation for @: 

(1-;)g+(l-$)$+(l-$)g 

uw ô2@ UV ô*Q, -,~~_,!!!P-,- 
2 ayaz 

-=o. 
2axay (7) 

This equation is +elliptic or thyperbolic (- 326 

Partial Differential Equations of Mixed Type) 
according as M is less than 1 (subsonic) or 
greater than 1 (supersonic). 

For 2-dimensional flow, we cari introduce a 
stream function Y from (1) by u = a@/ax = 

umwm v=~w~Y= -(wawx). BY 
utilizing the idea of tlegendre transformation, 
this system of nonlinear equations for @ and Y 

cari be reduced to a system of linear equations 
in the hodograph plane (q, 0): 

a@ d 1 ay 
0 

l-M2aY 
x=4& p4 z=- 

P4 ao’ 

a@ qay 
ae P a4 
(d(pq)/dq = p (1 - M’)), where the independent 
variables q and 0 are the magnitude and the 

inclination of the velocity, respectively. The 
treatment of 2-dimensional compressible flow 
on the basis of this system is called the hodo- 
graph method. For a flow of small M, there is a 
method of successive approximation (M2- 

expansion method) which starts from Laplace’s 
equation, neglecting the terms of O(M2) in 
(7). For uniform flow (velocity U in the x- 

direction) past a thin wing or slender body 
where v and w  are small, we have thin wing 

theory or slender body theory, whose tïrst 
approximation is 

(l- M2)f$+$+$=0. 
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If M < 1 or M > 1 (although not too large) a 
linearization (Prandtl-Glauert approximation) 
is possible by replacing M by the Mach num- 
ber at infïnity M, = Ujc,. For M > 1, (8) has a 
+characteristic surface, which is the Mach cane 

whose central axis makes an angle arc sin c/q = 
arcsin l/M with the flow. This cari be inter- 

preted also as an envelope produced by spher- 
ical sound waves with velocity c from a source 
drifting with velocity q. For M - 1, we put U, = 
c*x + cp (c, is the fluid velocity when q = c). 
Then for an adiabatic gas, (8) is approximated 
by a partial differential equation of tmixed type: 

-+-=--Y. ay ôz2 C* ax ax 
(9) 

Such a flow in which both domains M 2 1 co- 

exist is called the transonic flow, and exact 
solutions by the hodograph method are 

known. However, continuous deceleration 
from M > 1 to M < 1 generally tends to be 
unstable or impossible, and the appearance of 
a shock wave, i.e., a discontinuous surface of 
state quantities, is not unusual. This cari be 
considered as the tweak solution of(l), (2) (3) 
for a Perfect fluid. In particular, in the coordi- 
nate system fïxed to the surface, its integrated 
form cari be obtained as follows: [pu,] = 0, 

[PGi,+PviUJ=o, [q2/2+E+p/p]=O([ ] is 
the jump of the quantity at the surface, and n 

is the normal component). Supplemented by 
the entropy increase, these formulas give rela- 
tions between the fluid velocity and the state 
variables at the front and back of the shock. 
In an ideal gas they are called the Rankine- 
Hugoniot relation. Entropy is not uniform 
behind a curved shock, and the flow is not 
irrotational. For a weak shock starting from 
the tip of a pointed slender body, however, the 
discontinuity is small and approaches the 
tcharacteristic surface of (8), i.e., the Mach 

wave (compressive wave, in this case). Rare- 
factive Mach waves are found in the super- 
sonic flow of acceleration around a convex 

surface. Such waves contribute to the drag on 
an obstacle placed in supersonic flow. 

C. Viscous Fluids 

A body moving uniformly in a fluid at rest 
(with velocity less than that of sound) suffers 
no drag as long as the viscosity of the fluid is 
negligible and the flow is continuous (d’Alem- 
bert’s paradox). Hence we must take the vis- 

cosity into account in order to discuss the 
creation and annihilation of vortices, the gen- 
eration and structure of shock waves, and 

the drag acting on obstacles. For this purpose, 
we extend Newton3 law stating that frictional 
stress is proportional to the velocity gradient 
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and assume that the stress tensor p is a linear 
function of the rate-of-strain tensor e: 

2 
p,,= -p+p’divv+pe,, -?pdivv 

The proportionality constants p and .u’ are 
called, respectively, the coefficients of (shear) 
viscosity and bulk viscosity. The bulk viscosity 

is sometimes neglected (Stokes’s assumption) in 
the usual hydrodynamics, and then the mean 
value of the normal stress components equals 
the pressure. When a fluid satisfies this linear 

relation between p and e, it is called a New- 
tonian fluid. Otherwise, it is called a non- 
Newtonian fluid. Except for a few cases, such 
as colloid solutions, fluids cari be regarded as 

Newtonian. 
If we take the viscosity into account, the 

equation of motion of an incompressible fluid 
becomes 

p Dv/Dt = pK - grad p + pAv. (10) 

This is called the Navier-Stokes equation. A 
nondimensional quantity R = pUL/p formed 
by representative length L, velocity U, density 
p, and viscosity p of a flow is called the Rey- 

nolds number. In order for two flows with 
geometrically similar boundaries to share 
similar kinetic properties, their Reynolds num- 
bers must be equal. This is called the Reynolds 
law of similarity. 

For small R, we cari approximate the equa- 
tion of motion (10) by replacing the accelera- 
tion Dv/Dt by av/at (Stokes approximation) or 

by avjat + Uav/i?x (Oseen approximation) for a 
body placed in the uniform flow of velocity U 

in the x-direction. 
For large R, the flow cari be regarded as 

that of a Perfect fluid, since we cari neglect pAv 
as long as the velocity gradient is not too 
large. In the vicinity of a fïxed wall, however, 
the velocity gradient becomes large, because in 
a very thin layer the velocity decreases rapidly 
from the value U of a Perfect fluid to zero at 
the wall. This layer is called the boundary 
layer. For the boundary layer, Prandtl’s bound- 

ary layer equation 

au au au au au pa2u 
ct+u~+vl’-+U-+-~, 

UY at ax P OY 

1 
E!+?=() 
ax ay 

(11) 

is valid, where x and y are the coordinates 
parallel and perpendicular to the wall, respec- 

205 E 
Hydrodynamics 

tively, and U is the velocity outside the bound- 

ary layer. 
If aU/ax < 0, it sometimes happens that the 

boundary layer separates from the surface of 

the body. In this case a vortex is generated in 
the flow, as large vorticities in the boundary 

layer are carried into the flow. For a body 
without separation of the boundary layer, the 
d’Alembert paradox holds and is no longer a 

“paradox,” and the drag is small. Such bodies 
are called streamlined. 

In compressible flow the new problem arises 
of the interaction of shock waves with the 
boundary layer. A rapid increase in pressure 
due to the shock wave formed on the surface 
of a body invalidates the assumption of a 
boundary layer and causes its separation. If 
the Mach number becomes sufficiently large 
(M > 5, hypersonic flow), the bow shock ap- 

proaches the body and interferes with the 
boundary layer. The generation of heat at the 
boundary layer (e.g., viscous dissipation in Q) 

requires the consideration of heat transfer as 
well as viscosity. In this manner, it becomes 
necessary to treat a complete system of equa- 
tions which take into account the energy 
equation (3) as well as the temperature de- 
pendence of K, .u, and p’. 

D. Laws of Similarity 

For such complicated systems, tdimensional 
analysis is often useful (- 116 Dimensional 
Analysis). As laws of similarity, we cari con- 

sider not only those like the Reynolds law but 
also others for bodies which transform similar- 

ly by taffïne transformations. Corresponding 
to equation (8), the Prandtl-Glauert law of 
similarity for subsonic flow is famous: The 
pressure coefficient (nondimensional pres- 
sure change) for a thin wing of chord (i.e., the 
length in the direction of flow) 1, span L, and 
thickness z is 

C&L, 7) = X,,(J~ L, TlJ1-Ma: A), 

when 1 is an arbitrary constant and CPO is C,, 
for a body of scaled length and thickness 
placed in an incompressible flow. Correspond- 
ing to (9), an extension of the famous von 
K%rm&n transonic similarity is possible: 

CJL, 7) = +(y + 1)-1’3 

E. Turbulence 

For low Reynolds numbers, the flow generally 
has smooth streamlines. For high Reynolds 
numbers, however, extremely irregular motion 

in space and time appears. The former is called 
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laminar flow, and the latter turbulent flow (- 
433 Turbulence and Chaos). The transition 
from laminar to turbulent flow is considered to 

be due to the instability of the laminar flow, 
and this transition has been studied by the 
method of small oscillations. Recently, non- 

linear effects have also been examined. Regard- 
ing the interna1 structure of turbulence, statis- 
tical theories originated by T. von Karman 
and Ci. 1. Taylor (Proc. Roy. Soc. London, 
151 (1935)) and A. N. Kolmogorov (Dokl. 
Akad. Nauk. SSSR, 30 (1941)) are of central 

importance. 

F. Water Waves 

+Surface waves that occur on the free surface of 
water (or other liquids) are called water waves; 

their restoring forces are gravity and surface 
tension. If we consider waves generated on still 
water (assumed to be inviscid and incompress- 
ible) in equilibrium, we cari regard the flow 
fïeld associated with the wave motion as tirro- 
tational by virtue of +Helmholtz’s vorticity 
theorem. Hence the flow velocity cari be de- 

rived from the tvelocity potential U, which 
satisfïes tlaplace’s equation A@ = 0, together 
with the boundary conditions 

D(HSz) a@aH a@aH ao -=axox+t-+‘=o 
Dt ay ay oz 

at z=-H(x,y), (12) 

~(h-~) ah ao,ah aQ(ih a@ -‘t+axux++~--=O 
Dt ay oy aZ 

at z=z(x,y,t), (13) 

a@ i 
Z+$grad@)z+gz=~=~ 

m 

at z=h(x,y,t), (14) 

where the Cartesian coordinates x and y are 
taken in the undisturbed horizontal free sur- 
face, while the positive z-axis is vertically 

upward. The equations z = - H(x, y) and z = 
h(x, y, t) denote, respectively, the bottom sur- 
face (assumed to be known) and the elevation 
of the free surface measured from the un- 
disturbed level z =O, while y stands for the 

gravitational acceleration, o the surface ten- 
sion, p0 the atmospheric pressure, and l/R, 

the +mean curvature of the disturbed free 
surface expressed as 

&=[{l+(;)l}$ 
ah 2 

+ 1-t - 1 OI a2h ahah a2h 
aY F-- ax ay axay 1 

The conditions (12) and (13) imply, respec- 
tively, that the fluid does not cross the bottom 
and the free surface, while (14) expresses the 

fact that the difference between atmospheric 

and fluid pressures at the free surface is equal 
to the normal force (per unit area) due to the 

surface tension. Thus the problem is formu- 
lated as a nonlinear boundary value problem 

for Laplace’s equation including the unknown 
boundary z = h(x, y, t). 

Let us tïrst consider linear waves for which 
the wave amplitude of the surface elevation is 
much smaller than any other characteristic 
linear dimension such as the wavelength or 

the water depth H (for simplicity, we assume 
hereafter H = constant, i.e., a flat horizontal 

bottom). Linearizing the boundary conditions 
(12)-( 14) with respect to h and grad @, and 
assuming a sinusoidal wave proportional to 
exp[i(k * r - wt)], k(k,, k,) and w  being respec- 
tively the (2-dimensional) +wave number vector 
and the tangular frequency and r = (x, y), we 
obtain the dispersion relation 

w2= 

In a layer of still water the waves are isotropic 

in the horizontal plane and the dispersion 
relation involves only the magnitude k of 
the wave number vector. It is readily seen 
from (15) that the water waves are typical 
+dispersive waves in which the +Phase velocity 
c,,( = wJk) depends on the wave number k or 
the wavelength Â( = 27c/k). It is also evident 
from (15) that the quantity ak2/(pg) measures 
the relative importance of surface tension and 

gravity. Hence for waves with wavelengths 
much larger than &,, = 27rm ( N 1.7 cm 
for water), the effect of surface tension is negli- 

gible, and we have gravity waves. Conversely, 
when n « Â,, the effect of surface tension 
becomes dominant, and we have capillary 
waves or ripples. When the water depth H is 
much larger than the wavelength A, we cari 
approximate (15) by w2 = gk + crk3/p, since 
tanh(kH)- 1. We cal1 such waves deep water 
waves. On the other hand, if H is much smaller 
than the wavelength (kH « 271), we have shal- 
low (or long) water waves for which (15) cari be 
approximated by w2 =gHk’[l + {a/(pgH2)- 

1/3} (kH)‘+ . ..] if a/(pgH2)=O(l). In partic- 
ular, if we neglect O(kH)‘, we recover the 

well-known dispersionless long gravity waves 
whose phase velocity is simply ,,@?. In a11 the 
cases mentioned above, the amplitude function 
of the velocity potential @ is proportional to 
-iwcosh{k(z+H)}/{ksinh(kH)}, SO that the 

flow velocity due to deep water waves de- 
creases exponentially as one proceeds verti- 
cally downward from the free surface. In the 
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limiting case of long gravity waves, however, 
the fluid motion is nearly horizontal through- 

out the fluid layer. 
When the wave amplitude becomes larger, 

nonlinear effects are no longer negligible. For 

such waves, various tsingular perturbation 
methods provide powerful tools. For example, 
the basic system of equations for weakly non- 
linear (1-dimensional) shallow water waves cari 
be reduced to a simple solvable nonlinear 
equation called the +Korteweg-de Vries equa- 
tion, whose solitary wave solution is known 
as a prototype of solitons (- 387 Solitons). 
Another classical example is a (1 -dimensional) 
deep gravity wave called the Stokes wave, 
which cari be obtained as a power series in the 

wave steepness (amplitude x wave number). 
The lïrst term of the series is of the form of a 
linear sinusoidal wave, and the higher-order 
terms correspond to the higher harmonies, 
while the angular frequency is shifted from the 
linear case and depends not only on the wave 
number but also on the amplitude. Similar 
singular perturbation methods have also been 
applied to various kinds of resonant interac- 
tions such as nonlinear self-modulation, higher 
harmonie resonances, and multiwave interac- 
tions. Finally it should be mentioned that an 
exact solution representing a (1-dimensional) 

deep capillary wave was obtained by G. D. 

Crapper (J. Fluid Me&., 2 (1957) 5322540; 
extended later to the case of Imite depth by 

W. Kinnersley, J. Fluid Me&., 77 (1976), 2299 
241). This is one of the few realistic exact solu- 

tions obtained SO far; a famous exact solution 
of Gerstner’s trochoidal wave does not satisfy 

the irrotationality condition. 
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A. Hypergeometric Functions 

The +power series 

in the complex variable z is called the hyper- 
geometric series or Gauss’s series. 

It is convergent for any CI, 0, and y if (z(< 1, 
and is convergent for Re(cc+b-y)<0 if lzl= 1. 
If z= 1, its sum is equal to r(y)r(y-cc-pyr(y 
- x)I(y - fi) (except when y is a nonpositive 
integer). The hypergeometric functions are 
obtained as analytic continuations of the 

functions determined by hypergeometric series 
that are single-valued analytic functions 

delïned on the domain obtained from the 
complex plane by deleting a line connecting 
branch points z = 1 and z = SO (- Appendix A, 
Table 18.1). 

A hypergeometric function is a solution of 
the differential equation 

z(1 -z)S+(y(z+B+ l)z)$Qw=O; 

(1) 

which is called the hypergeometric differential 

equation or Gaussian differential equation. This 
equation is a differential equation of +Fuchsian 

type with tregular singular points at 0, 1, and 
CO, whose solutions are expressed, in terms of 

the TP-function of Riemann, by 

If any one of the values of y, y - c( - 8, or c( - 

b is integral, there exists a series containing 
logz, representing a solution of the differential 

equation (1) in a neighborhood of the corre- 
sponding singular points. When none of the y, 

Y-U-P, or c( - b values is integral, since the 
linear transformations z’ = Z, z’ = l/z, z’ = 1 -z, 
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Z' = Z/(Z - l), z’ = (z - l)/z, z’ = l/( 1 -z) permute 
singular points, there exist 24 particular solu- 
tions around the singular points. The latter 

fact was lïrst proved by E. E. Kummer (1836). 
There exist various curves C for which the 

integral 

w= 
s 

u=-‘(1 -U)Y-“-‘(l-ZU)-@du 
c 

is a solution of (1). Among them we cari take 
the segment [0, 11 when Re a > 0, Re(y -a) > 0. 
Then the corresponding solution is holomor- 

phic in the interior of the unit circle, and 

X 

s 

u”~‘(l-U)Y~“~‘(l-ZU)~Pdu. 
c 

Since the integrand has branch points at 0, 1, 

and l/z, we have the following expression 
when y is not an integer: 

F(4 P, y; 4 

1 w  
=(l- Pi(y-@)(l - ezaia) r(cgr(y - CX) 

+ 

(1+,0+.1-,0-) 

x ua(l -u)y-“-I(l -zU)-fldu, 

where Re c( > 0, Re(y - c() > 0; whereas if y is an 
integer, then 

1 
Fb, 8, y; 4 = 

r(Y) 
(1 -e-2nirr) r(cq-(y-a) 

(l+,o+) 

X ua(l -~)y-=-I(l -zu)-fldu, 

where the contour in the lïrst expression en- 

circles successively each of 1, 0, 1, and 0 once 
with indicated directions. These expressions 
cari be adopted as a delïnition of the hypergeo- 
metric functions for the general value of z. 

Other integral expressions are also known 
(- Appendix A, Table 18.1). 

B. The Ladder Method 

A linear ordinary differential equation of the 

second order having three regular singular 
points on the complex sphere is easily trans- 
formed into an equation of the form (1). TO 

solve such an equation with a parameter, it is 
often useful to decompose, in two different 

ways, the main part of the equation into two 
factors of the tïrst order, and find a recurrence 
formula involving the parameter, as we shall 
see in the following example. This method 

is called the ladder method or factorization 
method. 

For example, tlegendre’s differential 

equation 

L,[W]=(l-ZZ)(((l-Zz)W’)‘+n(n+l)w)=O 

is decomposed as follows: 

L,=S”~T,+n2=T”+I~S”+1+(n+1)2, 

T.=(l-z’)i+nz, 
d 

S,=(l-z2)--nz. 
dz 

If w, is a solution of L, [w] = 0, then multiply- 
ing both sides ofS;T,[w,]+n2w,=0 by T,, 

we find that T;S,(T,[wJ)+nZ(T,[w,])=O, 

that is, T,[w.] is a solution of L,-, [w] =O. 
Similarly, we see that S,,, [w.] is a solution of 

L,,,, [w] = 0. In this sense, S,, and T. are called, 
respectively, the step-up operator, or up-ladder, 
and the step-down operator, or down-ladder, 

with respect to the parameter n. 
The above relation constitutes a recurrence 

formula for Legendre functions (- Appendix 
A, Table 18.11). 

C. Extensions of Hypergeometric Functions 

J. Thomas (1870) proposed the series 

1 + f @4(~2)““‘(%)” z” 

n=l uM.(BA . ..(Dh)” ’ 

(n),=n(n+l)...(A+n-1) 

as an extension of the hypergeometric series. 

The sum of this series satisfies the hth-order 
differential equation 

(l- )ti,(, -B 
‘dth ’ 

)d”-, 
lZ y$7 

+(A,&$:; -+...+(A,-B,z)w=O, 

t=logz. 

When h = 2 and jI1 = 1, it reduces to the ordi- 
nary hypergeometric series. The notation 

pFq(c(1,c(2,...,clp;BI,82,...,Pq;z) 

m h)“(%)” W” Zn 
=Cn!(Bl),(B2)....(134)n ’ 

(2) 

which is due to L. Pochhammer and modi- 
fied by E. W. Barnes, is used to denote the ex- 

tended hypergeometric series, and the function 

delïned by (2) is often called Barnes’s extended 
hypergeometric function. For example, Gauss’s 
series in this notation is 2F, (tu, 8, y; z). 

Corresponding to Barnes’s integral expres- 

sion for hypergeometric functions, it is known 
that the integral 

s 

c+im 

W(z)=& _, K([)H([)zmid[, 
c Irn 

where 

K(i)=K(i+ 1) 
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and 

ni + w-(i + a2). . ui + ah) 
H(i)=r(i+l+Pl)r(i+l+P,)...r(iï+l+pJ~ 
is a solution of the hth-order differential equa- 
tion at the beginning of this section. The 

hypergeometric function expressed by the 
definite integral 

s 
r”(i-l)b(i-z)Ca 

has an obvious format extension 

s 
(~-~,)~~(~-u~)~~...(~-a,)~-(~-z)‘-d~. 

On the other hand, the equation 

where 

P1(z)=~&) A+& 
( 

+ . 
lin 

+- 
1 2 > z-a, ’ 

called the Tissot-Pochhammer differential 
equation, has a solution 

w(z)= 
s 

(~-a,)P~~1(~-a,)P2~1 . . . 
c 

x ((--a m )fimm1(<-z)h+mm2d[. 

After Pochhammer (1870), this is sometimes 
called Pochhammer’s generalized hypergeo- 
metric function. 

As another extension of Gauss’s series, H. E. 
Heine (1846) introduced Heine’s series: 

q(u, b, c; q; z) = 1 + 
(1 -4”)(1-qb) 
(1 -du -43 q’ 

+(l -q”)(l -q”+‘)(l -qb)U -qh+‘lq2’+ .,, 

(1 -d(l-q2)(l -q’)(l -qc+l) 

Setting q= 1 +E, z=(l/c)logx, and letting ~‘0, 
we obtain Gauss’s series as the limit of Heine’s 
series. 

D. Hypergeometric Functions of Several 

Variables 

P. Appel1 (1880) formally extended Gauss’s 
series to the case of two variables and detïned 

four kinds of functions [3]: 

They are called Appell’s hypergeometric func- 
tions of two variables. Each satisfïes a cor- 
responding system of partial differential 
equations: 

x(1 -x)r+y(l-x)s+(y-cx)p-/Iyq 

1 

-afiz=O, 

F, y(l-y)t+x(l-y)s+(y-c’x)q-B’xp 

-apz=O, 

(x-Y)s-FP+Pq=O, 

1 

x(1 -x)r-xys+(y-cx)p-/Iyq-aBz=O, 

F2 y(l-y)t-xys+(y’-c’y)q-P’xp 

-ajYz=O, 

x(1-x)r+ys+(y-cx)p-apz=O, 
F3 

1 y(1 -y)t+xs+(y-c”y)q-a’/Yz=O, 

x(1 -x)r-yzt-2xys+(y-cx)p-cyq 

F4 

I 

-a/Iz=O, 

y(l-y)t-xzr-2xys+(y’-cy)q-cxp 

-apz=O, 

where 

c=a+p+1, c’=a+/Y+ 1, c”=a’+p+l, 

p = az/ôx, 4 = aziay, y = a2zlax2, 

s = a2zlaxay, t = a2zlay2. 

Appell’s hypergeometric functions cari also be 
represented by integrals: for example, 

F2 = 
uY)m~) 

1 1 

SS r(B)r(B’)r(y-p)r(y’-B’) o 
uP-l #-1 

o 
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l-(Y) 
F3=r(B)r(~~)r(y-PPI) SS 

ub-l ull-1 

x(1 -u-u)~-~-fi’-l(l -ux)-y1 -uJJ-“‘dudu, 

where, for F, and F3, the domain of integra- 
tion is ~30, ~30, ~-U-V>O. E. Picard 
(1881) showed that F, cari also be expressed 
by a single integral: 

UY) ’ F’=r(cc)r(x-y) o s u”-l(l -q-1 

G. Lauricella (1893) extended the foregoing 

functions to the case of more than two vari- 
ables. More general hypergeometric series of 

several variables were defined by R. Mellin, 
J. Horn, and J. Kampé de Fériet [3,4]. Every 
algebraic equation cari be solved analytically 
in terms of the foregoing functions (Mellin, 
R. Birkeland) [4]. Also there are studies con- 

cerning +Riemann’s problem and tautomor- 
phic functions derived from F, (Picard; 
T. Terada [5]). 

E. Hypergeometric Functions with Matrix 
Argument 

For symmetric matrices 2 of degree m, C. S. 

Herz delïned hypergeometric functions with 
matrix argument as follows [SI: Denoting by 
etr Z the exponential exp(tr Z) of the ttrace of 

Z, let 

,F,,(Z)=etrZ, 

,+,F,(cc,,...,a,;B,,...,lj4;~;Z) 

1 
ZZZ- 

s rk+) A>o 
et+A),F& ,,... ,a,;fil,...,Bq; 

AZ)(det A)?-“dA, i di,, di,,,, (3) 

,F,+,(a,,...,cc,;B,,...,13,;~;12) 

cm =(2ni)m(m+l)/2 ReZ~X,,,OetrzJJF~(E~~ ...7cciJ; s 
pi, , &;AZm’)(detZ))Ydz,, dzz2 . ..dz.,, (4) 

where 

r,(y)=7t ~'~-')'~r(~)r(y-1/2)... 

x r(Y -Cm - lV4, 

and A > 0 means that A is tpositive definite. 
The integral (3) converges for -Z >O if Rey 
>(m- 1)/2. If Rey is sulhciently large, then for 

suitably chosen X0, (4) converges in a domain 

of the space of A and represents an analytic 
function of its argument. In particular, we 
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have 

,F,(a;Z)=(det(E-Z)))“. 

Based on this definition, many special func- 

tions and formulas are extended to the case of 
a matrix argument. For example, 

A,(Z)=,F,(fi+(m+ 1)/2; -zyr,v+(m+ 1)/2) 
(5) 

is an extension of the tBessel function, and this 

reduces to 

WrdJ,(t) = f4a(w)2) 

when m = 1. Formula (5) is applied to the 
tnoncentral Wishart distribution in mathe- 

matical statistics. 
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A. Ideal Boundaries 

For a given Hausdorff space R, a +Compact 

Hausdorff space R* that contains R as its 
dense subspace is called a compactification of 
R, and A = R* -R is called an ideal boundary 
of R. In the present article, we deal mainly 
with properties (in particular, function- 
theoretic properties) of ideal boundaries of 

tRiemann surfaces R. 

B. Harmonie Boundaries 

By R we mean an open Riemann surface. 
The set F of points p* in A such that 
lim inf Rap-p* P(p) = 0 for every tpotential P (i.e., 
a positive tsuperharmonic function P for 
which the class of nonnegative tharmonic 

functions smaller than P consists only of the 
constant function 0) is a compact subset of R*. 
The set f is called the harmonie boundary of R 
with respect to R*. For an arbitrary compact 
subset K in A -F, there exists a lïnite-valued 

potential PK with limRsp-p* P,(p) = CO (p* EK). 
From this, various kinds of tmaximum prin- 
ciples are derived. For instance, if u is a har- 
monic function bounded above for which 

limsup,,,u(p) < A4 holds, then u <M on R. 
There are inhnitely many compactitïcations 

of R. For two compactifications RT (i = 1,2) 

of R, we say that RT is greater than R2 or, 
equivalently, lies over Rz, if the identity map- 
ping of R cari be extended to a continuous 
mapping of RT onto Rr. In order that deep 
function-theoretic studies of R* cari be carried 

out, various conditions must be imposed on 
R*. A compactification R* is said to be of 
Stoïlow type (or of type S) if for every +Con- 
nected open subset G* in R* whose boundary 
in R* is contained in R, G* -A is also con- 

nected. Next suppose that R # 0, (- 367 Rie- 
mann Surfaces E). For a given real-valued 
function f on A, let uns”* @Ifs”*) be the class 
of tsuperharmonic functions s bounded from 
below (tsubharmonic functions s bounded 

from above) such that lim infR3p+p* s(p) >f(p*) 

(lim supR3p+p* s(p)df(p*)) for every ~*CA. If 

these classes are nonempty, then n/RvR*(p)= 
inf{s(p)I~EBfR,~*} and HfR*R*(p)=s~p{~(p)Is~ 
URsR*} are harmonie on R, and $R* < I?;X~*. 
Irr’particular, if #,R* = flfsR*, then the com- 
mon function is denoted by H/R,R’, and the 
function fis said to be resolutive with respect 

to R*. A compactification such that every 
bounded continuous function on A is resolu- 
tive is called a resolutive compactification. In 
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such a case, a point p* in A is said to be regu- 
lar with respect to the +Dirichlet problem if 
lim HRxR*(p)=f(p*) for every bounded RSP-P* f 
continuous function f on A (- 120 Dirichlet 
Problem). The set A, of regular points in A 
is contained in F. If R* is a resolutive com- 

pactification, then there exists a unique posi- 
tive +Bore1 measure pi, such that Hf,R*(p)= 
l,f(p*)dp,(p*) for every bounded continu- 
ous function f‘ on A. This measure is called 
the harmonie measure with respect to pc R. 
There exists a function P(p, p*) on R x A with 
dp,(p*)=P(p,p*)dp,Jp*) for an arbitrary fixed 
point o in R satisfying the following three 
conditions: (i) P(p, p*) is harmonie on R as a 

function of p; (ii) P(p, p*) is Bore1 measurable 
as a function of p*; (iii) k(o, p)-’ < P(p, p*) < 
k(o, p), with the Harnack constant k(o, p) of 
(0,~) relative to R [9]. 

C. Compactifications Determined by Function 
Families 

A family F of real-valued continuous functions 
on R admitting infinite values is called a sep- 
arating family on R if there exists an fin F 
such that f(p)#f(q) for any pair of given 

distinct points p and 4 in R. A compactifica- 
tion R* is called an F-compactification, de- 
noted by RZj, if every function in F cari be 
continuously extended to R* and the family 
of extended functions again constitutes a sep- 
arating family on R*. The correspondence 
<p : F+R; defines a single-valued mapping 
of ah separating families F on R onto a11 F- 
compactifications of R. If F, 3 F,, then cp(F,) 

lies over ~I(F,). For any R*, cp-‘(R*) contains 
infmitely many separating families, among 

which the separating famihes constituting 
tassociative algebras are important. The fol- 
lowing are typical examples of compactifïca- 

tions determined by function families: 
(1) The Aleksandrov compactification is the 

U-compactitïcation Rfi with the family U of 
bounded continuous functions on R with 

compact support. It is the smallest compacti- 
tïcation of R and is often used in function 

theory in discussing Dirichlet problems for 
relatively noncompact subregions in reference 
to relative boundaries. 

(2) The Stone-Lech compactiiïcation is the 
6-compactifïcation R,* with the family CF of 

bounded continuous functions on R. It is the 
largest compactification of R. It is rarely used 
in function theory, but an application is found 
in the work of M. Nakai [8]. 

(3) The Kerékjhrt&Stoilow compactification 
is the G-compactification R2 with the family 
s of bounded continuous functions ,f on R 
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such that there exist compact sets K, with the 
property that the f are constants on each 
connected component of R - K,. This is the 

smallest compactifïcation of Stoïlow type. 
Many applications of this compactitïcation 
cari be found in function theory, among which 
the investigation done by M. Ohtsuka on the 
Dirichlet problem and the theory of conforma1 

mappings is typical. 
(4) The Royden compactification is the %- 

compactitïcation R,H with the family % of 
bounded C” functions f on R with finite 

Dirichlet integrals iiRdf~ *& It was intro- 
duced by H. L. Royden and developed further 
by S. Mori, M. Ôta, Y. Kusunoki, Nakai, and 
others. This compactification has been used 
effectively in the study of HD-functions and 

the classification problem of Riemann surfaces 
(- 367 Riemann Surfaces). 

(5) The Wiener compactification is the 9% 
compactification R& with the family !II3 of 

bounded continuous functions f on R such 
that { HPJ converges to a unique harmonie 
function independent of the choice of exhaus- 
tions {G,} of an arbitrary tïxed subregion G $ 

Oc, where the G,, are relatively compact sub- 
regions of G. It is the largest resolytive com- 

pactifïcation, and compactitïcations smaller 
than R& are always resolutive. This compac- 
tification was introduced independently by 

Mori, K. Hayashi, Kusunoki, and C. Constan- 
tinescu and A. Cornea and is useful for the 
study of HB-functions and the classification of 
Riemann surfaces. 

(6) The Martin compactification is the 9% 
compactification R& with the family %JI of 
bounded continuous functions f on R such 
that there exist relatively compact regions 
R, with the property that f= Hf9-Rf’RH-R~/ 

HfCRf,Rd-Rf on R - Rf. Here f* coincides 
with f on Rf and equals 0 on R$- R, and l* 
is similarly defïned. The set R,Y, - R is called 

the Martin boundary of R. If +Green’s func- 
tion g exists on R, then the function m(p, q) = 

g(p, q)/q(o, q) for an arbitrary tïxed o E R cari 
be extended continuously to R x R,& which 

is called the Martin kernel. By the metric 

&l(q? r, = s”ppsR, Im(P, Ml + m(p, 9)) - m(p, r)/ 
(1 + m(p, r))] with a parametric disk R, in R, 
R& is tmetrizable. This compactifïcation was 
introduced by R. S. Martin, and many appli- 

cations of it to the study of HP-functions, 
potential theory, Markov chains, and cluster 
sets were obtained by M. H. Heins, Z. Kura- 

mochi, J. L. Doob, Constantinescu and Cor- 
nea, and others. 

(7) For a function f on R, (R)~~/&I=O 
means that there exists a relatively compact 

subregion RJ such that f is of class C” on R 

outside R, and the Dirichlet integral off over 
R - Rf is not greater than those of functions 
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on R - Rf that coincide with f on the bound- 
ary of R,. The Kuramochi compactification is 

the A-compactifïcation RH with the family H of 
bounded continuous functions f on R satisfy- 
ing (R)af/an = 0. The continuous function 

k(p, q) on R such that (R)ak/an = 0 vanishes in 
a fïxed parametric disk R, in R and is har- 
monic in R - & except for a positive tlogarith- 

mit singularity at a point q cari be extended 
continuously to R x RH, which is called the 

Kuramochi kernel. By the use of this kernel, 
RR is metrizable, as in the case of Martin 
compactification. This compactifïcation was 
introduced by Kuramochi, and its important 
applications to the study of ND-functions, 

potential theory, and cluster sets were made 
by Kuramochi, Constantinescu and Cornea, 
and others. 

Among compactifïcations (l)-(7), no bound- 
ary point in (2), (4), or (5) satisfies the tfirst 
countability axiom (hence they are not metriz- 
able), while the others are a11 metrizable. In (4) 
and (5) A, = r. Fig. 1 shows the relationship 
among the seven examples. Here A -rB means 
that A lies over B, and A #B means that in 
general neither A-tB nor B-tA. 

D. Remarks 

In contrast to topological compactifications 
(l)-(3), (4)-(7) cari be regarded as potential- 

theoretic and have enough ideal boundary 
points SO that one cari solve the Dirichlet 
problem and introduce varions measures 

there. Utilizing Green’s functions, R. S. Martin 
[6] deduced the first important compactifï- 

cation and gave the integral representation of 
positive harmonie functions (the extension of 

the +Poisson integral). Z. Kuramochi [3] ob- 
tained his compactification similarly by using 
N-Green functions introduced by himself 
instead of the usual Green% functions. In this 
compactification, the ideal boundary points 
cari be considered to be interior points of the 
surfaces in a potential-theoretic sense. In case 

of lïnitely connected domains with smooth 
boundaries, both the Martin and Kura- 
mochi boundaries coincide with the usual 
boundaries. 

The Royden and Wiener compactitïcations 
were introduced as the maximal ideal spaces 

of respective function algebras. Their ideal 
boundaries contain extremely many points. 
However, these compactifications have elegant 
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properties and many applications. An analytic 
mapping <p of a Riemann surface R into an- 

other R’ is called a Dirichlet (Fatou) mapping 
if <p cari be extended to a continuous map- 
ping of R$(R&) to R$(R$). For example, a 

Lindelolïan mapping (AD-function) is a Fatou 
(Dirichlet) mapping. The Dirichlet and Fatou 
mappings were investigated by Constanti- 
nescu, Cornea, and others. 

By using the Martin boundary, Z. Kuramo- 
chi and M. Nakai proved the extension of the 
Evans-Selberg theorem to parabolic Riemann 

surfaces [3, S]. The normal derivatives of HD- 
functions on the ideal boundaries and their 
applications were studied by Constantinescu, 

Cornea, F. Maeda, Y. Kusunoki, and others. 
The theory of compactification cari be gen- 
eralized to domains in R”, +Green spaces, and 
harmonie spaces. 
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Implicit Functions 

A. General Remarks 

Historically, a function y of x was called an 
implicit function of x if there was given a 
functional relation f(x, y) = 0 between x and y, 
but no explicit representation of y in terms of 

xc- 165 Functions). Nowadays, however, 
the notion of implicit function is rigorously 

defined as follows: Suppose that a function 
f(xi, . , x,, y) is of tclass C’ in a domain G in 
the real (n + l)-dimensional Euclidean space 

R”+’ and that ,f(xy, , xf , y’) = 0, &(xT, . . . , 
xi, y’) # 0 at a point (xy, , xt, y’) in G. Then 
there is a unique function ~(x i, . ,x,) of class 
C’ in a neighborhood of the point (x7, , XII) 
that satisIïesf(x, ,..., xn,g(x, ,..., x,))=O, 
y0 =g(xl, , xz) (implicit function theorem). 
The function g is called the implicit function 
determined by f=O. The partial derivatives of 
g are given by the relation 

ûYlûxj= -(ûf/axj)l(ûf/aY)~ 

wherey=g(x,,..., x,). If the function f is of 

class c’ (1 <r < cc or Y = w), then the function 
g is also of class c’. In particular, when n = 1, 
letting x, be x, we have dg/dx = -fJf;. 

B. Jacohian Matrices and Jacobian 
Determinants 

A mapping u from a domain G in R” into R” 

is called a mapping of class C’ if each compo- 
nentu,,...,u,isofclassC’(O<r<coorr=cr,) 
in G. Given a mapping u of class C’ from G 
into R”, we consider the following matrix, 
which gives rise to the differential du, of the 
mapping u (- 105 Differentiable Manifolds 1): 

û(“)lû(x)=(auj/ûxk)l Q<m, 1 <k<n’ (1) 

This matrix is called the Jacobian matrix of 
the mapping u at x. If there is another map- 
ping v of class Ci from a domain containing 
the +range U of u into R’, then we have the 

law of composition: 

(a(u)la(u))(a(u)lû(x)) = ~(4/@). 

When n = m, the tdeterminant of the matrix (1) 
is called the Jacobian determinant (or simply 

Jacobian), and is denoted by D(u)/D(x), 

D(u,, , u,YW, , . , x,1 or 

D(u,,...,u,) 

Dh,...,x,,)’ 
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Sometimes the notation 0 is used instead of D; 

but in the present article we distinguish the 
matrix from the determinant, using 8 for the 
matrix and D for the determinant. 

If m = n and D(u)/D(x) never vanishes at any 
point of the domain G, then u is called a regular 
(or nonsingular) mapping of class C’. If the 
Jacobian D(u)/D(x) is 0 at x, we say that u is 
singular at x. A mapping that is singular at 
every point in a set S c G is said to be degen- 
erate on S. For a regular mapping u, the sign 
of the Jacobian is constant in a connected 

domain G. If it is positive, the mapping u 
preserves the orientation of the coordinate 
system at each point in G, while if it is nega- 

tive, the mapping changes the orientation. A 
point where u is degenerate is called a critical 
point of the mapping u, and its image under u 
is called a critical value. In general, the image 
of the mapping is “folded” along the set of 
critical points. The set of critical values of a 

mapping IA of class C’ (sending a domain in R” 
into R”) is of Lebesgue measure 0 in R” (Sard’s 
theorem). If u is a regular mapping, then each 
point in the domain G of u has a neighbor- 
hood V such that the restriction of u on V is a 

+topological mapping. Its inverse mapping x(u) 
is also a regular mapping of class C’ and 

satisfies the relation 

(inverse mapping theorem). If u is of class C 
(1 < rd cc or r = w), then SO is its inverse 
mapping. 

C. Functional Relations 

A function F(u, , , u,) defïned on a domain B 

in R” is called a function with scattered zeros if 
F has a zero point (ie., there exists a point u 
for which F(u) = 0) and if every open subset of 
B contains a point u such that F(u) # 0. Every 
tanalytic function $0 has scattered zeros. Let 

u(x) be a mapping from a domain G in R” into 
B c R”. Suppose that there exists a function 
F(u) delïned in B, of class c’, with scattered 
zeros. If F(u(x)) = 0 for every x in G, then we 

say that the components ul, , u, of the 
mapping u have a functional relation of class 
C’ or are functionally dependent of class C’. In 
such a case, we sometimes say simply that 
u 1, , u, are functionally dependent or that 
they have a functional relation. If the compo- 

nents u,, , u, of a mapping u of class C’ are 
functionally dependent of class Ca, then the 
Jacobian D(u)/D(x) of u must vanish. Con- 

versely, if the Jacobian D(U)/~~(X) of a mapping 
u of class C’ is identically 0 in the domain G, 
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the components ui, , u, are functionally de- 
pendent of class C” on every compact set in G 

(Knopp-Schmidt theorem) [ 11. 

D. Implicit Functions Determined by Systems 
of Functions 

Suppose that the +rank of the Jacobian matrix 
of (1) is r < m everywhere in G. Suppose that 
u(x) is a mapping of class C’ from a domain 

G in R” into R”, the Jacobian determinant 

Db,, . . ..u.)lD(x,, . . . . x,) never vanishes in G, 
and further D(u,, , u,, u,)/D(x,, , x,, x,) is 

identically 0 in G for each p, g with r-c p d m, 

r < 0 < n. Then the values u,+r (x), , u,(x) are 
determined by the values ui (x), , u,(x), and 
each u,, is represented as a function of class C’ 
ofu,,...,u,. 

Let u(x) be a mapping of class C’ from a 
domain G in R” into R” and V the tinverse 
image of a point u”. TO study the properties of 
the set V, we assume, for simplicity, that u” is 

the origin. Suppose that the rank of the matrix 
a(u is r for every point x in G and each 
ofu r+l, , u, is functionally dependent on 
u ,,..., u,.Theneachu,(r<p<m)isafunc- 
tionu,(u, ,..., u,)ofu ,,.... u,.Theset Vis 
empty if there is a p such that u,(O, , 0) # 0. 
On the other hand, if u,(O, , 0) = 0 for a11 p 

(r < p < m), then V is the set of common zero 
points of the functions u r (x), , u,(x). There- 

fore, to study the set V, we cari assume that r = 
m d n. If m = n, V consists of isolated points 

only. If m < n, then, changing the order of the 
variables x1, . , x, if necessary, we cari assume 
that D(u,, . . ..u.)/D(x i,...,x,)#Oatapoint 
(x0) in V. In this case, there is a unique func- 

tien ir,(~,+~, . , x,)ofclassC’(l<p<m)ina 
neighborhood of (xp) satisfying the following 
two conditions: (i) XE = <,(x2+, , . ,x,0); (ii) if 

the point (x,+,, ,x,) is in a neighborhood of 

cxm+,>...> xf), then the point 

(ir*(x,+l> “‘> XA> “‘> 5,(x,+1 > ‘. /X,), 

X m+,r...>x,)Ev. 

Each function 5, is called an implicit function 
ofx m+l,“‘i x, determined by the relations 
u, = = u, = 0. The +total derivatives of the 
t, are determined from the system of linear 
equations 

i $dx,=O, j=l,..., m. 
I=~+I 0x1 

The foregoing implicit function theorem is a 
local one. Among the global implicit function 
theorems, the following one, due to Hadamard, 

is useful: Let x-y(x) be a mapping of class C’ 
from R” into R” such that the inverse W’(x) 
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of its Jacobian matrix a>(x) is bounded in R”; 
then the mapping is a tdiffeomorphism of class 
C’ from R” onto R”. 

The implicit function theorem holds also in 
complex spaces. Let fi(x 1, , x,, y 1, , y,), 

1~ i < p, be a system of tholomorphic functions 
in a domain in the complex (n + p)-dimensional 

space C”+p. If(i)f;(xl,.,., xz,yy ,..., y$= 

0, 1 <i<p, and (ii) O(fi, . . . . f,)/D(y,, . . . . 

YPhx,Y)=wJA #O, then there exists a unique 
holomorphic solution yi =y,(~, , . , x,) (1 < 
i < p) in a neighborhood of the point x0 = 

(xl, . , xf) that satisfies fi(x 1, . ,x,, y, (x, , 

“‘2 x,), . . i Y&, ... ,x,)1=0 (1 <i<P). 

E. Linear Relations 

Suppose that u(x) is a mapping of class Cm-’ 
from R1 into R”. Its components (ul, , u,) 
are functions of class Cm-‘. Then the 
determinant 

Ul U? . . . uns 
Ul uz . hn . 
u\m-” u\m-U . ug-l> 

is called the Wronskian determinant (or simply 
the Wronskian) of the functions u, , , u, and 
is denoted by W(u,, u2, . . . , u,,,). If the func- 
tionsu,,..., u, are tlinearly dependent, i.e., if 
there exist constants cj not a11 zero satisfying 
Ci=, cjuj(x) = 0 identically, then the Wronskian 

vanishes identically. Therefore, if ~V(U,, , u,) 

# 0, then the functions u 1, , u, are linearly 
independent. Conversely, if ~V(U,, , u,) = 0 

identically, and further if there is at least one 
nonvanishing Wronskian for u,, , uiml, ui+,, 

“‘> u, (1 <idm), then the functions ul, . . ..u. 
are linearly dependent. The necessity of the 
additional condition is shown by the follow- 
ing example: u1 =x3 and u2 = Ix13 are of class 
C’ in the interval [ -1, l] and linearly inde- 
pendent, but they satisfy W(x3, IX[~) = 0 iden- 

tically. However, the additional condition is 
unnecessary if the functions u, , , u, are 
analytic. Similar theorems are valid in a do- 
main in a complex plane. 

Furthermore, if u(x) is a continuous map- 
ping from an interval [a, b] in R’ into R”, the 
determinant 

(I>l) ,.’ (I,m) 

Gb ,,“‘, u,)= CLl) “’ (2,m) > . 

hl) .” (m,m) 

(j,k)= b 
s 

uj(x)U,(x)dx 
a 

is called the Gramian determinant (or simply 
Gramian). The Gramian is the tdiscriminant of 
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the quadratic form 

l-h/ m 12 

of<,,...,&,,andisequalto 

lb b 

4 s m! u ‘.’ 
(det(uj(xk)))‘dx, dx,. 

a 

We always have G(u,, . . ,u,)>O, and G(u,, 

“‘/ u,) = 0 if and only if ul, , u, are linearly 
dependent. The Gramian is defined if the 
functions ul, , u, are +Square integrable 

in the sense of Lebesgue. In that case, the 
condition G(u, , , u,~) = 0 holds if and only if 
u 1, , u, are linearly dependent talmost every- 
where, i.e., there are constants c,, . , c, not all 
zero such that the relation c1 u1 (x) + . . . + 
c,,,u,(x)=O holds except on a set of Lebesgue 
measure 0. 
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209 (XXl.5) 
Indian Mathematics 

India was one of the earliest civilizations, but 
because it has no precise chronological record 

of ancient times, it is said to possess no his- 
tory. Indian mathematics seems to have de- 
veloped under the influence of the cuit of 
Brahma, as did the calendar. It may also have 
some relation to the mathematics of the Near 
East and China, but this is difflcult to trace. 
The word ganita (computation) appears in 
early religious writings; after the beginning of 
the Christian Era, it was classifïed into patz- 

gucita (arithmetic), bija-gacita (algebra), and 
k?etra-ga@a (geometry), thus showing some 

systematization. The Buddhists (notably Na- 
garjuna) had a kind of logic, but it had no re- 



805 

lation to mathematics. Unlike the Greeks, the 
Indians had no demonstrational geometry, 
but they had symbolic algebra and a position 
system of numeration. 

Indian geometry was computational; Arya- 
bhata (c. 4766~. 550) computed the value of z 

as 3.1416; Brahmagupta (598-c. 660) had a 
formula to compute the area of quadrangles 
inscribed in a circle; and Bhàskara (1114- 

1 185) gave a proof of the Pythagorean theo- 
rem. In trigonometry, Aryabhata made a 
table of sines of angles between 0” and 90 
for every 3.75” interval. The name “sine” is 
related to the Sanskritjya, which referred to 
half of the chord of the double arc. 

The Indians had a remarkable system of 
algebra. At the beginning they had no oper- 
ational symbols and described in words the 
rules for solving equations. Brahmagupta 
worked on the +Pell equation ,x2 + 1 =y2. 

Bhâskara knew that a quadratic equation cari 
have two roots that cari be positive and nega- 
tive, but did not assign any meaning to the 

negative root in such cases. Bhaskara also 
introduced algebraic symbols. 

The symbol0 was used in India from about 
200 B.C. to denote the void place in the posi- 

tion system of numeration; 0 as a number is 
found in a book by Bakhshali published in the 

3rd Century A.D. The number 0 is delïned as a 
-a = 0 in our notation, and the rules a f 0 = 
u,Oxa=O,~=0,Ota=Oarementioned. 
Brahmagupta prohibited division by 0 in 

arithmetic, but in algebra he called the “quan- 
tity” a e 0 taccherlu. Bhaskara called it khahuru 
and made it play a role similar to that of our 
inlïnity. 

Some historians assert that the Indians had 
the ideas of intïnity and inlïnitesimal. Some 
hold that the Indian position system of numer- 
ation arose from the circumstance that the 

names of numbers differed according to their 
positions. The Indian numeration system was 

exported to Europe through Arabia, and 
had great influence on the development of 
mathematics. 
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210 (11.25) 
Inductive Limits and 
Projective Limits 

A. General Remarks 

Inductive and projective limits cari be de- 

fined over any tpreordered set I and in any 
tcategory. We first explain the delïnition of 
these limits in the special case where 1 is a 
tdirected set and the category is that of sets, of 
groups, or of topological spaces. The simplest 
case is when 1 is the ordered set N of the 
natural numbers. 

B. The Limit of Sets 

Let 1 be a directed set. Suppose that we are 

given a set Xi for each i E 1 and a mapping 
<pji: Xi-Xi for each pair (& j) of elements of I 
with i <j, such that <pii = 1 x, (the identity map- 
ping on Xi) and qki = qkj o <pji (i <j < k). Then 
we denote the system by (Xi, cpj,) and call it 
an inductive system (or direct system) of sets 
over 1. Let S be the tdirect sum uiXi of the 
sets Xi (i~1), and delïne an equivalence re- 
lation in S as follows: x E Xi and y E Xj are 

equivalent if and only if there exists a k E 1 

such that i < k, j < k, (pki(x) = qv(y). Let D be 
the tquotient set of S by this equivalence rela- 
tion, and let J : Xi + D (i E Z) be the canonical 

mappings. Then we have I(l)fjocpj,=f, (i<j); 
I(2) for any set X, and for any system of map- 

pings gi: Xi+x (ici) satisfying gj 0 qji =gi 
(i <j), there exists a unique mapping f: D + X 

such that foL=gi (~CI). We cal1 (D,J) the 
inductive limit (or direct limit) of the inductive 
system (Xi, <pji) over 1, and denote it by 15 Xi 
or ind lim Xi (more precisely, by Ii@,,, Xi or 
ind limier Xi). 

Suppose, dually, that we are given a set Xi 
for each Ill and a mapping tiij:Xj+Xi for 
each i <j, such that $ii = lxi and $, = tiij o tijk 

(i <j < k). Then we denote the system by (Xi, 
$,) and cal1 it a projective system (or inverse 

system) of sets over 1. Let P be the subset 
of the Cartesian product HX, defïned by P = 

{(xi)1 $,(xj)=xi (i<j)}, and let pi: P-Xi be 
the canonical mappings. Then we have P( 1) 

tiij o pj = pi (i <j); P(2) for any set X, and for 
any system of mappings qi : X-Xi satisfying 

$ijo qjqi (i <j), there exists a unique mapping 
p:X-tP such that piop=qi (ic1). We cal1 

(P, pi) the projective limit (or inverse limit) of 
the projective system (Xi, eu) over 1 and de- 

note it by I$i Xi or proj lim Xi. 
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Note that we may replace 1 by any cofïnal 
subset of 1 without changing the limits. 

C. The Limit of Groups and of Topological 

Spaces 

If, in the notation of Section B, X, is a group 
and qji (tiy) is a homomorphism, then we say 

that (Xi, pji) ((Xi, tiij)) is an inductive (projective) 
system of groups. The inductive hmit (as a set) 
D = 15 Xi has the structure of a group for 
which the canonical mappings ,/; are homo- 
morphisms. With this group structure, D is 
called the inductive limit (group) of the induc- 
tive system of groups. It satisfies properties 
I(1) and I(2) with group X and homomor- 
phisms gi and 1: Similarly, the projective limit 
(as a set) P=I@ Xi has a unique group struc- 

ture such that each pi:P+Xi is a homomor- 
phism, namely, that of a subgroup of the direct 

product group nXi. The group P is called the 
projective limit (group) of the projective system 
of groups. When each Xi is a module over a 
lïxed ring A, we get entirely similar results by 
considering A-homomorphisms instead of 
group homomorphisms. 

Next, let X, be a topological space and <pji 
and i/jij be continuous mappings. Then (Xi, rpjj,) 
((Xi, I/I~,)) is called an inductive (projective) 
system of topological spaces. If we introduce in 

D = 1% X, the topology of a quotient space of 
the ttopological direct sum of the spaces Xi 

(is I), then the ,f, are continuous, and I( 1) and 
l(2) hold with sets and mappings replaced by 
topological spaces and continuous mappings. 
Similarly, if we view P = I@r X, as a subspace 
of the tproduct space HXi, then the pi are 
continuous and P( 1) and P(2) hold with the 
same modification as before. The spaces D and 
P are called the inductive limit (space) and the 
projective limit (space) of the system of topo- 

logical spaces, respectively. The projective 
limit of Hausdorff (compact) spaces is also 
Hausdorff (compact). 

Furthermore, if the Xi (iel) form a topolog- 
ical group and CP,~, tiij are continuous hom- 
omorphisms, then 1% Xi and IF Xi are topo- 
logical groups, and properties l(I), I(2), P(l), 
and P(2) are satisfied for topological groups 
and continuous homomorphisms (- 423 
Topological Croups). In particular, projec- 
tive limits of finite groups are ttotally discon- 
nected compact groups and are called profinite 

groups; they occur, e.g., as the ring of +p-adic 
integers and as the +Galois group of an infinite 
+Galois extension. Conversely, the +germs of 

continuous functions at a point x in a topolog- 
ical space X, and other kinds of germs (- 383 

Sheaves), are important examples of inductive 
limits of groups. 
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D. Limits in a Category 

Let I be a preordered set and % a category. If 
we are given an abject Xi of a category %? for 

each i E I and a tmorphism qj, : Xi-Xj of %? 
for each pair (i,j) of elements of I with i<j, 

and if the conditions <pii = l,,, <pki = <pkjo <pji 
(i < j d k) are satisfïed, then we cal1 the system 
(Xi, qji) an inductive system over 1 in the cate- 
gory %. A projective system in ‘6 is defined 
dually: It is an inductive system in the +dual 

category ‘Go. If we view I as a category (- 52 
Categories and Functors B), then an inductive 
(projective) system in % over the index set 1 is 
a ‘covariant (tcontrdvariant) functor from I to 
%. Now if an abject DEY? and morphisms 
ji:Xi+D (iE 1) satisfy conditions I(1) and I(2) 
with the modification that X is an abject and 

gi, .f are morphisms in %‘, then the system 
(D,jJ is called the inductive limit of (Xi, <pji) and 
is denoted by 15 X,. Similarly, if an abject 
PEI and morphisms p,:P+X, (Ill) satisfy 
P(1) and P(2) with a similar modification, then 

(P, p,) is called the projective limit of (Xi, tiii) 
and is written I$ Xi. By I(2) and P(2), these 
limits are unique if they exist. 

In the categories of sets, of groups, of 
modules, and of topological spaces, inductive 
and projective limits always exist. Note that if 
the ordering of 1 is such that i <,j implies i = j, 

i.e., if there is no ordering between two distinct 
elements of 1, then the inductive (projective) 

hmit is the +direct sum (tdirect product) (- 52 

Categories and Functors E). 
Let (Xi, cpii), (Xi, cp;,) be two inductive sys- 

tems over the same index set I, and let <pi : 
X,+X: (iE 1) be morphisms satisfying (pi, o <pi 
= <pi o vii (i <j). Then the system (<pi) is called 
a morphism between the inductive systems. 
Such a morphism is a +natural transformation 
between the inductive systems viewed as func- 
tors 1 -t%. If 1% Xi and Ii$i Xi exist, then (<PJ 
induces a morphism limcpi:limXi-tlimX~ in 

a natural way, and sit&arly%r projztive 
hmits. 

For the more abstract notion of limit of a 
functor - [SI. For the theory of procategories 

- c41. 
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211 (X.3) 
Inequalities 

A. General Remarks 

In this article we consider various properties 
of inequalities between real numbers. An in- 
equality that holds for every real number (e.g., 
x2 20) is called an absolute inequality; other- 

wise it is called a conditional inequality. When 
we are given a conditional inequality (e.g., 
x(x - 1) CO), the set of all real numbers that 
satisfy it is called the solution of the inequality. 

The process of obtaining a solution is called 
solving the conditional inequality. 

B. Solution of a Conditional Inequality 

Suppose that a conditional inequality is given 
by f(x) > 0 (or f(x) 3 0), where f is a continu- 
ous function defïned for every real number. 

If the equation f(x) = 0 has no solution, then 
we have either f(x) > 0 or f(x) -C 0 for all x. 
On the other hand, if CI and b (a < 8) are adja- 
cent roots of the equation f(x)=O, the sign 
of S(x) is unchanged in the open interval (c(, 8). 
Therefore the solution of the given inequality 
depends essentially on the solution of the 
equation f(x) = 0. If inequalities involve two 
variables x, y and are given by ,f(x, y) > 0, 
y(x, y) > 0 for continuous functions .f and ,g, 

the solution is, in general, a domain in the xy- 
plane bounded by the curves ,f(x, y) = 0 and 

y(x, y) = 0. Similar results hold for the case of 
inequalities involving more than two variables. 

C. Famous Absolute Inequalities 

(1) Inequalities concerning means (or averages): 
Suppose that we are given an n-tuple a = 
(al, ,a,), a,>O. We set 

M,=M,(u)= i”$, a: 
( > 

I/V 

If at least one a, is 0 and r < 0, we put M, = 0. 

In particular, we put 

A=MI, 

H=M-,; 
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these are called the aritbmetic mean, geometric 

mean, and harmonie mean of a, (v = 1, , n), 
respectively. Except when either a11 a, are 

identical or some a, is 0 and Y < 0, the func- 
tion M, increases tstrictly monotonically as r 

increases, and M,+mina, (r+ -CO), M,+ 
maxa, (r- +co). Therefore we always have 
min u, < M, < max a,. In particular, we have 
H < G < A if the a, are a11 positive and not 
a11 equal. 

Let p(x) (> 0), f(x) ( 3 0) be tintegrable func- 

tions on a tmeasurable set E. We put 

Furthermore, if M,(f) is strictly positive for 
some r > 0, we put 

Mo(f)= lim M,.(f) 

We cal1 M,(f) the mean of degree r of the 
function f(x) with respect to the weigbt func- 
tion p(x). It has properties similar to those of 
M,(u). In particular, when the weight function 

p= 1, the means M,(f), M,,(f), M-,(f) are 
called the arithmetic mean, geometric mean, 
and harmonie mean of x respectively. 

(2) The Holder inequality: Suppose that 

p#O, 1 and (p- l)(q- l)= 1; that is, l/p+ 
l/q = 1, and a, > 0, b, > 0. Then, in general, 
we have the H6lder inequality: 

where the inequality signs in the first inequal- 

ity are taken in accordance with p < 1 or p > 1. 
The summation may be infïnite if the sums 
are convergent. The inequality sign is replaced 

by the equality sign if and only if there exist 
constant factors Â and p such that Âa,P = p& 

for a11 v. The Holder inequality for p = q = 2 
is called the Caucby inequality (or Cauchy- 
Schwarz inequality). 

For two measurable positive functions f(x), 
g(x), we have the Holder integral inequality: 

except when there exist two constant factors A 

and p ((2, p) # (0,O)) such that Af P = pgq holds 
talmost everywhere. The above inequality is 
replaced by equality if and only if we are in 
this exceptional case. The case where p = q = 2 
is called the Schwarz inequality (or Bunyakov- 
skiï inequality). 

(3) The Minkowski inequality: Suppose that 
p # 0, 1 and a, > 0, h,, > 0. Then we have the 
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Minkowski inequality: 

PS4 

except when {a,} and {&} are proportional. 
The inequality is replaced by equality if and 
only if we are in the exceptional case. 

The corresponding integral inequality for 
positive functions f(x), g(x) is 

PS 1, 

except when f(x)/g(x) is constant almost every- 
where. The inequality is replaced by equality if 
and only if we are in the exceptional case. 

D. Related Topics 

Absolute inequalities are important in anal- 
ysis, especially in connection with techniques 
to prove convergence or for error estimates. 

However, there seldom are general principles 
for deriving such inequalities, except for a few 
elementary theorems. 

For other famous inequalities - Appendix 

A, Table 8. For related topics - 88 Convex 
Analysis; for convex functions and their ap- 

plications - 255 Linear Programming; for 
linear inequalities - 212 Inequalities in 

Physics. 
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212 (Xx.36) 
Inequalities in Physics 

A. Correlation Inequalities 

Let p be a probability measure on a space X 
(with <r-tïeld UA) and fj be measurable functions 
on X, and Write 

(fi . ..!Y.>= s .fi(4...fn(x)Mx). x 
A number of inequalities among such expec- 
tations under a variety of conditions on the 
measure p and functions jj are known as cor- 
relation inequalities, after their original occur- 

rence for correlation functions in the statistical 
mechanics of lattice gases. 

The earliest results were obtained by Grif- 
fiths (J. Math. Phys., 8 (1967)) for the case 

where X is the product I-IL, Ii of two point 
sets Ii= { 1, -l}, the f are kth coordinate func- 
tions CQ=CQ.(X) (= kl) of X~X, dp(x) is the 
counting measure multiplied by a Gibbs factor 
Z-le-PH’“’ with a ferromagnetic Hamiltonian 

H(x) = - 5 ~,a~(x)a~(x), J, = Jji > 0, 

t<j 

p > 0, and the normalization factor Z = 

Le -BH(x). His conclusions are 

(~~g,l) 20 (Griflïths’s Iïrst inequality), 

(wwm~n> a (Wll) (%%n) 

(GrifIïths’s second inequality). 

These were extended by Kelly and Sherman 
(J. Math. Phys., 9 (1968)) as 

(oA) 20 (GKS tïrst inequality), 

(CAOBB) 2 (0‘4) (OBB) 

(GKS second inequality), 

where 4 and B are subsets of { 1, , N), O, = 
nicAcri, and H= -C AcN J (T with J,>O. A A A 
further generalization (for example, Ii= R) cari 
be found in [ 1,2]. 

Under the same situation with 

ff= -5 Jijaicj- 5 hiai, J,>O, hi>O, 
i<j i=l 

the following GHS inequality by Griffiths, 

Hurst, and Sherman (J. Math. Phys., 11 (1970)) 
holds: 
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Further generahzations cari be found in [2,3], 
and the references quoted therein. 

Let X be a imite distributive lattice, p be 
a positive measure satisfying the condition 

p(x AY)& vy) 2 POP, ad S and g be bath 
increasing or both decreasing functions on X. 
Then the following FKG inequality by For- 
tuin, Kasteleyn, and Ginibre (Comm. Math. 
Phys., 22 (1971)) holds: 

B. Inequalities Involving Traces of Matrices 

Let tr A denote the trace of a matrix A. Some 
of the earlier results applied to statistical 
mechanics are as follows, where p 2 0, e 2 0, 
A*=A,B*=B: 

tr(plogp-plogc-p+a)>O 

(Klein inequality), 

tr(eA+‘)/treA>exp(treAB/treA) 

(Peierls-Bogolyubov inequality), 

tr(eAeE)> tr(eA+B) 

(Golden-Thompson inequality). 

The following inequality is related to the last 
inequality and was proved for a general m > 0 
by Lieb and Thirring (Studies in Mathematical 
Physics, Lieb, Simon, and Wightman (eds.), 
Princeton Univ. Press, 1976): 

tr(pa)m<tr(p”‘Om), p>O, 020. 

For the Hilbert-Schmidt norm 11 A I/u,s. = 

(tr A*A)“’ and the trace-class norm 11 A /ltT = 
tr(Al, where (A( =(A*A)r”, the Powers-Stormer 
inequality (Comm. Math. Phys., 16 (1970)) 

holds: 

Araki and Yamagami (Comm. Math. Phys., 81 
(1981)) give 

III~I-I~I/I,.,.~J2ll~-~ll..,.. 

If C* = C and D* =D, then fi cari be 

removed. 
The entropy S(p) = - tr p log p is a concave 

function of p > 0 satisfying the triangular 
inequality (Araki and Lieb, Comm. Math. 

Phys., 18 (1970)): 

and strong subadditivity (Lieb and Ruskai, J. 
Math. Phys., 14 (1973)): 

where plz3 is a matrix on the tensor prod- 
uct space Ht @ Hz@ H,, pjk=triplz3, pi= 

trjtr,piz3((i,j,k}=jl,2,3})and trjisa 

(partial) trace taken only on the space 4. The 
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last inequality is based on the concavity of 
the functionf(p)=trexp(A+logp) in ~20 
(A* =A) proved by Lieb [4] (also see Epstein, 
Comm. Math. Phys., 31 (1973)), who also 
proved the joint concavity of tr(C*p”Co’) 
(r>O,s>O,r+sdl) in p>O and 020. This 
concavity for the case r = s = 1/2 was previ- 
ously proved by Wigner and Yanase (Proc. 

NU~. Acad. Sci. US, 49 (1963)), and the general 
case has been conjectured by Wigner, Yanase, 
and Dyson. It leads to the joint concavity of 

the relative entropy S( p, 0) = tr p(log p -1ogcr) 
(defined to be +co if ati = 0 and p$ #O for 
some vector $) in p > 0 and (r 2 0 as well as its 
monotonicity S(u(p), C(((T) < S(p, 0) for any 

trace-preserving expectation mapping c(. (For 
entropy, see also [SI.) 

The above results have generalizations in 
the context of von Neumann algebras (Araki, 

Publ. Res. Inst. Math. Sci., 11 (1975); 13 (1977); 
Uhlmann, Comm. Math. Phys., 54 (1977); [SI). 

C. Operator Monotone and Operator Convex 
Functions 

A real-valued function f(x) delïned on an 
interval 1 (fïnite or infïnite; open, half-open, or 
closed) is called matrix monotone increasing 
(decreasing) of order m if f(A) >f(B) whenever 
m x m Hermitian matrices A and B with their 
eigenvalues contained in I satisfy A > B (A GB) 

and is called operator monotone if it is matrix 
monotone of order n for all positive integers 
n. f(x) is called matrix convex of order m if 

f[(l-t)A+tB]<(l-t)f(A)+tf(B)forO<t< 
1 and a11 m x m Hermitian matrices A and B 

with their eigenvalues in I and is called opera- 
tor convex if it is matrix convex of order n 
for any positive integer n. The functions xa 
(O<~C< l), logx, and -(X+C~))’ (a>O) are 
all operator monotone increasing in the half- 
line interval x > 0. The functions (x + a) m1 

and xlogx are operator convex in the same 
interval. 

A function f(x) is operator monotone in- 
creasing in an open interval (a, b) if and only if 

it is analytic in (a, b) and has an analytic con- 
tinuation to the whole Upper half-plane where 

the function has a nonnegative imaginary part 
[7]. Another necessary and suflïcient condition 
is 

i,~~f’i+k+l’(x)~i~*I(i+h+ l)! ao 

for all XE(~, b), for a11 real [, and for a11 posi- 
tive integers N. An operator monotone func- 
tion f(x) on an open interval (-R, R) has the 

integral representation 

f(x)=f(O)+f’(O) 
s 

x/(1 -tx)44), 
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where p is a probability measure with its sup- 

port contained in [-R-i, R -‘] and, if f is 
not a constant, is uniquely determined by f: 
The set of a11 extremal points of the set of a11 
operator monotone increasing functions on 
( - 1,l) satisfying f(0) = 0 and f’(O) = 1 is exact- 
ly the set of functions x/( 1 - tx), 1 tI < 1, which 
appear as integrands in the above formula. An 

operator monotone function on R must be 
linear. 

An operator convex function in an open in- 
terval (-R, R) has the integral representation 

f(x) =f(O) +f’W +(f”W) s x2/(1 - +W> 
where p is a probabihty measure with its sup- 
port contained in [-R -‘, R-i] and, if f is 

not linear, is uniquely determined by f: An 
operator convex function in R must be at most 

a quadratic polynomial satisfying f”(O) > 0. 
For a continuous real function on an inter- 

val [0, x) (0 d s( d CO), the following four condi- 
tions are mutually equivalent: (i) f is operator 
convex and f(0) d 0, (ii) f(a*Aa) < a*f(,4)a 

for any self-adjoint operator A with its spec- 
trum in [0, c() and any operator a with its 
norm not exceeding 1, (iii) the preceding condi- 
tion with a limited to projections, (iv) x-‘f(x) 
is operator monotone increasing in an open 
interval (0, c(). (See [S-l l] and Hansen and 
Pedersen, Jensen’s inequality for operators and 

Lowner’s theorem, Math. Ann., 258 (1982) 
2299241. 
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Information Theory 

A. General Remarks 

The mathematical theory of information trans- 
mission in communication systems, tïrst devel- 
oped by C. E. Shannon [1] and now called 
information theory, is one of the most impor- 
tant tïelds of mathematical science. It consists 
of two main themes, channel coding theory and 
source coding theory. The purpose of channel 

coding theory is to ascertain the existence of 
schemes for transmitting information or data 
reliably over a noisy channel at a fïxed trans- 

mission rate. The purpose of source coding 
theory is to show the existence of schemes for 
compressing data emitted from an information 
source and reproducing them within tolerable 
limits of distortion. Both theories are based 
profoundly on the theory of probability, statis- 
tics, and the theory of stochastic processes. 

B. Entropy 

In information theory it is customary to cal1 
a tïnite set A = {al, . , x,} an alphabet and to 

cal1 its elements the letters of the alphabet. The 
simplest mode1 of information sources consist- 
ing of an alphabet A and a tprobability dis- 
tribution p over A is denoted by X = [A, p], 

which cari be regarded as a +finite probability 
space, where the probability of outcome of a 

letter air A from the source is denoted by pi = 
~(CC~). A real-valued function defined by I(cci) = 
- logp(a,) is called the self-information of 

the event CL~E A. The tmean value of the self- 

information, i.e., 

H(X)= C -P(cci)loi?P(cci)~ 
i=l 

is called the entropy of the source. This cari 
be interpreted as a measure of the average a 
priori uncertainty as to which letter Will ema- 
nate from the source, or a measure of the 
average amount of information one obtains 
upon receiving a single letter from the source. 

The unit of information or entropy for base e 
logarithms is called a nat, while that for base 2 
logarithms is called a bit. 
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Let A={cc, ,..., a,} and B={a, ,..., fi,,,} be 
two alphabets. Let r(q, bj) be a ‘joint proba- 

bihty distribution defïned on the product AB, 

and denote the tprobability space by X Y= 
[AB, r]. Then the joint distribution gives rise 
to tmarginal distributions P(CC~) = &‘& r(ui, pi) 

and q(bj) = Cy=, r(Eir A) and to tconditional 

distributions p(ai 1 bj) = r(cti, /lj)/q(/3,) and q(pjl ai) 
= r(c(,, ~j)/p(cci). Probability spaces X = [A, p] 

and Y = [B, q] are subspaces of the probability 
space XY=[AB,r]. The entropy of XY= 
[AB, r] is dehned by 

H(XY)= t fJ -r(a,, /3j)logr(ai, &) 
i=, j=, 

as well. A real-valued function [(SC, 1 bj) = 

- logp(a, 1 li;) is called the conditional self- 
information. The average of l(a, 1 bj) over ai 

dehned by 

H(XIbj)=f P(“J1(“illjj) 
i=l 

is called the conditional entropy of X for given 
pje B. The average of H(X ) bj) over flj delïned 

by 

H(X I y)= f q(/3jIHtx I li;> 
j=1 

is called the conditional entropy of X for given 
Y. The conditional entropy of Y for given X, 

denoted by H( Y1 X), is defïned similarly. Then 
it cari be shown that 

H(XY)=H(Y)fH(XI Y)=H(X)-tH(YIX), 

H(XY) < H(X) + H(Y), 

H(X I Y) G H(X), 

ffWIWGH(Y), 

where equalities in the last three expressions 

hold if and only if r(a,, [$)=p(cci)q(/jj) for a11 
sci~AandIi;~B. 

C. Information Sources 

Given a fïnite alphabet A, we consider the 
tïnite product set AN = A x . x A and the 
doubly infinite product A” = flg -~ A,, whe:-e 

A,=A,k=O,f1,*2 ,.... Let.pAbethea- 
algebra generated by a11 tcylinder sets in AZ. 

Given a tprobability measure P over &, an 
information source is defined as a probability 
space [AZ, P] or as a trandom process X = 
. . . X-,X,X,X, . . When P is invariant under 

the +shift transformation T on AZ, i.e., P(E) = 
P(TE) for any ES~~, then [AZ, P] is said to 

be a stationary source. In particular, if P(E) = 

0 or 1 whenever TE=Ec&, then the infor- 
mation source is said to be ergodic. If X is an 
tindependently and identically distributed 

random process, the source X = [A”, P] is said 
to be memoryless. 

For a given X, denote the subsequence 
X, X, of X by XN. Then a probability mea- 
sure P on AN and a finite probability space 
XN = [AN, PN] are naturally induced. The en- 
tropy of the stationary information source 

X = [AZ, P] is defïned as H(X) = lim,,, H(XN)/ 
N or as H(X) = lim,,, H(X, 1 XNml), because 
both hmits exist and are identical. If X is 
memoryless, the entropy of X is equivalent 
to that of Xi = [A’, PI], i.e., H(X) = C;=1 - 

pilogpi, where pi=pl(X, =CQ) and H(XN)= 

NH(X’) = NH(X). 

D. Source Coding Theorem 

Let xN =x, xN be a sequence of N consecu- 
tive letters from the source [A’, P]. Suppose 

that we wish to encode such sequences into 
fixed-length code words uL = u, uL consist- 
ing of L letters from a code alphabet U of 
size v. The number R = (logvL)/N is called the 
coding rate per source letter. A mapping <p: 
AN+ UL is called an encoder and <p: ULbAN a 
decoder. The set UL with specified encoder- 

decorder pair [<p, $1 is called a code with rate 
R =(L log v)/N. The error prohahility of the 
code is detïned by 

The fixed-length source coding theorem 
[ 1,2] states: Let X = [AZ, P] be a stationary 
ergodic source. Then for any 6 > 0, if R 2 H(X) 

+ 6, there exists a code [Q, $1 with rate R such 
that the error probability P,[<p, $1 cari be 
made arbitrarily small by making N suffï- 
ciently large. Conversely, if R <H(X) - 6 then 
for any code with rate R, P,[<p, $1 must be- 
corne arbitrarily close to 1 as N-t CO. 

This theorem is trivial if R > log n. For mem- 

oryless sources, the theorem follows immedi- 
ately from the tweak law of large numbers, 
which implies that for arbitrary E > 0 and 6 > 0 

there exists an integer N&s, 6) such that for a11 
N > N&, 6) 

P 
- log PN(XN) 

N 
-H(X) >6 <E. / 1 

The validity of this property for stationary 
ergodic sources was proved by B. McMillan 
[2]. In case of memoryless sources, the exact 

asymptotic form of the error probability for 
an optimal code with rate R was given by 
F. Jelinek [3], 1. Csiszar and G. Longo [4], 

Blahut [S], and Longo and A. Sgarro [6] as 

min Db Il P), 
q:H(q)2R 

where p is the source distribution, q denotes a 



213 E 
Information Theory 

812 

probability distribution on A, and 

which is called Kullhack’s discrimination in- 
formation [7] or the divergence. 

Source sequences xN cari be encoded into 
variable-length code words consisting of letters 
from alphabet U of size v. A set of nN code 
words is called a prefix condition code if there 

is no code word which is equivalent to the 
pretïx of any other code Word. Denote the 

length of the code word corresponding to a 
source sequence xN by L(X~) and the average 
length of the code words per source letter by 

The variable length source coding theorem 
states: Given a memoryless source X with 
entropy H(X), there is a prefix condition code 
such that the average length of the code words 

per source letter satisfies 

This theorem is valid for stationary ergodic 
sources if (logv)/N in the last term is replaced 
by E(N), where a(N)+0 as N+co. 

These two theorems are referred to as noise- 
less source coding theorems. 

E. Source Coding Theorem with Fidelity 
Criterion 

The noiseless source coding theorem implies 
that the average number of code letters per 
source letter cari be reduced to the source 
entropy H(X) under the requirement that the 
source sequence be exactly reproduced from 
the encoded sequence. If an approximate re- 

production of the source sequence to within a 
given tïdelity criterion is required, the coding 
rate per source letter must be reduced further 
to a certain value below the source entropy. 

Suppose that a distortion measure d(a,, orj) is 

defined for ai, mjeA, where it is assumed that 
d(ai, aj) > 0 and d(ai, ai) = 0. For blocks xN = 
x1 . ..xN and yN=y, . yN, detïne 

Any set W = {y;, . , y&}, y: E AN, of reproduc- 

ing words is called a source code of block 
length N. Each source sequence xN of the 
source X = [A’, P] is mapped into whichever 

code word y: E%T minimizes dN(xN, y”), i.e., 

and the suffrx m is transmitted. Hence the 
coding rate per source letter is R = (log M)/N, 
and the average distortion is 

The problem is how far we cari reduce the rate 
under the condition that the average distortion 
keeps satisfying a given fïdelity criterion, which 
is specilïed as a maximum tolerable value d for 
the average distortion. 

The source coding theorem with a fidelity 
criterion states: Let X = [A”, P] be a memory- 
less source. For any specihed d 2 0, any E > 0, 
and 6 > 0, there exists a source code W with 
rate R > R(d) + 6 and with suffrciently large 
block length N for which the average distor- 

tion satistïes 

dN(%‘) <d + E, 

where R(d) is the rate distortion function de- 
tïned by 

R(d)= pgdJ I(P; W), 

I(P; w)= i E Piw(jIi)log 
W(jli) 

i-1 j=, 

i Pi W(jl4 ’ 

W: i c piW(jIi)d(ai,aj)<d , 
i=l j= l  

where W( j 1 i) denotes a conditional proba- 

bility distribution referred to as the test chan- 
nel, and where I(p; W) is called the mutual in- 
formation. It should be noted that R(0) = H(X). 
The rate distortion function R(d), which was 

fïrst detïned by Shannon [ 1, 81, is closely re- 
lated to the +entropy introduced by A. N. 
Kolmogorov [9]. R(d) is a monotonically de- 
creasing and convex function. 

The theorem was tïrst proved by Shannon 
[S], and was extended by R. G. Gallager [lO] 
to the case of stationary ergodic sources with 
discrete alphabets and by T. Berger [ 1 l] to 
stationary ergodic sources with abstract al- 
phabets. More recently, R. G. Gray and L. D. 

Davisson [ 121 have proved source coding 
theorems without the ergodic assumption 

for stationary sources subject to a fïdelity 
criterion. The proof was based on Rokhlin’s 
ergodic decomposition theorem [ 131. Other 
important source coding theorems have been 
obtained by F. Jelinek [ 143 for tree codes, A. J. 
Viterbi and J. K. Omura [ 151 for trellis codes, 
and Gray, D. L. Neuhoff, and D. S. Ornstein 
[ 161 for sliding block codes. 

The rate distortion function for memoryless 
Gaussian sources subject to squared error 

distortion was given by Shannon [S], and that 
for autoregressive Gaussian sources was deter- 
mined by Kolmogorov [9], M. S. Pinsker 
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[ 171, Berger [ 111, Gray [ 183, and T. Hashi- 
moto and S. Arimoto [19]. 

F. Channel Coding Theory 

A mathematical mode1 for a channel over 

which information is transmitted is specifïed in 
terms of the set of possible inputs, the set of 

outputs, and a probability measure on the 
output events conditional on each input. The 
simplest channels are the noiseless ones, for 
which there is a one-to-one correspondence 
between input and output and no loss of in- 

formation in transmission through the chan- 
nel. The second simplest channels are discrete 
memoryless channels (DMCs) which are de- 
fïned as follows: The input and the output are 
sequences of letters from finite alphabets (say, 
cci~.4 and &EB), and the output letter at a 
given time depends statistically only on the 
corresponding input letter. That is, a DMC is 
characterized by a fïxed conditional proba- 

bility distribution W( j 1 i) = W(b, 1 ai) because 
the probability measure on the input and 
output sequences satislïes 

By Cl = { 1, , M} we denote the set of integers 

each of which is assigned to each correspond- 
ing possible message from the source. A map- 

ping cp : U --* AN induces a collection %? = (x2, 
. ,x4}, called the block code with rate R = 

(logM)/N; each element is called a code Word. 
Only code words are transmitted over the 
channel. A mapping Ic, : BN+ U is called the 

decoding. Thus, given an encoding and decod- 
ing pair [q, $1, the error probability is defmed 

by 

PJ% $I=i g c* WN(YNl 4+4)> 
m 1 

where the summation C* is taken with respect 
to a11 yN such that $(y”)#~ The capacity for 

a DMC is defïned by 

C=maxI(p; W) 
P 

= max f C pi W( j 1 i)log 
WI4 

P i-1 jr1 C~=I Pi W( j 1 i) 

The fundamental theorem of channel coding 

theory states: Given a DMC with capacity C > 
0, there exist a block code with rate R below 

capacity C, a pair [q, $1, and a function E(R) 
> 0 for 0 <R < C such that the error proba- 
bility satisfies 

PeC%til<ex~{-NW)I. 

This was fïrst discovered by Shannon [ 11, 
and its precise proof was fïrst given by A. 

Feinstein [20]. The precise expression of E(R) 

was subsequently given by P. Elias [21], R. M. 
Fano [22], and Gallager [23]. The best ex- 
pression of E(R), due to Gallager [23], is 

E(R) = max{-%(R), UR + OW’))}, 

where 

E,(R)= max max 
O<p<l p 

-pR 

-1ogC C~~w(jIi)“(‘+~) i 
l+P j i II , 

E,,(R)=supmax -pR 
Pbl P [ UP -logctm C,/WIi)WjIk) i,k { j II 

The converse of the fundamental theorem 
states: Given a DMC with capacity C, for any 
block code with rate R above C and any pair 
[<p, $1, the error probability satisfïes 

where E(R) is a function positive for R > C. 
This was fïrst proved by J. Wolfowitz [24], 

and the precise expression, found by S. Ari- 
moto [25], is described by 

E(R)= max min 
-l<p<O p 

-pR 

-1ogC CpiW(jIi)‘i(l+p) I 
l+P j i II 

The fundamental theorem of coding theory 
and its converse imply that the capacity is a 
critical rate; above the capacity, information 

cannot be transmitted reliably through the 
channel. Unfortunately, there is, in general, no 
direct method for computing the capacity, and 
therefore an iterative method was proposed by 
Arimoto [26]. Another iterative method for 
computing the rate distortion function was 
given by R. E. Blahut [27]. 

A discrete channel with memory is, in gen- 
eral, defïned by a list of probability measure 
{ W,, x E AZ} on a tmeasurable space { BZ, SB} 
such that for each FE .TB, W,(F) is a tmeasur- 

able function of x. A channel W is called sta- 
tionary if W,,( TF) = W,(F) for ail x E A” and 
a11 FE$~. Given an input source [AZ, P] and a 
channel W, connecting the input to the chan- 

ne1 induces a joint process of input and out- 
put, denoted by [AZ x BZ, P W] where P W is a 

measure on {AZ x B”, FA x .}. If a joint process 
[A” x BZ, P W] is stationary the mutual in- 

formation between input and output is defmed 

b 

I(X; Y) = H(X) + H(Y) - H(XY). 

A channel W is called ergodic if for every 
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ergodic input [A”, P] the induced joint process 
[AZ x B”, PW] is ergodic. The channel capac- 
ity for a discrete stationary channel is defined 
in various ways. The important ones are the 
ergodic capacity defined by C, = sup. of I(X; Y) 

with respect to a11 stationary ergodic sources 
X = [A”, P], and the stationary capacity de- 

tïned by C, = sup. of I(X; Y) w.r.t. a11 station- 
ary sources. K. R. Parthasarathy [28] proved 
C, = C, for a11 discrete stationary channels. 

In another way J. Nedoma [29] introduced 
the operational source/channel block coding 
capacity Csfbr which is defined as the supre- 
mum of the entropies of all admissible sta- 

tionary ergodic sources in the sense that there 
exist source/channel block codes such that 
the error probability P,-+O as block length 
N+co. Nedoma [29] also pointed out an 
example of a stationary channel where C, > 
Cscb. Hence block coding theorems have been 
proved for various channels: for finite memory 

channels by A. 1. Khinchin [30], K. Takano 
[31], Nedoma [29], and Feinstein [32], for 
d-continuous channels by Gray and Ornstein 
[33], and for almost fïnite memory channels 
by D. L. Neuhoff and P. C. Shields [34]. 
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A. General Remarks 

Insurance is a system in which a large number 
of people contribute a small precalculated 

amount of money (called a premium) to fil1 the 
economic need that arises when a person 
meets adversity. The amount of economic need 

fïlled by this system is called the amount of 
insurance (or amount insured). The insurer is 

the one who implements the system. Actuarial 
mathematics is the branch of applied mathe- 

matics that studies the mathematical basis of 
insurance, one of the fïrst cases in which math- 

ematics was successfully applied to a social 
question. Actuarial mathematics cari be di- 
vided into two branches according to its ap- 

plication. The fïrst includes the calculation of 
various values of each individual policy, such 
as premiums or reserves. The second is mainly 
connected with management of an insurance 
business and includes the study of reinsurance 
systems, of the maximum amount of insurance, 
of the contingency fund, or the analysis of 

profits. There is only one basic principle in 
actuarial mathematics, called the principle of 
equivalence. It determines the premium and 
reserve in each year SO that the present value 
of future premium income of the insurer is 

equal to the present value of future benefïts for 
each policy. 

The basic factors of actuarial calculations 
are (1) probabilities of contingencies, (2) an 
expected rate of interest in the future (often 
referred to as the assumed rate of interest), 

and (3) cost of administration of the system. 

Premiums are calculated using these factors 
and the principle of equivalence. The follow- 
ing is an example of the classical method 
of calculation for a life insurance policy 
with the use of “commutation symbols,” 

which is an old device for the convenience 
of calculations. 

We Write P for the net premium (in which 
the cost of administration is disregarded), P 
for the gross premium, 7; for the amount of 
death benefits payable in the tth year after the 
policy is issued, E, for the amount of survival 
benefïts payable at the beginning of the tth 
year, n for the period for which the insurance 
is effective, and m for the period for which pre- 
miums are to be paid. Let a, fi, and y stand for 

three positive constants determining the initial 
expenses = c(( T, or E,), the premium collection 
expenses = BP’, and the general expenses for 

maintenance = y( 7; or E,). The factor that 
cornes into consideration next is a mode1 of 
human death and survival (measurement). 

Assume that 1, is the number of lives attammg 
age x, and Write qX for the probability that a 
life of x years Will end within one year. Then 
d,, the number of lives ending within one year 
out of I,, is I,q,, and 1,+, , the number of lives 
remaining after one year at age x + 1, is I, - 
d, = 1,( 1 - qx). The commutation symbols 

commonly employed are defïned as follows: 
Write u = l/( 1 + i), where i is the assumed rate 
of interest; then 

D,=l,vx, C, =d#+‘, 

For a policy issued at an insured person’s age 
x, the present value of the insurer’s future 
income cari be expressed as P’(N, - N,+,)/D,, 
and the present value of his future payments 
cari be expressed as 

“fl 
TCx+,-, + 1 WL-~ 

1=, 

+&‘A or WD,+Y i (7; or WL-, 
*=0 

+ b’P’(Nx - Nx+,) 
> 

By assuming that the present value of the 
future income is equal to the present value of 
the future payments, the value of the gross 

premium P’ is obtained. (The P’ obtained from 
the assumption c( = fi = y = 0 is denoted by P 
and is called the net premium. The difference 

P’ -P is called the loading.) For a policy in 
which beneiïts are payable on disability or 

contingencies other than death, we have only 
to obtain a mode1 of contingencies and apply a 
similar calculation. 
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B. Liability Reserve 

During the term of an insurance contract, it 
often happens that the present value of the 

future income is less than the present value of 
the future payments. If this is the case, the 
difference is to be held by the insurer as the 
liability reserve. The source of this fund is the 
past premium income plus interest. The net 

premium reserve, which disregards expenses, is 
calculated as 

T,C,+,-, + nf E,D,+,-, 
r=1+1 

- P(Nx+, 

Between the net premium P and the net 

premium reserve V, we have the relation 

The first term of the right-hand side of this 
formula is called the savings premium, since it 
is the amount left out of the premium income 

of the tth year and added to the reserve. The 
second term is called the cost of insurance or 

risk premium and is applied to caver the dif- 
ference between the amount of insurance and 
that of the existing reserve in case the contin- 
gency of death arises. The third term is applied 
to the payment of the survival beneiïts (or 

annuities in case of an annuity contract). If 7; - 
V,, the amount of risk insured by the insurer, 
is positive for all values of t during the period 
of insurance, the policy is called death insur- 
ance. On the other hand, if the value of i’- U; 
is negative for a11 values of t, the policy is 

called survival insurance. If the value of 7; - F 
varies between positive and negative according 
to the different values of t, the policy is called 
mixed insurance. If 7; is always equal to y, the 
policy constitutes mere savings. Most of the 
insurance policies issued today are one or 

another type of death insurance, while life 
annuity policies are a type of survival insur- 
ance. For a long time, studies have been made 
of the effect on premiums and reserves of 
changes in the three basic factors (l), (2), and 
(3) in Section A. 

C. Risk Theory 

Risk theory occupies a special position in the 
tïeld of actuarial mathematics. Actuarial math- 
ematics was first born from the theory of prob- 
ability. Since the modern theory of proba- 

bility based on measure theory was developed 

by A. N. Kolmogorov and other mathema- 
ticians (- 342 Probability Theory), new ap- 
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proaches have inevitably been made to ac- 
tuarial mathematics. An outstanding example 
is risk theory. 

Risk theory cari be divided into two 
branches. One is called classical risk theory 

(or individual risk theory), in which the profit 
or loss that may result during a certain term 
of an insurance contract is regarded as a +ran- 
dom variable. Since the insurer’s profit equals 
the sum of these random variables over all the 
individual contracts, various probability func- 
tions cari be obtained by applying the theory 

of probability. The second, called collective 
risk theory, pays no attention to each indiv- 

idual contract but studies changes in the 
insurer’s balance as a whole with the lapse of 
time. The basis of collective risk theory was 

given by F. Lundberg, H. Cramér, and other 
mathematicians. 

We explain the collective risk theory follow- 
ing Cramér [SI. For simplicity we consider an 
insurer who issues no policies other than death 
insurance and makes no expenditures except 
the policy claims. Suppose that during the 
time interval (t, t + At) contingency occurs with 
probability ÂAt + o(At) independently of the 
past. We denote by F(x) the tdistribution 
function of the amount to be paid by the in- 

surer when a contingency occurs. Then the 
number of contingencies in (0, t), N(t), is a 
+Poisson process with parameter 1, and the 
total expenditure of the insurer during the 
time interval (0, t), X(t), is a tcompound Pois- 
son process (- 5 Additive Processes) such that 

E(e izx(r)) = exp J.t 

(S 

a, teiix - l)dF(x) 
0 > 

If p is the premium income per unit time, then 

we have p = /zsF xdF(x), because E(X(t)) = pt 

holds by the principle of equivalence. If u 
denotes the initial fund of the insurer, then the 
fund reserved at time t, Y(t), equals u + pt - 

X(t). Y(t) is a +Lévy process (- 5 Additive 

Processes) such that 

izY(*) 
E(e 1 

= exp 
( s 

izu + lt 
cc (eirx - 1 - izx)dF(x) 

0 > 

The probability that Y(t) < 0 for some time 
t < CO is called the ruin probability, which de- 

pends on the initial fund u, denoted by G(u). 
This satisfïes the following tintegral equation 

of Volterra type: 

p(u)= J~Q(x)dx+ j~wQwwx 

(Q(x) = 1 - F(x)), 

from which one cari derive an asymptotic rela- 

tion $(u)-Ce -Ru as u-00, where R and C 
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are positive constants depending only on Â. 

and F. See [6] for recent developments in risk 
theory. 
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A. General Remarks 

Integer programming, in its broadest sense, 
addresses itself to either minimization or maxi- 
mization of a functional f over some discrete 
set S in R”, but it is usually understood as 
dealing with questions related to linear pro- 
gramming problems (- 255 Linear Program- 
ming) with additional integrality conditions 
on the variables, namely, the problem Pr,: 

Minimize {c’x 1.4x = b, x > 0, xj an integer, j = 
1, . . . . n,(<n)}, where AeRmX”, beR”, CER” 
aregivendataandx=(x,,...,x,)‘ER”isa 

vector. P,, is called a pure integer programming 
problem or an all-integer programming prob- 
lem if n = ni, and a mixed integer program- 
ming problem if ni <n. In particular, P, is called 
a O-l integer programming problem if a11 the 
integer variables are restricted to be equal to 
either 0 or 1. We Write 

X”={xER”lAx=b,xj>O,j=l ,..., n}, 

and assume for simplicity that (i) X’ # 0, (ii) 
X0 is bounded, and (iii) a11 the components of 

A and b are integers. P. arises not only as a 
mathematical mode1 for an optimization prob- 
lem where some of the decision variables 
have indivisible minimum units but also as one 
for many optimization problems with some 

logical and/or combinatorial constraints [ 11. 
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Algorithms for solving P. cari be classilïed into 
algebraic methods and enumerative methods. 
Both are based upon linear programming and 

relaxation techniques [2] in which some of 
the constraints of P. are temporarily relaxed 

(- 264 Mathematical Programming). 

B. Cutting Plane Metbods 

The origin of this class of algorithms is the 
fractional cutting plane algoritbm proposed 
in 1958 by R. E. Gomory [3], the outline of 
which is described as: 
(1) Let X=X0. 
(2) Solve a linear programming problem: Mini- 
mize {c’x 1 x E X}, and let % be its toptimal 

solution. If the xj are integer for all j < ni, then 
stop (X is optimal to P,). Otherwise, go to (3). 
(3) Generate a half-space H = {x E R” 1 A’X > rc,} 

(n~R”,rco~R1), where H(i) contains X’ and (ii) 
does not contain %. Return to (2) by replacing 
XbyXflH. 

Here, a linear programming problem ob- 
tained by relaxing integrality conditions is 
solved, and as long as X$X’, an inequality 
satisfying the two conditions (i), (ii) of (3) is 
introduced. Such an inequality IC’X > no or 
equality n’x = 7~~ is called a tut or a cutting 

plane. Gomory devised a Gomory tut using 
(relaxed) integrality conditions on the vari- 
ables, and showed that the algorithm above 

produces a point of X’ in finitely many steps. 
Some of the other algorithms using cutting 
planes are the all-integer algorithm (Gomory, 
1963) and the prima1 ah-integer algorithm 
(R. D. Young, Operations Res., 16 (1968)). 

These algorithms, however, are generally slow 
and behave erratically, SO that it is believed 

that they cannot in practice serve as general- 
purpose algorithms. 

C. Other Algebraic Methods 

Gomory [4], again in 1965, proposed a group- 
theoretic approach to Po. This method is based 

upon the following observation: Let xg be the 
vector of tbasic variables (- 255 Linear Pro- 
gramming) associated with a tdual feasible 
basis of a linear programming problem Ix: 

Minimize {c’x 1 x EX’}, and let r?’ be the set 
generated from X’ by relaxing the nonnegativ- 
ity constraints on xg. Then r?’ cari be shown 

to have a tcyclic group structure, SO that a 
group minimization problem Pc: minimize 
{c’xlx~r?‘} cari be solved as a tshortest path 
problem on a directed graph with a special 

structure (- 186 Graph Theory). If the opti- 
mal solution # of Pc satisfies X, 3 0, then it is 
optimal for Po. If, on the other hand, T, 2 0, 
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then a branch and bound algorithm described 
later cari be applied for a systematic search 

of integer points near X. This algorithm is 
reported to produce good results when the 
size of the associated graph is not excessively 

large (G. A. Gorry et al., Management Sci., 17 
(1971)). Some of the other important results 
in this area are: (i) the theory of subadditive 
cuts (R. Gomory et al., Math. Prog., 3 (1972)) 

and disjunctive cuts (E. Balas, in Nonlinear 

Programming 2, 0. Mangasarian et al. (eds.), 
Academic Press, 1975), (ii) research on facial 
structures of the integer polybedron coX’ 
(convex hull of XI) for some of the more im- 

portant integer programming problems, such 
as that of the corner polybedron COT’ [S], 

knapsack polytopes (E. Balas, Math. Prog., 8 

(1975)), and traveling-salesman polytopes 
(M. Grotschel et al., Math. Prog., 16 (1979)). It 
should be pointed out, however, that more 
diftïculties of P0 have been revealed rather 
than resolved through the intensive research 
in this area. Incidentally, the O-l integer 
programming problem is known to be +NP- 
complete (- 71 Complexity of Computations). 

D. Enumerative Metbods 

Another large class of algorithms for solving 

P,, consists of the brancb and bound metbods, 
tïrst proposed by Land and Doig [6] in 1960. 
An outline of the improved version (R. J. 
Dakin, Computer J., 8 (1965)) is as follows. 
(1) Let Y = {PO}, z* = CO, x* = undetïned. 

(2) If UP = 0, then stop (x* is optimal to P,). 
Otherwise, choose from P the problem P,: 

Minimize {c’x 1 XE~/}. 
(3) Salve p,: Minimize {c’x 1 XE~,}, in which 

the integrality condition is relaxed from the 
constraints of 4. If Fr has an optimal solution 
2, then go to (4). Otherwise, return to (2). 
(4) If %EX/ and c’x<z*, then let X+x*, c’x+ 

z*, and return to (2). If f E X/ and c’x > z*, 
then return to (2). Otherwise, go to (5). 
(5) Choose j < n,, for which Zj is not integral 
and generate the two subproblems Pj’: mini- 
mize {c’xlxgX,/, xj>[Xj]+ l}, and Pj-: mini- 

mize {c’xIxEX,/,X~Q[X~]}, in both of which 
[Yj] represents the largest integer not exceeding 
2,. Let BU { 4-, Cm } +g and return to (2). 

The best point of X’ identifïed during the 
preceding steps is denoted by x* and called 

an incumbent. In summary, the branch and 
bound method chooses one subproblem Pi 

from.the problem list Y and estimates the 
lower bound of its optimal objective func- 

tional value. If the lower bound is worse than 
the current incumbent, then P, is discarded, 

whereas Pi is separated into two subproblems 
if no conclusion cari be reached. This process 
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is continued until the problem list P becomes 
empty, thereby implicitly checking all points of 

X’. The above method is called an LP-based 
branch and bound method because linear 
programming techniques are employed to 

obtain a lower bound. The branch and bound 
method tends to require a large amount of 

storage, but many engineering improvements 
on the method of choosing (i) a subproblem Pr 
and (ii) a branching variable xi, and several 

improvements of the bounding techniques, in 
addition to the substantial progress made in 
linear programming codes, enable us to solve 
a problem of size II z 100. In particular, an 
improved version of the implicit enumera- 
tion method, proposed by E. Balas [7] for O-l 

integer programming problems which uses 
logical conditions for obtaining lower bounds, 

is known to be able to salve rather large O-l 
integer programming problems (A. Geoffrion, 
Operations Res., 17 (1969)). 

E. Other Topics 

The partitioning algorithm [S], in which in- 
teger variables are varied parametrically, is 

reported to work well for O-l mixed integer 
problems with relatively few integer variables. 
As people begin to realize the intrinsic dif- 
tïculty of PO, they pay more attention to heu- 
ristic algorithms or approximate algorithms 
to obtain a good but not necessarily optimal 
solution. Among heuristic methods, the inte- 
rior path method [9], which elaborates simple 
ideas such as rounding of the optimal solution 
of PO, has been reported to work well for prob- 
lems in which X0 has a nonempty interior. 
Also, more emphasis is being placed on special 

purpose algorithms for solving practical prob- 
lems, such as +Set partitioning and the ttravel- 
ing salesman problem, etc. [ 11. P, is a typical 
nonconvex programming problem, and no 
practically useful tduality theorem is avail- 
able. Hence it is difficult to perform sensitivity 

and/or post-optimality analysis. Some research 
in this area has emerged recently (e.g., C. J. 
Piper et al., Management Sci., 22 (1976)), but 
it looks as if it Will be several years before a 
reasonably good procedure becomes available. 
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Integral Calculus 

A. The Riemann Integral 

Let f(x) be a bounded real-valued function 
delïned on an interval [a, b]. We shall divide 
this interval I = [a, b] into subintervals li = 

[xi-i, x,] (i = 1, , n) by a lïnite number of 
points xi (a =x0 <x, < . <x, = b). This divi- 
sion into subintervals is uniquely determined 
by the set D = {xi}, called the partition of 1. We 

set Mi = sup,,,,f(x), mi = infX,,c,f(x), and put 

S(D)=& M,(x,-xi-,), g(D)=& mi(xi- 
x,-i). Considering a11 possible partitions D 

of 1, we set Ilf(x)dx=inf,%(D), j,hf(x)dx= 
sup,c(D), which are called the Riemann upper 
integral and Riemann lower integral of A re- 
spectively. If they coincide, then the common 
value is called the Riemann integral of ,f on 
[a, b] and is denoted by j,hf(x)dx. In this case, 
we say that ,f is Riemann integrable (or simply 
integrable) on [a, b] and cal1 f the integrand; u 

and b are called the lower limit and the Upper 
limit, respectively. In this case, by integrating ,f 
from a to b we mean the process of obtaining 

the value j,hf(x)dx. 
Darboux’s theorem: For each F: > 0 there 

exists a positive 6 such that the inequalities 

i.(D)-~,,(x)dx~<,, 

Inli>)- S:/(xW+~ 
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hold for any partition D with 6(D) = max,(x, 

-xi-,) < 6. In other words, we have 

From Darboux’s theorem it follows that a 
necessary and suflïcient condition for f(x) to 
be integrable on [a, b] is that for each positive 

E there exist a positive 6 such that fi(D) < 6 im- 
plies ~(D)-<T(D)=C;=,(M~-~~)(X~-X~-J<E. 

We cal1 Mi-mi the oscillation off on Ii and 
o(D) and g(D) the Darboux sums. Obviously, if 
,f is integrable on [a, b], then for each positive 

E there exists a positive 6 such that the follow- 
ing inequality holds for every partition D = 
{xj) with 6(D) <6 and for every set of points 
t,EIj(j=lr...,n): 

j~f(~j)lxj-xj-,l-ShT(x)dlJ<E. 
a 

The sum C~Z,,f(~j)(xj-xj~l) is often called a 
Riemann sum (or sum of products). A function 
that is continuous on [a, b], or bounded and 
continuous except for a finite number of points 

in the interval, is integrable. Furthermore, a 
bounded function that is continuous on [a, b] 
except for an inlïnite number of points xi, is 
integrable if for an arbitrary positive number a 
there exist a lïnite number of intervals Ii of 
which the total length is less than E and if the 
set {x~} of exceptional points is contained in 
u Ii. Generally, a necessary and suflïcient 
condition for a bounded function dehned on 
[a, b] to be integrable is that the set of points 
where the function is not continuous be of 

tmeasure 0 (in the sense of Lebesgue). A func- 
tion that is either tmonotonic on [a, b] (and 

consequently bounded) or of tbounded vari- 
ation is integrable. A function that is inte- 
grable on [a, b] is integrable on any sub- 

interval of [a, b], the integrand being the 
restriction of the given function to this 

subinterval. 

B. Basic Properties of Integrals 

Let 1 be the set of all functions integrable 
on [a, b]. If ,f; g E 1, then for any numbers 
a, /?, we have ~f+~~g~l,~~~I,min{~g}~I, 
max { A y} E 1, and f/g E 1 provided that there 
exists a positive constant A such that the 
inequality Igl > A holds. Furthermore, if ,fc 1, 
thenlfIEI;andiff,EI(n=1,2,...)andf, 

converges tuniformly to ,f; then f~1. Cor- 
responding to these properties, the following 

formulas hold. 
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(1) Linearity: 

s 
cm) + BS(X)) dx 

_! j c( hf(X)dx+B hf(X)dX, 
LI ” 

where CC, fi are constants. 
(2) Monotonicity: If j(x) > 0, then 

s 

b 
f(x) dx 2 0. 

a 

If, further, f is continuous at a point X~E [a, b] 
and f(xa) > 0, then C~(X) dx > 0. 

(3) Additivity with respect to intervals: If a, 
b, and c are points belonging to an interval on 
which f is integrable and a < c <b, then 

Adopting the conventions that Jif(x)dx = 0 

and jbf(x)dx= -jif(x)dx, the additivity 
formula holds independently of the order of a, 

b, and c. 
It follows from (2) that Ijif(x)dx( < 

Jilf(x)l dx if a < b. Further, if f.(x) converges 
to f(x) uniformly on [a, b], then 

lim~:~Odx=~~b/lx)dx. 

Replacing f,(x) by partial sums of a series, 
we obtain the following theorem: Let 2 a,(x) 
be a series in which each term a,(x) is inte- 
grable on an interval [a, b]. If the series con- 
verges uniformly on [a, b], then the sum s(x) is 
integrable on [a, b], and the series is termwise 

integrable, that is, 

Also, the series CzZ1 ltu,,(t)dt converges uni- 
formly on [a, b] to the integral iis(t)dt. As- 
sume that Ca,(x) is convergent but not uni- 
formly convergent. If a11 u,(x), together with 
s(x) = 2 a,(x), are integrable and there is a 
constant A4 independent of n such that I~,,(X)/ 

<M (x E [a, b]) for a11 n, where s,(x) are par- 
tial sums, then the series is termwise integrable 
(C. Arzelà). 

The first mean value theorem: If f(x) is con- 
tinuous on [a, b] and <p(x) is integrable and of 
constant sign on [a, b], then there exists (3 (0 < 
0 < 1) such that 

s 

h 
f(x)<P(x)dx=f(a+O(b-a)) ‘<P(x)dx. 

a s Y 

When <p(x) = 1, we have 

s 

b 

f(x)dx=f(a+O(b-a))&a). 
a 
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The second mean value theorem: If J (x) is a 
positive, monotone decreasing function de- 

lïned on [a, b] and C~(X) is an integrable func- 
tion, then there exists q (a =CV < b) such that 

s 

b 

s 

v 

f(.4cPWx=f(~+O) dx)dx. 

a a 

In the hypothesis of the second mean value 
theorem, if f(x) is assumed to be monotonie 
but not necessarily positive, then there exists 
q (a < q <b) such that 

s 

b 

f(x) C~(X) dx 
0 

s 

v 

=f(a+O) cp(x)dx+f(b-0) 
0 s 

b 

cp(x)dx. 
9 

H. Okamura (1947) proved that the condition 
udqdb cari be replaced by a<q<b. 

In the case ,f(x) > 0 on [a, b], we consider the 
figure F bounded by the graph of f(x), the x- 
axis, and the lines x = a and x = b. Then 8(D) 
and c(D) are areas of polygons of which one 

encloses F and the other is enclosed by F, as 
shown in Fig. 1. Hence it cari be shown that 
the integrability of ,j(x) in the sense of Rie- 
mann is equivalent to the measurability of F 
in the sense of Jordan. The Riemann integral 
l,hf(x)dx is the area of F with respect to its 
+Jordan measure. 

a XI XL 

Fig. 1 

C. Relation between Differentiation and 
Integration 

Suppose that f(x) is integrable on an interval 
1. We fïx a point a of I and consider the in- 
tegration F(x) = Jif(t) dt, where x varies in 1. 
The function F(x) is called the indefinite in- 

tegral of j’(x). In contrast with this, the integral 
on a,lïxed interval, as considered in the previ- 
ous sections, is often called the defïnite in- 
tegral. The indelïnite integral F(x) is continu- 
ous on the interval 1 and of bounded varia- 
tion. If f(x) is continuous at a point x0 in 1, 
then F(x) is differentiable at x,, and F’(x,) = 
j(x,,). In general, if a function G(x) satistïes 
G’(x) =,f(x) everywhere in I, then G(x) is called 

a primitive function of f(x). If ,f(x) is continu- 
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ous, the indefïnite integral of f(x) is one of 
the primitive functions of ,f(x). Furthermore, if 
a function G(x) is a primitive function of f(x), 

then any other primitive function cari be writ- 
ten in the form G(x) + C, where C is a con- 

stant, called an integral constant. For a con- 
tinuous function ,f(x) on [a, b] and any one 
of its primitive functions G(x), we have 

s 
)“(x)dx=G(b)-G(u)=[G(x)]: 

(fundamental theorem of calculus) (- Ap- 
pendix A, Table 9). From the differentiation 
formulas we obtain the following integration 
formulas: 

Integration by parts: If f(x) and g(x) have 
continuous derivatives on [a, h], then 

s 

b 

f’(xMxVx= LWsb)l:- *f’bMxVx. 
0 s a 

More generally, if f(x) and g(x) are integrable 
on [a, h], then 

Change of variables: If f(x) is integrable on 
[a, b] and x = <p(t) and q’(t) are continuous on 

Ca, PI, where a = ~CI), b = ~(8) (ad dt) < b), 
then 

~~bf~x)dx=Si'f~a(t))~.odt. 

D. Improper Integrals 

The concept of the integral cari be generahzed 
to the case where the integrand or the interval 
on which integration is accomplished is not 
bounded. Assume that ,f(x) is not bounded on 
[a, h) but is bounded and integrable on any 
interval [a, b-e] (c [u, b)). If l,bmE,f(x)dx has a 
tïnite limit for a-tO, the limit is denoted by 
j,b,f(x)dx and is called the improper Riemann 
integral (or simply improper integral) of ,f(x) on 
[a, b). For example, if f(x) is continuous on 

[a, b) and ,f(x)= O((b-x)“) for some s( (O>N> 

-1) where 0 is the +Landau symbol, then the 
improper integral J,b,f’(x)dx exists. On the 
other hand, if ,j is integrable on [a + E, b] for 
each E > 0 but not bounded in any neighbor- 
hood of u, we cari define the integral on (u, b] 
in the same way. If f is not bounded in any 
neighborhood of a or b and if there exists a 
point c (a < c ch) for which the improper in- 
tegrals J”zf(x)dx and J”:f‘(x)dx exist, then we 

detïne J,hf(x)dx =jaf(x)dx + j:f‘(x)dx, which is 
independent of the choice of the point c. Fur- 

216 E 
Integral Calculus 

thermore, assume that f‘(x) is not bounded in 
any neighborhood of each point cj (j= 1, , n) 
(a<c,<...<c,<b).Thenwedefïne 

SII(x)dx=j.;.f(x)dx+j;f(x)dx+... 

+~~“,iix)dx+li6,i(i)di. 
provided that a11 improper integrals 

exist. Suppose that f(x) is defïned on [a, b] 
and bounded outside any neighborhood of 
CE(~, b) but not bounded in either [C-E, c] or 
[c, c + E] for any E > 0. It may well happen 
that, although neither lim,,,J~~“f(x)dx nor 
lim,.,,J:+,,f(x)dx exists (accordingly, the 
improper integral J,b,f(x)dx does not exist), if 
we put E = E’, the limit 

does exist. This limit is called Cauchy’s prin- 

cipal value and is denoted by P.V. C~(X) dx 
(v.p. in French). For example, p.v. lk,(dx/x) = 
lim,,,(j~~(l/x)dx+j~(l/x)dx)=O. 

E. Integrals on Infinite Intervals 

Suppose that we are given a function f(x) 
detïned on an intïnite interval [a, co) and 
integrable on any finite interval [u, b]. If 

lim,,, J$,f(x)dx exists and is hnite, then this 
limit is called the improper integral off on 
[a, CO) and is denoted by szf(x)dx. We delïne 

similarly Jhmf(x)dx=lim,,-,J,h,f(x)dx, where 

fis defined on (-“o, b] and integrable on any 
interval [a, b]. Furthermore, JZrf(x)dx is, by 
definition, jYmf(x)dx+j~f‘(x)dx, which is 
independent of the choice of c. Suppose that 
f(x) is integrable on [u, b] for a fixed a and an 
arbitrary b larger than a. If f(x) = 0(x”) for 
some z < -1, then jzf(x)dx exists. Generally, 
forqpsuchthat -codcc<mand -CD< 
p < cq if the improper integral ilf(x)dx exists, 

we say that the integral is convergent; other- 
wise, it is divergent. Improper integrals also 
satisfy the three basic properties of integrals 
(1) (2) and (3) (- Section B). However, the 
existence of an improper integral of a func- 
tion f on an interval 1 does not imply the 
existence of the improper integral of If1 on 
the same interval 1. For example, let 1’ be 
a function determined by f(0) = 0, f(x) = 
(l/x)sin(l/x) for O<xdrr. Then jGf(x)dx 

exists, but J;lf(x)ldx does not. On the other 

hand, if the improper integral of If(x)1 exists, 
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then the improper integral of f(x) exists, and 
we have 

where -c~<sc</Y<+~~.Inthiscase,wesay 

that f is absolutely integrable on the interval 
[cc, b]. Assume now that ,f(x) is defïned on 
(-CO, CO) and integrable on any finite interval. 
If lim,,, jOa f(x)dx exists, then it is called 
Caucby’s principal value of the integral off in 

c--b CO). 
If f(x) is a monotone decreasing, positive, 

and continuous function detïned on [k, CO) 
(where k is an integer), then according as 
C:&v) converges or diverges, SO does 

JkfWx. 
Suppose that a series CE, f.(x), where all 

the functions f,(x) (n = 1,2,. ) are defined and 
nonnegative on an infinite interval [a, CO), 
satisfies c(Zz, f,(x))dx = XE, l,bf,(x)dx 

for arbitrary b > a. Then according as 

C~l JO f,(x)dx converges or diverges, SO does 
~~(C~1 f,(x))dx. When they converge, the 
following equality holds: iz Cs, f,(x)dx 

=Czl JO f,(x) dx. In this theorem, if 

JOC,% If,(x)ldx or CE, J: If,(x)ldx con- 
verges, then the same conclusion as above Will 
follow even when the f,(x) are not necessarily 
positive (- Appendix A, Table 9). 

F. Multiple Integrals 

Suppose that f (x, y) is a function deiïned and 
bounded on an interval 1 = {(x, y) 1 a < x < b, 
c < y < d} in the xy-plane. Partitions {xj} and 
{y,}of[a,h]and[c,d] witha=x,<x,<... 
<x,=b and c=y,<y, < . . . <y.=d determine 
a “partition,” denoted by D, of 1 into subinter- 
vals of the form Ijk = {(x, y) ) x~-~ <x < xj, y,-, d 
y<y,}(j=l,..., m;k=l,..., n). Writing 

we set 

a(D)= f c Mjk(Xj-Xj-l)(Yk-Yk-l)r 
j=l k=l 

o(D)= f t Illlk(Xj-Xj-l)(Yk-Yk-l). 
j=l k=l 

Then we obtain inf,<r(D) > sup,c(D). If 
inf, O(D) = sup,c~(D), then f (x, y) is called inte- 

grable on 1, and the common value is called 
the double integral of ,f on I and is denoted by 
SS, f (x, y) dx dy. Analogously, we cari define n- 
tuple integrals (or multiple integrals) and the 

integrability of functions of n variables. 
Let K be a bounded set in the xy-plane and 
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I an interval containing K. Let <p(x, y) be the 

characteristic function of K detïned on 1, that 
is, <p is determined by 

cp(x,y)=l for (x,~kK, 

<~(~,y)=0 for (x,y)~I-K. 

Replacing f(x, y) by this <p(x, y), we consider 
inf,a(D) (SU~~~(D)). These values cari be 
shown to be independent of the choice of such 
an interval 1 and are called the outer area 
(inner area) of K, respectively. When these two 
values coincide, K is said to be of delïnite area, 
and the common value is called the area of K. 

A necessary and suffïcient condition for K to 
be of defïnite area is that the outer area of 
the tboundary of K be zero. Now consider a 
bounded function defïned on a set K of de- 
tïnite area. Then, taking an interval I contain- 
ing K, define an extension <p(x, y) of f(x, y) as 

follows: 

<p(x,y)=f(x,y) for (x,Y)EK 

<~(~,y)=0 for (x,y)~Z-K. 

If <p(x, y) is integrable on 1, then f (x, y) is called 
integrable on K, and the integral off on K is 

defined by jjKf(x, y)dxdy =Jj, V(X, y)dxdy, 
which is independent of the special choice of Z. 
The set K is called the domain of integration. 
Since K is of definite area, the set of boundary 

points of K at which cp(x, y) is not continuous 
cari be contained in a union of intervals whose 
total area cari be made smaller than any preas- 
signed positive number. Consequently, a func- 
tion bounded on K and continuous at each 

tinterior point of K is integrable on K. Like 
integrals of functions of a single variable, 
multiple integrals satisfy the three basic prop- 
erties of integrals (- Section B). 

G. Multiple Integrals and Iterated Integrals 

Suppose that we are given a function f (x, y) 

that is continuous on an interval 1 = {(x, y) 1 
a<x<b,c<y<d}. Then, for a fixed y in 
[c, d], the function f(x, y), regarded as a func- 
tion of x, cari be integrated with respect to 
x on the interval [a, b], and the integral thus 
obtained is a continuous function of y. The 
integral of the function defined on [c, d], 

namely, Jf(C f (x, y) dx) dy, is called the iterated 
integral (or repeated integral) of f(x, y) and is 
often written as ~~dy~~,f(x, y)dx. The following 
formula gives a representation of a double 
integral by iterated ones: 

s s 
ddy *f(x>y)dx 
c r? 

= 
s s 

*dx df(x,y)dy. 
0 e 
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More generally, <pi(x) and (p2(x) being con- 

tinuous on [a, b] and ‘pl (x) < <p2(x), consider 
the following subset K = {(x, y) 1 a d x < b, 

q1 (x) < y < <p2(x)} of the xy-plane. Suppose 
further that f(x, y) is continuous on K. Then 
the following equality holds: 

SS 
f(x,y)dxdy= *dX 

s s 

<p*w 
f (x> Y) dy. 

K a <p,(X) 

In the case of unbounded integrands or 
unbounded domains of integration, we cari 
still defïne integrals under suitable restrictions. 

For instance, assume the following two prop- 
erties: (1) There exists a sequence {K,} of sets, 
each of which is of definite area, satisfying 
K, c K, c . and K = un=, K,. (2) f(x, y) is 
bounded and integrable on each K, (n = 

1,2, . ..). If a finite limit lim,,,lJKnf(x,y)dxdy 
exists and is independent of the choice of {K,}, 
then f(x, y) is called integrable on K. This limit 
is called the integial of f(x, y) on K and is 

denoted by ssK f(x, y)dxdy: 

lim 
SS 

f (x, Y) dx dy = f(x,y)dxdy. n-n K. 

When the integral thus defïned exists, we say 
that the integral is convergent. If a finite limit 
lim,,, slK. 1 f(x, y)1 dxdy exists for some se- 
quence {K,} with property (l), then fis inte- 
grable on K. Let ,f(x, y) be continuous and 
nonnegativeon K={(x,y)Icc<x<B,y<y<6}, 

where -a,<cc<fi<co, -CO<~<~<CO. Fur- 
thermore, let f(x, y) be integrable on K, and 
assume that the improper integral F(x) = 

J:f(x, y) dy = lim,lv,,,ta ji’f (x, yldy exists and 
converges uniformly with respect to x as clr, 
dT6. Then SiF(x)dx is well defïned, and we 
have 

SS 
f(x,y)dxdy= ‘dx ‘f(.x,y)dy. 

K s s a Y 

In particular, if x = a, y = b, fi = 6 = oc, then we 

have 

m a. 

SS 
f(x,y)dxdy= mdx co 

a b s s a 
h f(x,y)dy. 

H. Interchanging the Order of Differentiation 
and Integration 

If both ,f(x, y) and 8f (x, y)/ay are continuous 
on an interval {(x,y)Ia<x<b,y,-qdy< 

y0 + q}, then we cari interchange the order of 

differentiation and integration as follows: 

~~abf(x,y)dx=[ob~dx for y=y, 

Assume further that this equality holds for 

every b( > a), the improper integral 

J amf(x>y)dx=;~; ‘f(x,y)dx 
s a 

converges, and the improper integral 

s cc (?f (x, Y) dx = lim 

<I aY s 

b ;If (XT Y) dx 
b-m ~ ôy 

converges as b+ CO uniformly for y with 1 y - 
y,J <q. Then 

i[: f(x, y)dx=I:ydx for y=~,. 

Several other similar theorems are known. 
Though the previous theorems are written in 
terms of two variables, analogous theorems 
hold for n variables. 

1. Change of Variables in Multiple Integrals 

Let G be a bounded domain of defïnite area in 
an n-dimensional Euclidean space R”(x). As- 
sume that a mapping x-y(x)=(y,(x,, . . . . x,), 

. ..) y,(~, , . . , x,)) is of class C’ from an open 
set containing the closure G of G into an n- 

dimensional Euclidean space R”(y). We de- 
note the image of G under this mapping by B. 
If f (y,, , y,) is continuous on B, then the 
following formula on change of variables 

holds: 

SS 
f(Y,,...,Yn)dy,...dy.= 

B 

whereg(x,,...,x,)=f(y,(x,,...,x,),...,y,(x,, 
, x,)) and D( yl, , y,)/D(x 1, , x,) is the 

TJacobian determinant of the mapping y(x). 
This formula is usually utilized in the case 
where yl, , y. are tfunctionally independent, 

though otherwise both sides vanish and the 
formula still holds. For improper integrals, 

a similar formula Will hold under suitable 
restrictions, for example, if the integrals con- 
verge absolutely. 

For related topics - 94 Curvilinear In- 

tegrals and Surface Integrals, 221 Integration 
Theory, and 270 Measure Theory. 
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A. General Remarks 

Equations including the integrals of unknown 
functions are called integral equations. The 
most studied ones are the linear integral equa- 
tions, i.e., linear in unknown functions. 

Let D be a domain of n-dimensional Eu- 

clidean space and ,f(x) and K(x, y) be func- 
tions defined for x=(x1,x2, . . ..x.)eD, y= 

(y,,~,, . . ..y.)cD. Integral equations of Fred- 
holm type (or Fredholm integral equations) [ 11 
are those of the forms 

s 
K(x,Yh(Y)dY=f(x), (1) 

D 

<p(x)- K(x,~)cp(~)d~=f(x)> 
s D 

(4 

A(xMx)- K(x>y)<pMdy=f(x)> 
s D 

(3) 

where <p(x) is an unknown function and J,dy 
means the n-fold integral s. J,dy, dy,. 

Equations of the forms (l), (2), and (3) are 
called equations of the first, second, and third 
kind, respectively. Equations of the second 
kind have been investigated in great detail. 

824 

Equations of the third kind, in many cases, cari 
be reduced formally to those of the second 
kind. The function K(x, y) is called a kernel (or 
integral kernel) of the integral equation. 

Integral equations of Volterra type (or Vol- 
terra integral equations) are those of the forms 

(1’) 

C~(X)- x~hMy)dy=f(x)~ 
s a 

(2’) 

44dx)-- kx>L.)‘pMdy=f(4> 
s 

(3’) 
a 

where <p(x) is an unknown function. Equations 
of the forms (l’), (2’), and (3’) are also called 
equations of the first, second, and third kind, 

respectively. Integral equations of Volterra 
type cari be regarded as integral equations of 
Fredholm type having kernels equal to 0 for 
x <y, but these two types of equations are 
usually treated separately, since they have 
considerably different characters. 

The kernels in equations (l)-(3) and (1’)) 
(3’) are frequently written in the form iK(x,y) 
with a parameter IL, in particular when the 
equations are related to eigenvalue problems, 
which is explained in Section F. 

The theory of integral equations was orig- 

inated in 1823 by N. H. Abel, who investigated 
the relationship between time and the path of 
a falling body in the iïeld of gravitation. Let 
q(t) be a quantity varying with time, which is 
connected by some law with its values in some 
time interval of the past or the future. Then 
the law of variation of <p(t) cari be described 
mathematically by an integral equation. The 
situation is the same even when the variable t 
is not time but a coordinate of the space. In 

this way, various problems in physics cari be 
reduced to solutions of integral equations. 

B. Relation to Differential Equations 

Many problems in differential equations cari 
be reduced to problems related to integral 
equations. Such reduction often makes the 
problems easier to handle and clarifies the 
nature of the solutions. For example, consider 
the problem of iïnding a solution of the ordi- 
nary second-order linear differential equation 
d2y/dx2 + Ây = 0 with the boundary condition 

y(0) = y( 1) = 0 [4]. Let d2 y/dx2 = u(x). If we 
integrate the equation twice, change the order 
of integration, and make use of the boundary 
condition, then we have 
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from which we see that the given differential 
equation cari be written in the form 

u=/? 
s 

Ix(1 -&(5)dg-l 
s 

x(x-ou(ode. 
0 0 

Decomposing the fïrst integral on the right- 
hand side into the sum of an integral over 
(0, x) and one over (x, l), and combining the 

integral over (0, x) with the second integral on 
the right-hand side, we obtain a Fredholm 
integral equation of the fïrst kind as follows: 

G(x, 5) = 
((1 -x) (O<<<x), 

x(1-5) (X<<<l). 

Clearly, the solution of this integral equation 
is equivalent to that of the original differential 
equation. The function G is called tGreen’s 
function for the boundary value condition 

y(0) = y( 1) = 0 in the theory of boundary value 
problems. Differential equations of higher 
orders cari be treated analogously (- 315 
Ordinary Differential Equations (Boundary 
Value Problems)). tInitia1 value problems of 
linear ordinary differential equations cari be 
reduced to the solution of Volterra integral 
equations in a similar way. 

As another example [S, 61, consider the 
TDirichlet problem on a plane, i.e., the problem 

of finding a function u satisfying the conditions 
(i) u is tharmonic in the interior of the region D 
bounded by a closed curve C([=C~(S), q = I&), 
O<S<~); (ii) U(X, y)+F(s) uniformly with re- 

spect to (x0, yo) as CG Y) approaches (x0, yo) 
from the inside of D, where (x0, yo) is an arbi- 
trary point on C, F(s) is a continuous func- 
tion given on C, and s is the arc length along 
C. Put f(s)= F(~)/R and 

Then it is known that a solution u of the prob- 
lem cari be given in the form 

s 

I a i 
u(x, y)= 

0 
p(s)anlog-ds, 

r 

where ?=(V(s)-X)~+(+(S)-y)‘, n is the inner 
normal of C, and p(s) is a continuous solution 
of the following Fredholm integral equation of 
the second kind: 

p(s)=f(s)- 
s 

tJc(s; t)p(t)dt. 

0 

We cari treat the tNeumann problem similarly, 
i.e., the problem in which condition (ii) is re- 
placed by (ii’) (au/%)@, y)*F(s) uniformly 

with respect to (x0, yo) as (x, y) approaches 
(x0, yo) from the inside of D. In the Neumann 

problem, put f(s) = F(s)/n and 

Then we have a solution u in the form 

u(x,y)= - /L(S)log@fs+c, 
s 

I 1 

0 r 

where p(s) is a solution of the following Fred- 

holm integral equation of the second kind: 

p(s)=f(s)- 
s 

IL(S; t)p(t)dt. 
0 

A solution of this integral equation, however, 
exists when and only when yo F(s) ds = 0. In the 
expression of a solution u(x, y) of the Neu- 

mann problem, c is an arbitrary additive con- 
stant, up to which a solution of the problem is 
determined uniquely. We cari also treat par- 

tial differential equations of telliptic type in 
an analogous way. 

C. Integral Equations with Continuous Kernel 

We describe some results for integral equa- 
tions with m-dimensional independent vari- 
ables, i.e., equations in which D is an m- 

dimensional closed domain. We assume that 
K (x, y) and f(x) are continuous in Sections 
D-H. 

D. The Method of Successive Iteration 

Among methods of solving Fredholm integral 
equations of the second kind, the simplest is 
the method of successive iteration, sometimes 
called the method of successive approximation 
[7]. In the method of successive iteration, we 
rewrite (2) in the form 

<p(x) =.m + 
s 

K(x>ybMdy 
D 

and replace the function q(y) on the right- 
hand side by the function 

f(y)+ K(~,z)cp(z)dz. 

s D 

If we repeat the process successively, then we 
have 

<p(x)=f(x) + f: 
s 

Ki(x, Y)f(Y)dY 
i=l D 

where 

K, (x, Y) = K(x, Y)> Ki(X>Y)= Ki-l(X,s)K(s,Y)ds. s D 



217 E 
Integral Equations 

826 

The functions Ki(x, y) are called the iterated 
kernels. Assume that Es1 K,(x, y) converges 
uniformly. Then, putting 

Rh Y) = f K(x, Y), (4) 
PI=1 

we obtain a solution of (2) in the form 

<p(x)=f(x)+ R(x,Y)~(Y)~Y. 
s 

(5) 
D 

The series (4) is called a Neumann series. 
For a given kernel K(x, y), a function R(x, y) 

satisfying 

K(x, Y) - R(x, Y) + r K(x,s)R(s,y)ds=O 

and 

JD 

K(x, Y) - Rb, Y) + c R(x,s)K(s,y)ds=O 
JD 

is called a resolvent of K(x, y) (in some cases 

- R(x, y) is taken as the resolvent). If a re- 
solvent of K(x, y) exists, the solution of (2) 

cari be given uniquely by (5). If a Neumann 
series converges uniformly, (4) gives a resolv- 

ent of K(x, y). 

If we apply a similar process to Volterra 
integral equations of the second kind, then we 

have the iterated kernels defïned by 

s 

x 

Ki+l(X,Y)= Ki(x, s)K(s, y)ds (i = 1,2, .), 
Y 

For these iterated kernels, a Neumann series 
defïned by (4) always converges uniformly. 

E. Fredholm’s Method 

Let D be a bounded closed domain and K(x, y) 
a continuous kernel. A Neumann series (4) 
converges uniformly and gives a resolvent if 

IK(x, y)1 or the region D is suficiently small, 
but otherwise it does not necessarily converge. 
E. 1. Fredholm [ 1,7] gave a method of con- 
structing a resolvent for the more general case. 
Write a kernel in the form X(x, y), and put 

K(x,>Y,) . K(x,,Y,) 
. . 

K(x,>Y,) KCLY,) 

Deiïne D(1) and D(x, y; A) by 

D(l) = 

and 

W, Y; 4 = K(x, Y) 

The series in these two equations both con- 
verge uniformly and hence defïne tentire func- 
tions of i. The functions D(A) and D(x, y; A) are 
called Fredholm’s determinant and Fredholm’s 
first minor of the kernel K(x, y), respectively. 

For small [Al, we have 

where the K,(x, y) are iterated kernels corre- 
sponding to K(x, y). Now if D(A) # 0, a resolv- 
ent ÂR(x, y; 1) of the kernel lK(x, y) cari be 
given by 

W, Y; 4 
-=R(x,y;Â). 

W 

If D(l) = 0, some extension of the method in 

this section is needed. Fredholm introduced 
for this purpose Fredholm’s rth minor 

D();:;;;;;;:I) 

defïned by 

D(;;‘,‘;::;;;+ 

SH K 
x ,,... >X,,SII...,S, 

X 1.. ds , . ..ds.. 
D D y,>...rYriSlr...rS” > 

F. Eigenvalue Problems and Fredholm’s 
Alternative Theorem 

Consider a homogeneous integral equation of 
the second kind 

<pW-1 K(x,YMY)~Y=O, 
s D 

(6) 

where D is a bounded closed domain and 

K(x, y) is continuous in D x D. When (6) has 
a nontrivial solution <p(x) for some A, then 1 
is called an eigenvalue corresponding to the 
kernel K(x, y), and the corresponding non- 
trivial solution p(x) is called an eigenfunction 
corresponding to the kernel K(x, y). If D(i) # 0, 

then (6) has no nontrivial solution, from which 
it follows that eigenvalues must be zero points 
of the entire function D(Â). For an arbitrary 
eigenvalue 1, there is a set of linearly inde- 
pendent eigenfunctions corresponding to 1, 

such that any eigenfunction corresponding to 
i cari be written as a linear combination of 
the eigenfunctions belonging to the set under 
consideration. Such a set of linearly indepen- 
dent eigenfunctions corresponding to an eigen- 
value J. is called a fundamental system corre- 
sponding to the eigenvalue A. The number of 
elements of the fundamental system is called 
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the index of the eigenvalue 1. The index of an 

eigenvalue is always tïnite. The homogeneous 
integral equation of the form 

40-Â ~(x,YM(x)dx=o J (6’) D 
is called an associated (or transposed) integral 

equation of (6). The associated equation has 
the same eigenvalues as the original equation; 
moreover, the index of a common eigenvalue is 
the same for both equations. For any eigen- 
value 1, the order of the zero point Â of the 

entire function D(I) is called the multiplicity of 
the eigenvalue À. If an eigenvalue I is a pole of 
R(x, y; A), then we have p + 12 r + q, where r is 
the order of the pole, p is the multiplicity of Â, 
and 4 is the index of i. In particular, if i is a 

simple pale of R(x, y, 1) we have p = 4, namely, 
the multiplicity is equal to the index. An exam- 
ple with this particular property is the integral 
equation with a symmetric kernel to be dis- 
cussed in Section G. For the set of eigenvalues 
there is no fïnite accumulation point even if 
there are intïnitely many eigenvalues. 

If 1 is not an eigenvalue, the inhomogeneous 
equation 

dx)-j. KkY)dY)dY=.f(x) J (7) 
D 

cari be solved uniquely for any continuous 

function f(x). In this case we have D(Â) # 
0, and the resolvent R(x, y; 1) of the kernel 
iK(x, y) exists. If i is an eigenvalue, we have 

D(I) = 0, and equation (7) has a solution if and 
only if 

for a11 solutions $(y) of (6’) (linearly indepen- 
dent solutions $(y) are finite in number). The 
last statement is called Fredholm’s alterna- 
tive theorem (- 68 Compact and Nuclear 

Operators). 
A kernel of the type 

K(X, y)' i xj(x> q(Y) 
j=l 

is called a separated kernel, degenerate kernel, 
or Pincherle-Goursat kernel. For such a kernel, 
we have D(Â)=det(bjk-AjiXj(t)Yk(t)dt), and 
hence we cari easily obtain eigenvalues and 
eigenfunctions. A nondegenerate kernel cari be 
studied using the results obtained for sepa- 
rated kernels, since we cari regard a kernel of 

the general form as the limit of a sequence of 
separated kernels. 

G. Symmetric Kernels 

A kernel K(x, y) is called a symmetric kernel 
if it is real and K(x,y)= K(y, x). Let D be a 
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bounded closed domain and K(x, y) be a con- 
tinuous symmetric kernel. In this case the as- 
sociated equation (6’) clearly coincides with the 

original equation (6) [.5,6,8]. 
Corresponding to any nontrivial symmetric 

kernel K(x, y), there exist at least one eigen- 

value and one eigenfunction. The eigenvalues 
are a11 real, and the eigenfunctions correspond- 
ing to distinct eigenvalues are mutually ortho- 
gonal. If we orthonormalize the eigenfunctions 
belonging to a11 fundamental systems and 
number them according to the order of in- 
creasing absolute values of the corresponding 
eigenvalues, then we have an orthonormal 
system {C~,(X)}, called a complete orthonormal 

system of fundamental functions or simply a 
complete orthogonal (or orthonormal) system. 
If we number the eigenvalues taking their 

multiplicities into account and according to 
the order of increasing absolute values, then 
we have the equahty 

33 1 x-=J J i:l 1.: D D 
K’(x,y)dxdy. 

Corresponding to an iterated kernel 
K,(x, y), we have the eigenvalues {Ây), and we 
cari choose the corresponding orthonormal 
system SO that it coincides with the one corre- 

sponding to K(x, y). Eigenvalues and eigen- 
functions corresponding to an iterated kernel 

cari be obtained in the following way: Put 
SD K,(s, s) ds = u,; then the following limit 
exists: 

lim LI&~~~+~ = Â2 < + ~7.3, 
n-cc 

which gives an eigenvalue of the iterated ker- 
ne1 K,(x, y). A function <p(x, y) detïned by 

(uniformly convergent) gives the correspond- 
ing eigenfunction <p(x, c) for any constant c 
satisfying cp(x, c) + 0. 

Let 2” be an eigenvalue corresponding to an 
iterated kernel K,(x, y) and <p(x) be a corre- 
sponding eigenfunction. Consider the func- 
tions$j(x)(j=O,l,...,n-l)definedby 

n-l 
‘/‘j(“)=4’(X)+k~l EkjÂk Kk(%Y)V(Y)dY 

J D 

(j=O,1,2 ,..., n-l), 

where E is one of the nth primitive roots of 1. 
The,r for at least one value ofj, sj1. is an eigen- 

value corresponding to the kernel K(x, y), and 
tij is a corresponding eigenfunction. This rela- 
tionship between eigenvalues and eigenfunc- 
tions corresponding to an iterated kernel and 
those corresponding to the original kernel is 

valid even for kernels that are not necessarily 
symmetric [2]. 
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Let a kernel K(“)(x, y) be detïned by 

K’“‘(x, y) = K(x, y)- c vi(xyyJ, 
i=l 1 

where the A, (i = 1,2, , n) are the eigenvalues 
corresponding to the kernel K(x,y) and the 
q+(x) (i = 1, ) n) are the corresponding ortho- 
normalized eigenfunctions. Then eigenvalues 
and eigenfunctions corresponding to K(“)(x, y) 
are those corresponding to K(x, y), with the 
exception of A,, , n, and cpi(x), .__, C~,(X). 

Let <p(x) be any function that satislïes 

JD(<p(x))‘dx= 1. Then the integral 

assumes the maximum value when <p(x) is an 
eigenfunction corresponding to K,(x, y) with 
the smallest eigenvalue 1:. Let the eigenvalues 
3,” of K(x, y) be numbered in order of increas- 
ing absolute values, SO that 11,1< l&,+i 1. Let 
q(x) be any function satisfying 

s $,(x)q(x)dx=O (i= 1,2, . ,n), 
D 

1 (<p(x))* dx = 1 
JO 
for given functions $Jx) (i = 1, , n). Then the 
maximum value of the integral J above is the 
least when the set of a11 linear combinations of 

{tjr(x), , $,(x)} coincides with the set of a11 
linear combinations of {C~,(X), , <p,(x)}, and 
in this case the maximum of J is attained by 
some eigenfunction <p(x) corresponding to 
K,(x, y) with the eigenvalue A:+i. The results 
in this paragraph show that we cari obtain 

eigenvalues by solving a variational problem 
concerning the integral J. 

H. Expansion Theorems 

Let K(x, y) be a continuous symmetric kernel 
and h(x) be a function square integrable on a 
bounded closed domain D. Then a function 

f(x) such that 

.f(x) = s K(x> YPWy D 
cari be expanded in the form 

f(x)= c vAA 
n=l 

where {cpi(x)} is a complete orthonormal sys- 
tem of fundamental functions corresponding 
to K(x, y) and 

c,= 
s 

f(x)<p,(x)dx (n= 1,2, . ..). 
D 

The series in the expansion of f(x) converges 
uniformly. These facts are the content of the 

Hilhert-Schmidt expansion theorem [S, 6,8]. By 
using this theorem, for a A that is not an eigen- 
value, we cari obtain a solution <p(x) of the 
Fredholm integral equation (7) with a sym- 
metric kernel in the form 

For m > 2, iterated kernels cari be expanded in 
the form 

K,(~, y)= f <pi(xj,,) 

i=l -I 

(uniformly convergent). If ÂR(x, y; A) is a re- 
solvent of a symmetric kernel AK(x, y), then 
R(x, y; A) cari be expanded as 

If a symmetric kernel K(x, y) satisftes the 
inequality 

SS K(x~.W.4d.ddxdy>O 
D D 

for a11 <p(x), it is called a positive (semidefinite) 
kernel. If in this inequality the equality holds 
only for <p(x) = 0, K(x, y) is called a positive 
definite kernel. For a positive defmite kernel, 

eigenvalues are a11 positive, and the kernel cari 
be expanded in the form 

K(x, y) = f  ‘i(x~(y’ 

i=l I 

(uniformly convergent). This result is called 
Mercer’s theorem. 

When a real continuous kernel K(x,y) is not 
symmetric, we consider two positive kernels 
R’(x, y) and I?“(x, y) delïned by 

r K(x,s)K(y,s)ds=I?‘(x,y) 
JO 

s K(s,x)K(s,y)ds=I?‘(x,y). 
D 

The eigenvalues corresponding to these ker- 
nels are the same, and they are a11 positive. Let 
1”; (i = 1,2, ) be these eigenvalues and {cpi(x)} 

and {$Jx)} be the corresponding complete 
orthonormal systems corresponding to l?’ and 
I?‘, respectively. Then we have 

4 K(Y~X)<pi(Y)dY=$i(Xh s D ii s K(X, Y)tii(Y)dY = <Pi(X). 
D 
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Let f(x) be an arbitrary function such that 

f(x)= 
s 

K(x, YMYVY, 
D 

where h(x) is a function square integrable on 
D. The function f(x) cari then be expanded in 
the form 

ftx) = i$ ci<pi(x)> 63) 

where 

ci= 
s 

f(x)<p,(x)dx (i=1,2, . ..). 
D 

The series in the expansion (8) converges 

uniformly. 
The Fredholm integral equation (1) of the 

tïrst kind with a general kernel (i.e., a kernel 
that is not necessarily symmetric) has a square 
integrable solution <p(x) if and only if f(x) has 
a uniformly convergent expansion (8) and 
Z&(ciiJ2 < +co. When this condition is 
satisfied, equation (1) has a solution given by 
Cz, c,A,<~,(x) that converges in the sense of 

tmean convergence. 
Tt should be noted that the theory concern- 

ing symmetric kernels cari be extended to 
complex-valued Hermitian kernels, i.e., kernels 

such that K(x, y) = K(y, x). Also, we cari obtain 
the theory in Section G and this section, con- 
cerning Fredholm integral equations with 
continuous kernels, by using the methods of 
functional analysis that treat jDK(x, y)cp(y)dy 

as a tcompact operator in the space of con- 
tinuous functions (- 68 Compact and Nuclear 
Operators). 

1. Kernels of Hilbert-Schmidt Type 

Kernels of Hilbert-Schmidt type are kernels 
which are square integrable in the sense of 
Lebesgue over D x D, where D is an arbitrary 
domain. Most of the results mentioned in the 
previous section concerning integral equations 

with kernels continuous on bounded domains 
are valid also for equations with kernels of 
Hilbert-Schmidt type, because every operator 
mentioned in the previous section is also a 

compact operator in the space concerned, i.e., 
the space L,(D) [6] (- 68 Compact and 
Nuclear Operators). 

J. Singular Kernels 

For general kernels that are not necessarily 
continuous, the theory described in the previ- 

ous sections does not apply properly, but 

when an iterated kernel K,(x, y) has a resolv- 

ent R,(x, y), we cari find a resolvent R(x, y) of 

K(x, y) in the form 

Nx, Y) = k71(x, Y) + wx, Y) 

+ 
s 

&,(x, .W,n(s, y)& 
D 

where H,(x, y) = CE;’ K’(x, y). When a kernel 
is of the form X(x, y), the relationship be- 
tween eigenvalues and eigenfunctions corre- 
sponding to an iterated kernel and those cor- 
responding to the original kernel, which was 
stated in Sections G and H, is still valid for 

general kernels. If a kernel K(x, y) is continu- 
ous for x #y and has a singularity of the form 
Ix-yl-* (O<X< 1) on x=y, the iterated ker- 

nels K,(x, y) are continuous provided that 
(1 - a)m à 1. tGreen’s functions of partial dif- 
ferential equations of elliptic type have this 
property. 

A kernel that is not square integrable is 
called a singular kernel. An integral equation 
whose domain of detïnition is unbounded or 
whose kernel is singular is called a singular 
integral equation [9]. Singular integral equa- 

tions have some particular properties that are 
not seen in ordinary integral equations, i.e., 

integral equations with kernels continuous in a 
bounded closed domain. For example [ 101, 
consider the identity 

i-l ZZZ 
J 

-g-.x+X 
2 a2+x2’ 

where a is an arbitrary real number. This 

equality shows that for the continuous kernel 
asinxy, 1 is an eigenvalue and a eëaX 
+ x/(a’ +x2) is a corresponding eigenfunction. 

Since a is arbitrary, the index of the eigenvalue 
1 is evidently infmity. As another example, 
observe the equality 

s UI 2 ,-lx-yle~iaydy=---e-‘““, 
-cc l+a2 

where a is an arbitrary real number. From this 
equality, we see that for the continuous kernel 
emlX-yI defined on (-CO, CO), and number Â = 
(1 + a’)/2 greater than or equal to 1/2 is an 
eigenvalue. In this example, the spectrum, i.e., 
the set of eigenvalues, is a continuum. Such a 

spectrum is called a continuous spectrum. 
In applications, an important role is played 

by integral equations with kernels of Carleman 
type: 

K(X> Y) = WL YMY -4, 

where G(x, y) is a bounded function. In inte- 

gral equations with such kernels, the integral 
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is taken in the sense of the KJauchy principal 
value [S, 9,11,12]. For example, the Riemann- 

Hilbert problem is the following: We are given 
a simple closed and smooth curve L in the 

complex plane and real-valued smooth func- 
tions a, b, and c defïned on L, a + ib never 

vanishing. The problem is to fïnd a function 
<p(z) which is holomorphic in the exterior of L, 
at most of polynomial growth at infinity, and 
continuous up to L with boundary value cp+ 
such that Re [(a + ib)<p’] = c on L. This prob- 
lem is reduced to that of fïnding a function p 
defmed on L satisfying an integral equation 

P(Z) - s Gk 0 LZ-iAi)d:=f(4 (~EL)> 
where G is a smooth kernel determined by 
a + ib, f is a known function depending on c, 
and the integral is taken in the sense of the 
Cauchy principal value. The integer K defïned 
by K = ( 1/7-c)sL d(arg(a - ib)) is called the in- 
dex of this problem. The full solution of the 
Riemann-Hilbert problem was given by 1. N. 

Vekua [ 111. 
A multidimensional analog of the Cauchy 

principal value is the singular integral of A. P. 
Calderon and A. Zygmund (- 251 Linear 
Operators). A smooth function k(x) detïned 
in R” except at x = 0 is called a kernel of 
Calderh-Zygmund type if k(x) is positively 
homogeneous of order -n and if its integral 
mean on the unit sphere is zero. Then the 
operator K deiïned by 

Kf(x) = lim 
s E-O lyi>E 

WYC-y)dy 

is called a Calderbn-Zygmund singular integral 
operator [13]. K is a bounded linear operator 
inLP(R”)ifl<p<+co.Ifn=landk(x)= 
l/(nix), K is nothing but the THilbert trans- 
formation. The pseudodifferential operator (- 
345 Pseudodifferential Operators) is an exten- 
sion in some sense of the singular integral 

operator. 

K. Systems of Integral Equations 

A system of Fredholm integral equations of 
the second kind cari always be reduced to a 
single equation. In fact, as is seen easily, a 
system of integral equations 

s 1 
<pi(x)-nC Kij(x, Y)Pj(Y)dY=.L(x) 

i 0 

(i=1,2,...,n) 

cari be reduced to a single equation 

s 

n 
Q(x) - 1 K(x,y)W)dy=F(x) (O<xan), 

0 

where 

O(x) = <pi(X -i+ l), F(x)=J(x-i+l), 

K(x,y)=K,(x-i+ l,y-j+ 1) 

(i-l<x,j-lgy<j;i,j=1,2 ,..., n). 

A system of Volterra integral equations of the 
second kind cari be reduced to a single equa- 
tion by eliminating the unknown functions 

successively. 

L. Integral Equations of Volterra Type 

Consider a Volterra integral equation of the 
lïrst kind 

s 
x K(x, YMY)~Y =fC4 
a 

such that K (x, x) # 0 and K,(x, y) and f’(x) are 
continuous. If we differentiate both sides of the 
equation, then we have a Volterra integral 
equation of the second kind: 

Abel’s integral equation of general form is 

s ;~dNy=î(x) C<cc<l). (9) 

If G, G,, and f’ are continuous and G(x, x) # 0, 
equation (9) cari be reduced to the equation 

s 

” 

s 

Y 

H(u,yMy)dy= f(x)(U-x)dl-ldx> 
0 0 

where 

s 

” 

H(u, Y) = 
WL Wx 

y (U-X)l-=(X-y)a’ 

Since H(u, u)=(n/sinctx)G(u, u)#O, it follows 
that 

du) + 
’ ~L(U> Y) 

s ’ 
o ,(UdyVy=d4> 

where 

g(u)=H(u,u)-‘; ‘f(x)(u-x).mldx 
s 0 

= H(u, u)-’ u”-‘f(0) 

+ 
s 

“(u-x).-‘f’(x)dx . 
0 > 

Clearly (9a) is a Volterra integral equation of 
the second kind. Abel% problem (- Section A) 
was to find the path of a falling body for a 

given time of descent. The problem then cari 
be reduced to the solution of equation (9) with 
G(x,y)=l and a=1/2. When G(x,y)=l, we 
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cari solve equation (9) explicitly to get 

M. Nonlinear Integral Equations 

When a nonlinear integral equation includes a 
parameter n, it may happen that the parameter 
has a bifurcation point, i.e., a value & such that 
the number of real solutions is changed when 

3, varies through & taking real values. For 
example, consider the equation 

s 

1 
<p(x)--1 ‘p2(Y)dY = 1. 

0 

This equation has real solutions <p(x) = (1 + 
-)/2n for i < 114 but no real solution 
for Â > 1/4. Hence /1, = 1/4 is a bifurcation 
point (- 286 Nonlinear Functional Analysis). 

Among nonlinear integral equations, Ham- 
merstein’s integral equation has been studied 

in detail [S, 143. It is an equation of the form 

<p(x)+ K(x,Ylf(Y>dY))dY=o. 
s 

(10) 
Ll 

If K(x, y) and f(y, 0) are square integrable and 
f(y, U) satisfies a tlipschitz condition in u with 
a suffciently small coefficient, then the inte- 
gral equation (10) cari be solved by successive 
approximations. If K(x, y) is a square inte- 
grable positive kernel and SD I~<(X, y)l’dy is 
bounded, then we cari prove the existence and 

uniqueness of a solution of (10) under a con- 
dition on f(y, u) weaker than a Lipschitz con- 

dition. We cari prove similar results for equa- 
tion (10) with a nonsymmetric kernel when 

K(x, y) is continuous in the mean, that is, 

l& IK(x’,Y)-K(x,Y)lZdY=O, 
s D 

lim 1K(x,y’)-K(~,y)1~dx=O. 
5 Y’? D 

A nonlinear Volterra integral equation of the 

form 

5 

x 
cp(4 =“m + F(x, Y; dY)VY 

a 

cari be solved by successive approximations 

if F(x, y; u) and f(x) are square integrable, 
F(x, y; u) satislïes a Lipschitz condition 
IF(x,y;u’)-F(x,y;u”)l<k(x,y)lu’-u”I with 
some square integrable function k(x, y), and 

j:F(x, y;f(y))dy is majorized by some square 
integrable function of x. When F(x, y; u) and 

f(x) are continuous, we cari obtain theorems 

on the existence and uniqueness of continuous 
solutions and tcomparison theorems similar to 

those for initial value problems in ordinary 

differential equations [ 163. 

N. Numerical Solution 

For the numerical solution of integral equa- 
tions, we assume throughout that the func- 
tions appearing are a11 continuous and the 

solution of every equation is unique. Methods 
of numerical solution cari be divided roughly 
into two classes. Methods of one class try 

to evaluate numerically the analytical solu- 
tion described in the preceding sections, and 
methods of the other try to obtain a solution 

by transforming the problem to one that is 
numerically solvable. 

(1) A Method Based on Numerical Quadra- 
ture. Consider the integral equation 

s 

b 
F(x>Y> cpW><p(~))d~=O. 

P 

Leta=x,<x,<...<x,=hbepointsonthe 
interval [a, b] and <pI, (p2, . , rp, be the values 
of<p(x)atx,,x,,..., x,. By the use of numer- 
ical quadrature, we then have the following 

system of equations in <pi: 

The method corresponds to that of solving 
ordinary differential equations by their dif- 
ference equation analogs. Hence the errors 
involved in the solutions obtained by this 
method cari be analyzed similarly to those in 
the case of numerical solution of ordinary 

differential equations (- 303 Numerical Solu- 
tion of Ordinary Differential Equations). If 
the given integral equation is a Fredholm 

equation of the second kind, then we have a 
system of linear equations in vi. If we apply 
quadrature formulas to the integral appearing 
in the integral equation by using the values of 
<pi obtained, then we have a formula by which 
the solution cari be evaluated directly, that is, 
without using an interpolation formula. 

(2) A Method Utilizing Recurrence Formulas. 

Let d, and d,(x, y) be the respective coefficients 
of A” in the expansions of Fredholm’s determi- 
nant D(1) and Fredholm’s first minor D(x, y; 1.). 

They satisfy the recurrence formulas 

b 
d,(x, Y) = d,K(x, Y) + 

s 
K(x, M-, b, Y)& 

Il 

d 
1 b 

n+, = -~ 
s n+l a 

Us, 4 ds, 

do= 1, 4,(x, Y) = K(x, Y). 

By the use of these formulas, we cari compute 
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d, and d,(x, y) successively and hence evalu- 
ate o(Â) and D(x, y; 1) approximately, and by 
means of these recurrence formulas we cari 
readily obtain a solution of a Fredholm equa- 
tion of the second kind. 

(3) A Method Utilizing Approximate Kernels. 
If we replace a kernel by an approximate one 

in a Fredholm integral equation of the second 
kind, then we have an integral equation that 
has a solution approximately equal to the 
solution of the original equation. Hence if we 
cari tïnd an approximate kernel for which 
an integral equation cari be solved numeri- 

cally or analytically, then we cari fïnd an ap- 
proximation to the desired solution by solving 
the moditïed equation. For such solutions, a 
method of error estimatjon was given by F. G. 

Tricomi [ 171. 

(4) An Iterative Method. Consider the integral 
equation 

s 

b 
<p(x)= F(x>Y> C~(X), dy))dy. 

L? 

Let <p,(x) be an adequate function, and defïne 
<p,(x) successively by 

R,+,(X)= ‘F(x,Y,Y)n(x)>~n(L.))dy. 
î a 

If the sequence {(P,,(X)} converges, then the 
limit lim,,, C~,(X) = <p(x) is a solution of the 

given equation, and hence we cari obtain an 
approximation to a solution by calculating 

<p,(x) for some tïnite n. This method cari be 
used effectively for Fredholm integral equa- 

tions of the second kind with a parameter 
A, provided that the absolute value of i is 
smaller than the least absolute value of the 
eigenvalues. 

(5) Variational Method. If some conditions are 
fullïlled, an integral equation of the form 

s 

b 

G(x> <p(x)) + @>Y, <p(x)> dy))dy=O 
n 

cari be regarded as an tEuler-Lagrange equa- 
tion for a variational problem 

b b 

J[u]= 
SS 

E(x>~,u(xXu(~)Vxdy 
LI a 

s 

b 

+ H(x,u(x))dx=extremal. (11) 
a 

In this case, we cari fïnd a solution of the given 

integral equation numerically by solving the 
variational problem (11) numerically [ 1 S]. 

(6) Enskog’s Method. Suppose that {Q,,(X)} is 
a complete orthonormal system for the Fred- 

832 

holm integral equation (7). If we put $“(x) = 

C~,(X) - i.fiK(y, x)<p,(~)dy, then from (7) we 
have 

s 

b 

s 

b 

<pbWnbVx = f(xMxW> (12) 
cl 0 

and furthermore we see that {$,(x)} cari be 
orthonormalized to yield a complete ortho- 

normal system {X”(X)~. The equality (12) then 
shows that the Fourier coeftïcienls of a solu- 
tion <p(x) with respect to the system {x,(x)} 
cari be obtained readily from the Fourier 
coefficients of f(x) with respect to the system 
(C~,(X)}. This method of obtaining a solution is 
called Enskog’s method. 

For Volterra integral equations, methods (1) 
and (4) cari be used effectively. We usually 

transform equations of the fïrst kind into 
equations of the second kind by differentiation 
and then apply the above numerical methods. 
This is done for the sake of securing stability 
of the numerical methods. 
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A. General Remarks 

Integral geometry, in the broad sense, is the 
branch of geometry concerned with integrals 
on manifolds, but the problems considered in 
integral geometry are usually of a more limited 
nature. If a +Lie group G acts on a tdifferenti- 
able manifold M as a +Lie transformation 
group, G also acts on various figures on M, 
by which we mean geometric abjects such as 
tsubmanifolds of M, ttangent r-frame bundles 

on M, etc. Let B be a set of such figures on M 
invariant under G (i.e., gFE 8 for g E G, FE 9). 
Consider the following problems: (i) to know 
whether any G-invariant tmeasure p on 9 
exists, and how to determine p if it exists; (ii) to 
find the integral Sq(F)dp(F) of functions cp on 
F with respect to the measure p. 

The term integral geometry was introduced 

by W. Blaschke, who considered the special 
case of problem (ii) in which <p(F) is a function 
representing geometric properties of F and the 
integral is to be evaluated by means of the 

geometric invariants concerning F[l]. Prob- 
lems of so-called geometric probability (such 
as the problem of Buffun’s needle) belong to 
this category. The measure p is called the 
kinetic measure (or kinetic density), and ~,u(F) 
is also denoted by dF. If F has the structure of 

an n-dimensional differentiable manifold and 
the measure p is given by a +Volume element w  

(i.e., a positive tdifferential form of degree n), 
we denote w  also by dF. Problem (i) is simple: 

If G acts ttransitively on Y, then B = G/H, 
where H is the tisotropy subgroup of G. In 

this case 9 has the structure of a differentiable 
manifold, and if a G-invariant +(Radon) mea- 
sure exists, it is unique up to a multiplicative 
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constant. A condition for the existence of a G- 
invariant measure p cari be given by means of 
+Haar measures of G and H (- 225 Invariant 
Measures). We now consider some examples. 

B. Crofton’s Formula 

Let G(p, 0) be a straight line defined by the 

equation x1 COS 0 + x2 sin 0 = p with respect to 
orthogonal coordinates in a Euclidean plane. 
Let n(p, 0) be the number of intersections of 

G(p, 0) with a curve C of length L. Then we 
have Crofton’s formula, 

s n( p, 0) dp dO = 2L, (1) 

where dpd0 is the texterior product of the 

differential forms dp, d0 of degree 1, and the 
integral is extended over p E ( -CC~, CO) and 

OE [O, 271). 

C. Poincaré% Formula and the Principal 

Formula of Integral Geometry 

The kinetic density dF of a figure F congruent 
(with the same orientation) to a fixed figure in 
a Euclidean plane is defined as follows: Let R 

be an orthogonal frame attached to F, (x1, x2) 
be the coordinates of the origin of R with 
respect to a fixed orthogonal frame R,, and 
0 be the angle between the iïrst axis of R and 

the first axis of R,. If we put dF = dx, dx, dB 
(exterior product), dF has the following in- 
variante properties: (i) dF is not changed by 
displacements of F; (ii) dF is not changed if 
instead of R we take another orthogonal 
frame R’ attached to F. 

Let two plane curves C, , C, of length L,, 
L,, respectively, be given, and suppose that C, 
is tïxed and C, is mobile. If the number of 
intersections of C, in an arbitrary position 
with C, is tïnite and equal to n, then the in- 
tegral of n extended over all possible positions 

of C, is given by 

î ndC,=4L,L, 

(Poincaré% formula). L. A. Santalo applied this 
result to give a solution of the tisoperimetric 

problem (1936). 
Let Ci, C, be two plane +Jordan curves of 

length L,, L,, respectively, and let Si, S, be 
the areas of the domains bounded by C,, C,, 
respectively. Suppose that C, is fixed and C, 

mobile, and let x be the number of connected 
domains common to the domains bounded by 
C,, C, for C, in an arbitrary position. Then 

the integral of x extended over ail possible 
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positions of C, intersecting Ci is given by 

s XdC,=L,L,+2?T(S,+S,) (3) 

(Blaschke Cl]). This is the principal formula of 
integral geometry. Many formulas cari be 

derived from it as special cases or limiting 
cases. 

D. Generalization to Dimension n 

The kinetic density of subspaces of dimension 
k in a Euclidean space and in a spherical space 
of dimension n was given by Blaschke, while 

the generalization of the principal formula 
(3) to a Euclidean space of dimension n was 
given by S. S. Chern, applying the methods of 

E. Cartan. 
Let (e, , , e,) be a positively oriented ortho- 

normal frame with vertex A. The inlïnitesimal 
relative displacements are then given by 

dA= E mie,, de,= i wijej, 
i=1 j=l 

where wi = (dA, e,), wij = (de,, e,) = - wji are 
differential forms of degree 1 in the orthogonal 
coordinates of A and the n(n - 1)/2 variables 

that determine e,, , e,. For various posi- 
tions of a figure, we take an orthogonal frame 
(A, e,, , e,) tïxed to this figure and form the 
texterior product 

I i<j 

of a11 the wi and 0, (i <j). This has the invar- 
iance properties (i) and (ii) of Section C and 

is, by defmition, the kinetic density of the fig- 
ure in an n-dimensional Euclidean space. 
Moreover, the kinetic density of dE of k- 

dimensional subspaces E cari be obtained by 
considering the orthogonal frames such that 

the vertex A and e, , , ek lie on E and by 
forming the exterior product of the corre- 
spondingw,,w,,(a=l,..., k;L=k+l,..., n), 

dE = Aw&o,~. 

Let Z be a compact orientable hypersurface 
of class C2 in an n-dimensional Euclidean 

space, and let k, (U = 1, , n - 1) be the tprin- 
cipal curvatures at a point on C. Denote by Si 
the telementary symmetric form of degree i in 
k,(i=l ,..., n-l),andputS,=l.Thencon- 
sider the integrals over Z: 

Mi=[zSidS/(n;l), i=O,l,...,n-1, (4) 

where dS denotes the surface element of Z. Let 
D,, D, be the domains bounded by two com- 

pact orientable hypersurfaces C, , Z, of class 
C2 with volume k’, , V2, respectively, and let 

MI’), A4i2’ be the integrals Mi defined by (4) for 
C, , .X2. If C, is fixed, Z2 is mobile, and the 
+Euler-Poincaré characteristic x of D, n D, is 

lïnite, then the generalization of (3) has the 
form 

s 
XdC,=I ,... I,-, M;?,Vz+M;?,V, 

(Cher& formula), where dC2 is the kinetic 
densityofC,andI,(k=l,...,n-l)isthearea 

of the unit sphere in a Euclidean space of 
dimension k+ 1, with the integral extended 
over a11 positions of C2 intersecting C, 

Let dE be the kinetic density of the sub- 
spaces E of dimension k intersecting a com- 
pact orientable hypersurface C of class C2, and 
let x be the Euler characteristic of the intersec- 
tion of E with the domain bounded by Z. The 
integral j x dE extended over all hyperplanes of 
dimension k intersecting Z is proportional to 

Mk relative to the hypersurface Z defmed by 
(4). This fact generalizes (1). Further generali- 
zations were obtained by Chern (1966). 

E. Other Generalizations 

For 2-dimensional spaces of constant curva- 
ture, Santalo derived formulas analogous to 
those in a Euclidean plane (194221943) and 
thus solved the isoperimetric problem in these 
spaces. In 1952, he derived a formula corre- 

sponding to (5) in n-dimensional spaces of * 
constant curvature, following Chern’s method. 
He investigated further integral geometry in 
affine, projective, and Hermitian spaces. 

Chern and others obtained the results of the 

previous sections by Cartan’s method of gen- 
eral moving frames and studied integral geom- 
etry in the setting of the geometry of Lie 
transformation groups in the sense of F. Klein 
(- 137 Erlangen Program). 

Chern, P. Griffiths, and others studied the 
value distribution theory of holomorphic 

mappings in several complex variables from 
the point of view of integral geometry (1961) 

(- 21 Analytic Functions of Several Complex 
Variables, 124 Distribution of Values of Func- 

tions of a Complex Variable). 

F. Radon Transforms 

Another important topic of integral geome- 
try is the theory of Radon transforms. Let 9 
be the set of hyperplanes <(w,p)={x~R”I(x,w) 
= p} in the Euclidean space R”, where w  = 

(a,, ,A,) is a unit vector, (x, w) = C x,1.,, and 
p is real. For a function f defined in R”, detïne 
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where LErx is the +Volume element on the 
hyperplane 5 such that drx A C Ai dxi= dx, with 
dx the volume element of R”. Then f is called 

the Radon transform of ,f: For example, if f is 
the tcharacteristic function of a bounded 
domain V, the value f(t) of the Radon trans- 

form ,f of f at 5 ~9 is the volume of the sec- 
tion of V by 5. Now the group G of tmotions 
of R” (the tconnected component of the iden- 
tity of the group of isometries) acts on .F tran- 

sitively. For every XER”, the tisotropy sub- 
group G, of G with respect to x acts transi- 

tively on the set k = { 5 E 9 1 x E t}. Since G, is 
compact, there exists a unique normalized G,- 
invariant measure p on X such that PL(X) = 1. 
For a function g on 8, the conjugate Radon 
transform d cari now be defïned by 

as a function on R”. 
The determination of 8 belongs to problem 

(ii) of integral geometry mentioned in Section 
A. In particular, it is important to determine 
9 = (,f)” for y =f^ and to fïnd the relation be- 

tween (f)” and f: These problems were solved 
by J. Radon for n = 2,3 and by F. John in the 
general case. The results cari be formulated as 
follows: 

In the case of odd n, let Y’ be the space of 
trapidly decreasing C”-functions (- 168 
Function Spaces). Let Y*(p) be the set of 

g(w,p)EY(F) such that ~Tmg(~~,p)pkdp=O for 
every natural number k and every w. For every 

fi 9’(R”) and every g E Y’*(F), we then have 

where A is the tlaplacian in R” and Lg(w, p) 
=d2g(w,p)/dp2, c=T(n/2)-‘(27~i)‘~“~~“‘~. 

In the case of even n, for every fc,Y(R”), 

gEy*m, 

where 

f(y)lx-A-‘“4 

JAd(w>p)= ghdlp-ql-“dq. s R 

These integrals are in general divergent, and 
they must be interpreted as regularizations 
defined by analytic continuation with respect 

to the powers of Ix-y1 or Ip-q1 [9]. 
John applied the Radon transform on R” to 

the study of partial differential equations in R” 
with constant coefficients [SI. 
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A formula corresponding to +Plancherel’s 
theorem and an analog of the +Paley-Wiener 
theorem for the Fourier transform are valid 
for the Radon transform (1. M. Gel’fand et al. 

CW. 

G. Horospheres 

The theory of the Radon transform is also 
important in noncompact tsymmetric Rie- 
mannian spaces M. The connected component 
G of the identity in the group of isometries of 
M is isomorphic to the tadjoint group Ad G 
and cari be considered as a linear group. Maxi- 
mal tunipotent subgroups of G are conjugate 
to each other. If N is such a subgroup, we cal1 
the +orbits on A4 of gNg-’ horospheres on M 

for g E G. These correspond to the hyperplanes 
in R”. If M is the complex Upper half-plane 
with the thyperbolic non-Euclidean metric, 

the horospheres are precisely the circles tan- 
gent to the real axis and the straight lines 
parallel to the real axis. 

The group G acts transitively on the set 
.F of horospheres on M, and we have F = 
G/M, N. Here G = KAN is an +Iwasawa de- 
composition of G, and Mo is the tcentralizer 
of A in K. For a horosphere CE$-, let drx be 
the volume element on 5 with respect to the 

+Riemannian metric on 5 induced by the Rie- 
mannian metric on M, and detïne the Radon 
transform f of a function 1 on M by (6) as a 

function on 8. For every XE M, there exists a 
unique normalized measure on X = { 5 E 8 ( 
XE <} invariant under the (compact) isotropy 
subgroup G, of G at x (p(X)= 1). The conju- 
gate Radon transform .4 of a function g on 9 
is defined by formula (7) by means of this 
measure p. Then there exists an integrodif- 
ferential operator A such that if A* is the 
adjoint operator, we have the inversion for- 
mula f=(AA*f)- and Plancherel’s theorem: 

where dx, d< are G-invariant measures on M, 
g, respectively, and ,f is an arbitrary C”- 
function with compact support. If the +Cartan 
subgroups of G are conjugate to each other, f, 
is a differential operator; the inversion formula 
cari then be written in the form f=L((f^)‘) 
with some differential operator L on M [9]. 

S. Helgason applied the Radon transform 
on noncompact symmetric Riemannian spaces 
to solve differential equations on these spaces 
(1973). 

Horospheres and Radon transforms cari be 
defined not only for symmetric Riemannian 
spaces G/K, but also for various thomoge- 
neous spaces G/H of noncompact semisimple 



218 H 

Integral Geometry 

Lie groups G. The Radon transform ,j-,f 
maps a function f on C/H into a function on 

the space of horospheres on C/H. If a tunitary 
representation U of G is realized in a function 
space over C/H, the Radon transform ,/-,f 
helps to clarify the properties of U by going 
over to the function space on .g. In several 
examples, Gel’fand, Helgason, and others have 
by this method decomposed U explicitly into 
direct integrals of irreducible representations 

C6,7,9,101. 
Further work on the Radon transform on 

tsymmetric Riemannian spaces (e.g., compact 

symmetric Riemannian spaces of rank one and 
+Grassmann manifolds) has been done by 
Helgason and others (1965). A generalization 
of Radon transforms to differential forms has 
also been given by Gel’fand and others (1969). 

H. Another Generalization 

Integral geometry cari also be investigated 
in spaces admitting no displacement. Let 
F(x,, x2, y,, y2) be positive and homoge- 
neous of degree 1 with respect to y,, y,, and 
consider a tstationary curve of the integral 

JF(x,,x,,dx,/dt,dx,/dt)dt. Let pi=3F/3yi 

(yi = dxJdt) along this curve. Poincaré found 
that for a 2-parameter set of stationary curves, 
dx, dp, +dx, dp, is not changed by any dis- 
placement of the line element (xi, pi) along a 
stationary curve. Blaschke took this as the 
kinetic density of the stationary curve and 
proved a formula containing formula (1) as a 
special case. On the other hand, Santalo intro- 

duced kinetic density for sets of geodesics on 
2-dimensional surfaces and proved a generali- 
zation of formula (2). The study has been fur- 
ther extended to tfoliated manifolds. Some 
uniqueness theorems for various integral geo- 
metric problems with applications to the study 
of the earth’s interna1 structure from seismo- 
logical data have been given by V. G. Roma- 
nov [ 1 l]. 
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A. Poincaré% Integral Invariants 

Let us view a system of differential equations 

dxJdt =X,(x,, ,x”, t) (i= 1,2, , n) as defin- 
ing the motion of a point whose coordinates 
are (x1, , x,,) in the n-dimensional space R” at 
time t. Let K be a p-dimensional manifold 
(1 d p Q n) in R”, and let K, be the set occupied 
at the instant t by the points which occupy K 

for t = 0. If the integral 

where dw is the +Volume element of K,, does 
not depend on t for any p-dimensional surface 

K, then s F(x, , , x,, t) dw is called an integral 

invariant of degree p of the original system of 
differential equations. (The tdifferential form 
Fdw is also called an integral invariant.) In 
particular, a necessary and suftïcient condi- 
tion for an integral 1 M(x, t)dx, . dx, to be 
an integral invariant of degree n is aM/& + 
C:=i a( MX,)/ax, = 0. Furthermore, a neces- 

sary and sufficient condition for an integral 
@=, .( )d t b M, x, t xI 0 e an integral invariant 

of degree 1 is i?M,/& +Z& ((aMi/8xj)Xj + 

(aXi/axj)Mj) = 0. If the integral(l) does not 
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depend on t for any closed p-dimensional 
surface K, then s F(x,, . , x,, t) dw is called a 
relative integral invariant of degree p (1 < p < 

n - 1). Corresponding to this terminology, an 
integral invariant is sometimes called an ab- 
solute integral invariant. 

If a differential form 0 is a relative integral 
invariant of degree p, then its exterior differ- 
ential dO is an absolute integral invariant of 
degree p + 1. 

For a Hamiltonian system 

dpi Jdt = - ÛHIaq,, dqJdt = “H/OP, (2) 

(i=l,...,n,H=H(~,q,t),p=(p,,...,p,),q= 
(q 1 , , q,)), the 1 -form 

0~2 Pihi (3) 

is a relative integral invariant. The integral of 
w  on a closed curve 4 C>1 pi dq, plays a role in 
classical quantum theory. 

The absolute integral invariant Q =dw = 

CE1 dpi A dq, has, as a differential 2-form on 
Rzm, the properties: 

Q is a closed form, that is, dCl= 0. (4) 

Let 5 be a Rangent vector (at any 
point). If Q(<, II) = 0 for any tangent 

vector 9 (at the same point), then c =O. (5) 

Also, for a Hamiltonian system (2), s 
Jdp, dp,dq, dq, is an integral invariant. 
In other words, a 2m-dimensional figure in 
(p,, , p,, ql, , q,)-space may change its 
form according to the motion of points, but its 
volume remains unaltered (Liouville’s theo- 

rem). This fact is of importance in applica- 
tions to tstatistical mechanics. 

Poincaré developed the theory of integral 
invariants and applied the theory to the tthree- 
body problem and the problem of tstability 

Ul. 

B. Cartan’s Extension 

Poincaré treated the position (x1, , x,) and 
the time t separately. E. Cartan extended 

Poincaré’s theory by unifying the treatment of 
position and time. 

We may consider the solution curves of a 
Hamiltonian system (2) through all points of a 
closed curve C in (2m + 1)-dimensional space 

(p, y, t) together with the tube consisting of 
these solution curves. For any closed curve 
C, lying on and enclosing the tube, we have 
~cC~,p,dqi-Hdt=~,,C~,pidqi-Hdt,and 
CF1 pi dq, - H dt is called Cartan’s relative 
integral invariant. If the curve C lies on t = 

constant, then sw is a relative integral invar- 
iant, in Poincaré’s terminology. 

219 Ref. 
Integral Invariants 

The exterior differential of this form d(w - 
H dt) = R - dH A dt has the property: 

Let (p(t), q(t), t) be a solution curve for 

(2). For the velocity vector [, = (j(t), 
4(t), 1) and any vector l2 in (p, q, t) 
space, we have (Q-dHr,dt)([,,[,)=O. (*) 

Therefore the integral of the 2-form over a 
tube consisting of solution curves equals 0. 
Applying this to the tube enclosed by C and 

C,, we have the former equality. 
(*) also implies that a solution of (2) is de- 

rived from the tvariational problem of lïnding 

the extremal of the functional 

ci 
IF ‘u 

jzl Pj(t)4j(t)-H(P(t), q(L), t)ldt 

for the curves (p(t), q(t), t) (t. Q t < tl) satisfying 

q(ti)=qi (i=O, 1) for given t,, t,, q” and q1 
(without any condition for p = p(t)). 

If H is given by the +Legendre transforma- 
tion H=Cz,p,q,-(T- U), where T= T(q,q) 
is a kinetic energy, U = U(q) is a potential, and 
pi = aT/&ji, this variational problem considers 
a wider class of curves than THamilton’s prin- 
ciple 6j(T- U)dt=O (because there are no 
restrictions on p(t)). However both variational 
problems give the same extremal [3]. 

The vector t = (P(t), Q(t)) is reconstructed by 
means of R and dH as follows. Put <, =({, 1) 

and c2 =(q, 0) (q is a vector in (p, q) space) in 
(*), then 

Cl((, q) = -dH. 11 for any q. (6) 

Such a t is uniquely determined by virtue of 

(5). 

C. Symplectic Structure 

Let M be a 2m-dimensional differentiable 

manifold. A differential form s2 of degree 2 on 
M is called a symplectic structure if it satisfies 
(4) and (5). And then (M, Q) is called a symplec- 
tic manifold. 

For H: MG+R, we define the vector fïeld 5 
over M by (6) (at each point x E M and 4 E 
T,M). H is called a Hamiltonian function 
(independent of t) and < is called a Hamil- 
tonian vector tïeld. 

In this case, we also have an argument 

similar to that for the case of the usual Hamil- 
tonian systems in Euclidian space. For exam- 
pie, H is invariant along the flow generated 
by the vector field t, and 0 is an integral 
invariant. 
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A. General Remarks 

Given (real- or complex-valued) functions f(y) 
and K(x, y) such that their product is tinte- 
grable as a function of y in the interval [a, b], 
we set 

s 

b 

Y(X) = K(X,Y)f(YYY. (1) 
Y 

This transformation off to g is called the inte- 
gral transform with the kernel K(x, y). Now fix 
the kernel K(x, y). When the correspondence 
f-g given by (1) from a set of functions f 
to a set of functions g is bijective, we cari con- 
sider the inverse transform g-J The for- 
mula that describes the inverse transform g-f 

in terms of an integral transform is called the 
inversion formula. The kernel K(x, y) cari often 

be written as k(x-y), k(xy), etc., where k(t) 
is an integrable function. Table 1 contains 
integral transforms that are important in 
applications. 

Table 1 

Kernel Interval Name 

e iXY 

COS xy 

sinxy 

e-xv 

Gi JAXY) 
1 /(x -Y) 
x.!-I 

lx +Y)-O 
e -(X?v? 

(-w,w) 
(O,w) 

(Qw) 

Fourier transform 
Fourier cosine 
transform 
Fourier sine 
transform 
Laplace transform 

Hankel transform 
Hilbert transform 
Mellin transform 
Stieltjes transform 

Gauss transform 

In the Hankel transform, J, is the +Bessel 
function. In the Hilbert transform, the tprin- 

cipal value is to be taken in the integral. In the 
Stieltjes transform, p is assumed positive. 

Since the explanations for the Fourier trans- 
form and Laplace transform are given in the 
corresponding articles, we deal here only with 

generalized Fourier, Hilbert, Mellin, and 

Stieltjes transforms. 

B. Generalized Fourier Transform 

Suppose that the kernels of the transform (1) 
and its inverse transform are both of the form 
k(xy). Hence 

f(x) = 
s 

b 4vMy)dy. (2) 
ll 

In this case, we cal1 the integral transform (1) 
the generalized Fourier transform of symmetric 
type or the Watson transform, and k(t) the 
Fourier kernel of (2). The functions & COS t, 
& sin t, and &,(t) defïned in the interval 
(0,oo) are examples of such Fourier kernels (- 
160 Fourier Transform). The last kernel gives 
rise to the Hankel transform. 

Let k(x) and I(x) be Fourier kernels. Then 

the integral transform m(y) of l(x) with respect 
to the kernel k(xy) is called the resultant of k 
and 1. The resultant of two Fourier kernels is 
also a Fourier kernel. 

Suppose that a function K( 1/2 + it) satisfies 

K(1/2+it)K(1/2-it)= 1, llY(1/2+it)l= 1. 

Then the function k(t) = K( 1/2 + it)/( 1/2 - it) 
belongs to L,( -CO, co). We set 

k,(x)=~l.i.m. s T 
27l T-m 

k(t)x-“‘=“dt 
-T 

(the limit is taken in the +mean convergence of 
order 2). Then for a function f(x)~&(O, co), 

exists almost everywhere, and g(x)E&(O, CO). 

In this case, we have the inversion formula 

f(t)=; 
s 

Oo k,(xM4$ 
0 

and the Parseval identity 

Srl'(l(l)))dt=~~(g(x))'dx. 

If a function f(x) is invariant under a gen- 
eralized Fourier transform, then f(x) is called 
a self-reciprocal function. Such a function f(x) 
is a solution of the homogeneous integral 
equation 

f(y)= kWf(x)dx. 
s 

b 

LI 

The function x-l/’ is an example of a func- 
tion that is self-reciprocal with respect to the 
Fourier cosine transform. Using a function 
that is self-reciprocal with respect to the Han- 
kel transform, we cari derive the lattice-point 
formula of number theory: Let r(n) be the 

number of possible ways in which a nonnega- 
tive integer n cari be represented as the sum of 
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two square numbers. Set 

P(x)= 1’ r(n)-71X, 
04ns.x 

where z’ means that if x is an integer, we 
take r(n)/2 instead of r(n). Then f(x) = x m3’2. 
(P(x2/2x) -1) is self-reciprocal with respect to 
the Hankel transform with v = 2. Utilizing 
this, G. H. Hardy proved (1925) 

P(x) = Jx f cl1 (2,&). 
n=1 Jts 

A. Z. Wallïsz (1926) and A. Oppenheim (1927) 
generahzed this formula and obtained a for- 
mula concerning the number of ways in which 
n cari be represented as the sum of p square 
numbers (- 242 Lattice-Point Problems). 

C. Mellin Transform 

IffWx km1 EL~(~, co), then 

F(s) = 
s 

Oo f(x)xs-1 dx, s = k + it, 
0 

is called the Mellin transform off: If f(x) is of 
tbounded variation in a neighborhood of x, 
then the inversion formula 

.f(x+O)+f(x-o)=~,im k+iTF(S)X-‘ds 
2 27ll I‘-cc s k-iT 

holds. If ,f(x)xk~“‘EL,(O, CO), the integral 
j;llaf(x)xs-’ dx (s = k + if) +Converges in the 
mean of order 2 to a function F(s) for a lïxed k 

and -cc <t < CO, and the Parseval identity 

s 
Oo ~f(x)~‘X2k~Ldx=~ 

1 
; jF(k+it)[‘dt 

0 02 

holds. F(s) is also called the Mellin transform 
of f(x). If f(x)xk-“2 , ~(x)x’~~-~~L,(O, CO), and 
F(s), C(s) are the Mellin transforms of f(x), 
g(x), respectively, then 

s 
mf.(x)y(x)dx=; 

0 s 
yim F(s)G(l -s)ds. 

k Ico 

The theory of the Mellin transform in the 
function space L, is analogous to the theory of 
the Fourier transform [ 1, ch. 41. 

D. Stieltjes Transform 

For a function a(t) of bounded variation, 

f(s)= ~ s m da(t) 

o (s+t)P p’“, 

is called the Stieltjes transform of a(t). Usually 
we assume that p = 1. If the Laplace transform 
is applied twice in succession to a(t), we obtain 

formally the Stieltjes transform of a(t). The 
Stieltjes transform has been studied systemati- 

cally in connection with the theory of the 

Laplace transform by D. V. Widder, R. P. 
Boas, and others. 

Assume that p = 1. Let D be the domain 
obtained from the complex plane by removing 
the negative part of the real axis. If the Stieltjes 
transform converges at a point s = s. E D, then 
it converges uniformly on any compact set in 
D. The inversion formula is 

Jiyo& I(f(-a-iv)-f(-o+iq))do 
s 0 

=(a(t+O)+a(t-0)-(a(+O)+a(-0)))/2, 

t>o. 

If a(t)=&<p(u)du and cp(t&O) exist, then 

=(<p(t+O)+q(t-0))/2, t>o. 

E. Hilbert Transform 

Let q(z)= U(x,y)+iV(x,y)(z=x+iy) be 
holomorphic in the Upper half-plane and f(x) 

= LJ(x, 0), g(x) = - V(x, 0) be the respective 
boundary values on the real axis. Then if L 

gEL,(-Q m3), 

,f(X)= -;p.v. m y&, 
s -02 

(3) 

(4) 

Here P.V. means Cauchy’s +Principal value, 

that is, 

P.V. 
s 

=~I:‘il:~(t)dt +~~(t)dt,. 

We cal1 g the Hilbert transform off: If f6 
L2( -CO, CO), the inversion formula and the 
Parseval identity hold. More precisely, for any 
fi L2( -co, co), relations (3) and (4) above hold 
almost everywhere, gE L2( -CO, CO), and the 

L,-norms of ,f and y are identical (- 160 
Fourier Transform). The importance of Hilbert 
transforms lies in the fact that they establish 

relations between the real and imaginary parts 
of an analytic function (- 132 Elementary 
Particles C). 
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A. General Remarks 

The class of Riemann integrable functions is 
not closed under limits and intïnite sums. For 
example, the function equal to 1 for rationals 
and to 0 for irrationals, the so-called Dirichlet 
function, is not Riemann integrable, though it 

is expressed by lim,,, lim,,,(cos(m! nx))‘“. 
Hence the concept of Riemann integral is too 

narrow to be used effectively in modern anal- 
ysis. TO tope with this difficulty, H. Lebesgue 
[l] introduced a general integral which is now 
called the Lebesgue integral. It is not only 
defined for a11 useful functions appearing in 
analysis but also has nice properties, such as 

exchangeability with limits and intïnite sums 
under some simple conditions which cari be 
checked easily. The definition of the Lebesgue 
integral is based on the concept of Lebesgue 
measure (- 270 Measure Theory F), which is 
a generalization of length, area, or volume. In 
modern analysis one discusses integrals in an 

abstract space endowed with a measure and 
defines the Lebesgue integral as a special case. 
Integration theory plays a basic role in mod- 
ern mathematics, in particular in analysis, 
functional analysis, and probability theory. 

Let f(x) be a bounded function defïned on a 
bounded interval [a, h]. f(x) is tRiemann inte- 
grable if and only if it is continuous +almost 
everywhere with respect to the Lebesgue mea- 
sure. If ,f(x) is Riemann integrable on [a, b], 

then f(x) is Lebesgue integrable on [a, h] and 
the integrals coincide with each other. How- 
ever, the improper Riemann integral is not 
included in the Lebesgue integral; for example, 
(sinx)/x is not Lebesgue integrable on (0, co), 
but lim,,, jt(sin x)/x dx = n/2. The theory of 
Denjoy integral gives insight into this situation 

(- 100 Denjoy Integrals). 

B. Definition of Integrals 

Let X be an arbitrary set. If a tcompletely 
additive class B of subsets of X and a tmea- 
sure p defmed on b are given, then we say 
that a tmeasure space (X, 8, p) is delïned. For 

example, the Euclidean space R”, the class W, 
of a11 tlebesgue measurable sets in R”, and 
the +Lebesgue measure m, on ‘JJI, form the 
measure space (R”, !III,,, m,) (- 270 Measure 
Theory). We consider only d-measurable sets 
and ‘%measurable functions in this article, SO 
a B-measurable set Will be called simply a 
set and a ‘%measurable function simply a 
function. We admit fco for the values of a 
function. 

The integral J,J(x) dp(x) on a set E c X of a 

real-valued function f(x) (we Write simply 
JE,fdp or JEf) cari be defmed in steps as fol- 

10~s. (1) Let f(x) > 0 be a simple function, that 
is, a function whose range is a tïnite set {ai} 
(i=1,2,...,n).If,f(x)=a,forx~E,,whereE= 

!.= 

J’,E,,E,flE,=@(j#k),thenweputj,f= 
,+Oujp(Ej). (The value of the integral is a 

real number or tco. For operations concern- 
ing $Ico, - 270 Measure Theory D.) (2) For 
an arbitrary f(x) > 0, we define JEf as the 

tsupremum of JEgr where the supremum is 
taken for all simple functions g such that 
O<g<f: (3) In general, letting f(x)=f+(x)- 
f-(x), wheref+(x)=max{f(x),O},f-(x)= 
max{ -f(x),O}, we defïne JEf=JESt -lEfm 
if at least one of J”J+ and jEJm is tïnite and 
say that f has an integral (or a p-integral) on E. 
In particular, if JEf is fïnite, then we say .f is 
integrable (or p-integrable) on E. 

If the given measure space is (R”, !IX,, m,), 

the integral detïned in this section is called the 
Lebesgue integral (or simply L-integral), and 
the function that is integrable in this case is 
said to be Lebesgue integrable. The integral is 
often written as JJ(x)dx, and if E is the inter- 
val [a, h], as J,bf(x)dx. 

C. Properties of Integrals 

(1) The set of a11 functions integrable on E 
forms a tlinear space over R, that is, if ,f and 
g are integrable on E, then for any real CI, fi, 
ctf + fig is also, and 

(2) The integrability of J of both ,f’ and f -, 
and of 1 f 1 are mutually equivalent. (3) If g <,f 
on E, then jEg d jEf: In particular, if m < 

.f(x)<r on E, then mp@)<~,fdpcdp(E). (4) 
If ,f(x) is integrdble on E (has an integral on 
E), then it is integrable (has an integral) on 
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every subset of E. (5) If E= IJg, E,, Ejn E, = 

@ (j # k), and jEfdp exists, then the series 
Zz, iE,f& converges and is equal to SEfdp 
(complete additivity of the integral). (6) If f(x) > 
0 and jEfdp = 0, then f(x) = 0 talmost every- 
where on E. (7) Modification of the values 
of f(x) on a tnull set influences neither the 
integrability nor the value of the integral. 

Consequently, if the function f is not delïned 
on a nu11 set, we cari define the value off on 
this set arbitrarily SO that the integral has 
meaning. (8) If f(x) is integrable on E, E r> E,, 
and pc(&)+0, then lim,,, sE,fdp = 0. (9) If 

f,(x)~f.+~(x) on E, and there exists a <p(x) 
such that f.(x)> C~(X) and JE cp > -cc (for 
example, if f.(x) > 0), then 

(10) If lim,,, f,(x) exists almost everywhere on 
E, and there exists a C~(X) such that If.(x)1 < 
<p(x) and jE~ < +cc (for example, if p(E)< cc 

and If.(x)1 < M), then 

(Lebesgue’s convergence theorem). (11) If there 
exists a <p(x) such that f.(x) 2 <p(x) on E and 

s E<p > -CO, then 

(Fatou’s theorem). (12) If f,(x) > 0 on E, then 

jECzl f, = Czl jEfn. Iff,(x) is real on E, then 
this equality holds for 1 f.1 in place of fn. If the 
common value is lïnite, then the equality 
holds also for the original fn. (13) Let cp be 
a mapping from (X, 8, p) to (X’, 8’, p’) such 
that B’ E 23’ implies <p -’ (B’) E 23 and p’(B’) = 
PC(<~ ml (B’)). If ,f(x’) is 23’-measurable on E’ E 23’, 

then ~E~f(x’)d~‘(x’)=J<p+~E~f(dx))44x), where 
the equality means that if one of these inte- 
grals exists, then SO does the other, and they 
have the same value. 

D. Indefinite Integrals 

If we put F(e) =Je f for each measurable subset 
e of E, with f(x) integrable on E, F(e) is a tp- 
absolutely continuous completely additive +Set 
function (properties of integrals (4), (5), (8)). We 
ca11 F(e) the indelïnite integral of f(x). In the 
special case where X is the set R of real num- 
bers and f(x) is integrable on the interval 
[a, b], the function F(x) = lt f (t) dt defined for 

XE [a, b] is also called the indelïnite integral of 
f(x). The F(x) SO defïned is an tabsolutely 

continuous function. Conversely, if a function 

F(x) is absolutely continuous on [a, b], then it 

is differentiable almost everywhere on [a, b], 
and we have F(x)-F(a)=jtF’(t)dt. (For the 
relationship between differentiation and in- 
tegration in the case of R”, or more generally 
in the case of an arbitrary measure space, - 
380 Set Functions.) 

E. Fubini’s Theorem 

Let (X,B,,pL1) and (y,%,,~~) be two a-lïnite 
measure spaces and (X x Y, 8, PL) be their 
+direct product measure space. Assume that 

f(x, y) is 8-measurable and integrable (has an 
integral) on X x Y. Then for almost a11 lïxed 
y~ Y, f(x, y) considered as a function of x is 

23,-measurable and integrable (has an inte- 
gral), and sxf(x, y)dp, (x) is a b,-measurable 

function of y. Moreover, in this case we have 

r f (x> Y) dAxa Y) 
Jxxr 

ZZZ 

(Fubini’s theorem). This fact also holds with x 
and y exchanged. The integral on the left-hand 
side of this equation is called a multiple inte- 
gral, while that on the right-hand side is called 
an iterated (or repeated) integral. 

Even if an iterated integral exists, the corre- 
sponding multiple integral need not always 

exist. For example, let f (x, y) be defined as 
(x2 - y2)/(x2 + y2)’ on (0, 1) x (0, l), and other- 
wise 0. Then lR2 f + = JR2 f - = CO, SO that JR2 f 

does not exist, but 

~;m(j.;mf(x,-)dx)dy= -;; 

S:.(S_l/(x,y)dy)dx=~. 
By Fubini’s theorem, if f is a nonnegative 

function defïned on a 2%measurable subset 
of a cr-fïnite measure space (X, 23, PL), the %- 
measurability off is equivalent to the measur- 

ability of the ordinate set Es = {(x, y) 10 d y < 
f(x), x E E} considered as a subset of the mea- 
sure space (X x R, 8’, p’), which is the direct 

product of (X, 23, PL) and (R, W,, ml). In this 
case we have JE fdp = p’(E,-), which cari serve as 
a defïnition of the Lebesgue integral. When 

(X, 23, PL) coincides with (R, W, , mi), the tJor- 
dan measure (area) of the ordinate set coin- 
cides with the Riemann integral. 
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A. General Remarks 

A tfunctional equation involving an operator 
T of the form 

f(~,x’t~),xt~),tTx)(~))=o, t,Gtdt,, (1) 

x@o) = x0> (4 

reduces to a tdifferential equation, tdifferential- 
difference equation, tintegral equation, inte- 
grodifferential equation, or other functional 
equation when the operator T is given a spe- 

cial form [ 1,6]. In particular, by letting 

fk x, Y> 4 = x - gk Y) -z, (3) 

UW)= 
s 

<p(f) 
KO, s, x(s)w% (4) 

‘0 

we obtain an integrodifferential equation 

x’(t) = sts x(t)) + 
s 

<p(f) 
K(t, s, x(s))ds. (5) 

to 

If cp(t)=constant or q(t)-t, (5) is said to be an 
integrodifferential equation of Fredholm type 
or of Volterra type, respectively. 

B. The Initial Value Prohlem 

Let 1 be an interval t, < t < t,, I, the interval 
t, < t < t,, C(I) a set of continuous functions 

on I, T an operator such that TXE C(I,) if XE 
C(I), 5 a family of ail such T, 8+ a subset of 
5 consisting of ail. T in 5 for which TX < Ty 

holds at t = s whenever x, y are functions in 
C(I) satisfying x(t) < y(t) for t, < t <s for some 

S~I,, and Z a set of continuous functions 
which are differentiable on 1,. Let M be the 
class of a11 functions f(t, x, y, z) defined for t E 

jo, 1x1, Iyl, IzI<co andsatisfyingf(t,x,,y,z,)~ 

f(Lxz>Y>z,)tx, 2X,,Z,~%). 
Suppose that in (1) f(t, x, y, z) is defined for 

tel,, 1x1, (~1, IzI< CO, and TE~. Suppose fur- 
ther that for some y > 0 and two solutions x1 

842 

and x2 of (1) with (2) belonging to Z, there 
always exist a function w  E M and an operator 

RE s+ such that the inequality 

w(t,x;-x;,x,-x,,Q(x,-x,))<O 

holds for everyTEIO such that x,(i)-xl(t)=y 
and xl(t)-x,(t)<y for toc t<K Furthermore, 

suppose that there exists a function peZ satis- 
fying the following inequalities: 

O<P<Y, tElo; 

4 P’, P> QP) > 0, tElo; 

p(t,+O)~x,(t,+O)-x,(to+O). 

Then equation (1) with (2) has at most one 
solution XEZ. This result cari be established 
by obtaining an estimate for the difference 
[xl(t)-x,(t)l, where xi(t) is a solution of (1) 
with the condition x(t,) = vi (i= 1,2). 

For the particular case of integrodifferential 

equations of Fredholm type, suppose that the 
following conditions are satisfïed: 

g(t,Y1)-.4(t,Y,)~~(t)(Y,-Y,), tel,; 

s 
’ (KO >s> wl(s))-Ktc s, w,(s))W 

fa 

<N(t) 
5 

’ Mts)(w,ts)-w,(s))& tel; 
‘0 

s 

* 
sM(s)ds< co, tElo; 

‘0 

N(t)+ tL(t)< 1 + PM@), tel,; 

where Y, >Y,, LECU~), wl, w2, M, NEC(I), 
w 1 > w2, M > 0, and N > 0. Then it is possible 
to obtain more practical expressions for w, R, 

and p: 

w(t, x, y, z) = x - L(t)y - N(t)z, tElo> 

s 

f 
RC!/= MWWs, 

10 

5 
f p(t) = fit( 1 + tjexp S(I +s)M(s)ds, 

1” 

where [j > 0 is sufflciently small. 

C. Another Problem 

A problem analogous,to the tboundary value 
or teigenvalue problems of linear ordinary 
differential equations is to fïnd a solution of 
the linear integrodifferential equation 

(pu’)‘-qu+1 pus 
( s 

k(x,y)u(y)dy =0 
G > 

with the boundary value u =O. This equation 

cari be derived from the problem of minimiz- 

ing the functional D[<PI under the condition 
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that H [<p] is constant, where 

Dl<pl=~~~~“dx+~~~ll’dx, 

HC<pl = 
s 

d dx 
G 

+ SS k(x>yMx)d.Wx&. 
G G 

The orthogonality condition for this boundary 
value problem is given by 

s 
Pui(X)uj(x)dx 

G 

+ SS k(x,Y)ui(x)uj(Y)dxdY= 
1, i=j 

G G 0, i#j 

Pl. 
Integrodifferential equations are closely 

related to problems of mathematical physics 

and engineering, and there are many investi- 
gations of such equations in the study of the 
equilibrium of rotating fluids [3], Prandtl’s 
integrodifferential equation for aircraft wings 
in 3-dimensional space [4], the dynamics of 
reactors, and SO on. In the second example, the 
circulation of the airflow F(y) with constant 
velocity V around the profile is determined by 
the equation 

U(Y) = 
I-(Y) 1 

zk(y)t(y)V+~pPV’ 

called Prandtl’s integrodifferential equation, 
where b is the wingspan, y and y’ are variables 
whose range is [ - b/2, b/2] (y is assumed 
tïxed), t the length of the chord, GL an angle of 
incidence from the point with buoyancy 0,2rk 
the slope of the curve defined from buoyancy 
by the angle of incidence, and P.V. Xauchy’s 
principal value. 

As a problem having applications in the 

theory of tstochastic processes, the existence of 
solutions that have tïnite limits as t+ CO has 

been investigated for the Wiener-Hopf integro- 
differential equation 

kj (D + W(x) = 1.1 .A 
s 

co J-(x + t) dH(t), 
0 

x 2 0, D = d/dx. (6) 

For this problem, by means of the method of 

tsemigroups of operators, equation (6) cari be 
extended to 

where A is the tinfinitesimal generator of a 

semigroup of operators { 7;}, and it has been 

shown that analogous results to those for (6) 
cari be obtained for this more general equation 

c51. 
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A. Lagrange Interpolation 

Assume that the values of a function f(x) with 
some regularity property (e.g., differentiability 
up to a certain order) are given at each of n + 1 
distinct values x0, xi, ,x,. The method of 

fïnding the values f(x) at x #xi by using the 

valuesfo=f(xo),fi=f(xl),...,f.=f(xn)is 
called interpolation. A function L(x) that ap- 

proximates f(x) and coincides with f(x) at x = 
x0, xi, ,x, is called an interpolation function 
or interpolation formula. 

We usually use a polynomial of degree n as 
L(x). Such a polynomial is called a Lagrange 
interpolation polynomial, and the method of 
using such a polynomial is called Lagrange 
interpolation. If we let 

Ii(X) = 
wd 

(x-xi)17yxi)’ 
n(x) = fi (x -xi), 

i=O 

the Lagrange interpolation polynomial cari 
then be expressed in the form 

L(x)= i &(X)L. 
i=O 
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I,(x) is a polynomial of degree n and is called 
the Lagrange interpolation coefficient. Some- 
times, by interpolation we mean the method of 

fmding f(x) for x lying between the maximum 
and the minimum of xi. When x is located 

elsewhere, such a method is called extrapola- 
tion. The Lagrange interpolation polynomial 
is uniquely determined, and if f(x) is (n + l)- 
times differentiable, the deviation of L(x) from 
f(x) is given by f(““)(<)D(x)/(n + l)!, where 5 
lies between the maximum and the minimum 

OfX,Xe,X1 )..., x,. Conversely, the method of 
finding an approximate value of x satisfying 
f(x)=f for a given value off using L(x) is 
called inverse interpolation. 

Suppose that we restrict the interval of 
interpolation to [ -1, l] and require that the 
points of interpolation xi be spaced equally, 

xi=2i/n-1, i=O,l,..., n.Then,ifthenumber 
of points n + 1 is increased, the Lagrange inter- 
polation polynomial L(x) may not converge to 
f(x) even if f(x) is an analytic function of x on 
[ -1, 11. For example, this nonconvergence 

phenomenon is observed when f(x) = 1/(25 + 
x2) is interpolated; this is called the Runge 
phenomenon. On the other hand, if we choose 
the zeros of the tchebyshev polynomial of 
degree n + 1 as xi, i.e., if we take xi = COS { (2i + 
1)x/2@ + l)}, i = 0, 1, , n, which is called 
Chehyshev interpolation, then L(x) converges 
uniformly to f(x) as II + 1 tends to inlïnity, 
provided that f(x) has a bounded derivative 
on [ -1, 11. 

B. Iterated Interpolation 

We cari compute the value of the interpolation 
polynomial for given x by generating a se- 
quence of interpolants each of which involves 
one more point than the previous one. The 
following method is called the Aitken interpo- 
lation scheme. First we compute 

’ 
i=1,2 ).../ n, 

Table 1 

and then successively 

1 f0L.k XI<-X 

1 Ol...ki- 

xi-xk IOl...k-,i xi-x 
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i=k+ 1, . . ..n. 

If we continue successive evaluation of I,, , 
1 o, 2, until the successive values coincide 
within the desired accuracy, then we cari ac- 

cept the converged value loi...” as an approxi- 
mate value of the Lagrange interpolation 
polynomial L(x) of degree n at x. In this case 
the xi are not necessarily assumed to be ar- 
ranged in monotonie order. It is better to ar- 
range them in order of their distance from x 
rather than in ascending or descending order 
of magnitude. 

C. Interpolation hy Finite Differences 

When the interpolation points are equally 
spaced, the values of the interpolation poly- 
nomial cari be expressed in terms of finite 

differences. Suppose that for xi = x0 + ih, where 
h is the grid size, the values fo,fi, . . ,f, of the 
function f(x) are known. The differences Afi = 
L+, -fi are then called (fmite) differences of 
lïrst order. Furthermore, we define the dif- 
ferences of order k + 1 inductively by Ak+iL = 

Akfi+l -A”L. If we use the shift operator E 
defined by EL =A+i, the difference operator is 
represented as A = E - 1. Sometimes the back- 

ward difference V = 1 -E ml is used. In contrast 
to V, the operator A is called the forward dif- 
ference. The central difference 6 = E’/’ -Em”’ 

which is delïned by I&,,~ =A-fi-, is also 
used. Table 1 shows the relations between 
the lïnite differences and the differentiation 
operator D detïned by D~(X) = df(x)/dx. 

Table 2, in which each entry after the second 
column is the difference of the two entries 
lying immediately to its left is called the dif- 
ference table. From the relation A=VE or A = 
6E’j2 we cari express each entry of table 2 in 
terms of V or S. For example, in the second 

E A 8 V hD 

E E l+A I+$f& 
1 

1-v 
ehD 

A E-l A ôp+: 
V 

1-v 
ehD-1 

6 E’/2-E-l/2 A 

(1 +A)1’2 
s 

V 

(1 - v)“2 
2sinh(hD/2) 

V l-E-* 
A 

l+A 
8p-q V l-$5 

hD IogE log( 1 + A) 2arcsinh(S/2) - log( 1 - V) hD 
E’/Z+,ï-‘/2 

P 
l+A/2 l-V/2 

2 (1 +A)“’ 
(1+ S2/4)‘/2 

(1-v)“2 
cosh(hD/2) 
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Table 2. Difference Table 

f-2 
Af-2 

f-l A2f-2 

Af-1 A3f-2 

fo A2f-1 A4f-2 

40 A3f-1 

fi A’fo 
Afi 

f2 

column, Afk is equal to Vfk+l and hfk+l,2. If 

f(x) is a polynomial of degree k, then Af (x) is 
a polynomial of degree k - 1, A”f (x) is a con- 
stant, and A”“f(x) is zero. Therefore, looking 
at the difference table, we cari fmd the degree 
of an interpolation polynomial that cari satis- 
factorily approximate f(x). It should also be 
noted that, if the computation of each entry of 
the table is carried out with a fïnite number 

of significant figures, the error in the values 
fo, fi, . , f, is multiplied by binomial coeffl- 
cients corresponding to the location in the 
difference table. 

The following are interpolation formulas 

for which the difference table is used. Suppose 
that we want to interpolate the value f, at 
x = x0 + ph. Then from f, = I?f, = (1 + A)"fo, 
we have Newton% forward interpolation 

formula: 

+P(P-l)(P-2) 

3! 
A3fo+.... 

Similarly, from f, = F’f, = (1 - V) mPfo, we have 

Newton’s backward interpolation formula: 

+P(Pf l)(p+4 

3! 
V”fo + . 

We get these formulas by starting at f. and 

proceeding downward to the right or upward 
to the right. On the other hand, by proceeding 
in a zigzag manner, downward to the right, 

then upward to the right, then again down- 
ward to the right, etc., we get another formula, 
called Gauss’s forward interpolation formula: 

+(P+l)P(P-1)A3f‘ + 

3! 
1 . . . 

Similarly, we have Gauss’s backward interpola- 
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tion formula: 

+(P+l)P(P-1)A3f‘ +,,, 

3! 
2 

In addition to these formulas, there are several 
by Everett, Bessel, Stirling, and others, which 
are essentially equivalent to the Lagrange 
interpolation polynomial that uses the same 
tabular points, although the representations 

are different. 

D. Interpolation by Divided Differences 

For points located at unequal intervals, the 
values of the interpolation polynomials cari 
also be expressed in terms of divided differ- 

ences, defïned successively as 

f:.-.‘;-f” 
‘I 

J, =k.h 
xi-xj’ vk xi-XI< ““. 

The divided difference of order k defïned as 
above cari be expressed as 

,folLk=i~og$ U(x) = fi (x -xi). 
L i=O 

The Lagrange interpolation polynomial of 
degree n is 

Ux)=fo+(x-x,)fo, +(x-x0)(x-xAfo12 

+...+(x-xO)(x-xl)...(x-x”~l)fO,...”r 

with the error given by 

where f012,,,nx means that the divided dif- 
ference of first order is calculated from x and 
f(x) instead of from xj and jj. 

E. Hermite Interpolation 

The polynomial H(x) of degree 2n + 1 that 
satislïes not only H(x) = f (x) but also H’(x) = 

f’(x) at x =x,,, x1, . , x, is called the Hermite 
interpolation polynomial. The Hermite inter- 

polation polynomial is 

where Ii(x) is the Lagrange interpolation coef- 
ficient. The deviation of H(x) from f(x) is given 
by f(x)-H(~)=f(~“)(~)I7~(~)/(2n)!, where < lies 

between the maximum and the minimum of 

X,XO,Xl,...,X,. 
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F. Spline Interpolation 

Let the interval (-CO, co) be divided into n + 1 
subintervals not necessarily of equal length by 
nknotsx,=-m<x,<x,<...<x,<x,+,= 
CO. A function S(x) which coincides with a 

polynomial of degree at most m on each sub- 
interval (xi, x~+~), i = 1,2, . . . , n, and has con- 

tinuous derivatives up to order m - 1 at each 
knot is called a spline, i.e., a spline S(x) is a 
Cm-’ function. If S(xJ =f(xJ, i = 0, 1,2, . , n, 

then S(x) is an interpolation function. Inter- 
polation by means of a spline is called spline 
interpolation. The term “spline” derives from 
the name of an instrument with which drafts- 
men fair a curve through points. 

If a spline coincides with a polynomial of 
degree 2k - 1 on each subinterval and with a 
polynomial of degree k - 1 on (-CO, x,] and 

[x,, CO), it is called a natural spline. If the data 
y; is given at each knot xi, i= 1,2,. . . , n, and 
also an integer k not larger than n is given, 
then the spline S(x) of degree 2k - 1 that satis- 
fies S(xi) = yi, i = 1,2, . . , n, is uniquely deter- 
mined. The spline that is most frequently used 
in practical problems is the natural cubic 
spline (k = 2). 

Let f(x) be an arbitrary function of Ck (k $ 

n) satisfying f(xi) =yi at each knot xi, i = 1,2, 

“‘2 n. Then in any interval [a, b] which in- 

cludes x1, x1, ,x,, 

s 

h 
[Sk’(X)12dX< “[f’“‘(x)]‘dx 

a s <I 

holds, where S(x) is the natural spline of degree 
2k - 1 that satisfïes S(x,) = yi, i = 1,2, . , n. This 
inequality is called the minimum norm prop- 

erty, and, in particular, the minimum curva- 
turc property when k = 2, of the natural spline. 

G. Polynomial Interpolation on Triangles 

Polynomial interpolation on a triangular 
region is used in the finite element method. The 

complete polynomial of degree m, 

m 

I<+v=0 

cari be used as an interpolation polynomial on 
a triangular region. The number of the coef- 

ficients apy is (m + l)(m + 2)/2. On the other 
hand, if we divide each side of the triangle 
into m equal parts and join the points of sub- 
division by lines parallel to the sides of the 
triangle, then we have m* congruent small 

triangles the number of whose vertices is (m + 

l)(m + 2)/2. Therefore if we choose these ver- 
tices as the points of interpolation, we cari 

determine the coefficients a,,” uniquely from 
the data given at these points. This is the La- 
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grange interpolation polynomial of degree m 

on a triangle. 
The interpolation polynomial P,(x, y) of 

degree m = 1 that is uniquely determined from 
the data ul, u2, u3 given at the vertices (x1, y,), 
(x2, y& (x3, y& respectively, cari be expressed 

as 

p,(x,Y)=~l51(x,Y)+~252(x,Y)+~~53(x,Y), 

where 

(i, j, k) is any cyclic permutation of (1,2,3), and 
the absolute value of S is equal to the area of 
the triangle. &(x, y) is a polynomial of degree 1 
satisfying 

1, j=i, 
5itxj>Yj)= o jzi 

L > 

and is called the shape function of degree 1 on 
the triangle. 

If we choose the vertices together with the 

midpoints of the sides as the points of inter- 
polation, we cari determine the six coefficients 

upV of the interpolation polynomial P2(x, y) of 
degree 2 uniquely, and the polynomial cari be 
written as 

'2tx>Y)= C uiSjz'(x,.V), 

i=l 

where $‘), i= 1,2,. . . ,6, are the shape func- 
tions of degree 2 on the triangle; these cari be 
expressed in terms of the shape functions of 
degree 1 as follows: 

<i”(x, y) = &(2& - 1), i = 1,2,3, 

~~2’(x,~)=4~,iE2, ~&2’=4t2t3r 56’=45351. 

The Lagrange interpolation polynomial 

P,(x, y) given above is defïned locally on each 
triangle in the finite element method, and the 
function over the whole triangular network is 

constructed by connecting these Lagrange 
interpolation polynomials. This piecewise 
polynomial function of degree m over the 
whole network is evidently of class CO, and 
has no continuity of derivatives of higher order 
in general. A Cl-function, for example, cari 
be obtained from the complete polynomial 
P,(x, y) by determining the 21 coefficients 
from the values and the derivatives up to 
order 2 at the vertices and the normal deriva- 
tives at the midpoints of the sides. Alterna- 

tively, we cari impose three conditions SO that 
the normal derivative reduces to a cubic 
along each side instead of imposing that it 
coincide with specified data at the midpoint; 
then we obtain another Cl-function. A variety 
of interpolation functions are known for 
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other elementary regions, such as rectangles 

or tetrahedra. 
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224 (XII.1 1) 
Interpolation of Operators 

A. General Remarks 

In 1926 M. Riesz proved that if T is a bounded 
linear operator L,O(R)+L,O(R’) with norm N,, 
and L,,(R)-+L,JQ’) with norm N,, 1 <pO, 
pl, qO, 4, < CO, simultaneously, then it is a 
bounded linear operator L,@- L&A’) with 
norm Q N,j -‘Nf whenever 

l/P=(1-QYP,+~/P,, (1) 

l/~=(1-w%+~lq,~ (2) 

for 0 < 0 < 1, provided that q >p. In 1939 G. 0. 
Thorin removed the restriction q > p by devis- 

ing a proof based on function theory (Riesz- 
Thorin theorem). Meanwhile, J. Marcinkie- 
wicz (1939) announced that the boundedness 
of T: L,(R)+ L,(U) holds for a quasihnear 
operator T under weak type assumptions (- 
Section E (2)). 

From 1959 to 1964, J.-L. Lions, A. P. Cal- 

deron, J. Peetre, and others extended these 
results to linear operators from a couple of 
Banach spaces to another couple. The inter- 

polation methods provide a powerful and 
often essential tool in various fields of mathe- 

matical analysis where estimates of operators 
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play a central role, such as harmonie analysis 

[4,8,9], numerical analysis, approximation 
theory [7], and the theory of partial differen- 

tial equations [2]. 
A compatible couple is a pair {X0, Xi} of 

Banach spaces (or more general topological 

hnear spaces) that are continuously embedded 
in a Hausdorff topological linear space. Let 
{Y,, Y,} be another compatible couple. A 
linear operator T: X0 + Xi + Y, + Y, is said to 

be continuous {X,, Xi) 4 { Ye, Yi} with norm 
(N,,N,}ifforeachI=O, 1, T:X,+xiscon- 
tinuous linear with norm Ni. 

An interpolation method is a tfunctor which 
assigns to each compatible couple {X0, Xi} of 

Banach spaces a Banach space X with X0 n 
X, c X c X,, +Xl such that every continuous 

linear operator T: {X0, Xi}-{ Y,, Y,} induces 
a continuous linear operator T: X-+ Y. X is 

called an interpolation space of {X0, Xi}. There 
are two important types of interpolation 

methods, the complex method (due to Cal- 
deron [S], S. G. Krein, Lions) and the real 
method (due to E. Gagliardo, Lions, Lions and 

Peetre [6], Peetre). These methods generalize 
the classical results of Riesz and Thorin and of 
Marcinkiewicz, respectively. 

B. The Complex Interpolation Method 

In this section {X0, Xi} is assumed to be a 
compatible couple of complex Banach spaces. 
Let F(X,,, Xi) be the Banach space of all 

bounded continuous functions f(c), < = i’ + in, 
on the strip 0 < [ < 1 with values in X0 +Xi, 
holomorphic in 0 < 5 < 1, and such that for 
each l= 0, 1, f(l+ iv) is a continuous and 
bounded Xi-valued function. ~~fllF(X,,X,i = 

max{w llf(~~)llx,~ sup IlfU +~V)II~,} is 
the norm. The complex interpolation space 
[X0, Xi],, 0 < 0 cc 1, is defined to be the Banach 
space of values f(6) of fc F(X,, Xi) with the 

norm ll~II~X,,X,l,=~~f~llfll,x,,,,~I~=f~~~~~ 
X0 n X, is dense in [X,,, Xi],. 

Let {X0, Xi} and {Y,, Y,} be two compatible 

couples, and let T:{X,,X,}-t{ Y,, Y,} be a 
bounded linear operator with norm {Ne, Ni}. 
Then T: [Xo,Xile+[ Y,, Y& is bounded linear 
with norm < N,‘-‘Nf (interpolation theorem). 

If a holomorphic family (T[}, 0 < Re [ < 1, of 
linear operators, acting in X0 + Xi into Y, + Yi, 
fulfills a certain boundedness requirement, 

then TO induces a bounded linear operator 

[Xo,X,]e-[Yo, Y,& (E. Stein Cg]). 

C. The Real Interpolation Method 

The method of this section applies also to 
compatible couples of tquasinormed spaces (P. 
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Krée (1967)). If {X0, X, } is a compatible couple 
of Banach spaces (resp. quasinormed spaces), 
then X0 n Xi and X0 + Xi are Banach spaces 

(resp. quasinormed spaces) under the norms 

J(~,x)=max{l/xllxo, Mx,} ad K(t,x)= 
inf{jlx,ll,o+tllx,~~.iJx=x,+x,}, respectively, 
for any t > 0. Denote by Lp, 0 < p < 03, the L,- 
space on (0, CO) relative to the measure dt/t. 

Then the real interpolation space (X0, X1),,,, 

O<Q<l, l~p~co(resp.O<p~co),isdefmed 
to be the Banach space (resp. quasinormed 

space) of all x E X0 + Xi such that t -‘K(t, x) E 

LP with the norm IIxII(~,.~,~~,~= llt-‘K(t, x)llLg 
(Peetre’s K-method). X0 n X, is dense in 

(X0, Xi),,, if p < co. The continuous embed- 

ding(X,,X,),,,=(X,,X,),,,holdsfor~~ 
q<co. 

If T:{X,,,X,}*{Y,, Y,} isa bounded 
linear operator with norm {N,, N,}, then 

T:(X,,X,),,,~(Y,,Y,),,,,O<~<~,P~~~,~~ 
bounded linear with norm < Ni-‘N,B (inter- 
polation theorem). 

The linearity or boundedness requirements 

of T cari be weakened considerably (Krée, T. 
Holmstedt, H. Komatsu (1981)). 

There are several equivalent definitions of 
the real interpolation spaces for compatible 
couples {X0, Xi} of Banach spaces. The J- 

methodgives(X,,X,)~,,,0<0<1, l<p<co, 
which is the space of means x=sS u(t)dt/t with 
the norm ~~XII (X,,X1~~,,=inf, llt-BJ(t,U(t))llLzr 
where u(t) are strongly measurable functions 
on (0, CO) with values in X,, n Xi such that 

t-“Jk~(t))~L~. (Xo,X,)~,p=(Xo,X,~,,, holds 
with equivalent norms. A discrete version of 
the J-method applies also to couples {X0,X,} 

of tquasi-Banach spaces. 

D. The Reiteration Theorem 

Let {X0, Xi} be a compatible couple of (quasi-) 
Banach spaces. A (quasi-) Banach space X 
is said to be of class K,(X,, X,), 0 < 0 < 1, 
if X0 n X, c X c X,, +X, with continuous 
embeddings and if there are constants C, 

and C, such that K(t,x)dC,tellxllx, XEX, 
and t”IIxIIX<CJJ(trx), x~X~flX,. The class 
K,(X,,X,) contains (X0,X,),,,, O<Q< 1, 
0 <p < CO, and, for Banach spaces X0, Xi, 

[X,, X,],. If Y, is of class K,(X,, Xi) and Ya 
of class Kp(XO,Xi) and if O<a<p< 1, then 

(L y,),,,=(xo~x,),,,,.,, O-cl< l,O<P< m, 
0(n) = (1 - Â)cc + 3$, with equivalent norms 
(reiteration theorem). 

Set z = [X0, X,], and Y0 = [X0, Xi], for 
Banach spaces X,, and Xi. If X0 fi Xi is 

dense in X0, Xi and Y, fl Ys, then [Y,, Y& = 

cxo, x&,,~ 0 < A.< 1, with equal norms (re- 
iteration theorem). 
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E. Exampies and Applications 

(1) Let L, = L,(R, p) be the L,-space on a o- 
lïnite measure space (Q p). Then [LPo, L,,], = 
LPe holds with equal norms for l/p, = (1 - B)/p, 

+B/p,, O<Q< 1, 1 <pO, p1 <CU. Hence follows 
the Riesz-Thorin theorem. In particular, the 

Fourier transform maps L,(R”), 1 < p d 2, 
continuously into L,.(R”), p’=p/(p- 1) (the 

Hausdorff-Young inequality). The convo- 
lution operator K*, K E L,(R”), 1~ r < CO, 
is bounded from L,(R”) into L,(R”) with norm 

< llKllL if p> 1, l/q= l/p+ l/r- 1 >O (Young% 
inequaliiy). 

For the +Hardy space H,(R”), [LJR”), 

H,W)l,=~,(W, llq=(l-4/p+O, l<p<co, 
0 < 0 < 1 (Stein and C. Fefferman). 

(2) Recall that the tlorentz space LcP,4j = 
L,,,,,(R, p), 0 < p, q < CO, is the tquasi-Banach 
space of a11 measurable functions f with 

llf Il (p,q)= IltliPf*(t)llLy< CO, where f*(t) is the 
+rearrangement of f(w), WE R. L(,,,, = L, and 
L (P.4) = L(P.rl forq<r.Ifl<p<co,l<q< 

~0, then Lcp,q) coincides with the Banach 

vace (L,, Lhlp,q under the equivalent norm 
llt”p-‘Sof*(s)dsll,~. More generally, ifO<p,, 

Pl<~,P,ZP,,O<~<1, l/P,=(1-@/P,+ 

~l~,,O<q,,q~,q~~,then(L~~~,~~),L~~~,~,))~.~ 
=L (pg,4j with equivalent norms. 

Let T be an operator which maps a space of 
measurable functions on (Q p) into another 

on (fi, $1. The inequality II Tfllcq, mj < NllfllL, 
holds if and only if ~‘{w’ER’I 1 Tf(w’)l >s} < 
(NllfllLn/s)q, s>O. Then T is said to be of weak 

type (P, 4). 
Suppose that T is quasiiinear, i.e., that T(f 

fg) is uniquely determined whenever Tf and 
Tg are defmed and that IT(f+g)(w’)l< 

K{ 1 T~(U’)/ + 1 Tg(w’)l} a.e. holds with a con- 
stant K independent off and g. The interpola- 

tion theorem then holds. Therefore, if a quasi- 
linear operator T is of weak type (po, q,,) and 

(~,,q,), qoZql, then Tis oftype (~~4, ix., 
T: L,(R)+ L,(R’) is bounded for p, q satisfying 

(1) (2), and q 2 p (Marcinkiewicz’s theorem). 
When p. #pi, the same conclusion is obtained 

if //~fI/~,,,,~~~~llfll~,~,,~~~ l=O, 1, for some rl 
(R. A. Hunt). 

The tHi1bert transform and the +Calderon- 

Zygmund singular integral operators are of 
weak type (1,1) and of type (2,2). Hence it 
follows from these facts together with dual- 

ity that they are of type (p, p) for 1 < p < CE 

C4,8,91. 
The convolution operator K *, K EL,, ,,(R”), 

l<r<co,isoftype(p,q)ifp>l, l/q=l/p+l/r 
- 1> 0 (R. O’Neil). In particular, the convolu- 

tion with ~XI~-“, 0 < c1< IZ, on R” is of type (p, q) 
for 1 < p < n/x and l/q = l/p - a/n (the Hardy- 

Littlewood-Soholev inequality). 
For the +Hardy spaces H,, = H,(R”) and the 
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+John-Nirenberg space BM0 = BMO(R”), 

L,~H,j)o,q=(B~O~ Hp,)e,,=Hq and 
(H,,~,HI,)B.PD=HP8ifO<~<1,0<~o,~1<~3, 
l/q=O/p, and l/p,=(l-I))/p,+t)/p, (S. Igari, 
N. Rivière, Y. Sagher, Fefferman, R. Hanks). 

A +Besov space B&(R) is understood most 
naturally as the real interpolation space 

w,m &Yws,m,q of the Lebesgue space L,(R) 

and the Sobolev space B$m(Q) [2,3]. 
(3) Let A be a closed linear operator in a 

Banach space X such that the resolvent (t + 
A)-’ exists for t>O and satislïes ilt(t+ A)-‘11 d 
M. If D(A”) denotes the domain of the inte- 
gral mth power A” of A equipped with the 
graph norm, then D;(A)=(X, LI(A”)),,,,,, 
0 CO cm, 1 <p < CU, coincides with the space 
ofxeX such that lIt”(A(t+A)~‘)mxJl,~LP 
and is independent of m. If -A generates an 
+equicontinuous semigroup 7; of class (CO) 
(resp. a tholomorphic semigroup 7; bounded 
on a sector), then D;(A) consists also of ah 

XEX such that I~~-“(I-~;)“xII.EL$ (resp. 
11 t ma+mAm7;x 11 x~,!$). There are similar charac- 
terizations of elements in (X, f’ D(AT’))e,, for 
a commutative family {A,, , Ak) of such 
operators (Lions and Peetre, P. Grisvard, 
P. L. Butzer and H. Berens, Komatsu, T. 

Muramatu). 
When A = -A or Ai = 0/0x, in R” or in a 

suitable domain R in R”, these results give 
various equivalent characterizations of the 
functions in Besov spaces BiJQ). The Sobolev 
embedding theorem for Besov spaces cari also 
be proved from this point of view (Grisvard, 

Peetre, A. Yoshikawa, Komatsu). 
The space D;(A) is closely connected with 

the domains D(AN) of tfractional powers A” 
of A. DP(A)cD(A”)cDz(A), a=Rea>O. If 
O<Re/j’<o, then D;(A)={xED(A~)IA~xE 

D~-R”p(A)}. If the pure imaginary powers Aiq 
are locally uniformly bounded, then D(A”) = 

CX,D(A”)lR,,,,,O<Re~<m. 

F. Duality 

Suppose that {X0, Xi} is a compatible couple 

of Banach spaces such that X0 n X, is dense 
both in X0 and in X, Denote the dual of X by 
X’. If one of X0 and X, is reflexive, then SO are 

CXo,X,l,and(Xo,X,),.,,O<O<l, l<pd 

co. Furthermore, [X0, Xi]; = [X0, Xi]@ and 

(Xo,X1)B,p=(XOrX;)B,p,i P’=P/(P-l), with 
equivalent norms (Calderon, Lions and Peetre, 
H. Morimoto). 
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A. Introduction 

The tlebesgue measure in the Euclidean 
space R” is invariant under Euclidean motion 

(translation and rotation), and the measure 
dp(Â) = d?,/Â on the half-line of positive num- 
bers is invariant under multiplication. If we 

delïne usual tspherical coordinates (6, <p) on 
the unit sphere S2 in R3, the measure dp(w) 
=sinBdOd<p (CD=(~, cp)) on S2 is invariant 
under rotation. More generally, if we delïne 
the spherical coordinates (O,, . ,0,-i, <p) on 
the unit sphere S” in R”+I, the measure 

dp(w)=sin”-’ 0, sirY e2 . sinf3,-, dO, do, . . . 

on S” is invariant under rotation, where the 

spherical coordinates are related to the rectan- 
gular coordinates (x1,x2,. , x,,x,+i) in R”+I 
as follows: 

xl = sin 0, sin 0, . sin O,-, COS cp, 

x2 = sin H, sin 0, . sin onmi sin <p, 

x3 = sin 0, . . . sinO,-,cosO,-,, 

x,-, = sin 0, sin 0, COS O,, 

x, = sin B, COS 8,, 

xl!+1 - -cas 0, 

(0$0,~n,v=1,..., M-l;0<~<27c). 
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The notion of measures invariant under cer- 

tain transformations is generalized to that of 
invariant measures, defined in the following 
section. 

B. Definitions 

Let p be a tmeasure delïned on a +a-algebra 23 
of subsets of a space X, and G be a transfor- 
mation group acting on X in such a way that 
sA~b for any A~23 and ~CG. For every SEC, 

detïne a measure y(s)p on 23 by (~(S)~)(UI) = 
p(A). If y(s)p = p for a11 SE G, then p is called 
an invariant measure with respect to G (or G- 
invariant measure). 

We consider the case where X is a tlocally 
compact Hausdorff space and G is a ttopo- 
logical transformation group of X. We further 
suppose that 23 is the smallest o-algebra con- 
taining the family 6 of a11 compact subsets 
of X and that p(K)< CO for ah KE~ (- 270 

Measure Theory). Let C,(X) be the space 
of all real-valued continuous functions with 

compact +Support defined on X. For example, 
if X is an toriented +Riemannian manifold 
and w  is the +volume element associated with 
the Riemannian metric on X, there exists a 
unique measure ,U on X such that 

for every ~(X)E C,(X). This measure p is invar- 
iant under the group G of tisometries of X. In 
the case of a nonorientable X, a G-invariant 

measure cari also be defined from the +Rie- 
mannian metric. 

In the following, we consider G-invariant 
measures on thomogeneous spaces X of a 
locally compact Hausdorff topological group 
(abbreviated to locally compact group) G. 

C. Haar Measures 

Most fundamental is the case in which G is 

locally compact and X = G, with sx (resp. xs-r) 
defmed by the group multiplication law. In 
this case, a nonzero G-invariant measure on 

G is called a left- (resp. right-) invariant Haar 
measure on G. On every locally compact 

group, there exists a left- (right-) invariant 
Haar measure, which is unique up to a posi- 
tive multiplicative constant (Haar’s theorem). 
For example, Haar measures on the additive 
group R of real numbers and the additive 

group R” are the usual +Lebesgue measures. A 
Haar measure p on the multiplicative group 
RT of positive real numbers is given by 

s oK’,f(x)dp(x)= s ” f(x)dx/x. 0 
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For an n-dimensional +Lie group G, a left- 
invariant Haar measure g is detïned by for- 
mula (1) with a left-invariant tdifferential form 
w  of degree n. 

A Haar measure p on a locally compact 
group G is tregular in the following sense. If 0 
is the set of a11 open subsets of G, then for 
every A EB, we have 

For UEBflD (U#@), we have p(U)>O, and 

p(A) < cc for compact A. The measure p(s) of 
one point s is > 0 if and only if G is tdiscrete. 

The total measure p(G) of G is tïnite if and 
only if G is compact. 

D. Modular Functions 

Let /1 be a left-invariant Haar measure on a 

locally compact group G, and delïne the mea- 
sure 6(s)p by (~(S)~)(A)=&IS) for every SE 
G. Since 6(s)p is also a left-invariant Haar 
measure, there exists a positive real number 
A(s) such that 6(s)p = A(S)~, by virtue of the 
uniqueness of the left-invariant Haar measure. 
The function A = AG on G is called the modular 
function of G. For an tintegrable function on 
G with respect to p, we have 

s GfWW =AW1 s f(x) 4-44 G 
s GSW’)W’ 44x)= fWM4 s G 

If v is a right-invariant Haar measure on G, we 
have the formulas 

s 
G f WWb) = A(s) 

s 
f(x) dW> 

G 

s 
f(x-‘)A(x)dv(x)= ~(X)~V(X). 

G s G 

Moreover, A-i n is a right-invariant Haar 
measure, while AV is a left-invariant Haar 
measure. 

The modular function A of G is a continu- 
ous homomorphism of G into the multipli- 

cative group R’“, of positive real numbers. If 
the modular function A of G is equal to the 
constant 1, i.e., if a left-invariant Haar measure 
is also right-invariant, G is said to be uni- 

modular. G is unimodular if G is compact, 
commutative, or discrete. If G is a +Lie group, 

we have A(s)= ldetAd(s))‘I, where s+Ad(s) is 
the tadjoint representation. In particular, G is 

unimodular if G is a kemisimple Lie group, 

a connected tnilpotent Lie group, or a Lie 
group for which Ad G is compact. However, 
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the group T(n; R) of right triangular matrices 
(n > 1) is not unimodular. 

E. Product Measures 

Let {GJatd be a family of locally compact 
groups, and let pL, be a left-invariant Haar 
measure on G, for every CI E A. Suppose that 

there exists a tïnite subset B of A such that G, 
is compact and p,(G,) = 1 for CZE A - B. The 
product measure p = HorsA p, is then a left- 
invariant Haar measure on the +Cartesian 
product G = nacA G,, which is also a locally 
compact group. Moreover, if A, is the modular 

function of G,, then AG(x) = ncrtA A,(x,) for 

x = (XL. 

F. Product Formula 

Let H, L be two closed subgroups of a locally 
compact group G, and suppose that Q = HL 

contains a neighborhood V of e in G. This 
means that fi is an open subset of G. If we put 
D = {(s, s) 1 SE H n L}, then the mapping (s, t)+ 
st-’ of H x L into R induces a one-to-one 
continuous mapping cp of the quotient space 
H x L/D onto R. Suppose that <p is a homeo- 
morphism. This is the case, for example, if G 

is +paracompact. Furthermore, if H n L is 
compact, we have the product formula 

where pc, pH, pLr. denote left-invariant Haar 
measures on G, H, L, respectively, and a > 0 is 
a constant independent of J: 

G. Weil Measures 

If A is a measurable subset with respect to a 
left-invariant Haar measure p and &4) > 0, 
thenA-‘A={s-itls,tEA}isaneighborhood 
of the identity element of G, and such subsets 
form a base for the neighborhood system of 
the identity. This shows that the topology of a 
locally compact group is determined by its 
Haar measure. Conversely, we shall consider 
the delïnition of a topology in an abstract 

group G with a measure p. 
Let p be a ta-tïnite measure delïned on a 

+o-additive family 23 in G, such that SAE 23 for 
A~23 and SEG. p is called a Weil measure if it 
satislïes the following two conditions: (WI) 

~(SA) = p(A); (W2) if f(x) is 2%measurable, 
then f(y-‘x) is 23 x B-measurable. 
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If a Weil measure p # 0 exists in a group 
G, then {A-‘Ajp(A)>O} forms a base for 
the neighborhood system of the identity ele- 
ment of a topology, which makes G a locally 
ttotally bounded topological group. If for 
every SEG there exists an AEB such that 

p(AnsA)<p(A)< CO, p(A)>O, then Gis a 
Hausdorff space. In this case the tcompletion 
G of G is a locally compact group, and for a 

suitable left-invariant Haar measure jï on G, 
we have A=~~GE% and P(A)=F(A) for 
every AE% (the smallest cr-additive family con- 
taining the family of all compact subsets of G). 

H. Relatively Invariant Measures 

Let G be a transformation group acting on a 
set X. A measure p on X is said to be a rela- 
tively invariant measure with respect to G if for 

every SE G, y(s)p is proportional to p, i.e., 

Y(s)P=x~(s)-~ ‘P (~(S)ERT). Ifp#O, x(4 is 
uniquely determined by s, and s-x(s) is a 
continuous homomorphism from G into the 

multiplicative group R*, of positive real 
numbers. We cal1 x the multiplicator of the 
relative invariant measure. 

We now consider relatively invariant mea- 
sures with respect to a locally compact group 
G on the tquotient space G/H of G by a closed 

subgroup H. Let p, /r’ be left-invariant Haar 
measures on G, H, respectively, and let x+x* 

be the canonical mapping of G onto G/H. For 
any measure Â on G/H, there exists a unique 
measure A# on G satisfying the condition 

L(1 x > * I 
f( h)djJ(h) dl(x )= f(x)dÀ#(x) 

for every continuous function f with com- 
pact support on G. For every ~EH, we have 

6(h)i# =AH(h)i#. Conversely, for a measure 
v on G such that S(h)v=A,(h)v for every ~GH, 

there exists a unique measure 1 on G/H such 
that 1# = v. This measure /I is called the quo- 

tient measure of v by b and is denoted by Â = 

v/j?. For a continuous homomorphism x of G 
into the multiplicative group RT of positive 

real numbers, a necessary and sufficient condi- 
tion for the existence of a not identically zero, 
relatively invariant measure on G/H with the 
multiplicator x is that x(h) = AH(h)/AG(h) for 
every hé H. If this condition is satished, the 
relatively invariant measure on G/H with 
multiplicator x is unique up to a multiplicative 
constant and is given by the quotient measure 
v,=(xp)//I of xp by /?. In particular, for the exis- 

tence of a G-invariant measure on G/H, it is 
necessary and sufficient that the modular func- 
tions Ac and A, coincide on H. Hence, if H is 

compact or if G and H are unimodular, there 
exists a G-invariant measure on G/H. 
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1. Weyl’s Integral Formula 

Let G be a compact connected tsemisimple 
Lie group and H a +Cartan subgroup (maxi- 
mal torus) of G. Then a Haar measure p on G 
cari be expressed by means of a Haar measure 
p on H and a G-invariant measure Â on GIH. 

If p, b, 3, are a11 normalized to be of total mea- 

sure 1, we have the following formula for every 
continuous function f on G: 

1 

=-s s 
,f(ghg-‘)J(h)di(g*)dp(h) 

w  H G,H 

(Weyl’s integral formula), where w  is the order 
of the +Weyl group of G and J(h) is given by 

J(exp X) = n (eb(x)i2 _ e -dX)P) ‘, 
ZEP 

with P the set of a11 +Positive roots c( of G with 
respect to H and X an arbitrary element of the 
YLie algebra of H. For an element h of H, the 
element X with h = exp X is not unique, but 
the function J is a single-valued function. A 
similar formula is valid on a tsymmetric Rie- 
mannian manifold. Weyl’s integral formula 
cari also be generalized to the case of noncom- 
pact semisimple Lie groups. However, it is 

then necessary to replace the right-hand side 
by a sum extended over a system of repre- 
sentatives of mutually nonconjugate Cartan 
subgroups. 

J. Quasi-Invariant Measure 

Suppose that a group G acts on a space X in 
such a way that Sand for any AEB and seG, 
where % is a a-additive family of subsets of X. 

A measure p defïned on ‘Ii is called a quasi- 
invariant measure with respect to G if the mea- 

sures p and y@)~ (Section A) are equivalent 
for every SE G. Here, two measures Â and p 
deiïned on B are equivalent if Â. = cpp (this 
formula means 3,(E)=S,<p(x)dp(x) for any 
E E %3) for some measurable function <p(x) 
which is > 0 almost everywhere with respect 
to p and p-integrable on every A E B such that 

AA)<~. 
We now consider quasi-invariant measures 

with respect to a locally compact group G on 
a quotient space G/H of G by a closed sub- 

group H. There are always quasi-invariant 
measures on GIH with respect to G, and they 
are a11 mutually equivalent. They cari be con- 
structed as follows. There exists a positive 
continuous function p on G such that p(gh) = 

A,(h)A,(h)-‘p(g) for géG, ~EH. Then the 
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quotient measure 1. = (pp)/P is a nonzero quasi- 
invariant measure on G/H with respect to G if 
,u, fl are Haar measures on G, H, respectively, 
and it holds that di,(sx) = p(sg)p(g)-’ dl(x) for 
XE~HEGIH and SEG. If G is a Lie group, we 
cari take a function p of tclass C”. If X is an 
inlïnite-dimensional tlocally convex topo- 

logical vector space over R, there exists no 
+o-lïnite Bore1 measure on X that is quasi- 
invariant with respect to translations by the 

elements of X 161. 
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A. The General Case 

Let R be a +Commutative ring. We say that a 
group G acts on R if(i) each element 0 of G 
detïnes an tautomorphism ,fhafof R, and (ii) 
a(rf)=(az) f for any cr,zeG,J’eR. In this case, 
an element ,f of R is said to be G-invariant (or 
simply invariant) if qf’= f for any OE G. An 
element f is called (G-)semi-invariant if for 
each o in G there is an invariant a(a) such that 

o,f=a(a)f, that is, if f is invariant up to an 
invariant multiplier depending on <T. A semi- 
invariant may also be called a relative invar- 
iant, and an invariant may be called an ab- 

solute invariant. The correspondence o-tu(n) 
mod(O:f‘)((O:J’)={x~R~xf=O})isa+repre- 
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sentation of degree 1 of G, and a(o) is called 
the multiplier of the semi-invariant f; or the 

character delïned by ,f. 

B. Invariants of Matrix Groups 

Let K be a commutative ring with a unity 

element. Then we cari consider a matrix group 
(or matric group) G over K, i.e., a subgroup of 

the group of n x n invertible matrices over K; 
this latter group is called the general linear 
group of degree n over K and is denoted by 
GL(n, K) (- 60 Classical Croups). Assume 
that R is a commutative ring generated by 

x1, , x, over K and an action of the group G 
on R is defined such that ‘(a~,, . , ox,) = 
a’(~~, . ,x,,) (’ means the ttranspose of a 
matrix). In this case, we say that G acts on R 
as a matrix group. If K is a tïeld, then the 

smallest talgebraic group G (in GL(n, K)) 
containing G acts on R as a matrix group, and 
an element ,f of R is G-mvariant if and only if 
,f is G-invariant, and similarly for semi-in- 
variants. These results cari be generalized to 
the case where K is not a tïeld. 

A thomomorphism p of a matrix group G 
(c GL(n, K)) into GL(m, K) is called a rational 
representation of G if there exist rational func- 
tions qkl (1 <k, 1 d m) in n2 variables xii (1 <i, 

j< n) with co&ïcients in K such that p((aij)) 
= (qk,(qj)) for a11 (D~~)E G. Assume that p is a 
rational representation of a matrix group G 
and p(G) acts on a ring R as a matrix group. 
Then we have an action of G on R defined by 
af= (pa),f (a~ G,~‘E R), called the rational 
action defined by p. If the following condi- 
tion is satisfïed, then the action is called semi- 
reductive (or geometrically reductive): If N = 
fi K + . +f,K is a G-tadmissible module 

(f;, ,,~;ER) and if ,fO modN (,fO~ R) is G- 
invariant, then there is a thomogeneous form h 
in fO, ,f, of positive degree with coefficients 

in K such that h is tmonic in f0 and is G- 
invariant. This action is called reductive (or 
linearly reductive) if h cari always be chosen to 
be a linear form. 

(1) Rational actions of a matrix group G in 
each of the following three cases are all reduc- 
tive. (i) K is either the real number field or the 

complex number field, and G is a dense subset 
of a +Lie group (c GL(n, K)) which is either 
tsemisimple or +Compact. (ii) K is a lïeld of 

tcharacteristic 0, and letting ë be the smallest 
algebraic group containing G, the tradical of G 

is a +torus group (- 13 Algebraic Groups). (iii) 
K is a lïeld of characteristic p # 0, and G (as in 
(ii)) contains a torus group T of fïnite +index 
that is relatively prime to p. 

(2) Any action of a finite group is a semire- 
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ductive action. If we omit the condition that 
the characteristic of K is 0 in (ii), then rational 
actions of G are semireductive. This is known 

as Mumford’s conjecture and was proved by 
W. J. Haboush. 

(3) Assume that <p is a G-tadmissible homo- 
morphism of the ring R onto another ring R’. 

We denote the sets of G-invariants in R and R’ 
by IG( R) and I,( R’), respectively. 

If the actions of G are reductive, then 
(i) <p(l,(R))=I,(R’); (ii) II~E~,(R) implies 

(~ihiR)flI,(R)=~ihiI,(R); and (iii) if K is 
+Noetherian, then I,(R) is iïnitely generated 
over K. 

If rational actions of G are semireductive, 
then (i) for each element a of I,(K), there is a 

natural number t such that ~C<~(I,(R)), and 
hence ZJR’) is tintegral over V(I,(R)); (ii) if 

h,~l,(R) and f’~(C~h~R)nl,(R), then a suit- 
able power f’ off is in Cihil,(R); and (iii) if K 
is a tpseudogeometric ring (in particular, if K 
is a tïeld), then I,(R) is lïnitely generated over 

K C31. 
When I,(R) is generated by f, , . ,f, over 

K, then ,f,, , f, are called hasic invariants. 

C. Polynomial Rings 

Let pl, . , pu be matrix representations of a 
group G over a commutative ring K of re- 
spective degrees n, , , n,. Let xQ) (1 < i < u, 
1 <j < ni) be C ni talgebraically independent 
elements over K. Then we define an action of 
G on the tpolynomial ring K [xl’), . , XE] by 
y(Txp, > .xzj) = pi(a)‘(xy), , xc;). In this case, 
a (relative) invariant is the sum of (relative) 

invariants that are homogeneous in each 
(xl’, .,x$. (Because of this fact, in some of the 
literature, a (relative) invariant means a (rela- 
tive) invariant that is homogeneous in each of 

(xl’, , x$.) On the existence of basic invar- 
iants, the following theorem is known (be- 
sides the one on (semi)reductive actions): As- 
sume that K is a lïeld of characteristic 0, G 
is dense under the TZariski topology in an 
algebraic linear group G such that the +Uni- 
potent part (G), of the radical of G is at most 
1-dimensional (these conditions hold if G is 
a 1-dimensional Lie group), and that a11 the 
~1~ are rational representations; then basic 
invariants exist (R. Weitzenbock). 

Furthermore, if G is a matrix group and 
each pi is either the tidentity map or the con- 

tragredient map A+‘A-‘, then the invariants 
are called vector invariants. If K is a tïeld of 
characteristic zero, the basic invariants and a 
basis for the ideal of algebraic relations of the 
basic invariants are explicitly given in several 
cases [l, 21. 
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D. Classical Terminology 

The classical theory of invariants considers 

the following abjects. Let K be a lïeld of char- 
acteristic zero (e.g., the real number field or 
the complex number lïeld), and let G be 

GL(n, K). Consider a homogeneous form F 
of degree d in n variables <,, , i;, with coefft- 
cients in K: F =XC~!. i,mi ,,,, i, (E&=d, mi ,,,, in 

=(d!/n(i,!))<$ tz). For each cr~G, we 
defme (r& by (al,, . . . , (r<,)=(<i, . . . , <,,)a-’ and 

then (~c)i,...i,, by F=IZ(~c)il,..in(~mll .-in). Then 
the transformation 

is a tlinear transformation of a d+n-l C,-,- 

dimensional taflïne space. Let us denote the 
matrix of the linear transformation by the 

same symbol [o&: 

Then <P~:o*[o]~ is a rational representation 
of G. 

Now tïx an F such that the coefficients 

ci, . ..i. are independent variables, and consider 
the action of G on the polynomial ring R = 
K [ , ci, ,.., n, .] defined by the rational 
representation <pd. If g is a relative invariant, 
then erg = a(a)g with a rational representation 
g-tu(~). Hence there is an integer w  such that 
a(o) =(det c)~. Then g is called an invariant of 

weight w  (note that g is an SL(n, K)-invariant); 
y is an absolute invariant if and only if w  = 
0. The group G acts naturally on the ring 
RC<, , , &,] also. Then relative invariants in 
this case are called covariants. The weight of a 

covariant and the absolute covariant are de- 
lïned as in the case of invariants. When we 
want to refer to n and d, we cal1 the invariants 

(covariants) invariants (covariants) of n-ary 
forms of degree d: binary for II = 2; ternary for 
n = 3; linear forms for d = 1; quadratic forms 
for d = 2, etc. 

For example, (1) if n = 2, d = 2, then the +dis- 
criminant D = co2c2,, -CT, is an invariant of 

weight 2. 
(2) Assume that d = 2 (n arbitrary), and let uij 

be the coefficient of titj in F, or, more pre- 

cisely, uij = uji = c,, -,r,, where (i) if i = j, then 
xi = 2 and the other clk are zero and (ii) if i #j, 

then cli = 01~ = 1 and the other c(~ are zero. In 
this case, D = det(uij) is an invariant of weight 
2. 

(3) If n = 2 and d = 4, then y2 =cb0c04 - 
4c,,c,,+3cz 22, 93=c04c22c40-c04c:, - 

c,,c:, + 2c 13c22c31 -c2, are invariants of 
respective weights 4, 6. The discriminant is 

expressed as 23(g: - 2793) and is an invariant 

of weight 12. 
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(4) For d = 1, if we denote the coefficient of ii 

in F by ci, then Xi~i<i is an absolute covariant 
and is also a vector invariant. 

(5) For arbitrary n and d, det(r?2F/8t,8[j) is 

a convariant of weight 2 and is termed the 
Hessian. 

Instead of one form F, we may take a lïnite 
number of homogeneous forms Fi, . , F, of 
degree d, , , d, such that the coefficients 
$) 
21 “” are algebraically independent. Then we 

consider an action of GL(n, K) on the poly- 
nomial ring K [. cci), a ,...1C51,...,5.1given 
by <pai : o+ [rrldi on tze cnoeflïcients of Fi and 
by a+‘~’ on si, as in the case of one form. 
Invariants in this case are called covariants, 

and covariants containing no ti are called 
invariants. Weights, absolute covariants, and 
absolute invariants are delïned similarly. The 
forms F ii . . . , F, are called ground forms, and 
the covariant is called a covariant with ground 
formsF,,...,F,. 

(6) If Y = n, then the +Jacobian det(aFi/atj) is 
a covariant of weight 1. 

E. Multiple Covariants 

Consider the situation described in Section C 
for the case of polynomials, and assume that K 

is a field of characteristic zero, G = GL(n, K), 

and each pi is either a qd (d arbitrary) or the 
contragredient map K. Then these invariants 
are called multiple covariants, and weights and 
absolute multiple covariants are delïned as 

before. Let s be the number of pi equal to K. 
Then the invariants and covariants of the 
preceding section correspond to the cases 
s = 0 and s = 1, respectively. Now assume that 
pi = K if and only if i = 1, , s. Gram’s theorem 

states: for each c( = 1, . , s, let H, be a poly- 
nomial in xy) (i > s) homogeneous in x1), , x$! 
for each i, and assume that the set V of com- 
mon zeros of H, , , H, (in the affine space of 
dimension C. , ,s ni) is G-stable Then there 

exists a lïnite number of absolute multiple co- 
variants c, , , c, such that V is the set of 
(. , uy’, . ) (i> s) satisfying the condition 

i ,..., ai ,..., )isazeropointof 
Z:y:.!:‘i: 2: any a”’ m) with CI < s. 

Since every rational action of GL(n, K) is 
reductive, the set I of absolute multiple covar- 
iants (in a fixed polynomial ring over K) is a 

lïnitely generated ring over K. Furthermore, 
the set of multiple covariants of a given weight 
is a lïnitely generated Z-module. 

If we omit the assumption that K is of char- 
acteristic zero, it is diftïcult to define qd; this 
diftïculty cari be avoided by considering 

transformations of coefficients ail ,,,in of F = 

CU,, ,,,i.<fl .<h”. Although we cari give similar 
delïnitions in that case, the theory does not 
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proceed similarly because, for example, ra- 
tional actions of GL(n, K) are not reductive 

F. Invariants of Lie Croups 

Let G be a Lie group (hence K must be either 
the real number field or the complex number 
tïeld) and p be a tdifferentiable representation 
of G such that ~(C)C GL(n, K), and assume 
that an action of G on K [x, , , x,] is def;ned 
by p. Then, by means of an infïnitesimal trans- 
formation X, corresponding to G, an invariant 

(or semi-invariant) is characterized as an ele- 
ment ,f satisfying the condition X,,f= 0 (VX,) 

(or X,f= a,f, c(, E K (VX,)). For instance, if G 
= GL(2, K), then fis an invariant if X,J’= 0 
for onlv two infinitesimal transformations that 

correspond to (0 i> and (: y). respec- 

tively. Similarly, for each Lie group G, there 
exists a fïnite number of X, such that X,f=O 

for these X, characterizes 1’ as an invariant. 

G. History 

In connection with geometry, the theory of 
invariants, especially that of binary forms, was 
lïrst studied by A. Cayley (J. Reine Angew. 
Math., 30 (1846)). The theory was further 
developed by J. J. Sylvester, R. F. A. Clebsch, 
P. Gordan, and others. Since the theory was 
originated with applications to projective 

spaces in mind, homogeneous semi-invariants 
were important; this is why semi-invariants 

were called invariants in the classical theory. 
On the other hand, in the theory of binary 
quadratic forms, invariants of discontinuous 

groups were studied from the viewpoint of the 
theory of numbers. It was D. Hilbert who 

introduced clearly the notion of invariants for 
general groups. He proved the existence of 
basic invariants in the classical case, making 
use of the THilbert basis theorem. Hilbert’s 
14th problem (- 196 Hilbert) is related to this 
result, but its answer is negative; that is, even 
in the case of a polynomial ring over the real 
number field or the complex number fïeld, 
there are groups acting on the ring without 

basic invariants (M. Nagata). Though the 
theory of invariants has not been studied 
effectively for a long time, it is again under 

active study because of its importance in alge- 
brait geometry. 
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Inventory Control 

Although inventory control is discussed main- 
ly in connection with production control and 
operations research, inventory models have 
applications in many other iïelds. For exam- 

pie, an inventory (or queuing) mode1 cari be 
used to plan the optimal operation of a dam, 
and may thereby influence the engineering 
design of the dam. 

A mathematical theory of inventory control 

must be based upon an inventory structure in 
which the following items are considered: (i) 

costs and revenue, (ii) demand, and (iii) deliv- 
eries. Item (i) involves (1) order and produc- 
tion costs, (2) storage costs, (3) discount rates, 
(4) penalties, (5) revenues (under the assump- 
tion that price and demand are not controlled 

by the firm), (6) costs of changing the produc- 
tion rate, and SO on. For item (ii), there are 
several different situations due to the com- 
bination of predictability and stability condi- 
tions of demand for the commodity. Current 
theories are concerned with two particular 
situations. In the iïrst, the tprobability distri- 
bution of demand is known to the lïrm. In the 
second, the date of occurrence of orders is a 

trandom variable with a known probability 
distribution, while the amount of demand is a 
known constant. A tminimax principle is 

applied when some of these probability distri- 
bution functions are unknown to the firm. 

Problems in (iii) are due to delays (lead time 
periods) after an order for inventory is placed 
or a decision is made to produce for an un- 
certain demand. 

The following inventory system has been 
studied mathematically in much of the litera- 

ture. Let x, be the initial storage level for the 
nth period, and 5, and z, be the demand and 
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the amount of order, respectively, for the nth 
period. Then y,, = x, + z, is the storage level 
after the arriva1 of ordered items, and x,,+~ = 

max(O, y,, - 5,) is the initial storage at the (n + 
1)th period. Furthermore, in this period, the 
stock shortage y~. = 5. -y, is incurred if y, < 5,. 

When the demand 5, is known, the inventory 
mode1 is a simple deterministic one. When 5. is 

a random variable, let its density function be 
<p(t). For constructing the model, the following 

three cost functions are introduced: The order- 
ing cost c(z) of order z, the holding cost h(y) of 

storage y for one period, and the penalty cost 
p(q) for a shortage q. Tken the total cost for 
the period of storage level y after reorder is 

I(y)= Yh(Y-5M5)di’+ 
s s 

m 

P(C-YMWi’. 
0 Y 

Let x be the initial storage for the first period, 
and let f,(x) represent the minimal total cost 

of an n-period inventory model; then f,(x) 
satisfies the following fundamental func- 

tional equation with a tïxed discount rate a 
(O<ct< 1): 

f,(x)=min min ~(y-x)+1(y) 
[ i Y’X 

I(x)+~ 
s 

~Mx-sM5vi’ 
0 1 

In this equation, the lïrst term of the right- 
hand side gives the amount of order at the first 

period as y.(x)-x, where y,(x) is a minimizing 
value of y, and the second term gives the cost if 
no order is put in. Policies of the (s, S) type are 
defïned as follows: Order S-x if x <s, and do 
not order if x 2 s. For the special case when 

the ordering function is given by c(z) = C + 
cz (z > 0); = 0 (z = 0), some suffïcient conditions 
for the optimal policy to be of (s, S) type have 
been studied. 

For various inventory models where the 
demand and lead time are random variables, 
the optimal policy cari be derived by using 
queuing theory. We consider an inventory 
mode1 with maximum inventory M. The queu- 

ing situation corresponding to this mode1 
is an M-channel queuing system. “Empty 

shelf space due to demand” corresponds to the 
arriva1 of a customer, the ordering instance 
corresponds to the commencement of service, 

and the arriva1 of an ordered item corresponds 
to the completion of service. Thus the station- 
ary probability of storage level n, P,,, cari be 
obtained by solving the equilibrium equation 
of the queuing system; then mean inventory, 

mean sales, and mean ordering number cari be 
derived. This above ordering system is called 
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“reorder for each item SOI~“; more general 
systems have been treated in a similar manner. 

Another example of the queuing system 
approach may be illustrated by way of the 

planning problem for dams mentioned at the 
beginning of this article: The probability distri- 
bution of the amount of water stored in the 
dam is derived by analyzing the functional 
equation of a queuing system. Let the capacity 
of the dam be M, the storage of the dam at the 
nth period be x,, and the outflow after inflow 

z, be 5,+,; then the storage at each period is 
given by 

x1=x, O<x<M, 

X n+,=CM-5,+~+C~nf~.-Ml-l+, 

where u+ = max(O, a) and a = min(O, a). 

The equations for queuing models Will be 
the same as those given above for the inven- 
tory mode1 if we let x, be the waiting time of 
the nth customer, z, the service time, &,+, the 

interarrival time of customers n and the n + 1, 
and M the service time. 
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228 (X.34) 
Isoperimetric Problems 

A. The Classical Isoperimetric Problem 

Two curves are called isoperimetric if their 
perimeters are equal. The term curve is used 
here to mean a tJordan curve. The classical 
isoperimetric problem is to find, among a11 
curves J with a given perimeter L, the curve 
enclosing the maximum area. This problem is 
also called the special isoperimetric problem or 
Dido’s problem. Its solution is a circle. The 

analogous problem in 3-dimensional space has 
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a sphere as its solution; that is, among a11 
closed surfaces with a given surface area, the 
sphere encloses the maximum volume. The 
following variational problem cari be regarded 
as a generalization of the classical isoperi- 
metric problem: TO lïnd the curve C: y =,f(x) 
that gives the maximum value of the func- 
tional JC F(x, y, y’) dx under the subsidiary 

condition SC G(x, y, y’)dx = constant. This is 
sometimes called the generalized isoperimetric 
problem. The classical isoperimetric problem 

cari be solved by variational methods. It cari 
also be solved by using inequalities involving 
quantities associated with the figure in ques- 
tion. For example, the inequality 

L2-47cF>O (1) 

between the area F and the perimeter L of a 
Jordan curve J salves the problem, since the 
equality holds only for a circle. For refinements 
of (1) there are further inequalities due to T. 

Bonnesen (1921): 

L2-4nF>(L-2~)‘, 

L2 -4nF >(~TIR - L)2, 

L2-4nF>nZ(R-r)2, 

where r is the radius of the largest circle in- 
scribed in the curve J and R the radius of 
the smallest circumscribed circle. These in- 

equalities cari also be used to salve the iso- 
perimetric problem. Moreover, we have the 
following inequality for curves on the sphere 
of radius a: 

L2-4rrF+F2nm2>8na2sin 
R-r 

4a( 1 + 27L) 

(F. Bernstein, 1905). For curves on the surface 
of negative constant curvature -l/a2, we have 

L2-47cF-F2am2 

Zia2(47c+ Fa~‘) tanhi-tanh& 
> 

2 

(L. A. Santalo [2]). From these inequalities, we 

see that the circle remains the solution to the 
isoperimetric problem in each of the non- 
Euclidean planes. 

The corresponding problem in the 3-dimen- 
sional case is more diff’cult. Without going 

into detail, we cite the following example: For 
an tovaloid with surface area S and volume V, 

S3 - 36nV2 > 0, 

where the equality holds only for the sphere. 

B. Isoperimetric Inequalities on Eigenvalues 

In recent years the concept of isoperimetric 
inequality has been extended to include all 
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inequalities connecting two or more geometric 
or physical quantities depending on the shape 
and size of a figure. For example, it includes 
inequalities on teigenvalues of partial dif- 
ferential equations under given boundary 
conditions. 

Lord Rayleigh conjectured in 1877 that, for 
the equation Au + iu = 0 for a vibrating mem- 

brane on a region D of lïxed area F (with u=O 
on the boundary), the tkst eigenvalue Â, is 
least when D is a circle. This conjecture is true. 

In fact, in 1923 G. Faber and E. Krahn proved 
independently that 

A, >(x/F)j2 (2) 

and that the equality in (2) holds if and only if 
the domain D is a circle, where j = 2.4048 is 
the lïrst positive zero of the tBesse1 function 
J,(x). For the second eigenvalue ‘1.2 of the 
same problem, the circle does not give the 

minimum value. 1. Hong (1954) gave the 
inequality 

and showed that À2 approaches its greatest 
lower bound, (27c/F)j*, as the shape of the 
domain approaches a figure consisting of two 
equal mutually tangential circles, each having 
area F/2 [4]. 

Many other results were found with regard 
to isoperimetric inequalities on eigenvalues of 
partial differential equations, for example, 
results related to eigenvalues for a membrane 

under other boundary conditions, such as 
du/& =O, and for other types of equations, 
such as AAu - iu = 0. 

A method devised by J. Steiner and called 
symmetrization is a powerful means of dis- 
covering isoperimetric inequalities. Steiner% 
symmetrization with respect to the line 1 
changes the plane domain P into another 

plane domain Q characterized as follows: 
Q is symmetric with respect to 1, any straight 
line 9 perpendicular to 1 that intersects one of 
the domains P or Q also intersects the other, 
both intersections have the same length, and 

the intersection with Q is a segment bisected 
by 1. This operation cari be extended to a 
space of higher dimension by replacing 1 with 
a hyperplane. Steiner? symmetrization pre- 
serves area (or volume) and diminishes perim- 
eter (or surface area). Steiner lïrst used these 
properties to solve the classical isoperimetric 
problem in 1838. In 1945, G. Polya and G. 
Szego found that the electrostatic capacity 
of a solid is diminished by Steiner’s sym- 

metrization. The concepts developed in their 
papers made possible a systematic treat- 
ment of many isoperimetric inequalities and 

estimations of mathematical and physical 
quantities. 
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229 (XXl.29) 
Jacobi, Carl Gustav Jacob 

Carl Gustav Jacob Jacobi (December 10, 
18044February 18, 1851) was born into a 
wealthy banking family in Potsdam, Germany. 
He was well educated at home and was highly 
cultured in many areas. He entered the Uni- 
versity of Berlin, studied mathematics largely 

on his own through Euler’s texts, and obtained 
the doctorate in 1825. The following year he 
became a private lecturer at the University of 
Konigsberg, and in 1831 a professor. For the 

next seventeen years he worked vigorously in 
Konigsberg, where his influence was consider- 
able. Toward the end of his life, his health 
failed; moreover, he lest his property and met 

with general misfortune because of the polit- 
ical situation of the time. He made no further 
contributions after 1843; he died of smallpox 
at 47. 

Because he had an intense personality, there 
were times when he invited the animosity of 

people; however, he did have early contact 
with +Abel, and in his later years he enjoyed 
the friendship of +Dirichlet. Jacobi’s mathe- 
matical works lacked forma1 completeness 
but were very original and contributed to 
many lïelds. The +Hamilton-Jacobi equation in 
dynamics and the +Jacobian determinant of a 
differentiable mapping are well-known prod- 
ucts of his ideas, but even more noteworthy 
are his contributions to the theory of elliptic 
functions and algebraic functions, particularly 
the introduction of theta functions and the 

treatment of the inverse problem of hyper- 
elliptic integrals [2]. 
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230 (Xx1.7) 
Japanese Mathematics 
(Wasan) 

Before the introduction of Western mathe- 
matics, indigenous Japanese mathematics de- 
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veloped along its own characteristic lines. In 
Japanese, this form of mathematics is called 
wasan. The lïrst development took place in the 
8th Century A.D. during the Nara era under the 
influence of the Tang dynasty in China. After a 
period of decline came another period of de- 
velopment from the 13th to the 17th Century. 
During this second wave, Chinese mathemat- 
ical books such as Suanhsueh chimeng and 

Suanfa tangtsung were imported, along with 
the abacus, or soroban as it is called in Japa- 

nese, and calculating rods, sangi in Japanese, 
with which Chinese mathematicians performed 
algebraic operations. Japanese mathematicians 

absorbed these methods and invented and 
developed their own written algebra, called 

endan-jutsu or tenzan. 
The fundamental concepts of wasan are 

attributed to Seki Takakazu, or Seki Kowa 
(Seki is the surname; likewise for other Japa- 
nese names in this article), Takebe Katahiro, 
and Kurushima Yoshihiro. Its main develop- 
ments stem from Ajima Naonobu and Wada 
Yasushi (or Wada Nei), among others. Wasan 

scholars obtained interesting and significant 
results, but they pursued mathematics as an 
art in the Japanese manner rather than as a 
science in the Western sense. Wasan had no 
philosophical background as did the Greek 
tradition, nor did it have an intimate relation 
with the natural sciences. Thus it lacked the 
character of systematized science and dissolved 
after the introduction of Western mathematics 
into the school system by the Meiji govern- 

ment (18677 19 12). 
Among wasan works of the earlier period, 

Jinkôki by Yoshida Mitsuyoshi (159881672) 

the first edition of which appeared in 1627, 
contributed much to popularize the soroban 

and to arouse general interest in mathematics. 
Seki Takakazu (1642?- 1708) was born in 

Fujioka in the Gunma prefecture. Some his- 
torians say he learned mathematics from 

Takahara Yoshitane, while others say he was 
completely self-taught. His achievements in- 
clude the following: (1) the invention of endan- 
jutsu, or written algebra; (2) the discovery of 
determinants; (3) the solution of numerical 
equations by a method similar to +Horner’s; (4) 

the invention of an iteration method to solve 
equations, similar to Newton’s; (5) the intro- 
duction of derivatives and of discriminants of 

polynomials; (6) the discovery of conditions for 
the existence of positive and of negative roots 

of polynomials; (7) a method of finding max- 
ima and minima; (8) the transformation theory 

of algebraic equations; (9) continued fractions; 
(10) the solution of some Diophantine equa- 
tions; (11) the introduction of +Bernoulli num- 

bers; (12) the study of regular polygons; (13) 
the calculation of 7~ and the volume of the 
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sphere; (14) tNewton’s interpolation formula; 
(15) some properties of ellipses; (16) the study 

of the tspirals of Archimedes; (17) the discov- 

ery of the Pappus-Guldin theorem; (18) the 
study of magie squares; and (19) the theoretical 
study of some questions arising out of math- 
ematical recreations (called mamuko-date, 

metsuke-ji, etc.). 
Takebe Takahiro (16644 1739) was a disciple 

of Seki. He is the author of the book Enri 

tetsujutsu. (Enri, or circle theory, was one of 
the favorite subjects of wasan scholars.) It 
contains the formula 

x2 22.x4 22.42.# 
-+ . 

He also obtained other formulas of trigono- 
metry and some approximation formulas, by 
means of which he compiled trigonometric 
tables to 11 decimal places. In collaboration 
with Seki he wrote the 20 volumes of Tuisei 

sankei and Fukyû tetsujutsu, the latter elucidat- 
ing the methodology of the Seki school. It 
contains a value of 7-c to 42 decimal places. 

Kurushima Yoshihiro (??1757) was an 

original scholar influenced by Nakane Genkei 
(1662- 1733) a disciple of Takebe. He gen- 
eralized an approximation formula for sines 

obtained by Takebe, treated problems of max- 
ima and minima involving trigonometric func- 

tions, improved the theory of determinants 
and the theory of equations, obtained a for- 
mula for S, = lp + + np without using Ber- 
noulli numbers, and found a relation among a, 
b, c, n by eliminating x from 

~+(X+C)+ +(x+(n- l)c)=u, 

X~+(X+~)~+... +(x+(n- l)~)~=b. 

Furthermore, he studied tEuler’s function p(n) 

before Euler and obtained the tlaplace expan- 
sion theorem for determinants before Laplace. 

He is said to have contributed to Hôen sun- 
kei, an important work on enri written by 

Matsunaga Yoshisuke (c. 1694-1744) in which 
a value of n is given up to the 50th decimal 
place. The Seki school, continued under 
Takebe, Nakane, Kurushima, and Matsunaga, 
became a tenter of wusun. Scholars of this 
school lived mainly in Edo (the ancient name 

for Tokyo). Yamaji Nushizumi (or Shujû) 
(1704-l 772) studied wusun with Nakane, 
Kurushima, and Matsunaga. Arima Yoriyuki 
(1712-83) one of his disciples, for the tïrst 

time made public the teachings of this school 
in the book Shûki sumpô. The practice of dedi- 

cating to Shinto shrines or Buddhist temples 
tablets engraved with solved mathematical 

problems became popular during this period. 

Ajima Naonobu (1739998) was a disciple 
of Yamaji. He improved enri, simplified its 
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theory, and amplified its applications. He 
treated problems of finding volumes involving 
double integrals, discovered the binomial 

theorem for exponent l/n, compiled a table of 
logarithms to 14 decimal places, and treated 
Diophantine problems. No trace of demon- 
strative geometry is found in wusun, but Ajima 
and his school did treat geometric problems, 

such as tMalfatti’s problem, dealing with 
several circles tangent to each other. 

Wada Yasushi (or Wada Nei, 1787- 1840) 
studied wusan with Kusaka Makoto (17644 

1839) a disciple of Ajima. He made tables 
containing more than 100 delïnite integrals, 
including, for example, 

s 

1 

s 

1 
xp(l -x)4dx, xp(l -x2)qdx. 

0 0 

However, there is no evidence that wusun 

scholars, even in this period, knew of the fun- 
damental theorem of intïnitesimal calculus. 

Apart from the Seki school, there were 
Tanaka Yoshizane (1651-1719) a contempor- 
ary of Seki, and his disciple Iseki Tomotoki 
(c. 1690). Tanaka is said to have ranked with 
Seki in his work on determinants and magie 

squares, but most of his writings have been 
lost. Iseki wrote a text on determinants called 
Sanpô hukki (1690), the first of its kind in the 

history of mathematics. A little later, Takuma- 
ryû (the Takuma school) was formed in Osaka. 
Inô Tadataka (1745- 1821), famous for making 
the tïrst precise map of Japan, had studied 
wusan with Takahashi Yoshitoki (1764- 1804) 
who belonged to this school. Aida Yasuaki 
(1747- 18 17), a contemporary of Ajima, 
founded Su$-ryû, or the “superlative school,” 
and rivaled Fujita Sadasuke (17344 1807) of 
the Seki school. 

Toward the end of the Tokugawa era, the 
study of geometric problems became popular 
among wusun scholars, such as Hasegawa Kan 
(178221383) Uchida Gokan (1805582) and 
his disciple Hôdôji Zen (1820-68), who used 
tlie method of tinversion. Hasegawa wrote 
Sunpô sinsho, a popular work containing an 
explanation of the methods of enri. 

The influence of Western mathematics is 
hardly recognizable outside astronomy, cal- 

endar making, and the compilation of loga- 
rithmic tables. However, some wusun scholars 
took a more positive attitude and began study- 
ing Western mathematics toward the close of 

the Tokugawa period, thus helping to lay the 
foundations for the development of mathe- 
matics in Japan in the new era. 

Following the Meiji restoration, Kikuchi 

Dairoku (185551917), Hayashi Tsuruichi 
(1873-1935) Fujiwara Matsusaburo (1861- 

1933), and recent scholars contributed much 
to preserve wasun literature and to clarify its 
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content, but their undertaking has not yet 
been completed. 
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Jordan Algebras 

A. Definitions 

Let A be a tlinear space over a tïeld K. If there 
is given a tbilinear mapping (multiplication) 
A x A+ A, the space A is called a distributive 

algebra (or nonassociative algebra) over K. In 
particular, if this multiplication satisfïes the 
associative law, A is called an associative 
algebra over K (- 29 Associative Algebras). 

We assume that A is a distributive algebra 
over K of fïnite tdimension over K. Denote 

by E(A) the associative algebra of all K- 
+endomorphisms of the K-linear space A. With 
every ~EA we associate R,EE(A), L,eE(A) by 
R,(x) = xa, L,(x) = ax, where x belongs to A. 
The Qubalgebra of E(A) generated by the R,, 
L, (a~ A) and the tidentity mapping of A is 
called the enveloping algebra of A. The left, 
right, and two-sided +ideals of A are defïned as 
in the case of associative algebras. An element 

c of A is said to be in the tenter of A if(i) ac = 
ca and (ii) a(bc) = (ab)c, a(cb) = (ac)b, and 
c(ab)=(ca)b for every a, b in A. We denote the 
product of two elements 4, b in A by a. b in 
order to distinguish it from multiplication in 
the case of associative algebras. Denote a. a by 
a’2 and put A’2={a, .a,la,,a,~A}. Define A(“) 
successively by A(‘) = A, A(‘) = A”, , ACk+‘) = 
(A(k))‘2. Then A is called a solvable algebra if 
A(“) = 0 for some n and a nilalgebra if every 
element of A is tnilpotent. A distributive alge- 

bra A is called a Jordan algebra if the follow- 
ing two conditions are satisfied for every 
a,uinA:(i)a.u=u.aand(ii)a’2.(u.a)= 

(a” u) a. We omit discussion of noncom- 
mutative Jordan algebras in this article. A 
distributive algebra A is called an alternative 
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algebra if the following two conditions are 
satistïed for every a, u in A: (i) a. u” = (a. u) u 
and (ii) u ‘2. a = u. (u a). An alternative algebra 
A is called an alternative field if L,(A) = A = 
R,(A) for every a in A such that a # 0. Gen- 
eralizing these algebras we obtain the notion 

of a power associative algebra. A distributive 
algebra A is a power associative algebra if 
every element of A generates an associative 
subalgebra. Jordan algebras and alternative 

algebras are power associative. 
We now consider an algebra A over a fïeld 

K. We assume that the tcharacteristic of K is 
not 2 and that A is of fïnite dimension over K. 
If A and B are associative algebras, a linear 

mapping CT : A-+B is called a Jordan homomor- 
phism if (i) (a2)0 = (ao)2 for every a in A and (ii) 
(aba)b =abbuao for every a, b in A (where we 
denote by a” the image of a E A by the map- 
ping 0). If B does not contain tzero divisors, 

then (ab)“=a”b” or (ah)“= buau. 
Let A be an associative algebra. Detïne a 

new multiplication in A by a. b = (ab + ba)/2. 
We then have a Jordan algebra A+. A sub- 
algebra of the Jordan algebra A+ is called a 
special Jordan algebra. Let K [x 1, . , xJ be 
the noncommutative free ring in the indetermi- 

natesx, ,..., x,(thatis,K[x, ,..., x,]isthe 
associative algebra over K that has as its K- 

bases the free semigroup with identity element 
1 over the free generators x1, ,x,). The sub- 
algebra K [x, , , x,] + generated by 1 and 

the xi is called the free special Jordan algebra 
of n generators and is denoted by Jo). A Jor- 
dan algebra A is special if and only if there 
is an isomorphism of A into B’, where B is 
some associative algebra. A Jordan algebra 
that is not special is called exceptional. Al1 
homomorphic images of JA2) are special. De- 
note by YR the ideal of Jo”) generated by x’~ - 
y.2 (note that Jo”) 2 K [x, y, z]). Then Jo)/%! 
is exceptional. A Jordan algebra is special if it 

contains the unity element and is generated by 
two elements. If A is an alternative algebra, the 

associated Jordan algebra A+ is special. 
Condition (ii) for a Jordan algebra A is 

equivalent to [R,, R,-Z] = 0. In A, we have 

CR,, h,.J + Ch Ll + CR,, &,l = 0; ami 
CC&, R,l, Rbl =Rco,b,cl. Here we put LS, Tl = 
ST-TS, [a,b,c]=(a.b).c-a.(b.c). Such 
an equation in A is called an identity in a 
Jordan algebra. 

B. Structure of Jordan Algebras 

A Jordan algebra A has a unique largest solv- 
able ideal N, which contains a11 nilpotent 

ideals of A and is called the radical of A. If N 
= 0, A is called semisimple. The quotient A/N 
is always semisimple. A semisimple Jordan 
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algebra A contains the unity element and 

cari be decomposed into a direct sum A = 
A, @ @ A, of minimal ideals Ai. Each Ai 
is a +Simple algebra. In particular, if K is of 
characteristic 0, there is a semisimple subalge- 
braSofAsuchthatA=S@N.Letebean 
idempotent element of A, and let 1.~ K. Put 
A,(A)={xjxEA,e.x=/2x}. Then we have 

A = A,(l) 0 A,(W) 0 A,(O). 

This decomposition of A is called the Peirce 

decomposition of A relative to e. Suppose that 
the unity element 1 is expressed as a sum of 
the mutually orthogonal idempotents ei. Then, 

putting Ai,i=Aei(l), Ai,j=Aei(l/2)n A,,(1/2), 
we have A = C,,j @ A,,j. The Ai, j are called 
Peirce spaces. Furthermore, suppose that for 
every i, Ai, i is of the form Ai, i = K . ei + Ni, with 
Ni a nilpotent ideal of Ai,i. In this case, A is 
called a reduced algebra and the number of the 

ei is called the degree of A. 
Let D be an alternative algebra with the 

unity element 1 and with an tinvolution ~. 
Furthermore, suppose that there is a tquadra- 
tic form Q(X) such that x.x=x.x=Q(x). 1 

(~CD) and thatf(X, Y)=(Q(X+ Y)-Q(X)- 
Q( Y))/2 is a tnondegenerate bilinear form. 
Then D is called a composition algebra. 

Reduced simple Jordan algebras A are 

classified into three types: 
(1) A=K.l. 

(2) There exist idempotents e,, e2 such that 
A=K.l@K.(e,-e,)@A,,,,whereA,,,# 

0; and furthermore, the multiplication of 
A is determined as follows: Let x = cc(er - 

e,)+a,,,, y=fl(e, -e,)+b,., be in A with 

a, BEK, u~,~, ~,,,EA,,,. Then X~~=(C@+ 

fb , , 2, b,, 2)) . 1, where f is a nondegenerate 
symmetric bilinear form. 

(3) Let D be a composition algebra with 
the involution ~, and let D, be the ttotal 
matrix algebra over D of degree n. Let r = 
diag{r,, . . . . rn} (riZO) be given in 0.. Detïne 
J: 0,-D,, by aJ=r.2ï.r-‘. Then A is of the 
form A={x~D,,[x=x~}. 

Let A be a special, reduced simple Jordan 
algebra such that Ai, i = Ke,. If A is of degree 
2, then A is a Wlifford algebra. If A is of de- 
gree > 3, then A is classified into five types. 

Let A be a simple Jordan algebra over a 
tïeld K. Then there is an extension tïeld P of K 
of tïnite degree such that AP( = A @ K P) is 
isomorphic to one of the following fïve types: 

0) PZ, where P, is the total matrix algebra of 
degree n over P; (ii) the subalgebra of Pn 
consisting of a11 symmetric matrices in PT ; (iii) 
{x~Pl,,,(x~=x}, where 

xJ = 4-l ‘xq, 4= .y 

( > m  

0 / 

with ‘x the transpose of x and 1, the unit ma- 

trix of degree tu; (iv) an algebra generated by 
the generators s 0, SI, “‘> s, together with the 
defïning relations s,, si = si, si2 = s,,, si. sj = 0 

6 #A; (4 =@: 1 where &!‘3 is the algebra of all 
3 x 3 Hermitian matrices over a +Cayley 
algebra. 

C. Representations of Jordan Algebras 

A representation S of a Jordan algebra A on a 
K-linear space M is a K-hnear mapping a+$ 

from A into the associative algebra E(M) of a11 
K-endomorphisms of M such that (i) [S,, S,.,] + 

[S,, S,.,] + [S,, S,.,] = 0 and (ii) &Si,& + 
.S,S,S, + Sca.cJ.h = S,S,., + &Sa., + &Y,., (for ah 
a, b, c in A). A K-linear space M is called a 
Jordan module of A if there are given bilinear 
mappings M x A-tM (denoted by (x, a)+~. a), 
A x M-M (denoted by (a,x)+a.x) such 
that for every XE M and every a, h, CE A, (i) 

x.n=a.x; (ii) (x.a).(b.c)+(x.b).(a.c)+ 
(x.c).(a.b)=(x.(b.c)).a+(x.(a.c)).b+ 
(x.(a.b)).c;and(iii)x.a.b.c+x.c.b.a+ 

a.c~b~x=(x.c).(a.b)+(x.a)~(b~c)+(x.b). 
(a. c). As usual, there is a natural bijection 

between the representations of A and the 
Jordan modules of A. A special representation 
of a Jordan algebra A is a homomorphism 
A -*E + , where E is an associative algebra. 
Among the special representations of A, there 
exists a unique universal one in the following 
sense. There exists a special representation 
S: A * U ’ with the following property: For 
every special representation (T: A-tE+ there 

exists a unique homomorphism q : U + E such 

that g = gS. The pair (U, S) is uniquely deter- 
mined. Furthermore, if A is n-dimensional over 
K, U is of dimension <2”- 1 over K. The pair 
(U, S) is called the special universal enveloping 
algebra of A. A is special if and only if S : A + 
U + is injective. 

A Jordan algebra A has only a tïnite number 
of inequivalent tirreducible Jordan modules. 
Suppose that the base tïeld K is of character- 

istic 0. Let S be a representation of A. If N is 
the radical of A, S(N) is contained in the rad- 
ical of the associative algebra S(A)* generated 

by S(A). If A is semisimple, SO is S(A)*. In 
general, the radical R of S(A)* is an ideal of 
S(A)* generated by S(N). Furthermore, for 
every semisimple subalgebra T of A such that 

A=T@N,wehaveS(A)*=S(T)*@R. 
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Kahler Manifolds 

A. Definitions 

Let X be a tcomplex manifold of complex 
dimension n. Let J denote the ttensor fïeld of 
type (1,1) of +almost complex structure in- 
duced by the complex structure of X (- 72 
Complex Manifolds A). Considering J as a 
linear transformation of vector fields on X, we 
have J2 = -1. A +Riemannian metric g of class 

C” on X is called a Hermitian metric on X if 
g(x, y)=g(Jx, Jy) for any two vector fïelds x, y 
on X. On a tparacompact complex manifold 
X there always exists a Hermitian metric. If we 
put fi(x, y) = g(Jx, y) for a Hermitian metric g, 
then R is an talternating covariant tensor fïeld 
of order 2, and hence a tdifferential form of 
degree 2. We cal1 R the fundamental form 
associated with the Hermitian metric g. If 
the texterior derivative of Q vanishes, i.e., 
dR = 0, the given Hermitian metric g on X 

is called a Ktihler metric on X, and X is called 
a Ktihler manifold. With a tholomorphic local 
coordinate system (z’, , z”) on a coordi- 
nate neighborhood U in X, we cari Write y = 

Ca,p=l gay,,dz”dYP in U, where the matrix (gmp) 
is an n x FI +Positive defïnite Hermitian matrix. 
Then the fundamental form cari be expressed 

as R=(fl/2)Cg,~dz”r\ dzp. 
If a complex manifold X is a Kahler mani- 

fold with a Kahler metric g, then X has the 
following properties: (1) For every point p of X 

there exists a real-valued function $ of class 
C” on a suitable coordinate neighborhood of 
p such that g#s = a2tJ/ôz”%p. (2) For every 
point p there exists a holomorphic local co- 

ordinate system at p whose real and imaginary 
parts form a tgeodesic coordinate system at p 
in the weak sense. (We say a coordinate system 

(x, , , x,) is a geodesic coordinate system at p 
in the weak sense if [Vp,axI (;i/Zxj)],, = 0, i, j = 

1, . , n (- 417 Tensor Calculus).) Each of 
these properties characterizes a Kahler metric. 

The Kahler metric was introduced by E. Kah- 
ler with property (1) as the definition. W. V. D. 
Hodge applied it to the theory of harmonie 

integrals [7]. 

B. Harmonie Forms on Compact Kahler 
Manifolds (- 194 Harmonie Integrals) 

We now consider complex-valued differential 

forms on a compact complex manifold X of 
complex dimension n endowed with a Her- 
mitian metric. The operators d and * on real- 

valued differential forms cari be uniquely 
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extended to complex linear operators, and the 

inner product of real differential forms cari be 

extended to a Hermitian inner produci of the 
form (cp, $) = jx <p A * $. Then the tadjoint 
operator 6 of d is also complex linear, and 
the decomposition d = d’ + d” gives rise to fi = 
is’ + 6”, where 6’ and 6” are the adjoint opera- 
tors of d’ and d”, respectively. We also bave 

?Y=(-l)*d”* and Y=(-l)*d’*. Define the 
operator L by L<p = Q A <p, and denote by A the 
adjoint operator of L. Then for p-forms, we 
have A = ( -l)p* L * We say that q is primitive 

when A<p = 0. Some important properties of 
L and A follow: (3) For a p-form <p, A$‘=0 if 

and only if L4~=0 (q=max(n-p+ l,O)). (4) 
If Acp =0 and cp is of type (r, s), then for a11 

O<q<n-p, 

x (fiymsq!/(n -p-q)!} L”-p-qp 

(where p = r + s). (5) A p-form <p cari be 
uniquely decomposed in the form q = <pO + 
L<p, + + L’<p, with r = [p/2] and vi primi- 
tive (Hodge [7], Weil [ 131). Properties (3)-(5) 
are shared by a11 Hermitian metrics. When 

the metric is Kahlerian, we further have 

Ld-dL=O, Ad’ - d’A = J-1 6”, 

Ad”-&‘A= -J-1 6’. 

From these we also obtain 

AL=LA, AA = AA, 

&6”+6”d’=O, d”6’ + 6’d” = 0, 

A=2(d’S’+6’d’)=2(d”S”+6”d”), 

where A is the +Laplace-Beltrami operator A= 

d6 + 6d. +Green’s operator G commutes with 
d’, d”, Y, and 6”. Thus when the metric is Kah- 

lerian, we have: (6) Let L,,(X) = C,+,=, L,,,<(X) 
be the decomposition of the space of p-forms 
into the spaces L,,,(X) of forms of type (r, s). 
Then, correspondingly, the space H,(X) of 
harmonie p-forms is the direct sum H,(X) = 
C,+,=,H,,,(X) of the spaces H,,,(X) of har- 
monic forms of type (r, s). (7) If we let A = 
d”6” + 6”d”, then Acp = 0 is equivalent to A<p = 
0. Denote the projection to the space of har- 

monic forms by H. Then using the formula 1 = 
H+AG (- 194 Harmonie Integrals A), we 
cari infer that not only in the +cochain com- 
plex (C, L,(X), d) but also in the cochain com- 

plexes (C., L,,,(X), d”) and (C, L,,,(X), d’), H is 
homotopic to the identity mapping and the 
respective cohomology groups of degree s and 
degree r of the last two complexes are both 
isomorphic to H,,,(X). (8) For a harmonie p- 
form 47, the forms <pi in the decomposition (5) 

are harmonie. (9) The exterior powers 0’ (r = 
0, 1, , n) of the fundamental form R are non- 
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zero and harmonie. (10) Holomorphic dif- 
ferential forms are harmonie. 

C. Further Properties of Compact Kahler 

Manifolds 

The p-dimensional +de Rham cohomology 
group with complex coefficients of a compact 
Kahler manifold X is canonically isomorphic 
to the direct sum of the +Dolbeault coho- 

mology groups of type (r, s), where r + s = p 
(- 72 Complex Manifolds D). Let b, and h”“, 

respectively, denote the pth Betti number of X 
and dim, H”(X, sz’). Then it follows that b, = 

CI+S=phr,‘. If p is harmonie, then <p is also 
harmonie, SO we have h’,“= h”,‘. Therefore, if p 
is odd, b, is even. This is a generalization of 

the fact that the first Betti number of a closed 
Riemann surface is even. From (9) we have 

b,, > 1 if p is even. Furthermore, a linear com- 
bination of irreducible analytic subsets of X of 
(complex) dimension r with positive real coefft- 
cients is a cycle of degree 2r that is never hom- 
ologous to zero on X, since the integral of 0 

on the cycle is never zero. 
For a compact Kahler manifold X, we cari 

detïne a tcomplex torus 91 and a holomorphic 
mapping 3,: X-t‘% such that (i) % is gener- 
ated by n(X) as a group; (ii) any holomorphic 

mapping p : X -$ T cari be decomposed as p = 
a o i + c, where T is another complex torus, 
r is a complex analytic homomorphism from 
‘U to T, and c is a point of T. ‘Ql is called the 

Alhanese variety of X. The set ‘$3 of complex 
analytic isomorphism classes of tcomplex line 
bundies that are trivial as topological bundles 
has a natural complex structure with a canoni- 
cally associated structure of a family of vector 

bundles (- 72 Complex Manifolds G). With 
this structure SQ is, in fact, a complex torus 
and is called the Picard variety of X. Then ‘Q 

and 91 are constructed using H’(X, R) and 
Hznml(X, R), respectively, and are dual com- 

plex tori. If X is a Hodge manifold (- Sec- 
tion D), 9 and 9t are Abelian varieties (- 3 

Abelian Varieties). 
A small deformation of a compact Kahler 

manifold is also Kahlerian (a Kahler metric 
cari be taken to be of class C” with respect to 
parameters) [9]. But a limit (in the sense of 

deformation) of a Kahler manifold is not 
always Kahlerian. An example was given by 
Hironaka [6]. 

Generalizing the notion of compact Kahler 
manifold, A. Fujiki [2,3] introduced the cate- 
gory %i’ by XE ‘Z? if and only if(i) X is a com- 
pact complex reduced space and (ii) there exist 
a compact Kahler manifold Y and a surjec- 

tive holomorphic mapping: Y+X. Fujiki 
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proves among other things that when XE%? is 

a manifold, (1) every holomorphic p-form is 
closed, (2) H”(X, C)E 0, HP(X, GXP) for any 
n>O, and (3) HP(X,!A$)? H4(X,R$) as a vector 

space, where the fi; denotes the sheaves of 
holomorphic p-forms on X. 

Let X be a compact Kahler manifold 

with Kahler metric g = JZ gmpdzOdYa. Then 
R(g)=CR&g)dzOLdZB (where R&g)= 
- a2/azb@(log(det(g&))) is the associ- 
ated Ricci tensor. According to Chern, 

(fl/27c)CRap(g)dza~ d? is a closed (1,l) 
form representing the iïrst Chern class of X. 
Conversely, for a compact Kahler manifold X, 
E. Calabi conjectured that: 
(a) Given a real closed (1,1) form 

(fl/2rr)C R,gdz” A d? which represents the 
fïrst Chern class of X, there exists a unique 
Kahler metric g on X such that its corre- 
sponding Ricci tensor R(g) coincides with 
C R,J dz” dZP and that g determines the same 

cohomology class as the original Kahler 
metric. 
(b) If X has either negative or zero ftrst Chern 
class, then X admits an Einstein Kahler metric 
g (where “Einstein” means R(g) =(const) g). 

As a partial answer to (b), T. Aubin proved 
the existence of an Einstein Ktihler metric on 

compact complex manifolds with negative first 
Chern class. Later, S. T. Yau gave a complete 

affirmative answer for both (a) and (b), devel- 
oping the method (solving complex Monge- 
Ampère equations) of Calabi and Aubin. 
Among several consequences of Yau’s work, 

the following by A. Todorov is one of the most 
interesting: Every point of SO(3,19)/SO(2) x 
So(l, 19) corresponds to at least one marked 
Kahler surface via period mapping. 

Yau also showed that Aubin’s previous 

work solved aftïrmatively the following con- 
jecture of F. Severi: Every compact com- 
plex surface that is homotopic to P’(C) is 
biholomorphic to P’(C). Yau’s proof used a 

delicate differential geometric analysis of the 
inequality c,(X)~[X]<~C,(X)[X], proved by 
Y. Miyaoka for compact complex surfaces X 
of general type. The key observation is that if 
X is a compact complex surface with negative 
fïrst Chern class and c, (X)2[X] = 3c2(X) [Xl, 

then the universal covering space of X is an 
open bah {(z,,z,)Ec~; ]~,]~+]z~1~<1}. For 
recent developments concerning Calabi’s con- 

jecture - [l, 151. 

D. Hodge Manifolds 

One of the most important examples of Kah- 

Ier manifolds is a projective nonsingular vari- 
ety over the tïeld of complex numbers. If we 
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let (CO, , cN) be a homogeneous coordinate 

system in the N-dimensional projective space 
P”(C), then the subset & # 0 has its holomor- 

phic coordinate system (z’, . , zN), where z1 = 

i~lih,...,Zh=ih-,lihrZh+‘=ik+,lih,...,ZN= 

C”/l’. If we let $h=(l/rc)log(l +Ejlzj12) and 

gms = a* $/az’@, then ds* = C gmpdza dzfl is 
independent of k and determines a standard 
Kahler metric of P”(C) that coincides with 

the so-called Fubini-Study metric on PN(C) up 
to a constant multiplier. In this case, we have 
the following results: (11) Let 6 be a hyper- 
plane of PN. Then the integral JzQ of the fun- 

damental form R on a 2-cycle 2 is equal to 
the +Kronecker index KI(Z, 5) of the tintersec- 

tion of Z and sj. Therefore (12) an integral (a 
period) of R on a 2-cycle with integral coeflï- 
cients is an integer. In other words, R corre- 
sponds to the cohomology class in H*(X, R) of 

a cocycle with integral coefficients. Property 
(12) holds for the induced Kahler metric on an 
analytic submanifold X of PN(C) (which is 
algebraic by +Chow’s theorem). Property (11) 
also holds if we replace .$ by the intersection Y 

of X and sj. Property (8) (- Section B) cari be 
thought of as an expression (in terms of har- 
monic forms) of Lefchetz’s theorem on the 
topology of projective algebraic varieties. 

Generally, if a compact complex manifold X 
admits a Kahler metric with property (12) we 

say that the metric is a Hodge metric and X is 
a Hodge manifold. Kodaira’s theorem asserts 
that a Hodge manifold has a biholomorphic 
embedding into a projective space [SI. Coho- 
mology vanishing theorems (- Section D) and 

the properties of tmonoidal transformations of 
complex manifolds are used to prove this 
theorem. 

On a closed Riemann surface ‘Ji, i.e., a l- 
dimensional compact complex manifold, any 
Hermitian metric is Kahlerian. Moreover, a 
metric with total volume 1 is a Hodge metric. 

This proves that ‘32 is isomorphic to an alge- 
brait curve in a projective space. This is a 

proof (using Kodaira’s theorem) of the exis- 
tence of nonconstant meromorphic functions 
on %. The condition on the tRiemann matrix 

for a complex torus T= C”/D (D is a discrete 
subgroup of rank 2n) to be a projective alge- 
brait variety is that T admit a Hodge metric. 

Let L be the sheaf associated with a positive 
line bundle (i.e., its first Chern class is repre- 
sented by a Hodge metric) on a compact com- 
plex manifold X. Then the Kodaira vanishing 
theorem states that H’(X, K, 0 L)= 0 for any 
i > 0, where K, is the canonical sheaf, i.e., 
the sheaf of holomorphic n-forms, n = dim X. 
Several generalizations are known. For in- 

stance, let X be a compact complex variety 

with a(X) = dim X and F be a sheaf associated 
with a positive vector bundle on X. Take a 
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nonsingular projective variety Y and a bira- 
tional holomorphic mapping n: Y->X and 
delïne K, to be the direct image n,(K,). Then 
H’(X, K,@F)=O for any i>O (S. Nakano 
[ 101, H. Grauert and 0. Riemenschneider 
[SI). Ramanujam’s vanishing theorem is con- 

cerned with an effective divisor D on a non- 
singular projective surface S. D is said to be 
numerically connected if the intersection num- 

ber D, D, > 0 for every decomposition D = 
D, +D, with Di > 0. If D* > 0 and D is numer- 
ically connected, then H1 (S, YJ = 0, where 
-a, is the sheaf of ideals delïning D [ 121. How- 
ever, Kodaira’s vanishing theorem fails for 
algebraic manifolds over lïelds of positive 
characteristic. 

E. Examples and Other Properties 

Concerning differential geometry on compact 

Kahler manifolds, the analytic transformation 
group and the tisometric transformation group 

are also studied. For example, let X be a com- 
pact Kahler manifold of complex dimension n. 
Then the Lie group of isometric transforma- 
tions on X is of dimension <n* + 2n, and the 
equality holds if and only if X = P”(C). 

A nonalgebraic complex torus is the most 

important example of a compact Kahler mani- 
fold that is not algebraic. A complex torus is 
not an algebraic variety if it is not a Hodge 
manifold. 

An example of a noncompact Kahler mani- 

fold is a bounded domain in c” with the Kah- 
Ier metric 

d? = 1 (~210g K(z,z)/a~“az~)dz”d~P, 

where K(z, [) is +Bergman’s kernel function. 
This metric is signilïcant because of its invar- 
iance under the analytic automorphisms of 
the domain. More generally, a Stein manifold 
admits a complete Kahler metric [4]. 
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Klein, Felix 

Felix Klein (May 25, 1849-June 22, 1925) was 
one of the leading mathematicians in Germany 

in the latter half of the 19th Century. Born in 
Düsseldorf and graduated from the University 

of Bonn, Klein went to study in Paris. In 1872 
he became a professor at the University of 
Erlangen, and in 1886 attained a chair at the 
University of Gottingen, where he was em- 
ployed until his death. His accomplishments 
caver a11 aspects of mathematics, but his main 
Iïeld was geometry. In his inaugural lecture at 
the University of Erlangen, he presented a 

bird’s-eye view of all the then known fïelds of 

geometry from the standpoint of group theory, 
which is referred to as the +Erlangen program 
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(- 137 Erlangen Program). In it he stated that 

both Euclidean and non-Euclidean geometry 
are included in tprojective geometry. Klein 
said in his last lectures [4] that he spent the 
greatest part of his energies in the lïeld of 
tautomorphic functions. These last lectures are 
important as historical material on the mathe- 
matics of the 19th Century. Klein was a leader 
of reforms of mathematical education in Ger- 
many [3]. 
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A. Definitions 

Let H3 be the Upper half-space of the 3- 
dimensional Euclidean space. The boundary 
plane of H3 is regarded as the complex plane 
C. The one-point compactitïcation H3 U c 

of H3 is denoted by fi3, where c is the ex- 
tended complex plane. Let Mob(H3) be the 
group of all the Mobius transformations in 

fi3 which are represented by an even number 
of compositions of reflections with respect to 
hemispheres in fi3 orthogonal to e. Here, the 
plane in H3 orthogonal to C is regarded as a 
hemisphere orthogonal to c. The hyperbolic 
structure cari be detïned naturally in H3, and 
this structure is preserved by any element in 
Mob(H3). A hemisphere in fi3 orthogonal to 
c is a (hyperbolic) plane in this structure. The 
restriction of any element in Mob(H3) to e is a 

linear fractional transformation on C; con- 

versely, for any given linear fractional trans- 
formation y on ê, there is a unique Mobius 
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transformation in M6b(H3) whose restriction 
to C coincides with y. 

A Kleinian group J is defined as a discrete 
subgroup of Mob(H3) and acts discontinu- 
ously on H3. If there exist a point PE H3 and a 
sequence {y,,} of distinct elements off such 
that the sequence {y,(p)} converges to a point 

(6 C in the usual topology of fi3, then the 
point [ is called a limit point of J, and the set 
A(T) of a11 the limit points of r is called the 
limit set of T’, which is a closed subset of C. 
When A(T) = C, the Kleinian group J is of the 
tïrst kind. Otherwise, T is of the second kind, 
and the restriction of r to C acts discontinu- 
ously on the region of discontinuity Q(r) = 

C-A(r) for J. Usually, “a Kleinian group” 
means one of the second kind. Thus the Klein- 
ian group r acts discontinuously on H3 U 
n(T), the quotient space H3/r is a 3-manifold 
with a hyperbolic structure induced by that of 

H3, and the union of some Riemann surfaces 
n(J)/T is the boundary of this 3-manifold. A 
study of Kleinian groups in connection with 
the theory of 3-manifolds has been done re- 

cently by W. P. Thurston. 
If A(r) consists of at most two points, then 

the Kleinian group f’ is called elementary; if 
otherwise, J is nonelementary and A(T) is 
Perfect and nowhere dense in C, and n(J) 
allows the Poincaré metric and has a hyper- 
bolic structure invariant under f. A Kleinian 

group whose region of discontinuity has a 
nonempty connected component invariant 
under T is often called a function group. 

B. Examples 

A Fuchsian group (- 122 Discontinuous 
Croups) is a Kleinian group which leaves a 
circular disk in C invariant. Another important 

Kleinian group is the so-called Schottky group. 
Let {C,, C~}~=r be n ( > 2) pairs of Jordan 
curves on C, every one of which lies in the 

exterior of each of the other 2n - 1 curves. 
Assume that there are FI loxodromic (or hyper- 
bolic) linear fractional transformations yj, 
where yj maps the interior of Cj onto the ex- 
terior of Ci conformally. The group generated 
by these { yj) is a Schottky group whose limit 
set is totally disconnected and has its nonem- 
pty subset in the interior of every C, and Cl. A 

Kleinian group is a Schottky group if and only 
if it consists of only loxodromic or hyperbolic 

elements, is fïnitely generated, and is free. A 

Schottky group is not always Fuchsian, and 
there are many kinds of Kleinian groups 
which are not Fuchsian. Quasiconformal de- 
formation of a Fuchsian group G of the tïrst 
kind yields the tTeichmüller space T(G) with 
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the tenter G, and every point of T(G) is a 
quasi-Fuchsian group whose limit set is a 
quasicircle, an image of a circle on C under a 
quasiconformal mapping of C onto itself. TO 

every point of the boundary of T(G), there 
corresponds a Kleinian group called a bound- 

ary group for G. Among them, there is a Klein- 
ian group whose region of discontinuity is 
connected and simply connected. Such a 

Kleinian group is called totally degenerate. A 
web group is a Kleinian group whose region of 
discontinuity consists only of Jordan domains. 

C. Fundamental Sets 

Let r be a Kleinian group acting on H3. There 
is a tfundamental set for r in H3 which is 

bounded by a countable number of hyperbolic 
planes in H3 and is convex in the sense of the 
hyperbolic structure. The closure of this funda- 

mental set in H3 is called a convex funda- 
mental polyhedron for T. For a point poeH3 

not fïxed by elements of T except for the 
identity, the set {p~H~ld(p,p~)dd(y(p),p,) for 
each ~ET), where d denotes the hyperbolic 
distance, yields a convex fundamental poly- 

hedron for T and is called the Dirichlet region 
with the tenter p. for r. If T has a convex 
fundamental polyhedron with a tïnite number 
of sides or faces, then T is called geometri- 
cally finite. Similarly, a Dirichlet region for a 

Fuchsian group in the Upper half complex 
plane H cari be detïned, and it is often called a 
norma1 polygon for the group. For a Kleinian 
group r, instead of fundamental sets for f’ in 
n(T), the concept of fundamental domains is 
sometimes useful. A fundamental domain for a 
Kleinian group J in n(T) (#O) is an open 
subset D of 0(r) such that J-images of any 
point in D, except the point itself, are not in D 
and such that some of the r-images of any 

point in 0(J) lie on the closure of D in n(T). 
The Ford fundamental region is also useful. 

The action of y ET on C is given by a linear 
fractional transformation z+(az + h)/(cz + d), 

ud-hc=l.Thecircle{z~C(]cz+d]=l}is 
called the isometric circle of y with c # 0. If 
cc’En(l), then the set, every point of which is 
in the exterior of isometric circles of a11 YE T 
with c #O, is a Ford fundamental region for r 

c71. 

D. Finitely Generated Kleinian Groups 

Much work has been done on tïnitely gen- 
erated Kleinian groups [2,5,9,10,12,13], 
while very little has been done on nontïnitely 
generated Kleinian groups. If a Kleinian group 

T (of the second kind) is tïnitely generated, 
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then the quotient space R(I)/T is a disjoint 
union of a tïnite number of compact Riemann 
surfaces with at most a fmite number of punc- 
tures (Ahlfors’s finiteness theorem). Further- 
more, if the above I is nonelementary and is 
generated by N generators, then the (hyper- 
bolic) area of O(F)/F is not greater than 47c(N 

- 1) (Bers’s area theorem). These two theo- 
rems played important roles in the study of 

Kleinian groups after 1960. If a Fuchsian 
group is tïnitely generated, then every normal 
polygon for the group has a finite number of 
sides. In contrast with this fact, the following is 
suggestive: If a tïnitely generated Kleinian 

group F is totally degenerate, then F is not 
geometrically lïnite (L. Greenberg). 

There is a method to obtain a Kleinian 
group from two simple groups. If rj (j = l,2) is 
a lïnitely generated Kleinian group and if the 
interior of a connected fundamental domain 0, 
for Fj (,i= 1,2) contains the boundary and the 

exterior of Di (ifj), then the group generated 
by Fl and F, is again a Kleinian group with a 
fundamental domain D, n Dz (Klein’s comhina- 
tion theorem). Generalizations of this theorem 
are discussed by Maskit [14]. 

Let F be a nonelementary Kleinian group, 
and let A (#O) be an invariant union of com- 
ponents of 0(F) under F. Denote by A,(A, F) 
the Banach space of holomorphic auto- 
morphic forms cp(z)dz4 in A for I satisfying 

SS~,rp(~)2~41<p(~)Idxdy< CO, where A/I is a 
measurable fundamental set for F in A, z = x 

+ iy, and p(z)ldzl is the Poincaré metric on A. 
The Banach space !?,(A, I) is the totality of 

holomorphic automorphic forms t,b(z)dzq for I 
in A with SUP,,~ ~(z))~l$(z)l< CO. If r is tïnitely 
generated, then A,(A, F) = B,(A, F), and it is the 
space of a11 the cusp forms for F in A. If F is 
not tïnitely generated, then even the inclusion 
A,@(r), r) c B,@(r), r) does not hold in 
general. 

E. Limit Sets of Kleinian Groups 

Let I be a Kleinian group, and let {Q,} be 
the collection of a11 the components of Q(F). 
Although it was stated in [S] that A(F) con- 
sists of boundaries afij of Rj, it was proved by 
Abikoff in [3] that the statement is incorrect; 
that is, the residual limit set AO = A(r) - 
UjaRj of F is not always empty. In fact, there 

is a web group whose region of discontinuity 
consists of an infinite number of components, 
and such a group has a nonempty residual 
limit set [l]. 

It was conjectured by Ahlfors that the 2- 
dimensional Lebesgue measure of A(F) equals 
zero for every fïnitely generated Kleinian group 
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F of the second kind. This conjecture is one 
of the sources of recent developments of the 
theory of Kleinian groups, and it is still open. 
Concerning this conjecture, the following fact 

was proved by Sullivan in [ 131 from the stand- 
point of the ergodic theory: The Beltrami 
coefficient for I with support on A(F) is equal 
to zero. It is also known that, if F is geometri- 
cally finite, then the conjecture is affirmative. 

The study of Kleinian groups from the view- 
point of ergodic theory has also been devel- 
oped 111,151. 

Let M,(F) be the tt-dimensional Hausdorff 
measure of A(F). The Hausdorff dimension 
d(T) of h(F) is detïned by d(F)=inf{t>Ol 
M,(F) = 0). There are some studies on the 
Hausdorff dimension of A(F) for several kinds 
of Kleinian groups F [3,4,6]. 
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A. General Remarks 

The knot problem is a special case of the 
placement prohlem, stated as follows: Given 
two homeomorphic topological spaces X, 
and X, and their respective homeomorphic 
subsets A, and A,, is there a homeomor- 
phism f: X, +X, such that f(A,)= A,? A 
simple closed curve in a Euclidean 3-space 
R3 (or in a 3-sphere S3 obtained from R3 by 

one-point compactilïcation, sometimes used 
in preference to R3) is called a knot. If two 
knots K, and K, cari be mapped from one 

to the other by a homeomorphism of R3 
(or of S3), they are called equivalent. Al1 
knots are classified into knot types by this 
equivalence. 

Let (x, y, z) be Cartesian coordinates in R3. 
Knots equivalent to x2 + y* = 1, z = 0 and their 
knot type are called trivial or unknotted; knots 
of other types are called knotted. Knots equiv- 
alent to those given by polygonal curves in R3 

and their knot types are called tame; other 
knots are called wild. We discuss only tame 
knots in this article except in Section H. Given 

a knot K in R3, there exists a plane such that 
the orthogonal projection r-c on it has the fol- 
lowing two properties: (1) The image rr(K) has 
no multiple points other than a fïnite number 

of double points. (2) The projections of the 
vertices of K are not double points of n(K). 
Then z(K) is called a regular knot projection 
of K. Let z = 0 be the plane in question. Of 
the two points of K corresponding to a dou- 
ble point of n(K), the one with the greater z- 

coordinate is called the overcrossing point; 
the one with the smaller z-coordinate is 
called the undercrossing point. Suppose that 
overcrossing points and undercrossing 
points appear alternately when we move 
along K in a lïxed direction; then K is called 
alternating. 

Knots K, and K, in R3 are said to be of 

the same isotopy type if there is an tisotopy 
{h,} (O<t< 1) of R3 such that h,:R3+R3 are 

homeomorphisms with the identity h, and 
such that h,(K,)=K,. Knots K, and K, of R3 
are of the same isotopy type if and only if K, is 

mapped onto K, by an orientation-preserving 
homeomorphism of R3. Thus knots of the 
same isotopy type are equivalent. The con- 
verse, however, is false. A knot that cari be 
mapped onto itself by an orientation-reversing 
homeomorphism of R3 is called amphicheiral. 
A knot K is called invertible if K is map- 

ped onto itself by an orientation-preserving 
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homeomorphism h such that h 1 K reverses the 

orientation of K. Knots 4,, 6,, 8,, 8,, 8,,, 8,,, 
8, s in Appendix A, Table 7 are amphicheiral, 
and 8 i 7 is noninvertible. 

Given a knot K, there is an orientable sur- 
face F of +genus h, say, having K as its bound- 
ary, called a Seifert surface of K [ 11. The 
minimum of the genera of Seifert surfaces 
of K is called the genus of K, and there is 
an algorithm with which one cari determine 
the genus of K (W. Haken, Actu Math., 105 
(1961)). Using +Dehn’s lemma and the +sphere 
theorem, C. D. Papakyriakopoulos showed 

that for a tame knot, rri(S3 -K) = 0 (i > 2) and 
further, K is unknotted if and only if rr,(S3 - 
K)rZ[2]. 

The first attempt to list all knots systemati- 
cally was made by P. G. Tait and C. N. Little 

in the 19th Century; an attempt was also made 
by J. H. Conway in 1970. At present, the classi- 
fication has been completed for all knot types 
with at most ten double points by using the 
invariants of knots introduced in Sections B-E 

c3,41. 
Given two knots K, and K, separated by a 

2-sphere S’, we cari tie them together with a 
narrow strip to obtain a new knot K (Fig. l), 
called the product or composition of K, and 

K,. If the strip is chosen SO that the orienta- 
tions of K,, K,, and K are mutually compat- 
ible, then the isotopy type of K is uniquely 
determined by those of K, and K,. The set of 

isotopy types forms a commutative tsemigroup 
with respect to this product, in which the 
trivial knot type is an identity. Any knot is 
decomposed uniquely (up to isotopy) into 
finite products of the prime knots, which can- 

not be decomposed into products of knotted 
knots (H. Schubert and S.-B. Heidelberger, 
Akad. Wiss., 3 (1949)). 

Fig. 1 

Until about 1930 the theory of knots had 

been studied chiefly by J. W. Alexander in the 
United States and by K. Reidemeister, H. 
Seifert, and others in Germany. Little progress 
was made, however, until a new development 
of the theory was introduced by R. H. Fox [S] 
and his school in the United States. In Japan, 
signilïcant contributions have been made by T 

Homma, S. Kinoshita, K. Murasugi, and 

others [6]. 
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B. Knot Groups 

If K is a knot, the tfundamental group G(K) 
= 7c1(R3 - K) of R3 -K is called the knot group 
of K. Any group G is written as a tquotient 

group FIN with a tfree group F and its +nor- 
mal subgroup N. By specifying the generating 
set {x1,x2,... ) of F and a set of elements 

{ ri, r2,. } in F such that N is the minimum 
normal subgroup of F containing r,, r2,. , 

weobtainasystem(x,,x, ,... :rlrr2 ,... ), 

called a presentation of G, written G = (xi, 
X 2, . : r,, rz, .). For the knot group G(K), 
there is a standard presentation called a Wir- 

tinger presentation, which is obtained as fol- 
10~s. First, for the sake of convenience, we 
give an orientation to K. (The orientation is 

irrelevant, however, since the reverse orienta- 
tion gives an isomorphic group.) Consider a 
regular knot projection x(K). If ~L(K) has n 
double points rc(&), then K is divided into n 
arcs zi by n undercrossing points. We con- 
sider a free group F generated by n letters 
xi, . . . ,x.. TO each double point n(di) we asso- 
ciate a word ri in the following manner. The 
two cases near n(di) are illustrated in Fig. 2. 
For the Iïrst case, we defïne ri = x;:, x,x,x[‘; 

and for the second, ri = XL!, X;*X~X,,. Then the 

presentation (xi, x2, . , x,: rlr r2, , rn) is 
called a Wirtinger presentation of G(K). Since 
any one of these ri is a consequence of the rest, 

G(K) may be written as (xi, x2, . . , x,: rl, r2, 
...,rn-l). 

Fig. 2 

If G’ is the tcommutator subgroup of G(K), 

then G(K)/G’ is an infinite cyclic group Z. A 

knot group is an invariant of a knot type, but 
two knots with isomorphic knot groups are 
not necessarily equivalent. However, it is not 
known whether or not two prime knots with 
isomorphic knot groups are equivalent. The 

affirmative statement is called the general knot 
conjecture and is one of the fundamental prob- 
lems in knot theory. The knot complement 
conjecture is another important conjecture and 

states that two prime knots with isomorphic 

knot groups have homeomorphic comple- 
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ments [Il]. Nevertheless, the knot group plays 
a prime role in knot theory. TO be more pre- 
cise, given a knot K in S3, consider a Rubu- 

lar neighborhood V of K. V is a solid torus. 
Choose two simple closed curves m and 1 on 

a V in such a way that (1) m and I intersect at 
the base point; (2) m bounds a disk in V, but m 

is not homologous to 0 on C?V; (3) 1 bounds an 
orientable surface in S3 - V, but 1 is not homo- 
logous to 0 on C~V. A pair {m, 1} is called a 
peripheral system for K, and m is a meridian 
and I a longitude of K. The meridian m and the 
longitude I, as elements of G(K), generate a 
free Abelian subgroup p(K) of G(K), called the 
peripheral subgroup of G(K). Two knots K, 

and K, are equivalent if and only if there is an 
isomorphism cp from G(K,) to G(K,) which 
sends {m,, 1i} onto a conjugate of {mi’, 1:‘) in 
G(K,) (F. Waldhausen, Ann. Math., (2) 87 
(1968)). Therefore the group system {G(K), 

p(K)} is an important invariant of the knot 
type of K. 

G(K) has been studied quite extensively since 
1960. For example, the commutator subgroup 

G’ of G(K) is Qïnitely generated if and only if 
G’ is free, and then the rank of G’ is twice the 
genus of K [7]. S3 - V is a Iïber bundle over Si 

with the liber an orientable surface if and only 
if G’ is finitely generated (J. Stallings, 1962). 
Such a knot is called a tïbered knot. G(K) is 
residually Imite for any knot K (the result 
requires Thurston’s hyperbolization theorem), 
and thus the +word problem for G(K) is solv- 
able. G(K) has no element of Imite order [2]. 
The knot type whose group has a nontrivial 
tcenter is completely characterized. Also, many 

problems on 3-manifolds cari be formulated in 
terms of knot groups. For example, the follow- 
ing conjecture, related to +Poincaré’s conjec- 
ture, still remains unsolved. Property P conjec- 
ture: For a knotted knot K in S3, let N, be the 

smallest normal subgroup of G(K) containing 
mP. If G(K)/N, is a trivial group, then q = 0. 

C. Alexander Invariants and the Seifert Matrix 

Let (xi, . , x,; rl,. , r,-i) be a presentation of 
the knot group G of a knot K, F be the free 

group generated by xi, x2, . . . ,x,, and cp: F+ 

G, $ : G-, H = G/G’ be canonical homomor- 
phisms. Then cp and $ cari be extended to 
homomorphisms between tgroup algebras 
with integral coefficients <p:Z[F]-+Z[G] and 

tj:Z[G]-Z[H]. For any word r in F, we have 
the free derivative &/ax, for i = 1, , n satisfy- 

ing the following: 

axi/axj=s,, ax;llaxi= -x;l, 

a(rsyax,=arjax,+ r’ (aspxi) 
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(Fox [SI). Now we have the Alexander matrix 
A=(a,)(i=l,..., n-l;j=l,..., n)oftheknot 

K defïned by uij= ti o cp(c3ri/Oxj). The ideal E, of 
Z[H] generated by a11 (n-k) x (n-k) minors 
of A is called the kth elementary ideal of A. 
0 E E, g E, c c E, = Z[H], and in particular, 
E, is a principal ideal, called the Alexander 
ideal of K. Since H EZ, any element of Z[H] 

is a fmite sum of elements of the form mt” 
(m, ni Z). The generator A(t) of the Alexander 
(principal) ideal is called the Alexander poly- 
nomial of the knot K. The elementary ideals of 

A, including A(t), are invariants of the knot 
type of K. A(t) is uniquely determined by K up 
to the factor k t” and has the following prop- 
erties: (i) A( 1) = k 1; (ii) A( l/t) = tAA( Con- 
versely, any polynomial with integral coeffl- 
cients satisfying (i) and (ii) is the Alexander 
polynomial of some knot. For example, the 
knot group G of the trefoil knot (or clover- 
leaf knot) K (Fig. 3) is presented by G = (a, b; 
aba(bab)-‘). The Alexander matrix of K is 
(1 - t + t’, - 1 + t - t’), and the Alexander 

polynomial of K is A(t) = 1 - t + tZ. 

b 

Fig. 3 

For a trivial knot, the Alexander polynomial 
is 1, but the converse is false. The lïrst example 
of a nontrivial knot with A(t) = 1 was given by 
Seifert (Fig. 4) [ 11. The Kinoshita-Terasaka 
knot (Fig. 5) is another knot with this property 
(Osaka J. Math. 9 (1957)). 

Fig. 4 Fig. 5 

The degree of the Alexander polynomial 
never exceeds twice the genus of the knot, and 
the equality holds for any alternating knots 
and for lïbered knots. For lïbered knots, A(0) 
= +l and this is also sufflcient for alternating 
knots to be fibered knots. 

The Seifert surface F of K is used to delïne 

an invariant of K as follows. Since H, (F; Z) is 
a free Abelian group of rank 2h, we cari choose 

2h oriented simple closed curves a,, a2, . , uZ,, 

on F, whose homology classes form a free 
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basis for H, (F; Z). Consider F x [ -1, l] in S3, 
and let vii denote the tlinking number o(ai x 
{ -l}, uj x {l}). Then the 2h x 2h integral matrix 
V=(u,) is called the Seifert matrix of K. It has 
been shown that the determinant of the matrix 
‘I/- tl/ is the Alexander polynomial A(t) of K, 
and the ?Signature of the symmetric matrix ‘1/ 
+ I/ is a useful knot invariant a(K), called the 
signature of K (H. F. Trotter, 1962; [SI). For a 

trefoil knot K (Fig. 3), a(K)= -2. Since o(K) 
= 0 for an amphicheiral knot, this shows that 

a trefoil knot is not amphicheiral. 

D. Link Theory 

A link L in R3 is a disjoint union of knots Ki 
inR3andisdenotedbyL=K,UK,U...U 

K,.TwolinksL=K,UK,U...UK,andL’= 
K; U K; U . . . U Kl are said to be equivalent 
if r = s and each Ki is mapped onto Kf, i = 
1,2,. , r, by a homeomorphism of R3. Further, 
we cari defïne the isotopy type of a link, as we 

did in Section A. In link theory, however, we 
mostly consider oriented links, i.e., each com- 
ponent is given an orientation. Therefore, in 
the following, we consider only oriented links, 
and the link type means an isotopy type which 
preserves the orientation of each component. 

LetL=K,UK,U...UK,bealinkinR3C 
S3. The link group G(L) of L is delïned as 
n1(S3 - L). Using a regular projection, a Wir- 

tinger presentation of G(L)=(x,,x,, . . . ,x,: 
rl, r2, , rnml) cari be obtained in exactly the 
same manner as was described in Section B. 
The Alexander matrix A of L is also defmed 
by means of the free derivative from a presen- 

tation of G(L). Since C/G’ is a free Abelian 
group of rank r, the Alexander matrix A is a 
matrix over an integral Laurent polynomial 
ring with r variables t,, t,, . , t,, and hence, 
the lïrst elementary ideal E,(A) may not be 
principal. A generator of the smallest prin- 

cipal ideal containing the generators of E,(A) 
is called the Alexander polynomial or the link 
polynomial of L. It is an integral polynomial 
A(t,, t,, , t,) which is uniquely determined 
up to the factor f ttl t$ . . . t$. The link poly- 
nomial is an invariant of the link type but is 
not an invariant of the link group. There are 

some necessary conditions for a polynomial to 
be a link polynomial, but they are not suffi- 

tient to characterize a link polynomial. By 
putting t, = t, = = t,, we obtain a poly- 

nomial of one variable A(t). (1 - t)&t) is called 
the reduced link polynomial. h(t) is divisible by 

(1 - t)r-’ and V(t) = a(t)/(l - t)r-’ is called a 
Hosokawa polynomial of L. V(t) is symmetric. 

n,(S3 - L) #O if and only if L splits, i.e., 

there is a 2-sphere S2 in S3 which is disjoint 
from L, but each component of S3 - S2 con- 
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tains at least one component of L. Given two 
links, we cari define (not uniquely) a product 
link in the same manner as was described in 
Section A, and any !ink type is decomposed 
uniquely into a tïnite number of prime links. 
The complement of a prime link cannot be 
determined from its group. 

Given a link L of r components, we cari find 

an orientable surface F of genus h, say, whose 
boundary is L, and thus we cari define a Seifert 

matrix V for L. (- Section C. The only dif- 
ference is that H, (F, Z) is free Abelian of rank 
2h + r - 1.) The determinant of ‘V- t V is, then, 

the reduced link polynomial. The signature of 
*V+ Vis called the signature of L [S]. 

For links in S3, we cari detïne a weaker 
equivalence, called the homotopy type. Two 
links are said to be homotopic (or of the same 
homotopy type) if one link is deformed con- 
tinuously onto another under the condition 
that during the deformation each component 
of the link is allowed to cross itself, but no two 
components are allowed to intersect. A typical 
homotopy invariant of a link L is the linking 

number iij= Lk(K,, Kj). The absolute value of 
Âij is determined by G/G,, where Gi, i = 1,2, . , 
denotes the +lower central series of G(L). Using 
the group G/G,, k > 1, J. Milnor defines a 
numerical link invariant F(j, j, . ..j.), 1 <j,,j,, 

,j, < r, called Milnor’s invariant (Ann. Math., 

(2) 59 (1954)). In particular, jï(ij) = /1,, and j? 
completely determines the homotopy type of 
a link with at most three components. 

E. Representations and Covering Spaces 

Let K be a knot (or a link) in S3. A ttransitive 
homomorphism cp from the group G(K) into 
S,,, the tsymmetric group of degree n, is called 
a representation of G(K) of degree n. Two rep- 
resentations qn, and <p2 are said to be equiva- 
lent if there is an +inner automorphism p of S, 

such that (p2 = p’pi 
Since G/G’rZ, <p(G)/cp(G)’ must be cyclic. 

Conversely, any finite group F with T/F’ cyclic 
is a homomorphic image of some knot in S3 

(F. Gonzalez-Acfma, 1975). If r = S, or &+i 
(the tdihedral group of order 2(2n + l)), F/T’ is 
tïnite cyclic and some conditions are known 
for the knot group to be mapped onto r [SI. 
Given a representation cp of G(K) of degree n, 
we obtain the n-fold tcovering space C, of S3 
-K. Equivalent representations correspond to 
homeomorphic covering spaces. C, cari be 
completed to a covering space & of S3 with 
branch points on K. Z’, is an orientable closed 

3-manifold and is called the n-fold branched 

covering space of S3 along K. Let A, be .Z’,- 
C,. Then Arp is a link in ZQ. Any topological 
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invariant of (C,, &,p) is an invariant of K. For 

example, the homology groups of Z, are im- 
portant invariants of K, and by using these 
invariants we cari show that the two knots K, 
(Fig. 4) and K, (Fig. 5) are distinct (R. Riley, 
1971). If HI(&,,; Z) is a finite group, we cari 
compute the linking number between two 
components of A, (R. Hartley and Murasugi, 
Canad. J. Math., 29 (1977)). The set of these 
rational numbers is called the covering link- 

age invariants and is used to classify ah knot 
types with ten double points (K. Perko, Jr. 

(1974)). 
Since C/G’ z Z, every knot group has a 

unique representation on the cyclic group of 
order y. Let Zg - A,, be the corresponding g- 
fold covering space of S3 -K, called the cyclic 
covering space. Then the 1 -dimensional ho- 
mology group H,(C,-A,) is isomorphic to the 
direct sum of H,(&J and Z, and the order B of 
H, (C,) is given by 0 = njzo A(&), where o 

denotes the primitive gth root of unity. If 
H, (Zg) is infinite, then the +Betti number of Cg 
is the number of roots of A(t) = 0, properly 

counted, that are gth roots of unity. 
Since every orientable closed 3-manifold is 

a branched covering space of S3 along a knot 
or link (Alexander (1928)), some attempt has 
been made to identify +simply connected 3- 
manifolds as branched covering spaces of S3. 
However, a11 simply connected 3-manifolds 
obtained as coverings thus far are known to 
be S3. 

In 1979 W. Thurston proved that any g-fold 
(g 2 2) branched cyclic covering space of S3 (or 

of a homotopy 3-sphere) along a nontrivial 
knot is never simply connected. This result set- 
tles affirmatively the Smith conjecture: The fïxed 
point set of any periodic self-diffeomorphism 
of S3 is unknotted if it is a circle. 

The proof of the conjecture is based on the 
study of hyperbolic structures on 3-manifolds 

initiated by W. Thurston (about 1977) and on 
the equivariant loop theorem of Meeks and 
Yau. A hyperholic manifold is a Riemannian 
manifold of constant negative curvature which 
is complete and of tïnite volume. A knot (or 

a hnk) K whose complement S3 -K admits 
a hyperbolic-manifold structure is called a 
hyperbolic knot (or link). Two hyperbohc knots 

with isomorphic knot groups have homeo- 
morphic complementary domains. A faithful 
representation $ of a knot group G(K) into 

tPSL(2, C) is called an excellent parabolic rep- 
resentation if (1) tr $(m) = k 2 for a meridian 
m and (2) $(G(K)) is a non-Abelian discrete 
subgroup of PSL(2, C). According to Thur- 
ston, a knot K is hyperbolic if and only if G(K) 
has an excellent parabolic representation. 

The theory of hyperbolic knots has had a 

most profound influence on knot theory. 
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F. Braids 

The theory of hraids has been used as a tool to 
investigate the theory of knots. An illustration 
of a braid of tïfth order is given in Fig. 6. In 
general, consider a cube D3 written as Dz x 

[0,1],whereD2isadisk{(x,y)~0~x,y<l} 
1 

in R3. Let Pi= 1 - be points on D2 and 
(’ > n+1’2 

delïne 2n points Ai=Pix (1) and &=Pi x {0}, 
i=1,2 ,..., n.ThenjoinAiwithB,,,i=1,2, 

, n, where (k,, k,, , k,) is a permutation 
of(1,2,..., n), by means of mutually disjoint 
polygonal curves Ii in D3 in such a way that 
(1)IinaD3=AiUB,tand(2)foreacht,0<t< 
1, a disk 0, =Dz x {t} intersects I, at exactly 

one point. Such a configuration is called a 
braid of nth order. 

Two braids 3, and 32 are said to be isotopic, 
31 % 32, if there is a homeomorphism of D3 
onto itself mapping 3, onto 32 such that it is 

an identity on aD3. The isotopy relation is an 
equivalence relation among braids. 

Suppose that we are given a braid such as 
Fig. 6. If we connect Ai and Bi by polygonal 

curves Ii on the boundary of D3 (Fig. 7), we 
obtain a closed hraid. In general, a closed braid 
is a link. Conversely, any link is equivalent to 
a closed braid. 

Fig. 6 Fig. 7 

The product 3, 32 of two braids 31 and 32 is 
defined as the braid obtained by connecting 

31 and 32 as shown in Fig. 8. If 31 z 3; and 

s2=&, then 313,= 3; 3;. Hence we cari detïne 
the product [a,] [32] = [3, 32] of equivalence 
classes of braids of nth order. The totality of 
[3] forms a group 3. called the braid group of 
order n. 3” is generated by the equivalence 
classes ci (i= 1,2, , n - 1) of braids as shown 

in Fig. 9(a); note cri’ shown in Fig. 9(b). The 
+fundamental relations between {a,} are Sji = 1, 
where Sji=cjj-‘oii-‘~j<r, or aj~lai~l~jiluiujjai 
accordingaslj-iI>2orIi-jI=l. 

Suppose that we are given braids 31, 32 

represented as products of a,. Then 31 and 32 
are equivalent if and only if the two products 

represent the same element in 3,. The problem 
of deciding whether 31 and 32 are equivalent 
reduces to the tword problem in 3,. On the 

other hand, the problem of deciding whether 
or not two closed braids are equivalent reduces 
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to the ttransformation problem in 3, (- 161 
Free Croups). 

The theory of braids was initiated and de- 
veloped by E. Artin, who also gave a solution 

to the word problem in 3, (Abk. Math. Sem. 
Univ. Humbury (1926)). The transformation 

problem was solved by F. A. Garside (Quart. J. 
Math., 78 (1969)). 

By taking an arbitrary surface F instead of a 
disk D2, we have a braid group over F, de- 
noted by B,(F). The structure of the group 
B,(F) has been studied since 1962. A presenta- 
tion of B,(F) for any 2-manifold is known. 
In particular, B,(F) has no elements of finite 
order except when F is a 2-sphere or a projec- 
tive plane. Following the discovery of a deep 

connection between B,(F) and the mapping 
class group, the study of B,(F) has become 
quite important [9]. 

G. Higher-Dimensional Knots 

The problem of knots, that is, the problem of 
placement of simple closed curves in R3, is 

extended to the problem of placement of q- 
dimensional spheres in p-space RP or in a p- 
dimensional sphere SP. 

In this section, the explanation is restricted 
to the case of tcombinatorial manifolds and 

+PL homeomorphisms between them. A simi- 
lar theory cari be developed for other cate- 
gories (- 114 Differential Topology). 

Let D” be the n-dimensional disk {(x, ,x2, 

. . . . x,,)~R”IIx~l<l,i=1,2 ,..., n}. Weidentify 
D” with the subspace D” x {0} of D”+l. If S4 
is a subcomplex of SP, then (SP, Sq) (p > 4) is 

called a (p, q) sphere pair or (p, q)-knot. If a q- 
dimensional cell B4 is a subcomplex of BP and 
if Bq n BP= Bq, the boundary of Bq, then (BP, Bq) 
is called a (p, q) hall pair or (p, q)-bal1 knot. 
Two pairs X = (Xp, X4) and Y = (Y”, Yq) are 

said to be homeomorphic if there is a homeo- 
morphism k: Xp+ Yp such that k(Xq) = Yq. 
We classify (p, q) bal1 pairs and (p, q) sphere 
pairs into equivalence classes via homeo- 
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morphisms. A (p, y) bal1 pair (BP, Bq) is said 
to be unknotted (or flat) if it is homeomorphic 
to the standard pair rP,q = (DP, Dq). A (p, q) 
sphere pair (SP, Sq) is said to be unknotted if it 
is homeomorphic to (ûDq”, aDp+‘). E. C. 
Zeeman showed that if p -q> 3, then the (p, q) 

bal1 pair and the (p, q) sphere pair are both 
unknotted (Ann. Math., (2) 78 (1963)). Similar 
results have been obtained by Stallings (Ann. 

Math., (2) 77 (1963)). Because of these results, 
the only interesting case is p = q + 2. We as- 
sume further that Sq is locally flat in Sq+*. Let 

Kq be a q-knot, i.e., a q-dimensional sphere, 
in S4+2, and let G(Kq) = 7~~ (Sq+’ - K4), the 
group of Kq. Since G(K4)/G’ E Z, we cari define 

the Alexander matrix, the Alexander ideal, 
and the Alexander polynomial A(t) of K”, 
as we did in Section C. An alternative descrip- 
tion of these invariants expressed as invar- 

iants of homology groups of the infinite cyclic 
covering space of Sq+2 - Kq cari be found 
in J. Levine, Ann. Math., (2) 84 (1966). There 
are some discrepancies between 1-knot theory 
and q-knot theory, q b 2: (1) It is not known 
whether 71, (S4 - K2) z Z implies that (S4, K2) is 
unknotted (unknotting conjecture). (2) z,(Sqf2 
- Kq) cari have an element of fïnite order. 
(3) A(l)= k 1, but A(t) may not be symmetric. 

(4) 7c2(S4- K2) may not be trivial. 
Although the characterization problem of 

the 1-knot group n,(S3-K) has not yet been 

solved, the same problem for the q-knot group 
has been completely settled by M. A. Kervaire 
(1963) as follows. Let G be a finitely presented 
group. Then G is the group of some knot K4 
in Yf2, q > 3, if and only if(i) G/G’ g Z, (ii) 
H,(G; Z) = 0, and (iii) there is an element x in 
G whose set of conjugates generates G. These 
conditions are satisfied by any q-knot group, 
q > 1, but they are not sufflcient for 1-knot 

groups. For q = 2, conditions (i)-(iii) are SU~~I- 
tient for G to be a 2-knot group in a thomo- 
topy 4-sphere. 

A q-knot Kq in Sqt2 (= aDq+3) is called null- 
cobordant if Kq is the boundary of a locally flat 
embedded disk in D4+3. The concept of knot 
cobordism was introduced by Fox and Milnor 
in 1957 (Bull. Amer. Math. Soc., 63 (1957)) for 
1-knots and was readily extended to q-knots 
in S4+2. Knot cobordism is a weaker equiv- 
alence than isotopy, but the set of cobordism 
classes forms an Abelian group C, under the 

connected sum (joining the knotted spheres 
by a tube) or the product for 1-knots. Any 
1-knot K that represents zero element in C, 

is called a slice knot. If K is a slice knot, then 
A(t) must be of the form f(t)f(t -‘) for some 
integer polynomial (Fox and Milnor (1957)) 

and a(K)=0 [8]. For a11 ya 1, CZqml is not 
fïnitely generated, while C,, = 0 (Kervaire 
(1964)). 

H. Miscellaneous Results 

Results on wild knots cari be found scattered 

throughout the mathematical literature since 
1945. Many strange things cari happen with 
wild knots or wild arcs. For example, the 

simple closed curve K (Fig. 10) bounds a disk, 
but n1(S3 - K) is not Abelian. 

The placement problem of graphs in R3 has 
also been treated, for instance by Kinoshita 

(Pucifc J. Math., 47 (1975)). 

Fig. 10 
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Leopold Kronecker (December 7, 1823- 

December 29, 1891) was born in Liegnitz near 
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Breslau in Germany (now Legnica in Poland). 
He entered the University of Berlin in 1841 
but studied at various universities throughout 

the country, tïnally studying under E. E. Kum- 
mer at Breslau. In 1845, he received his doctor- 
ate with a thesis on units of talgebraic num- 

ber tïelds. Then he succeeded to his uncle’s 
business in the management of banks and 

farms, which kept him away from publishing 
mathematical papers for eight years. In 1853, 
he published a paper on algebraic solution 
of equations, containing the assertions that 

Abelian extensions of the rational number field 
are contained in cyclotomic fields and that 
Abelian extensions of imaginary quadratic 
tïelds cari be obtained using tcomplex multi- 
plication. The latter is called “Kronecker’s 

dream in his youth.” It remained a conjecture 
until it was solved by means of +class fïeld 
theory. He gave lectures at the University of 
Berlin, first in his capacity of academician, 

then as a professor, succeeding his teacher 
Kummer in 1883. His statement that mathe- 

matics as a whole should be based solely 
on the intuition of natural numbers (- 156 
Foundations of Mathematics) often brought 
on disputes with his colleague K. tweierstrass. 
His rejection of the bold reasoning of +Set 

theory produced anxieties for G. Cantor. His 
famous statement, “Natural numbers were 
made by God; the rest is the work of mari,” 
cari be put in contrast with the liberal state- 
ments of Cantor and R. Dedekind. Kronec- 
ker’s works and lectures ranged widely over 
the theory of numbers, algebra, and analysis. 
His contribution to the theory of elliptic func- 
tions and his +limit formula for zeta functions 

are well known. He also did pioneering work 
in topology. 
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K-Theory 

A. General Remarks 

K-theory was introduced by M. F. Atiyah and 
F. Hirzebruch after the original idea was sug- 

gested by A. Grothendieck. The +Bott period- 
icity theorem is essential for the development 

of the theory. There are important applica- 
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tions of K-theory to tdifferential and alge- 
brait topology, such as the Riemann-Roch 
theorems for differentiable manifolds (Atiyah 

and Hirzebruch [6,7]), the solution of the 
vector tïeld problem on spheres (J. F. Adams 

Cl]), applications to immersion and embed- 
ding problems (- 114 Differential Topology), 
a simple proof of the solution of the Hopf in- 
variant problem, and the determination of J- 
images in stable homotopy groups of spheres 
(- 202 Homotopy Theory). A review of alge- 
brait K-theory is also included in this article. 

B. Construction of K,(X) 

Let the basic fïeld A be the real number field 

R, the complex number tïeld C, or the quater- 
nion tïeld H. Let A’ be the tcenter of A, and X 
be a compact Hausdorff space. Then &,,(X) 
denotes the set of all isomorphism classes of A- 
tvector bundles over X and is a commutative 

semigroup under the +Whitney sum 5 0’1. Let 
F,(X) be the free Abelian group generated by 
the set g,,(X), and let Q,,(X) be the subgroup 
of F,,(X) generated by the elements of the form 
5 0 q- 5 - 11. Then the Abelian group K,,(X) 
is defined as the quotient group K,(X)= 

F,(X)/Q,(X). K,,(X) is called the Grothen- 
dieck group or K-group, and such a construc- 
tion is called the Grothendieck construction. 
From this we obtain the canonical mapping 
fl:&,,(X)cF,,(X)+K,(X), which is a homo- 
morphism of the semigroups. Moreover, the 
pair (K,,(X), 0) is universal in the following 
sense: Given an Abelian group G and a semi- 

group homomorphism g:G,(X)+G, there 
exists a unique group homomorphism h: 
K,(X)-tG such that g = ho 0. We call h the 
extension of g. 

Let f: X+ Y be a continuous mapping from 

X into another compact Hausdorff space Y. 
Then for y~ E&,,(Y), the tinduced bundle ~*(V)E 
&,,(Y) is defined. Since the mapping f* :gA( Y) 
-&(X) is a semigroup homomorphism, it 

induces a homomorphism K,(f): K,(Y)+ 
K,,(X), which is the extension of Oof*, SO 
that K,(f)oQ=Hof*. Usually, K,(f) is also 
denoted by f*. Thus K, is a tcontravariant 
functor. According to whether A = R, C, or H, 
the notations KO, K, or KSP are often used 
for K,. 

If X = {x,,}, the semigroup homomorphism 

&(x,)g 5 +dim,, <E Z induces an isomorphism 
K,(x,) E Z. If X is a finite CW complex with 
base point x,,, then the reduced group R,(X) 
is detïned to be the kernel of i*, where i:x,-rX 
is the inclusion. Then we have the canonical 

splitting K,(X)gZ @ K,(X), and J?,, is a 
functor defïned on the category of pointed 
fïnite CW complexes. 
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Two isomorphism classes < and n of&(X) 
are said to be stably equivalent if there exist 
trivial bundles 0, and & such that 5 @ 0, = 

110 &. An equivalence class with respect to 
this relation is called a stable vector bundle. If 
X is connected, then the set of a11 stable A- 
vector bundles cari be identilïed with K,(X). 

When A =R or C, the +tensor product of 
vector bundles induces a ring structure on 

K,,(X), and f* becomes a ring homomorphism. 
The complexification of real vector bundles 

t-t &C=i(t) is a semigroup homomor- 
phism G,(X)+&.(X) and induces a ring 
homomorphism i:KO(X)-*K(X) such that 
i o B = 0 o i. If 5 E g”(X), then 5 cari be viewed 

as a complex vector bundle under the scalar 
restriction of basic lïeld, which we shah denote 
by ~(C)E&~(X). The mapping p:&(X)+ 
&-c(X) induces a homomorphism p:KSP(X)+ 
K(X). Similarly, the scalar restriction from C 
to R induces a homomorphism r: K(X)+ 
KO(X). Al1 these are tnatural transformations. 

Let 5 be a complex vector bundle. We cari 
formally Write the +Chern class (- 56 Charac- 
teristic Classes) c(t) of 5 as 

Then the Chern character C/I(~)E H*(X; Q) is 

defined by 

ch(t) = C ev xii 

where Q is the tïeld of rational numbers. The 
mapping ch:Gc(X)+H*(X;Q) is extended to a 
ring homomorphism ch:K(X)+H*(X;Q). We 
denote by the same notation ch the ring homo- 
morphisms ch o i: KO(X)*H*(X; Q) and 
chop:KSP(X)+H*(X;Q). These are natural 
transformations from the functor K, to the 
functor H*( ; Q). 

C. Cohomology Tbeory 

O,(n) denotes O(n), U(n), or SP(n) according as 

the basic lïeld A is R, C, or H. Let 0, be the 
tinductive limit group with respect to the usual 

inclusion O,(n) c O,(n + 1). Provided with the 
weak topology, the group 0, becomes a +CW 
complex. The set of a11 equivalence classes of 
stable A-vector bundles corresponds bijec- 

tively to the set of +Principal O,-bundles. Let 
B, be the tclassifying space for the group O,, 

X, Y be lïnite CW complexes with base points, 
[X, Y] be the set of a11 thomotopy classes of 
mappings from X to Y, and [X, Y& be the set 
of all thomotopy classes in the tcategory of 
pointed topological spaces. Then by the classi- 
fication theorem of tïber bundles (- 147 
Fiber Bundles), we have K,,(X)= [X, Z x B,] 

and R,(X) = [X, Z x B,],. The space B, has 

the structure of a weak +H-space, SO that the 
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induced group structure of the homotopy set 
[X, Z x B,] coincides with that of K,,(X). If f 

is a continuous mapping, then the induced 

homomorphism ,f* of the homotopy set [X, 
Z x B,] coincides with that of K,(X). 

For a fïnite CW pair (X, A), we put 
K,“(X, A)=l?,(S”(X/A)), n=O, 1,2, , where 
X/A is the space obtained from X by collaps- 
ing A to a point that becomes the base point 
of XIA, and S” denotes the +n-fold reduced 
suspension. This gives rise to a cohomology 
theory (indexed by nonpositive integers) (- 
201 Homology Theory, 202 Homotopy 

Theory). 
The tensor product of vector bundles in- 

duces the following pairing, called the cross 
product: 

K,“(X, A) @ K,“( Y, B) 

-+K,!“+“‘(X x Y, X x BU A x Y). 

When A = R or C, the cup product 

Ki”‘(X) 0 K,JX)+K;(m+“)(X), 

K,“(X) @ K,“(X, A)+K^(‘“+“)(X, A) 

is defined as the composite of the cross prod- 
uct and the induced homomorphism A*, 
where A: X-rX x X is the diagonal map- 

ping. The complexification i:KO-“(X, A)+ 
K -“(X, A) preserves the cup product. The 
composite of 

ch: K;“(X, A)+Ej*(S”(X/A); Q) 

and the +Suspension isomorphism 

fi*(S”(X/A); Q)-H*(X, A;Q) 

is denoted by 

ch:K,“(X,A)+H*(X,A;Q). 

The homomorphism ch preserves the cup 
product when A = R or C. 

D. Bott Periodicity 

Let 5, be the +canonical A-line bundle over 
the A-projective line. The elements 

gc=O(&- ~EK(S’)=K~~(X), 

gH = Cl(&,) - 1 E %(S4) = KSP-4(x), 

and 

ga = gn x g,(cross product) 

are called Bott generators. 
The Bott periodicity theorem [ 101 is as 

follows: (1) K(S2), KT(S4), and fi(S*) are 
infinite cyclic groups generated by gc, gn, and 

gR, respectively. Moreover, ch(gc)=(r2, ch(gJ 

= 04, and ch(g,J = cr*, where e” E H”(S”; Z) is a 
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generator. (2) The cross products 

K-“(X,A)@ K-*(x)+K-‘“+2’(X,.4), 

KSP-“(X, A) @ KSP-4(x)+KO-‘“+4’(X, A), 

KO-“(X,A)@KO-8(x)~KO-‘“+8’(X,‘4) 

are isomorphisms. 
The isomorphisms 

Km”(X, A) ei K -@+*)(X, A), 

KSP-“(X,A)gKO-‘“+4’(X,A), 

and 

KO-“(X, A) 2 KO -(“+8)(X, A), 

delïned by a-a x gl\, are called Bott isomor- 

phisms. They commute with ,f*, the kobound- 
ary operator S, and ch. Identifying K -” with 
K-(“+‘), KSP-” with KOm@‘+4’, and KO-” with 
KO-(“+8), we get periodic cohomology theories 

K* =La, K” and KO* = CneZB KO”, which 
are multiplicative cohomology theories, and ch 
is a multiplication-preserving homomorphism 
into H*( ; Q). The cohomology of a point 
K~“(x)=i?,(S”)=n,,(B,)=n,-,(O,) is given 

by Bott [ 111 (- Appendix A, Table 6.IV). 

E. Operations 

We assume that A is R or C. The exterior 
powers A4 are basic operations in K,(X). For 

~E&~(X), the pth texterior power of 5, LB(<)~ 
G,,(X), has the following properties: A’(<)= 1, 

i’(5) = 5, ad iP(5 0 q) = Cq+,=,J-q(5) 0 A’(5). 
Let G be the multiplicative group consisting 
of the forma1 power series eK,,(X) {t} whose 

constant term is 1. The assignment t-Â,(t)= 
C lq(<)tq gives rise to the homomorphism 
&(X)*C. Let 1,: K,(X)+G be its extension. 
The operation iq:K,,(X)+K,(X) is defined 

by Â,(x)=C,,,Aq(x)tq. 
An important series of operations tik, called 

the Adams operations, is derived from the 
exterior powers. Put 

$-t(x)= -t$$+K,,(X){t}, 
‘f 

and defme $“:K,(X)+K,(X) by tif(x)= 
Co,k$k(~)tk. When A=C, delïne $-’ as the 
extension of e-r, where 5 ts the tconjugate 
complex vector bundle of 5. The operation $” 
is a ring homomorphism preserving 1, and the 
relation $k~$‘=fik’ holds. If CE&~(X) is a line 
bundle, then $k(O(<))=(O(<))k. If xeK,(X) and 
ch(x) = C,, ch,(x), where ch,(x) E H’“(X; Q), then 

~h(i+b~(x))=~k”ch,(x). 
” 

The operations iq and $” commute with the 
complexification i: KO(X)+K(X). If &: K(X) 
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+R(S’X) and /$r:K”o(X)-*K”o(S8X) are Bott 
isomorphisms, then $” o pc = k& o t+k” and 

i,bko/&=k4&otjk [l]. 

F. Thom-Gysin Isomorphisms 

Let 5 be a real oriented vector bundle of di- 
mension n over a lïnite CW complex X. A 
reduction of the structure group SO(n) of 
the bundle 5 to its universal covering group 

@in(n) is called a spin structure of 5. The bun- 
dle < admits a spin structure if and only if 
w2([)=0, where w2(<) denotes the second 
Etiefel-Whitney class of 5. The bundle 5 
equipped with a spin structure is called a spin 

hundle. The bundle 5 is called a c,-hundle 
or Spin’ bundle if there is given a cohomol- 
ogy class c1(()~H2(X;Z) such that w2(<)- 
c, (5) mod 2. Let Xr be the tThom complex 
of the vector bundle 5. The group Rh(Xç’) 
has the structure of a K;(X)-module. If we 
assume that < is a c, -bundle when A = C and 

a spin bundle when A = R, then there exists 
a canonical K:(X)-module isomorphism 
<P:K~(X)+I?~‘~‘“~(X~) such that ch<p(l) 

=<p’((.~(5)exp(c,(r)/2))~‘) when A=C and 
ch<p(l)=cp’(&t)-‘) when A=R [6]. Here, 
cp’: H*(X; Q)-8*(X6; Q) is the usual tThom- 
Gysin isomorphism, and dl<) is the & 
characteristic class of the bundle 5 delïned as 
follows: Write the TPontryagin class p(t) of 5 

formally as p(t) = n( 1 + xf); .then the class 
d(t) is given by 

.ti?r) = fl (x,/2)/(sinh (x,/2)). 

If 5 is a complex vector bundle, then its first 
+Chern class ci(t) gives a ci-bundle structure 
to r(QE&(X). In this case, the class .9-(t)= 

.&[)exp(c,/2) is the Todd class of the com- 
plex vector bundle 5. 

G. Riemann-Roch Tbeorems for Differentiable 
Manifolds 

Let M and N be connected closed differenti- 
able manifolds. A continuous mapping f: 

M-N is called a spin mapping (spin map) if 
wi(M)=j”*w,(N) and wz(M)=f*w2(N). If 
wi(M)=~“*w,(N) and there is given a class 
ci EH~@~; Z) such that w,(M)-f*w,(N)= 
ci (mod 2), f is called a c,-mapping. If we as- 
sume that fis a ci-mapping when A = C and 
a spin mapping when A = R, then there is a 
canonical homomorphism 

f;:K”n(M)+K;+di”N-dimM(N) 

such that 

f;(.f *(Xl Ji) =X ‘f;(Y) 
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and 

for YEK~(M) and XEKX(N). This is the 
Riemann-Roch theorem for differentiahle mani- 
folds [6] (- 366 Riemann-Roch Theorems). 
In the second formula, the homomorphism 
f;: H*(M; Q)-H*(N; Q) on the right-hand side 
is the usual tGysin homomorphism, and if 

A = R we set c1 = 0. The homomorphism f; de- 
pends only on the homotopy class off and has 

the usual functorial properties l! = 1 and 

(fos)=f;og!. 

H. The Atiyah-Singer Index Theorem 

Let X be an n-dimensional compact differenti- 
able manifold of class C” without boundary. 
As we shall see later, any elliptic differential 
operator (or, more generally, any elliptic com- 

plex) d on X has analytic index ind,(d) and 
topological index ind,(d), the latter of which is 
deeply related to K-theory. The Atiyah-Singer 
index theorem asserts that ind,(d) = ind,(d) [S]. 

We shall describe the details of the delïnitions 
and the theorem. 

Let E and F be complex vector bundles of 
class C” over X with dim E=s and dim F = t 

(- 147 Fiber Bundles). Let T(E) and T(F) be 
the linear spaces over C consisting of (?-cross 
sections of E and F, respectively. A linear 
mapping d from T(E) to T(F) is called a dif- 
ferential operator of the kth order if d is locally 

expressed by some differential operator of the 
kth order. This means that if we choose a local 
coordinate neighborhood U of X and triviali- 
zations of E and F on U such that E 1 U r U x 
c” and F 1 U g U x C’, then d is a differential 
operator of the kth order from Cm( U, Cs) to 
Ca( U, C’). Thus d is locally expresscd by thc 
matrix form (&4kna (iij)(x)DbL)(i=l,...,t;j= 
1, , s), each component of which is a differen- 
tial operator (- 112 Differential Operators). 
Using this expression we define the symbol 

o(d) of d as follows: Let T*(X) be the cotan- 
gent bundle of X. Given any ~~6 TX*(X), put 

dMx)=(C,a,=rza, @,j)(x)qX), where VX stands 
for ~y1 ~2 for any multi-index CL =(c(~, , c(,) 
and for a local coordinate expression vx = 
(ri, . , @J. We cal1 o(d) the principal symhol of 

d. Now a differential operator d is called ellip- 
tic if for each q, # 0 the linear mapping a(d)(qJ 

gives an isomorphism from E, onto F,. For 
the elliptic differential operator d, we have 

dimKerd< CO and dimCokerd< CO [SI. The 
analytic index ind,(d) is delïned to be the inte- 
ger dim Ker d - dim Coker d, and it has the 
characteristic property that ind,(d) is invariant 

under deformation of d. 

More generally, an elliptic complex G on X 

237 H 
K-Theory 

and the analytic index ind,(&) cari be defmed 
as follows: Given a lïnite number of smooth 
complex vector bundles {Ei}i,l,,,,,l on X and 
differential operators di:T(Ei)+T(Ei+J, we 
cal1 d= {Ei,di}i,l,...,l an elliptic complex on X 
if the following two conditions are satislïed: 

(i) di+l odi=O; (ii) for any qxe TX(X), q,#O, 
4)(s,) 

the (principal) symbol sequence + Ei,x- 
E. ,+l,x+ is exact. For an elliptic complex 8, we 
have dimHi(~)=dim(Kerdi/Imdi-l)< m [S]. 

The integer C( -l)‘dimH’(G) is called the 
analytic index of b. An elliptic complex with 
the form O+T(E)~T(F)+O is an elliptic 
operator. An important example of an ellip- 
tic complex arises from de Rham theory (- 
105 Differentiable Manifolds Q): Take Ei = 
A’T*(X) and the exterior differentiations as 
differential operators. The elliptic complex 
thus obtained is the de Rham complex. 

The topological index ind,(&) of the elliptic 
complex G is introduced in the following way: 
By virtue of the exactness for qx #O, the sym- 

bol sequence * Ei,x- “d”(‘x)Ei+,,x+ determines 

a defïnite element [o(d)] of R(Xr), where X’ 
is the +Thom complex associated with the 
cotangent bundle of X. Embed X in some 
Euclidean space RN. Then the mapping j: 

T*(X)+ T*(RN) z RzN canonically induces the 
homomorphism j!:K(X)+r?((RN)r)zR(SZN)g 

Z, and j! is obtained as in Section G from j by 
using a canonical complex vector bundle struc- 
ture of T*(X) in T*(RN). We set ind,(&)= 

j![a(&)] and cal1 this the topological index of 
8. We have 

ind,(&) = ch( [a(d)])T(X) [X’], 

where ch( [a(d)]) (E H*(X’; Q)) is the Chern 
character of a(d), r(X) (E H*(X; Q)) is the 
Todd class of T(X) @ C, and [X’] is the funda- 
mental cycle of X’ [S]. 

The Atiyah-Singer index theorem, in general 
form, asserts that ind,(d) = ind,(Q). For the de 
Rham complex E, it follows from the definition 

that ind,(E) is equal to the Euler characteristic 
of X. Let X be a compact complex manifold 
and W be a complex analytic vector bundle on 

X. Applying the theorem to the Dolbeault 

complex with value in W...-tA’,‘(W)d 
A”~“‘(W)~. (- 72 Complex Manifolds), we 
cari conclude that Hirzebruch’s formulation of 
Riemann-Roch theorem (- 366 Riemann- 
Roch Theorems B) holds not only for projec- 
tive algebraic manifolds but also for compact 
complex manifolds. Moreover, from the index 

theorem we cari deduce the Hirzebruch index 
theorem (- 56 Characteristic Classes G) and 
various integrability theorems [8]. Any char- 

acteristic number which takes integral values 
on a11 oriented manifolds or weakly almost 

complex manifolds cari be derived from the 
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Atiyah-Singer index theorem (R. Stong and A. 
Hattori). 

The Hirzebruch index theorem and the 
Atiyah-Singer index theorem cari be extended 
to compact manifolds with boundary in the 
framework of Riemannian geometry, giving a 
formula analogous to the Gauss-Bonnet 

theorem for manifolds with boundary [9]. 
Another generalization of the theorem is 

its equivariant version. Let X be a compact 
Hausdorff space on which a compact Lie 

group G acts, i.e., a tG-space. A real or com- 
plex vector bundle n: E-X is called a G-vector 
bundle if E is a G-space, n is an tequivariant 
mapping and G-actions are fiberwise linear. 
The set of isomorphism classes of G-vector 
bundles over X is an additive semigroup with 
respect to Whitney sums, and the Grothen- 
dieck construction on this semigroup gives an 

Abelian group, which is denoted by KG(X) or 
KO,(X), depending on the scalar fïeld of bun- 

dles, called equivariant K-group of X. K,(X) 
and KO,(X) have commutative ring structures 
given by the tensor products. Now consider 
the case where X is a one-point space pt. 
Then a G-vector bundle over pt is a finite- 
dimensional complex or real linear represent- 
ation of G. Therefore K,(pt) or KO&) is the 

Grothendieck group of isomorphism classes of 
linear representations. This group also has a 
ring structure. It is called the representation 
ring of G and is denoted by R(G) or RO(G), 
respectively. When X = C/H, a homogeneous 

space of G by a closed subgroup H, the iso- 
morphism K,(G/H)sR(H) (or KO,(G/H)z 

RO(H) holds true. 
Let X be a compact smooth G-manifold and 

E and F smooth complex G-vector bundles 
over X, i.e., G acts smoothly on X, E, and F. A 
differential operator d: T(E)+f(F) is called 
equivariant when d commutes with induced G- 
actions on T(E) and f(F), respectively. Sup- 

pose that d: T(E)+T(F) is an equivariant 
elliptic differential operator. As T(E) and T(F) 
are G-modules, Kerd and Cokerd are lïnite- 
dimensional G-modules, and the analytic index 
of d is defined by 

ind,(d)=Kerd-CokerdER(G). 

An argument parallel to that for the inequivar- 

iant case detïnes the topological index of d as 

ind,(d)EK,(V)sK,(pt)~R(G), 

where V is a suitable finite-dimensional com- 
plex G-module. Both analytic and topological 
indices are also generalized for equivariant 

elliptic G-complexes, and the equivariant 
Atiyah-Singer index theorem asserts that 

ind,(C”)=ind,($)ER(G) 

for any elliptic G-complex G [S]. 
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The equivariant Atiyah-Singer index theo- 
rem has a close relation with the Lefschetz 
tïxed-point theorem (of Atiyah-Bott [5]) and 
generalizes the Hirzebruch index theorem (also 
called the Hirzebruch signature theorem) to its 
equivariant form, the so-called G-signature 
theorem (- 153 Fixed-Point Theorems). 

1. J-Groups and the Adams Conjecture 

Let i and q be real vector bundles over a tïnite 
CW complex X. 5 and q are called fiber homo- 
topy equivalent if there exist fïber-preserving 
mappingsf:S(<)+S(q), ~:S(>I)+S(<) between 
associated sphere bundles, and fiber-preserving 
homotopies sof= lJog= 1. i and q are 

called stably fiber homotopy equivalent if there 
exist trivial bundles n and m such that 5 @n 
and q @ m are fiber homotopy equivalent 
[24]. Stable fïber homotopy equivalence is an 
equivalence relation, and the set of ah stable 

tïber homotopy equivalence classes of real 
vector bundles over X is denoted by J(X) and 
is called the J-group of X. J(X) is an Abelian 
group with addition induced by Whitney sums 
of vector bundles, and we cari express J(X) = 
KO(X)/T(X) as a quotient group. The natural 
projection 

J: KO(X)+J(X)= KO(X)/T(X) 

is called the J-homomorphism. When X = 

Sk, the k-sphere, the J-homomorphism cari 
be identifïed with the classical stable J- 
homomorphism J:n,~,(O)+~~~, of Hopf and 
Whitehead (- 202 Homotopy Theory). 

Adams [2] proposed to compute J(X) by 
introducing two factor groups J’(X) and J”(X) 
of KO(X) in such a way that these are comput- 

able and that the epimorphisms J”(X)+J(X)-+ 
J’(X) hold whenever the following conjecture 

is true: 
Adams conjecture. Let k be any integer and 

JJVEKO(X). There exists a nonnegative integer 
e=e(k,y) such that J(k’($k- l)y)=O. 

Adams [2] proved this conjecture for line 

and plane bundles. In 1970, D. G. Quillen [25] 
proved this conjecture in its full generality. By 
intensive use of the Brauer induction theo- 
rem, Quillen reduced the problem to the case 

of bundles with tïnite structure groups and 
then to the case of fine or plane bundles 
where Adams’ proof [2] applies. Since then, 
many different proofs of the conjecture have 
appeared. 

Adams’ theory on J(X) and Quillen’s theo- 
rem (Adams conjecture) are utilized in deter- 

mining completely the J-images in stable 

homotopy groups of spheres (- 202 Homo- 
topy Theory). 
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J. Algebraic K-Theory 

Algebraic K-theory is a branch of algebra 
concerned mainly with a series of Abelian 
group valued functors K, of rings (and, more 
generally, of certain categories), which have 

certain features of generalized homology 
theory. It originated in the K-group construc- 
tion used in Grothendieck’s work on the 
Riemann-Roch theorem. The theory was ini- 
tiated in the early sixties by H. Bass, who in- 

troduced K, and extensively studied K, and 
K, in collaboration with other researchers 
[15518]. Then K, was introduced by J. Milnor 

[26], and higher K-theories were constructed 
by Quillen and others from various view- 
points [22,1]. There is also a K-theory with 
respect to Hermitian structure [22, III]. 
Algebraic K-theory is intimately related to 

various other branches of mathematics, such 
as topology, algebraic geometry, and number 
theory. 

The Grothendieck group K,(A) of a ring A 
is the Abelian group generated by the set of 

isomorphism classes [P] of lïnitely generated 
tprojective A-modules subject to the relation 
[P @ P’] = [P] + [P’] for every pair of projec- 
tive modules P, P’. If A is fïnitely generated as 
a Z-algebra, then K,(A) is a lïnitely generated 
group. The assignment n+n[A] defines a 
homomorphism Z+ K,(A) whose cokernel 
is the tprojective class group of A. If A is 
commutative, a similar construction for the 

category of rank 1 projective A-modules with 
respect to the tensor product @ leads to the 
Picard group Pic(A). We then have an epimor- 

phism K,(A)+Pic(A) delïned by P-A’P, 
where P is of rank Y [16]. If X is a compact 
Hausdorff space, the topological K(X) is iso- 
morphic to the algebraic K,(A), where A is 
the ring of complex-valued continuous func- 
tions on X. 

The Whitehead group K, (A) is defïned as 
follows. Let GL(A) be the direct limit of the 

sequence . . ..GL.(A)I;GL,+,(A)~... , where 

Let E,(A) be the subgroup of 

GL,(A) generated by a11 elementary matrices 
1 fac, (ifj, UE A), where the e, are matrix 
units. The limit E(A) of E,(A) coincides with 
the commutator subgroup of CL(A). Now 

deiïne K,(A)=GL(A)/E(A) [15,18]. For A= 
Zir, the integral group algebra of a group n, 
the cokernel of the natural homomorphism 
+ 7z-t K, (A) is denoted by Wh(n). The tor- 
sion invariant of J. H. C. Whitehead is de- 
iïned in Wh(n) [20]. If A is commutative, 
we put SK,(A)=SL(A)/E(A), where SL(A)= 

lim S&(A). By the determinant homomor- 
phism, we have K,(A)rSK,(A)@ U(A), where 

U(A) is the group of units of A. SK,(A)=O 
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when A is a fïeld or a local ring A. A deeper 

result states that SK, (A) = 0 for the ring of 
integers of an algebraic number iïeld (Bass, 

Milnor, and Serre [ 173). This and related re- 
sults have been applied to investigate SK,(Zn) 
for a tïnite group T[. 

We define K,(A) = H,(E(A); Z) (the Schur 
multiplier of E(A)) [21]. This yields a universal 
central extension of E(A), defïned by O+K,(A) 

-+St(A)+E(A)+O, where St(A)=I&Sf,,(A) 
and St,(A) (1123) is the Steinberg group gen- 
erated by x,(a) (E A; i, j = 1, . . . , n, i #j) subject 
to the relations (i) x,(a)x,(b) = x,(a + b), and 

(ii) the commutator (x,(a), xkl(h)) equals xil(ab) 
for j = k, i # 1; and equals I for j # k, i # 1. 

Let F be a tïeld. A bimultiplicative mapping 
s: F* x F*+C (C an Abelian group) satisfying 
s(x, 1 -x) = 1 (x # 0,l) is called a (Steinberg) 
symbol on F. There exists a universal symbol 
F* x F*+K2(F) which, followed by homomor- 

phisms K,(F)+C, yields a11 C-valued symbols 
on F. Since certain Steinberg symbols, such as 
the +Hilbert symbol, are important in number 

theory, the group K,(F) of a global or local 
field F is intimately related to the arithmetic of 
F. If F is an algebraic number field and R its 
ring of integers, we have an exact sequence 0 
+K,(R)+Kz(F)--lL,(R/p)*+O (the next-to- 
last term being the direct sum over a11 prime 
ideals p of R), and K,(R) is a fmite group. 

Quillen [26,27] deiïned higher algebraic K- 

theory based on the following topological 
construction. Let X be a CW complex given 
with a Perfect normal subgroup N of 7~~ (X). 
Attaching 2- and 3-cells suitably to X, he con- 

structed a complex Xf and a mapping ,f: X-t 
X+ SO that 7c1(,f) is epimorphic, Kern,(S)= 
N, and f, : H,(X,f*L) rr H,(X+, L) for any 
local coefficients L over X+. (X+,f) is univer- 
sa1 for pairs (Y,g), g:X+ Y, satisfying n,(g)(N) 
=O, i.e., there exists a mapping y’ :X+ -t Y 
unique up to homotopy such that g’ of = g. 

Quillen applied the above construction to 
X=BGL(A) and N=E(A), and defïned K,(A) 
=n,(BGL,(A)+) for n> 1 (the fïrst definition). 
The universality implies that the inclusion 

E(A)cGL(A) induces a mapping BE(A)* + 
BGL(A)+ which is the same as the universal 

covering mapping up to homotopy, which 
implies that K,(A) % H,(E(A); Z), i.e., Quillen’s 
K, coincides with Milnor’s. It is also known 

that K,(A)%H,(St(A);Z). 
Quillen [22, I] defïned higher algebraic K- 

theory for certain additive categories endowed 
with a class of short exact sequences, called 

exact categories. For an exact category hl, he 
defined another category QM having the same 

abjects as M but with morphisms changed. 

Making use of Segal’s classifying spaces B of 
categories, he defïned K,(M)= ni+l(BQM,O), 

where 0 is a zero abject of M (the second de- 
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finition). When M = Pa, the exact category 
of finitely generated projective A-modules, 
K,(A)sK,(P,) [23], whereby Quillen intro- 
duced the notions of symmetric monoidal 
categories S and their localizations S-‘S and 
showed the homotopy equivalences BS-‘S, = 

K,(A) x BGL(A)+ and fiBQPA= BS-‘S,, 
where S, = Iso P,, is the subcategory of P,, 
whose morphisms are a11 isomorphisms of PA. 
The second delïnition is used to generalize 
many classical results in algebraic K-theory to 
higher K-theory [22,1]. 
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238 (Xx1.32) 
Lagrange, Joseph Louis 

Joseph Louis Lagrange (January 25,1736- 
April 10, 1813) was born in Turin, Italy, and 

became an instructor at the military school 
there in 1753. In 1766, he was invited to Prus- 
sia by King Frederick the Great (1712-1786) 
and moved to Berlin, where he iïlled the post 
(formerly occupied by L. Euler) of chairman of 

the mathematics department in the graduate 
division of the University of Berlin. In 1787, 
he moved to Paris, where he became a pro- 
fessor at the recently founded Ecole Normale 

Supérieure; he remained in France for the rest 
of his life. Lagrange was chiefly responsible 
for the establishment of the metric system. 
In 1795, he became the fïrst president of the 
newly established Ecole Polytechnique. Dur- 
ing the later stages of the Napoleonic Era, he 
was made a Count. 

Mathematically, his position is between 
Euler and Laplace, and he is considered one of 

the major mathematicians of the late 18th and 
early 19th centuries. His notable achievements 
in analysis-the initiation of the tcalculus of 
variations resulting from his research in the 

tisoperimetric problem, the founding of tana- 
lytical dynamics with the introduction of gen- 
eralized coordinates, and the solving of the 
equations now known as +Lagrange’s equa- 
tions of motion-a11 have a strong algebraic 
flavor. Lagrange attempted to base calculus on 
tformal power series. He also conducted re- 
search on the solution of algebraic equations, 

and his work on the +Permutation group of the 
roots of algebraic equations cari be regarded 
as a forerunner of the achievements of Abel 

and Galois. 
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239 (XXl.33) 
Laplace, Pierre Simon 

Pierre Simon Laplace (March 23, 1749-March 
5, 1827) was born into a farming family in 
Beaumont en Auge in Normandy, France. His 

genius was recognized early, and in 1767 he 

moved to Paris, where he enjoyed the favor of 

J. d’Alembert. He became a professor at the 
Ecole Normale and the Ecole Polytechnique. 

During the Napoleonic Era, he was nominated 
for the post of Minister of the Interior; he 
later became a Count. Following the fa11 of 
Napoleon, he became a marquis under Louis 

XVIII. He is often said to have lacked pro- 
fessional integrity, particularly in the matter of 
claiming priority, but on the other hand he 
sometimes showed independence of character 
and was generous to his pupils toward the 
close of his life. His achievements in mathe- 

matics, physics, and astronomy were SO well 
recognized that he reached the highest social 
position. 

Laplace’s achievements reached a peak in 
the lïeld of analysis, which had been initiated 
in the 17th Century and developed in the 18th 
Century by Euler and the mathematicians of 
the Bernoulli family. He applied the methods 
of analysis to tcelestial mechanics, tpotential 
theory, and tprobability theory, obtaining 
remarkable results. 

Without the use of formulas and in a flow- 
ing and elegant literary style [3,5], he eluci- 
dated his various results. Concerning the 

origin of the solar system, in 1796 he published 
the nebular hypothesis-the so-called Kant- 
Laplace nebular hypothesis-which is famous 
as the predecessor of the theory of the evo- 
lution of the universe. 
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240 (X.26) 
Laplace Transform 

A. General Remarks 

The notion of the Laplace transform cari be 

regarded as a generalization of the notion of 
Dirichlet series. L. Euler applied the Laplace 
transform to salve certain differential equa- 

tions (1737); later, independently, P. S. Laplace 
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applied it to solve differential and difference 
equations in his famous book Théorie analy- 

tique des probabilités, vol. 1 (18 12). In this cen- 
tury, the Laplace transform has been used to 
justify Heaviside’s toperational calculus, and 
the notion has become an important tool in 
applied mathematics. 

Let x(t) be a function of tbounded variation 
in the interval 0~ t < R for every positive R. If 

s 

m 
L(s)=(LP(C((t))(s)= ë”‘dcc(t) 

0 

s 

R 
= lim em”dcx(t) 

R-m o 

converges for some complex number s,, then it 
converges for a11 s satisfying Re s > Re sO. We 

cal1 L(S) the Laplace-Stieltjes transform of a(t). 
If cc(t)=rf <p(u)du (where <p(u) is tlebesgue 
integrable in the interval 0 < t <R for every R), 
then we cal1 

L(s)=Y(<p)(s)= me-Sfq(t)dr 
s 0 

the Laplace transform of <p(t) (- Appendix A, 
Table 12.1). 

B. Regions of Convergence 

Given a Laplace transform L(s) of x(t), there 
exists a real number (or *CO) o, such that 
the maximal region of convergence of L(s) is 

the set of a11 s such that Res > 0,. In extreme 
cases, when the integral never converges, we 
Write <r, = +co, and when it converges every- 
where, we Write o, = -co. The number a, is 
called the abscissa of convergence of L(s), and 
the line Re s = <r, the axis of convergence of 
L(s). A formula to determine the abscissa of 

convergence in terms of a(t) is known. If k = 
limsup,,,(logla(t)J)/t#O, then oC=k; if k=O 
and a(t) does not converge as t tends to infïn- 
ity, then a, = 0. If L(s) has a nonnegative ab- 

scissa a,, then a,=limsup,,,(logIcc(t)l)/t, and if 
o,<O, then a,=limsup,,,(logla(co)-a(t)()/t 
(E. Landau, S. Pincherle). Generally, 

where [ ] is the +Gauss symbol (K. Kurosu, 
T. Kojima, T. Ugaeri, K. Knopp). 

If JW e-“lda(t)l< CO, then the Laplace- 
Stieltjes integral L(s) = JO em”dtl(t) is said to be 
absolutely convergent. There exists a real num- 

ber o, such that L(s) converges absolutely for 
Res > a, and does not converge absolutely for 

Re s < a,. We cal1 a, the abscissa of absolute 
convergence of L(s). There exists a real number 
a, such that L(s) converges uniformly for 
Re s > <TU + c (for every E > 0) and fails to do SO 

for Re s 2 a, -E. We cal1 a, the abscissa of 
uniform convergence of L(s). It is clear that 
o, < 0” < cr,. Formulas determining a, and a, 
are analogous to the Dirichlet series formulas 
given by Kojima and M. Kunieda (- 121 
Dirichlet Series B) [ 11. 

C. Regularity 

In the region of convergence Re s > <T,, L(s) 
=JO emS’dcc(t) is tholomorphic, and we have 
Lck)(s) = 10 e -“(- t)“dsc(t) in Resto,. If a(t) is 
monotonie, then the real point s = o, on the 
axis of convergence is a singular point of L(s). 
However, there may not be any singular point 
on the axis of convergence in general. The 

abscissa of regularity is the infimum of a11 o 
such that L(s) is holomorphic in Re s > o. Also, 
L(a+iz)=O(lrl) uniformly in o,+66a< Go 

for every positive 6 as ) z\ + co. Any analytic 
function that is holomorphic at co cari be rep- 
resented by a Laplace transform. TO be pre- 
cise, let f(s)=f(cO)+CzO(a,n!)/s”+’ (Isl>c). 
Then the function p(t) = CEo a,, t” is entire, 
f(s)=f(ro)+Jzemr’q(t)dt, and a,>~. 

D. Inversion Formulas 

We say that a function a(t) (t 20) that is of 
+bounded variation on any interval is normal- 

ized ifcc(O)=a(+O)=O and cc(t)=(cc(t+O)+ 
sc(t -0))/2. A normalized function a(t) (t > 0) is 
uniquely determined by its Laplace transform. 
Moreover, the inversion formula determining 
a(t) in terms of L(s) is known. That is, if L(s) 
=JO” ePdcc(t), then for c>max(cr<,O), 

t >o, 

lim i 
T-a 2ni 

t=O, 

t <o. 

The integral on the left-hand side is often 
called the Bromwich integral. Suppose that a(t) 

= SO <p(u)du, L(s) converges absolutely on Res 
= c, and C~(U) is of bounded variation in a 
neighborhood of u = t (t > 0). Then we have 

lim i 
s 

C+i7 

T+x hi 
L(s)e”‘ds 

There is another form of the inversion for- 
mula by E. L. Post and D. V. Widder. Namely, 

set 

Lk,t[f(x)] =( -l)kf(k)(k/t)(k/t)k+l/k! 

for a C”-function f(x) (t >O, k is a positive 
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integer). Then 

pir ‘L&x),du=a(t)-a(+O). 
s 0 

If cc(t)=~o<p(u)du, then for almost a11 t (>O), 

lim -h,,CWl = cp(d k-m 

(- Appendix A, Table 12.1). 

E. Representation Theorem 

If f(x) is of class C” on (a, b) and ( -l)kf’k’(~) > 
0 for k = 1, 2, . , then f(x) is called completely 
monotonie in (a, b). Moreover, if f‘(x) is con- 
tinuous on [a, b], then f(x) is called cor.lpletely 
monotonie on [a, b]. A necessary and SU~~I- 
tient condition for a function f(x) to be com- 
pletely monotonie in 0 <x < CO is that f(x) = 
j$ ë”‘&(t), where n(t) is bounded and in- 
creasing and the integral converges for 0 d 

x < CC (Bernshteïn’s theorem). A necessary and 
sufficient condition for f(x) to be represent- 
able in the form j”8em”‘<p(t)dt, where <P(I)E 
L,(O, CO) (p> l), is that (i) f(x) have derivatives 
of all orders in 0 <x < CO, (ii) f(x) vanish at 
infïnity, and (iii) there exist a constant M such 
thatj;ILk,,[f(x)]IPdt<Mfork=1,2,3,.... 
In the representation f(x)=so e-“‘q(t)dt, a 
necessary and sufficient condition for <p(t) 
to be bounded in 0 < t < co is that f(x) is 
of class C” in 0 <x < CO and there exists a 

constant M such that I~&[f(x)]/ < M and 

Ixf(x)l<MforO<x<co.Inorderthatq(t)~ 
L 1 (0 Q t < co), it is necessary and sufflcient that 
(i) f(x) be of class C” in 0 <x < CO, (ii) f(x) 

vanish at infïnity, and (iii) SO 1 Lk,r[f(~)] 1 dt < 
CO and 

lim ‘+ 
s 

cc ILk,tCf(X)I-Lj,tCf(X)IIdt=O 
t-2 0 

(Widder). 

F. Operations on Laplace Transforms 

Let the Laplace transform of f(x) be dR(f(t))(s) 

=JO” e-“‘f(t)dt. It is important in operational 
calculus to know the formula for the Laplace 
transform of qJ where cp is an operation. We 
mention here some important formulas: 

Y(f(utb))(s)=iexp 

(f(at-b)=O if at<b, a>O, b>O); 

(Res>max(O,rr,)); 

and 

w-V))(S) = s=w-)(s) -f(O), 

provided that (LO(f’(t))(s) converges at s (>O) 
and f( t)+f(O) as t + + 0. Generally speaking, if 
f( + 0), ,fck-‘)( + 0) exist and the Laplace 
transforms 6”(fCk)(t))(s) converge at s (>O), 

then 

Furthermore, given functions fi and f2, if 
T(~,)(S) and Y(fJ(s) are both convergent 
and if one of them converges absolutely or 
Y(f, *&)(s) converges, then 

G. Asymptotic Properties of the Laplace 
Transform 

If L(s) = JO e -“da(t) (s > 0), then for any c > 0 
and any constant A, we have 

limsup(s’L(s)-AI 
s-+0 

dlimsupIa(t)tPr(c+ l)-Al, 
*-cc 

1imsup~s’L(s)- Al 
s-33 

<limsupIa(t)t-‘T(c+ 1)-Al. 
t-+0 

In particular, if we set c = 0 and assume that 

a(t)~Aast~~,thenf(s)~Aass~+O;andif 
we assume a(t)- At’/T(c+ 1) as t-cc (or t-+ 
+O), then f(s)- As-’ as s* +O (or S-CO). 
These results are called Ahelian theorems, 
because if we choose a(t) appropriately and 
change variables, we get +Abel’s continuity 
theorem on power series: If Ca, converges to 
s, then C a,x” tends to s as x tends to 1 - 0. 
More generally, we have the following theo- 
rem: If 40 emS’da(t)=L(s)+A as s-, +O, then 
lim,,, a(t) = A if and only if P(t) = 10 uda(u) = 

o(t) (twco). 

H. Bilateral Laplace Transform 

If a(t) is of bounded variation in every tïnite 
interval and if for some s 

lim R e-“‘da(t), 
s s 

0 
lim em”‘da(t) 

R-cc o R’-a: -R, 

exist, we set L(s)=jF,e-“‘da(t). 
If L(s) converges at s1 = 0, + iz,, s2 = o2 + iz,, 

then L(s) converges in the vertical strip ol < 

Res < (T*. If L(s) converges in the strip ci: < 
Re s < a: and diverges for Re s > 0: and Re s < 
q!, then each of the numbers cri and a: is called 
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an abscissa of convergence of L(s). If 

limsup---= 
hIWl kfO 

f-m t 

liminflogla(t)l=[#O 
r--o0 t 

with k < I, then k and 1 are the abscissas of 

convergence. If a(t) is a normalized function of 
bounded variation in every tïnite interval and 
L(s) converges in the strip k < Res < 1, then for 
a11 t 

lim i 
T-E hi J C+iTL(s’e”ds 

e-iT s 

i 

a@-+a), c > 0, k<c<l, 

= a(t)-a(m), c<o, k<c<l. 

Suppose that a(t) = SO <p(u)du, L(s) converges 
absolutely on the line Res=c, and q(t) is of 
bounded variation in some neighborhood of 
t=t,. Then 

lim L 
C+iT 

T-a 2ni J L(s)es’ods 
cmiT 

=(cp(to+O)+t<p(t,-0))/2. 

There are other formulas analogous to those 
for the ordinary Laplace transform. 

1. Application to the Theory of Semigroups of 
Operators 

Applying a Laplace transform to a one- 
parameter semigroup of bounded operators 

{WH*>cl on a Banach space yields a natural 
correspondence between the infinitesimal gen- 
erator A of {U(t)} and its resolvent (s-A)-‘. 
Namely, given a continuous one-parameter 

semkroup {u<t>}t,o on a Banach space X 
(- 378 Semigroups of Operators and Evolu- 
tion Equations), the infinitesimal generator A 
is delïned by Ax= lim,,+,K’(U(h)-1)x, and 
A is a densely defined closed operator on X 

for which there exist some positive numbers 
M and fi such that 

Il(s-A)-“11 <M(Res-/?-” (n=1,2,...), 

is valid, provided that Re s > p. The Laplace 

transform of { U(t)},,, is defïned by 

-wJ(Q)(sb = J 
CO 

ePU(t)xdt 
0 

(XE~, Res>/$, 

and the following identity is valid: 

L~(U)(~)=(S-A)-‘. 

Furthermore, the inversion formula 

U(t)x= ;a & - J 
c+iT 

e”‘(s- A)-‘xds 
r-i7 

(C>h t>O) 

holds for every x in the domain of A, and the 
convergence is compact-uniform in t > 0. If A 

is bounded, then U(t) = XE,, tk Ak/k! (norm 
convergent), and we cari Write U(t) = eta. If A is 
not bounded, U(t) is still regarded as an ex- 
ponential function of tA, because we have U(t) 

=lim,,,(l+ tA/n)-” or U(t)=lim,,,ëCA~, A, 
=A( 1 + tA/n)-’ being bounded (both strongly 
convergent). Hence the correspondence be- 
tween {U(t)} and (s-A)-’ is considered a 
generalization of the formula 

L?(e”*)(s)=(~-a)-] (Res> 8). 

In order for us to get the inversion formula 
for every X~X, {U(t)} must satisfy some ad- 
ditional conditions. Namely, if { U(t)} is a 

holomorphic semigroup, the inversion formula 
is valid for every x E X, t 3 0. 

J. Laplace Transform of Distributions 

The Laplace transform in RX is defined by 

Km< + w = J e-“(5+‘q!f(x)dx =F(e-@f)(q) 
K 

when e-“rf(x).L, (- 160 Fourier Transform). 
For n = 1, this definition is equivalent to the 
bilateral Laplace transform. For a given func- 

tion f(x), the set A of 5 for which ë”Y be- 
longs to L, is convex in RT. g(<)O=g(<+ iv)= 
Y(f)(t + iv) is holomorphic in A + iR: pro- 
vided that A is not empty. Differentiation 
under the integral sign gives 

Dr”s(i) = J emxi( -x)“f(x)dx: 
R: 

and the integral converges uniformly on K + 

iR;, K being a compact subset of 8. Especi- 
ally, if eexTf(x) belongs to Y(R”) for some 5, 
then (i”(S) (5 + iv) is defïned on Af + iR& where 
Af= { 5 1 eë”Sf(x)EY’(RX)}, which is also con- 
vex, Y(f)(t+iq) belongs to .Y(R”) for every 

fïxed 5 E Af. Hence the definition of Laplace 
transform cari be extended to some class of 
distributions. Namely, for every distribution 
TEY( the set 

is convex. Thus the Laplace transform of T for 
which AT is not empty is defïned by 

This definition cari be rewritten by the use of 

test functions as follows. For any cp E Y(R$, 

(L(T),~)s=(.~(e~“rT),cp),=(e-“5T,~(<p)), 
=<T,(,.e m”(r+iv)p(q)dq)X. Moreover, if AT 
has an interior point, 2’(T) has an explicit 
expression: take a 5 in A,., and let 0 CE < 

dist(<, C?A~); then e-“(“)EY(RX), eECX)TE 
Y’(R’J, an-d Y(T)(<+iq)= (T,e-x(r+iq))X= 
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In the following, assume that TEY and 

R = Ar is not empty. Then h(i) = Y( T)(t + iv) 
is (i) holomorphic in sl+ iR: and (ii) slowly 

increasing in q. More precisely, for any com- 
pact subset K of R, there exist a positive num- 
ber C, and an integer mK such that for every 5 

+ iv E K + iR:, the following inequality holds: 

Conversely, for a nonempty open convex set R 
and a function h(< + iv) detïned on R + iR: 
satisfying conditions (i) and (ii) above, the cor- 
responding inverse Laplace transform of h is 

the right-hand side being independent of 5 in 
R. T=Y-‘(h) is a distribution and 8,~0. 
Moreover, -Lp( T) = h in R + iRi. The following 
identities hold as in the case of functions: 

Y (( > > & =T K)=i”WV3, 

S?(x”T)([)= 

Roughly speaking, differentiability of T is 
reflected in the decreasing order of Y(T) as 

IV+~. 
Let I be a cane in RF and B, be the bal1 

with tenter 0 and radius r in R:. The dual 
cane of IY is denoted by I’. Assume that the 

support of T is contained in B, + I’, and R 
=A,. is not empty. Then (i) R + I c Q, i.e., R 
extends in the direction of I, and (ii) for any 
5” ER and any c > 0, there exist some C and m 
such that for any 5 + iv E 5” + r + iR$ we have 

I~(T)(~+i~)l~Ce(r’E”51(1+I~l)m. 

Conversely, if there exist a cane r, a domain 
R, and a holomorphic function h(i) on 0 + iR; 

satisfying (i) and (ii) with h(c) replacing 2(T), 
then the support of Y-‘(h) is contained in 
B, + r’. 

The convolution ,f * T of a function fin 
.Y(RX) and a distribution T in Y’(RX) belong 
to Y’(R;), and if A,n&# a, then Ar*T=8,tl 
Â, and 

dP(f* T)=S?(f)Y(T) in 8,nÂ,+iR;. 

More generally, convolution of two distri- 
butions T and S for which 8,. 0 Â, = 0 # @ 
holds is detïned by 

The formula <Ly( T * S) = Y( T)Y(S) is valid by 

virtue of the definition. 
If Q + I c Q for some cane r, we have 

SUpp( T* s) c SUpp T  f SUpp s + r’. 
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K. Moment Problem 

Given a real sequence { pL,}o, the problem of 
finding a function a(t) of bounded variation 
normalized on the interval [0, l] satisfying 

pL,=jA t”&(t) (n=O, 1, . ..). is called Haus- 
dorff’s moment problem. Such a function, if it 

exists, is unique. This problem is a discrete 
analog of the Laplace inversion formula, 
for if we put t =e-Y and n = s, we have vs = 
J”~ems”d[-cc(e-u)]. 

Let Â,, n = (~)(-l)m~“A”-“~,, (m,n=O, 1, . ..). 

where AkpL,=CFE,,( -l)‘(:)~~+~-~ (k=O, 1, . ..). 
Then the problem has a solution a(t) if and 
only if there exists a positive number L such 
that Zn=,I&,,,l <L (m=O, 1, . ..). Moreover, 
a(t) is nondecreasing if and only if 1,,,20. In 
this case {p,} is called completely monotonie. 

When dcc(t)=<p(t)dt, <p(t) belongs to Lp(O, 1) 
(p>l)ifandonlyif(m+l)P-l~~=,Ii,,,~P<L 
(m = 0, 1, . ), and <p(t) is bounded if and only if 
(m+ l)l1”,,.I<L (m,n=O, l,... ). 

Given a real sequence {p,};, the problem of 
fïnding a nondecreasing function x(t) on R 
satisfying ~,,=j?~~ t”&(t) (n =O, 1,. ..) is called 
Hamburger3 moment problem, and the simi- 
lar problem obtained by replacing the condi- 
tion by pn = {; t”&(t) is called Stieltjes’s mo- 
ment problem. In these problems uniqueness 
is not valid. The following is a counterexam- 
ple for the Stieltjes problem given by Stieltjes 

himself: cci(t)=&exp( -u’14)du and u2(t)= 
&exp( -u”4)[1 -sin(u1’4)]rlu (t>O) are non- 
decreasing in (0, CO), and both correspond 

to the sequence p,, = 4(4n + 3)! in Stieltjes’s 
problem. Carleman showed that the condition 
cpp= co is sufhcient for uniqueness in 

Hamburger’s problem. Hamburgers problem 
has a solution if and only if the quadratic 
forms &Opi+jci<j (n=O, 1, . ..) are a11 non- 
negative defïnite. Stieltjes’s problem has a 
solution if and only if the quadratic forms 

C:j=o~i+jii5jandCLj=o~i+j+l5i5j(n=O,l,...) 
are non-negative definite. If, in Hamburger’s 
or Stieltjes’s problem, we require only that the 
solution is a function of bounded variation 
instead of a nondecreasing one, then every 
sequence {p,,}: has a solution (R. P. Boas, Jr.). 

References 

[l] D. V. Widder, Laplace transform, Prince- 
ton Univ. Press, 1941. 
[2] G. Doetsch, Theorie und Anwendung der 

Laplace-Transformation, Springer, 1937. 
[3] B. Van der Pol and H. Bremmer, Opera- 
tional calculus based on the two-sided La- 
place integral, Cambridge Univ. Press, second 
edition, 1964. 



891 

[4] N. Dunford and J. T. Schwartz, Linear 
operators, pt. 1, General theory, Interscience, 
1958. 
[S] K. Yosida, Functional analysis, Springer, 

sixth edition, 1980. 
[6] J. Leray, Hyperbolic differential equations, 
Princeton Lecture notes, Inst. for Adv. Study, 
1952. 
[7] L. Schwartz, Théorie des distributions, 
Hermann, 1966. 
[S] J. A. Shohat and J. D. Tamarkin, The 
problem of moments, Amer. Math. Soc. Math. 
Surveys, no. 1, 1943. 

241 (XVI.1 1) 
Latin Squares 

A. Definition and Classification 

A latin square over a set A = {a,, a2, , a,}, or 
of order n, is an arrangement of elements of A 
in a square of side n such that each symbol in 
A occurs exactly once in each row and in each 
column. It is in standard form, or reduced, if 

the iïrst row and the fïrst column consist of the 
natural permutation. There are three different 
interpretations of latin squares. (1) If we iden- 
tify the set of indices with A and Write z = x o y 
to indicate that the symbol at the row x and 
the column y is z, then we have a quasigroup, 
denoted by (A,o) (- Section C). (2) The set of 
the n2 triplets xyz in the above relation is an 
terrer-detecting code over the alphabet A, of 

word length 3 with the minimum Hamming 
distance 2. (3) The set of the n permutations Pi 
moving the natural permutation to the ith row 

satisfïes the condition that Pi-l 4 is a discord- 
ant permutation if i #j. 

Two latin squares L and L’ are isotopic if 
under convention (2) there are three permu- 
tations p, q, r of A such that L = {xyz}, L’= 
{x’y’z’}, x’=p(x), y’=q(y), z’=r(z). An iso- 
topy class cari contain more than one reduced 
latin square. The number of isotopy classes is 

denoted by Ln. If we admit another equiva- 
lente due to rearrangement of the three com- 
ponents of the words in the code (2), then we 

have main classes; the number of main classes 
is denoted by Ln*. The total number of latin 
squares of order n is given by n! (n - l)! L, for 

the number L, of reduced latin squares. 
ItisknownthatL,=L,=L,=l,L,=4, 

L, = 56, L, = 9408, L, = 16,942,080, L, = 
535,281,401,856, L, = 377, 597,570,964,258,816; 

LT=LZ=L?=l, LZ=LT=2, L6=22, L;= 
564, L; = 1,676,257; LT* = L;* =L;* = 1, Lq** 
=LT* = 2, L;* = 12, LT* = 147. 
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B. Orthogonality 

Suppose that we superimpose two latin 

squares L=(A, o) and L’ =(A, l ), and if there 
is no coincidence for the pairs of the symbols, 

i.e.,ifxoy=x’oy’andxoy=x’oy’implies 
x = x’, y = y’, then L and L’ are mutually ortho- 
gonal, and the resulting square is an Euler 
square. Actually there exists a pair of mutually 
orthogonal latin squares of order n, provided 
that n # 2 or 6; this was established by Bose, 
Shrikhande, and Parker only in 1959, contrary 

to a long-standing conjecture of Euler himself 
that such a set does not exist if n = 2 (mod 4). 
A set of mutually orthogonal latin squares 

of order n cannot contain more than n - 1 
squares, and a set of n - 1 squares is a com- 
plete set of mutually orthogonal latin squares. 

This is equivalent to an error-correcting code 
of n2 words of word length n + 1 with mini- 
mum distance n. Again this is equivalent to a 
finite projective plane of order n, i.e., each line 

containing exactly n + 1 points. If n is a power 
of a prime, then there exists a projective plane 

of order n. In general, if pr is the minimum of 
the prime-power components of n, then there 
is a set of p’- 1 mutually orthogonal latin 

squares of order n. 

C. Quasigroups 

A quasigroup (A, o) is a set A bestowed with a 
binary operation o, satisfying both cancella- 
tion laws; xoy=xoz implies y=z; and yox= 
z o x implies y = z. A fïnite quasigroup is a 

group if and only if it satisfïes the associative 
law (x o y) o z = x o (y o z). A quasigroup is 
isotopic to a group if and only if it satisfïes 
Brandt% law: xoy=zow, xoy’=zow’, x’oy 
= z’ o w  implies x’ o y’ = z’ o w’. Two groups are 

isotopic if and only if they are isomorphic. 

A biunique mapping f of a lïnite group G is 
called a complete mapping if x+x-If(x) is also 
a biunique mapping. In this case if we denote 
by G’ the quasigroup defïned by x o y = xf( y), 
then the two latin squares corresponding to G 
and G’ are mutually orthogonal. A group of 
odd order has a complete mapping, while a 
group of even order with a cyclic 2-Sylow 
subgroup does not have a complete mapping. 

A solvable group of even order with a non- 
cyclic 2-Sylow subgroup also has a complete 

mapping, and it is conjectured that the solv- 
ability condition here is redundant. 

D. Room Squares 

A quasigroup (A, o) is idempotent if x o x = x 

for any x and is commutative if x o y = y o x for 
any x and y. Now a Room square of order 2n 
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is a distribution of the n(2n - 1) unordered 
pairs of elements from A = {a,, a,, . . , a,,-,} 
among the (2n - 1)’ cells of a square of side 
length 2n - 1, such that each element of A 

appears exactly once in each row and in each 
column. The remaining (2n- l)(n- 1) cells 

should be empty. According to Bruck this is 
equivalent to a pair of two idempotent com- 
mutative quasigroups (A; o) and (A; l ) delïned 
over A’ = {a,, , a,,-,}, satisfying an ortho- 
gonality condition similar to that of latin 
squares, namely, x 0 y = x’ 0 y’, x 0 y = x’ . y’ 
implies x = x’, y = y’ or x = y’, y = x’. A Room 

square of order 2n exists if n 2 4. 

E. Number of Latin Squares 

Little is known about the total number of 
latin squares in general. The lïrst k rows of a 
latin square of order n is a k x n latin rect- 
angle. The number of k x n latin rectangles is 
asymptotic to (n!)kexp( - k(k- 1)/2) for k < 
n’13 (Erdos, Kaplansky, and Yamamoto) and 
to (n!)kexp(-(t)-(:)/(n- l)-(4)&‘)) for k< 

r?‘. They suggest an analogous asymp- 
totic relation for the number of latin squares. 
The following congruences are known for 
the number L, of reduced latin squares; L,= 

1 (modp),L,=O(modp)forn>2pifpisa 
prime. 
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Lattice-Point Problems 

A. General Remarks 

Suppose that we are given in a Euclidean 

plane a closed +Jordan curve C of length L 
that bounds a tregion of area F. We denote by 
A the number of tlattice points on the curve C 

or in the region bounded by C. In many cases 
it cari be veritïed that A = F + O(L) (0 is the 
+Landau symbol). Specifically, if we take a 
circle whose tenter is the origin and whose 
radius is ,,&, then A(x) = xx + O(A). Next, 

consider the closed region defined by UV < x, 
u > 1, and v > 1 on the uu-plane. Let D(x) be 
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the number of lattice points lying in this closed 
region. Then D(x)=xlogx+(2C- 1)x+ 

W,/‘-1 h x , w  ere C is the +Euler constant. TO 

observe another aspect of the problem of 
estimating the number of lattice points in a 
given region, consider the series 

y (n?+ny=f(S), 
I?I,“= -CC (m,n)#(O,O) 

( > 
1, ne’ 2 =ds). 

Then we havef(s)=Cz, r(n)nP, g(s)= 

XE, d(n)nms, where r(n) is the number of 
integral solutions (u, v) of the equation u2 + v2 
= n and d(n) is the number of positive integral 
solutions (u, v) of the equation UV = n. Thus the 

problem of estimating A(x) is identical to that 
of estimating H(x) = C.,, r(n); this is called 
Gauss’s circle problem. We also have D(x) = 
Z,,,d(n), and the problem of estimating the 
latter is called Diricblet’s divisor problem. 

We set P(x) = A(x) -rrx and A(x) = D(x) 
-(xlogx+(2C- 1)x). W. Sierpinski (1906) 

showed that P(x) = O(X”~), and G. Voronoi 
(1903) showed that A(x) = O(x’13 logx). There 
are further investigations concerning the esti- 

mations of P(x) and A(x). J. G. van der Cor- 
put and E. C. Titchmarsh devised methods to 
estimate more general ttrigonometric sums. 
For instance, let f(x) be a real-valued func- 

tion of +class Ck (k > 3). If 0 < i <ftk)(x) < hi or 
0 < n < -f’“‘(x) < hÂ in the interval a < x < h 
(with b-a 2 l), then 

As of 1968, we have an estimate slightly better 
than 0(x13140+&) for P(x) and A(x) obtained by 
L. K. Hua (1942) C. J. Cheng (1963), and W. 

L. Yin (1959). It is conjectured that P(x) and 
A(x) are 0(x 114+‘), where E is an arbitrary 
positive number. On the other hand, M. Tsuji 
(1953) proved that l;P(y)/ydy=O(l). G. H. 
Hardy (1916) and A. E. Ingham (1941) showed 
that 

limsupg= CO, liminf 
P(x) <o 

x-m x-m 
xl’410gl/4x ’ 

A(x) 

‘i~~s~pxl~4,0gl,4x 
>0 liminf*= -a. 

’ x-rm x1/4 

H. Cramér (1926) showed that 

1 X,A(y),dy=0(x1/4). 
s 1 

G. Voronoi (1904) proved that if x is positive, 
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then 

C’d(n)=xlogx+(2C-1)x+1/4 
n4x 

where 2’ means that when x is an integer m, 

the mth term d(m) is replaced by (1/2@(m). 
Here J,(x) is the +Bessel function of the fïrst 
kind, and F(x)=(2/n)Jz cos(xu)sin(x/u)du. 

There are many proofs for these expansion 
formulas. E. Landau’s proof (1920) of the 

estimation of C ti,,r(n) is interesting from the 
geometric point of view, and W. Rogosinski’s 
proof (1922) of the estimation of CA,,d(n) uses 

real analytic methods in an ingenious man- 
ner. A. Oppenheim (1926) generalized these 
problems. 

B. Otber Extensions 

Let a,, be rational, a,, = a,,, and Q(ui, , u,) 

= CF,,=, apuupu,, be a +Positive definite qua- 
dratic form with tdiscriminant D. As an ex- 
tension of Gauss’s circle problem, it is nat- 
ural to consider the number of lattice points 

(ml, , m,) satisfying Q(ml, , m,) < x. In 
connection with the tEpstein zeta function, 
this problem was extended to that of estimat- 
ing the sum 

F(x)= c exp(2ni(cc,m, + +u,m,)). 
Q(m,,....m,)ax 

Namely, the weight exp(2ni(cc, m, + + c(,m,,)) 

is placed at each lattice point. We now detïne 6 
such that 6 = 1 if CI,, , CI, are a11 integers and 
6 = 0 otherwise. Landau (1915) obtained three 
exquisite proofs of 

1. M. Vinogradov (1960) obtained a deeper 
result for the special case n = 3 : &+lil+WI bx 1 
= (4/3)nx3’2 + o(x19’**+E). 

Four times the +Dedekind zeta function 
of the Gaussian field Q(G) is equal to 
CE, r(n)n-‘. Hence Gauss’s circle problem cari 

be extended to that of estimating H(x) for the 
Dedekind zeta function. The generalized divi- 
sor problem, including Gauss’s circle problem 
and Dirichlet’s divisor problem, was the prin- 
cipal theme of Landau’s research after 1912. 
We now consider the case where the Dirichlet 
series En=, F(n)n-’ is a tïnite product of Dede- 

kind zeta functions. With a slight modification 

the following result is valid for the product of 
tHecke L-functions: Let kj (1 <j < t) be an 

algebraic number tïeld of degree n,, c,(s) be the 
+Dedekind zeta function of kj, and pj be the 

residue at the pole s = 1 of cj(s). Further, we 
assume that 

n,+n,+...+n,=N, 

H(x)= 1 F(n). 
IlQX 

Then 

H(x) = x(a, log’-’ x+...+a,~,logx+a,) 

+0(x Wl)/W+l)lo r-lx), g 

~,=P,P,...P,l(~-1)!, 

and the remainder 0-term of the right-hand 
side cannot be replaced by 0(x0) for 0< 1/2 
~ 1/2N. There are some algebraic results (Z. 
Suetuna (1929), H. Hasse and Suetuna (1931)) 
concerning the estimation of H(x). In particu- 
lar, if in the definition of F(n), the ci(s) are all 
equal to the Riemann zeta function, then we 

obtain [(s)~ = Cz1 d,(n)nP, where d,(n) is the 
number of ways of expressing n as a product of 
k factors. In this special case the remainder 

term cari be replaced by 0(x”‘), where c = 
max(l/2, (k- l)/(k+2)) (k>3) (G. H. Hardy 
and J. E. Littlewood, 1922). An appropriate 
application of the +Artin L-function was ob- 

tained by Suetuna (J. Fac. Sci. Univ. Tokyo, 

1925), who extended to algebraic number fïelds 
of finite degree the result obtained by Landau 
(1912)-which states that the number of posi- 
tive integers not larger than x that cari be 
expressed as the sum of two squares is ap- 
proximately equal to a~/&, where a is 

a positive constant. 
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A. Definitions 

When x and y are elements of an tordered set 
L, the tsupremum and tintïmum of {x, y}, 

whenever they exist, are called the join and 
meet of x, y and denoted by x U y and x n y, 
respectively. L is called a lattice (or lattice- 
ordered set) when every pair of its elements has 
a join and a meet. The following three laws 

hold in any lattice L:(i) xUy=yUx, xny= 
y n x (commutative law); (ii) x U (y U z) =(x U 
y) U z, x n (y n z) = (x n y) n z (associative law); 
and (iii) x U (y fl x) =(x U y) n x = x (absorption 
law). Conversely, if in a set L two operations 
U, n are given that satisfy (i))(iii), then the 
conditions x U y = y and x f? y = x are equiv- 
alent and defïne an tordering x < y in L with 
respect to which L becomes a lattice. The 
supremum and intïmum of {x, y} in this lattice 
coincide with the elements x U y and x f! y, res- 

pectively. Accordingly, a lattice cari also be de- 
fined as an talgebraic system with operations 
U, n satisfying laws (i)-(iii). The idempotent 
law x U x =x n x=x holds in any lattice. 

An ordered set L is called an upper semilat- 
tice if each pair of elements x, y always has a 
join (supremum) x U y, and a lower semilattice 

if each pair of elements x, y always has a meet 
(infïmum) x n y. 

B. Examples 

The set ‘D(S) of ah subsets of a given set S is a 

complete and distributive lattice with respect 

to the inclusion relation (- Sections D, E). 
The set of a11 +normal subgroups of a given 

tgroup is a complete and modular lattice (- 
Section F) with respect to the inclusion re- 
lation. This remains true if the normal sub- 

groups are replaced by the tadmissible sub- 
groups with respect to a given toperator 
domain. This applies in particular to the 

case of the set of ail, tideals in a given com- 
mutative Yring. The set of all subspaces of a 

given tprojective space is a modular lattice. 
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C. Furtber Definitions 

A mapping f of a lattice L into a lattice L’ that 
satistïes the conditions f(x U y) =f(x) Uf(y) 
and f(xn y)=f(x)nf(y) is called a lattice 
bomomorpbism (or simply bomomorpbism). A 
tbijective lattice homomorphism f is called a 
lattice isomorpbism (or simply isomorpbism); 
its inverse mapping is also a lattice isomor- 
phism. When such an f exists, the lattices L 
and L’ are said to be isomorphic. More gener- 

ally, a mapping f between ordered sets is said 
to be order-preserving when it satistïes the 
condition: x < y implies f(x) <f(y). Any lat- 
tice homomorphism is order-preserving, but 

the converse is not always true; however, an 
order-preserving bijection is an isomorphism. 

If the ordering in a lattice L is replaced by 
the +dual ordering, then the join and the meet 
are interchanged, and a new lattice L’ is ob- 
tained. This new lattice is called the dual lattice 
for L. 

A mapping S of a lattice L into a lattice L’ 
satisfying the conditions f(x n y) =f(x) Uf( y) 

and f(x U y) =f(x) nf(y) is called a dual homo- 
morphism (or antihomomorphism). Moreover, 

when fis a bijection, f is called a dual iso- 
morphism (or anti-isomorphism), and we say 
that L and L’ are dually isomorphic (or anti- 
isomorphic) to each other. 

When a lattice L’ is a subset of a lattice L 
and the canonical injection L’+L is a lattice 
homomorphism, L’ is called a sublattice of L. 

If a subset L’ of a lattice L satistïes the con- 
dition that x, y~ L’ implies x U y, x n y6 L’, 
then two operations U, n cari be induced in L 
SO that L’ becomes a sublattice. For example, 
when a, b are given elements of a lattice L, the 

set of elements x satisfying a < x < b is a sub- 
lattice, denoted by [a, b] and called an interval 
of L. When the quotient set L/R of a lattice L 
by an equivalence relation R in L is also a 

lattice and the canonical surjection L+ L/R is 
a homomorphism, then L/R is called a quo- 
tient lattice of L. If an equivalence relation R 
in a lattice L satistïes the condition that X~X’, 
yry’(modR)irnpliesxUy=x’Uy’,xfly~ 
x’n y’ (mod R), then two operations U, n cari 
be induced in L/R SO that LIR becomes a 

quotient lattice. The Cartesian product L = 

&, Li of a family { Li}i,, of lattices becomes 
a lattice if the operations U, n are detïned by 

(Xi) U (y,) = (xi U y,), (xi) n ( yi) = (xi fl yi). This 
lattice is called the direct product of lattices 

{ LijicI. 

D. Complete Lattices 

An ordered set L is called a complete lattice if 

every nonempty subset of L has a supremum 
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and an infimum in L, and a a-complete lattice 

if every nonempty countable subset has a 
supremum and an intïmum. Naturally, such 

ordered sets are lattices. And a sort of con- 
verse holds: Any lattice is a sublattice of some 
complete lattice. An ordered set L is said to be 
conditionally complete when every subset 
tbounded from above (below) has a supremum 

(infïmum) in L, and conditionally o-complete 
when every countable subset bounded from 
above (below) has a supremum (infimum). For 

any ordered set L there exist a complete lattice 
L and an order-preserving injection f: L+x 

satisfying the condition that each element [EL 
is the supremum and intïmum of the images 
f(X) and f(Y), respectively, for some sets X, 
Yc L. This condition is equivalent to the con- 
dition that for any complete lattice z’ and 
order-preserving injection f’: L+L’, there 

exists an order-preserving injection cp:LL’ 
for which <pof=f’. Hence (L,f) is unique up 
to lattice isomorphisms. z is called the com- 
pletion of the ordered set L. For example, the 

set of real numbers supplemented by +co and 
-cc is the completion of the set of rational 
numbers. 

E. Distributive Lattices 

A lattice L is said to be distributive when it 

satisfies the following equivalent conditions 
(distributive laws) for x, y, z E L: (i) x U (y fl z) 

=(xuy)n(xuZ); (ii) xn(yuz)=(xny)u 
(xnz); and (iii) (xUy)n(yU~)rl(~U~)= 

(x f? y) U (y rl z) U (z n x). The dual lattices, 
sublattices, quotient lattices, and direct prod- 
ucts of distributive lattices are distributive. 
The set s@(S) of subsets of a given set S is a 
distributive lattice, and each of its sublattices is 
called a lattice of sets in S. A distributive lat- 
tice is isomorphic to a certain lattice of sets. A 
homomorphism from a distributive lattice L 

into <p(S) is called a representation of L in S. 
A lattice L is said to be complemented when 

a greatest element 1 and a least element 0 exist 

in L and for every element x, there exists an 
element x’ satisfying x U x’= I, x n X’ = 0. 
Such an x’ is called a complement of x. A 
lattice that is distributive and complemented is 
called a Boolean lattice (or tBoolean algebra). 
In a Boolean lattice, every element has a 
unique complement. The lattice $3(S) of a11 

subsets of a given set S is a Boolean lattice, in 
which S is the greatest element and @ the 
least element. A sublattice of ‘Q(S) that con- 
tains the complement of each of its elements is 
also a Boolean lattice and is called a Boolean 

lattice of sets. Any Boolean lattice cari be rep- 
resented isomorphically by some Boolean 
lattice of sets (- 42 Boolean Algebra). 
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An element a of a lattice is called a neutral 
element if for any pair of elements x and y, the 
sublattice generated by a, x, y is distributive. 
When a is neutral and has a complement, a is 
called a central element. The set of a11 central 
elements of a lattice L is called the tenter of L. 

F. Modular Lattices 

A lattice L is said to be modular if the follow- 
ing condition (modular law) is satisfied: x <z 
implies x U (y n z) = (x U y) n z. A distributive 
lattice is always modular. The dual lattices, 
sublattices, quotient lattices, and direct prod- 
uct of modular lattices are also modular. 

The +Jordan-Holder theorem and the refine- 
ment theorem of 0. Schreier on normal sub- 

groups (- 190 Groups) are generalized as 
follows to the case of any modular lattice: A 
pair of elements x, y in a lattice L satisfying 
x > y is called a quotient and is denoted by 

x/y. In particular, when x > y and there exists 
no element z such that x > z > y, then x/y is 
called a prime quotient, x is said to be prime 
over y, and y is said to be prime under x. A 
sequence C: x0, x1, . , xk of elements of L 
satisfying the conditions xi-i > xi (1 < i < k) is 
called a descending cbain, and k is called its 
lengtb. Each xi-i/xi is called a quotient deter- 
mined by C. When each of these quotients is 

prime, C is called a composition series. A de- 
scending chain D : y,,, y,, . . , y, is called a re- 
finement of a descending chain C : x0, x, , , 

xk when x0 = y,, xk = y, and each xi is equal 

to some yj. We now detïne an equivalence 
relation between descending chains. First, a 
relation xJy z x’Jy’ between quotients x/y and 
~‘/y’ is detïned to mean that either the con- 

dition x =x’ U y, y’ = x’ n y or the condition 
x’ = x U y’, y = x f? y’ holds. Then xJy and 
~‘/y’ are called equivalent if there exists a tïnite 

number of quotients qo, q,, , q, satisfying thé 
conditions x/y = qo, x’Jy’ = q, and qi+, z qi 
(1 < i < r). Descending chains C and C’ are 
said to be equivalent if they have the same 

length and the set of quotients determined by 
C is mapped bijectively to the set of quotients 
determined by C’ SO that the quotient and its 
image are equivalent. Now let L be a modular 
lattice. If two quotients x/y and ~‘/y’ in L are 
equivalent, the intervals [y, x] and [y’, x’], 
considered as lattices, are isomorphic (Dede- 
kind’s principle). If two descending chains 
C:x,,x, ,..., x,andC’:y,,y, ,..., y,havethe 

same ends x,, = y, and xk = y,, then there exist 
a retïnement of C and a retïnement of C’ which 

are equivalent. In particular, any two compo- 

sition series connecting the same elements are 
equivalent (- 85 Continuous Geometry). 

In a modular lattice L with a least element 
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0, if there exists a composition series connect- 

ing 0 and a given element a, then a11 such 
composition series have a common length k, 

denoted by d(a) and called the height of the 
element a. If no such composition series exists, 
the height is defmed to be d(a) = CO. If two 
elements a, h of L satisfy d(a U b) < CO, then 
d(a U b) + d(a n h) = d(a) + d(h). This fact is 

called the dimension theorem of modular lat- 
tices. If L has a greatest element 1, d(1) is 

called the height of the lattice L. 
In a complemented modular lattice L, an 

element which is prime over the least element 
0 is called an atomic element. A complemented 
modular lattice L is said to be irreducihle if 
any two atomic elements have a common 
complement. 

G. Lattice-Ordered Groups 

An ordered set G in which a group operation 

is defined is called an ordered group when 
x < y implies xz Q yz and zx < zy for a11 x, y, z 
in G. Moreover, if it is a ttotally ordered set, 
the ordered group G is called a totally ordered 
group. If G is a lattice, the condition for an 
ordered group is equivalent to the condition 
that (x U y)z = xz U yz, (x n y)z = xz n yz, z(x U 
y) = zx U zy, and z(x n y) = zx n zy. In this 

case, G is called a lattice-ordered group. A 
lattice-ordered group is a distributive lattice 
and has neither a greatest nor a least element. 

If {xi} has a supremum in a lattice-ordered 
group, then we have (sup,xi) n y= supi(xi n y) 
and its dual (complete distributive law). 

The lattice-theoretic structure of a lattice- 
ordered group was clarilïed by P. Lorentzen, 
A. H. Clifford, and T. Nakayama. In particular, 
a lattice-ordered commutative group is isomor- 
phic (as a lattice-ordered group) to some sub- 
group of a direct product of totally ordered 

groups. A lattice-ordered group has no ele- 
ment of finite order other than the identity 
element. Conversely, a commutative group 

which has no element of tïnite order other than 
the identity element cari be made a lattice- 
ordered group with respect to some total 
ordering. Any free group cari also be made a 
lattice-ordered group with respect to some 
total ordering. K. Iwasawa (1948) and others 
have done further research on totally ordered 
groups. 

An element x ( #e) of a lattice-ordered 
group G is called positive (negative) when x 3 e 
(x <e), where e is the identity. G is called an 

Archimedean lattice-ordered group when the 
following condition is satislïed: if, for some y, 

x” < y for all natural numbers n, then x G e. 
An Archimedean lattice-ordered group is 
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isomorphic to some subgroup of a complete 
lattice-ordered group. Conversely, a complete 
lattice-ordered group is Archimedean; more- 
over, it is commutative and isomorphic to 
the direct product of some +lattice-ordered 
linear spaces and copies of the lattice-ordered 
group of rational integers (Iwasawa, 1943). In 
particular, any totally ordered Archimedean 
lattice-ordered group is isomorphic to a sub- 

group of the lattice-ordered group of all real 
numbers. 

If the tminimal condition holds for the set of 
ail positive elements in a lattice-ordered group, 
then the group is commutative, and each of its 

elements cari be decomposed uniquely into a 
product of powers of elements that are prime 
over the identity element. The set of all tfrac- 
tional ideals of an algebraic number lïeld is a 

typical example of such a lattice-ordered 
group. For further reference - 310 Ordered 
Linear Spaces, 85 Continuous Geometry. 
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244 (Xx1.34) 
Lebesgue, Henri Léon 

Henri Lebesgue (June 28,18755July 26,194l) 
was born in Beauvais (Oise), studied at the 

Ecole Normale Supérieure, and received in 
1902 the doctoral degree for his thesis con- 
cerning integration [ 11. After teaching in 
Rennes and Poitiers, he came to Paris where 
he was nominated for a professorship at the 
Faculty of Science in 1920 and then at the 
Collège de France in 1921. He was one of the 

most influential French analysts of this cen- 
tury and is known as the inventor of the +Le- 
besgue integral. With deep insight based on 
intuitive geometric conceptions, he was able to 
initiate a new era in analysis by creating the 
theory of this integral. Not only was this 

theory the start of modern integration, it was 
also a turning point in the theory of +Fourier 
series and tpotential theory. The notions of 
+Lebesgue dimension of topological spaces and 

of +Lebesgue number of compact sets are due 
to him. Lebesgue also made signilïcant contri- 

butions to the +Dirichlet problem. 
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Leibniz, Gottfried Wilhelm 

Baron Gottfried Wilhelm von Leibniz (July 1, 
16466November 4, 1716) was born the son of 

a professor and grew up to be a genius with 
encyclopedic knowledge. He took part in 
politics and touched all scholarly ftelds, con- 
tributing creatively to the development of 
technology as well. His posthumously pub- 
lished works caver theology, philosophy, 
mathematics, the natural sciences, history, and 
technology, and are classifïed into 41 fïelds. A 
complete edition of his works has yet to be 
published. Ars combinatoria, written upon his 
graduation from Altdorf in 1666, was a scheme 

to systematize the various fields using mathe- 
matics as a model. During his stay in Paris 
(1672- 1676) when not involved in politics, he 

studied the works of iDescartes and +Pascal, as 
suggested by C. Huygens. He discovered the 
tfundamental theorem of differential and in- 
tegral calculus and set up a basis for calculus 
with the introduction of an ingenious system 
of notation. After 1676, he worked on histor- 

ical compilations under the Duke of Hanover. 
Leibniz worked not only on the synthesis of 

mechanistic philosophy and medieval theolog- 
ical philosophy but also on the reconciliation 
of Protestantism and Catholicism. With his 

monadism he attempted to unify the old and 
new philosophies. In addition he worked on 

plans for a world academy for the develop- 
ment of learning and on the unification of 
ah knowledge. This was to be accomplished 
using, for example, universal symbolism and 
universal linguistics. Under his influence, the 

Berlin Academy was established in 1700. After 
his death, his conceptions of tsymbolic logic 
and +computers were realized. 
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A. Length of a Curve 

A continuous mapping C sending each point u 

ofanintervalI={uIa<u<b} toapointp= 
p(u) =(x1(u), , X~(U)) of the k-dimensional 

Euclidean space Rk (k b 2) is called a tcontin- 
uous arc or continuous curve, denoted some- 
times by C: p = p(u). The supremum of the 
length of a polygonal curve inscribed in C is 

called the length of C (in the sense of Jordan) 
and is denoted by QC). Namely, it is equal 
to sup,CF, ~P(U,)-P(U,-,)l, where 6 is a par- 
tition ofl:a=u,<u, . ..<u.=b. Let C:p= 
p(u), and C,:p=p,(u), n=l, 2 ,... (u~l) be 

continuous arcs. If p,(u)-p(u) on 1, then 
I(C) < liminf, QC,,). This property is called the 
lower semicontinuity of length. Given two 

continuous arcs C:p=p(u) (uel) and C,:p 
= q(u) (u E Ii), if for any E > 0, there exists a 

homeomorphism u = h,(u) of 1, onto 1 such 
that Ip(h,(u))-q(u)1 <E on Ii, then C and C, 
are called equivalent in the sense of Fréchet. 

Equivalent continuous arcs have the same 
length. A continuous image of an open interval 
is called an topen arc. The length of an open 
arc is defined to be the supremum of the length 

of a continuous arc contained in the open arc, 
and the notion of the equivalence of open arcs 
is defined in the same way as for continuous 
arcs. An equivalence class of continuous arcs 
(or open arcs) is called a Fréchet curve, and its 
length is detïned uniquely. 

Suppose that a continuous arc C is ex- 
pressed by (x,(u), . . . . x,(u)), u~l. Then the 
length 1(C) is finite if and only if every xi(u) is 

of tbounded variation. When I(C) is Imite, C is 
called rectifiable. In this case each axJau exists 
talmost everywhere on 1, and the inequality 

(1) 

holds. The equality holds if and only if each 
xi(u) is absolutely continuous. Among the 
continuous arcs equivalent to C, there exists a 
unique continuous arc C, such that C, : q = q(s) 
(0 <s < 1(C)) and the length of every subarc q = 

q(s) (0 <s < s’( < I(C))) is equal to s’. C, is called 
the representation in terms of arc length of C. 
For Ci, the equality holds in (1). A similar 
argument is valid for any open arc. When 
every subarc of C is rectifiable, C is called 

locally rectifiable. If Ai is the 1-dimensional 
+Hausdorff measure in Rk and n(p) is the 
number of points on 1 corresponding to 

peRk, then /(C)=jn(p)dA,(p) (M. Ohtsuka, 
1951). 
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B. Surface Area 

In this section, we deal with area of tsurfaces 

in R3, using [l] as the main reference. In con- 
trast to the situation for curves, the area of a 
polyhedral surface P inscribed in a given sur- 
face does not necessarily tend to a lïxed value 

as P approximates the surface. In a letter 
of 1880, H. A. Schwarz gave the following 
example: Approximate a circular cylinder with 
height h and radius r by a sequence {P,,} of 
inscribed polyhedral surfaces, each P, consist- 
ing of similar triangles of height b, and base 
length a,. If b,/a,2 is suitably chosen, then the 
surface area of P, tends to an arbitrary value 
not smaller than 27rrh (Fig. 1). 

l 
6 

Fig. 1 

C. Lebesgue Area 

Suppose that we are given a plane domain A 
and a continuous mapping T of A into R3. 
The pair (T, A) is called a surface. Let d( T, 
T’, B) = s~p,,~( T(w)- T’(w)1 for surfaces 
(T, A), (T’, A’) and a set B c A n A’. Let (T, A), 
(T,, A,), (T”, AZ), be given. If A,fA and 
d( T, T,, A,)+O, then (T., A,) (or simply T,) is 
said to converge to (T, A) (or T), and the con- 

vergence is expressed by T. + T. In particular, 
if A consists of a tïnite number of triangles and 
T is linear on each triangle, i.e., the image of 

A under T consists of triangles, then the nota- 
tion (P, F) is used for (T, A), and the area of 

T(A) is denoted by a(P, F). Given a surface 
(T, A), denote the totality of sequences 
{(P,, F,,)} converging to (T, A) by 0, and cal1 

inf,lim inf, a(P,, FJ the Lebesgue area of (T, A). 
This area is denoted by L(T, A). By virtue of the 
definition there exists a sequence {(P., F,)} con- 

verging to (T, A) such that a(P,,F,)+L(T, A). 
Like length, Lebesgue area has the lower semi- 
continuity property. Namely, T,+ T implies 
L(T, A) < lim inf, L( T,, A,). When A is a Jordan 

domain, the same value L(T, A) is obtained if 
ù, is replaced by the set Q* of ah sequences 
{(P,,, F,,)} such that F,tA and P,,(w)+T(w). 

Let f(x, y) be a continuous function defmed 
onOdx<l,O<y<l.Regardf(x,y)asafunc- 

tion of y (resp. x) for a lïxed x (y), and denote 
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it by f,(y)(f,(x)) and its ttotal variation by 

VX)(~(Y)). When JO J+)dx+Jh K(Y)~Y< 00, 
f(x, y) is said to be of bounded variation in the 
sense of Tonelli. Furthermore, if ,f,(y) and fY(x) 
are tabsolutely continuous for almost every x 
and y, respectively, then f(x, y) is said to be 

absolutely continuous in the sense of Tonelli. 
Similar definitions are also given when Sis 
defmed in a general domain. Suppose that a 
surface (T, A) is expressed by a set of three 
functions x = x(u, u), y = y(u, u), 2 = z(u, u), all of 
which are absolutely continuous in the sense 
of Tonelli, and that the partial derivatives x,, 
x,, . , z, are square integrable. Then L(T, A) = 
jsA Jdudv < m (as was shown by C. B. Mor- 
rey), where J = (JF + 52 + Jz)1/2 with tfunctional 

determinants J,, J2, J3 of the transformations 

tu> +(Y> 4, (z, 4, (x, Y). 

D. The Geikze Problem 

The Ge6cze problem is the problem of deter- 
mining whether L(T, A) coincides with the area 
obtained by using (instead of u>) the set of a11 
sequences {(P,, F,,)} such that (P,, Fn) converges 
to (T, A) and each (P,, F,) is inscribed in (T, A). 
The answer is affirmative when A is a Jordan 

domain with L(T, A) < CO. Let T be a surface 
expressed by a function z = F(x, y) (0 <x < 1, 

0 <y < 1) that is absolutely continuous in the 
sense of Tonelli, and let {(PV, F,)} be as before. 
If the ratio of the length of the largest side and 
the smallest height of each triangle in (P,, Fn) 
is uniformly bounded, then a(P,,, F,) tends to 

UT,4 Cl, P. 741. 

E. Ge6cze Area 

Consider a surface (T, A). Let E, , E,, E, be 

coordinate planes in R3, and denote by 71 
(i = 1,2,3) the composition of the mapping T 
and the projection of R3 onto Si. Let &r be the 
positively oriented boundary of a polygonal 
domain rr in A and Ci be the oriented image 
of art by 71. Then the tarder O(z; Ci) of z with 
respect to Ci is a measurable function of z. Set 
ui(T,~)=ui=~~E,(O(z;Ci)(dxdy(z=x+iy)and 
U(T; rr)= u=(v: +ui + u$i/*. The quantity 

I’(T; A)=sup 1 U(T;~) 
s nts 

(2) 

is called the Ge6cze area of (T, A), where S is a 

finite collection of polygonal domains in A 
such that no two of them overlap. If V( T, A) 
< CO, ui is delïned by ijE,O(z; Qdxdy, and 
U(T, A) is delïned as in (2) by means of ui, then 
U(T, A) = V( T, A). The inequalities V( 71, A) d 

V(T, A)< V(T,, A)+ V(T,, A)+ V(T,, A) hold 
trivially. 
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F. Peano Area 

Consider (T, A) and n as in the previous sec- 
tion. Let T be the projection of R3 onto a plane 

E, and denote by c’ the image of the bound- 
ary of n under the composite mapping r o T. 

Set v(T,rc, E)=lJ,lO(z; C’)Ida, where da is 
the surface element on E, and set $(T, rc)= 

sup, u( T, z,E). Define 

P(T,A)=sup c ti(T,n) 
s nts 

as in (2). This is called the Peano area of (T, A). 
H. Okamura defïned area by integrating the 
tmapping degree instead of IO(z; C’)l [SI. 
L, V, P ah coincide, and hence L and V are 
invariant under any orthogonal transforma- 

tion of R3. 

G. Other Definitions of Area 

As in the definition of Peano area, consider n, 

r, E, and denote the Lebesgue measure of T o 
T(n) by m(n, E). If we set p(n) = supE m(n, E), 
then we cari defme the area of (T, A) by 

suP,C,,s~(rr). If r(n) = (m%, E,) + m%, E2) 
+m’(n, E3))l/’ is used instead of p(n), then 
the Banach area of (T, A) is obtained, and if 
~~]O(z; C,)Idxdy is used instead of m(n, E,), 
then the Geocze area is obtained. Let us defïne 

various kinds of area for an arbitary +Bore1 set 
X in R3. Divide R3 into meshes M,, M2, 
which are half-open cubes with diameter of 
equal length d, and denote by ml” (i = 1,2,3) 
the tlebesgue measure of the projection of 
.Mj n X onto the ith coordinate plane. The limit 
of Cj((m(/r)’ +(I#)’ +(J@)*)“’ as d-0 is 
called the Janzen area of X. Denote by mj the 
supremum with respect to the set of planes E 
in R3 of the Lebesgue measure of the projec- 

tion of MjnX to E. Then limZjmj as d-t0 is 
called the Gross area of X. C. Carathéodory 
covered X by a countable number of convex 
sets K,, K,, . each of whose diameters is less 
than 6 > 0, denoted by rnj the supremum of the 
Lebesgue area of the projection on Kj into E, 
and adopted lim Cj rn; as 6 +O as his defïni- 
tion of area of X. If the Kj are restricted to be 
spheres, then Carathéodory’s area divided by 
7c/4 is identical with the +Hausdorff measure 
AZ(X). (For other definitions and mutual 

relations - [4].) 
We give a measure-theoretic definition of an 

area for a surface (T, A) as follows. Denote by 

n(p) the number of points in A corresponding 
to a point p in R3, and cal1 n(p) the multiplic- 
ity function of the mapping T. The integral 
A(T,A)=(z/4)jn(p)dA,(p) cari be taken as a 
definition of the area. However, a different 

defïnition of the multiplicity function is needed 
for the integral to be equal to L(T, A) [3,6]. 
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In fact, if x = <p(u), y = $(u) (0 <u < 1) represent 
a +Peano curve Iïlling the square 0 <x < 1, 
0 <y < 1, then the Lebesgue area of the sur- 
face(T,A)delïnedbyA={O<~<l,O<u<l} 
and T:x=cp(u), Y=$(U), z=O is zero, but 

A(T,A)> 1. 

H. Mappings of Bounded Variation 

Let T be a mapping of a domain A in the 
w-plane into the z-plane, and define n, 0 = 
O(z; C), and S as in Section E. Set 

om(z;c)=(loI-0)/2, 

u(T,z)= 
SS 

IOk C)Idxdy, 

u’(T,n)= 
SI 

O’(z; C)dxdy 

(the same signs correspond to each other), 

W-, A)=su~,C,,sn(T n)> 

N(z;T,A)=sup,C,,,IO(z;C)I, 

and 

N’(z; T, A)=sup,~,,,O’(z;C). 

Then N, N’ are lower semicontinuous in the 
z-plane. The integrals W( T, A) = JJN dx dy, 
W+(T, A)=jjN+dxdy, and W-(T,A)= 
j s N dx dy are called the total variation, 
positive variation, and negative variation of T, 
respectively, and the equalities W= IV+ + W-, 
V= W, and V’= W’ hold. When W(T, A)< 
CO, T is said to be of hounded variation. A 

related notion is defmed as follows: T is ah- 
solutely continuous if the following two con- 

ditions hold. (1) For any given E > 0 there 
exists a 6 > 0 such that CnES U(T, x) < E when- 
ever the sum of the areas of n6S is <6. (2) 

For any polygonal domain 7c0 such that rcO U 
an, c A and any polygonal subdivision S of ni,, 

V(T 4 =IL V(T, 7~). If the area of A is Imite 
and T is absolutely continuous, then T is of 
bounded variation. 

Let T be a continuous mapping of bounded 

variation of a domain A in the w-plane into 
the z-plane. The derivatives V’(w), V;(w), VI(w) 
of the set functions V(T, A), V+(T, A), V-(T, A) 

exist talmost everywhere (a.e.) in A and are 
finite. The difference J(w) = V;(w) - VL (w) is 
called the generalized Jacohian, and the rela- 
tion J(w) = V’(w) holds a.e. If x(u, u), y(~, u) are 
differentiable a.e., then J(w) coincides with the 
ordinary tfunctional determinant a.e. Next, let 
T be a continuous mapping of A into R3 with 

V( T, A) < 10, and denote by J,(w) the gen- 
eralized Jacobian of (T, A). Then J(w) = (J:(w) 
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+ J:(w)+ J~(w))~” is called the generalized 
Jacobian of (T, A). The relation J(w) = k V’(w) 
holds a.e. in A. Therefore 

VT A) 2 
SS 

J(w)dudu (3) 
A 

is valid. The equality holds if and only if each 
( Ti, A) is absolutely continuous. 

1. Fréchet Distance 

Let (Tr , A,) and (r,, AZ) be surfaces, and as- 
sume that the set H of homeomorphisms be- 

tween A, and A, is nonempty. Delïne the 
Fréchet distance between two surfaces by 

Il T, T2 Il = inf sup I T, (w) - T,(h(w))l. 
IlEH wt.4, 

It satisiïes the three axioms of distance (- 273 
Metric Spaces). When //T,, TX11 =O, Ti and T, 
are called equivalent (in the sense of Fréchet). 
A set of ah equivalent surfaces is called a 
Fréchet surface. Equivalent surfaces have 

equal Lebesgue areas; hence Lebesgue area is 
well defïned for any Fréchet surface. Given a 
surface (T, A) with L(T, A) < CO, there exists a 
pair (Ti, A,), equivalent to (T, A) such that the 
functional determinants J,(w) exist for (Ti, A,) 

and 

W,,A,)= 
SS 

J(w)dudv, 
A, 

where 5’(w)=& J;(w), as before. The prob- 
lem of finding such a pair (Ti , A,) is called the 
representation problem. Moreover, we cari 
choose (T, , A,) to be a generalized conforma1 
mapping in the following sense: Express 

U-, > A,) by x = du, 4, Y =Y@ 4, z = du, 4. 
Then x,, x,, . . , z, exist a.e. in A, and are 
square integrable, xi + y: + zz = xv + y: + zv, 

and x,x,+y,y,+zuzv=O a.e. in A,. 

J. Higher-Dimensional Case 

In higher-dimensional spaces, many results are 

also known, such as area and coarea formulas 
[ 11) and a generalization of Morrey’s result 
on Lebesgue area (C. Goffman and W. P. 
Ziemer, 1970). 

K. Hausdorff Dimension 

A. S. Besikovich [9] has shown that for every 
set S in a Euclidean space, there exists a real 
value D such that the td-dimensional Haus- 
dorff measure is infinite for d < D and van- 
ishes for d > D. This D is called the Hausdorff 
dimension. 

F. Hausdorff had already considered this 
measure for tCantor sets and Koch curves. 

900 

A fractal [ 101 is defined as a set for which 
the Hausdorff dimension strictly exceeds the 
tdimension of the set, which is topologically 

detïned in a Euclidean space. 
We show only one example, the coastline of 

a triadic Koch island constructed in the fol- 
lowing way. Consider an equilateral triangle 
with sides of unit length. Remove the middle 
third of each side, and attach in its place a V- 
shaped peninsula bounded by two sides of an 
equilateral triangle with side length 1/3. We 
thus get a Star of David. Repeat the same 
process of formation of peninsulas for each 
segment of the star% sides. If we continue this 

process indehnitely, then we get a complicated 
coastline whose Hausdorff dimension is 
1.2618. Of course the +length of this coastline 

is c0. 
B. Mandelbrot mentions many interesting 

examples of fractals having fractional dimen- 
sions in his book [ 101. 
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Lie, Marius Sophus 

Marius Sophus Lie (December 17, 1842- 
February 18, 1899), a Norwegian mathema- 
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tician, is famous as the founder of the theory 

of tLie groups. From 1869 to 1870 he colla- 
borated with F. Klein on tsphere geometry, 
which led Lie to develop the concept of con- 

tinuous groups. This discovery was the step- 
ping stone that allowed Klein to complete his 
ideas for the tErlangen program. In 1872, Lie 
became a professor at the University of Chris- 
tiania (now Oslo). In 1886, Lie succeeded Klein 
in the chair of mathematics at Leipzig, where 
he remained until 1898. Then he returned to 
Christiania, where a post was created for him, 
but he died one year later. 

The continuous groups that Lie dealt with 
are today called the ?Lie transformation group 

germs. With the free use of geometric concepts 
and analytic methods (especially the theory of 
+differential equations) he was able to develop 

his theory and apply it to the theory of dif- 
ferential equations. The significance of his 

work was not recognized until after his death. 
Early in the 20th Century, E. +Cartan and H. 
tWey1 were able to complete the theory of Lie 

groups, and by the middle of the Century, the 
characteristics of the Lie group as a ttopolog- 
ical group were clarifïed. 
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248 (IV.10) 
Lie Algebras 

A. Basic Concepts 

Let K be a tcommutative ring with unity. A set 
g is called a Lie algebra over K if the following 
four conditions are satisfied: (i) g is a tleft K- 
module, where we assume that the unity of K 

acts on g as the identity operator. (ii) There is 
given a K-bilinear mapping (called the bracket 
product) (X, Y)+[X, Y] from g x g into g: 

[C~ixi,CBj~]=C~i~jCxi, Y,1 

for ah xi, bj in K and Xi, y in g. (iii) [X,X] = 0 
for every X in g. (Hence [X, Y] = - [Y, X] 

for every X, Y in g (alternating law).) (iv) 

LX, CY,Zll+CX CZ,Wl+~Z, LX, ~ll=Ofor 
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every X, Y, Z in g (Jacobi identity). In partic- 
ular, if K =C (the complex number lïeld) or 
K = R (the real number field), g is called a 

complex Lie algebra or a real Lie algebra, 
respectively. 

For example, let ‘LI be an +associative alge- 
bra over K. Putting [X, Y] = X Y- YX, we 
cari supply 91 with the structure of a Lie alge- 
bra over K, which is called the Lie algebra 
associated with (21. In particular, if !Il is the 
+total matrix algebra K, of degree n over K, 
then the Lie algebra associated with K, is 
called the general linear Lie algebra of degree 
n over K and is denoted by gl(n, K). 

Let ré be a Lie algebra over K and a, b be 

tK-submodules of g. The subset of g consisting 

of elements of the form C[A, B] (fmite sum) 
with Asa, Z3~b is denoted by [a, b], which is a 
K-submodule of g. A K-submodule a of g is 
called a Lie subalgebra of g if [a, a] ca. A sub- 
algebra a of g is called an ideal of g if [a, g] c 
a (this condition is equivalent to [g, a] ca). 
If a is a subalgebra of g, the restriction of the 
bracket product of g on a makes a a Lie alge- 
bra over K. If a is an ideal of g, the tquotient 

K-module g/a is a Lie algebra over K relative 
to the bracket product [X + a, Y+ a] = [X, Y] 
+ a. This Lie algebra g/a is called the quotient 
Lie algebra of g modulo a. 

Let g,, g2 be Lie algebras over K. A map- 
ping f: g, -*g2 is called a homomorphism of 
gi into gZ if f is K-linear and ,f( [X, Y])= 
[f‘(X),f( Y)] for every X, Y in gi. A bijective 
homomorphism is called an isomorphism. 
Then gi is said to be isomorphic to g2 if there 
exists an isomorphism from g, onto g2, and 
we Write g, gg2. If f: gi -9, is a homomor- 

phism, then ,f(gi) is a subalgebra of g2, and the 
kernel a =f‘-‘(0) of ,f is an ideal of g,. Fur- 
thermore, the homomorphism ,f induces an 
isomorphism ,T:gi/a+f(g,) (homomorphism 
theorem). 

The direct snm gi + g2 of two Lie algebras 
g,, g2 over K is defined as in the case of as- 
sociative algebras. Then g,, g2 are ideals of 

n1 +Ch. 
The set A(g) of ah automorphisms of a Lie 

algebra g is a subgroup of the general linear 

group GL(g). A(g) is called the (full) automor- 
phism group of g. 

B. Representations 

Let g be a Lie algebra over K, and let k’be a 
K-module. Denote by Q(V) the associative 
algebra consisting of a11 K-linear mappings 

from V into F. Denote by gI(I/) the Lie algebra 
associated with e(V). (Note that if V has a 

basis consisting of m elements over K, then 
gf( V)g gl(m, K).) A homomorphism p: g-gl( V) 
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is called a representation (more precisely, a 

linear representation) of g over V, and Vis 
called the representation space of p. If Vis a 
+free K-module of rank m, then m is called the 
degree of the representation p. We also use 

(p, V) instead of p to mention the representa- 
tion space explicitly. The concepts concerning 
the representations such as tequivalence, +irre- 
ducibility, or complete reducibility are similar 
to the corresponding concepts found in the 

representation theory of associative algebras 
(- 362 Representations). In particular, by 
taking V= g and putting p(X) Y= [X, Y] 
(X, YEN), we obtain a representation of g, 
called the adjoint representation of g, and p(X) 
is denoted by ad(X). Then ad(g) = {ad(X) 1 
XE g} is a subalgebra of gl(g) and is called the 
adjoint Lie algebra of g. 

Let (p, V) be a representation of g. Then 
there is associated with this representation a 
tsymmetric bilinear form B,: g x g+ K given 

by BO(X, Y) = tr p(X)p( Y), where B, satistïes 
the invariance property BP( [X, Z], Y) = 
BO(X, [Z, Y]). In particular, if p = ad, then 

we Write B instead of B,, and B is called the 
Killing form of g. 

Let g be a Lie algebra over R of dimension 
n, and let ad:g-rgl(g) be the adjoint represen- 

tation of g. Put det(t1 -ad(X)) = ZJZO tj4(X) 
for every element XE~. Then the 4(X) are 
polynomial functions on g, and P, = 1. Let 1 be 
the least integer such that P! # 0. Then 1= trank 
g. An element X of g is called regular (singular) 
if s(X)#O (P!(X)=O). The subset g’ of g con- 
sisting of a11 regular elements of g is open and 

dense in g. The subset g-g’ of g consisting of 
a11 singular elements of g is of measure zero 
with respect to the +Lebesgue measure of g, 
which is obtained uniquely up to positive 
scalar multiples by means of a linear isomor- 
phism of g onto R” using any basis of g over R. 

Now suppose that g is reductive (- Section 
G). Then an element XE g is regular if and 
only if the centralizer 3x = { Y E g 1 ad(X) Y = 0} 

of X is a Cartan subalgebra (- Section 1) of g. 
Furthermore, if XE g is regular, then ad(X) is a 

tsemisimple linear endomorphism of g. 

C. Structure of Lie Algebras 

Suppose that a, b are ideals of a Lie algebra g. 
Then [a, b] is also an ideal of g. In particular, 
g has the following ideals: g’ = [g, g], g” = 
[g’, g’], . . , g(‘+‘) = Cg(‘), gci’], Furthermore, 

we have g 3 g’ 3 g” 2 This series is called 
the derived series of g, and g’ is called the 
derived algebra of g. The Lie algebra g is said 
to be Abelian if g’ = 0 and solvable if gck’ = 0 for 

some k. Now put g’ = g, g2 = [g, g’], g3 = 

cg, s21, , SI’+’ = Cg, s’l, Then gl, g2, . 
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are a11 ideals of g, and we have g1 1 g2 1 g3 
3 . This series is called the descending cen- 
tral series of g, and g is said to be nilpotent if 
gk = 0 for some k. An ideal a of g is called 
Abelian (solvable, nilpotent) if the subalgebra a 

is Abelian (solvable, nilpotent). 
Put3={AEgI[X,A]=OforeveryXing}. 

Then 3 is an Abelian ideal of g, called the 
tenter of g, and is the kernel of the adjoint 
representation of g. Detïne the ideals 3i, 32,. . 

of g as follows: 3, is the tenter of g, 32/3, is the 
tenter of g/3i, , 3i+1/3i is the tenter of g/3i, 
Then we have 0 c 3i c 32 c This series is 
called the ascending central series of g, and g is 
nilpotent if and only if 3k = g for some k. 

We assume that K is a field of characteristic 
0 and Lie algebras over K are of tïnite dimen- 
sion. Let X,, , X, be a basis of g over K. 
Then the n3 elements cfi in K detïned by 
[X,, Xj] = C clkjXk are called the structural 
constants of g relative to the basis (Xi). 

D. Radicals and Largest Nilpotent Ideals 

The union r of a11 solvable ideals of g is also a 
solvable ideal of g, called the radical of g. The 
union n of all nilpotent ideals of g is also a 
nilpotent ideal of g, called the largest nilpotent 

ideal of g. The ideal 5 = [r, g] is called the 
nilpotent radical of g. We have g 3 r 3 n 3 a. 

E. Semisimplicity 

A Lie algebra is called semisimple if its radical 
is 0. A semisimple Lie algebra g over K is 
called simple if g has no ideals other than g 
and 0. If r is the radical of a Lie algebra g, 
then g/r is semisimple. Every semisimple Lie 

algebra is a direct sum of simple Lie algebras. 
For example, put t(n, K)= {A =(qj)~gl(n, K)I 

u,~=O for every i<j} and n(n, K)= {A =(a,)~ 

th K) I a 1, = uZ2 = . = ann =O}. Note that 
t(n, K) is the set of a11 lower triangular ma- 
trices and n(n, K) is the set of nilpotent lower 
triangular matrices. Then t(n, K) is a solvable 

subalgebra of gl(n, K), and n(n, K) is a nilpo- 
tent subalgebra of gl(n, K). Put sl(n, K)= 
{A~gl(n,K)ItrA=O}.Thensl(n,K)isanideal 

of gl(n, K). For n 2 2, el(n, K) is a simple Lie 
algebra. 

F. Theorems 

The following theorems are fundamental in 
the theory of Lie algebras: 

(1) Engel’s theorem (valid even if K is of 

positive characteristic): Let V be a tïnite- 

dimensional vector space over a tïeld K such 
that V#{O}.. Let g be a subalgebra of gI( V) 
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consisting of nilpotent elements. Then there is 

a nonzero element u in V such that Xv = 0 for 
every X in g. (Thus by choosing a suitable 
basis of V and identifying gI( V) with gl(n, K), 
we have g c n(n, K), where n = dim V.) 

(2) Lie% theorem: Let (p, V) be an irreduc- 
ible representation of a solvable Lie algebra 
g. Then p(g) is Abelian. In particular, if K is 
algebraically closed, then dim V= 1. (Thus for 
every representation (p, V) of a solvable Lie 
algebra g over an talgebraically closed tïeld K, 
we have p(g)c t(n, K) by choosing a suitable 
basis of V.) 

(3) Cartan’s criterion of solvahility: Let g 
be a subalgebra of gI(n, K). Then g is solvable 
if and only if tr X Y = 0 for every X E g and 

Y6 cg> 91. 
(4) Cartan’s criterion of semisimplicity: A 

Lie algebra g is semisimple if and only if the 
Killing form B of g is tnondegenerate (i.e., 
B(X, g) = 0, X E g implies X = 0). 

(5) Weyl’s theorem: Every representation (of 
lïnite degree) of a semisimple Lie algebra is 
completely reducible. 

(6) Levi decomposition: Let r be the radical 
of a Lie algebra g. Then there is a semisimple 

subalgebra 5 of g such that g = r + 4, r n B = 0. 
Furthermore, such a subalgebra 5 is unique up 
to automorphisms of g (A. 1. Mal’tsev). 

(7) Ado’s theorem (orginally proved only for 
the case of characteristic 0 for K; the case of 
positive characteristic was proved by K. Iwa- 
sawa): Let g be a lïnite-dimensional Lie alge- 
bra over a field K. Then there exists a repre- 
sentation (p, V) of g of finite degree such that 

n= P(9). 

G. Reductive Lie Algebras 

A Lie algebra g is called reductive if the radical 
r of g coincides with the tenter 3 of g. The 

following four conditions for a Lie algebra g 
are mutually equivalent: (i) g is reductive; (ii) 
the nilpotent radical 5 of g is 0; (iii) the adjoint 
representation of g is completely reducible; 

and (iv) the derived algebra [g, g] of g is semi- 
simple and g = 3 + [g, g] (direct sum), where 3 is 
the tenter of g. 

A representation (p, V) of a reductive Lie 
algebra g is completely reducible if and only if 
p(X) is diagonalizable for every X in 3. For 

example, the Lie algebra gI(n, K) is reductive. 

H. Derivations 

A linear mapping 6 : g-g is called a derivation 
of the Lie algebra g if 6( [X, Y]) = [S(X), Y] + 

[X,d(Y)] for every X, Y in g. The set D(g) 
of a11 derivations of g is a subalgebra of gI(g), 
and D(g) is called the Lie algebra of deriva- 
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tions of g. The adjoint Lie algebra ad(g) is an 
ideal of B(g), and elements of ad(g) are called 

inner derivations of g. If g is semisimple, then 

W)=ad(g)~~~ 
Now suppose that K = R (K = C). Then the 

group A(g) of automorphisms of g is a Lie 
group (complex Lie group), and the Lie alge- 
bra of A(g) is given by D(g). Lie ?I~n(g) 

(c SI(g)). Then exp6 (E GL(g)) is in A(g). The 
connected subgroup I(g) of A(g) generated by 

{exp 6 1 S~ad(g)} is a +Lie subgroup of A(g). 
Furthermore, I(g) is a normal subgroup of 
A(g), called the group of inner automorphisms 

of g or the adjoint group of g. Thus ad(g) is the 
Lie algebra associated with I(g). The quotient 
group A(g)/i(g) is called the group of outer 
automorphisms of g. If g is semisimple, then 
I(g) coincides with the identity component of 

A(d. 

1. Cartan Subalgehras 

A subalgebra lj of a Lie algebra g over K is 
called a Cartan suhalgebra of g if(i) h is nilpo- 

tent and (ii) the normalizer n of h in g (i.e., n 
= {XE~ 1 [X, h] ch}) coincides with h. If K is 

algebraically closed, then for every two Cartan 
subalgebras hi, h, of g there exists an auto- 

morphism (r of g such that a&,) = h2. Fur- 
thermore, for such a g we cari take an auto- 
morphism of the form cr = exp(ad(A,)) 
exp(ad(A,)) (A,, . . . . A,E~), where all the ad@&) 
are nilpotent. 

J. Universal Enveloping Algebras 

Let g be a Lie algebra over a lïeld K. Regard- 

ing g as a vector space over K, let T(g) be the 
ttensor algebra over g. Let J be the +two-sided 
ideal of T(g) generated by a11 elements of the 
form X@ Y-Y@X-[X, Y] (X, YEN). The 
quotient associative algebra U(g)= T(g)/J is 
called the universal enveloping algehra of g. 
The composite of the natural mappings g-> 
T(g)+ U(g) is an injection g+ U(g), and we 
identify g with a linear subspace of U(g) by 
this mapping. Then we have [X, yl =X Y- YX 
(X, YEg) in U(g). The algebra U(g) has no 

+zero divisors. In particular, if g is the Lie alge- 
bra of a connected +Lie group G, then U(g) is 
isomorphic to the associative algebra of all 
tleft-invariant differential operators on G. For 
every subalgebra h of g, the universal envelop- 
ing algebra U(h) of h is isomorphic to the sub- 
algebra of the associative algebra U(g) gener- 
ated by 1 and h. If g is the direct sum of two 
Lie algebras gl, g2, then U(g) is isomorphic to 

the ttensor product U(gl) OK U(gJ. Let a be 
an ideal of g, and let ‘LI be the two-sided ideal 
of U(g) generated by a. Then we have U(g)/% g 
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U(g/a). Now put CI0 = K 1. Detïne a linear sub- 
space Ui of U(g) by 

Q=K.l+g+g.g+...+q...g. 

Thenwehave CIOi,cLi,c...,Ui~jcUi+j, uiGi 
= U(g). Thus { Ui} defines a tfiltration of U(g). 

DenotebyG=G”+G’+GZ+... (G”=Uo, 
G’= y/y-,) the tgraded ring associated 
with this filtration. Then we have g = G’ c G. 
LetX, ,..., X,beabasisofg,andletS= 
K [Y,, . , Y,] be a +polynomial ring on K in 

n indeterminates Y1 , , Y,. Then there exists a 
unique algebra homomorphism w:S+G such 
that w(l)= 1, w(YJ=X, (i= 1, . . ..n). Further- 

more, w  is bijective, and the ith homogeneous 
component S’ is mapped by w  onto G’. Thus 
the set of monomials {X~IX$ X)} (il >O, 

, i, > 0) forms a basis of U(g) over K (the 

Poincaré-Birkhoff-Witt theorem). 
Every representation (p, V) of g over K cari 

be extended to a unique representation (p’, V) 
of U(g). Furthermore, p is irreducible (com- 
pletely reducible) if and only if p’ is irreducible 
(completely reducible). Given two representa- 
tions pr , pz of g, pr is equivalent to p2 if and 
only if pi is equivalent to pi. 

Now suppose that g is semisimple, and let 

X,, , X, be a basis of g. Using the Killing 
form B of g, put g,= B(Xi, X,). Denote the 

inverse matrix of (y,) by (9”). Defïne CE U(g) 
by c = C gijXiXj. The element c, called the 
Casimir element of the Lie algebra, is inde- 
pendent of the choice of the basis (Xi), is a 
well-defïned element of u(g), and belongs to 
the tenter of U(g). For every absolutely irredu- 
cible representation p of I/(g), p(c) is a scalar 
operator, and trp(c) is a positive rational 
number. 

K. Complex Semisimple Lie Algebras 

We assume that K =C, although there is no 

essential change if we assume that K is an 
algebraically closed tïeld of characteristic 0. 

A subalgebra h of a complex semisimple Lie 
algebra g is a Cartan subalgebra of g if and 
only if h is a maximal Abelian subalgebra of g 
such that ad(H) is diagonalizable for every H 

in h. We fïx a Cartan subalgebra h; dim h is 
called the rank of g, and we denote the linear 
space consisting of ah C-valued forms on h by 
b*. For every x in h*, let 

g,={X~gIad(H)X=a(H)XforallHinh}. 

Then g, is a linear subspace of g, and go = 1). 
Define a subset A of h* by 

A={a~b*Ia#O,g,f{O}}. 

Then A is a finite set. Elements of A are called 
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roots of g relative to h, and A is called the root 
system of g relative to h. For every root c(, g, is 
of dimension one, and g is decomposed into a 
direct sum of linear subspaces: 

cl=b+ c 9,. 
OIEA 

For each root n, g, is called the root subspace 
corresponding to c(. 

The restriction B, of the Killing form B of g 
on h is nondegenerate. Hence for every i. in h* 

there exists a unique element H, in h such that 
l.(H) = B(H,, H) for ah H in h. Thus we get a 

linear bijection h*-h delïned by &+HA. Via 
this bijection, B,] gives rise to a symmetric 
bilinear form (IL, p) = (H,, H,) (l., ~LE l)*) on h*. 
Denote by hR the real linear subspace of h* 
spanned by A. Then the inner product (A, p) 
defïned on h* is positive detïnite on hi. Hence 
with respect to this inner product, hi is an 1- 

dimensional Euclidean space, where /= dim h. 
The root system A is a finite subset of the 
Euclidean space hi. 

L. Properties of Root Systems 

(i) XE A implies -CI E A. Furthermore, among 
the scalar multiples of a, only *a belong to A. 
(ii) Let a, BEA. Then 2(a, /l)/(a, !x) is a rational 
integer. (iii) Let a, DEA and p # *a. Then there 
exist unique nonnegative integers j, i such that 

{B+vaIvEZ}nA={B-j,,B-(j-l)cc,...,B- 
z, /l,/3+a ,..., p+ia}. Furthermore,j-i= 
2(a,/l)/(r,r), i+j<3. The set {/l+Za} nA is 
called the x-string of /I’. 

Now let aEA. Denote by w, the +reflection 
mapping of hi with respect to the hyperplane 
P, = {XE hg 1 (a, x) = 0}, which is orthogonal to 
a. Then we have w,(/l)=fi-(x*,jl)a~A for 
every b in A, where a* = 2a/(a, a). Thus we have 
w,(A)=8 for every c( in A. (iv) Let a, DEA and 

fi # *a. Then the angle 0 between a and b is 
one of the following: 30”, 45”, 60”, 90’, 120”, 
135”, 150”. Suppose, moreover, that 0 < 0 < 90” 

and (a, n) < (8, 8). Then we have the following 
criteria: 0= 30”o3(n, a)=(fi, 8); H=45”o 

2(a, a)=@, p); 0=6O”o(a, a) =(/CI, /j’). (v) Let a, 

LL ~+BEA. Then Cg,,ggl=ga+p. 
Conversely, suppose that a finite subset A of 

a fïnite-dimensional Euclidean space E satistïes 

conditions (i) and (ii) together with a part of 
(iii): w,(A) = A for every a in A. Then A is a 
root system of some complex semisimple Lie 
algebra. 

M. Lexicographie Linear Ordering in bi 

Let “r, , & be a basis of h$ over R. Define a 
hnear ordering 1, > p on ha as follows: If i, = 
C iiii, p = C qiivi (ii, vi all in R), then n > p if 
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and only if there exists an index s (1 Q s < 1) 
suchthat[i=qifori=l,...,s-l and&>v,. 
This linear ordering is called the lexicographie 
linear ordering of & associated with the basis 
(ni). Relative to this linear ordering, a root z is 
called a positive (negative) root if g > 0 (CI < 0). 

We denote the subset of A consisting of a11 
positive (negative) roots by A+ (A-). A subset 
S of A coincides with A+ for some lexico- 
graphie linear ordering of f)g if and only if the 
following conditions are satisfied: A=S U (-S); 

Sfl(-S)=a; CI, /?ES, ~+BEA imply R+/~EX 
A positive root cc~A+ is called a simple root if 
x cannot be expressed as the sum of two posi- 
tive roots. 

N. Fundamental Root Systems 

Let 17 be a subset of A consisting of 1 roots 
CI~, , xI. Then 17 is called a fundamental root 
system of A if(i) every element c( of A is ex- 
pressed uniquely as an integral linear combi- 

nation of the a, (c( = C miai), and (ii) in this ex- 
pression, m,, . , m, are either a11 > 0 or ail < 0. 
For any lexicographie linear ordering of l$, 
the set of a11 simple roots forms a fundamental 
root system of A. Moreover, every funda- 
mental root system of A is obtained in this 
manner. Let I7= { c(~, , aI} be a fundamental 
root system of A. Then X gag + C g-b, generates 
g. The Lie algebra g is not simple if and only if 
17 admits an orthogonal partition, i.e., 17= 

n,un,,n,#0,II;#0,n,nn,=0,and 
(a, 8) = 0 for every CI E 17, and BE 17,. The l2 

integers a, = -2(a,, X~)/(E~, mj) (1 < i, j < l) are 
called the Cartan integers of g relative to the 
fundamental root system 17. Then we have aii 
= -2,a,>O for i#j. 

0. Bore1 Subalgebras and Parabolic 
Subalgebras 

Let b = b + &0 g,. Then b is a maximal solv- 

able subalgebra of g. The group I(g) acts 
transitively on the set of all maximal solvable 

subalgebras of g. A maximal solvable subalge- 
bra of g is called a Bore1 subalgebra of g. A 
subalgebra of g is called a parabolic subalgebra 
if it contains a Bore1 subalgebra of g. Now let 
@ be any subset of a given fundamental root 
system I7= {E,, , s,}. Denote by A-(@) the 
set of a11 negative roots a = C niai such that 
nj = 0 for a11 01~ in @. Then p0 = b + CaPB-(0) ga 
is a parabolic subalgebra. Thus we get 2’ para- 
bolic subalgebras {pQ 1 @c Z7). Every parabolic 

subalgebra is conjugate under l(g) to one and 
only one of the parabolic subalgebras {pQ 1 Qc 

fil. 

248 Q 
Lie Algebras 

P. Weyl’s Canonical Basis 

Let H,, , H, be a basis of b, and let E, be 
a basis of g. for each root a. Then we have 
a basis {Hi, E,} of g. Such a basis is called 
Weyl’s canonical basis if the following three 
conditions are satisfied: (i) CL(H~)E R (j = 1, ,1) 
for every a E A; (ii) the Killing form B of g 

satisiïes B(E,, Em,)= -1 for every aeA; and 
(iii) if c(, fi, c(+/JEA and [E,,Ep]=Nbl.PEb+fl 
(Nz,B~C), then NU,p is inR and N,,,=N-,,-,. 

The Lie algebra g always has Weyl’s canonical 
basis. For such a basis {Hi, E,}, the linear 
space 

g.=~RfiH,+~ R(E,+&) 

+CR(n(E,-E-J 

is a semisimple Lie algebra over R. The Killing 

form of gU is negative detïnite. Every connected 
Lie group whose Lie algebra is g, is always 
compact. Furthermore, g = gU + J-1 g,,, 
gU n J-1 gU =O. Thus g is isomorphic to the 
Lie algebra gu = C OR gU over C obtained from 

gU by extending the basic tïeld R to C, and gl, is 
called the unitary restriction of g relative to 
Weyl’s canonical basis {Hi, E,}. 

A Lie algebra a over R is called a real form 
of g if a’= C OR a is isomorphic to g. When 
this is the case, LJ is called a complex form (or 
the complexification) of a. Note that a real 

form a of g cari be regarded as a real subalge- 
braofgsuchthatg=a+fia,aflfia= 
0. A real Lie algebra a is called a compact 
real Lie algebra if its Killing form is negative 

detïnite. A real Lie algebra is compact if and 
only if it is semisimple and is the Lie algebra of 
some compact Lie group. The Lie algebra a of 
a compact Lie group A is the direct sum of its 
tenter 3 and some compact Lie algebra; hence 
a is reductive. 

A compact real form gU of a complex semi- 
simple Lie algebra g is called a compact form 

of g. The group I(g) of a11 inner automor- 
phisms of g acts transitively on the set of a11 

compact real forms of g (regarding the real 
forms of g as real subalgebras of g). 

Q. Chevalley’s Canonical Basis 

A complex semisimple Lie algebra g always 
has a basis {H,, E,} (consisting of a basis 
H,, , H, of b together with a basis E, of g. 
for each root z) such that (i) ~C(H~)EZ for every 
XEA and i= 1, . . . . I; (ii) B(E,,E-,)=2/(cr,sc) 
for every C(E A; and (iii) if z, /I’, CI + b E A and 

[E,,Ep]=Na,pE,+p(N=,p~C),then N,,peZand 
Nn,p= -N_,, -,,. Such a basis {Hi, E,} is called 

Chevalley’s canonical hasis. When we take this 

basis, the structural constants of g relative to 
{H,, E,} are a11 integers. Thus gz = C ZH, + 
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C ZE, is a Lie algebra over Z. Furthermore, 
gR = C RH, + 2 RE, is a real form of g with the 
property that there exists a Cartan subalgebra 

ha of gR such that for each element H in hn, a11 
the eigenvalues of ad(H) on g, are contained 

in R. (In fact, we may take C RH, as ha.) Such 
a real form of g is called a normal real form. 
The group I(g) acts transitively on the set of 
a11 normal real forms of g. 

R. Weyl Groups 

The reflections w, (c( E A) of the Euclidean space 
hi generate a subgroup W of the group of a11 
tcongruent transformations of I$. W is called 

the Weyl group of g relative to h and is repre- 
sented faithfully as a +Permutation group over 
the lïnite set A. Hence W is a lïnite group. Let 

17= {a,, . , cq} be a fundamental root system 
of A. Then W is generated by w~,, , w,,. The 
root system A coincides with the set {W(U) 1 
WE W, ~(~17). Let 5 be the set of a11 fundamen- 

ta1 root systems of A. Then W acts on 8 and 
is tsimply transitive on 3. If g is simple, two 

roots c(, b are conjugate under W if and only if 
(a, a) = (/$ b). Now let I be the complement in 
hi of the union of a11 the hyperplanes P, (c( E A) 
orthogonal to s(. Then I is a W-stable open 

subset of hg. A connected component of I is 
called a Weyl cbamber. W acts on the set SO 
of a11 Weyl chambers and is simply transitive 

on~0.Let17={cc,,...,a,} beafundamental 
root system. Then the set {x E hg 1 (x, ai) > 0 for 

i = 1, . ,1} is a Weyl chamber, called the posi- 
tive Weyl cbamber associated with II. Now fix 

any lexicographie linear ordering of h$ that 
has 17 as the set of simple roots. For WE W, 

put AZ = {asA+ 1 w(cc)~A~}. Denote the car- 
dinality of AZ by n(w). Then n(w)=Oow= 1. 
Furthermore, w  cari be expressed as a product 

of n(w) factors w  = w,, w~,, where each factor 
is taken from {w~,, , w,,} admitting repeti- 
tions. In fact, n(w) is the minimum length of 
the expression of w  as a product w  = w,, w, 

(i,j= 1 , . ,1). With respect to the generators ’ 
W =,, . . , w,,, W has the following system of 
tdefining relations: 

where m, is the order of w,:w~,. Thus if 0, is 
the angle between ai and ~~~ we have m, = 

n/(n - cJij). 

Denote by T the set of a11 linear transfor- 
mations o of & such that o(A) = A. Then T is 

also the subgroup of a11 congruent transfor- 
mations of hi; furthermore, T is a lïnite group, 

and W is a normal subgroup of T. Let 17 be a 

fundamental root system of A and put P = 
{cxETI(T(Z~)=I~}. Then Pis a subgroup of T, 

and we have a semidirect product T= P. W. 

Elements of P are called particular transfor- 
mations relative to 17. The group P GA T/ W is 

isomorphic to the group A(g)/i(g) of outer 
automorphisms of g. 

S. Classification of Complex Simple Lie 
Algebras 

Let h be a Cartan subalgebra of a complex 
semisimple Lie algebra g, and let Z7= {c?i, 
. ../ ai} be a fundamental root system relative 
to h. We associate with III the diagram (+l- 
dimensional complex) indicated in Fig. 1. This 

diagram is called the Dynkin diagram of g 
(also called the SchMli diagram or Coxeter 
diagram). It is constructed as follows: with 

each ai there is associated a vertex (denoted by 
a small open circle). These 1 vertices are con- 
nected by several segments as follows. Let 0, 
be the angle between ai and aj. (i) If Bij = 150”, 
c(~ and aj are connected by three oriented seg- 
ments as in (1) of Fig. 1, where the orienta- 

tion means (ai,ai)>(aj, aj). (ii) If B,= 135”, ai 
and aj are connected by two oriented segments 

as in (2) of Fig. 1. (iii) If Bu= 120”, ai and aj are 
connected by a nonoriented single segment as 
in (3) of Fig. 1. (iv) If 0, = 90”, ai and aj are not 
connected. 

(1) k2 (2) asi (3) ^^ 
Fig. 1 
A Dynkin diagram. 

The Dynkin diagram of g is independent of 

the choice of h, ITI. Furthermore, two complex 
semisimple Lie algebras are isomorphic if and 

only if they have the same Dynkin diagram. A 
complex semisimple Lie algebra is simple if 
and only if its Dynkin diagram is connected. 

Fig. 2 gives a11 possible Dynkin diagrams 

Dynkin diagrams of simple Lie algebras. Note that 
dim g is A,: 1’ + 21; B,: 21’ + I; C,: 21* + I; D, : 212 - 1; 
E,:78; E,:133; E,:248; F,:52; G,:14. 
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associated with complex semisimple simple Lie 

algebras. There are seven categories. (The 
index / in A, means the rank of g.) Among 

these A, (I> l), B, (1>2), C, (1>3), D, (124) are 
called classical complex simple Lie algebras. 

E, (1= 6,7,8), F4, and G, are called exceptional 
complex simple algebras. Note that A, s B, z 
C,, B2~Cz, A,gD,, D,=A,+A,. A,(resp. 
B,, C,, OI) is the Lie algebra of the complex 
Lie group SL(1f 1, C) (SO(21+ 1, C), Sp(l, C), 

SO(21, C)). 

T. Classification of Real Simple Lie Algebras 

We refer the reader to [3] and the references at 
the end of [3] for the classification of simple 
Lie algebras over a general field k; in partic- 
ular, for k = R (- Appendix A, Tables 5.1, 

5.11) the algebras are closely related to the 
classification of irreducible symmetric Rieman- 
nian manifolds (- 412 Symmetric Riemannian 
Spaces and Real Forms). 

In particular, since compact semisimple real 
Lie algebras g are in one-to-one correspon- 
dence (up to isomorphism) with complex semi- 
simple Lie algebras gc obtained as the com- 
plexifïcation of g, the classification of compact 
real simple Lie algebras reduces to the classifi- 
cation of complex simple Lie algebras. Hence 

they are also represented by the same Dynkin 
diagrams. Compact real simple Lie algebras of 
the types A,, B,, C,, and D, are called classical 
compact real simple Lie algebras. They are the 
Lie algebras of the compact Lie groups SU(I+ 

l), SO@+ l), SP(!), and SO(21), respectively. 
Compact real simple Lie algebras of the type 

E, (1= 6,7,8), F4, and G, are called exceptional 
compact real simple Lie algebras. 

U. Satake Diagrams of Real Semisimple Lie 

Algebras 

Let g be a real semisimple Lie algebra, f be the 

subalgebra associated with a tmaximal com- 
pact subgroup of the tadjoint group of g, and 
p be the orthogonal complement of I in g 
relative to the Killing form of g. Let a be a 
maximal Abelian subalgebra contained in p, 

and let h be a Cartan subalgebra of g contain- 
ing a. Denote by gc, hC the complexitïcations 

of g, h, respectively. Let CJ be the tsemilinear 
tautomorphism of gc defined by a(X + fi 

Y) = X - J-1 Y (X, YEg). Then we have g(hc) 
= hc. Thus 0 acts on the root system A of gc 
relative to hc as follows: (<ru)(H) = ~(cTH) 

(c( E A). Thus o acts on (hC)R. There is a lexico- 
graphie linear ordering of (hC)$ such that 

S(~A+ and CTE# -CI imply cr~ceA+. Fix such an 
ordering, and let 17 be the set of simple roots 
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relative to the ordering. Put o = pw, where p is 
a particular transformation relative to 17 and 
w  is an element in the Weyl group W. Then p 
induces a permutation of order 2 on the set 
{cc~lirlaa# -a}. Suppose that a vertex be- 

longing to the Dynkin diagram of 17 corre- 
sponds to a simple root CI such that (TC( = -c(. 
Then replace the vertex by a small iïlled circle. 
Also, if two vertices are mapped to each other 

by p, then connect the two vertices by an arc 
with two arrows on the end. The diagram thus 
obtained is called the Satake diagram of g. The 
Satake diagram of g is independent of the 
choice off, a, h and of the ordering of (hc)t. 
Two real semisimple Lie algebras are isomor- 
phic if and only if they have the same Satake 
diagram, and g is simple if and only if its Sa- 
take diagram is connected. Thus real simple 
Lie algebras are classiiïed by their Satake 

diagrams [ 163. 

V. Iwasawa Decomposition of Real Semisimple 
Lie Algebras 

Let g be a real semisimple Lie algebra. Take f, 

a, h and the ordering of (hC)R as in the con- 
struction of Satake diagrams (- Section U). 
Let n be the intersection of g with the sub- 
space C(g’),, where the sum is taken over 
z(EA+ such that oa# -CI. Then n is a nilpotent 
subalgebra of g, and we have a decomposition 
of g into the direct sum of linear spaces: g = f 

+ a + n. This decomposition is called an Iwa- 
sawa decomposition of g. Iwasawa decom- 
positions are unique in the following sense: Let 
g = f’+ a’ + n’ be another Iwasawa decompo- 
sition; then there exists an inner automor- 
phism A of g such that Af = t’, Aa = a’, An = n’. 

For the cohomology theory of Lie algebras 
and Lie algebras over fïelds of characteristic p 
> 0, in particular the theory of restricted Lie 

algebras - [3]. For the relationship between 
Lie algebras and the theory of finite groups 
(e.g., Chevalley’s simple groups, +Burnside 

problems) - [7] and the references therein. 

W. Representations 

Let g be a complex semisimple Lie algebra and 
h be a Cartan subalgebra of g. We fix h and a 

lexicographie linear ordering on hi. Let 17= 
{ai, , LYS} be the set of simple roots. Since 
every representation of g is completely reduc- 
ible, we restrict ourselves to the explanation 
of irreducible representations. Let (p, V) be a 

representation of g. For each LE~*, put V’ 

={~~1/1p(H)u=Â(H)uforallH~h}.Then 6 
is a linear subspace of V, and i is called a 
weight of the representation p (relative to h) if 
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V, # {O}; then dim V, is called the multiplicity 

of the weight A. The set of all weights of p is a 
tïnite W-stable subset of 6;. Denote this set 
by {il, ,A,}. Then V is decomposed into a 
direct sum: V= V’, + + VA,. The maximum 
element among {Âr , , E.,} with respect to the 
given ordering of hi is called the highest weight 
of p. 

The following two theorems are basic in 
determining irreducible representations. 

(1) Cartan’s theorem: Let A ri A2 be the 
highest weights of irreducible representations 

p,, p2 of g, respectively. Then p1 is equivalent 
to p2 if and only if A, =A2. 

(2) Cartan-Weyl theorem: Let Â E hs. Then 
there exists an irreducible representation p of g 
which has i, as its highest weight if and only if 

(i) 2(Â,a)/(cc,cc)~Z for every root asA (such an 
element n E h$ is called an integral form on h); 
and (ii) w(1) < 2 for every WE W (such an ele- 
ment n E hi is called dominant). 

These theorems lead to the concept of the 
system of fundamental representations. Put c$ 
=~C(~/(C(,, c(J, and let A,, , A, be the basis of 

ha dual to ET, . . . . c$ ((Ai, ~7) = 6,). Then the 
tfree Abelian group C ZAi coincides with the 

module P of a11 integral forms. An element 
2 miAi (m,EZ) is dominant if and only if m, > 

0, , m, >O. Denote by P’ the semigroup 
in P consisting of a11 dominant elements in P. 

For j = 1, , I, let ( pj, PJ be the irreducible 
representation of g which has Aj as its highest 
weight. The system { pl, , p,} is called the 
fundamental system of irreducible representa- 
tions associated with 17. The irreducible rep- 

resentation that has A = C miAi E P+ as its 
highest weight is constructed as follows: Put 
y = 6 @ . 0 ‘J (mth tensor power of V,) and 
V= V~I @ @ If/“. Then v cari be regarded 
as a representation space of g in a natural 
manner. Let V be the smallest g-stable sub- 
space of V containing VA =( VI)T; @ @(U;)z;. 

Then V gives an irreducible representation of g 
with highest weight A. Thus by decomposing 
V~I @ @ Ify, we get all irreducible rep- 

resentations of g. This is why { pl, , p,} is 
called the fundamental system of irreducible 
representations. 

X. Relation with Representations of Compact 
Lie Groups 

Let G be a compact, connected, semisimple Lie 
group. Then every Cartan subalgebra h of the 
Lie algebra g of G is Abelian. We cal1 dimh the 

rank of g or of G. Let H be the connected Lie 
subgroup of G associated with h. Then H is a 
maximal torus (toroidal subgroup) of G. Fur- 

thermore, every maximal torus of G is conju- 
gate to H in G. Also, every element of G is 
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conjugate to an element of H in G. Let N = 

N(H) be the +normalizer of H in G. Then 
every on N induces an automorphism Ad(a) of 
g, which induces an automorphism (denoted 
by the same symbol Ad(o)) of the complexifï- 
cation gc of g. We have Ad(cr)(hC) = hC, and 
Ad(cr) preserves the root system of hc. Fur- 
thermore, the restriction of Ad(a) on (hC)R is 
an element w, of the Weyl group W of gc 
relative to hc. Via this mapping c-‘w,, we 

have N/H g W. Thus we identify NJH with W. 
Since (hC)R = J-l h, we cari define a lexico- 

graphie linear ordering using a basis of h. Fix 
such an ordering. Now every representation p 

of G over a complex vector space V induces a 
representation dp of g over V, where dp is the 
differential of p (- 249 Lie Groups). Then we 

have a representation dp of gc over V. We also 
cal1 a weight 1 relative to hc of the representa- 
tion dp of gc a weight of the representation p 

of G relative to H. Representations pl, pz of G 
are equivalent if and only if representations 
dp,, dp, of gc are equivalent. Denote by A,, 
A, the highest weights of dp,, dp,, respective- 

ly. Then p, is equivalent to p2 if and only if 
A, =A2. 

The module P of a11 integral forms in (h’); 
coincides with the set of a11 elements in (hc)g 
that are weights (relative to hc) of some repre- 
sentation of gc. Denote by Pc the subset of P 

consisting of a11 elements in P that are weights 
(relative to H) of some representation of G. 
Then PG is a submodule of P such that [P: PG] 

< CU. Put Pc =Pc f’P+. Then the mapping 
(representation p) + (the highest weight A of p) 

induces a bijective mapping from the set of a11 
classes of irreducible representations of G onto 
Pc’. 

The exponential mapping exp: h + H is a 
surjective homomorphism from h to H. The 
kernel I, of this homomorphism is a tlattice 
group in h of rank 1( = dim 6); a basis H,, , H, 

of I, over Z is also a basis of h over R. Now 
detïne linear forms n, , , & on h by (&, H,) = 

6,. Then we have 

PG = 274x 1 ZÀj. 

In other words, an element nui is in Pc if 
and only if i(H) E 27cJ-l Z for every element 

H in I,. This characterization of Pc also char- 
acterizes PG’ =Pc n P+. In particular, G is 
simply connected o P = P,o r, = 27cfl. 

CZctT, where c(,, . , c(r are simple roots and 
E: = 2a,/(c(,, xi) for i = 1, ,1. We also have 
G = 1(g) = the group of inner automorphisms 
of g-=-PG=CZc(iorc=2nfl CZQ, where 

ci, , sI are elements of (gC)$ defined by (ai, 5) 
= 6,. In general, we have P 3 Pc 3 C Za,, 

2nfi C Z@ c r, c 2nfi ZE,. Fur- 

thermore, the tfundamental group rrr (G) of 
G is given by P/P, E rG/(2nfi C Zx:). Also, 
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the kernel of the adjoint representation 
G+I(G)=I(g) is given by P,/CZa,g(2nfi. 

Z zEi)/rG. 

Y. Invariant Measure on G 

Keeping the definitions in this section the 
same as in the previous section, we see that 
every root c( defines a representation h-t~~(h) 
of the group H of dimension 1 over (s’), as 
follows: Let E, be a basis of (g’),. Then 
Ad(h)E,=X,(h)E,. We have ~~(h)=e”(*) if h 
= exp X (XE b), i.e., x, 0 exp = e’. We let e” 

stand for x,: e”(h) = x,(h), h E H. Now let dg, dh, 
dm be the tinvariant measures on G, H, M 

= G/H, respectively, normalized by 

Then for every continuous function f on G, we 
have 

where w  is the order of the Weyl group W and 
f(m, h) is a function on M x H defined by 

f(m, h)=,f(ghg-‘), m=gH. Note that f(m, h) is 
well defïned. Finally, R(h) is a function on H 
defïned by 

Q(h) = n Ce cw2 _ e -ew/z 
) 

CEA 

for h = exp X (XE lj), and R(h) is called the 

density on H. Denote by D(h) the same prod- 
uct as R(h), letting CI range over A+. Then 
we have R(h)=D(h)D(h) = lD(h)12 20. In 
particular, if .f is a tclass function on G (i.e., 
f(xyx-‘)=,f(y) for every x, y~ G), f(m, h)= 
f(h). Hence (1) is simplifïed into the following 
integral formula for class functions: 

(2) 

Z. Weyl’s Character Formula 

Keeping the definitions in this section the 
same as those in the previous section, we let 
(p, V) be an irreducible representation of G 

and x0 be the character of p(xp(g)= trp(g)). Let 
A be the highest weight of p. Then since A 

determines p up to equivalence, x0 must be 
determined by A. In fact, xp is given via A by 
Weyl’s character formula (3). (Note that G 
= u gHg-‘. Hence xp is determined by its 
restriction on H.) Now for h6 H, we have 

x  

P 

(h) = 5A+a(h) 

Sa(h) ’  

(3) 

where tl, (1. E P) is the alternating sum 

t,(h)= c det(w)e(w’“))(x), h =expX. 
wtw 

(4) 

Finally, 6 in (3) is given by 

a=; 1 Lx, 
LZPA+ 

that is, 6 is the half-sum of the positive roots. 
In particular, we have ta(h) = D(h). Denote by 
m,(l) the multiplicity dim V’ of a weight n of p. 
Then we have X,(h) = C,m,(lW)eL(h). Further- 
more, we have m,,(A) = 1, m,(A) = m,(w(,l)) 
(w E IV), and m,,(A) is given by Kostant’s 
formula: 

m,(n)= C det(w)P(w(A+6)-(Â.+6)), 
WPW 

(5) 

where for each PE P, P(p) is the number of 
ways p cari be expressed as a sum of positive 

roots. Thus P(p) is the number of nonnegative 
integral solutions {ka} of PL= Catb+ &a. 

Now suppose that (pl, V,), (p2, V,) are 
irreducible representations of G. Their tensor 

product (p, 0 p2, V, 0 V,) is decomposed into 
a direct sum of irreducible constituents: p1 @ 
p2 = Z m(p)p,, where pr is the irreducible rep- 
resentation of G which has p as its highest 
weight and m(p) is the multiplicity of pv in 

p1 0 p2. Then m(p) is given by Steinberg’s 
formula: 

Wc) 

= 1 1 det(ww’)P(w(A,+6) 
WEWW’EW 

+w’(&+G(P+W), (6) 

where p1 = P,,, , p2 = p,,,. The partition function 
P(p) that appears in (5) and (6) satistïes the 
following recursive formula (B. Kostant): 

P(p)= ~ 1 det(w)P(p-(6-w(6))). (7) 
‘EW,»il 
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A. Definitions 

A set G is called a Lie group if there is given on 

G a structure satisfying the following three 
axioms: (i) G is a group; (ii) G is a tparacom- 
pact, treal analytic manifold (C need not be 
connected); and (iii) the mapping G x G-*G 
detïned by (x, y)+xy -’ is +real analytic (- 10.5 

Differentiable Manifolds). 
For simplicity, real analyticity is denoted by 

C”: for example, C”-functions, C”-mappings. 

If we replace real analyticity by tcomplex 
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analyticity in axioms (ii) and (iii), then we have 
the axioms (i), (ii’), and (iii’) of a complex Lie 
group. We consider the real analytic case, since 
the complex analytic case cari be dealt with 
similarly. 

Every element o of G defines a mapping G 
*G given by X+~X (X+X~), denoted by L, 

(R,) and called the left (right) translation of G 
by o. L,, R, are automorphisms of G as a C”- 
manifold. Therefore, given a tvector field X on 
G, a tdifferential form w  on G, or, in general, a 

+tensor field Ton G, we cari apply L, and R, 
in a natural manner to the given tensor tïeld 
and obtain a tensor tïeld L, T, R, T on G. A 
tensor tïeld T on G is called left (right) invar- 
iant if LOT= T (RUT= T) for every 0~ G. A 
tensor fïeld on G is of class C” if it is left or 
right invariant. 

B. Lie Algehras of Lie Groups 

Let G be a Lie group. Then the set X(G) of all 

C”-vector fields on G has the structure of a 
vector space over the real number field R. 
Furthermore, with respect to the bracket oper- 
ation [X, Y] =XY- YX (X, YcX(G)), X(G) 

forms a +Lie algebra over R. Denote by g the 
subset of x(G) consisting of a11 left invariant 

vector fields on G. Then g is a tsubalgebra 
of the Lie algebra X(G). Thus g is also a Lie 
algebra over R. This Lie algebra g is called the 
Lie algehra of the Lie group G. The linear 

mapping from g into the ttangent space T,(G) 
of G at the identity element e given by X+X, 
is bijective. Hence dim g = dim G. The Lie 
algebra g is often identified with T,(G) via this 
bijection. 

C. Simply Connected Covering Lie Groups 

For any tïnite-dimensional Lie algebra g over 
R, there exists a tconnected Lie group G that 
has g as its Lie algebra. Such Lie groups are 
a11 tlocally isomorphic. Among these groups, 
there exists a tsimply connected one that is 

unique up to isomorphism. This group is 
called the simply connected covering Lie group 
of the Lie algebra g. 

D. Lie Subgroups 

A subgroup H of a Lie group G is called a Lie 
subgroup if(i) H has the structure of a Lie 
group and (ii) the inclusion mapping <p: H+G 
is a C”-mapping, and the tdifferential d<p is 

injective at every point of H (i.e., as a manifold, 
H is a tsubmanifold of G). Moreover, if H is a 
connected manifold, it is called a connected Lie 

subgroup. For a subgroup H of a Lie group 
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G, there exists at most one structure of a Lie 
group on H that makes H a connected Lie 
subgroup. (If H is not assumed to be con- 

nected, then this uniqueness statement is not 
generally true.) A subgroup H of a Lie group 

G is a connected Lie subgroup if and only if 
H is arc-wise connected (M. Kuranishi and 
H. Yamabe). 

Let H be a Lie subgroup of a Lie group G. 
Then the tangent space T,(H) is a subspace of 
T,(G). Under the isomorphism T,(G) g g men- 

tioned in Section B, the subspace T,(H) corre- 
sponds to h, which is a tsubalgebra of the Lie 
algebra 8. We cal1 $ the subalgebra of g asso- 

ciated witb tbe Lie subgroup H, and lj cari 
be identified with the Lie algebra of H in a 
natural manner. By this mapping H+I), we 

have a bijection from the set of a11 connected 
Lie subgroups of G onto the set of ah subalge- 
bras of g. For example, the connected Lie 
subgroup G’ of G corresponding to the +de- 
rived algebra g’ of g is the tcommutator sub- 
group of G. The Lie algebra of a normal sub- 
group of G is an +ideal of g. Conversely, if the 
Lie algebra h of a connected Lie subgroup H 

of a connected Lie group G is an ideal of 8, 
then H is a normal subgroup of G. 

A connected Lie group G is called semi- 
simple, simple, solvable, nilpotent, or Abelian 
(or commutative), respectively, whenever the 
Lie algebra g is (- 248 Lie Algebras). This 
detïnition of solvability, nilpotency, and com- 
mutativity agrees with the corresponding 
definition in which G is regarded as an ab- 
stract group. 

E. Closed Subgroups 

The topology of a Lie subgroup H (which we 
cal1 the inner topology of H) as a submanifold 
of a Lie group G need not coincide with the 
relative topology of H regarded as a subspace 
of a topological space G. The inner topology 
of H coincides with the relative topology of H 

if and only if H is closed in G. Conversely, for 
every closed subgroup H of G, H has the struc- 
ture of a Lie subgroup such that the inner 

topology and relative topology coincide (E. 
Cartan). Moreover, such a structure of a Lie 
subgroup on H is unique. We always regard 
closed subgroups of a Lie group as Lie sub- 

groups in this sense. Also, we denote the Lie 
algebras of Lie groups G, H, . by the corre- 
sponding lower-case German letters g, h, . . 

F. Homogeneous Spaces 

Let G be a Lie group, and let H be a closed 
subgroup of G. Then the tquotient topological 
space (coset space) M = C/H of the topological 
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group G modulo H has the structure of a C”- 
manifold such that the canonical mapping 
rr:G+MandtheactionofGonM:GxM-r 

M (delïned by (g, xH)+gxH) are both C”- 
mappings. Furthermore, such a C”-manifold 
structure on M is unique. The C”-manifold M 

thus obtained is called the bomogeneous space 
of G over H (- 199 Homogeneous Spaces). 
Put rr(e)=p. Then h is the kernel of the dif- 
ferential mapping 7”(G) = g+ T,(M). Thus we 
cari identify the tangent space T,(M) of M 

=C/H at p with the quotient linear space g/$ 
via this differential mapping. 

G. Quotient Lie Groups 

Suppose that H is a closed normal subgroup 
of a Lie group G. Then C/H has the structure 
of a quotient group together with the structure 
of a manifold as a homogeneous space. Now 
C/H is a Lie group with respect to these two 

structures. The Lie group C/H is called the 
quotient Lie group of G over H. In this case, h 
is an tideal of g, and the quotient Lie algebra 
g/h is isomorphic to the Lie algebra of the Lie 
group C/H. 

H. Direct Product of Lie Groups 

Let G,, G, be Lie groups. Then the direct 
product G, x G, satisfïes axioms (i), (ii), and 

(iii) of a Lie group (- Section A) in a natural 
manner. The Lie group G, x G, thus obtained 
is called the direct product of the Lie groups 
G, , G,. The Lie algebra of G, x G, cari be 
identilïed with the direct sum of gi, gZ. 

1. Cartan Subgroups 

A subgroup H of a group G is called a Cartan 
subgroup of G if H is a maximal nilpotent 
subgroup of G and moreover, for every sub- 
group H, of H of lïnite index in H, [N(H,): 

H,]<co,whereN(H,)={g~G]gH,g-‘=Hi} 
is the tnormalizer of H, in G. A connected Lie 
group G always has a Cartan subgroup. Fur- 
thermore, every Cartan subgroup H of G is 
closed; hence H is a Lie subgroup. The Lie 

algebra h of H is a +Cartan subalgebra of 
the Lie algebra g. This mapping H+b is a 
bijection from the set of all Cartan subgroups 
of G onto the set of a11 Cartan subalgebras of 

B c71. 

J. Bore1 Subgroups 

Let G be a complex connected semisimple Lie 
group. A maximal connected solvable Lie 

subgroup of G is called a Bore1 subgroup of G. 
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Any two Bore1 subgroups are conjugate in G. 
A subgroup P of G is called a parabolic sub- 
group if P contains a Bore1 subgroup of G. 
Every parabolic subgroup is a connected 

closed Lie subgroup of G. 

K. Simple Examples 

Let V be a finite-dimensional vector space 
over R. Let P(V) be the tassociative algebra 
of hnear endomorphisms of V. The tgeneral 

lineargroup GL(V)={x~~(V)ldetx#O} over 
V is a Lie group. The Lie algebra of GL( V) is 

denoted by gl( V). We cari identify gI( V) with 
Q(V), and we have [X, Y] =X Y- YX for a11 

X, YE gl( V). If dim V= n, GL( V) may be identi- 
tïed with the group GL(n, R) of all real nonsin- 
gular n x n matrices. Then gl( V) may be identi- 

tïed with the Lie algebra gl(n, R) of ah n x n 
real matrices. 

The following are examples of (closed) Lie 
subgroups of the general linear group: the 
tspecial linear group SL(n, R), whose Lie alge- 
bra is jX~t-~l(n,R)) trX=O}; the +unitary 
group U(n), whose Lie algebra is {X ~gl(n, C) 1 
‘X+X=0}; the torthogonal group O(n), whose 
Lie algebra is {XE~I(~,R)(‘X+X=O}; and the 

tsymplectic group Sp(n), whose Lie algebra is 
{XEgl(2n,C)IJX+‘XJ=O,‘X+X=O}, where 

0 1 
J= 

( > -I 0 

and 1 is the n x n unit matrix. 

Examples of complex Lie groups are: the 
complex tgeneral linear group GL(n, C), whose 
Lie algebra is gl(n, C); the complex tortho- 

gonal group O(n, C), whose Lie algebra is 
{Xe gl(n, C) 1 ‘X + X = 0); and the complex 
+sympletic group Sp(n, C), whose Lie algebra is 
{X~g1(2n,C)I JX+‘XJ=O}, where J is the 
matrix given above. 

L. Compact Simple Lie Groups 

If a connected Lie group G has a +Compact 
real Lie algebra, then G is compact. Thus for 
each compact real simple Lie algebra g, the 
simply connected covering Lie group G is 

compact, and the tenter of G is a tïnite group. 
The connected compact Lie groups SU@+ l), 

SO(21-t l), SP(~), SO(21) have, respectively, the 

compact real simple Lie algebras A, (13 l), B, 
(I b 2), C, (12 3), D, (I> 4) as their Lie algebras; 
these groups are called classical compact 
simple Lie groups. Sp(n) (n 2 2) and SU(n) 
(n 3 2) are simply connected, but SO(n) (n = 3 
or n > 5) is not, and has the fundamental 

group of order 2. The universal covering group 
of SO(n) (i.e., the simply connected, connected 
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Lie group that has the same Lie algebra as 
SO(n)) is Spin(n). The connected compact Lie 
groups that have E, (I= 6,7,8), F4, or G, as 
their Lie algebras are called exceptional com- 

pact simple Lie groups. The simply connected 
covering Lie groups of Es, F4, G, have the 
identity group {e} as their tenter. Hence they 
coincide with their tadjoint groups. The simply 
connected covering Lie groups E,, E, have as 
their centers the groups of orders 3 and 2, 
respectively. Hence their adjoint groups are 
not simply connected. 

M. Complex Simple Lie Groups 

For a complex Lie group G, the definition of 
the Lie algebra q is similar to that for real Lie 
groups. Then g is a Lie algebra over the com- 

plex number tïeld C and is called the complex 
Lie algebra of the complex Lie group G. The 
complex connected Lie groups SL(1+ 1, C), 
SO(21+ 1, C), Sp(l, C), SO(21, C), which have the 
+classical complex simple Lie algebras A,, B,, 
C,, D, as their Lie algebras, respectively, are 
called classical complex simple Lie groups. 
Complex connected Lie groups that have 
+exceptional complex simple Lie algebras E, 
(1= 6,7,8), F4, G, as their Lie algebras are 

called exceptional complex simple Lie groups. 

N. Homomorphisms 

A mapping cp: G, +G, from a Lie group G, 
into a Lie group G, is called an analytic homo- 
morphism (C”-homomorphism) if(i) q is a 
homomorphism between groups and (ii) <p is a 
C”-mapping between manifolds. Moreover, if 
<p is bijective and <p ml is also a C”-mapping, 
then <p is called an analytic isomorphism (CO- 

isomorphism). Two Lie groups G,, G, are said 
to be isomorphic as Lie groups if there exists a 
C”-isomorphism from G, onto G,; we denote 

this situation by G, g G,. Now let <p : G, +G, 
be a C”-homomorphism. Then the tdifferential 
(d<p),>: T,I(G,)+T,JG,) induces a Lie algebra 
homomorphism d<p:gl +gz. The kernel of dqo 
is the Lie algebra of the kernel of <p. Suppose 
that G, is connected and simply connected. 
Then for every Lie group G, and every Lie 
algebra homomorphism $ : gr +gz, there exists 

a unique C”-homomorphism cp : G, -*G, such 
that $ = d<p. We cari replace condition (ii) in 

the detïnition of C”-homomorphism by the 
following weaker one: (ii’) <p is a continuous 
mapping. In particular, for a given topological 
group G, there exists at most one structure of a 
Lie group on G preserving the group structure 

and the topology. A topological group G 
admits a structure of a Lie group (preserving 
the group structure and the topology) if and 
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only if G is a tlocally Euclidean topological 
group (- 423 Topological Groups N). 

0. Representations 

Let G be a Lie group, and let k’ be a hnite- 
dimensional vector space over C(R). Then a 
continuous (hence CU-) homomorphism p: G 
+CL(V) is called a complex (real) represen- 
tation of G. The linear space Vis called the 
representation space of p, and dim k’ is called 

the degree of p. TO be more precise, a represen- 
tation is denoted by (p, V) instead of p. The 
function x,:G-C defïned by x,,(g)= trp(g) 
(gE G) is called the character of p (- 362 Rep- 
resentations). The representation (p, V) of G 
gives rise to a representation (dp, V) of g. Sup- 
pose G is connected. Then two representations 
(pi, VJ (i= 1,2) of G are tequivalent if and only 
if the representations dp, and dp, of g are 
equivalent. For the tdirect sum of representa- 
tions and the contragredient representation, 

we have d(p, +p2)=dp1 fdp,, d(‘p-‘)= -‘(dp). 
For the +tensor product of representations, we 

have(d(p,0p,))(X)=(dpl)(X)01.2+1.10 
(dp,)(X). (For representations of compact Lie 

groups - 248 Lie Algebras W.) 

P. Adjoint Representations 

An element 0 of a Lie group G defines an 
analytic automorphism <p,:x+~xKr of G. 
The tdifferential Ad(<r) of <P,, is an automor- 
phism of the Lie algebra g. Since Ad( CL(g), 

we have a representation o*Ad(cr) of G whose 
representation space is g. This is called the 
adjoint representation of G, and the image 
Ad(G) of G is called the adjoint group of G. 
Ad(G) is a Lie subgroup of CL(g). The tcenter 
Z of G is a closed subgroup of G, and G/Z g 
Ad(G). The analytic homomorphism o+ 

Ad(a) from G into CL(g) gives rise to a Lie 
algebra homomorphism g~gl(g) by taking the 
differential of o-tAd(cT). Denote this Lie alge- 
bra homomorphism by X+ad(X) (XE g). 
Then ad(X) Y= [X, Y] for every X, Y in g. 

Thus ad:g+gl(g) coincides with the tadjoint 
representation of the Lie algebra g. If G is 
connected, then the Lie subalgebra ad(g) (the 

tadjoint Lie algebra of g) of RI(g) is associated 
with the connected Lie subgroup Ad(G) of 
CL(g). Thus the adjoint group Ad(G) coincides 
with the group I(g) of +inner automorphisms 
of g (the tadjoint group of 9). 

If G is connected and semisimple, g is also 
semisimple. Furthermore, we have B(g) = 
ad(g). Hence the adjoint group Ad(G)=I(g) 

of G coincides with the connected component 
of the tautomorphism group A(g) of g contain- 
ing the identity element. If G is compact or 
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semisimple, then every representation of G is 

completely reducible. 
Let G be a connected Lie group of dimen- 

sion M, g be the +Lie algebra of G, and Ad : G 
+CL(g) be the adjoint representation of G. 
Put det((t + 1)1-Ad(x))=&,tjDj(x) for 
every XE G. Then each 0, is an analytic func- 
tion on G, and D, = 1. Let I be the least integer 
such that D, #O. Then / = rank G = rank g. An 

element x of G is called regular (singular) if 
D,(x)#O (@(x)=0). The subset G* of G con- 
sisting of a11 regular elements of G is open and 
dense in G. The subset G-G* of G consisting 

of a11 singular elements of G is of measure zero 
with respect to the left-invariant +Haar mea- 

sure of G. 
Now suppose that g is treductive. Then an 

element x E G is regular if and only if the cen- 
tralizer jl= {XE~ 1 Ad(x)X =0} is a Cartan 
subalgebra of g. Furthermore, if x E G is regu- 
lar, then Ad(x) is a semisimple linear endomor- 
phism of g. 

Q. Canonical Coordinates 

With each element X of the Lie algebra g of 
the Lie group G there is associated a one- 
parameter subgroup of G, i.e., a continuous 
homomorphism t+<~(t) from the additive 
group R of real numbers into G, such that 
dq(X,) = X, where X, = d/dt is the basis of 
the Lie algebra of R. Furthermore, the con- 
tinuous homomorphism <p is unique. Putting 
q( 1) = exp X, we defïne the exponential map- 

pingexp:g+G. Then we have <p(t)=exptX 
for every tE R. In particular, for the case G = 

GL(n, C), g = gl(n, C), we have exp X = C Xm/m! 
for every X E g. Thus exp X coincides with the 
usual exponential mapping of matrices (- 269 

Matrices). The mapping exp: g-tG is a c’“- 
mapping whose differential at X =0 is a bijec- 

tion from T,(g) = g onto T,(G). Thus for each 
basis X,, X, of g, there exists a positive 
real number F with the following property: 
{exp(Cx,X,)I]~~]<E(i=l,...,n)} isanopen 
neighborhood of the identity element e in G on 

which o=exp(CxiXi)-t(xl, ,x,) ([xi] CE, 
i=l,..., n) is a tlccal coordinate system. These 
local coordinates are called the canonical 
coordinates of the first kind associated with 
the basis (Xi) of g. Similarly, we have a local 

coordinate system t=(expx, X,). (expx,X,) 
-‘(x1, , x,) in a neighborhood of e; these 

x1, , x, are called the canonical coordinates 
of the second kind associated with the basis 

txi) Of g. 
Let q : G, +G, be a continuous homomor- 

phism from a Lie group GI into a Lie group 
G,. Then q(expX)=exp(dq(X)) for every 
XE gr The Lie subalgebra h associated with a 
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connected Lie subgroup H of G is character- 
ized by using the exponential mapping as 

follows: lj={XegIexptXEH for a11 tsR}. 

R. Multiplication Functions 

Fix a basis X,, , X, of the Lie algebra g of a 
Lie group G. Let (u,, . . , un) be the canonical 
coordinates of the tïrst kind associated with 
the basis (XJ. With respect to this coordinate 
system, let (xi), (yi), (zi) be the coordinates of 
the elements cr, z, or, respectively. Then each zi 
is a real analytic function in (x1, . ,x,; 

Y , , . , y,). The +Taylor expansion of zi at 
x,=x,=...=y,=y,=...=Oisgivenas 
follows: Put S = z xiXi, T= C yiXi. Then 

zi= f &‘T’Ui), 
k,l=,, k!l! 

= xi + yi +(ST&, + (terms of degree 2 3). 

Furthermore, let (wi) be the coordinates of 
Z-~O~~ZIJ. Then we have 

wi =([T, S] r&, + (terms of degree B 3). 

Let g* be the set of a11 R-valued hnear forms 
on g, that is, g* is the dual vector space of g. 
We cari identify the elements of g* with the 

left-invariant tdifferential forms of degree 1 on 
G. These forms are called Maurer-Cartan 
differential forms. Let or, . , o, be a basis of 
g* which is dual to the basis X, , . , X, of g: 
o,(Xj) = 6, (1 <i, j < n). The texterior derivative 
dw, of wk is a left-invariant differential form 
of degree 2 on G and is expressed as a linear 
combination of the texterior products wi A wj 
as follows: 

dw,= -fl,::q~q, (1) 

where (CG) are the +Structural constants of g 

with respect to the basis (Xi), i.e., [Xi, Xj] 
=c,c;x,. 

Using the canonical coordinates of the first 
kind (ui) associated with the basis (Xi), put wk 
= wk(u, du) = Cj Akj(u)duj. Then the matrix 9I 
=(Akj(u)) is given by 

(2) 

where 3E = (c,(u)), c,(u) = Ck cfkuk, i.e., -3E is the 
matrix of ad(C nkXk) relative to the basis (Xi). 

Thus, in particular, if G is a nilpotent group, X 
is a tnilpotent matrix. 

Once the functions Akj(u) are known, then 

the functions zi =L(X~, ,x,; y,, . . , y,,) de- 
scribing the multiplication in G (note that 
ott(xJ, ~-(y~), or-(z,)) are obtained as 

follows. By the left-invariance of the oi, we 
have the following Maurer-Cartan system 

of differential equations: 

Mz, dz) = W(Y, dy), 1 Gi<n. (3) 

Regarding x r , , x, as parameters, put zi 
=<~~(y,, . . . . y,). Then (3) is equivalent to 

CA,(i)--+(y), 1 < i, k < n. (3’) 
j %k 

Now (3’) is tcompletely integrable, by (1). By 
solving the system (3’) of differential equations 
under the initial conditions 

cp,(O, . . > 0) = xj, l<j<n, (4) 

we obtain the multiplication functions zi 

=fitxl> ...axn;.Yl, . . . ..Vn) C1l. 
By the exponential mapping exp:g-*G from 

the Lie algebra g of a Lie group G, a sufh- 
ciently small neighborhood U of the zero 
element of g is mapped bijectively and bi- 
real-analytically onto a neighborhood V of the 
identity element of G (- Section Q above). 
Now by taking ci suflïciently small, the prod- 
uct (expX) (exp Y) for X, Y in U cari be 
exphcitly given in the form expZ by the 
Campbell-Hausdorff formula. Namely, ZE g 

is given by 

Z=c,(X, Y)+c,(X, Y)+..., 

where 

c,(X, Y)=X+ Y 

and cî, c3, . are defined recursively by 

(n+ l)~,+~ (X, Y)+x- Y,c,] 

+pZ1~~~nK2p~‘[Ck,r[.~.~ck~~>X+Y1...l~ 

where the second summation is taken over 
a11 2p-tuples (k,, . , k,,) of positive integers 
k,, . , k2,, satisfying k, + . . . + kzp= n. Here the 
K,, K,, K,, are rational numbers defïned 

by the Taylor expansion 

Z 
--‘z= 1-t c KZ,Z2P 
l-e-’ 2 p=1 

For example, 

<:*=;Ix, Yl, 

c4= -&pIx,~X,Y 111 

-fCX [Y> [X, YIll, 

etc. [23]. 
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S. Maximal Compact Subgroups 

Any compact subgroup of a connected Lie 
group G is contained in a maximal compact 
subgroup of G. Any two maximal compact 
subgroups of G are conjugate in G. Let K be a 

maximal compact subgroup of G. Then K is 
connected and G is homeomorphic to the 
direct product of K with a Euclidean space R” 
(Cartan-Mal’tsev-Iwasawa tbeorem). 

T. Iwasawa Decomposition 

Let G be a connected semisimple Lie group. 

Suppose that the tenter of G is a tïnite group. 
Let g = f + a + n be an tIwasawa decompo- 
sition of the Lie algebra g of G (- 248 Lie 
Algebras). Then the connected Lie subgroups 

K, A, N associated with I, a, n, respectively, are 
all closed subgroups of G. Furthermore, K is a 
maximal compact subgroup of G, A is isomor- 
phic to the additive group R” for a suitable s, 
and N is a simply connected nilpotent Lie 
group. The mapping K x A x N +G given by 
(k, a, n)+kan is bijective and is an isomorphism 
of analytic manifolds. The decomposition G 
= KAN is called an Iwasawa decomposition of 
G. An Iwasawa decomposition is unique in the 
following sense: Let G = K’A’N’ be another 
Iwasawa decomposition. Then there exists an 

element g in G such that gKg ml = K’, gAg-’ 
=A’, gNg-’ = N’ [9,3]. 

U. Complexification of Compact Lie Croups 

Let G be a compact Lie group. Denote by 
C(G) the commutative associative algebra of 
all C-valued continuous functions defined on 

G relative to the usual multiplication in C(G). 
Then for each oéG, L,(R,) acts on C(G) by 
L,f=foL,(R,f=foR,). Now put o(G)= 
{f~C(G)Idirn&,CL,f< co}. Then o(G) is 

a subalgebra of C(G), called the representative 
ring of G. Elements of o(G) are called represen- 
tative functions of G because for an element 
fe C(G), f~o(G) if and only if there exists a 
continuous matrix representation o+@,(o)) of 
G such that fis a C-linear combination of the 
d,. For each CEG, L, and R, preserve o(G). 
With respect to the uniform norm IlfIl og = 
max,&(a)1 of C(G), o(G) is everywhere 

dense in C(G) (Peter-Weyl tbeory) (- 69 Com- 
pact Croups B). This implies the existence of a 
faithful (= injective) representation p: G+ 

GL(n, C) of G. Furthermore, o(G) is a lïnitely 
generated algebra over C. Thus there exists a 
representation o-t(d,(o)) such that o(G) is 

generated over C by the d,. Such a representa- 
tion is called a generating representation. 
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Denote the group of a11 automorphisms of 

the algebra o(G) by A. Let G be the centralizer 
in A of the subgroup {L, 1 o E G} of A. Then we 

have a bijective mapping S(+U’ defïned by 
cr’(f)=(c~(f))(e) (feo( from the group G 
onto the set Hom&o(G), C), which is an affine 

variety. Thus every generating representation 

P:o+(dij(o))l<i,j<n delïnes a faithful matrix 
representation fi of G by ~(~)=(a’(d,)),~,,,,, 

by means of the bijection c(-tt(’ from G onto 
Hom,(o(G), C). Furthermore, the image /7(G) 
is an talgebraic subgroup of GL(n, C) given 

‘JY {B(diJ,<,,<n 1 fiEHom,(o(G), C)}. Thus G 
has the structure of a tlinear algebraic group, 
which is actually independent of the choice of 

a generating representation. (Hence (? also has 
the structure of a complex Lie group.) Now o 
+R, defïnes an injective continuous homo- 

morphism from G into G, and we cari regard 
G as a subgroup of G. Then for IXE G, c( is in G 
if and only if ~(7) = cc(f) for every f in o(G) 
(Tannaka duality theorem) (- 69 Compact 
Groups D). G is a maximal compact subgroup 
of ë, and every maximal compact subgroup of 
e is conjugate to G in G. Then complex Lie 
algebra 8 of G is isomorphic to the complexifi- 
cation gc = C @a g of the Lie algebra g of G. 
(? is homeomorphic to the direct product of G 
with a Euclidean space RN, where N = dim G. 

For a complex analytic function cp defïned on 

G, cp = 00 <p IG = 0. In particular, G is the clo- 

sure of G relative to the tzariski topology of 
G. The group G is called the Chevalley com- 
plexification of G, which we denote by GC. Let 
G, , G, be compact Lie groups, and let <p : G, 
+ G, be a continuous homomorphism. Then <p 
cari be extended uniquely to a rational homo- 
morphism (pC:Gy+Gz. In particular, every 
complex representation (p, V) cari be extended 
uniquely to a trational representation (pc, V) 

of GC. Every complex analytic representation 
/? of GC is a rational representation, and p 
= pc, where p = fi IG. Thus fi is completely 
reducible. Also, we have a bijection from the 
classes of irreducible continuous representa- 

tions of G onto the classes of irreducible 
complex analytic representations of GC. For a 
closed subgroup H of G, the complexifïcation 
HC of H coincides with the closure of H in GC 

relative to the Zariski topology of GC. 

If (p, V) is a generating representation of 
G, then GCgpC(GC) c GL( V). Furthermore, 

pc(Gc) is an algebraic subgroup of GL( V) that 
is completely reducible on V. Conversely, let 

F be an algebraic subgroup of GL( V) that is 
completely reducible on V. Then there exists 
a compact Lie group G such that GCz F (as 

algebraic groups). If an algebraic subgroup F 
of GL(n, C) satistïes ‘F = F, then Fg GC, where 
G = F n U(n). Now let F be a connected semi- 
simple complex Lie group. Then FE GC for 
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every maximal compact subgroup G of F. In 
particular, F has a faithful representation. 

For example, let G g I/(n), O(n), SO(n), SP(n), 
respectively. Then GC r GL(n, C), O(n, C), 
So(n, C), Sp(n, C), respectively [l]. 

V. History 

S. Lie was the first to consider Lie groups, in 
the late 19th Century; at that time they were 
called continuous groups. His motivation was 

to treat the various geometries from a group- 
theoretic point of view (- 137 Erlangen Pro- 
gram) and to investigate the relationship be- 
tween differential equations and the group of 
transformations preserving their solutions. Lie 

groups were studied locally, and the notion of 
Lie algebras was introduced. It was observed 
that the properties of Lie groups reflect the 
properties of Lie algebras to a large degree. 
Even in this early stage, the notions of solvable 
and semisimple Lie algebras were introduced 
together with proofs of basic properties. The 
Galois theory of linear differential equations 

(by E. Vessiot and others) is contained in Lie’s 
theory. Early in the 20th Century, the theory of 
infinite-dimensional Lie groups was studied by 
E. Cartan. After him, however, there was a 

long lu11 until it was taken up again by M. 
Kuranishi and others in the 1950s. We re- 
strict ourselves to the consideration of tïnite- 
dimensional Lie groups. 

From 1900 to 1930, E. Cartan and H. Weyl 

obtained a complete classification of the semi- 
simple Lie algebras and determined their 
representations and characters. They also 
devised useful methods for investigating the 
structure of these algebras, and did pioneering 
work on global structures of the underlying 
manifolds of Lie groups. After them (1930- 

1950), these results were systematized and 

relïned by C. Chevalley, Harish-Chandra, and 
others. In the same period, K. Iwasawa [9] 
clarified Cartan’s idea, showing that the only 
Lie groups that are topologically important 
are compact Lie groups. He also obtained the 
Iwasawa decomposition, which has become 
a basic tool in the study of semisimple Lie 
groups. At the same time, Iwasawa contri- 

buted to Hilbert’s lïfth problem, which seeks to 
characterize Lie groups among topological 
groups. This problem was solved by A. M. 

Gleason, D. Montgomery, L. Zippin, and H. 
Yamabe in 1952. Since 1950, the topological 
properties of Lie groups have attracted con- 
siderable attention. The methods of Cartan, 

who postulated de Rham’s theory, and H. 
Hopf, who used the properties of groups ex- 

tensively, were succeeded by systematic appli- 
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cations of the general theory of algebraic top- 

ology. In particular, the topological theory of 
tlïber bundles was applied to homogeneous 

spaces G/H by A. Bore1 and others. Thus 

homology groups of Lie groups were com- 
pletely determined, and homotopy groups of 
Lie groups were determined to a considerable 
extent. At the present time, the following Iïelds, 
rather than Lie groups themselves, are abjects 
of extensive study: structure and analysis 
of homogeneous spaces, algebraic groups, 
infinite-dimensional unitary representations, 
and finite or discrete subgroups (- 13 Alge- 
brait Groups, 109 Differential Geometry, 
427 Topology of Lie Groups and Homogen- 

eous Spaces, 437 Unitary Representations). 
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250 (XVll.3) 
Limit Theorems in 
Probability Theory 

A. General Remarks 

Let S, be the number of successes in n +Ber- 
noulli triais with probability p for success. 

Then the classical de Moivre-Laplace limit 
theorem implies that 

for a11 x. It is also known that for any c > 0 

P(ldS,-pl>++O (n+co), 

which is a special case of the law of large num- 
bers. General forms of such convergences of 
sequences of irandom variables are explained 
in this article. 

In tprobability theory, theorems concerning 
+Convergence in distribution, +Convergence in 

probability, and talmost sure convergence 
of sequences of trandom variables are sub- 
sumed under the generic term of limit theo- 
rems. When the tprobability distributions of a 
sequence of random variables converge to the 
distribution F (- 341 Probability Measures 

F), then F is called the limit distribution. 
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B. Convergence in Distribution of Sums of 

Independent Random Variables 

A sequence of random variables {X,,k} (1 <k < 

k,, n > 1) (k,+ CU) is said to be infinitesimal if 

max,,,.,“P(IX,,I~~)~O(I1’CO)forevery 
c>O. When X,, , , X,, are tindependent 
for every n and {X,,,} (12 k < k,, n > 1) is inlï- 
nitesimal, the set of a11 limit distributions for 
thesumsS,,=X,,+...+X,,m-A,(theA,are 
suitable constants) coincides with the class 
of inlïnitely divisible distributions (- 341 
Probability Measures G). Suppose that the 
tcharacteristic function ,f of an inlïnitely divis- 

ible distribution F is given by tlévy’s canon- 
ical form 

and the distribution function of X,, is &(x). 
Then a necessary and sufficient condition for 

the distribution of S, - yn to converge to F for 
some sequence {y,,} is that (i) for every +Con- 
tinuity point x of M(x) and N(x), 

k$l Fnkc+M(X) WO), 

@>Oh 

lim lim sup c 
(s 

x2 dK,(x) 
s-0 n-cc k=l IXl<E 

=limliminf t 
8’0 n-cc k=l (S 

X2 dFn,(x) 
/X/-Q 

-(6x,<Exd~k(x)>3 
=02. 
Applying these results to special distribution 

functions, we obtain various kinds of limit 
distributions. 

(1) The Central Limit Theorem. In the cen- 
tral limit theorem, the limit distribution is a 

+normal distribution. A necessary and suffi 
tient condition for the distributions of the 

sumsS,=B;‘(X,+...+X,)-A,(B,+co)ofa 
sequence of independent random variables 
{X,} to converge to the +Standard norma1 
distribution N(O, 1) and for {B;‘X,} (1 <k <n, 
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n Z 1) to become infïnitesimal is that 

lim C “‘“‘k=l î ,x,>cB”d~(x)=o and 

lim B;’ i x2 dF,(x) 
n+oL k=1 (s IX~WJ” 

where Fk(x) is the distribution function of X,. 
When the tvariance of each X, is finite, we put 

B,f = i V(X,), A,,= B;’ i E(X,), 
k=l k=l 

where V(X), E(X) stand for the variante and 
mean of X, respectively. Then the necessary 
and sufficient condition is replaced by the 

Lindeberg condition: 

lim Bi2 t 
s 

x2 dF,(x + E(X,)) = 0 
n-m 

k=l (x,>+ 

for every E > 0. 

In particular, if the X, have the same distri- 
bution with finite variante, the corresponding 

Lindeberg condition is satistïed, and the cen- 
tral limit theorem holds. When the variables 
give outcomes of independent tBernoulli trials, 
the proposition is reduced to the classical 

theorem of de Moivre and Laplace. Moreover, 
if X, has the fïnite tabsolute moment mf!, = 
E(IX,,/2’6) of order 2+6 and E(X,)=O, then 
the Lindeberg condition is implied by the 
Lyapunov condition 

(2) The Law of Small Numbers. In order that 
the distributions of the sums S,, =X,, + + 
Xnkn of infinitesimal independent random 
variables converge to the TPoisson distribution 
P(A) with mean n, it is necessary and suffïcient 
that for every e E (0, l), 

lim t dF,,,(X) = 0, 
“-= k=l 

R,={xIIx-lI>c, IX[>E}; 

lim 5 
s 

d&,(x) = i; 
n-m k=, +I~<F 

lim $J 
s 

xdF,,(x)=O; and 
n-,x k=L ,qcc 

lim 5 
n--* k=, 

x2 dFn,(x) 

From this proposition follows the classical law 
of small numbers: If the probability of success 

pk for the kth outcome of independent trials 
satisfies kp, = A with constant 3, independent of 
k, then the total number .S,, of success up to the 
rzth tria1 converges in distribution to the Pois- 
son distribution with mean i. 

(3) The Law of Large Numbers. In the law of 

large numbers the limit distribution is the +Unit 
distribution. Given a sequence of independent 
random variables X, with distribution func- 
tion F,,(x) with mean u,, a necessary and suffi- 
tient condition for n-’ CkCl(Xk -Q) to con- 

verge to 0 in probability is that 

lim i 
î 

dFk(x + ak) = 0, 
‘-= k=l ,x,>,, 

xdF,(x+a,)=O, and 

- (s 
2 

X dF,(X + &) >> =o. 

/xl-- 

In particular, this is the case when (i) X, has 
the lïnite variante V(X,) and ne2 Et=, V(X,) 
-0; or (ii) the X,,, n > 1, obey the same distri- 
bution with lïnite mean. 

(4) Convergence to Quasistable Distributions. 
The set of limit distributions for the sums S,, = 
B;‘(X, + +X,)-A, of identically distri- 

buted independent random variables {X,) 
(with suitable constants A,, B,) coincides with 
the set of quasistable distributions (- 341 
Probability Measures G). If G(x) is the distri- 

bution function of the Xi, in order for the limit 
distribution to be normal it is necessary and 
suffcient that 

lim K’~~,,~dG(~)~~~,<~~‘dC(~)=O~ 
K-a 

In order for the limit distribution to be quasi- 

stable with index a (0 < c( < 2) it is necessary 
and suffïcient that 

l im  1 -G(x)+G(-x) 

x-x l-G(ax)+G(-ux) 
=d for every u>O 

In this case the characteristic function of the 
limit distribution is given by Lévy’s canonical 
form with M(x)=c,Ixl-“, N(x)= -C~I~\-‘, 
o=o. 

(5) Refïnement of Central Limit Theorem. Let 
{X,} be a sequence of identically distributed 
independent random variables with E(XJ = 0, 

a2 = V(X,), E(IXi13)< CO. Let Q,(x) be the 
distribution function of S,, =(X, + + X,)/ 
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c& and m(x) the distribution function of the 
normal distribution N(O, 1). Then we have 

@“cd -@(xl 

= -43 -x2/2) 
+ (Q(x)+W))+o 

uniformly in x, where Q(x) = (1 - x2)E(X~)/6rr3; 
R(x) is identically zero when Xi does not have 
a tlattice distribution; but R(x)=do-‘R,((x+ 

a,)afid~‘),R,(x)=[x]-x+1/2,anda,= 

-JL-’ when Xi has the lattice distribu- 
tion with maximal span d: P(X,E {a + kd 1 k = 
0, k 1,. }) = 1. More accurate asymptotic 
expansions for a,(x) are derived when the Xi 
have absolute moments of higher orders [ 11. 
Asymptotic expressions are also obtained 
when the Xi are not identically distributed [2] 
or the limit distribution is tstable [3]. 

(6) The Local Limit Theorem. The local limit 
theorem is concerned with the density function 
of the limit distribution. Let {X,,} be a se- 
quence of identically distributed lattice vari- 

ables with finite variantes as in (5). Let 

&=(a&’ c w,-Jw,)), k=, 
~~,~=(a&)~~ d(j-nE(X,)). 

Then uniformly in j, 

0s P(S,=s,)-(2n)-“‘exp(-sfj/2)+0 

(n-tco). 

The classical de Moivre-Laplace theorem for 
Bernoulli trials is a special case of this theo- 

rem. When Xi has a density function, a cor- 
responding limit theorem holds. Local limit 
theorems are derived also when (i) higher 
moments exist, (ii) the limit distribution is 
stable, or (iii) the component variables are not 
identically distributed [2,3]. 

(7) Large Deviations. Let {X,} be a sequence 

of identically distributed independent random 
variables with E(Xi) = 0,O <c? = V(Xi) < co. 
Let u>,(x) be the distribution function of S, = 
(X, + + X,,)/(T& and u>(x) the distribu- 

tion function of the standard normal distribu- 
tion N(O, 1). In many problems in the fïeld of 

applications of probability theory, the asymp- 
totic behavior of 1 - a>,(~,) as x,+ CO with 
n is of interest. This is called the problem of 
large deviation. Assume that E(exp(aJXi())< CO 

for some a > 0. Then for x, > 1, x, = o(&) and 
n+ CO the following assertions hold: 

1 -@,(x,1 
1 - w4 

=exp($JL(%))( I+U(?)). 

s=exp(31(2))( 1+0(%)), 

where i(z) is a power series involving the 
tsemi-invariants of Xi and is convergent for 

sufficiently small IzI [4,5]. This result has been 
generalized for the case of random variables 
not identically distributed [5,6]. Bounds for 

1 - ù>,(x.) have also been derived by several 
authors (- [7]). 

C. The Strong Law of Large Numbers and Its 
Refïnements 

A sequence of random variables {X,} is said 
to obey the strong law of large numbers if 
n-l Ci& (X, - ak) tends to zero with proba- 
bility 1 as n+co, when constants uk are pro- 
perly chosen. When the component variables 
of the sequence are independent, a useful suffi- 
tient condition for validity of the strong law of 
large numbers is 

According to Birkhoff’s individual ergodic 
theorem (- 136 Ergodic Theory B), it is neces- 

sary and sufflcient that the mean of a compo- 
nent variable exist for a sequence of identically 
distributed independent variables in order for 
it to obey the strong law of large numbers. 

Suppose that {X,,} is a sequence of inde- 
pendent random variables with E(X,) = 0, 

0,2=E(Xn)<co,bn=a:+...+0,2~co,and 
P(lX,l<n,b,,n=1,2,...)=1 foradecreasing 
sequence J., tending to 0 as n+ CO. If Ân = 

0(l/<p3(b,2)) for a certain increasing continu- 
ous function q, the probability that X, + + 
X,, > b,,cp(b,f) for infinitely many n equals 0 or 

1 according as the integral 
s 

“1 
-dtk -++(012 & 

1 t 
converges or diverges [S]. In particular, when 

cpw =(21w,2, t + 3 l%(3) t + 2 lO&, f 

+...+210go~,,t+(2+E)logo,t)“2, 

where loge, t = log log t, etc., the relevant prob- 
ability is equal to 0 or 1 according as E is 
positive or negative. If we take <p(t) = 21og(,, f, 
we are led to Khinchin’s law of the iterated 

logarithm: If 

P 
> 

= 1. 

D. Functionals of Sums of Independent 

Variables 

(1) Consider a recurrent event which occurs at 
successive time periods zl, z, + z2, . , where 
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{z”} is a sequence of nonnegative independent 
random variables with the same distribution. 
Let F be the distribution function of zl, m = 

E(T,), CT’ = V(Z,) < 00, and N,, be the number 
of occurrences to time n. Then 

When C? = CO and P(t, < ca) = 1, a necessary 

and suflïcient condition for suitably norma- 
lized N,, to converge in distribution is that for 
every a > 0 the relation (1 - F(x))/( 1 - F(ax)) 
+u’(x-+c~), O<N<~, hold. When O<~C< 1, 

P(N,(l -F(n))<x)+Y,(x). When 1 -CC(<~, 
P((N,-nm-‘)m’+““b”~’ <~)+Y,(X) for b, 
such that 1 -F(b,,)-n-l, where y,(x)= l- 
e-“(x>O), Y,(x)= 1 -@,(x-l’“) (x>O) for O< 

a<l,Y,(x)=l-@,(-x)for l<a<2,and 
@, is the quasistable distribution function 
whose characteristic function is 

exp( -~t~“(cos2~‘nc~-isgntsin2-‘ncc)T(l -a)). 

In particular, we have 

Y,,,($ijGx)=J2/n xexp(-u2/2)dU. 
s 0 

Moreover, the strong law of large numbers 
and the law of the iterated logarithm con- 

nected with N,, have been obtained [9]. 
(2) Let {X,} be a sequence of independent 

identically distributed random variables taking 

integer values with the same distribution, and 
put S, = X, + . +X,. If the maximum span of 
the Xi is d and 0 < E(X,) < +~CI, then 

where xE is the tindicator function of the set E, 
and l/E(Xi) is defïned as zero when E(X,)= co. 

If the limit distribution of the normalized sums 
S,, of {X,} is stable with index p (1 <p < 2), Xi 

is symmetric for b= 1, and E(X,)=O for b> 1, 
then the event that S,, returns to 0 is a recur- 
rent event. For these cases, setting CC = 1 -p-l, 

the conditions in (1) imposed on the distri- 
bution of the recurrence time z1 are satisfied, 
and the limit distribution for N, = xjoi(S,) + 

+xior(&) is determined. In this connection, we 
cari show that a similar result is valid when 

xiO) is replaced by a member of a considerably 
wider class of functions, and that the limit 
distribution is determined as well for A4,, which 
is the number of occurrences of the event 

(S, 3 0, S,,, < 0), 1< k < n. Similar theorems are 
established for the case when Xi has nonlattice 
distribution [lO-121. 

(3) Let {X,} be a sequence of independent 
random variables with the same distribution, 

and put S, =X1 + +X,, L, = xCO, ,,(S,) + 
+~CO,;o~(S,J. If n-‘E(L,)+a (O<ad l), then 
P(L, d nx)+ G,(x), where G, is a distribution 
function on the unit interval [0, 1] such that 

G,(O+)-G,(O-)= 1, 

s 

x 
G,(x)=nm1sin7rcc ~“~‘(1 -u)-“du 

0 

for Oca< 1, and G,(l +0)-G,(l-0)= 1. 

When c(= 1/2, the corresponding limit distri- 
bution is given by G1,2(~)=27(-1 arcsin& 
(the arcsine law). These L, and N,, M,, in (2) 
are considered as tadditive functionals of the 
tMarkov process S,,. When E(Xi) = 0 and 
E(XL)= 1, we have the limiting relation 

=4zogexp( -(2m~xlJ2n”) (x > 0). 

Furthermore, the limit distributions of n-‘(Sf 

+...+S,Z)andnm3’2(IS,I+...+IS,l)arealso 
determined explicitly [ 141. When X, is non- 
negative, let v, be the number of S, (n = 1,2, ) 
not exceeding x, and Write Y, = SVx+, -x, Y; = 
X-S,. Then a fundamental theorem of tre- 
newal theory guarantees the existence of the 
limit distributions of Y,, Y: as x+ CO [ 151. 

Extensive studies have also been devoted 
to limit theorems for sums of dependent ran- 
dom variables, especially for tMarkov chains 

[16-201. 

E. Convergence in Distribution for Stochastic 

Processes 

(1) General Theory. Let T be a finite or infi- 
nite time interval, and let (Q ‘B, P) and S be a 

probability space and topological state space, 
respectively. Given an S-valued stochastic 
process X=(X(t,m), teT,wsQ, we denote by 
d(ST) the a-algebra generated by the tcylinder 
sets and denote by Px and P$...‘“, respectively, 
the probability measures over B(S“) induced 
by the processes X and (X(l,, w), . , X(l,, w)). 
Suppose that there is a sequeqce of stochastic 

processes X,, (n = 1,2,. ) whose tsample paths 
are contained in a subset E of ST. We cari 
introduce a topology t on E SO that if 8, (n = 
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1,2,. .) is the P,“-completion of B(Y), the 

topological a-algebra 23; on E becomes a 
subfamily of 23, n E (n = 1,2,. ). If there exists 

a probability measure Pr, over (E, 23;) such 
that 

for every bounded z-continuous real function f 
on E, then the probability distributions of {X,) 
are said to converge to Pc,. 

Let (E, p) be a tcomplete metric separable 
space and P’ the Lebesgue measure on Q’ = 
[O, 11. If a sequence of E-valued random vari- 
ables {X,,(w), 1 <n < co} has the probability 
distribution P. over the a-algebra 23: of Bore1 

sets of (E, p) as its limit distribution, then it 
cari be shown that there is a sequence of E- 
valued random variables { [,(w’)} (~‘ER’; 0 < 
n < co) such that the probability distribution 

of &,(w’) coincides with that of X,(w) (1 <n < 
CO), &(w’) has the probability distribution Po, 
and P’(&,(o’)-&,(w’))= 1 [21]. 

Consider a sequence of real-valued sto- 
chastic processes {X,,(t, w)}. If(i) there is a 
probability measure P,, on ‘B(RT) such that 
P;i”‘” converges to P$...‘k for every choice of 
(t,,...,t,)and(ii) 

limlimsup sup P(I~,(S)-X,(t)l>~)=0 
hl0 n-m Is-tl<h 

for every s > 0, then there exists a sequence of 

real-valued processes { &,(t, w’)} (w’EQ’; 0 <n < 
CO) such that for every t E T, t,(t) converges 
in probability to tO(t), g, and X, (1 <n < CO) 
induce the same probability measure over 
B(RT), and 5, has the probability distribution 
P. and is continuous in probability. 

(2) Convergence in Distribution of Stocbastic 
Processes Wbose Sample Functions Have ?Dis- 

continuities of Only tbe First Kind. Yu. V. Pro- 
khorov and A. V. Skorokhod carried out a sys- 
tematic study of convergence in distribution 

for those processes whose sample functions are 
(S, p)-valued and have discontinuities of only 
the tïrst kind, where (S,p) is a complete metric 
separable space. Let D be the set of functions 
x(t) from T= [O, 11 to S having discontinuities 
of only the lïrst kind and right continuous for 
0 < t < 1 with x( 1 - 0) =x(l), and introduce a 

metriC fD by PD(x, y) = inf,{SUPcEr 1 t - n(t)1 f 

sup,,rp(x(t), y@(t)))}, where the inlïmum 

is taken over a11 homeomorphisms Â on T. 
Then (i) in the notation of (1) SF = B(Sr) n 

D, (ii) (D, pn) is tseparable but not neces- 
sarily tcomplete, and (iii) there is a complete 
separable metric pb in D which is equiva- 
lent to pn (i.e., pa and p0 induce the same 

topology in D). When almost all sample func- 
tions of X are elements of D, we Write XE 
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D. Given X, E D (n B 0), a necessary and suf- 
lïcient condition for Pxn to converge to Px, 
over !Z3g is that (i) P;;.“” converge to P2;..‘h 
for any (t,, , t,)c N, where N is a dense 

subset of [O, l] containing 0, 1; and that (ii) 
limhlo lim SU~~+~ P,“(A,(h, X,) > 6) = 0 for 
every 6>0, where A,(h,x)=sup{min(p(x(t,), 

x(t)),p(x(t,),x(t)))It-h<t,<t<t,<t+h}. 
If C is a subspace of D consisting of ah con- 

tinuous functions, pD is equivalent to pc(x, y) = 

max{p(x(t), y(t))IO<t< l}, and A,(h,x)= 
max{ p(x(s), x(t)) 1 1s - tl <h} corresponds to 
AD. For a sequence of processes X,E C, a 
necessary and sufficient condition for Px, to 
converge to Px, over !Z3C is that (i) P!$i’.‘” con- 
verge to P!&..‘x forany(t,,...,t,)cN(N is 

a dense set as in the case of D); and that (ii) 
limh10 lim SU~,,, Pxm(A,(h, X,) > 6) =0 for 
every 6 > 0. 

If Px, converges to Px, over 82 (over BP), 
then there exists a sequence (,(t, ~)ED (E C) 
(tET,w’EU)forO<n<cosuchthatP5.= 
Px”forOdn<co andP’(p,(~,,&+O)=l 

(p’(P,(5”, iobO)= 1). 
The following theorem, due to Prokhorov, is 

useful for practical applications. Let {X,(t) 1 
0 < t < 1,~ E A} be a family of real-valued pro- 
cesses that satisfy 

E(IX,(t)-X,(s)y)<c(t-sI’+b, MEA, 

where a, b, c are positive constants inde- 

pendent of x. If the family of distributions of 
{X,(O) 1 ZE A} is tight (- 341 Probability 
Measures F), then X,(t) E C (c( E A), and {P,,} 
is a tight family of probability distributions 
over C. 

(3) Convergence in Distribution of Markov 
Processes. Consider a Markov process {X(t), 

06 t < l} with complete metric separable 
space (S, p) as its state space and with topo- 
logical cr-algebra 8,. Suppose that its tran- 
sition probabilities P(s, x; t, A), 0 <s < t < 1, 
A E 23@ are measurable in x E S. DeIïne V”(x) = 

{Y I dx, Y) Z ~1, an d introduce two kinds of 
conditions: (D) for every E > 0 and 0 < t < 1, 

‘imhLOSUPx~S,t,.t, P(t,,x; t,, V&(X))=~, where t,, 
t, are subject to the conditions t < t, <t, <t + 
h, t-hdt,<t,<t, l-h<t,<t,<l;(C)for 
every E > 0, sup xtS,r-s<h p(s> x; t, ve(x)) < hy,(h), 

where Y,(h) is such that Y,(h)10 as hJ0 for 
every E>O. According as {X(t),O< t< 1) satis- 
fies conditions (D) or (C), there is a process 

X’(t) which is equivalent (- 407 Stochastic 
Processes) to X(t) belonging respectively to (D) 
or(C). Convergence in distribution of Markov 

processes is based on this fact. Suppose that 
a sequence of Markov processes {X,(t) 10 < 
t 6 1 }, 0 d n < CU, satisftes (i) condition (D) uni- 

formly in n (condition (C) with Y, indepen- 
dent of n), (ii) with N as in (2), Pu/” con- 
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verges to PX,;..‘” for every (t, , , tk) c N. Then 
Px, converges to Px, over 232 (over SF). Con- 
vergence in distribution of Markov processes 
is also implied by the convergence of the tgen- 

erators of the Markov processes [24,25]. 

(4) Donsker’s Invariance Principle. Donsker’s 
invariance principle is a kind of central limit 
theorem for stochastic processes. Let { <.} be a 
sequence of identically distributed independent 
(real-valued) random variables with E(&) = 0 
andO<a2=V(<,)<~,andletS,=~,+...+~,, 
n 3 1, S, = 0. Deiïne random elements X,, E C = 

CW, 11, na 1, by 

(O<tdl), 

when [nt] denotes the integer part of the real 
number nt. Thus X,(i/n, w) = Si/~$, and X,, 
is linear on the interval [(i- I)/n, i/n] for i= 
1,2, , n. The C-valued random variables 
X, induce their probability distributions Px. 
over a?, na 1. Let X(t), O<td 1, be a (real- 
valued) tWiener process (- 45 Brownian 
Motion A) with X(0) = 0 and Px its probability 

distribution over BF. Px is called a Wiener 
measure. Then Donsker’s invariance principle 
[26] asserts that Px, converges to Px. 

and if we consider Px as a probability measure 
on the space (D, %pDD) which is concentrated on 
C (i.e., P,JC) = l), then the above convergence 

theorem holds also for the distributions Pxs of 0 
Xn, n > 1, over F32 [20]. 

The arc sine law (- Section D (3)) is a nice 

example of an application of the invariance 
principle. Define a function f on C by f(x)= 

10 X~O. ,)(X(d)& XE C. Then it is shown that 
fis measurable and continuous except on a set 
of Wiener measure 0. Hence the invariance 
principle implies that the probability distri- 
butions of {f(X,,)} converge to the distribution 

off(X). It is known that .f(x) obeys the arcsine 
law P(f(X)<a)=2n-’ arcsin&, O<u< 1 (- 
45 Brownian Motion E). In the random walk 
case, where P(&= l)=P(&= -l)= 1/2, nf(X,,) 
is the number of i, 1 <i< n, for which Si+, and 

Si are both nonnegative. 

(5) Strassen’s Invariance Principle. An in- 
variante principle for the law of the iterated 

logarithm is explained here. Let { <,,}, {&}, and 

{X,(t)} be the same as in subsection (4) above. 
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Deiïne 

(O<t<l, n>3). 

Strassen’s invariance principle [28] asserts that 
with probability 1 the set {T,, n 3 3) is trela- 

tively compact in C= C[O, 11, and the set of its 
limit points coincides with the set K of ab- 
solutely continuous functions x on the inter- 

val [0, l] such that x(O)=0 and ~~~‘(t)~dt< 1. 
This principle is based on the following fact. 
Let X(t), O< t < 10, be a +Wiener process with 
X(0) = 0, and 

(O<t<l, n33). 

Then with probability 1 the set {Z,,, n > 3) is 
relatively compact in C with its limit set equal 
to K. As applications of the invariance prin- 
ciple we obtain, e.g., (i) the ordinary law of the 
iterated logarithm 

P 
( 

limsupS,/(2nloglogn)“Z=o = 1. 
n-cc > 

and (ii) if o= 1, for any aa 1, 

P 1imsup(2n10g10gn)~@n~’ 
( n-cc 

& Isil” 

= qa + 2p- u-o/2 
(]olpJ)=l~ 

in particular, 

P lims~p(2nloglogn)-“~n~~ 
( n-m 

i$ 1s 

=3-V =1 
> 

F. Convergence of Empirical Distributions 

Let {X,(w)(lak~n},{l;(w)ll~j~m} be 
independent random variables with the same 
distribution function F. Let N,(x, w) be the 
number of k (k = 1 ,...,n) such that X,<x. 
Then F,,(x, w) = n -‘N,,(x, w) is a distribution 
function in x called an empirical distribution 
function. According to the Glivenko-Cantelli 
theorem, Hz =sup,IF,(x,w)-F(x)J-0 (n-m) 
with probability 1. Let G,,,(x, w) be the empir- 
ical distribution function constructed from the 

y, and put 

K = sup (Ux, w) - F(x)), 
x 

H’(n,m)=supIF,(x,w)-G,(x,w)l, 
x 

H(n, 4 = sup (F,(x, w)- %,(x7 w)). 

If F is continuous, then the following results 
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hold. According to Kolmogorov’s theorem, as 
n-cc we have 

P(Jn H,+ < x)-rK(x), 

where 

K(x)= f (-l)kexp(-2kZxZ) (x)0); 
k=-Z 

=o (XGO). 

On the other hand, Smirnov’s theorem asserts 
that (i) 

P(& H,,<x)=O (x<O); 

=1-(1-n -l/Zx)Lx& y ,-n ; 
!S=r+1 0 

x(k-x&)k(n-k+x&)“~k~’ 

(O<x<Ji, r=[x&]); 

=l (x>& 

and, as n+ co, 

PC& Hn<.+Ux), 

L(X)=~-exp(-2x2) (x>O), 

=o (x<O); 

(ii) when n+co, mn-l-r, r a constant, 

In terms of convergence in distribution for 

Markov processes, these results are interpreted 
as follows: F(X,) is uniformly distributed over 
[0, 11. Let v,,(t) be the number of k (k = 1,2, 

. ../ n) such that F(X,) < t, and put X,(t) = 
J@.(t)-t) (0 < t d l), X,(O) = 0. Then 
E(X,(t))=O, E(X,(t)X,(t))=min(s,t)-st, 

Hn’ =~up~IX,(t)l, and H,(t)=sup,X,,(t). Let 
{X(t) 1 O< t < 1) be a +Gaussian process with 
E(X(t))=O, E(X(s)X(t))=min(s, t)-st, and put 
Hi =sup,IX(t)l, H=sup,X(t). Then Px. con- 
verges to Px over 232. Therefore 

P(& Hn+ <x)-tP(H+ <x) (n+ccI), 

P(&I H,,<x)+P(H<x) (wco). 

Similarly, if we denote the number of j such 
that F( 3) < t by p,(t), then H+(n, m) = 
sup,In-‘v,,(t)-mm’p,,,(t)l, and therefore 

P((nm)“2(n+m)~“2H+(n,m)<~) 

+P((l+r)m1’2sup,)X(t)-Jr Y(t)\<x) 

when n+co, nrnml +r, where {Y(t)IO<t<l} is 
independent of {X(t)lO< t< 1) and distributed 
according to the same law as for the latter. 
The exact as well as asymptotic expressions for 

the distributions Hz, H +(n, m) are also ob- 

tained [33,34]. Thus the limit distributions 
cari be calculated by using the distributions of 
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the processes {X(t)} and {Y(t)}. The results 
above are obtained by applying Donsker’s 
invariance principle. The Gaussian process 

{X(t)\ 0 <t d 1) introduced above is called a 
Brownian bridge because it is obtained from 

a Brownian motion B(t) by conditioning 
B(O)=B(l)=O. 
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A. General Remarks 

In tfunctional analysis, when we talk about an 
operator or a mapping T from one space to 
another, it is important to specify not only the 
domain D(T) on which T is delïned and the 
range R(T) onto which T maps D(T) but also 
the spaces X and Y of which D(T) and R(T), 
respectively, are subsets. Thus a mapping T 
from a subset D(T) of a (real or complex) 
linear space X to a linear space Y is called 
an operator from X to Y. The image of x E X 
under T is customarily denoted by TX. An 
operator T from X to Y is said to be a linear 
operator (linear transformation or additive 
operator) if(i) D(T) is a +linear subspace of X 

and(ii) T(cc,x,+a,x,)=cc,Tx,+z,Tx,forall 
xi, x,ED(T) and a11 scalars cli, Q. The set of 
a11 continuous linear operators T from X to 
Y with D(T)= X is denoted by L(X, Y). We 
denote L(X, X) by L(X). 

For simplicity we suppose throughout this 
article that X and Y are tBanach spaces. In 
this case L(X, Y) consists of a11 tbounded 

linear operators from X to Y. Hence L(X, Y) 
and L(X) are denoted by B(X, Y) and B(X), 
respectively. Some of the statements given 
remain true in more general situations (- 424 
Topological Linear Spaces). More information 

about operators in B(X, Y) cari be found else- 
where (- 37 Banach Spaces; 68 Compact and 
Nuclear Operators). Examples are grouped 
together in Section 0. 

B. Operations on Operators 

When Tl and T2 are operators from X to Y, 
the sum Tl + T2 is the operator detïned by 
D(T, + T,)=D(T,)flD(T,) and (Tl + T2)x= 
T,x+T,x,xeD(T, +T2). When T, is from 
X to Y and T2 is from Y to Z, the product 

T2 Tl is the operator delïned by D(T, TJ = 
{xED(T,)I T,xeD(T,)} and T2T1x=T2(T,x), 
x E D( T2 Tl). The product c( T of a scalar c( and 
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an operator T is defïned in a similar and obvi- 
ous way. These operators are linear whenever 

T1 and T, are linear. For an operator T from 
X to Y the subset I(T)={(x, Tx)lxED(T)} of 
the product space X x Y is said to be the graph 
of T. If I( Ti) c I( T’), the operator T2 is said 
to be an extension of Tl (we Write T, c TJ. If 
a linear operator T from X to Y satisfies the 
condition that x # 0 implies TX # 0, then T 
has the inverse operator T-', which is a linear 
operator satisfying D(T-')=R(T) and R(T-') 
=D(T). 

C. Convergence of Operators 

The following three topologies are most fre- 
quently used in the linear space B(X, Y), which 
becomes a tlocally convex topological linear 
space under each of them: (1) the uniform 
operator topology, (2) the strong operator topol- 

ogy, and (3) the weak operator topology. These 
topologies are determined by the respective 

fundamental systems of neighborhoods of 0 
consisting of a11 sets of type (1) {T 1 11 T I/ XE}, 
(2) {TI IIW CE, XE~), ad (3) {TI IfVx)l<~ 
x E X,~E Y’}, where E varies over a11 positive 
numbers, X over all finite subsets of X, and Y’ 
over all tïnite subsets of Y’, the +dual space of 
Y. The uniform operator topology is thus the 
metric topology determined by the +norm in 
B(X, Y) (- 37 Banach Spaces C). Convergence 
of T, to T with respect to one of these topol- 
ogies is referred to as (1) uniform convergence, 
(2) strong convergence, or (3) weak convergence. 
We have such convergence if and only if (1) 

i/T,-Tll+O,(2) II(T,-T)xll+OforeveryxE 
X, or (3) If(T,x- Tx)l-+O for every XEX and 
j-e Y’. 

D. Closed Operators 

Closed operators play an important role when 

we deal, as is frequent in applications, with 
operators that are not necessarily continuous. 
An operator T from X to Y is said to be a 
closed operator if the graph of T is closed in 
Xx Y, or equivalently, if x,ED(T), x,+x, and 

Tx,+y imply ~ED(T) and Tx=y. If T is con- 
tinuous and D(T) is closed, then T is closed. 
Conversely, if a linear operator T is closed and 

D(T) is closed, then T is necessarily continu- 
ous (the closed graph theorem). An operator 

T from X to Y is said to be a closahle operator 
if T has a closed extension. A linear operator 

is closable if and only if x, 6 D(T), x,-O, and . 
Tx,+y imply y=O. The closure of the graph 

of a closable operator T is the graph of the 
smallest closed extension T of T. Thus T is 
also called the closure of T. When T is a linear 
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operator from X to Y with D(T) dense in X, 

the dual operator (or conjugate operator or 
adjoint operator) T' of T is defmed to be the 
operator from Y’ to X’ determined by the 
relations D( T') = { fi Y’ 1 there exists g E X’ 
such that g(x) =f( TX) for every x E D( T)} and 
T'f = g, fi D( T') (- 37 Banach Spaces). T' is 

always closed. If T is a closable linear operator 
with dense domain, then its smallest closed 

extension is obtained as the bidual T" re- 
stricted to D(T)={xcXflD(T")IT"xEY}. 

For a closed linear operator T we define 
its nullity nul T to be equal to dim N(T), 
where N(T)={xsD(T)I T,=O} isthe nuli 

space (i.e., the tkernel) of T, and its deficiency 
def T to be equal to dim Y/R( T). When at 
least one of nul T and def T is tïnite, we define 
the index of T by ind T= nul T- def T. A 

closed linear operator T is said to be a Fred- 
holm operator if R(T) is closed, nul(T) < CO, 
and def( T) < CO (- 68 Compact and Nuclear 
Operators). 

The domain D(T) of a closed linear operator 
T from a Banach space X to another Y turns 
out to be a Banach space under the graph 

norm IlxJIx + I/ Txll r, and T is looked upon as 
a bounded linear operator from this Banach 
space D(T) to Y. 

E. Operators hetween Hilbert Spaces 

Throughout this section we suppose that X 
and Y are complex +Hilbert spaces. Let T be a 
densely defïned linear operator from X to Y. 
Instead of the dual T', it is sometimes conve- 
nient to use the operator T* from Y to X 

determined by the relation (x, T*y) = (TX, y), 
x E D( T). The operator T * is calle’d the adjoint 
operator (or Hilbert space adjoint) of T. By 

means of the antilinear isomorphism rrx from 
X onto X’ given by (rrXx)(u)=(u,x) (+Riesz’s 
theorem), T* is related to T' by T* =zX' T'q. 
The correspondence T+ T' is linear, while the 
correspondence T+ T* is antilinear. D( T*) is 
dense in Y if and only if T is closable, and in 
this case the smallest closed extension T of T 
coincides with T** =(T*)*. 

If a densely defïned linear operator T in X 

(ie., T is from X to X) satislïes Tc T*, then 
T is said to be a symmetric operator (or Her- 
mitian operator). If T= T*, then T is said to be 

a self-adjoint operator. A symmetric operator 
is always closable. A symmetric operator T is 

said to be essentially self-adjoint if the closure 
of T is self-adjoint. A self-adjoint operator T 
is said to be nonnegative or positive or positive 
semidefinite if (TX, x) > 0 for every x E D(T). 
An operator TE B(X, Y) is said to be partially 

isometric if there exists a closed linear sub- 
space M of X such that T is isometric on M 
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(i.e., 11 Txll = 11x1/, ~EM) and zero on the +ortho- 
gonal complement of M. The closed linear 
subspace M (TM) is called the initial (final) 
set of T. An operator TE B(X, Y) is partially 

isometric if and only if T*T and TT* are 
(orthogonal) tprojections. The ranges of these 

projections are the initial and final sets of T, 
respectively. In particular, if M =X, then T 
is said to be an isometric operator or an iso- 
metry. If X = Y = M = TM or, more generally, 
if X = M and Y = TM, then T is said to be a 

unitary operator. TE B(X) is unitary if and 
only if T* = Tm'. A closed hnear operator T 

with dense domain is said to be normal if 
T*T= TT*. The set of self-adjoint (or unitary) 
operators in X forms a subclass of the class 
of all normal operators. The structure of nor- 
mal operators, especially that of self-adjoint 
operators, has been studied in detail by means 
of spectral analysis (- 390 Spectral Analysis of 

Operators). Let T be a densely detïned closed 
linear operator from X to Y. Then there exist a 
nonnegative self-adjoint operator P in X and a 
partially isometric operator W with initial set 
R(P) = R(T*) such that T= WP. The operators 
P and W are determined uniquely by these 
requirements. This is called the canonical de- 
composition or the polar decomposition of T. 

For linear operators T in a complex Hilbert 
space X, the notion of numerical range W(T) = 
{(Tx,x)lx~D(T), ~~XII =1} is also impor- 

tant. W(T) is a convex set such that // TII/2 < 
sup(W(T)(=sup{(E.((3,~W(T))d/(T//.If Tis 

normal, then the closure of W(T) coincides 
with the tclosed convex hull of the +spectrum 
a(T), and we have sup 1 W’(T)\ = 11 T 11. A nor- 
mal operator T is a nonnegative self-adjoint 
operator if and only if its numerical range is in 

the positive ray 1, > 0. 

F. Resolvents and Spectra 

Let T be a closed linear operator in a complex 
Banach space X, and 1 be the identity in X. 

The set p(T) of all complex numbers n such 
that il - T has an inverse in B(X) is called the 
resolvent set of T, and the complement o(T) of 

p(T) is called the spectrum of T. For 3,~p(T) 
the operator R(i; T)=(/ll-T)m’ GB(X) (or 
sometimes -R(i; T)) is called the resolvent of 
T.Ifi,~p(T),then {/llli,-i,,l<llR(~,;T)ll~'} 

c p(T). Hence p(T) is an open, and a( 7’) a 
closed, set. If T is bounded, then a(T) is a 
nonempty compact set. However, p(T) may be 
empty (example (2) in Section 0) or the whole 
plane C in general. The operator R(I.; 7’) is an 

tanalytic operator function of i in p(T) and 

satistïes the (fïrst) resolvent equation 

R(I,; T)-R(I.,; T)=(n,-n,)R(n,;T)R(I,;T) 

for every j.i, A,E~(T). For every TEB(X) the 

limit r(T)=lim /I T"ll""< 11 TII, n+a, exists and 
coincides with the +Spectral radius sup 1 (r( T)J of 
T. An operator TE B(X) with r(T) = 0 is called 

quasinilpotent or generalized nilpotent. Con- 
cerning the dual operator, we have p( T’) = 
p(T) and R(i; T’)=R(A; T)‘. If X is a Hil- 
bert space, then L)(T*)=~(T) and R(R; T*)= 

R(x; T)*, where stands for the complex 

conjugate. 

G. Operational Calculus 

In operator theory, the term operational cal- 
culus generally indicates a way of detïning 

“functions” ,f’( T) of an operator T SO that a 
kind of algebraic homomorphism is estab- 
lished between a set of complex-valued func- 
tions f and the corresponding set of operators 
,j’(T). The functions and operators that must 
be taken into consideration depend on the 
nature of the problems to be solved, and ac- 

cordingly there are several versions of oper- 
ational calculus. We describe two typical ones. 

(1) Let T be a self-adjoint operator in a com- 
plex Hilbert space X with the tspectral resolu- 

tion T=jTm i,dE(i,), and let ,f be a complex- 
valued Bore1 measurable function on R. Then 
the operator .p( T) is uniquely determined by 
the following relations (- 390 Spectral Analy- 
sis of Operators): 

Then f(T) is normal and the correspondence 
f‘~,f(T) satisfïes the following relations: (i) ($+ 

BY)(T)~~IV)+BS(~); (ii) (.fl)(T)~,f(TkV); 
and (iii) ,f( T)* = f( T). If g is a bounded func- 
tion, the extensions in (i) and (ii) cari be re- 
placed by equalities. 

(2) Let X be a complex Banach space, TE 

B(X), and F(T) the set of a11 functions holo- 

morphic in a neighborhood of g(T). We define 
an operator ~(T)EB(X), fe.F(T), by 

where C is a closed curve consisting of a tïnite 
number of rectifiable Jordan arcs encircling 
a domain that contains o(T) in its interior 
and lies with its boundary completely in the 
domain in which fis holomorphic. The inte- 

gral does not depend on the curve. In this 
case relations (i) and (ii) hold with equality in 

place of extension. Instead of (iii) we have (iv) 
.F( T) = ~P( T’) and f( T’) =,f( T)‘. The integral 
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appearing in (*) is sometimes called the Dun- 
ford integral. In both situations described in (1) 
and (2) the spectral mapping theorem o(,f( T)) = 

f‘(o(T)) holds. When these two ways of detïn- 
ing f(T) are possible, the resulting operators 
coincide. 

Another kind of operational calculus cari be 

constructed, for example, when T is the gen- 
erator of a certain semigroup of operators 

11,2,41. 

H. Isolated Singularities of the Resolvent 

Let T be a densely defined closed linear oper- 
ator in a complex Banach space X and & 
an isolated point of a( 7). Take a sufficiently 
small circle C around & and put 

which is a projection in X. Then the Laurent 
expansion around A,, of the resolvent is given 

by 

R(ît; T)= 5 A,(lL-n,y, 
n=-X 

withA,=(-l)“+‘(/l.,I-T)~(n”)Eforn<O. 
When the dimension v of the range of E is 
tïnite, & is a +pole of R(i; T) with order not 
exceeding v, and & is an teigenvalue of T with 
+multiplicity not exceeding v. Furthermore, E 
is then a projection onto the +root subspace 
belonging to the eigenvalue i,. 

1. Extension of Symmetric Operators 

In applications we frequently encounter the 
problem of tïnding self-adjoint extensions of a 

given symmetric operator. Let T be a closed 
symmetric operator in a complex Hilbert space 

X. Then T& il is one-to-one, and its range R ~ 
is a closed hnear subspace of X. The operator 
V,.=(T-il)(T+iZ))’ from R, onto Rm is 
isometric, and (I- V,.)R+ is dense in X. We 
cal1 V, the Cayley transform of T. Conversely, 

let V be an isometric operator from a closed 
linear subspace M of X onto another one N 
such that (I- V)A4 is dense in X. Then the 

operator T= i(l+ V)(I - V)-’ is a closed sym- 
metric operator satisfying V,. = V. Thus the cor- 
respondence T+ V, is one-to-one onto; Tc S 
if and only if VTc V’, and T is self-adjoint if 
and only if V,. is unitary. The dimension n* of 

the subspaces X 0 N, ={XI T*x= +ix} are 
called the deficiency indices of T. Denoting the 
+residual spectrum of T by o,(T) and putting 

~+={ÂJImi~O},wehavethefollowing 
propositions: (i) According as n, > 0 or II+ = 0, 

U+ c r~~( T) or l7+ c p( T) (similarly for n- in 
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place of n,); (ii) T has a self-adjoint extension 
if and only if n, = n-; and (iii) T is self-adjoint 

if and only if n, = n- = 0, or, equivalently, if 
and only if 17, c p( T). When T is symmetric 
but not closed, the previous arguments cari be 
applied to the closure T of T. The defïciency 
indices of T are also called the deficiency 
indices of T. These arguments cari be per- 
formed similarly with n and n (Im n #O) in 

place of i and -i. 
WC now describe two more concrete criteria 

for T to have self-adjoint extensions. (1) Semi- 

bounded operators: If there exists a real num- 
ber y such that (Tx,x)>y~~xll’ for every XE 
D(T), then T has a self-adjoint extension 
satisfying a similar inequality with the same 
constant 7. The structure of a11 self-adjoint 
extensions of T with the same lower bound 
y was studied in detail by M. G. Kreïn [S]. 
Among such extensions the Friedrichs exten- 
sion is distinguished as the one having the 

smallest form domain. (2) Real operators: If T 
commutes with a conjugation in X, namely, if 
there exists an antilinear mapping J from X 

onto X such that (Jx,Jy)=(y,x), P=I, and 
JT= TJ, then T has a self-adjoint extension 
(- Section 0 (2)). 

J. Dissipative Operators 

A linear operator T in a Hilbert space X 
is said to be dissipative (resp. accretive) if 
Re(Tx,x)dO (resp. 20) for every ~ED(T). TO 

extend the definition to operators in a Banach 
space X, we define, for each XE X, Fx to be 
the set of all x’ in the dual space X’ such that 

(x,x’) = 11x1/2= ~Ix’I/~. Fx is not empty by 
virtue of the Hahn-Banach extension theorem 
(- 37 Banach Spaces). The multivalued map- 
ping F:x+x’ is called the duality mapping. 

A linear operator T in X is called dissipative 
(resp. accretive) if for each ~ED(T) there exists 

an X’EFX such that Re(Tx,x’)<O (resp. >O), 
or equivalently if I~X-ATxll > /~XII for every 
XE D( T) and ). > 0 (resp. i, < 0). A dissipative 
operator T is called m-dissipative if R(I -AT) 
=X for a (and ah) j. > 0. Then the half-plane 

Re 1, > 0 is in the resolvent set p(T), and we 

have Il(i61- T)-‘/l < l/Re& ReA>O. In particu- 
lar, T is closed, and if X is treflexive, then the 
domain D(T) is dense. A dissipative operator 
is called a maximal dissipative operator if it has 

no strict extension that is dissipative. An m- 
dissipative operator is a maximal dissipative 

operator. If X is a Hilbert space, then con- 
versely a maximal dissipative operator with 
dense domain is m-dissipative. Every dissipa- 

tive operator with dense domain in a Hilbert 
space cari be extended to an m-dissipative 
operator. A linear operator T in a Banach 



251 K 
Linear Operators 

space is the +infïnitesimal generator of a con- 
traction semigroup of class (CO), i.e., a tsemi- 

group { 7; ( t > 0) of class (CO) such that II7;ii < 1 
for all t > 0, if and only if T is an m-dissipative 

operator with dense domain. 
The notion of dissipative and accretive 

operators is also defïned for nonlinear opera- 
tors (- 286 Nonlinear Functional Analysis). 

K. Subnormal Operators and Hyponormal 
Operators 

A bounded linear operator T in a complex 
Hilbert space X is said to be subnormal if there 
exists a bounded normal operator N in a 
complex Hilbert space Y, containing X as a 
closed linear subspace such that TX = Nx for 

all XEX. The operator N is called a normal 
extension of T. T is subnormal if and only if 

C,,,(T*” T”x,, xn) > 0 for every finite sequence 
{x,,} of X. Then its normal extension N is 
determined uniquely up to tunitary equiva- 
lente under the minimality requirement that 
there is no treducing subspace (- Section L) 
for N between X and Y. Every normal or 
isometric operator is subnormal. The spectrum 
of a subnormal operator T is obtained from 
the spectrum of its minimal normal extension 
N by adding some bounded components of its 

complement. An operator TE B(X) is said to 
be hyponormal if the self-commutator [T*, T] 
= T*T- TT* is nonnegative. Every sub- 

normal operator is hyponormal. If a hypo- 
normal operator T has a cyclic element x, i.e., 
the tlinear span of { T"x 1 n = 0, 1, } is dense 
in X, then the self-commutator is a +trace 

class operator (C. Berger and B. Shaw). The 
planar Lebesgue measure of the spectrum of 

any hyponormal operator T is not less than 
nJI[T*, T]II (Putnam’s theorem) [lO]. 

L. Invariant Subspaces 

A closed linear subspace M of a Banach space 
X is said to be invariant under an operator 
TE B(X) if T maps M into M. If M is invariant 
under a11 operators in B(X) that commute with 
T, then M is said to be hyperinvariant under 
T. When X is a Hilbert space and M is invari- 
ant under both T and T*, then M is said to 
reduce T. That M reduces T is characterized by 
the commutativity TP = P7; where P is the 

orthogonal projection to M. The question of 
whether an arbitrary nonzero bounded linear 
operator in a separable infinite-dimensional 

Hilbert space has a nontrivial invariant sub- 
space still remains open but work has pro- 
gressed significantly in recent years. (1) Every 

nonzero +Compact operator has a nontrivial 
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hyperinvariant subspace (V. 1. Lomonosov). (2) 
An operator T has a nontrivial invariant sub- 
space if it is subnormal or if 11 T 11~ 1 and the 
spectrum o(T) covers the whole unit disk of 
the complex plane (S. Brown, 1979). (3) If T is 
hyponormal, a certain power T" has a non- 
trivial invariant subspace (Berger, 1979). 

The complete description of all invariant 
subspaces is usually difficult even for an oper- 
ator of quite simple type. For the tshift oper- 

ator (- Section 0 (6)) on the +Hardy space 
H2 on the unit circle this was done by A. Beurl- 

ing [ll, 123. For the tintegral operator on the 
space L,(O, 1) with +kernel k(t,s)=max(t-s,O) 
the set of a11 invariant subspaces is ttotally 
ordered with respect to inclusion [ 131. 

M. Dilations 

Let X be a Hilbert space and TEB(X). A 
bounded linear operator U in a Hilbert space 
Y, containing X as a closed linear subspace, 
is said to be a dilation (also strong or power 
dilation) of T if T"x=PU"x for a11 X~X, n= 1, 
2, . , where P is the orthogonal projection 

from Y to X. If U is unitary, it is called a uni- 
tary dilation of T. Every contraction TEB(X), 
i.e., an operator T with II T 11 d 1, has a unitary 
dilation U in a suitably constructed Hilbert 
space Y (the dilation theorem). Such a unitary 

dilation U is uniquely determined up to tuni- 
tary equivalence under the minimality require- 
ment that there is no reducing subspace for 
Cl between X and Y. A corollary is the von 
Neumann inequality: For any contraction T 
and any complex polynomial p(i), the in- 
equality Il p(T)11 <supIII<i [p(i)1 holds. Further- 
more, if an operator SEB(X) commutes with 
a contraction T, then there exists a dilation V 
of S in B(Y) such that 11 VII = Ils// and V com- 
mutes with the unitary dilation U of T (the 
lifting theorem). If a contraction T is com- 

pletely nonunitary in the sense that the restric- 
tion of T to any nontrivial reducing subspace 
is not unitary, then the minimal unitary dila- 
tion has tabsolutely continuous spectrum, 
and the operational calculus PH p( T) is ex- 
tended to aIl functions in the +Hardy space 

Hz I?V. 

N. Functional Models for Contractions 

A canonical mode1 for an operator is a “natu- 
ral” representation of the operator in terms 

of simpler operators and in a context in which 
more structure is present. There are several 

canonical models for bounded linear operators 
[ 13- 161. Here, we follow the approach of 
B. Sz.-Nagy and C. Foiag that was developed 



929 

in connection with unitary dilations of con- 
tractions [15,16]. 

An tanalytic operator function o(I) defïned 
on the open unit disk with values in B(X, Y), 
where X and Y are separable complex Hilbert 
spaces, is denoted by {X, Y, 0). An analytic 
operator function {X, Y, 0) is said to be con- 
tractive if Il@(I”)ll < 1 for a11 ,I. If, in addition, 

llO(O)xll< I~X// for a11 nonzero XGX, then it is 
said to be purely contractive. Each contractive 
{X, Y, 0) is uniquely decomposed into the 

direct sum @(A)= o,,(I) @ V, where {X0, Y,, O,} 
is a purely contractive analytic operator func- 
tion with closed linear subspaces X0 c X and 
Y, c Y, and V is an isometric operator from 
X 0 X,, into Y 0 Y0. The operator function 0, 
is called the purely contractive part of 0. 

Let {X, Y, 0) be purely contractive. Then 
the boundary value O(i) = s-lim,,, O(r[) exists 
for almost a11 < with respect to the Lebesgue 

measure on the unit circle. Let A([)=(I-- 
O*(<)O(<))1i2 for I[l = 1. Then the operator 
functions O(i) and A([) defined on the unit 
circle induce, respectively, the operators OE 
B(Lt,Li) and AEB(L$) detïned by (Of)([)= 

@(Of(T) ad @f)(i) = A(i)f(T) for Ii I = 1 ad 
fe L$, where Lf is the +Hilbert space of X- 

valued square integrable functions on the 
unit circle. Consider the Hilbert space K = 

L; @ R(A) and the unitary operator U de- 

fi& by U(.f 0 s)(i) = if(i) 0 MO Con- 
sider the linear subspace H = [H:o R(A)] 0 

{Of@ Af]f~Ifj’} of K, where Ht is the X- 
valued +Hardy space that is a subspace of Lt. 
Then the operator T = P,U restricted to H, 
where Pu is the orthogonal projection from K 
to H, is a completely nonunitary contraction 
with U as its minimal unitary dilation. T is 
called the contraction generated by {X, Y, 0). 
Two purely contractive analytic operator 
functions {X,, Y,,@,} and {X2, Y,,@,} cari 
generate contractions which are unitarily 

equivalent if and only if there are isometries 
VI from Y, onio Y, and V, from X, onto X, 
such that Vl@,(Â)=0,(,l)V2 for ah 1 in the 
unit disk. In this case, 0, and 0, are said to 

coincide. 

Now let a completely nonunitary contrac- 
tion T be given. Consider the operator D, = 
(Z - T*T)“2 and the closed linear subspace DT 
=R(D,), and define similarly D,* and a,, by 

using T* instead of T. Then the function O,(A) 
= -T+iD,,(I-ÂT*)mlDT restricted to BT 

becomes a purely contractive analytic opera- 
tor function with values in B(D,, a,.,) and is 
called the characteristic operator function of T. 

The contraction generated by the character- 
istic operator function is unitarily equivalent 

to T and is called the functional mode1 (or the 
Sz.-Nagy-Foias model) for T. The spectrum 

of T coincides with the set consisting of the & 
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in the open unit disk at which @,(&J fails to 
have bounded inverse, together with the &, on 
the unit circle at which Or.( .) fails to have an 

analytic extension to a neighborhood R of &, 
which is unitary on the intersection of Q and 

the unit circle. There is a one-to-one corre- 
spondence between the invariant subspaces M 
for T and the regular factorizations of 0, as a 
product @,(I)=@,(s).@,(I.) of two contractive 

analytic operator functions {Y, a,,, O,} and 
{ DT, Y, O,} with a suitable Hilbert space Y. 
Here the regularity of the factorization means 
that for almost ah [ in the unit circle the range 

of(I-OT([)@2([))112 and the range of(I- 

@,(i)@:(ir’2 are linearly independent. More- 

over, the characteristic operator function 
of the restriction of T to M coincides with 
the purely contractive part of 0,) while the 
characteristic operator function of PMr T 
restricted to M’ =X 0 M coincides with the 

purely contractive part of O,, where P,I 
is orthogonal projection to Ml. 

0. Examples of Linear Operators 

(1) Integral Operators. Let Ej, j = 1, 2, be linear 
spaces consisting of measurable functions 
detïned on measure spaces Qj with measures 
pj. Let k(t, s) be a measurable function on fi2 x 

R,, and detïne D(R) to be the set of a11 XE E, 
such that (K~)(t)=l,~ k(t,s)x(s)d~,(s) belongs 

to E,, where the integral is assumed to be 
absolutely convergent almost everywhere. The 

mapping that assigns Kx to each XE D(R) 
determines a linear operator K from El to E, 
with domain D(K). K is called an integral 
operator, and k(t, s) the kernel (or integral 
kernel) (of K). As an example, let Ej = Lp(Qj). 
1 <p B ro, and suppose there exists an M > 0 
such that 

i Ik(t,s)ldp2(t)<M. 
J% 

Then K EB(&, E2) with 11 K II < A4 (- 68 Com- 
pact and Nuclear Operators C; [ 171). An 
integral operator is said to be Hermitian if 
the kernel satisfïes k(t, s) = k(s, t). A bounded 
Hermitian integral operator is self-adjoint in 

L,(Q). 

(2) Differential Operators. For X = L’(O, l), 

let D, be the set of ah XE C2(0, 1) with com- 
pact support in (0,l) and a, the set of ah 
x~C’(0,l) such that x’(t) is absolutely continu- 

ous in (0,l) with X”E~. Then the operators 

7;, j=O, 1, determined by (TX)(~)= -x”(t), 
XE I-0, are linear in X. T’* = T,, SO that Te is a 
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symmetric operator. Furthermore, T, is a real 

operator with respect to the conjugation x-x. 
Since two linearly independent solutions of 
(T, - 2.1)~ = 0 both belong to X, the defïciency 

indices n, of T, are 2. (Note that p( T1) = 0.) 
Self-adjoint extensions of T, are obtained by 
restricting the domain of T1 by boundary 
conditions (- 112 Differential Operators; 

CL41). 

(3) Fourier Transforms. For every x E LJR”), 

1 <PG-T 

(Ux)(t)= lim (27~~“” 
s 

exp( -its)x(s)ds 
m-cc lN4m 

converges in the norm of L,(R”), p-’ +q-’ = 

1. The operator U thus deiïned belongs to 
B(LD, L4). When p = 4 = 2, U is a unitary oper- 
ator in L2 (- 160 Fourier Transform). 

(4) Singular Integral Operators. Let 0(t) be a 
bounded measurable function on R” homoge- 
neous of degree 0. Suppose that the integral 

of Q over the unit sphere vanishes and that Q 
satisfies the condition 

L 

s ( 
6-1 sup In(t)-n(s)I 

> 
dfi< a. 

0 I;;N$; 

Then for every x(t)~&(R”), 1 <pc cc, 

(Tx)(t)=lim s n(t - s) 
40 

-x(s)ds 
,t-A,>? It-4” 

converges in the norm of &JR”), and the oper- 
ator T SO defined is a bounded linear opera- 
tor in L,(R”). If n= 1 and fi(t)=~~~t/ltI, then 

T is the tHilbert transform. If n > 1 and Q(t) = 
I?((n + 1)/2)&“+‘)‘2 t]/Itl, j= 1, , n, then T is 
called the Riesz transform. 

In general, integral operators on L,(R”) 
defïned by kernels k(t, s) satisfying the esti- 

mate Ik(t, S)I < CJt -.Y-” are called Calderon- 
Zygmund singular integral operators. These 
have been widely investigated [ 18,191. 

(5) Pseudodifferential Operators. Let a(t, T) be 
a function defïned on R” x R”. Then the oper- 

ator T defïned by 

(Tx)(t)=(27-q”‘2 Pa(t,z)X(z)dz 
s 

is called a pseudodifferential operator, and 
a(& T) is called the symbol of T, where ,? de- 
notes the Fourier transform of x. This is a 

generalization of the Calderon-Zygmund 
singular integral operator. The following is 
a suffïcient condition for T to be a bounded 
linear operator in L,(R”) for every 1 <p < 
~3: There exists a constant C such that the 

inequality 

930 

holds for every +multi-index z with 1x1 <n + 2, 
and there exists a function w(6) such that 
si ~(6)~fi-l (t6 < CO and that 

sup Iaja(t,2)-~~a(s,T)l4w(6)(1 +lzl)-‘“’ 
lr-sl<h 

for every multi-index CI with la1 <II + 2 (T. 
Muramatu and M. Nagase, Proc. Japun Acad. 
(1979); [19]). Pseudodifferential operators play 
a decisive role in the modern theory of partial 
differential equations (- 345 Pseudodifferen- 
tial Operators). 

(6) Toeplitz Operators. Let L, be the L,-space 
on the unit circle in the complex plane with 
respect to the linear Lebesgue measure, and 

let H2 be the THardy space. Each bounded 
measurable function <p on the unit circle gives 
rise to the Toeplitz operator T, in H2 defined 
by TJ= P(<plf) for j'eH2, where P is the ortho- 
gonal projection from L, to H2. The matrix 
(a,,) of the Toeplitz operator T, with respect 
to the complete orthonormal basis {x, 10 < II < 
m}, where ;y,([)=<” for I[l= 1, is given by 

z,, = <îh-, where 4, is the kth +Fourier coeffi- 
cient of q. If <p is in the +Hardy space H,z, then 
the Toeplitz operator T, is subnormal. When 
cp([) = 5, the Toeplitz operator T, is called the 
shift operator (or shift). A Toeplitz operator T, 
cannot be compact except when rp = 0. When q 
is a continuous function, the Toeplitz operator 
T, becomes a Fredholm operator if and only 
if cp does not vanish on the unit circle, and in 
this case the index of T, is equal to minus the 
winding number of the curve traced out by 
ÿ, with respect to the origin. Toeplitz opera- 

tors play an important role in approximation 
theory and prediction theory [20]. 
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with q(x) = 0 is said to be homogeneous. If 
q(x) # 0, (1) is said to be inhomogeneous. The 
existence and uniqueness theorems for solu- 
tions to the initial value problem are valid 
for (1) (- 3 16 Ordinary Differential Equations 

(Initial Value Problems)). Moreover, the fol- 
lowing theorem holds: Let D denote an inter- 
val in the real line or a domain in the complex 

plane. If the coefftcients pk(x), q(x) are continu- 
ous in an interval D, then every solution of 
(1) has D as its interval of definition. If pk(x), 

q(x) are holomorphic in a domain D, then 
every solution of (1) is continued analytically 
along any path in D. Combining this theorem 
and the existence and uniqueness theorems 

we have the following theorem: Let pk(x), 
q(x) be continuous in an interval D. Then for 

every point x,, in D and every n-tuple of num- 
bers 8, il’, , $-‘r, there exists one and only 
one solution y(x) of (1) satisfying the initial 

conditions 

y(x,) = ‘I, y’(x,) = q’, ) y’“-“(x,) = Yy” (2) 

and such that y(x), y’(x), , y’“‘(x) are all con- 
tinuous in D. If pi<(x), q(x) are holomorphic in 
D, then there exists one and only one solution 
y(x) of (1) satisfying (2) and such that y(x) is 
+complex analytic (not necessarily single- 
valued) in D. 

[ 191 R. R. Coifman and Y. Meyer, Au delà des 
opérateurs pseudodifféretiels, Astérisque, 57 
(1982). 
[20] R. G. Douglas, Banach algebra tech- 
niques in operator theory, Academic Press, 
1972. 

It follows that every point of discontinuity 
(or singular point) of a solution of (1) is a 
point of discontinuity (or singular point) for at 
least one of the functions p,Jx), q(x) (- 254 

Linear Ordinary Differential Equations (Local 
Theory)). 

B. Fundamental Systems of Solutions 

252 (X111.6) 
Linear Ordinary Differential 
Equations 

A. General Remarks 

Let p,(x), , p,(x), q(x) be known functions of 
a real (or complex) variable x. An ordinary 
differential equation 

y’“‘+p,(x)y’“~“+...+p,(x)y=q(x) (1) 

containing an unknown function y and its 
derivatives y’, y”, , y(“) of order up to n is 

called a linear ordinary differential equation of 
the nth order. In particular, a linear differential 
equation 

The totality of solutions of a homogeneous 
linear ordinary differential equation forms a 
linear space (over the real or complex tïeld). 
That is, any linear combination y(x) = 

CE1 Ciyi(x) of the solutions y,, y,, , ym of 
(l’), where the C, are arbitrary constants, is 
also a solution of (1’). This is called the prin- 

ciple of superposition. More than n + 1 solu- 
tions of (1’) are always linearly dependent, 

that is, if m 3 y1 + 1, we cari find m constants C, , 
C,, . . . . C,, not ah equal to zero, such that 
C:i C;~,(X) = 0. Equation (1’) has y1 linearly 
independent solutions. For instance, the y1 

solutions y,, y,, , y,, defined by the initial 
conditions 

Y,(xo)= 1, yi(x,)=O, . ..) yp(x,)=o, 

Y,(X,) = 0, y>(x,)= 1, . . ..y2~‘)(x.)=O, 

y’“‘+p,(x)y’“m”+ +p,(x)y=O (1’) 

Y,b,J = 0, yk(x,) = 0, > yp(x,) = 1 (3) 

are linearly independent. Such a system of n 
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hnearly independent solutions y,, . . , y, of 

(1’) is called a fundamental system of solutions 
of (1’). In terms of a fundamental system of 
solutions y,, , y,, each solution y of (1’) 
is represented uniquely in the form y(x) = 

C;g CiY,( 

C. Liouville’s Formula 

In order for n solutions y,, y,, . . , y, of (1’) to 
be linearly independent, it is necessary and 
suftïcient that the +Wronskian determinant 

IV( y,, y,, . , y,) # 0 in D. Furthermore, the 
coefficients PI<(x) cari be represented in terms of 
an arbitrary fundamental system of solutions 
y,, y,, . , y, since the coefficient of Y(“-~) in the 
expansion of 

(-1)“wY>Yl(x)>Y*(x)> ... ?Y,(X)) 

~(Yl(X),Y,(X),“‘,Y”(X)) 
(4) 

is identically equal to pk(x) in D. Using this 
equality for p,(x), we obtain Liouville’s 
formula: 

WY,(X), “‘>Y”(X)) 

(5) 

D. Lagrange3 Method of Variation of 
Constants 

The difference of two solutions of the inhomo- 
geneous equation (1) is a solution of the homo- 

geneous equation (1’). Consequently, the tgen- 
eral solution of (1) cari be represented as the 
sum of a tparticular solution of (1) and the 
+general solution of (1’). Since a particular 
solution of (1) cari be obtained from an arbi- 
trary fundamental system of solutions y,, 
y,,...,y,of(l’),(l)canbesolvedifafunda- 
mental system of solutions for (1’) is known. In 
fact, if we consider C,, C,, , C,, in the repre- 

sentation y = xy=, C,yi(x), not as constants, 
but as functions of x, and determine them by 
the conditions 

yy-“(x)c;(x)+yy”(x)c;(x)+... 

+y’“-“(X)~;(X)=~(X), (6) ” 

then y(x)= C& C,(x)yi(x) is a solution of (1). 
This is always possible because from (6) we 

obtain 

dC,- qc4 K(x) 
Lx - W(Y,(X), “‘>Y,(X))’ 
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where y(x) is the tcofactor of Y~‘-‘)(X) in the 

determinant W(yi(x), . . , y,(x)). This method is 
called Lagrange3 method of variation of con- 

stants (or variation of parameters). 

E. Linear Ordinary Differential Equations with 
Constant Coefficients 

A linear ordinary differential equation 

y’“‘+a,y’“~l’+...+q,-,y’+a,y=O (8) 

with constant coefficients a, has y = exp rx as a 
solution if r is a root of the algebraic equation 

f(r)=r”+a,r”~‘+...+a,_,r+a,=O, (9) 

called the characteristic equation of (8). Let rl , 
r2, , r, be the distinct roots of (9) and sup- 
pose that the root ri has multiplicity pi (i = 

1,2, . . . , m). Then the set of functions 

erlx, xe’lx, ,xp~-‘erlx; ; 

erlnx, xermx, ., x”.-‘e*“X (10) 

is a fundamental system of solutions of (8). 

F. D’Alembert% Method of Reduction of 
Order 

Let yi(x) be a solution, not identically equal 
to zero, of the homogeneous equation (1’). 

By substituting y = y, z into (l’), we see that 
z’ satisfies a linear differential equation of 
order n- 1. This method is called d’Alembert% 
method of reduction of order. Since linear 
ordinary differential equations of the first 

order cari be integrated by quadrature (- 
Appendix A, Table 14.I), a homogeneous 
linear ordinary differential equation of the 
second order cari be integrated completely if 
one solution of the equation that does not 
identically vanish is known. 

SO far we have outlined a general theory of 
solutions of (1) in the domain where solutions 
are continuous or complex analytic, but in 
order to have thorough knowledge of all the 
solutions, we have to examine their behavior 

also in the neighborhood of a singular point 
(which is a discontinuity point or a singular 
point for at least one of the coefficients) (- 
253 Linear Ordinary Differential Equations 
(Global Theory), 254 Linear Ordinary Dif- 
ferential Equations (Local Theory)). Also, 
boundary value problems are important as 
well as initial value problems described before, 
especially for second-order equations in con- 
nection with mathematical physics [7]. For 

these - 315 Ordinary Differential Equations 
(Boundary Value Problems), 390 Spectral 

Analysis of Operators. 
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G. Systems of Linear Ordinary Differential 
Equations of the First Order 

Let the fii(x) be known functions. A system of 
linear differential equations of the tïrst order 

rly,ldx=f,,(x)~,+...+f,.(x)y,+y,(x), 

dy,ldx=.f,,W~, + ... +fd4yn+M4> 

. 

dynldx =f,l(x)y 1+ . +,L(~)Y, + CI,,(X) (11) 

with n unknowns y1 , y,, , y,, contains (1) as a 
special case, since (1) is transformed into (11) 

bysettingy=y,,y’=y,,...,y(“~‘)=y,.Asys- 
tem (11) with g,(x) = 0, i.e., a system 

dy,ldx=f,,(x)y,+...+,fi,(x)~,, 

. . . 

dy,ldx=f,,(x)~,+...+f,,(x)y, (11’) 

is said to be homogeneous, while (11) is said to 
be inhomogeneous. 

Suppose that the fj(x), gi(x) are continuous 
in an interval D. Then the following theorem 

holds: TO every point x0 in D and every initial 
condition 

there corresponds one and only one solution 
that is continuous in D. If the fj(x), gi(x) are 
holomorphic in a domain D, there corresponds 
one and only one solution that is complex 
analytic (not necessarily single-valued) in D. 

It follows that every point of discontinuity 
(singular point) of a solution of (11) is a dis- 
continuity (singular) point for at least one of 
the coefficients fli(x), g,(x). 

H. Fundamental Systems of Solutions 

Ifm>n+l,msolutions(y,i,y,i ,..., y,,)(i= 
12 , , . . . , m) of (11’) are linearly dependent, i.e., 
we cari tïnd constants C,, C,, , C,,,, not a11 
equal to zero, such that CE, Ciyki(x) = 0 (k = 

1,2, , n). System (11’) has n linearly inde- 

pendent solutions. TO see this, we have only to 
choose the initial conditions SO that 

Yik(XO)= l, i= k, 

=o, i#k. 

Such a system of n linearly independent solu- 
tions (yri, yZi, . ,Y,,~) (i= 1,2,. . . , n) is called a 
fundamental system of solutions of (11’). In 
terms of this fundamental system, any solution 

(Y r, . . . , y,) of (11’) is represented uniquely in 
the form yE(x) = &, C,y,(x) (k= 1,2, . , n). 

The linear independence of n solutions 

(yI1 ,..., yr,) ,..., (y,] ,..., y,,)isequivalentto 
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the condition that the determinant 

Y,,(X) Y,,(X) “’ Y,,(X) 

*(x)= Y,,(X) Y,,(X) ... Y2&4 

Y”,(X) YA .” Y,,(X) 

does not vanish in D. Corresponding to 
Liouville’s formula (5) we have 

A(-4 = AMev (iI, S_i;i(t)dt). C 

1. Method of Variation of Constants 

The general solution (Y,, Y,, , YJ of the 
inhomogeneous equation (11) is given as the 
sum of the general solution (y,, y,, . . ,y,) of 

(11’) and one particular solution (Y,,, Y*,,, 
, Y,,) of (1 l), i.e., in the form 

(Y1 + Y,,>Y,-t y20, . ..?Y.+ Y,,). 

TO obtain the particular solution ( YI,,, Y,,, 

, Y,,,,), we take any fundamental system of 
solutions 

Yl=cp&)~ Yz=cp,,(x),‘..~Y,=cp,,(x), 

k=1,2 ,..., n, 

of (11’) and consider the constants uk in the 
linear combination 

YiEki, (Pik(X)Uk, i=l,2 ,..., n, (12) 

as functions of x. Substituting (12) into (1 l), 
we obtain a system of differential equations 

k$l <Pik(X)Uk(X)=gi(X), i= 1,2, . . . . n, (13) 

with unknowns uk. Since the yi form a funda- 

mental system, the determinant of the matrix 
with elements qik(x) does not vanish. Hence 
(13) cari be solved in the form 

4(x) = G,&), k=1,2 ,.,., n, 

and the uL(x) cari be obtained by quadrature. 
Consequently, it follows that one particular 
solution cari be given, in terms of the uI<(x), in 
the form (12). This method is also called the 
method of variation of constants. 

J. Systems of Linear Ordinary Differential 
Equations with Constant Coefficients 

Suppose that the coefficients fj in (11’) are 
a11 constants. Then n columns of the matrix 
exp(Fx) form a system of fundamental solu- 
tions of (1 l’), where F denotes the matrix [fj]. 
Therefore the general solution has the form 

yj= f igX)&, j=1,2 ,..., n. 
!i=, 
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Here A,, &, , A., are the distinct roots of the 
characteristic equation 

VI-n .f,, .fL I 
.f2, f,,-n “’ f;, =o, 

f “1 fn2 ::: f", - i 

and if A, has multiplicity ek (x)t, ej= n), Pj,(x) 
is a polynomial of degree at most ek - 1 which 

contains ek arbitrary constants. 
Suppose that the coefficients ,&.(x) in (II’) 

are a11 periodic functions having the same 
period w. Then there exists a linear trans- 
formation yj = C qjk(x)zk in which the qjk are 
periodic with period w, such that the original 
equation is reduced to dz,/dx = C cjkzkr where 
the cjk are constants (Floquet’s theorem). 

Hence if we cari fïnd such a linear transfor- 
mation, we cari integrate the original equation. 

K. Adjoint Differential Equations 

Consider a linear homogeneous ordinary 

differential equation 

F(y)=p,y’“‘+p,y’“-“f +p,y=o 

Integration by parts of J”ZF(y)dx gives 

OF-yC(z)=dCR(y,z)lldx, 

where 

(14) 

n k-l 

R(y,z)= 1 1 (-l)hy’k-h~“(p,-,Z)(h). 
k=l h=O 

The equation G(z) = 0 is called the adjoint 

differential equation of F(y) = 0, and the iden- 
tity (14) is called the Lagrange identity. By 
integrating (14), we ha!ve Green% formula 

s 

XI 
@F(Y) -~W))dx = R lu> zl(xI) 

X<l 

-RC~>zl(xo). 

The adjoint differential equation of the adjoint 
equation of F(y) = 0 coincides with F(y) = 0. If 

y is a solution of F(y) = 0, then the solution 
z of the adjoint differential equation satis- 
fies the (n- l)st-order differential equation 
R(y,z)=constant. When G(y)=F(y), F(y)=0 
is called a self-adjoint differential equation. In 
the case of second-order equations with real 
coefficients, its general form is 

F(y)=d(pdy/dx)/dx+qy=O. (15) 

For systems of differential equations, the 

adjoint system of (11’) is defïned by 

dz,/dx= -f,jz, -.fzjz2 - -.fnjzn, 

j=1,2 ,..., n. (16) 
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Conversely, (11’) is the adjoint system to (16). 
If (y,, y,, , y,), (zl, z2,. ,z,) are solutions of 
(Il’), (16), respectively, then we have Xyz1 y,~, 
= constant. The system (11’) is called a self- 
adjoint system of differential equations if (11’) 
coincides with (16), i.e., if&(x) = -,fkj(x). 

L. Laplace and Euler Transforms 

When the coefficients pi(x) (i= 1,2, . . ..n) in (1’) 
are rational functions, it often happens that we 
cari fïnd a solution in the form 

s 

h 

Y(X) = u(t)ex’dt. (17) 
cl 

Namely, we cari often find a suitable function 
o(t) SO that the +Laplace transform (17) of 

u(t) is a solution of (1’). Similarly, it is often 
possible to fïnd a solution of (1’) as the Euler 

transform 

b 
Y(X) = 

s 
~(t)(l -x)@-‘dt (18) 

r? 

of some suitable u(t). These transforms are 
used for the integral representation of special 
functions. 

M. Linear Ordinary Differential Equations 
and Special Functions 

A number of transcendental functions, such as 
+hypergeometric functions, +Bessel functions, 
+Legendre functions, etc., and Hermite poly- 

nomials, Laguerre polynomials, Jacobi poly- 
nomials, etc., are detïned by linear ordinary 
differential equations of the second order (- 
389 Special Functions). 
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253 (X111.8) 
Linear Ordinary Differential 
Equations (Global Theory) 

A. General Remarks 

Let there be given a linear differential equation 
of the nth order 

4”“‘+a,(x)y’“-“+...+a,(x)y=0, (1) 

or a system of linear differential equations 

Y’=A(x)Y, (2) 

which is the vector-matrix expression of 

Y+c, (1Ik(X)Yk> j=l > . . ..n. (2’) 

where the coefficients Q(X), ujk(x) are complex 
analytic functions of x in a certain complex 

domain D. The solutions of (1) or (2) are 
known to be holomorphic when the coeffï- 
cients are a11 holomorphic. However, at a 

singular point of at least one of the coefficients, 
a +branch point of the solution usually ap- 

pears. Thus a solution of (1) or (2) is, in gen- 
eral, a tmultiple-valued analytic function of x. 

The abject of global theory is the function- 
theoretic study of this function-that is, deter- 

mination of its tRiemann surface and investi- 
gation of its behavior on the Riemann surface. 

At a +regular singular point of (1) or (2), any 
solution cari be expressed explicitly by the 
combination of elementary functions and 

power series convergent within a circle around 
the singular point. In the presence of an tirre- 
gular singular point, instead of a convergent 
expression, we cari construct an asymptotic 
expansion valid within a certain sector whose 
vertex is situated at the singular point (- 254 
Linear Ordinary Differential Equations (Local 
Theory)). Once such expressions have been 
obtained, the remaining task is to find the 
relations connecting those locally valid ex- 
pressions. Therein lies the main and most dif- 

fïcult part of global theory. The problem of 
determining the relations, called the connection 

formulas, is the connection problem. 
Equation (1) or the system (2) is said to be of 

Fucbsian type if all singular points of (1) or (2) 
are regular singular points. If (1) is an equation 
of Fuchsian type defined on the Riemann 
sphere and having singularities at a,, a2, 

“‘3 a,, a m+, = CD, then we have the Fucbs 
relation 

where p,,, , fjn are the +exponents at aj of (1). 
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B. Monodromy Groups 

Suppose that the coefficients of equation (2) 
are defïned on a certain Riemann surface 5 
with singular points a,, az, By deleting a,, 
u2, from 3, another Riemann surface 3’ is 
obtained. Choose a point x on z, and let Y(x) 
be any fïxed branch of a tfundamental system 
of solutions of (2). Also, let I be a circuit on 8’ 
starting from x. By an analytic continuation 

along I, another branch of Y(x) is obtained, 
which we denote by ~(XI). It is known that in 

this case these two branches are connected by 
the relation Y(xI) = Y(x)Cr, where Cr is an 
n x n constant matrix, and also that if ri and 
I2 are +homotopic circuits, Cr, = Cr2. SO the 
branch Y(xI) and the matrix Cr are deter- 
mined by the thomotopy class y to which I 
belongs. Thus we cari Write Y(xy) or C, instead 
of y(c) or Cr-. 

Now let G be the tfundamental group of 5’. 
Since Y(xy,y,) = Y(xY,)C,~ = Y(x)CyzCy, for any 
y1 , y2 E G, the correspondence y+C, defines a 
trepresentation of G. The group g = {C, 1 y E G}, 

which is naturally homomorphic to G, is called 
the monodromy group of equation (2). 

For equation (l), we cari also defïne the 

monodromy group of the equation by y = 
{C, 1 y E G}, where C, is a matrix such that 

(Y 1 (xY), , Y,(xY)) = (Y 1 Cd , Y,(x))C,, where 
y, (x), , y,(x) are linearly independent solu- 
tions of (1). 

If the equation is of Fuchsian type, the 
global problem cari be regarded as solved 

when the monodromy group of the equation 
has been completely determined. 

If 3 is a complex sphere and the equation 
is of Fuchsian type, the number of singular 

points of the coefficients is of course finite. Let 
a,, , a, be those singular points, and yk be 

the homotopy class of r determined by a 
closed curve Ik that encloses only one sin- 
gular point ak. Then the monodromy group g 
is generated by the matrices C,, , , C,,. 
Obviously Cl, , Gym are not necessarily in- 
dependent. At least one relation C,, , , Gym = 1 
(a unit matrix) always holds. In this case, 
tJordan canonical forms of Cy, are a11 de- 

termined from the convergent expression for 
the fundamental system of solutions valid 
around uk constructed by the famous tFro- 
benius method. However, the calculation of C,, 
itself is generally impossible. 

If n = 2, m = 3, and the coefficients are a11 
rational functions of x, equation (1) or (2) is 
completely determined if we fix the roots of 
tindicial equations at every ukr as long as the 

equation is of Fuchsian type. Therefore the 

monodromy group is determined by the values 
of the roots of indicial equations. Since these 
roots are calculated purely algebraically, the 
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monodromy group is determined by algebraic 
procedure in this case [S]. 

Let n = 2, m = 3 in equation (1). Denote by a, 
b, c the three singular points and by Â, Â’; p, $; 
v, v’ the roots of indicial equations at a, b, c, 
respectively. As was mentioned in the pre- 

vious paragraph, the equation is determined 
uniquely by these nine quantities. Hence they 
also determine a family of functions consisting 
of a11 the solutions of the equation. This family 
is usually written as 

and is called the P-function of Riemann [2]. A 
simple transformation of variables reduces it 

to the totality of solutions of Gauss’s thyper- 
geometric differential equation 

X(1-x)y”+(~-(X+p+l)x)y’-a~y=0. (3) 

Some solutions of (3) are expressed by a byper- 

geometric integral 

s ta-y@-- l)Y-~-‘(t-X))adt, 
c 

where C is a suitably chosen path of integra- 
tion [2] (- 206 Hypergeometric Functions). 

Calculation of the monodromy group of the 
equation (1) or (2) is still an unsolved problem 
except for the case n = 2, m = 3 and a few other 
particular cases. 

C. Equations witb an Irregular Singular Point 

In the presence of an irregular singular point, 
complete knowledge of the monodromy group 
is still insufftcient for the solution of the global 
problem. It is only the structure of the Rie- 
mann surface that is known from the mono- 
dromy group, and the behavior of the solution 

on the Riemann surface still remains to be 
studied. At an irregular singular point, the 
solution cari be expressed only by an tasymp- 
totic series valid within a certain sector, and 
the same solution possesses completely differ- 
ent expressions in different sectors. This is 
called Stokes’s phenomenon (- 254 Linear 
Ordinary Differential Equations (Local The- 
ory)). Thus, to complete the global theory, 
connection formulas between different asymp- 

totic expressions must be established. 
For a second-order linear equation with two 

singular points, one of which is regular and the 

other irregular of the fïrst rank, the problem is 
completely solved. In this case, the equation 
cari be reduced to a +Confluent hypergeometric 
differential equation [Z] (- 167 Functions of 
Confluent Type). The problem is also partly 

solved for a linear equation of higher order 
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with two singular points, one of which is regu- 
lar and the other irregular (K. Okubo, J. 
Math. Soc. Japan, 1963). 

If two singular points are both irregular, 
even the monodromy group cannot be cal- 
culated in general. For such a case, G. D. 

Birkhoff proposed a method of reducing one 
of the singular points to a regular one. He 
showed that this procedure is possible under 
certain assumptions on the monodromy ma- 
trix (Math. Ann., 1913). 

D. Riemann% Problem 

As a noteworthy result for equation (1) of 

Fuchsian type with algebraic coefficients, 
Poincaré’s theory deserves special mention. 
According to his theory, a solution of (1) cari 
be uniformized in the form Y=~(Z), x =Y(Z), 
where f and g are single-valued analytic func- 

tions of z. Although it is known generally that 
any analytic function admits such uniformiza- 
tion (- 367 Riemann Surfaces), Poincarës 
theory gives a more explicit and efftcient uni- 
formizing construction. As uniformizing para- 
meter z, we may take a ratio of two indepen- 

dent solutions of a certain linear differential 
equation of the second order that is deter- 
mined from (1) and f and g are, in general, 

+Fuchsian functions, i.e., tautomorphic func- 
tions for a certain +Fuchsian group, save for a 
few exceptional cases in which they are ra- 
tional or +elliptic functions. 

Brief mention should be made of Riemann% 
problem as a problem closely related to the 

global theory of linear differential equations. 
This problem was taken up by +Hilbert in his 
famous Paris lecture as the 21st problem, and 
hence is often called the Riemann-Hilbert 
problem. The problem cari be stated as fol- 
10~s: Suppose that we are given a Riemann 

surface 5, points ut, uZ, . . . on 5, and a group 
y of n x n matrices homomorphic to the funda- 
mental group of g-{a,,~,, . ..}. Then fïnd an 
equation of the form (2) such that (i) the coefft- 
tient A(x) is single-valued and meromorphic 
on 8; (ii) the singular points are all regular and 
situated at a,, a2, ; and (iii) the monodromy 
group of the equation coincides with g if a 
fundamental system of solutions is suitably 
chosen. Extensive research was done by many 
mathematicians, and tïnally H. Rohrl suc- 
ceeded in solving the problem (Math. Ann., 

1957). 

E. Isomonodromic Deformations 

M. E. R. Fuchs considered the equation 

d*yldx* =P(x)Y, (4) 
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where p(x) is given by 

b d 

p~x)=~+(x-1)2+(xCt)‘+x(x~l) 

3 dc 
+- 

4(x - Â)Z 
+ 

x(x-1)(x-t) 

+ B 
x(x-1)(x-Â)’ 

and he proposed the following problem: Ob- 
tain conditions among the parameters a, b, c, 

d, t, 3,, c(, fl such that the monodromy group of 
(4) is kept invariant when these parameters 
vary, under the hypothesis that a fundamental 
system of solutions around x = i of (4) does 
not contain logarithmic terms. It is clear that 
a, b, c, d remain constant. Fuchs obtained a 
necessary and sufficient condition which is 

stated as follows: 1, CI, fi are considered as 
functions of t and A satislïes the +Painlevé 
equation (VI) and c(, /3 are rational functions of 
Â and dA/dt (Math. Ann., 63 (1907)). 

The result of Fuchs was extended by R. 
Garnier into two directions: Considering equa- 
tions of the form (4) with irregular singular 
points, Garnier derived the Painlevé equations 
(I)-(V). Then from equation (4) with 

+c 
3 -+c 9 

j=14(X-Aj)' j-1 X(X-1)(X-tj) 

+z A 
j=l X(X-1)(X-Ai)’ 

he obtained a system of partial differential 
equations called the Garnier system (Ann. Sci. 

Ecole Nom. SU~., 1912). 
For equations with irregular singular points, 

the problem must be modified as follows: 
Deform equations SO that not only the mono- 
dromy group but also the system of +Stokes 

multipliers are kept invariant. This modi- 
lied problem is called the isomonodromic 
deformation. 

L. Schlesinger studied the isomonodromic 
deformation of the system 

dy -= 
dx 

and he derived a +Pfaffian system, called the 
Schlesinger equations (Crelles J., 19 12). 

The research of the theory of isomono- 
dromic deformation has recently become 

active. K. Okamoto has investigated the iso- 
monodromic deformation of Painlevé equa- 
tions, Garnier systems, and linear ordinary 
differential equations in detail, and T. Miwa 
and M. Jimbo have extended the Schlesinger 

equations. Also - 288 Nonlinear Ordinary 
Differential Equations (Global Theory). 
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254 (X111.7) 
Linear Ordinary Differential 
Equations (Local Theory) 

A. Singular Points 

Consider a system of n linear ordinary dif- 
ferential equations 

dy 
z=A(x)~> (1) 

where the independent variable x belongs to a 
domain in the tRiemann sphere, y is a complex 

n-dimensional column vector (yi (x), Y~(X), . , 
y,(x)), and the n x n matrix A(x) has tcomplex 
analytic functions as elements. A singular 

point x = a ( #CO) of A(x) is called a singular 
point of the system (1). Let 

dy/dt = B(t)y (2) 

be the system transformed from (1) by the 
change of variable t = 1/x. The point x = CO is 

a singular point of the system (1) if t = 0 is a 

singular point of (2). By definition a point x = a 
or x = co is a singular point of (1) if t = 0 is a 
singular point of the transformed equation (2) 

by the change of variable t = x - a or t = 1/x. It 
follows that by the use of +local coordinates 
the notion of singular points of the system cari 
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be extended to the case when A(x) is complex 

analytic on a +Riemann surface. 
Consider a single nth-order differential 

equation defïned on a Riemann surface 

y’“‘+al(x)y’“-l’+ . ..+a.(x)y=O. (3) 

The above definition of singular points may 

easily be adapted for use in equation (3) 
because (3) cari be converted into a system (1) 
by a simple transformation. 

B. Classification of Singular Points 

Suppose that A(x) is holomorphic in a deleted 
neighborhood 0 < 1 xl < R of x = 0. Then any 
solution of (1) cari be continued analytically in 
0 < (xl <R and is not necessarily single-valued 
(- 252 Linear Ordinary Differential Equa- 
tions). For simplicity, we denote by xe2” the 
terminal point of a closed path starting and 

ending at x and surrounding x = 0 once in the 
positive sense. Let Y~(X), , y,(x) be a funda- 
mental system of solutions of (1). Then the 
fundamental matrix solution Y(x) = (y, (x), 

. ../ y,(x)) undergoes a linear transformation 
Y(xe2”‘)= Y(x)M when x is transformed to 
xe2ai, where M is a nonsingular constant ma- 
trix. The matrix M is the monodromy matrix 
(or circuit matrix) of Y(x) at x = 0. If we take a 
matrix S such that M = e2zis, then there exists 
a matrix P(x) whose elements are holomor- 
phic functions in 0 < 1x1 <R and such that 
Y(x) has the form Y(x) = ~(X)X’, where xs is 
defined by xs = exp(S log x). 

If for a solution y(x) of (1) and an arbitrary 

sector Z there is a positive number r such that 
lim,,, 1 xl’ y(x) = 0, x = 0 is a regular singular 
point of the solution y(x); and if there is no 
such number, x = 0 is an irregular singular 
point of y(x). If x = 0 is a regular singular point 

of all the solutions of(l), it is a regular singular 
point of the system (1). If some of the solutions 

have x = 0 as an irregular singular point, then 
it is an irregular singular point of the system 

(1). A necessary and sufficient condition for 
x = 0 to be a regular singular point of the sys- 
tem is that an arbitrary fundamental matrix 

solution Y(x) of (1) in the form Y(x) = ~(X)X” 
as described above have x =0 as a pole of P(x). 
In the same way, we cari give the definition of 

regular singular points and irregular singular 
points for equation (3). 

C. Regular Singular Points 

Consider equation (3). A necessary and suffi- 
tient condition for x = 0 to be a regular sin- 
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gular point of (3) is that every Q(X) have a pole 
of order at most k at x = 0. Consequently, we 

cari Write (3) in the form 

~“y’“‘+A~(x)x”-ly(nm’)+...+A,(x)y=O, (4) 

where each AL(x) is holomorphic at x = 0. 
Equation (4) has a fundamental system of 
solutions of the form y = xPrPk(x, logx), where 
pk are M roots of the indicial equation at x = 0 of 

(4): 

P(p-l)...@n+l)+A,(O)p(p-l)... 

(pn+2)+...+A,-,(O)p+A,(O)=O, 

and P,Jx, L) is a polynomial in L of degree 

at most equal to the number of roots of the 
indicial equation that are congruent to pk 
(modulo integers) with coefficients holomor- 
phic functions of x. The quantities ,Q are 
called the exponents at x = 0 of (3). If the real 
part of pk is largest among the real parts of the 
roots 4 that are congruent to pk modulo in- 

tegers, there exists a solution with the expo- 
nent pk and not containing the logarithmic 
term. (A number a is congruent to b modulo 
integers when a-b is an integer.) In particular, 
no solution contains the logarithmic terms 

when no pair of roots of the indicial equation 
is congruent modulo integers. Frobenius’s 
method is convenient for finding these solu- 
tions (- Appendix A, Table 14). 

We return to system (1). The following 
theorem gives a simple sufficient condition for 
x = 0 to be a regular singular point, but there 
is no simple necessary condition: x = 0 is a 
regular singular point of (1) if x = 0 is a simple 
pale of A(x). Then (1) is written as 

-Ë(dyldx)= C(X)Y, (5) 

where C(x) is holomorphic at x = 0. Equation 
(5) has a fundamental system of solutions of 
the form yk = xpkpk(x, log x), k = 1, , n, where 
the exponents pk are n roots of the indicial 
equation at x=0 of (5): det(C(O)-pr)=O, and 
the pk(x, t) are vector functions whose compo- 
nents are polynomials in L with coefficients 
holomorphic at x = 0. If none of the exponent- 
differences pj - pk (,j # k) is equal to an integer, 

then there is a fundamental system of solutions 
of the form yk = X”~~~(X). The above result is 
derived from the following theorem: There 
exists a transformation y = P(x)z that takes (5) 

into a system 

x(dz/dx) = Dz, 

where P(x) is a matrix holomorphic at x = 0 
and D is a constant matrix. 

If a11 solutions of (1) or (3) are meromorphic 

at x = 0, then x = 0 is called an apparent sin- 
gular point. 
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D. Irregular Singular Points 

If at least one of the coefficients uj(x) of equa- 

tion (3) has a pole of order more than j, then 
x = 0 is an irregular singular point of (3). Let mj 
be the order of the pale of uj(x) at x = 0, with 
the convention that mj = SO when uj(x) = 0; and 
assume that m, = 0 for simplicity. Let A, (v = 
0, 1, , n) be the points with coordinates 
(v, m,) in the Euclidean plane and 17 be the 
Upper half of the boundary polygon of the 
+convex hull of the set (A,, A,, , A,,}. This 

polygon is called the Newton diagram of equa- 
tion (3). Let (v, r,) be the intersection of the 
straight line x = v with n, and consider the 

nonincreasing sequence of numbers {gj}, oV= 
rv - ru-, (r. = 0). We assume p to be an integer 
such that 0, >a,> __. >a,> 1 >a,,+, >...>o,. 

TO the fïrst p sections of the diagram I7 with 
slopes 0; > 1 there correspond p forma1 solu- 
tions of the following form that are formally 
linearly independent: 

y=exp(X,(x))xP”P,(x, logx), 

where the &(x) are polynomials in fractional 
powers of x m1 and the Pk(x, L) are polynomials 
in L with coefficients given by forma1 series in 

fractional powers of x. Associated with the 
sections of I7 corresponding to those n-p 
numbers 0,~ 1, there are n-p linearly inde- 
pendent forma1 solutions of similar form but 
without the exponential term. 

Consider a system 

x’+‘(dy/dx)=A(x)y, (6) 

where r is a positive integer and A(x) is holo- 
morphic at x = 0. The system (6) has n formally 
linearly independent solutions: 

yk = ev(~dx)WWx, logx), 

where the n,(x) are polynomials in fractional 
powers of x ml and the pk(x, L) are n-vectors 
whose components are polynomials in L with 
coefficients given by formal power series in 
fractional powers of x. This result is obtained 
from the following theorem: There exists a 
transformation y = P(x)z that changes (6) 

formally into the system 

xr+’ (dz/dx) = (A(x) + Jx’)z, 

where P(x) is a matrix with elements given by 
forma1 power series in fractional powers of x, 

A(x) is a diagonal matrix with diagonal ele- 
ments x’+l ^L(x), and J is a constant matrix in 
Jordan canonical form. A necessary and suffï- 
tient condition for x = 0 to be a regular singu- 
lar point of (6) is that A(x) vanish identically. 

Unfortunately, forma1 power series appear- 
ing in the formal solutions of (3) and (6) are in 

general divergent series. H. Poincaré, by intro- 
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ducing the notion of tasymptotic expansions, 
first proved under a very restrictive hypothesis 

that these forma1 solutions represent asymp- 
totically actual solutions in any small sector. 
Contributions in this direction had been made, 

notably by W. J. Trjitzinski and J. Malm- 
quist, but a decisive result was obtained by M. 
Hukuhara, whose method is also applicable to 
the study of regular singular points. 

Let y:(x), , y: (x) (Q’(x)) be a fundamental 
system of solutions of (3) (fundamental matrix 
solution of (6)) that are expressed asymptoti- 

cally by n forma1 solutions in a sector D, and 
y:(x), . , y:(x) (Q’(x)) be another fundamental 

system of solutions of (3) (fundamental ma- 
trix solution of (6)) of the same nature ex- 

pressed by the same forma1 solutions but in a 
different sector D,. Then the two systems 
(two matrix solutions) are, in general, not the 
same system (matrix solution), but they are 
connected by a constant matrix C: 

(Y:(x),...,Y~(x))=(Y:(x),...,Y,2(x))c 

(@‘(x)=W(x)C). 

This is the so-called Stokes phenomenon, and 
the elements of the matrix C are called Stokes 
multipliers. The problem of determining these 

multipliers is a kind of +connection problem, 
and the above equality is a tconnection for- 
mula (- 253 Linear Ordinary Differential 
Equations (Global Theory)). 

For an equation of the form (3) (system of 
the form (6)) with an irregular singular point 
at x = 0, the polynomials 1,,(x), , A,(x), the 
quantities 11,) __ ,p., and a set of Stokes multi- 
pliers form a complete system of invariants 
under linear transformations of the form 

(z = Q(x)Y)> 

where the qj(-x) (the elements of Q(x)) are mero- 
morphic at x = 0. 

Even if equation (3) has x = 0 as an irregular 
singular point, it may happen that (3) admits 
solutions holomorphic at x = 0. This was first 
studied by 0. Perron and then by F. Letten- 

meyer, M. Hukuhara, and Iwano, and by H. 
Komatsu. G. D. Birkhoff proved that when the 
monodromy matrix at zero of the system (6) 
cari be diagonalized, there is a nonsingular 
matrix P(x) (det P(0) #O) such that the linear 

transformation y = P(x)z transforms (6) into 

rdz r-l 
x z= k=O ( > 

c B,Xk z. 

E. Singularities with Respect to a Parameter 

An analogous theory has been obtained for a 
system of fïrst-order linear differential equa- 
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tions with a small complex parameter 6: 

d 
~‘z=A(x,~)y, 

A(x,E)= f A,(x)E~, 
k=O 

where h is a positive integer, the n x n matrices 
AL(x) (k = 0, 1, ) are single-valued holomor- 
phic functions of x in a neighborhood D of 
the origin, and the tasymptotic expansion is 

valid when s-t0 in a sector Z. When ah eigen- 

values of the matrix A,(O) are distinct, there 
is a matrix of forma1 solutions of the form 
P(x, s)eQ(X.E), where P(x, E) is a forma1 series of 
the form A(x, E), Q(x, E) is a diagonal matrix 

with polynomials in l/~ of degree h as diagonal 
elements, and a11 the coefftcients are single- 
valued holomorphic functions of x on D* 
(c D). In particular, the coefficient of s-h in 
thejth diagonal element of Q(x,E) is JGpj(t)dt, 
where pj(x) is an eigenvalue of the matrix 

A,(x). If we take a certain subsector L* of C, 
the matrix P(x, E)c?~(~.‘) represents an actual 
matrix solution in C*. When there is no tturn- 
ing point (- Section F), it is always possible, 
even if there are multiple eigenvalues in A,,(O), 
to construct formal solutions that are asymp- 
totic representations of some solutions in 
some sector. Similar theories were developed 

for cases where more than two parameters 
appear. 

F. Turning Points 

Consider the point x = 0 in the system (7), and 

0 1 
set n=2, h= 1, and A,(x)= x 

( > 
o Then 

A,(x) has a multiple root when x=0 and dis- 
tinct roots when x #O. As in this example, 
when the Jordan canonical form of the leading 
matrix A,(x) has different structure for x = 0 
and for x # 0, the coefficients of the forma1 

power series in E are not single-valued holo- 
morphic functions of x, and have worse sin- 
gularities as the order becomes higher. Con- 

sequently, in the neighborhood of x = 0, we 
cannot construct actual solutions that cari 
be represented asymptotically by these forma1 
solutions. Such a point is called a turning point 
(or transition point) of the system (7). 

If there is a nonsingular forma1 transforma- 
tion y= T(x,E)z; T(x,E)=~ %(X)E~ (det T,(O)# 
0) having similar analytic properties to those 
of A(x, E), and if the transformed system has 
a well-known form, it is possible to give ana- 

lytic meaning to the forma1 transformation 
T(x, E). Then the transformed system is called 

a related differential equation of (7); in the 
above example, c(dz/dx)= A,(x)z is a related 

differential equation that has well-known solu- 
tions expressed by tBessel functions. What is 
meant by well-known here is that the behavior 
of ah solutions is known in the entire complex 
plane for a fïxed E. However, it is not easy to 
find a suitable related differential equation 
for an arbitrarily given system. 
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A. Problems 

A linear programming problem is a special type 
of mathematical programming (- 264 Mathe- 
matical Programming) in which ah the func- 
tions involved, i.e., the objective function and 
the constraints, are linear in the variables. 

The simplest typical case is formulated as 
follows. 

Problem 1: Maximize z =c’x, under the 
condition 

(C) Ax=b and x30, 

where x E R” is the vector to be determined, c is 
a constant n-real vector, b is a constant m- 

vector, and A is an m x n real matrix. 
Without any loss of generahty we cari as- 

sume that the rank of A is equal to m, because 
otherwise the condition is either redundant or 
inconsistent. This also implies that m <n. 

Any vector which satistïes condition (C) is 
called a feasible solution, and that which maxi- 
mizes z among ah feasible solutions is called 

an optimal solution. Let A, be an m x m non- 

singular submatrix of A, i.e., a matrix consist- 
ing of m linearly independent columns of the 
matrix A. Denote by A, the m x (n-m) matrix 
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formed by the remaining columns of A. Let x, 
be the m-vector consisting of the components 
of x corresponding to A, and x2 be the vector 
of the remaining components. Then the equa- 
tion Ax = b cari be written as A, xi + A,x, = 

b, and one of its solutions is given by x, = 
Al’ b and x2 = 0, which is called a basic solu- 

tion. Furthermore, if xi > 0, the basic solution 
is called a basic feasible solution, and if it is 
also optimal, it is a basic optimal solution. 
Then the following theorem cari be proved. 

Theorem: If there exists a feasible solution, 
there is also a basic feasible solution, and if 
there exists an optimal solution, there is also a 
basic optimal solution. 

Corresponding to a basic solution, we cari 
derive the expression xi +A;’ A,x, = Al1 b; 
z - (ci -ci Al’ A,)x, = 0. Such an expression 
is called a basic form of the problem, and the 
components of x, are called the basic vari- 
ables. The basic solution x, = A;‘b, x2 = 0, 

is an optimal solution if and only if 

(Q) A;‘b>O and q=c,-A;A;“c,<O, 

which is called the optimality criterion. 

Since there are at most ,,C,,, basic solutions, 
we cari always find an optimal solution, if 
there is one, in a tïnite number of steps. 

Another form of the linear programming 

problem is as follows. 
Problem II: Maximize z = c’x, under the 

condition 

(C’) Ax<b and x30. 

The two formulations are equivalent be- 
cause Problem II cari be transformed into 

Problem 1 by introducing a new nonnegative 
m-vector s and writing the equation as Ax + 
S= b. Such a vector s is called the vector of 

slack variables. Conversely, Problem 1 cari be 
formulated as Problem II by imposing the 
conditions Ax db and Ax > b instead of the 
equality Ax = b. 

Sometimes it happens that for some of the 
variables nonnegativity conditions are not 
assumed. Then for the vector x0 of such vari- 

ables we cari define x+ -x- =x0, x+ 2 0, and 
x- 20, and we cari assume that ah the vari- 
ables are nonnegative. 

B. Duality 

Problem II has the following dual problem. 
Problem III: Minimize w  = b’y, under the 

condition 

(C”) A’y>c and ~30. 

For Problem 1, if we restate the equality 
condition as Ax <b and - Ax < -b, then the 

dual problem cari be written as: Minimize 
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w=b’y+ - b’y- under the condition A’y+ - 

A’y- bc; ~‘20, y- 20. Then by putting y= 

Y+ -y-, we cari formulate the dual problem 
as follows. 

Problem IV: Minimize w  = b’y, under the 
condition 

(C”‘) A’y >c, with no restriction on the sign 
of y. 

In contrast to the dual problem, the original 
problem is called the primary problem. The 

following theorem is basic to the theory of 
linear programming. 

Duality tbeorem: If either one of the primary 

or dual problems has an optimal solution, 
then the other also has an optimal solution, 
and it holds that max z = min w. Moreover, if 
x* and y* are optimal solutions of the two 
problems, we have c’x* = b’y* = y*‘Ax*. 

Conversely, if x* and y* are feasible solu- 
tions of the primary and dual problems and 
if we have c’x* = b’y* = y*‘Ax*, then x* and 
y* are optimal solutions of the respective 
problems. 

Let x7 = Al-’ b, XT =0 be a basic optimal 
solution of Problem 1. Then the condition in 
its dual problem is written as A;y>c, and 
A; y > c2. Put y* = A;“c, ; then from the opti- 
mahty condition it is shown that A;y*>c,, 
and also A; y* =c,; hence y = y* is a feasible 
solution of the dual problem. It is obvious 
that c’x*=c’,x~=~,Ai~~b=b’y*=y*‘A,x~= 

y*‘Ax*, and for any feasible solution y of the 
dual problem, we have b’y = x*‘A; y > x*‘c = 
b’y*, which establishes that y* is an optimal 
solution. 

The duality theorem cari be formulated in 
a more general way: Let V and W be closed 
convex cones in R” and R”, respectively. Then 
we state the following problems. 

Primary problem: Maximize z = c’x, x E R”, 
under the condition b - Ax E V and x E W. 

Dual problem: Minimize w  = b’y, y E R”, 
under the condition A’y -c E W* and y E V*, 
where W* and V* are the dual cones of W and 
V, respectively. 

We cari also Write max z = CO if the value of 
z is not bounded, and max z = -cc if there is 

no x which satisfïes the condition; similarly, 
min w  = -m if w  is not bounded from below, 
and min w  = CO if there is no y satisfying the 

condition. 
Theorem: If either max z # -a or min w  # 

CO, we have maxz = min w. Moreover, if -cc 
<max z = min w  = c’x* = b’y* < 00, we have 
y*‘Ax* = c’x* = b’y*. 

Detïne the expression <p(x, y) = c’x + b’y - 
y’Ax =c’x + y’(b- Ax) = b’y -x’(A’y -c) for 

XE W and y~ V*. q cari be regarded as a 
Lagrangian form for both the primary and 
dual problems. And if (x*, y*) is a pair of op- 
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timal solutions, we have <p(x*, y)> V(X*, y*) 3 
<p(x, y*) for a11 XE W and y~ V*, which means 
that (x*, y*) is a saddle point of the function <p. 
Now suppose that in the primary problem the 
constraint vector b cari change, and consider 

maxz to be a function of b, denoted by z(b). 
Then under a small change of b at least some 
of the optimal solutions of the dual problem 
Will remain optimal; hence for any vector a we 
have 

1 
inf a?* Qlim;(y(b+ta)-z(b))< SU~ a’y*, 

y*ty* y*EY* 

where Y* is the set of the optimal solutions 
of the dual problem. Because of this property 
the solution of the dual problem is called the 
vector of sbadow prices or of the imputed costs 
of the constraints. Symmetrically, the solution 
of the primary problem describes the rate of 

change in the value of the objective function 
under a small change in the constraint vector 
in the dual problem. 

The duality theorem is closely related to 
some theorems on systems of linear inequal- 
ities and convex cones in a tïnite-dimensional 

Euclidean space; especially, the following are 
equivalent to 01 easily derivable from the 
duality theorem. Minkowski-Farkas theo- 
rem: Given an equation .4x = b, where b is an 
element of R”, a necessary and sufhcient condi- 

tion for a solution x 3 0 to exist is that u’b > 
0 hold for any vector II such that u’A 20. 
Stiemke theorem: For a matrix A one of the 

following two alternatives holds: (i) Ax = 0, x > 
0 have a solution; (ii) u’A 2 0 has a solution. 
Tucker’s theorem on complementary slackness: 
For any matrix A, the two systems of linear 

inequahties (i) Ax = 0, x > 0, and (ii) u’A 2 0 
have solutions x, u satisfying A’u +x > 0. The 
minimax theorem for tzero-sum two-person 
games (- 173 Games Theory C) with imite 
number of strategies for both players is also 

shown to be equivalent to the duality theorem. 
It is formulated as 

min max y’Mx = “x hi y’Mx, 
yts, xts, 1 

where M is the payoff matrix and S, and S, 
are tsimplexes of mixed strategies. 

C. Algorithms 

The most commonly used method for solving 
linear programming problems numerically is 
the simplex method introduced by van Dantzig 

[l] and its variations. It gives a procedure 
starting from one basic feasible solution to 
mach an optimal basic solution in a finite 
number of steps by improving the value of the 

objective function at each step. Let 

xi+ 1 dijxj=gi, iEI, 
jEJ 

Zf C.hx,=u 
kJ 

be a basic form for Problem 1, where I denotes 

the set of the basic variables and J the set of 
nonbasic variables. Then the feasibility implies 
that di 3 0 for ah is 1. Furthermore, if fj 3 0 for 
ah jE J, the basic solution xi = gi for i in 1 and 
xi = 0 for j in J is optimal. If 11% < 0 for some j* 
in J, defïne ri = gi/dij, for i in 1 and for which 
d, > 0. Let ri* = min ri; then we cari delete i* 

from the set 1 and add j* to it and get a new 
basis, and by simple algebraic calculation we 

get a new basic form corresponding to the 
new basic feasible solution, for which the value 
of z is increased by -,fi~~*. If r,* is always 

positive, we cari get an optimal basic solution, 
since the above procedure cannot continue in- 
delïnitely; and even when ri becomes zero (the 
degenerate case), we cari avoid infinite circular 
repetition by using a method proposed by 
R. G. Bland [ 161. And ,fi* < 0 and d, d 0 for ah 
i implies that the value of z is unbounded. The 
array of the coefficients of the basic form is 
called the simplex tableau, and the method is 
called the simplex method. In order to obtain 
a basic feasible solution, the two-phase simplex 

method is used. Assume that in Problem 1 the 
vector b is nonnegative. Then we introduce a 

new m-vector u called the vector of artificial 
variables, and formulate an additional prob- 
lem as follows. 

Problem Ia: Maximize t = - I’u under the 
condition Ax + u = b and x 2 0, u 2 0. 

This problem cari be solved by the simplex 
method starting from the basic solution u = b, 
x = 0, and if we get to an optimal solution 
with t = 0, we have a feasible solution for the 
original problem, from whence we cari proceed 
with the original problem. 

If there some inequalities in the condition 

we transform them to equalities by introduc- 
ing slack variables, and then apply the simplex 
procedure. Once an optimal basic solution is 
obtained, a solution of the dual problem is 
easily obtained from the relation y* = Al’b. 
The dual simplex method utilizes the primary- 
dual relationship. 

Recently, L. G. Khachiyan [7] proposed a 
new linear-programming method that gives an 
optimal solution within predetermined ac- 
curacy of approximation in a number of steps 
bounded by a polynomial in the numbers of 
the variables and constraints, a property the 

simplex algorithm fails to have. His method is 
basically an iterative procedure to tïnd a solu- 
tion x satisfying a system of strict inequalities 
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six < b,, i = 1, , m, where the bi and the com- 
ponents of the ai are all integers. Let x(O) be 
any vector and B(O)= KI, where K is a posi- 
tive constant defïned in terms of the a, and 

the bi, and the sequence of vectors xtk) and 
matrices B@) are detïned by 

2 B(k)a.a!B’k) B(k)-- ” 
n+ 1 a!BCk)a. ’ I I 

when the vector xck) violates the inequality a:x 
<hi, and continue until a solution is obtained 
or the number of steps reaches some constant. 
In the latter case it cari be proved that the 
system of inequalities does not have any feasi- 
ble solution. This algorithm cari be applied to 

solve Problem II in the following way: Due to 
the duality theorem, the optimal solution of 
Problem II cari be characterized as vectors 

satisfying b’y < c’x, Ax < b, - A’y < -c, x > 0, 
y 2 0. Then the system is approximated by 

another system with integer coefficients, and 
then by a system of strict inequalities, and the 
above algorithm cari be applied to this ap- 
proximated system. This method is based on a 
principle entirely different from the simplex 
method of computing successively the centers 
of ellipsoids of indetïnitely decreasing size and 

containing a subset of feasible solutions. 
Although Khachiyan’s method has a mathe- 

matically appealing property, in practical 
applications the simplex method and its vari- 
ations still seem to be the most efficient gen- 
eral method for the numerical solution of 
linear programming problems. 

Some special types of linear programming 
problems allow specitïc algorithm for solution, 

e.g., the transportation problem has the struc- 
ture: Minimize ~i~jcijxy under the condition 

xjxij > ai, xixij < bj, x,2 0. This cari be solved 
by any one of several simple intuitive methods. 
Various types of linear programming problems 

are discussed as problems of maximizing flows 
on networks (- 281 Network Flow Problems). 

Also, problems with the further condition that 
some or ah of the variables are integers cari 
profïtably be discussed separately (- 215 
Integer Programming). 

D. Generalizations and Applications 

Linear programming in the sequence space 
(1)= {X= {xJ} 1 Cjm=i Ixjl < a} was treated by P. 

C. Rosenbloom [ 121. In this case, the require- 
ments for variables X are given in terms of 
+linear functionals /li E(I)* =(m) (i = 1,2, . . , k), 
for example, as (i) equalities n,(X) = ci or (i’) 
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inequalities &(X)<C~, and (ii) xi>0 (Vj). The 
space (I) is supplied with the tweak topol- 
ogy as the conjugate space of (cg) = {X = 

{xj) I lim,,, xj=O}. Let iy be the set of ah X 
satisfying (i) (or (i’)) and (ii). Let J.(X) be a 
tweakly Upper semicontinuous functional, 
and suppose that the n,(x) are +weakly lower 
semicontinuous, 3 # @, and n(X) is Upper 

bounded. Then the maximal value of Â(X) is 
attained at an extreme point of 5, and further- 
more, if the space is completely regular, then 
the solution is unique. If 3 is bounded, it is 
the convex hull of its extreme points, i.e., the 
smallest closed convex set containing its ex- 
treme points. By applying the theory in this 
section to the family of functions that cari be 

expressed as ,f(x) = &E, aj<pj(x) in terms of a 
given system of functions <pi(x) (j= 1,2,. . ) on 
R, S. N. Bernshteïn’s approximation theory of 

function systems, the theory of absolutely 
monotonie functions, and several inequalities 
in the theory of functions of a complex vari- 
able cari be treated in a unified fashion. If 
the theory is further extended to the case of 
ttïnitely additive measures defined by means of 
linear functionals on the Banach space of 
bounded functions, we may treat the extremal 

problems of linear functionals on the func- 
tion space of aIl ,f‘(x) that cari be expressed as 

.f‘(x)=.fsK( x,s p s , dn apply it to obtain the Id ( 1 ’ d 
interpolation formula of nonnegative +har- 

monic functions, results of Carathéodory and 
Fejér on its Fourier coefficients, an analog of 
Harnack’s theorem for the +heat conduction 
equation, and SO on. 

The extension of linear programming theory 
to linear topological spaces is due to L. Hur- 

wicz [S]. Let YT’ be a linear space, UV, 2 be 
hnear topological spaces, PY, Pz the nonnega- 
tivity cones of 9, 3, respectively, which are 
closed convex cones containing inner points, 
and D a convex set in 3’. We assume that F 
and A are linear mappings from D into 3 and 

3, ?Y = R, 3 is +locally convex, and Px, Pi! are 
closed convex cones in or’ and 3, respectively, 
and we consider the following. 

Problem L: Maximize F(X)= X*(X) under 
thecondition G(X)=A(X)-B>O, X20, 
BEL??-. 

Put @(X,Z*)= X*(X)+Z*(A(X)-B). If we 
delïne a linear mapping T from w  = 9Y x R 

into Y=.9 x w  by T((X,p))=(A(X)-pB, 
(X,p)), where peR, then under the condition 

that the image under T* of the nonnegativity 
cane of Y/‘* is a +regularly convex set in w*, 
X0 is a solution of problem L if and only if 

there exists a Z,*E~‘* such that (X,,Zt) is a 
nonnegative saddle point of @. 

Under conditions expressed in simpler 
terms, Isii [6] proved the coincidence of the 
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supremum of the objective function and 
inf,, supXFD of the tlagrangian form, gave 
conditions for the supremum and the intïmum 

to be attained, and developed a theory that 
generalizes the Chebyshev inequality and the 

+Neyman-Pearson fundamental lemma for 
testing statistical hypotheses. 

E. History 

The theory of linear programming is closely 

related to the theory of convex cones, convex 
polyhedra, and systems of linear inequalities. 
Concerning tpolyhedral convex cones, tconvex 
polyhedra in R”, and the algebraic theory of 

systems of linear inequalities, we have classical 
results due to P. Gordon (1873) J. Farkas [2], 
E. Stiemke [13], H. Weyl [15], etc., and a later 
refïnement due to A. W. Tucker [ 10, paper 11. 

The application of linear systems to eco- 
nomics was made possible through the works 
of J. von Neumann, especially his tgame the- 
ory and balanced linear growth mode1 [14]. 
These and the interindustrial input-output 
analysis of W. Leontief [l l] led to the works 
assembled in 1951 by T. C. Koopmans and 

others [9]. Concerning practical computa- 
tion and applications to industry, there are 
isolated and long-neglected works by L. V. 

Kantorovich [8]; however, the main part 
of the method was developed in the United 
States, especially after the discovery of the 
simplex method by G. B. Dantzig [l] and his 
followers. 

Linear programming has become one of the 
most important techniques in operations re- 
search, and, following upon the development 
of computers, has found wide application to 

practical problems. Most contemporary large- 
scale computers are equipped with programs 
to solve linear systems problems. 
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256 (111.8) 
Linear Spaces 

A. Definition 

Suppose that we are given a set L and a tfield 
K satisfying the following two requirements: (i) 

Given an arbitrary pair (a, b) of elements in L, 
there exists a unique element a + b (called the 
sum of a, b) in L; (ii) given an arbitrary element 
c( in K and an arbitrary element a in L, there 
exists a unique element CM (called the scalar 
multiple of a by E) in L. The set L is called a 
linear space over K (or vector space over K) if 

the following eight conditions are satistïed: (i) 
(a + b) + c = a + (b + c); (ii) there exists an ele- 
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ment OE L, called the zero element of L, such 
that u+O=O+u=u for ah aEL; (iii) For any 

a~ L, there exists an element x = -a EL satisfy- 
ing a+x=x+u=0; (iv) u+b=b+a; (v) a(u+ 

b)=au+ab; (vi) (a/l)u=a(flu); (vii) (~+B)U= 

aa + bu; (viii) lu = a (where 1 is the +unity 
element of K). An element of K is called a 
scalar, and an element of L is called a vector. 
K is called the fïeld of scalars (basic fïeld or 
ground fïeld) of the linear space L. 

In the definition of linear spaces, K cari be 

noncommutative. L is also called a left linear 
space over K since the scalars act on L from 
the left (a +au, u E L, a E K). A right linear space 
is similarly detïned. Actually, a left (right) 

linear space is a unitary left (right) K-module. 
If K is commutative, it is not necessary to 
specify left or right, since we cari identify au 

and ucc. In this article we consider only linear 
spaces over commutative fïelds. A similar 
theory cari be established for linear spaces 
over noncommutative fields (- 277 Modules). 

If K is the tïeld of real numbers R or the 
lïeld of complex numbers C, a linear space 
over K is called a real linear space or complex 

linear space, respectively. In the following 
discussion, we fix a fïeld K, and by a linear 

space we mean a linear space over K. 

Examples. (1) Geometric vectors: In a +Eu- 
clidean space or, more generally, an +affrne 
space, the set of vectors f(‘Q associated with 
points P, Q in the space forms a linear space. 

(2) n-tuples in K: K” denotes the set of a11 
sequences (a r, , z,) of n elements in a tïeld 
K. Detïning two operations by (a,, . ,a,)+ 

(B1,...,~~)=(al+8,,...,a,+~~),‘(a1,...,a,)= 
(Aa,,..., Aa,) (3, E K), the set K” forms a linear 
space over K. An element of K” is called an II- 
tuple in K, and zi is called the ith component of 

(xi, , a,,). In general, the inner product of a = 

(a r ,..., a,),b=(& ,..., /$,)isdefïnedby(u,b)= 
Cy=, aipi. However, when K =C (complex 
number field), we usually detïne (a, b) to be 

CC1 %i/li. 
(3) Sequences in K: Al1 intïnite sequences in 

a field K form a linear space over K under the 
operations defined in example (2). 

(4) K-valued functions: Given a nonempty 
set I and a field K, let K’ be the set of a11 K- 

valued functions detïned on I. Detïning two 

operations by (f+g)(x)=f(x)+g(x), (I”f‘)(x) 
=A~(X) (xEI,AEK), the set K’ forms a linear 

space over K. In particular, if we put I= 
{ 1, , ri}, then the space K’ cari be identifïed 
with the space of n-tuples given in example (2) 
and if we put I= N (natural numbers), then we 
obtain the space given in example (3). Let K be 

the held R of real numbers and 1 an interval in 

R. The set C(I) of ah continuous functions on 
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1, the set D(I) of a11 differentiable functions on 
1, and the set A(I) of a11 treal analytic func- 
tions on 1 are ah linear spaces contained in the 

space R’. 

(5) Polynomials in K: K [X, , . , X,,] denotes 
the set of a11 polynomials of n variables with 
coefficients in a tïeld K. This forms a linear 
space under the usual operations. 

B. Linear Mappings 

Let L, A4 be linear spaces over a tïeld K. A 
mapping <p from L to M is called a linear map- 

ping or linear operator if cp satisfïes the follow- 
ing two conditions; (i) cp(u + b) = <p(u) + p(b); 

and (ii) <p(k) = A<~(U) (a, b E L, 1” E K). Namely, 
a linear mapping is a K-homomorphism be- 

tween K-modules (- 277 Modules). Regard- 
ing K as a linear space, a linear mapping 
L + K is called a linear form. A linear mapping 

from L to L is called a linear transformation 
of L. The identity mapping of L is a linear 

transformation. Given hnear spaces L, M, N, 
and linear mappings cp : L +M and $ : M+N, 

the composite r/j o <p : L +N is also a linear 
mapping. If a hnear mapping <p : L --) M is 
tbijective, then the inverse mapping <p-i :M+ 

L is also a linear mapping. Such a mapping 
<p is called an isomorphism, and we Write 
L r M if there exists an isomorphism L -> M. A 
linear transformation L +L is called regular 
(or nonsingular) if it is an isomorphism. 

Examples. (1) Let L be the linear space formed 

by a11 geometric vectors in a Euclidean space 
(affine space) E. Then a tmotion (taMine trans- 
formation) of E induces a linear transforma- 
tion L +L. 

(2) Let (a,) be an m x II +matrix in K. As- 
signing (ni, , q,) to (t,, , &J, where ni = 

Zj”=i ai,tj (1 d i < m), we have a linear map- 
ping K”+ K”. 

(3) Assigning the tderivativef’ to a real- 
valued differentiable function f on an interval 
1, we have a linear mapping D(+R’. 

C. Linear Combinations 

Let L be a linear space over a fïeld K. An 

element of L of the form a,u, + . ..+a.u, 

(a, E K , ai E L) is called a linear combination of 
a,, , a,. A sequence ulr , a, of elements in L 
is called linearly dependent if there exists a 

sequencea,,..., a, of elements in K such that 
not ah the ai are equal to 0 and a1 u, + + 

a,u, = 0. A sequence of elements in L is called 
linearly independent if it is not linearly depen- 
dent. Suppose that there exists a linearly in- 

dependent sequence of n elements in a linear 



256 D 
Linear Spaces 

space L, and no sequence of n + 1 elements in 

L is hnearly independent. Then n is called the 
dimension of L and is denoted by dim L. If 

there exists such a number n, L is said to be 
tïnite-dimensional. Otherwise, L is said to be 

infinite-dimensional. In an infinite-dimensional 
linear space, there exist linearly independent 
sequences of elements having arbitrary length. 
The linear space K” of n-tuples in K is of di- 
mension n. 

A sequence (ai, , a,,) of elements in a linear 
space L is called a basis if every element a of L 
is uniquely written in the form a = tli a, + + 

a,,~, (C(~E K, i = 1, , n). This means that the 
linear mapping K”+L assigning u1 a, + + 

cc,,a,,~L to (a,, ,E,,)E K” is bijective and 
hence an isomorphism. The condition that 
(a1 , , an) is a basis of L is equivalent to any 
two of the following three conditions: (i) 
(al, , a,) is linearly independent; (ii) every ele- 
ment of L is a linear combination of u,, , a,; 

(iii) L is of dimension n. It follows that the 
length n of a basis (al, , a,) is equal to the 
dimension and hence is independent of the 
choice of basis. In the expression a = C miai, cx, 

is called the ith component (or ith coordinate) of 

the element a relative to the basis (a,, , a,). 

D. Spaces of Linear Mappings (Finite- 
Dimensional Case) 

Let L, M, and N be finite-dimensional linear 

spaces over a fïeld K. The set Hom,(L, M) of 
a11 linear mappings L+M is a linear space 
under the operations defïned by (cp + <p’)(a) = 

<p(a)+<p’(a), (icp)(a)=hp(a) (EL, AEK). 

Let(a, ,..., al),(bl ,..., b,)bebasesofL,M, 
respectively. Then any linear mapping <p: L * 

M cari be represented by an m x 1 matrix 
(a,) determined by <p(aj) = CT, b,x, (1 <j < l). 
This assignment q-(x,) gives an isomorphism 
from the linear space Hom,(L, M) to the 
linear space of all m x 1 matrices (- 269 Ma- 
trices). In addition, let (c,, , c,) be a basis of 
N, and let the y1 x m matrix (&) represent a 

linear mapping $: M-N. Then the composite 
mapping $ o <p :L+ N is represented by the 
product (~,J(x~~) of the matrices (&) and (a,). 

The set of a11 linear transformations of a linear 
space N of dimension n forms an tassociative 

algebra over K which is isomorphic to the 
+total matrix algebra M,(K) of degree n under 
the correspondence <P+(CC,). Its tinvertible 
elements are regular linear transformations, 
and they form a group which is denoted by 
G,!,(N) and called the tgeneral linear group on 

N. This corresponds to the group GL(n, K) 

formed by a11 n x n tinvertible matrices under 
the isomorphism <P*(CC,). 
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E. Infinite-Dimensional Linear Spaces 

In this section, we consider only the algebraic 
aspects of infinite-dimensional linear spaces 

(for the topological aspects - 422 Topological 
Abelian Groups L; 424 Topological Linear 

SpaW. Let {a,),,, be a family of elements in 
a linear space L. A linear combination of the 
family is an element of L in the form &A cc,a, 

(aig K, where cc,=0 except for a finite number 
of i). The family {a,},,, is called linearly in- 

dependent if no linear combination CI,EA ~,a, 

is equal to 0 unless all the coefficients c(>, are 
equal to 0. The family {a,},,, is called a hasis 

of L if every element of L is uniquely written in 
the form CIE,,rA-aL. These notions are gen- 
eralizations of those defined for Iïnite A. In 
general, A is an intïnite set. Any linear space 
L has a basis (- 34 Axiom of Choice and 
Equivalents C). The cardinality of a basis is 

determined by L. Two linear spaces are iso- 
morphic if and only if their bases have the 

same cardinality. 

F. Suhspaces and Quotient Spaces 

Let L be a linear space over a field K. A non- 
empty subset N of L forms a linear space over 

K under the induced operations if the follow- 
ing two conditions hold: (i) a, be N implies 

a+b~N;and(ii)J~EK,a~Nimply~a~N.In 
this case, the subset N is called a linear suh- 

space of L (or simply subspace of L). The 
canonical mapping 40 : N + L detïned by <p(a) 

= u (a E N) is an injective linear mapping. 

Let S be a nonempty subset of L. The set of 
all linear combinations of elements in S forms 
the smallest subspace of L containing S; this 
space is called the subspace generated (or 
spanned) by S. For subspaces N, N’ of L, the 
intersection N n N’ and the sum N + N’ = {a + 

a’ 1 a EN, a’E N’} are both subspaces. Similar 
propositions hold for an arbitrary number of 
subspaces. If N, N’ are of tïnite dimension, the 
equality dim N + dim N’ = dim(N n N’) + 

dim(N + N’) holds. We say that L is decom- 
posed into the direct sum of N, N’ if every 
element of L cari be uniquely written in the 

form a + a’ (a EN, a’ E N’). This is the case if 
and only if L is generated by N and N’ and 
N f’ N’= (0). In this case, N’ is called a com- 
plementary subspace of N. Any subspace has a 
complementary subspace. For direct products 
and sums of linear spaces - 277 Modules F. 

An equivalence relation R in a linear space 
L is said to be compatible with the operations 
in L if the following two conditions hold: (i) 
R(a, a’) and R(b, b’) imply R(a + b, a’ + b’); 

(ii) R(a, a’) implies R(l.a, na’) ().E K). Then 

the tquotient set L/R, namely, the set of all 
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equivalence classes, forms a linear space over 
K under the induced operations; this is called 
the quotient linear space (or simply quotient 

space) of L with respect to R. The canonical 
mapping q : L + L/R, given by a E <p(a) (a EL), is 
a surjective linear mapping. The equivalence 
class N containing 0 forms a subspace of L, 
and the equivalence class containing a EL is 
thecoseta+N={a+bJbEN}. Wehave 
R(u, a’) if and only if a-u’ EN. Conversely, for 

any subspace N, there exists an equivalence 
relation R compatible with the operations 

determined by R(u, a’) if and only if a-U’E N. 
The quotient linear space L/R thus obtained is 
denoted by LIN and called the quotient (linear) 
space of L by N. If LIN is finite-dimensional, 
its dimension is called the codimension of N 
relative to L and is denoted by codim N. 

Let cp: L+M be a linear mapping of linear 
spaces. Its image <p(L) is a subspace of M, and 
the kernel N = {u E L 1 <p(u) = 0) is a subspace of 
L. The mapping <p induces an isomorphism 

<p : L/N + <p(L) (- 277 Modules E). If L is finite- 
dimensional, dim L - dim N = dim <p(L). The 

dimension of the image of q is called the rank 
of cp, and the dimension of the kernel of <p is 
called the nullity of <p. The rank and nullity of 
an m x n matrix (G$ (- 269 Matrices) are the 
respective rank and nullity of the linear map- 
ping K”+K” represented by the matrix (xij) 
(- Section B, example (2)). 

G. Dual Spaces 

Let L be a linear space over a field K. The set 
Hom,(L, K) of a11 linear forms on L is a linear 

space, denoted by L* and called the dual 
(linear) space of L. The space L* is the +dual 
module of L as a K-module (- 277 Modules). 
For elements u of L and a* of L*, we denote 
the element u*(u) by (a, a*) and cal1 it the 
inner product of a and a*. For a linear map- 
ping <p : L-t M, we detïne a linear mapping 
‘cp:M*+L* by (‘q)(b*)=b*o<p (b*EM*). The 
mapping ‘<p is called the dual mapping (trans- 

posed mapping or transpose) of <p, and is deter- 
mined by the relation (a,‘cp(b*)) = (q(u), b*) 
(~EL, b*eM*). We have’(<p,+~o,)=‘<p,+‘<p,, 
‘($o<p)=‘<~o’$, ‘l,= l,*. If <p is tsurjective, 

then ‘v is tinjective, and if cp is injective, then 
‘<p is surjective. If cp is bijective, then ‘v is also 
bijective. The rank of tu coincides with the 
rank of <p if the rank of <p is finite. For an 
isomorphism <p: L-t M, the inverse mapping 
%/Y = <i : L* + M * of tu is called the contragre- 

dient of v. We have (IJ o cp)“= $0 <p. 
Given a subspace N of a linear space L, the 

subspace {a* E L* ( (a, a*) = 0 (a~ N)} of L* is 

denoted by N’ and is called the subspace (of 
L*) orthogonal to N. Then we have the canon- 
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ical isomorphisms (LIN)* g NI, N* z L*IN’. 
Similarly, given a subspace N’ of L*, we obtain 
the subspace N” of L orthogonal to N’: N” 
=ju~LI(u,u*)=O (~*EN’)}. Thus we 
have a one-to-one correspondence between the 
finite-codimensional subspaces of L and the 
finite-dimensional subspaces of L* by assign- 

ing N’ to N and N” to N’. The codimension 
of N is equal to the dimension of NI. If L is 

fïnite-dimensional, we have a canonical iso- 
morphism L g (L*)* and a one-to-one corre- 
spondence N+N’= N’ between the set {N} of 

a11 subspaces of L and the set {N’} of a11 sub- 
spaces of L*. These properties of correspon- 
dence between the subspaces of L and L* are 
called duality properties of the linear space. 

Let (e,, , e,) be a basis of a linear space L. 
Then the system of elements (e:, , en) in L* 
defïned by the relation (ej,e*) =0 (ifj), 
(e,, ef) = 1 forms a basis of L*, called the dual 
basis of (e, , , e,). Thus a finite-dimensional 

linear space L cari be identified with its dual 
space utilizing the isomorphism given by as- 
signing each element of the dual basis to the 

corresponding element of the basis in a natural 
manner. 

H. Multilinear Mappings 

Let L, M, N be linear spaces over a fïeld K 

and f be a mapping from the Cartesian prod- 
uct M x N to L. Suppose that for any fïxed 

bE N, the mapping M+L assigning f’(x, b)E L 
to XE M is linear, and for any fïxed UE M, the 

mapping N -tL assigningf(u, y)~ L to y~ N is 
also linear. Then fis called a bilinear mapping 
from M x N to L. The set of all bilinear map- 
pings from M x N to L forms a linear space 
under the operations (f+~)(x,y)=f(x,y)+ 

~I(X, y), (if) (x, y) = ifk Y) GE K 1; this vace 
is denoted by Y(M, N; L). In general, for linear 
spaces M,, , M,, a mappingf: M, x x M,, 
+Lis called a multilinear mapping if it is linear 
in each variable. The set of all multilinear 

mappings from M, x x M, to L forms a 
hnear space, denoted by X(M,, . , Mn; L). If 
L = K, a bilinear mapping and a multilinear 
mapping are called a bilinear form and multi- 
linear form, respectively. 

Suppose, in particular, that M, = = M, = 
M. A multilinear mapping f: M, x x Mn+ 
L is called symmetric if f(x,,,,, , x,(,J = 

f(x , , . ,x,,) (xi EM) for any permutation o 
of { 1, , n}. Also, f is called alternating if 
f(xl ,..., xi ,..., x, ,..., x,)=Oforxi=xj,i#j.In 
this case, f(xbcl), , x,(,J=sgno. f(x,, ,x,,) 

for any permutation 0 (sgn 0 is + 1 if 0 is +even 
and -1 if (T is todd). On the other hand, ,f is 

called skew-symmetric (or antisymmetric) if it 
satisfies this equaiity. Therefore, if the charac- 
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teristic of the field K is different from 2, a 
skew-symmetric mapping is alternating. 

Let M, N be linear spaces over a tïeld K and 
@ be a bilinear form on M x N. The mappings 

rl,:N+M*,s,:M~N*detïnedby@(x,y)= 

Mdy))(x) = (~X))(Y) (XE M, YE NI are hear 
mappings. If M, N are hnite-dimension& 
then d, and sa have the same rank, called 

therankof@.Let(x, ,..., x,),(yi ,..., y,)be 
bases of M, N and (XT, . , xm), (y:, , y:) 
be their dual bases. Then we have d,(yj) = 

C:l xf@(xi, Yj)> sO(xi) = Xy=, @(xi, .Yj)Yj*. 
The matrix (@(xi, yj)) is called the matrix of 
a bilinear form @ relative to the given bases, 
and its rank coincides with the rank of @. If 
d,, sQ are both injective, they are also bijec- 
tive, and in this case U, is said to be nondegen- 
erate. Then each of d, and sO cari be regarded 
as the transpose of the other, and M, N cari 
be identitïed with N*, M*, respectively. In 

particular, if @ is a nondegenerate bilinear 
form on M x M, we have an isomorphism 
from M to its dual space M*; identifying M 
with M* by this isomorphism, M is said to be 
self-dual. 

Let M be a linear space over a fïeld K. A 
mapping Q : M + K is called a quadratic form 
on M if the following two conditions hold: (i) 
Q(ax)=a2Q(x) (IXEK, ~EM); and (ii) the map- 
ping @:M x M +K delïned by @(x, y) = Q(x + y) 
-Q(x) - Q(y) (x, y~ M) is a bilinear form on 
M x M. In this case, @ is called the bilinear 

form associated witb the quadratic form Q, and 
it cari be shown to be symmetric. We have 
@(x,x)=2Q(x) (~EM) and Q(x)=(~/~)@(x,x) if 
the characteristic of K # 2. In general, for any 
bilinear form f: M x M -+ K, the mapping Q : M 
+K defïned by Q(x) =,f(x, x) is a quadratic 
form. If (x,, , x,) is a basis of M, a quadratic 
form Q is expressed as follows: Q(& &xi) 

=c It,,)~ij<i<j (the sum over ah unordered 
pairs {i, j}), where aii = Q(xJ, mrj = @(xi, xj) 

(i#j) (- 348 Quadratic Forms). A metric 
vector space is a linear space M supplied with 
a nondegenerate quadratic form Q on M, and 
is denoted by (M, Q). The bilinear form <D 
associated with Q gives an inner product @(x, y) 

(x>YEM). 

1. Tensor Products 

Let M, N be hnear spaces over a fïeld K. The 
tensor product M Q N of M, N is defïned as 
follows and cari be used to “linearize” bilinear 

mappings from M x N to any hnear space. Let 
F be the linear space generated by M x N and 

R be the subspace of F generated by a11 ele- 
ments of the forms (x + x’, y) ~ (x, y) - (x’, y), 

(x, Y + Y’) -CG Y) -(x3 Y’), 6% Y) - 0, Y), CG KY) 
-c((x,y) (x,x’~M, y,y’~N, c(EK). Then the 
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quotient space F/R is denoted by M 0 N, 
and the canonical projection F + M @ N is de- 
noted by $. Given an element (x, y)~ M x N, 
we denote the image $((x, y)) by x @ y. The 
bilinear mapping M x N + M @ N assigning 
x 0 y to (x, y) is called the canonical bilinear 
mapping. We have, by definition, (x+x’) @ y 

=xQy+x’Qy,xQ(y+y’)=xQy+xQy’, 
(a) Q y=a(x Q y)=xQ(ay) (C(E K). TO em- 
phasize the basic field K, we sometimes Write 

M OK N instead of M @ N. 
The tensor product cari be characterized by 

the property that for any linear space L and 
any bilinear mapping f: M x N +L, there 
exists a unique linear mapping <p : M @ N +L 
satisfying f(x, y) = V(X 0 y). Thus assigning 
the bihnear mapping f: M x N + L delïned 
by .f(x, y) = V(X 0 y) to a linear mapping 
<p: M @ N-L, we obtain an isomorphism 
Hom(M @ N, L)YZ T(M, N; L). Every element 

of M 0 N cari be expressed as a fmite sum of 
elements of the form x @y (XE M, y6 N). If 
{x~}~~,, {Y~}~,~ are bases of M, N, respectively, 

then the family {xi 0 yj}it,,jEJ forms a basis of 
M 0 N. Hence if M and N are of tïnite dimen- 
sion, dim(M @ N) = dim M dim N. 

Let M, , M2, be hnear spaces over a field 
K. We have a unique isomorphism M, @ M2 
+M*@M1 thatassignsx2@x, tox,@x, 
(xie Mi). We also have a unique isomorphism 
(M,@M,)@M,+M,@(M,@M,)thatas- 

signsx,@(x,@x,)to(x,@x,)@x,(x,~M,); 
hence we cari identify (M, 0 MZ) @ M, and 
Ml 0 (M2 0 M3), and we denote them sim- 
ply by M, @ M2 0 M3. In general, assigning 
x,O...@x,to(x, ,..., x,),weobtainthe 
canonical multilinear mapping M, x x M, 
+Ml 0 . @ M,. As before, given any linear 
space L, we have the natural isomorphism 
Hom(M,@...@M,,,L)EbY(M, ,..., M”;L). 
Conversely, given linear spaces M,, . . , M,, the 
space M, @ . .@ Mn cari be characterized as a 

linear space N with a given multilinear map- 
ping $:Ml x x M,+N such that (i) N is 
generated by the image $(Ml x x M,); and 

(ii) for any multilinear mapping S: M, x x 
M”+L, there exists a unique hnear mapping 

f” : N +L satisfying f=f’o ti. The tensor prod- 
uct M, 0 . @ Mn is sometimes written as 
@y=i Mi, and an element xi @ 0x,, is writ- 
ten as OYE1 xi. 

Given hnear mappings f;: Mi-+ Mi (1 t i < n), 
there exists a unique linear mappingf: M, 
@ @ Mn-M’, @ @ Mn satisfyingf(x, 
@ @ x,J =f,(xi) @ @,f,(x,); we denote 

the mapping f by fi 0 0 fn or @$i ,I; and 
cal1 it the tensor product of the 1; (1~ i < n). 

The assignment (fi, ,f,)-,fi 0 @f, 
gives an isomorphism @y+ Hom(M,, Mi)+ 
Hom( @;=i Mi, @;=i Mi) if the Mi are fïnite- 
dimensional. If in particular Ml = . . . = Mi = 
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K, we have an isomorphism @y=, MT+ 

(@Cr M,)* under the identification @;=i MI = 
K given by the assignment x; Q Q xi-.+ 

x’, . . xi. Explicitly, the isomorphism f: 
@y=i MT-(@f=i Mi)* is determined by 

f(~~~lX*)(~~~lXi)=n~~l(Xi,X*)(X~EM~, 
XiEMi). 

J. Tensors 

Let E(“’ (1 <Â. < k) be linear spaces over a 
tïeld K. If E(l)= . . . =lCk)=E, then @i=, E(“) 
is written @ kE and called the tensor space 
of degree k of E (0 ‘E denotes K). Also, 
(OPE) Q(RqE*) is written T,P(E), where E* 

is the dual space of E. We have TO(E) = OPE, 
T,‘(E)= @ qE*, and T:(E)=K. TqP(E) is called 

the tensor space of type (p, 4) of E, and each of 
its elements is called a tensor of type (p, q). In 
particular, a tensor of type (p, 0) is called a 

contravariant tensor of degree p, and a tensor 
of type (0, q) is called a covariant tensor of 
degree q. A tensor of type (0,O) is a scalar. An 
element of TO1 (E) = E is called a contravariant 
vector, and an element of TP(E) = E* is called 
a covariant vector. If p # 0, q # 0, a tensor of 
type (p, q) is called a mixed tensor. 

Let (e,, . . ..e.) be a basis of E and (f’, 
,f”) be the basis of E* dual to (e,, . , e,). 

Then the tensors cil Q . . . Q eip Qfjl Q Qfjg 

(i,,jp= 1 ,...,n;1=1 ,...,p;p=l , . , q) form 
a basis of T,P(E). Therefore any tensor of 

type (p, q) cari be written uniquely in the form 

t=C5~::::%ei,Q...0ei,Qfj10...Qfjp. 

Also, tj::::k is called the component of t relative 
to the basis (e,, , e,), the index i, is called a 
contravariant index, and the index j, is called a 
covariant index. 

Let (ë,, , ë,,) be another basis of E and 
(f’, ,f”) be its dual basis. Suppose that we 
have 

ëi=,$ aiej, fi= C fljfj. 
j=l 

Then we have 

;, P;E;=I9 I 

and the transformation formula 

where the $‘::t p are the components of t rela- 
tive to (er , , e,) and the F;::::i are the compo- 
nents of t relative to (ëi, . . . , ë,). 

In the tensor calculus, an index appearing 
after the symbol C is called a dummy index if 

it appears in both the Upper and the lower 
positions. For example, in the expression 

C:=i tiyi, the index i is a dummy. As a conven- 
tion, we sometimes omit the symbol Cy=r for a 
dummy index i; for example, by (;y’ we mean 

the sum C:=i ciy’. This convention is called 
Einstein% convention. Using it, we Write the 
previous transformation formula as 

Q:::k= p;;. . .p~uf:. .+<;,‘;;;;Y 

We have a nondegenerate bilinear form ù, 

on 7yp(E) x T,(E) determined by 

=*Q <xi>xl> fi (Yj>Yf). 
j=l 

Thus the space T,P(E) cari be identified with 
the dual space of T;(E), and vice versa (- 
Section H). In this identification, the basis 
(ezl Q Q eiP Q fjl Q . Q fjq) of T,P(E) and 

the basis (ej, Q Q ej, Q fil Q Q f ‘p) 

of T,(E) are dual to each other. In addition, 
combining the natural isomorphism T;(E)* g 

Y(llqE, nPE*; K) with the duality T;(E)* = 
T,P(E), we have a natural isomorphism v(E) 
-P’(nqE, nPE*; K). Explicitly, identifying an 
element t E Tqp(E) with the multilinear form 
II”E x llpE* + K corresponding to it under 
the natural isomorphism, we have 

a,, . ..> xq>y:, . . . . yp)=ij::::~5~1...5~?i:...ul~~, 

where {<i} is the component of xI E E = TO(E), 
{PI~} is the component of y: E E* = TF(E), and 

{$:::i} is the component of tu T,P(E). By the 
natural isomorphisms T~(E)E sP(npE*, K), 
TP(E) = =Y(IlpE, K), a contravariant tensor of 
degree p and a covariant tensor of degree p 
cari be identilïed with a multilinear p-form on 
E* and on E, respectively. 

K. Tensor Algebras 

There exists a unique bilinear mapping T,P(E) 

x Tsr(E)+T,P,+,‘(E) which assigns the element 
x,Q...Qx,Qy,Q...Qy,Qx:Q...QxqQ 
y:Q...Qy,*tothepair(x,Q...Qx,Qx:Q 

Qxy,Y, Q Qy,QyTQ . Q y:); we 
denote the element assigned to the latter by 
tQu,where t=x,Q...Qx,Qx:Q...Qx,*, 

u=y,Q...Qy,Qy:Q...QyS,andcallit 
the product of t and u. If the components of t, 

u, t Q u are 

irj::::$ {v::.Y;fy~ K;:::bq::)? 

then we have 

p;~;j:~:~ = ~j;~;;j4q;;;,y& 

Let T(E) be the direct sum of T,P(E) (p, q 
=O, 1,2, ). Then T(E) is an associative 
algebra over K whose product is a natural 
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extension of the product 0. We cal1 T(E) the 
tensor algebra on E. The direct sum of T&‘(E) 
(p = 0, 1,2, . ) forms a subalgebra of T(E), also 
called the (contravariant) tensor algebra. 

L. Contractions 

The contraction of T+!‘(E) relative to the kth 
contravariant index and the Ith covariant 

index is by definition the linear mapping 
Cl : L$!‘(E)+ TA’ (E) determined by assigning 

(X~,X~)X1~...~X~~lOX~+lO...OXpOX~ 

@ .,.0x;-, @xf+,... oxq to XI 0 0x,@ 
x7 @ . @ x4, where (x,., x:) is the inner 
product of xk, xi. For a tensor t of type (p, q), 
the tensor C:(t) of type (p- 1, q - 1) is called 
the contracted tensor of t. If the components 

of t are rj::::k, the components of Cl(t) are 
given by 

M. Tensor Representations 

For a linear mapping f: E+F, the tensor 

productf@...@f:T&‘(E)= OPE-BPF 
= T$(F) is denoted by f‘@. The f P (p = 
0, 1,2, . ) give an algebra homomorphism 

CT=, T&‘(E)+C~=, TO(F). Next, let f be an 
isomorphism and f='f m1 be its contragre- 

dient. Then fq denotes the tensor product 
&L@f:T,0(E)=@4E*@qF*=~o(F), 

and fy the tensor product f p of,: T;(E) 
+ T,P(F). The mapping fqp is an isomorphism, 

and the system { ,fq!‘} (p, q = 0, 1,2, ) gives rise 
to an algebra isomorphism T(E)+T(F). In 
particular, if ,f is a nonsingular linear trans- 

formation of E, then ft is a nonsingular linear 
transformation of the linear space TqP(E), and 
the assignment f -fqp gives a group homo- 
morphism GL(E)+GL(T,P(E)); this homomor- 
phism is called a tensor representation of the 
group CL(E). 

N. Symmetric and Alternating Tensors 

A contravariant tensor of degree p is called 

symmetric (alternating) if the corresponding 
multilinear p-form, under the natural isomor- 
phism TO(E) E Y(npE*, K), is symmetric 

(alternating). A covariant tensor is also called 
symmetric (alternating) if the corresponding 
multilinear form is symmetric (alternating). A 
skew-symmetric (or antisymmetric) tensor is 
defïned similarly. We reformulate these detï- 
nitions under the assumption that the field K 
is not of characteristic 2. Let G, be the group 

of a11 permutations of 1, . , p (the tsymmetric 
group of degree p). For any (TE 6,,, we have 
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a unique linear transformation T~(E)+T~(E) 
assigningx,-,(,,@ @x,~,(~) to x1 @ 
0 xP. This transformation is nonsingular 
and is also denoted by o. Similarly, we have 

a unique nonsingular linear transformation 
of T,‘(E), also denoted by (T. An element ré 
T$‘(E) (or E T,‘(E)) is symmetric if and only 
if ot = t for a11 go G,, while t is alternating if 
and only if at = (sgn cr)t for a11 on 6,. Let the 
<il...ip (or the &+,) be the components of t. 
Then t is symmetric (alternating) if and only if 
the components are symmetric (alternating) 
relative to permutations of the indices i, , , i,. 

The linear transformation S,, = CatB, o of 
TO(E) or TP’(E) is called the symmetrizer, and 
A, = &,$sgn a)a is called the alternizer. For 

any t, SPt 1s a symmetric tensor, and A,t is an 
alternating tensor. 

The subspace of TO(E) consisting of a11 

symmetric (or alternating) tensors is invar- 
iant under the transformation R: GL(E)-+ 

GL( T{(E)), the tensor representation where 
qQt)=R(cp)(t) for ~~EGL(E) and te T,(E). 

0. Exterior Product 

For simplicity, we assume that the basic field 

K is of characteristic 0. We denote by N, the 
kernel of the alternizer A,: T{(E)+ T’(E), 

namely, the subspace consisting of a11 t satisfy- 
ing A,t = 0, and by APE the quotient space 
Ti(E)/N,. The image of x, @ @x, (x~EE) 
under the natural mapping Tt(E)+APE is 
denoted by x, A.. A xP and is called the ex- 
terior product of x 1, . . , xP. The linear space 
APE is called the p-fold exterior power of E. 
We have 

XIA...A(Xi+X;)A...AXp 

=X,A...AXiA...AXp+X,A...AXjA...AX,, 

XIA...A(C(Xi)A...AXp 

=C((XIA...AXiA...AXp), EEK, 

and for every o E 6,, 

Xbcl>A...AX,cpj=(SgIl~)X, A...AXp. 

A,, induces a natural isomorphism APE z 
(UP, where ‘UP consists of a11 contravariant 
alternating tensors of degree p. Thus an ele- 
ment of APE cari be identifïed with a con- 
travariant alternating tensor of degree p. 

ThenwehaveA,(x,@...@x,)=x,~...~x,. 
Similarly, APE * is identified with the linear 
space consisting of a11 covariant alternating 
tensors of degree p. An element of APE is 
sometimes called a p-vector, and an element 
of ApE* is called a p-covector (- 90 Coordi- 
nates B). If (e,, . . . , e,) is a basis of E, then the 
cil A A eiP (i, < i, < < ip) fOrm a basis of 

APE, and any element of APE is written in 
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the form t= Ci, <.,,<, ipail...ipei, A . A e, or t 
=(l/p!)Ci !,“,, iPxil...‘pei, A . . . r\e,. In the latter 

form, clil...‘p is alternating relative to permuta- 
tions of ii, , i,, and it is the component of t. 

n 
The dimension of APE is equal to 

0 
, and 

~PE=Oifp>n.If(~‘,...,~“)isthedualbasis 
of(e,,..., e,), the inner product of an element t 
=Ci, < ,,_ (iPc&...i~ei, A . . . A eipE APE and an ele- 

ment s=Ei,<...<i, pi ,,,, i,fiu A fkAPE* 

is defined by 

(s, t) = c c&-~qli,...iD. 
i,<...<i, 

Thenwehave(x,~...nx,,y,~...~y,) 
= det( (xi, yj)), where (xi, yj) is the inner 
product of X~E E and yj~ E*. By this inner 
product, we cari identify ApE* with the dual 

space of APE. 
The tensor product OPE x @qE+@P+qE 

induces naturally a mapping @: BPE/N, x 

@)qE/Nq-+ @P’qE/Np+q. Using this bilinear 
mapping @:APE x AqE+APiqE, we define the 

exterior product t AS of an element tu APE and 
an element s E AqE by t AS = O(r, s). Then t A s is 

an element of A P+qE, and we have t A s = 

(-l)PqSAt,(XIA...AXp)A(Xp+lA...AXp+q)= 

X1 A...AXp+q. 

We denote by AE the direct sum of APE (p 

= 0, 1,2, . , n), and define the product of two 
elements x=C”pzOxP, y=xz,,,yp (x”,~~E~~E) 

by XA J’=~;+~=c, X~A yq. Then the product A 

satistïes the associative law. We cal1 AE the 
exterior algebra (or Grassmann algebra) of the 

linear space E. If E is of dimension n, AE is 
of dimension 2”. If (ei, . . , e,) is a basis of E 

relative to K, ljE is sometimes written as 

Me,, . . . . e,). The exterior algebra l\E* of the 
dual space E* is similarly delïned and cari be 
considered as the dual space of AE. 

P. Semilinear Mappings 

Let L be a linear space over a lïeld K and L’ 
be a linear space over a field K’. A pair (cp, p) 
consisting of a mapping cp :L + L’ and a map- 
ping p : K --) K’ is called a semilinear mapping if 
the following four conditions hold (for conve- 
nience here we Write the scalars to the right of 

the vectors): (i) <p(a + b) = <p(a) + cp(b); (ii) <p(aÂ) 

= &z)p(4; (iii) P(CC + PI = ~(4 + p(B); and (iv) 
p(ab)=p(a)p(fi) (a, ~EL, /1,cc,fl~ K). In this 
case, cp is sometimes said to be semilinear 

relative to p (- 277 Modules L). Conditions 
(iii) and (iv) mean that p is a fïeld homomor- 

phism. If K = K’ and p is the identity, then the 
semilinear mapping <p : L + L’ is a linear map- 

ping. If L = L’, K = K’ (and p is an automor- 

phism), q is called a semilinear transformation 
relative to p. 
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For semilinear mappings (cp, p): E+L’, K -+ 
K’ and (<p’,p’):L’+L”, K’*K”, where L” 
is a linear space over K”, the composite 

(40’ 0 <p, p’ 0 p) is also a semilinear mapping. If a 
basis (e,, , e,) for L over K and a basis 
(e;, . , eh,) for L’ over K’ are given, a semi- 
linear mapping(cp,p):L+L’, K~K’deter- 
mines a matrix (xJ by the relation <p(ej)= 
X:l, e$, (1 <j <n). Conversely, a homomor- 
phism p and an ri x n matrix A =(a,) deter- 
mine a semilinear mapping cp by this relation. 
Hence for fixed bases a semilinear mapping is 

represented by a pair (A, p), where A is an n’ 
x n matrix. If a semilinear mapping <p’ relative 
to p’ is represented by (A’, p’), the composite 

(cp’o~,p’op) is represented by (A’AP’,p’op), 
where AP’ is the matrix (p’(cr,)). 

Let cp: L-tL be a semilinear transformation 

relative to an automorphism p: K-K. Sup- 
pose that cp is represented by (A, p) relative to 
a basis (ei, , e,) for Land by (B, p) relative to 
another basis (fi, . . . ,f.). If we detïne a matrix 

P=(p,) by the relation h=X:=, eipij (1 <j<n), 
we have B = P-‘APP. Two pairs (A, p), (B, p) 

having the relation B = P-’ AP0 are said to be 
similar. 

Q. Sesquilinear Forms 

Let K be a fteld (not necessarily commutative) 
and J be its tantiautomorphism. For left linear 
spaces M, N over K, a mapping 0: M x N + K 
is called a (right) sesquilinear form relative to J 
if the following four conditions are satisfied: (i) 
@(x+x’, y)=@(~, y)+@(~‘, y); (ii) 0(x, y +y’) 
= Q(x, y) + @(x, y’); (iii) @(XX, y) = CC@(~, y); and 

(iv) @(x,ay)=@(x,y)~? (x,x’~M; y,y’~ N; 
C(E K). If J is the identity automorphism, 
then K is necessarily commutative and @ is a 
bilinear form (- Section H). As an example of 

K and J, we may take K as the fïeld of com- 
plex numbers and J as complex conjugation. 
In general, for a left linear space E over K, we 
denote by EJ the right linear space with the 
scalar multiplication xl=ÂJmLx (XE E, AEK). 
Then condition (iv) becomes (iv’) @(x, ycc) 
= Q(x, y)~; and if K is commutative, @ is a 
bilinear form on M x NJ. For a sesquilinear 
form @ on M x N, we have the linear map- 
pings dQ:NJ+M*, sO: MJm’+N* defined by 

the relation 0(x, y) = (x, d,(y)) = (y, s&)>~ 
(x E M, y E N ). If M, N are finite-dimensional, 

d,, sa have the same rank, which is called the 
rank of @. We assume that a11 linear spaces are 
fïnite-dimensional. 

Let(x, ,..., x,),(yi ,..., y,)bebasesofM,N 
and (x7, . . ,x2), (y:, . . . , y:) be their dual bases. 

Then we have d,( yj) = CE, X*~(xi, yj), so(xi) 
= &i yf@(xi, yj)-‘. The matrix (@(xi, yj)) 
is called the matrix of the sesquilinear form 
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@ relative to the given bases; its rank is equal 
to the rank of @. If d,, sQ are both injective 

(therefore bijective), @ is said to be nondegen- 
erate. Let @‘:M’ x N’-K be another sesqui- 
linear form relative to J. Then for any linear 
mapping u : M+M’, there exists a unique 
linear mapping u*: N’+N such that @‘(u(x), y’) 
= @(x, ~*(y’)) (x E M, y’~ N’); this is called the 
left-adjoint linear mapping of u. Similarly, 
for any linear mapping u : N + N’, there 
exists a unique linear mapping u* : M’%M 
such that a>‘(~‘, v(y)) = @(V*(X’), y) (X’E M’, 

y~ N); this is called the right-adjoint linear 
mapping of u. We have u* = d,’ o’u o d,., u* 
= sO’ o ‘Y o sO.. In particular, let u, u be isomor- 
phisms. Then we have a>(~, y) = @‘(u(x), u(y)) 
(x~M,y~N)ifandonlyifu~‘=u*,u~‘=u*. 

A sesquilinear form on M x M is called 
simply a sesquilinear form on M. Let J be an 
tinvolution (namely J = J -‘), and Write ÂJ = 

x (ne K). If condition (v) @(x,y)=@(y,x) 
(x, y~ M) holds, @ is called a Hermitian form 
on M. On the other hand, if the condition (v’) 
@(x, y) = -@(y, x) holds, @ is called an anti- 
Hermitian form (or skew-Hermitian form) on 

M. In particular, if J = 1 K, then a Hermitian 
form (anti-Hermitian form) is a symmetric 
bilinear form (antisymmetric bilinear form). A 
linear space M supplied with a nondegenerate 
Hermitian form Q, is called a Hermitian linear 
space, and @(x, y) is called the Hermitian inner 
product (or simply inner product) of x, y~ M. 
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A. General Remarks 

A lïeld k that is tcomplete with respect to a 
tdiscrete valuation is called a local field if its 
tïeld of residue classes is finite. (Real and com- 
plex number lïelds are sometimes also called 
local tïelds; these, however, are not considered 
in this article.) A local tïeld k is isomorphic 

either to the +completion with respect to a +p- 
adic valuation determined by a prime ideal p 

of a number tïeld of tïnite degree or to the field 
of tformal power series of one variable over a 

lïnite tïeld. In the former case, k is called a p- 
adic number field. We let o stand for the +Valu- 
ation ring of k, p stand for the +Valuation ideal 
of k, p stand for the tcharacteristic of the lïeld 
o/p of residue classes, and N(p) stand for the 
number of the elements of o/p. An tadditive 

valuation of k whose set of values coincides 
with the set of all rational integers, is denoted 
by ord 51 (c( E k); here we understand ord 0 = CO. 

The tnormal (multiplicative) valuation of k is 
delïned by 1~1 =(N(p))-“Id” (- 439 Valuations). 

B. Construction of Local Fields 

A p-adic number tïeld k is an extension of 
lïnite degree of the p-adic field Q,. If n = 
[k : Q,] = eJ where e is the tramitïcation in- 
dex of k/Q, and fis the trelative degree of 
k/Q,, (- Section D), then there exists one and 
only one lïeld F such that k 3 F 3 Q,, [k: F] = 

e, [F:Q,] =L and F/Q, is tunramified. The 
field K of residue classes of F is isomorphic to 
GF(pf), and F is uniquely determined by K by 
means of Witt vectors (- 449 Witt Vectors). 
Every residue class ( # 0) of oF/pF g K contains 
one and only one mth root of unity (m is a 
divisor of pf - l), and F is obtained by adjoin- 
ing to Q, a primitive (pf - 1)th root. Then k is 
a totally ramilied extension of F and is ob- 

tained by adjoining to F a root of an +Eisen- 
Stein polynomial (- 337 Polynomials F). 

C. The Topology of k 

Takingp”(m=0,1,2,...)asa+basefora 
neighborhood system of 0, k becomes a +lo- 
cally compact ttotally disconnected ttopolog- 
ical fïeld, and p” (m = 0, 1,2, . ) are compact 
subgroups of the additive group k. The multi- 
plicative group kx of nonzero elements of k is 

a locally compact +Abelian group, and the u(“’ 

={a~olsc~1(modp”)}(m=0,1,2,...)forma 
base for the neighborhood system of 1. The 
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tcharacter group in the sense of Pontryagin of 

the additive group k is isomorphic to k. This 
isomorphism is obtained by the following 

natural correspondence: For a p-adic fïeld k, 
denote by cp the composition of the natural 
mapping of Q, onto Q,/Z, (g Z[ l/p]/Z c 
Q/Z) and the ttrace Tr from k to Q,, and 
put XX(y)=exp(2rrfi cp(xy)) (yEk); for the 
Iïeld k of the forma1 power series over a lïnite 
field IC, put x,(y)=$(xy) (yEk) with $(c1)= 

exp(2nfl. Tr(Rescc)/p) (aEk), where Resa 
is the residue of a E k and Tu is the trace from K 
to Z/pZ. Then in both cases xX is a character 

of k, and x-x, gives an isomorphism between 
k and the character group. 

D. Ramification Theory 

A valuation v of k has a unique tprolongation 
to an extension K of lïnite degree over k (we 
denote the prolongation also by v). K is com- 

plete under the valuation and is therefore a 
local field. Denoting by I and K the field of 
residue classes of K and k, respectively, we cal1 
[f : K] =f the relative degree of K/k, and e = 
[v(K “):v(k”)] the ramification index of K/k. 
Then we have the equality [K : k] = ef: If e = 1, 
we cal1 K/k an unramified extension. 

An unramitïed extension K/k is tnormal, 
and its +Galois group is a cyclic group gen- 

erated by the Frobenius automorphism, i.e., 
the element 0 of the Galois group of K/k such 
that ao= aNcP) (mod p) for any element a in the 
valuation ring of K. For a given natural num- 
ber L there exists one and only one unramified 
extension of degree f over k in an algebraic 
closure of k. 

Let K/k be a normal extension of fmite 
degree with Galois group G, let 17 be a tprime 
element of K, that is, a generator of the tvalu- 
ation ideal !@ of K, and put Yci)= {(TE G 117”~ 
17 (mod CJ?‘“)}. Then Vu) is independent of the 
choice of l7. We cal1 V(O) the inertia group and 

Yci) the ith ramification group. Then Vi) is 
normal in G, [C: I’co)] =,fi [V(O): l] = e, and 

Y(‘) is the p-Sylow subgroup of 1/(O). Further- 

more, G/V(‘) and V(‘)/I/(‘) are cyclic, and 
Y(i)/V”‘l’ (i = 1,2,. ) is an Abelian group of 
type (p, p, , p). Ramification theory for Abel- 
ian extensions is described in Section F. 

For XE k, the series exp(x) = Czo x”/n! (resp. 
log(l+x)=~~,(-l~~‘x”/n)convergesfor 
ord x > e/(p - l), where e is the ramification 
index of k/Q, (resp. ord x > 0). The additive 
group p” and the multiplicative group 16”‘) 

(m > e/(p - 1)) are isomorphic as topological 
groups under the mappings x-ty = exp(x), y 

4x = log( y). If we fix an element rc E k with 
ord rt = 1, then an arbitrary element x E k with 

ord x = r is uniquely expressed in the form x 
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=dja, [“” = 1, ~EU(‘). The group u(i) is a 
multiplicative group on which Z, operates, 
and the structure of u(i) as a Z,-group cari be 
determined explicitly (- [2, ch. II]). 

E. Cohomology 

For a normal extension K/k with Galois group 

G, we may consider the tcohomology groups 
H’(G, K “) (r = 1,2,. ) of G operating on the 
multiplicative group K ‘. In particular, the 2- 

cohomology group H’(G, K “) is important in 
local class field theory and theory of algebras 
over k. 

If C is the separable algebraic closure of k, 
i.e., the tmaximal separable lïeld over k in the 
talgebraic closure of k, and F is the Galois 
group of C/k, we cari consider the 2-cohom- 
ology group H’(I, C “). Here we take as 
cocycles only those mappings f(o, T) of I x F 

into Cx that are continuous with respect to 
the +Krull topology of I and the discrete top- 
ology of Cx A fundamental theorem about 

the structure of H’(T, Cx) states that the 
cocycles of H2(T, Cx) that split in an extension 

K/k of degree n are exactly those cocycles that 
split in the unramitïed extension of degree n 
over k. Here a cocycle is said to split in K if it 
belongs to the tkernel of the homomorphism 

H’(T, C”)=H’(H, C”), where H is the sub- 
group of F corresponding to K, and res is the 

mapping obtained by restricting 0, z of f(~, r) 
to the elements of H. 

Let K/k be a normal extension of degree 

n with the Galois group G, and let H be the 
subgroup of I corresponding to K. Then the 
fundamental theorem combined with the exact 
sequence 

O+H2(G,K”)+H2(l-,C”)+H2(H,C”) (1) 

known in the theory of Galois cohomology 

(- 59 Class Field Theory H, 200 Homological 
Algebra 1), yields H2(G, K ‘)~Z/nz (cyclic 
group of order n), and H2(T, C”)E Q/Z, where 
Q is the additive group of rational numbers 
and Z is the additive group of rational in- 

tegers. These isomorphisms cari be given in 
canonical form as follows: Denote the unrami- 
lied extension of degree n by KJk, and the 
Frobenius automorphism of K,/k by 0. Then 
an element c of H2(G,, Kt) (where G. is the 
Galois group of K,/k) is represented by the 
cocycle 

jyai, &)= ~~~~+~~/~l-~~/~l-~~/~l , i,jEZ, 

with a E k ‘, and conversely, every a E k ’ deter- 

mines an element c of H’(G,,, Kn) in this 

manner. Under these conditions, the corre- 
spondence between c and a gives rise to an 
isomorphism H2(G,,, K,X) g k “/NKJKf). 
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Next detïne an element inv c of Q/Z by inv c = 
(orda)/n (modZ). Then since CEH’(T, Cx) 

splits in an unramified extension of degree n by 
the fundamental theorem, the exact sequence 
(1) determines in a natural way an element c’ 
of H’(G,, K$) corresponding to c. Putting invc 
=invc’, we cari show that H*(T, CX)3c+invc 
gives an isomorphism H’(r, C “) z Q/Z. We 
cal1 invc the invariant of CE H2(r, C”). The 

invariant of an element of the cohomology 
group H2(G, K “) is defined to be the invariant 
of the corresponding element of H2(r, C’), 
which is determined by the exact sequence (1). 
Mapping an element of H2(G,K”) to its invar- 
iant, we obtain an isomorphism H2(G, K “)g 
Z/nZ. 

F. Local Glass Field Theory 

Let K/k be a normal extension of degree n 
with the Galois group G, let f(o, z) be a cocycle 
representing the element of H2(G, K “) with the 

invariant I/n, and put 

Then o-* 2 gives an isomorphism be- 
( > (r 

tween G/G’ (where G’ is the commutator sub- 
group of G) and k ‘/NKIk(K “). It follows from 
this that [kx : NEII<(E “)] <CE: k] for any exten- 
sion E/k of fïnite degree, and the equality holds 
if and only if E/k is Abelian. The inverse map- 

ekX/NKIk(KX) for an 

Abelian extension K/k is written as k” SU+ 
(ré, K/k)E G, and (n, K/k) is called the norm- 
residue symbol. If L/k is Abelian and K/k is a 

subtïeld of L, then the restriction of (cz, L/k) to 
K coincides with (c(, K/k). Let k, be the max- 
imal Abelian extension of k, i.e., the union of 
ah Abelian extensions of tïnite degree over k. 
Then for any CIE kx, an element (IX, k) of the 
Galois group G(k,/k) of k,/k is uniquely deter- 

mined by (c(, k)(y)=(a, k(y)/k)(y), yek,. The 
mapping kx 3 U+(T~, k)E G(k,/k) is a one-to-one 
continuous homomorphism, and the image is 
tdense in G(k,/k). It has also been proved that 
there exists one and only one Abelian exten- 
sion K/k with NKIk(K “)=A for any given 
closed subgroup A of fïnite index of k ‘. There- 
fore closed subgroups A of Imite index of kx 
are in one-to-one correspondence with tïnite 
Abelian extensions K of k through the relation 

A = NKlk(K “), and in this case A is called the 
subgroup of kx corresponding to Klk. 

Let Klk be an Abelian extension of imite 

degree, A be its corresponding subgroup of 

kx, and Vi) (i = 0, 1,2, . ) be ramification 
groups of K/k. Furthermore, defïne constants 
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v1,u2> . . ..u. by 

V(O’= V<I>= ,,, = I/W,)$ T/w,+l)- - . . . 

= V(U*) 3 +,,,$V’“r I+l)- - . ..= y-c+, 

=g vb+l)=(l), 

denote the order of V(vx+l) by ni (i = 1,2, , r), 
andputu,=v,+(n,/n,)(u,-vo)+...+ 
(n,-,/n,)(u,-u,~,), p= 1,2, . . . . r (here we 
understand vo = -1, no = [V(‘): 11). Then 

u r, . , u, are rational integers, and we have 

(H. Hasse). If m is the smallest integer with A 
2 u@), then p” is called the conductor of K/k. 
The above results of Hasse show that m = 

U, + 1. On the other hand, it is known that the 
correspondence between Au(‘+) and V(“~) (p = 

1,2, , r) is given by the norm-residue symbol 
(c(, K/k) (- 59 Class Field Theory). 

G. Theory of Algebras 

By the general theory of +crossed products of 
algebras, the structure of the tBrauer group 

formed by the classes of tnormal simple alge- 
bras over a local field k is obtained directly 

from results concerning cohomology (- Sec- 
tion F). Namely, a tnormal simple algebra 

over k splits over a separable extension of 
degree n if and only if it splits over the unrami- 
fied extension of degree n, and the Brauer 

group of k is isomorphic to Q/Z. Furthermore, 
the texponent (the order as an element of the 
Brauer group) of a normal simple algebra ‘If 
over k coincides with the +Schur index, and if 
[QI: k] = n2, then VI is expressed as a crossed 
product with respect to any normal extension 
of degree n over k. The invariant of the factor 
set (2-cocycle) that appears in this crossed 
product expression is called the invariant of Yf 

(- 29 Associative Algebras; for the properties 
of SU as a topological ring and as a topological 
group of the group of invertible elements of 2f 

- 6 Adeles and Ideles). 

H. Explicit Formulas 

Let Klk be an Abelian extension of fïnite de- 
gree. When we have an explicit formula for the 
norm-residue symbol (a, K/k), we say that we 
have an explicit reciprocity law. 

Let k be a p-adic number tïeld containing a 
primitive mth root 5, of unity, and let p be an 
element in kx Let p be a prime number con- 

tained in p. Since the Kummer extension K = 

G”& over k is Abelian, the Hilbert norm- 
residue symbol (a, b),,, is defïned by 
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(K W) (fil = tu, /%,fi, where (3, b’),,, is an 
mth root of unity. In this case, the problem of 
obtaining an explicit reciprocity law is solved 
if we cari express the symbol (c(, /I), in terms of 
51, p and suitable parameters depending on the 
ground fïeld k. 

In particular, if p = 2, m = 2, we have the 
simple formula given by Hasse, (a, fi)* = 

t-11 Tr((;r-1)(8-1)‘4), where c(, p are two units in k 
satisfying x = B = 1 (mod 2) and Tr is the trace 
from k to Q,. Similar formulas for the comple- 
mentary laws are also known [ 101. 

On the other hand, if m = p is an odd prime 
and k = Qp(ip), we have the following formulas 
for a prime element ÂP = 1 - lp and two units 

a, /I satisfying a = 1 (mod p*), b = 1 (mod p): 

(K 81, = 5, (ll~)Tr(i~lo~a.DlogP) (2) 

(lp, & = yPm%P), (3) 

@,> PI, = i, 
(UP)T~(K~~$J~G~) (4) 

where Dlog/II=(1//3)Cz, ihi$-‘, while the hi 
are determined by the A,-expansion /I’= 

XzO hi& b,EZ,, [S]. Furthermore, we have 
an explicit Kummer-Hilbert formula deduced 

from (2) in terms of Kummer’s logarithmic 
differential quotients [S, 101. Concerning the 
complementary laws (3), (4), the following 
Artin-Hasse formulas are known for k 

= Q,([,.) and /I = 1 (mod p): 

(i,“, p),n = (yJ”WW), (3’) 

(i,,, /j),. = i~(l/P”)Tr((i~n/lln)logP), (4’) 

where A,, = 1 - ip,, [9]. Utilizing these for- 
mulas, K. Iwasawa obtained a formula for 
(3, /II),,. that is a natural generalization of (2) 
[ 131. A. Wiles has shown that a generalization 
of the Artin-Hasse-Iwasawa formulas cari be 

obtained in terms of the Lubin-Tate forma1 
groups (Ann. Muth., (2) 107 (1978)). 

Concerning (a, j?)pn, we have Shafarevich’s 

reciprocity law [ll]. TO explain it, let k, be the 
inertia field in k, i.e., the maximal subtïeld in k 
that is unramitïed over Q,. For an arbitrary 

integer a in k,, we consider the Artin-Hasse 
function E(a, x) = exp( -L(a, x)), where L(a, x) 
= ~&(a”~/Pi)xp’ with the tFrobenius auto- 
morphism CJ of k,/Q,. We choose a prime 
element ri in k, such that 5,. = E( 1,7?) and an 
integer .?x in a suitable unramifïed extension 
fïeld of k, such that au- 5 = a for a given 

integer a in k,. Given any p”-primary element 
x in k (i.e., k(x”P”) is unramitïed over k), there 
exists an integer a in k, such that x z E(a) 

=E(p”&i?), where x=y (x,ygkX) means x 
= y. u for an element u in k ’ p”. Furthermore, 
if 6 is an element of kx, we have the canonical 
decomposition formula 

6 z zd*E(d) n E(dj, n’), 
1 41<%P 
(,,p)= 1 
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where rr is a prime element in k, d* E Z, d, di are 

integers in k,, and e, = e/(p - 1) with the ramifï- 
cation index e of k. The explicit formula due to 
Shafarevich and Hasse is expressed as 

6% B)p = i,. 
Tr”(a*h-oh*+c) 

> 

where Tr, is the trace from k, to Q, and a, a* 
(resp. b, b*) are determined by the canonical 

decompositions of c( (resp. p) as stated above. 
The element c in k, is determined by 

n Iai,]<e,p 
E(ia,bj, ni+j) = y N E(c), <n,op E(cj, nj) 

(r,p~=(/.p)=l (l,P)= 1 

for odd p, and by 

(-l)a*“* n E(iaibj,ni+j) 
l<r,,<2e, 

(l,2)=(1,2)=1 

=Y z E(c), <n2co E(cj, z') 

L= I 

for p = 2. Several formulas for the case where k 
is a function fïeld are also known [ 1,5]. 

Let k be a general local fïeld. When K is an 
extension fïeld of k obtained by adjoining rr”- 
division points {n} of the Lubin-Tate forma1 

group F delïned over the integer ring of k, the 
extension K/k is totally ramitïed and Abelian, 
and we have an explicit formula: (u-l, K/k)Â. 

= [u&(Â), where u is a unit in k and [u]r is an 
endomorphism of F corresponding to the unit 
u. In particular, this formula implies the cyclo- 
tomic reciprocity law [ 121. 

The problem of obtaining an explicit re- 
ciprocity law arises in the problem of obtain- 
ing the reciprocity law for power residues from 
the law of reciprocity in global class fïeld 
theory. The problem is closely connected with 
T. Kubota’s recent results (e.g.,- [ 14]), which 
clarify the analytic meaning of the reciprocity 
law in algebraic number tïelds. 
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A. Lorentz Group 

(1) Minkowski space. A 4-dimensional real 
vector space M with an indetïnite inner prod- 
uct between two vectors x and y deiïned by 

~.y=~G'y=~"yo-~'y1-~Zy2-~3y3, 

is called a Minkowski space. A vector x E M is 
classifïed according to the signs of x. x and x0 
as follows. 

x. x > 0, x0 > 0: future timelike 
timelike, 

x x > 0, x0 < 0: past timelike 

x. x = 0, x0 > 0: future lightlike 

x.x=0, x0=0: origin 

x.x=0, x”<O: past lightlike 

x. qx < 0: spacelike. 

1 lightlike, 

The set of a11 future (or past) timelike vectors is 
called the future (or past) cane and is denoted 

by V+ (or V-). The set of lightlike vectors is 
called the light cane. The set of spacelike vec- 
tors is called the side cane. 

Minkowski space is used in the tspecial 

theory of relativity (with units such that the 
velocity of light is l), where {(x-y). (x-y)) ‘12 
is called the proper time between two mutually 

timelike events x and y. 
(2) Inhomogeneous Lorentz group. The 

group of a11 one-to-one mappings of the Min- 
kowski space onto itself preserving the proper 
time between any timelike pair of points is 
called the full inhomogeneous Lorentz group or 
Poincaré group and is denoted by OP. An ele- 

ment g of Y is a linear transformation 

(gx)“= i A:x”+a” (~=0,1,2,3), 
v=o 

where a EM and A =(A$ is any real matrix 
satisfying AG(*A) = G. We Write g = (a, A) and 
gx = Ax+a. Then 

The normal subgroup of .Y consisting of 
(a, l), UE M, is called the translation group on 

M. The subgroup of 9 consisting of (0, A) is 
called the full homogeneous Lorentz group and 
is denoted by Y or O( 1,3). It consists of the 
following four connected components: 

Yl={AEaPIdetA=l,AV+=v+}, 

&={AEYIdetA=-l,AV+=v+}, 

Y! ={AEYldetA= -l,AV+ =V-}. 

The identity mapping, the space-time inversion 

x+ -x, the space inversion x0-+x0, xi,-xi 

(i = 1,2,3), and the time reversa1 x0 -) -x0, 
xi+xi are their typical elements, respectively. 

If det A = 1, A E .Y is called proper. If AV+ = 
V+ , A EL is called orthochronous. The identity 
component 21 is called the restricted homoge- 

neous Lorentz group. (This usage in mathe- 
matical physics may differ from the general 
terminology for O@n, n), in which the identity 

component is called proper.) 
The same terminology is used for 9, which 

also consists of four components upi, Y!, c@, 

and UP’. 
(3) Universal covering group. For XE M, let 

3 

x= 1 x’a P’ 
p=o 
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where ts = (ai, cr2, g3) is called the Pauli spin 
matrix. For any 2 x 2 matrix A with determi- 
nant 1 (i.e., AESL(~, C)), 

AfA* =X,, x,=A(A)x, 

delïnes A(A)eL and A+A(A) is a two-to- 
one mapping from SL(2, C) onto Y!. By this 
covering mapping, SL(2, C) becomes the uni- 

versa1 covering group for 91. 
If A is unitary (i.e., AeSU(2)), A(A) leaves x0 

invariant, and SU(2) is the universal covering 
group of O(3)+ (the 3-dimensional proper 

orthogonal group or proper rotation group). 
For a complex vector ZE M + iM, 

AZ+B=Z, B z,,,=A(A,B)z < > 

delïnes a complex Lorentz transformation 
A(A, B), and (A, i?+A(A, B) gives a covering 

mapping from SL(2, C) x SL(2, C) onto the 
proper complex Lorentz group U(C) + , consist- 
ing of complex 4 x 4 matrices A satisfying 
AG(‘A) = G and det A = 1. 

B. Finite-Dimensional Representations 

(1) 91. Any continuous representation of 
SL(2, C) on a lïnite-dimensional complex 
vector space is a direct sum of irreducible 

representations. 
Let E = C2 be the 2-dimensional complex 

vector space on which SL(2, C) is acting. Let a 

representation r-~~,~ of SL(2, C) on the (k + n)- 
fold tensor product E@@“‘) be 

n,,,(A)= ABk 0 (K)O’, 

where A 1s the complex conjugate of A. A 
vector 5 in this representation space is called a 
mixed spinor of rank (k, n) and its components 
are written as ~‘I...‘x~I.~~~~, with undotted indices 
Ât, . . , Â, and dotted indices fiil . bi, a11 taking 
values 1 or 2. If n = 0 (or k = 0), it is called an 
undotted (or dotted) spinor of rank k (or n). A 

spinor with Upper indices, called a contra- 

variant spinor, cari be converted to a spinor 
with lower indices (partially or totally), called 

a covariant spinor, by 

0 1 
E=h,)= -1 o . ( > 
For example, 

5 21 PL I, &=c P%&i,. 

The restriction of rck,” to the subspace of 
spinors which are invariant under permuta- 
tions of undotted indices and under those of 

dotted indices is an irreducible representation 
of dimension (k + l)(n + l), which is denoted by 

[k,n].Thesetof[k,n],k=O,l,..., n=O,l,..., 
exhausts all lïnite-dimensional irreducible 
representations of SL(2, C). 
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The tensor product of two irreducible repre- 
sentations is decomposed as follows: 

Ck,n,lO Cb,n,l =C” Cknl, 

where [k, n] appears with multiplicity 1 for k, n 

satisfying k, + k, > k > 1 k, -k, 1, n, + n, > n > 
1 ni - n2 1. The complex conjugate representa- 
tion of [k, n] is [n, k]. 

For x E M, X is a mixed spinor of rank (l,l). 
(2) SU(2). The restriction of [k, 0] (k = 

0, 1, ,) to the subgroup SU(2) is an irreduc- 
ible representation (called the spinor represen- 
tation of rank k) and exhausts a11 irreducible 
representations of SU(2). [0, n] is equivalent to 
[n,O] for SU(2) due to A =EAE-I for AESU(~). 
[k, n] for SU(2) is equivalent to 

k+n 

Ck010Cn,Ol= 1” Cr,Ol. 
r=lk-ni 

An explicit coefficient in this decomposition is 

called a Wlehsch-Gordan coefficient. 
Any representation of m(3)+ is a representa- 

tion of SU(2). The irreducible representation 
of SU(2) with rank r is an irreducible repre- 
sentation of o(3)+ if r is even. It is an irreduc- 
ible double-valued representation of o(3)+ if r 
is odd. Likewise, the irreducible representa- 
tion of X(2, C) with rank (k, n) is an irreduc- 
ible representation of 91 if k + n is even and 
double-valued if k + n is odd. 

(3) ZT = 9i U 9!. The space inversion P 
induces an automorphism of 91 by A-+PAP, 

that of SL(2, C) by A+.dml and the asso- 
ciated mapping U(A)+V(A)= LI(E%~) of 
irreducible representations [k, n] +[n, k]. Thus 
an irreducible representation of 5@ is obtained 

on [k, n] @ [n, k] if n # k, and two inequivalent 
irreducible representations on [n, n] corre- 
sponding to two choices (kl) for the operator 
representing P. A vector in [k, n] @ [n, k] is 
called a bispinor of rank (k, n). The wave func- 
tion of the Dirac equation is a bispinor of rank 

KO). 

C. Unitary Representations 

(1) Invariance in quantum mechanics. In the 
special theory of relativity, each ~EPJ repre- 
sents a symmetry of the system, namely, a 

transformation of states $ of the system to 
states gtJ such that “physical relations” be- 
tween two states I/J, and $2 should be the same 
as those between g$, and g$,. In quantum 
mechanics, a (pure) state is represented by 
a unit ray (i.e., a set of vectors @Y, O<O< 
2n for a unit vector Y) in a Hilbert space, 

and I(Y,, Y’,)12 is supposed to be an obser- 
vable quantity, called the transition prob- 
ability. Thus the special theory of relativity in 
quantum-mechanical situation implies a con- 
tinuous representation of PJ by bijective map- 
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pings of unit rays in a Hilbert space preserv- 
ing the transition probability. By the Wigner 
theorem, such a mapping is implemented 

by either a unitary or antiunitary operator 
U(g) as a mapping {eiBY}~{eiBU(g)Y} (- 
e.g., [ 121). In order for this to be a group 
of transformations of unit rays, U should 
be a projective representation: U(g,) U(g,) = 

4gl~g2)u(glg2)7 where 4gL,g2) is a 2- 
cocycle with a complex value of modulus 1. 
In the case of .y!, each U(g) has to be uni- 
tary (true for any connected Lie group), and 
there is a choice of r/(a, A) from the unitary 

ray jeieu(a,A(A)))O~O<2n} SO as to make 
L/(a, A) (~EM, AgSL(2,C)) a continuous uni- 
tary representation of the universal covering 

group$J={(a,A)la6M, AESL(~,C)} ofy1 

PI- 
(2) $1. Any continuous unitary represen- 

tation of $ on a separable Hilbert space is a 
direct integral of continuous irreducible uni- 
tary representations of $! (called irreducible 
representations in the following). Any con- 
tinuous unitary representation of the trans- 

lation group {(a, 1) 1 a E M}, the group being 
commutative, is of the form 

The parameter pu M is called the energy- 
momentum 4-vector or 4-momentum. In an 
irreducible representation of .?l, the measure 
dp is equivalent to an invariant measure on 
an orbit of the conjugacy action g(a, l)g-’ = 
(A(A l), g=(h, A)E$!, i.e., on one of the 
following orbits. 

m,: p2sp.p=m2 (m>O), kpO>O, - 

0,: p2=0, SPO>O, 

o:p=o, 

im:p2=-m2 (m > 0). 

The parameter (p’)“’ is called the mass. 
For each orbit the subgroup of a11 AE 

SL(2, C) that do not move a predetermined 
point ql, on the orbit A, is called the little group 
(of i or of qn). Up to isomorphism, the little 

group contains the following. 
m,: SU(2), consisting of ah unitary A E 
SL(2, C), which leaves 4 m+ =(km,O,O,O) 
invariant. 
0,: The 2-fold covering group of the 2- 
dimensiona Euclidean group, consisting of ah 

(qok =( + l,O,O, kl)), with the product 

A(Q,,z,)A(0,,z2)=A(Q,+0,,z, +P1z2). 

0: SL(2, C). 
im: SL(2, C) consisting of ah real AESL(~, C), 
which leaves qim = (O,O, m, 0) invariant. 

Any irreducible representation of gl is 
uniquely determined (up to unitary equiva- 
lente) by an orbit Â and an irreducible repre- 
sentation D of the little group G, c SL(2, C) on 
a Hilbert space K as follows (as an tinduced 
representation): 

y= 
J 

Y(P)@(P)EH= ff(P)b4P), 
J 

C~(wlWl(p)=e ‘“‘Po(R(A,p))y(A(A)-‘p), 

R(A,P)=L(P)-‘AL(A(A-‘)P), 

where H(p) = K, dp(p) is a measure (unique up 
to a multiplicative constant) on Â, invariant 
under the action of 21 on 1, (~-AP, A E 21)) 
L(p) is a tïxed element of X(2, C) for each Pei 

such that A(L(p))q,=p, and R(A,p) is called 
the Wigner rotation. 

(3) The orbit m + . The irreducible represen- 
tation with the orbit m, and the irreducible 
representation of SU(2) with rank 2j (j= 
0,1/2,1,. ) is denoted by [m, ,j], where j is 
called the spin. It is given by 

(Y,@)= (W4,(mlfPP2j@(p)) J 

where Y(~)EC 
to the orbrt m+y 

for each p and p is restricted 

(4) The orbit 0,. Irreducible representations 
of the little groupcan be classifïed by the orbit 
in the spectrum of the normal Abehan sub- 

group consisting of A(0, z), ZE C. Since the 
spectrum is a plane and A (0, z) acts as a rota- 
tion by an angle 28, an orbit is a circle of 

radius p. The case p = 0 is further classitïed 
completely by the spin j = 0, $I 1/2, & 1, . . 

(used for the description of a massless particle 
of spin 1 jl and helicity o = sign j). It is denoted 

by [0, , j] and is given by 

(Y, 0) = J W(P), (k P”F@(P)) 

whereA”=AorAandp”=sf&~‘orj7de- 
pending on o= 1 or -1, and Y(p) belongs to 
the quotient of C” and the subspace consisting 
of all x with (~,(~“)~~~j’ x) = 0 (the quotient is of 
one dimension). 

The case p # 0 (called continuous spin) is 

completely classified by p and U(0, - 1) = & 1. 
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The representation D of the little group for 
p #O is given by 

=expi{pRee-‘“z+kO}Y(<p-20), 

where k =0 or 1 (accordingly U(0, -l)= 1 or 

-l), <VER mod2x and Y~L,([0,2n],d~). 
(5) The orbit 0. Irreducible representations 

of the little group SL(2, C) are as follows: The 
principal series with two parameters -CQ < 

p<aandm=O, fl,...aregivenby 

[D(A)f](z)=(bz+d)“lbz+dp-“-2f(‘Az), 

‘AZ =(az + c)/(bz + d), 

u b 
A= 

( > c d’ 

where f is an L,-function of z = x + iy with 
respect to dxdy. The supplementary series with 
a parameter 0 < p < 1 is given by 

[D(A)f] (z)= Ib~+dl~~-~f‘(‘Az), 

(fi&)= f,(z,).L(z,) s- 
x IZI -221 -2-2pdx, dx,dy, dy,. 

Together with the identity representation D(A) 

= 1, they exhaust a11 possibilities up to unitary 
equivalence. 

(6) The orbit im. Irreducible representations 
of the little group SL(2, R) are as follows: The 
principal continuous series with parameters 
~=O,l,pkOforcr=Oandp>Oforcr=lare 
given by 

[D(A)/](x)=f(‘Ax)lb~+dI’~-‘(sign(hx+d))”, 

where ,f~ L2(( -CO, cc), dx). The supplementary 
series with a parameter 0 < p < 1 are given by 

[D(A)f](x)=Ibx+dl-‘-P,f(‘Ax), 

(fi>fJ= 
ss- 

f(xdf(xJIx~ -x,1-‘-“dx,dx,. 

The principal discrete series with a parameter 
n=1,2,3,... aregiven by 

CWWI (4 =(bz + d)-‘X’A4, 

(fi>f;)= = s s dx ~"-~d~f,(z)f2(4> 
-z 

where fis holomorphic in either the Upper or 

lower half-plane, (SO that the y-integration is 

over (0, CO) or ( -w, 0) accordingly), z = x + 
iy, and the two choices give rise to two in- 
equivalent representations for each n. Together 
with the identity representation D(A) = 1, 

they exhaust all possibilities up to unitary 
equivalence. 
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D. Infinitesimal Generators 

In any continuous unitary representation U of 
BT +3 

i-‘!i:t-‘(u(y(t))-1) 

(detïned on the dense set of all those vectors on 
which the limit exist) for any one-parameter 
subgroup r(t) of @ is a self-adjoint operator 
called the infïnitesimal generator for y(t). If 
r(t)=(tu, 1) (~EM), the generator is P.a, where 
the components P”, P’, P’, P3 of P mutually 
commute and are called energy-momentum 
operators (or 4-momentum operators). If y(t)= 

(0, exp(it cJ2)), k = 1, 2, 3 (the rotation by an 
angle -t around the kth axis), the generator is 
written as Jk = Mj’= - A4’j (( jlk) is a cyclic 

permutation of (123)) and is called the angular 
momentum operator. If y(t) = (0, exp(tf+/2)), 
k = 1, 2, 3 (the pure Lorentz transformation 
along the kth axis with a velocity tanh t), it is 
written as Nk = Mok = - Mko, and MpY (p, v = 

0, 1,2,3) is called the angular momentum 
tensor. The value of the scalar P. P is the 
square of the mass and, when P. P < 0, the 
alternatives of P” being positive or negative 
definite or zero give the invariants of irreduc- 
ible representations, distinguishing different 

orbits. The angular momentum in the tenter of 
mass coordinates, 

gives another invariant w. w, called the Pauli- 
Lubanski vector, where the quantity with lower 

indices are obtained from those with Upper 
indices by contraction with the Minkowski 

metric 9, e.g., PV = C, P”g,,; E is totally anti- 
symmetric in its indices and co123 = 1. If P. 

P>O, then w’w= -j(j+ 1)P.P defïnes the 
spin j. In the representation with orbit 0, and 

p = 0, w’< = crjPfl detïnes the spin j > 0 and the 
helicity (T = f 1. 
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259 (XX.1 1) 
Magnetohydrodynamics 

Magnetohydrodynamics (also called hydromag- 
netics or magnetofluid dynamics) is concerned 
with the motion of an electrically conductive 
fluid in the presence of a magnetic field. An 

electromotive force (e.m.f.), induced by the 
motion of the fluid in the magnetic lïeld, in 

turn induces an electric current that perturbs 
the original magnetic lïeld. On the other hand, 
an electromagnetic force due to the magnetic 

fïeld deforms the original motion. Many im- 
portant and interesting phenomena result from 
such interactions of the magnetic lïeld and the 
motion of the fluid. 

In ordinary magnetohydrodynamics we 
assume that (i) the fluid is continuous, (ii) 
electric conductivity c is not negligible, and 
(iii) fluid velocity is small compared with the 

velocity of light, i.e., max(L’/(c’T’), U’/c’)« 

min( 1, R,), where L is a representative length, 
Ta representative time, U a representative 

velocity, and R, = 0pUL (p is the magnetic 
permeability) is a nondimensional number 

called the magnetic Reynolds number. In this 
case we cari neglect in the +Maxwell equations 

the displacement and convective currents in 
comparison with the conductive current J, 
and Write 

divB=O, rotH=J, rotE= -as/&, 

p,=divsE, 

where E is the dielectric constant, and 

(1) 

(2) 

B=pH, J=a(E+vxB). (3) 

Hem the latter equation, Ohm% law for a 
moving medium, is valid when the effects of 
temperature gradient, the Hall effect, etc., are 
small. The motion of fluids (- 205 Hydro- 
dynamics) is governed by the tequation of 

continuity 

ôplat + div PV = 0, 

the tequation of motion 

(4) 

a(pv)/&= -div(pvOv-P-T) (5) 

(P is the mechanical stress tensor, T is the 
Maxwell stress tensor Kj= p(HiHj -$H’S,)) or 

pDv/Dt = div P + K, K=JxB, (5’) 

the tequation of state, and the +energy equa- 

tion. (From assumption (iii), the force p,E on 
the electric charge pe cari be neglected com- 
pared with the force J x B on the electric cur- 

rent, and (2) cari be separated from the other 
equations in order to determine p,.) 

When p and o are uniform, we cari eliminate 
E and J from (1) and Ohm? law to obtain the 
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induction equation 

aB/at = rot(v x B) + /1.AB, (6) 

where A = grad div -rot rot, A = l/(pa). This 
is of the same form as the equation ôw/ût = 
rot(v x w) + v Aw (v is the kinematic viscosity) 
for the tvorticity w  of an ordinary tincom- 

pressible viscous fluid. We cal1 /2= l/(pcr) the 
magnetic viscosity, and the ratio of the lïrst 

term (the convection term) to the second one 
(the diffusion term) in the right-hand side of (6) 
is the magnetic Reynolds number R, = UL/I = 
~oUL. R, = CO corresponds to the tperfect- 
fluid case as (T+ CO or L-1 CO. In this case, the 
magnetic flux moves with the fluid as if both 
were frozen together, as in the +Helmholtz 
theorem about vorticity. The existence of 
a transverse wave of velocity s( = J;IH2Ip 
along magnetic lines of force in the fluid, 

owing to the tension pH2 (7;i except for the 
magnetic pressure -$uH26,) of the magnetic 

flux frozen to the fluid, was noted for the first 
time by H. Alfvén (1943) and this wave is 
called the Alfvén wave. In a compressible 
Perfect fluid (R,= CO, Pij= -p6,, where p is 
the pressure), (l)-(5) reduce to a system of 
thyperbolic partial differential equations, 
yielding as tcharacteristic surfaces in addition 
to the pure Alfvén wave two magnetosonic 

waves of phase velocities 

a+= ,‘- 
C-1 

( > 
112 

x a2+a2+ (a*+a’)-4a2a2cos20 

(0 is the angle between the magnetic field and 
the wave normal, a is the velocity of sound 
interfering with the Alfvén wave). We cal1 a+ 
and a- the fast wave and the slow wave, re- 
spectively. Hydromagnetic dynamo theory 
explains the generation and maintenance 

of the magnetic lïeld inside the earth on the 
basis of (6). Applications are also made to 
cosmic problems and MHD generation of 

electricity. Mercury, liquid sodium, etc., cari 
be used to verify the theoretical results. Extra- 
polation may be made to the plasma used in 
thermonuclear fusion to the extent that the 
hydrodynamic treatment is valid as a tïrst 
approximation. 
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Markov Chains 

A. General Remarks 

We consider a random process {X,} (t > 0 or 
t = 0, 1,2, . ) that is governed by some prob- 
ability law. One of the most important is the 
process whose probability law of X, under the 
condition Xs,=a, ,..., Xs,=a,(s, <s2<...< 

s, < t) coincides with that under the condition 
X,” = a,. This is called the Markov property, 
and a process with this property is called a 
Markov process (- 261 Markov Processes). If 
the process takes place in a tïnite or countable 

set S, it is called a Markov chain. 
A Markov process is specifïed by its +tran- 

sition probability (i.e., the system of the prob- 
ability laws of X, given X,=x for s < t) and 
initial distribution (- 261 Markov Processes). 
The transition probability of a Markov chain 
is denoted by PJX, y), while that of a general 
Markov process is denoted by P(s, x, t, A). 
Before proceeding to a sophisticated definition 
of Markov chains, we give some examples. (a) 

Suppose that <,, &, . . are mutually tindepen- 
dent real +random variables on a probability 
space (Q, %3, P) and fi, f2,. are Bore1 measur- 
able functions from R2 to R. The process {X,,} 

which is defined by the recurrence relation 
X0 = &,, X, =f,(<,, X,-i) is a Markov process 
with its transition probability given by P(n - 
1, x, n, A) = P{ f.(s,, X)E A}. In particular, if 
the possible values of each 5. are at most 
countable, {Xn} becomes a Markov chain. It is 
ttemporally homogeneous, ie., P,,“+, (x, y) is 

independent of n, if the {<,} are tidentically 
distributed and fr =f2 = Moreover, if each 
<, is integer-valued and f,(x, y) = x + y, {X,} is 
a 1-dimensional random walk. (b) Ehrenfest 

mode1 of diffusion. Suppose that N molecules 
are distributed in two containers A and B. At 
each tria1 a molecule is chosen at random and 
moved from its container to the other. Let 
X,, be the number of molecules in A after the 
nth tria]. Then {X,} is a temporally homo- 
geneous Markov chain with p,,,+,(i, i- 1) = 
i/N, p,,,+,(i,i+ l)=(N-i)/N for Ogi< N 

(p,,,+l(i,~~=O otherwise). (c) Population model. 

Consider a population in which there is no 
interaction among individuals. Suppose that 
during a time interval (t, t + At] each individ- 
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ual gives birth to a new one with probability 

i,At + O(At) and dies with probability PAt + 
o(At). Let X, be the population size at time t. 

Then the process {X,} becomes a birth and 
death process, the most typical of Markov 
chains with continuous time parameter (- 
Section G). Numerous Markov chains with 
special structure are extensively studied in 
various fields of applications of probability 
theory such as queuing theory (- Section H), 

the theory of tbranching processes, the sto- 
chastic theory of tpopulation genetics, and 
others [l, 31. In this article, however, we are 

mainly concerned with the theoretical aspects 
of Markov chains. 

Hereafter, we consider only ttemporally 
homogeneous Markov chains, which are re- 
formulated as a system of tstochastic pro- 
cesses in the following way. Let S be a fïnite 
or countable set (called the +state space of 
the motion) and T be {0, 1,2,. } or [0, co) 
(called the time parameter space). A family 

K, Px)tET,xtS is called a Markov chain if P,, the 

tprobability law of the process X, starting at x, 
is subjected to the condition 

pxK1+,” =Yl,“‘>xS,+t,=Yml 

Xr,=X1,...,Xt”=X,) 

=p,.(x.~l=Y,,.“,x,m=Ym), (1) 

for every tj, sk E T (j = 1, . . , n; k = 1, . . , m) such 
thatt,<t,<...<t,,O<s,<s,...<s,.Thenthe 
function defined by 

PG> Y) = P*(X, =Y)> tcT, x, YES 

satisfies 

O~P,(X,Y)dL 

,l P,k Y) = 1, 

Pt+sk Y) = 1 P,k 4P,(Z, Y) 
LES 

(2) 

(3) 

(4) 

because of (1) and the general properties of 
probability laws. We cal1 p,(x, y) (t E T, x, y~ S) 

the transition prohability (or transition func- 
tion) of the Markov chain, and relation (4) is 

called the Chapman-Kolmogorov equation. 
Furthermore, the matrix p,=(p,(x, y)) is called 
the transition matrix. 

Conversely, for a given p,(x, y) with prop- 
erties (2), (3) and (4) we cari construct a Mar- 
kov chain that satistïes 

by using Kolmogorov’s extension, theorem. 
Such a Markov chain is essentially unique. If 
we are given a stochastic matrix p = (p,,,), i.e., 

a matrix satisfying O<P~,~< 1 and Cyespx,y= 1, 
the components p,(x, y) of the iterated matrix 

p” satisfy (2))(4), and hence there exists a 



260 B 
Markov Chains 

Markov chain with discrete parameter having 
Pri(x, y) as its transition probability. 

Let P, = P(X, =x) be the initial distribution 
over S at time 0. Then the distribution PL:f)= 

P(X, = y) at time t is obtained from P$!i = 
&sP,pt(x, y). In particular, if ,u:) is indepen- 
dent of t, i.e., 

Py = c APtcG Y)> (5) 
xts 

then P is called the invariant distribution of the 
Markov chain. An arbitrary real nonnegative 
solution of (5) is called an invariant measure. 

When S is the set of a11 d-dimensional lattice 
points and p,.+ = rrmY, the associated Markov 
chain is called a (general) random walk. In 

particular, if rc, = 2-” for every neighboring 
point x of the origin and = 0 otherwise, it 
is called a standard random walk (or simply 
random walk). 

Now, when the equal sign in (3) is replaced 
by <, we consider the space S* obtained 
by adjoining 8 (tdeath point) to S, and detïne 

PXX> Y) = Pk Y)> x, YES; 

P:(x>a)= l- c P,b>Y), xes; 
YES 

Pf(& a)= 1; pf(8, x) = 0. 

Then we cari associate a Markov chain (X,, Px) 

on S* with { pf}. If X, equals 8, the particle 
of the process is regarded as extinct at the 

random time [ = inf{ t 1 X, = a}, called the life- 
time (or killing time). In this case, the process 

X, restricted to t smaller than [ is also called 
a Markov chain on S with the transition 

probabilities { pr(x, y)}. Then the conditions 
&ESpf(~, y) = 1 and P,([ = co) = 1 are equiva- 
lent, and the chain is called conservative if 

P,([ = co) = 1 for every x. 
In this section we have restricted ourselves 

to the temporally homogeneous case. In the 
temporally inhomogeneous case, we have to 

consider the probability laws P,,, of the path 
starting from x E S at time t, instead of P,. 

Equation (1) becomes 

px,fvsl=Yl~~~‘~ xs,=YmIxr,=xl> . ..>x.,=x,) 

=px.,,.ws,=Y,, . ..>xs”.=Y,), 

t, < . ..<t.<s, <... <s,. 

For the rest of this article, we consider only 
the homogeneous case. 

B. Markov Chains with Discrete Parameter 

Hereafter, the one-step and the n-step tran- 

sition probability of a Markov chain with 
discrete parameter Will be denoted by P(x, y) 
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and PJx, y) instead of p1 (x, y) and p,,(x, y), 
respectively. 

Let X=(X,, PJ be a conservative Markov 

chain. For a subset A of the state space S, cA = 
min{n>l(X,~A}(min~=+co)iscalled 
the hitting time for the set A. If Px(oY < CO) > 0 

(=O), we Write x+y (~+y). Then x+y is 
equivalent to the existence of n 2 1 with PJx, y) 

> 0. When x+y and y+x, we Write x t-) y. The 
set of a11 x for which there exists y # x with x+ 
y and y+x is denoted by F and is called the 
dissipative part of S. For elements of S - F, the 
relation tt is an equivalence relation. Each 
equivalence class E, is called an ergodic class. 
When F = 0 and S consists of a single class, 
the chain X is called irreducible (or ergodic). 

For an ergodic class E, the greatest common 
divisor d of {n > 11 P,(x, x) > 0) for x E E does 

not depend on the choice of XE E and is called 
the period of the class E. A class with period 1 
is called aperiodic. Set G,, = {y E E 1 Pkd+,,(x, y) > 

Oforsomek>O}(n=1,2,...,d)forafixed 
x C.E. Then we have a decomposition of E: E = 

UG,, G,nG,=0(n#m),and CZecn+,p(y,~) 

= 1 (y~ G,,). Each G, is called a cyclic part. The 
decomposition may depend on the choice of 
x but is unique up to ordering. 

The point x is called recurrent or nonrecur- 

rent (transient) according as Px(crx < CO) = 1 or 
~1. A necessary and sufficient condition for x 
to be recurrent is Z$,, P,(x, x) = CD. The prob- 
ability P, (X, =x occurs intïnitely often) is 1 or 
0 according as x is recurrent or nonrecurrent. 
A chain is called recurrent or nonrecurrent ac- 

cording as every point in S is recurrent or 
nonrecurrent. A recurrent point x is called 

positive recurrent or nul1 recurrent according as 
m,= E,(rr,) is Imite or infinite. Let E be an 
ergodic class. If there exists a positive recur- 
rent element in E, then a11 elements in E are 

also positive recurrent, and the class E is called 
positive recurrent. We cari define nul1 recur- 
rente or nonrecurrence of an ergodic class 
similarly. For a tïnite state space, every Mar- 
kov chain has at least one ergodic class, and 
a11 ergodic classes are positive recurrent. 

C. Limit Theorems for Markov Chains, and 
Recurrent Events 

The properties of a recurrent chain are re- 

duced to those of an irreducible recurrent 
chain, since a recurrent chain is decomposed 
into ergodic classes. We assume that X = 
(X,, P,) is an irreducible recurrent chain. 
Concerning the transition function we have 
the following limit theorems: Let d be the 

period of J and S = lJz=i G, be the decom- 
position into cyclic parts. If XEG,, then 
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lim .-,f-‘nd+r(x>~)=dm;’ (YEG), =O(Y$GJ. 
These results are sometimes referred to as the 
basic limit tbeorem of P,(x, y). For every x, 

YE-S, lim,,, N-i X:=i P,,(x, y)=m;‘. Further- 
more, rx,Y = lim,,, czn=, P,(Y> Y)E=, Pnk 4) 
exists and is finite. Then rx,Y is an invariant 

measure as a function of y, and every invariant 
measure is a constant multiple of it. The chain 

is positive recurrent if and only if &,T~,~ < CO, 
and then we have r, y = m,m;’ Consequently 
there exists a real invariant measure px (real 

solution of (5)) such that 0 < xXES [P~I< cc if 
and only if the chain is positive recurrent, and 

in this case pL, is a constant multiple of mi’. 
Let p be an invariant measure, and set 1,,(f) 

= C,,s~,f(xl For fi g such that ~Jlfl) < ~0, 
O<l,,(lgl)<co, and I,,(g)#O, we have 

The +law of large numbers, the +Central limit 

theorem, and the +law of the iterated logarithm 
hold for the asymptotic behavior of the sum 

Cf=,f(x,) as N+m. 
Let & = {E,, E,, } be a sequence of events 

on a probability space (Q, g, P), and let u, = 
P(I&). The time intervals {rk} between the 
successive occurrences of d are called the 
recurrence time of &. More precisely, the {rk} 
are successively defïned by hi =inf{n 2 1 1 E, 

occurs},r,=inf{n>r,+...+r,-,+lIE, 
occurs} -(ri + + T”~J (k > 2). TO avoid 
complications we assume here that a11 the Tk 

are Imite talmost surely. The sequence & is 

called a (persistent) recurrent event if the Tk 

(k > 1) are mutually tindependent trandom 
variables with a common tdistribution {f,}. 
More generally, if the distribution of T, is 
allowed to be different from {f,}, 6 is called a 
delayed recurrent event. The basic relation on 
a recurrent event is the renewal equation 

where {b,} is the distribution of T,. Suppose 
that the greatest common divisor of {n 2 1 If, 
>O} is d. Then we obtain 

lim %,d+r = @v/~> r= 1, 2, . ..d. 
n-cc (6) 

where p = C nf is the mean recurrence time 

and br=&obnd+v This fact is known as the 
renewal theorem. Let X =(X,, P,) be an irreduc- 
ible recurrent Markov chain. For lïxed x and 

y, consider the events E, = {Xn = y} under the 
measure P,. Then, G = {E, , E,, } is a delayed 
recurrent event with u, = P,,(x, y), f, = P,(a, = n), 

and b, = P,(a, = n). Applying (6) we obtain the 
basic limit theorem of P,(x, y) stated at the 
beginning of this section. We next consider the 

number N, of occurrences of a recurrent event 
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8 up to time n. The limiting behavior of N, 
has been extensively studied (- 250 Limit 
Theorems in Probability Theory D). 

D. Potential Theory for Markov Chains 

For a given Markov chain, 

is well defined, admitting possibly the value CO. 
If G(x, y) is not identically CO, we cari defme a 

(generalized) tpotential with kernel G(x, y) (- 
45 Brownian Motion; 261 Markov Processes; 

338 Potential Theory). For a real function cp 
over S, the function CC~(X) = OYES G(x, y) <p(y) is 
called the potential with charge cp if the sum 
exists. Even if GV does not exist, the intïnite 
sum CzO P,,<p may exist. In this case this sum 

is also called the potential with charge <p. 
A real function f ( --CO <f < +co) over S 
is defined to be superharmonic (or super- 

regular) if Pf<f: Here P is the operator asso- 
ciated with the kernel P(x, y), that is, Pf(x) = 

C,,,P(x, y)f(y). Furthermore, if f> 0 and 
fa Pf; f is called excessive, and if -m <f 

< + m and ,f= Pf; f is called harmonie. If 
ef<f at a point x, f is called superharmonic at 
x, etc. A potential with charge <p > 0 is always 
excessive. For an irreducible recurrent chain, 
every nonnegative superharmonic function is 
constant. 

(1) For a nonrecurrent chain we cari consider 
the potential f= Gq for every function cp with 
finite support. G satistïes (P - I)G = - 1 and 

lim,,, P,, G = 0, where I is the unit matrix. 
Consequently, the operator P-I corresponds 
to the tlaplacian A of +Newtonian potential 
theory, and the equation (P -I)f= 0 corre- 
sponds to the Laplace equation Af = 0. If the 
limit w  = lim n-m PJ exists for a function f on 
S, f cari be expressed uniquely as the sum of 

the potential G<p (<p=f-Pf) and a harmonie 
function w. This decomposition is called the 
Riesz decomposition, following the terminology 

used in Newtonian potential theory (- 338 
Potential Theory). Let E be a fïnite subset of S 
and 0; = min { n > 0 1 X, E E}. Then f(x) = Px(o; 
< CO) is a (unique) potential which is harmonie 

at XE E’ and takes the value 1 on E. This is 
called the equilibrium potential of the set E, 

and its total charge C(E)= C,&f(x) - Pf(x)) 
is called the capacity of E. The tmaximum 
principle and the tbalayage principle (- 338 
Potential Theory) are valid in this potential 
theory. 

(2) For a recurrent chain, we cannot defïne 

the potential kernel as in (l), since G(x, x) = CO. 
However, we cari define a kernel analogous 
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to the case of the tlogarithmic potential. We 
assume that the chain is irreducible. When the 

hmit 

exists for an invariant measure p, the chain is 
called (right) normal. A chain is normal if and 

only if 

exists. If &( .) exists, it is independent of x. Every 
positive recurrent chain is normal. For a nor- 
mal chain we obtain the following results. Let 
cp be a function with fïnite support. The poten- 
tial ,f of <p exists if and only if C,,sp,<p(x) 
=O, and f‘= - A<p in this case. AV satisfies 
the conditions (P- l)Aq=cp and lim,,, P,Aq 
=O. A function .f is a bounded potential of a 

function with fïnite support E if and only if f is 
bounded and harmonie in E’ and satisftes 
C,i,(x)f(x)=O. An irreducible recurrent chain 
is not necessarily normal. For every such 
chain, however, there exists a kernel W(x, y) 

such that (P - 1) Wcp = -<p for any function 
p with tïnite support and nul1 charge (i.e., 
&,p,<p(x) = 0). Such a kernel W is called a 
weak potential kernel. 

E. Random Walks 

Consider a random walk delïned on the set S 

of ah lattice points in a d-dimensional Eucli- 
dean space. Let S’={x(O+x), S={~I~=X- 
y,x, ~ES+}. F. Spitzer obtained the follow- 

ing results for the random walk with S = S. 
The random walk is recurrent if the following 

conditions are satisfïed: (i) d = 1, C 1x1 P(0, x) < 
CO (1x1 is the distance between 0 and x), and 
m~~xP(0,x)=0,(ii)d=2,m=0,andcr2~ 
CJx)‘P(O,x)< m. When d>3, the random 
walk is always nonrecurrent. The measure 

px = 1 is invariant whether the random walk is 
recurrent or not. 

Every recurrent random walk is right 
normal, and the potential kernel A satisfies 
(P - I)A = 1. Several interesting results are 

known on the uniqueness of the kernel A 
satisfying (P-I)A=I [7]. 

For the case m = 0, there are a number of 
results similar to those for tBrownian motion, 
including: (i) When d = 1 and 0 <o < CO, 

lim Pdmax,,,,, Ix,lGcr&X)=l-F(x?), 
n-m 

x > 0, 

where 

F(x)= 1 -zkzOJ&exp 
( 

-$2k+ 1)2x ; 
> 

(ii) The arc sine law: Let T. be the number of 
k < n for which X, becomes > 0. When d = 1 
and O<cr<oc, 

hthtPo(T,9rix)=~arcsin&, o<x< 1; 
n 

(iii) The Wiener test: The set E is called re- 
current if Px(oE < CO) = 1 holds for every x. 

When d = 3 and 0 < 00, a set E is recurrent if 
and only if CE1 C(E,)2-“= CO, where E,= 
En{X12”<(X(<2”+‘}. 

F. Markov Chains with Continuous Time 
Parameter 

Suppose that the transition probability 
pl(x, y) is measurable in t. Then pt(x, y) is uni- 
formly continuous in a complement of any 
neighborhood of t = 0, and there exists mx,Y= 

lim,t, P,(x, Y) for which mx,y = CztS mx,r~l(~T y) 
=~rsSpr(~,~)mz,y. If pJx,y)=O for a11 xéS and 
t > 0, y is called a fictitious state. Let F be the 
set of a11 ftctitious states of S. Then the restric- 

tion of p,(x, y) to S-F gives a transition prob- 
ability on S -F. If F = 0 and the family p = 

{ p,( , y) 1 t > 0, y~ S} separates points of S, the 
transition probability pt(x, y) is called stan- 

dard. Then p,(x, y) is standard if and only if 
lim,l, pt(x, y) = S,,,. When F = 0 and p does 
not separate, points of S cari be reduced to 
the standard case by a suitable identification 

of states. We assume that p,(x, y) is standard. 
Then limtlo t -‘(p,(x, y) - &,) = qx,Y exists and 

satisfies 0 Q qx,y < CO if x #y. The matrix Q = 
(qx,J over S is called the Q-matrix of the tran- 
sition matrix pr =(p,(x, y)), and we Write Q = 
~0. Set qX= -q,,, (20). We cal1 x a stable 
state if 4, < CO and an instantaneous state if 
qx = CO. If q1 < CO, p;(x, y) (the derivative with 
respect to t) exists and is continuous in t > 0. 

When every point of S is stable, n(x, y) de- 
tïned by 

x(x, Y) = 1 
-’ 4x,y4x if x#y 

0 if x=y 

satisfies 

OGn(x,y)<l, 7c(x, x) = 0, 

~~kYK1. (7) 

From the tKolmogorov-Chapman equation 
we cari formally derive Kolmogorov’s backward 
equation 

PXX> Y) = - 4xPk Y) + qx c 4x3 z)p,(za Y) 
zts 

(8) 
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and its dual, Kolomogorov’s forward equation 

d(X> Y) = - qyP(x, Y) + 1 Pt(x3 z)q,+ y). 
LES 

(9) 

Strictly speaking, these equations hold 
only under suitable conditions: For in- 
stance, a conservative transition probability 

p,(x, y) satisfres (8) if and only if &,s~(x, y) 

= 1. If there exists &>O (~ES) such that 

LES LP,(x, Y) G t, W > 01, then P,(x, Y) satisfies 
(9) if and only if C,,s t,,q,z(y, x)= 5,. Con- 
versely, given 0 <q, < CO and n satisfying (7) 
there exist in general many solutions of (8) and 
(9) with the initial condition lim,,, p,(x, y) = 
S,,,. Among them, the minimal solution 
pf(x, y) exists. The chain with pp(x, y) as its 
transition probability is called the minimal 
chain associated with {q, 7~). 

For the path of a Markov chain with stan- 
dard transition probability, there exists a 
separable measurable tmodifïcation X,, but in 
general there exists neither a right continuous 

modification nor a modification having the 
tstrong Markov property for a11 tstopping 
times. (For detailed properties of paths - 

[8,9].) Set 7,=0, z,=inf{t>77-, IX,#X,~_l} 
(n 2 l), and 7, = lim,,, T,,. If each point x of S 

is stable, z1 is subject to the exponential distri- 
bution P,(zr > t) = ë4x1, SO that E,(r,) = qxl, 

PxK1 =Y) = 4x, Y)> and z1 and Xz, are indepen- 

dent with respect to the P,-measure. Further- 
more pp(x, y) = P,(X, = y, 7m > 7) is the minimal 
solution. For the minimal chain there exists a 
right continuous modification with left-hand 

limits, which has the strong Markov property. 
For a tïnite Markov chain with a standard 

transition probability, a11 states are stable and 
both (8) and (9) are fultïlled. Furthermore, the 

transition probability satisying (8) and (9) is 
the unique minimal solution. 

D. Williams [lO] obtained the following 
remarkable result concerning Markov chains 

having only instantaneous states. Let Q be a 
matrix on S with -q,,,= ~(VX), OGq,.,< cc 

(Vx, y; x #y). Then Q is the Q-matrix of a tran- 
sition matrix if and only if the following two 

conditions are satisfied: (i) Cnix,ymin(qx,z, qy,,) 
< CO (Vx, y; x #y), (ii) for some intïnite subset A 

ofS,C ytA, ix) qX,Y < cc (Vx). Williams [ 1 l] also 
studied a counterpart of Kolmogorov’s back- 
ward equation for the instantaneous case. 

G. Birth and Death Processes 

A Markov chain 3E with state space S= {0, 1, 
2, . } is called a birth and death process if 
its Q-matrix Q = (q,,,) satistïes the following 
conditions: O<qo=qo,l <CO, O<q,=q,,,-, + 

qn,n+l<CO(n~l)andq,,,=O(m#n+l,n- 
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11, where 4, = - qn,” as before. Usually we 
Write Â, for qn,n+l and p,, for qn.“-, The para- 
meters A,, and pn are called the infinitesimal 
hirth and death rates, respectively. In partic- 
ular, the chain 3E is called a birth process if p,, = 

0 and a death process if Â,, = 0. The birth and 
death process satisfying An > 0 and p, > 0 for 

n > 1 has a number of properties similar to 
those of a 1-dimensional tdiffusion process. 

For the rest of this section we assume that 
&, = 0 (i.e., 0 is a ttrap) and 2. > 0, pL, > 0 (n 2 1). 
The sequence x,, called the natural scale, is 
detïned as follows: x1 =p;‘, x,=~~‘+I[‘, 
x,=p,-’ +A;’ + +(,& . ../L-.)(^, . ..E..-J’ 

(n > 3), x, = lim,,, x,. The measure m with the 
mass m,=A, ...Ân~l(~2...~,))1 (n>2) and = 
1 (n = 1) at the point x, is called the canon- 

ical measure. Then pt(xi, x,J=pJi, k)m;’ is a 
transition probability on E = {x r , xp, } 

and f(xi, t) = pl(xi, x,) satistïes a differential- 
difference equation 

i?fJi%=D,f +, (10) 

which is equivalent to (8). Here, f +(x,) = 

(f(x,+,)-f(xn))(xnil -x,X’ ad Ddx,)= 

Mx,)--67(x,-J)m; r. The operator f+D;f’ 

is similar to Feller’s expression for the intïni- 
tesimal generators of 1 -dimensional diffusion 

processes. 
Every birth and death process is obtained 

from +Brownian motion by Rime change. 

Furthermore, x, is regarded as a boundary 
point and is classified as a natural, exit, en- 
trance, or regular boundary point. Every birth 
and death process is determined by (10) and 
the boundary condition at x, (- 115 Diffu- 
sion Processes). 

H. Markov Chains in Queuing Theory 

A queue is formed when customers arrive at 

random times at some facility and request 
service of some kind. Such phenomenon often 
arises in service systems. The queuing mode1 

generally embodies the following mathemat- 
ical structure. Suppose that the nth customer 
arrives at time 7”, waits for a time interval w, 
until the beginning of his service, and departs 
after a service time u,. Usually the models we 
consider are specified by the following assump- 

tions. The interarrival times u, = 7,+, - 7, 
(n > 1) are mutually tindependent trandom 

variables distributed according to a common 
tdistribution function F(x) with +mean 1-l. 
Similarly, {un} is a sequence of independent 

random variables with a common distribution 
function G(x) with mean p-r. The sequences 

{un} and {II,,} are mutually independent. The 
queuing discipline is “lïrst corne, tïrst served.” 
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In case of many servers, this means that the 
lïrst customer waiting in the queue is served as 
soon as any one of the servers becomes free. 
Besides this standard queuing model, various 
other queuing models have been studied in 
different iïelds of application. There is a huge 

literature on queuing theory, i.e., the mathe- 
matical analysis of queuing models. A com- 
pendium of results obtained by around the 
1960s together with an extensive bibliography 

on this theory, is contained in [ 151. Some 
recent aspects of queuing theory are developed 
in [17]. Here, we are concerned only with 
some simple queuing models and their asso- 
ciated Markov chains. 

There is a standardized notation, introduced 

by D. G. Kendall [14], for identifying stan- 
dard queuing models. In Kendall’s notation 

A/B/S, s represents the number of servers, 
while A and B indicate the types of distri- 
butions F(x) and G(x), respectively. Distri- 
butions frequently used in the fïrst two places 
of Kendall’s notation are the following: M = an 

texponential distribution, D = a tunit distri- 
bution, E, = a tgamma distribution of order 
k (called a k-Erlang distribution in queuing 
theory), G(or GI) = a general distribution, and 

SO on. The mode1 Ml./. is often said to have 
Poisson input, for the number A, of arrivals 
during a time interval (0, t] forms a tPoisson 
process. 

One of the important problems in queuing 
theory is to analyze the number Q, of cus- 
tomers waiting or being served at time t. The 
process Q, is called the queue length. Ifs = CO, 

then Q, indicates the number of busy servers 
at time t. The simplest and most extensively 
studied queuing mode1 is MIMIs. In this case, 
the process Q, becomes a birth and death 
process with ‘Ij=L, nj==jp (1 <j<s), and =sp 
(j > s). Kolmogorov’s forward equation is 
given by 

P:(i 0) = -AP,@, 0) + PPt(i, 11, 

M,j) = MU - 1) -(A +jpM,j) 

+(j+ 1)wG,j+ 11, ldj<s-1, 

pXi,j) = h(i,j - 1) - (A+ wL)pt(i, j) + spp&, j + 11, 

, j2s. 

This equation cari be solved explicitly by the 
method of tgenerating functions. The limit 
distribution lim,,, p,(i,j) =pj, independent of i, 

exists if and only if sn > Â. In particular, 

p,= (l-p)pj if S=I, 
I 

i e ppJ/j! if s=co, 

where p = 1,‘~. (In the single-server case, p is 
called the traffic intensity.) Unless the queuing 

mode1 is MIMIs, Q, is no longer a Markov 
chain. In some special cases, such as E,/M/l, 
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the properties of Q, cari be reduced to those of 
some birth and death process. 

The analysis of Q, itself is difhcult in general. 
However, if either F(x) or G(x) is of exponen- 
tial type, the method of embedded ( = imbedded) 
Markov chains is useful. For example, in the 
system M/G/1 we examine the queue length 

only at times t, = 0, t,, t,, , where t, is the 
departure time of the nth customer. This em- 
bedded process X, = Q,. becomes a Markov 

chain on S = {0, 1,2, . . }. For practical pur- 
poses we could content ourselves with results 
concerning {X,} instead of the original process 
Q,. The transition probability P(i,j) of {X”} is 
given by 

P(O,j)=kj, P(i,j)=kj-i+l, i> 1, (11) 

where 

e-,,(w 
~dG(x) if ja0, 

This chain is irreducible and aperiodic. More- 
over, it is transient, nul1 recurrent, or positive 
recurrent according as the traffic intensity 
p=Â/p> 1, =l, or ~1. In the last case, the 
generating function P(s) of the limit distri- 
bution {q} is given by 

p(s)Jl -P)U -s)K(s) 
K(s)-s ’ 

where K(s) is the generating function of {kj}. 

Similarly, if the system is GI/M/l, the embed- 

ded process X, = Q,.- is the Markov chain 
with transition probability 

P(i,O)=q, P(i,j)=li-j+l, j>l, 

where 

-u 
n 

lj= 0 
emp”@%F(x) if j>O 

j! 
Y > 

if j<O, 

and dli = Cj,i lj. The limiting behavior of this 

chain is analogous to that of the preceed- 
ing chain (11). In the positive recurrent case 
(p < l), the limit distribution is given by pj= 

(1 - [)cj, where [ is the solution of L(s) = s in 
(0,l) for the generating function L(s) of {lj}. 
These results are extended to the cases with 
many servers. 

For the general single-server queuing mode1 

GI/G/l, when we consider the waiting times 
{w”} instead of Qt, we obtain the recurrence 
relation w,+i = max {0, w, + v, - u,}. This im- 
plies that {w”} is a Markov process with dis- 
crete parameter, over S = [0, 00) an uncount- 

able state space, having the structure of a 
Markov chain with transition probability (11). 

Several methods are exploited for the analysis 
of {wn} [3,16,17]. 
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1. Boundary Value Problems for Markov 
Chains 

TO discuss the behavior of the path of a Mar- 
kov chain beyond the time z,, we have to 
introduce a suitable boundary of the state 

space S. Among several conceivable bound- 
aries, the Martin boundary, which is most 
frequently utilized, is explained later in this 
section. The name cornes from its similarity to 

the tMartin boundary in the theory of har- 
monic functions. Most results stated in this 
section are also valid for the discrete time 

parameter case. 
Let X =(XC, P,) be the minimal, nonrecur- 

rent chain associated with {CI, 7~) for which Z, 
equals the lifetime [. Harmonie functions, etc., 
are defined as in the discrete time parameter 
case (with p replaced by 7~). Let y E y(x) be a 
measure such that 0 < yG(y) = C, y(x)G(x, y) 
< CO, where G(x, y) = sr p,(x, y) dt. Let pi be the 
metric in the one-point compactilïcation of the 
state space S equipped with the discrete topol- 

ogy. Set K(x,y)=G(x,y)/yG(y), and detïne 

m 1 I~(x”~Y)-w,,Y’)l 
p2(y~y’)=n~~Fl+lK( ,A, y)-K(x y’)[’ n> 

{X”} =s. 

The set &Y of a11 points adjoined to S by the 
completion of S relative to p = pi + p2 is called 
the Martin boundary of S. M = SU as is a 
compact separable space. By the definition of 

P, K(x,t) = limydr K (x, y) exists, is continuous 
in 5, and is superharmonic in x. A nonnegative 
superharmonic function u is called minimal if 
every superharmonic function u such that 
0 <u < u is a constant multiple of u. The set aSi 

= { 5 1 K(. , 5) is minimal harmonie}, called the 
essential part of &Y, is an TF,-set. Then every y- 

integrable nonnegative superharmonic func- 
tion IA is represented by u(x) = { K(x, <)p(d<) by 
means of a unique measure p on M, =SU iLY,, 
called the canonical measure of u. In particular, 
if u is harmonie, p is concentrated on &S. A 
number of representation problems in analysis, 
such as the Hausdorff tmoment problem, cari 

be considered to be representation prob- 
lems of suitable Markov chains. Let u be a y- 
integrable nonnegative superharmonic func- 
tion and (X,, Px) the Markov chain (called the 

u-chain) having p:(x, y) = u(x)-’ u(y)p,(x, y) 
(OjO = 0) as its transition probability. Then 
X,- = lim,ti X, exists and Pl(X,- E B) = u(x)-’ s K(x> 5)/@3 B 
where p is the canonical measure of u. 

A measure v on S is called a superharmonic 

measure (harmonie measure) if vq(n - 1) < 0 

(= 0), that is, C YES vyqy(nyx - 6,,) G 0 (= 0). Fix a 
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function g > 0 such that 0 < Gg < CC (- Section 

D), and set K*(x,y)=G(x,y)Gg(x))‘. Delïne 
the metric & similar to pz, using the function 

family {K*(.,y)} (~ES). The set adjoined to S 
by the completion relative to p* = pi + p2 is 
called the dual Martin boundary. Extend K* to 
SU dS* and denote by aSi the set of a11 r) E aS* 
such that K*(V, .) is a minimal superharmonic 
measure. Then every superharmonic measure v 
with j v(dx)g(x) < CO is represented uniquely as 
v=jp(d~)K*(~;) in terms of a measure p on 

suas:. 
Let 5 EM,, and denote the K( , <)-chain by 

(Xt,P~~~). Then P~(<C co)=O or =l. We cal1 5 

a passive boundary point in the lïrst case and 
an exit boundary point in the second. On the 
other hand, denote by (X,, Pzsq) the chain 

having P*~‘i(x,y)=K*(~,x)-lK*(~,y)pr(y,x) as 
its transition probability. Then P:*“([ < CO) = 0 

or =l. We cal1 q a dual passive boundary point 
in the lïrst case and an entrante boundary point 
in the second. 

Fix {q, rc}, and let X=(X,, P,) be the minimal 
chain associated with {q,r~J. Let (as),, and 
(as*),, be the sets of exit and entrante bound- 
ary points, respectively. If P,(X,- C(as),,) = 0, 

(8) has no solution other than the minimal 
solution. But if P,(X<- E(&S),,) > 0 for some 
~ES, (8) has inlïnitely many solutions. Further- 

more, if (as*),, # @, we cari obtain inIïni:ely 
many solutions satisfying (8) and (9). There 

are many open problems in this connection. 

J. Concluding Remarks 

(1) Literature and some historical remarks. 
Besides the monographs on countable Markov 

chains, such as [6,8], many of the standard 
textbooks on stochastic processes contain 
chapters on Markov chains (e.g., [l-4]). 
Among others, W. Feller [l] gave an elemen- 
tary and elegant treatment of the basic theory 
of Markov chains with discrete parameter, 
which the bulk of the recent textbooks follow. 
The terminology for the classification of states 

we use here follows the lïrst edition of [ 11. 
Since the second edition, Feller has used the 

terms “persistent” and “ergodic” instead of 
“recurrent” and “positive recurrent,” respec- 
tively. S. Karlin’s book [3] contains some 

excellent chapters on applications of Markov 
chains. 

The potential theory of nonrecurrent Mar- 
kov chains is essentially contained in that 
of general nonrecurrent Markov processes 
due to G. A. Hunt [SI. The potential theory 

of recurrent chains was developed by J. G. 

Kemeny and J. L. Snell (J. Math. Anal. Appl., 3 

(1961)). A greater part of Kemeny, Snell, and 
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A. W. Knapp [6] is devoted to the potential- 
theoretic aspects of Markov chains, including 
boundary theory. F. Spitzer’s book [7] is a 
defmitive work on the theory and application 

of random walks. The proof of normality of 
recurrent random walk is the highlight of the 
book. P. Lévy’s article [9] is a pioneering 

work on Markov chains with continuous 
parameter involving instantaneous states. 
Feller and H. P. McKean tïrst gave an exam- 
ple of Markov chains having only instantane- 
ous states (hoc. Nat. Acad. Sci. US, 42 (1956)). 
K. L. Chung’s monograph [S] is the only 
book devoted to the foundation of the theory 
of Markov chains with continuous parameter. 

The exposition of birth and death processes 
in this article follows Feller [12]. (For details 
of birth and death processes - [3].) The first 
systematic treatment of queuing theory from 

the point of view of stochastic processes is 
due to D. G. Kendall [ 13,141, and this has 
greatly influenced subsequent work in this 
tïeld. As the standard textbooks of queuing 
theory we mention N. U. Prabhu [ 161 and 
ch. 14 of Karlin [3]. The Martin boundary 
theory of nonrecurrent Markov chains was 
developed by J. L. Doob [18], Hunt [19], and 
T. Watanabe [20]. There are many papers on 

the extension of the boundary theory to more 
general Markov processes (e.g., H. Kunita 
and T. Watanabe, Illinois J. Math., 9 (1965)). 

The exposition in this article was taken from 
Kunita and Watanabe (Sûgaku, 13 (1961); 14 
(1962)). Feller (Trans. Amer. Math. Soc., 83 

(1956)) was the tïrst to introduce the notion 
of an +ideal boundary of Markov chains. 
He also studied the tboundary conditions for 

Kolmogorov’s equations (Ann. Math., (2) 65 

(1957)). 
(2) General Markov chains. A Markov pro- 

cess with discrete parameter is often called a 

Markov chain whether the state space is count- 
able or not. We here cal1 such a process a 
general Markov chain. A considerable amount 
of the results on Markov chains-on potential 
theory, limit theorems, random walks, and SO 
on-are extended to general Markov chains. 

Classical results are found in Doob [2]. Later, 
Sparte E. Andersen (Math. Stand., 1 (1953); 2 

(1954)) initiated the fluctuation theory of l- 
dimensional nonlattice random walks. T. E. 
Harris carried out an important study on the 
existence of invariant measures of recurrent 

general Markov chains (hoc. 3rd Berkeley 

Symp. on Math. Star Prob., vol. 2, 1956). S. 

Orey (Pacifc J. Math., 9 (1959)) extended the 
limit theorems of Markov chains to a class 
of recurrent general Markov chains (called 
Harris chains). A systematic treatment of gen- 

eral Markov chains is given in D. Revuz [21]. 
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A. General Remarks 

Let ixt}tET be a tstochastic process defïned on 
the tprobability space (Q, %, P). The +state 
space S of X, is the set of real numbers R or N- 
dimensional Euclidian space RN. In general, S 
may be a tlocally compact Hausdorff space 
satisfying the second countability axiom. T is 

an interval [0, co) or a set {O, 1,2, }. (T may 
also be any interval in the real line or a set 

{ , -2, l,O, I,2, }.) We cal1 this {X,},,, a 
Markov process if, for any choice of points 
s1<s2<... <s, < t in T, the tconditional prob- 

ability distribution of X, relative to Xsl, Xs,, 
. . . , Xsn is equal to the conditional probability 
distribution of X, relative to X,“. Namely, for 
AE~(S)andx,,...,x,ES, 

(1) P(X,EA(X,,=x ,,..., X&=x,) 

=P(X*EA(X,n=X,), 

where 23(S) is the least +a-algebra that contains 
a11 open sets of S. 

For a Markov process {X,},,,, the distri- 
bution of X0 is called the initial distribution of 

{X,}lET. The conditional probability distri- 
bution P(X,E A 1 X,=x) is denoted by p(s, x, 
t, A) and is called the transition probability of 
{X,},,,. This is a function of s, t E T (sd t), 
~ES, and AE!B(S) that has the following 
properties: 

(2) For fixed s and t, P(s, x, t, A) is a tprobabil- 
ity measure in A and is %3(S)-measurable 
in x. 

(3) P(s,x,s,A)=l if XEA, 

=0 if x$A. 

(4) The Chapman-Kolmogorov equality, 

P(s,x,u,A)= P(s,x,t,dy)P(t,y,u,A) s s 
(s < t < u). 

In view of(l), the tfïnite-dimensional distri- 
bution of a Markov process is completely 
determined by its initial distribution and its 

transition probability. 
Moreover, for a given function P(s, x, t, A) 

satisfying (2), (31, and (4), and for a given prob- 
ability distribution p on 23(S), there exists a 

Markov process {X,},,, with transition proba- 
bility P(s, x, t, A) and initial distribution p. In 
this sense, the transition probability is a char- 
acteristic quantity of the Markov process. 

If the transition probability depends only on 
the difference between s and t, that is, if there 
exists a function P(t, x, A) of t, x, and A such 
that P(s, x, t, A) = P(t -s, x, A), then the Mar- 
kov process is called temporally homogeneous. 

If S is an additive group and there exists a 
function P(s, t, A) of s, t, and A such that 

P(s, x, t, A) = P(s, t, A -x), where A - x = {y - 
x) y~ A}, then the Markov process is called 
spatially homogeneous. When S = RN, a spa- 
tially homogeneous Markov process is an tad- 
ditive process. A Markov process whose state 

space S is countable is called a tMarkov chain 
(- 260 Markov Chains). A Markov process 
whose sample path (- Section B) is continu- 
ous with probability 1 (- 407 Stochastic Pro- 
cesses) is called a tdiffusion process (- 115 

Diffusion Processes). Consider the case T= 
[0, CO) and S = RN, and assume that the transi- 
tion probability has a tdensity p(s, x, t, y) with 
respect to Lebesgue measure and satisfïes 
certain analytic conditions that ensure the 
continuity of the sample path, etc. Then A. N. 
Kolmogorov proved that p(s, x, t, y) satistïes 
the +Fokker-Planck partial differential equa- 
tion. Conversely, he raised the problem of 

finding conditions for the existence and 
uniqueness of the transition probability satis- 

fying the given Fokker-Planck equation [l] 
(- 115 Diffusion Processes). W. Feller ex- 

tended this equation to an tintegrodifferen- 
tial equation of a certain type and solved 

the problem partially by classical analytic 
methods [2]. On the other hand, S. N. Bern- 
Stein [3] and P. Lévy [4] made probabilistic 
approaches to the problem, and K. Itô con- 
structed Markov processes directly by solv- 
ing the corresponding stochastic differential 

equations [S] (- 406 Stochastic Differential 
Equations). 

A profound study of the structure of Brown- 
ian motion and the additive process by P. 

Levy [4,6], the theory of tmartingales initiated 
by J. L. Doob [7], and the tstochastic calculus 
due to K. Itô [5] have served as useful appara- 
tus in analyzing the structure of Markov pro- 
cesses probabilistically. The theory of Markov 
processes has also retained a close relationship 
to various aspects of mathematical analysis- 
especially to functional analysis and tpotential 
theory. The link lies in an obvious fact that, by 
virtue of the formula 

(5) WC4 = 
s 

P(4 x> dY)f(Yh 
s 

the transition probability p(t, x, A) of a (tem- 
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porarily homogeneous) Markov process in- 
duces a semigroup { 7;, t 2 0) of linear positive 

operators on a function space, e.g., on the 
space B(S) of a11 bounded measurable func- 
tions on S. 

The study of diffusion processes has played 
important roles in the theory of Markov pro- 
cesses. When S=RI, the structure of diffu- 
sion processes was completely clarifïed by W. 
Feller [S], E. B. Dynkin [9], K. Itô and H. P. 

McKean [ 101, and others (- 115 Diffusion 
Processes). In succession, G. A. Hunt [ 1 l] and 
E. B. Dynkin [9] isolated fairly general and 
practically useful concepts in Markov pro- 

cesses, including the right continuity of sample 
paths and the strong Markov property. Based 
on these properties, probabilistic potential 
theory and the theory of additive functionals 
were developed. 

We now present a formulation for the tem- 
porally homogeneous Markov process with 
continuous time parameter [9,1 l-141. 

B. Fundamental Notions 

Adjoin a point a to S as a point at intïnity 
when S is noncompact and as an isolated 
point when S is compact, set S =SU {a}, and 
let a(S) be the u-algebra that consists of all 
the Bore1 sets in S. Let I? be the set of a11 right 
continuous functions w(t) whose tdiscontinu- 
ities are at most of the tïrst kind and such that 
w(t) = û for t > s if w(s) = a. By convention, we 

set w( CO) = û. Let c(w) be the minimum of the 
t-values such that w(t) = a. For w  E @, w,~ and 
w,’ in fi are detïned as wt (s) = w(min(t, s)) and 
w:(s) = w(s + t), respectively. Let W be a subset 

of W that is closed under the operation w-, 
w: and w-rw,-, andletd=d(W)bethea- 
algebra generated by the sets {w E W 1 w(t) E A} 
(AE%($)). We often Write X,(w) for w(t). The 
subclass of B that consists of sets represented 
by {we W(W;EB} (BE%) is denoted by B,. 
Suppose that the family of probability mea- 
sures {PI} (x E S) on ( W, B) satistïes the follow- 
ing conditions: 

(6) For a fixed B in !B, P=(B) is B(S)- 
measurable in x. 

(7) P,(X,(w)=x)=l for XE%. 

(8) The Markov property P,(w: E B 1 !ZJ,) = 
Px,<,#3) holds with P,-measure 1 for BE%. 

Then the triple 9.JI =(X,, W, P, 1 x E S) is called 
a Markov process. This is a mathematical 
mode1 for the random motion of a particle 

moving in S whose tprobability law is inde- 

pendent of its past history once the present 
position of the particle is known (- 260 Mar- 
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kov Chains). We cal1 S the state space of ‘%Il, W 
the path space, and an element w  in W a path, 

respectively. P, represents the probability law 
of a particle that starts from x. In view of the 
interpretation that the particle vanishes if it 

reaches a, we cal1 c(w) the lifetime (or terminal 
time) and d the terminal point. 

Now,foranys,<s,<...<s,andt, 

~,(X,~+~EAIX,,,...,X,~ 

=p.&+,~A I XsJ=PxJKW 

holds with P,-measure 1 for any x. This equal- 
ity means that {X,},à, is a Markov process 
on S in the sense mentioned before with initial 

distribution 6, ( a unit measure at x) and the 
transition probability given by P(t, x, A) = 
P,(X,E A). The restriction of this transition 
probability to (t, x, A)E [0, CO) x S x %3(S) satis- 
fies the following properties: 

(2’) For a fixed t > 0, P(t, x, A) is B(S)- 
measurable in x and is a measure in AE 
d(S) with P(t, x, S) < 1. 

(3’) P(O,x,A)=&(A), XE& AEB(S). 

(4’) P(s+t,x,A)= 
s 

P(s,x,dy)P(t,y,A). 
s 

(9) lim,lo ‘IJ(x)=f(x), ~ES, holds for any 
bounded continuous function f on S, 
where 7;f is detïned by formula (5). 

{ 7;) is called the semigroup of the Markov 
process !VI because it enjoys the property 
T,,, = T, 7; on B(S). By convention, any 
function ~EB(S) is extended to a function on S 

by setting f(a) = 0. (9) then follows from the 
expression 7;f(x) = E,(f(X,)), where E,( ) 
represents the integral with respect to P,. 

A Markov process Y.Il is called conservative if 
P(t, x, S) = 1 holds for every x in S and every t. 
A point x in S is called a recurrent point if for 
every neighborhood U of x and every t > 0, the 
path starting from x returns to U after time t 
with probability 1. Under some conditions, x 
is recurrent if and only if j;p(t, x, U)dt = 00 for 
any neighborhood U of x. 9.R is called recur- 
rent if all points in S are recurrent. Otherwise, 
it is called transient. $%II is of course conserva- 

tive if it is recurrent. There are other instances 
in which {X,} is called recurrent, if a particle 
starting from any point in S reaches any neigh- 

borhood of any other point in S in tïnite time 
with probability 1. In this case, under suitable 
conditions for regularity, the +mixing property 
holds, whence follows the tergodic property 
(- 136 Ergodic Theory). If the transition 
probability of {X,} has an tinvariant mea- 

sure with total mass 1, +Birkhoff’s individual 

ergodic theorem holds [7]. 
Let { 5,) be an increasing family of (T- 

subalgebras of %3( W) such that X, is R,- 
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measurable for each t > 0. A [O, m)-valued 
function o on W is said to be an ({ St}-)Markov 

time (or stopping time) if {w 1 o(o) d t} ES,, t 2 0. 
The a-algebra 8, is then detïned by 

If there exists a family { &} as above and if for 

every { s,}-Markov time o and for any x E S, 
s>O, and .4623(S), 

holds with P,-measure 1, then it is said that !IR 
has the strong Markov property with respect to 
{g,}, and such an !III is called a strong Markov 
process. Since a constant time is also a Mar- 

kov time, the strong Markov property imposes 
stronger conditions than the Markov prop- 

erty. A suftïcient condition for a Markov 
process W to have the strong Markov prop- 
erty is that the space C(S) of all bounded 

continuous functions on S. be invariant under 
the semigroup of 9.R. In this case, we cari take 

&= ns>,% 
It is convenient to enlarge the algebra 8, as 

follows. Let ,U be a measure on (%, S(g)), and 
Write 23(S), for the completion of d(S) by p. 

Write ses> for the intersection of a11 (!-B(s)),, 
where /J runs over a11 probabihty measures on 
23(g). Let P,, be the measure on (W, 23) defined 

by P&V=Js P(WP,(N; and kt 8, = n,,(B,>, 
and % = n,(23),, where (!?3), is the completion 
of 23 by P, and (d,),, is the o-algebra obtained 

by adjoining to 23, a11 P,-nul1 sets in (23),. A 
Markov process %71 is called a Hunt process if 
23, = &,l d, for any t 2 0, %II has the strong 
Markov property with respect to {a,}, and %II 
has left quasicontinuity in the following sense: 
If {G”} is any increasing sequence of { %,}- 
Markov times and 0 = lim rr,, then for u < 

m, lim X,” =X0 holds except for a set of P,- 
measure 0 for any XGS. For a set A of S, let 

o,=inf{tIt>O, X,E A} if such a t exists, 

=cuifx,~Aforallt>O. 

Then a, is called the hitting time for A. (Some- 

times the condition t > 0 in the definition of 44 
is replaced by t 2 0.) If 9.N is a Hunt process, 

then a, is a {23,}-Markov time for any Bore1 
set A [ 14,151. For a subset A, 7A = CT*~ is called 
an exit time from A. If %II is a strong Markov 
process, the exit time 7, from a point a is sub- 
ject to the exponential distribution 

Pa(5,>t)=em”‘@‘, O<Â(a)<co. 

In particular, a is called an instantaneous state 
if ^(a) = cz and a trap if n(a) = 0. For a Hunt 

process %R, Px(B) = 0 or 1 if B is in %&. This is 
cdhed Blumenthal’s zero-one law. 

A function P(t, x, A) of t > 0, XE S, and AE 
B(S) is said to be a transition function on S 
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if it satisfies (2’) (3’) and (4’). Denote by C,(S) 
the set of those functions in C(S) vanishing at 
infïnity. A transition function defines by (5) a 
linear operator on B(S) which satisfies the 
semigroup property T, 7; = T,,,. If T leaves the 

space C,(S) invariant for every t > 0 and if (9) 
holds for any fi C, (S), then the transition 
function (resp. semigroup 7;) is called a Feller 

transition function (resp. Feller semigroup). 
Any Feller transition function on S admits a 
Hunt process; namely, for a given Feller tran- 
sition function P(t, x, A), there exists a Hunt 

process !UI (on %) whose transition probability 
coincides with P(t, x, A) for t 3 0, ~ES, and 
AEB(S). Such a process m is often called a 

Feller process. For instance, any spatially 
homogeneous Markov process on RN is a 

Feller process. If a Feller transition function 
satishes an additional condition that, for any 
compact set K and neighborhood G of K, 

tc’P(t,x,S-G)+O, t+O, 

uniformly on K, then the associated Hunt 
process %II is a diffusion, namely, P, (X, is 
continuous in t <[)= 1, xES [2,7]. 

C. Generators of Markov Processes 

For a given Markov process $%R, the generator 

of %II is defïned by 

where { 7;) is the semigroup of W. The choice 
of the domain a(o) of 8 depends on the 
situation. When { 7;) is a Feller semigroup, it is 
a strongly continuous semigroup on C,,(S). Let 
Q be its infinitesimal generator in the sense 
of Hille and Yosida (- 378 Semigroups of 

Operators and Evolution Equations). Then 
a(6) consists of those functions fi C,(S) for 
which the convergence in the right-hand side 

of (11) takes place uniformly on S. A necessary 
and sufficient condition for a linear operator 
on C,(S) to be the infïnitesimal generator of a 
Feller semigroup is known [S]. 

For a general strong Markov process !III, 
one way of defïning a(o) is as follows [ 16,171. 
Denote by e(S) the set of ah functions fi B(S) 
which are fïnely continuous in the sense that 

(12) P,(f(X,) is right continuous in tZO)= 1, 

XES. 

a(6) is then defined as the set of those func- 
tions fi c(S) for which the convergence in the 
right-hand side of (11) takes place boundedly 
in x with limit functions belonging to c(S). (5 
is called the generator of the strong Markov 

process %11. The following three conditions are 
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equivalent: 

(13) f~wf4, Ef=.4. 

(14) .L gE C(S) ad W(x) -f(x) 

ZZZ 
s 

T,g(x)ds, tao. 
0 

(15) .L g E c(S) ad f(&) -fWo) - 
s 

’ g(X,) ds 
0 

is a tmartingale on (W, 2&, PJ for each 

xcs. 

Furthermore, let o be a Markov time such that 
E,(u) < CO. Then we have Dynkin’s formula: for 

.fE WY> 

f(x)= -E,(~~~~(x~)dt)+E*(r(X,)J. 

If 6f is continuous at x, then 

L’(S; m). Let 6 be its infïnitesimal generator. 
6 is then a nonpositive definite self-adjoint 
operator on L2(S; m), and the following defi- 

nition of the symmetric form & on L2(S; m) 
makes sense: 3 [&] = 3( &6?), &(f, g) = 

(~~~g),~gEaC~l,where(, 1 
denotes the inner product in L2(S; m). G is 
called the Diricblet form of an m-symmetric 
Markov process ‘&II. A Dirichlet form (on 

L2(S; m)) is by definition a closed symmetric 
form G on L’(S;m) such that UE%[&?] imphes 

v= min(max(u, 0), l)~a[J?] and &(v, V)<~(U, u). 
A Dirichlet form is called regular if the space 
a[&] fl C,(S) is dense in a[&] and in C,(S), 
where C,(S) is the space of continuous func- 
tions with compact support. For a given regu- 
lar Dirichlet form &, there exists uniquely in a 
certain sense an m-symmetric Hunt process 
whose Dirichlet form is the given G [ 191. In 
many cases of symmetric Markov processes, 

the form &(f;f) rather than the generator 6j 
admits an explicit expression for smooth func- 

6f(x) = lim EJf(xrU))-f(x) if x is not a trap, 
Uli4 Uzv) 

=o if x is a trap, 

where U is an open neighborhood of x. 
This representation of 6 suggests that, when 

S is a smooth manifold, 6f for smooth func- 
tions f often becomes an elliptic partial dif- 
ferential operator or a mixture of it and an 

integral operator satisfying a certain maximum 
principle. In many practical cases, the data 
given to us are the coefficients of such a linear 
operator L carrying a certain linear space 
a(L) c B(S) into B(S). Thus a problem arises 

as to the existence and uniqueness of a strong 
Markov process %%II whose generator 6 is 
an extension of L. In connection with (15) 
Stroock and Varadhan [ 1 S] formulated this 
problem as the martingale problem concerning 
the existence and uniqueness of a probability 
measure P, on W such that P,(X, =x) = 1 and 

f(X,) -f(X,) -yo Lf(X,)ds is a martingale on 
(W, d,, P,) for every fe a(L). Since this formu- 
lation refers directly to probability measures 
on W, it is useful in the study of stochastic dif- 

ferential equations and of the convergence of 
Markov processes as well. 

Let m be a positive Radon measure on S 
which is strictly positive on each nonempty 
open set. A Markov process %II is said to be m- 
symmetric if 

I Tfb4m~(dx) s 
= s f(x)Tdx)m(dx) (< +co) s 
holds for any t > 0 and nonnegative mea- 

surable functions J 9. Then { 7;} is realized 
uniquely as a strongly continuous semigroup 
of symmetric operators on the real L2-space 

tions J: 

When YJI is the N-dimensional Brownian 
motion, the generator of its semigroup on 

L2(RN) is given by E~=~AU, %(Q)={UE 
L2(RN) 1 Aus L2(RN)}, and its Dirichlet form 

is given by 

&(u, v) =; 
s 

grad u. grad v dx, 
RN 

D. Markov Processes and Potential Tbeory 

Analytic notions and relations in classical 
potential theory cari be interpreted in terms of 

Brownian motion (- 45 Brownian Motion). 
The relevant probabilistic notions and re- 
lations have been formulated not only for 
Brownian motion but also for a general Hunt 
process under the name of probabilistic 
potential theory [ll, 14,201. 

>- 

Let YJI be a Hunt process. A set A cg is 

called nearly Bore1 measurable if for each 
probability measure p on $ there exist A,, A, 
E%(S) such that A, c Ac A, and PJX,E 
A, -A, for some t > 0) = 0. !E’(S) denotes the 
family of all nearly Bore1 subsets of 5. Then 
B(S) c 23”(S) c S(S). The hitting time oA for a 
nearly Bore1 set A is still a { 23,}-Markov time, 
and the probability P,(a, >O) is either zero or 
one according to Blumenthal’s zero-one law. x 
is said to be a regular point of A in the former 
case and an irregular point of A in the latter 

case. Let A’ denote the totality of regular 

points of A. 
A set A c S is called finely open if for any 

XE A there exists a set C=C(x)~23” containing 
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S - A such that xl c’. Any open set is finely 
open by virtue of the right continuity of the 
paths. The fine topology delïned by the fine 

open subsets of S is therefore lïner than the 
original topology. A nearly Bore1 measurable 
function ,f on S is lïnely continuous if and 
only if it satislïes (12). A nonnegative 23(S)- 
measurable function f is called r-excessive 
(320) if e-“‘7;f<ffor any t and em”T,f(x)-t 
f(x) (t-0). A O-excessive function is called 
simply excessive. Any a-excessive function is 
nearly Bore1 measurable and fmely continuous. 

The function f(x) = G,g(x) =iO e-“‘7;y(x)dt 
(G, is called the resolvent of W) is a-excessive 
for any nonnegative d(S)-measurable func- 

tion y. If f is E-excessive and A c S is nearly 
Bore1 measurable, then the function pÅf(x) = 
EX(e-a0Af(X61); a, < ‘x)) is a-excessive again. 
When YJ1 is the Brownian motion on RN (N 2 
3), the class of excessive functions coincides 
with the class of nonnegative tsuperharmonic 
functions. Also, the fine topology is identical 
with the +Cartan fine topology. 

A set A c S is called polar if A is contained 

in a set DE %Y such that PJo, < “3) = 0 for any 
xeS. A is called thin if A is contained in a set 
DE%” such that D’ is empty. A set contained 
in a countable union of thin sets is called 

semipolar. If A is semipolar, then X, E A occurs 
for at most countably many values of t with 
P,-measure 1, x E S. The set A - A’ is semipolar 
for any AE si”. Any polar set is semipolar. The 
converse is also true when !III is Brownian 
motion but not true when 9.R is the uniform 
motion to the right on R’. 

Under certain conditions of duality or sym- 
metry for the Hunt process, the notion of 
capacity cari be introduced by generalizing the 

classical Newtonian capacity. Then a set of 
zero capacity is identified with a polar set or 
its weaker version [i 1,191. The stochastic 

solution of the classical +Dirichlet problem cari 
also be formulated for a wide class of diffu- 
sions. Thus, for a domain D c S, the solution of 
the equation Bu(x) = 0, x E D, with boundary 

function f is expressed as u(x) = p&f’(x), x E D, 
and the boundary behavior of u is studied 
probabilistically [9], 

We have SO far discussed mainly potential 

theory for transient Markov processes. How- 
ever, we cari also establish potential theory for 

recurrent Markov processes following the 
mode1 of the tlogarithmic potential in the case 
of 2-dimensional Brownian motion. 

E. Additive Functionals 

The notion of additive functionals was lïrst 

introduced in relation to the study of time 
change of Markov processes, and in particular, 
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to the study of the +local time of Brownian 
motion. Later it was studied in relation to 

potential theory and tmartingale theory. Addi- 
tive functionals play an important role in the 
study of Markov processes. For a Markov 

process CYJI, a function <p = <p,(w) of t and w  is 
called a (right continuous and homogeneous) 
additive functional if the following conditions 
are satislïed: (1) --CO < <p,(w) < CO; (2) <p,(w) is 
right continuous in t (t < [), pc- exists, and <Pu 
= ‘pi- for t > 5; (3) qc(w) is d,-measurable in w  
for Iïxed t; and (4) for any t and s, 

(16) vs+?(w) = V,(W) + cpt(wZ) holds with P,- 
measure 1 for any xES. 

We cal1 <p a Perfect additive functional, if it 

satisfïes (l), (2), (3) and satislïes (16) for a11 w. 
Two additive functionals are equivalent if they 
are equal except on a set of P,-measure 0 for 
any t and x, and <p is called nonnegative if there 
exists a nonnegative additive functional which 
is equivalent to cp. The concept of continuous 

additive functionals cari be defmed similarly. 
The function a = C(,(W) of t and w  is called a 
(right continuous and homogeneous) multi- 
plicative functional if it cari be expressed by an 

additive functional <p as 

(17) a,W=ev-<p,(w)). 

An additive functional cp is said to be natural if 
cpt and the path X, of M have no jumps in 
common with P,-measure 1 for any ~ES. 

For a nonnegative additive functional cp, 

(18) u,(x)=E,(~~e~“d~~) 

is a-excessive. Let %Ii be a Hunt process. A 
fmite a-excessive function u, cari be expressed 

in the form (18) by a unique nonnegative 
natural additive functional cp if for every 
increasing sequence {Q,,} of Markov times 
such that unfi, E,(e~“%,(X,J)-*O holds. 
It is possible to choose a continuous <p cor- 
responding to u, if and only if for every in- 
creasing sequence {o,,} of Markov times, 
E,(e-““nu,(X,~)-rE,(e~““u,(X,)) holds, where 
o = lim 0,. In particular, u, may correspond 

to a continuous <p if the following two con- 
ditions are satislïed: (1) u, is bounded and 

em”‘7;u,(x)+0 (t-ca), (2) e-z’~u,(x)+u,(x) 

(t-0) uniformly in x [4]. In the case of 
Brownian motion, any nonnegative continu- 
ous additive functional cp cari be characterized 
by a certain o-lïnite measure p on S charging 
no polar set, which is called a smooth measure 
[9,21]. Such a characterization cari be ex- 
tended to more general Hunt processes satis- 
fying certain conditions of duality or sym- 

metry with respect to a basic measure m, and 

the correspondence between <p and p is speci- 
lied by the following formula of Revuz [22]: 
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For any function f 20, 

An additive functional <p of a Hunt process 
%Jl is called a martingale additive functional if 

E,(<p:) < CO and E,(<p,) = 0 for any t > 0 and 
x E S. In fact, <Pu is then a square integrable 
tmartingale on ( W, { BjtJta ,,, PJ for each x E S. 
Let JZ be the set of all martingale additive 
functionals. The study of the class .1 consti- 
tutes a special aspect in the general theory of 
tsemimartingales [ 15,16,23-261. In particular, 
the quadratic variation (<p) of <p E & cari be 
realized as a nonnegative continuous additive 

functional that satislïes E,( (cp),) = E,(<pF) for 
a11 XE S and t > 0. The additive functional 
(<p, I/J) is similarly delïned for cp, $ E A. Con- 

sider for <p E J@ a measurable function f on S 
such that E,(&j’(X,)‘d (q),) is finite. Then the 
stochastic integral f. cp cari be defïned as an 
element of J& satisfying 

(1 

f 

(20) E.A(f.cpM=Ex f’K)d(cp>+h > 
0 > 

*EAl. 

(f- q), is often denoted by &“(XJd<p,. The 
space of a11 continuous functionals in & is 

denoted by JY~. Its orthogonal complement in 
the sense of ( , ) is denoted by J.%!~. The struc- 
ture of A,, is known, and each functional in 
&‘* cari be represented by means of the so- 
called Lévy system, which is a pair consisting 

of a certain kernel on S and a certain nonnega- 
tive continuous additive functional [24,25]. If 
JY is an N-dimensional Brownian motion, 

then dl= JZ~, and any <p E 4 takes the form 

(21) cpt= i 
s 

*b,(X,)dX;, 
i=l 0 

where the integral appearing on the right-hand 
side is detïned by (20) for the ith coordinate 

process X,i - X6 E JZ and for a measurable 
function bi on RN with E,(& b,(X,)’ ds) < CO, 

XER~ [23,28]. 
Replacing (16) by the “associative law” 

<PS(w) + <p:(w) = <pu(wX 

we cari also delïne temporally inhomogeneous 
additive functionals. 

F. Transformation of Markov Processes 

There are several methods by which a given 
Markov process cari be transformed to a 
new one. Here we mention some important 
transformations. 

Transformation by a Multiplicative Functional. 
For a Markov process !& let CI be a multiplica- 
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iive functional such that E,(a,) < 1 and P,(cc, = 
l)= 1. Set 

W, x, I-1 = UwdX,)) U-EWS)), 

?y& x, {a}) = 1 - P”(f, x, S). 

Then Pu(t, x, E) is a transition probability on 
g and corresponds to a Markov process 
ma = (S, W”, P r, x 6 9). We cal1 !W a transfor- 
mation of YJI by a multiplicative functional x. It 
is possible to choose W” = m. If I1R is a strong 
Markov process, SO is YJP. Conversely, let W 
and %II’ be two Markov processes with the 

same path space I@ on the same state space S. 
If the probability law Pi of YJ? is absolutely 

continuous relative to P, of %II, then $YJI’ is a 
transformation of %I by a certain multiplica- 
tive functional of VI. This transformation 

includes killing, transformation by drift, and 
superharmonic transformation as special cases. 

(1) Killing. Transformation by a multiplica- 
tive functional CI is called killing if 0 <CI, < 1 
holds. In fact, ‘DP cari be constructed as fol- 
10~s: A particle going along a path w  of %R is 
“killed” (jumped to a) in such a way that its 
surviving probability up to time t is a,(w). For 
a nonnegative bounded continuous function 

c(x) on S, let 

Then c( satisfies the condition given previously. 

If the semigroup {T,} of !UI is a Feller semi- 
group and has the generator 8, then the semi- 
group { 7;} of YP is also a Feller semigroup, its 
generator (si” has the same domain as 8, and 
B”=Q-c [29]. 

(2) Transformation by drift. For <p E A, let c(~ 
=exp{ <pt - (<p),/2}. Then c(, is a multiplicative 
functional. The transformation determined by 
M is called a transformation by drift. Let !JJl be 

the N-dimensional Brownian motion and 
p E & be the functional expressed as in (21) 
with bounded b,, . , bN; then 

(<p>,= 
s 

’ i bXWs> 
0 i=l 

and the above formula for tl gives a transfor- 

mation by drift. Moreover, if b,, . . . , b, are in 
C,(S), then the semigroup of YP is a Feller 

semigroup, and for a bounded function f with 
bounded continuous derivatives up to the 
second order, f is in the domain of 8” and 

cFt”f=(1/2)Af+C:, b,(afMx,) [9,16]. 
(3) Superharmonic transformation. Let u be 

an excessive function of !LU and A = {x 10 < 
U(X) < CO}. Set 

44 = 4KWYWdw)) if &WEA 

=o if X,(w)& A. 

Then CL* is a multiplicative functional. The 
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transformation delïned by CI, fïrst introduced 
by Doob, is called a superharmonic transfor- 
mation. The transition probability P(t, x, lJ of 
~%Pis equal to U(X)-‘SrP(t,x,dy)u(y) if ~CA, 0 

ifx$Aandt>O,and&(r)ifx$Aandt=O, 
for r in B(S). In particular, if !UI is a Feller 
process and u is a continuous function such 

that 0 <c < u <k < CO, then !JJIa is also a Feller 
process and Baj’= u ml E(t$), where the do- 
main of 6’ is the set off for which LIN is in the 
domain of 8. 

Time Change. We understand the term time 

change in a broad sense, including the follow- 
ing two important special cases. 

(4) Time change by an additive functional. 
Let ‘%ll be a Hunt process and <p be a nonnega- 
tive continuous additive functional such that 
P,(cp,=O)=l. Set S*={xIP,(cp,(w)>Ofor 
every t > 0) = 1 }, and assume that S* is locally 

compact. Let @* be the set of all right con- 
tinuous functions on S*. They have discon- 
tinuities of at most the lïrst kind, and %3* is 

the a-algebra on @* generated by all +Bore1 
cylinder sets. Set P~(B)=P,(XvFl,,,(w)~B) 

(BE%*), where ‘pt-’ is a right continuous in- 
verse function of <Pu. Then !III* = {S*, l@*, Pz, 

x E S *} is a Hunt process on S*, and we say 
that %Jl* is obtained by time change from !VI 
by cp. Roughly speaking, %R* cari be con- 
sidered to be a Markov process with paths 

X:(W)=X,;I,,,(W). The resolvent of %Jl* is 
given by E,(Jz e~‘VP’f(Xt)d~,). Suppose that 
a(x) is a continuous function on S such 
that 0 <c < a(x) < k < CO, and set <p,(w) = 

SO a(X,(w))ds. Then S* = S, m* = @, and 
23* = %, and !Vl* has the same fine topology as 
!J.JI. The domain of the generator 8* of W* 
coincides with that of 8 of %Q and e*f= 
ü1 EJ Let %R and !lJ? be Markov processes 
with the same state space and the same path 
space I@. If they have the same hitting proba- 

bilities {HK(x;)=Px(XaK~.)}, then each one 
cari be obtained from the other by time change 
by a strictly increasing additive functional. The 
converse is also true [ 143. 

(5) Subordination. This concept, introduced 

by Bochner, was then extended as follows: 
Let 0”“’ be the tlaplace transform of an 
tinlïnitely divisible distribution with support 
[0, CO), and let Ft( .), be the distribution with 
Laplace transform e-‘W’“). Let { 7;} be a Hille- 
Yosida semigroup on a certain +Banach space, 
and set 7;w=so T,F,(ds) (+Bochner integral). 
Then { 7;“‘} is also a semigroup and is called 

the subordination of { 7;) by $. If Q is a gen- 
erator of { 7;}, then - $( - 8) is a generator of 

{YY. 
In particular, we cari assume {T,} to be a 

nonnegative semigroup on C@)(C,(S)) such 
that 7; 1 = 1, and {X!} to be a Markov process 

261 Ref. 
Markov Processes 

corresponding to the semigroup 7;. Let {y(t)} 
be an additive process that is independent of 
{X,} and satistïes E(e~“y”‘) = emrY@). Set x(w) 
=x y(t,wj(o); then {Y,} is a Markov process 
corresponding to the semigroup {TV}. The 
operation by which we obtain {x} from {Xt} 
by using {Y(t)} is also called subordination. In 

particular, if {Y(t)} is a one-sided stable pro- 
cess of the ath order (- 5 Additive Processes), 
this operation is called the subordination of the 

ccth order. If {X,} is an additive process, then 
the process obtained from it by subordination 
is also an additive process. The subordination 
of the ath order of Brownian motion gives a 
tsymmetric stable process of the 2ath order. 
Let {tjl(t)} and {$2(t)} be independent of {Xc}. 
Then the superposition of two subordinations 
of {Xt} by $1(t) and tj2(t) coincides with the 

subordination by {Y,(Y,(t,o),w)} [30]. 
(6) Reversed processes. Let {X,},,, be a 

Markov process on (fi, %3, P) and X: =X-, for 
tET*={tl -~ET}. Then {Xf}tsT* is a Markov 

process and is called a reversed process of 
{X,}. If the state space of S is countable, then 
the transition probability P(s, x, t, y) of {Xt} 

and P*(s, x, t, y) of {X:} satisfy the following 
condition: P*(s, x, t, y) = Q( - t, y)P( - t, y, 

-s,x)Q(-s,x)-‘, where Q(t,x)=P(X,(w)=x) 

and we assume Q(t, x) # 0. 

For a given temporally homogeneous Mar- 
kov process {X,} with state space S, let { 7;) be 

the semigroup corresponding to {Xt}. Then a 
+a-fïnite measure m on (S, B(S)) is called a 
subinvariant measure (or excessive measure) if 

the inequality SS T,f(x)m(dx)<~,f(x)m(dx) 

holds for every nonnegative function 1: The 
measure m is called an invariant measure if 
the equality holds instead. Let {XF} be an- 
other Markov process whose state space is 
S and whose semigroup is {T*}. If for some 
a-fmite measure m and for every nonnega- 
tive f and g the equality SS TJ(x)g(x)m(dx)= 

lsf(x)T,*g(x)m(dx) holds, then {XF} is 
called the dual process of {Xt}. m is then a 
subinvariant measure of {Xt} and {XF}. 

The concept of reversed process is related to 
that of the dual process. For example, if m is 
an invariant probability measure of {X,} and 
if the distribution of X,, is m, then the distri- 

bution of X, is also m for every t, and the 
reversed process of {Xc} coincides with the 

dual process [23]. 
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262 (XVII.1 1) 
Martingales 

A. General Remarks 

Let (Q 23, P) be a tprobability space and T a 
time parameter set. For each tu T, let 5, be a 

to-algebra such that 5, c 5, c 23 (s < t). With- 

out loss of generality we cari assume that the 
probability space (0, !B, P) is tcomplete and 
each 5, contains all measurable subsets of R 
with P-measure zero. A real-valued tstochastic 

pro== ix,>,,, on (Q 23, P) (which is also 
denoted by (X,, t E T)) is called a martingale 
with respect to 5, provided that (i) X, is &- 
measurable and E() X,1) < CO; and (ii) ifs < t, 
then 

W, I 8,) =X, (W, (1) 

where (as.) means talmost surely, which Will be 
omitted when there is no room for confusion. 

In this case, we also say that (X,, &, te T) is a 
martingale. If the equality in (1) is replaced by 
the inequality < (a), {Xt}teT is called a super- 
martingale (submartingale). For the case of 
martingales the values of X, may be complex 
numbers. We Write martingale, submartingale, 

and supermartingale as (M), (SbM), and (SpM), 
respectively, for short. If (X,, &, t E T) is an 
(M) then (X,, 8,, tu T) is also an (M), where 
2$ = B(X,, u E T, u < t). When the family of o- 
algebras involved in the definition of an (SbM) 

{X,1,,, is not explicitly mentioned, we under- 
stand that {Xt}teT is an (M) with respect to 2$. 
This convention is used for (SbM) and (SpM) 
also. The term martingale is due to J. Ville. P. 

Lévy had already made use of the concept in 
his work, but it was J. L. Doob who estab- 
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lished a systematic theory of martingales [2]. 
These concepts now provide us with not only 
basic tools but also fundamental principles in 
the theory of stochastic processes. 

The terminology “super-” and “submartin- 
gales” cornes from the analogy to super- and 
subharmonic functions. As a mathematical 
mode1 of games, however, they correspond on 
the contrary to subfair and superfair games, 

respectively. One of the fundamental mathe- 
matical principles in games was formulated 
by Doob as the following optional sampling 
theorem for martingales. TO state it, we sup- 
pose for the moment that T= Z+ = {0, 1,2,. . }; 
a similar result also holds if T= R+ and X, is 
right-continuous. Let (r and z be bounded (&)- 
tstopping times (a is bounded if mEZ+ exists 
such that a<m a.s.). If(X,,nEZ+) is an(M) 
((SbM), (SpM)) with respect to (&), then 

X ..,=W,l5,) (6>2). 

In particular, E(X,,,) = E(X,) ( <, a). Con- 

versely, these properties characterize martin- 
gales: If X, is s,-measurable, E( IX,/) < CO and 
E(X,,,) = E(X,) (<, 2) for any bounded stop- 
ping times g and z, then (X,, 8., FEZ’) is an 

(Ml ((SbW> (SPM)). 
The following are some basic properties of 

martingales: (1) For any given (SbM) X,, m(t) 
= E(X,) is an increasing function of t, and X, is 

an (M) if and only if m(t) = constant. (2) Let X, 
and x be (SbM). Then aX, + b x (a, b > 0) and 
sup(X,, y) are (SbM). (3) Let X, be (SbM) and 

f(x) an increasing tconvex function defined in 
(-00, CO). For any given tO~ T, if E(lf(X,J)< 
CO, then (f(X,), te( -CO, t,] fl T) is an (SbM) 
and furthermore, when X, is an (M), (f(X,), 
t~( -CO, to] f’ T) is an (SbM) even iff(x) is 
not increasing. In particular, X,’ = sup(X,, 0) 
is an (SbM) if X, is an (SbM), and IX,1 is an 

(SbM) if X, is an (M). (4) Let X, be an (SbM). 
Ifa,b,téTanda<t<b,thenE(IX,I)< 
2E((X,I)-E(X,). (5) If X, is an (SbM) and 
X, > 0 (t E T) and t 1 E T, then the family of 
trandom variables {X,1 tE( -co, t,]n T) is 
uniformly integrable (see (6)). (6) If X, is an 

(SbM), t,E T and t.1, then {X,“} is uniformly 
integrable if and only if lim,,, E(X,“) > -CO. 
Here a family of random variables {X,},,,. is 
said to be uniformly integrahle if we have 

lim sup 
s 

I X,(4 I w4 = 0, (2) n-m * 4, 

where A,,, = {w 1 IX,(o)1 > n}. 
Example 1. For any sequence of random 

variables Y,, Y*, , if the relations 

~(y,+,Iy,,...,y,)~O, n=l,2,..., (3) 

hold, then 

x,=c y, 

is an (SbM). If the inequality sign in (3) is 

replaced by the equality sign, then X, is an 
(M). In particular, if { Y,} is a sequence of 

independent random variables such that 
E(G) = 0, then 

X”==i y, 
“=, 

is an (M). 

B. Martingale Inequalities and Convergence 
Theorems 

The following inequalities, which are conse- 
quences of the above optional sampling theo- 
rem, are due to Doob. Let (Xj, 1 <j < n) be 

a nonnegative (SbM) and Xz = max, sjg,Xj. 
Then 

ÂP(X~>Â)gE(X,;X,*>i)~E(X,) (l>O). 

From this we have that if (Xi, 1 <j < n) is an 

(M) such that E(lXJ’)< CO, then 

P(IXI~>n)~n~~E(IX”I~) (pal) 

and 

WlXl,3~ 5 pwcl”) 
( > 

(P> 11, 

where IXI~=max,,jGnIXjl. If U(I) is the up- 

crossing number of an interval I = [a, b] by a 
sample sequence of an (SbM) (Xj, 1 <j<n) (i.e., 
the number of pairs (i, j), 1 < i <j < n, such that 

X,<a, Xj>b and a<X,<b for i<k<j), then 

C((i(l))~~(EI(X.u)+l-EI(X, -4+11. 

Using these inequalities, we have the fol- 
lowing convergence theorems: (i) Let (X,, 1 < 
n < CO) be an (SbM). (a) If sup,E(Xn) < co, 
then lim n-41 X,=X, exists with probability 
1 and E( 1 X, 1) < CO. In particular, every non- 
positive (SbM) and nonnegative (SpM) con- 
verge to integrable random variables a.s. 
(b) Furthermore, if {X, ( 1 <n < 03) is uni- 

formly integrable, then lim,,, X,=X, exists 
with probability 1 by (a), and (X, ( 1 <n < CO) 
is also an (SbM). (c) If X, is an (SbM) such 
that {E((X,()) is bounded, then lim,,,X, 
exists, and if (X,, 1 <n < CO) is an (SbM), then 
lim n-m E(X,) < E(X,), where the equality holds 
if and only if {X, 1 1 <n < co} is uniformly 
integrable. (ii) If (X,, -03 < n < -1) is an 
(SbM), then lim,,-,X,=X-, exists and 
-CO <X-, < CO. Furthermore, if E(X-,)> 

-cO,then -co<X-,<ooand(X,,-co<n< 
-1) is a uniformly integrable (SbM). (iii) Let 
(X,, X2, . . . , Z) be an (SbM). (a) lim,,, X,= 

X, exists and lim,,, Jw,) d E(X,)< E(Z). 
(b) lim,,, E(X,) = E(X,) if and only if {Xn 1 
1 <n < CO} is uniformly integrable, and in 



262 C 
Martingales 

this case (X1,X,, . . . . X,,Z) is an (SbM). 

(iv)Let{CY,}(-oo<n<coand5,c5.+,C 
d) be a sequence of o-algebras on (Q, 23, P). 

Put &, = fi,, 5, and g+, = V,,g,, (the smallest 
o-algebra containing a11 5,). If Z is a random 

variable with E( IZl) < CO, then lim,, +m E(Z 1 

5,) = E(Z 1 g*,) (a.s.). We mention some 
applications of these convergence theorems. 

Example 2. Let (Q 23, P) be a probability 

space and {rr.} (n = 1,2,. ) a sequence of par- 
titions of R into d-measurable sets with posi- 
tive P-measure such that for each n, rc,+i is 
lïner than rr,,. Let rr, be {Mj”), Mp), . }, denote 

the smallest cr-algebra containing {M$“l} j= i, 2, ,,_ 
by g,, for each n, and set 3, = V”&,. For a 
given tcompletely additive set function <p 
on (R, R,), if we delïne X,,(w) by X,(w) = 
<p(A#“‘)/P(Mr)) for <UE Mj”), j= 1,2, , then 

(X,, &,, 1 Qn < CO) is an (M), and lim,,, X, 
= X, exists. If P is the restriction of P to &, 
then <p is tabsolutely continuous with respect 

to P if and only if {X. 11 <n < oc} is uniformly 
integrable, and in this case, X, =d<p/dP with 
p-measure 1. If cp is tsingular with respect to 

P, then X, =0 with p-measure 1. 
Example 3. Let X,, X,, be any sequence 

of random variables and Z an integrable ran- 
dom variable that is measurable with respect 
to 23(X1,X, ,... ). Then lim,,,E(ZlX,,X,, 

“’ > X,) = Z (a.s.). In particular, if Xi, X,, . . . 
are independent and Z is 23(X,,, X,,,, , . )- 
measurable for every n, then Z is equal to a 
constant as. This is the so-called +Kolmo- 
gorov zero-one law. 

Recently, much work has been done to 
develop an analog of the classical theory of 
HP-spaces of harmonie functions in the frame- 
work of martingale theory. Let (Q, 3, P) and 

{Sn)nsz+ be tïxed, and let X =(X,) be a uni- 
formly integrable (M) with respect to {g,}. 
Then X, = E(X, 1 &,), where X, = lim,,, X,, 

and we cari identify X=(X,) with X,. Set 
X*=sup,lX,, and [X,X]=C$,(X,-X,-i)’ 
(X-, = 0). By Doob’s inequality above, 

( > “,’ IlmI,< IIJLII.~ IIx*ll,, l<p<co, 

where II Il,, is the usual LP(R, P)-norm, 1~ 
p < CO. Burkholder and Gundy, and Davis 
obtained the following inequality: There exist 
positive constants cp and C, depending only 

on p such that 

If we set 

~P={~I/i~llH~~IIC~,X1”211p~~}, pal, 

then HP is a Banach space which cari be identi- 
lied (by the identification of X and X,) with 
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Lpforp>l. H 1 s L’, however, and if we set 

BMO={XI Ilaw-suP IIwcc 
n 

then BM0 is a Banach space which cari be 
identified with H’*, the dual space of H’. In 
particular, Fefferman’s inequality holds: 

YE BMO. 

This is an analog of the classical Fefferman’s 
theorem, and XE BM0 is an analog of a func- 
tion of bounded mean oscillation, the notion 
of which is due to John and Nirenberg. For 

details - [ 1,3]; for an approach using con- 
forma1 martingales in continuous time - [4]. 

C. Sample Functions 

Let (X,, &, tu T) be an (SbM). Here the para- 
meter set T may be an arbitrary subset of 
(-m, CO). However, we cari always Iïnd an 
interval 12 T and for each t E I a a-algebra & 
and a random variable $ such that (r?,, g,, 
tel) is an (SbM) and P($=X,)= 1, &=$+j, 

for every t E T. Therefore we cari assume with- 
out loss of generality that the parameter set 
T is an interval. Furthermore, we assume 

that the stochastic process {X,},,, is tsepa- 
rable. Using inequalities and convergence 
theorems for the sample sequences of (SbM)‘s 
with discrete parameters, we obtain the follow- 

ing properties of the tsample functions of 
(SbM)‘s with continuous parameters: (i) The 

sample function of an (SbM) {X,} is bounded 
on every finite interval [a, b] c T with proba- 
bility 1. (ii) Let T, be the interior of T. Then 

WC+0 and X,-, exist for all t E TO) = 1, and for 
each tE T,, lim,ttE(X,)<E(X,-,)<E(X,)< 

E(X,+,) < lim,ltE(X,). (iii) Let D be the set of 
tïxed discontinuity points of {Xc} (t is called a 
Vixed discontinuity point of {Xt} if P(X,-, = 

X,=X,+,) # 1). Then D is an at most count- 
able set. 

We assume for simplicity that the parameter 

set is R + = [0, CO) and the sample functions of 
{X,} are right continuous with probability 1. 
In this case, if (X,, s,, tcR+) is an (SbM), 

then (X,, s,+, t E R +) is an (SbM), where k,+ = 
fis,, 3,. Therefore we cari assume that 3, = 
&+ for a11 VER+. Let A be an interval and 

{&E.4 a family of stopping times such that 

z, < r,, < m whenever tl < 8. Put Xl = Xra and 
3: = 5,. Then (Xz, 5:) c( E A) is called the 
stochastic process obtained by an optional 
sampling (or a time change) from (X,, & t E T). 

By the optional sampling theorem of Section 

A, we cari conclude that (X$, sz, CIE A) is also 
an (SbM) if at least one of the following con- 
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ditions is satisfïed: (1) X, < 0 (a.s.) for a11 i E R+; 
(2) {Xt,t~R+} is uniformly integrable; (3) for 
each c(EA, r, is bounded with probability 1. 

D. Decompositions of Submartingales Cl, 61 

If an (SbM) (X,, &, teR+) is uniformly inte- 

grable, lim,,, X,=X, exists and (X,, 5,, tu 
[0, col) is an (SbM) for which 3, =V,&. In 
addition, when the family {X, 1 z E 2} is uni- 
formly integrable, it is said to belong to class 

(D). Here 2 denotes the collection of all stop- 
ping times with respect to (5,). If for each a 
(O<a<oo) the family {X,Ire2 and T<U} 
is uniformly integrable, the family is said to 
belong locally to class (D). 

If an (SbM) X, is uniformly integrable, X, is 
decomposed as 

-5 = w, I 5,) - bw, I 5,) - XA (4) 

and if we take appropriate +Versions of con- 
ditional expectations, E(X, 18,) becomes a 
right continuous (M). In the decomposition (4) 

M,=E(X, 15,) is an(M) and Z,=E(X, 15,)- 
X, is a potential, i.e., a nonnegative right 
continuous (SpM) with lim,,, Z, = 0 (a.s.). The 
decomposition (4) is called the Riesz decompo- 
sition of the (SbM) X,; the names “potential” 

and “Ries2 decomposition” corne from tpoten- 
tial theory in view of the obvious similarity. 

A stochastic process (A,, t E R +) on (Q 23, P) 
is called a (right continuous) increasing process 

provided that (i) A, is &-measurable, ,?(A,) < 
CO for each t, and (ii) with probability i, the 
sample function is a right continuous and 

increasing function with A, = 0. If ,?(A,) < CO, 
where A, = lim,,, A,, the stochastic process is 
said to be integrable. We have the following 
Doob-Meyer decomposition theorem: (i) A 

potential X, is decomposed as 

Xr = WL I 5,) -A, (5) 

by a suitably chosen integrable increasing 

process if and only if X, belongs to class (D). 
(ii) An (SbM) X, is decomposed into X, = Xi + 
A,, where X; is an (M) and A, is an increas- 
ing process if and only if X, belongs locally to 
class (D). (iii) In (i) and (ii), A, cari be chosen to 
be tpredictable; under this condition, these 
decompositions are unique. Furthermore, A, 
cari be chosen to be continuous if and only if 
X, is regular in the sense that for any sequence 

t,~2 such that z,t7, lim,,, E(X, n ,,)=E(X,,,) 
for every a > 0. 

E. Semimartingales [ 1,6,7] 

+Lévy processes and +Itô processes are natu- 

rally generalized to a class of stochastic pro- 
cesses called semimartingales. This class of 
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processes is important since it appears to be 
the most general class for which a systematic 
theory of stochastic calculus cari be developed 
(- 406 Stochastic Differential Equations). 
Furthermore, we cari define some quantities 

called local characteristics of semimartingales 
which are, in a sense, a generalization of Lévy- 
Khinchin characteristics for Lévy processes. In 

many interesting cases, the law of a semimar- 
tingale cari be determined if we specify its local 
characteristics to be given functionals of the 
sample paths. This way of characterizing sto- 
chastic processes is known as a martingale 
problem, a concept introduced by Stroock and 
Varadhan. 

A stochastic process X,, t ER+, on (fi, 23, P) 
and (5,) is called a semimartingale if it cari be 

represented as 

where X0 is 5,-measurable, M1 (M,, =0) is a 
right continuous local martingale with respect 
to (5,) i.e., there exists ~“EZ such that a.Tm 
and Mp= M,,,bn is a uniformly integrable (M) 
with respect to (8,) for each n, and F (V, = 0) 
is a right continuous +(&)-adapted process 
such that t E [0, T] H v is of bounded vari- 
ation a.s. for every T> 0. The class of semimar- 
tingales is known to be invariant under C2- 

transformations (Itô’s formula), time changes, 
and absolutely continuous changes of the basic 
probability P (Girsanov’s theorem). 

Example 4. Let X,=(X,i, X:, , X:) be a 
system of semimartingales such that a11 X,i, 
X;X/-sijt, i, j= 1,2, . ,n, are continuous 
(local) martingales with respect to (3,). Then 
X, is an n-dimensional Wiener process such 

that S(X,, - X,, u, u > t) and the 5, are inde- 
pendent for every t. For this reason such an X, 

is often called a Wiener martingale. 
Example 5. Let X, be.a semimartingale 

whose sample paths are increasing step func- 

tions with jumps of size 1 a.s. If X, - ct (c > 0) is 
an (M) with respect to (3,) then X, is a +Pois- 
son process with the same independence prop- 

erty as Example 4. For a similar characteri- 
zation of Lévy processes in the martingale 
framework - [S]. 

The notion of semimartingales cari also be 

detïned for processes taking values in a dif- 
ferentiable manifold [S]. 
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Biology 

A. History 

In certain quantitative studies in biology, 
particularly in epidemiology, population ecol- 
ogy, and developmental biology, there arise 
mathematically describable models. Such 
mathematical descriptions of biological phe- 
nomena have sometimes been proposed by 
mathematicians and sometimes by biologists. 

We cal1 these descriptions mathematical mod- 
els in biology. 

The first mathematical mode1 was proposed 
by R. Ross [l] in 19 11. He undertook a theo- 
retical investigation of the propagation of 

malaria. His abject was to give an analysis of 
the propagation of malaria in a certain locality 
under somewhat simplified conditions. His 
assumption was that both emigration and 
immigration were negligible and that there 
was no increase of population. In such a local- 
ity, the propagation of malaria is considered 

to be determined in general by two factors 
which evolve continuously and simultane- 
ously. On the one hand, the number of new in- 
fections depends upon the number and infec- 
tivity of the mosquitoes; on the other hand, at 

the same time the infectivity of mosquitoes is 
determined by the number of people in the 
given locality and the frequency of infection 
among them. Ross expressed the uninterrupted 
and simultaneous dependence of the fïrst com- 
ponent on the second and that of the second 
on the tïrst by means of a system of first-order 

differential equations. 

As a much simpler case, following P. F. 

Verhulst [2], R. Pearl and L. J. Reed [3] pro- 
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posed in 1920 a population mode1 describing 
how a population of animals living in a tïxed 

region initially increases, but after some period 

approaches a saturation point. Their mode1 
is the simple differential equation 

$=(A-kU)U, 
where u is the population at time t and A and 
k are positive constants. The solution of this 
equation with positive initial data u0 is ex- 

pressed by a monotone-increasing curve that 
tends to the saturation value Ajk as t tends to 

infïnity. We cal1 this equation a logistic equa- 
tien. The solution fits the growth pattern of 
some real populations of insects; but we also 

have another mode], which was exploited by 
experimental ecologists who were engaged in 
the study of a kind of bean weevil. That mode1 
is expressed by the difference equation [4] 

u nt, =.f(u,), (2) 

where u, is a population of the insects in the 
nth generation and f(u) is called the reproduc- 

tion function; the latter is often a simple func- 
tion, but is not necessarily monotonie. 

B. Population Mode1 with Two Species 

V. Volterra [S] proposed the following mode1 
for the prey-predator relation between two 
species. We denote the prey population by 
u, and the predator population by u. These 
populations satisfy the system of equations 

;=(A-ko)u, 

where A, B, k, and h are positive constants. 
The orbit of the solution of this system passing 
through (uO, uO) in the first quadrant is closed, 
enclosing the point (B/h, A/K) and staying in 
the first quadrant. An integral for this system 

is given by 

U-BU-Aehu+k” = c 
(4) 

where C is a constant of integration. Conse- 
quently, the solution starting at a point in 
the fïrst quadrant is periodic, with the period 

depending on the initial data. The average 
populations over one period, 

~ l *+&f<, u=- 
s T t 

~ l t+Tu(t)d:, u=- 
s T t 

(5) 

do not depend on the initial data. 

Many mathematical models in biology are 
expressed in terms of ordinary differential 

equations [6,7]. 
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C. Fundamental Equations 

Some models are used to describe the spatial 
distributions, that is, the spatial patterns of 
populations. For example, we cari consider 
equations for the pattern of a population with 

migration. 
We denote by p(t, x) the population den- 

sity at time t and position x in some region 
V in R’. u(t, x) is the velocity of the migra- 

tion. f(r, x) is a source (or supply) term for the 
population. Then we get 

(6) 

where n is the outer unit normal to the bound- 

ary C?V. Consequently, we get a partial dif- 
ferential equation 

Here we assume, for example, that u is a func- 
tion of x, p; then we get a thyperbolic equation 

Also, if we assume u = - d(x, p)Vp/p and f = 
f(p), then we get 

~=V(d(x,p)Vp)+f(p) on K (7) 

which is an equation of tparabolic type. We 
impose some boundary condition at the 
boundary i?V; for example, the homogeneous 
+Neumann condition 

ap 
%=0 on av. 

In this case, if V is a convex region and d(x, p) 
= constant, then H. Matano [S] showed that 
only a constant solution of the stationary 
problem 

dAp+f(p)=O (9) 

and (8) cari be stable as a limit of the solution 
of the nonstationary problem (7) and (8) as t 
tends to CD. (He assumed that f(p) is a smooth 

function of p.) 

D. A Diffusive Prey and Predator Population 
Mode1 

R. May [4] and M. Mimura [lO] indepen- 
dently proposed mathematical models to ex- 
plain some aspects of the population pat- 
terns of plankton in water. Their work cari be 

considered to be the completion of earlier 
attempts by the ecologist J. H. Steele [9]; 

Mimura and Nishida proved that Steele’s 

original mode1 does not yield a solution de- 
scribing the observed population patterns, and 

Mimura and May introduced corrections 
arising from their ecological viewpoint. The 
mode1 is the system 

ap apq 
z=d,$+kp-pp2-- 

l+bp’ 

1 
~=d2!&q’+% 

l+hp’ 

on [0, l] x [0, co), (10) 

where p(t, x) and q(t, x) are the prey and pre- 

dator populations, respectively, and d, and d, 
are diffusion coefficients. k, p, y, a, and b are 
positive constants. If b, d,, d,, and p are zero, 

we get Volterra’s prey and predator equation. 
Mimura considered the Cauchy problem with 

boundary conditions 

In this case, under some assumptions on d, , d, 
and on k, p, y, a, Mimura [ 1 l] succeeded in 
proving some stationary patterns of p and q 
which are stable but not constant for the vari- 
able x. He used bifurcation theory to prove 
existence of a stationary solution near the 
equilibrium point. For the case in which d, is 

suffïciently small, he used the singular pertur- 
bation theory introduced by Fife [12]. 

The same procedure cari be applied to the 
following system of partial differential equa- 
tions, which was proposed by Gierer and 
Meinhardt in developmental biology [ 141: 

aa 2 2 
-=Da$+pop+~-pa, at 

where a(t, x) is the concentration of a short- 

range activator and h(t, x) is that of a long- 
range inhibitor. D,,, D,,, pO, p, c, cl, p, and v are 

a11 positive constants. Gierer and Meinhardt 
showed numerically that a system such as (12) 
exhibits some interesting spatial patterns. 
Under the boundary conditions (1 l), Mimura 
obtained a rigorous proof of the numerical 

results [13]. 
These models may not be realistic from the 

biological viewpoint, but they do afford some 
insight, SO that biologists may now begin to 
devise more realistic ones. 

For example, the mode1 given by (10) and 
(11) is one by means of which we cari explain 

pattern formation in spatially homogenous 

environments. (We cal1 the existence of such 
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patterns “patchiness.“) The mode1 shows that 
without any local environmental inhomogene- 

ity, we cari still find some patchiness in the 
population pattern of the plankton. 

There are many models that explain bio- 
logical phenomena only metaphorically. An 
example is the use of catastrophe theory by 
R. Thom [15] to mode1 morphogenesis. 

E. Population Genetics 

Consider the development of a genetic struc- 

ture in a population consisting of N individ- 
uals. We assume two kinds, a and A, of genes; 
and an individual has one of the genotypes au, 
AA, aA. We assume that every generation is 
of a constant size N, and we consider the 
number of genes, not genotypes. The num- 
ber X, of a genes in the nth generation is the 
result of a stochastic process. In the simpest 
mode1 it is a +Markov chain with the +tran- 
sition probability pij from X, = i to X,,, =j 
being expressed by a tbinomial distribution: 

p,= *]y p/(l -pi)2N-j, 
( > 

i Pi=%. 

Models that take mutation, natural selection, 
and migration into account cari be given by 
appropriate changes of pi. Since the works of 
R. A. Fisher and S. Wright, natural selection 
and migration models have been the abject of 

much research. A powerful method in the 
analysis of these Markov chains is the diffu- 
sion approximation [ 16- 1 S]. Consider the 
time t and the ratio x = i/(2N) of a genes as 
continuous variables. Then the partial differen- 

tial equation 

(13) 

is obtained for the transition probability den- 
sity p(t, x, y) of the ratio of a genes. Here, u(y) 
is a polynomial with degree < 2. M. Kimura 
found a solution of (13) in terms of special 
functions and solved many problems in ab- 

sorption probability, limit distribution, speed 
of convergence, etc. Equation (13) is tKolmo- 
gorov’s forward equation in the theory of 
tdiffusion processes, but the coefficients are 

degenerate at the boundaries (0 and 1). S. 
Karlin and J. McGregor [ 193 found that the 
foregoing discrete models cari be taken as 

tbranching processes under the condition that 
the number of individuals in each generation 
is 2N. The relation between discrete and con- 
tinuous models has been studied in general 
dimensions as a problem in the convergence of 

stochastic processes [20,21]. 

For related topics - 40 Biometrics. 
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A. Introduction 

Mathematical programming is a method 
useful in operations research, industrial en- 
gineering, systems engineering, etc., and it is 
concerned with optimization in general. If we 
want to minimize cost or loss or to maximize 

some effect or profit under various circum- 
stances, the corresponding mathematical prob- 

lem is usually formulated in the form of a 
mathematical-programming problem. Com- 

putational methods in mathematical program- 
ming have seen great development hand in 
hand with remarkable progress in computer 
technology, and we are now able to deal with 
large-scale problems practically. 

B. General Definitions 

A mathematical-programming problem in the 
broadest sense of the word is one of fïnding a 
maximum or minimum of a given function 
f:X+R (where X is a set and R is an ordered 
set). However, in a narrower sense, it usually 

means a problem where X is a closed subset of 
the n-demensional Euclidean space R” (or, 
more generally, a Banach space) and f is a 

real-valued continuous function. Often, X is 
defïned as the set of points in R” that satisfy a 
system of equalities and inequalities of the 
form gi(x) GO, 2 0, or = 0 for some given real- 
valued functions gi (i = 1, . , m) defined on R”. 
In mathematical programming, special termi- 
nology is sometimes used; e.g., X is conven- 

tionally called the feasible region, a point of X 
a feasible solution, the solution of the problem 
itself the optimal solution, f the objective func- 

tion, and the equalities and inequalities defïned 
in terms of the gi are the constraints. 
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C. Types of Mathematical-Programming 
Problems 

Mathematical-programming problems cari 
be classified from various viewpoints, from 
which the problems get their various names. 
(i) Linear programming (- 255 Linear Pro- 

gramming): The objective function .f and all 
the functions gi of constraints are linear. Non- 

linear programming: Some of S and the gi are 
nonlinear. Convex programming: f and a11 the 
g, are convex with inequalities of the form 

g,(x) d 0 (and, consequently, X is a convex set); 
the problem is to minimize f (- 88 Convex 
Analysis, 255 Linear Programming, 292 Non- 
linear Programming). (ii) Disjunctive pro- 
gramming: X is not connected. Integer pro- 
gramming: X is a subset of the lattice points of 
integer coordinates in R” (- 215 Integer Pro- 

gramming). (iii) Parametric programming: f 
and/or the gi contain parameters, and the 
problem is to analyze the behavior of the 

optimal solution and/or the feasible region 
when the parameters vary. (iv) Stochastic 
programming: The parameters in (iii) are ran- 
dom variables. (v) Multiobjective programming: 
A vector-valued function f: R”+Rk (k > 2) is 
taken as the objective function, where a certain 
order relation is detïned in Rk (such as the 
Cartesian product of the order in R or the 
lexicographie order based on the order in R). 

(vi) when the constraints and/or the objective 
function are endowed with special mathemat- 
ical structures, special names are accordingly 
given. For example, +network flow problems, 

whose f and gi are defmed with reference to a 

wph (- 186 Graph Theory), are called net- 
work programming; if f and the gi have an 
iterative or repetitive structure, the name 
multistage programming is used; dynamic 
programming (- 127 Dynamic Program- 
ming) cari be regarded as a kind of multistage 
programming. 

D. Mathematical-Programming Problems of 

Special Type 

In this encyclopedia, independent articles 
appear for those types of mathematical- 
programming problems that have been math- 
ematically well investigated and are most 
frequently used in practice (- 127 Dynamic 
Programming, 215 Integer Programming, 255 
Linear Programming, 292 Nonlinear Pro- 
gramming, 349 Quadratic Programming). The 
following are some other typical problems that 

have been systematically studied. 

(i) Fractional programming: The objective 
function to be minimized within the set X 
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takes the form f(x)= C(~)/D(X) (C, D: R”+IZ), 
where D(x) is assumed to be positive in X. If X 
is convex, C is convex and of positive value, 
and D is concave, the function of a real para- 

meter n defined as h(Â)=min,,,[C(x)-AD(x)] 
is monotone decreasing and convex in A. The 
problem of determining h(A) for each value of A 
is a convex-programming problem, and the 
solution of the convex-programming problem 
for Â = 1, such that h(Â,) =0 is the optimal 

solution of the original problem. In particular, 
if C and D are linear, i.e., if C(x) = c’ x + cg 
and D(x) = d’ x + d,, and, moreover, if X = 
{x~R”IAx<h,x~O}, where AER”““, bER” 
and the inequalities are to be read component- 
wise (linear fractional programming), then by 

introducing new variables y = ~/D(X) and y, = 
~/D(X), we cari reduce the original problem to 
the linear-programming problem min(c’y+ 

c,y,IAy-by,~O,d’.y+d,y,=l,y30,y,~O}. 
(ii) Geometric programming: The objective 

function f(x) =Y~(X) and the feasible region 
X={x~R”~g,(x)<O,i=l,...,m;x>O} are 

defïned in terms of functions g,(x) of the so- 
called polynomial type: gi(x) = &c~~,x~?~J (i = 
0, 1, . , m). The dual (- 292 Nonlinear Pro- 
gramming) of a geometric-programming prob- 
lem is easier to treat than the original, because 
it is a problem of finding the minimum of a 
convex function under constraints of linear 
equalities and inequalities. 

(iii) Nonconvex quadratic programming and 
bilinear programming: The former is the prob- 
lem of minimizing an objective function of 

the form f(x) = c’ x + +x’Qx (where Q is a 
symmetric matrix not necessarily nonnegative 
definite) under linear constraints (equalities 

and inequalities), and the latter is to minimize 
f(x,,~~)=~‘,~~,+~~~~~+~‘,Q~~overthe 
regionX={(x,,xZ)ER”~xR”~[A1xl<bl, 
A,x,<b,,x,>O,x,>O},whereQ~R”1~“2, 
AieRmzxn,, and b,ER”‘l (i= 1,2). These two 
types of problems are related to each other, 
and a number of computational techniques, 

such as specially elaborated versions of the 
cutting-plane method (- 2 15 Integer Pro- 

gramming B), have been developed for them. 

References 

[l] G. B. Dantzing, Linear programming and 

extensions, Princeton Univ. Press, 1963. 
[2] D. G. Luenberger, Optimization by vector 

space methods, Wiley, 1969. 
[3] J. F. Shapiro, Mathematical programming 
-Structures and algorithms, Wiley, 1979. 

[4] W. Dinkelbach, On nonlinear fractional 
programming, Management Sci., 13 (1967), 
492-498. 

986 

[S] S. Schaible, Duality in fractional program- 
ming-A unified approach, Operations Res., 
24 (1976), 452-461. 
[6] S. Schaible, Fractional programming I- 
Duality, Management Sci., 22 (1976), 858-867. 
[7] R. J. Duftïn, E. L. Peterson, and C. Zener, 
Geometric programming-Theory and appli- 
cations, Wiley, 1967. 
[S] H. Konno, A cutting plane algorithm for 

solving bilinear programs, Math. Program., 11 
(1976), 14-27. 
[9] H. Konno, Maximization of a convex 

quadratic function under linear constraints, 
Math. Program., 11 (1976), 117-128. 

265 (Xx1.9) 
Mathematics in the 17th 
Century 

The 17th Century abounds in remarkable 

events in the history of science: the work on 
mechanics by Galileo (1564- 1642); the discov- 
ery of analytic geometry by R. iDescartes 

(1596-l 650); the early research in the theory 
of probability by P. de tFermat (1601- 1665) 
and B. ?Pascal (1623- 1662); the discovery of 
tmathematical induction by Pascal; and the 
discovery of the infinitesimal calculus (i.e., 
tdifferentjal calculus and tintegral calculus) 

by 1. TNewton (1642-1727) and G. W. tleib- 
niz (1646-1716). Compared with these events, 
the results of mathematical research from 

the Middle Ages to the 16th Century seem 
minute. These results nonetheless exist, and 
historians of mathematics are now reevaluat- 
ing them, particularly those of the 15th and 
16th centuries. 

Before Galileo, Tycho Brahe (1546- 1601) 
kept precise records of astronomical observa- 
tions. J. Kepler (1571~ 1630), motivated by a 
mystic faith in the “harmony of the universe,” 

studied Brahe’s records and discovered three 
laws on the motion of planets. He also treated 

a question of cubature in his paper on the 
form and volume of the wine barre1 (1615). His 

contemporaries J. Napier (1550& 16 17) and 
J. Bürgi (1552- 1632) discovered logarithms, 
which helped astronomers tremendously in 
their calculations. Napier used the concept of 
velocity in his introduction of logarithms; thus 

analysis began to germinate. Galileo founded 
the modern approach to the concepts of veloc- 
ity and acceleration in his Dialogue on two nrw 

sciences (1638). Using a telescope he built, he 
discovered four of Jupiter’s moons and ob- 

served sunspots. His espousal of the heliocen- 

trie theory of Copernicus (1473- 1543) led to 
his denunciation before the Inquisition, which 
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ordered him to refrain from holding or de- 
fending the theory. This is the most famous 

episode of his life, but his most signifïcant 
contribution to science lies in his foundations 
of theoretical mechanics, which he freed from 
the Aristotelian tradition, thereby opening the 
way for Newton. F. Cavalieri (159% 1647) a 

disciple of Galileo, applied the notion of indiui- 
sibilis (originating in scholastic philosophy) to 
questions of quadrature in his Geometry of the 

indivisible (1635). This idea influenced Pascal 
and J. Wallis (1616-1703). 

Descartes established the method of analytic 
geometry in his Geometry (1637), published as 
an appendix to his Discourse on method. The 
use of tcoordinates cari be traced back to 
Apollonius of Perga; Fermat used them occa- 
sionally, but Descartes made the tïrst clear 
formulation of the method of representing 

general figures by means of equations, an 
essential step beyond Greek geometry. He also 
surpassed F. +Viète (1540- 1603) by abolishing 
the restriction that quantities represented by 
letters should be of one dimension. 

Contemporary to Descartes, Fermat made 
remarkable contributions to tnumber the- 
ory and Pascal to tprojective geometry, and 
through their correspondence there began the 

theory of probability; both also made precur- 
sory contributions to analysis. Fermat treated 
questions on maxima and minima of functions 

and tangents of curves; Pascal answered some 
questions on tangents, centers of gravity, 
quadrature, and cubature concerning +cy- 
cloids. Pascal also contributed to hydrostatics, 
made positive use of the idea of the point of 
infinity in projective geometry, and clearly 
formulated the principle of mathematical 
induction in his theory of arithmetic triangles, 
the so-called +Pascal’s triangles. (Freudenthal 

[4] established that the fïrst discovery of the 
principle of mathematical induction is due to 
Pascal; the exact date of the discovery was 
studied by Hara [SI.) 

In England, Wallis and 1. Barrow (1630- 

1677) preceded Newton. Wallis solved ques- 
tions concerning quadrature and cubature 
(by bold use of the methods established by 
Cavalieri), infinite series, and interpolation. 
Barrow was Newton’s teacher. He came close 
to the fundamental theorem of calculus, and 
Newton certainly owed some ideas which led 
to his discovery to Barrow’s suggestions. New- 
ton completed his method of fluxions, corre- 

sponding to our differential calculus, toward 
166991671, but his paper on this method was 
published only after his death (1736). In his 

main work, Principia mathematica philosophiae 

naturalis (1687), he used this method and its 
converse, without naming them, to solve the 
+two-body problem. The work begins with 
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three laws of mechanics and covers the motion 
of the moon and hydromechanics. Leibniz 

discovered infïnitesimal calculus slightly later 
than Newton but independently. He invented 
convenient new symbols that gave great im- 
petus to the development of calculus: the sym- 
bols dx and s are due to him. Leibniz was in 

Paris in 167221677, where he made the ac- 
quaintance of Father Arnauld (1612- 1694) of 

Port Royal (the monastery to which Pascal 
belonged) and the Dutch physicist C. Huygens 
(16299 1695). Through their suggestions, he 
studied the work of Descartes and Pascal. 
Leibniz’s tïrst papers on calculus were pub- 
lished in 1684 in the scientific journal Acta 

Eruditorum, which he also edited. The methods 
of calculus he initiated were transmitted to 
mathematicians of the +Bernoulli family and 
then to L. +Euler, who developed them into the 

wide fïeld of analysis. 
Thus the mathematics of the 17th Century 

went clearly beyond Greek mathematics. 

The importance of numbers over diagrams 
was recognized, and mathematicians were no 
longer hesitant to use inlïnity. Moreover, 
people became aware of the importance of 

experimental methods in science. The position 
of mathematics as an important method of 
natural science was established; mathematics 
became a rational basis of scientiiïc research. 

It was also in this Century that a peculiar 

kind of mathematics was developed in Japan 
by T. Seki (1642?- 1708). However, it lacked 
the Greek,tradition of viewing logical founda- 

tions as being important, and furthermore 
had no connection with natural sciences; con- 

sequently, it did not see subsequent develop- 
ment comparable to that of Western mathe- 

matics (- 230 Japanese Mathematics 
(Wasan)). 
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266 (XXI.1 0) 
Mathematics in the 18th 
Century 

During the Age of Enlightenment, mathe- 
matical analysis developed steadily after its 
initiation in the preceding Century. It found 

numerous applications in theoretical physics 
and contributed to the growth of rationalistic 
thought. 

The central figures in mathematics during 
the late 17th and early 18th centuries were 1. 
+Newton (1642- 1727) and G. W. tleibniz 
(1646- 1716). C. Maclaurin (169% 1746) of 

Scotland followed Newton, but no mathema- 
tician of Newton% stature appeared in Great 
Britain. An unfortunate dispute over the prior- 
ity of discovery of infinitesimal calculus arose 
between Newton and Leibniz, after which their 
followers came into conflict. This prevented 

the members of the English school from giving 
up their inconvenient notation system, which 
hindered their progress in calculus. 

On the Continent, Leibniz was succeeded by 
the mathematicians of the +Bernoulli family 
and by L. +Euler (17077 1783) who brought 
about brilliant developments in calculus and 

its applications. They solved various kinds of 
tdifferential equations and invented the tcal- 
culus of variations. F. +Viète used the term 
analysis in the sense of algebra as a heuristic 

method; the same term meant algebraic treat- 
ment of infïnite series in Newton’s usage. It 

was during this Century that analysis secured a 
position as a branch of mathematics indepen- 
dent of algebra and geometry. +Analytical 
dynamics, initiated by Euler, was further de- 
veloped by J. L. tlagrange (1736- 18 13) and 
P. S. de +Laplace (1749- 1827). Laplace, in 

systematizing tcelestial mechanics and the 
ttheory of probability, showed what a power- 
fui instrument analysis was. A. M. Legendre 
(17522 1833) investigated telliptic integrals and 

opened the way for C. F. +Gauss and other 
mathematicians of the next Century. 

The growth of the Ecole Polytechnique, 
established during the time of the French 
Revolution, contributed to the brilliant pro- 
gress of French mathematics. Lagrange, La- 

place, and Legendre were a11 active in Paris 
during this period, as were S. D. Poisson 
(178 l- 1840) and J. B. J. +Fourier (17688 1830), 
both of whom made major contributions to 
analysis, and G. Monge (17466 18 18), L. Car- 

not (175331823) and J. V. Poncelet (17888 
1867). A problem proposed by Fourier in 
his theory of heat propagation gave rise to 

an important question of analysis, one that 
later formed the basis of tharmonic analysis. 
Fourier and Poisson aimed at clarifying the 
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laws of nature, while Monge, Carnot, and 
Poncelet developed tprojective geometry and 
tdescriptive geometry for their purely geo- 
metric interest. Monge also did precursory 
work on tdifferential geometry. 

The mathematics of this Century left many 
remarkable results in geometry and analysis 
and their applications; however, it inherited 
its methods from the preceding Century and 

lacked critical spirit. Mathematicians were 
more interested in obtaining new results than 
in reflecting upon the rigor of their methods. 
Reexamination and reestablishment of the 
foundations of mathematics were left to the 
next Century. 
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267 (XXI.1 1) 
Mathematics in the 19th 
Century 

The 19th Century was a critical period in the 

history of mathematics. When the Century 
began, the memory of the French Revolution 
was still fresh, and World War 1 followed 
closely upon the turn of the 20th Century. 
During this time mathematics made enormous 
progress and left a tremendous legacy to the 
present Century. Increased persona1 liberty 
released people from traditions and allowed 
culture to spread to wider classes of society, 
producing a greater reservoir of talent. Re- 
search activities were intensified in the univer- 

sities, and many specialists collaborated or 

competed with each other. The Century cari be 
divided into three periods: the tïrst 20 years, 
during which many new tïelds of mathematics 
arose; the next 30 years, a period of further 

development; and the latter half of the Century, 
when these iïelds attained maturity. 

In 1801, Disquisitiones arithmeticae by the 
Young C. F. +Gauss (1777-1855) appeared. 
It contained a systematized theory of num- 
bers, ushering in a new era of mathematics. 
In France, many mathematicians studied at 

the Ecole Polytechnique, established during 

the French Revolution. Among them, A. L. 
+Cauchy (178991857) was one of the most 
prominent. He gave the exact definitions of 
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limit and convergence, thus giving solid foun- 
dations to calculus some 150 years after its 
discovery. N. H. +Abel(1802~1829) and C. G. 
J. +Jacobi (180441851) studied telliptic func- 

tions during the same time, producing results 
sensational to their contemporaries. Gauss 

gave a rigorous proof of the existence of roots 
of algebraic equations in the tïeld of complex 
numbers; Abel proved the algebraic nonsolva- 

bility of algebraic equations of degree > 5; and 
E. +Galois (18 1 1 - 1832) created his theory of 

algebraic equations, which began a new phase 
in algebra. J. V. Poncelet (1788-1867), another 

graduate of the Ecole Polytechnique, devel- 
oped tprojective geometry along the lines 
pursued by G. Monge (1746- 18 18). His re- 

search was continued in Germany by A. F. 
Mobius (1790&1868), J. Steiner (179661863), 
and J. Plücker (1801-1868). Steiner investi- 
gated, in particular, talgebraic curves and 
surfaces by synthetic methods; Plücker intro- 
duced projective coordinates, thus enlarging 
the usage of analytic methods in geometry. 
These brilliant results in the lïrst period of 
the 19th Century were a11 achieved by Young 
mathematicians, most of them still in their 
twenties. 

The new geometry was developed in the 
period 1830-1840 by K. G. C. von Staudt 
(179881867) in Germany and M. Chasles 

(1793-1880) in France. In the 1840s the the- 
ory of tinvariants was taken up in connection 
with geometry; outstanding in this domain 

were the English mathematicians A. Cayley 
(1821-1895) and J. J. Sylvester (1814-1897). 
P. G. L. +Dirichlet (1805-1859) endeavored to 

simplify Gauss’s number theory and intro- 
duced the +Dirichlet series in his computation 
of tclass numbers of binary tquadratic forms. 

He also initiated the theory of ttrigonometric 

series by giving a rigorous proof of a theorem 
on expansion in +Fourier series, introduced 
by J. B. J. +Fourier (1768-l 830) in his theory 
of heat propagation. Another notable event 
was the independent and almost simultaneous 
discovery of +non-Euclidean geometry by J. 
Bolyai (180221860) and N. 1. Lobachevskiï 

(1793-1856), which aroused philosophical 
interest since it changed the character of 

axioms. The invention of tquaternions by 
W. R. Hamilton (18055 1865), publication of 
Ausdehungslehre (theory of extensions) by H. 

G. Grassmann (180991877), and development 
of the algebra of logic by G. Boole (18 15- 
1864) also occurred during this period, but 
these notions received neither full comprehen- 
sion nor sympathy until later. 

During the latter half of the Century, G. 

F. B. tRiemann (182661866) and K. T. W. 
+Weierstrass (18 15- 1897) were prominent. 

Both have had great influence on the mathe- 
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matics of the 20th Century, the former by his 

brilliant and abundant production, the latter 
by his mature and critical spirit. Riemann lived 
only 40 years, and published, in rapid suc- 
cession, his epoch-making ideas on the theory 

of functions of a complex variable, +Abelian 
functions, trigonometric series, tfoundations of 
geometry, tdistribution of primes, and +zeta 
functions. Weierstrass was already 49 when, 
after teaching in a country gymnasium (second- 
ary or college preparatory school), he became 
a professor at the University of Berlin. The 
theory of the functions of a complex variable, 
initiated by Cauchy in the 1820s had to wait 
for the contribution of these men to attain 

completion in the form of the theory of +ellip- 
tic functions. Riemann’s influence is also con- 
siderable in algebraic geometry and the theory 
of tdifferential equations. Weierstrass reformed 
the +calculus of variations. His critical ap- 

proach uncovered pathological functions, such 
as continuous nowhere differentiable functions 

(- 106 Differential Calculus) and Peano space- 
fïlling curves (- 93 Curves J), and to real 
analysis, based largely on the set theory of G. 
+Cantor (1848-1918). 

Concerning the foundations of mathemat- 

ics, Cantor, M. C. Méray, and J. W. R. Dede- 
kind (1831-1916) established the theory of 

irrational numbers. Dedekind and G. Peano 
(1858-1932) developed the theory of natural 
numbers; their results brought about the 
“arithmetization” of mathematics and led to 
the research in the foundations of mathematics 
of the present Century. 

Cayley and F. +Klein (184991925) inter- 
preted non-Euclidean geometry by means of 

metrics introduced in projective geometry. 
Toward the end of the Century, D. +Hilbert 
(1862- 1943) examined the roles of axioms of 

congruence, continuity, and parallelism in 
Euclidean geometry, thus initiating the study 
of taxiom systems in general. 

The theory of tgroups, in particular fïnite 
groups, was developed around 1870 by C. 
Jordan (183881922), G. Frobenius (1849- 
1917), and W. S. Burnside (1852-1927). M. S. 
+Lie (1842-1899) applied infmitesimal trans- 
formations to differential equations, and Klein 
applied the groups of linear transformations 
to geometry. The discovery of tautomorphic 

functions by Klein and H. +Poincaré (1854- 
191 2) was another brilliant application of the 
theory of groups. In the algebraic theory of 

numbers, originated by Gauss, E. E. +Kummer 
(1810-l 893) developed the idea of “ideal num- 
bers” (- 14 Algebraic Number Fields); Dede- 
kind then established the theory of tideals. L. 

+Kronecker (18233 189 l), an admirer of Abel’s 
work, studied algebraic equations and dis- 
covered that every +Abelian extension of the 
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rational number freld is contained in a +cy- 
clotomic Iïeld; he believed that relations of a 
similar kind would hold between tmodular 

equations of elliptic functions with tcomplex 
multiplications and Abelian extensions of 
timaginary quadratic lïelds, and enunciated a 

famous conjecture known as his “dream in his 
youth.” 

Finally, we note the appearance of another 
important mathematician, S. V. Kovalevskaya 

(1850&1891). After studying with Weierstrass, 
in 1884 she was invited by G. M. Mittag- 
Leffler (18466 1927) to teach at the University 
of Stockholm, where she remained until her 
death. 

Toward the end of the 19th Century, the 

subjects of mathematical research became 
highly diversified. Branches were further rami- 
Iïed into more specialized branches, while 
unexpected relations were found between 
previously unconnected lïelds. The situation 
became SO complicated that it was diflïcult to 
view mathematics as a whole. It was under 
these circumstances that in 1898, at the sugges- 
tion of F. Meyer and under the sponsorship 
of the Academies of Gottingen, Berlin, and 

Vienna, a project was initiated to compile an 
encyclopedia of the mathematical sciences. 
The Enzykloptidie der mathematischen Wissen- 

schaften was completed in 20 years; it provides 

a useful overview of the mathematics of the 
19th Century. 

Toward the end of the Century, the Interna- 
tional Congress of Mathematicians (ICM) 
was established to foster communication 
among mathematicians from a11 parts of 

the world. Before World War 1 broke out, 
the ICM met in Zürich (1896), Paris (1900) 
Heidelberg (1904), Rome (1908) and Cam- 

I bridge, Mass. (1912). During this period, mathe- 
matical societies were formed in many coun- 

tries, e.g., the London Mathematical Society 
(1865), the Société Mathématique de France 
(1872) the American Mathematical Society 
(1888), the Deutsche Mathematiker Vereini- 
gung (1907) and the Mathematical Society of 
Tokyo (1877) which later became the Physico- 
Mathematical Society of Japan and then was 
split in two in 1946. The present Mathematical 
Society of Japan evolved from this division. 

Five years after the 1872 reform of the Japa- 
nese educational system, the University of 
Tokyo was established, and D. Kikuchi (1855 

1917) and R. Fujisawa (1861-1933) taught at 
the Department of Mathematics during its 
early ears. Under their influence, Japanese 
research in European-style mathematics (based 
on Greek traditions) began. The Universities 

of Kyoto and Tôhoku were established in 1897 
and 1911, respectively. From the beginning of 
the 20th Century, original results were ob- 
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tained and published in the Proceedings of the 

Physico-Mathematical Society of Japan and in 
the journals of the faculties of science of these 
universities. In 1911, the Tôhoku Mathematical 

Journal was founded by T. Hayashi (18733 
1935). In 1920, a paper on +class tïeld theory 
by T. +Takagi (187551960) was published in the 
Journal sf the College of Science of the Univer- 

sity of Tokyo. Thus the position of Japanese 
mathematics gradually came to be established. 

References 

[l] F. Klein, Vorlesungen über die Entwick- 
lung der Mathematik im 19. Jahrhundert, 
Springer, 1, 1926; II, 1927 (Chelsea, 1956). 

[L] N. Bourbaki, Les éléments d’histoire des 
mathématiques, Hermann, second edition, 
1969. 
[3] Enzyklopadie der mathematischen Wissen- 
schaften mit Einschluss ihrer Anwendungen, 
Teubner. 1898-1934. 

268 (XIV. 10) 
Mathieu Functions 

A. Mathieu3 Differential Equation 

The 2-dimensional +Helmholtz equation 
(A+ k2)Y =0 (A=âz/~x2+~2/~yz), sepa- 
rated in telliptic coordinates <, q given by x = 
c cash 5 COS q, y = c sinh 5 sin ré, has a solution 
of the form Y = X(t) Y(q) whose factors X(t), 
Y(4) satisfy 

d2u/dz2+(a-2qcos2z)u=O, (1) 

d2u/dz2-(a-2qcosh2z)u=O, (2) 

respectively, where a is an arbitrary constant 

and q = k”c2/4. By the substitution z+ $I iz, (1) 
becomes (2). (1) and its solutions are known 
as Mathieu’s differential equation and the 
Mathieu functions, and (2) and its solutions are 
called the moditïed Mathieu differential equa- 
tion and the moditïed Mathieu functions. 

B. Hill’s Differential Equation 

Hill’s differential equation is a linear ordinary 

differential equation of the second order: 

d2u/dx2+F(x)u=0, (3) 

with F(x + 27c)= F(x). It is named after G. W. 
Hill, who investigated it in his study of lunar 

motion. This equation includes Mathieu’s 
differential equation and +Lamé’s differential 
equation as particular cases, and by suitable 
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transformations, TLegendre’s differential equa- 
tion and the tconfluent hypergeometric dif- 
ferential equations as well. 

While F(x) is periodic, solutions of (3) are 
not necessarily SO. There always exists, how- 
ever, a particular solution that is quasiperiodic 
in the sense that 

This determines a characteristic exponent ,u, 
which in turn determines the b, in (9) and a 

solution (8). This procedure is called Hill’s 
method of solution. 

Applying Hill’s method of solution to (l), we 

have an equation for the characteristic expo- 
nent ~1 

u(x + 27c) = cm(x), g = constant (4) sin’(n/2)@ = A(O)sin*(n/2)&, (12) 

(Floquet’s theorem). That is, the differential where the intïnite determinant A(O)=/B,,I has 
equation (3) has a solution of the form elements such that 

u(x) = e”“<p(x), (5) 

where <p(x + 27r) = C~(X) and p (detïned by o = 
eznrr) is called the characteristic exponent. 

f-l if m=n 

if n=m*l 

Being a particular case of Hill’s equation, (1) 
has a general solution of the form 

0 otherwise 

(m,n=..., -l,O,l,... ). 

u(z)=Aep’cp(z)+ Beeu’<p( -z), (6) When q+O, we have 

where <p(z + n) = Q(Z). For those values of a 
(called eigenvalues) that make the character- 
istic exponent p equal to 0 or i, u(z) has period 

7~ or 2n and is called a Mathieu function of the 
first kind, also called an elliptic cylinder func- 

tion when employed in problems of diffraction 
by an elliptic cylinder. Sometimes it is called 
simply the Mathieu function, and other solu- 
tions of (1) are referred to as general Mathieu 
functions. The formula 

A(O)= 1 +2q2 7c 
SJa(l -a) 

cet 7da 2 + Wq4). 

(13) 

Thus if q = 0, we have A(0) = 1, and a = 4n2, 
(2n + 1)2 correspond to p = 0, i in (12). 

C. Mathieu Functions of the First Kind 

F(x)= f u,eimx 
m=-m 

(7) 

suggests, in conjunction with Floquet’s theo- 
rem, a solution of (3) in the form 

Substituting (7) and (8) into (3) and comparing 
coefftcients of eCPti”)*, we have infïnitely many 

linear equations 

(p+in)‘b,,+ f ambnmm=O, 
m=-CC 

n=..., -2, -1,0,1,2 >.... (9) 

By eliminating the b. in (9), we also obtain an 
intïnite determinantal equation called Hill’s 
determinantal equation, 

&-4=I~,,I=O> (10) 

where the elements B,, of Hill’s determinant 
A( PL) are such that 

i-1 if r=s, 

B,, = 
if r#s. 

Here an infinite determinant D = 1 B,, I(m, n = 

-03, , CO) is detïned as the limit, if it exists, 
ofD,=det(B,)(i,j=-m,...,m)asm-+co.The 

formula (10) cari be reduced to a simpler form 

sin’ nip = A(O)sin’ n&. (11) 

Mathieu functions of the first kind are further 
classitïed into the following four types: 

ce,,(z, q) = C Ai2”)cos2rz, (a,,), 

se2,+,(z,q)=~B$~!‘)sin(2r+l)z, 

(b2.+J> 

ce,,+,(z,q)=CA”‘)cos(2r+ l)z, 

(a 1 2n+, > 

se2n+2(z,q)=x B$2.‘2zz’sin(2r+2)z, 

@2n+J 

(14.1) 

(14.2) 

(14.3) 

(14.4) 

(n, r = 0, 1,2,. ), where the appended terms in 
parentheses are eigenvalues, ordered by a,, < 
b 2n+1 <a2n+1 <bn+z for a given q, and increas- 
ing with n. Each of these series converges ab- 
solutely and uniformly for a11 fmite z and has 

n zeros in 0 <z < 7112. In addition, orthonormal- 
ity relations 

s 

2n 

ce,(x)se,(x)dx = 0, 
0 

s 

2n 

s 

2n 

ce,(x)ce,(x)dx = se,(x)se,(x)dx 
0 0 

= 7-d,” 

hold. When q+O, ce,(z)-tl/$, ce,,,(z)+ 

cosmz, and se,(z)+sinmz. 
For small q we assume that the quantities 

involved have power series expansions in q, 
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e.g., 

a=m*+ccq+pq2+..., 

ce,(z)=cosmz+qF,(z)+q2F2(z)+ . . . . 

and we substitute them in (1) to determine 
successively c(, fl, , F,(z), F,(z), (Mathieu3 
method). For larger q, (14) is substituted in (1) 
to give recurrence formulas for the coefficients, 
e.g., for ce,,(z), 

-a AO”’ + qAb2”’ = 0, 

2qAf”‘+(4-a)A’,Z”‘+qA~“)=O, 

qA\2.‘!!2+(4r2-u)A~~‘+qA~~!2=0, r> 1. 

(15) 

After we eliminate the AL?), the formulas lead 
to an equation for the eigenvalues a2”: 

a -4 0 0 0 
-2q a-4 -q 0 0 

0 
-4 

a-16 
-q 

0 =O, (16) 

or, equivalently, to a tcontinued fraction 

2q2 q2 q2 a=-- ~ ~ 
a-4-a-16-a-36-“’ 

(17) 

Given q, we cari tïnd the a2n from (17) and 
determine the A$$“) for each a2,, from (15) 

(Ince-Goldstein method). 

D. Mathieu Functions of the Second Kind and 
Modified Mathieu Functions 

There exists only one (half-)periodic solution of 

(1) corresponding to each (half-)periodic eigen- 
value (- Section E). Therefore other solu- 
tions corresponding to the same a, or h,,, and 
independent of ce,(z, q) or se,(z, q) are non- 
periodic. They are called the Mathieu functions 

of the second kind and are denoted by ,fe,(z, q) 

or ~e,(z~ 4). 
By the substitution z+iz in (14) we obtain 

formulas for the modified Mathieu functions of 
the first kind, 

Ce&, 4) = dk 41, 

Se,(z, q) = - ise,(iz, q). (18) 

When q-0, then Ce,(z)+l/& Ce,(z)+ 

cash mz, Se,(z)+sinh mz. Similarly, by the 
substitution z-tiz we obtain modified Mathieu 
functions of the second kind from Mathieu 

functions of the second kind. In addition, we 
introduce modified Mathieu functions of the 

third kind as those linear combinations of 
moditïed Mathieu functions of the first and 
second kinds that have the asymptotic form 

emyym1’2 (~=q~‘~e’) as z+m. In addition to 
the Fourier expansion (7), expansion of the 
Mathieu functions in terms of tBessel functions 
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is possible, e.g., after taking q = h2, 

Ce2,,(z, q) = 1 A,,cosh 2rz 

= (AO)-’ ce2,W2, 4) 

(19.1) 

x x(-l)*A,,J,,(2hcoshz) (19.2) 

=(4J’ce2,(0,q) 

x c A,,J,,(2h sinh z) (19.3) 

=(AJ2ce2,(Q q)ce,,,(G 4) 

x c( -1)‘A2,J,(hë’)J,(he’). 
(19.4) 

These series converge absolutely and uni- 
formly for all fmite z. Replacing the J on the 

right-hand sides of (19) by N2,(2hcoshz), 
N2,.(2hsinhz), J,(he-‘)N,(he’), respectively, in 
an obvious way we obtain infinite series for a 
function that again satisiïes (2) and is denoted 
by Fey,,(z, q). In a similar manner other modi- 
fied Mathieu functions of the second kind 

GeY2,,+, (z, d Fey2,+l k 4, Gey2,+2k 4) cari be 
obtained. These are more convenient for prac- 
tical applications than fe,(iz, q) and ge,(iz, q) 

since they converge more rapidly. 
The equations 

d2u/dz2+(a+2qcos2z)u=0, (20) 

d 2 u/dz’ -(a + 2q cash 2z)u = 0 (21) 

obtained from (1) and (2) by the substitution 
q+ -q are the results of separating (A - k2)<p 
= 0. In general, if f(z, q) is a solution of(l), 
then f(7c/2 - z, q) is a solution of (20). Thus the 
formulas 

Ce2&, -4)=(-l)“ce2,(n/2-z,q), (22.1) 

CeZnflk -4)=(-l)“se2,+,(n/2-z,q), (22.2) 

se2,+,(z, -4)=(-l)“ce2,+,(n/2-z,q), (22.3) 

se2n+2k -4)=(-l)“se2,+,(T1/2-z,q) (22.4) 

cari be adopted as deiïnitions of ce,(z, q), 
se,(z, q) for q < 0 (Ince’s definition). Accord- 
ingly, an expansion of Ce holds in terms of 
modifïed Bessel functions 1, in place of the J, 
in (19), which in turn becomes a solution of 
(21) if we replace 1, by (-l)“K,/n: 

Fek,,,(z, -q)=(-1)“(71AO)~lcezn(~/2,q) 

x 1 A,,K,,(2hsinhz). (23) 

In a similar manner, Fek2n+l(z, -q), 
Gek 2n+l(~, -q), Gek2n+2(z, -4) cari be defïned. 
They decrease exponentially as z-t cc and 
hence are precisely the modified Mathieu 
functions of the third kind. 

E. Stahility 

Let u,(x), u2(x) be a fundamental system of 
solutions of (3) such that u,(O)= 1, u’,(O)=O; 
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u*(O) = 0, u;(O) = 1; then (T, p in (4) (5) are given 

by 

g = e2=p, 27~~ = arc cash A, 

~A=u,(~Tc)+u;(~~). (24) 

There are two values of p satisfying (24); let 
them be pi and p2 (,u~= -p,). If F(x) is a real 

function, then ui(x), u2(x) are also real func- 
tions and A is a real number. It cari be seen 
from(24)thatA<-1, l<A<O,O<A<l, 

1 < A correspond to f27rp = arccosh 1 Al + ni, 
i(arccos 1 Al + n), i arccos A, arccosh A, respec- 
tively. Consequently, when 1 Al < 1, the general 
solution of (3) neither diverges nor vanishes as 

x tends to infinity. Such solutions are called 
stable solutions of Hill’s equation, or some- 
times Hill’s functions. When 1 Al > 1, either e”lX 
or epzX tends to infinity with x. Such solutions 
are called unstable solutions. If A = 1 ( -1) 

we have p = 0 (i/2) and a solution of the form 
of u = <p(x) (ei”12<p(x)) with the period 27~ (47~) 
called a periodic (balf-periodic) solution. 

When we apply the Mathieu functions to 
physical and engineering sciences, such as the 
theory of oscillation and quantum mechanics, 
it is convenient to modify (3) in the form 

d2U/dX2 + (Â + y@(x))u = 0 (25) 

involving parameters A, y. Then with y iïxed, 
there exist countably many values of i, (called 
eigenvalues) corresponding to periodic or half- 

periodic solutions of (25). Let them be 1, < 
1,, <. . or 2, <z2 < . , respectively; then we 
have 

n,<n, $Â2<‘, <A,< <Â,,-, <x2, 

The values of i in the open intervals (A,,-,, 

nZk-,) and (3,,,, 3,,,-,) correspond to stable 
solutions, while the 1,‘s in other intervals 

correspond to unstable solutions (Haupt’s 
tbeorems). 

When both 1. and y vary, the Ây-plane is 
divided into regions corresponding to stable or 

unstable solutions according as the character- 
istic exponent p is purely imaginary or not. 

For example, when Q(x) = 2 COS x in equation 
(25), we obtain the Mathieu equation. In this 
case the ‘y-plane is divided as shown in Fig. 1, 
where shaded (unshaded) regions correspond 

to stable (unstable) solutions and boundary 
curves give eigenvalues corresponding to peri- 
odic or half-periodic solutions. 
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A. General Remarks 

Let K be a +ring or a Vield. As examples of 
such K, we may take the real number field R 
and the complex number fïeld C. By a matrix 

with elements in K, we mean an array of mn 
elements uik (i = 1, . , m; k = 1, , n) of K ar- 

ranged in a rectangular form: 

a11 a12 ... aln 

a21 22 ... a2. 

i 1 a,, am2 ... amn 

The element uik is called the (i, k)-element (entry 
or component). (Sometimes, instead of using 
parentheses, we use (1 11 or [ 1.) More pre- 
cisely, this matrix is said to be an m by n ma- 
trix (m x n matrix or matrix of (m, n)-type). In 

particular, an n x n matrix is called a square 
matrix of degree (or order) n, while a matrix in 
general is sometimes called a rectangular ma- 
trix. Each horizontal n-tuple in an m x n ma- 

trix is called a row of the matrix, and each 
vertical m-tuple is called a column of the 

matrix. We often abbreviate the notation for 
the matrix given previously by writing (aik) or 
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simply A. A square matrix is called a diagonal 

matrix if a11 its components are zero except 
possibly for diagonal components aii, that is, 
if aik = 0 for i # k. If the components nii of a 

diagonal matrix are a11 equal, it is called a 
scalar matrix. An n x n matrix whose (i, k)- 

element is equal to 6, is called the unit matrix 
(or identity matrix) of degree II, where 6, is the 

Kronecker delta, which is defïned by hii = 1 and 
a,= 0 for i #j. We denote this matrix by In, or 
simply by 1 if there is no need to specify n. 

Alxnmatrix(a,,a,,...,a,)iscalleda 
row vector of dimension n, and an m x 1 matrix 

is called a column vector of dimension m. The 
m rows and n columns of an m x n matrix A 

are called row vectors and column vectors of 
A. 

B. Operations on Matrices 

Two matrices A = (aik) and B = (bik) are said to 
be equal if and only if they are of the same 
typeandaik=bi,(i=l ,..., m;k=l,..., n).If 
both A and B are m x n matrices, we define the 
sum of A and B by A + B = (aik + bik). The prod- 
uct of two matrices A and B is detïned by AB 
=(cik), cik = Cjaijbjk, provided that the number 
of columns of A is equal to the number of rows 
of B. We further define the (left and right) 

multiplication of a matrix A by an element a of 
K by aA = (uuik) and Au = (~a). The set of all 
matrices over K of the same type forms a tK- 
module. The multiplication of matrices satis- 

fies the associative law and the left and right 
distributive laws with respect to addition. 
Thus the set of a11 n x n matrices over K forms 
a ring, which is called the total matrix algebra 
(or full matrix algebra) of degree n over K; it is 
usually denoted by M,(K) or K,. If K has the 

tunity element 1, then In is the unity element of 
M,(K). The matrix whose components are a11 0 
is called the zero matrix and is denoted by the 
same symbol0. Suppose that K has the unity 
element 1. Let Ei, be the matrix whose (i, k)- 

element is 1 and whose other elements are a11 
0. Then every matrix A =(uik) in M,(K) cari be 
expressed uniquely as A = Ca&,, a linear 
combination of Ei,. The matrix Ei, is called a 
matrix unit. We have E,E,, = 0 if j # k, Ei, E,, 
= Ei,, and aEi, = Ei,a for a11 a~ K. 

Let A be a square matrix in K. If there exists 
a matrix A-’ such that AA-‘= A-‘A=I, then 
A-’ is called the inverse matrix of A, and A is 

called a regular matrix honsingular matrix or 

invertible matrix). The inverse A-’ is unique if 
it exists. When K is commutative, A is regular 

if and only if its tdeterminant 1 Al is a tregular 
element of K; in particular, when K is a tïeld, 

A is regular if and only if 1 Al # 0. A square 
matrix that is not regular is called a singular 
matrix. 

Let A =(uik) be an m x n matrix. Then the 

n x m matrix (bik) such that bi, = ski for a11 i and 
k is called the transposed matrix of A, and is 
usually denoted by ‘A. Transposing a matrix 

amounts to changing rows into columns and 
vice versa. When K is commutative, AB= C 
implies ‘C=‘B’A. A square matrix such that 
‘A =A is called a symmetric matrix, and one 

such that ‘A = -A is called an alternating 
(skew-symmetric or antisymmetric) matrix. 
A square matrix A = (Q.) is called an Upper 

(lower) triangular matrix if uik = 0 for i > k 
(i < k). 

C. Tbe Kronecker Product of Matrices 

We assume that the ring K is commutative. 
Let A be an m x n matrix (Q), let B be an r x s 
matrix (bj,) in K, and Write cl+ = uikbjl by 

means of indexes i = (i, j) and p = (k, 1). The 
Kronecker product of A and B, usually denoted 
by A @ B, is defined as the mr x ns matrix C = 
(ci,J. By an appropriate choice of Â and p, it 
cari be expressed as 

l 

a,,B a,,B “’ a,,B 
azl B a,,B 1.. a,,B 

1.. 

a,,B a,,B ... a,,B 

or 

We have the formulas 

AO(B,+B,)=AOB,+A@B,, 

(A,+A,)@3B=A,OB+A,@B, 

c(A@B)=(cA)@B=A@(cB), 

provided that the sums and products cari be 
defined. 

Matrices correspond to tlinear mappings of 
free K-modules (- Section L). The Kronecker 
product corresponds to the ttensor product of 
the corresponding linear mappings. 

D. Tbe Rank of a Matrix 

Let A be an m x n matrix (a,) in a fïeld K. If 
there exists a nonzero tminor of A of degree r, 
and if a11 minors of degree > r + 1 are equal to 
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0, then the number r is called the rank of A. 
Denoting the rank of a matrix A by p(A), we 

have p(PAQ) < p(A) for any matrices P, Q for 
which the product PAQ exists; the equality 
holds if P and Q are regular (square) matrices. 
The rank r of A is equal to the maximum 

number of tlinearly independent row vectors of 
A, and it is also equal to the maximum num- 
ber of linearly independent column vectors of 
A. The number n-p(A) is called the (column) 
nullity of the matrix A. It is equal to the di- 
mension of the linear space consisting of solu- 
tions of homogeneous linear equations Ax = 
0, that is, the number of fundamental solu- 
tions of these equations. (The row nullity m - 
p(A) of A is equal to the dimension of the 

linear space consisting of solutions of xA = 0.) 
Even if K is not commutative, we cari detïne 
the rank of a matrix A as the maximum num- 

ber of left (right) linearly independent row 
(column) vectors of A (- 256 Linear Spaces F). 

E. Elementary Divisors 

Let o be a +Principal ideal domain (e.g., the 
ring Z of rational integers, or the +polynomial 
ring K [x] over a lïeld K), and let A be a ma- 
trix with elements in o. Then, multiplying ap- 

propriate invertible matrices from the left and 
right, we cari transform A into a diagonal 
matrix of the form 

i 

e, 0 

e2 

e, 
0 

0 “’ ... l> 0 

where r denotes the rank of A, each ei # 0, and 

each ei+l is divisible by e,. These e,, e2, , e, 
are called the elementary divisors of A and are 
uniquely determined up to unit factors. This 
fact cari be generalized to some extent for the 
case where o is noncommutative (- 256 
Linear Spaces P). Using the concept of deter- 
minant, the elementary divisors cari also be 
defined as follows. Let d, denote the greatest 
common divisor of a11 minors of degree k of A. 

The elements ei = a,/&, (i= 1, , r; d, = 1) of o 
are the elementary divisors of A. The numbers 
di (1 d i < r) are called the determinant factors 
ofA. 

F. Characteristic Polynomials and Eigenvalues 

Let A = (ai,,) be a square matrix of degree n in 
a tïeld K. The determinant F(x) = IX~- Al is 
a polynomial in x with coefficients in K, 

called the characteristic polynomial of A. The 
algebraic equation F(x) = 0 is called the 
characteristic equation of A, and its roots A r, 
E.,, . ,1”, are called the eigenvalues (proper 
values or characteristic roots) of A. The tdeter- 

minant of A, det A, is equal to ny=, /zi, the 
product of the eigenvalues. The sum of eigen- 
values, CyZ1 ii = C;=i aii, is called the trace 
(Ger., Spur) or diagonal sum of A, and is de- 
noted by tr A or SP(A). In case K is +alge- 
braically closed, there exists a nonzero vector x 
that satislïes the equations Ax = 1r if and only 

if Â is an eigenvalue of A. This solution x is 
called an eigenvector (proper vector or charac- 
teristic vector) belonging to the eigenvalue Â. 
In particular, if a11 the aik are real and A is 
symmetric, then a11 eigenvalues of A are real, 

and the characteristic equation F(x) = 0 of A is 
called a secular equation. Every square matrix 
A satislïes its characteristic equation, i.e., 

F(A) = 0. This is called the Hamilton-Cayley 
theorem, and it is useful in numerical calcula- 

tion of inverse matrices. 
Let A be a square matrix. As is clear from 

above, there exist monic polynomials f(x) (#O) 
in K[x] such that f(A)=O. Let <p(x) be such a 
polynomial of the least degree. Then every f(x) 
is divisible by <p(x). This <p(x) is called a mini- 
mal polynomial of A. Let e,(x), ,e,(x) be the 

elementary divisors of the matrix x1-A. Then 
e,(x) = C~(X). Now if F(x) = x”, A is said to be a 
nilpotent matrix, and if F(x) = (x - l)“, A is said 
to be a unipotent matrix. 

G. Jordan Normal Form 

Two square matrices A and B are said to be 
similar to each other if B = P-‘AP with a 
regular matrix P. The matrices A and B are 
similar if and only if x1-A and XI-B have 
the same elementary divisors. Now suppose 

that A has elements in a tïeld K and that every 
eigenvalue of A is in K. Then there is a regular 
matrix P with elements in K such that F’AP 
is of the form 

I 

Al 

Pm’AP= A2 

0 

where 

//ii 1 o\ 

(Ai is a square matrix of a certain degree, say 

mi; if mi = 1 then Ai = (ni).) This matrix P-‘AP 
is called the Jordan normal form of A. It is a 
diagonal matrix if and only if the minimal 
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polynomial of A has no multiple roots. If this 
is the case, A is said to be semisimple. 

H. The Exponential Function of a Matrix 

Let A, = (a:‘) (v = 0, 1,2, . ) be square matrices 
with elements in the complex number field C. 
TheseriesA,+A,+...+A,+...issaidtobe 

convergent if the series of components a$)+ 
u!!‘+...+a!?+ II ‘J ... is convergent for each 

(i,j). For every square matrix A, the following 
series is convergent: 

I+A+~A’+...+;A’+ . . . . 

We denote this series by exp A. Then exp(‘A) 
=t(expA); exp(-A)=(expA))i; and if AB 
= BA, exp(A + B) = exp A exp B. Moreover, 
det(exp A)=exp(trA). Furthermore, if we set 
F(t) =exp(tA), then S(t)/& = AF(t) (- 431 

Transformation Groups). 

1. Normal Matrices, Unitary Matrices, and 
Hermitian Matrices 

Let A=(u+) be a square matrix with elements 
in the complex number field C. Then the ad- 

joint matrix A* of A is the transposed conju- 
gate ‘A= (z~J, where ü is the complex conju- 
gate of a. If AA* = A*A, then A is said to be a 
normal matrix. A matrix U such that U*U = 1, 
that is, Li-’ = U*, is normal. Following G. 

Frobenius, we cal1 it a unitary matrix (in the 
following discussion, we shall cal1 it simply a 
u-matrix). A matrix H such that H* = H is 
also normal. It is called a Hermitian matrix 
(which we shall refer to as an h-matrix). An h- 
matrix P such that P2 = P is called a projec- 
tion matrix. 

The set of all u-matrices forms a tgroup with 
respect to matrix multiplication. If A is a 
normal matrix and U is a u-matrix, U*AU is a 
normal matrix. If H is an h-matrix, Q*HQ is 
also an h-matrix for any matrix Q. Every 

normal matrix A cari be transformed into a 
diagonal matrix by a suitable u-matrix (i.e., 
there exists a u-matrix U such that U*AU 
= U ml AU is a diagonal matrix), and con- 
versely, every matrix with this property is a 
normal matrix. Thus, in particular, any h- 
matrix or u-matrix cari be transformed into 
a diagonal matrix by a suitable u-matrix. 

Moreover, every real symmetric matrix, which 
is naturally an h-matrix, cari be transformed 
into a diagonal matrix by an orthogonal ma- 
trix; this Will be defined later. If A,, . , A,,, are 

mutually commutative normal matrices, we 
cari transform them into diagonal matrices by 

the same u-matrix; that is, there exists a u- 

matrix U such that U -lAi U is of diagonal 
form for a11 i. Al1 eigenvalues of an h-matrix 
are real, and a11 eigenvalues of a u-matrix have 
absolute value 1. 

If a11 eigenvalues of an h-matrix H are posi- 
tive (positive or zero), then H is said to be 
positive definite (positive semideiïnite). For an 
h-matrix H, exp H is a positive detïnite h- 
matrix, and conversely, every positive deiïnite 

h-matrix cari be expressed as exp H by a 
unique h-matrix H. Furthermore, every regular 
matrix A cari be uniquely expressed as A = UH 

(or A= H’U’) by a u-matrix U (or U’) and a 
positive detïnite h-matrix H (or H’), and A is 
normal if and only if UH = HU. 

A square matrix A such that A* = -A is 

called a skew-Hermitian matrix (simply skew 
h-matrix or anti-Hermitian matrix). AI1 eigen- 

values of a skew h-matrix are purely imaginary 
numbers. If A is a skew h-matrix, exp A is a u- 

matrix. Conversely, if a u-matrix U lies in a 
sufficiently small neighborhood of the identity 
matrix 1 (i.e., if all elements of U - 1 have 

sufficiently small absolute values), U cari be 
uniquely expressed in the form exp A with a 
skew h-matrix A. 

J. Orthogonal Matrices 

An h-matrix whose components are a11 real is 
necessarily symmetric. A u-matrix whose com- 
ponents are a11 real, that is, a real matrix R 

such that Rd’ =‘R, is called an orthogonal 
matrix. The totahty of orthogonal matrices 
forms a group with respect to matrix multi- 

plication. If S is a real symmetric matrix, 
there exists an orthogonal matrix T for which 
T -‘ST is a diagonal matrix; that is, S cari be 
transformed into a diagonal form by T. Every 

orthogonal matrix R cari be transformed by an 
orthogonal matrix T into the diagonal form 

Tm’RT 

1 

= 

i 

-1 

PI 

q= ( COS Oj sin 0, 

- sin Oj COS oj > 
for j=l,...,t. 

The determinant 1 RI of an orthogonal ma- 
trix R is either 1 or -1. If IRI= 1, then R is 

called a proper orthogonal matrix. If A is a 
real alternating matrix, then exp A is a pro- 

per orthogonal matrix; conversely, any pro- 
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per orthogonal matrix in a sullïciently small 
neighborhood of the identity matrix I cari 

be expressed uniquely in this form. Moreover, 
there exists a one-to-one correspondence be- 
tween real alternating matrices A and proper 

orthogonal matrices R without eigenvalues 
equalto -l,givenbyR=(I-A)(I+A))’ 
and A=(I-R)(I+R)-‘.Thisiscalleda 
Cayley transformation. 

A (complex) square matrix T with the 
property ‘T= T ml is called a complex ortho- 
gonal matrix. This matrix cari be uniquely 
expressed as T= R exp(iA), where R is an 
orthogonal matrix, A is a real alternating 
matrix, and i2 = - 1. 

K. Infinite Matrices 

By an infinite matrix with elements in a ring 

K, we mean an array of elements of K with 
infinite numbers of rows and columns as 
follows: 

( 

. 
(J VT “’ “’ : 
. . . 1 

where o, r are indices denoting the row and 
column for the element a,, and each index 
ranges over an intïnite set I. Equality, ad- 
dition, and multiplication by an element of K 

of infinite matrices are detïned in the same 
manner as for ordinary matrices. Generally, 
however, multiplication of infinite matrices 
cannot be defined. If the elements of each row 
(column) of an intïnite matrix are zero except 
for a finite number of them, then it is called a 
row (column) finite matrix. For row (column) 

lïnite matrices A = (a,,) and B = (b,,), the prod- 
uct AB=(c,,) is defined by c,,=C,a,,b,, for 
all cr, r E I. By this delïnition the totality of 
such intïnite matrices forms a ring. 

Now let K be the complex number field and 
T the set of natural numbers, and consider an 
intïnite matrix (aik). This is called a hounded 
matrix if the following inequality holds for 
arbitrary xi and y,: 

1 I i$, aikxiyk 

where M is a constant. The set of a11 bounded 
matrices forms a ring. If ‘pi, <p2, . . . is a com- 
plete orthonormal system of a +Hilbert space 
Sj, then for any continuous linear operator A 

we have Ay,= C,Z, qiaik, and A corresponds 

to a bounded matrix (aik). By this correspon- 
dence we have a ring isomorphism between 
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the ring of continuous linear operators of Sj 
and the ring of bounded matrices (- 197 

Hilbert Spaces). 

L. Linear Mappings 

Let L, L’ be free right K-modules with bases 
a,, , a,,, and b,, . , b,, respectively. Then, to a 
+linear mapping f of L into L’, there corre- 
sponds an n x m matrix A such that 

Conversely, for any n x m matrix A with ele- 
ments in K, there is a unique linear mapping f 
as above (with respect to these bases). In this 

sense, if a linear mapping g of L’ (into some 
free K-module) corresponds to a matrix B, 
then the product gofcorresponds to the prod- 
uct BA. (For left modules, we cari observe 
transpositions.) If a’, , , ah and b;, . , bn 

are another pair of bases, then there are regu- 
lar matrices P, Q such that (a;, , uh) = 
(a,, . . . . a,)P and (b;, . . . . b”)=(b,, . . . . bJQ. 

With respect to these new bases, the corre- 
sponding matrix to fis Qm’AP. In the partic- 
ular case where L =L’, ai = bi (for a11 i), we see 
that (1) under a tïxed basis of L, a linear trans- 
formation of L is nothing but a matrix of 
degree m and (2) a change of basis corresponds 
to the transformation AHP-‘AP by the base- 
change matrix P. 

Thus, notions applicable to matrices cari be 
applied to linear mappings. For instance, an 
eigenvector (characteristic vector or proper 
vector) of a linear transformation <p of L is 

an element a( #0) of L such that q(a)=acc 

(a E K). If K is a lïeld, then the characteristic 
polynomial x(X), and therefore also the eigen- 

values (proper values or characteristic roots), 
are invariant under base change. We add a 

little more on the case where K is a fïeld. 
For an eigenvalue c( of <p, the subspace N, = 

{u E L 1 q(u) = cla} of L is called the eigenspace 
belonging to cx. Furthermore, the space Na = 
{ueLI(q-c~)~ (a)=0 for some k>O} is a 

subspace of L containing N, and is sometimes 
called an eigenspace in a weaker sense. If a11 
roots of x(X) = 0 are in K, then L is decom- 

posed into the direct sum of Na,, . . . , Na,, 
where s(i) . . , c(, are the distinct roots of the 
equation x(X) = 0. The dimension of N& is 
equal to the multiplicity of the root tli in the 

equation x(X) = 0. This fact is the basis of the 
Jordan normal form. Minimal polynomials of 

linear mappings are well delïned. 
A linear transformation <p of L is called 

semisimple if L has the structure of a +semi- 
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simple K [Xl-module determined by Xa = 
<p(a). Hence cp is semisimple if and only if the 
minimal polynomial p(X) of cp has no square 

factor different from constants in K[X]. In 
particular, the condition that a11 roots of p(X) 
= 0 are in K and simple is suflïcient for semi- 
simplicity of cp. This condition is equivalent 

to the condition that <p is represented by a 
tdiagonal matrix relative to some basis of L. 
Then L is decomposed into the direct sum 
of the eigenspaces N,, and cp is said to be 
diagonalizable. 

If K is a tperfect fïeld, any linear transfor- 
mation <p of L is represented as the sum of a 

semisimple linear transformation cp, and a 
nilpotent linear transformation cp,: cp = <PS + <p, 
(Jordan decomposition). Also, <PS and <P~ com- 
mute with each other, and they are uniquely 
determined by <p. We cal1 cps and <pn the semi- 

simple and nilpotent component of cp, respec- 
tively. Furthermore, <p, and rp, cari be repre- 
sented as polynomials of cp without a constant 
term. The transformation cp is nonsingular if 
and only if <p, is nonsingular. A nonsingular 
linear transformation <p is called unipotent if 
cp, is equal to the identity transformation 1,. 
Any nonsingular linear transformation cp is 
uniquely represented as a product of a semi- 

simple linear transformation and a unipotent 
linear transformation, which are commutative: 
<p = (ps(p, (multiplicative Jordan decomposition). 

Here cp, is the semisimple component and cpU 
= 1 L + cps’ cp. is unipotent (<p, is called the 
unipotent component of cp; - 13 Algebraic 
Groups). 

M. Linear Equations 

Let K be a Vïeld, fi=a,rX, + . . . +ainX, (i= 
l,...,m)bem+linearforms:K”~K,and 
b,, . , b, be m given elements of K. Then a set 
of n elements xi, . ,x, of K, or an n-tuple 

x=(x1,..., X,)E K”, satisfying the system of 
m linear equations 

nil~l+...+ainx,=bn, i=l,..., m, (1) 

is called a solution of equations (1). In partic- 
ular, a system with b, = . = b, = 0, i.e., 

ailxl + . ..+ai.x,=o, i=l / . ..> m, (2) 

is called a system of linear bomogeneous equa- 
tions. In the theory of linear equations, the 
fteld K need not be commutative. In those 

cases where K is noncommutative, we have to 
distinguish between right multiplication and 

left multiplication. We make this distinction 
by adding the word “right” or “left” in paren- 
theses whenever it is necessary to do SO. 

If xi, . ,x, are solutions of the system (2) 
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then any of their (right) linear combinations 
Ci xici (ci E K) is also a solution of (2), SO that 

the solutions of (2) form a +(right) linear space 
L over K. L is the kernel of the (left) linear 
mapping K”-tK” given by X+(~~(X), . . . . 
f,(x)). Let s = dim L. Ifs = 0, the system (2) 
has only x = 0 as a solution, called the trivial 

solution. If s > 0, L has a basis {x1, . , xs}. 
Then xi, . , x, are (right) linearly independent 
solutions of (2), and every solution of (2) is a 
(right) linear combination of them. We say 
that x i, . . . , x, form a system of fundamental 
solutions of (2). Let r denote the maximum 
number of (left) linearly independent forms in 

the set {f, ,f,, . ,f,}. Then we have s + r = n, 
SO that the system (2) has a nontrivial solu- 

tion if and only if r < n, and the number of 
linearly independent fundamental solutions is 
n-r. Accordingly, if the number of equations 

is less than the number of unknown quantities, 
there always exists a nontrivial solution. 

Suppose now that the system (1) has a solu- 
tion x,,. Then every solution x of (1) cari be 
written x0 + y for a solution y of (2); and con- 
versely, for any solution y of (2), x0 + y is a 
solution of (1). Furthermore, in order for (1) to 
have a solution, it is necessary and suffïcient 

that Zicibi=O whenever &cJ=O (c~EK), i.e., 
that the following two matrices have the same 
+rank: 

lail ... a,, \ 
A= . . / 

a,, ... amn i 

a,, ... a,, b, 
,If= 

a,, ... amn brn 

In particular, equation (1) has a unique solu- 

tion if and only if A and A have the same 
rank n. If m = FI (i.e., A is a square matrix), (1) 
has a unique solution if and only if A has the 

inverse A-‘, and then the solution is given by 
‘x=A-“b,whereb=(b,,b2 ,..., b,). 

We have also the following result. Let K’ be 

an textension fïeld of K. If a system of linear 
equations in K has a solution in K’, it has a 

solution contained in K. In particular, if (2) in 
K has a nontrivial solution in K’, it has a 
nontrivial solution already in K, and any 
system of fundamental solutions in K is itself a 
system of fundamental solutions in K’. 

Suppose now that K is commutative. Then 
we have an explicit formula for solving equa- 

tion (1) by means of tdeterminants. 
Consider lïrst the case m = n. Let A = 1 Al, the 

determinant of the matrix A. If A #O, then (1) 
has a unique solution, given by xk = Ak/A 
(k = 1, , n), where Ak is the determinant ob- 

tained from A by replacing its kth column, 
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alk, azk, . . , ank by b, , b,, , b,. This is called 
Cramer% rule. TO consider the general case, let 
r be the common rank of A and A. We may 
assume that 1 aik I# 0 (i, k = 1, . , r), appropri- 
ately changing the order of the equations and 
unknowns. Then by Cramer% rule we cari 
solve the first r equations for xi, ,x,, assign- 
ing arbitrary values to x,+i, . ,x,. In order for 

equation (2) to have a nontrivial solution, it is 
necessary and sufftcient that the rank of A be 
less than n, and hence that 1 A I= 0 if A is a 

square matrix. For geometric applications of 
the theory of linear equations - 1 Affine 
Geometry, and for numerical solution - 302 
Numerical Solution of Linear Equations. 

N. Positive Matrices 

A positive (or nonnegative) matrix is a matrix 
whose elements are a11 positive (or nonnega- 

tive) real numbers. A nonnegative square ma- 
trix A is said to be reducible (or, more pre- 
cisely, reducible by permutations) if by certain 
permutations of rows and columns A is re- 
duced to a form 

A, 0 

( > 0 4 

with square matrices A,, A,; otherwise A is 
called irreducible. 

Tbeorem (Perron). For each positive matrix A, 

there is a positive real number r such that (1) r 

is a simple root of the characteristic equation 
for A and (2) every other eigenvalue of A has 

absolute value less than r. Furthermore, (3) if v 
is an eigenvector corresponding to r, then the 
components of u are a11 positive or ah negative. 

Theorem (Frobenius). If A is an irreducible 
nonnegative matrix, then there is a positive 
number r satisfying (1) above and such that 

every eigenvalue of A has absolute value at 
most r. Furthermore, (3) above also holds in 
this case. 

Theorem. If A is a nonnegative matrix, then 

there is a nonnegative real number r that is 
an eigenvalue and such that absolute values of 
other eigenvalues are at most r. If u is an 
eigenvector corresponding to this r, then the 
components of u are a11 nonnegative or all 
nonpositive. 

References 

See references to 103 Determinants. 
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A. General Remarks 

Roughly speaking, a measure is a nonnegative 

function of subsets of a space completely addi- 
tive in the sense that the measure of the union 
of a sequence of mutually disjoint sets is the 
sum of the measures of the sets. This concept 

was introduced as a mathematical abstraction 
of length, area, volume, mass distribution, 
probability distribution, etc. Measure theory is 
the basis of integration theory, and these two 
theories play a fundamental role in modern 
mathematics, particularly in analysis, func- 
tional analysis, and probability theory. 

B. Important Classes of Sets 

Let X be an abstract space. The power set of 

X, the class of a11 subsets of X, is denoted by 
2’. Let 2I be a nonempty subclass of 2’. If ‘QI 
is closed under intersections, i.e., if A, i? E 2l 
implies A n BE QI, then ‘9I is called a multipli- 

cative class on X. If QI is closed under finite 
unions and complements, then 2I is called an 
algebra (or finitely additive class or field) on X. 
If CLI is closed under countable unions and 
complements, 2I is called a a-algebra (count- 
ably additive class, completely additive class, or 

Bore1 fïeld). If (u is closed under montone 
limits, i.e., if for every sequence A, E ‘u, II = 1, 
2 , ...> monotone increasing or monotone de- 

creasing, the union or intersection of the se- 
quence belongs to ‘Z, then 2I is called a mono- 
tone class on X. If XE 5!I and if 2I is closed 
under countable disjoint unions and proper 
differences (A\I3 for A 1 B), then QI is called 
the Dynkin class on X. For any CT c 2x the 
least cr-algebra that includes 0 is called the o- 
algebra generated by 6; this is written as ~[a]. 

Similarly, we denote by %R[K](B[K]) the 
monotone class (Dynkin class) generated by (5. 

The following theorems are often useful. 
The monotone class theorem: If 6 is an algebra, 
then !IR[K] =a[&]. 

The Dynkin class theorem: If K is a multiplica- 
tive class, then D[(Z] =~[a]. 

C. Measurable Spaces (Bore1 Spaces) 

A space X endowed with a a-algebra B on X 
is called a measurable space (or Bore1 space) 
and is denoted by (X, 8). A set belonging to ‘B 

is called a !&measurable set (or Bore1 set) in 

(X, 53). It is obvious that the empty set 0 and 
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the whole space X are %measurable. b- 
measurability is preserved by complements, 
namely, if A is 2%measurable, then SO is A’. 

Similarly 2%measurability is preserved by 
countable set operations such as countable 
unions, countable intersections, differences, 
etc., but not always by uncountable unions. 

For a sequence {A,} (~EN) of subsets of 
X, the superior limit (or limit superior) and 
the inferior limit (or limit inferior) are de- 
fmed by lim supn-W A,=nZ=l(uZ,A,)and 
lim inf,,, A, = um=, ( fi&,, A,), respectively. 
The symbols hm and lim may be used in place 
of lim sup and lim inf, respectively. The inferior 
limit is always contained in the superior limit, 
and when they coincide, they defïne the limit 

of {A,,}, which is denoted by lim,,, A,,. If 
{A,} is monotone increasing (or decreasing), 
lim,,, A, is Uzl A, (or nzl A,,) (- 87 Con- 
vergence L). d-measurability is preserved by 
these limits. 

Let Y be a subset of a measurable space 
(X,%3). Then theclass Bn Y={Bn YIBEd} is 

a cr-algebra on Y. Y is regarded as a measur- 
able space endowed with 23 n Y unless stated 
otherwise. Suppose that we are given a family 
of measurable spaces (X,, a,), 1 E A, where A is 
an arbitrary index set. Let X be the Wartesian 

product of X,, AEA, and n, the projection 
from X to X, for each Â. E A. Then X is re- 
garded as a measurable space endowed with the 

o-algebra generated by the class {~L*~(B~) 12, A, 
BI,~231}, denoted by niEh%,, unless stated 
otherwise. 

Let T be a topological space. The o-algebra 
on T generated by the open subsets of T is 
called the topological a-algebra (Bore1 field) on 
T, denoted by 8( 7’). Some authors detïne 8(T) 

to be the a-algebra generated by compact 
subsets of T, which is equivalent to the defi- 
nition mentioned above if T is locally compact 

and a-compact. T is regarded as a measurable 
space endowed with 23(T) unless stated other- 
wise. Hence R” is a measurable space (R”, 2Y), 
where %3”=%3(R”). A %3(T)-measurable subset 
of T is called a Bore1 subset of T. If the +Char- 
acteristic function of a set is a +Baire function, 
then the set is a Bore1 set. Such a set is called a 
Bore1 set in the strict sense (or a Baire set). The 
union (intersection) of at most a countable 

number of closed (open) sets is called an F, set 
(Cd set). Both F, sets and G, sets are Bore1 sets. 

Denote by BO the class of all closed subsets of 
X and by 6, the class of all open subsets, and 
deiïne classes sr (6,) for an ordinal number 
5 to be the sets expressible as a countable 
union (intersection) of the sets belonging to 
Uqqr &( UV<< EV). Then by the construction, 

every set belonging to either Br or @jr is a 

Bore1 set. If w1 < [, then íý5 = &,, , 6, = 6,, . 
(For the defïnition of w, - 312 Ordinal Num- 
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bers.) In particular, in a +completely normal 
topological space (for example, a metric space), 

5, = @J,, 6, = SP if a <h and bath U5<w, Sr 

and UStoI 6, coincide with the Bore1 field. In 
this case, an arbitrary Bore1 set B is a Baire 

set, and thus cari be classified according to the 
+Baire class of the characteristic function of 
B. It cari also be classified according to the 

smallest ordinal number 5 with respect to 
which BEN< (or BEE~). 

If S is a subset of a topological space T, 
then S is regarded as a topological space with 
the relative topology and SO is regarded as a 
measurable space (S, B(S)). Hence every subset 
of R” is regarded as a measurable space. S is 

also a measurable space (S, %3(T) n S), as men- 
tioned above. Since d(S) = d(T) n S, no con- 
tradiction arises. Let T,, AE A be a family of 

topological spaces. Then the topological prod- 
uct T of this family is regarded as a measur- 

able space (T, 23(T)) or (T, nlE,, 23( TA)). It 
should be noted that these two o-algebras 

may be different. They are the same if T has 
a countable open base. 

Let (Xi, ai), i = 1,2, be measurable spaces. A 
bijective mapping f from X, to X, is called a 
Bore1 isomorphic mapping if f(>13,) = {f(B,) 1 

B, E%,} = 23,. If there exists such an L then 
(X,, %J2) is said to be Bore1 isomorphic to 
(X, ,23,). Bore1 isomorphism is an equivalence 
relation. A measurable space is called a stan- 
dard measurable space (or a standard Bore1 
space) if it is Bore1 isomorphic to a Bore1 sub- 
set of R’ (viewed as a measurable space as 
explained above). A striking fact is that a 
standard measurable space is Bore1 isomor- 
phic to one of the following spaces: { 1,2, . , n} 
(n = 1,2, . . . ), N, [0, 11. A measurable space 

which is Bore1 isomorphic to an tanalytic sub- 
set of R’ is called an analytic measurable 
space. Every complete separable metric space, 

viewed as a measurable space, is standard. 
More generally, every +Luzin space is a stan- 
dard measurable space. Hence the spaces of 
tdistributions, 9’ and Y’, are standard mea- 
surable spaces, being Luzin spaces. Every 
+Suslin space, viewed as a measurable space, 
is analytic. 

D. Measure 

A real-valued set function m detïned on a 
fïnitely additive class ‘%R on a space X is called 
a finitely additive measure (or Jordan measure) 
if it satisfies the following two conditions: (1) 
O<rn@)<a, m(a)=@ (II,) A, B~%71, An 
B = 0 imply m(A U B) = m(A) + m(B). 

A set function P defined on a completely 

additive class 23 in a space X is called a mea- 
sure (completely additive measure or rr-additive 
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measure) on 23 (or on X) if it satislïes the fol- 
lowing two conditions: (1) O<p(E)< CO, ~(0) 
=o; (II) E”Eb (n= 1,2, . ..). EjnE,=O (j#k) 

imply pL( us1 E,) = IX$& ,&Y,) (complete addi- 
tivity or a-additivity or countable additivity). 

The triple (X, 23, p) or the pair (X, p), where X 
is a space, 93 a completely additive class of 

subsets of X, and p a measure, is called a 
measure space. We cal1 n or (X, 8, n) tïnite or 
bounded if p(X)< CO and a-tïnite if there exists 
a sequence {X,} satisfying p(X,) < cû and 
Uz, X, =X. A set A E LB is called atomic if 
(i) p(A) > 0 and (ii) BE b and B c A imply 
that p(B)=0 or p(B)=p(A). A measure space 
(X, d, ,u) is called nonatomic if no element of 23 
is atomic. The simplest bounded measure is 

given by delïning m(A) = 1 if a E A and m(A) = 0 
if a# A, where a is a given point in X. Such a 
measure is called the Dirac 8-measure. A mea- 

sure m with m(X) = 1 is called a tprobability 
measure (- 342 Probability Theory). 

Equalities appearing in (II,,) and (II) include 
the possibility that both sides equal CO. In 

measure theory and integration theory, ad- 
dition and multiplication involving +cc are 
carried out as follows (a denotes a real num- 

ber):(km)+a=a+(+co)= foo;(+oo)-a= 
+Q,a-(fco)=fco;(fco)+(Sco)=~Q; 
(*CU)-(+m)= *CO; a.(fa)=(*co).a= 
fm ifa>O;a.(*co)=(*CO).a= Tcu ifa< 
0; (+a).( +co)= +cu. (Sometimes it is further 

agreed to put O~(+co)=(+co)~O=O.) 
A 2%measurable set in a measure space 

(X, 8, ,u) is also called p-measurable (or sim- 
ply measurable). For a sequence {An} of p- 
measurable sets the following conditions 
hold: (i) p(liminf,,, A,) < lim inf,,, p(A,); 
(ii) if p( Un=,, A,) < +co for some n,, then 
p(lim SLIP”+~ A,) à lim SU~,,, p(A,); and (iii) 
if lim n+m A, exists and the hypothesis of (ii) 

holds, then p(lim,,, A,)=lim,,,~(A,). For a 
lïnitely additive measure p on a completely 
additive class 23 to be a completely additive 
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space (X, d, p). If the set of a11 points for which 
a property P fails to hold is a nul1 set, then we 
say that P holds almost everywhere (a.e. or 
at almost all points). Sometimes we use the 
expression “almost P” to describe the same 
situation. 

E. Construction of Measures 

A set function p*(A) defined for every subset of 
X is called a Carathéodory outer measure (or 
outer measure) on X if it has the following 
three properties: (i) O<p*(A)< co, p*(@)=O; 

(ii) AcB-p*(A)dp*(B); (iii)p*(UZ, A,,)< 
XE1 p*(A,). Because of (iii), the inequality 
p*(B)<p*(Bn A)+p*(Bn A’) always holds; 
if the equality holds for every B, then A is 

called measurable with respect to p*. It follows 
from this definition that a set A satisfying 

p*(A)=0 is always measurable with respect to 
p*. The class 23 of a11 sets measurable with 
respect to PL* is a completely additive class, 
and if we defme p(A) = p*(A) for A belonging 
to b, then p(A) gives a complete measure on 
23. This measure is called the Carathéodory 
measure induced by II* or the generalized 
Lebesgue measure. 

A fïnitely additive measure m defined on a 

finitely additive class W is called completely 
additive when A,cYJl, AjflA,=@ (j#k), 

un=, A,E!DI imply rn(Uzi A,)=xz, m(A,). If 
by means of such an m we delïne p*(A) for an 
arbitrary A c X to be the inlïmum of all pos- 
sible values X;i m(A,,), where Ac Uzl A, 
(A,eTJl), then p* gives a Carathéodory outer 
measure. From this p* a measure p on a com- 
pletely additive class 23 is induced as described 
above, and we have LB 3 !III and p(A) = m(A) for 
A E Y.IL Therefore m cari be extended to a mea- 

sure p on o[W] (E. Hopf’s extension theorem). 
In particular, if X is a countable union of sets 

of lïnite measure, then this extension is unique. 
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x,<b,,k=l,2,...,n}(-co<a,<b,<co)is 

defined by m(1) = ni=, (bk -aJ. Let Im, be the 
collection of all sets that cari be represented as 
the finite union of disjoint left-open intervals, 
and for such expression A = IJI=~ Ij in $J& 
detïne m(A) = &r ~(1~). Let %N = !RI0 U {a} 

and m(0) = 0. Then m gives a fïnitely additive 
measure on !JJl that is completely additive. 
Therefore m determines an outer measure p*, 
which in turn determines a measure p. This p* 

is called the Lehesgue outer measure (or simply 
outer measure). Sets that are measurable with 
respect to p* are said to be Lehesgue measur- 

able (or simply measurable), and the measure 
p is called the (n-dimensional) Lebesgue mea- 
sure (or simply measure). Every interval is 
measurable, and its measure coincides with its 
volume. Open sets, closed sets, and Bore1 sets 
are a11 measurable. More generally, suppose 
that an outer measure p* defined on a metric 
space X with a metric d satisfies the condi- 

tion: If d(A,B)>O, then P*(AU@=~*(A)+ 
p*(B). Then every closed subset of X is p*- 
measurable, and therefore SO is every Bore1 
subset. Hered(A,B)=inf{d(a,b)IaEA,bEB} 

denotes the distance between the two sets A 
and B. A measure p detïned on the class of a11 
Bore1 subsets of a topological space X is called 
a Bore1 measure. The cardinality of the set of 
ah Lebesgue measurable subsets of R” is 2’, 
while the cardinality of the class of Bore1 
sets is c (here c is the cardinal number of the 
tcontinuum, ie., the cardinal number of R). 

Therefore there exists a Lebesgue measur- 
able set that is not a Bore1 set. It follows 

immediately from the detïnition that the 
Lebesgue measure is K-regular, SO for every 

Lebesgue measurable set A we cari find an tF,- 
set B and a tG,-set C such that B c A t C and 
p(C-B)=O. 

Historically, for a bounded subset A of R”, 
C. Jordan detïned t%(A) to be the intïmum of 
a11 possible values m(B), where BE W and B 3 
A, and WI(A) to be supremum of a11 possible 

values m(B), where BE!JJI and Bc A. He called 
m(A) the outer volume of A and m(A) the inner 
volume of A (in the case of R2, the outer area 
and buter area, respectively). When #ï(A) = 
g(A), A is called Jordan measurable, and this 

common value is defined to be the Jordan mea- 
sure (Jordan content) of A. Jordan measure is 
only finitely additive, and was found to be un- 
satisfactory in many respects. It was Lebesgue 
who modified this notion and introduced 
completely additive measures. Jordan measur- 
able sets are always Lebesgue measurable. 

Using the taxiom of choice, a set that is not 

Lebesgue measurable cari be constructed (G. 
Vitah). For example, a set obtained by choos- 

ing exactly one element from each coset of 
the additive group of a11 rationals in the addi- 
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tive group of the reals is not measurable [3, 
pp. 677701. 

H. Product Measure 

When two o-tïnite complete measures px and 
pLy are detïned on completely additive classes 
23, and Bu on X and Y, respectively, an ele- 
ment C belonging to the smallest fïnitely addi- 
tive class 52 in the Cartesian product that 
contains {A x B 1 A E 8,, BE S,} cari be repre- 

sented as a finite disjoint union C= i&(Aj 
x Bj) (Aj~b,,Bj~23,). If we defïne v(C)= 

C’& px(Aj)py(Bj) (here we agree to put 0. CD = 
0), then this value is independent of the way 
the set C is represented, and v defines a com- 
pletely additive measure on si. By extending v 

by means of Hopf’s extension theorem, we 
obtain a (complete) measure space, called the 

(complete) product measure space obtained 
from the measure spaces (X, 8,, pLx) and (Y, 
23r, py). The measure obtained in this way 
on the space X x Y is called the product mea- 

sure of pcx and pLu and is denoted by px x pr. If 
we denote by %nP the class of a11 Lebesgue 

measurable subsets of the p-dimensional Eu- 
clidean space RP and by mp the p-dimensional 
Lebesgue measure, then the (complete) product 
measure space of (RP, %J$,, mp) and (Rq, YJ$, m,J 

is (R (p+d m , p+4, mp+,J. The product measure 
space of any finite number of measure spaces 

(Xi, d,, pi) (i= 1, , n) is defined similarly. 
Let X, (LEA) be spaces with an index set of 

arbitrary cardinality. For the product space X = 

IIiE,, X,, an n-cylinder set, or simply a cylinder 
set, is a set of the form A x n,,,,, ,_,,, lni X, 
(A c X,, x x X,“). If a tïnitely additive class 

‘ZI, is given for each X,, the class of a11 subsets 
that cari be represented as the union of a fïnite 
number of cylinder sets of the form A, x A, x 
. XA,Xn,,,,,,...,,~}X~(Aj~~,j,j=1,2,...,~) 
is a fïnitely additive class in the space X. 
When each aA is completely additive, the 
completely additive class ‘u generated by this 
lïnitely additive class is called the product of 
the completely additive classes %, and is de- 
noted by &,,%u,. When a measure space (X,, 

23i,pi) with Pu= 1 is given for ÂEA, a mea- 
sure p cari be defined in the following way on 
the completely additive class B = nis,,23, in 
the product space X: TO begin with, for a cyl- 
inder set of the form A, x x A, x X’ (here 

AjEBA, and X’=~ic(il,....n,)X,), we define 
V(A, x x A, x X’)=pLI,,(Al) pi,(A,). If we 
extend p to the fïnitely additive class 6 con- 

sisting of all sets that cari be represented as 
the tïnite union of such cylinder sets, then this 
extension gives a completely additive measure 

on CF, and therefore, by Hopf’s extension theo- 
rem, there exists a unique extension to a mea- 
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sure /* on 23, and p satisfies p(X) = 1. We 
denote this /* by p = n,,, F~. 

I. Radon Measure 

Let X be a tlocally compact Hausdorff space, 
23 the topological o-algebra on X, and C,(X) 
the real linear space of all real-valued con- 
tinuous functions f on X having tcompact 
support (i.e., the closure of the set {xI,f(x)#O} 
is compact). A (real) tlinear functional cp de- 
fined on C,(X) is called a positive Radon mea- 

sure if cp( f) 2 0 whenever f> 0. For such a 
functional cp there corresponds a Bore1 mea- 
sure p on X for which cp( f) = lx f dp holds for 

every f~ C,(X). Lebesgue measure m, is re- 
garded as a positive Radon measure on R”. If 

X is cr-compact (i.e., X can be represented as 
the countable union of compact sets), then the 
property cp(f)=J,fdp for all fEC,(X) defines 
the measure p uniquely on the class of Bore1 
sets of X. A linear functional on C,,(X) that 
can be written as the difference of two positive 

Radon measures is called a Radon measure. 
For a linear functional cp defined on C,(X) 
to be a Radon measure, it is necessary and 

sufficient that for an arbitrary f E C,(X), the set 

{(~(g)~IgI~Ifl,g~C~(X)}bebounded.Equiva- 
lently, it is necessary and sufficient that the 
restriction of cp to the subspace of all functions 
in C,(X) having their support in a fixed com- 
pact subset of X must be continuous with 
respect to the ttopology of uniform conver- 
gence. Therefore, if X is compact, an arbitrary 
continuous linear functional on C(X) is a 

Radon measure. L. Schwartz investigated 
Radon measures on spaces that are not locally 
compact [6]. 

J. Measurable Functions 

When a completely additive class b on a 
space X is given, a function f defined on a d- 

measurable set E and taking real (and possibly 
+co) values is called a b-measurable function 

on E if for an arbitrary real number ~1, the set 
{x 1 f(x) > a} is B-measurable. The condtion 
f>ccmaybereplacedbyf>cc,f<cc,fdcc. 
A function f can also be defined to be 2% 
measurable if the tinverse image under f of 

any Bore1 set is B-measurable. When f and 
g are B-measurable, so are af + bg (a, b con- 

stants),f. g, f/g, max(J g), min(f; g), Ifl” (P a 
constant), whenever they are well defined. The 
superior and inferior limits of a sequence of 8- 
measurable functions are also B-measurable. 
In a complete product measure space of two c- 

finite measure spaces, a function f(x, y) may 

fail to be measurable as a function of two 
variables even if it is measurable with respect 

to each of the variables x and y separately. For 
example, let 8 be the class of all closed subsets 

F of R2 satisfying m,(F) > 0, F c [0, l] x [0, 11. 
Using the fact that the cardinality of 5 does 
not exceed the cardinal number of the con- 
tinuum, we can prove by +transfinite induction 
that the elements of 3 can be indexed as F<, 
F < c, < being the cardinality of 5, and that for 
every F<E~ we can pick two points zs=(xy, 

ye), z; = (xi, y;) in such a way that if F< # F,, 
then xc, xi, x,,, xi are all distinct and y,, y;, y,, 
yI, are all distinct. Furthermore, we can prove 
that the set E consisting of all such zy is not 
measurable. Therefore, denoting the charac- 

teristic function of the set E by f(x, y), f(x, y) is 
not measurable; but if we fix x (resp. y), then as 
a function of y (resp. x), f(x, y) is measurable, 
since f (x, .) (resp. .f( , y)) is always 0 except 
possibly at one point. If ‘%3 is the class of all 

Lebesgue measurable sets or the class of all 
Bore1 sets, then a !&measurable function is 

called a Lebesgue measurable function (or 
simply measurable function) or a Bore1 mea- 

surable function, respectively. 
In Euclidean space, the class of all Bore1 

measurable functions coincides with the class 
of all Baire functions, and an arbitrary Le- 

besgue measurable function is equal almost 
everywhere to a Baire function of at most the 
second class. For a function f that is finite 
almost everywhere on a Lebesgue measur- 
able set E to be Lebesgue measurable, it is 
necessary and sufficient that for an arbitrary 
E > 0 we can find a closed subset F such that 

m(E - F) <c: and f is continuous on F (Luzin’s 
theorem). 

If a sequence {f,} of 23-measurable func- 

tions on a measure space (X, 8, p) converges 

almost everywhere to f on a set E with p(E) < 

rx), then for an arbitrary E > 0 we can find a 
set F (F c E, FE %) such that p(E - F) < E and 
f, converges uniformly on F. If X = R” and B 
is either the class of Bore1 sets or the class 

of Lebesgue measurable sets, then the set F 

can be chosen to be a closed set (Egorov’s 
theorem). 

For a finite measurable function f(x) defined 
on the real line, there exists a sequence {h,} 

such that lim,,, f (x + h,) = f (x) almost every- 
where (H. Auerbach). 

The functional equation f (x + y) = f (x) + 

f(y) has infinitely many nonmeasurable solu- 
tions (G. Hamel; - 388 Special Functional 
Equations). 

Let %!I,, i= 1, 2, be o-algebras on Xi, i = 1, 2, 

respectively. A mapping f: X, -X, is said to 
be measurable ‘u,/‘u, if f -‘(A,)c211, for every 
A,E’U,. When $3; generates 9I,, f:X,+X, is 

measurable %!I,/%, iff-‘(A;)E’U, for every 
A; ES.&. For example, a mapping f: R’ +R’ 

is Bore1 (Lebesgue) measurable if and only if 
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fis measurable b1/23’(%JI,/%31), where !ZJ1 
and W, denote the Bore1 subsets and the Le- 
besgue measurable subsets of R’. Measurabil- 
ity of mappings is preserved by compositions, 

namely, if f: X, -X, and 9: X,-X, are mea- 
surable %,/Ql, and ?I,/Q&, respectively, then 

gof:Xi+X3 is measurable %,/‘u,. If the pro- 
jection n,:ni,,Xi+X, is measurable, then 

&,?I$&. Since ni-‘(Ai) (iel, Aig’Ui) generate 
nip, 21i, a mapping J’: X+ ni,, Xi is measur- 
able (rr/n,,, 21i if rri of: X -+Xi is measurable 

(u,/% for every in I, where 2I is a a-algebra 
on X. 

K. Image Measures 

Let p be a regular measure on a measurable 
space (X, %J, i.e., the completion of a measure 

on Btl,. Then every mapping f: X -+ Y measur- 
able 8,& induces a c-algebra on Y: 

93 = {B c Y If-‘(B) is p-measurable}, 

and a measure on 8: 

v(B) = PW1 @)I. 

The measure v is called the image measure of 
p under the mapping f; this is denoted by 
pfuf-’ or f.~. Obviously, v(Y)=p(X), and v is 
complete. Although B includes 93, by virtue 

of the measurability of J v is not regular in 
general. However, v is regular if p is a bounded 
measure and if both (X, 23,) and (Y,d,) are 

analytic measurable spaces (- 22 Analytic 
Sets I). Therefore the image measure of a 
regular probability measure under a measur- 
able mapping is also a regular probability 
measure in practically all useful cases. 

L. Related Topics 

(i) Integration. For a nonnegative measurable 
function f(x) on (X, b, m), we can define the 
integral of f(x) on a set EE 23, denoted by 

~dl4~@4~ ~Ef(x)&(4, jEfhL, or jE1: For a 
real measurable function f(x), the integral is 
defined to be equal to JEf+ &-lE,f- dp, if at 
least one of these integrals is finite, where f’ 
and f- are the positive and negative parts of ,f 
(- 221 Integration Theory B). 

(ii) Fuhini’s theorem for measures. Let (X, 

8, p) be the complete product measure space 
of (Xi, 23,, pi) (i = 1,2), where both p, and pL2 

are a-finite and complete. For EE 23 we define 
the sections E(x,) and E(x,) by 

E(x,)={x,I(xl,X2)~E}, 

-w,)={x, Ibl~X,kE). 

Then we have E(x,)E!& for almost all (pi)x, E 

Xi, E(x,)~23, for almost all (~Jx~EX~, and 

P(E) = 
s 

x, /4E(xAhVxJ 

(- 221 Integration Theory E). 

(iii) The Radon-Nikodym theorem and the 
Lehesgue decomposition theorem for measures. 
Let p and v be a-finite measures on (X, 93). 
If p(E) = 0 implies v(E) = 0, then v is said to 
be absolutely continuous with respect to p, 
denoted by v<p. v<p if and only if v is ex- 

pressible in the form v(E) = lEfdp, where 
f is a nonnegative !&measurable function 

(the Radon-Nikodym theorem). Such an ,f is 
uniquely determined up to p-measure 0 and is 
called the Radon-Nikodym derivative of v with 
respect to p, denoted by dvldp. The concept 

opposite to absolute continuity is singularity. v 
is said to be singular with respect to p if there 
exists an E E 23 such that v(E’) = p(E) = 0. If p 
and v are two arbitrary o-finite measures, then 
v is expressible uniquely as the sum of an 
absolutely continuous measure vi and a sin- 
gular measure vz with respect to p (Lebesgue 
decomposition theorem) (- 221 Integration 

Theory D, 380 Set Functions C). 
(iv) Invariant Measures. Let (X, %3) be a 

measurable space and G a group of Bore1 

isomorphic mappings from (X, !ZJ) to itself. A 
measure p on (X, 23) is said to be invariant 
under G if p(E)=p(g-l(E)) for every EE‘B and 

every gE G. For example, the Lebesgue mea- 
sure m on (R”, a”) is invariant under the group 

of congruent transformations (- 225 Invariant 
Measures). 

(v) The Lebesgue-Stieltjes measure. Let f be 
a right continuous monotone increasing func- 

tion on R. Then there exists a unique measure 
,u on (R, 93’) such that ~((a, b]) =f(b) -,f(a) for 
a < b. This measure is called the Lebesgue- 
Stieltjes measure induced by f (- 166 Func- 
tions of Bounded Variation B). 

(vi) Baire measurable functions and univer- 
sally measurable functions. Let f(x) be a real- 
valued function defined on a topological space 
X. If for every open set 0 the inverse image 
f-‘(O) has the tBaire property (resp. is mea- 
surable with respect to the completion of any 
cr-infinite tBore1 measure on X), then f is said 
to be Baire measurable (resp. universally mea- 
surable or absolutely measurable). Universally 
measurable functions can be defined similarly 

on a measurable space. 
(vii) Disintegration. Let (S, G) and (T, 2) be 

standard measurable spaces, v a o-finite mea- 

sure on (S, G), and p: S+ T a v-measurable 
mapping. If the image measure p = vf-’ is c- 
finite, there exists a unique family of measures 
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{v,,t~T} on&G) such that(l) t~v*(E)is 

universally measurable for every E E 6, (2) v, is 
concentrated on p-‘(t) for almost every t with 

respect to p, and (3) the following equality 
holds: 

v(E)= s p(dt)v,(E), EE 6. T 
This expression is called the disintegration of v 
with respect to p. Every v-measurable function 
f on S is v,-measurable for almost every t with 
respect to p, and the integral off is expressible 

in the form of iterated integrals as follows: 

This corresponds to Fubini’s theorem on 
product measures. When v is a probability 
measure on (S, G), p(s) is regarded as a (T, 2)- 
valued random variable on (S, 6, v), and v, is 
the conditional probability measure under the 
condition p(s) = t. (- 342 Probability Theory 

E. For disintegration of measures on a topo- 
logical space - [3, ch. 91.) 
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A. Newton’s Three Laws of Motion 

The study of laws governing the motion of 
bodies began with the laws of falling bodies, of 
which the first exact formulation was made by 
Galileo. But the general relationship between 
force and acceleration was first described by 

+Newton, who established Newton’s three laws 

of motion; the mechanics based on them is 
Newtonian mechanics. Newton expounded 

these laws in his famous book Principia mathe- 

matica philosophiae naturalis (168661687) 
where the law of gravitation and its applica- 
tion, problems of fluid motion, motions of the 
planets in the solar system, etc., were systemat- 
ically treated. 

Newton’s first law. A body continues its 
state of rest or uniform motion in a straight 
line unless it is compelled to change that state 

by external action (i.e., force). This is also 
called the law of inertia. 

Newton’s second law. The rate of change of 

momentum is proportional to force and is in 
the direction in which the force acts. Here, 
momentum is defined as the product mv of the 
mass m and the velocity v. This law can be 
expressed as d(mv)/dt = F, where F is the force 
expressed in an appropriately chosen system of 
units. Since dv/dt is the acceleration a, the law 
takes the form ma = F, when the mass is con- 

stant. These equations are called equations of 
motion. The second law is often simply called 

the law of motion. 
Newton’s third law. When two bodies 1 and 

2 in the same system interact, the force exerted 
on body 1 by body 2 is equal and opposite in 
direction to that exerted on body 2 by body 1. 
This law is called the law of action and reac- 
tion, or simply the law of reaction. 

Various attempts at a rigorous axiomati- 

zation of Newtonian mechanics have been 
made, beginning with E. Mach’s work. At the 

beginning of the 20th century, it was found 
that Newtonian mechanics requires modifica- 

tion when bodies travel at speeds approach- 
ing the speed of light or when it is applied to 
physical systems of molecular size or smaller. 
These modifications led to the establishment of 
the theory of trelativity and tquantum mechan- 
ics. In contrast to these later theories, New- 
tonian mechanics is called classical mechanics. 

B. Newton’s Law of Gravitation 

Kepler discovered the following three laws for 

the motion of planets around the sun (valid 
within the accuracy in observation available at 
the time): 

Kepler’s first law. The orbit of a planet is an 
ellipse with the sun at one of its foci. 

Kepler’s second law. The area swept per unit 
time by the straight line segment joining the 
planet and the sun is independent of the posi- 
tion of the planet in its orbit. 

Kepler’s third law. The square of the period 

(the time needed for the planet to go around 
the orbit once) is proportional to the cube of 

the major axis of the orbit. 
From these empirical laws, Newton deduced 

his law of universal gravitation: Between any 
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pair of point particles, with masses m, and 
m, and at a distance r, there arises an attrac- 
tive force along the line joining the two points; 

the magnitude of this force is given by F = 
Gm, rn2rm2, where G is a universal constant 
(approximately 6.670 x lo-’ dyne cm2 g-‘) 

called the gravitational constant. 

C. Kinetic and Potential Energies 

If the force F on a particle is a function of the 

position x of the particle and is the gradient 
-VU of a time-independent (scalar) function 

U(x), called the potential, then 

E=;mv2+ U(x) 
is a constant of the motion of the particle. 

E is called the total energy, while the first 
and second terms on the right-hand side are 
called the kinetic energy and potential energy, 
respectively. 

For a system of II particles at points x(i), . , 
x(“) with masses m i, . , m,, suppose that the 
force acting on the particle at x(j) is - V”‘U 

(the gradient of U relative to x(j)) for a com- 
mon potential function U (x(i), . , x(“)). Then 

is the constant total energy of the motion. For 

example, Newton’s gravitational force acting 
among a number of particles can be described 
by the Newtonian potential 

U=c -Gm,mjlx(if--#-l, 

i<j 

A potential U which is a sum of functions 

depending only on a pair of coordinates as 
in the above example is called a two-body 
interaction. 

D. Apparent Force 

The coordinate system in which Newton’s 
three laws of motion hold is called an iner- 
tial system. In some cases (e.g., on a rotating 
sphere such as the earth) it is more convenient 

to use a moving coordinate system, in which 
the equation of motion derived from Newton’s 
second law by a coordinate transformation 
(from an inertial system to the moving coordi- 
nate system) takes a form similar to the second 

law except for an additional apparent force to 
be added to the force in the original equation 
of motion. For a coordinate system rotating at 
a constant angular velocity w  (relative to an 
inertial system), the apparent force consists of 

the centrifugal force, of magnitude mw’p (p 
being the distance to the axis of rotation), 

which pushes the particle away from the axis 
of rotation (along the perpendicular), and the 
Coriolis force 2mv x w  ( x denotes the +vector 
product), which bends the motion of the par- 

ticle in a direction perpendicular to both the 
axis of rotation and the velocity of the particle. 

E. Dynamics of Rigid Bodies 

A rigid body is defined as a system of particles 
whose mutual distances are permanently fixed. 
Like a point particle, it is an ideal concept 
introduced into mechanics to simplify the 
theoretical treatment. Actual solid bodies can 
in most cases be regarded as rigid under the 

action of forces of ordinary magnitudes. Since 
a rigid body can be imagined to be made up of 
an infinite number of particles, the equations 

of motion for a system of particles can also be 
applied to it. Thus the motion of a rigid body 

can be completely determined by the theorems 
of momentum and angular momentum. 

The momentum of a rigid body is defined by 

Q= $dm, 
s 

where dm is the mass of the volume element at 
a point r of the rigid body K and dr/dt is its 
velocity. If the external forces acting on K are 

denoted by Fi (i = 1,2, . ), we have 

which expresses the theorem of momentum. 
If the velocity and acceleration of the cen- 
ter of gravity (center of mass or harycenter) 
Jr dm/l dm of the rigid body are denoted by V, 
and A,, respectively, and the mass ldm by m, 
we have Q = mV,, and the theorem of momen- 
tum becomes mdV,Jdt=mA,=CFi. 

The angular momentum of a rigid body K 
about an arbitrary point rO is defined by 

H= (r-r,)xgdm. 
s K 

If P, is the vector from rO to the point at which 
Fi acts, we have 

dH/dt = c (Pi x Fi) = G. 

This is called the theorem of angular 
momentum. 

For the case of a rigid body with one point 

rO fixed, the angular momentum H and the 
angular velocity w  are related by 

H,=Aw,-Fo,-Ew,, 

H, = - Fu, + Bw, - Dw,, 

H,= -Em,-Dw,+Cw,, 

where H,, H,, Hz; w,, coy, w, are the compo- 
nents of H and w  in the xyz-coordinate system 
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fixed in space with its origin at the fixed point 
r,,, and 

A= (y’+z’)dm, 
s 

B= (z2+x2)dm, 
s 

E= zxdm, 
s 

D= yzdm, 
s 

F= xydm, 
s 

with the integrals taken over the whole rigid 
body. We call A, B, and C the moments of 
inertia about the x-, y-, and z-axes, respec- 
tively, and D, E, F the corresponding products 

of inertia. The rotational motion of a rigid 
body with one axis fixed is completely deter- 
mined by the theorem of angular momentum. 

However, for rotation about a fixed point, the 
theorem is not very convenient to use, because 
A, B, C, D, E, and F are generally unknown 
functions of time. 

The tquadric 

Ax2+ByZ+Cz2+2Dyz+2Ezx+2Fxy=l 

represents an tellipsoid with its center at the 
origin, called the ellipsoid of inertia. If the 
principal axes 5, ye, and [ are taken as coordi- 
nate axes, the equation of the ellipsoid of 
inertia becomes AC2 + By2 + l-c2 = 1, where A, 

B, I are the moments of inertia about the t-, 
q-, c-axes and are called the principal moments 
of inertia, while the <-, q-, c-axes themselves 
are called the principal axes of inertia. If the 
components of the angular momentum H and 
angular velocity in the direction of the prin- 
cipal axes of inertia are denoted by (Hi, H2, H3) 

and (wi, w2, w,), respectively, then H, = Au,, 

H2 = Bw,, H3 = Iw,. Furthermore, if the t-, VI-, 

[-components of the resultant moment of the 
external forces G = C(P, x Fi) are denoted by 
(G,, G,, G3), then dH/dt = G becomes 

Adw,/dt=G,+(B-T)w,w,, 

Bdw,/dt=G,+(T-A)w,w,, 

rdw,/dt=G,+(A-B)w,w,. 

These are called Euler’s differential equations. 
The study of the motion of a rigid body can 

be reduced mostly to the study of the motion 
of its ellipsoid of inertia, since the latter is 

attached to the rigid body. The method of de- 
scribing the motion of a rigid body by means 
of its ellipsoid of inertia is known as Poinsot’s 

representation. The motions of two bodies 
having equal ellipsoids of inertia are the same 
if the external forces acting on them have 
equal resultant moments, even if their geo- 

metric forms are different. 
When a rigid body moves under no con- 

straint, the motion of its center of gravity G 

can be determined by the use of the theorem of 
momentum. Also, the rotational motion about 
the center of gravity can be found from dH’/dt 

= G’, which is a modification of the theorem of 
angular momentum. Here H’ and G’ are re- 
spectively the angular momentum and mo- 

ment of external forces about the center of 
gravity. In this case also, simplification can be 
achieved by considering the equation in the 
reference system that coincides with the prin- 
cipal axes of the ellipsoid of inertia with its 
center at the center of gravity. 

F. Analytical Dynamics 

Mechanics as originally formulated by New- 
ton was geometric in nature, but later L. Euler, 
J. L. Lagrange, and others developed the ana- 

lytical method of treating mechanics that is 
now called analytical dynamics. Lagrange 
introduced generalized coordinates qj (j = 

1,2, . ,A where f is the number of degrees 
of freedom of the system considered), which 
uniquely represent the configuration of the 
dynamical system, and derived Lagrange’s 

equations of motion: 

ar! 
--=o, 

aqj 

j=l,2 / .... .L 

where dj=dqj/dt, and e= T- U(T= kinetic 

energy, U = potential energy) is a function of qj 

and dj called the Lagrangian function. Later, 
W. R. Hamilton introduced 

pj = d T/acjj, 

H=CPj4j--=HH(P,,...,P,;q,,...,qf) 

and transformed the equations to Hamilton’s 
canonical equations: 

Iqj-aH dpi- JH 
dt apj’ dt aqj ’ 

j=1,2,...,& 

Here pj is the generalized momentum conjugate 

to qj, and qj, pj are called canonical variables. 
If the functions representing the configuration 
of the dynamical system in terms of qj do not 
explicitly contain the time t, the Hamiltonian 
function (or Hamiltonian) H coincides with the 

total energy of the system Tf U. 
The transformation (p, q)-(P, Q) under 

which canonical equations preserve their form 
is called a canonical transformation. It is given 

by 

where W= W(q,, . . . . qr;Q1, . . . . Q/) and K is 
the Hamiltonian of the transformed system. 
The set of canonical transformations forms a 

group, called a group of canonical transforma- 
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tions. An infinitesimal transformation is given 

by 

where E is an infinitesimal constant. Here S 
is an arbitrary function and is said to be the 
generating function of the infinitesimal trans- 
formation. Canonical equations can be inter- 
preted to mean that the variations of p and 4 
during the time interval E = dt are the intini- 
tesimal canonical transformations whose gen- 
erating function is H(p, q, t). 

The variation of an arbitrary function 

F(p, q) under an infinitesimal transformation 
is given by 

dF=c(F,S), 

where 

is Poisson’s bracket. Therefore the time rate of 

change of a dynamical quantity F(p, q) can be 
written as 

dF/dt =(F, H). 

Thus the function F(p, q) that satisfies (F, H) = 0 
is an tintegral of the canonical equations. 

If a canonical transformation (p,q)+(P, Q) 
such that Pj = aj, Qj = bj are constant is found, 
the motion of the system can be determined by 

where W is the tcomplete solution of the 
Hamilton-Jacobi differential equation: 

z+ff ( fJff, . . ..i’w. aql aqf q,>...,qJ>t =o > 
(- 82 Contact Transformations). 

G. Theory of Elasticity 

(1) General remarks. Suppose that a solid 
body is deformed elastically by the action of 
external forces. We may inquire about the 

magnitudes of deformation, stress, and strain 
caused by the external forces at each point 

of the body. The theory of elasticity studies 
this problem, assuming the body to be a con- 
tinuum and utilizing classical mechanics as a 
basis, and “endeavours to obtain results which 
shall be practically important in applications 
to architecture, engineering and all other use- 
ful arts in which the material of construction is 
solid” [ 11. 

Cartesian coordinates (x, y, z) are employed 

for defining the 3-dimensional space contain- 

ing the body. We confine ourselves to the 
small-displacement theory of elasticity, in 

which the components of the displacement u = 
(u, u, w) of an arbitrary point P(x, y, z) of the 
body are assumed to be small enough to jus- 
tify the linearization of the governing differen- 
tial equations and boundary conditions. 

(2) Stress. Consider an infinitesimal rectan- 
gular parallelepiped enclosed by the following 
six surfaces: 

x = const, y = const, z = cons& 

x + dx = const, y + dy = const, z + dz = const, 

in the body. The stress at the point P(x, y, z) is 
defined as those internal forces per unit area 
acting on the six surfaces of the parallelepiped. 
It has nine components, which are usually 
represented by 

0, 7Yx 7,x 

I i 

Txxy % 7zy > 

7x, 7yz rr, 

where the 0 and 7 are called normal and shear- 
ing (or tangential) stresses, respectively. These 
nine quantities form a tensor called the stress 

tensor. Since it can be shown that 7xy = z,,, zyz 

= 7qJ> bx = 7x,, the stress tensor is a symmetric 
tensor. By considering equilibrium conditions 
of the parallelepiped, the equations of equihb- 
rium are found to be 

$g+%+%+%o )...)...) 

where x, . . are body forces per unit volume. 
(3) Strain. The infinitesimal rectangular 

parallelepiped fixed to the body at the point P 
before deformation is transformed, after de- 
formation, into an infinitesimal parallelepiped 

which is no longer rectangular. The strain at 
the point P is defined as the changes caused by 
the deformation of the parallelepiped: exten- 
sions of the three sides and changes from right 
angles of the three angles formed by the three 
sides of the parallelepiped. Thus the strain has 
six components, usually represented by 

(L~y,~,,Y yzr Yzx, Yxy 1 3 

where E and y are called elongation and shear- 
ing strains, respectively. These six quantities, 

with slight modification, form a symmetric 
tensor called the strain tensor. 

(4) Strain-displacement relations. In small- 
displacement theory, the strain-displacement 
relations are given in linear form by 

au au au au 
""'ax' ""=&' . ..) yxy=-+- 

ay ax 

(5) Stress-strain relations. In the theory of 
elasticity, stress and strain are assumed to 
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obey a linear relationship called Hooke’s law: 

where 

and [A] is a symmetric positive definite ma- 
trix. For an isotropic body, the relations are 

&=a;-v(u,,+u~), . . . . Gy,,=7,,, 

where E, v, and G = E/2( 1 + v) are elastic con- 
stants called the modulus of elasticity in tension 
or Young’s modulus, Poisson’s ratio, and the 

modulus of elasticity in shear or the modulus of 
rigidity, respectively. 

(6) Boundary conditions. The surface of the 
body can be divided into two parts with re- 

gard to boundary conditions: the part S, over 
which the boundary conditions are prescribed 
in terms of external forces and the part S, over 
which the boundary conditions are prescribed 
in terms of displacements. Obviously at’= 

S, t-S,, where i?V is the whole surface of the 
body. 

(7) Small-displacement theory of elastic- 
ity. We have seen that the equations which 
govern the problem are 3 equations of equihb- 
rium, 6 strain-displacement relations, and 6 
stress-strain relations in terms of 15 unknowns, 

namely, 6 stress components, 6 strain compo- 
nents, and 3 displacement components. Thus 
our problem is reduced to a boundary value 
problem in which these 15 field equations are 
to be solved under the specified boundary 

conditions. Since all the field equations and 
boundary conditions are linear with respect 

to the unknowns under the assumption that 
the displacements are small, we obtain linear 
relationships between the external load and 
resulting deformation of the body; this is the 
small-displacement theory of elasticity. It 
should be remembered, however, that the 
assumption of small displacement sets limits 

to the application of the theory to practical 
problems. 

(8) Variational principles. Several variational 
principles have been formulated in the small- 

displacement theory of elasticity. These include 
the principle of minimum potential energy 

[u], the generalized principle [a, E, u], the 
Hellinger-Reissner principle [u, u], the prin- 
ciple of minimum complementary energy 
[a], and so forth, where the symbols in the 
brackets represent independent functions 
subject to variation. In connection with the 

aforementioned variational principles, vari- 

ational principles with relaxed continuity re- 
quirements have also been formulated by re- 

laxing the continuity requirements imposed 
on admissible functions. 

One of the practical advantages of these 
variational principles is that they often provide 
the problem with approximate formulations 
and approximate methods of solution, among 
which the Rayleigh-Ritz method is well known. 
Theories of beams, plates, shells, and multi- 
component structures are typical examples 

of such approximate formulations. Recently, 
these variational principles have been found to 
provide effective bases for the formulations of 
the tfinite element method. 

(9) Notation. Various symbols are used for 

stress and strain. For example, 0, t and E, y are 
commonly used in the engineering literature. 
However, in Love’s treatise [6], X,, Y,, Z, and 

exxr exy, exz are used in place of c~, T,,, 7,, and 

%a Yxp Ym respectively. Also, various nota- 
tions are used for elastic constants. E is widely 
used, while G and v are less common. Love 

uses p and (T for G and v, respectively. In the 
engineering literature the reciprocal of Pois- 
son’s ratio m (= l/v) is used and is called the 
Poisson number. 

(10) Finite-displacement theory of elastic- 

ity. When the displacement of the body is 
no longer small (infinitesimal) but is finite, 
we should abandon small-displacement the- 
ory and instead employ finite-displacement 
theory, in which stress and strain are defined 
in a manner different from that in small- 
displacement theory, keeping in mind the 

difference between spatial and material vari- 
ables. Thus equations of equilibrium, strain- 
displacement relations, and the boundary 
conditions on S, become nonlinear equations 

with stress and displacement components as 
unknowns, although the stress-strain relations 
remain linear. Thus the problem is reduced to 
solving a nonlinear boundary value problem, 
sometimes called a nonlinear elasticity prob- 
lem. Variational principles have been formu- 
lated for finite-displacement theory and are 
frequently used in the formulation of approxi- 
mate methods of solution. 

When the stress becomes large enough to 

exceed the so-called elastic limit, where the 
linear stress-strain relationships cease to hold, 
the theory of elasticity is no longer valid and 

should be replaced by the theory of plasticity 

CR 101. 
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A. General Remarks 

A single-valued tanalytic function in a domain 

D in the complex plane C is called meromor- 
phic in D if it has no singularities other than 
tpoles. A function that is meromorphic in 

the whole complex plane including the point 
at infinity is a rational function (Liouville’s 

theorem). Specifically, if a function is mero- 
morphic in the domain C, then the function is 
called simply a meromorphic function, and a 
meromorphic function that is not a rational 
function is called a transcendental meromor- 
phic function. A meromorphic function f(z) 

can be represented as a quotient of two tentire 
functions. Let {zk} (k = 1,2, . . ) be poles of f(z), 
and let fk(z) = a!:)/(~ - Z# + . + ay)/(z -zk) 

denote the tsingular parts of f(z) at zk (k = 
1,2, ). Then f(z) can also be written in the 
form 

where .q(z) is an entire function and the pk(z) 
(k = 1,2, . . . ) are rational entire functions 

(Weierstrass’s theorem). Assume that a se- 
quence {zk} (k = 1,2, . ) converges only to the 
point at infinity and that fk( l/(z -zk)) (k = 

1,2, ) are rational entire functions of l/(z - 
zk) which have no constant terms. Then 

there exists a meromorphic function of z with 
fk( l/(z -zk)) as its tsingular part at zk (Mittag- 
Leffler’s theorem). 

B. Nevanlinna Theory 

The theory of meromorphic functions can be 
considered an extension of the theory of entire 
functions. In particular, value distribution 

theory, originating in Picard’s theorem, was 
studied by many people, and in 1925 R. Nevan- 
linna published a systematic theory unifying 

the results obtained until then. This is called 
Nevanlinna theory. 

We let f(z) denote a meromorphic function 
inIzI<R<+co,andwhenwesaythatf(z) 
takes on a value, the value may be co. For a 
value a, n(r, a) denotes the number of a-points 
of f(z), i.e., points z with f(z) = a, in IzI <I < R, 
where each a-point is counted with its multi- 

plicity. We set 

N(r, a) = s ’ n(t, a) - n(0, a) 
dt + n(0, a) logr, 

0 t 

ifa#co,and 

N(r, GO) = 
s 

‘n(t, co)-n(O,co) 
dt + ~(0, co) log r, 

0 t 

m(r, a)=& s 277 
log+ If(re”)j dQ 

0 

ifa=co,wherelog+n=max(loga,O)fora>O. 

The functions N and m are called the counting 
function and proximity function of f(z), respec- 
tively, and 7’(r) = T(r,f) = m(r, 00) + N(r, co) is 
the order function (or characteristic function) of 
f(z). T(r) is an increasing function of r and a 
tconvex function of logr and is useful for ex- 
pressing ,f(z) as an infinite product, etc. 

The following relation holds among T(r), 

m(r, a), and N(r, a) for any a: 

T(r)=m(r,a)+N(r,a)+O(l), (1) 

where O(1) is tlandau’s symbol (Nevanlinna’s 
first fundamental theorem). By this theorem, if 
a bounded remainder is disregarded, then 
m(r, a) + N(r, a) is equal to T(r) for all c(. This 
equality thus demonstrates a beautifully bal- 
anced distribution of a-points. 

We see that N(r, a) is in a sense the mean 
value of the number of a-points in 1 zI < r, and 
m(r, a) is the mean proximity to a of the value 
f(z) on IzI =r. If the term log+ in the definition 

of the proximity function is replaced by the 

logarithm of the reciprocal of the chordal 
distance between f(re’“) and 2 on the com- 

plex sphere, then the remainder term in (1) is 
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eliminated. Hence the definition of the proxim- 
ity function is sometimes given in this form. 

C. The Order of Meromorphic Functions 

For an entire function f(z), the equality 

log T(r) 
lim sup ~ = lim sup 

loglogM(r) 

r-cc logr r-w logr 

holds, where M(r) = M(r,f) = max,+ If(z 
Since the right-hand side is the order of f(z) 
(- 429 Transcendental Entire Functions), 
we define the order (lower order) p of a mero- 
morphic function f(z) by 

p=limsup- 
r-m 

The order of a meromorphic function in IzI CR 
is also defined by 

p = lim sup log T(r) 
,-R log(l/(R--1)’ 

D. Meromorphic Functions on a Disk 

The order function T(r) is bounded if and 
only if f(z) can be represented as the quo- 
tient of two bounded holomorphic functions 

h,(z), h2(z) in IzI -CR (Nevanlinna). If T(r) is 
bounded, lim,,,f(re”) exists and is finite 
for every 8, 0 < 0 <27-c, except possibly for a 
set with tlinear measure zero (P. Fatou and 

Nevanlinna). Among functions f(z) such that 
lim,,, T(r) = co, those satisfying 

lim sup 
T(r) 

r+R log(l/(R-r))=CO 

have properties similar to those of transcen- 
dental meromorphic functions. 

E. Meromorphic Functions in the Whole Finite 
Plane 

Any meromorphic function such that 

limsup%<K 
?-R logr 

is a rational function. If ,f(z) is a meromorphic 
function of order p and {rj(a)}, rj(ct) < rj+l(cc) 

(j = 1,2, ) is the set of absolute values of c(- 
points, then CF, (l/rj(cx))“‘” converges for any 
CC. Furthermore, 

f(z) = zkeP@) 

(I--t)exp(t+...+s) 

x”‘&&(l-~)exp(~+...+$)’ 

where p is the smallest integer satisfying p + 1 
> p, the a, and b, are the zeros and poles of 

f(z), respectively, k is an integer, and P(z) is a 
polynomial of degree at most p (Hadamard’s 
theorem). 

Let C(~, , c(~ (4 > 3) be distinct values. Then 
for any meromorphic function in IzI CR < co, 

O,<r<R. 

Here 

4 0-1 = s ‘n,(t)--n,(O) 
dt+n,(O)logr, 

0 t 
n,(r) is the number of tmultiple points in IzI < r 

(a multiple point of order k is counted k - 1 
times), and D(r) is the remainder such that if R 

= co, then D(r) < K(log T(r) + log r) for some K 
except possibly for values of r belonging to the 
union of a countable number of intervals with 

finite total length, and if R < co, then D(r) < 

K(log T(r)+ log(l/(R-r))) except possibly for 
the union of a countable number of intervals 
{Ii} with xjJ,jd(l/(R-r))<co (Nevanlinna’s 
second fundamental theorem). 

Several theorems on value distribution of 
meromorphic functions can be obtained di- 

rectly from this theorem. For instance, if f(z) is 
a transcendental meromorphic function, the 
equation f(z) = c( has an infinite number of 

roots for every value CI except for at most 
two values called Picard’s exceptional values 
(Picard’s theorem). For a meromorphic func- 

tion of order p, lim,.,, C,,G,(rj(a))m” (2 <p) 
diverges for every value c( except for at most 
two values (Borel’s theorem). A value c( for 
which the series converges is called a Bore1 

exceptional value. We call 6(a) = &a, S) = 1 
- lim supIem N(r, a)/T(r) the defect off: It 
always satisfies 0 d 6(a) < 1, and the values 
with 6(c() > 0 are called Nevanlinna’s excep- 
tional values. The number of values c( (may be 

CD) with 6(a) > 0 is at most countable for any 
meromorphic function f(z), and CE1 S(ai) < 2. 
There are many studies concerning the values 
t( with 6(a) = 0 

F. Julia Directions 

Among functions that have an essential sin- 
gularity at the point at infinity and are mero- 
morphic in the whole plane, there are some 
that possess no tJulia directions. These func- 

tions, called Julia exceptional functions, are 
of order 0. A necessary and sufficient condi- 
tion for f(z) to be a Julia exceptional func- 

tion is that f(z) can be written in the form 
z”’ I&( 1 - z/n,)/n,( 1 -z/b,) (A. Ostrowski, 
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1925). Concerning zeros a, and poles b, of ,f(z), 
the following three properties are obtained 
using the theory of tnormal families due to P. 

Montel: (1) There are constants K,, K,, and 
K, independent of Y such that In@, co)-n(r, O)l 
<K,, n(2r, co) - n(r, co) < K,, and n(2r, 0) - 
n(r, 0) <K,. (2) There are constants K, and 

K, such that for any p and q, 

(3) There exists an E > 0 satisfying lap/b, - 1 I > 

E>Oforanypandq. 
G. Valiron gave a precise form of Julia 

directions that corresponds to Borel’s theorem 
(Acta Math., 52 (1928), [3]). Namely, if the 
order p of a meromorphic function f(z) in Iz/ < 

co is positive and finite, then there exists a 
direction J defined by argz = CI such that the 
zeros z&a, A) of f(z) - a in any angular domain 
A : 1 argz - al < S containing J have the prop- 
erty C,~Z,(~,A)I~(~-“)= cc for any E>O except 
for at most two values of n. The direction J is 
called a Bore1 direction. 

G. Relations between Two or More 
Meromorphic Functions 

Borel’s unicity theorem can be stated as fol- 
lows: Let h (j = 1, . , n) be nonvanishing entire 
functions satisfying C;=, h = 1; then for some 
(cl, . . . . c,)#(O, . . . . 0), Z;=, c,&=O. This is 
contained in the following theorem: Let fj 
(j=l 2 .“> n) be transcendental entire functions 
such that Cjnclh= 1; then &,6(0,h)<n- 1. 
If two meromorphic functions fi (z), f2(z) have 
the same Ej-points for five distinct values ‘xj (j 
= 1, . . ,5) (where multiplicity is not taken into 

account), then they coincide everywhere. If the 
+Riemann surface of the talgebraic function 

w(z) defined by a polynomial P(z, w) =0 of z, w  
is of tgenus > 1, it is impossible to find mero- 
morphic functions z =f([), w  = g(i) that satisfy 
P(f(l), g(c)) = 0 (tuniformization by meromor- 
phic functions). 

H. Asymptotic Values 

If a meromorphic function ,f(z)+a as z--r co 
along a curve C, the value TV and the curve 

C are called an asymptotic value and asymp- 
totic path, respectively. Each (Picard’s) excep- 

tional value of f(z) is an asymptotic value. For 
meromorphic functions, no simple relation is 

known between their order and the number of 

their asymptotic values. There exists a merom- 
orphic function of order 0 with an infinite 

number of asymptotic finite values. Some 
results analogous to those for entire functions 

are obtained for meromorphic functions by 
applying the theory of normal families. F. 
Marty established a systematic theory of 
normal families of meromorphic functions by 
using spherical distance. 

I. Inverse Functions 

Generally, the inverse function of a meromor- 
phic function w  =f(z) is infinitely multiple- 

valued. Let P(w, w,,) be a function element of 
the inverse function with center at wO, and let 
C be an arbitrary curve starting at w0 and with 
o its terminal point. For any domain S con- 
taining C, P(w, w,,) can be continued analyti- 

cally in S up to a point arbitrarily near w  
(Iversen’s theorem). Continue the function 
element analytically along each half-line start- 

ing at its center. Then the set of arguments of 
half-lines along which the analytic continu- 

ation meets a singularity at a finite point is of 
zero linear measure (Gross’s theorem). 

By considering the inverse image of the 
suitably cut Riemann surface of the inverse 
function, the z-plane can be divided into fun- 
damental domains such that each domain is 
the inverse image of the whole w-plane (with 

suitable slits removed) and has a boundary 
each point of which is taccessible from the 
inside of the domain, and the boundary curves 

of fundamental domains cluster nowhere in 
the plane. 

For a meromorphic function f(z), the set 
of functions z’ = q(z) defined by f(z’) =f(z) 
(i.e., transformations between points that give 
f(z) the same value) has the property of a 

thypergroup. If q(z) is single-valued, then it 
is a linear entire function, and if it is finitely 
multiple-valued, then it is an algebraic func- 
tion. The tcluster set of the inverse function at 
a transcendental singularity consists of only 

one point, co, that is, it is an iordinary sin- 
gularity. To an analytic continuation along a 
curve that determines a transcendental sin- 
gularity of the inverse function there corre- 
sponds a curve in the z-plane terminating at 
co. This curve is an asymptotic path of ,f(z). 
Namely, the value f(z) tends to the coordinate 
of the transcendental singularity as z+ co 
along this path. Each asymptotic value of a 

transcendental meromorphic function w  =f(z) 
corresponds to a transcendental singularity of 
its inverse function z = q(w), and if we consider 

two asymptotic paths to be the same if they 
correspond to the same singularity, then there 
exists a one-to-one correspondence between 
the set of asymptotic paths and the set of 
transcendental singularities of the inverse 
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function. The inverse function of any mero- 
morphic function of order p has at most 2,~ 
idirect transcendental singularities if p > l/2 
and at most 1 such singularity if p < l/2 (L. V 
Ahlfors). 

J. Theory of Covering Surfaces 

Ahlfors established the theory of covering 
surfaces by a metricotopological method and 
in applying it, obtained Nevanlinna theory 
and many other results on meromorphic 
functions. 

Let F, denote the covering surface of the 
Riemann sphere F, with radius l/2; F, is the 
image of Iz( Q r under a meromorphic function 

w  =f(z). The area of F, divided by Z, where n is 
the area of F,,, is given by 

A(r)=1 
ss 

I.f’(z)12 

71 ,,,<,(I +lf(412)2 pdpdoy 

z=pe’@, 

and is called the mean number of sheets of F,. 
The length of the boundary of F, is given by 

L(r) = 
s 

IfW (dz,, 
lzl=r 1 + l.f(412 

The relation 

T(r)= *&+0(l) 
s r 

holds (T. Shimizu, Ahlfors). 
Consider the Riemann surface of the inverse 

function of a meromorphic function w  =f(z) in 

IzI <R < +co. It has a countable number of 
components Q, over a domain on the w-plane. 
Let A, denote the inverse image of Q, on the z- 
plane. If A” together with its boundary is con- 

tained in IzI CR, the component Q, is called an 
island, and otherwise, a peninsula. 

Let D be a simply connected domain of the 
w-plane, n(r, D) be the sum of the sheet num- 

bers of the islands of F, over D, and m(r, D) be 
the sum of the areas of the peninsulas of F, 

over D divided by the area of D. Then 

m(r,D)+n(r,D)=A(r)+O(L(r)) 

Let 0, (j = 1, ,q) (q 3 3) be disjoint simply 

connected domains on the w-plane. Then 

fi n(r,Dj)- i n,(r,Dj)>(q-2)A(r)--(L(r)), j=l 

where n,(D) is the sum of the orders of branch 
points in all islands of F, over D. 

For a meromorphic function f(z), L(r) < 

A(r) 1’2tE, where r satisfies 0 6 r < cx except 
for rE ujlj for some intervals lj. Hence in the 
case where Dj is a point uj, this inequality 

yields 

$I n(r, Olj) - f nl (r, 'j) 
j=* 

>(q-2)A(r)-0(.4(r)“‘+“) 

with some exceptional intervals of values of r. 

This latter important inequality corresponds 

to Nevanlinna’s second fundamental theorem. 
Let Dj (j= 1, . . ..q) (q>3) be disjoint simply 
connected domains on the w-plane. If every 
simply connected island over Dj has at least pj 
sheets, then Cq=, (1 - (1,‘~~)) < 2 (disk theorem). 

It follows from this theorem that given three 
disjoint disks Dj on the Riemann sphere, there 
is at least one Dj that has an infinite number 

of islands over it, and also that given five Dj, 

there exists at least one Dj that has a l-sheeted 
island over it (Ahlfors’s five-disk theorem). This 
theorem corresponds to tBloch’s theorem for 

entire functions. These theorems can also be 
obtained for meromorphic functions on a disk. 
Ahlfors established a more important theory 

by introducing a differential metric. 

K. Recent Development 

The Nevanlinna brothers raised several im- 
portant problems, which gave strong motiva- 
tion for later investigations. The first major 
breakthrough after World War II was given by 
A. Gol’dberg in 1956. He gave an example 

which has infinitely many deficient values 

(Nevanlinna’s exceptional values). W. Hayman 
proved that C&a,f)” converges for c(> l/3, 
and there are examples of meromorphic func- 
tions for which the series diverges for (Y < l/3. 
Finally, A. Weitsman showed that the series 
converges for CI = l/3. The second major break- 
through was given by A. Edrei and W. Fuchs 

in 1959, whose works concern the following 
Nevanlinna theorem: Let K(f) be 

lim sup 
NO-, 0) + N(r, ml 

r-m T(r,f) 

and K(P) = infK(f), where inf is taken over all 
meromorphic function f of order p. Then K(P) 
> 0 if p is neither a positive integer nor a. 

Furthermore, Nevanlinna gave a conjecture 
for an exact value of K(P). This conjecture is 
still open, although several estimates have 
appeared. In the case of entire functions hav- 
ing only negative zeros the conjecture was 
positively solved by S. Hellerstein and J. Wil- 

liamson. Edrei and Fuchs proved that K(P) = 1 
forO<p< l/2 and K(P)=sinnp for 1/2<pdl. 
They also proved the ellipse theorem: Let f(z) 
be a transcendental meromorphic function of 

order p (06~6 1). Put u= 1-6(a,f), v= l- 
fi(h,f‘). Then LI, UE[O, l] and u2-22uvcos~p+ 
u2 > sin’ np. If further u < cos up, then v = 1. 
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For the sum of deficiencies Edrei proved 
that 

C&4f)G 
1 -cosnp (O<p<1/2) 

2-sinnp (1/2<p<l) 

unless the number of deficient values is one. It 
was conjectured that C S(a,f) = 2 implies that 
the order p off is a half integer, the number v 
of deficient values is at most 2p, and the value 
of 6(a,f) is a multiple of l/p. For the case of 
entire functions this conjecture is true (A. 
Pfluger). Weitsman proved that v < 2p. Other 

cases remain open. All the above results still 
hold even if the order is replaced by the lower 
order. The inverse problem was completely 
solved by D. Drasin. Many of the above re- 

sults depend on the concept of Polya peaks. 
N. V. Govorov and V. Petrenko proved 

independently that 

liminf~ww~~f) 
<7xp for p>1/2 

r-cc T(r>f) 

for every entire function of order p. This was a 

conjecture made by R. Paley. For p < l/2, an 
exact upper bound rep/sin np was given by 
Valiron. Furthermore, the following result was 

proved by Edrei and Fuchs: 

lim sup 
N(r,O) 

a- (O<p< 1). 
1-m logM(rJ-1 =P 

L. History 

The value distribution theory of meromorphic 

functions had its inception with the classical 
Picard theorem. It first appeared as the value 
distribution theory of entire functions and was 

developed into a well-organized field by way 
of the Nevanlinna theory and the Ahlfors 
theory of covering surfaces. In recent years, 
emphasis has also been placed on the study of 
meromorphic functions on open Riemann 
surfaces (- 367 Riemann Surfaces). The value 
distribution of a set of several meromorphic 
functions was studied first by A. Bloch and 
developed into the study of meromorphic 
curves by Ahlfors, and H. and J. Weyl [2]. The 

behavior of meromorphic functions in neigh- 
borhoods of general singularities has also been 
studied. An example of results in that field is 

the theory of tcluster sets. 
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A. General Remarks 

The distance between two points x = (xi, . , 
x,) and y = (yi, , y,) in the n-dimensional 
tEuclidean space R” is defined by p(x, y) = 

J(y,-x,)‘+...+(y,-x,,)~. The function 
p(x, y) is nonnegative for every pair (x, y) and 
has the following properties: (i) p(x, y) = 0 if 

and only if x = y; (ii) p(x, y) = p( y, x); and 
(iii) p(x, z)<p(x, y)+p(y,z) for any three 
points x, y, z. Property (iii) is called the 
triangle inequality. 

B. Definition of Metric Spaces 

Abstracting the notion of distance from Eu- 
clidean spaces, M. Frechet defined metric 
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spaces [l] (1906). A metric on a set X is a 
nonnegative function p on X x X that satisfies 
(i), (ii), and (iii) of Section A, and a metric space 
(X, p), or simply X, is a set X provided with a 
metric p. The members of X are called points, 

p is called the distance function, and p(x, y) is 
called the distance from x to y. The distance 
function is sometimes denoted by d(x, y) or 

dis(x, y). If(i) is replaced by its weaker form (i’) 
p(x, x) = 0, the function p is called a pseudo- 
metric (or pseudodistance function), and X is 
called a pseudometric space. 

Examples of metric spaces: 
(1) The n-dimensional Euclidean space R”, in 

particular the real number system R with 
pO(x, y) = Jx - yl. (2) The tfunction space 

L,(R). (3) The tfunction space C(0). (4) The 
tsequence space s, i.e., the space R” of all se- 
quences of real numbers with metric p(x, y) = 

C~12~“1x,-y,l/(l+Ix,-y,l),wherex= 

(XI,%> .., ) and y=(y,,y,, . ..). (5)The tse- 
quence space m, i.e., the space of all bounded 
sequences of real numbers with metric 

p(x,y)=sup,Ix,-y,J for x=(x1,x2, . ..) and 
y = (y, , y,, ). (6) A Baire zero-dimensional 
space (nN, p), where R is a set and the dis- 
tance p(x,y) between x=(x1,x2, . ..) and y= 
(y,, y,, ) is equal to the reciprocal of the 

minimum n such that x,#y,. When the car- 
dinal number r of Sz is specified, the Baire 
space is denoted by B(r). (7) For any set X, 

define p by setting p(x, x) = 0 and p(x, y) = 1 
when x # y. Then (X, p) is a metric space, 
called a discrete metric space. (8) For any set 
X, define p by setting p(x, y) = 0 for any mem- 
bers x and y. Then p is a pseudometric, and 
the resulting space X is called an indiscrete 
pseudometric space. 

For a subset M of a metric space X, 

sup{ p(x, y) 1 x, y E n/l} is called the diameter 
of M (denoted by d(M)), and M is said to 
be bounded if its diameter is finite (includ- 
ing M = 0). For two subsets A, B of X, 

inf{ p(x, y) 1 x E A, ye B} is called the distance 
between A and B, denoted by p(A, B). We 
have p(A, B) = p(B, A). When a family 9JI = 
{M, 11~ A} of subsets of X is a covering of 
X, i.e., X = uI M,, the supremum of the dia- 

meters d(M,) of M, in W, sup{d(M,))i~A), 
called the mesh of the covering %I. For a posi- 
tive number E, a covering whose mesh is less 
than e is called an s-covering. A metric space 

X is called totally bounded (or precompact) 
(F. Hausdorff, 1927) if for each positive num- 
ber E there exists a finite s-covering of X. 

A subset X, of a metric space X becomes a 
metric space if we define its metric pr by set- 
ting p1 (x, y) = p(x, y) for x, YE X,, where p is 

the metric of X. The space (X,, p,) is called a 
metric subspace of (X, p). A subset of X is 

called totally bounded (or precompact) if it is 

totally bounded as a metric subspace. Any 
totally bounded subset is bounded. Converse- 
ly, in the Euclidean space R” any bounded 
subset is totally bounded. 

A bijection f from a metric space (X,, pt) 
onto a metric space (X,, p2) is called an iso- 
metric mapping if f preserves the metric, i.e., 

p2(f(x),f’(y))=p1(x,y) for any points x, ygX,; 
and X, and X, are called isometric if there is 
an isometric mapping from X, onto X,. 

Let X be a metric space with metric p, and 
left f be an injection from a set Y into X. 

Then the function P’(Y,,Y,)=P(~(Y,),~(Y,)) 
(yr , y, E Y) is a distance function on Y, and 
with this metric the set Y becomes a metric 
space called the metric space induced by f; 

f is an isometric mapping from (Y, p’) onto 

(S(Y), PI. 
For a finite number of metric spaces (X,, p,), 

, (X,, p,), we can define a metric p on their 
Cartesian product X = X, x . x X, by 
setting 

for two points x=(x1, . . . . x,), y=(yr, . . . . y,) 
of X. Thus we obtain a metric space (X, p), 

called the product metric space of (X,, p,), , 
(X,,, p,,). The n-dimensional Euclidean space R” 

is the product metric space of n copies of the 
real line (R, pa). 

C. Topology for Metric Spaces 

For a point x of a metric space (X, p) and 
any positive number E, the set U,(x) of all 
points y such that p(x, y) < E is called the E- 
neighborhood (or s-sphere) of x. We can intro- 
duce a topology for X by taking the family of 
all s-neighborhoods as a +base for the neigh- 

borhood system (- 425 Topological Spaces). 
Then the following five propositions hold, any 
one of which can be used to define the same 

topology: (i) A subset 0 is topen if and only if 
for any point x in 0 there is a positive number 
E such that the s-neighborhood of x is con- 
tained in 0. (ii) A subset F is +closed if and 
only if any point whose every s-neighborhood 
contains at least one point of F is contained 
in F. (iii) A subset U is a neighborhood of a 
point x if and only if U contains some E- 
neighborhood of x. (iv) A point x is an tinte- 

rior point of a subset A if and only if some E- 
neighborhood of x is contained in A; the inte- 
rior A’ of A is the set of all such points. (v) A 

point x is adherent to a subset A if every E- 
neighborhood of x contains at least one point 
of A; the closure A of A is the set of all such 

points, and x E x if and only if p(x, A)= 0. 
Every metric space X satisfies the Virst 

countability axiom. A metric space X is a 
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+Hausdorff space and, more specifically, a +per- 
fectly normal space; it is also +paracompact. 

In the same way, we can define a topology 
for each pseudometric space that satisfies the 
first countability axiom, but a pseudometric 
space is not necessarily Hausdorff. 

D. Convergence of Sequences 

A sequence {x,,} of points in a metric space is 
said to converge to a point x (written lim,,, x, 
=x) if p(x,, x) tends to zero as n-, co. The 
point x is called the limit of ix,,}. This conver- 
gence is equivalent to convergence with re- 
spect to the topology defined in Section C (- 
87 Convergence). As the first countability 
axiom is satisfied, we may define the topology 
by means of convergent sequences of points: 
the closure 2 of a subset A is the set of all 
limits of sequences of points in A. 

E. Separable Metric Spaces 

For a metric space X the following three con- 

ditions are equivalent: (i) There exists a coun- 
table family 3, of open sets of X such that 
each open set of X is the union of members of 
D,, (tsecond countability axiom). (ii) X is tsep- 
arable, that is, X has a countable subset that is 
+dense in X. (iii) Every open covering of X has 
a countable subcovering (TLindelijf space). A 
metric space with any of these properties is 
called a separable metric space. The sequence 

space s is separable. Any separable metric 
space can be isometrically embedded in the 
sequence space m, i.e., is isometric to a sub- 
space of m (- 168 Function Spaces B). 

F. Compact Metric Spaces 

For a metric space X, the following five con- 
ditions are equivalent: (i) X is tcompact, that 
is, every open covering of X has a finite sub- 

covering. (ii) X is tcountably compact, that is, 
every countable open covering of X has a 
finite subcovering. (iii) X is tsequentially com- 
pact, that is, any sequence of points in X has a 

convergent subsequence. (iv) Every nested 
family F, 3 F2 2 of nonempty closed sets 
of X has a nonempty intersection. (v) Every 
infinite subset A4 of X has an accumulation 
point x, i.e., x E M - {x} A metric space satis- 
fying any of these conditions is called a com- 
pact metric space (M. FrCchet [ 11). Every real- 
valued continuous function defined on a com- 
pact metric space has a maximum and a min- 

imum. A metric space is compact if and only 
if it is totally bounded and complete (- Sec- 
tion J). Every totally bounded metric space is 

separable. In particular, every compact metric 

space is separable. 
Let U = {U,} be an open covering of a com- 

pact metric space X. There exists a positive 
number 6 such that every set with d(A) < 6 is 

contained in some U,. The number 6 is called 
the Lebesgue number of the open covering 11. 

A subset A of a metric space is said to be 
compact if it is compact as a metric subspace, 

and A is said to be relatively compact if its 
closure is compact. Bounded closed sets in R”, 
in particular closed intervals of real numbers, 
are compact. For these sets, conditions (i), (iv), 

and (v) are called the Heine-Bore1 theorem (or 
Borel-Lebesgue theorem), Cantor’s intersection 
theorem, and the Bolzano-Weierstrass theorem, 
respectively. 

G. Product Spaces of Metric Spaces 

Let (X,, pl), . . , (X,,, p,) be metric spaces. Then 
the Cartesian product X =X, x x X, has 

distance functions 

pbl 

and 

Prr(x,y)=max{p,(x,,y,), . . ..Pn(xnrYn)l. 

where x=(x,,..., x,) and y=(yl,...,y,). The 
topology of X induced by each one of these 

metrics coincides with the product topology. 
In particular, for the n-dimensional Euclidean 
space R”, the metrics pP (p> 1) and p, define 

the same topology. 
Let (X,, pl), , (X,,p,), . be a countable 

number of metric spaces. If we define a metric 
p on the Cartesian product X = n:=, X, by 

p(x, y) = f L p,(xd 
n=, 2” 1 +P,(xn3Y,)’ 

where x=(x1,x2,... ) and y = (y, , yz, ), then 
the topology defined by p is identical with the 

product topology. For the Cartesian product 
of an uncountable number of metric spaces, we 

cannot construct a metric p such that the 
topology induced by p agrees with the product 
topology in general. 

H. Uniformity of Metric Spaces 

Every metric space X is a tuniform space, for 
which we may take a countable number of 

subsets {(x, y) 1 p(x, y) < 2 -“}, n = 1, 2,. , of 
X x X as a base of tuniformity (- 436 Uni- 
form Spaces). 
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I. Uniform Continuity 

A mapping ,f from a metric space (X, p) into a 
metric space (Y, 0) is tcontinuous if for any 
point x in X and any positive number E there 
is a positive number 6 such that f( U,(x)) c 

y(f(x)), where U,(x) is a a-neighborhood for 
p and V,(y) is an e-neighborhood for 0; that 

is, p(x, x’) < 6 implies o(f(x),f(x’)) < E. In this 
case, we must generally choose 6 depending 

on x and E. In the special case where we can 
choose 6 depending only on E, independently 
of x, we call f uniformly continuous in X. (The 
notion of uniform continuity may be general- 

ized to uniform spaces.) Not every continuous 
mapping is necessarily uniformly continuous, 
but every continuous mapping from a com- 
pact metric space into a metric space is uni- 
formly continuous. 

J. Complete Metric Spaces 

A sequence {xn} of points in a metric space 
(X, p) is called a fundamental sequence (or 
Cauchy sequence) if ~(x,,x,,,)-$O as n, IYI-cc. 
Every convergent sequence is a fundamental 

sequence, but the converse is not always true. 
A metric space is called complete if every fun- 
damental sequence in the space converges to 
some point of the space (M. Frechet Cl]). A 
topological space that is homeomorphic with a 
complete separable metric space is sometimes 
called a Polish space (- 22 Analytic Sets I). 
The metric spaces introduced in examples (1) 
through (5) of Section B are complete. (In 

example (3) we must assume that the space R 
is a compact Hausdorff space.) A metric space 
is compact if and only if it is complete and 
totally bounded. A tlocally compact metric 

space is homeomorphic to a complete metric 
space. 

For a metric space X, we can construct a 
complete metric space Y such that there is an 
isometric mapping cp from X onto a dense 
subspace X, of Y(F. Hausdorff, 1914). Such a 
pair (Y, cp) is called a completion of X. If X has 

two completions (Y,, cp,) and (Y,, (p2), then 
there is an isometric mapping ,f from Y, onto 
Y, with ‘pZ =fo ‘pi. In this sense the comple- 
tion of X is unique. By identifying X with 

q(X) when (Y, cp) is the completion of X, any 

metric space can be regarded as a dense sub- 
space of a complete metric space. For example, 
the completion of the rational number system 
Q is the real number system R. A metric space 
is totally bounded (= precompact) if and only 
if its completion is compact. 

Baire-Hausdorff theorem: In a complete 

metric space every set of the ttirst category is a 
tboundary set. That is, every set that can be 

expressed as the union of a countable number 
of sets whose closures have no interior point 
has no interior point. In other words, if the 

union u:=i F,, of closed sets F, , F2,. of X has 
an interior point, then at least one of the F, 
must have an interior point. 

K. The Metrization Problem 

A topological space X is called metrizable if 
we can introduce a suitable metric for X which 
induces a topology identical to the original 
one. A +T,-space satisfying the second counta- 

bility axiom is metrizable if and only if it is 
tregular (Uryson-Tikhonov theorem; P. S. 
Uryson, Math. Ann., 94 (1925), A. Tikhonov, 
Math. Ann., 95 (1925)). However, a metric 
space does not necessarily satisfy the second 
countability axiom. Therefore, the Uryson- 
Tikhonov theorem does not provide a neces- 
sary and sufficient condition for metrizability. 
The following are some necessary and sufficient 
conditions for a topological space X to be 
metrizable: 

(1) There exists a nonnegative real-valued 
function d on X x X satisfying the first two 

axioms given in Section A and the following 
condition: There exists a real-valued function 
q(w) that converges to zero as w-0 such that, 
for any three points x, y, z and any positive 
number E, d(x, y) < (P(E) and d(y, z) < (P(E) imply 
d(x, z) < E (E. W. Chittenden, Trans. Amer. 

Muth. sot., 18 (1917)). 

(2) X is a T,-space that has a countable 
number of open coverings %R r, !I&, satisfy- 

ing the following two conditions: (i) If ci,, 

U2ES%t+, have a common point, there is a set 
U E’JJ~, with U 3 U, U CJz; (ii) for any point x 

in X, if U, is any member of !lR,, containing x, 
the family {U,}, =, ,Z, ,,_ is a base for the neigh- 

borhood system of x (P. S. Aleksandrov and 
Uryson, C. R. Acud. Sci., Paris, 177 (1923), and 
N. Aronszajn). When X is a uniform space, 
this amounts to saying that X has a metric 
compatible with the uniform structure if and 

only if X is a T,-space and has a countable 
base of uniformity. 

(3) X is a Ti-space that admits a countable 
number of open coverings ~JJi, %l&, such 
that {S(S(x,!BIi),Wj)Ii,j=1,2 ,... jisabasefor 

the neighborhood system of x at each point of 
X, where S(A, W) is the tstar of A relative to 
%II (R. L. Moore, Fund. Math., 25 (1935); K. 
Morita, Proc. Japan Acud., 27 (1951); A. H. 
Stone, Pacific J. Math., 10 (1960); A. V. Arkh- 
angel’skii, Dokl. Akud. Nauk SSSR, 2 (1961)). 

(4) X is regular and has a to-locally finite 

open base (J. Nagata, .I. Inst. Polytech. Osaka 

City Univ., 1 (1950); Yu. M. Smirnov, Uspekhi 

Mat. Nuuk, 6 (195 1)). 
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(5) X is regular and has a to-discrete open 
base (R. H. Bing, Canad. J. Math., 3 (1951)). 

(6) X is a tcollectionwise normal Moore 
space (- below; Bing, ibid.). 

(7) X is a tperfect image of a subspace of a 
Baire’s zero-dimensional space (Morita, Sci. 
Rep. Tokyo Kyoiku Daigaku, sec. A, 5 (1955)). 

(8) X is a Hausdorff +M-space such that the 
diagonal is a +G,-set in the direct product 
X x X (A. Okuyama, Proc. Japan Acad. 40 

(1964); C. J. R. Borges, Pacific J. Math., 17 
(1966); J. Chaber, Fund. Math., 94 (1977)). 

A regular space is said to be a Moore space 
if it has a countable number of open coverings 

%I$ such that {5(x, !IQ} is a base for the neigh- 
borhood system of x for any point x. A Moore 

space is not necessarily metrizable. F. B. Jones 
(Bull. Amer. Math. Sot., 43 (1937)) proved 
under the assumption 2Q < 2K~ that every 
separable normal Moore space is metrizable 
and asked whether or not every normal Moore 

space is metrizable. (3) and (6) are partial 
answers to the question. A normal Moore 
space is metrizable if it is locally compact and 
tlocally connected (G. Reed and P. Zenor). The 
existence of a nonmetrizable separable normal 
Moore space is consistent with and indepen- 
dent of the axioms of the usual ZFC set theory, 
the +Zermelo-Fraenkel set theory with the 
taxiom of choice (F. D. Tall). W. G. Fleissner 

(Trans. Amer. Math. Sot., 273 (1982)) con- 
structed a normal nonmetrizable Moore space 
assuming an axiom weaker than the contin- 

uum hypothesis, while P. J. Nyikos (1980) has 
proved that every normal space with the first 
countability axiom is collectionwise normal 
from the strong axiom of set theory. 

In connection with (7) the following result is 
known. Let f be a tclosed continuous mapping 
from a metric space X onto a topological 

space Y. Then the following conditions are 
equivalent: (1) Y is metrizable; (2) For each 
y E Y the tboundary 3f-l (y) of the inverse 
image is compact; (3) Y satisfies the first coun- 
tability axiom (Morita and S. Hanai, Proc. 

Japun Acad., 32 (1956); Stone, Proc. Amer. 
Math. Sot., 7 (1956); I. A. Vainstein, Dokl. 
Akad. Nauk SSSR, 57 (1947)). In particular, 
perfect images of metric spaces are metrizable. 

For quotient topological spaces of metric 
spaces - 425 Topological Spaces CC. 
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274 (XII.1 6) 
Microlocal Analysis 

A. General Remarks 

Let X be an open set of R”. Then X x (R”\O) 
can be identified with T*X\O, the tcotangent 

bundle of X minus the zero-section. To every 
locally integrable function (or distribution 
or hyperfunction (- 125 Distributions and 
Hyperfunctions)) f(x) defined on X, one can 
assign closed subsets of X x (R”\O) called the 
wave front set off and the singularity spec- 
trum (or analytic wave front set or essential 
support) of 1: The wave front set (resp. the 
singularity spectrum) off describes in detail 
the singularity off modulo the infinitely dif- 
ferentiable functions (resp. the real analytic 

functions). One can further associate with f 
more relined objects defined on X x (R”\O), 
such as microfunctions. In many cases one can 
recover knowledge of the structure off by 
analyzing these objects defined on X x (R”\O). 

Such an analysis on the cotangent bundle of X 
is called microlocal analysis. Microlocal analy- 
sis is particularly successful if S is a solution of 
a system of linear (pseudo-)differentiaI equa- 
tions, because in that case one can use vari- 
ous linear transformations, such as differential 
operators, pseudodifferential operators (- 345 

Pseudodifferential Operators), or microdiffer- 
ential operators and Fourier integral opera- 
tors, or quantized contact transformations. 

B. Microlocal Analysis for Distributions 

Let u be a distribution defined in an open 
subset X of R”. The wave front set WF(u) of u 
is defined as the complement in X x (R”\O) of 
the collection of all (x,, to) in X x (R”\O) such 

that for some neighborhood U of x0, I’ of &, 
we have for each (p~Com(U) and each N>O, 

(u,(~exp(-irx.<))=O(t-“) 

as z+ co, uniformly in 5 E V (L. Hiirmander; 
Cl]). WF(u) is considered to be a subset of 
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T*X\{O}. If WF(u)=@, then u is a C”- 
function. Let rc: X x (R” \O)+X be the natural 
projection. If rr(WF(u)) contains x,,, then u is 
not a C”-function in any small neighborhood 

of x0. Thus WF(u) is the obstruction for u to 
be infinitely differentiable. Let p(x, D) be a 

tlinear partial differential operator of order m. 
Assume that p(x, D)u =f: Then 

WW) = WW4 = WF(f) U P,‘(O), 

where p,:(x, <)+p,(x, 5) is the tprincipal sym- 

bol of p(x, D). Such a technique of localizing 
the problem on the cotangent bundle has 

been used in the form of the estimation of the 
Fourier transform off since the advent of the 
tsingular integral operators of A. P. Calderon 
and A. Zygmund [3,4] (see also S. Mizohata 
[5,6]). The formula above contains as a special 
case the classical result that u is a C”-function 
if p(x, D) is telliptic and if f is a C”-function. 

In obtaining useful results of microlocal 

analysis for distributions one often uses Fou- 
rier integral operators and pseudodifferential 
operators (or singular integral operators) 
(- 345 Pseudodifferential Operators). 

C. Fourier Integral Operators [ 1,2,7-91 

A Fourier integral operator B: C$(R”)+9’(R”) 
is a locally finite sum of linear operators of the 

type 

Af(x) = (27q@fN)‘2 
s 

4% 0, Y) 
p+N 

Here a(x, 0, y) is a (Y-function satisfying the 
inequality 

lD;lDfD,‘a(x,Q,y)l <C(l +IHl)m-p’P’+(l-P)(iai+lui) 

for some fixed m and p, 12 p > l/2, and any 
triple of +multi-indices a, /j’, y, and cp(x, 0, y) is 
a real-valued C”-function which is homoge- 
neous of degree 1 in B for If31 > 1. The function 
cp is called the phase function and a the ampli- 

tude function. 

Let C,={(x,O,y)ld,cp(x,8,y)=O, Q#O} and 
W={(x,y)ER”xR”13Q#Osuchthat(x,Q,y)e 

Cd. 1fdx.o.y cp(x, 0, y) # 0 for 0 # 0, then the 
kernel distribution k(x, y) of A is of class C” 
outside W. A phase function cp is called non- 

degenerate if the d,,,,,(cYcp(x, 0, y)/Nj), j = 1,2, 

“‘> N, are linearly independent at every point 

of C,. In this case, C, is a smooth manifold 
in R”+N+” and the mapping 0: &3(x, f3,y)+ 

(x, Y, 5, ab 5 = d,dx, 8, Y), ‘I = d,dx, H, Y), is 
an immersion of C,+, to T*(R” x R”) ~0, the 
cotangent bundle of R” x R” minus its zero- 

section. The image QC, = A, is a conic La- 

grangian manifold, i.e., the canonical 2-form CI 

= xj dcj A dxj - Cj dq, A dy, vanishes on A, and 
the multiplicative group of positive numbers 

acts on Ao. Let i,, A,, . . , /I,, be a system of 
local coordinates in AV. These, together with 

a~/%, , a(pla8z, , a’p/aoN, constitute a SYS- 

tern of local coordinate functions of R”+N+” 

in a neighborhood of C,. Let J denote the 
Jacobian determinant 

D 

The function a,,,= fi a(,.@,’ exp(rrMi/4) is 
called the symbol of A. Here ~1,~ is the restric- 
tion of a to C, and M is an integer called the 

Keller-Maslov index [ 10,111. The conic La- 
grangian manifold AV = A,(A) and the symbol 
u,,~ = a,,&A) essentially determine the singular- 
ity of the tkernel distribution k(x, y) of the 
Fourier integral operator A. Conversely, given 
a conic Lagrangian manifold A in T*(R” x 

R”)\O and a function a, on it, one can con- 
struct locally a Fourier integral operator A 
such that A,(A) = A and u,~(A) = a,. For 

global construction of such a Fourier integral 
operator one requires detailed consideration of 
the Keller-Maslov index. A globally defined 
Fourier integral operator A with A,(A) = A 
and a,*(A) = a,, exists if and only if a, is not a 
function on A but a section of the complex 

line bundle R,,, 0 L, where R,,, is the bundle 
of square roots of the volume elements of A 
and L is a Z, bundle over A called the Maslov 
bundle. The factor fi exp(nMi/4) in the de- 

finition of u,,~ above appears as the effect of 
trivialization of the bundle R,,* @ L. Those 

Fourier integral operators whose associated 
conic Lagrangian manifolds are the graphs 
of +homogeneous canonical transformations 

of T*(R”) are most frequently used in the 
theory of linear partial differential equations. 

Let A be a Fourier integral operator such that 
A,(A) is the graph of a homogeneous canon- 
ical transformation x. Then the adjoint of A 

is a Fourier integral operator such that the 
associated conic Lagrangian manifold is the 
graph of the inverse transformation 1-l. Let 
A, be another such operator; if A,(A,) is the 

graph of x, , then the composed operator 
A, A is also a Fourier integral operator and 
A,(A, A) is the graph of the composed homo- 
geneous canonical transformation xix. 

Consider the kernel distribution k(x, y) of A. 
If the phase function cp of A is nondegenerate, 
then WF(k) is contained in A,(A). Moreover, 
if the symbol Q,~(A) does not vanish, then 
WF(k) = A,(A). Let u be a distribution and A 
be a Fourier integral operator such that A,(A) 

is the graph of a homogeneous canonical 
transformation x. Then WF(Au)cx(WF(u)). 
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A pseudodifferential operator of class 

.SI ,-JR”) is a particular type of Fourier inte- 
gral operator (- 345 Pseudodifferential Oper- 

ators). In fact, a Fourier integral operator 
A is a pseudodifferential operator of class 

Sr, -JR”) if and only if A,(A) is the graph of 
the identity mapping of T*(R”). Hence for any 
Fourier integral operator A, A*A and AA* are 
pseudodifferential operators. 

The following theorem is due to Yu. V. 
Egorov [ 121: Let P(x, D) be a pseudodifferen- 
tial operator of class SE, -JR”) with the sym- 
bol p(x, <), and let A be a Fourier integral oper- 
ator such that the associated conic Lagrangian 

manifold A,(A) is the graph of a homogeneous 
canonical transformation x of T*(R”). Then 
there exists a pseudodifferential operator 

Q(x, D) with the symbol q(x, ~)ESL i -JR”) 
such that P(x, D) A = AQ(x, D) and q(x, 0 - 
p(~(x,~))eS~;!Pp+‘(R”). Note that m-2p+ 
l<m. 

Assume that m= 1, p= 1, and that p,(x, 5) 
is a real-valued C”-function, homogeneous 
of degree 1 in < for [(I > 1, such that p(x, 5) 

-~~(x,5)~S~,~(R”)andd~~,(x~,5~)#0at 
(x0, to), where pi (x0, 5’) = 0. Then one can find 
a Fourier integral operator A such that the 

function q(x, 5) of Egorov’s theorem satisfies 
the relation q(x, 5) - [I E Sp,,(R”). 

The boundedness of Fourier integral oper- 
ators in the space L,(R”) (or the spaces H”(R”)) 
has also been studied in several cases. Some 
sufficient conditions for boundedness can be 
found in [7,8,14-161. 

The theory of Fourier integral operators has 
its origin in the asymptotic representation 

of solutions of the wave equation, (see, e.g., 
[ 17,181). Fourier integral operators were first 
used by G. I. Eskin [7]. 

D. Essential Support or Analytic Wave Front 
Set of a Distribution 

Inspired by the physical idea introduced by 
C. Chandler and H. P. Stapp, J. Bros and D. 
Iagolnitzer introduced the notion of the essen- 

tial support of a distribution, which is a closed 
subset of X x (R”\O) [19]. Let u be a distri- 
bution defined on an open set X of R” and 
x be a C”-function with compact support 
around x06X which is locally analytic and 

different from 0 at x0. Let C,(u) be the subset 
of R”\O of which the complement is defined 
as follows. A point q is in the complement of 
Zx(u) if there exist a conic neighborhood U 

of 4, constants ?, y. > 0, and C,v such that 

for all <E U, 0 < y < yo, and all positive integers 
N. 

The essential support ZxO(u) of u at x0, is 

the limit of Z,(u) when the width Jsuppxl of the 
support of x around x0 tends to 0. The es- 
sential support Z(u) of u is the closed subset 
UxtX {x} x ZJu) of X x R”\O. C(u) is the ob- 
struction for u to be real analytic. L. Horman- 
der [20] also defined the analytic wave front 
set of a distribution, which is also the obstruc- 
tion for a distribution to be real analytic. The 
definition of an analytic wave front set is quite 

different from that of essential support. How- 
ever they coincide with each other [21]. More- 
over, both of them coincide with the singular- 
ity spectrum of u if the distribution u is re- 

garded as a hyperfunction. 

E. Microlocal Analysis for Hyperfunctions 

c221 

(1) Microfunctions. Let N be a real analytic 
manifold of dimension n + rl and M its sub- 
manifold of codimension d. In what follows, 
T,N and TG N denote the normal bundle of 
M and the conormal bundle supported by M, 

respectively. Here the normal bundle T, N is 
defined to be the quotient bundle TN 1 ,/TM 
of the tangent bundle and the conormal bundle 

T,* N to be the subbundle of the cotangent 
bundle T* N I M that annihilates TM. Identify- 
ing N with {(x,u)ETNIu=O} or {(x,~)E 
T*N I< = 0}, we define the tangential sphere 
bundle SN and cotangential sphere bundle S* N 

by (TN\N)IRG(= U,,,dT,N\{Oj)lR~) and 
(T*N\N)IR:(=U,,,(~**N\{O})lR:), re- 
spectively. The normal sphere bundle S, N = 
(T, N \ M)/R: and conormal sphere bundle 
S$ N = (TG N \ M)/R : are defined in the same 
manner. In parallel with the algebraic geom- 
etry (- 16 Algebraic Varieties) we define the 
real monoidal transform of N with center M to 
be the manifold (N \ M) U S,N with boundary, 
in which the center M is blown up to S, N by 

the polar coordinates. We denote it by %. 
We mainly use this notion when N is a tcom- 
plexification X of M, regarding X as a 2n- 

dimensional real manifold. In this case we can 

canonically identify T,X with J-1 TM, and 

hence S,X with J-1 SM. We denote by x+ 

-00 the point in S,X that corresponds to 

(x, J-1 u) in J-1 SM by this identification. 

An open subset W of X \ M is called a conoidal 
neighborhood of a subset U of J-1 SM if 

WUfi SM is a neighborhood of U in M%. 
Let E, E, and ? denote respectively the canon- 
ical embedding mappings from X \ M to X, 

from ‘%-&l SM to M”x and from J-1 SM 

to jv”x. We then define the tsheaves d and .d 
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by I,&-‘0, and d 1 Jo, SM( = f-‘6,). Here 6, 
denotes the sheaf of germs of holomorphic 
functions on X. We also define the sheaf 2 on 
J-1 SM by %$~iSM(~~iOJr where r is the 

canonical projection from M”x to X and 2: 
denotes the pth tderived functor of the functor 
I, of taking the sections with support in S. 

Then 9 is isomorphic to d /r-i& for the 
sheaf d of real analytic functions on M. The 
sheaf 2 is, so to speak, the sheaf of “boundary 

values” of holomorphic functions. Actually 
there exists a canonical mapping b from d to 
~-i&, where BM denotes the sheaf of thyper- 
functions on M (- 125 Distributions and 
Hyperfunctions). Thus we see that S describes 
the singularities of the boundary value of a 
holomorphic function. These sheaves d and 
9 are easy to understand intuitively. However, 
they are defined on p SM, while J-1. 

S*M is more important in analysis. Our final 
goal, namely, the sheaf of microfunctions, is 
constructed on fi S*M through cohomo- 
logical machinery starting from 9. In order to 

do this, we introduce the disk bundle DM by 

+iSMx,&iS*MI(v,&<O}. 

Here J-1 SM xMfi S*M denotes the 

+fiber product of J-1 SM and J-1 S* M 
over M and the symbol <cc is used to em- 
phasize that 5 designates the codirection, 
which is dual to the infinitesimally small 

quantity ~0. The canonical projections from 
DM to J-1 S*M and from J-1 SM to 
M are both denoted by z. Similarly, the pro- 
jections from DM to fi SM and from 
J-1 S*M to M are denoted by rr. We denote 
by a the antipodal mapping on J-1 S*M, 

namely, a(x, fita)-(x, -fi <co). For 

a sheaf B on J-1 S*M, we also denote 
a,,F( = a ml F) by 9’. In the following, Rjz,, 

etc., denotes the jth iright-derived functor of 
the functor r* of taking the direct image of 
sheaves, etc. (- 383 Sheaves). Now the sheaf 
V,, of microfunctions is defined on J-1 S* M 
by (Rnm1r,n-‘!2)” @ nmlwM, where uM de- 
notes the torientation sheaf of M. Note that 

Rjz,n-‘9=Oholdsforj#n-1. 
Remark: Here we have defined the sheaf VM 

of microfunctions on J-1 S*M. However, it 
is sometimes more convenient to define the 
sheaf on J-1 T*M (= T,*X) by the follow- 

ing convention: (2 M,(x,~~--ir)=%,~x,~ -Irmj if 
5Z0, and %,,x, if 5 = 0. Several authors (e.g., 
[23]) call this sheaf GM the sheaf of micro- 
functions and denote it by ‘e,. 

(2) Basic Properties of Microfunctions. The 
sheaf ‘& defined above has the following 
properties: (i) The sheaf ‘e, is a tflabby sheaf 

on fl S* M. (ii) For each (x, fl <m) in 

J-1 S* M, there exists a surjective mapping 
from gM,, to VM,CX,~~:~gm,. This mapping is 
denoted by sp. The mapping from BM to 
n,%$, is also denoted by sp. (iii) We have the 
following exact sequence: O-dM-BMz 

n.+V&,+O. (iv) Rklr,WM=O holds for k#O. 
The exact sequence (iii) shows that the singu- 

larities of hyperfunctions are dispersed over 
J-1 S*M and that the dispersed object 
is described by the sheaf VM of microfunc- 

tions. For a hyperfunction DEB,,,, we call 
q(f) (~W(fi S*M)) the spectrum of ,f: We 
denote suppsp(f) by S.S.j’and call it the 
singularity spectrum of ,f‘ or the singular spec- 
trum. It is known [21] that this coincides 
with the analytic wave front set off and with 
the essential support off if f‘is a distribution. 
(v) The following sequence is an exact se- 

quence on J-1 SM: O+,p?,~~~l&?,,,+~~z~lW~ 
-0. In the following, a subset A of the (n- l)- 
dimensional sphere S”-’ is said to be convex 

if tY’(A)U {0} is convex, where zn is the ca- 
nonical projection from R” \ {O} to SE-i, and 
if u-‘(A) U { 0) is convex and includes no 
straight line, A is said to be properly convex. 
A subset Z of J-1 SM (resp., J-1 S*M) is 
also said to be (properly) convex if r-i(x)f’Z 
(resp., Cl (x) n Z) is so for each x in M. For 
a subset Z of J-1 SM its polar set Z” is, by 
definition, {(x, J-1 5, CCJ)E J-1 ST M 1 

(v,, 5,) > 0 holds for each x + J-1 U, 0 in 
Z}. The polar set Z” of a subset Z of J-1. 
S*M is defined in the same way. (vi) Let U 
be an open subset of fl SM such that 

T ml (x) n U is a nonvoid connected set for 
each x in M. Let I/ denote U”“. Then we 
have (a) The restriction mapping p: I( V; .g )- 
I( U; .d ) is a bijection. Here I( I/; .d ), etc. de- 
notes the space of global sections of d over V, 
etc. (b) O+.~(U)+~(M)%Y(fi S*M - U’) 
is an exact sequence. (vii) Let f(x) be a hyper- 
function on M. Then the following two state- 

ments are equivalent: (a) ~p(,f)~~~,~~-j~,~,=O. 
(b) There exist a finite family of open subsets 

U, of J-1 SM whose polar set Uy does not 
contain (x,, fi &, co) and ‘pj in I( Uj, .E? ) 
such that ,f= Ejih((pj). Then we say that f is 
micro-analytic at (x0, J-l to co). 

(3) Operations on Microfunctions. Let M and 

N be real analytic manifolds, and let f be a 
real analytic mapping from N to M. We de- 

note by TN* M the kernel of the natural map- 
ping from N x,,, T*M to T*N. It is also called 

a conormal bundle supported by N. The as- 
sociated sphere bundle is denoted by S,*M. 
Denote by p and a the natural mappings from 

NxM&iS*M+iS;M to&iS*N 

and from N x,,,rfl S*M\fi SZM to 
fi S* M, respectively. (i) Let ,?4h denote the 
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sheaf {uEaMIS.S. un&lS,*M=(20. Then 

we have the following two canonical homo- 
morphisms: f*:.%?h-&& and f*:p!~i%“+ 

qN. Here and in what follows, for a continuous 

mapping cp from N to M and a sheaf 9 on N, 
~~9 denotes the sheaf on M defined by assign- 

ing {sEr((~-‘(C/);~,--)I~l~~~~~:supps~U is 
tproper} to each open subset U of M. These 

two homomorphisms are consistent. We call 
each of them a substitution (homomorphism) 

and denote it by (f*n)(y)=u(,f(y)). (ii) Let 
uy denote the sheaf of tdensities. Then there 

exist the following two canonical homo- 

morphisms: f, :A@,,, Q,, u,,+&?~ @,, uy and 
f,:a!p-‘(~~O~~v,)~ce,O~~v,. These two 
homomorphisms are consistent. We call each 
an integration along a fiber and denote it by 
(~*u)(x)=~~~~(,)u. (iii) Using the result in (i), 
we can define the product u, u2 of two byper- 
functions u, and u2, if S.S. u, f’(S.S. uz)” = 
0. Furthermore, the singularity spectrum 

of ui u2 is contained in {(x, fi(@, + (l- 

o)irz)co)l(X,\/-151CX))ES.S.U1,(X,~52CO) 
ES.S.z4*,0~.0~l}US.S.U, us.s.u,. 

F. Microdifferential Operators [22] 

(1) Microlocal Operators. Let M be a real 
analytic manifold, and define the sheaf 
ZMonfiS&(MxM)=fiS*Mby 

Jfc&St(M x M)WM x M 0 u,,,). A section K (x, y) dy 
of yM naturally determines an integral oper- 
ator ~?:u(y)+JK(x,y)u(y)dy. An operator 
thus obtained is called a microlocal operator, 

because it acts on the sheaf %M of microfunc- 

tions as a sheaf homomorphism. Usually we 
identify an operator ~6” and a kernel function 
K (x, y)dy. (i) yM is a sheaf of rings by the 
natural composition. The unit element of 
yM is 6(x-y)dy. It acts on U, as an identity 
operator. (ii) Let K (x, y)dy be the kernel func- 
tion of a microlocal operator x‘ defined near 
(x0, J-1 &, co). Then its adjoint operator Xx* 
is, by definition, the microlocal operator de- 
fined near (x,, -J-l to co) with the kernel 
function K(y, x)dy. The operation * is a sheaf 

isomorphism between 58M and .5&, where a 
denotes the antipodal mapping (- Section E). 

(2) Microdifferential Operators. A micro- 
differential operator is an analog of a micro- 
local operator in the complex domain. By a 
procedure similar to that used to define the 

sheaf of microfunctions we first define the 
sheaf V$ of holomorphic microfunctions for 
a submanifold Y of X (- [22, definition 1.1.7 

on p. 3191, where it is denoted by %r,,). It 
follows from the definition that %$ is sup- 

ported by Py*( Y x X), which is identified with 
Y x x P*X. Here and in what follows P*X, 

etc., denotes the cotangential projective bundle 
of X, etc. Then the sheaf GYP of microdifferen- 
tial operators (of infinite order) is, by defini- 

tion, GFxBx Om, Rx, where R, denotes the 
sheaf of holomorphic dim X-forms. 

Remark. Several notations are used to de- 
note &T in the literature. For example, [22] 
uses the symbol Px and calls it the sheaf of 
pseudodifferential operators. As in the case of 
microfunctions, some authors use the symbol 
8; to denote a sheaf on T*X. In this case 

82 1 x is, by definition, 92, the sheaf of linear 
differential operators (of infinite order). One 
should be careful in these notational confu- 
sions in referring to papers using microdif- 
ferential operators. We note also that the sym- 
bols 9 and & have nothing to do with the 
symbols in distribution theory. 

We now list the basic properties of micro- 
differential operators. 

(i) When X is a complexilication of a real 
analytic manifold M, &T 1 4ySeM is a subring 

of YM. 
(ii) Let R be an open subset of P*X. Using 

a local coordinate system (x) on X, we define 

fi by {(x,~)EC”X(C”-{O})~(X,~CO)E~}. Let 

{ pj(x, <)}j,z be a sequence of holomorphic 
functions on fi satisfying the following condi- 

tions: (1) pj(x, 5) is homogeneous of degree j 
in 5. (2) For each E > 0 and each compact sub- 
set K of 6, there exists a constant C,,, such 
that supKlpj(x, <)I <CE,k.sj/j! (j>O) holds. 
(3) For each compact subset K of fi, there 

exists a constant R, such that supk (pj(x, 01~ 
RKj( -j)!( j< 0) holds. Then there is a one-to- 
one correspondence between the space of such 

sequences and the space of sections of 8,” over 
n. 

(iii) A sequence satisfying the conditions 
in (ii) is called a symbol sequence, and the 
corresponding section of 8” is denoted by 

Cjczpj(x, 0,). If we define a subsheaf ~?~(rn) of 

8x” by {P=Cjpj(x,D~)E~~lPj(X,5)=0(j~ 
m + l)}, it is independent of the choice of the 
local coordinate systems. A microdifferential 
operator belonging to &x(m) is said to be of 
order (at most) m. We denote U,gx(m) by 

8x and call a section of&x a microdifferential 
operator of finite order. 

(iv) Let QA(z) denote I@)/( iz)“, where 
its branch is chosen so that QA( -1) = I(i). 
When i, = 0, -1, -2, . , we consider its tfinite 

part. Let R be a complex neighborhood of 

(x,,~~~co)E~S*R”~R”X~S”-~. 
Using a symbol sequence { pj(z, g)} on fi, we 
define a multivalued holomorphic function 

K(Z, W, i) by CjPj(Z, O@n+j((Z- W, i>) and 
consider its boundary value from the domain 
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Re(z - w, [) < 0. We denote the resulting 
microfunction by 

~Pj(x,JIS)~.+j(~((x-Y,c) 

+&iO)). 

Then 

K(x, y) = (27L) -” 
Si 

~Pj(xa~E)@n+j((x-Y. 

is a well-defined microfunction in a neighbor- 

hood of (xO,xO;fi(&, -&,)a) whose sup- 
port is contained in the antidiagonal set k = 

{(X>Y;J-I(S>)?)4%/=*(~ x wx=y, 
5 + q =O}. Here w(c) is the volume element 
of the (n - 1)-dimensional sphere S”-‘. Hence 
K(x, y) dy defines a microlocal operator. 
The mapping which associates K(x, y)dy with 

{ pj(x, l)} is compatible with the inclusion 
mapping stated in (i). 

(v) By using the tplane wave decomposition 
of the S-function due to F. John (- 125 Distri- 
butions and Hyperfunctions CC), we find that 
microdifferential operators are a natural gen- 
eralization of tlinear differential operators: A 
linear differential operator corresponds to a 

symbol sequence { pj(x, <)}j,o, where pi is a 
polynomial with respect to 5. 

(vi) (a) Let P= Cjpj(x, 0,) and Q = 

& qk(x, 0,) be microdifferential operators. 
Then their composition R = P o Q is a micro- 
differential operator with the symbol sequence 

{rJlcz given by 

Here Di = @l/at;1 I?(; and s(! = !xr ! . a,! for 
the tmulti-index c(=(c(r, , n,). (b) Let P 

= cjpj(x, D,) be a microdifferential operator. 
Let 6(x-y) denote the residue class [l] of the 

left &xx x- Module 8, x xlG%1 8X x Axk -yk) 
+ C;=r 8, x x(8/8xk + d/dyk)). (“Module” means 
sheaf of modules.) Then there exists a unique 
microdifferential operator R = Cl rJy, DJ such 
that P(x,D,)h(x-y)= R(y,D$(x-y). Fur- 
thermore, r!(x, 5) is given by 

R is called the adjoint operator of P and is 
denoted by P*. When X is a complexification 

of the real manifold M, it coincides with the 
adjoint operator P* E 3’;. 

(vii) For a microdifferential operator P in 

G,(m), we define its principal symbol a,,,(P) by 

p,(x, 5). The principal symbol q,,(P) is in- 

dependent of the choice of local coordinate 

system. It gives an isomorphism between 

fx(m)/&x(m- 1) and BTs,(m), the sheaf of 
holomorphic functions on T*X which are 

homogeneous of degree m with respect to <. 
(viii) (a) Let P be in &x((m)(,O,ro,. Assume that 

5,(P)(xo, &,)#O. Then its inverse P-’ (i.e., 
PP-‘=P-‘P= 1) exists in l?x(-m)t,o,e,,. (b) 

Let P and G be in ~x(m)~xo,~,~, ~x(l)~x,~r,~, re- 
spectively. Suppose that H,$,,(a,,,(P))(x,, to) = 

0 (j = 0, , p - 1) and that H,P,&o,,,(P))(x,, to) 
#O. (Here H,(g) is, by definition, the ‘Poisson 
bracket (1; g} of ,f and g (- 82 Contact Trans- 

formations)). Then for each S in 8x,(xn,r01 we 
can find Q and R in Gx,(xO,rO, so that S = QP + 

Rwith(adG) p de+\ R= G,[G ,..., [G,R] ,... ]=0 
holds. This result is usually referred to as the 

Spith-type division theorem (for microdifferen- 
tial operators). In particular, when G = x, 

and (x,,, &,) = (0; l,O, . . , 0), R has the form 
C{:A Rck)(x, D’)D,“. Here Rck)(x, D’) = Rck’(x, D,, 

, Dnml). As a corollary to this expression 
we find the following (Weierstrass-type) pre- 

paration theorem (for microdifferential oper- 
ators): Let P be as above, and let G = x,. Then 
we can find Q and W in G,,,,; , ,0, .,,, 0j such 
that P = Q W with invertible Q and W= D,P + 
CgzA Wck)(x, D’)D,“, where Wck) belongs to 

&.r(p-k) and a,~,(Wck’)(O; l,O, . . . . O)=O. 
(ix) Quantized contact transformation. (a) Let 

X be an n-dimensional complex manifold and 

fi an open subset of P*X. Let 4 (j= 1,2,. , n) 
be in gx( 1) (a) and Qj (j = 1, , n) in &,r(O)(R). 
Assume that [I$ Pk] = [Q,, Qk] =0 and [!$ Qk] 
= Sjk hold (1 <j, k Q n). Let cp be the contact 

transformation from R to P*C” defined by 

PH(~Q,)(P)> . ..>~(Q.)(P)> ~I(PI)(PX “‘1 
ol(Pn)(p)). Then there exists a unique C-algebra 
homomorphism @:cp-‘&c”+&xlo such that 
@(xi) = Qj and @(D,) = 4 (j = 1, , n). Further- 
more, @ is an isomorphism, cDGcn(m) = &x(m) 
holds, and 0,(@(R)) = a,,,(R) o cp holds for R in 

8&m). We call the pair (cp, @) a quantized con- 
tact transformation. In the above situation, 
the &x x,.-Module 

is a simple holonomic system (- Section H) 
whose support is the graph of cp’. Let u be the 
canonical generator of .,ti, i.e., the residue class 
of 1 in A. Then R*u=@(R)u holds for Red&. 

(b) Conversely, let q be a contact transfor- 
mation from a neighborhood of p in P*X to 
P*c”, and let u be a generator of a simple 

holonomic system whose support is the graph 
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of cp”. Then a C-algebra isomorphism D: 
cp~‘&c~-&~ is defined in a neighborhood of p 
through R*u=@(R)u (RE&), and (q,@) 
becomes a quantized contact transformation. 

(c) In particular, let p be a point in J-1 S*M 
and 0 its complex neighborhood. Let (9, @) be 

a real quantized contact transformation de- 
fined on R (i.e., q maps fl S*M to J-1. 
S*R”). Then, in a neighborhood of (p,(p(p)“)~ 

J-1 S*(M x R”), there exists a microfunction 
solution K(y,x)#O of the equations xjK(y,x)= 

QjK(Y>x)> -(d/~Xj)K(Y,X)=~K(Y,X)(j= 
1,. , n) (xcR”, YE A4). Such a microfunction is 
unique up to constant multiple. The integral 
operator .~:~(x)HSK(y,x)u(x)dx gives rise 
to a sheaf isomorphism between @‘YRe,. and 
‘gM in a neighborhood of p. Furthermore, we 
have :X(Ru)=@(R)(XV) for UG%& and REC?,.. 
This .X is the counterpart of the Fourier inte- 
gral operator (- Section C). 

(x) Algebraic properties of 8; and Ex. (a) & 
is icoherent as a left &Module, and its stalk is 

a Ueft Noetherian ring. (b) 8; is tfaithfully flat 
over &. (c) 8x is tflat over gx(0). (d) Rx is flat 
over Y’&. 

G. Microdifferential Equations 122,241 

(1) Background. A system & of microdifferen- 
tial equations (of finite order) is by definition a 
-icoherent left (or right) 8x-Module, i.e., there 

exists locally an exact sequence of the form 
&~&~JY~O. For a coherent $-Module 

A, the support SuppA of ,,&’ is an impor- 
tant geometric object associated with .k. It is 
called the characteristic variety of .,&‘. For 
a coherent $&Module J%‘, its characteristic 
variety is by definition Supp(b @,A). It is 
often denoted by S.S. .&‘. Since a microdifferen- 
tial operator is a microlocal operator, the 
result in (viii) (a) of Section F (3) asserts that 
8’&i(&‘, WJ is supported by the characteristic 

variety of M intersected with J-1 S*M. 
Now, it is known that V= Supp.4 is tinvolu- 

tory (= involutive, in involution) in P*X, 
namely,f].=g],=Oentails {J.4}lv=O[22, 
theorem 53.2 on p. 4531. One of the most 
important problems in microlocal analysis is 
to study how much information V can give 
concerning the structure of &’ itself, and hence 
that of &:-*,L’,(d, %$,). The epoch-making dis- 
covery of [22] is that V determines the struc- 
ture of 6” mfl& at generic points of V as 

follows. 

(2) Structure Theorems. The fundamental 
result of [22, theorem 5.3.7 on p. 4553 is the 

following theorem for coherent b-Modules: 
Structure theorem 1. Let ./Z be a coherent 

Rx-Module satisfying the following conditions: 

(1) &~$,(&‘,8~)=0 forj#d. (2) V~fSuppJ 

is regular at PE V in the sense that V is non- 
singular near p and that w  1 Jp) # 0 for the 

+canonical 1 -form w. Then, through a quan- 
tized contact transformation (q, Q), 8’” @ J$? 

is isomorphic to a direct summand of a direct 
sum of finite copies of partial de Rham sys- 
tem JITO=&;uT(Cjd,, 8Fna/azj) with q(p)= 
(0; 0, ,o, 1)E P*c”. 

By studying the canonical form of V under 
real contact transformations, [22] further 

gives the following structure theorem in a real 

domain, i.e., in J-1 S*M for a real analytic 
manifold M. 

Structure theorem 2. Let X be a complexifi- 
cation of a real analytic manifold M, and let J! 
be as in structure theorem 1. Let p be a point 

in Vn J-1 S* M. Suppose that the following 
three conditions are satisfied: (3) Vf’ V is regu- 

lar at p. (4) T,(V) n T,(V)= 7J T/f’ V) holds for 
each q in Vn V. Here V denotes the complex 
conjugate of V (with respect to J-1 S*M) 

and 7J V), etc., denotes the tangent space of V, 
etc., at q. (5) The generalized Levi form of V is 
of constant isignature (a, b) near p, where the 
generalized Levi form of V is, by definition, the 
Hermitian form 

j,k 

for the pj such that V= njpj’(0). Then 8” @ 
J? is isomorphic to a direct summand of 
a direct sum of finite copies of the system 
R Z O8 ,$r considered in a neighborhood of 

(x&i<)=(O&i(O ,..., OJ))E\/-IS*R”, 
where .,lr is given by 

i: 
z.f=O (.i=I >..., 4, 

I 

( 
ci 1 

-+J-1 xrtlr+g 
dX 

f=O 
r+2s+I 

/ n 
> 

(I= I, . . ..a). 

( L-,--ix.+2.,+,g)f=o ? 
cx,+2s+1 n 

(l=a+l,...,a+b). 

Here, r = 2 codim V- codim( Vn V) and s = 
codim(Vn V)-codim V-(a+h). 

The first (resp. second) type of equation in 
the above are called (partial) de Rham equa- 

tions (resp. (partial) Cauchy-Riemann equa- 
tions). The third and the fourth are called 
Lewy-Mizohata equations (of type (a, h)) after 

these authors’ pioneering works [25,26]. Thus 
any system is seen to be microlocally isomor- 

phic to a mixture of these three types of equa- 
tions, generically speaking. As a corollary to 
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this, structure theorem 2 clarifies the structure 

of microfunction solutions of .4f as follows: 
Structure theorem 3. Let M, X, .k, V’, 

and p be as in structure theorem 2. Then 
&;.I:c~; (&; @ .&‘, %$,) = 0 (j # a) holds, and the 

remaining cohomology group 9 =8.&X1 (8; 0 
~2, wM) has the following structure in a neigh- 
borhood U of p: There exists an s-dimen- 
sional complex manifold Y, a real analytic 
manifold N, and a tsmooth mapping cp from 
VfWf$iS*M to Yx,/%*N such 
that~==cp-“3forasheaf’ZIon Yxfi. 
S*N that is a direct summand of .XN, with .f 

being the solution sheaf of the partial Cauchy- 
Riemann equations associated with Y. 

H. Holonomic Systems 

A coherent (left) &-Module ~4’ is called holo- 
nomic if Supp.B is tlagrangian. A coherent 
(left) a-Module .1 is called holonomic if 
d 0 ,r.,&’ is so. Even though the term “holo- 
nomic” is currently used, another term, “maxi- 
mally overdetermined,” is used to describe the 
same object in some of the literature, including 

[22]. The importance of such a system lies in 
the fact that the space of its microfunction 
solutions is finite-dimensional [27,29]. In this 
sense it resembles an ordinary differential 
equation. A holonomic system, however, does 

not satisfy condition (2) of structure theorem 1 
of Section G, and its structure is rather com- 
plicated. A result which corresponds to struc- 
ture theorem 1 in Section G is the following: 

Let V be an involutory submanifold of T *X, 

and let 8” be the subring of&x generated by 
{PIz~~(~)~~,(P)]~=O}. Then a coherent 8X- 

Module & defined on an open subset Q of 
7’* X is said to have regular singularities along 

V if for any point p of R, there exist a neigh- 
borhood LJ of p and an Q-sub-Module ,Mo 
of .B defined on U which is coherent over 
b(O), and which generates ~4’ as an &x-Module. 
A holonomic system is said to have R.S., 

which is an abbreviation for regular singular- 
ities, if it has R.S. along its support. Then for 
an arbitrary holonomic I-Module .1 we can 
find a holonomic I-Module .Lrreg with R.S. 
such that 6” @A Jz’~.~ z 6” @A d holds. See 

[28] for the proof of this striking result and 
related topics on holonomic systems with reg- 
ular singularities. 

An elementary class of holonomic systems is 
that of simple holonomic systems. A holonomic 
&-Module .I is called simple if there exists a 
left Ideal .a such that .V =&/-a and that the 

symbol Ideal {a(P) ( P E 3) coincides with the 
defining Ideal of Supp.4’. Let IA denote the 
generator 1 mod.9 of a simple holonomic 
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system 81.9. Suppose that A = Supp .I is 
nonsingular. Then the principal symbol CT,,(U) is 

defined as follows: For P = Cjpj(x, D,)E 8(m), 
let L, denote the first-order linear differential 

operator 

Here, HDm denotes the Hamiltonian vector field 
defned by {pm; 1. Let R, and Rx denote the 
sheaf of n-forms of A and X, respectively, and 

let a?‘/’ (resp. Qf”’ @ 02 -l/‘) denote a line 

bundle L such that Lo2 is isomorphic to !& 
(resp. Q,, @ Q-t). Since the line bundles QF”2 

and QF112 @ fi$?“’ do not exist globally in 
general, all the equations among their sections 
should be understood up to a constant multi- 

plicative factor. When A is a purely imaginary 

Lagrangian submanifold of G S*M for 
a real analytic manifold M, these line bun- 
dles can be constructed globally by using the 

Keller-Maslov index (- Section C). Let v 
and $ denote respectively the first term and 
the second term in the right-hand side of the 
above definition of L,. Then e,:Rf”2+ 

OF”2 is given by e,(s) ==( l/2s)L,(s2) + *s for 
s~@“~, where L,(s2) denotes the :Lie deriva- 
tive of s2 along v. One can then prove that the 

system of equations L,s = 0 (P E J) admits 
locally one and exactly one nonzero solution 
s in RF1/2 up to a constant factor. Then the 

principal symbol g*(u) of u equals s @ J%e 
@‘j2 @ Q’$-‘j2 by definition. The principal 

symbol aA is homogeneous with respect to 
5, and its homogeneous degree is called the 
order of u and is denoted by ord,(u). The 

microlocal structure of a simple holonomic 
&-Module with a nonsingular characteristic 
variety is determined by the order of its gen- 

erator as follows: (a) Let (5”~ and 6u denote 
simple holonomic B-Modules with the same 
characteristic variety A. Then 6% is isomorphic 

to &v if and only if ord,(u) - ord,(v) is an 
integer. (b) Let Gu be a simple holonomic 
system, and let x denote the order of U. Then 
through a suitable quantized contact trans- 
formation, 6% is isomorphic to gcmw, where w  

satisfies 

(z,~+(a+;))w=o, 

i?w 
z=O (j=&...,n). 

I 

Thus the microlocal structure of a simple 
holonomic system &? = bu is fairly simple at 
nonsingular points of its characteristic variety. 
Moreover a Hartogs-type theorem for micro- 
differential equations [28, ch. I, 421 entails 

that if Supp.J has the form A1 U A2 with 
Lagrangian manifolds A, and AZ such that 
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codim,, (A, n A2) 2 2; then A has the form 

.A, @ &‘z with supp ,kj = Ai (j = 1,2). Hence 
the case where codim,,(A, f’ A,)= 1 is impor- 

tant. Suppose A1 and A, are nonsingular in this 
case and T,A, #T,A, at a point XEA, flA,. 

Then, through a quantized contact transfor- 
mation ($, Q), the system .M is isomorphic to 
&cnw, with w  satisfying the following equations 

defined near (0; dz, co): 

aw 
?=O (j=3,...,n), 
“‘j 

where aj=ordAj(u) (j= 1,2) with $(Ai)= 
{~~=O,~~=...=&,=O}and$(A,)={z,= 
z2 = 0, [s = . = 5, = 0). For more general cases 
and an application - [30]. 

The theory of holonomic systems and its 

applications are being studied most inten- 
sively, raising the hope of establishing a uni- 
fied theory of special functions of several 
variables; - [23] and references cited therein. 

I. History 

Microlocal analysis means local analysis on 

the cotangent bundle. It emphasizes the im- 
portance of localization in cotangent bun- 
dles in analysis, which was pointed out by S. 
Mizohata [S, 61 immediately after the advent 
of singular integral operators in the works of 
A. P. Calderon and A. Zygmund [3,4]. Since 
then, localization in the cotangent bundle has 

been used frequently in the theory of linear 
partial differential equations. R. T. Seeley [31] 
proved that the symbol of a singular integral 

operator is well defined on the cotangent 
bundle. Works by J. J. Kohn and L. Nirenberg 
[32] and L. Hormander (&mm. Pure Appl. 
Math., 18 (1965)) strengthened the trend of 
localizing the problem on the cotangent bun- 
dle. Although it seems that the term “micro- 
local analysis” first appeared in the literature 
in 1973 (T. Kawai, As&risque, 2 and 3 (1973)), 
the basic part of the theory had been con- 

structed during the period from 1969 to 1972 
by M. Sato (Proc. Intern. Conf: Functional 
Anal. and Related Topics, 1969), Yu. V. Egorov 

[12], Hiirmander [S, 201, J. J. Duistermaat 
and Hiirmander (Acta Math., 128 (1972)) 
M. Kashiwara and Kawai (Proc. Japan Acad., 
46 (1970)), and Sato, Kawai, and Kashiwara 
[22]. Apparently the work of V. P. Maslov 

[l l] had an important influence on the work 
of Egorov. The most important part of Sato’s 

contribution was the fact that, through the 
construction of the sheaf of microfunctions he 
found that the singularities of hyperfunctions 
can be canonically dispersed over the cotan- 
gent bundle (- Section E) and that a hyper- 

function solution u of a linear differential 
equation PU = 0 is concentrated on the charac- 
teristic variety when its singularities are thus 

dispersed (- Section G). The last-stated fact 
was also formulated by Hormander [S, 203 in 
the framework of distribution theory. The 
most important part of the contribution of 
Egorov [ 121 was the discovery that one can 
use an integral transformation introduced by 
V. I. Eskin [7] to find a transformation of 

pseudodifferential operators compatible with a 
homogeneous canonical transformation, i.e., a 
contact transformation, so that the commut- 

ation relations and the orders of the operators 
can be preserved. Hormander (Acta Math., 
121 (1969)) independently introduced integral 
transformations of the same type, calling them 
Fourier integral operators. Egorov [ 131 and L. 

Nirenberg and F. Treves [33] successfully used 
the transformation of operators to study the 

regularity and existence of solutions. Sub- 
sequently, Hiirmander [S] elaborated the 

theory of Fourier integral operators. Kashi- 
wara and Kawai (Proc. Japan Acad., 46 (1970)) 
observed that a pseudodifferential operator in 

their sense (now called a microdifferential 
operator; - Section F) gives rise to a sheaf 
homomorphism on the sheaf of microfunctions 
and that the structure of the microfunction 
solutions of pseudodifferential equations is 
determined by the principal symbol of the 
operator in question if it has simple character- 
istics. Then Sato, Kawai, and Kashiwara [22] 
succeeded in amalgamating these two theories, 

namely, the theory of microfunctions and the 
theory of the transformation of operators. 
(They called the transformation a quantized 

contact transformation in [22]). Such an amal- 
gamation was also done independently by 
Hormander [8,20], who introduced the notion 
of the wave front set for distributions as a 
substitute for the support of microfunctions. 
Incidentally, it is noteworthy that C. Chandler 
and H. P. Stapp (J. Math. Phys., 10 (1969)) and 
D. Iagolnitzer and Stapp (Comm. Math. Phys., 
14 (1969)) obtained a notion similar to the 

singularity spectrum in a physical context. 
Their results were later elaborated (around 
1971-1973) by J. Bros and Iagolnitzer [19]. 

With the aid of the above-mentioned amal- 
gamation of the theories, the works of Sato, 
Kawai, and Kashiwara [22], Hormander [ZO], 
Duistermaat and Hormander (Acta Math., 121 
(1969)), Kawai (P&l. Rex Inst. Math. Sci., 7 

(197 I - 1972)) and K. G. Andersson (Trans. 
Amer. Math. Sot., 177 (1973)) have clarified the 
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importance of the bicharacteristic strip, which 

is a submanifold of a cotangent bundle, not a 
base manifold, as a carrier of singularities of 
solutions of pseudodifferential equations (- 
Section G); and the works of Sato, Kawai, and 

Kashiwara [22], Sato (Acres Congr. Internat. 
Math. Nice, 1971) and Kawai (Publ. Res. Inst. 
Math. Sci., 7 (1971-1972)) revealed the hidden 
mechanism of the celebrated counterexample 
of H. Lewy [25]. Among these, the contri- 
bution of Sato, Kawai, and Kashiwara [22] 
was most decisive and fundamental in that it 
first clarified the structure of a general system 

of pseudodifferential equations at generic 

points of the characteristic variety and then 
derived from it the above-quoted results on 
the structure of the solutions (- Section G). 

Microlocal analysis has now become one of 
the most important and basic concepts in the 
theory of linear partial differential equations 
and theoretical physics. For recent develop- 
ments - Hormander [34] and V. Guillemin, 
Kashiwara, and Kawai [23] and references 
cited therein. 
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Minimal Submanifolds 

A. General Remarks 

An immersion ,f of an m-dimensional manifold 
M with boundary aM (possibly empty) into a 
Riemannian manifold N is called minimal if 

the tmean curvature vector field H of M with 
respect to the induced Riemannian metric 
vanishes identically. Then M is called a mini- 
mal submanifold of N. This definition comes 
from the following variational problem: By a 
smooth tvariation off is meant a smooth map- 
ping F:I x M-N, where 1=(-l, l), such that 

each f, = F(t, .): M-tN is an immersion, ,fO =,h 
and,f;IaM=flaMforalltEZ,Letd1/;bethe 
volume element of the metric induced by f,, 
and set V(t)= lM dl/, the volume of M at time 
t. Then the first variation of the volume is 

expressed as 

where a/& denotes the canonical vector feld 
along the I factor in I x M. Thus the mean 
curvature vector field H of ,f vanishes identi- 
cally if and only if d Vjdt ( f=O = 0 for all vari- 
ations off: Therefore a minimal submanifold 
gives an extremal of the volume integral, 

though neither necessarily minimal nor of the 
least volume. 

In the case N = R”, an immersion x : M +R” 
is viewed as a vector-valued function, and the 
mean curvature vector field H is expressed as 
H = Ax/m, where A denotes the tlaplace- 
Beltrami operator -g’lv,v,. Thus x is minimal 

if and only if each component function of x is 

harmonic. In particular, there is no compact 

minimal submanifold without boundary in R”. 

The history of the theory of minimal sub- 

manifolds goes back to J. L. Lagrange, who 
studied minimal surfaces in the 3-dimensional 

Euclidean space R3. In 1762 he developed 
his algorithm for the ‘calculus of variations, 
which can be applied to higher-dimensional 
problems and is now known as the tEuler- 
Lagrange equation. For instance, let D be a 
domain in the plane R2 and z =,f(x, y), (x, y) E 
D, the equation of a surface in R3. As a neces- 
sary condition for the surface to have the least 
area among the surfaces with fixed boundary, 
Lagrange obtained a tquasilinear elliptic par- 
tial differential equation of the second order, 

called the minimal surface equation: 

(1 +z$z,,- 2z,zyz,). + (1-t z:)zYY = 0. 

Before this, in 1744, L. Euler had found that a 
tcatenoid is a minimal surface. In 1766, J. B. 
M. C. Meusnier showed that a right thelicoid 
is a minimal surface. Besides cdtenoids and 
helicoids, in 1834, H. F. Scherk found that the 
surface defined by z = log(cos y) - log(cos x) is 
a minimal surface, which is called Scherk’s 
surface. 

In the latter half of the 19th century, tPla- 

teau’s problem (- Section C; 334 Plateau’s 
Problem) was studied extensively by 0. Bon- 
net, B. Riemann, K. Weierstrass, A. Enneper, 

G. Darboux, and others. The problem is stated 
as follows: Given a iJordan curve I in R3 (or 
in R”), find a surface of least area having I 
as its boundary. On the other hand, in 1866, 

Weierstrass gave a general formula, called 
the Weierstrass-Enneper formula (- Section B 
(5)) to express a simply connected minimal 
surface in terms of a complex analytic function 
and a meromorphic function with certain 

properties. The formula allows one to con- 
struct a great variety of minimal surfaces by 
choosing those functions. 

The existence of a minimal surface of disk 
type having a prescribed boundary curve was 
first obtained in 1930 by J. Douglas and T. 
Rado independently as a solution to Plateau’s 
problem, admitting singularities. The result 
was improved by R. Courant for the case of 
finitely many boundary curves by the method 
of tDirichlet integrals. The method was carried 
out further by C. B. Morrey for the gener- 

alized Plateau’s problem in a Riemannian 
manifold (- Section C (5)). Indeed, the Euclid- 
ean space was replaced by any complete Rie- 

mannian manifold which is metrically well 
behaved at infinity. For example, any compact 
or any thomogeneous Riemannian manifold is 

in this class. 
The existence proof of minimal surfaces 

cannot in general be applied directly to the 
case of higher-dimensional minimal submani- 

folds. The notion of varifolds (- Section G (2)) 
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and the corresponding generalization of a 
minimal submanifold, called a minimal variety 
(- Section G (2)), were then introduced by F. 
Almgren, who proved the existence of a mini- 
mal variety in a compact Riemannian mani- 
fold. It was also proved that a minimal variety 
is approximated by regular minimal submani- 

folds. This work has been developed as geo- 
metric measure theory by E. R. Reifenberg, 
W. H. Fleming, H. Federer, F. Almgren, and 
others (- Section G). 

The study of minimal surfaces given as the 
graph of a real-valued function of two vari- 

ables leads to that of solutions of the minimal 
surface equation. In 1915, S. Bernshtein proved 
that a minimal surface z =,f(x, y) defined on 

the entire plane RZ must be a plane. Sub- 
sequently, this was generalized to the following 
problem: Is a minimal hypersurface x,+, = 
f(xi, , x,,) in R”+’ defined on the entire space 
R” a hyperplane? The answer turns out to be 
affirmative for n < 7 and negative for n > 8 

(- Section F (1)). 
In general, when a bounded domain D in R” 

and a continuous function q on its boundary 
(70 are given, the problem of finding a minimal 
hypersurface M defined by the graph of a real- 
valued function f on D with fl IYD = cp gives 
rise to a typical +Dirichlet problem. The basic 
questions are those of existence, uniqueness, 
and regularity of solutions. These were first 

studied by Rado for n = 2 and later by L. Bers, 
R. Finn, H. Jenkins, J. Serrin, R. Osserman, 
and others (- Section D (1)). 

Minimal submanifolds of a sphere have 
interesting properties; some are analogous to 

those in Euclidean space but some are not. 
Among them, J. Simons, in 1968, gave a dif- 

ferential equation that the norm of the second 
fundamental form of a minimal submanifold 
in a sphere should satisfy. He then showed 
that a totally geodesic submanifold is isolated 
among the compact minimal submanifolds in 

the sphere. S. S. Chern, M. P. do Carmo, S. 
Kobayashi, N. Ejiri, T. Ito, T. Otsuki, N. Wal- 
lath, and others have made further contri- 

butions to this subject (- Section F (2)). 

B. Minimal Surfaces 

(1) Branched minimal surfaces. A minimal 
surface M in R” is an immersed surface with 
vanishing mean curvature vector field. M 
equipped with an atlas of tisothermal coor- 
dinates is viewed as a tRiemann surface. A 
branch point of a tharmonic mapping ,f: M + 
R” is a point at which the differential df, is 
zero. A harmonic mapping 1‘: M +R” of a 
Riemann surface M is called a branched (or 

generalized) minimal immersion if it is con- 
formal except at the branch points, and the 
image f(M) is then called a branched minimal 
surface. The solution to Plateau’s problem 
given by Douglas and Rado is a branched 
minimal surface. 

(2) Maximum principle. When n = 3, the 
following maximum principle for minimal 

surfaces holds: If M, and M, are two con- 
nected branched minimal surfaces in R3 such 
that for a point PE M, n M2, the surface M, 
locally lies on one side of M2 near p, then M, 
and M, coincide near p. 

(3) Convex hull property. In general, every 
branched minimal surface with boundary in R” 
lies in the convex hull of its boundary curve, 
the smallest closed convex set containing the 

boundary. 
(4) Reflection principle. If the boundary 

curve of a branched minimal surface contains 
a straight line y, then the surface can be ana- 
lytically continued as a branched minimal 

surface by reflection across 7. Based on this 
principle, the following holds: Let I be an 
analytic Jordan curve in R” and f: M +R” a 
branched minimal immersion with boundary 
F. Then f is analytic up to the boundary, i.e., 
f(M) is contained in the interior of a larger 
branched minimal surface (H. Lewy). The 
smooth version of this theorem was given by 
S. Hildebrandt: If f: M*R” is a branched 
minimal immersion with smooth boundary 

curve, then f is smooth up to the boundary. 
(5) Weierstrass-Enneper formula. Every 

simply connected minimal surface in R3 is 
represented in the form 

where 4 = .f( 1 - 9’)/2, d2 = J-1 .f( I+ s2)/2, 
b3 =,fi~, and ck is a constant. Here, g(c) is a 
meromorphic function on a domain D in the 
complex c-plane, and f(i) is an analytic func- 
tion on D with the property that at each point 
[, where g(c) has a pole of order m, f(c) has a 

zero of order 2m, D being either the unit disk 
or the entire plane. This formula is quite use- 
ful for constructing various minimal surfaces. 
For instance, on setting .f’= 1 and g(c)= c, 
Enneper’s surface is obtained: 

u3 213 
~x,rX2,x3)=(U--3+Uu~,u-3+vU~,U~-v~), 

(u, v)ER’. 

Another feature of the formula is that general 

theorems about minimal surfaces can be ob- 
tained by translating statements about analy- 
tic functions into the corresponding minimal- 

surface ones. For example, a surface ,f: M +R3 
is minimal if and only if the +Gauss mapping 
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G: M-S2 is antiholomorphic, i.e., the complex 

conjugate of the mapping is holomorphic, 
when S2 is viewed as the Riemann sphere with 
complex structure by the stereographic projec- 
tion (from the south pole) onto the complex 
plane. As a consequence, a complete minimal 
surface in R3 is a plane or else the normals to 
the surface are everywhere dense in Sz (R. 
Osserman). 

(6) Stability. A minimal submanifold M is 
called stable if for every compact region on M 

all the second variations of the volume are 
positive. For instance, if M+R” is a minimal 
hypersurface and fv is a variation vector field, 
v being the unit normal vector field of M and f 
a smooth function with compact support on 
M, then the second variation formula for the 
volume V(t) is given by 

where 1 A) denotes the norm of the second 
fundamental form of M. In particular, when 
n = 3, then - (A 12/2 = K, the Gauss curvature 
of M. Therefore a minimal surface M in R3 is 

stable if and only if 

s 
(JVf12+2Kf’2)dV>0 

M 

for any smooth function f with compact sup- 
port on M. It follows that the stability of mini- 
mal surface M in R3 is related to the bound- 
ary value problem of a linear elliptic operator 
L = A - 2K, A being the Laplacian on M. 
Namely, a minimal surface M in R3 is stable if 

and only if the first eigenvalue 1, (D) of L on 
any bounded domain D in M is nonnegative. 

In connection with the tGauss mapping, a 
sufficient condition for a domain D in a mini- 
mal surface to be stable was obtained by H. 

Schwarz in 1885: If a minimal surface M in R3 
has one-to-one Gauss mapping G : M +S2, 
then a domain D c M such that G(D) is con- 
tained in a hemisphere of S2 is stable. This was 
generalized by J. L. Barbosa and M. do Carmo 
as follows: If the area A(G(D)) of the spherical 
image G(D) is less than 27c, then D is stable. 

This result is sharp in the sense that for any 
E > 0 there exists an unstable domain D with 
A(G(D)) = 27~ + E. As an analog to Bernshtein’s 
theorem, the following holds: A complete and 
stable minimal surface in R3 is a plane. H. 
Mori has also obtained results in this regard. 

As for the existence of unstable minimal 

surfaces, it is known that if there are two dis- 
tinct stable minimal surfaces with the same 

smooth boundary curve r in R3, then there 
exists an unstable branched minimal surface 
with r as its boundary (M. Morse and C. 

Tompkins, M. Schiffman). 

C. Plateau’s Problem (- 334 Plateau’s 
Problem) 

Let I- be a trectifiable iJordan curve in R” and 
D = {(x, y)~ R2 1 x2 + y2 < 1). Then there exists 
a continuous mapping f: D-+R” such that (a) 
f I aD maps homeomorphically onto r; (b) 
f I D is harmonic and almost conformal, i.e., 
(f,,f,)=OandIf,l=lf,linDwithIdfl>O 
except at isolated branch points; (c) the in- 
duced area off is the least among the class 
of piecewise smooth surfaces bounding r with 

(a). This mapping f is called the classical solu- 
tion or the Douglas-Rad6 solution to Plateau’s 
problem for r, which may have singularities 
called tbranch points. The resulting surface S 
is a branched minimal disk. This theorem 
establishes the existence of a surface of least 
area among all surfaces homeomorphic to a 
disk. It has been generalized by R. Courant 
for r consisting of finitely many rectifiable 
Jordan curves. 

For a branched minimal disk S bounded by 

smooth r in R3, there is a relation, called the 
Gauss-Bonnet-Sasaki-Nitscbe formula, among 
the ttotal curvature K(r) of r, the total curva- 
ture of S, and the orders of branch points: 

where K denotes the Gauss curvature of S, 
ma - 1 the orders of the interior branch points, 
and 2M, the orders of the boundary branch 
points, which must be even. 

(1) Regularity. A minimal disk of least area 

in R3 has no boundary branch points when I- 
is real analytic (R. Gulliver and F. Leslie) or 
when r is smooth and the total curvature rc(T) 

is less than 471 (J. C. C. Nitsche). In general, a 
classical solution for smooth r in R3 cannot 

have infinitely many branch points. A re- 
markable fact is that every classical solution 

to Plateau’s problem in R3 is free of branch 
points in its interior, i.e., is a regular immer- 
sion (R. Osserman). 

(2) Emheddedness. A classical solution is 
not necessarily an embedding; it may have 

self-intersections. For instance, if r is knot- 
ted in R3, then every solution must have self- 
intersections. It is known, however, that im- 
mersed minimal disks of least area in R3 which 
can self-intersect only in their interiors are 
embeddings. In particular, if r is an extremal 
Jordan curve, i.e., if r lies on the boundary of 
its tconvex hull, then the classical solution for 
r is an embedding (F. Tomi and A. J. Tromba; 
W. H. Meeks and S. T. Yau). If the topological 
type is not specified, then there always exists 

an embedded minimal surface. That is, if r is 
the union of any finite collection of disjoint 
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smooth Jordan curves in R3, then there exists 
a compact embedded minimal surface with 
boundary F which is smooth up to the bound- 
ary (R. Hardt and L. Simon). However, there 

exists an unknotted Jordan curve that never 
bounds an embedded minimal disk. 

(3) Uniqueness. In general, the classical 

solutions to Plateau’s problem do not have the 
uniqueness property. Rado was the first who 
gave a condition on a boundary curve to 
guarantee the uniqueness of the minimal disk. 

Namely, if a Jordan curve I in R” admits a 
one-to-one orthogonal projection onto a con- 

vex curve in a plane R2 in R”, then the classical 
solution to Plateau’s problem for I is free of 
branch points and can be expressed as the 

graph over this plane. When n = 3, the solution 
is unique. Another geometric condition on I 
has been given by Nitsche: An analytic Jordan 

curve I in R3 with total curvature rc(I) G 
47~ (or a smooth I- with K(F) <4x) bounds a 

unique immersed minimal disk. Moreover, 
the generic uniqueness holds: In the space d 

of all smooth Jordan curves in R” with suitable 
topology, there exists an open and dense sub- 
set 99 such that for any I in g there exists 
a unique area-minimizing minimal disk (F. 
Morgan and A. J. Tromba). 

(4) Finiteness. As for the finiteness of the 
classical solutions to Plateau’s problem, 
several conditions on boundary curves are 
known. An analytic Jordan curve in R3 
bounds only finitely many minimal disks of 
least area (F. Tomi). An analytic textremal 
Jordan curve in R3 bounds only finitely many 
minimal disks with relative minima of area (H. 
Beeson). A smooth Jordan curve F with total 
curvature It(I) < 6n bounds only finitely many 

minimal disks (Nitsche). Moreover, generically, 
i.e., for an open and dense subset of boundary 
curves, there are at most finitely many minimal 

surfaces with given boundary, relative minima 
or not (R. Bohme and Tromba). 

(5) Generalized Plateau’s problem. C. B. 
Morrey’s setting of the generalized Plateau’s 
problem is as follows: A homotopically trivial 
rectifiable Jordan curve I’ is given in an n- 
dimensional Riemannian manifold N. Let D 
denote a disk in R’. Find a mapping f:&N 

such that (a) f ( 8D maps homeomorphically 
onto I, (b) the induced area off is the least 
among the class of piecewise smooth surfaces 
in N bounded by F with (a). Obviously when 

N = R”, this is the classical Plateau’s problem. 
A solution was given by Morrey under the 
assumption that N is homogeneously regular; 
i.e., that there exist 0 < k < K such that for 
any point y E N there is a local coordinate 
system (V, a) around y for which Q(V) = 

{x f R” 1 ((x1( < 1) and the Riemannian metric 
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C gep dx” dxfl satisfies 

for any x and (ui, . . . . u,,) E R”. Any compact or 

any homogeneous Riemannian manifold is 
homogeneously regular. Morrey’s solution is 

as follows: If N is a homogeneously regular 
Riemannian manifold and if F is a homotopi- 
tally trivial rectifiable Jordan curve in N, then 
there exists a branched minimal immersion f: 
D-+N with least area bounded by I with (a). 

The regularity of Morrey’s solution is simi- 
lar to the classical one. If I is smooth, then 
so is the solution f up to the boundary. If, 

furthermore, dim N = 3, then the solution f 
is an immersion in its interior. If N and I are 
real analytic and dim N = 3, then the solution f 

is an immersion up to the boundary. 

D. Existence Problems of Minimal 
Submanifolds 

(1) The Dirichlet problem for the minimal 
surface equation. When the graph of a (vector- 
valued) function is a minimal submanifold 
in some Euclidean space, the function must 

satisfy the so-called tminimal surface equation. 
To be precise, let D be a (bounded) domain in 
R”, ,f: D+Rk a (vector-valued) function, and 
put F:D-+Rnik: F(x) =(x, f(x)) for x E D. Let A4 
be the graph off: M = F(D). Then M is mini- 

mal if and only if f (or F) satisfies one of the 
following equations: 

ifn=2and k=l, 

(1 +f,2)fx,-w&,+U +f3f,,=0; (1) 

if n is arbitrary and k = 1, 

ad =0 where W=Jl+lvfl”; 

(2) 

if n = 2 and k is arbitrary, 

(1+l.f,12)f,,-2(f,~f,)f,,+~1+Is,12).f,,=o; (3) 

and if n and k are arbitrary, 

0 where gij=$s, (4) 

and (9”) is the inverse matrix of (gij). 

The basic problem for this class of equations 

is the TDirichlet problem. For n = 2 and k = 1, 

the following theorem of Radb and Finn is 
fundamental: There exists a solution f of the 
Dirichlet problem corresponding to an arbi- 
trary continuous function cp on the boundary 
c3D of D if and only if D is convex. Since the 
difference of any two solutions of eq. (1) satis- 
fies the maximum principle, there can be at 

most one solution f of the Dirichlet problem 
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corresponding to a given continuous function 
cp on 8D. As for the removability of isolated 
singularities, the following is known: Every 
solution of eq. (1) in 0 <x2 + y2 < 1 extends 

continuously to the origin. The extended func- 
tion is smooth at the origin and satisfies eq. (1) 
in the full disk x2 + y2 < 1 (Finn). 

For arbitrary n and k = 1, namely, for the 
case of minimal hypersurfaces, the following is 
known: Let D be a bounded domain in R” with 
smooth boundary. The Dirichlet problem for 
eq. (2) has a solution for any continuous func- 
tion cp on 8D if and only if the mean curvature 
of 8D with respect to the inner normal is non- 

negative at every point. As for the uniqueness 
and regularity, the same results as above hold 

(Jenkins and Serrin). 
For n = 2 and arbitrary k, namely, for the 

case of minimal surfaces in Rzik, exactly the 
same result of existence as in the classical case 
k = 1 holds. A solution exists for an arbitrary 

continuous vector-valued function on aD if 
and only if D is convex (Osserman). Though 
the removability of singularities holds under 
suitable restrictions, the uniqueness fails in this 
case. 

For the last case, n > 2 and k > 1, there are 

essentially no results on either existence or 
uniqueness for the Dirichlet problem. 

(2) Existence of minimal surfaces and top- 
ology. For a compact Riemannian manifold 

N, there are results on the existence of minimal 
surfaces related to the homotopy groups of 
N. Let f be a continuous mapping from a 
+Riemann surface Zg of tgenus 9 into N. If the 

iinduced mapping f, :rr,(T,)+n,(N) of ,f on 
the tfundamental groups is injective, then there 
exists a branched minimal immersion h : ,?+ N 
such that h, =,f# on n,(.Zq) and the induced 
area of h is the least among all mappings with 
the same action on rrn, (C,). If furthermore 
rc2( N) = 0, then h can be deformed from S 

continuously (R. Schoen and S. T. Yau). If 
n,(N)#O, then there exists a generating set for 
n,(N) consisting of branched minimal immer- 

sions of spheres that minimize energy and area 
in their homotopy classes (J. Sacks and K. 
Uhlenbeck). If, furthermore, dim N = 3, then 
the above minimal immersion h in the homo- 

topy class is an embedding or a two-to-one 
covering mapping. In the second case, its 

image is an embedded real projective plane. If 
h’ is another such least-area mapping, then 
either h’ is equal to h up to a conformal re- 
parametrization or the images of h and h’ are 
disjoint (Meeks and Yau). 

E. Gauss Mapping of Minimal Surfaces 

On a connected, orientable surface M there 

exist local isothermal coordinates (x, y) at each 

point. On putting z = x + J-1 y, the metric 
has the form ds2 =2Fldz12, and M is viewed as 
a Riemann surface. A conformal immersion 
f: M --) R” is minimal if and only if Af = 0, or 
equivalently a&f = 0. In the case n = 3, the 
+Gauss mapping G:M+S* of a surface f: 

M-tR3 is defined by assigning to each point 
PE M the unit normal vector translated paral- 
lel to the origin of R3. A surface ,f: M+R3 is 

minimal if and only if the Gauss mapping is 
antiholomorphic. In the general case, the 
Gauss mapping G is defined to be a mapping 
assigning to each point PE M the oriented 
tangent space f, T,(M) c R”. Thus G is a map- 
ping from M into the +Grassmann manifold 
fi,,,(R)=SO(n)/S0(2) x SO(n-2) of oriented 
planes in R”, which is naturally diffeomorphic 
to the tcomplex quadric Qnm2 in the complex 
projective space CP”-‘. An immersion ,f: 
M +R” is minimal if and only if its Gauss 

mapping is antiholomorphic. 

Let ,f: M-R” be a complete orientable 
minimal surface. Let x be the Euler character- 
istic and - nC = j,,, KdA, the total curvature of 
f‘(M). Assume that the total curvature is finite. 
Then the following results of Chern and Osser- 
man are fundamental: (a) A4 is conformally a 
compact Riemann surface M with finite num- 
ber, say r, of points deleted; (b) C is an even 
integer and satisfies C 3 2(r - x) = 4g + 4r - 4, 
where g is the genus of M (= genus of M); (c) if 

f(M) does not lie in any proper aftine subspace 
ofR”, then C>4g+r+n-3>4g+n-2>n-2 
(F. Gackstatter); (d) if f(M) is simply connected 

and nondegenerate, i.e., its image under the 
Gauss mapping does not lie in a hyperplane 
of CP”-‘, then C > 2n - 2 and this inequality 
is sharp; (e) when n = 3, C is a multiple of 4, 
with the minimum value 4 attained only for 

Enneper’s surface and the catenoid; (f) the 
Gauss mapping G of M extends to a mapping 
of M whose image G(M) is an algebraic curve 
in CP”-’ lying in Qnm2; the total curvature of 

f(M) is equal in absolute value to the area of 
G(M), counting multiplicity; (g) G(M) inter- 

sects a fixed number of times, say m (counting 
multiplicity), every hyperplane in CP”-’ except 
for those hyperplanes containing any of the 
finite number of points of G(M -M); the total 
curvature of ,f(M) equals -2~m. 

In particular, if a complete minimal surface 
in R” has k tends, then the total curvature 
never exceeds 27r(x - k). Enneper’s surface and 
the catenoid are the only two complete mini- 
mal surfaces in R3 whose Gauss mapping is 
one-to-one. 

If the Gauss mapping of a complete minimal 
surface of finite total curvature in R3 omits 

more than 3 points of S’, then it is a plane 
(Osserman). F. Xavier proved that the Gauss 
mapping of any complete nonflat minimal 
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surface in R3 can omit at most 6 points of S*. 

It is an open question whether this can be 
improved to 4 points. The Gauss mapping of 
Scherk’s surface omits exactly 4 points of S*. 

F. Minimal Submanifolds 

(1) Bernsbtein’s problem. As was mentioned in 
Section A, a minimal surface in R3 represented 
as the graph of a function on the entire plane 
R2 is a plane. This is known as Bernshtein’s 

theorem (1915). This is, however, not true in 
R4, namely, there is a minimal surface defined 
as the graph of a vector-valued function on the 

entire plane, which is not a plane. The gen- 
eralized Bernshtein problem is stated as follows: 
Let f: R”-rR be a function satisfying the mini- 
mal hypersurface equation 

where W= ,/m. Is the graph off an 

affme hyperplane? The answer is afftrma- 
tive for n < 7 (E. De Giorgi, F. J. Almgren, J. 
Simons). For n > 8, it is negative (E. Bombieri, 
De Giorgi, E. Giusti). Though the problem 
turns out to be negative for n > 8, no concrete 

counterexample is known, even for n = 8. 
(2) Minimal submanifolds in the sphere. 

Minimal submanifolds in the unit sphere S” 
have some special properties. For example, 
there is no compact minimal submanifold of 
s” contained in an open hemisphere. On the 
other hand, there is no stable minimal closed 

submanifold in S” (B. Lawson, Simons). 
More generally, any closed minimal hypersur- 
face in a Riemannian manifold with positive 

Ricci curvature is unstable (Simons). As for the 
existence of minimal surfaces in a sphere, the 
following theorem of Lawson is general: Any 
closed surface of any genus, except the real 
projective plane, can be minimally immersed 
into the unit sphere S3. As an analog to Bern- 
shtein’s theorem, a sphere S’, which is mini- 
mally immersed in S3, is necessarily totally 
geodesic. On the other hand, by making use 

of higher-order second fundamental forms and 
the relations among them, a complete descrip- 
tion of the minimal immersions of R* into S” 

has been given by K. Kenmotsu. 
As a general theorem which gives a neces- 

sary and sufficient condition for a Riemann- 
ian manifold to be minimally immersed in the 
unit sphere S”, the following is fundamental: 
An isometric immersion x of an m-dimensional 
Riemannian manifold M into S”, viewed as a 
vector-valued function into R”+‘, is minimal if 

and only if Ax = mx (T. Takahashi). As its 
immediate application, any m-dimensional 
compact homogeneous space whose linear 

isotropy group is irreducible can be minimally 

immersed into the n-sphere of curvature i/m, 
corresponding to any eigenvalue (#O) of the 
Laplacian, where n + 1 is the dimension of the 

eigenspace corresponding to L (W. Y. Hsiang, 
Takahashi). 

Since for the tsymmetric spaces of +rank 1 
the eigenvalues and the corresponding eigen- 
spaces of the Laplacian are known, the mini- 
mal immersions of such spaces into the unit 

sphere have been determined as well as the 
trigidity of such minimal immersions (N. Wal- 
lath). For example, if the m-sphere of constant 
curvature c is minimally immersed into the 

unit n-sphere, but not contained in any great 
hypersphere, then for each nonnegative integer 
k,c=m/k(k+m-l)andn+1<(2k+m-1). 
[(k+m-2)!/k!(m- l)!]. The immersion is rigid 
if and only if m = 2 or k G 3. Similar results 
have been known for the projective spaces 

over real numbers, complexes, quaternions, or 
Cayley numbers. 

Simons showed that the scalar curvature 

p of a compact minimal submanifold A4 of 
dimension m in the unit (m + p)-sphere is not 
greater than m(m - 1). Furthermore, if p > 

m(m- I)-mp/(2p- l), then either p=m(m- 1) 
or p = m(m - 1) - mp/(2p - 1). In the former 
case, M is totally geodesic and therefore is the 
unit sphere S”. In the latter case, M is either 
a hypersurface of the unit (m + l)-sphere 
which is isometric to the product Sk(&) x 

S’-‘(JG) of spheres of radius Jkim 

and ,,/G, respectively, called the gen- 
eralized Clifford torus or the Veronese surface 
in S4. Here the Clifford torus is the torus 
S’(,/$)x S’(m)cS3cR4, and the Ver- 
onese surface is defined as follows: Let (x, y, z) 

be the natural coordinate system in R3 and 
(u’, u2, n3, u4, u5) that in R5. The mapping 
defined by 

u’ = yzl&, l.2 = zx/&, u3 = xylJ3, 

u4 = (x2 ~ y2)/2& u5 =(x2 + y* - 2z2)/6 

gives an isometric immersion of S*(d) into 
S4. Two points (x, y, z) and (-x, - y, -z) of 
S’(,/?) are mapped into the same point of S4, 
and thus the mapping defines an embedding of 

the real projective plane RP* into S4. This 
embedded real projective plane in S4 is called 
the Veronese surface. 

T. Otsuki proved the following: Let M be a 
complete minimal hypersurface immersed in 
the unit (n + l)-sphere with two principal cur- 
vatures. If their multiplicities are m and n - 
m > 2, then M is congruent to the generalized 

Clifford torus S”‘(a) x Pmm(d-)c 
Sn+l CR”+*. If one of their multiplicities is 1, 
then M is a hypersurface of S”” in R”+* = 
R” x R2 whose orthogonal projection into R* 
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is a curve of which the tsupport function x(t) 

is a solution of the following nonlinear differ- 
ential equation of the second order: 

nx(l -X’)(d2X/dt2)+(dx/dt)2+(1 -xZ)(nxZ- 1) 

=o. 

Furthermore, there are countably many com- 
pact minimal hypersurfaces immersed but not 
embedded in S”+‘. Only S”-’ (Jm) x 
S’(G) is minimally embedded in S”+‘. 

This just corresponds to the trivial solution 
x(t) = l/& of the above equation. 

(3) Minimal submanifolds in Riemannian 
manifolds. In general, it is difficult to deter- 
mine all the complete stable minimal sub- 
manifolds in a given Riemannian manifold. If, 

however, some curvature conditions are given 
to the Riemannian manifold, then a classifica- 
tion has been given: Let N be a complete 3- 
dimensional Riemannian manifold with non- 

negative scalar curvature p, and let M be a 
complete, stable, and orientable minimal sur- 

face in N. 
(a) If M is compact, then either M is confor- 

mally equivalent to the +Riemann sphere S2 
or else it is a totally geodesic flat torus. Fur- 
thermore, if p > 0, then the latter case never 

occurs. 
(b) If M is not compact, then M is confor- 
mally equivalent to the complex plane C or a 

cylinder (D. Fischer Colbrie; R. Schoen). 
As a generalization of the procedure for 

generating periodic minimal surfaces in R3 
with octahedral or tetrahedral symmetry 

(Schwarz, 1867), T. Nagano and B. Smyth gave 
a construction procedure to generate periodic 
minimal surfaces in R” or n-tori with sym-. 
metry corresponding to any +Weyl group of 
rank n. 

G. Minimal Varieties 

Recent progress in the study of Plateau’s prob- 
lem in higher dimensions is closely related to 
the point of view of geometric measure theory 
and tthe calculus of variations. 

(1) Integral currents. Let T be a tcurrent of 
degree k, or simply a k-current, defined on an 
open set U of R”, and let 8T be the boundary 

of T, the exterior derivative of T. For simplic- 
ity, in the following only currents with com- 
pact support are considered. 

The mass M(T) of a k-current T is the dual 
norm M(T)=sup{ T(p)1 M(q)< 1) of the 
comass M(p) on k-forms, which is defined by 

M(v) = sup{ II dx)ll I XE U} with lIp(x)ll= 

suP{(cp(x)>~, A 1.. Au,)(u,,...,u,areortho- 
normal vectors at XE U}. It follows that M(T) 
coincides with k-dimensional volume when T 

is a k-current defined by integration on a k- 
dimensional simplex. We say that T is normal 
if M(T) and M(aT) are finite. Normal cur- 

rents form a +Banach space with norm N(T) = 

M(T)+M(aT). 
A current T is called rectifiable if it can be 

approximated in the mass norm by currents of 
type f,.., where y is a finite polyhedral chain 
with integer coefficients, f: suppy + U is a 
+Lipshitz mapping of the support of y into U, 
and f*y is the current defined by means of 
f,y(cp)=y(f*cp). If both T and c?T are recti- 
liable, T is called an integral current. Inte- 
gral currents give the appropriate notion of 
generalized manifolds with boundary in the 

study of higher-dimensional Plateau problems. 

One of the fundamental properties of in- 
tegral currents is the compactness, stated as 
follows: Given a compact subset Kc U and a 
number c > 0, the set of integral currents T 
such that supp T c K and N(T) < c is sequen- 
tially compact in the tweak topology. Since 
the mass M(T) is +lower semicontinuous in 
the weak topology, it follows that Plateau’s 
problem can always be solved in the space of 
integral currents (- Section C; 334 Plateau’s 
Problem). The question arises: To what extent 

is this a satisfactory solution to the problem? 
For codimension 1, it is known from the work 

of Federer and others that an integral (n - l)- 
current of least mass in R” is nonsingular in 
codimension < 7. In particular, in R”, n < 7, 
every integral (n- l)-current of least mass is an 
analytic manifold. In general codimensions, it 

is known that the set of regular points is dense 
(Reifenberg, Almgren, and others). 

The definition of rectifiable and integral 
currents carries over to those on a Riemann- 
ian manifold M in a natural way. Then the 

space of integral currents I,(M) on M with the 
boundary operator 3, for which a2 = 0, form 
a chain complex. It is then a fundamental 

theorem, due to Federer and Fleming, in 
homological integration theory that there is a 
natural isomorphism H,(I,(M)) E HJM; Z) of 
the homology of the complex of integral cur- 
rents with the integral singular homology 
groups of M. From this it follows that if M is a 
compact Riemannian manifold M, then each 
class 51 E H,(I,(M)) E H,(M; Z) contains an 
integral current of least mass among all in- 

tegral currents in tl. 

For a homology class of codimension 1, it 
has also been proved by Almgren that if M is a 
compact Riemannian manifold of dimension 
~7, then for each C(E H,-,(M;Z) there exists a 
finite collection of mutually disjoint, compact 
oriented minimal hypersurfaces S,, . , S, em- 

bedded in M and integers n,, , n, such that 
the integral current &, njsj represents do. On 
the other hand, it has been recently proved 
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that every compact Riemannian manifold of 
dimension < 6 contains a nonempty closed 
embedded minimal hypersurface (J. T. Pitts). 

(2) Varifolds. The theory of integral currents 
developed by Federer, Fleming, and others 
yields reasonable spaces for purposes of the 
calculus of variations. However, it is not en- 

tirely feasible to use these in the study of the 
actual soap films that occur in physical ex- 
periments. It turns out that we should work 

in a more set-theoretic fashion and give up 
the notion of orientability and the boundary 
operator. A convenient theory for describing 
these physical experiments is the theory of 

varifolds developed by Almgren. 
A k-dimensional varifold on a Riemann- 

ian manifold M is a +Radon measure on the 
bundle G,(M) of unoriented tangent k-planes 
of M. For simplicity, only varifolds with com- 

pact support are considered. These are re- 
garded as continuous linear functionals on the 
space C(G,(M)) of continuous functions on 

G,(M). Thus a k-dimensional submanifold S of 
finite volume embedded in M determines a 
varifold V, by integration: 

v,(f)= 
s 

f(T,S)d*k(X)> fe C(Gk@‘f))> 
s 

where flk denotes the k-dimensional +Haus- 
dorff measure on M. More generally, to 
any rectifiable current there corresponds an 
underlying varifold obtained by neglecting 

orientations. 
Let 1/,(M) denote the space of k-dimensional 

varifolds on M. Given a varifold VE T/,(M), the 

mass M( I’) is defined to be the v-measure of 
the total space, i.e., M(V) = V(1). Let f: M -+ M 
be a Cl-mapping. Then f induces naturally a 

mapping f, of V,(M) into itself. In particular, if 
X is a smooth vector field on M with asso- 

ciated flow f,, then there is a smooth function 
M(t)= M(&V). A varifold I’e V,(M) is then 
called a k-dimensional minimal variety in 
M if the first variation (d/dt) M(t) 1 t=. = 0 for 

all smooth vector fields on M. For example, 
minimal submanifolds, complex analytic sub- 

varieties of Klhler manifolds and integral 
currents of least mass are minimal varieties. 

An appropriate notion of rectifiable and 
integral varifolds is defined, and an analog of 
the compactness theorem can be obtained. As 
a consequence, it was proved by Almgren 
using +Morse theory methods that if M is an n- 
dimensional compact Riemannian manifold, 
then for each p, 1 < p < n - 1, there exists at 

least one minimal variety of dimension p. As 
for the regularity of minimal varieties, it is 
known that if V is a k-dimensional variety, 

then in the support of V there is a relatively 
open dense subset that is a regular minimal 
submanifold of dimension k (W. K. Allard). 
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H. Maximal Hypersurfaces in Minkowski 
Space 

Let L”+’ be a Minkowski space, i.e., L”” = 

{(X1....,Xn,t)l(X1,~“r xJER”, PER} with the 

+Lorentzian metric C& (dx,)’ -(dt)2. Let M 
be a tspacelike hypersurface of L”+’ so that 
the induced metric on M is Riemannian. If the 
mean curvature vector field H of M, defined 

in the same way as in the Riemannian case, 
vanishes identically, then M is called maximal. 
In contrast to the Riemannian case, by the 
variation in the normal direction of H, the 
volume increases, provided H # 0. However, 

the equation describing a maximal hyper- 
surface is similar to that for the Riemannian 
case (- Sections D (l), F (1)). Indeed, let D be 

a domain in R” and f: D-tR a smooth func- 
tion. Then the graph off in L”+’ is a maximal 

hypersurface if and only if f satisfies the fol- 
lowing quasilinear partial differential equation 
of the second order: 

This is telliptic for lVf1 < 1, since M is space- 
like. E. Calabi proposed a problem similar to 
Bernshtein’s in 1968. Contrary to Bernshtein’s 
case, the answer is affirmative for any n. 
Namely, a maximal hypersurface in L”+’ de- 

fined as the graph of a function on the entire 
space R” is a hyperplane in R”“. More gener- 

ally, a maximal hypersurface, which is a closed 
set in L”+‘, is a hyperplane (S. Y. Cheng and 
S. T. Yau). It is also known that any maximal 
hypersurface in L”+l is stable. 
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276 (1.6) 
Model Theory 

A. Language 

Every mathematical theory has an appro- 
priate language. To determine a language for a 
theory means to determine a language for the 
related mathematical system. Such a language 
consists of the following symbols (the symbols 

given here are examples of only one notational 
system). 

(1) Symbols that express logical concepts 
(tlogical symbols): V, 3, 1, A, v , -‘; 

(2) tfree variables: a,, a,, a2, . . . ; 
(3) +bound variables: xc,, x,, x2, . . . ; 
(4) symbols that denote individual objects 

(individual constants): cO, ci, c2, , c,, ; 
(5) tfunction symbols: fO, fi, f2, . ,fh, ; 
(6) ipredicate symbols: PO, P1, P2,. , P,, 
The tcardinalities of the sets of symbols in 

(4), (5) and (6) are arbitrary, except that there 
must be at least one predicate symbol. It is 

assumed that each set of symbols is +well 
ordered. Also, it is understood that to each .h 
in (5) there corresponds a positive integer ii, 
while to each Pj there corresponds a nonnega- 
tive integer (these integers are called the num- 
ber of arguments of 6 and l$ respectively). 

In practice, other kinds of languages are 

also dealt with. One example is a system with 
infinitely long expressions, which permits 

ttransfinite ordinals for the numbers of argu- 
ments of fj and Pj, and which has the extended 
concepts &, Vacp, 3x, . . . 3x, . . . for a<b, 

andVx,Vx,...Vx =... forr</$wherecrandb 
are transtinite ordinals. Another language 

includes variables of higher +type as well as V 
and 3 over those variables. Free and bound 
variables may not be distinguished typograph- 
ically. In that case a variable not bound by V 

or 3 in a tformula is called free. (The notion of 
a formula is defined later.) To simplify this 
discussion, however, we restrict ourselves to 

the thirst-order predicate language with a 
typographic distinction between free and 
bound variables. We also assume that there 
are only a countable number of variables, and 
hence we use natural numbers as subscripts. 

Set L, = (logical symbols}, L, = {a,, n,, 

~2,...},~3={~oI~~,x2,...},~4={~~,~~, 

c,,...},L5={.fo,f*,f*r...},L6={Po,P,, 
P,,...‘I,L=(L,,L,,L,,L,,L,,L,).To 

determine a language L is to specify such a list 
L. Since V, 3, 1, A, v, +, are normally used 

for L,, a,, a,, a2, for L,, and x0, xi, 
x2, . . for L,, we may assume that these are 
fixed, and hence to determine a language is to 

determine (L4, L,, L6). We take (L,, L,, Lx) 
just described and assume an arbitrary but 
fixed L = (L4, L,, L6). First we define the 
notions term of L (or L-term) and formula of 

L (or L-formula). 
Definition of the terms of L (L-terms): (1) 

Each free variable aj is an L-term. (2) Each 

individual constant c, of L is an L-term. (3) If x 
is a function symbol of L, ij is the number of 
arguments of fj, and each of t i, . , ti, is an L- 
term, then fj(t,, , ti,) is also an L-term. (4) 
The L-terms are only those constructed by (1)) 

(3). 
A term that does not contain a free variable 

is called a closed term. 
Definition of the formulas of L (or L- 

formulas): (1) Let 5 be a predicate symbol of L 
and ij be the corresponding natural number. If 
each oft,, , ti, is an L-term, then q(ti, . , ti,) 
is an L-formula. This type of formula is called 
a prime formula (or atomic formula). (2) If A 
and B are L-formulas, then each of l(A), 

(A)r\(B),(A)v(B), and (A)*(B) is an L- 

formula.. (3) Let F be an L-formula and xi be a 
bound variable that does not occur in F. Then 
an expression obtained by putting ( ) around 
F, replacing some occurrences in F of a free 
variable, say aj, by xi, and prefixing Vx, or 3xi 
is an L-formula. (4) The L-formulas are only 
those constructed by (l))(3). 

A formula that has no occurrence of a free 
variable is called a closed formula. The paren- 

theses used in the formation of a formula may 
be omitted if no ambiguity arises thereby. 
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B. Structures 

Let L be a specific language as described in the 
previous section. Then V.N = [M : p; o; r] defined 
by (l))(4) below is called a structure for L (or 

L-structure). 
(1) M is a nonempty set. (M is called the 

universe of (YJI.) 
(2) p is a mapping from L, into M. 
(3) Let L\ = {h 1 the number of arguments 

off,is i}. Then L,=L~UL:U...UL’,U... 

provides a partition of L,. Let gi be the set of 
all mappings from M’ = M x x M (i times) 

into M and cri be a mapping from Li, into si. 
We define D for an arbitrary j” of L, by g(f) 
= cri(f), where i is the number of arguments of 

fi Then D is obviously a mapping from L, into 

()I”=1 8i. 

(4) Decompose L, into Lg U LA.. .U Lb U.. 

as in (3). Let Pi be the set of all subsets of M’ 
and zi be a mapping from Ld into Pi, where PO 
is the set {M, @} (0 is the empty set). Then r 
is defined for every i and for an arbitrary P of 
L; by r(P)=,,(P). 

If we denote p(c) by C, a(j) by J and r(P) by 
F, then we may understand that p is repre- 
sented by TO, c,, , o is represented by f,, 
yl, , and z is represented by P,,, pi,. . . 
Therefore 9X is normally expressed as 

YJl=[M:c,,c,, ;so,fi,...;Po,p~,...l. 

C. Satisfiability 

We fix not only a language L but also a struc- 
ture %II for L. Then the property that an L- 

formula is satisfiable is defined by the follow- 
ing procedure: 

Let m, n, . stand for isequences of the 

elementsofM,say(m,,m ,,.., ),(n,,n, ,...) ,..., 
called $3J1-sequences. We write m L n to indi- 
cate that each entry of m except the ith one is 

equal to the corresponding entry of n. Using 
these concepts, the value of an L-term at an 
%G-sequence m, denoted by t[m], is defined as 
follows: 

(1) If t is a free variable aj, then t [m] = mj. 
(2) If t is an individual constant cj, then 

t[m] =i;J. 
(3) If t is of the form J;.(t,, , ti), then t[m] = 

Sj(t, Cm], . . , ti[m]). If t is an L-term, then 

evidently t[m] is an element of M. 
Based on this definition of t[m], the relation 

A is satisfiable by m in 9X, denoted by !JJl, m k 
A, is defined for an arbitrary L-formula A 
and an arbitrary %n-sequence m as follows: 

(l)~,m~~(t,,...,ti)o(tiCml,...,tiCml> 
EPj. 

(2) %II, tttk lBo!J.R, nrk5 is false. 

(5) mm, m k 5+ C c> YX, m k 5 implies ‘Y.R, 

tn+C. 
(6) 93, m ~VxjF(xj)oYJl, n b F(q) for an 

arbitrary n that satisfies m I n, where a, has 
the least index among the free variables that 
do not occur in F(xj). 

(7) (9X, m k &,F(x,)othere exists an n such 
that n L m and $%)I, tt k F(aJ, where ui satisfies 
the same condition as in (6). 

Following are some consequences of this 
definition. 

(1) For an arbitrary L-formula A and an 
arbitrary m-sequence m, exactly one of W, 
nt k A and VJl, m b 1 A holds. 

(2) Let uj,, , aji include all free variables 
that occur in A, and let m and n be !Vl- 
sequences for which mj, = nj,, . , mji = nji. 
Then Y.R, m k A and 9Jl, n k A are equivalent. 

So we may write 9Jl k Ak;‘:,‘:.‘::i] instead 

of %R, m k A, for any formula A whose free 

variables are among aj,, . , uji, and any YJl- 
sequence m. 

(3) If A is a closed formula, then for an 

arbitrary pair of sequences m and n, !JJl, m k A 
and YX, n b A are equivalent. Therefore, for a 
closed formula A, we may express the state- 
ment “for some (or, equivalently, for all) mm- 
sequence m, YJl, m k A holds” by YJl k A. 

(4) Let ai be an arbitrary variable that does 
not occur in VxF(x) or 3xF(x). Then YJI, 

m k VxF(x) is equivalent to YJl, n k F(ai) for 
an arbitrary n such that n A m. Likewise, YX, 
m t= 3xF(x) is equivalent to the statement 
that there is an n such that n Am and YJl, 

n k N4. 

D. Models 

Here again we fix a language L. Let A be a 
closed L-formula and W an L-structure. If 
(9.R k A, then YJl is called a model of A. 
Furthermore,ifT={A,,A,,....}isanarbi- 
trary set of closed formulas and W k Ai for all 

Ai in r, then the structure 9.X is called a model 
of r. 

(1) Consistency. Consider a logical system 
whose language is L. If there is a model of the 
set of all provable closed formulas of the sys- 

tem, then the system is tconsistent. In partic- 
ular, the +tirst-ordered predicate calculus is 
consistent. 

(2) Completeness. A logical system is said to 
be complete if every closed formula that is 
satisfied in every structure is provable in the 
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system. In particular, the first-order predicate 
calculus is complete. 

K. Godel proved (2). Later L. Henkin gave 
an alternative proof whose essential idea con- 

tributed to proving the following proposi- 
tion: If a set F of closed L-formulas is con- 
sistent, then there is a model of F. Henkin 
also introduced a (nonstandard) second-order 
semantics, relative to which the tsecond- 

order predicate calculus is complete. This 
can be shown by extending Henkin’s tech- 
nique (for the first order) to the second-order 
language. 

(3) Here we extend the language slightly by 
adding the second-order free predicate vari- 
ables cc;, cc;, . . , al, (n = 1,2, ) and the 

second-order bound predicate variables cp;, 
~0;, , cpr, . (n = 1,2, . . .), where n indicates 

the number of arguments’ of a variable. Other- 
wise the definition of the language is the same 
as for the case of the first-order predicate 

calculus. For simplicity, however, we assume 
that there are no individual constants, function 
symbols, or predicate symbols. 

The structure is defined as follows: Put WI = 
[M: S,, S,, . . , S,, . . 1, where M is a nonempty 

set and S, is a set of subsets of M x x M (n 
times). An 9X-sequence m is defined as before, 

and 5, denotes (s;, s;, . . . , SF, . ), where each s; 
is a member of S,. The concept of satisfiability 
is defined as follows: 

mm, (m, 5,, . . . / 5,, . . . I+$(%,, ...,xi n lo 
(mi,, . . . ,m,JEsjn. 

!JJl, (m,e,, . . . . 5,, . ..)/=V(pLA(&!)ofor 
an arbitrary 5; for which 5; L 5,, YJI, (m, 5i, . , 
eb, ) k A(aj”), where aj’ has the smallest index 
among the free predicate variables that do not 
occur in A(&). 

~Wh51>...> ~~,...)/=3&‘.4((~90there 
exists an 5; such that 5: i 5, and YJI, 

h 5 i, . . . ,5, , . . ) k A(“;), where a; satisfies 
the same condition as in the previous clause. 

Satisftability for other cases is defined as for 

first-order predicate language. A structure YJI 
is called normal if all axioms of the second- 
order predicate calculus are true in )137. 

Completeness of the second-order predicate 
calculus: Every closed formula that is satisti- 

able in all normal structures is provable in the 
second-order predicate calculus. 

(4) Let the cardinality of L, be r, and I be 
an arbitrary set of closed L-formulas. If I 
has a model, then I has a model of cardinal- 
ity max (z, K,). This follows from Henkin’s 
method. Historically, however, it was first 
proved by Th. Skolem and L. Lijwenheim for 

a special case, and was later generalized by A. 
I. Mal’tsev and A. Robinson. 

(5) The following results are all due to A. 
Tarski and R. L. Vaught. 

Definition 1. Two L-structures !IR and 9I are 
said to be elementarily (arithmetically) equiva- 
lent if for an arbitrary closed L-formula A, 
%R~/4-=%~‘4. 

Definition 2. Let 

and 

%=[N:r,,r, ,... ;h,,h, ,... ;R,, R ,,... ] 

be two structures. Y.R is an elementary exten- 
sion of ‘9 if the following two conditions are 
satisfied: (i) M xN; qj=rj (j=O, 1, . ..). the 
restriction of gj to N is identical to hj (j= 
0, 1, . . . ); the restriction of Qj to N is identi- 
cal to Rj (j = 0, 1, . . . ). (If this condition holds, 
then YJI is said to be an extension of YI.) (ii) For 
an arbitrary L-formula A and an arbitrary fl- 
sequence n, if %, n k A then YJI, n k A. 

Theorem 1. Let %II be an extension of Yl. A 

necessary and sufficient condition for !IJI to be 
an elementary extension of !R is that for an 

arbitrary L-formula of the form 3xF(x) and 
an arbitrary %-sequence n, if %I& n k 3xF(x), 

then there is some element n of N such that 
for the YJ-sequence m for which m L n and 
mi= n, YJI, m t= F(ai), where a, is an arbitrary 
free variable that does not occur in F(x). 

Theorem 2. Here we place a condition on L 
that each set of symbols be at most countable 
and arranged in the w-type (- 312 Ordinal 

Numbers). Let the cardinality of the universe 
M of %lI be an infinite cardinal a, M’ be a 
subset of M of cardinality c, and b be an in- 
finite cardinal that satisfies c <b <a. Then 
there exists an L-structure 9I whose universe 
N has cardinality b and such that M’c N and 
YJI is an elementary extension of %. 

Theorem 3. Suppose that L satisfies the same 

condition as in Theorem 2. Let the cardinality 
of the universe M of YJI be a (a is an infinite 
cardinal) and b be a cardinal for which a < 6. 

Then there exists an L-structure 9I that is a 
proper elementary extension of XII and whose 
universe has cardinality 6. 

E. Ultraproducts 

Assume that for a set of L-structures C and a 
set of indices I, there is a mapping 0 from I 
onto Z. If a is a member of I, YJI is a member 

of Z, and 0(a) = !IR, then 9JI may be denoted 
by YJI’. It should be noted that there may be 

more than one 3 corresponding to the same 
~ structure. If D is a tmaximal filter of I and %II” 
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is expressed as 1 products. Therefore, we have the following 

‘w=[MZ:C” )... :f” ,...: P )... 1, 

then n,,, Ma is defined by 

theorem. 

g M” = { cp 1 cp is a mapping from 

I into U M”, where cp(a)~M”}. 
aa1 

For any two elements cp and $ of nnp, M”, 
cp g $ is defined by 

cP~$-{alcp(a)=$(a)J~D. 

Then cp E $ is an equivalence relation between 

the elements of &, M”. Furthermore, the set 
norP, M” partitioned by z is expressed by 

&, Ma/D, and each element m of naE, M”/D 
is expressed by m = [q], where cp is a repre- 
senting element of m. 

Next we define an operator that produces a 
new structure from C. Put M = noEr Ma/D. 

For an individual constant c of L, let c= [q], 
where q(r) =F for every a. For an n-ary 

function f of L and arbitrary elements m, = 
[ql], , m,,= [p.] of M, define ,f(m,, , 

m,,) = [$I, where $(a) =P(rp, (4, . , a,(a)) for 
every a. For an n-ary predicate P of L, define 

(m,,...,m,)EP by 

(n1 l,...,m,)eP 

o{aI(cpl(a),...,cp,(a))EP~}ED. 

According to these definitions, put 

‘TJi=[M:E, . . . . f; . . . . p, . ..I. 

and denote it by n,,,!JJP/D, called the ultra- 
product of {YJV}dls, (with respect to D). YJI is an 
L-structure. 

Fundamental Theorem of Ultraproducts. Let 

‘33 = &p,!IJtma/D be the ultraproduct of 

cwEI> m=(m,,m,, . . . ) be an !IR-sequence, 
‘pi be a representing element of mi, and A 
be an arbitrary formula. Then 93, m k A o 

{a I sma, (cpl(4, (~~(4, .I k A) 6 D. 
By using this fundamental theorem we have 

the following result: Suppose that I is a set of 
closed formulas in L such that every finite 
subset of I has a model. Let 1 be the set of all 

the finite subsets of I. For each a E I and each 
A E I, let Y.JY be a model of a and A^ the set of 

all the finite sets in I which contain A as a 
member. Let F = {al AE IT). Since F has the 
finite intersection property, there is a maximal 
filter D such that D 1 F. Let %JJ be the ultra- 

product norE, W/D. Since A^ is a subset of the 
set {a 1 XV + A j and A^ belongs to D, the set 
{a 1 W + A} belongs to D, for each AE r. 

Hence we have that M is a model of I, by 
the foregoing fundamental theorem of ultra- 

Compactness Theorem. A set I of closed for- 

mulas has a model if and only if every finite 
subset of it has a model. 

In the case where all the structures ‘W 
coincide with the single structure 92, the ultra- 
product of {Y.R”}cle, (with respect to D) may be 
written %‘/D and called the ultrapower of 9J 
(with respect to D). 

Let 

‘9X=[M; qo, q,,...; go>gI,...;Qo,Q,>...l 

and 

%=[N; r,, r,,...; ho, h,,...; Ro, R,, . ..I 

be two structures. YJI and ‘3 are said to be 
isomorphic if there is a bijection f from M to 
N such that the following three conditions 
hold: (i) f(qO)=r,, f(q,)=r,, . . . . (ii) The se- 
quences go, gi, and ho, hi, . . . are of the 

Same type and .f(g;(al, . , q,)) = hj(f(al)a . , 
f(a,)) holds for every n-tuple a,, . , a, in M. 
(iii) The sequences Qo, Qi, . and R,, R,, 

are of the same type and Rj = { (f(a,), , 

~(u,))I(u,,...,u”)~Q~}. 
Let j be the function from N to N ‘/D de- 

fined by j(a)= [qO] for each UE N, where qa is 

the constant function from I to N such that 
cp,(a) = a for each a E I. Let Im be the substruc- 

ture of %‘/D whose universe is the range of j. 
Then j is an isomorphism of ‘J1 to 9.X In the 
following we identify a and j(u) for each a~ N. 
Then % is an elementary substructure of %‘/D 
by the fundamental theorem of ultraproducts. 

If %II and !R are isomorphic, then 9JI and ‘3 
are elementarily equivalent. By using this fact 

and the fundamental theorem of ultraproducts, 
we have the following result. Let ‘9Jt and % be 
two structures. If there is a nonempty set I and 

a maximal filter D on I such that 9Xm’/D and 
9l’/D are isomorphic, then 93 and ‘3 are 

elementarily equivalent. H. J. Keisler proved 
the converse of this proposition by using the 

G.C.H. (generalized continuum hypothesis), 
and later S. Shelah proved it without the 
G.C.H. Keisler-Shelah isomorphism theorem: 
Let YJI and 9t be two structures. Then 9Jt and 
% are elementarily equivalent if and only if 

there is a nonempty set I and a maximal filter 

D on I such that 9X’/D and ‘%‘/D are 
isomorphic. 

The ultraproduct operation has various 
applications in number theory, algebraic geo- 

metry, and analysis. Here we give an example 
due to J. Ax and S. Kochen. Let P be the set of 

prime numbers. Let Q, and Z,( (t)) be the field 

of p-adic numbers and the field of formal 
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power series over 2, = {0, 1, , p - 1) for each 
p in P, respectively. Ax-Kochen isomorphism 
theorem: Suppose that D is a nonprincipal 

maximal filter on P. Then n,,,Q,/o and 
n,,,Z,((t))/D are isomorphic. 

As an immediate consequence of this theo- 
rem, we have the following partial solution of 
Artin’s conjecture on Diophantine equations. 

Theorem: For each positive integer d, there 
exists a finite set Y of primes such that every 

homogeneous polynomial f(t,, , t,) of degree 
d over Q,, with n > d’, has a nontrivial zero 

in Q, for every p 6 Y (- 118 Diophantine 
Equations). 

We give another example in nonstandard 
analysis. A. Robinson developed the general 
theory of nonstandard analysis in [lo]. Here 

we explain a theorem due to A. R. Bernstein. 
Let X be a nonempty set and U(X) be the 
smallest transitive set (i.e., a E b and b E U(X) 

imply a~ U(X)) which has X as a member and 
is closed under the following operations: pair- 

ing, union, power set, and subset operation 
(i.e., a~ U(X) and b c a imply bE U(X)). Let L 
be the first-order predicate logic with equality 
whose set of nonlogical constants consists of a 
binary predicate symbol E and individual 
constant symbols c, for a E U(X) (- 411 Sym- 
bolic Logic F). Then the first-order structure 

%= [U(X); a(aE U(X)); E] is an L-structure, 
where E is the E relation on the set U(X). Let 
YJI=[U(X)‘/D:U(UEU(X)); E’/D] be the 

ultrapower %‘/D of 6% with respect to a non- 
principal ultrafilter D on a set 1. For each 

UE U(X), let a* be the set of all elements [p] in 
U(X)‘/D such that {i~Zl~(i)~a}~D. Then a 
is a proper subset of a* if a is infinite. Since !R 
and !JIl are elementarily equivalent, these two 
sets a and a* have common first-order prop- 

erties in the following sense: for each formula 
@(uo) in L, 

(VbEu)(% + @[~])+/b~a*)(!M + @[PI). 

From this it follows that if r is a relation on a 
set a in a, then Y* is a relation on the set a*; 
and if f is a mapping from a to b in %, then S* 
is a mapping from a* to b*. Hence a* is a 
mathematical object which greatly resembles 
a. By using this type of resemblance between a 

and a* we have the following result. 
Let H be a Hilbert space over the complex 

number field C such that dim(H) = ~0 and let T 
be a bounded linear operator on H. Let X = 
H U C and consider the first-order structure 

$331 as above. Since R (the set of all real num- 
bers) and N (the set of all natural numbers) are 
infinite sets which belong to U(X), R* and N* 
have elements which do not belong to R and 

N, respectively. Such elements are called non- 
standard real numbers and nonstandard natural 
numbers, respectively. By the fundamental 

theorem of ultraproducts we can conclude that 
there are many nonstandard real numbers a 
such that 0 < *c( < *a in R* for any UE R. Such 

a nonstandard real number c( is called an 
infinitesimal real number. Since the norm 
operator 11 11 is a mapping from H to R, 

I/ II* is a mapping from H* to R*. If 11 x II* 
(x~ H*) is infinitesimal, then x is said to be 
infinitesimal in H*. Let S be the set of all linear 
subspaces of H. For a linear subspace K of H* 

that is contained in S* let K” be the set of 
elements x E H such that x-x0 is infinitesimal 

for some x0 in K. Then K” is a closed linear 
subspace of H. Let e = {eiJisN be an ortho- 
normal basis of the Hilbert space H; e can be 
considered as a mapping from N to H, and 
hence e* = {ej}jENL is a mapping from N* to 

H*. For each jeN*, let Hi be the linear sub- 
space of H* spanned by {ek 1 k <j}. For a given 
bounded linear operator T on H, T* is a 
linear operator on H*. We define 7;= CT* I$ 
where Pj is the projection from H* to Hj. Since 

dim(Hj)=j is a (nonstandard) natural number, 
there exists a tower JojcJljc . cJjj= Hj of 
closed, Tj-invariant linear subspaces of Hj such 
that dim(Jkj) = k(k <j). Then Jk/’ is a closed, 

T-invariant linear subspace of H. If there is a 
polynomial p(x) such that p(T) is a compact 
operator, then we get a nonstandard natural 

number j such that J,” is a proper subspace 
of H for some k <j. This gives the follow- 
ing result, which is an affirmative solution of 

a problem of K. Smith and P. R. Halmos. 
Theorem (Bernstein 141): Let T be a bounded 

linear operator on an infinite-dimensional 
Hilbert space H over the complex numbers 
and let p(x) # 0 be a polynomial with complex 
coefficients such that p(T) is compact. Then T 
leaves invariant at least one closed linear 
subspace of H other than H or {O}. 

F. Categoricity in Powers 

Let r be a set of closed formulas in a first- 
order language L which has a designated 
binary predicate symbol P,,. In the following, 
we assume that the interpretation p, of P,, by 
!JJl is the equality relation on the universe of 
9Jl for every L-structure W. r is said to 
be categorical if all the models of I- are iso- 

morphic. By Theorem 3 in Section D, any r 
having a model of infinite cardinality is not 
categorical. Hence, there exists no interesting 
r which is categorical. Therefore, we consider 

the weaker notion of categoricity in powers. 
Let K be an infinite cardinal and n(r, K) be the 
number of nonisomorphic models of r of 

cardinality K. Then r is said to be categorical 
in IC if n(T, K) = 1, i.e., if all the models of I- of 

cardinality K are isomorphic. There exist many 
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interesting I’s which are categorical in IC for 
some K. For example, the set of axioms of 
algebraically closed fields of characteristic 0 is 
categorical in EC,, and the set of axioms of 
dense linear orderings without endpoints is 

categorical in K,. With respect to this notion, 
J. LOS conjectured that if I is categorical in IC 
for some IC > L (the cardinality of L), then I is = 
categorical in IC for all ti > L. This conjecture 
was solved affirmatively by M. Morley in the 
case L =K,, and later by S. Shelah in the 
general case. Theorem (1): Let I be a set of 
closed formulas in L. Then I is categorical in 
K for some K > L if and only if I is categorical 
in K for all li > L. We also have the following 
interesting theorem, due to J. T. Baldwin and 

A. H. Lachlan. Theorem (2): Let I be a set of 
closed formulas in L such that L = K,. If I is 

categorical in K,, then n(I, EC,) = 1 or EC,. 
As for n(I, K) there are two famous conjec- 

tures due to R. Vaught and others. A set I of 

closed formulas in L is called complete in L if 
it has a model and, for any closed formula A 
in L, either AEI or iAEI. 

Conjecture 1. There is no complete set I of 
closed formulas in L such that K, < n(I, EC,) < 
2”o. 

Conjecture 2. There is no finite set I of closed 
formulas in L such that n(I, K,) = K, and 

n(r,K,)= 1. 

G. Omitting Type Theorem 

By a,-formulas (or u-formulas), we mean for- 
mulas which have no free variables except a,. 
Suppose that YJl is an L-structure and Z is a 
set of u-formulas in L. Then, 9X realizes Z if 

there is an element m of the universe of (9Jl such 
that (9X k AC”,] for all A in C, and YJI omits C 
if (9.X does not realize C. For example, if L is a 
first-order language such that L, = {co, c, 1, 

-k={h, .fi}, L,={f’,,P,j, whereh,f,, PO, 
Pi are all binary, and % is the L-structure 
[%;O,l;+,x;=,<],where%isthesetof 
natural numbers, and C = {P, (x, a) ) n = 0, 1, 

2 ,... }, whereo=c,, l=f,(&c,) ,..., n+l = 
f@, c,), , then clearly 5% omits Z. Also, if cY.JI 
is an L-structure, m is an element of the uni- 
verse of 5331, and Z, = {A 1 A is an u-formula 

such that YJl+ Arm] ), then clearly YJI realizes 
Z,, where C, is called the type of m in 9X. 
Suppose that I is a set of closed formulas in L. 

Then, by the completeness theorem of L, we 
can easily see that I has a model realizing Z if 
and only if I”Z is consistent. On the other 

hand, it is rather difficult to obtain a necessary 

and sufficient condition for I to have a model 
omitting Z. The following is a sufficient con- 

dition: I is said to locally omit C if there is no 
a-formula A such that P(A) is consistent 
and, for any formula B in Z, I” { A, 1 B} is 

not consistent. 

Theorem. Suppose that I is a consistent set of 
closed formulas in a countable language L, 

and C is a set of a,-formulas in L. If I locally 
omits C, then I has a countable model which 

omits Z. Also, if I has a model of power 
greater than & omitting Z for each 5 < wi, 
then I has a model omitting C in each infinite 
power, where 7, is defined by 1, = K,, I,+, = 
2”, 1, = SUP~<~& if u is a limit ordinal. 
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A. General Remarks 

In this article, we consider mainly modules 

with operator domain (Section C), in partic- 

ular modules over a tring. Modules over a 
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field are linear spaces (- 256 Linear Spaces). 
Modules over a commutative ring are impor- 
tant in algebraic geometry (- 16 Algebraic 

Varieties, 67 Commutative Rings, 284 Noe- 
therian Rings). The theory of modules over a 
igroup ring can be identified with the theory 
of linear representations of a group (- 362 
Representations). Modules without operator 
domain may be regarded as modules over the 

ring Z of rational integers, and the theory of 
finitely generated Abelian groups can be gen- 

eralized to the theory of modules over a tprin- 
cipal ideal domain (- 52 Categories and 
Functors, 200 Homological Algebra). 

B. Modules 

A module (without operator domain) is a tcom- 
mutative group M whose law of composition 
is written additively: u + b = b + a (a, be M); the 
tidentity element is denoted by 0, and the 

inverse element of a by --a. Every subgroup H 
of M is a normal subgroup. For any a EM, the 
left and right cosets of H containing the ele- 

ment a are identical: H + a = u + H (- 190 
Groups A). 

In the set NM of all mappings of a set M to 
a module N, we define an addition by the sums 
of values: (f+g)(x)=f(x)+g(x). Then NM 

forms a module. The set Hom(A4, N) of all 
homomorphisms of a module M to a module 

N forms a subgroup of the module NM, called 
the module of homomorphisms of A4 to N. The 
composite of homomorphisms is a homomor- 
phism. Hence the set Hom(M, M) = B(M) of all 
endomorphisms of M forms a +ring with re- 

spect to the addition and the multiplication 
defined by composition; this is called the endo- 

morphism ring of M. The tunity element of 

B(M) is the identity mapping of M, and the 
tinvertible elements of d(M) are the automor- 

phisms of M. 

Let {xnlAsA be a family of elements in a 

module M. The sum Crenxn is well defined if 
xI = 0 (1” EA) except for a finite number of 1. 
For any family {N,},,, of subsets of M, Clsr\ 
NA denotes the set of all elements of the form 

c A^e,, xi, (xi E NJ, where xi = 0 except for a 

finite number of i. If all the NA are subgroups 
ofA4, then N=C le,, NA is also a subgroup, 

called the sum of {N,},,,. If every element of 
N can be written uniquely in the form &,,x, 
(xig N,), N is called the direct sum of {NA}IE,,. 
When the NA are subgroups, this is equivalent 
to the condition that NA fl Ci ilrcA N, = {0} 
(AEA). 

C. Modules with Operator Domain 

Suppose that we are given a set A and a 
module M. If with each pair of elements UE A 

and XE M there is associated a unique element 

ax EM satisfying the condition (1) u(x + y) = 
ax+uy(u~A;x,y~M),wesaythatAisan 
operator domain of M and M is a module with 
operator domain A (module over A or A- 
module) (- 190 Groups E). The mapping 

A x M-M given by (u,x)+ux is called the 
roperation of A on M. Any aE A induces an 
endomorphism CI~:X+UX of M as a module 
(not as an A-module). To give the structure of 

an A-module to a module M amounts to 
giving a mapping A+&(M) (u+uM). 

If N is a subgroup of an A-module M such 
that axE N for any UEA and XE N, then N 
forms an A-module, called an A-submodule (or 

allowed submodule) of M. If (N,},,, is a family 
of A-submodules of an A-module M, then the 
intersection n2,!EA N, and the sum Clt,, NA are 
both A-submodules of M. 

Let R be an +equivalence relation in an A- 
module M such that if UE A and xRy, then 
axRay. Then R is said to be compatible with 
the operation of A. In this case, an operation 
of A is induced on the quotient set MJR. 
Moreover, if R is compatible with the addition, 

namely, xRx’ and yRy’ imply (x+ y)R(x’+y’), 
then M/R forms an A-module, called a factor 

A-module of M. The equivalence class N con- 
taining 0 is an A-submodule of M, and M/R 
coincides with M/N. 

D. Modules over a Group or a Ring 

If a (multiplicative) group structure is given to 
the operator domain A of a module M, we 
always assume (in addition to condition (1) 
in Section C) that the following two condi- 

tions are satisfied: (2) (ub)x = u(bx); (3) lx = x 
(a,bEA,xeM). 

If a ring structure is given to A, we always 
assume (besides conditions (1) and (2)) that the 
following condition holds: (4) (a + b)x = ax + bx 

(a, bE A, XE M). This means that the mapping 
Ad(M) (u-‘uJ is a king homomorphism. If 
the ring A has unity element 1, and l,,, = iden- 
tity mapping (namely, condition (3) holds), 
then the A-module M is called unitary. We 
consider only unitary A-modules. Any module 

M can be regarded as a Z-module or as an 
B(M)-module. 

When M is a module over a ring A, an 
element of A is called a scalar, A itself is called 
the ring of scalars (basic ring or ground ring), 
and the operation A x M--f M is called the 
scalar multiplication. The elements ax (a~ A) 
are called scalar multiples of x, and the totality 

of these elements is denoted by Ax. Let {x~}~~~ 

be a family of elements in M. An element of 
the form C i.EA a x A 2, where the a, are elements 

of A and equal to 0 except for a finite number 
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of I., is called a linear combination of (x~}~~~. 

The set N of linear combinations of (xl}lsiz is 
the smallest A-submodule of M containing all 
the xi @El\) and is equal to the sum CIE,,AxA. 
The A-module N is said to be generated by 

i%>r.*9 and ixJlpA is called a system of gen- 

erators of N. A module having a finite number 
of generators is said to be finitely generated (of 

finite type or simply finite). The module Ax 
generated by a single element x is called mono- 
mial. If A is a Qield (which may be noncom- 

mutative), an A-module is a linear space over 
A (- 256 Linear Spaces). 

Let a be an element of an A-module M. If 

there exists a nonzero divisor /I of A such that 
da = 0, then a is called a torsion element of M. 

We say M is a torsion A-module if every ele- 
ment of M is a torsion element, and M is 

torsion free if M has no torsion element other 
than 0. An element a of M is called divisible if 
for any nonzero divisor i 6 A there exists an 
element b E M such that a = lb. M is called a 
divisible A-module if every element of M is 
divisible. 

Strictly speaking, the A-modules we have 
considered so far are called left A-modules. If 

we define the operation of A on M by xa 
(a E A, x E M) instead of ax and modify con- 
ditions (l)-(4) appropriately (in particular, 

condition (2) becomes x(ab)=(xa)b), then M is 
called a right A-module. If A0 is a group or 
ring anti-isomorphic to A, then a left A- 

module can be naturally identified with a right 
A”-module. If A is a commutative group or 
ring, we can disregard the distinction between 
left and right A-modules. 

Let A and B be groups or rings. Sometimes 
we consider an A-module structure and a B- 
module structure simultaneously on the same 
module M. If the operations of A and B com- 
mute with each other, namely, a(bx)= b(ax) 
(ae A, bell, xE M), it is convenient to put one 
of the operations to the right. If M has a left 
A-module structure and a right B-module 

structure, satisfying condition (5) (ax)b=a(xb), 
then M is called an A-B-bimodule. If G is a 
group and K is a commutative ring, the G-K- 
bimodule structure is equivalent to the left 

K [G]-module structure, where K [Gj is the 
tgroup ring. 

E. Operator Homomorphisms 

A homomorphism f: M + N of A-modules M 
and N such that I = us(x) (a E A, x E M) is 

called an A-homomorphism (operator homo- 
morphism or allowed homomorphism). If A is a 

ring, f is also called an A-linear mapping. 

Regarding A as an A-module, an A-linear 
mapping M --* A is called a linear form on M. 
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The composite of A-homomorphisms is an A- 
homomorphism. 

Let f: M-tL be an A-homomorphism of A- 
modules. The A-submodule Imf=f(M) of L is 
called the image of 5 and the A-submodule 
Kerf={xIxEM,f(x)=O} of M is called the 
kernel of $ Coimf= M/Kerf is called the co- 
image of 5 and Cokerf= LjImf the cokernel 
of 1: The binary relation xRy on M defined by 

f(x) =f(y) (x, YE M) coincides with the equiva- 
lence relation defined by x - y E N = Kerf 

(x, y E M), and the mapping f induces an A- 
isomorphism f: M/N +f(M). 

A sequence of A-homomorphisms of A- 

modules M, (n E Z) 

. ..-+A4 _ tiM “I n 5;M ?I+, +... 

is called an exact sequence if Imf,-, =Kerf, 
for all n. The A-module {0) is denoted by 0. 

Exactness of O-, N L M or M 5 L+O means 
that the mapping f: N + M is injective or the 
mapping g : M -tL is surjective, respectively. In 
an tinductive (tprojective) system { M,,f,,) of 

A-modules, where every fA,: M,+ M, i < p 
(A> ,u) is an A-homomorphism, the limit M = 

1% M,! (l@ M,) is also an A-module. If O-, 
L,+M,pN,+O is exact for every E, and 

is a tcommutative diagram, then 0-Q LA-t 
IiT M,+l$ N,+O is also exact. For the 

projective limit, however, we can only state the 
exactness of O-+limL,+lim M,+lim N,. 

The set of all zhomo&rphismyof an A- 
module M to an A-module N, denoted by 

Hom,(M, N), is a subgroup of the module 
Hom(M, N), and is called the module of A- 
homomorphisms. The set Hom,(M, M) = &FA(M) 
of all A-endomorphisms of an A-module M 
forms a tsubring of the ring g(M) and coin- 
cides with the set of all elements commuting 
with any aM (a~ A). We denote by GL(M) the 
group of all tinvertible elements in C&(M). If 
A is a commutative ring, Hom,( M, N) can be 
regarded as an A-module by defining (as)(x) = 

af(x), namely, af= uN o$ In particular, G,(M) 
is an ‘associative algebra over A. If M is an 
A-B-bimodule, Hom,(M, N) forms a left B- 
module by (bf)(x) =f(xb). If N is an A-B- 
bimodule, Hom,(M, N) forms a right B- 
module by (fb)(x)=f(x)b. 

F. Direct Products and Direct Sums 

In the Cartesian product P = &,, M, of a 

family (MJ,,, of A-modules, we define ad- 

dition and an A-operation as follows: {x~} + 
{yl} = {xn+ yl}, a{~>,} = {axI}. Then P forms 
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an A-module. We call nrch M, the direct 
product of modules {M,},,,. The canonical 
projection assigning x2 to {x1} is denoted by 
pn:P*M,. Suppose that an A-module M and 
A-homomorphisms fA : M + M,(,? E A) are 
given. Then there exists a unique A-homo- 

morphismf: M+P such that plof=fA (LEA); 
f is given by f(x) = { fn(x)}. 

In the direct product n,,, M,, the set S of 
all elements whose components xi are equal to 
0 except for a finite number of 1 is called the 

direct sum of modules {M,},,, and is denoted 

by Cm M, (or LI ItA M, or OnEA M,). The 
canonical injection assigning { . ,O, xI, 0, . } 
ES to X~E M, is denoted by j,: M,+S. If an 
A-module M and A-homomorphisms f?,: ML+ 
M are given, then there exists a unique A- 
homomorphism f: S- M such that ,foj, =fA 
(k~h), defined by f({~~})=C,,,f,(x,). When 
M is an A-module and {Ni}IEA is a family of 

A-submodules of M, the A-homomorphism 
f:&,,,N,+M defined byf’({x,})=C,,,x, is 
an A-isomorphism if and only if M is the 

direct sum of {N,}. 
If M,= M for all AC/\, n,,, M, and 

XI,,, M, are denoted by MA and MC”), respec- 
tively. MA can be regarded as the set of all 

mappings of A to M. The direct product M, 
x...xM,anddirectsumM,@...@M,ofa 

finite number of A-modules M,, , M,, can 
be identified with each other and, if Mi = M 
(1 < i < n), we simply denote it by M". 

G. Free Modules 

Let A be a ring. A family {x~}~~~ of elements 
in an A-module M is called linearly indepen- 
dent if C iti\ ulxl = 0 (a, E A) implies a, = 0 for 
all SEA. This is equivalent to saying that the 
mapping A(“)+ M that assigns &,, a, xi. E M 
to {a,} is injective. A linearly independent 
family {x2} lp,, generating M is called a basis of 

M. A family {x~}~~,, is a basis if and only if 

every element of M can be written uniquely in 
the form C LEA alxl (a2 E 4 

An A-module that has a basis is called a free 
module over A. If A is a field (which may be 
noncommutative), every A-module is a free 
module (- 256 Linear Spaces). The tcardi- 
nality of a basis of a free module M over A 
depends only on M if A is a field (which may 
be noncommutative) or a commutative ring; 
this number is called the rank (or dimension) of 

M. Any submodule of a free module over a 
iprincipal ideal domain is a free module. 

H. Simple Modules and Semisimple Modules 

An A-module M is called simple if M # 0 and 

M has no A-submodules except M and 0. 

If M and N are simple A-modules, any A- 
homomorphism of M to N is an isomor- 
phism or the zero homomorphism (i.e., one 
which sends every element of M to 0) (Schur’s 
lemma). If an A-module M is the sum of a 

family {MAll.,A of simple submodules, M is the 
direct sum of a suitable subfamily {M,.},.,,. 
(A’c A). In this case, M is called semisimple (or 
completely reducible). 

If an A-module M can be decomposed into 
the direct sum of A-submodules N and N’, 

then N’ is called a complementary submodule 
of N. An A-module M is semisimple if and 
only if every A-submodule of M has a comple- 
mentary submodule. Let A be a ring. Then the 

A-module A is semisimple if and only if every 
A-module is semisimple. In this case A is 
called a ysemisimple ring (- 368 Rings G). 
Every simple module over a semisimple ring A 
is A-isomorphic to a tminimal left ideal of A. 

I. Chain Conditions 

The set of all A-submodules of an A-module 
M forms an tordered set under the inclusion 
relation. An A-module is called a Noetherian 

module if the ordered set satisfies the tmaximal 
condition and an Artinian module if it satisfies 
the +minimal condition (- 311 Ordering C). 

Let N be an A-submodule of an A-module 
M. Then M is Noetherian (Artinian) if and 

only if N and M/N are both Noetherian (Ar- 
tinian). A ring A is called a +left Noetherian 
ring (+left Artinian ring) if A is Noetherian 

(Artinian) as a left A-module, and similarly for 
right Noetherian and Artinian rings. Every 
finitely generated module over a Noetherian 
(Artinian) ring is Noetherian (Artinian). Over 
an arbitrary ring A, a module M is Noetherian 
if and only if every A-submodule of M is fi- 
nitely generated. 

A finite sequence {Mi),,4LQr of A-submodules 
of an A-module M is called a tJordan-Hiilder 

sequence if M = M,, Mi 3 Mi+l, M, = { 0}, and 
the M,/Mi+l (0 <i < r) are simple. If such a 
sequence exists, M is said to be of finite length. 

The number r, called the length of M, depends 
only on M. The quotient modules Mi/Mi+, 
(0 < i < r) are uniquely determined by M up 
to A-isomorphism and permutation of the 
indices (C. Jordan and 0. Hiilder). An A- 
module M is of finite length if and only if M is 
Noetherian and Artinian. A semisimple A- 
module is of finite length if and only if it is 
finitely generated. 

An A-module M is called indecomposable if 

M cannot be decomposed into the direct sum 

of two A-submodules different from M and 
{O}. Any A-module of finite length can be 
decomposed into the direct sum of a finite 
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sequence N,, , N, of indecomposable A- 
submodules different from {O}. The direct 
summands Ni (1 <i < n) are unique up to A- 
isomorphism and permutation of the indices 
(W. Krull, R. Remak, and 0. Schmidt). 

J. Tensor Products 

Let A be a ring. Given a right A-module M 
and a left A-module N, we construct a module 

M Ba N (called the tensor product of M and N) 
and a canonical mapping cp : M x N + M @A N 

as follows. Let F be a free Z-module (free 
Abelian additive group) generated by M x 
N, and R be the subgroup generated by the 
elements of the forms (x + x’, y) - (x, y) - 

(x’, YX (x, Y + Y’) -(x, Y) -k Y’), (x4 Y) -(x7 UY) 
(x,x’EM,~,~‘EN,uEA). WedelineM@,N 
= F/R, and call the natural projection cp. If we 
denote cp(x, y) by x @ y, then we have (x1 + 

x*)QY=x,Qy+x,QY,xQ(Y,+Y,)= 
xOy,+xOy,,and(xa)Oy=x@(ay).Any 
element of M ma N is written in the form 

CXiQYi (XiEM,YiEN). 
The tensor product M @A N of M and N 

and the canonical mapping cp : M x N + 
M Oa N can be characterized as follows: 
For a module L, a mapping f: M x N + L is 

called biadditive if the conditions f(x + x’, y) 

=fbk Y) +f(x’a Y), fk Y + Y’) =fk Y) +fk Y’) 
hold. A biadditive mapping f satisfying the 
condition f(xa, y) =f(x, ay) is called an A- 

balanced mapping. Then we have (i) the canon- 
icalmappingcp:MxN-+M@,NisA- 
balanced; and (ii) for any module L and any A- 
balanced mapping f: M x N+ L, there exists a 
unique homomorphism f, : M ma N+ L such 

that f(x, Y) = f*(x 0 Y) (x E M, Y E NJ. 
A right (left) A-module can be regarded as a 

left (right) A”-module, where A0 is the ring 
anti-isomorphic to A. In this sense, we have 
M@,NgNQO,aM. 

Let A be a commutative ring. For A- 

modules M, N, and L, a mapping f: M x N + 

L is called a bilinear mapping if f is biaddi- 
tive and satisfies f(ax, y) =f(x, ay) = af(x, y) 
(a~A,x~M,y~N).Theset c(M,N;L)of 
all bilinear mappings M x N + L forms A- 

submodule of the A-module LMx N. A bilinear 
mapping M x N + A is called a bilinear form 
on M x N. The tensor product M @*N be- 
comes an A-module if we define a(x @ y) = 

(ax) 0 y ( = x @ (a~)), and the canonical map- 
ping M x N+M Ba N is bilinear. For any A- 

module L and bilinear mapping f: M x N -+ 
L, there exists a unique A-linear mapping 

f, : M Oa N + L satisfying f(x, y) =f,(x @ y). 
By this correspondence f-f,, we get an A- 

isomorphism f!(M, N; L) g Hom,(M @A N, L). 
If A is a field, M @Qa N coincides with the ten- 

sor product M @ N as a linear space (- 256 
Linear Spaces H, I). 

In general, let M be a B-A-bimodule and N 
be a left A-module. Then M Oa N becomes a 

left B-module if we define h(x 0 y) = (bx) @ y. 
Let N be an A-B-bimodule and M be a right 
A-module. Then M ma N becomes a right B- 

module if we define (x 0 y)b =x 0 (yb). In 
particular, we have A Ba N 1 N, M @A A g M. 

Let M, M be right A-modules and N, N’ be 
left A-modules. For A-homomorphisms f: 
M+M’ and g: N-tN’, there exists a unique 
homomorphism h: M @A N + M’ @A N’ satisfy- 
ing h(x 0 y) =f(x) @ g(y); h is called the tensor 
product of L g and is denoted by f @ g. We 
give here some simple examples (also - Sec- 
tion L). 

Examples. (1) Let M, N be free modules 
(linear spaces, for example) over a commuta- 
tive ring A. If {xiiiE, and {yj}j.J are bases 
of M and N, respectively, M Oa N is also a 

free module with a basis {xi @ yj}iF1,j.J. 
If the dimensions dim M, dim N are finite, 
dimM@,N=dimMdimN. 

(2) For an tideal a of a commutative ring A, 
the tfactor ring M = A/a can be regarded as an 
A-module, and we have M Oa N rz N/aN. For 
instance, (Z/mZ) 0 z(Z/nZ)~ Z/(m, n)Z, where 
(m, n) denotes the greatest common divisor of 
m and n. 

K. Horn and @ 

We continue to consider modules over a ring 

A. Concerning the direct sum and product, we 
have 

and 

Concerning projective and inductive limits we 

have 

Horn, I$ M,, l@r N, 
> 

g l&n Hom,(M,, NJ 

and 

An A-homomorphism f: M +M’ induces a 
homomorphism Hom,(M’, N)-+Hom,(M, N) 

by the assignment g-+gof: An exact sequence 
M’-t M + M”+O gives rise to the exact 
sequence 

O+Hom,(M”, N)+Hom,(M, N) 

+Hom,(M’, N). (1) 
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An A-homomorphism f: N-N’ induces a 

homomorphism Hom,(M, N)+Hom,(M, N’) 
by the assignments g*,fo g, and an exact 
sequence O+N’+N-rN” gives rise to the exact 
sequence 

O+Hom,(M, N’)-rHom,(M, N) 

*Hom,(M, N”). (2) 

Let M be a right A-module and N’, N, N” 
be left A-modules. An A-homomorphism f: 
N-N’ induces the homomorphism 1, @f: 
M Qa N --$ M Oa N’, and an exact sequence 
N’+NjN”+O gives rise to the exact sequence 

M@aN’-+M@,N+M@aN”+O. (3) 

Exchanging left and right, we obtain similar 
results (- 52 Categories and Functors B; 200 
Homological Algebra). 

Let Q be an A-module. If for any exact 
sequence of A-modules 

O+M’+M+M”+O, 

the induced sequence 

(4) 

O+Hom,(M”,Q)+Hom,(M,Q) 

+Homa(M’, Q)-0 (5) 

is exact, then Q is called an injective A-module. 
This is equivalent to the condition that if M’ is 

an A-submodule of an A-module M, then any 
A-homomorphism M’+Q can be extended to 
an A-homomorphism M+Q. Any A-module is 
an A-submodule of some injective A-module, 
and any injective A-module is a divisible A- 

module. If A is a +Dedekind domain, any 
divisible A-module is an injective A-module. 

Let P be an A-module. If for any exact 

sequence (4), the induced sequence 

O+Hom,(P, M’)+Hom,(P, M) 

+Hom,(P, M”+O (6) 

is exact, then P is called a projective A-module. 
This is equivalent to the condition that for any 

surjective A-homomorphism g: M+M” and 
any A-homomorphism .f: P+ M”, there exists 
an A-homomorphism h: P+ M satisfying go h 
=,I: Any A-module is a factor A-module of 
some projective A-module. A projective A- 

module has no torsion element. A free A- 
module is a projective A-module. In general, 
an A-module is a projective A-module if and 
only if it is a direct summand of a free A- 

module. 
Let R be a right A-module, If for any exact 

sequence (4), the induced sequence 

= (0) implies M = (0). A flat right A-module R 

is faithfully flat if and only if R # RC!I for any 
left ideal 9I (#A) of A. Let A be a tprincipal 
ideal domain. Then an A-module R is flat if 

and only if R has no torsion element, and R is 
faithfully flat if and only if R has no torsion 
element and R # Rp for any tprime element 
p of A. We have the following important 

examples: 
(1) For a commutative ring A and its multi- 

plicatively closed subset S, the tring of quo- 

tients A, is flat as an A-module. However, A, 
is not faithfully flat. For instance, the field of 

rational numbers Q is not faithfully flat as a 
Z-module. 

(2) Let A be a tsemilocal ring and A be its 
completion. Then A is faithfully flat as an A- 

module (- 284 Noetherian Rings; also [l, 71). 
In the exact sequence (4), if Im cp = Ker I// is a 

direct summand of the A-module M, we say 
that (4) splits. Then (5), (6) and (7) are exact for 

any A-modules Q, P, R. The exact sequence (4) 
splits if M’ is injective or M” is projective. 

By .M, MAI and ,,MB, we mean that M is a 
left A-module, a right A-module, and an A-B- 

bimodule, respectively. As already stated, aM, 

and .N imply s(Homa(M,N)), and .M and 
*Ns imply (Hom,(M, N))s. Similarly BMA and 
N, imply (Hom,(M, N))s, and MA and sNA 
imply B(Hom,(M, N)). Furthermore, BMA and 

.N imply ,&M @,,, N), and M, and ,N, imply 

(M Qa NLs. 
With &,, A M, and .N, we have 

Hom,(M, Hom,(L, N)) r Hom,(L Oa M, N). 

(8) 

Similarly, for ,,M,, L,, and NB, we have 

Horn,& Hom,(M, N)) E Hom,(L Oa M, N). 

(8’) 

If B is a commutative ring, (8) and (8’) are B- 
isomorphisms. Furthermore, with L,, aM,, 

and sN, we have 

(L@aM)@BN~LC+O,(MOBN). (9) 

We denote by M* the set Hom,(M, A) of all 
linear forms on an A-module M. Then .M 

implies M;, and MA implies “M*; the A- 

module M* is called the dual module of M. A 
as a left A-module is dual to A as a right A- 

module, and vice versa. For a family of A- 

modules {M,),,,, we have a canonical corre- 

spondence (Glen M,)* g &,, Mz. From thts, 

we have a canonical isomorphism (M*)* g M 

for any finitely generated projective A-module 

O+R@,M’+R@,M+R@,M”-+O (7) 
M. Many facts concerning this tduality are 
similar to those valid for linear spaces (- 256 

is exact, then R is called a flat A-module. Any 

projective A-module is a flat A-module. A flat 
A-module R is called faithfully flat if R Oa M 

Linear Spaces G). 
Let A be a commutative ring. Letting A = 

B = N in (8) and (83, we have the canonical A- 
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isomorphisms 

Hom,(M, L*) g Hom,(L, M*) 

E(L ga M)* = iqL, M; A), 

namely, any bilinear form on L x M is repre- 

sented by a linear mapping M-L* or L-M*. 

L. Extension and Restriction of a Basic Ring 

Fix a ring homomorphism p: A +i?. We regard 
B as a B-A-bimodule by defining a right oper- 
ationofAonBbyb.a=bp(a)(aEA,bEB). 
This bimodule is denoted by B,. 

For every left A-module M, we construct the 
left B-module p*(M) = B, Ba M, which is 

called the scalar extension of M by p. Every 
A-homomorphism of A-modules f: M-t 

M’induces the B-homomorphism p*(f)= 

l,@f:p*(M)+p*(M’). 

For every left B-module N, we construct the 
left A-module p.JN)=Hom,(B,,, N), which is 
called the scalar restriction (or scalar change) 
of N by p. By the assignment h+h( l), we have 
a module isomorphism Hom,(B,, N)= N. We 
identify p,(N) with N under this isomorphism. 
The operation of A on N is then given as a. y 
=p(u)y (aeA,y~N). If A is a subring of B and 

p is the canonical injection, then the opera- 
tion of A on p,(N) is the restriction of the 
operation of B on N. Every B-homomor- 

phism of B-modules f: N --$ N’ induces the A- 

homomorphism p,(f’):p,(N)+p,(N’). For 
any left A-module M and left B-module N, an 
A-linear mapping f: M-p,(N)= N is called a 
semilinear mapping with respect to p. This 
means that ,f is an additive homomorphism 
satisfying f’(ax)=p(n),f(x) (UEA,XE M). 

The extension and the restriction of a basic 
ring are related by the canonical isomorphism 
Hom,(M,p,(N))zHom,(p*(M), N) for an A- 

module M and a B-module N (- equation 

(8’)). An element CI of the left-hand side and an 
element fl of the right-hand side are associated 
by the relation a(x) = b( 1 @ x) (x E M) (- 52 

Categories and Functors). 
Let A and B be commutative rings. Then for 

A-modules M and M’, we have the canonical 
B-linear mapping p*: B @A Hom,(M, M’) 

+Hom,(B Oa M, Baa M’), which is a B- 

isomorphism if M is a finitely generated 
free (or more generally, projective) A- 

module. Using the notation p*, we have 
p*(Hom,(M, M’))gHom,(p*(M),p*(M’)). 

We now give some examples where the basic 
rings are noncommutative. Let G be a group 
and H its subgroup. Let p denote the homo- 
morphism of group rings K [W] + K [G] in- 

duced by the canonical injection H&+G, where 
K is a commutative ring. For any K [ff]- 

module M, p*(M) is called the induced module 

of M. The representation of G associated with 
p*(M) is the +induced representation of the 

representation of H associated with M. Next, 
we fix a group G and consider a homomor- 
phism p: K [G]-K[G] induced by a homo- 
morphism of commutative rings 0: K + K. If 

K = K and 0 is an automorphism, then the 
representation associated with the “scalar ex- 
tension” p*(M) of a K [G]-module M is the 
iconjugate representation to the representa- 
tion associated with M. If J? = K/Z (CLI is an 
ideal of K) and cr is the canonical projection, 
then the representation over K associated 
with the scalar extension p*(M) of a K [G]- 

module M is the reduction modulo Ql of the 
representation over K associated with M, and 
p*(M) is canonically isomorphic to M/SUM. 

Furthermore, the tlocalization and the +com- 
pletion can also be treated under the formula- 
tion of scalar extension (- 67 Commutative 
Rings G, 284 Noetherian Rings B). 
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278 (X111.23) 
Monge-Amp&e Equations 

A. Monge-Ampere Equations 

A Monge-Amphre differential equation is a 
second-order partial differential equation of 

the form 

Hr+2Ks+Lt+M+N(rt--s2)=0, (1) 
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where H, K, L, M, and N are functions of x, y, 
z, p, and q, and r, s, t, p, and q represent the 
partial derivatives 

@Z azz azz 
r=g> 

S=axay' t=ay2. 

aZ aZ 
P=z’ 4=ay. 

The characteristic manifolds are integrals of 
a system of differential equations defined as 
follows: 

Case (i) N #O. 

Ndp+Ldx+A.,dy=O, 

Ndq+A,dx+Hdy=O, 

dz-pdx-qdy=O, 

Ndp+Ldx+i,dy=O, 

Ndq+A,dx+Hdy=O, 

dz-pdx-qdy=O, 

where 1, and i, are the two roots of the 
equation i2+2Kl+HL-MN=O. 

Case (ii) N =O, H #O. 

dy=A,dx, Hdp+Hi,dq+Mdx=O, 

dz-pdx-qdy=O, 

dy = A, dx, Hdp+HL,dq+Mdx=O, 

dz-pdx-qdy=O, 

where I, and ;L2 are the two roots of the 
equation HE.*--2KA+ L=O. 

Case (iii) N=O, H=O, L#O. 

dx=O, Mdy+2Kdp+Ldq=O, 

dz-pdx-qdy=O, 

2Kdy-Ldx=O, Mdy+Ldq=O, 

dz-pdx-qdy=O. 

Case(iv) N=O, H=O, L=O. 

dx=O, 2Kdp+Mdy=O, 

dz-pdx-qdy=O, 

dy=O, 2Kdq+Mdx=O, 

dz-pdx-qdy=O. 

(4 

(3) 

(4) 

(5) 

(6) 

(7) 

03) 

(9) 

A manifold x(n), y(n), z(1), p(i), q(1) that 
satisfies the system (2) (3) of differential equa- 
tions for case (i), (4), (5) for case (ii), (6), (7) for 
case (iii), or (8), (9) for case (iv) is a character- 

istic manifold of equation (1). 
The following result is known concerning 

Monge-Ampere equations: The union of sur- 

face elements of an integral surface of (1) is 
generated in two ways by characteristic mani- 
folds depending on one parameter. Conversely, 
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if a manifold, each element of which is com- 
posed of a point of a surface S and the tangent 
plane at that point, is generated by a family of 
characteristic manifolds depending on one 
parameter, then the surface S is an integral 

surface of (1). 

B. Intermediate Integrals 

If a relation d V(x, y, z, p, q) = 0 is a consequence 
of a system of differential equations of charac- 
teristic manifolds, for example, in case (i) when 
V satisfies 

N(av~ax+pav~az)-Lav,ap-n2av~a~=o, 
N(a vjay+qa v/a+n,avjap- Ha v/aq=o, 

V(x, y, z, p, q) = c (c an arbitrary constant) is 

called an integral of the system of differential 
equations. (i) If V = c is an integral of a system 
of differential equations of characteristic mani- 
folds, the solution z(x, y) of V=c considered 
anew as a partial differential equation of the 

first order is a solution of (1). Conversely, if 
every solution of V= c (excepting tsingular 

ones) satisfies equation (l), V= c is an integral 
of a system of differential equations of char- 

acteristic manifolds. (ii) If u(x, y, z, p, q) and 
u(x, y, z, p, q) are two integrals of a system of 
differential equations of characteristic mani- 

folds, then for any arbitrary function cp, cp(u, u) 
is also an integral. Thus, as a consequence of 
(i), every solution z(x, y) of cp(u, 0) = 0 is also 
a solution of (1). The converse is also true, 
namely, for every solution z of (1) we can find 
a function rp such that z(x, y) is also a solution 
of cp(u, u) = 0. The relation rp(u, u) = 0 is called 
an intermediate integral of (1). Sometimes an 
integral of a system of differential equations of 
characteristic manifolds is also called an inter- 
mediate integral. If each of the two systems of 

differential equations defining the character- 
istic manifolds has an intermediate integral, 
then the two intermediate integrals cp(u, u) = 0 

and tj(u, u) =0 form a tcomplete system of 
partial differential equations of the first order. 

Integrating this complete system, the tgeneral 
solution of equation (1) is obtained. 

References 

[ 1] E. Goursat, Cours d’analyse mathematique 

III, Gauthier-Villars, fourth edition, 1927. 
[2] E. Goursat, Lecons sur I’integration des 
equations aux d&iv&es partielles du second 

ordre a deux variables indtpendantes I, Her- 
mann. 1896. 



1049 

279 (VII.1 6) 
Morse Theory 

A. General Remarks 

We are interested in smooth functions on 
a smooth manifold of dimension m that 

have only the simplest critical points. Here, 
“smooth” means differentiable of class C”. 

Such a function j’: M+R enables us to investi- 
gate the topology of M. The decomposition of 
M into level sets off contains a lot of topo- 

logical information on M. For instance, it is 
shown that M is thomotopy equivalent to a 
+CW complex that is determined by critical 

points off; furthermore the +Euler character- 
istic of M can be computed by means of 5 

because the critical points are related to the 
thomology groups of M. These types of inves- 

tigations, called Morse theory, were originated 
by H. PoincarC [l] and G. D. Birkhoff [2] and 
then developed into the form we see today by 
M. Morse [3]. An excellent exposition of this 

theory has been given by J. Milnor [4]. R. S. 
Palais [S] has extended the theory to Hilbert 
manifolds. Morse theory has been fruitfully 
applied to differential topology and differential 
geometry. 

B. Critical Points of Functions on Manifolds 

For a point p E M, M, is by definition the 
tangent space to M at p. Let S be a smooth 
real-valued function on M. A point PE M is 
called a critical point off if the induced map- 

ping f,: Mp-‘RJcpJ is zero at p. For every tlocal 
chart (x 1, , x,) around a critical point p off 
with p=(O, . . ..O). 

g(o)= . =g(o)=o. 
1 m 

The value f(p) is then called a critical value of 

f: If the matrix (a2f/8xiaxj(0)) is invertible, 
then the point is called a nondegenerate critical 

point, and if the matrix is not invertible, then 
the point is said to be degenerate. These no- 
tions are independent of the choice of local 

charts around p. The above matrix is called 
the Hessian of ,j” at p. The nullity and index of 
the Hessian off at p are called the nullity and 
index off at p, respectively. The function f has 
a local minimum at a nondegenerate critical 
point of index 0, and a local maximum at a 
nondegenerate critical point of index n. 

A smooth function f on M is called a Morse 
function if it satisfies: (Al) Every critical point 
off is nondegenerate. The Morse lemma states 

that if p is a nondegenerate critical point off 
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and if the index off at p is 1, then there exists 
a local chart (yl, , y,) around p with p = 

(0, ,O) such that f is expressed as 

+(Ym)‘. 

C. The Existence of Morse Functions 

Let M be a compact smooth m-dimensional 

manifold without boundary. The existence of 
Morse functions on A4 is shown by tembed- 
ding M into R” for a sufficiently large n. For 

convenience, M will be here identified with its 
embedded image. At each point pe M the set 
vp of all unit normals forms an (n -m - l)- 
dimensional unit sphere, and v(M) = UPEM vP 
is a smooth (n - I)-dimensional compact 
manifold. Let S be the unit hypersphere in R” 
around the origin. The Gauss normal mapping 

cp:v(M)+S sends each point (p,u(p))~v(M) to 
UPS via a canonical parallel translation of R”. 

Since cp is smooth, the +Sard theorem implies 

that the set E of all critical values of cp has 

measure zero on S. Thus ‘p* at every (p,u(p))e 
(p-l (u) has maximal rank if u is taken in S - E. 

For every fixed uES-E let h,: M-R be de- 
fined by h,(x) = (u, x),x EM, where ( , ) de- 
notes the canonical inner product of R”. Then 
h, is a Morse function. To see this let dC, dv, 

and dM be volume elements of S, v, and M, re- 
spectively. Then dvr\dM is a volume element of 
v(M), and the function G:v(M)+R is obtained 
by the relation cp*dC= G(x, u(x))dv r\dM. 
G(x, u(x)) is called the Lipschitz-Killing curva- 

ture at U(X)EV,. If .4(0(x)) denotes the tsecond 
fundamental form of M with respect to v(x), 

then G(x,v(x))=( -l)“det(A(u(x))) (Chern and 
Lashof [6]). Every critical point pi M of h, 
for UE S - E has a normal u(p) to M at p, and 
the Hessian of h, is given by A(u(p)). Thus 
G(p, u(p)) #O ensures the nondegeneracy at p 

C61. 
Another approach to the construction of 

Morse functions is to find for a given embed- 
ding of M into R” an open dense set U c R” 

such that the Euclidean distance d, from any 
fixed point x on U to points on M has no 

degenerate critical points on M. In this case 
d;‘(( --co, a]) is compact for all a~: R. It is also 
possible to construct Morse functions on 
compact manifolds with boundary as well as 
on noncompact manifolds. But a striking 
result of A. Phillips states that there exists a 
Morse function on every noncompact mani- 
fold which has no critical points [7]. 

For a pair of smooth manifolds M, N let 

C”(M, N) be the set of all smooth mappings 
from M to N. The weak (or compact-open) C” 
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topology on Cm(M, N) is generated by the sets 
defined as follows. Let ~EC~(M, N), and let 

(Il, cp) and (V, $) be charts of M and N, respec- 
tively. Let Kc LJ be a compact set such that 
S(K) c I/. For E E (0, a), a weak tsubbasic 

neighborhoodNm(f;(U,cp),(V,$),K,~)off 
is defined to be the set of all smooth map- 
pings ~E?(M,N) such that (1) g(K)c V, (2) 

IIDk(cpo.foK’) (x)-Dk(cPogoti-l) WI <E> 
x E q(K), k = 1,2, . , where Dk denotes the kth 

derivative with respect to the coordinates. 
The weak C” topology is thus defined on 
Ca(M, N), and the space with this topology is 
denoted by Cz(M, N). It follows from the 
construction of the embedding in the Whitney 
embedding theorem that the set of all smooth 

embeddings of compact M into R” is dense in 
Cz(M, R”) if n > 2dim M. Moreover, the set of 

all Morse functions on a compact M forms 
an open dense set in Cz(M, R) (Nagano [S], 

Hirsh [9], Auslander and MacKenzie [lo]). 

M” we have the following: (3) If c~f(M) is a 
critical value off with points p1 , , pr with pi 
having index ii and if M,‘i: is compact for F. > 0 

and contains no critical points other than 
p,, ,pk, then A4”’ has the same homotopy 
typeasM’-“Ue”lU...Ue”k,wheree’l(j= 

1, . , k) are Aj-cells. (4) Assume that a Morse 
function f on a (not necessarily compact) M 
satisfies: (A2) M” is compact for all a~ R. Then 
by choosing a sequence a, < a2 < . . of regular 
values of ,f and applying (3) to each Mz:+‘, we 
see that M has the same homotopy type as 
that of a CW complex [, where the number of 

/l-cells belonging to [ is the same as that of 
critical points of index 1 off: 

Moreover, we have the following Morse 
inequalities: (5) Let S be a Morse function on a 
compact M. If M, is the number of critical 

points off on M of index i., and if R, is a i- 
dimensional +Betti number of M, then 

1 M,>R,, 

M,-M,>RR,-R,, 

D. Decomposition of M by a Morse Function M,-MI-,+.,.+(-l)“M,, 

To decompose M into levels of a Morse func- 
tion we now consider the process of tattaching 
a handle. Let M be a compact manifold with 

tboundary 8M. Let D” be the s-disk, and let 
g : (8Ds) x D”-“+dM be an ternbedding. Then a 
tmanifold X( M; g; s) with a handle attached by 
y is defined as the quotient set obtained from 
the disjoint union M U (D” x D”-‘) by identify- 
ing points in dDs x D”-” and their images 

under y and equipped with a natural differenti- 
able structure. Similarly, if g,:(aDiL) x D~-“~+ 
8M (i= 1, , k) are embeddings with disjoint 

images, we can define the thandlebody X(M; 

$71, . . . . 9GSI> . ..> Sk) Clll. 
For an ,f6Ca(M, R) and for u, bEf(M) with 

a<b let M”={x~Mjf(x)<a) and M,“= 
{.x E M ) a <S(x) < b}. M,” is called a level set 
of 1: For a Morse function f on a compact 
manifold M without boundary, the following 
fundamental facts are known [4]: (1) The first 
fundamental theorem. If Mi contains no crit- 
ical points, then M,b is diffeomorphic to M,” x 

[a, b]; (2) The second fundamental theorem. 

Let CE(U, b) be a unique critical value in [a, b], 
and let p, , , ply M: be critical points off 
with pi having index li. Then Mb is diffeo- 

morphic to X(M”; f,, . . ,fk, 1,, , A,) for 

suitable embeddings f;, , fk. It follows from 
the existence of Morse functions and from (1) 
and (2) that every compact manifold can be 
obtained by successively attaching handles to 
a disk (- 114 Differential Topology). Fur- 

thermore, if M admits a Morse function with 
only two critical points, then M is homeo- 

morphic to a sphere (Reeb [ 121). 
Concerning the homotopy types of M and 

bR,-R,m,+...+(-l)“R,, 1 <I<n-1, 

M,-M,-,+...+(-l)“M, 

=R,-RR,_,+...+(-l)“R,. 

In particular, we have Mk > R, for all k. By 
using these facts S. Smale obtained an affrma- 
tive solution of the +Poincare conjecture in 
high dimensions [ 11,131. 

The concept of critical manifolds in the 
sense of Bott [14] is stated as follows: Let M 

be a compact manifold embedded into an 
open set U c Rk. Let f: U +R be a smooth 

function. M is called a nondegenerate critical 
manifold off on U if (1) all points of M are 
critical points off and (2) the nullity of all 

XE M is equal to dim M. When M is such a 
nondegenerate critical manifold off on U, fis 
constant on M, and the index 1 of S at x is 
well defined and is the same at all points on 
M. The +Poincare polynomial is expressed as 
P(M; t)=C tkdim Hk(M). The Morse poly- 
nomial is defined by YJI(f; t) = z’N t”~p(N; t), 
where N runs over all critical manifolds off 
and I,, is the index of N. Under certain con- 
ditions for orientability along each nondegen- 
erate critical manifold of J we have again the 

Morse inequality 

E. Morse Theory on Hilhert Manifolds 

Let M be a +Hilbert manifold, and let f:M-tR 
be a smooth function, The Hessian a’f, off at 
a critical point of j’ is a symmetric bilinear 
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form on M, given by 

u,=M,, 

where cp is a coordinate mapping of a local 
chart around p. The index (coindex) off at a 
critical point PE M off is defined to be the 
supremum of dimensions of subspaces of 
M, on which a’f, is negative (positive) defi- 

nite. The self-adjoint bounded operator A 
which represents a2f, is given by 8f,(u, v) = 
(u, A(u)),. If A is invertible, then ,f is said to 
be nondegenerate at p. These notions do not 
depend on the choice of local charts around p. 

The Morse lemma has been generalized to 
a Riemannian Hilbert manifold M by R. 
Palais and S. Smale [ 153 as follows. Let f be a 
smooth function defined on M. If XE M is a 

nondegenerate critical point off then there 
exist a chart cp around x and a projection P 
such that for y near x 

fM=fW+ llWY)l12- ll(~-wP(Y)l12. 

The above result has been extended to critical 
manifolds [16]. A connected submanifold N of 
a Hilbert manifold M is called a nondegenerate 

critical manifold off: M +R if (1) every point 
PE M is a critical point of .f and (2) for each 
pe M there exists a closed subspace E, of M, 

such that M, = N, @ E, and the Hessian form 
restricted to E, is nondegenerate. Let v = 
(n, E, N) be a smooth Hilbert-space bundle 
over a compact connected manifold N, and let 

( , ) be a Riemannian structure for v. Assume 
that a smooth function S: E+R has the zero 
section of v as a nondegenerate critical mani- 
fold. Then there exist a tubular neighborhood 
v,={uEE 1 Ilull <E} of the zero section in v and 
a fiber-preserving diffeomorphism $: v~+$(v,) 
and an orthogonal bundle projection P such 
that for VE v, 

fo$(u)=f(N)+ /lPvl/*- II(~-P)412. 

Let us assume that (B) M is a complete 

Riemannian manifold, and (C) (Palais-Smale 
condition) if ,f is bounded on a set S c M and if 
the norm IiVf 11 of the tgradient vector off 
has infimum 0 on S, then there is a critical 
point off on the closure S of S. Since M is not 
locally compact, condition (C) is required. In 
order to prove the first and second funda- 
mental theorems of Morse theory it is neces- 
sary that the integral curves of Vf exist, and 
(C) ensures their existence. Namely, under 
conditions (Al), (B), and (C), one of the follow- 

ing two facts follows for any bEf(M) and for 
any regular point pi M”: (1) The integral curve 
c: [0, r] + Mb of Of with c(0) = p exists, and 

,fo c(r) = b holds for some rE [0, m); (2) the 
integral curve c: [0, a)+ M” of V’f exists and 

lim ,-m c(t) exists such that the limit point c(a) 
= lim,,, BE Mb is a critical point of J These 
facts imply that the first fundamental theorem 
of Morse theory holds if M,” does not contain 
any critical point of J and also the second 

fundamental theorem holds if M,” has only 
nondegenerate critical points on Mf for some 
ce(a, b). Furthermore, assume that f: M-R 
and M satisfies (Al), (B), and (C), and let a, 

bE f(M) be regular values with a < b. If for 
each nonnegative integer i, R, is the /Ith Betti 
number of M,“, and if M, is the number of 
critical points of index J” of .f in M,“, then the 
Morse inequality holds: 

M,>R,, 

M,-Mo>R,-Ro, 

“‘> 

k&-l)“-kM,Z i (-l)“-kR,, 
k=O 

. ..) 

* m  

k;oo(-l)kIMk= f (-l)kR,. 
k=O 

In particular, M, > R j, holds for all 1,. If f is 
bounded below, then the ith Betti number RT 

of Mb and the number M,* of all critical points 
off with index i in Mb satisfy M,* > R: for 
all 1.. 

F. Morse Theory of Path Spaces 

Morse theory on Hilbert manifolds applies to 
the energy functions on Riemannian Hilbert 
manifolds which consist of all HI-curves on a 
compact Riemannian manifold M, and the 
theory is useful for proving the existence of 
closed geodesics on M. 

Let M be a smooth manifold, and let I = 
[O, 11. Let H,(Z, M) be the set of all continuous 
curves 0: I+ M such that for each local chart 
(V, cp) of M, cp o 0 is absolutely continuous and 

ll(qoa)‘// is locally square integrable. In par- 
ticular, if M = R”, then H,(I, R”) is a Hilbert 
space with the inner product 

0, P E H, (1, W. 

For each 0 E H, (I, M), set H, (I, M), = {X E 

H,(I, TM)IX(~)EM,(,),~EI}, where TM is by 
definition the ttangent bundle over M. For any 

fixed pair of points p, q~ M, let Q( M; p, q) = 

{~JE H,(I, M)Irr(O)=p,(~(l)=q}, and for each 

~EWM;P, 4, let Q(M;p, &= {XEH~U, W,I 
X(O)=OEM~,X(I)=OEM~}. Then H,(I, M), 

forms a vector space, and Q(M; p, q), is a sub- 

space of H, (I, M),. M can be embedded into 
R” for sufficiently large n by the Whitney 
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embedding theorem [17]. Then we have 

thefollowingfacts [17]:(l)H,(1,M)={a~ 

H,(I,R”)~~J(I)~M}, (2) H,(Z,M) is a closed 
submanifold of H, (I, R”), (3) R(A4; p, q) is a 
closed submanifold of H, (I, M), (4) the tangent 
space to H, (I, M) at each point c E H, (I, M) is 
H, (I, M),, (5) the tangent space to R(M; p, q) at 
each point UER(M; p, q) is Q(M; p, q),. Here 
M is identified with the embedded image in 
R”. Thus H, (I, M) and R(M; p, q) carry the 
structure of a Hilbert manifold, and they are 
independent of the choice of embeddings [17]. 

The energy functions on H, (I, M) and 

R(M; p, q) play important roles in the develop- 
ment of Morse theory. M is now assumed to 

be a complete Riemannian manifold. It follows 
from the Nash isometric embedding theorem 

(- 365 Riemannian Submanifolds B) that 
M is isometrically embedded into R”’ for a 

sufficiently large n’. H,(I, R”‘) carries a com- 
plete Riemannian metric in a natural way, 

and H, (I, M) becomes a complete Riemann- 
ian manifold with the metric induced from 
H, (I, RN’). Similarly Q(M; p, q) admits a com- 
plete Riemannian metric. Then the energy 

function E: H,(I, M)+R is defined to be 

E(u):=; (r~‘,cr’)dt, 
s I 

where ( , ) is the inner product induced from 
the Riemannian structure of M. Then the 

Palais-Smale condition (C) is satisfied for E 
on H,(I, M). That is, if a sequence {Q} on 
H,(I, M) satisfies: (1) {E(Q)} is bounded above; 
and (2) VE(o,)+O as k-co, then there is a 
subsequence {ok.} of {Q} such that {Q} con- 

verges to a critical point 0~ H, (I, M) of E. 
Also, condition (C) is fulfilled for the energy 
function on R(M; p, q). 

For a fixed pair of points p, q E M, let 0 = 
R(M, p, q). Let 0~ R be a critical point of E. 
A tangent vector W to R at u:I+M with u(0) 
= p, o( 1) = q is a tpiecewise differentiable vec- 

tor field along (T such that W(0) = OE M, and 
W(l)=OgM,. A proper variation a:(-~,&) x I 
+M along cr which is associated with W satis- 
fies the following: (1) ~(0, t) = a(t), t E I; (2) there 
exists a finite partition 0 = t, < t, < . < t, = 1 

of I such that s( 1 (-E, E) x [L,-~, ti] is differenti- 
able for all i = 1, . , IC; (3) c((u, 0) = p and a(u, 1) 

= q hold for all u E( -E, E); and (4) &(O, t)/& 
= W(t), t E I. It follows from the first variation 
formula (- 178 Geodesics A) that (TER is a 
critical point of E if and only if g is a geodesic 
on M. Let WI, W, ER,, and let U be an open 
set in RZ around the origin. Then a proper 
variation CL: U x I + M along 0 that is asso- 
ciated with WI and W, satisfies the follow- 

ing: (1) cr(O,O, t)=cr(t), t~l; (2) there exists a 
finitepartitionO=t,<t,<...<t,=lofIsuch 

that t( 1 U x [t,-, , ti] is differentiable for all i = 

l,..., k;(3)~(u,,u,,O)=p,cc(u,,u,,l)=qfor 

all (u,,u,)~U; and (4) &x(0,0, t)/au, = W,(t), 
&x(0,0, t)/&, = W2(t), tgl. Then the Hessian 
E,, of E at 0 is given by 

E (w w)_l~2mw42)) 
** 13 2 2 C3U,i3U2 WJ,’ 

where Z(u,, u,)~s1 is by definition the curve 

cC(u,, u2)(t)= GL(U~, u2, t). The second variation 
formula (- 178 Geodesics A) then gives 

&AW,>W,)= -~<K(t)>AL,F’(tD 

- 
s 

(W,, W;+R(W,,a’)o’)dt, 
I 

where A,W{(t)= W;(t+O)- W{(t-0). We have 
the Morse index theorem, which states: (1) The 

+null space of E at a critical point g is the 
linear space spanned by all Jacobi fields (- 
178 Geodesics A) along 0 that vanish at 0 

and 1; (2) if {a(s,),r~(s,), . . ..cr(s.)} (O<s, <s2 
< < si < 1) is the set of all points conjugate 
to a(O) along 0 and if /zi is the multiplicity of 
the conjugate point c(si), then the index of E at 

0 is equal to 1, + + 1,. It follows from the 
Sard theorem together with the differentia- 
bility of the exponential mapping on M that 
except for a set of measure zero in M x M, p, q 
can be chosen so that p, q is not a conjugate 
pair along any geodesic in s1. Then all critical 
points of E are nondegenerate, and for any 

c > 0, R’ = {w E R 1 E(w) = c} contains at most 
finitely many nondegenerate critical points 

with finite indices. 

G. Existence of Closed Geodesics 

Let M be a compact Riemannian manifold. By 

replacing I with the circle S’, we consider a 
Hilbert manifold A(M)= H,(S’, M). A(M) 

carries the structure of a complete Riemannian 
manifold. Every point PE M is naturally em- 
bedded in A(M) as a point curve, and M is a 

totally geodesic submanifold of A(M). A point 
0 E A(M) is a critical point of the energy func- 
tion E: A(M)+R if and only if cr is a closed 

geodesic of M. It is known that E satisfies the 
Palais-Smale condition (C). The index and 
nllllity of E at a critical point 0 is finite. Since 
M is compact, the fundamental length & of 
M is positive and #={~EA(M)I E(a)<c} is a 
ideformation retract of M c A(M) by means of 
the deformation along the integral curves of 
- VE. 

If M is not simply connected, then each 

nontrivial element of the tfundamental group 
of M represents a class of homotopic curves in 
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which there is a closed geodesic whose length 
realizes the iniimum of all these curves. If 

M is simply connected, then there is a mini- 
mum integer k for which n,(M) # 0. Clearly, 
rr~i(lZ(M))=:7~~(M)#O. Suppose that E has no 

positive critical value. Then A(M) is a defor- 
mation retract of M, a contradiction. Therefore 
there exists at least one closed geodesic on 
every compact Riemannian manifold (Lyuster- 
nik and Fet [18]). 

Proof of the existence of many closed geo- 
desics on M is difficult due to the follow- 
ing: (1) There is a continuous O(2) action on 
A(M) that assigns a~A(!vf) and agO(2) to the 

curve t+u(t+a), tES’; (2) for each integer 
k and for each critical point D E A(M), the 
curve t+o(kt) is a critical point with energy 
k2E(a). 

A remarkable result has been obtained 
by Lyusternik and Shnirel’man [ 191, which 
states that there are at least three closed geo- 
desics on every simply connected compact 
manifold of dimension 2. Fet then proved that 
there exist at least two closed geodesics on a 
compact manifold if all critical points of E on 
A(M) are nondegenerate [20]. By developing 
a precise argument concerning the Morse 
lemma around an isolated degenerate critical 

point o~A(?vf) of E, Gromoll and Meyer have 
proved that there exist infinitely many closed 
geodesics if the sequence of Betti numbers 
{b,(A(M))} with respect to any field is un- 
bounded [21]. If A:M+M is a certain isome- 

try, then there are also infinitely many A- 
invariant closed geodesics if the Betti numbers 
of the space of A-invariant Hi-curves are not 
bounded [22,23]. By investigating the Z,- 
cohomology of A(M) of compact symmetric 
spaces, Ziller has proved that if M has the 

same homotopy type as that of a symmetric 
space of rank > 2, then M has infinitely many 
closed geodesics [24]. 

Many attempts have been made by W. 
Klingenberg and others to prove the existence 
of infinitely many geometrically distinct closed 
geodesics on every compact Riemannian mani- 
fold [25]. 
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A. General Remarks 

Multivariate analysis consists of methods of 
statistical analysis of multivariate observations 
represented by a collection of points in a finite- 
dimensional Euclidean space RP. With the 

development of powerful computers, multi- 
variate techniques are beginning to be utilized 
in many fields of science and technology. 

B. The Multivariate Linear Model 

The multivariate linear model is an immediate 
extension of the univariate linear model. Sup- 
pose that X=(X”‘. X’“‘) denotes the p x n 
matrix of n observations of p-dimensional 
data. Suppose that it can be expressed as 

X=BZ+U, (1) 

where B is a p x m matrix of unknown para- 
meters, Z is a known m x n matrix of inde- 
pendent variables, and U is a p x II matrix of 
errors. We assume that (i) the texpectations of 
the elements of U are zero, that is, the p x n 
matrix E(U) = 0, and call the relation (1) a 
multivariate linear model. We usually assume 
further that (ii) the column vectors U(‘), i= 
1, , n, of U are independent and identically 
distributed, and that (iii) Uci) is distributed 

according to a multivariate tnormal distri- 
bution with tcovariance matrix z. Analogous 
to the univariate case, the +least squares es- 
timator R of B is defined to be the p x m ma- 
trix that minimizes 

tr(X-SZ)(X-BZ) 

and is given explicitly by 

S=xz’(zzf)-’ when JZZ’I #O. 

Here the symbol ’ means the transpose of a 

matrix. Also, an unbiased estimator of z is 
given by 

x=Q,/(n-m), Q,=XX’-sZX’. 

R is an unbiased estimator of B under the 
assumption (i) above and is the +best linear 

unbiased estimator. under (i) and (ii), while 2‘ is 
unbiased when (i) and (ii) are assumed. Under 
the assumptions (i)-(iii), R and 2 form a set of 
complete tsuffcient statistics; hence they are 
tuniformly minimum variance unbiased es- 
timators. Also under (i))(iii), elements of R are 
normally distributed, and their covariance can 

be expressed by 

z@ M (0 denotes the +Kronecker product), 

where M =(ZZ’))‘. Applying +Cochran’s 
theorem for the multivariate case, Q, is shown 

to be distributed according to a tWishart 
distribution with n-m degrees of freedom. 

To test the hypothesis B = B, under (i)-(iii), 
we put Qs = (B - B,JZZ’(R - B,)’ and have (X 
-B,Z)(X-B,Z)‘=Q,+Q,, where QB and Q, 
are independently distributed. The distribution 
of QB is a Wishart distribution with m degrees 
of freedom when the hypothesis is true, and a 
noncentral Wishart distribution when B # B,. 

Based on this fact, several procedures have 
been proposed. If we require the invariance of 
procedures with respect to linear transforma- 
tions of the coordinates of p-dimensional 
vectors, the roots i,, , , i,,, of the tcharacter- 
istic equation IQB - nQ,I = 0 form a tmaximal 
invariant statistic; hence the testing proce- 

dures should be defined in terms of these roots 
(- 396 Statistic I). Also, the consideration of 

+power leads to procedures that reject the 
hypothesis when these roots are large. Com- 

monly used test statistics are (1) the tlikelihood 

ratio test IV=IQ,I/IQs+QJ =n,(l +ii)-’ 
(S. S. Wilks); (2) tr Q;’ QB = C li (D. N. Lawley 
and H. Hotelling); (3) max Ai (S. N. Roy); (4) 

trQs(Qs+QJ’ =CEJl f&-i (K. C. S. 
Pillai). Pillai’s trace test (4) is locally the most 
powerful invariant; Wilks’s likelihood ratio 
test (1) has the maximum Bahadur efficiency. 

The power functions of the tests (l)-(3) have 
the monotonicity property, namely, they are 
monotonically nondecreasing with respect to 
each eigenvalue of Cl=T’(B-BJZZ’(B- 
B,)‘, the matrix of noncentrality parameters 

for Qs. The monotonicity for Pillai’s test (4) is 
known to hold only for restricted cases where 
the critical value c for the acceptance region 

tr Q,(B, + QJ1 d c should satisfy 0 d c < 1. All 
the tests (l)-(4) are unbiased. With respect to 
0- 1 loss, the tests (1) and (4) are tadmissible 
Bayes and the tests (2) and (3) are tadmissible. 
Tests based on min ii are inadmissible. 

Small-sample distributions of these statis- 

tics are complicated but when n+m, nlog W, 
n tr QBQ;i, and n tr Q,(Qs + QJ’ are as- 
ymptotically distributed according to a chi- 

square distribution with pm degrees of free- 
dom under the null hypothesis. Even under 
the alternative hypothesis that the matrix 
of noncentrality parameters R = 0( 1) for large 
n, the asymptotic distributions remain the 
same. When R = O(l), they are noncentral chi- 
square distributions of pm degrees of freedom 
and noncentrality parameter 6 = tr a. If R = 
O(n), they are normal distributions, namely, 

-&(logW+logll+HI), &(trQ,Q;‘-tr0) 
and &(trQ,(Q,+Q,)-‘-trB(I+(I)-‘) 

for 0 = limo/n have asymptotically normal 
distributions of zero means and variances 

given by 2tr(l-((I+Q))‘), 2tr(20+0’), and 
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2tr((I+0))2-(I+0)-4), respectively. As a 
special case, if m = 1 there exists only one non- 

zero 1, and the procedures in this paragraph 
all coincide and are equivalent to one based 
on T2=M-1(B-BB,)‘f-‘(B-B,). It is known 
that under the hypothesis, (n-p)T’/(n- 1)p is 

distributed according to an tF-distribution 
with (p, n-p) degrees of freedom. When p = 

2 (resp. m=2), (n-m- l)(l-@)/(mJ@) 

(resp. (n-p - l)( I- @)/(p$?@) is distributed 
according to an F-distribution with degrees of 

freedom (2m,2(n-m-1)) (resp. (2p,2(n-p 

- 1))). Simultaneous ‘confidence regions of B 

can be derived from the testing procedures in 
this paragraph, that is, 

trQ;‘(B-@ZZ’(B-@‘cc. 

Moreover, when the matrix B is decom- 
posed as B = (B, ! B,), where B, and B, are a p 

x q matrix and a p x (m - q) matrix, respec- 
tively, and the hypothesis to be tested is of the 
form B, = 0, the test procedures can be ob- 
tained as follows: Decompose Z as 

z= -5 
0 z2 ’ 

where Z, is a q x n matrix and Z, is an (m - 4) 
x n matrix, and put 

8;=xz;(z,z;)-‘, 

Q*=XX’-@Z,X’, Qs,=Q*-Q,. 

Then Qe, and Q, are independent, Qs, is 
distributed according to a Wishart distribution 
with q degrees of freedom when the hypothesis 

is true, and we can apply the procedures in 
the previous paragraph, simply replacing Q, 

by Q,,. 
Such a procedure is called multivariate 

analysis of variance (or MANOVA, for short). 
Various standard situations can be treated in 
this way (after some linear transformation of 
variables, if necessary). Some examples are (1) 
X=(X(‘) Xc”)), where the XC’) (i = 1, , n) 
are distributed independently according to a 

p-dimensional normal distribution N(p, c). 
We can express X as X = pl’ + U, and the 

estimators are given by $=X = Xl/n, f‘= 
(X -Xl’)(X - Xl’)‘/(n - 1). In this case, we 
obtain a test for the hypothesis ,n =pLo based 

on Hotelling’s T* statistic, i.e., the test with a 
icritical region of the form 

T’=n(X-ao)‘f-‘(fZ-/c,)>c. 

(2) Suppose that p x n, matrices Xi, i = 1, . , k, 

are samples of size ni from p-dimensional 
normal distributions Nbi, C) with common 

covariance matrix C. The tests for the hypoth- 
esis pL1 = . =,uk are obtained from the follow- 

ing observation: Let Q, = 2,(X,-X l’)(Xi - 
x,1’)‘, where Xi=Xil/ni, Q,=Cn,(X,-X) 
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(X-X)‘, x=I:qftJI:n,. Then x(X,-xl’) 

(Xi-xl ‘)‘= Q, f Q,. We call Q, the matrix of 
the sum of squares within classes, and Q, the 
matrix of the sum of squares between classes. 
The latter is distributed according to a Wish- 
art distribution when the hypothesis is true. 
(3) Suppose that X, are p-dimensional vectors, 
and that 

Xij=p+ai+fij+“ij, i=l, . . ..m. 

j=l,...,n, 

where ,u, ai, pj are p-dimensional constant 
vectors such that Ca,=O and C/?,=O, and the 
U, are independently distributed according to 

a p-dimensional normal distribution N(0, c). 
We set 

x(xij-xi,-x,j+x)‘, 

where 

j I 

X = CC Xii/h. 

Then we have xX(X,-X)(X,-X)‘=Q,+ 
Qg + Q,, and Q,, Q,,, Q, are distributed inde- 
pendently according to (noncentral) Wishart 
distributions with degrees of freedom m - 1, 

n - 1, and (n - l)(m - l), respectively. The tests 
for the hypothesis a,=0 (i= 1, . . ..m) or /Ij=O 
(j=l,..., n) are obtained from these matrices. 

C. Tests for Covariance Matrices 

Let X,(p x l),j= 1, , Ni, be a random sample 
from p-variate normal distribution N(,u~, ,&) 
for i= 1, , k. For testing the hypothesis H,,: 
z, = . = & with unknown mean vectors pi 
against all alternatives, the likelihood ratio 
statistic is given by 

fl) SilNJ* NN’2 
n~,r/~,/2 JCsilN/2 1 N=N~+...+N~> (2) 

where Si =x$,(X,-Xi) (X, -Xi)’ for Xi = 
C$, X,/N,. If we replace the sample size Ni 
by the degrees of freedom ni = Ni - 1 and N 

by n = N-k in (2) the modified likelihood 
ratio test is unbiased for general p and k [16]. 
For k = 1, the hypothesis specifies H, : 6, = 

C,, (a given positive definite matrix) and 
the likelihood ratio statistic is given by 
(SIN12etr( -C;‘S/2) (etr(a)=exp(tra)). Again 
replacing N by n = N - 1 yields an unbiased 
test. Moreover the power function of this 
modified likelihood ratio test depends only 

on the eigenvalues of z, C;’ and is increasing 
with respect to the absolute deviation of each 
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eigenvalue from 1, that is, Ich,C,Z;’ - 1 I. For 
k = 2, it is conjectured that the modified likeli- 
hood ratio test has a power function monoton- 

ically increasing with respect to Ich,C,Z;’ - 1 I. 
This conjecture has not yet been proved; we 

know only that the power is increasing if the 
maximum eigenvalue ch, C, C;’ increases 
from 1 or the minimum eigenvalue ch,C,C;’ 

decreases from 1. 

D. Estimation of Mean Vector and Covariance 
Matrix 

Let X(p x 1) have p-variate normal distri- 
bution N(,u, I). For estimating the unknown 

mean, take the sum of squared errors S as a 
loss L(p,d)= JJp-dl)*. Since each component 
Xi of X is distributed independently according 
to N(pi, 1) for p=(pl, . . . ,p,)‘, it is natural to 
suppose that X is a good estimator. In fact X 

is a minimax estimator for p. However, Stein 
showed that X is admissible for p = 1 and 2 but 
inadmissible for p > 3. James and Stein showed 
that the estimator 

( > 1-p--2 llw* x (3) 

dominates X when pd 3. This estimator is 

further dominated by Stein’s positive part 
estimator (l-(p-2)/11X//*)+X, where (a), 
means a if a is nonnegative and zero if a is 
negative. The class of estimators X + V logf(X), 

where V=(a/ax,, .,.,3/8x,)’ for X1=(x,, . . . . xp) 
are all minimax for ,n dominating X, if f(X) 
> 0 and m is superharmonic (V’$@ 
< 0), satisfying E [ I/ V logy(X) II*] < co and 
E[~la*f(X)/ax2l/f(X)] < co. Putting f(X)= 
llXll--(p-2) yields the James-Stein estimator 
(3). For this problem a class of monotone 
estimators is essentially complete, where an 

estimator d(X) is called monotone if d(X) < 
d(Y) whenever X <Y (defined componentwise). 
Stein’s positive-part estimator is not mono- 

tone and is still inadmissible [S]. 
Let Xi(p x l), i = 1, . . . , n, be a random sam- 

ple taken from the p-variate normal distri- 

bution N(0, c). Then the maximum likeli- 
hood estimator for C is given by S/n, where 

S = CyZI X,X;. S has Wishart distribution 
w,(n, C). To study the estimation problem of 
,?I, take two loss functions L,(C, d) = trdZ‘-’ 

-1ogldL“I-p and L,(Z,d)=(1/2)tr(dZ“ 
-I)‘. Under L,-loss, the best scalar multiple 
of S is given by S/n, and under L,-loss it is 
given by S/(n + p + 1). The James-Stein mini- 

max estimator for I,,-loss is given by d,(S) 
= KAK’, where K is the lower triangular ma- 

trix with positive diagonal element for which 
S=KK’ and A=diag(A,, . . ..A.,) with Ai= 
l/(n + p + 1 - 29. A minimax estimator for 

L,-loss is given by d,(S) = KAK’ with the same 
lower triangular matrix K, but A is the solu- 

tion of the linear equation AA = b, where A is 
given by 

1 

(n+p-l)(n+p+l) nfp-3 

A= 
n+p+3 (n+p--3)(n+p-1) 

1.. 

n-p+1 n-p+1 

. . . n-p+1 

. . . n-p+1 

. . . . 

(n-p+l)(n-p++) 

and b’=(n+p-l,n+p-3 ,..., n-p+l).The 
minimax estimators d,(S) and d*(S) dominate 
the best scalar multiples of S. However, they 

are inadmissible. Let P be a permutation ma- 
trix, then the estimator ZP P’di(PSP’)P/p! dom- 

inates di(S) because of the convexity of the loss 
function Li for i= 1 and 2. The estimator h,(S) 
=(S+ub(u)C)/n, where u= l/trCS’ and C is 

a fixed positive-definite matrix, dominates S/n 
under L,-loss if O<b(u)<2(p-1)/n and b(.) is 
nonincreasing. Under L,-loss (S + bC/tr CS -I)/ 
(n+p+l)dominatesS/(n+p+l),ifO<bh 
2(p- l)/(n-pf3) [7]. The Haff estimator 
h,(S) is dominated by the James-Stein esti- 
mator d,(S) if p 2 6. The estimators (S + 
b(trCS’/trCS-*)C)/nforO<b<2(p-1)/n 
under L,-loss also dominate S/n and are not 
dominated by d,(S). Similar results hold under 
L,-loss. 

E. Correlation among Variables 

In order to represent the interrelationships 
among the p variates, the population corre- 
lation matrix P = { pij} is used. Also, we can 
calculate the population tmultiple correlation 
coefficient of the ith component Xi and all the 

rest of the variables by 

Pi.l...(i)...p=J~a 

and the tpartial correlation coefficient of Xi 
and Xj, given all others, by 

Pij.I...(i)...(j)...p= - P,,/G, 

where Pij are the cofactors of P (- 397 Statis- 
tical Data Analysis). 

The sample correlation matrix is calculated 
from the data, and the sample multiple correla- 
tion and the sample partial correlation coeffi- 
cients are calculated from the sample correla- 
tion matrix in exactly the same way as thk 

population coefficients are calculated from 
the population correlation matrix. When X = 
(X”’ X’“‘) is a sample of size n from a 

multivariate normal population, the sampling 

distributions of R,.l...~i,...p and R, .,... cij,,,cjJ...r, are 
known (- 374 Sampling Distributions). 



1057 280 G 
Multivariate Analysis 

The determinant of the covariance matrix 
ICI (or IS]), called the (sample) generalized var- 
iance, is a measure of the dispersion of a p- 

dimensional distribution. The distance of two 
distributions with mean vectors p, and p2, 
respectively, and with common variance Z is 
often expressed by 

which is called the Mahalanobis generalized 
distance. 

When the data consists of (p + q)- 

dimensional vectors 
x 

0 Y 
with q < p, the inter- 

relation of X and Y as a whole can be ex- 

pressed in the following way: Let the covar- 
iance matrix be partitioned as 

and the nonzero roots of the equation Ip.& - 

CvxC& Cxv 1 = 0 be p, , . . . , p4. Then pl”, . , 

4 I”, called the canonical correlation coeffi- 
cients, are the maximal invariant parameters 
with respect to linear transformation of X 
and Y. Also, if we denote the eigenvector cor- 
responding to a root pi by vi, i.e., 

the linear function iY and ~~CvxC.&X are 
called the canonical variates. 

F. Principal Components 

An important problem in multivariate analysis 
is to express the variations of many variables 
by a small number of indices. Principal compo- 
nent analysis is a technique of dealing with this 
problem. 

Let X be a p x n matrix with n column vec- 
tors of p-dimensional data. A linear transform 
ofX,T=AX(Aanrxpmatrix,r<p,Tan 
r x n matrix) is called the principal component 

if A is chosen so as to maximize the sum of 
the squares of the sample multiple correlation 

coefficients of each of the row vectors of X to 
those of T, namely, if A is an r x p matrix 
formed by the r eigenvectors of the sample 
correlation matrix of X corresponding to the r 

largest eigenvalues or any nonsingular linear 

transformation of them. This is a characteriza- 
tion of principal components in terms of cor- 
relation optimality. 

The principal component T = AX is also 
characterized by the information-loss op- 

timality in that all eigenvalues of (X - CY - 
blL)(X - CYbli)’ are simultaneously minimized 
subject to the condition: C is a p x r matrix, 

b is a p x 1 vector and Y is an r x n matrix. 
The solution is given by CY + bl; = A’T +x1;, 

where x=X1,/n. The variation optimality of 
the principal component is given by maximiz- 

ing simultaneously all the eigenvalues of the 
matrix C’(X-ftlb).(X-xlb)‘C, subject to 
the condition that C is a p x r matrix such 
that C’C = I,. The solution is given by C = A’, 

namely, C’X = T [15]. If all the correlations 

between the components of X are positive, the 
largest eigenvalue of the covariance matrix of 
X is simple and positive. All the coefftcients of 

the first principal component (components of 
the eigenvector) can be taken to be positive 

(Perron-Frobenius theorem). 
When we assume normality, the eigenvalues 

of the sample correlation matrix R are the 
tmaximum likelihood estimators of the eigen- 
values of the population correlation matrix, 

and their sampling distributions can be ob- 
tained. A hypothesis relevant to principal 
component analysis is, for example, that the 
smallest p - r eigenvalues of the correlation 

matrix are equal, which can be tested by the 
statistic 

R,-, 

=IRI/(I., . ..i.((p--i,-...-/I,)/(p-r))P-‘), 

where 1,) . ,1, are the r largest eigenvalues of 
R. Under the hypothesis, -clog R,-, (c a con- 
stant) is asymptotically distributed according 

to a chi-square distribution when n+ co. 

Variations of principal component analysis 
can be obtained by taking the eigenvectors of 

the covariance matrix of the raw data or of a 
multiple of it by some weight matrix. 

G. Factor Analysis 

Factor analysis is closely related to principal 
component analysis. We assume a model 

X=BFfU, 

where B and F are unknown p x r and r x n 

matrices of constants (p > r) and U is a p x n 

matrix of independent errors. F is called the 
matrix of factor scores and B the matrix of 

factor loadings. We assume FF’ = nl. If E(UU’) 
= n@ is known, then by applying the least 
squares principle, we can determine B and F 

so as to minimize the trace of (X - BF)‘W’(X 

- BF). Then B is obtained by taking the r 
eigenvectors of Q-r XX’ corresponding to the r 

largest eigenvalues. When @ is diagonal but 
unknown, we can solve the simultaneous equa- 

tion for B and 0, whose solutions are the 
matrix B with columns equal to eigenvectors 
of 6-l XX’ and the diagonal matrix & with 

elements equal to the diagonal elements of 
XXI/n - BB’. 

If we assume that U is normal, the proce- 
dure in the preceding paragraph for the case 
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when @ is known is equivalent to the maxi- 

mum likelihood method. When @ is unknown, 
we can assume further that the columns in F 
are also multivariate normal vectors distri- 
buted independently of U, which implie; that 
the columns of X are also normal vectors with 

the covariance matrix C = BE + a,. B and @ are 
estimated from the sample covariance matrix, 
and the solutions of the simultaneous equation 
for B and @ gives the maximum likelihood 
estimators. However, there is the so-called 
identification problem of determining whether 
for given C and r the decomposition Z= BE’+ 
@ is unique. This problem has not yet been 
completely settled. If the solution & is posi- 

tive definite and @B’ is positive semidefinite, it 
is called proper. When @ is not positive de& 
nite, it is called a Haywood case, and when 

BB’ is not positive semidefinite it is called a 
complex case. Sometimes iterative procedures 
lead to improper solutions. 

H. Canonical Correlation Analysis 

Canonical correlation analysis can also be 
used for descriptive purposes. Sample canon- 
ical variates have various descriptive implica- 

tions. Suppose that q; Y and 5; X are the first 
canonical variates corresponding to the largest 

canonical correlation p:“. Then pl” is the 
largest possible correlation between a linear 
function of X and a linear function of Y and is 
actually equal to the correlation of qi Y and 
4; X. Similarly, the second canonical correla- 
tion is equal to the largest possible correla- 
tion between linear functions in X and in Y 
which are orthogonal to 5; X and qi Y, respec- 
tively, and so forth. 

As a second interpretation of the canonical 
variates, we consider the linear regression 

model 

Y=BX+U, 

where Y, B, U are q x n, q x p, q x n matrices, 
respectively, and rank B = r < q. Then there 
exist an r x p matrix A and a 4 x r matrix C 
satisfying C’Z-‘C = I such that B = CA, where 
E(UU’) = nZ. Putting T = AX, we get a re- 
gression model Y = CT + U, regarding T as a 
matrix of regressor variables. If Z is known, 

least squares considerations lead to minimiz- 
ing tr(Y -BX)‘C-‘(Y -BX) with the condition 
rank B = r. The resulting row vectors of A 

consist of the r eigenvectors corresponding 
to the I largest eigenvalues of the matrix 
S,-,l S,,C-’ S,, and column vectors of C consist 
of the Y eigenvectors corresponding to the r 

largest eigenvalues of the matrix S S’S yx xx xy C-‘. 
If C is replaced by S,,, T = AX and Z = C’S;; Y 

are equal to the matrices of canonical variates. 

If we assume that U is normal, this proce- 
dure is equivalent to the maximum likelihood 
method. It should be remarked that although 

the model here is not symmetric in X and Y, 
the results are symmetric in X and Y, and 
therefore they will be the same if the roles of X 

and Y are interchanged in this model. 

1. Linear Discriminants and Problems of 
Classification 

Let p x ni matrices Xi (i = 1, , k) be the set of 

observations for k distinct populations with a 
common covariance matrix. We determine a 
vector a such that Ti = a’Xi reveals the dif- 
ferences of the k populations as much as pos- 
sible, or, more precisely, so that the ratio of 

the sum of squares between classes of T to the 
sum of squares within classes is maximized. If 
the matrices of the sums of squares between 
and within classes are Qb and Q,, respectively, 
the ratio is equal to 

1= a’Qha/a’Q,,,a, 

which is maximized when a is equal to the 
eigenvector of Q,‘Qb corresponding to the 
largest eigenvalue. The linear function t = 

a’X is called the linear discriminant function. 
When k = 2, a is given by a = Q;’ (x, -x2), 

where x, and x, are sample mean vectors. 
When k > 2, we let A be the matrix formed 
by the r eigenvectors corresponding to the 
first r largest eigenvalues of Q;’ Qbr and set 
Ti= AX,. From this we can construct the r- 
dimensional discriminant function. These 
functions can be used to locate the k popu- 
lations in r-dimensional space, and also to 
decide to which population a new observa- 
tion belongs. For the latter problem we can 
also construct k quadratic functions si = 

(X -x,)‘Q;‘(X - xi), where Xi is the sample 
mean vector of the ith population, and X a 
new observation. Then we can decide whether 
X belongs to the population corresponding to 
the minimum si. Such a method is called a 
classification procedure. 

J. Discrete Multivariate Analysis 

Let X,, be an observed frequency on three 
characteristics, each belonging to ijkth class 

for 1 di<l, 1 <j<J and 1 <k<K. Assume 
that X,, is a sample from multinomial distri- 

bution having pijk as a probability of occur- 
ence for an (t,j, k) cell, where p... = C pijk = 1. 
The multinomial observation X,, with proba- 

bility pijk is called an I x J x K contingency 
table. If we further assume that 
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with the restrictions on parameters ‘&cc, = 
xi xij = Cj rij = 0, similarly on [c’s and y’s and 
xi fi,, = Cj a,, = & fi,, = 0, we say that a 
saturated log-linear model is given. Here the 

number of observations and the number of 
parameters are equal, and no errors can be 
estimated. The parameter fi,-, is called the 
three-factor effect, or equivalently, the second- 
order interaction. Similarly, uij, [(Jk, jr,, are 
called the two-factor effects or the first-order 
interactions. Finally xi, pj, yk are called the 

main effects. A simple model is obtained when 
all the first- and second-order interactions 

vanish. This is equivalent to the independence 
model: ,oijk =pi..p.j.p..k and the maximum like- 
lihood estimators for ,u, xi, pj, yk are obtained 
from fiJk = Xi..X.j,X..k.n3, where n =X . A 
nontrivial model is obtained by putting all the 

second-order interactions equal to zero. The 
likelihood equations for this model are given 

by 

npIj. =X, , np,+ = Xi.k, np.jk=X.j,. (4) 

Bartlett first described a solution of (4) when I 
= J = K = 2. For a 2 x 2 x 2 table, the solution 
can be expressed by Bijk = (xuL k 0)/n because 
of the constraints for Xi,., Xi+, and X.,. Putting 
6 , , 1 = 0 for fiUk yields a cubic equation for 0: 

(X,,,+~)(x,,,+~)(x,,,+~)(x,,,+~) 

=(X,,,-O)(X,,,-O)(X,,,-(I)(X,,,-H). 

For a general I x J x K table, the equations (4) 
have a unique solution within the no-three- 

factor effect model if there exists qiik > 0 satisfy- 
ing (4). The unique solution maximizes the 
likelihood. To solve the likelihood equa- 
tions (4), standard iterative procedures, such 
as the Newton-Raphson method, can be ap- 
plied. However, the following iterative scaling 

method of Deming and Stephan is more useful: 

Xi.k 
nPijk (3m+2)=pF+l)___ 

p;gm+l) ’ 

x.jk np;;km+3)=p!$++)- 
p!?km+2)’ 

J 

The first iteration adjusts pi?) by fitting pro- 
portionally with respect to k so that np$“‘+‘) is 
equal to X,., and similarly for the second and 

third iterations. Starting with any initial values 
satisfying the first-order interaction model, the 
iterative scaling method (5) converges to the 

unique solution of (4) as m+ r*;. 

K. Other Problems 

The sampling distributions associated with the 

procedures discussed here are usually very 

complicated, and often only asymptotic prop- 

erties are known (- 374 Sampling Distri- 
butions). Nonparametric rank analogs of 
many multivariate techniques for normal 

distribution are found in [lS]. Robustness of 
the distributions of test statistics or of latent 
roots is investigated in [3,10,14]. Multivariate 

data analysis is found in [S]. 
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281 (X1X.5) 
Network Flow Problems 

A. Introduction 

The network flow problem is a special kind of 
mathematical-programming problem (- 255 
Linear Programming, 264 Mathematical Pro- 
gramming, 292 Nonlinear Programming), 
where the variables of the objective function 
and the constraints are all defined in terms of a 

graph (- 186 Graph Theory). Owing to its 
special structure, the mathematical properties 
of the network flow problem as well as the 

solution algorithms have been investigated in 
detail. Network flow problems have a variety 
of useful applications in fields such as trans- 
portation, scheduling, and resource alloca- 
tion, and in operations research in general, so 
that they now constitute an important class 

of mathematical programming. By the term 
“network” (Netzwerk in German, rheau in 
French, set’ in Russian) we usually mean a 
graph with some physical attributes attached 
to its edges and vertices. 

B. Basic Form of the Problem 

Let G =( V, E, i;+, d -) be a graph with vertex 
set V, edge set E, and incidence relations a+, 
B- : E-t V, and let R be the field of real num- 

bers. (Most of the statements in the following 
are valid if we take for R an ordered field or 
ordered additive group more general than the 

field of real numbers.) Furthermore, we regard 
the collection E of all functions 5: E-rR as a 
vector space of dimension IEl, denoting t(e,) 

by 5” if E = {e,, , e,}. Similarly, the collec- 
tion fi of all functions w: V+R is a vector 

space of dimension 1 VI. If we define the map- 
ping 6’: V+2E by G’u={eld*e=u} (- 186 

Graph Theory), a linear mapping (7:E+R is 
naturally introduced through the relation 

(X)(4 = Loa+ v <(e)-C,,a-v[(e). A vector <E= 

is called a flow on G if a< = 0. The dual space 
E.* OfE and the dual a* of R are identified 

with the collection of functions 8: E-R and 
that of [: V-R, respectively, under the obvi- 

ous correspondence. Then the linear mapping 
6:R*+E*, which is contragredient to 3, is 
defined by means of the relation (s<)(e)= 
<(Z’e)-[(d-e). A vector FEZ*, which is the 
image of [ under 6, i.e., which satisfies q = SC, 
is called a tension on G, and [ is called the 
potential on G corresponding to the tension 
yl. (Sometimes, t(e) is called a flow in edge e, 

q(e) a tension across e, and <(v) a potential at 
vertex u,) 

A continuous curve C (c R x R) on the 

Euclidean plane R x R is said to be mono- 

tone if(x, -x2)(y, -y,)>O for any (x,,y,), 
(x,,y,)~C. A monotone curve C is called a 

characteristic curve if its projection to each 
coordinate axis, i.e., C, = {x 1 (x, y) E C} and 
C, = { y 1 (x, y) E C}, is a closed interval. For a 
characteristic curve C, two convex functions, 

cp(~)=JC~(~-~ddx and ~(Y)=S&(X-X~W~ 
are defined, where (x,, yO) is a point fixed on 
C and the integrals are taken along (x, y)~ C. 
(It is understood that q(x) = co if x $ C, and 
$(y) = co if y $ C,.) These two functions defined 
for a fixed C are conjugate to each other in 
Fenchel’s sense, and they satisfy v)(x) + $(y) > 

(x-x,,)(y-yo) for any (x,y)~R x R, where the 
inequality reduced to an equality if and only if 
(x, y) E C (- 88 Convex Analysis, 292 Non- 
linear Programming). 

A network N in network flow theory is a 
graph G to each edge eK whose edge set E = 
{e,, , e,} is given a characteristic curve C”. 
On a network N, the following three problems, 
PI, PII, and PIII, are defined. PI: Find a flow 
5 that minimizes Q(t)= C”,=l qn,(t”) under 
the constraints ~“-~(~,)EC~ (IC= 1, . . ..n). 

PII: Find a tension v which minimizes Y (II) = 

Et=1 cp”(q,) under the constraints q, = q(e,)E 
C; (IC = 1, , n). PIII: Find a pair (5, ‘I) of a 

flow 5 and a tension q such that (~“,~JEC“ for 
all K = 1, , n. (With respect to PI or PII, a 

flow or a tension satisfying the “constraints” 
is ordinarily called a feasible flow or tension, 
respectively.) Then, as a special case of the 
(Karush-)Kuhn-Tucker theorem and the dual- 
ity theorem in nonlinear programming, we 

have the following theorems (A) and (B). 
(A) For a given network N, one and only 

one of the following four alternatives is the 
case: 

(i) There is a feasible flow in PI, and at the 
same time, there is a feasible tension in PII. In 
this case, both PI and PI1 have a solution, 
and, for any solution [ of PI and any solution 
9 of PII, the pair ([, 4) is a solution of PIII; 
and, conversely, for any solution (E, 0 of PHI, 
the flow e is a solution of PI and the tension 9 
is a solution of PII. 

(ii) There is a feasible tension in PII, whereas 
there is no feasible flow in PI. In this case, 
@(<) of PI1 is not bounded below for feasible 

tensions 5. 
(iii) There is a feasible tension in PII, whereas 

there is no feasible flow in PI. In this case, 
Y(q) of PI1 is not bounded below for feasible 

tensions q. 
(iv) There is neither a feasible flow in PI nor a 

feasible tension in PII. 
(B) Let Cz=[b”,cK] (b”<c”;b”can be -co, 

and cK, 00) and C;=[rl,,f,] (d, can be --cv, 
and J,, co). Then a necessary and sufficient 

condition for PI to have a feasible flow is that 
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C 1 c” -x2 b” 2 0 for every cutset (cocycle or 
cocircuit) w  of G, where the summation C, 
(resp. CZ) is taken over all the edges eK (E E) 
that lie in w  in the positive (resp. negative) 
direction. Similarly, a necessary and sufficient 
condition for PII to have a feasible tension is 

that C t ,f, - C, d, > 0 for every tieset (cycle or 
circuit) 0 of G, where C I (resp. X2) is taken 
over all the edges eK that lie in fI in the posi- 

tive (resp. negative) direction. 

C. Shortest Paths, Maximum Flows, and 
Minimum-Cost Flows 

We choose one of the edges of G, say e,, as the 
reference edge and assign it the parametric 
characteristic curve C’(a) = {(x, y)l y=x +a). 
Then if there is a feasible flow on the network 
obtained from G by contracting (i.e., short- 
circuiting) e,, and if at the same time there is a 

feasible tension on the network obtained from 
G by deleting (i.e., open-circuiting) e,, then 
problem PI11 has a solution (e(a), q(a)) for 
every real a, and [r<a) and fi,(a) are uniquely 
determined for each a. The problem of deter- 
mining these parametric solutions is the two- 
terminal problem for the two-terminal network 
N, (which is obtained from G by deleting e,) 
with the vertex 3 e 1 as the entrance (or source) 

and the vertex G’e, as the exit (or sink). The 
curve C={([‘(a),tf,(a))Ia~R} enjoys the 
properties of a characteristic curve, and is 
called the two-terminal characteristic of N, 
with respect to the entrance a-e, and exit 
a’e,. A two-terminal network for which only 
the projections to the x-axis Cz = [h”, c’] of 

the edge characteristics are specified (K. = 2, 
. ..) n) is called a capacitated network, and the 

maximum-flow problem for a capacitated 
network N, can be mathematically formulated 
as the problem of determining the projection 
to the x-axis C, = [b, c] of the two-terminal 
characteristics of N, For the maximum-flow 

problem, the relation c = min{C’r c’ -xi b”} 

holds, where the minimum is taken over all 
the cutsets that contain e, in the negative di- 
rection and where C’, (resp. xi) denotes the 
summation over all the edges, except e, , lying 
in a cutset in the positive (resp. negative) direc- 
tion. This relation is called the maximum-flow 
minimum-cut theorem. (A similar relation 
holds also for b.) 

Similarly, or dually, the problem of deter- 

mining the y-projection C, = [d,f] of the two- 
terminal characteristic of a two-terminal net- 

work N, for which the y-projections C; = 
[d,,fJ of the characteristics are specified to 
the nonreference edges e, (K = 2, , n) is a 
network flow formulation of the shortest-path 

problem. For the shortest-path problem, the 
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relation ,f= min {z’, ,f, - C; d,}, called the 
maximum-separation minimum-distance theo- 

rem, holds, where the minimum is taken over 
all the tiesets that contain e, in the positive 
direction and where C’r (resp. C’J denotes 
the summation over all the edges, except e,, 
lying in a tieset in the positive (resp. nega- 

tive) direction. 
The minimum-cost flow problem is to deter- 

mine the two-terminal characteristic of N, 
when all the C” (K # 1) are of staircase form. 

A number of algorithms exist for time com- 

plexity (- 71 Complexity of Computations) 
O(l k’(j) for the shortest-path problem [4]; the 
algorithm proposed by E. W. Dijkstra [7] for 
the case d, < 0 <f, for all IC( # 1) is of complex- 
ity O() VI’). The algorithm of A. V. Karzanov 
[S, 93 for the maximum-flow problem is of 
complexity O(] V13). The minimum-cost flow 

problem can be solved by alternately solving 
the subproblems of the shortest-path type and 
those of the maximum-flow type, but no al- 

gorithm of time complexity polynomial in 1 E 1 
and ( VI has been found. 

D. Transportation and Scheduling 

Let us make the edges of a graph G = (V, E, 
a+, a-) correspond to the transportation 
routes and the flow to the stream of a com- 

modity; impose a capacity constraint of the 
form 0 <g* < cK on the flow gK in each edge err 
and assume a cost function of the form (~~(5”) 

=&t” for each edge. (cK is a constant called 
the capacity of edge e,, and fK is a constant 

called the unit cost of edge e,.) Furthermore, 
let us specify a subset VI (c V) of vertices as 
the set of entrances and another subset V, 
(c V) as the set of exits, where V, n V, = a, 
and prescribe the amount of inflow q(v) to 
each entrance VE VI and the amount of outflow 
q(v) from each exit VE V,, where we must 

have CVEV, q(v)=&,2q(v). Planning a trans- 
portation plan that satisfies all the above- 
prescribed conditions and that minimizes the 
total cost CxtE~JcK) can be reduced to finding 
a minimum-cost flow on the extended network 

G’= (t? E, j’, I?), defined as follows, such that 
the flow in the reference edge is to be maxi- 

mum: P=vu{~}U{t} (s,t$T/), E”=EUE,U 
E,U{e,}(E,nE=E,nE=0,e,~EUE,UE,; 
e, is the reference edge, s’e, = t, a-e, =s; 
E,={eIcj+e=s,s-e=v,v~V,},C(e)={(O,y)l 

y~O)U((x,0)/0~xfq(~-e)}U{(q(~),y)l 
O<y}, where d-e=ueV,; E,={e($+e=v, 

~-e=t,v~1/2},C(e)={(0,y)ly~O}U{(x,0)IO~ 

x < q(v)} U {(q(v), y) IO d y}, where c?+e = UE V,), 

~‘IE=~i,C(e,)=i(O,~)l~d,f,lU{(x,.f,)l 
O~xxcCK)U{(~IC,y)Iy~,f~} for e,EE. 

For the project-scheduling problem with an 
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acyclic graph G = (V, E, a+, 8 ~) as the arrow 
diagram for which the start node SE V and the 
completion node are specified, we make an 
edge I correspond to a job (or activity), 

and a vertex correspond to the event that 
all the jobs corresponding to 6-u have been 
finished, whereas those corresponding to 6’~ 
are ready to commence. Then we interpret 
the negative of the tension of an edge as the 

time (i.e., duration) spent on the correspond- 
ing job and the potential at a vertex as the 
time (i.e., instant) of the corresponding event 

taking place. Furthermore, we assume that 
to each edge eK (or the corresponding job) are 

given the normal duration - d,( > 0), the crash 
duration -f,( > 0, < -d,), and the unit cost 

cK( > 0) we have to pay in order to decrease 
the job time by one unit, where the job time 
necessarily lies between the normal and the 
crash duration. Under the above-listed speci- 
fications, we consider the relation between the 

total project time (i.e., the duration from the 
event corresponding to the start node to that 
corresponding to the completion node) and 

the extra cost to be paid for decreasing the 
project time below the normal one. This prob- 
lem can be reduced to the two-terminal char- 
acteristic problem for the following network 
G: G is obtained from G by adding the refer- 

enceedgee,(J+e,=t,%e,=s);C”={(O,y)l 

Y~d,}U{(X,d,)IO~x~CK}U{(CIC,y)I~~~y~ 

f,~U{(X,f,)ICK~X). 

E. Applications to Combinatorial Optimization 

Many problems in combinatorial optimization 
can be reduced to network flow problems. The 
problem of finding a maximum matching on a 
bipartite graph G (- 186 Graph Theory) is 
reduced to the maximum-flow problem for the 

graph representing the transportation prob- 
lem on G with one of the two vertex sets as 

the entrance set and the other as the exit set, 
where all the edges have a unit capacity and 
the amount of inflow/outflow to/from each 

entrance/exit vertex is equal to unity (the cost 
being irrelevant). (The existence of an integer 
solution to this kind of maximum-flow prob- 
lem is proved constructively on the basis of 
the solution algorithm.) The maximum-flow 
minimum-cut theorem in this particular case 

can be stated as follows: The maximum car- 
dinality of matchings on a bipartite graph 
is equal to the minimum cardinality of ver- 

tex subsets which cover all the edges (this is 
known as the K6nig-EgervBry theorem). The 
Dilworth theorem for a partially ordered set, 

the criterion for the existence of a graph with 

prescribed vertex degrees, etc., are known to 
be reducible to network flow problems [2]. 

F. Generalizations 

The network flow problem may be general- 
ized in various directions. Replacing a graph 

by a matroid (- 66 Combinatorics) or con- 
sidering stronger conditions on the feasibility 
of flows and tensions are natural extensions 
[4,6,10,11]. Another extension is to con- 
sider several kinds of flow, instead of a single 
kind, that simultaneously affect the capacities 
of edges. This latter problem is called the 
multicommodity flow problem in contrast to 
the single-commodity flow problem that was 

treated above [S]. It can be said that any ex- 
tension of the network flow problem aims at 
a mathematical model that has wider appli- 

cation without losing the advantage of having 
simple effective solution algorithms. 
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Networks 

A. Linear Graphs (- 186 Graph Theory) 

A linear graph (or simply graph) is an object 
composed of(i) a finite set {BK} (K = 1, . , n) 
of elements called branches (or edges), (ii) a 
finite set {N,} (a = 1, . . , m) of elements called 
nodes (or vertices), and (iii) an incidence rela- 

tion between branches and nodes represented 
by a function [B,: NJ from {BK} x {iv.} to 
(0, 1, -1) such that for every K, there exist 
exactly one N, with [B,: NJ = 1 and exactly 
one N0 with [B,:N,] = -1, with all the other 

[B,: NJ equal to 0. (Intuitively, a branch B, 
starts from the node N, with [B, : NJ = 1 and 
ends at the node N,, with [B,:N,]= -1.) In 

terms of topology, a (linear) graph is a l- 
dimensional finite tsimplicial complex (- 70 

Complexes, 186 Graph Theory). A network 
in the wide sense is a linear graph whose 
branches and nodes are endowed with some 
physical properties. 

B. Networks 

A contact network, one of the simplest kinds of 
networks, is an abstraction of a circuit whose 
branches correspond to contact points of 
relays and switches that are allowed to take a 
finite number of physical states, e.g., the two 
states “on” and “off.” The theory of contact 

networks is developed by means of +Boolean 
algebra and is applied to switching networks, 
such as telephone exchange networks and the 
logical networks of digital computers. 

In most cases, to the branches B, of a net- 

work two kinds of real quantities i, and E, are 
assigned (which may be variables or functions 
of time) satisfying the conditions: 

(i) f: [B,:N,]i,=O (a=l,...,m); 
K=, 

(ii) there exist E, such that 

In the case of electric networks, where i,, E,, 
and E, are the current in branch B,, the vol- 

tage across branch B,, and the potential at 
node N,, respectively, these conditions are 
known as Kirchhoff’s laws. 

The network flow problem, which has a 
number of practically important applications 
in toperations research (e.g., transportation 
problems, project-scheduling problems) and is 

a special case of tmathematical programming, 

can be formulated as the problem of minimiz- 
ing Cr=lfK(i,) under condition (i) (or minimiz- 

ing C:=, f,(E,) under condition (ii)), where for 
each branch B,, f, is a given tconvex function 
defined on a given interval [a,, b,]. 

C. Electric Networks 

Since there has been a great deal of research 
on electric networks, “network” often means 
“electric network.” We call a branch in which 

the current is a given function of time a cur- 
rent source, and one across which the voltage 
is a given function of time a voltage source. 

A branch that is either a current source or a 
voltage source is called a source branch. A 
network with M source branches is called an 
M-port network. If the currents i, in and the 
voltages E, across the non-source branches 

(n’ in number) are related by 

E,= 2 zKii, @=l,...,n’) 
A=1 

or 

“’ 
i,= c yKAEA (K= 1, . . ..n’). 

A=1 

where the zKi or yKll are linear tintegrodifferen- 
tial operators, the network is said to be linear. 
If zlu = z,~ or yKI = y,,, it is said to be recipro- 
cal or bilateral; if the zK1 or y,, are invariant 
under the change of the origin of time, it is 
said to be time-invariant; and if a linear time- 
invariant network satisfies the condition 

for every t and for every choice of functions 
of time for i, or E, associated with the source 
branches B, in S, provided that the current- 

voltage relations for non-source branches are 
satisfied, then the network is said to be passive. 
Under certain nonsingularity conditions, for 
the currents in and the voltages across the 

source branches (denoted by I, and e,) of a 
linear M-port network, we have the relations 

where the matrices Z,, and Y,, of linear inte- 
grodifferential operators are called the port- 

impedance matrix and the port-admittance 
matrix of the network, respectively. Analysis 
determines ZKI, Y,, from a given linear graph 

and given zKA., y,,, while synthesis finds a net- 
work (i.e., zK1 or yKI, as well as a linear graph) 
when part of Z,,, Y,,, or some relations to be 
satisfied by them are given. (In synthesis, the 

z,~ or yK2, are usually confined to some special 
class.) In analysis as well as synthesis we usu- 
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ally deal with the +Laplace transforms &(s), - 
LKI(4 .&(4, Y,,(s) instead of zKA, YK,, -L K, 
themselves, where the characteristics Z,,(s), 

E,(s) of a network are determined by the 
topological properties of its linear graph and 
the properties of Z,,(S), yKI,(s) as functions of 

the complex variable s. (If w  is the angular 
frequency, s = iw.) 

The following fundamental facts are known 
in regard to analysis and synthesis: 

(1) If Z,,(s), i;;,,(s) are rational functions of s 
holomorphic on the open right half-plane, a 
necessary and sufficient condition, for a net- 
work to be passive is that for arbitrary real 
numbers t,, 

is a positive real function of s, i.e., a function 
whose value is real when s is real and lies on 
the right half-plane when s lies on the right 
half-plane. 

(2) Every passive one-port network can 
be synthesized by using a finite number of 

three kinds of branches, i.e., positive resistors 
(E, = R,i,, R, > 0), positive capacitors (i, = 
C,dE,/dt, C, > 0), and positive inductors 
(E, = L,di,/dt, L, > 0). 

(3) Every passive M-port network (M > 2) 

can be synthesized by using, in addition to the 
three kinds of branches mentioned in (2), ideal 
transformers (an ideal transformer is a pair of 
branches (B,, B,) such that i, = ni,, E, = nE,, 
and n = real number) and ideal gyrators (an 
ideal gyrator is a pair of branches (B,, B,) such 
that i, = E,, i, = -E,); ideal gyrators are not 
needed, however, to synthesize a reciprocal 
network. 

However, very little is known about the 
synthesis of passive M-port networks without 
using ideal transformers and gyrators. Topo- 
logical methods are expected to be powerful 

for such synthesis problems. 
The linear graph structure of a network 

loses its significance if ideal transformers are 
admitted. 
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283 (Xx1.37) 
Newton, Isaac 

Sir Isaac Newton (December 25, 1642-March 

20, 1727), the English mathematician and 
physicist, was born into a family of farmers in 
Woolsthorpe, Lincolnshire. In 1661, he entered 

Cambridge University, where he was greatly 
influenced by the professor who was teaching 
geometry, I. Barrow, and where he began 
research in Kepler’s optics and Descartes’s 
geometry. 

In 1665, he discovered the tbinomial theo- 

rem, and in the same year, during a stay at 
his birthplace to escape the plague, he began 
work on his three great discoveries-the spec- 
tral decomposition of light, the universal law 

of gravity, and differential and integral cal- 
culus. He returned to Cambridge University in 
1667, and in the following year invented the 
reflecting telescope and proposed his theory 
of light particles. During this period, he suc- 
ceeded Barrow as professor and lectured on 

optics. At the same time, he probed deeper 
into the calculus. Guided by Barrow’s insight 

that differentiation and integration were in- 
verse operations and also by his own research 
on infinite series, Newton obtained the tfunda- 

mental theorem of calculus. Leibniz obtained 
the same theorem a little later, and a struggle 
resulted between the two over priority. The 
two discoveries were independent, but because 
Leibniz’s notation was superior, the later 
development of calculus owes more to him. 
The dynamic elucidation of the heliocentric 

theory was accomplished in Newton’s main 
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work, Principia mathematics philosophiae 

naturalis (1686-1687) in which Kepler’s law 
on the movement of the planets, Galileo’s 

theory of movement, and Huygens’s theory 
of oscillation were unified into the three laws 
of Newtonian dynamics. These natural laws, 
which deal with all dynamic phenomena in the 

universe. are the most superlative realization 
of Descartes’s concept of exploring the mathe- 
matical structure of nature; they had an es- 
sential influence on the later development of 

the natural sciences. The style of writing is 
similar to that in Euclid’s Stoicheia. In the 
Principia, Newton also sets forth his philo- 
sophical position. 

In 1695, Newton moved to London and 
became engrossed in theology. He was ap- 
pointed Master of the Mint and was presi- 
dent of the Royal Society from 1703 until his 
death. While he is sometimes said to have 
divorced himself from science, many of his 

notes on geometry date from this time. 
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284 (111.12) 
Noetherian Rings 

A. General Remarks 

In this article, we mean by ring a commutative 
ring with unity element. Thus a Noetherian 
ring is a commutative ring with unity element 

that satisfies the tmaximum condition for its 
ideals; if it is also an tintegral domain, then it 

is called a Noetherian integral domain or 
Noetherian domain (for right and left Noe- 
therian rings - 368 Rings F). 

A ring is Noetherian if and only if every 
prime ideal of the ring has a +linite basis 
(Cohen’s theorem). A ring is Noetherian if it is 

generated by a finite number of elements over 
a Noetherian ring (Hilbert’s basis theorem). 
The following three conditions for a ring R 

are equivalent: (i) R is an Artinian ring, that 
is, it satisfies the tminimum condition for its 
ideals (for right and left Artinian rings - 368 
Rings F). (ii) R is a Noetherian ring and every 
prime ideal of R is a maximal ideal. (iii) There 
exist a finite number of Noetherian rings 
R,(i = 1, . , , n) whose tmaximal ideals are 

tnilpotent such that R is the direct sum of 
the Ri(i = 1, . . . , n). We say that the restricted 
minimum condition holds in a ring R if R/n is 
an Artinian ring for every nonzero ideal a of 
R; the latter condition is satisfied if and only if 
R is either an Artinian ring or a Noetherian 
domain of tKrul1 dimension 1. Every ideal of 
a Noetherian ring R can be expressed as the 
intersection of a finite number of tprimary 
ideals. Given a ring R and an R-module M, a 
submodule P of M is said to be a primary 
submodule of M if every element a of R that is 

a zero divisor with respect to M/P (i.e., there 
exists an m E M/P such that m # 0 and am = 0) 
is nilpotent with respect to M/P (i.e., there 
exists a natural number n such that a”(M/P) 

= 0). 

The property of ideals in Noetherian rings 
stated above can be generalized to the case of 

Noetherian modules: If an R-module M is a 
+Noetherian module, then every submodule of 
M can be expressed as the intersection of a 
finite number of primary submodules. 

Let R be a Noetherian ring, a an ideal of R, 

M a finite R-module, and N and N’ submod- 
ules of M. Then we have (i) the Artin-Rees 
lemma: There exists a natural number r such 

that for all n > r, a”N 0 N’ = anmr. (a’N n N’). 
(ii) Krull’s intersection theorem: r);:, a”M = 
{mEMI3aEasuchthat(l-aa)m=O}(hence, 
in particular, if m is the iJacobson radical or 
R, then nz, m”M= (0). (iii) Krull’s altitude 
theorem: If a is generated by s elements and 
p is a iminimal prime divisor of a, then the 
height of p <s. 

B. Topology Defined by an Ideal 

Let R be a ring, a an ideal of R, and M an R- 
module. Then the a-adic topology of M is 

defined to be the topology on M such that 
{a”M ) JI = 1,2, ) is a tbase for the neighbor- 

hood system of zero. In particular, let R be 
Noetherian, M a finite R-module, and N a 
submodule of M. Then by the Artin-Rees 
lemma, the a-adic topology of N coincides 
with the topology on N as a subspace of M 

with the a-adic topology. Returning to the 
general case, M is a +T,-space (under the a- 

adic topology) if and only if n:i a”M = {0}, 
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or, in other words, if and only if M is a tmetric 
space, where the tdistance d(a, b) between 
points a, b in M is defined to be inf{2-” 1 a - 
bEa”M}. Moreover, if N is a submodule of 

M, then M/N is a TO-space if and only if N 
is a closed subset of M, that is, if and only 

if n.“=i(N + a”M)= N. A sequence {a,} = 
(a,, az, . . , a,, ) is called a Cauchy sequence 
(under the a-adic topology) if Vn 3 N Vr Vs 
(with each of them a natural number) aN+r 
-ahi+,ea”M; for this it is sufficient that 

Vn3NVrQ,+r+, -aN+r E a”M. If this sequence 
converges to zero (i.e., Vn3N Vr u~+~E~“M), 
it is called a null sequence. The set SYJl of all 
Cauchy sequences in M becomes an R-module 

if we define their sum and multiplication by an 
element of R by {a,} + {b,} = {a,+ b,}, c{a,j = 
{~a,,}. Then the set % of all null sequences is 
a submodule of YJI. An element m of M is 
identified with the sequence (m, m, . , m, ), 
and we regard M as a submodule of %II. Then 
the R-module M = !IJI/?lI is the tcompletion of 
M/(n,a”M) (as a metric space under the a- 
adic topology). M IS called the a-adic com- 

pletion of M. If a has a finite basis, then the 
topology of M (as the completion) coincides 
with its a-adic topology. If M = R, we define a 

multiplication in 9JI by {a,} {b,} = {a, b,}. In 
this case, YJI is a ring in which 5% is an ideal, 

and hence the completion R = M is a ring. If 
a = & a,R, then considering the tring of 

formal power series R” = R[ [x1, , x,]] and its 
ideal ii= n~i(~~=l(~i-xi)l? + a”& we have 

Rz &ii. 

C. Zariski Rings 

For a Noetherian ring R and an ideal a of R, 
every element b of R such that 1 -b E a has an 
inverse in R if and only if every ideal of R is a 
closed subset of R under the a-adic topology. 
When this condition is satisfied, the ring R 
with the a-adic topology is called a Zariski 
ring; we often express this by saying that (R, a) 
is a Zariski ring. A Zariski ring is called com- 

plete if it is a complete topological space. The 
completion R of the Zariski ring (R, a) has the 
aR-adic topology, and (R, aR) is a Zariski 
ring. Furthermore, (i) R 1s a tfaithfully flat R- 

module; and (ii) when N is a submodule of a 
finite R-module M, then N is a closed sub- 
space of M (under their a-adic topologies), and 
their completions are identified with N @ RR, 
MQ,R. 

D. Local Rings 

Suppose that R is a Noetherian ring having 
only a finite number of maximal ideals and J is 

the Jacobson radical of R. Then the Zariski 
ring (R, J) is called a semilocal ring. Further- 

more, if R has only one maximal ideal, then 
(R, J) is called a local ring. A ring that has only 
a finite number of maximal ideals is called a 
quasisemilocal ring; if it has only one maximal 

ideal, it is called a quasilocal ring. (In some 
literature, the terms local ring and semilocal 
ring are used under weaker conditions; in the 
weakest case, quasisemilocal rings and quasi- 
local rings are simply called semilocal rings 
and local rings, respectively, and local rings 
and semilocal rings in our sense are called 
Noetherian local rings and Noetherian semi- 

local rings, respectively.) 
Assume that R is a semilocal ring with max- 

imal ideals m, , . . , m, and the Jacobson rad- 
ical J=m, n . . . n m,. For every finite R- 
module M, we introduce the J-adic topology 
as its natural topology. The completion R of R 
is a semilocal ring with maximal ideals m, R, 

“.> m,R and is naturally isomorphic to the 
direct sum of the completions of the local rings 
R,i (i= 1, . . . . n). Since R is a Zariski ring, (1) R 

is faithfully flat; (2) submodules of M are 
closed subsets of M; and (3) the completion of 
M is identified with M @ Rl?. If (R, m).is a 
complete local ring (i.e., a local ring and a 
complete Zariski ring at the same time), then 
R contains a subring I with the following 
properties: (i) I is a complete local ring, and 

1/(nr n I) = R/m; and (ii) for the tcharacteristic p 
of R/m (p is either zero or a prime number), 
m n I = pl. Therefore, if m is generated by n 
elements, then R is a homomorphic image of 
the ring of formal power series in n variables 
over I. This theorem is called the structure 

theorem of complete local rings, and I is called 
a coefficient ring of R. If R contains a field, 
then I is a field, called a coefficient field of R. 
A complete local ring is a +Hensel ring. 

When (R, m) is a local ring and C;=i xiR 

is m-primary, then we have an inequality 

r > (+Krull dimension of R); if the equality 
holds, then we say that x1, . , x, form a sys- 

tem of parameters of R. Furthermore, if m = 
C;=, xiR, then we say that x,, . ,x, form a 
regular system of parameters of R. A local ring 
that has a regular system of parameters is 
called a regular local ring (cf. +Jacobian crite- 

rion). A regular local ring is a tunique factori- 
zation domain. Let d be the Krull dimension 
of a local ring (R, m). Then R is a regular local 
ring if and only if one of the following holds: 

i (1) every R-module has finite thomological 
dimension, (2) every R-module has homolog- 
ical dimension of at most d, or (3) the homo- 

logical dimension of R/m (as an R-module) is 

finite (and actually coincides with d). A Noe- 
therian ring R’ is called a regular ring if Rb.is 
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a regular local ring for every prime ideal p’. A 
regular local ring is a regular ring. 

Consider a local ring (R, m) and an m- 
primary ideal q. Then the length l(n) of R/q” 

(as an R-module) is a function of n. For a 
sufficiently large n, the length l(n) can be ex- 

pressed as a polynomial f(n) in n with rational 
coefficients. The degree of f(n) coincides with 
the Krull dimension d of R. The multiplicity of 
q is (coefficient of nd in f(n)) x (d!). If x1, . . , xd 
form a system of parameters, then (multi- 
plicity of Cf=, xi R) <(length of R/z xi R); if 
the equality holds, then we call x1, . , xd a 
distinct system of parameters. A local ring 
that has a distinct system of parameters is 
called a Macaulay local ring. A local ring is a 
Macaulay local ring if and only if one of the 
following holds: (1) every system of parameters 

is a distinct system of parameters, or (2) if an 
ideal a of height s is generated by s elements, 
then every tprime divisor of a is of height s. A 
regular local ring is a Macaulay local ring. 

The notion of multiplicity can be also de- 
fined in general Noetherian rings [4]. Let R be 
a Noetherian ring. If R,,, is a Macaulay local 
ring for every maximal ideal m, then R is 
called a locally Macaulay ring. Furthermore, if 

height m = Krull dim R for every maximal 
ideal m, then R is called a Macaulay ring. If R 

is a locally Macaulay ring, then the poly- 
nomial ring in a finite number of variables 
over R is also a locally Macaulay ring. In 

general, an ideal a is called an unmixed ideal 
(or pure ideal) if the height of every prime 
divisor of a coincides with height a; otherwise, 
a is called a mixed ideal. Thus if R is a locally 
Macaulay ring, an ideal a of the polynomial 
ring R [x,, . , x,] over R is generated by r 

elements, and height a = r, then a is unmixed 
(unmixedness theorem). 

If the completion of a local ring R is a tnor- 

ma1 ring, then we say that R is analytically 
normal. If the completion of a semilocal ring R 
has no nilpotent element except zero, then we 

say that R is analytically unramified. A semi- 
local integral domain R which is a ring of 
quotients of a finitely generated ring over a 
field is analytically unramified. If R is a normal 
local ring, then R is analytically normal (0. 
Zariski). 

Let (R, nr) be a local ring, and let q be an m- 
primary ideal. Set FL= q’/q’+’ (i =O, 1,2, . , 
q” = R). Let a = a’ (mod q’+‘)E Fi and b = b’ 
(modqj+‘)EQ. We put ab=a’b’(modq’+j+‘)E 

Fi+j. Then the direct sum of modules F= 
CIpu_O Fi becomes a graded ring generated by 
F, over F,, in which F, is the module of homo- 
geneous elements of degree i. F, called the 
form ring (or associated graded ring) of R with 

respect to q, plays an important role in the 

theory of local rings, particularly in the theory 
of multiplicity. 

E. Chains of Prime Ideals 

Let R be a Noetherian ring with prime ideals 

p, q such that p c q. Consider the length n of a 
chainofprimeidealsp=p,~p,~...~p,= 

q which cannot be refined any more. It is 
not true in general that n is uniquely deter- 

mined by p and q (M. Nagata). However, n is 
uniquely determined for a rather large class of 

Noetherian rings, for instance the rings that 
are homomorphic images of locally Macaulay 

rings and, in particular, finitely generated rings 
over a +Dedekind domain. 

F. Integral Closures 

Let R be a Noetherian integral domain with 

the field of quotients k, let K be a finite al- 
gebraic extension of k, and let R be the tin- 

tegral closure of R in K. Then (i) If R is of 
Krull dimension 1, then for an arbitrary ring 

R’ such that R c R’c K and for every nonzero 
ideal a’ of R’, the quotient RI/a’ is a finite 
R/(a’ n R)-module. In particular, R’ is a Noe- 

therian domain satisfying the restricted mini- 
mum condition. (ii) If R is of Krull dimension 
2, then r? is Noetherian. (iii) In general, a is a 

tKrul1 ring, and for an arbitrary prime ideal p 

of R there are only a finite number of prime 
ideals i, of R such that p = @ fl R. For any 
of such @, the field of quotients of r?/@ is a 

finite algebraic extension of that of R/p. Result 
(i) is called the Krull-Akizuki theorem. We say 
that R satisfies the finiteness condition for 

integral extensions if l? is a finite R-module for 
any choice of K. A Noetherian ring R is called 
a pseudogeometric ring, or a universally Japa- 

nese ring, if R/p satisfies the finiteness con- 
dition for integral extensions for every prime 
ideal p. A ring is pseudogeometric if it is gen- 
erated by a finite number of elements over a 
pseudogeometric ring. 

G. History 

J. W. R. Dedekind first introduced the concept 
of ideals in the theory of integers. The main 

objects studied in ring theory were subrings of 
number fields or function fields until M. Sono 
(Merit Coil. Sci. Univ. Kyoto, 2 (1917), 3 (1918- 
19 19)) originated an abstract study of Dede- 
kind domains, which was followed by E. 
Noether (Math. Ann., 83 (1921), 96 (1926)), 

who originated the theory of Noetherian rings. 
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W. Krull made further important contri- 
butions to the development of the theory of 
Noetherian rings and general commutative 

rings [ 11. Many other authors, including E. 
Artin, Y. Akizuki, and S. Mori, also contri- 

buted to the theory. The theory of local rings 
was originated by Krull (J. Reine Angew. 
Muth., 179 (1938)) and developed by C. Che- 
valley (Ann. Muth., 44 (1943)) I. S. Cohen 
(Truns. Amer. Math. Sot., 59 (1946)), and Zari- 
ski (Arm. Inst. Fourier, 2 (1950)), and later by 

many authors, including P. Samuel, Nagata, 
M. Auslander, D. A. Buchsbaum, and J.-P. 
Serre [4]. The theory of Noetherian rings is 

applied to algebraic geometry. 
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285 (VI.1 6) 
Non-Euclidean Geometry 

A. History 

The validity of the fifth postulate of Euclid’s 
Elements, the taxiom of parallels, has been a 
subject of argument ever since it was for- 

mulated (- 139 Euclidean Geometry). At the 

beginning of the 18th century, G. Saccheri 
tried to prove the postulate by assuming the 
validity of other axioms. Under the hypothesis 
that the axiom does not hold, he deduced 

various extraordinary results. Although he 

was mistaken in thinking that he had ob- 
tained a contradiction, his work is regarded 

as a forerunner to the study of non-Euclidean 
geometry. 

At the beginning of the 19th century, N. I. 
Lobachevski! and J. Bolyai opened up the 
impasse by establishing a geometry based on 
postulates that contradict the fifth postulate. 
This geometry is called hyperbolic geometry or 

Lobachevskii’s non-Euclidean geometry. Actu- 
ally, a similar idea had been conceived by C. F. 
Gauss, but he refrained from publishing it 

because of likely misunderstanding by a public 
still strongly influenced by I. Kant’s philoso- 
phy. On the other hand, B. Riemann con- 
structed so-called elliptic geometry (or Rie- 
mann’s non-Euclidean geometry), which is 
different from both Euclidean and hyperbolic 

geometry. Euclidean geometry (including the 
theory of similarity) is sometimes called para- 
bolic geometry. In general, a space satisfying 
axioms that contradict Euclid’s postulates is 
called a non-Euclidean space. 

Around the turn of the 20th century, A. 
Cayley, F. Klein, and H. Poincare constructed 
models of non-Euclidean spaces that are sub- 
sets of Euclidean spaces, and E. Beltrami con- 
structed a differential geometric model. By 
means of these models, it was established that 
non-Euclidean geometries are consistent as 
long as there is no inconsistency in the under- 
lying Euclidean geometries. On the other 

hand, D. Hilbert established a complete system 
of axioms for Euclidean geometry and showed, 
by constructing non-Euclidean models, that 

the axiom of parallels is independent of the 
other axioms (- 155 Foundations of Geom- 
etry). The logical foundation of non-Euclidean 
geometries was thus clarified. Moreover, A. 
Einstein showed in his itheory of relativity 
that actual space-time does not satisfy Eu- 
clidean axioms. Together with Euclidean 
spaces, non-Euclidean spaces are often used 
as fundamental models both in the problem of 
+space forms and in the theory of tsymmetric 

spaces. 

B. Axiomatic Considerations 

Hilbert’s system of axioms of plane Euclidean 
geometry consists of axioms of incidence, 
order, congruence, parallels, and continuity (- 
155 Foundations of Geometry). Specifically, 
the axiom of parallels is stated as follows: 
Suppose we are given a straight line and a 

point in a plane. If the straight line does not 
contain the point, then there exists only one 

line through the point that does not intersect 

the line. 



1071 285 C 
Non-Euclidean Geometry 

The system of axioms of hyperbolic geome- 
try is obtained by replacing the axiom of par- 

allels by the following: Suppose we are given a 
straight line and a point in a plane. If the line 
does not contain the point, then there exist at 

least two lines that pass through the point 
without intersecting the line. (The other four 
groups of axioms are unaltered.) In this case, if 
[ is a given line that does not contain a given 
point C, then there exist exactly two lines 
parallel to 1 that pass through C. We denote 
them by X Yand X’Y’, and they are character- 
ized as follows (Fig. 1): Any line that passes 
through C and lies in L X’C Y necessarily 

intersects I; by contrast, neither the two lines 
X Y X’Y’ nor any line in L XCX’ intersects 1. 

Euclidean geometry can be considered as a 
“limit” of this geometry where the lines XY 
and X’ Y’ coincide. 

s 
X’ Y 

I 

Fig. 1 

In elliptic geometry, the axiom of parallels is 

replaced by the following: Suppose we are 
given a straight line and a point in a plane. If 
the line does not contain the point, then any 
line passing through the point intersects the 
line. In this case, the lines are closed curves, 
and the axioms of order must be modified. 
Specifically, in Euclidean geometry, the axioms 
of order are based on the notion of a point A 
lying between points B and C, where A, B, C 
are distinct points on a line. In elliptic geome- 

try, however, to define order we utilize the 
notion of a pair A, C of points separating 
another pair B, D (and vice versa), where A, B, 
C, D are distinct points on a line. The axioms 
of order are modified accordingly. 

The sum of inner angles of a triangle is 

smaller or greater than two right angles ac- 
cording as we use the axioms of hyperbolic or 

elliptic geometry. 

C. The Projective-Geometric Point of View 

We take tprojective coordinates in an n- 

dimensional, real tprojective space P” and 
consider a quadric hypersurface defined by 
Q:ax~+x~+...+x~=O,a#O(- 90Coordi- 
nates; 343 Projective Geometry). We denote by 
G the group consisting of the totality of pro- 

jective transformations of P” that leave Q 

invariant. We call Q the absolute and call G 
the group of congruent transformations. When 
a ~0, then this Q is a real quadric hypersur- 

face. In this case, there exists a domain H” (the 
totality of points inside Q) whose boundary 
coincides with Q, and the group G acts ttransi- 

tively on H”. The pair {G, H”} provides a 
model of hyperbolic geometry, and the n- 
dimensional hyperbolic space H” is homeo- 
morphic to an n-dimensional open cell. Points 

of H”, points on Q, and points outside Q are 
called ordinary points, points at infinity, and 
ultrainfinite points (or ideal points), respec- 
tively. Two lines on H” are said to be parallel if 
they intersect on the absolute Q. Next, when 

a > 0, the absolute Q is an imaginary quadric 
hypersurface, and the group G acts transitively 
on P”. The pair {G, P”} provides a model of 

elliptic geometry. The n-dimensional elliptic 
space P” is homeomorphic to n-dimensional 
real projective space; hence it is compact. In 
elliptic geometry, any two distinct lines in a 

plane necessarily intersect at a point. The 
above models {G, P”} of non-Euclidean geo- 
metries are called Klein’s models. 

Let {G, H”} be a Klein’s model, A, B distinct 
points in P”, I the line containing A, B, and I, J 
be two points where the line 1 meets Q (Fig. 

2). If we denote by (A, B, I, J) the tanhar- 
manic ratio of these four points, then the non- 

Euclidean distance p between the points A and 
B is given by p = a log( A, B, I, J), a constant. 
Next, let 1, g be lines in H” intersecting at a 
point D. In the plane determined by 1 and g, 
we draw two imaginary tangents u, u to the 
absolute through D. Denoting by (1, g, u, u) the 
anharmonic ratio of these four lines, the non- 

Euclidean angle e between the lines 1 and g is 
given by (3 = (1/2i)log(l, g, u, u), i = J-1. Gen- 
erally, let 0 be a point in the projective space 
P”, and denote by p the tpolar of 0 with re- 
spect to the absolute. By counting the polar 

p doubly, it can be regarded as a quadric 
hypersurface, which will be denoted by S,. A 
quadric hypersurface S of H” is called a non- 
Euclidean hypersphere if it belongs to the tpen- 
cil of quadric hypersurfaces determined by Q 
and S,. S is called a proper hypersphere, a 
limiting hypersphere, or an equidistant hyper- 
surface according as the center 0 is an ordi- 

J 
I .3 R 

X 

@ 

Y’ 
c 

x ’ I Y 

Fig. 2 
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nary point, a point at infinity, or an ultrain- 
finite point, respectively. In the case of ellip- 
tic geometry {G, P”}, the distance p between 
two points A and B is given by p =(a/i) 
log(A, B, I, J) as I, J are imaginary points. 

Moreover, we may get parabolic geometry as 
the “limit” (a-r co) of the geometry given by 
Klein’s models. 

D. The Conformal-Geometric Point of View 

Let s” be an n-dimensional tconformal space. 
If we take suitable (n + 2)-hyperspherical co- 
ordinates in S”, the space S” can be realized as 
a quadric hypersurface x: + xi + . . +x,’ - 
2x,x, =0 in (n + I)-dimensional real projec- 
tive space P”+‘. A point in P”+l represents a 
hypersphere in S” (- 76 Conformal Geometry; 

90 Coordinates). We denote by G the group 
consisting of the totality of +Mobius trans- 
formations leaving invariant a (real, point, or 

imaginary) hypersphere Q. When Q is a real 
hypersphere, the space s” is divided into Q and 
the two open cells H”, Hz. If we denote by G 
the totality of transformations of the group i? 
that do not interchange H” and Hi, then G is a 
subgroup of index 2 of G. In this case, each of 

the pairs {G, H”} and {G, HG} provides a model 
of hyperbolic geometry. When Q is a point 
hypersphere, the space E” obtained from S” by 

omitting the point Q is homeomorphic to an 
open cell, and the pair {G, E”} provides a 
model of parabolic geometry. On the other 
hand, when Q is an imaginary hypersphere, G 
is isomorphic to the torthogonal group O(n + 
1). We call the pair (c, S”} a spherical geom- 
etry and S” an n-dimensional spherical space. 
In this case two points x and x’ are called 
equivalent if x’ is the image of x by symmetry 

with respect to Q. The space P” obtained 
from S” by identifying equivalent points is 
homeomorphic to the n-dimensional real 

projective space. If we denote by G the group 
obtained from G by making its actions effec- 
tive on P”, then G is the factor group of G by a 
cyclic group Z, = Z/22. The pair {G, P”} pro- 
vides a model of elliptic geometry. These 
models are called PoincarC’s models. They 
were introduced as a result of research on 

tautomorphic functions in the case n = 2. 
In Poincare’s model, every straight line is 

represented either by a circle orthogonal to Q 
or by a circle passing through Q according as 
Q is a (real or imaginary) hypersphere or a 

point hypersphere. In spherical geometry, 
however, straight lines are usually called great 
circles, and two distinct great circles lying on a 
2-dimensional sphere necessarily intersect at 

two points that are symmetric with respect to 
Q. Also, in Poincartt’s model the distance 

between two points A and B is defined as 

before, by making use of the anharmonic ratio 
of four points A, B, I, J on a circle (Fig. 3) (- 

74 Complex Numbers G). 

Q J 

I B 
A 

@ 

C 
X Y’ 

1 

X’ Y 

Fig. 3 

E. The Differential-Geometric Point of View 

An n-dimensional space M of tconstant curva- 
ture is by definition a +Riemannian manifold 

whose line element ds is given by 

ds2 = 
dx:+dx;+...+dx,2 

l+$x:+x:+...+x;) 
> 

with respect to appropriate local coordinates, 
where K is a constant called the tsectional 

curvature (- 364 Riemannian Manifolds). 
According as K is positive, zero, or negative, 
M can be considered locally as an elliptic 

space, Euclidean space, or hyperbolic space, 
respectively. In this case, lines are tgeodesics 
of M, and the non-Euclidean distance and 
non-Euclidean angle are those defined in the 
Riemannian manifold. When n = 2, a tsim- 

ply connected and +complete space of posi- 
tive constant curvature is tembedded in 3- 

dimensional Euclidean space as a sphere, and a 
space of negative constant curvature is tlocally 
isometric to a pseudosphere (Fig. 4) which is a 
surface of revolution obtained by rotating a 
ttractrix around its asymptote. +Complete n- 

dimensional spaces of constant curvature 

(n > 2) are called space forms. A simply con- 
nected space form is necessarily one of spher- 

ical space, Euclidean space, or hyperbolic 
space. Each of these is a iuniversal covering 

manifold of a general connected space form 
with a curvature of the same sign, and the 

group of icovering transformations is isomor- 

Fig. 4 
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phic to a tdiscontinuous subgroup of the 

group of congruent transformations. 
Each of the spaces, Euclidean, non- 

Euclidean, and spherical, is a thomogeneous 

space on which the corresponding group of 
congruent transformations acts transitively. 

Actually, each of these spaces has the structure 
of a tsymmetric Riemannian homogeneous 

space of rank 1. 
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286 (X11.21) 
Nonlinear Functional 
Analysis 

A. General Remarks 

At present, the theory of nonlinear problems is 

still not unified, and many individual results 
obtained for specific classes of problems are 
stated in the languages of the corresponding 
fields of study. However, there are some funda- 
mental facts and methods of a general nature 
concerning nonlinear problems, which may be 

referred to as the subject matter of nonlinear 
functional analysis. 

B. Iterative Methods 

Let X be a +Banach space. Consider a non- 
linear mapping G:X+X and the equation 

Gx=O (xEX). (1) 

Set F = 1 - G. Then (1) can be written as 

x=Fx. (4 

F satisfies the Lipschitz condition if there exists 

a constant GI such that 

IIFx--Y// <4x-Yll (3) 

for all x, y in X. In particular, the mapping F 
is said to be nonexpansive if 0 < a < 1. If 0 < a < 
1, then F is called a contraction. (Sometimes 
a nonexpansive mapping is also called a con- 

traction.) A contraction F satisfies the contrac- 
tion principle: F has a unique fixed point x0, 
and the iteration 

x nt, = f’s (n=1,2,...) 

with an arbitrary initial element xi always 
converges to x0 [l-3]. Similar results hold for 
a contraction that is defined only on a +ball 

and leaves the ball invariant. This leads to 
+Newton’s iterative process and the timplicit 
function theorem. 

C. Methods of Monotonicity 

By definition, a nonlinear mapping G from a 
tHilbert space H to H is a monotone or accre- 

tive operator if 

Re(Gx-Gy,x-y)>O (x,y~H). 

G. Minty [4] proved that if G: H-H is mono- 

tone and continuous, then iI + G is a mapping 
onto H for any i > 0, and its inverse @I+ G) ml 
is nonexpansive. He has also shown that in the 
hypothesis of the theorem, we can replace the 

continuity requirement for G by maximality of 
G within the class of accretive operators that 

are possibly multivalued. Various develop- 
ments of Minty’s ideas, including generaliza- 

tion of his results to Banach spaces and appli- 
cations to partial differential equations, have 
been obtained by F. Browder (Amer. Math. 

Sot. Proc. Symposia in Appl. Math., 17 (1965)), 
J. Leray and J. L. Lions (Bull. Sot. Math. 
France, 93 (1965)), J. L. Lions [S], W. Strauss, 
H. Brezis (Amer. Math. Sot. Proc. Symposia in 
Pure Math., 18 (1970)), and others. 

A mapping A is said to be dissipative if -A 
is accretive. Dissipative mappings play a cen- 
tral role in the theory of nonexpansive semi- 
groups (- Section X). 

D. Topological Methods 

In the geometric study of ordinary differen- 
tial equations [6] some familiar theorems of 
topology and tdifferential topology have been 
strong tools, e.g., +Brouwer’s fixed-point theo- 
rem is utilized to establish the existence of 
periodic solutions. However, in order to deal 
with nonlinear partial differential equations we 

have to generalize these theorems to infinite- 

dimensional cases. For example, a fixed-point 
theorem in an infinite-dimensional space was 
first obtained by G. D. Birkhoff and 0. D. 
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Kellogg (Trans. Amer. Muth. Sk., 23 (1922) 

95- 115). The theory of the degree of mappings 
was generalized to the case of Banach spaces 
by J. Leray and J. Schauder [33] for the class 
of mappings of the form I-F, where F is a 

compact continuous mapping, i.e., the image 
by F of any bounded set is relatively compact. 
Let D be an open bounded set in a Banach 
space X and 8D be its boundary. Let F: 0+X 

be a continuous compact mapping and @ 
denote I-F. If a point p in X does not be- 
long to @(aD), then we can define the Leray- 

Schauder degree cl(@,, p, D) of @ relative to p 

[l-3]. The Leray-Schauder degree d(@, p, D) 

is an integer with the following properties: (i) 
d(l,p,D)= 1 ifpED. Ifp$@(D), then d(@,p,D) 

=O. (ii) (Homotopy invariance) d(@, p, D) de- 
pends only on the compact homotopy class of 
@:dD+X\{p}.Moreprecisely,let K:[O,l]x 
aD+X be a continuous compact mapping 
such that x + K (t, x) #p for any t E [0, 11 and 
any XE~D. Let @,,(x)=x+K(O,x) and @i(x)= 
x+ K(l,x). Then d(@,,p, D)=d(@,,,p,D). (iii) 
If p and p’ are in the same component of 
X\@(aD), then d(O, p, D) = d(@, p’, D). (iv) (Con- 
tinuity) d(@, p, D) is a continuous locally con- 

stant function of Q, (with respect to uniform 
convergence) and of p~x\@(o’D). (v) (Domain 
decomposition) If D is the union of finite num- 

ber of open disjoint sets Dj (j = 1,2, . , N) 
with aD,caD and @(x)#p on u,“=, aDj, then 
d(@, p, D) = C,t, d(@, p, Dj). (vi) (Excision) If A 
is a closed subset of D on which Q(x) # p, then 
d(@, p, D) = d(@, p, D \A). (vii) (Cartesian prod- 
uct formula) If X =X, @ X, with Di c Xi, @ = 

(@,,(IQ with Qi:Di+X, (i= 1,2), D=D, x D,, 

and ~=(~,,~~),thend(~,~,D)=d(~,,,p,,D,)x 

d(@,,, pz, D2), provided that the right-hand 

side is well defined. 
The degree of mapping of @ is also defined 

for some proper Fredholm mapping @ (- 

Section E; K. D. Elworthy and A. J. Tromba 

C381; 1321). 
Brouwer’s fixed-point theorem (- 153 

Fixed-Point Theorems) is generalized to 
Schauder’s fixed-point theorem: A compact 

mapping F of a closed bounded convex set K 

in a Banach space X into itself has a fixed 
point. Using the Leray-Schauder degree 
theory, one has the Leray-Schauder fixed-point 
theorem: Let D be a bounded open set of a 

Banach space X containing the origin 0. Let 
F(x, t): D x [0, 11 +X be a compact mapping 
such that F(x,O)=O. Suppose that F(x,t)#x 

for any XE~D and t~[0, 11. Then the compact 
mapping F(x, 1) has a fixed point x in D [l-3]. 

Other homotopy invariants, such as +homo- 
topy groups and +cohomotopy groups, are 
also used in nonlinear functional analysis 

[l, 31. For instance we have the following 

theorem of Shvarts (1964) 131: Let X and Y be 
two Banach spaces. Let D= {XEX 1 IlxII < 1) be 

theunitballandi;D={x~XI~~xll=l}bethe 
unit sphere of X. Suppose L is a fixed continu- 
ous linear +Fredholm operator from X to Y 

of index p 2 0. Let PL be the set of compact 
perturbation of L mapping 8D into Y 10, i.e., 
PL = {@ = L + K 1 K is a continuous compact 
mapping of dD to Y such that Q(x) = Lx + 
K(x)#O for x~c?D}. Two mappings Q,, and 
@, in PL are said to belong to the same com- 
pact homotopy class on SD if there exists a 
continuous compact mapping h: [0, l] x ciD+ 

Y such that Lx + h(t, x) # 0 for x in dD, Qo(x) = 

Lx+ h(0, x), and Q,(x)= Lx+ h(1, x). 

Shvarts’s theorem: Let L be a fixed continu- 
ous linear Fredholm mapping from X to Y 
of index p 3 0. Then the compact homotopy 
classes on 8D of PL are in one-to-one corre- 
spondence with the elements of the pth stable 

homotopy group 7c,,+,,(s”) (nap+ 1) (- 202 
Homotopy Theory H). 

Warning: The topological structure of an 
infinite-dimensional Hilbert or Banach space is 

quite different from that of a finite-dimensional 
Euclidean space. For instance, let X be a Hil- 

bert space of infinite dimension, and let D = 

1~~x1 IIxi/ < 1) be its unit ball and tYD= 

(x6X 1 11x// = I} be the unit sphere of X. S. 

Kakutani (Proc. Imp. Acud. Tokyo, 19 (1943)) 
gave a fixed-point free continuous mapping 
of D into itself if X is separable [l-3]. Thus 
naive generalization of the Brouwer tixed- 

point theorem is no longer true in infinite- 
dimensional spaces. V. Klee and C. Bessaga 
[ 171 proved that the unit sphere dD is C” - 
diffeomorphic to X for an arbitrary Hilbert 
space X of infinite dimension. N. H. Kuiper 

proved that the group of invertible continuous 
linear operators on X is contractible if X is 
separable [3]. All this is in striking contrast 
to the well-known facts for finite-dimensional 
spaces (- 202 Homotopy Theory, 427 Topol- 

ogy of Lie Groups and Homogeneous Spaces). 
This is the reason why compactness assump- 

tions are made in the theorems mentioned 
above. 

E. Calculus in Banach (or Locally Convex) 

Spaces 

When one considers a nonlinear operator, 

it often happens that the domain and the 
range are neither linear spaces nor their open 
subsets. The domain might be a space of all 
smooth mappings of a compact manifold into 

another, and so might be the range. Such 

spaces have no linear structure, and hence 
linearity or semilinearity do not make sense in 



1075 286 H 
Nonlinear Functional Analysis 

general. The concept of infinite-dimensional 
manifolds is therefore introduced of necessity 

in nonlinear functional analysis. 
Definition of differentiable mappings. Let E 

and F be real Banach spaces and let L(E, F) 

(= L(E) if E = F) be the Banach space of all 
bounded linear operators with uniform oper- 

ator norm. Let U be an open subset of E and 
x a point of U. A mapping (= nonlinear oper- 

ator) f of U into F is called Gdteaux differ- 

entiable at x if lim,,,, t -‘(,f’(x + ty) -f(x)) = 
df(x, y) exists for any YE E. df(x, y) is called the 

GIteaux derivative of ,f at x. ,f is called F&bet 
differentiable at x if there exists a linear oper- 
ator AcL(E, F) such that lim,,, ll.f’(x+y)- 
,f(x)- Ayll/Ilyll =O. A is called the Frkchet 
derivative of .f‘ at x and is denoted by @‘(x) or 
,f’(x). ,f is FrCchet differentiable in U if and 
only if it is Gateaux differentiable, df(x, y) 

is linear in y, and supYzO lldf(x,y)ll/llyll is 
bounded [lo]. 

Let U be an open subset of E. A mapping 
,f of U into F is said to be of class Co if it 
is continuous and to be of class C’ if it is 
Frkchet-differentiable at each point XE U and 
the differential c(f’(x)~L(E, F) is continuous as 
a mapping of U into L(E, F). The differential 
df(x) is also called the linearized operator. If 
the mapping df: U-tL(E, F) is of class c’-l, 
then ,f is said to be of class c’. d(d’-‘f)(x) is 
written as d”f(x), and called the rtb differential 
at x. d’f(x) is an r-linear, bounded, symmetric 
operator of E x x E (r times) into F. ,f is said 

to be of class C” if J’is of class C’ for every Y. 
For an open subset I/ of F, f: U--t V is called a 
C’ diffeomorphism if ,f is a bijection and both J 
and .f-’ are of class c*. 

A C’ mapping ,f of U into F is called a Fred- 
holm mapping (Fredholm map) if df(x) E L(E, F) 

is a linear +Fredholm operator for every XE CJ. 

Since Inddf(x) is constant if U is connected, 
that integer Ind df(x) is called the index of 1: 

F. Taylor’s Theorem and Its Converse 

Let f: U + F be of class c’ (r > 1). A general- 
ized Taylor theorem claims that ,f can be ap- 
proximated by a polynomial mapping: Let 
XE U and YE E be sufficiently close to 0 so that 
x+tygU for O,<t< 1. Then 

.f(x + Y) =k$o $wX)~Y. ” > Y) + 
s 

‘(l-t),-’ 
o (r-l)! 

x jd’f(x + ty) -d’,f’(.4) (Y, . , W. 

Let I&,(E, 5’) be the Banach space of all k- 

linear, bounded, symmetric operators of E x 

. x E into F with the uniform topology. If for 
every k, 0 <k < r, there exists a continuous 

mapping (Pi: U + L&,,(E, F) such that 

at every XE U and y sufficiently close to 0, then 

f: U +F is of class c’, and dkf(x) = pk(x). 

G. The Implicit Function Theorem 

Using the notation above, let ,f: CJq V be of 
class c’, r 2 I, and assume that OE U, OE V, and 
,f(O) = 0, where 0 is the origin of E or F. Sup- 
pose there is an AE L(F, E), called the right 
inverse of @f(O), such that df(O)A = 1, (the iden- 
tity). Then the following assertions hold: (i) 
The image of F under A, AF, is a closed sub- 

space of E, and E = Ker @(O) @ AF. (ii) There 
are neighborhoods U, , U,, V’ of the zeros 
of Kerdf(O), AF, F, respectively, such that 

U, @I Ui, c U and such that the mapping g : 
U, @C/-U, @ v’defmed by g(u,v)=(u,f(u,r;)) 
is a Gdiffeomorphism. Therefore, denoting the 
inverse of g by h = (h 1, h,), we have h, (u, w) = u 
and f(u, h,(u, w)) = W. The latter means that the 
nonlinear equation f(u, V) = w  can be solved 
with respect to II. 

H. Existence and Uniqueness of Integral 

Curves 

Using the notation above, let ,f be a c’ map- 
ping (r 3 1) of U into E. Since U x E is the +tan- 
gent bundle of U, (x,.f’(x)) can be regarded as a 
c’ tangent vector field on U. The equation of 
+integral curves is (d/dt)x(t)=f(x(t)). A local 
existence and uniqueness of solutions is stated 
as follows: For an arbitrarily fixed XE U, there 
are E > 0 and an open neighborhood W of x 

such that there exists uniquely a C’ mapping h 
of W x (-6, E) into U satisfying (d/dt) h(w, t) = 

f(h(w, t)) and h(w, 0) = w. 

Using this fact, one can prove the Frobenius 
theorem: Let E’ be a closed linear subspace of 

E with a direct summand E”, and let ,f: UA 

L(E’, E”) be a C’ mapping (r > I) such that 
,f(O) = 0. To each XE U one associates a closed 
linear subspace D,={(u,f(x)t~)~u~E’}. The 
disjoint union D = lJxaO D, can be regarded as 
a subbundle of the tangent bundle U x E. A 
mapping ii of LJ into E is called a cross sec- 
tion of D if G(x)E D, for every XE U. D is called 
involutive if for any two C’ cross sections ~2, 6 

of D, the Lie bracket product [G, 61 defined by 
[tz,C](x)=dd(x)(C(x))-dC(x)(C(x)) is again a 
cross section of D. Now suppose D is an in- 

volutive subbundle of U x E. Then for an arbi- 
, trarily fixed x E U, there are a neighborhood W 
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of x and a c’ diffeomorphism h of W onto a 
neighborhood of 0 of E such that dh(x)(D,) = 

E’. This fact shows that an involutive sub- 
bundle can be trivialized by a suitable change 
of local coordinate systems. 

I. Local Theories on Locally Convex Spaces 

All local theories mentioned in Sections E-H 

are constructed on Banach spaces. However, it 
is important in concrete applications to con- 

struct these theories on a wider class of locally 
convex topological linear spaces. 

Let E, F be tlocally convex topological 
linear spaces, and let U be an open subset of E. 
A mapping f: U + F is said to be of class Co if 
it is continuous. 1 is said to be of class c’ if f 

is of class c’-’ and the following is fulfilled: 
For every XE U, there is an r-linear continuous 
symmetric mapping d’f(x) of E x . x E into F 
such that d*f: U x E x . x E + F is continuous. 
If we put 

F(y)=f(x+y)-f(x)--f(x)(y)--... 

for every y sufficiently close to OE E, then the 
mapping G defined by 

t # 0, 
t=o @eR) 

is continuous at (0, O)ER x E. The definitions 
of C” mappings and c’ diffeomorphisms are 
given as in Section E. 

J. Implicit Function Theorems in Locally 
Convex Spaces 

The implicit function theorem does not hold 
in general locally convex spaces. However, 

since it is useful for nonlinear problems, sev- 
eral sufficient conditions are presently being 
studied. The following are some of them. We 

assume that f: U+ F is a C’ mapping (r > 1) 
such that f(0) = 0 and that df(0) : E + F has a 

continuous right inverse. 
(i) If dim F < co, the implicit function theo- 

rem holds just as in Section G. 
(ii) An implicit function theorem that can 

be applied to nonlinear elliptic differential 
operators can be restated as follows. Suppose 
E, F are tprojective limit of families of Banach 
spaces {Ek,k>d}, {Fk,k>d} and U=EflUd, 

where Ud is an open subset of Ed. If f: U + F 

can be extended to a c’ mapping (r 3 2) of 
Ek fl Ud into Fk for every k > d, if f satisfies the 
following inequalities, called a linear estimate 

with respect to 1 Ik: 

+pk(b~kkl)~ulk-l> k>d, 

+lYldl”ldlulk)+Pk(lYlk-l)IUlk~lIulk-l, k>d, 

(4) 

where I Ik is the norm in Ek or Fk, C is a posi- 
tive constant independent of k, and Pk is a 

polynomial with positive coefficients, and if a 
right inverse A of df(0) satisfies the inequality 
of GBrding type, 

IAulktC’lulkfDklulk-,, k > d, (5) 

where C’ > 0 independent of k and Dk > 0, then 
the implicit function theorem holds just as in 
Section G, and the obtained mapping h satis- 
fies the same inequalities as (4) [ 111. 

(iii) Nash-Moser implicit function theorem. 
Though linear estimates such as (4) hold for 
many differential operators, the second in- 

equality (5) is sometimes out of order, espe- 
cially if f is a nonlinear hyperbolic operator. 
However, one can often obtain instead of (5) 
a weaker inequality: 

IAUlk~C’IUlk+,+Dklulk+~~~, s > 0. 

J. Nash [37] and J. Moser [ 123 approximated 
such an operator A by some smoothing oper- 
ators and proved an implicit function theo- 
rem under a certain additional condition. 
The Nash-Moser implicit function theorem 

was successfully applied to many difficult 
problems, e.g., the embedding problem of 

Riemannian manifolds [37], the small divi- 
sor problem of celestial mechanics [36], free 
boundary problems (e.g., L. H6rmander Arch. 
Rational Mech. Anal., 62 (1976), l-52), and 
other problems (e.g., S. Klainerman, Comm. 
Pure Appl. Math., 33 (1980), 43-101; M. Kura- 
nishi, Amer. Math. Sot. Proc. Symposia in Pure 

Math., 30 (1977), 97-105). 
(iv) Analytic implicit function theorem. In 

cases (ii) and (iii), the spaces E, F were given 
as projective limits of Banach spaces. On the 
contrary, H. Jacobowitz considered the case 
where E, F are tinductive limits of Banach 

spaces. For instance, the space E of the 
smooth functions can be approximated by a 
family of Banach spaces {E, I E > 0) of all real 
analytic functions with E as the radius of con- 
vergence. Under this circumstance, certain 
conditions for f and the right inverse of df(0) 
yield an implicit function theorem [ 131. 

(v) Mather’s implicit function theorem [14]. 
The difficulty of implicit function theorems in 

Frkchet spaces is concentrated in the following 
fact: Even if df(0) has a right inverse and even 
if x is sufficiently close to 0, df(x) may not have 
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a right inverse. If the implicit function theorem 

holds, such a phenomenon should not happen. 
In cases (ii)-( several functional-analytic 
conditions exclude this pathological phenom- 

enon. In some special cases, these conditions 
can be replaced by algebraic ones. J. Mather, 
using his division theorem, proved an im- 
plicit function theorem that was applied to th? 
theory of singularities. 

K. Infinite-Dimensional Manifolds 

A Hausdorff space M is called a c’ Banach 
manifold modeled on a Banach space E if the 
following conditions are satisfied: (a) M is 

covered by a family of open subsets { UOL}aEA. 
For each U, there are an open subset V, of E 
and a homeomorphism $, of U, onto V,. Such 
a pair is called a local coordinate system or a 
local chart of M. (b) If U, n U, # 0, t,kr$pl 
is a C’-diffeomorphism of $p(Um n U,) onto 
$,(U= n Up). (c) The index set A is maximal 
among those that satisfy (a) and (b). 

If M (resp. M’) is a c’ Banach manifold 
modeled on E (resp. E’), then so is M x M’ 

modeled on E @ E’. A mapping f: M + M’ is 
said to be of class C’ if f expressed through 

local coordinate systems is of class c*. 
Suppose M is covered by a family of local 

charts {(r/,, Ic/,)},,A. On the disjoint union 

u 3CA CJ= x E, define an equivalence rela- 
tion - as follows: For (x, U)E U, x E, (y, U)E 
Up x E, (x, u) -( y, v) if and only if x = y and 

rl($c$p’)(x)u = u. The set of equivalence classes 
is called the tangent bundle of M, which will 
be denoted by T,. There is another definition 
of the tangent bundle which uses the ring of 

c’ functions on M. However, since E is not 
reflexive in general, the latter gives us a differ- 
ent vector bundle. 7” is a c’-’ Banach mani- 
fold modeled on E @ E. The correspondence 

which sends (x, U)E UGLEA U, x E to x induces a 
c’-’ mapping of T, onto M, called the pro- 
jection of T,, denoted by T[. 

A topological group G is called a Banach- 
Lie group if G is a C” Banach manifold and 
the group operation (9, h)+g-’ h is a C” 
mapping of G x G into G. If E is a Banach 
space, then CL(E), the group of all invertible 

bounded linear operators, is a Banach-Lie 
group under the uniform topology. If E is a 
Hilbert space, then the group of all unitary 

operators is also a Banach-Lie group under 
the same topology. 

The concepts of manifolds and Lie groups 

are similarly defined when the model space 
is a Hilbert space or a FrCchet space. These 
are called a Hilbert manifold and a FrCchet 

manifold, respectively. For some differential 

topologies on separable Hilbert manifolds - 
279 Morse Theory E. 

L. Structures on Infinite-Dimensional 
Manifolds 

Suppose M is a C’+’ Hilbert manifold 
modeled on E. At each XE M, the tangent 
space T,M = n-l(x) is a Hilbert space, linear- 
homeomorphic to E. M is called a C’ Riemann- 
ian manifold if there is defined an inner prod- 
uct (u, o), on each T,M such that ( ., .), is of 

class c’ with respect to x. Existence of such a 
structure is ensured by using a partition of 
unity if M is paracompact. 

Let M be a c’ Banach manifold (r > 1) 
modeled on a Banach space E. Each tangent 

space T,M is linear homeomorphic to E. M is 
called a C’ Finsler manifold if there is a norm 
1~1, defined on each T,M such that 1 IX is 
continuous with respect to x. A paracompact 
C’ Banach manifold can have a C’ Finsler 
structure. 

Let M be a P2 FrCchet manifold (r>O) 
and C”‘(M), P+’ (T,) the spaces of all c*+’ 
functions and of all C’+’ vector fields on M, 

respectively. A bilinear mapping V of r’l (T,) 
x P1 (T,) into Y( T,) is called an affine 

connection on M if V satisfies V,;a= f V,i?, 
V,f1?=($)6+fV,6 for every d, U”E T’+‘(T,), 

fc C”“(M). For an afine connection V, T(ci, 6) 
= V,6 - V,u” - [I?, 51 is called the torsion tensor, 
and R(ii, 6) = V,V, - V,V, - V,,, a, is called the 

curvature tensor of V. If M is a Riemannian 
manifold, then there exists a unique afflne 
connection without torsion which leaves the 
Riemannian inner product parallel. 

M. Local Linearization Theorems 

Let M be a C’+’ Banach manifold (r > 1) 
modeled on E. Let C be a c’ vector field on M 
such that ii(x)#O at XE M. Then there are a 
neighborhood Ux of x and a c’ diffeomor- 

phism $ of U, onto an open subset V of E 
such that ~I,&(I,!I-‘(y))=(y,u), UEE, for every 
yeV, where v does not depend on y. 

N. Morse Lemma 

Let M be a C’+2 Hilbert manifold and f be an 
R-valued P2 function. Suppose x is a critical 
point of ,J i.e., df(x) = 0. x is called a nondegen- 
erate critical point if d2f(x) is a nondegenerate 
bilinear form. For such x there are a neighbor- 
hood UX of x and a C’ diffeomorphism $ of U, 

onto an open neighborhood of 0 of the model 
space E such that $(x) = 0, and f($ -l(y)) = 

[PY(~--)(~ -P)yl’, where P is an orthogonal 
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projection in E. i, = dim( 1 - P)E (0 < i, < cc) is 
called the index of the critical point x off: 

0. Submanifolds 

A subset N of a C” Banach manifold M mod- 
eled on E is called a C’ submanifold if at each 

point XE N there are a neighborhood Ux of 
x and a C’-diffeomorphism $ of U, onto an 

open neighborhood V of 0 of E such that $(x) 
=Oand$(U,nN)=VnF,where Fisaclosed 

linear subspace of E. There are some other 
definitions of submanifolds. One of them re- 
quires in addition that F be a direct summand 
of E, and another uses instead of U, f’ N its 
connected component containing x. In the 
latter definition, a submanifold is not neces- 
sarily locally closed. 

P. Sard-Smale Theorem 

Although it is not easy to define nontrivial 
measures on infinite-dimensional manifolds, 
the concept “almost everywhere” can some- 
times be replaced by that of residual sets. 
A subset of a topological space is called a 
iresidual set if it contains an intersection of 
countably many open dense subsets. A re- 
sidual set in a complete metric space or in 

a +Baire space is dense. S. Smale [ 153 ex- 
tended Sard’s theorem to infinite-dimensional 
manifolds as follows: Let M, N be c’ Ba- 
nach manifolds and f: M + N be a C’ Fred- 

holm mapping. If M is separable and r > 

max{O, Ind(df(x))} for each XE M, then R,= 

N-f(C) is a residual subset of N, where C 
is the set of critical points off, i.e., a point x 
where LEJ’(x) is not surjective. 

Q. Calculus of Variations and Infinite- 
Dimensional Manifolds 

Many problems in the calculus of variations 
can be understood as problems seeking crit- 
ical points of functions defined on infinite- 
dimensional manifolds. R. Palais and S. Smale 
set up the following Condition C and fixed a 
category of functions where the critical points 

can be chased through gradient-like vector 
fields [6]. 

Palais-Smale Condition C. Let f be a C’ 
function on a C’ Finsler manifold M. If S is 
any subset of M on which ,f is bounded but 

on which I@(x)1 is not bounded away from 0, 
then there is a critical point of ,f adherent to S. 

In general, it is not easy to examine Con- 

dition C for a concrete f However, many 
concrete problems, where the Euler equations 
are nonlinear elliptic, satisfy Condition C. 

Morse theory. Let M be a C” complete 
Riemannian manifold and ,f a C” function 
bounded below satisfying Condition C and 
having only nondegenerate critical points. 
Then, using the Morse lemma, one can make a 

thandlebody decomposition of M by the same 
method as in the case of finite-dimensional 
manifolds (- 279 Morse Theory). 

Lyusternik-Shnirel’man theory. This theory, 
constructed on finite-dimensional manifolds, 
can be extended naturally to Finsler mani- 
folds Let M be a complete C2 Finsler mani- 
fold and f a C2 function satisfying Condition 
C and bounded below. Then ,f has at least 
cat(M) critical points, where cat(M) =m means 
that M can be covered by m closed contrac- 
tible subsets of M but not by m - 1 ones. If 

there is no such integer, then we set cat(M) = 
co. 

Both Morse theory and Lyusternik- 
Shnirel’man theory have been successfully 

employed in the global theory of the calculus 
of variations. 

R. Bifurcation Theory 

Bifurcation theory concerns itself with the 
structure of the zeros of the functional equa- 
tion of w  with a parameter I: 

G(i, w) = 0. (6) 

In general, the state w  satisfying (6) represents 

the equilibrium (time-independent or station- 
ary) solution of the tevolution equation 

w, = G(i, w) and w(0) = wO. (7) 

Here the evolution equation itself stems from a 

mathematical model describing natural phe- 
nomena, w  = w(t) stands for the state at time t, 
and 1, is the set of parameters representing the 
physical environment. For example, in the 
+Navier-Stokes equation appearing in fluid 

dynamics, w(t) represents the unknown veloc- 
ity field at time t and i is the +Reynolds num- 
ber. It is important to study bifurcation phe- 

nomena because they typically accompany 
the transition to instability of the state when 

some characteristic parameter passes through 
a certain value, called a critical value. 

Let X, Y, and A be real Banach spaces, and 
let G(& w) be a mapping from A x X to Y. 
Suppose that there exists a mapping @(?.):A-, 
X satisfying G(/I, 5(i)) = 0. One calls (E., G(i)) 
a trivial solution of (6). 

(&, a(&)) is called a bifurcation point of 

G(/1, w) (with respect to the trivial solution) if 
in any neighborhood of (A,, K&)) there exists 

a nontrivial solution of (6). (In general, there 
may appear another type of solution that is 
not connected with the trivial solution [20]). 
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Assume that G(n, w) is of class C’ in some 
neighborhood of (&,, +(A,,)) in A x X. Then it 
follows from the iimplicit function theorem 
that (,I,, I?(&)) is not a bifurcation point if 
G,(i,, $(I,)), the +Frechet derivative of G with 
respect to w, is nonsingular. 

S. The Principle of Linearized Stability 

Closely tied to the phenomenon of bifurcation 
is the property of stability. Suppose that the 

dynamics of a physical system are governed 
by (7). Let w(t; w,J denote the solution of (7). 
An equilibrium solution D = I?(].) is called 
stable if for any E > 0 there exists a 6 > 0 such 
that 11 w(t; wO) - +I1 <E for all t > 0 whenever 
1) w0 - @\I < 6. Furthermore, D is said to be 
asymptotically stable if, in addition, w(t; w& 
Oast-co. 

By the principle of linearized stability we 

mean that the stability of an equilibrium solu- 
tion @ is determined formally by the +spec- 
trum of the linearized operator G,(1, G,(I)). As- 

sume that G&I, E(I)) has only a +point spec- 
trum. Then (i) if $(I.) is stable, the spectrum of 
G,(I.,i5(i)) is contained in {zeCI Rez<O}, and 
(ii) if the spectrum of G,(& V?(A)) is contained 
in {z E C ) Re z < 0}, i? is asymptotically stable. 

Suppose that as 1. crosses a certain value &,, 
one or more eigenvalues of G,(& G(n)) cross 
the imaginary axis from the left to the right 
half-plane, where $1) is the known equilib- 

rium solution. This is precisely the situation 
when a(].) becomes unstable. For notational 
simplicity, we put u = w-S(i) and F(i, u) = 

G(1, u + i?(l)). 

T. Bifurcation from Simple Eigenvalues 

Take A = R. Let FE C’(R x X, Y) be such that 
F(i, 0) = 0 for any real i. Set L, = F,(i,,O), 

L, =FJ&,O), and suppose that (i) Ker(L,) 
is spanned by u0 #O; (ii) codim R(L,) = 1; 

and (iii) L,u,~R(L,), where R(L,) denotes the 
+range of L,. Then there exists a Cl-curve 
(I,+):(-&6)+R x X defined on some inter- 

val (- 6,6) such that I.(O) = A,, $(O) = 0, and 
F(~(s),s(u, +$(s)))=O for any sf~(-6,6). 

Moreover, in a neighborhood of (A,,, 0) any 
zero of F either lies on this curve or is a trivial 
solution (M. G. Crandall and P. H. Rabino- 
witz, J. Functional Anal., 8 (1971)). 

In the above case, there exist only three 
possible situations of the curves (1, cp) and 
(i, 0), called subcritical, supercritical, and 

transcritical bifurcations. In the third case, 
there occurs the so-called exchange of stability 
[19921]. 

U. Bifurcation of Periodic Solutions (Hopf 

Bifurcation Theorem) 

If u(i) loses stability by virtue of a pair of 
complex conjugate eigenvalues crossing the 
imaginary axis, then under suitable conditions 
one can prove the existence of bifurcating time- 

periodic solutions of (7). Rewrite equation (7) 
as 

u, + Lou + g(1, u) = 0. (8) 

Suppose(i) L,:D(LO)cX~X is a densely de- 
fined linear operator on X such that -L, 
generates a strongly continuous semigroup on 
X, which is holomorphic on Xc (= the com- 
plexification of X). I,, has compact resolvent; 
i is a simple eigenvalue of L,, and ni#u(L,), 
the spectrum of L,, for n=O, 2,3, . . As a con- 

sequence of (i), if r > - Re i for any 1 E a(&,), 
then the fractional power (rl+ &)a for CI 2 0 is 

well defined. Because their domains are in- 
dependent of r, one can set X, = D((rl + I,,)“), 

which are Banach spaces under the norm 

lluII,= Il(rl+LJull. Suppose (ii) there exist 
an c( E [O, 1) and a neighborhood Lo of (0,O) in 
R x X such that gE Cz(O, X,), where Ck(Lo, X,) 

denotes the space of all X,-valued Ck functions 
defined on G. Moreover g(I, 0) = 0 if (I, 0)~ G, 
and y,(O,O) = 0. (iii) Let fl= /3(n) be a continu- 
ously differentiable function defined in a neigh- 

borhood of 0 such that ~~(I)Eo(& +g,,(i, 0)) 
and B(O) = i. Suppose that Rep(O) # 0. If as- 
sumptions (i), (ii) and (iii) are satisfied, then 
there exist a positive 6 and continuously dif- 
ferentiable functions (p, 1, u):( -6,6)-R’ x 

C”(R, X,) such that (a) for 0 < Is] < 6, u(s) is a 
27-r&)-periodic solution of period 27-41(s) of (8) 
corresponding to ,I = I(s); (b) p(O) = 1, I(O) =O, 

u(O) = 0, and u( 4 # 0 if s # 0; and (c) any 27cp- 
periodic solution ot (8) in Ci,,(R, X,) (= the 
space of 2zp-periodic continuous functions 
with value in X,) with Ip- 11, 111 and Ilull suffi- 

ciently small is of the above form for some 
(s( < 6 up to a translation of the real line. 

Moreover, if g E C’+‘(U, X,), then the functions 
p, 1, u are of class Ck. 

V. The Lyapunov-Schmidt Procedure 

Suppose that L(i) = F,,(/z, 0) has at i = 0 an n- 
fold eigenvalue at the origin, i.e., dim Ker L(0) 
= n, and assume that X c Y. Let Ker L(0) be 
spanned by ‘pr , , (pn, and let P be the projec- 
tion onto this linear subspace that commutes 
with L(0). Then P must take the form Pu = 
C;=, (u,@)cPJ, where the (P/*E Y*cX* are 
null functions of the adjoint operator L(O)* 

and (qj, (p,*) = Sjk. P is a linear operator from 

Y to Y; hence it can be regarded as a mapping 
from X to X as well, and Q = I -P is a projec- 
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tion onto the range of L(0) in Y. Using P and 

Q, the equation F(i, u) =0 can be decomposed 
into the system of equations 

QF(&o+$)=O and PF(I,u+$)=O, (9) 

where u = Pu and $ = Qu. One solves the first 
equation for $ = $(I., u) by the implicit function 

theorem, and then, substituting this into the 
second, one has the bifurcation equation 

F(L, u) = PF(1, u + l)(i, II)) = 0. (10) 

Solutions of the bifurcation equation are in 
one-to-one correspondence with solutions of 
the original system sufficiently close to the 
bifurcation point. 

There exists another method of reducing 
an infinite-dimensional problem to a finite- 
dimensional one, called the center manifold 

theorem [21,39]. 

W. A Global Result 

The following global result is due to P. H. 
Rabinowitz (J. Functional Anal., 7 (1971)). 
Assume that F(,J u) = u - /zLu + H(i, u), where 
L is a compact linear operator and H : R x X+ 
X is a compact mapping with H(&u)=o( Ilull) 
at 0 uniformly on bounded l-intervals. Then, 

if p ml is an eigenvalue of L of odd multiplic- 
ity, (p, 0) is a bifurcation point for F with 
respect to the trivial solution. Moreover, the 

closure of the set of nontrivial zeros of F con- 
tains a component that meets (p, 0) and either 
is unbounded in R x X or meets (fi, 0), where 
p #p and fi-’ is an eigenvalue of L. 

The beginning of bifurcation theory seems 
to be in the celebrated work of H. Poincart 
(Acta Math., 7 (1885)). 

X. Abstract Caucby Problems 

Suppose that we are given an abstract Cauchy 
problem 

du 
-=Au 
dt 

(t > 01, 

u(+O)=a (12) 

in a Banach space X, where asX and the non- 
linear operator A is assumed, for simplicity, to 
be independent oft. If the domain D(A) of A 

coincides with X and A is +Lipschitz continu- 
ous, we can reduce the abstract Cauchy prob- 
lem to the tintegral equation of Volterra type 

s f u(t) = a + Au(s) ds, 
0 

and by applying the iteration procedure we 

can easily show that the abstract Cauchy 
problem has a uniquely determined solution. 

A similar treatment works for a singular but 
mildly nonlinear A of the form A = L + N if the 
linear operator L is the generator of a tstrong- 

ly continuous semigroup et’- in the sense of 
Hille-Yosida theory (- 378 Semigroups of 
Operators and Evolution Equations) and the 

nonlinear mapping N is Lipschitz continuous. 
In this case, we reduce the problem to the 
integral equation 

s t u(t) = efLa + e(f-r)L Nu(s) ds. 
0 

Here, if we merely have to assure ourselves of 
the local existence of the solution, then N can 
merely be locally Lipschitz continuous; and 

in this case, N can even be singular to some 
extent if etL is tholomorphic in t [22,23]. A 
typical application of this procedure was made 

by P. Sobolevskii, T. Kato, and H. Fujita to 
the Navier-Stokes equation (- 204 Hydro- 
dynamical Equations; 205 Hydrodynamics) 
to construct regular solutions [22]. 

+Galerkin’s method (- 304 Numerical Solu- 
tion of Partial Differential Equations) is some- 
times quite convenient for obtaining (tweak) 
solutions of (11) and (12) [S]. Again, typical 
applications were made to the Navier-Stokes 
equations by E. Hopf and others [S, 24,251. 

To prove the convergence of approximate solu- 
tions constructed by Galerkin’s method and 

subject to so-called energy estimates, we often 
make use of Aubin’s compactness theorem 
concerning vector-valued functions [5]. 

Remarkable developments have taken place 
since 1964 for the case where A is dissipative, 
i.e., -A is accretive. F. Browder [26] proved 

that if X is a Hilbert space and A is dissipative, 
then the mere continuity of A is sufficient for 

the twell-posedness of (11) and (12). Then Y. 
Komura [27] brought about a crucial advance 
by showing that if A is a (possibly multivalued 

and) maximal dissipative operator with D(A) 
dense in the Hilbert space X, then (11) and 
(12) are uniquely solvable for any asD(A). 
Furthermore, he founded the theory of non- 
linear semigroups of operators by establishing 
a tnonlinear version of the Hille-Yosida the- 
ory for semigroups of rnonexpansive opera- 
tors in Hilbert spaces [28]. Subsequent de- 
velopments and applications were made in 

various directions by T. Kato (J. Math. Sot. 
Japan, 19 (1967)) M. Crandall and A. Pazy 
(J. Functional Anal., 3 (1969)) H. B&is and 

A. Pazy (J. Functional Anal., 6 (1970)), S. 
Oharu (J. Math. Sot. Japan, 22 (1970)), M. 
Crandall and T. Liggett [29], Y. Konishi (Proc. 
Japan Acad., 47 (1971)), and others. While 
Komura’s original proof was based on the 
Yosida approximation A(I-EA)~‘(c-+0) for 
A, it is proved in [29] that in any Banach 

space a dissipative operator A that is maxi- 
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ma1 in a certain sense generates a nonlinear 

semigroup 7; by the exponential formula 

( > 

-n 
?;x=lim I-fA x. (13) n-m n 

The scope of applications of the generating 
theorem (13) can be seen, e.g., in B. K. Quinn 
(Comm. Pure Appl. Math., 24 (1971)) M. G. 
Crandall (Israel J. Math., 12 (1972)) Y. Koni- 
shi (Proc. Japan Acud., 48 (1972) and J. Math. 

Sot. Japan, 25 (1973)) and S. Aizawa (Hiro- 
shima Math. J., 6 (1976)). 

Y. Nonlinear Semigroups in Banach Lattices 

Let X be a Banach lattice (- 310 Ordered 
Linear Spaces). An operator A:X=D(A)+X 
is said to be dispersive if for all x, ye D(A), 

11(x-y)+II~ll(x-y-i(Ax-Ay))+ll (‘i>O). 

When a dispersive operator A satisfies the 
range condition R(I--iA)1D(A) for any 1,>0, 

it generates an order-preserving semigroup 7; = 
elA on D(A) : II(T,x - T,y)+ 1) < 11(x-y)’ 1) for t > 
0. We have therefore the preservation of order: 

x < y implies 7;~ d 7;~. We can prove in par- 
ticular that the order of initial data is inherited 

by the solutions of a nonlinear heat equation 
(Y. Konishi). 

Remark. Various pathological phenomena 
arise when we do not restrict the form of A 
in the abstract Cauchy problem (1 l), (12). We 
cite merely the “blowing up” of solutions of 
Cauchy problems for tnonlinear heat equa- 
tions (- 291 Nonlinear Problems) and the 
nonlinear wave propagations described by 
nonlinear Schriidinger equations (J. B. Bail- 

Ion, T. Cazenave, and M. Figueira). 

Z. Abstract Cauchy-Kovalevskaya Theorem in 
a Scale of Banach Spaces 

T. Yamanaka (Comment. Math. Univ. St. Paul, 
9 (1960)), L. V. Obsyannikov (Soviet Math. 
Doklady, 6 (1965) and 12 (1971)), F. Treves 
(Trans. Amer. Math. Sot., 150 (1970)), L. Niren- 
berg (J. Differential Geometry, 6 (1972)), and T. 

Nishida [30] discussed abstract treatments 
of classical Cauchy-Kovalevskaya theorem for 

partial differential equations: Let S = jBp}p,O 
be a collection of Banach spaces depending on 

the real parameter p > 0. Let 1) uJ/ p denote the 
norm of an element u E B,. The collection S is 

called a scale of Banach spaces if, for any p and 
p’<p, B,cB,, and Ilull,,< (lull,, for any u in 
B,. Consider in S the initial value problem of 
the form 

du 
z = w40, t), It]<& and u(O)=O. (14) 

Assume the following conditions on F: (i) For 
some numbers R > 0,~ > 0, p,, > 0 and every 
pair of numbers p, p’ such that 0 < p’ < p < 

pO, (u, t)+F(u, t) is a continuous mapping of 
{ueB,I llull,<R} x {tl]t)<g} into B,.. (ii) For 
any p’<p<pO and all u, vcl3, with llullp< 
R, 11 v 11 p < R, and for any t, It 1 <q, F satisfies 

ll~~u,~~-~~~,~~ll,~~~ll~-~ll,l~~-~’~, where C 
is a constant independent oft, u, v, p, or p’. (iii) 
F(0, t) is a continuous function of t, 1 t( <‘I, with 
values in B, for every p < p0 and satisfies, with 

a fixed constant K, llF(O, t)llp<K/(po-p), O< 

P<Po. 
Abstract Cauchy-Kovalevskaya theorem. 

Under the preceding hypotheses there is a 
positive constant M such that there exists a 
unique function u(t) which for every positive 

p < p. and 1 t I< M( p. - p) is a continuously 
differentiable function oft with values in B,, 

llu(t)ll,<R, and satisfies (14) (- also [31]). 
These results cover a theorem of M. Na- 

gumo (Japan. .I. Math., 18 (1948)), which gen- 
eralizes the classical Cauchy-Kovalevskaya 
theorem. 
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287 (Xx.33) 
Nonlinear Lattice Dynamics 

A. Lattice Dynamics 

In order to elucidate certain characteristic 
features of nonlinear waves, one-dimensional 

lattice models have been studied. Around 
1953, E. Fermi et al. performed computer 
experiments on nonlinear lattices to verify a 
generally accepted belief that nonlinear cou- 

pling between the inormal modes of harmonic 
oscillators would lead to complete energy 
sharing between these modes. To their sur- 
prise, their nonlinear lattices yielded very little 
energy sharing at all; on the contrary, the 
interactions resulted in the recurrence of the 
initial state. These results were later inter- 
preted in terms of solitons (- 387 Solitons), 
i.e., nonlinear waves that preserve identity 

despite mutual interaction. 
The equations of motion for a uniform l- 

i dimensional chain of particles of mass m with 
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nearest-neighbor interaction can be written as 

d2Q” 
m-== -d(Q,-Qn-A+cp’(Qn+, -Q,) 

dt2 

(?I= . . . . 1,2 ,... ). 

It was shown that a lattice with a nonlinear 
interaction of the form 

cp(r)=e-‘+r+const. 

admits solutions in closed form. Later, it was 
shown that this lattice (the exponential lattice 

or the Toda lattice) is a completely integrable 
system. 

It is convenient to introduce s,, which is the 
generalized momentum canonically conjugate 
to the mutual displacement rn = Q,+I -Q,. For 
a lattice with exponential interaction, 

e-‘n- 1 =ds,/dt, 

and if we introduce 

S,= ‘s,dt, 
s 

then the equations of motion can be written as 

log(l +d2&/dt2)=Sn+, +.S,-, -2S,, 

and the displacements are given by 

Q,=&-&,+I. 

We have a solution 

&=log{ 1 +e2(Zn+Pt+a)}, 

where c[ and S are arbitrary constants and [j = 
f sinh CC. The associated wave 

e-‘-l=~*sechZ(cLn+/3t+6) 

represents a solitary wave or soliton. 
The multisoliton (N-soliton) solution is 

given by 

S, = log det V’,, 

where Y,, is an N x N matrix whose elements 
are 

tzjz!J+ (p.+pxj* (Y$, = Sj, + cjck-e J 
1 - ziz, 

with 

Z,= fee”,, 

/I~= TsinhMj. 

Asymptotically the wave reduces as t--r Tm to 
an assembly of solitons 

emrn-l=T /I~sech2(~jn+fijt+6,~). 
j=, 

B. Conserved Quantities 

The equations of motion for a periodic ex- 
ponential lattice of N particles can be written 

in a Lax representation dL/dt = BL - LB, 
where L and B are N x N matrices with the 

elements 

Ln=4,, -L,+, =L+l.n=~ 

L -L ,,lv- N.1 =aNY 

B n,n+, = -Bn+~,n= --a,> 

B l.N= - BN, I = ‘N 

(the other elements of L and B are all zero), 
with 

Li 
n =fe-‘“n+, -QnW 

b,= $P” (Pn = dQ,ldt). 

The eigenvalues 7, of L can be shown to be 

independent of time, and so the motion of the 
lattice is a spectrum-preserving deformation. 
Now, if we define (I,} by 

det(i1 -L)=lN+JNm’I, +...+ll,-, +I,, 

the n { I,} are polynomials of u, and h,. These 

are constants of motion that were discovered 
independently by M. H&non and H. Flaschka. 

Thus the lattice has N conserved quantities; 
I, is related to the total momentum and I, to 
the total energy, but higher-index conserved 

quantities have no physical interpretation. 

C. Method of Integration 

Let L and B be the infinite matrices obtained 

from the foregoing ones in the limit N -+ co. 
The eigenvalues 1. of the equation 

Lcp=kp 

are independent of time, and the time evolu- 
tion of cp is given by the equation 

dpJdt = Bq. 

If the motion in the lattice is restricted to a 

finite region, we can clearly speak of the scat- 
tering of the wave cp due to the deformation in 
the lattice. For a given initial motion Q,,(O) and 
P,,(O), or L(O), we calculate the initial scattering 

data of asymptotic form cp - z” (n-+ co). The 
scattering data consist of the reflection coefft- 

cient R(z), the bound state eigenvalue Ij= 
-(z,+z,:‘)/2 (SC -1 or S> l), and the co- 
efftcient cj of the normalized bound state eigen- 
function of asymptotic form cjz,? for n+ co. 

From the initial data and the equations of 
motion for n+ +CXI, we get the scattering data 
at a later time t. In effect, we construct the 
kernel 

F(m)=& R(z,O)e-(‘-‘~“‘z”-‘dz 
4 
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of the discrete integral equation (Gel’fand- 
Levitan-Morchenko equation) 

fc(n,m)+F(n+m)+ f K(n,n’)F(n’+m)=O, 
“‘=n+l 

ffl>n+ 1. 

After solving this equation for ~(n, m), we 
calculate K (n, n), given by 

1 

CKh 41’ 
=l+F(2n)+ f K(n,n’)F(n’+n). 

It’=“+, 

Then the initial value problem is solved in the 
form 

e-@-Q. ~I)= 

[ 

K(n,n) 2 1 K(n-l,n-1) 

The solution can be given as dQ, Jdt = s, - s,+, , 

with 

s,=K(n-1,n). 

The simplest case R(z) = 0 yields the multi- 
soliton solution. 

For the periodic case also, eigenvalues of 

the equations Lq = pep and dpJdt = Bq, under 
suitable boundary conditions and for certain 
initial data, give sufficient information to 
construct a solution to the initial value prob- 
lem. Such a method of obtaining a general 
solution for the periodic lattice was developed 
by E. Date and S. Tanaka, and independently 
by M. Kac and P. Van Moerbeke. Following 
Date and Tanaka, the solution can be written 

in terms of the multivariable theta function, or 
the Riemann theta function 9, as 

P&log 
9(an + bt + 6) 

9(a(n + 1) +/It + 6) + const” 

where c(, p, and 6 are certain vector constants. 
There has been much activity recently to- 

ward interpreting the integrability of the Toda 
lattice in terms of Lie algebras (B. Kostant 

C91). 
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288 (XIII.1 0) 
Nonlinear Ordinary 
Differential Equations 
(Global Theory) 

A. General Remarks 

Many well-known functions (with the notable 
exception of the W-function), such as the ex- 
ponential, trigonometric, telliptic, and tauto- 

morphic functions, satisfy ordinary differential 
equations of simple forms. For the purpose 

of finding new transcendental functions, P. 
Painleve initiated the systematic study of the 
equation 

F(x, y, y’, . . , y’“‘) = 0 (1) 

in the complex domain. To investigate the 
solution in its whole domain of definition, he 
assumed that F is a polynomial in y, y’, , yr”) 
whose coefficients are analytic in x. Such an 
equation is called an algebraic differential 
equation. If F is linear in y”‘), then (1) is written 
as 

y’“’ = P(x, y, y’, . . . , y’“-1)) 

Q(x,Y,Y’,...,Y’“~“)’ 
(2) 

where P and Q are polynomials in y, y’, . . , 
y’“-” with coefficients that are analytic func- 
tions of x. Equation (2) is called a rational 
differential equation. 

If F is linear in y, y’, . , y’“‘, i.e., (1) is a linear 
differential equation, and if the coefficient of 
y’“’ is 1, then singular points of solutions are 
situated at the singular points of the coeff- 
cients (- 254 Linear Ordinary Differential 

Equations (Local Theory)). If F is not linear, 
then singular points of solutions of (1) are 

divided into two categories, one consisting of 
those points whose positions are determined 

by the equation itself and are independent of 
individual solutions, and the other consisting 

of those points whose positions depend on the 
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choice of particular solutions. In other words, 
the singularities of the first category appear 
independently of the choice of arbitrary con- 
stants involved in the general solution, while 
those of the second category depend on the 
choice of the arbitrary constants. The former 

are called fixed singularities and the latter 
movable singularities. The linear differential 
equation (1) has fixed singularities only, which 
are situated at the singularities of the coeffi- 

cients. In the same way, tbranch points of 
solutions can be classified into two kinds, fixed 
branch points and movable branch points. 

B. Algebraic Differential Equations of the First 

Order 

Consider the equation 

ox> Y) 

Y’=Q(x,~,’ 

where P and Q are relatively prime polyno- 

mials in x, y. The fixed singular points of (3) 
are defined to be points 5, <’ with the following 

properties: (i) Q(5, Y) = 0. (4 Q(5’, Y) $0, P(5’, Y) 
= Q(t’, y) = 0 have a root y = n’. (iii) If, in (ii), 

we substitute l/z for y and if the same relation 
(ii) holds for x = 5 and z = 0, we count such 
a value 5, as a fixed singular point. (iv) We 
transform equation (3) by setting x = l/t. If 
the value t = 0 satisfies (i) or (ii) for this trans- 
formed equation, we count co as a singular 

point 5 or i;’ accordingly. The points & 5’ are, 
in general, itranscendental singularities of solu- 
tions, and the points 5’ cannot be tessential 
singularities of solutions but may be tordinary 
transcendental singularities. A singular point 
of a solution different from 5 and <’ is an talge- 
braic singular point, and for any point dis- 
tinct from 5 and t’, equation (3) admits a 
solution with an algebraic singularity at this 
point. A necessary and sufficient condition 

that (3) has no movable branch point is that 
(3) be a +Riccati equation. 

Consider the algebraic differential equation 

of the first order 

F(x, y, Y’) = 0. 

After defining the fixed singular points 5 and 
5’ of (4), where the algebraic function of x, y 
defined by (4) has bad singularities, Painleve 
proved that movable singularities of solutions 

are algebraic. Before Painlevt’s work, L. Fuchs 
gave a necessary and suficient condition that 
(4) has no movable branch points, and then H. 

Poincare showed that if this condition is satis- 
fied, then (4) is either reducible to the Riccati 
equation if y = 0, integrable by the use of ellip- 

tic functions if g = 1, or algebraically integrable 
if g > 1, where, with x the independent vari- 

able, g denotes the +genus of the algebraic 
curve defined by (4). Painleve found that there 
were gaps in the proofs of Fuchs and Poincare 

and completed these by proving his theorem 
and the following one: Let cp(x, y,, x0) be the 
solution of (4) satisfying the initial condition 
y(x,) = y,. Let X, x0 be points different from < 
and t’, and let L be a curve connecting x,, to 

x and not passing through any 5 or 5’. If we 
denote by &x, yO, x0) the value at x =X of the 
branch obtained by continuing cp(x, y,, X0) 

analytically in a neighborhood of L and re- 
gard (P&Z, y,,, x,,) as a function of yO, then 
(P~(x, y,, x,,) coincides, in a neighborhood of 
every point y0 = h, with several branches of an 
talgebroid function of y,. Painlevi: studied the 
case when the general solution is finitely many- 

valued and gave a condition for cp(x, y,, x0) to 
be an algebraic function of y,,. 

When equation (4) does not contain x ex- 
plicitly, no movable branch points appear if 
and only if all solutions are single-valued, and 

then the solutions are expressible in terms of 
rational, exponential, and elliptic functions. 
Such an equation is called a Briot-Bouquet 
differential equation. 

J. Malmquist proved, by using P. Bou- 
troux’s method of studying the behavior of 
solutions in the neighborhood of a fixed sin- 

gularity, that if equation (4) admits at least one 
solution that has an essential singularity and is 
finitely many-valued and free from movable 
branch points around this singularity, then (4) 

is an equation without movable branch points. 
If (4) admits a solution that is a finitely many- 
valued transcendental function, then an alge- 
braic transformation may be applied to (4) 
so that it will become an equation without 
movable branch points. It is an immediate 
consequence of the first assertion that if (3) 
admits a solution that has an essential sin- 

gularity and is finitely many-valued and free 
from movable branch points around the sin- 
gularity, then (3) is a Riccati equation. 

Later, equations (3) and (4) were studied by 
M. Hukuhara, K. Yosida, T. Sato, T. Kimura, 
and T. Matuda. The following results are due 
to Kimura. If a solution q(x) of (3) has an 
essential singularity at x = 5, then, in an arbi- 
trary neighborhood of 5, q(x) assumes every 
value with the exception of the roots of P(<, y) 
= 0. If (3) is not a Riccati equation, it is deter- 
mined by a finite number of algebraic pro- 
cesses whether or not (3) admits a solution 
that has an essential singularity at x = 5 and 

has no movable branch point around 5. If (3) 
admits such a solution, then the singularity is 
a tlogarithmic branch point. For an essential 

singularity of a solution there exists, in gen- 
eral, a direction similar to a +Julia’s direction, 
which was investigated by Hukuhara and 
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Kimura. Matuda studied in detail the behavior 
of solutions as x tends to 5 along a half-line 

and concluded that, except for some special 
cases, any solution tends to a certain value 
as x tends to < along a half-line. To obtain 
algebraic solutions C. Briot and J. C. Bou- 

quet devised a method similar to +Puiseux 
expansion in the theory of algebraic functions. 

Hukuhara improved their method and suc- 
ceeded in reducing (3) to several differential 

equations of standard forms in a neighbor- 
hood of x = <. This enables us to apply the 
local theory to the global study. Hukuhara’s 
method was used by Kimura and Matuda to 

obtain the results discussed in this paragraph. 

C. Algebraic Differential Equations of the 

Second Order 

For second-order algebraic differential equa- 
tions we can pose the same problems as for 
first-order equations: When do these equations 
have single-valued or finitely many-valued 

general solutions? What new transcendental 
functions are needed to integrate such equa- 
tions? These problems, studied by E. Picard 
and Painleve, are difficult because of the exis- 
tence of movable transcendental singularities. 

However, Painleve succeeded in determining 
rational differential equations of the second 
order without movable branch points. Such 

equations, with the exception of those that 
are integrated by the use of solutions of the 
first-order and linear differential equations, 
can be transformed by rational transforma- 
tions into one of the following six differential 
equations: 

(1) y” = 6y2 + x, 
/ I  

(II) yf’=2y3+xy+cc, 

where c(, /j, y, and 6 are constants. These equa- 

tions and their solutions are called PainIevC 
equations and Painlevk transcendental func- 
tions, respectively. Equation (VI) was dis- 

covered by 8. Gambier, who found an omis- 
sion in Painleve’s calculations. All solutions of 
(I) are single-valued, and their properties were 

investigated by Boutroux. The solutions of 

(VI) have, in general, logarithmic branch 
points at x=0, 1, co and were studied by R. 

Garnier. 
The case when the equation is of degree 2 

with respect to y” was studied by Malmquist 
and F. Tricomi. 

The following facts are known concerning 
movable transcendental singularities of the 

rational equation y” = P(x, y, y’)/(Q(x, y, y’), 
where P and Q are relatively prime poly- 
nomials (Kimura). Let p, q be the degrees of P 

and Q with respect to y’. If p > q + 2, then any 
solution q(x) admits no movable essential 
singularities, but its derivative v’(x) may admit 
such singularities. If p > q + 2 and Q is not 
decomposable as Q, (x, y)QZ(x, y, y’), then 
neither q, nor cp’ admits movable essential 
singularities. If p < q + 2, then both cp and cp’ 
may have movable essential singularities. If 
p < 4 + 2 and Q is not decomposable as above, 
then cp’ has no movable essential singularities. 
If, for a solution q(x), x = a is a movable essen- 

tial singularity of q(x) or cp’(x), the q(x) or 
p’(x) assumes all values other than a finite 
number of exceptional values in an arbitrary 

neighborhood of x = a. If p > q + 2, then every 
solution possesses +Iversen’s property, and 
hence the set of movable singularities is not a 
continuum. 

D. Higher-Order Equations and Other 

Equations 

PainlevC’s method of obtaining the second- 
order equations without movable branch 

points is applicable to higher-order equations. 
The determination of third-order equations 
without movable branch points was attempted 
by Painlevt, J. Chazy, and Garnier by the use 
of this method, but is not yet complete. Chazy 
studied in detail an equation of the form 

y,,, = (1 - l14Y”2 

Y’ 
+ NYIY’Y” + C(Y)Y’” 

and showed that when n = - 2 and b(y) = 
0, +Fuchsian and +Kleinian functions are 

obtained as solutions (- 32 Automorphic 
Functions). 

R. Fuchs, a son of L. Fuchs, derived equa- 
tion (VI), at almost the same time as Gam- 
bier, from the study of tmonodromy groups. 

He showed that the monodromy group of the 
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equation 

6 3 a 
f- -+ 

t(t-1)+4(t-y)2 t(t-l)(t-x) 

b 
+ 

t(t- l)@-Y) > 

remains invariant as the singularity x varies if 
and only if x, j$ y, and 6 remain constant; the 

singularity y, considered as a function of x, 
satisfies equation (VI); and a and h are rational 
functions of x and y and y’. Investigating a 
second-order linear differential equation of 
Fuchsian type with tregular singularities 0, 1, 

~,Xl,...iX”>Yl,“‘, y, where y,, , y, are ap- 
parent fixed singularities, Garnier was led, 

under the hypothesis that the monodromy 
group of this equation remains invariant as x,, 
. . . , x, vary, to a tcompletely integrable system 
of partial differential equations and showed 
that a symmetric function of y,, , y,, con- 
sidered as a function of any one of x,, . ,x,, 
satisfies an equation without movable branch 
points (- 253 Linear Ordinary Differential 
Equations (Global Theory)). 

For nonalgebraic equations, movable 
branch points appear even in the first-order 

case. Kimura obtained a sufficient condition 
that for an equation F(x, y, y’) = 0, where F is a 
polynomial of y’ with meromorphic coefii- 

cients in x, y, every solution has Iversen’s 
property in a domain of the complex plane. 

It was shown by 0. Holder that the I- 
function satisfies no algebraic differential 
equation. Also, if a function meromorphic in 
the unit circle is of torder co, then it satisfies 

no algebraic differential equation. 
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289 (X111.9) 
Nonlinear Ordinary 
Differential Equations 
(Local Theory) 

A. General Remarks 

Consider a system of n differential equations 

dyj/dx=1;(x,Y,,...,y”), j=l>...ana (1) 

where the f; are analytic functions of x, y,, 

“‘2 y,. To simplify the notation, we use vector 
notation y instead of (yi, , y,). If all the 
1; are holomorphic at a point (x, y) = (a, h), 
there exists one and only one solution y(x) for 
(1) such that y+b as x-a and y(x) is holo- 
morphic at x = a. We say that a point (a, b) is 
a singular point of the system (1) if it is a sin- 
gular point of fj for some j. The well-known 
+Cauchy’s existence theorem can no longer be 

applied to the case when (a, b) is a singular 
point of system (1). In this case, the following 
three problems arise naturally: (i) to determine 
whether solutions y(x) such that y(x)-+b as 

x+a exist, and if they exist, to determine the 
number of independent solutions; (ii) to con- 

struct analytic expressions for solutions y(x) 
such that y(x)+b as x-a or, in a slightly more 
general way, analytic expressions for bounded 

solutions y(x) such that the values of (x, y(x)) 
stay in a neighborhood of the singular point 
(a, b); (iii) to investigate the properties of these 
solutions. These three problems are called 
local problems, since only those solutions in 

a neighborhood of the singular point (a, b) 
are considered. However, even when it = 1, 
the study of local problems is very difficult 
except for the case of singular points of par- 
ticular types at which the functions fj are 
meromorphic. 

When n > 1, the problem becomes even 
harder; research on this case lags that for n = 1. 

In the subsequent discussion we assume with- 
out loss of generality that a = 0, b = 0. 

B. The Case of a Single Equation 

Consider the equation 

dyldx = Y(x> ~)lX(x, Y), (2) 

where X and Y are holomorphic functions of 
(x,y) at (0,O) x, y~c. When X(0,0)=0 and 
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Y(O,O) #O, we can rewrite equation (2) in the 

form dx/dy = X(x, y)/Y(x, y), and we see that (i) 

if X(0, y) f 0, equation (2) has one and only 
one solution y(x) which is algebraic at x = 0 

and tends to 0 as x+0; (ii) if X(0, y) = 0, there 
is no solution of equation (2) such that y+O as 
x-0. 

The case where X(0,0) = 0 and Y(0, 0) = 0 
was first studied by C. A. A. Briot and J. C. 
Bouquet. In order to obtain algebraic solu- 
tions they introduced a method similar to 
+Puiseux expansion in the theory of algebraic 
functions. A. R. Forsyth and J. Malmquist 

studied a problem of reduction for equation 
(2) by using the Briot-Bouquet method. The 
theory of reduction was completed by M. 

Hukuhara, who divided a neighborhood of 
(0,O) into a finite number of subdomains in 
such a way that (i) the union of these sub- 
domains covers the given neighborhood of 
(0,O) completely; (ii) in each of these sub- 
domains equation (2) takes one of eight canon- 

ical forms. Hukuhara investigated the prop- 
erties of the solutions for these canonical 
forms. Among them, the following two are 
well known as the Briot-Bouquet differential 
equations: 

xdyldx =f(x, Y), f(O, 0) = 0, 

xc+’ dy/dx =f(x, y), 

f (0, 0) = 0, 0 > 1 is an integer. 

(3) 

(4) 

C. Systems of Differential Equations 

When y is a vector with components (yj), equa- 
tions (3) and (4) can be written as 

XdYj/dx=f;(X,Yl, ...aYn)> j=l,...,n, (5) 

x”+ldyj/dx=&(x,y, /..., y,), j=l,..., n. (6) 

After Briot and Bouquet, the singular points of 
these types were studied by many authors, 
including Poincare, E. Picard, H. Dulac, 

Malmquist, W. J. Trjitzinski, and Hukuhara. A 
method of constructing solutions of these 
equations consists of two parts: (i) formally 
transforming the given equations into simpli- 
fied or reduced equations of the simplest pos- 
sible form by applying a formal transforma- 
tion of the type 

Y=CPk,xkz’ 

or 

(7) 

yj=~pkoki~~,k,~k~~~~ . . . z+, j= 1,2, . . . . n; (8) 

(ii) verifying convergence or the validity of 
tasymptotic expansions for the formal solu- 

tions of the given equations, which are ob- 

tained by substituting bounded solutions of 
the equations satisfied by z or zj into (7) or (8). 

By studying these analytic expressions, the 
properties of the solutions can be clarified. 

D. Properties of Solutions of Briot-Bouquet 

Differential Equations 

For equation (3), the character of the simpli- 
tied equation depends on the value of 1= 
f;,(O, 0). We have the following four cases: (i) 

3, is neither 0 nor negative. A suitable formal 
transformation (7) changes (3) to 

xdzldx = AZ + bx”. 

In particular, if/z is not equal to a positive 

integer, then b = 0. The double power series (7) 
is uniformly convergent. There exists a func- 
tion cp(x, z) of (x, z) holomorphic at (0,O) such 
that y = cp(x, x”(b logx + C)) is a general solu- 
tion of (3) with an integration constant C. (ii) 
i = 0. The equation satisfied by z takes the 
form 

xdz/dx=z”+‘(b+b’z”), m>l. 

If h = 0, b’ necessarily vanishes and x = 0 is a 

holomorphic point of (3). A general solution is 
given by 

Z(x)=(C-mblogx)-““, b#O, b’ = 0, 

and 

-1,ffl 
) bb’ # 0. 

Here, [ = a(t) is the branch (of the inverse 
function of [ - log < = t) such that a(t) - t log t 
-t+O as t+co. Then there exists a holo- 
morphic function cp(x, z) of (x, z) for [xl< 6, 

)margz+argbI<3n/2-a, [Z/CA such that 
cp(x, Z(x)) is a general solution of (3). (iii) i, is a 
negative rational number -p/v. The equation 

satisfied by z is written as 

vxdz/dx=z(-p+b(x”z”)“+b’(x’z’)2m). 

A general solution has the form 

Z(x)=x~(C-mblogx)~l~m”, b’=O, 

and 

-1,ltl” 
, 

bb’#O. 

In this case, there exists a holomorphic func- 
tion cp(x,z) of (x,z) for Impargx+mvargz+ 
argbf?r/2I<n-a, 1x1<& lzl<A such that 
cp(x, Z(x)) is a general solution of (3). M. 
Iwano expressed this solution in the form 
$((x~Z(X)~)“‘, x,Z(x)), where $(w,x,z) is 

holomorphicfor largw+~I<7[--E,O<JwI<fi, 

~x~<A,~~~<A.Inparticular,ifb=b’=O,cp(x,z) 
is holomorphic at (0,O). (iv) i. is a negative 
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irrational number. The equation in z has the 
form 

x dz/dx = iz. 

The formal transformation (7) may either 
diverge or converge. Dulac proved that if (7) 

diverges and if there exists a solution y(x) such 
that y(x)+0 as x-r0 along a suitable path L, 
then Ix”y(x)@argxl--tco and Ix’y(~)~argy(x)l 
--t co as x+0, x E L for any c( and /r. However, 
the existence of such a solution is not yet 

verified. C. L. Siegel proved that if 3, satisfies 
certain inequalities, the formal transformation 

(7) is divergent. An example such that (7) is 
divergent was first given by Dulac. A very 
simple example for such a case was given by 
Y. Sibuya. 

In the case f(O,O) = 0 and 1. =f,(O, 0) # 0 for 

(4) the most complete result was obtained by 
Hukuhara, namely: (i) A suitable formal trans- 
formation (7) reduces equation (4) to 

x”+‘dz/dx=z(cc,+x,x+...+cc,x”), Lx0 = 2. 

A general solution is given by Z(x) = C. 
~“~e“‘~‘, where A(x) is a polynomial in l/x of 
degree (r. (ii) A general solution of (4) is ex- 
pressed by a uniformly convergent power 
series of the form C ~(x)Z(x)~, where the (pk(x) 

are holomorphic functions of x for a certain 
sectorial neighborhood of x = 0 and have 
+asymptotic expansions Cpjkxk as x+0. 

Assume fi(0, 0, ,O) = 0 for equations (5). 

Put A,, = ahf;.layk(O, 0, , 0). Denote by i, , , 
1”. the eigenvalues of an n x n matrix with 
elements {3Ljk}. Then (i) if an angle w  can be 
chosen so that for some m < n, all of 1 WI, 

largl”, -WI, . . ..larg3.,-wl are less than x/2, 
equations (5) possess solutions that are 
expressed as uniformly convergent (m + l)- 

tuple power series of x, Z,(x), , Z,(x): 

Here the Z,(x) are general solutions of the 
simplified equations and have the expression 

Zk(x)=xAx (C,+a polynomial of 

c,,...,ck-,,logx), k=l,2 ,..., m. 

(ii) Moreover, Iwano extended the result of(i) 
as follows: When there exists one and only one 
zero among the other n-m eigenvalues, equa- 
tions (5) have solutions, depending on m + 1 

arbitrary constants, that are expressed as (m + 

I)-tuple uniformly convergent power series 

Here the coefficients pjk,k,,..k,(~m+,) are holo- 
morphic functions of z,,,+, in a sectorial neigh- 
borhood of z,+, = 0 and admit asymptotic 
expansions in powers of z,+i as z,+i -0. In 

this case, the functions Z,(x), , Z,+,(x) can- 

not generally be integrated by quadratures, 
but as Z,+,(x)--tO, the power series expansions 
coincide with the expressions obtained in (i). 

(iii) In the case when the Jacobian matrix (ijk) 
is the zero matrix, Iwano constructed, under 
additional assumptions, a convergent analytic 

expression of a general solution for equations 

(5). 
Let the right-hand side of (6) be holomor- 

phic at (O,O, , 0). In 1939 Trjitzinski proved 

the existence of solutions that admit asymp- 
totic expansions in powers of n arbitrary con- 
stants. In 1940 and 1941, Malmquist proved, 
under strong conditions, the existence of 
solutions that are expressed as uniformly 

convergent power series of Z,(x), , Z,(x): 
Cpjk =,,, kp(~) Z,(X)~Q . Z&X)~S. Here the Z,(x) are 
polynomials of x and logx of the form 

Z,(x) = eh~(x)~A^~ (C, + a polynomial of 

ck-,,~~~,c,,logx), k = ct, , p, 

where the coefficients admit asymptotic expan- 
sions in powers of x. Trjitzinski’s result is 

contained in Malmquist’s result as a special 
case. On the other hand, under much weaker 
assumptions than Malmquist’s, Hukuhara 
solved a problem on the formal simplification 
of equations (6) and formal solutions. Iwano 
improved Hukuhara’s result on formal solu- 

tions and discussed the convergence of formal 
solutions under weaker conditions than Malm- 
quist’s (Ann. Mat. Pura Appl., 1957, 1959). 
The pjk,,,,kb(~) are holomorphic functions of 
x in a sectorial neighborhood of x = 0 and 
admit asymptotic expansions in powers of x as 

x-0. The angle of the sector in which the 
asymptotic expansions are valid is largest for 
Iwano’s method. 

If C gj < n, equations of the form 

x”ldyj/dx=fj(x,y ,,..., y,), j=l,..., n, 

possess at least n-C aj solutions that are 
holomorphic for Ixj<6 (R. W. Bass, Amer. J. 

Math., 77 (1955)). This result is analogous to 
those obtained by 0. Perron, F. Lettenmyer, 
and Hukuhara and Iwano in the linear case 
(- 254 Linear Ordinary Differential Equa- 
tions (Local Theory)). 

E. Singular Perturbations 

The terms on the right-hand side of the non- 
linear differential equations 

~“JdYjldx=f;.(x,Y~ 1 .. > Yn, ~1, j=1,2 ,...,n, 

(9) 

are holomorphic functions of (x, y, E) for lx I <a, 

11y(( <b, O<~E(<C, largsl<d, and admit uni- 
formly convergent expansions in powers of y 

with coefficients asymptotically developable in 
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powers of E. The cj are nonnegative integers. 

W. R. Wasow, W. A. Harris, Sibuya, and 
Iwano and T. Saito discussed problems on 

constructing asymptotic or convergent expan- 
sions for bounded solutions that are depen- 

dent on several arbitrary constants. 
In equations (9), the f; and afj/ay, are con- 

tinuous functions of (x,y,E) for --oo <x< +co, 
llyll <b, 1~1 cc, and periodic functions of period 
T with respect to x. Moreover, assume that a 

system of degenerate algebraic equations 

O=f,(x,y, ,...a Y,,O), j=l,,..,n, (10) 

has a periodic solution yj= pj(x) of period T 

for --co <xc +co. Then if equations (9) have 
periodic solutions yj = p,(x, E) of period T such 
that yjhpj(x) as ~40, the pj(x,~) are called 
singular perturbations of p,(x) for equations (9). 
Concerning this problem, see I. M. Volk (Prikl. 

Mat. Mekh. SSSR, 10 (1946)). The work of 
Wasow (1950) on a single equation 

Py(“)=f(x,y,y’,..., Y’“‘,E), cr>o, n>m$O, 

(11) 

is remarkable. 
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290 (XIII.1 1) 
Nonlinear Oscillation 

A. General Remarks 

By nonlinear oscillation we usually mean oscil- 
lation described by periodic or talmost peri- 
odic solutions of nonlinear ordinary differential 
equations. The theory of nonlinear oscillation 

is sometimes called nonlinear mechanics. In 
connection with oscillations in +dynamical 
systems and electrical circuits, the theory of 
nonlinear oscillation has been studied inten- 

sively in the Soviet Union under the direction 

of N. M. Krylov and N. N. Bogolyubov since 
alound 1930, and after World War 11 research 
in this field became active in Western countries 
also. 

Written as first-order systems, the differen- 
tial equations in this theory take one of the 
forms 

dx/dt =X(x) 

or 

(1) 

dx/dt = X(x, t), (4 

where x is a vector and t is a scalar. A dif- 
ferential equation of the form (1) is said to 
be autonomous. In a differential equation of 
the form (2), X(x, t) is usually assumed to be 
periodic or almost periodic in t. In the former 
case, the differential equation (2) is said to be 
periodic, and in the latter case, almost periodic. 
Oscillations in physical systems are described 

mostly by periodic or almost periodic dif- 
ferential equations; therefore it is a principal 

problem in the theory of nonlinear oscillation 
to tind a periodic or almost periodic solution 

of these differential equations. However, an 
oscillation described by a solution of a dif- 
ferential equation can be actually realized only 
when the solution is tstable (- 394 Stability) 
under a small variation of the initial value. 
Therefore it is important to investigate the 
stability of periodic or almost periodic solu- 
tions. In view of the fact that an actual phe- 
nomenon may be only approximately de- 

scribed by mathematical equations, sometimes 
it is necessary to require a certain stability 

of the system so that solutions of a peri- 
odic or almost periodic equation stay stable 
under a small variation of the equation itself. 
Such stability is called structural stability, 
the investigation of which is also important. 

It may happen that a differential equation 
possesses neither a periodic solution nor an 
almost periodic solution, but that it has an 
almost periodic tintegral manifold (i.e., a mani- 

fold x =f(t, Q) in tx-space, where 0 is a para- 
meter, such that f(t, 0) is periodic or almost 
periodic in t and periodic in 0) containing the 
itrajectory of the differential equation passing 

through an arbitrary point of the manifold. In 
this case, we can consider that a solution 
corresponding to a trajectory lying on the 
manifold describes an oscillation. Therefore 
it is important to find a periodic or almost 
periodic integral manifold of a differential 
equation and to investigate the stability of 
such a manifold. 

The methods used most frequently in re- 
search on nonlinear oscillation are: (i) geo- 

metric methods, (ii) analytic methods, and (iii) 

numerical methods. 
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B. Linear Oscillations 

Let S, and ST be the spaces of all w-periodic 
solutions of the w-periodic linear system 

dx/dt = A(t)x, A(t+w)=A(t), (3) 

and its adjoint system, respectively. Then the 
space P, of continuous w-periodic functions 
R+R” has direct sum decompositions P, = 
S, + S, and P, = SF + Sz so that (x, y) = 0 for 
every XES,, YES, or XGSF, YES:, where (x,y) 
=(l/o)~~‘x(s)y(s)ds. Let {t’, . . ..t”} and 

{~l,...,~m}(mmaybeO)bebasesofS,andS~ 
orthonormal with respect to (. , .). Then for 
PEP, there is a unique w-periodic solution x 

of 

dx/dt = A(t)x + p(t) (4) 

belonging to S, under the condition (sk, p) = 0 
(k = 1, , m), which is represented in the form 
x = G[p] by a bounded linear operator G: P,,+ 

P,. Also, if (3) and hence its adjoint system 
have no nontrivial w-periodic solution, then 
(4) always has a unique w-periodic solution 
given by x = G[p], and this is true even if the 
w-periodicity is replaced by almost periodicity. 
The almost periodic system (3) is said to be 

regular if (4) has almost periodic solution for 
an arbitrary almost periodic function p(t). A 
necessary and sufficient condition for (3) to be 
regular is that (3) induce an exponential di- 
chotomy, that is, the solution space S of (3) 
have a direct sum decomposition S = S- + S, 
such that Ix(t)1 <Me-Ylt-s’ Ix(s)1 holds for -cc 

<s<t<cc ifxeS+ andfor -co<t<s<m if 
x E S-, where M and y are positive constants. 
An autonomous (resp. periodic) system (3) is 
regular if and only if no tcharacteristic roots 
(resp. characteristic exponents) have zero real 

parts. 

C. Geometric Methods 

Geometric methods are used frequently for 
finding a periodic solution in an autonomous 
or periodic case. In the autonomous case (l), a 
periodic solution describes a closed orbit (t is 
a parameter of a curve) in x-space, which is 
usually called a phase space. The geometric 
method is used to show the existence and the 

stability of a closed orbit by investigating 
geometrically the behavior of orbits in the 

phase space. In such an approach, the prop- 
erties of tcritical points and tlimit sets (- 126 
Dynamical Systems) are utilized frequently. 
This method is effective especially for 2- 
dimensional cases on the basis of the tPoincar& 

Bendixson theorem, and various results are 

given for a generalized LiCnard’s (or Duffing’s) 

differential equation j;- +f(x)i + y(x) = 0, which 
includes the van der Pol differential equation 
m-?t(l -x2)1+x=0 [1,2]. 

In the periodic case (2), let w( > 0) be a 
period of X(x, t) with respect to t and x = 
cp(t, a) be a solution of (2) such that ~(0, a) = 
r. Then a periodic solution of (2) is given by 
x = cp(t, Q), where !xO satisfies cp(w, a,) = c(,,. 
Thus the existence of a periodic solution can 
be shown by investigating geometrically the 
existence of a +fixed point of the mapping x+ 
x’= cp(w, x) in the phase space. In such an 
approach, +Brouwer’s fixed-point theorem is 
utilized frequently. In the mapping x+x’, it 

may happen that there is no fixed point but 
that there exists an tinvariant manifold. In this 
case, we get a periodic integral manifold. 

Geometric methods give information on 
qualitative properties, but usually not on 
quantitative properties like the shape of an 
oscillation. Thus these methods are in general 
not sufficient for the analysis of the phenom- 
ena met in practice. 

D. Analytic Methods 

At present analytic methods are used most 
frequently in the study of nonlinear oscilla- 
tions because, in comparison with geometric 
methods, they enable us to get many quantita- 
tive results in addition to the qualitative ones. 
However, these methods are usually efficient 
only for weakly nonlinear differential equations, 
that is, differential equations differing only 
slightly from linear differential equations (gen- 

eral nonlinear differential equations are called 
sometimes strongly nonlinear differential equa- 
tions). In this sense, analytic methods are all 

iperturbation methods in the wider sense [3], 
and the variety of the methods lies in the form 

of perturbation and the method of calculation. 
To make use of analytic methods, we always 
reduce the given differential equation to a 
differential equation of the form 

i= Ax +&x(x, t, E). (5) 

Here E is a parameter with small absolute 
value, A is a matrix of the form A = 

diag(O,, B), where 0, is a p x p zero matrix 
and i? is a matrix whose eigenvalues have all 

nonzero real parts, and X(x, t, E) is periodic or 
almost periodic in t. 

(i) When X(x, t, E) is periodic in t, PoincarC’s 
perturbation method is used frequently. 

(ii) In practical problems, we frequently meet 
the case A = 0, that is, the case where (5) is of 
the form 
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In this case, the average X,(x, E)= 
lim,,,(l/T)S,TX(x, t, ~)dt exists. If dx/dt = 
X,(x, 0) has a periodic solution t(t) and the 
related variational linear system is regular, 
then (6) has an (almost) periodic integral mani- 
fold x = f,(t, 0) such that f,(t, o)+{(Q) uniformly 
as E+O. The method of averaging based on 

this fact was devised by Bogolyubov and 
Mitropol’skii [4] and is used frequently. The 
equation 

a + w2x = &f(X, k-, t, E) (7) 

is one of the examples that can be reduced to 

an equation of the form (6). Equation (7) ap- 
pears frequently in practical problems, and 

hence various convenient techniques are de- 
vised, such as the method of linearization, the 
asymptotic method, the method of harmonic 

balance [4], etc., through which we can apply 
the method of averaging directly to the given 
equation (7). 

(iii) Consider an w-periodic system 

dx/dt = A(t)x + f(x, t). (8) 

For any x(t)~P,, dx/dt=A(t)x+f(x(t), t) is of 
the form (4) and it has an o-periodic solution 

C~~_,U~~~+G[NX], or 

TX= t aktk+G Nx- 2 (qk,Nx)qk 1 (9) 
k=l k=l 

under the condition (qk, Nx)=O (k= 1, . . ..m) as 
in Section B, where N: P,+P, is defined by 

Nx = f(x( .), .), and the w-periodic solutions of 
(8) correspond to the fixed points of the trans- 
formation T: P,,+P, induced by (9), where the 
ak in (9) are given by uk = (c”, x), as is required 
when x is a fixed point. This is the alternative 
or bifurcation method [6-91, which is extend- 
able to the case of almost periodic systems 
under the regularity of (3) [lo]. In order to 
obtain a fixed point of T, various kinds of 
fixed point theorems can be utilized. 

(iv) In Section C and (iii) above, the search 

for a fixed point of an appropriate mapping is 
a principal device. However, the choice of a 
suitable domain for the mapping is a crucial 
problem, and usually an a priori bound for 
solutions is looked for. The concept of stability 
and hence Lyapunov’s second method are 
effective in such situations [ 111. 

E. Numerical Methods 

Numerical methods are used for obtaining 
explicit forms of the oscillations. They are 

convenient in practical applications, since they 
can be used efficiently whether or not the 
nonlinearity of the system is weak. For an 
autonomous or periodic system, one can uti- 

lize the following methods as efficient means 

of computing periodic solutions: Newton’s 
iterative method, the finite-element method, the 
Lindstedt-Poincare method, the method of 

multiple scales, the method of harmonic hal- 
ante, the Galerkin method, etc. [12-153. 

For weakly nonlinear cases, analytic meth- 
ods (that is, perturbation methods) are very 
efficient. However, when a parameter is fixed 

beforehand, it is not easy to know whether 
the conclusion obtained by the perturba- 
tion method is valid for the given value. For 
strongly nonlinear cases, it is very difficult 
to analyze the problems by analytic methods, 
and at present hardly any efficient methods 
exist. Numerical methods will therefore be- 
come exceedingly important in research on 
nonlinear oscillations. These are now of toler- 
able efficiency and reliability, due to progress 

in high-speed machine computation. 

F. Nonstationary Oscillations 

Physically speaking, an oscillation is a station- 
ary state. However, when a system contains a 

parameter varying slowly with time, the oscil- 
lation also varies slowly with time (for exam- 

ple, when the length of a pendulum varies 
slowly, the amplitude of the pendulum also 

varies slowly). Such variation of oscillations in 
the course of time is represented by dx/dt = 
Ef(x, t, Et, E), where f(x, t, s, E) is (almost) peri- 

odic in t, s. Such cases provide important 
problems in the theory of nonlinear oscilla- 
tions; one such problem has been posed by 
Mitropol’skii [ 163 under the name nonstation- 
ary oscillations and has been investigated by 
means of the method of multiple scales [15]. 
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Nonlinear Problems 

A. General Remarks 

Nonlinear problems deal with nonlinear map- 
pings or operators and the related equations. 

Until recently it was customary to consider 
nonlinear problems as belonging to applied 
mathematics and the physical sciences. How- 

ever, nonlinear problems now belong to mod- 
ern mathematics. Many phenomena in math- 

ematical physics are essentially described 
by nonlinear equations, e.g., the motions of 
several particles or of viscous or compressible 
fluids (- 420 Three-Body Problem, 204 Hy- 
drodynamical Equations). Some of these equa- 
tions are approximated by linear equations 
only when the variables appearing in the equa- 

tions are restricted to very small domains; 
they are treated by perturbation methods 
when the variables stay in comparatively small 

domains. If these requirements cannot be met 
and we have to deal with equations in which 
the variation of the variables are not negli- 
gible, nonlinear problems certainly arise. 

The methods of solution of nonlinear prob- 
lems are not as powerful or general as those 

for linear differential equations. For instance, 
the tprinciple of superposition of solutions 

does not hold for nonlinear problems, and 
therefore Fourier methods are no longer ap- 

plicable. Indeed, some nonlinear problems can 

be dealt with only by means of very particular 
or ad hoc devices. 

B. Methods Used in Nonlinear Problems 

Consider a nonlinear equation 

G(x) = 0, (1) 

where G is a nonlinear mapping or operator of 
a subset S of a linear space X into itself. If we 

put G = I - F (I is the identity), equation (1) 
becomes 

x = F(x). (2) 

Then a solution of (2) is a fixed point of F. 
Therefore fixed-point theorems of various kinds 
are useful for solving (2) (- 286 Nonlinear 
Functional Analysis). 

Let x(‘)E S, and suppose that we can define 
xck’,k=1,2 ,..., by 

x(~)=F(x(~-‘)), k= 1,2, 

If F is continuous and the sequence xck) con- 
verges to a point XIZS, then x is a fixed point 

of (2). Such a method of constructing an ap- 
proximate sequence by iteration is called the 
iterative method. +Newton’s iterative process, 
given by 

is one such method, where G’ denotes the 
+Frtchet derivative of G. 

If X is an infinite-dimensional space, many 
concepts and methods of the theory of func- 
tional analysis can be used for a number of 

nonlinear problems (- 286 Nonlinear Func- 
tional Analysis). 

We note that there exist nonlinear trans- 
formations that change nonlinear equations 
into linear ones. For example, the thodograph 
method, which is often applied in hydrody- 
namics, consists of reducing a system of tquasi- 
linear partial differential equations of the form 

Ai@, u)u, + B,(u, u)u, + Ci(u, v)u, + D&L, u)u, = 0 

(i=1,2) 

to linear differential equations 

A,y,, - B,X” - c,y, + DiX, =o (i= 1,2) 

by means of the thodograph transformation, 
which changes the independent variables from 
x, y to u, u (- 205 Hydrodynamics). 

C. Nonlinear Algebraic and Transcendental 
Equations 

Consider a system of equations 

.m 1 )..., x,)=0 (i=l,..., n). (3) 
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Newton’s iterative process can be applied as 
follows. Starting with a point x(O) = (x\“, . . , 
xlp’) lying near the desired solution, we define 

x(k)- -(x “r ,‘1 ‘:), . ..) xtk)) k= 1 2 by solving the 

system of equations 

n af. 

(j=l ) . ) n). 

Under some conditions the iteration {xtk’} 
converges to the solution (- 301 Numerical 
Solution of Algebraic Equations). 

If the system (3) is a real one, (3) is equiva- 
lent to Zfi’ = 0. It is clear that a method of 
obtaining a minimum of a function f(x’, . . , 

xn) is applicable to solving Cf,’ = 0. Taking a 
point x(O), we define 

~~=x(~~~'-l~_~Vf(x(~~~'), k= 1,2,..., 

where Vf =(;?flax,, . , Sf/iYx,,), and let A,-, 

satisfy 

(l>O). 

Under suitable assumptions, a subsequence 
xckj’ converges to x such that Vf(x) = 0 and 

f(xtkj’) decreases monotonically to f(x) [l]. 
Let f be a continuous mapping from a 

domain D of R” or C” into itself. Then for any 

x(O’ED, the iteration xck’ can always be defined 
by xck’ =f(x ckml’). The problem of the behavior 
of xck’ is an interesting and important one in 
pure mathematics; recent work in the physical 

sciences is yielding many new concepts related 
to this problem (- 126 Dynamical Systems, 

433 Turbulence and Chaos). 

D. Nonlinear Differential Equations 

Consider a nonlinear system of ordinary dif- 
ferential equations 

dx/dt =f(t,x) (xER”). 

The initial value problem with initial condi- 
tion x(r) = 5 is equivalent to the problem of 

solving the nonlinear integral equation 

s 

f 
x(t)=(+ f(s,x(s))ds. 

T 
(4) 

The solution of (4) is a fixed point of the 
operator T: cp(t)~ 5 + l:f(s, &))ds defined 
for a suitable function space. Therefore fixed- 
point theorems are applicable to 7’, and the 
iterative method for T is called the tmethod of 
successive approximation. Also the method of 

the Kauchy polygon is useful ( - 3 16 Ordi- 

nary Differential Equations (Initial Value 
Problems)). These ideas are extended to an 

abstract Cauchy problem, 

du/dt=A(t)u (t>O), u(+O)=a, 

in a Banach space X, where a~x and A(t) is a 
nonlinear operator (- 286 Nonlinear Func- 

tional Analysis). 
For extensive studies of nonlinear ordinary 

and partial differential equations - 314 Ordi- 
nary Differential Equations (Asymptotic 
Behavior of Solutions), 290 Nonlinear Oscil- 
lation, 394 Stability, 321 Partial Differential 
Equations (Initial Value Problems), 323 Par- 
tial Differential Equations of Elliptic Type, 
325 Partial Differential Equations of Hyper- 

bolic Type. 
Nonlinear differential equations of special 

types appear in many fields of pure and ap- 
plied mathematics, e.g., the Monge-Ampere 
equation and the equation for minimal sur- 
faces in differential geometry (- 183 Global 
Analysis, 275 Minimal Submanifolds), and 
the Toda lattice equation and the Korteweg- 
de Vries equation in mathematical physics 
(- 287 Nonlinear Lattice Dynamics, 387 
Solitons). 

E. Nonlinear Problems of Control Systems 

The basic equation for a tcontrol system in 

which the state of the controlled object can be 
represented by an n-vector x is given by the 

following system of differential equations [3]: 

i = Ax - cp(a)b, t = cp(d a=c'x--y(, (5) 

where i and [ stand for dxldt and dt/dt, re- 
spectively, 5 is a scalar function representing 

the control, b, c are constant n-vectors, y is a 
constant number, c’ is the transpose of c, and 
A is a constant n x n matrix whose character- 

istic roots have negative real parts. Further- 
more, we assume that when the control has 
no effect upon the system, x is determined by 
x = Ax. The quantities under consideration 
are all real. Finally, the function cp = q(g) is a 
scalar function characteristic of the control 
mechanism. Generally, cp is nonlinear in cr, and 
hence equation (5) is nonlinear. Normally we 
assume that cp has the following properties: (i) 
q(o) is a real-valued continuous function on 
(-co, co) with cp(O)=Oand ocp(a)>O for a# 
0; (ii) j:m cp(a)do= +co. We say that (5) is 

absolutely stable if 

x(t)W, t(t)-0 as t-++co 

for any choice of cp subject to (i) and (ii) and 
for every solution of (5). In the study of control 
systems an important problem is to obtain a 

necessary and sufficient condition for the 

system to be absolutely stable. In this connec- 
tion, we have the following result, due to M. V. 
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Popov: (5) is absolutely stable if there exists a 
nonnegative q such that 

Re{(l+iwq)(c’(iwl-.4)‘b)j+qy>O (6) 

for any real w, where I is the n x n identity 
matrix. Conversely, if the absolute stability of 

(5) is given by means of the tLyapunov func- 
tion (- 394 Stability) 

” 
V(x, a) = X’BX + cd + ctf’x +/I 

s 
da) da> 

0 

where B is a constant matrix and f is a con- 
stant vector, then there exists a nonnegative 
q for which (6) is satisfied for all real w. 

F. Nonlinear Equations in Applied 
Mathematics 

Some examples of nonlinear problems are 
given here (- also 205 Hydrodynamics; 3 18 

Oscillations). 
(1) The nonlinear tdifferential-difference 

equation 

du(t)/dt=(a-u(t-l))u(t) 

is called the Cherwell-Wright differential equa- 
tion [4]. Given the initial condition u(t) = g(t) 
(0 <t < 1, g(r) is a given continuous function), 
its solution is uniquely determined for 0 < t < 

co. Ifa< and g(l)>O, then u(t)+0 as t+ 
co; if a=0 and g(l)<O, then u(t)+ --co as t-r 
(;o. For a>O, u(t)+-co as t--tc~ ifg(l)<O, 
while u(t) either approaches a monotonically 
(0 <a < l/e) or oscillates (boundedly) around 

a (a > l/e) if g( 1) > 0. In particular, we have 
damping oscillations for a < 3/2, while oscilla- 
tory solutions without damping appear for 
a > 42. 

(2) If we regard a star as a gas sphere and 
assume the polytropic relation p= KpY (K and 
y are constants) between the pressure p and the 
density p at each point inside the star, then 
we have a differential equation of the second 
order that determines the density distribu- 
tion. This equation constitutes the basis of the 

classical theory of the internal structure of the 
stars and is called Emden’s differential equa- 
tion or the polytropic differential equation. It 
reads: 

(l/t2)4t2 dOlWd5 = -O”, 

where y= 1+ l/n, p=10”, r=at, a=((n+ 

1)Kly-2/(4~G))1’2, with r the distance from 
the center, G the universal gravitational con- 
stant, and i an arbitrary constant. The solu- 

tion that satisfies the conditions 0 = 1 and 
de/d< = 1 at 5 = 0 is called the Lane-Emden 
function of index n. Emden’s equation is in- 

variant under the transformation <+ A& 

O+A~21(“~1)0 (with A an arbitrary constant). 

Although Emden’s equation can be reduced to 
an equation of the first order, it has not been 
possible to solve it analytically except for the 

cases n = 0, 1, and 5. For certain values of n 

between 0.5 and 6, Emden gave numerical 

solutions, which were relined later by Green, 
D. H. Sadler, and D. C. Miller [S]. 

(3) Caianiello’s differential equations, which 
describe the state of a network of neurons [6], 
are 

x,(t+z)= Y 
[ 

CCuQ’xj(t-r7)--Oi , 

j r 1 
where the function x,(t) represents the state of 

the ith neuron at the time t and takes only the 
values 0 and 1. The state of the system is to be 

considered at the discrete times t = 0, 7, 27, . 

The (real) coefficient u{j” represents the weight 
of the effect of hysteresis in the relay process 
from the cell j to the cell i. The nonnegative 
integer 0, is the threshold value of the cell i. 

Y[x] is the unit step function that is equal to 1 
for x > 0 and vanishes for x < 0. 

(4) The following Hodgkin-Huxley differen- 

tial equation arises in the study of conduction 
and excitation in nerve systems [7]: 

a2V 2r, 
-=- 
8x2 R, 

C,;+g,m’h(V- VJ 

+tg,nv- 1/2)+93W- VJ 
> 

> 

am 

at- 
- -(al(V)+81(V))m+al(V), 

dh 
-= -(~2(V)+82(V))h+Cr,(v), at 

an 

at- 
- -(cc3(V)+B3(V))n+a3(v), 

where c(~, pi (1 <i < 3) are given functions of V, 

and ro, R,, C,,, gi, F (1 <i<3) are constants. 
The unknown function V is sought in the 

domain 0 <x < co, 0 < t < co, while the initial 
values of V, m, h, n, and the boundary value of 
V are given at t = 0 and x = 0, respectively. 
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Nonlinear Programming 

A. Problems 

A nonlinear programming problem is a type of 
mathematical programming problem where it 

is required to minimize or maximize a non- 
linear function e(x) of n-vector variable x 
defined in a closed connected set X0 with a set 

of linear or nonlinear constraints. Minimiza- 
tion or maximization of a continuously dif- 
ferentiable function O(x) under the equality 

condition expressed by a set of continuously 
differentiable functions has been traditionally 
dealt with by the method of Lagrange multi- 

pliers. Hence a typical nonlinear programming 
problem is usually formulated as follows. 

(NLP) Minimize O(x) under the condition 
x~X’cR”andg~(x)<Ofori=1,2 ,..., m. 

Or, equivalently, determine the set of all 
x such that O(x)=min,,,O(x), where C= 

{xlxeX” and y(x),<O}. 
Here we need only consider minimization, 

since maximization problems can be converted 
to minimization problems by virtue of the 
obvious relation max 0 = - min( - 0). 

The set C is known as the feasible region or 
the constraint set, and X is called an optimal 
solution or simply a solution. In many non- 
linear programming problems X0 is R”. If X0 
= R” and 0 and y are linear functions on R”, 

then the problem becomes a linear program- 
ming problem (- 255 Linear Programming). 
The problem of minimizing a quadratic func- 

tion subject to linear constraints is called the 
quadratic programming problem (- 349 Qua- 
dratic Programming). If X0 is a convex set, H 
is convex (or concave), and the gi are convex 
on X0, then the minimization (or maximiza- 
tion) problem is known as a convex (or con- 
cave) programming problem. Convex and con- 
cave functions are important in nonlinear 

programming, because they admit reason- 
ably straightforward sufficient conditions for 

optimality and also because they constitute the 
only important class of functions for which 

necessary optimality conditions can be given 

without the differentiability condition. Subject 
to suitable modifications, the method of La- 
grange multipliers can also be applied to the 
solution of nonlinear programming problems. 

The Lagrangian function $ associated with 
the minimization problem (NLP) is defined by 

ax, 4 = K4 + u’gb), 

where u = (ui, , u,) and u’ denotes the vector 
of Lagrange multipliers. 

A pair (X, Ii) is called a saddle point of $(x, u), 
provided X6X0, iicR”‘, UaO, and $(X,u)< 
@,U)<$(x,li) for all xeX” and all UER”’ 

such that u > 0. It follows easily that: 
(1) (H. Uzawa [ 1 S]) If (X, U) is a saddle point 

of $(x, u), then x is an optimal solution. 
(2) (Kuhn and Tucker [ll]) Assume that X0 

is open and convex, and that 0 and 9 are dif- 
ferentiable and convex. If there exists a pair 
(X, U) such that 

va(x)+u’vg(x)=o, XEC, U’g(X)=O, ii>0 

(where V@(x) and Vg(x) denote, respectively, 
the gradient vector of 0 at x and the Jacobian 
matrix of g at x), then x is an optimal solution. 

B. Necessary Conditions for Optimality 

In Section A sufficient conditions for opti- 
mality were given. Some necessary conditions 
are also known. 

(3) When 0(x) is continuously differentiable 
and all the gi are linear, that is, when the con- 
dition is expressed as Ax < b and x > 0, where 
A is an m x y1 matrix and b an m-vector, x is 

an optimal solution only if X is an optimal 
solution of the following linear programming 
problem. 

(LP’) Minimize u’x under the condition that 
Ax d b, x > 0, where u = V&x). 

By applying the duality theorem of linear 

programming, it can be proved that there 
exists a vector i?> 0 such that 

Vcp(Y,Z)=VB(x)+u’A=O. 

(4) (F. John [9]) Assume that X0 is open, 

and that 0 and g are differentiable. Then, if x is 
a solution of the problem (NLP), there exist 
u. > 0 and UE R” such that 

iioVO(X) + U’Vg(X) = 0, 

Y(X)dO, U’g(X) = 0, u> 0. 

Now we consider the following: The vector- 
valued function g is said to satisfy Guignard’s 
constraint qualification at an inner point x of 
X0 if any vector y satisfying the linear inequal- 

ities Vgi(x). y<O for iEl= {ilgi(x)=O} is in 

the convex hull spanned by the vectors tangent 
to the set C at x. 
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(5) (Guignard [7]) Let X0 be an open set, let 
x be an optimal solution of (NLP), let 0 and g 

be differentiable at X, and assume that g satis- 
fies the Guignard constraint qualification. 
Then there exists EER”’ such that VQ@) + 
U’Vg(X)=O, g(x)<O, and U’g(X)=O, 520. 

Guignard’s constraint qualification is satis- 

fied if neither of the following conditions 
hold: (L) Vectors gi(x) for ill are linearly 
independent. 

(S) (Slater’s constraint qualification) The gi 
are convex and X0 is a convex set; and there 
exists a vector x such that gi(x) < 0 for all i. 
With convexity of 0 and gi, differentiability is 
not required: 

(6) (Kuhn and Tucker [ 111) Let X0 be a 
convex set, let 0 and g be convex on X0, and 
assume that g satisfies Slater’s constraint 
qualification. If x is an optimal solution, then 

there exists ii~ R”, ii> 0, such that U’g(x) = 0 
and (x, 11) is a saddle point of +(x, u) = Q(x) + 

u’g(4. 

C. Sensitivity Analysis 

Now consider the following class of problems. 
(PC) Minimize the function Q(x) under the 

condition that g(x) dc, where c is a real m- 

vector. We denote by & the set of the solutions 
of the problem (PC) and denote 0: = f&Q, X,E 
6,. Suppose that Guignard’s condition is 

satisfied for each c and that the set of La- 
grange multipliers A, is nonempty. Then for 
any real vector a, we have 

infa’u, d ‘,‘y i(@+,. - 0:) < sup a’u,, U,EA,. 

Therefore, if the Lagrange multiplier is unique- 
ly determined for some c, then u, represents 

the vector of the rates of increments of the 
objective function to the small increments of 

the components of the constraints vector. 
Hence the components of the Lagrange- 
multiplier vector are called the imputed 

prices or shadow costs of the constramts; these 
have important economic impiications, espe- 

cially when the objective function is expressed 
in terms of money or profits. 

More generally, we can consider the follow- 
ing class of problems. 

(GPc): Minimize the function 0(x, c) under 
the condition that g(x, c) < 0, where c is a real 

parameter. 
Denote by X(c) and u(c) the solution and the 

Lagrange multiplier of (GPc) corresponding to 
the parameter c, respectively, and let O*(c) = 
8(X(c)). Then under a set of regularity condi- 
tions we have 

w*(c) = V,O(x(c), c) + u(c)‘V,g(x(c), c), 

where V, denotes the gradient of 0 or g with 
respect to the parameter. 

D. Duality 

A duality theorem in mathematical program- 

ming is the statement of a certain relationship 
between two problems. This relationship has 
the following two aspects: (i) one problem is a 
constrained minimization problem and the 
other is a constrained maximization problem; 
(ii) the existence of a solution to one of these 
problems ensures the existence of a solution 
to the other, and in this case their respective 

values are equal. 
Let $(x, u) be the Lagrangian form of 

(NLP), and define ~(u)=inf~~~,,$~(x, u). Then 
we can state the following two problems. 

(P) (primary problem) Miminize 0(x) under 

the condition that x E X0 and g(x) < 0 
(D) (dual problem) Maximize w(u) under the 

condition u > 0. 
If (x, U) gives a saddle point of $(x, u), then 

The dual problem can be formulated alterna- 
tively as follows. 

(0) Maximize $(x,tl)=H(x)+u’g(x) sub- 
jectto(x,u)~Y={(x,u)~x~X”,u~Rm,u~O, 

Vx+(x, u) = 0) (where Vx$(x, u) denotes the 
vector whose components are the partial de- 
rivatives 5$(x, u)/ax, for i = 1, . , n). . 

There are a number of duality theorems 

related to problems (P) and (D); two such 
theorems are as follows: 

(1) (P. Wolfe [20]) Suppose that X0 is open 
and convex, that 0 and g are differentiable and 
convex, and that g satisfies the Kuhn-Tucker 
constraint qualification. Then, if x is a solution 
of(P), there exists a UER”’ such that (x, E) is a 
solution of (0) and 0(x) = $(x, u). 

(2) (0. L. Mangasarian and J. Ponstein [13]) 
Suppose that X0 is open and convex, that 0 
and g are differentiable and convex, and that 
(a, a) is a solution of(D). If Ii/(x, ti) is strictly 
convex in some neighborhood of i-, then i is a 
solution of(P) and Q(a) = +(a, t;). 

The above two problems (P) and (D) are not 
symmetric. The notion of symmetric duality 
was introduced by G. B. Dantzig, E. Eisen- 

berg, and R. W. Cottle: 

Primary: Minimize 
F(x, u)= K(x,u)-u’V,K(x, u), 
subject to the constraints 

V,,K(x,u)gO, x20, and ~20; 
Dual: Maximize 

G&u)-K(x,u)-x’V,K(x,u), 
subject to the constraints 
V,K(x,u)>O, x30, and ~30, 
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where K is continuously differentiable in 
(x, u)ER” x R”. 

(3) Dantzig et al. proved [6] the existence of 
a common optimal solution (x, u) to both the 
primary and dual problems, provided (i) an 
optimal solution (x, u) to the primary problem 
exists, (ii) K is convex in x for each u and 
concave in u for each x, and (iii) K is twice 
differentiable and the matrix of second partials 
(?K/&‘&j) is negative definite at (x, u). 

Rockafellar [ 151 gave another expression of 

the duality relation: Define F(x, Y)= e(x) if 
g(x)<y and = co otherwise, and denote q(y) 
= infxtxO F(x, y). Then O(x) = q(O). For any 

nonlinear function q(y), the conjugate cp*(;rl) is 
defined by 

(4) (Rockafellar [lS]) supw(u)=‘p**(O)= 
clco q(O), where clco q(y) denotes the closed 
convex hull or maximum convex minorant 
of q(y) defined by clcocp(y)=sup,l’y{l’z~ 
p(z) for all z}. It follows from the above that 

infB(x)=supw(u) if and only if cp(O)=clcocp(O), 
which holds true if q(Y) is convex. 

Further forms of the duality theorem hold 
for linear or quadratic programming problems 
(- 255 Linear Programming, 349 Quadratic 
Programming). 

E. Algorithms 

In a limited class of problems, i.e., when the 
objective function is quadratic and the con- 

straints are linear (- 349 Quadratic Program- 
ming) the optimal solution can be obtained by 
solving a system of linear equations by the 
simplex method or other algorithms; but in 
most nonlinear programming the solution is 

calculated by some kind of iterative procedure. 
Note that even when the constraints are given 

as equalities and all the functions involved are 
continuously differentiable, so that the optimal 

solution is explicitly given as a solution of a set 
of simultaneous equations, we usually require 

some iteration procedure, such as the Newton- 
Raphson algorithm, to obtain numerically the 
solution with preassigned accuracy; and the 

iteration is not always easy if the functions are 
sufficiently complex. 

Several iterative procedures for solving non- 
linear programming problems have been pro- 
posed. Since the simplex method is a powerful 
tool in linear programming, one type of ap- 
proach is to obtain an approximately optimal 

solution by approximating the objective and 
the constraint functions by piecewise linear 
functions and then applying linear program- 

ming techniques to get the approximately 

optimal solution within each region. Another 

is to change the constrained problem to a 
nonconstrained one by introducing a suffi- 
ciently large number M, called the penalty, 

and then maximizing 

4A-4 = Q(x) + MC max(s,(x), 0) 
i 

without the constraint. This is called the pen- 
alty method. 

The third and most generally applicable 
technique is the gradient method, of which 
several variations are known: 

(i) Arrow-Hurwicz-Uzawa gradient method 
[4]. Concave or convex programming prob- 
lems can be solved by finding a saddle point 
of the Lagrangian function ti(x, u). Let cp(x, u) 
be strictly concave and of class C2 in n-vector 
x > 0 and convex and of class C2 in m-vector 

u 2 0 and possess a saddle point (X, V). To 
approach a saddle point of cp(x, u) it is natural 
to devise a gradient process of the form 

dx, i3cp 
-=~ 3- acp 
dt axi’ dt auj. (1) 

To keep the variables in the positive orthant, 
we need to modify (l), and we consider the 
following system of differential equations: 

~ otherwise 

(i=l,...,n), 

I- 

1 
duj= 0 ifu,=OandE>O 

J 
dt acp 

~ otherwise auj 
(j= 1 / . , m). 

Under certain regularity hypotheses, there 
exists a unique solution (x(t), u(t)) of the sys- 
tem with any initial point (x0, u”), and the x 

component x(t) of the solution converges to x 
as t-co. 

Applying the above results to the Lagran- 
gian function $(x, u) we can solve the concave 

or convex programming problem. 
(ii) Rosen’s gradient projection method [ 161. 

If a point x0 of the feasible region does not 

give a solution for the minimization problem 
(P), then we look for a feasible point with a 
lower function value by proceeding from x0 in 
the direction of the gradient of the function 
-0(x). The method fails if x0 is a boundary 

point and if the gradient vector points toward 
the exterior of the feasible region. Rosen’s 

method [16] is to project the gradient onto the 
boundary of the feasible region and then pro- 
ceed in the direction of this projection. In this 

manner, we remain on the boundary of the 

feasible region. 
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(iii) Methods of feasible directions. These 

were first described by G. Zoutendijk [21]. 

Consider the problem of minimizing O(x) 
subject to the constraint x E S c R”, where S is 
a closed, connected set satisfying certain regu- 
larity conditions and 0 is a continuously dif- 
ferentiable function of the n-vector x, such 
that, for some CI, the set {x E S ( O(x) < a} is 
bounded and nonempty. 

A method of feasible directions is any recipe 
for solving this problem by proceeding along 
the following lines: (1) Start with some x0 ES 
such that 0(x0) < sup CI. (2) Pass from the kth 

iteration point xk to xk+i by first determining 
a direction sk in xk such that the ray xk +Isk 
lies in S for all sufficiently small 3, > 0. (3) Then 

determine the step length Ak, thus obtaining 
the (k+ 1)st iterate xkil =xk+&sk. (4) Repeat 
this procedure until some prescribed stopping 
condition is satisfied. 

There are many methods of determining the 
sk, and in most cases the 1, are then deter- 

mined by solving a one-dimensional mini- 
mum problem along the direction so obtained. 
Zoutendijk has unified the various possible 
methods of feasible directions and the relevant 
normalization rules that yield the optimal 

directions sk, and has investigated this subject 
in detail from the viewpoint of computational 
technique [21,22]. 

F. Generalizations 

The extension of the Kuhn-Tucker theory to 

linear topological spaces is due to L. Hurwicz 
[S]. Let 5 be a linear space, Y, 3 be linear 
topological spaces, Py, Pz the nonnegativity 
cones of Y, 3, respectively, which are closed 

convex cones containing inner points, D a 
convex set in X, and F, G concave mappings 
(- 88 Convex Analysis A) from D into Y, 2, 
respectively, such that G(D) contains an inner 

point of Pz. If F(X) attains its maximal point 
when X =X0 and X0 satisfies G(X,) > 0, X0 ED, 
then there exist Y,* >, 0, Z,* >, 0 such that 
@(X, Z*) = Y,*(F(X)) + Z,*(G(X)) has a saddle 
point at (X0, Zx). The condition that Py and 
Pz have inner points can be weakened to cover 
the cases of (1,) (L,), (s), (S) (Hurwicz and 

Uzawa). P. P. Varaiya [ 191 considered the 
following nonlinear programming problem in 
Banach space. 

(B) Maximizef(x) subject to XEA, gear, 
where X, Y are real Banach spaces, x E X, g : 
X+ Y is a Frechet differentiable mapping, f is 
a real-valued differentiable function, A is a 
subset of X, and A, is a convex set in Y. 

The main results are similar to the Kuhn- 
Tucker necessary conditions. Varaiya also 
exhibited a saddle value problem related to 

(B), when A, is a closed convex cone. L. W. 
Neustadt [ 141 investigated nonlinear pro- 

gramming problems in linear vector spaces 
and gave an application to the theory of 
optimal control. The main results are: (i) 
Kuhn-Tucker type conditions which are both 
necessary and sufficient for optimality, (ii) a 
duality theory for obtaining multipliers in the 
generalized Kuhn-Tucker conditions, and (iii) 
an application to optimal control theory. 
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A. General Remarks 

Nonstandard analysis is a new field of research 
that has branched off from model theory and 

that provides a powerful method applicable in 
almost all fields of mathematical science. 

About 1960, A. Robinson successfully used a 

nonstandard model of the real number field R 
to justify Leibniz-type infinitesimal calculus. 
After this, using higher-order logic, he devel- 
oped a stronger theory of nonstandard analy- 
sis, and applied it to other mathematical fields 

c11. 
In this article, we adopt a first-order logic 

over a universe. In the final section we present 
a theory called nonstandard set theory; this is 

a conservative extension of Zermelo-Fraenkel 
set theory with the axiom of choice. 

B. Axioms for Nonstandard Analysis 

A nonempty set U is called a universe if the 
following four conditions are satisfied: 

(a)xEU,yEx=>yEU; 

(b)x,yeU={x,y)EU; 

(c)xEU*uxEU; 

(d)xEUaP(x)EU. 

In what follows, U will be a universe contain- 

ing the field R of real numbers. 
We construct a language Y describing 

mathematics in U. The alphabet consists of the 

following symbols: (1) countably many vari- 

ables. (2) constants corresponding to all ele- 
ments in U. (3) predicate symbols = and E. (4) 

logical symbols 1, A, v, -, 3, V. (5) auxiliary 
symbols [ ,I. The last two symbols will be 

omitted where there is no danger of confusion. 
Definition of formulas. (1) If t and s are 

terms (variables or constants), then t = s and 
t ES are formulas (atomic formulas). (2) If 4 

and $ are formulas, then l+,d A $, 4 v $, 
@-$ are formulas. (3) If 4 is a formula and x 
is a variable, then 3x[f and Vx[& are for- 
mulas. (4) The formulas are those that can be 
constructed by the above procedure. 

A formulas 4 containing at most n free 
variables is called an n-ary formula. In this 

case, we often write &x1,. , x,,) for 4. A sen- 
tence is a 0-ary formula. We write + 4 if a 
sentence 4 is true under the usual inter- 

pretation. 
Consider a quadruple (U, *U, *E, *) where 

*U is a set, *E is a binary relation on *U, and 

* is a mapping: a~ *a from U to *U. An 
element x of *U is called standard if a = *a for 
some a~ Cl, and nonstandard if not. Adjoin to 

Y constants representing all nonstandard 
elements of *U. Then we have a language *Y 

for *U. A sentence in 8 is a sentence in *Y. 
Taking *U as the scope of quantifiers, we can 
interpret every *S-sentence in *U. We write 
*+ d if an *S-sentence 4 is true under this 
interpretation. 

Axiom 1 (transfer): For every sentence 4 in 
9, we have 

Definition: Let 4(x, y) be a binary formula in 
Y (resp. in *Y). We say that 4(x,y) is concur- 
rent in U (resp. in *U), if, for every finite num- 

ber of elements ul,. , a, in U (resp. in *U), 
there exists an element b in U (resp. in *U) 
such that + &ai, h) (resp. *+ &ai, h)) for 

l<i,<n. 
Axiom 2 (enlargement): If a binary formula 

4(x, y) in Y is concurrent in U, there exists an 
element /j in *U such that *+=(a, [j) for all u in 
u. 

A quadruple (U, *U, *E, *) or simply *U 
is called an enlargement of U if it satisfies 
Axioms 1 and 2. 

These axioms are strong enough to develop 

the basic theory of nonstandard analysis, but 
sometimes we require a stronger axiom. Let K 

be an infinite cardinal. 
Axiom 3 (K-saturation): Let 4(x,y) be a 

binary *T-formula concurrent in *U. Then, 
for every subset A of *U with cardinality at 
most IC, there exists an element /I of *U such 

that *b&x,8) for all acA. 
*U is called a K-saturated model if it satisfies 

Axioms I and 3, and a K-saturated enlarge- 
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ment if it satisfies Axioms 1, 2, and 3. If K is 
not less than the cardinality of U, then a K- 
saturated model is necessarily an enlargement. 

In the remainder of this article, *I/ will be 
an enlargement of U, if the contrary is not 

explicitly mentioned. 
For a in *U, 2 is the set of 5 E * U such that 

<*Ea:&={~c*U/~*Ea}. For simplicity, we 

write E for *E and identify oi with a. Under this 
identification, a subset A of *U is called inter- 
nal if it belongs to *U and external if not. 

Axiom 1 and 2 imply the following results. 

(1) There exist infinite hypernatural num- 
bers, namely, elements of *N bigger than all 
*It, nezN. 

(2) There are positive infinitesimal hyperreal 
numbers. 

(3) For every set A in U, there exists a 
hyperfinite internal subset of *A containing all 
*u, a E A. Here, r is called hyperfinite if we 

have *k&r), where 4(x) is a formula that says 
“x is a finite set.” 

(4) Let A be a set in U. Then *A has non- 

standard elements if and only if A is an infinite 
set. 

(5) If a family 9 of sets in U has the finite 

intersection property, then the family {*A 1 A E 

9) in *U has a nonempty intersection. 
(6) Let a: *N+*R be an internal hyper- 

sequence. If a(*n) is infinitesimal for every 
HEN, then there exists an infinite hypernatural 
number i such that a(v) is infinitesimal for 

every hypernatural number v less than 1. 
If we moreover assume Axiom 3, we have 

the following results. 
(7) The cardinality of an internal set is either 

finite or more than K. 

(8) If a family F of internal sets in *U has 
the finite intersection property and cardinality 
K at most, 9 has a nonempty intersection. 

(9) Introduce the order topology in *R. 
Then every subset of *R with cardinality at 
most K is bounded and discrete. 

(10) Let a, B be internal sets and C a subset 
of a with cardinality at most K. Then every 
mapping from C to /I can be prolonged to an 
internal mapping from a to b. 

(lo’) In particular, every external sequence 
N+fl can be prolonged to an internal se- 

quence *N-/l. This follows from the assump- 
tion of countable saturation. This fact plays an 
essential role in nonstandard probability 
theory, which is now in the process of rapid 
development (- Section D (3)). 

C. Construction of Ultrapower Models 

Let I be an infinite set. A mapping a from I to 

U is a family of elements in U with indices in I. 
So we write (a(i))i,, or simply (a(i)) for a. 

Let 9 be a nonprincipal ultrafilter on I and 
define an equivalence relation -c on the set 
U’ of all mappings from I to U: 

(a(i)) -,(~(i))~{iEIla(i)=/l(i)}~F. 

Denote by *U the quotient set of U under the 
relation -I. The class of (a(i)),,, will be 
denoted by [a(i)],,, or simply [a(i)]. 

Define a binary relation *E on *U: 

Let * be the diagonal mapping from U to *U 

and consider the quadruple (U, *U, *E, *). 

Theorem (LOS): The foregoing quadruple 
satisfies Axiom 1. Moreover, *U is a countably 
saturated model. 

In particular, let I be the set of all finite 

subsets of U. For ill, put p(i)= { jc1I icj}. 
Then the family of sets B = {p(i) 1 iEl} has the 

finite intersection property, and therefore there 
exists an ultrafilter .F on I including B (use 
+Zorn’s lemma). If we construct *U from the 

ultrafilter .F, then *U is a countably saturated 
enlargement of U Cl]. 

It iS not easy to construct a K-saturated 

enlargement for an arbitrary cardinal K. We 
have two ways: to use a K-good ultrafilter (the 
proof of its existence is difficult) [2,3] or to use 
an ultralimit (iteration of ultrapowers) [4,16]. 

D. Applications 

(I) Infinitesimal Calculus. A hyperreal number 
a (element of *R) is called infinitesimal if Ial is 

smaller than every positive real number. If 
X-B is infinitesimal, a and p are said to be 
infinitely close to each other; this is written 
a z b. If l/a is not infinitesimal, a is called 
finite. Every finite hyperreal number a is in- 
finitely close to a real number a (completeness 
of R). We call a the standard part of a and 
write St(a). Every finite hyperinteger is an 
integer. 

Let f be a real-valued function on a real 
interval I. Then yf is a hyperreal-valued func- 
tion on the hyperreal interval *I. The function 
f is continuous if and only if f(x)= *f(q) for 

every x E I, q E *I with x z q. The function f is 
uniformly continuous if *f(t) z *f(q) for every 
<, IIE*I with 5%~. 

Let 6x be a variable ranging over nonzero 
infinitesimals. The function Sf= *f(a +6x) - 
,f(u) of 6x will be called the infinitesimal 
increment off at a. f‘ is differentiable at a if 
and only if the quotient ijf/!flfix is of infinitesimal 
variation. The common standard part of Sjj’Sx 
is the derivative f’(a). 

The higher-order differential 8”’ is also 
justified as a higher-order infinitesimal dif- 
ference, with the standard part of 6”f/6x” being 
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,f”)(a). We can define the Riemann integral as 
the standard part of a Riemann hypersum with 
respect to a hyperfinite partition of infini- 
tesimal width. 

This type of reformulation permits us to 
rewrite the whole of calculus, and many 
teachers are trying to adapt this theory to 

elementary calculus [S, 61. 

(2) Topological Spaces. Let X be a topological 
space in U and let u be a point of X. The 
intersection of *A, A varying over the neigh- 
borhoods of a is called the monad of a and is 
denoted by Man(a). There exist hyperneigh- 
borhoods of a contained in Man(a) (inlini- 
tesimal neighborhoods). The topology is deter- 
mined by the system of monads (Man(a)),,,. 
We can thus rewrite the theory of topological 
spaces. For example, X is Hausdorff if and 

only if Man(a) n Man(b) = 0 for every a # b 
in X. X is compact if and only if every point of 
*X belongs to the monad of some element in 

X. This characterization is very useful; using it, 
Robinson and Bernstein were able to solve the 

invariant subspace problem for a special class 
of operators on a Hilbert space [7]. We can 
also construct a Haar measure very naturally 
and simply [2]. 

(3) Measures and Probability Theory. Let 
(X, B, m) be a measure space. Then there exist 

a hyperfinite subset r of *X and a positive 
hyperreal-valued internal function cp such that 

we have 

for every integrable function .f [S]. The right- 
hand side is a hyperfinite sum. It follows that 

the measure m can be extended to a finitely 
additive measure defined over all subsets of X. 

If in particular every measurable finite set is 
of measure 0, then there exist a hyperfinite 
subset r of *X including X and a hyper- 

natural number p such that we have 

for every integrable function f [g]. If m(X) = 1, 
then p can be taken as the hypercardinality of 
r. Here, the right-hand side is nothing but the 

mean value of *f on a hyperfinite set. This idea 
leads us to a simple description of probability 

theory. 
The above method is rather formal; but P. 

Loeb [9] has pioneered a new approach in 

probability theory by constructing an external 
measure space from a hyperfmitely additive 
internal measure space (X, G?‘, v) in *U. In the 

following, *U is supposed to be countably 
saturated. 

Let a(&) be the external countably additive 

algebra of subsets of X generated by ~2. Then 
the mapping &H st(v(&)) from & to R can 
be extended to a measure on g(d). The com- 
pletion of this measure space is denoted 
(X, L(d), L(v)). In cases where X is hyper- 
finite, G! is the totality of internal subsets of X, 
and v(X)= 1, then the space (X, L(d), L(v)) is 

called a Loeb space and L(v) a Loeb measure. 
Every Radon probability space can be re- 

presented as the image of a Loeb space by a 
measure-preserving mapping. Therefore the 
probability theory on a Radon probability 
space can be reduced to that on a Loeb space. 

For example, for +Lebesgue measure on the 
interval [O,l], take an infinite hypernatural 
number 1 and put X={,U/~~~E*N,O<~< 

i- 1). If we assign l/1 to every point of X, we 
have an internal probability measure v on X. 
Then the mapping st: x-St(x) from X to [O,l] 

serves as a measure-preserving mapping from 
the Loeb space (X, L(.d), L(v)) onto the Lebes- 
gue measure space on [O,l]. 

The notion of lifting plays a key role in 

probability theory on Loeb spaces. Let f be a 
real-valued function on X, and F an internal 

hyperreal-valued function on X. F is called a 
lifting off if we have .f(x) = st(F(x)) almost 
everywhere with respect to L(v). Hence f is 
measurable if and only if it has a lifting. 

Shuttling between an internal probability 

space and its Loeb space by lifting and 
standard-part mapping, we can develop, sim- 
ply and partially hyperfinitely, probability 

theory on the Loeb space. Among others, 
Anderson [lo, 111 and Keisler [ 121 applied 
this method quite successfully to Brownian 
motions, It8 integrals, stochastic differential 

equations, etc. [ 171. 

E. Nonstandard Set Theory 

In our formulation in B, we must construct *U 
from a fixed universe U. Nelson [ 131, Hrbacek 

[ 143 and &da [ 151 independently invented 
theories that nonstandardize the whole of set 

theory. In these theories, there is only one real 
number field R, and R already contains in- 

finitesimal numbers. Compare this to 
Robinson-type infinitesimal analysis, where 

infinitesimal numbers are introduced as an ad 
hoc tool. The new theories may demand a 

reflection on mathematical description in the 
natural sciences. 

In the following, we outline (intuitively) 
Hrbacek’s theory, as strengthened and im- 

proved by Kawai [16]. 
We start from ZFC, the Zermelo-Fraenkel 

set theory plus the axiom of choice. The lan- 
guage of Kawai’s theory NST is that of ZFC 
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plus two constants S and I. We understand S 
as the totality of standard sets and I as the 
totality of internal sets. 

Let 4 be a formula of ZFC, that is, a for- 
mula of NST without S and I. We write “4 
(resp. ‘#), the formula of NST obtained by 

restricting the scope of variables in I$ to S 
(resp. I). 

The mathematical axioms and axiom 
schemes of NST are substantially as follows. 

(1) If 4 is an axiom of ZFC, then “4 is an 
axiom of NST. In other words, all the axioms 
of ZFC are valid in the universe of standard 
sets. 

(2) In the universe of all sets, all the axioms 
of ZFC are valid except the regularity axiom. 

(3) Every standard set is internal. Every 

element of an internal set is internal. 
(4) (transfer) For every n-ary formula 

4(x1, ,x,) of ZFC, we have 

Vx,ES...vX”ES[s~(X ,,‘.., X”) 

-‘&x1, .,.,x.)1. 

(5) (saturation) For every set of size at most 
that of S, the scheme corresponding to Axiom 
3 (K--saturation) in Section B holds. Therefore 
the scheme corresponding to Axiom 2 (enlarge- 
ment) holds also. 

(6) (standardization) For every set u in- 

cluded in a standard set, there exists a stan- 
dard set b such that we have VxgS[xga* 
xEb]. 

This completes the description of NST. 
Theorem (Nelson-Hrbacek-Kawai): NST is 

a conservative extension of ZFC. That is, let 4 
be a sentence of ZFC. If “d can be proved in 
NST, then 4 can be proved in ZFC. 

Corollary: If ZFC is consistent, so is NST. 
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A. General Remarks 

From counting, a primitive mental activity, 
came the natural numbers (N) (- Section B), 
which serve to denote the number of items or 
the order in which these items are arranged. 
We can extend this concept to define, step by 

step, the iintegers (Z), trational numbers (Q), 
treal numbers (R), and tcomplex numbers (C) 

(- 355 Real Numbers; 74 Complex Numbers). 
The extensions up to the rationals are 

carried out to attain a domain within which 
the operations of addition, subtraction, multi- 
plication, and division, namely, the four aritb- 
metic operations (or rational operations) can 
be performed indefinitely, with division by 
0 the only exception. To develop the theory of 
natural numbers there are two well-known 
methods, one being G. Peano’s system of 
axioms [4], which will be stated below, and 
the other being R. Dedekind’s set-theoretic 

treatment [S]. The domain of rational num- 
bers can be extended, taking continuity into 

consideration, to that of real numbers by 
several methods of which the best known are 
those of the Dedekind cut (1872) [S], which 
will be described below, and of G. Cantor’s 
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fundamental sequences (1872) [9]. There is 

also a way based on infinite series, given by 
K. Weierstrass in his lectures (185991860). 
Though in the domain of real numbers (1) 

the four arithmetic operations can be per- 
formed indefinitely and (2) an order relation for 
magnitude is defined, the equation x2 + 1 =0 
has no root. Introducing numbers expressible 
as a + ib (i = fi), it is possible to solve 
every equation of the second order. Such 
numbers, once called imaginary, have been 
used since the days of G. Cardano [6] in the 
16th century. L. Euler also made good use of 
complex numbers as convenient tools in many 
calculations and obtained among other things 

his formula exp i0 = cos 0 + i sin 0. Indeed, the 
notation i= J-1 was used for the first time 
by Euler (1777). Furthermore, C. F. Gauss, 

giving imaginary numbers the name complex 
numbers, showed that any algebraic equa- 
tion with numerical coefficients always has 
roots in the domain of complex numbers. The 
discovery of the geometric representation of 
complex numbers by several mathematicians 

in the late 18th and early 19th centuries and 
their use in many applications have made 
complex numbers indispensable in mathematics. 

Though there are extensions of complex 
numbers, such as tHamilton’s quaternions or 

+Cayley numbers, it is generally accepted that 
when we speak of a number we usually mean a 
complex number. 

B. Natural Numbers 

Peano, basing his system on a specific natural 

number, 1, and a function such that to each 
natural number x corresponds a natural num- 

ber x + 1 (hereafter denoted by x’ and called 
the successor of x), formulated the funda- 
mental properties of the set N of natural num- 

bers in the following five axioms, called the 
Peano postulates: (I) 1 EN; (2) if x EN, then 
x’EN;(3)ifxeN,thenx’#1;(4)ifxr=y’ 
(x, y E N), then x = y; and (5) if a set M satisfies 
the two conditions: 1 EM, and XE M implies 
X’E M, then N c M. Since these postulates 

determine N uniquely up to isomorphism, they 
can be regarded as a definition of N. Elements 
of N are called natural numbers. 

Owing to Peano’s fifth postulate, regarding 
a certain property P(n) for natural numbers n 

we can deduce that P(n) is true for every n if 
we prove both of the following conditions: (i) 
P( 1) is true; and (ii) for any natural number k, 
if P(k) is true, then P(k + 1) is true. Such rea- 
soning is called mathematical induction (or 

complete induction). Accordingly, Peano’s fifth 

postulate is called the axiom of mathematical 
induction. Double mathematical induction, a 

generalization of mathematical induction, is as 
follows: to show that the property P(m, n) is 
true for every pair of natural numbers m and II, 
we have only to show that (iii) P(m, 1) and 

P( 1, n) are true for every m and every n; and 
(iv) for every pair of natural numbers k and 1, if 
P(k + 1,1) and P(k, 1+ 1) are true, then P(k + 1, 
I + 1) is true. This axiom can be formulated in 
several other ways and can be generalized 
further to n-tuple mathematical inductions 
(n = 2,3,4, ), generically called multiple 
mathematical inductions. 

Assume for a set M that a mapping f from 
the Cartesian product N x M into M is given. 
Then a mapping cp from N into M such that 

(v) cp(l)=a; and (vi) cp(x’)=f(x,cp(x)) (x~N) 
exists and is unique. Defining cp by (v) and (vi) 
is called the definition of cp by mathematical 
induction. 

In particular, given a natural number a, the 
mapping cp : N + N defined by (vii) cp( 1) = a’; 
and (viii) cp(x’) = v(x) is called addition by n. 

We shall write v(b) = a + b, whence x’= x + 1. 
Addition thus defined obeys the following 

laws: a + b = b + a (commutative law); (a + b) 
+ c = a + (b + c) (associative law). Peano’s 
postulates are thus equivalent to the following: 

(1’) 1 EN; (2’) for each pair a, bEN, a+ bcN is 
defined so that addition obeys the commuta- 
tive and associative laws; (3’) for each pair of 

natural numbers a and b, one and only one of 
the following three relations holds: a = b + c 

(cEN); a=b; a+c=b (cEN); (4’) the same as 
(5) (mathematical induction). From (l’)-(4’) 

follows the cancellation law: a + c = b + co 
u=b.Definea>bifandonlyifa=bora= 
b + c (a, b, c E N). Then, from (3’), N becomes a 
ttotally ordered set and a > b = a + c > b + c. 

For each agN, the mapping (p:N*N 

defined by cp(l)=a and cp(x’)=cp(x)+a is 
called multiplication by a, and we write v(b) 
= ah (or a. b). Multiplication obeys the follow- 
ing laws: ah = ba (commutative law); (ab)c = 
u(bc) (associative law); a(b + c) = ab + ac, 
((I + b)c = UC + bc (distributive laws); and 
UC = bc 9 a = b (cancellation law). The state- 
ment a’ 1 = 1 ‘a = a also holds. 

Natural numbers, which have been intro- 

duced thus far as tordinal numbers, also have 
the nronerties of tcardinal numbers. Denoting 

1 I 

i&T...> n}=M,,,wehaveM,=M,*m=n, 

M,+En=M,,,+,, M=,xM,=M,,(-49 
Cardinal Numbers). 

C. Integers 

Introducing new numbers which are not in 

N = { 1,2,. }, represented by the notations 
0, - 1, -2, . . . . -n, . . . . we write Z={ . . . . 
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--II ,..., -2,-1,0,1,2 ,_.., n ,... }.Anelement 
of Z is called an integer (or rational integer). 

Algebraically we can construct Z from N as 

follows: Let the set of all tordered pairs (k, I) 
of natural numbers k, 1 be M = N x N, and 
define in M an tequivalence relation (k, 1) - 
(m, n) by k + n = m + 1. Let the equivalence class 
of (k, 1) be K(k, 1), and construct the tquotient 

space, MJ- = M*. Then the mapping q: 
Z-M* defined by cp(n)=K(k+n, k), q(O)= 
K(k, k), cp( - n) = K(k, k + n) is bijective. Setting 
K(k, I) + K(m, n) = K(k +m, I+ n), addition 

can be defined in M* (and accordingly in Z) 
which is an extension of that in N. Since 
K(k,1)-K(m,n)=K(k+n,I+m),subtrac- 
tion can be defined in Z. This makes Z an 
+Abelian group with respect to addition. An 

order relation in Z is defined by K(k, I) 3 
K(m,n)ok+n>m+/, which makes Z a 
totally ordered set. This order relation is an 
extension of that in N. In particular, N = 
{a~Z(u>0). Furthermore, setting K(k, /) x 
K(m, n) = K(km + In, kn + lm), multiplication 
in Z can be defined. It is an extension of 
that in N and obeys commutative, associative, 

and distributive laws. Also, for each a, h E Z, 
we have ab=Oo(a=O or b=O). Thus, Z 
becomes an iintegral domain. 

D. Rational Numbers 

Let P be the set of all ordered pairs (a, b) of 

integers u, b with h # 0, and define in P an 
equivalence relation (u, b) - (c, d) by ad = bc. 

Each equivalence class determined by this 
relation is called a rational number. Denoting 
by L(u, b) the equivalence class to which (a, b) 
belongs, we can define the sum x + y, the 
difference x-y, the product xy, and the quo- 

tient x/y of rational numbers x = L(a, b), y = 
L(c, d), as in the cases of addition and multi- 

plication of integers, in the following way: 
x + y = L(ud + bc, bd), x - y = L(ud - bc, bd), 
xy = L(uc, bd), x/y = L(ud, bc), where the quo- 
tient is defined only when c # 0. Thus the set 
Q of all rational numbers becomes a tfield. 

For the same reason that we have identified 
integers of a special type with natural num- 
bers, we now identify a rational number ex- 

pressible as L(u, I) with an integer a. Hence- 

forth, any rational number L(a, b) (b # 0) can 
be expressed in the form of a quotient a/b 
(b ~0) of integers a and b. 

From ,!,(a, b) = L(cu, cb) (c # 0), it is always 
possible to assume b > 0 in the representation 
L(u, b) of a rational number x. For any two 
rational numbers x = L(u, b), y = L(c, d) with 

b > 0, d > 0, define an ordering in Q by x >, y 
oud > bc, which is an extension of the order- 
ing of integers. Thus (i) Q becomes totally 

ordered, and we have (ii) x > y = x + z > y + z 
and (iii) x 2 y and z > 0 => xz 2 yz. The ration- 
al x is called positive if x >O and negative if 

x<o. 

E. Real Numbers 

Two typical methods of constructing real 

numbers from rational numbers are those of 
Dedekind and of Cantor. 

Dedekind’s Theory of Real Numbers. We call a 
pair (A,, A,) of subsets A,, A, of the set Q of 

all rational numbers a cut of Q if they satisfy 
the following conditions: (i) A, # 0, A, # 0; 
(ii)Q=A,UA,;(iii)a,EA,,a,EA,=>a,-=a,. 

Then the following three cases are distin- 
guished: there is (i) a maximum in A, with no 
minimum in A,; (ii) no maximum in A, with a 
minimum in A,; or (iii) no maximum in A, 

with no minimum in A,. A cut with either 
condition (i) or (iii) is called a real number (in 

the sense of Dedekind); condition (ii) can be 
converted to (i). The set of all real numbers is 
denoted hereafter by R and each real number 
by a or /J or A real number with property 

(i) is called a rational real number, and a real 
number with property (iii) an irrational real 
number. Any rational real number is uniquely 
determined by the maximum a* of A,, and the 
mapping: u+u* = (A,, A,) from the set Q of 
rational numbers onto the set Q* of rational 
real numbers is bijective. 

I. For real numbers n =( A,, A2) and /3 = 

(B, , B2) we define c( < p if and only if A, c B, 
By this ordering <, R becomes a totally 
ordered set. 

II. For real numbers cc=(A,, A2) and fl= 

(B,,B,),put C,={a+bJaeA2,bEB2\1 and 
C, = R - C,; then (C, , C,) = y is a real num- 
ber. Define the sum c( + fl by setting c( + b =;j. 
Addition thus defined obeys commutative 
and associative laws, and R becomes an 
+Abelian group with 0* as its zero element. 
Furthermore, for real numbers c( =(A,, A2) 
and fl=(B,,B,) with O*<cc, O*<p, put D,= 
{ublaEA,,bEB,}, D,=R--D,; then (D1,D2)= 
6 becomes a real number. Define the product ap 
by setting c$ = 6. According as 0* > E, 0* < /J; 

O*<a,O*>fi;orO*>cc,O*>~,define@= 

-((-a)B); cd= -(+P)); and xD=(-4-B), 
respectively. Multiplication thus defined obeys 
the commutative, associative, and distributive 

laws, and R becomes a field with l* as its 
unity element. 

III. For ordering and arithmetic operations, 

we have(l) a>/Y~a+y>/Y+~; and (2) 
cc3~,~3o**ccy>~y. 

By letting each rational number a corre- 
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spond to a rationally real number a*, we can 

set up a bijection between the set Q of all 
rational numbers and Q*. Furthermore, in this 
correspondence, the sum, product, 0, and 1 of 
Q are mapped to the sum, product, zero ele- 
ment, and unity element of Q*, respectively; in 
addition, the ordering is preserved. Thus Q 
and Q* are isomorphic with respect to both 
arithmetic operations and ordering. We shall 
hereafter identify the element a* with a. Ac- 
cordingly we call rational real numbers simply 
rational numbers and similarly irrational real 

numbers simply irrational numbers. 
IV. Similarly as for Q, we can define a cut 

(A,, A2) of the set of all real numbers R (pre- 
cisely, by the conditions A, # 0, A, # 0; 
R=A,UA2;d,~A,,d2~A2*d,<d2).For 

each cut (A,, AZ) of R, either there is a max- 
imum in A, and no minimum in A, or no 
maximum in A, and a minimum in A, (Dede- 
kind). This property is called the connectedness 

(or continuity) of real numbers. 
By using definitions (l))(IV), any real num- 

ber c( can be represented (i) as the +least upper 
bound of some set A of rational numbers: c(= 
sup A; and also (ii) as the limit of a sequence 

{a,} of rational numbers: c( = lima,. 

Cantor’s Theory of Real Numbers. A sequence 
{a,} of rational numbers is called a funda- 
mental sequence (or Cauchy sequence) if it 
satisfies the following condition: for each posi- 
tive rational number a, there exists a natural 
number n, such that --E<a,-a,,,<E for 
every a,,, and a, with m > n, and n > n,. For 

two Cauchy sequences {a,} and {b,}, we can 

write{u,}-{b,}if{a,,b,,u,,b, ,..., u,,h, ,... } 
is again a Cauchy sequence. The relation - is 

an equivalence relation. Let R’ be the set of all 
equivalence classes obtained by classifying, 
with respect to -, the set of all Cauchy se- 
quences, and call an element of R’ (an equiva- 

lence class) a real number (in the sense of Can- 
tor). We shall write [{Us}] hereafter for the 

equivalence class of {a,}. In particular, {a,} 
with a, = a (n = 1,2, . . . ) being a Cauchy se- 
quence, we denote a real number [{a,}] by 
a**. An element of R’ of this type is called a 
rational real number (in the sense of Cantor), 

while one not of this type is called an irra- 

tional real number (in the sense of Cantor). 
For each pair of real numbers c( = [{a.}] 

and p=[{b,}], their sum and product are 
uniquely defined by c( + b = [{a, + b,}] and 

~@=[{u,b,}], where both {u,,+b,} and {a,,b,,} 

are shown to be Cauchy sequences. Further, 
for CI and [I, define c( < fi if a, < b, hold for all 

n larger than some number n,. As regards 

arithmetic operations and ordering, R’ has the 
properties (I))(IV) of Dedekind’s theory. Fur- 
ther, any Cauchy sequence of which the terms 

all are real numbers has a limit in R’ (com- 
pleteness of real numbers). 

The sets of real numbers obtained by the 
above two methods are isomorphic with re- 
spect to arithmetic operations and ordering 
(- 355 Real Numbers). 

F. Complex Numbers 

To construct complex numbers from real ones, 
several methods have been devised, among 

which the one stated below is due to W. R. 
Hamilton. 

An ordered pair (a, b) of real numbers a and 
b will be called a complex number. Arithmetic 
operations among complex numbers are de- 
fined as follows: (a, b)+(c,d)=(u+c, b+d), 

(u,b)-(c,d)=(a-c,b-d),(u,b).(c,d)=(ac- 

bd, bc + ad), and 

(~3 b) ucfbd bc-ad 
-zz 
k 4 > c2+d2’c2+d2 ’ 

k 4 # (0, 0). 

According to these definitions, the set C of all 
complex numbers becomes a tfield with (0,O) 
and (1,O) as its +zero element and tunity ele- 

ment, respectively. R* = {(a, 0) 1 a E R} is a 
+subfield of C, and the mapping (p:R+R* 
defined by q(a) =(a, 0) proves to be a field 
+isomorphism. Thus, identifying the element 
(a, 0) of R* with the element a of R, C can be 
regarded as an tovertield of R (R c C). Hence, 
the zero element of C is the real number 0 and 

the unity element is the real number I. The 
complex number (0,l) is called the imaginary 
unit and denoted by i. Thus we can write 

u + bi as usual for a complex number (a, b) 

(- 74 Complex Numbers). 
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295 (V.4) 
Number-Theoretic Functions 

A. Recurrent Sequences 

A (complex-valued) function that has the 
set of nonnegative integers (or the set N of 
natural numbers) as its tdomain is called a 

number-theoretic (or arithmetic) function. 
Thus it can be regarded as a tsequence of 
numbers. We first consider recurrent se- 
quences. Let f(x,,, xi, . , x,-r) be a complex- 
valued function of r variables. Put no = a,, 
u1=a,,..., u,-r = a,-, , and successively de- 
tine~~+,=f(u~,u~+~ ,..., ~~+,-~)(i=O,l,2 ,... ). 
The sequence {u,} thus defined is called a re- 
current sequence of order Y determined by the 
initial values a,, a,, . , a,-, and the function 
f: In particular, when the defining function f 
is given by CT=; bixi, {u,,} is called a linear re- 

current sequence. The Fibonacci sequence is a 
special linear recurrent sequence with initial 
values a,, a, and the defining function x0 + xi. 
Let cc=(1+$)/2, jj’=(l-,,&)/2 be two 
roots of 1 +x=x2, and let c, and c2 be deter- 
mined by ci +~,=a, and c,cc+c,~=a,. Then 
the Fibonacci sequence with the initial values 
a,,~, is given by putting u,=cr~l”+c~~” (n= 

0,1,2 ,... ).Ifweputa,=l,u,=l,thenwe 
obtain Binet’s formula: 

B. Multiplicative Functions 

A number-theoretic function f with domain N 
is said to be multiplicative if f( 1) = 1, f(mn) 

=f(m)f(n) for (m, n) = 1, and to be completely 
multiplicative if f( 1) = 1, f(mn) =,f(m)f(n) for 

any m and n (EN). Similarly, f is said to be 

additive if f( 1) = 0, f(mn) =f(m) +f(n) for (m, n) 

= 1, and to be completely additive if f( 1) = 0 

and f(mn)=f(m)+f(n) for any m and n (EN). If 
f is multiplicative and xz, f(n) is absolutely 

convergent, then C,“=,f(p”) is absolutely con- 
vergent for any prime p. Moreover, we have 

where the infinite product on the right-hand 
side is also absolutely convergent. Further- 

more, if f(n) is completely multiplicative, then 
we have 

In particular, for f(n) = n P, which is com- 
pletely multiplicative (with s = D + it a complex 
variable), we get the tEuler product formula 
for the tRiemann zeta function: 

c(s)= f n-’ 
It=1 = V” -p-“)-1 

for 0z 1. 

C. Convolutions 

If f and g are number-theoretic functions, the 
convolution f* g is defined by 

with the summation carried over all divisors d 
of n. For any number-theoretic functions J g, 
h, we havef*g=g*fand (f*g)*h=f*(g*h). 
If f and g are multiplicative number-theoretic 

functions, f* g is again a multiplicative 
number-theoretic function. 

The Mobius function p(n) is defined as fol- 
lows: p( 1) = 1, p(n) = 0 if n is divisible by the 
square of a prime, and p(n) =( - 1)’ if n is the 
product of r distinct primes. It can easily be 
proved that n is multiplicative and that 

;Ic(d)= 
1 (n=l), 

0 (n>l). 

Let e and p be functions defined by e( 1) = 1, 
e(n) = 0 (n > l), and p(n) = 1 for every n. Then e 
is the identity element for the convolution 
*, and p*P=p*p=e. It follows thatf*p=g 

is equivalent to f=g */*, that is, 

dn)=$f’(d) 
n 

implies that 

f(n)=~h4dn/d), 
n 

and vice versa. We call the latter the Mobius 
inversi.on formula. Similarly, for complex- 
valued functions F, G defined on [l, +co), 

G(x)= c Cd4 n<x 
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is equivalent to 

F(x)= c !-&w(X/~). nsr 

Let (p(n) be the number of integers m not 
greater than n and such that (m, n) = 1. The 

function q(n), called the Euler function, is 
multiplicative, and we have 

and (~(p”)=p’-pn-’ for every prime p. Let v 
be the function defined by V(M) = n for every II. 
Then we have 1, x v = cp and v = p * cp, and hence 

Cdln 47(d) = n. 
The generalized divisor function d,(n) is the 

number of ways of expressing n as a product of 
k factors. Thus we have 

and d, = p * * p (k factors). Therefore, d, is 
multiplicative. For simplicity, we write d(n) 

instead of d,(n). Then d(n) is the number of 
divisors of n, and we call it the divisor function. 
For example, d( 12) = 6. We denote by a,(n) 

the sum of ccth powers of divisors of n. If n = 

Q,,,,p’, then we have 

and a, is also multiplicative. We write oi (n) = 
o(n). A number n satisfying a(n) = 2n is said 

to be a +perfect number. Let n = np,,, p’p. The 
functions w(n) = &,, 1 (the number of distinct 
prime factors of n) and O(n) = & 1, (the num- 

ber of prime factors of n) are often used, the 
former being additive and the latter com- 
pletely additive. 

D. Residue Characters and Gaussian Sums 

Let k be a positive integer and x be a com- 
pletely multiplicative function such that x(n) 

=O for (n,k)> 1 and ;r(n,)=~(nJ for n, =n2 

(mod k). The function x is called a Dirichlet 
character (or residue character) with modulus k 

(or modulo k). There exist q(k) distinct charac- 

ters modulo k for a given k. The character 
satisfying x(n) = 1 for every n coprime to k is 
called the principal character modulo k, and 
we denote it by x0. It is easily proved that 

v(k) (x = xo)> 
0 (XZXO)> 

1 q(k) 
C%(n)= o 

(n = 1 (mod k)), 

x (n + 1 (mod k)). 

Suppose that k = k, k, k, ((ki, k,) = 1. i #,j) 
Then there exist r characters xi modulo ki 

permitting the unique decomposition x= 

%1Xz...Xr. 

Let x be a character modulo k and p = 
exp(2ni/k). The Gaussian sum modulo k is 
defined by 

G(~,x)= C z(n)p”“, 
n(modk, 

where n runs over a complete system modulo 
m (- 297 Number Theory, Elementary, G). 
Hence if a = b (mod k), then G(a, x) = G(b, x). 

Suppose that k = k, k, k, ((k,, kj) = 1, i #j) 

and U, = a (mod k,). Then we have 

where :! = x1 xz x, is the decomposition of :! 

mentioned above. 
Let k, be a divisor of k. If x(n) = 1 whenever 

(n, k) = 1 and n = 1 (mod k,), then we say that x 
is defined mod k,. The least positive integer 

,f=f(x) modulo to which x is defined is called 
the conductor of x. If the conductor of 31 is k 

itself, then ;c is said to be a primitive character 

modulo k. When x has the decomposition x = 
x1 x~, the conductor of x is also decom- 

posed as f(x) = f(x 1 ).1’(x2) .f(xJ. If D is a 
square-free integer, then the tdiscriminant d of 
the quadratic number field Q(fi) (where Q is 
the rational number field) is either D (D = 1 
(mod 4)) or 40 (D = 2,3 (mod4)). The integers 
d so represented are called the fundamental 
discriminants. The TKronecker symbol (d/n) 

(- 347 Quadratic Fields) is defined only for 
such fundamental discriminants. Z. Suetuna 
and A. Z. Walfisz (1936) proved that if x(n) is 
a real primitive character modulo k, then we 

necessarily have one of the following cases: 
(i) k=p,p,... p,; (ii) k=4p,p, p,; or (iii) k= 

8p, p2 . p, (with the pi distinct odd primes). In 
case (i), 

x(4 = 
1 

(k/n) (k= 1 (mod4)), 

(-k/n) (k = - 1 (mod 4)); 

in case (ii), 

x(4 = 
i 

(-k/n) (k/4= I (mod4)), 
(k,n) 

(k/4= -1 (mod4)); 

and in case (iii), x(n) is either (k/n) or (-k/n). 

If x is a primitive character modulo k, then 

G(u,x)=%(u)G(I,x), G(l,x)G(I,X)=k. In par- 
ticular, if x is a real primitive character, then 

(31, io= Jir k-l)= 11, 
iJil (%(--l)= -1). 

Sometimes S(a, k) = CR Cmod kipun2 is called the 
Gaussian sum, where p = exp(2rcilk). If (u, k,) 

=1 (i=1,2)and(k,,k,)=l,thenS(a,k,k,) 
=S(ak,, k,)S(ak,, k,). If (a, 2)= 1, then 

(r= 11, 

(r even), 
(r odd, 1). 
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Let p be an odd prime and (a, p) = 1. Then 
we have 

{ 

WP)S(l>P) (r= I), 

S(a,p’)= p”Z (r even), 

p’*-‘“‘S(a,p) (r odd > l), 

where (a/p) is the tLegendre symbol (- 297 
Number Theory, Elementary, H). The well- 
known Gauss formula is stated as follows: 

S(l,d= 
1 

4 (P- 1 (mod4)), 

iJfr (p~3 (mod4)). 

Various proofs of this formula have been given 
by many authors [S]. 

Let 

G(a, x0) = c’ exp(2niah/k), 
h(nmdk, 

called the Ramanujan sum, be denoted by ~~(a). 

The sum Cbcmod k) means that h runs through a 

reduced residue system modulo m (- 297 
Number Theory, Elementary, G). It follows 
that ck( 1) = p(k) and 

ck(a)= 1 p i d. 
dllk.4 0 

E. Analytic Methods 

Let f be a number-theoretic function. One of 
the problems in analytic number theory is to 
estimate CUsk,f(n) or to expand it into series. 

We assume that f(x) and g(x) are real-valued 
functions defined for x 3 1 and g(x) is of class 
C’. Then we have 

where F(x) = C,s ,f(n). If we take f’(x) = 1, g(x) 
=logx or l/x in this formula, then we obtain 

c logn=xlogx-x+0(l0gx) 
n<x 

or 

(where C is the tEuler constant), respectively. 
We now construct from the function ,f the 

Dirichlet series 

F(s)= i f(n)nP 
It=1 

or the power series 

There are called the generating functions off: 

The consideration of these functions makes 
possible the application of function-theoretic 

methods to the problem in this section. Some- 
times more complicated functions are used. 

We mainly consider the generating function 
represented by the Dirichlet series. The gen- 
erating functions of p, p, d, x (- Sections C, D) 
are <(s)=C.“=rn-‘, C,“=,~(n)n-~, C,“=,d(n)n-“, 

L(s, x) = Cgl x(n)n -‘, respectively. The tab- 
scissa of absolute convergence of each of these 
Dirichlet series is 1. The function L(s, x) is 

called the TDirichlet L-function (- 123 Distri- 
bution of Prime Numbers; 450 Zeta Func- 
tions). When k = 1 and x = x0, L(s, x) is pre- 

cisely c(s). 
Let F(s), G(s), and H(s) be the generating 

functions of ,fi g, and h =f* g. Let f and g 
be multiplicative, so that h is also multiplica- 

tive. Moreover, if F(s) and G(s) are absolutely 
convergent for o>q,, then H(s) is also ab- 
solutely convergent for r~ > q,, and F(s)G(s) = 
H(s) for r~ > (TV. It follows from this that 

C,“=lpc(n)nP=im’(s), C,“=lp(n)x(n)n~” 
=L(s,x))‘, C,“=r dk(n)nm”=i(s)k, and 
C,“=, d2(n)n-“=[4(s)/[(2s). The last result 
was given by S. Ramanujan. More generally, 

Cs, d’(n)n-“=<2’(s)cp(s), where q(s) is an 
analytic function for 0 > l/2. By utilizing ana- 
lytic methods, we can deduce from this that 

Cn~xd’(n)-x(c,(logx)2r-1 + +c,,) (B. M. 
Wilson, 1923) (- 123 Distribution of Prime 

Numbers; 242 Lattice-Point Problems). 
There are many formulas known as the 

Euler summation formula. Among them the 
following one is convenient to use (E. Landau, 

L. J. Mordell, H. Davenport): Let &(x)=x 
-[xl - l/2 (when x is not an integer), =0 
(when x is an integer). We successively con- 
struct continuous functions fr (x), f2(x), of 
period 1 such that f;‘(x) =f,-r(x) (r 2 1) if x is 
not an integer, and j; f,(x)dx = 0. If F(x) is of 
class C* on [a, b], then using these auxiliary 
functions, we have 

-f W”‘(W I 
s b 

+(-1)*-r .fh-I (x) F’*‘(X) dx, 
(1 

where C’ means that the term corresponding 
to m = u or m = b in the sum is to be replaced 
by F(a)/2 or F(b)/2 whenever a or h is an in- 
teger. Since the tFourier series of&(x) is 

-;l sint22) 

(which is convergent), f,(x) can be expressed by 
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where C’ means that the term with n = 0 is 
omitted and this sum actually means 

Hence if h = 1, we have 

F’(x)sin(Znnx)dx. 

For instance, if we put h = 1, a = 1, b = N, 
F(x)= x? and let N tend to co, then we have 

the formula 

1 1 

=,_l+7 s 

“fob) 
,,dx for a>l. 

1 x 

Utilizing the following integration by parts, 
the integral on the right-hand side can be 
extended so as to become holomorphic in s in 
the whole complex plane: 

s 

"fob4 
-dx= -f,(l)+(s+ 1) 

1 x s 
mfedx 
1 x 

=... 

Probabilistic considerations are also used 

for the study of various number-theoretic 
functions. If f(n) is w(n) or Q(n), then we have 
~n~xf(n)=xloglogx+cx+o(x). Therefore 
the average order of w(n) or Q(n) is estimated 
as loglogn. Let A(x; c(, b) be the number of II 
satisfying n <x and log log n + x~G < 

f(n) < log log n +&/e. Then 

lim Ak%P) 1 be-“*,2du, 

x-00 X =J5L s 

For f(n) = w(n), the result was proved by P. 

Erdiis and M. Kac (1940) by using the tcentral 

limit theorem and V. Brun’s tsieve method. 
Further general formulas were obtained by M. 
Tanaka (1955). Further development and the 
present state of probabilistic number theory 
can be seen in [7, S]. 

Finally, we mention the well-known estima- 
tion formulas. Let E be an arbitrary positive 
number and n be a positive integer. Then d(n) 

= O(n’), where 0 (+Landau’s symbol) depends 
on E. We know that lim sup,,,(logd(n)) 
(log log n)/log n = log 2 (S. Wigert, 1907), and 

lim inf,,, cp(n).(loglogn)/n= e?. The result 

w(n) = O(log n/log log n) is often used. Let x be 

a primitive character modulo k, and let S,,, = 
C,“=i x(n). We can prove that IS,1 < & log k for 

all m (I. Schur, 1918) and S,,,=n($ loglogk) 

(R. Paley, 1932). This formula, with the symbol 

0, means that there exist infinitely many k 

satisfying 1 S,,,( > c& log log k by taking m 

and x suitably, with c any positive constant. 

Let x be a character module k, and x0 be a 
primitive character associated with x. Then 
we have L(s, x) = L(s, x’)&,~( 1 - x”(p)pm”). 

It follows that 

ltl xb)=d~~~Yl~(d)Xo(d)m~,dXo(m) 
> % 

if the conductor of x0 is f: A. G. Postnikov 
investigated (1956) the sum of characters. The 
least integer that is not a quadratic residue 
modulo p does not exceed p”‘Je (logp)‘, where 
p is a sufficiently large prime (I. M. Vinogra- 
dov, 1926). The least integer that is a tprimi- 
tive root modulo p does not exceed 2m+‘&, 

where m is the number of distinct prime divi- 
sors of p- 1, with p a prime (L. K. Hua, 1942). 

D. A. Burgess (1962) deals with the latter re- 
sults. We conclude with Artin’s conjecture: If w  
is a given square-free integer, then there exist 
infinitely many primes p such that w  is a primi- 
tive root module p. In 1967, C. Hooley proved 
this conjecture subject to the assumption that 
the general +Riemann hypothesis holds for 
+Dedekind zeta functions over certain +Kum- 
mer extensions of Q. He also obtained the 
asymptotic formula for the number of such 

primes not exceeding x. Recently the tsieve 
method has been widely applied to the various 

investigations in the theory of number theore- 
tic functions (- 123 Distribution of Prime 

Numbers E). 
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296 (V.l) 
Number Theory 

A. History 

Simple and curious relations among integers 
were discovered and admired from antiquity. 
For example, we have the relation 3’ + 4’ = S, 
which has geometric meaning concerning right 
triangles. The Pythagoreans (- 187 Greek 
Mathematics) sought similar relations. They 
were also interested in tperfect numbers (num- 
bers equal to the sum of their divisors, such 
as 28 = 1 + 2 + 4 + 7 + 14). Modern arithmetic 
inherits from the Greeks the proof of the 

existence of an infinite number of primes, the 
+Euclidean algorithm to obtain the greatest 
common divisor of two integers (both given in 

Euclid’s Elements), and Eratosthenes’ +sieve for 
finding primes. In the 3rd century A.D., Dio- 

phantus of Alexandria discovered a method of 
solving indeterminate equations of degrees 1 

and 2; this marked the origin of Diopbantine 
analysis. The ancient Chinese also knew how 

to solve equations of the first degree in some 
special cases. Arithmetic also developed in 
India from an early period; its relation to 
Greek mathematics is not yet entirely clear. In 

the 12th century, the Indian mathematician 
Bhlskara knew how to solve +Pell equations 
using a method much like Lagrange’s. 

Interest in integers was reborn in Europe in 

the 17th century. During this period, Bachet 
de Meziriac (158 1~ 1638) rediscovered the 

solution of the tDiophantine equation of the 
first degree and published it in his famous 

book on mathematical recreations [ 11. Primes 
of the form 2p- 1, closely related to perfect 
numbers and called +Mersenne numbers, at- 

tracted considerable interest. +Fermat, some- 
times called the father of number theory, 

announced numerous results without giving 
proofs; the most famous among them is the so- 
called Fermat’s last theorem (- 145 Fermat’s 
Problem). Another famous conjecture of his is 
that every integer is expressible as the sum of 

at most n n-gonal numbers, i.e., numbers of the 
form k(k- l)n/2-k(k-2), keN. This was 
proved by Gauss (for the case 12 = 3), Jacobi 

(n = 4), and Cauchy (for the general case). 
In the 18th century, remarkable progress 

was made by Euler and Lagrange. The second 

part of Euler’s Algebra [2] contains rich re- 
sults of miscellaneous sorts in the field. La- 
grange developed the theory of tcontinued 
fractions and applied it to arithmetic. Toward 
the end of the 18th century, Legendre com- 

piled his comprehensive book [3], from whose 
title originates the term number theory. 

Gauss’s Disquisitiones [4] appeared at about 
the same time as Legendre’s book. The theo- 
retical arithmetic of today originates from this 
work of Gauss. The book includes the theories 

~ 
~ 

of tquadratic residues, tquadratic forms, and 
cyclotomy (i.e., arithmetic theory of the roots 
of unity in the field of complex numbers), all 
of which appeared as well-developed theories 
of a remarkably high standard. The work was 
received with more respect than comprehen- 
sion. Dirichlet made a lifelong effort to pop- 

ularize the Disquisitiones; he also applied 
analytical methods to compute the +class 

number of quadratic forms, thus giving num- 
ber theory a new direction, the analytic theory 
of numbers. Gauss treated only binary qua- 
dratic forms; Eisenstein, Minkowski, and 

Siegel generalized the theory to the case of n 
variables. The algebraic theory of numbers has 
its origin in Gauss’s paper on biquadratic 
residues. (- 14 Algebraic Number Fields; 59 
Class Field Theory; 118 Diophantine Equa- 
tions; 182 Geometry of Numbers; 297 Num- 
ber Theory, Elementary; 347 Quadratic Fields; 
430 Transcendental Numbers.) 

B. Analytic Methods 

Analytic methods are sometimes used to solve 
arithmetic problems. For example, Legendre 

conjectured that any arithmetic progression of 
integers a, a + d, a + 2d, . contains an infinite 
number of primes if a and d are relatively 
prime. The conjecture was first proved by 

Dirichlet in 1837; in the proof he used an +,!,- 
function. Recently, proofs that do not use L- 

functions have been obtained, although these 
proofs are still not purely arithmetical. Analy- 
sis is indispensable in the formulation of some 
arithmetic problems. For example, let XER 
and n(x) be the number of primes not exceed- 

ing x. Euclid’s Elements already give the re- 
sult n(x)--, co as x+ co, but to describe the 
behavior of Z(X) as x+ co, notions of analysis 
are needed. Gauss conjectured that 

lim 
4-4 -----=I 

x-m x/log x 

This +prime number theorem was first proved 
in 1896, using the results of the theory of func- 
tions of a complex variable; more elementary 
proofs have been obtained in recent years. 

Analysis is sometimes needed to solve or 

simplify certain problems in number theory. 
The branch of mathematics treating such 
problems is called analytic number theory. The 
question of the extent to which analysis is 

really needed in dealing with such problems is 
itself an interesting one. 
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In the 20th century, analytic number theory 
has made rapid progress. The problem of 
distribution of primes has been generalized to 
the case of algebraic number fields. +Additive 
number theory dealing with +Waring’s prob- 

lem, +Goldbach’s problem, and other prob- 
lems has developed and formed a new field. 
We also have geometric number theory, which 
deals with tlattice-point problems. (- 4 Addi- 
tive Number Theory; 123 Distribution of 
Prime Numbers; 242 Lattice-Point Problems; 
295 Number-Theoretic Functions; 328 Par- 
titions of Numbers; 450 Zeta Functions.) 
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297 (V.2) 
Number Theory, Elementary 

A. The Euclidean Algorithm 

We denote the set of natural numbers 1,2, 

3 ) . . . by N and the set of rational integers 

0, &l, k2, . . . by Z. Evidently Z is an ordered 
tcommutative ring and also an tintegral do- 
main with respect to ordinary addition and 
multiplication. For any UEZ and bcN, there 

exists a unique pair of integers q and r such 
that a = qb + r (0 < r < b) (division algorithm); 4 
is called the quotient and r the remainder of the 
division of a by b. When the remainder r is 
zero, we say that a is a multiple of h, b is a 
divisor of a, and u is divisible by b. We denote 

this relation by b 1 a. After a finite number of 

divisionsa=q,b+r,, b=q,r,+r,, r, =q3r2+ 

r3, (b>r, >r2 . ..>O). we reach an equa- 

tion of the form r, =qk+2rk+l. The remainder 

r=rk+l, uniquely determined in this manner by 
a and b, is the greatest common divisor (G. C. 

D.) of a and b. It can be expressed as r = ax + 

by with integers x and y. This method of 
obtaining the G. C. D. is called the Euclidean 

algorithm. The greatest common divisor of 
a and b is denoted by (a, b). If an integer c 
divides both a and b, then cl (a, b). When 
(a, h) = 1, we say that a and b are relatively 

prime, and there are integral solutions x, y of 
the equation ax + by = 1. Given a pair of posi- 
tive integers a and b, there exists a unique 
positive integer c that divides any common 
multiple of a and b, called the least common 

multiple (L. C. M.) of a and b. If d and I denote 
the G. C. D. and L. C. M. of a and b, respec- 
tively, we have ab = dl. 

B. Prime Numbers 

An integer p is called a prime number if p is 
larger than 1 and has no positive divisors 
other than I and itself. A positive integer is 
called a composite number if it has positive 
divisors other than 1 and itself. The follow- 
ing method of selecting the prime numbers 

from the sequence 2,3,4,5, . , known to the 
Greeks, is called Eratosthenes’ sieve: First we 
discard multiples of two, thus reaching the 
second prime number, 3. Then we discard 
multiples of three and reach the next prime, 5. 
Continuing this process, we find the sequence 
of primes 2,3,5,7,11, . . by sifting out all 
multiples. 

C. Decomposition into Primes Factors 

Every integer n > 1 can be uniquely expressed 
as the product of primes; the resulting decom- 

position can be written as n = p’qflr’ with 
distinct prime factors p, 4, r, and corre- 
sponding exponents x, b, y, uniquely de- 
termined by n. This theorem is called the 

fundamental theorem of elementary number 
theory. 

D. Perfect Numbers 

We denote by a(n) the sum of positive divisors 

of n (including 1 and n itself). According as 
cr(n) is greater than, equal to, or less than 2n, 
we call n an abundant number, perfect number, 
or deficient number. An even number is perfect 
if and only if it can be represented as II = 2”-’ 
(2”- 1) with prime 2”- 1 (L. Euler). The exis- 

tence of an odd perfect number still constitutes 
an open question. It is well known that, if n 

is odd and perfect, then n must be of the 
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form n = pppyl. .pp’, where p0 = a, = 1 

(mod4), and ai is even for i>O. Recently it has 
been proved that t must be > 7 (P. H. Hagis, 
Jr., Math. Comp., 35 (1980)). Many necessary 
conditions for an odd number to be perfect 
have been given and repeatedly improved. It 
has been recently proved that there exists no 
odd perfect number less than 105’ (Hagis, 
Math. Comp., 27 (1973)). 

Two numbers m and n are said to form a 
pair of amicable numbers if a(n) - n = m and 

c(m) - m = n (e.g., m = 220 and n = 284). Euler 
listed 61 such pairs. The following two num- 
bers m, n, both having 152 digits, constitute the 
largest amicable pair currently known: 

- 1x 

n=34.5.11.528119(23.33.52.1291.528119 

-1) 

(H. J. J. te Riele, Math. Comp., 28 (1974)). 
E. Lionnet considered the numbers n such 

that the product I&,d is equal to n* and 
called such numbers perfect numbers of the 

second kind, e.g., n = p3, n = pp’, where p and p’ 
are unequal prime numbers. It is also known 
that there are numbers n such that a(n)/n is an 
integer. For example, 2’ ‘3.7, 2i5. 3’. 52. 7*. 
11.13.17.19.31.43.257havethisproperty. 

E. Mersenne Numbers 

A number of the form 2’- 1, where e is a 
prime, is called a Mersenne number. For the 
number 2”- 1 to be prime, it is necessary but 

not sufficient that e be prime. If a Mersenne 
number is a prime, it is called a Mersenne 
prime. It is not known whether there are in- 
finitely many Mersenne primes; it has been 
verified, however, that for e < 44500, there are 
27 cases of e such that 2”- 1 is a Mersenne 
prime; e=2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 
127,521,607, 1279,2203,2281,3217,4253, 
4423,9689,9941, 11213,21701,23209, and 
44497. Until the 18th century, the verifications 
for e < 3 1 were done by direct calculation. For 

61 be< 127, the “Lucas test” was utilized to 

execute the computation. The remaining cases 
were calculated by means of electronic com- 
puters. The number 244497 - 1, which has 
13395 digits, is at present the largest known 
prime. 

F. Fermat Numbers 

Numbers of the form 2*’ + 1 are called Fer- 
mat numbers. For a number p = 2’+ 1 to be a 
prime, it is necessary that e be a power of 2. 

Fermat conjectured that numbers of the form 
2” + 1 are all primes. In fact, for v=O, 1, 2, 3, 
4, the corresponding p = 3, 5, 17,257, 65537 

are primes; however, 2” + 1 is divisible by 641. 
It is not yet known whether there exist Fermat 
primes other than these five primes. For fur- 
ther details - [lo]. Fermat numbers are 
closely connected with the problem of tgeo- 
metric construction of regular polygons. 

G. Congruence 

Let m be a positive integer. Two integers a and 
b are said to be congruent modulo m if their 
difference is divisible by m; we denote this 
relation by the congruence a = b (mod m) (or 
simply by a = b (m)) and call m the modulus of 
this congruence. Congruence modulo m is an 
tequivalence relation, which is compatible 
with the ring operations and classifies Z into 
m classes. We thus obtain the tresidue class 
ring Z/mZ with m elements. If p is a prime, 
then Z/pZ is a field which is isomorphic to the 

tprime field with tcharacteristic p. A complete 
system of representatives of the quotient set 

Z/mZ is called a complete residue system 
modulo m. On the other hand, a set of q(m) 

elements ni (cp is ‘Euler’s function) such that 
ni $ nj (m) (i #j) and (n,, m) = 1 is called a re- 
duced residue system modulo m. The set of all 
residue classes represented by a reduced re- 

sidue system modulo m forms a multiplicative 
Abelian group of order q(m); we denote this 
group by (Z/mZ)*. If (a, m) = 1, then a’@‘)= 1 
(mod m). If p is a prime and (a, p) = 1, then 

up-i = 1 (modp) (Fermat’s theorem), since 
cp(p)=p- 1. When m is 2,4, pk or 2pk (p#2; 

k = 1, 2, . ), (Z/mZ)* is a ‘cyclic group, whose 
tgenerator g is called a primitive root modulo 
m (- Appendix B, Table 1). For any a prime 
to m and generator g of (Z/mZ)*, there exists 
a unique number p (1 <p < q(m)) such that 
a = ,qP (mod m). We call p the index of a with 
respect to the basis g, and write p = Ind, a (- 
Appendix B, Table 2). The group (Z/2kZ)* 
(k 2 3) is Abelian of type (2, 2km2), a basis of 

which is formed by the residue classes repre- 
sented by - 1 and 5. From this follows (p - l)! 
= - 1 (mod p) (Wilson’s theorem). Generally, 

if m = nr=, m,, (m,, mj) = 1 for i #j, then we 
have Z/mZ E Z/m, Z + + Z/m,Z (direct sum) 
and (Z/mZ)*g(Z/m,Z)* x . x(Z/m,Z)* (di- 
rect product). 

The congruence ax = b (mod m) with (a, m) 
= d is solvable if and only if d 1 b, and when it is 
solvable, the solution is unique modulo m/d. 
The simultaneous congruences x = ai (mod mi) 

(i = 1,2, , k) are solvable if and only if ui = aj 

(mod(m,, mj)) (i, j= 1, . , k), and when they are 
solvable, the solution is unique modulo the 
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greatest common multiple of m,, , mk. In 
particular, when (mi, m,) = 1 (i #j), the solution 
is unique modulo m, m2 . mk (Chinese remain- 

der theorem). If m = p;~ . . . p;k is the factoriza- 
tion of m, solving the congruence f(x) = 0 

(mod m), where f(x) is a polynomial with in- 
tegral coefficients, can be reduced to solving 
f(x) = 0 (mod p>) (i = 1, . . , k). Also, solving a 
quadratic congruence can be reduced to solv- 
ing a linear congruence and a congruence of 
the form x2 = a (mod m). 

H. Quadratic Residues 

When the congruence x2 = a (mod m), where 
(a, m) = 1, is solvable, a is said to be a quadratic 
residue modulo m; otherwise, a is said to be a 
quadratic nonresidue modulo m. The following 
two conditions are necessary and sufficient for 
a to be a quadratic residue modulo m: (i) a is a 

quadratic residue with respect to each of the 
prime factors p ( # 2); and (ii) a = 1 (mod 4) or 
a = 1 (mod 8) according as 4 1 m or 8 1 m. 

Given a prime number p and integer a 
prime to p, the Legendre symbol (u/p) is by 

definition 1 or - 1 according as a is a qua- 
dratic residue modulo p or not. The value of 
this symbol is determined by a (mod p), and 
we have (ah/p) = (a/p)(h/p). Hence the symbol 
determines a icharacter of (Z/pZ)* of order 2. 
Furthermore, the congruence (u/p) = u(P~1)/2 
(mod p) holds (Euler’s criterion). 

I. Reciprocity Law 

For odd primes p and 4 (p # q), the formulas 

are called the law of quadratic reciprocity of 

the Legendre symbol, the first complementary 
law, and the second complementary law, re- 
spectively. These laws were conjectured by 
Euler and first proved by Gauss, who gave 
seven different proofs. We now have more 
than fifty different proofs of these laws. P. 

Bachmann (Niedere Zahlentheorie I (1902)) 
lists the 47 different proofs of the laws known 
at the time. Gauss’s first proof was elementary; 
his second proof used quadratic forms. The 
latter has been reformulated utilizing the 
theory of quadratic fields [4]. The fourth proof 
used tGaussian sums, and the sixth proof used 
algebraic congruences with integral coefft- 
cients. His seventh proof, contained in his 

posthumous works, used congruences of higher 

degree [4]. His fourth, sixth, and seventh 
proofs are related to the arithmetic of tcyclo- 

tomic fields [4]. The third and fifth proofs 

are the most elementary and simple. They are 
based on Gauss’s lemma: Let ri , r2, . , r~P~l~,2 
be the residues of divisions of la, 2u, . . , (p - 
l)u/2 by an odd prime p, and let it be the 
number of these residues that are greater than 
p/2. Then we have (u/p) = (- 1)“. T. Takagi gave 
a simplified exposition of the third proof using 
geometric figures (1904). The same method 
was rediscovered by G. Frobenius (1914). 

When m is an odd integer such that m = 
* nip?, (m, n) = 1, we call (n/m) = nJn/p,)ei 

Jacobi’s symbol. If m has no square factor, it is 
a character of (Z/mZ)*. If we put sgnm= + 1 
or - 1 according as m > 0 or m < 0, we have 
the following law of quadratic reciprocity of 
Jacobi’s symbol and its complementary laws: 

If m and n are relatively prime odd numbers, 
then 

~~~~)((m-l)/2)((n~l)/2)+((a~nmlX2)((s~nnl~/2~ 

(-l,n)=(-l)‘“~l”2+(sgnn~1)/2, 

(2/n) =( - 1)‘“‘-‘“4, 

where 

n* =( - l)‘“-“Pn, 

Furthermore, TKronecker’s symbol, another 
generalization of the Legendre symbol, is used 
in the theory of quadratic number fields (- 
347 Quadratic Fields). 
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298 (XV.6) 
Numerical Computation of 
Eigenvalues 

A. General Remarks 

Numerical computation of teigenvalues and 
teigenvectors of a matrix provides a basic 

technique for the numerical solution of various 
eigenvalue problems. Roughly speaking, there 

are two kinds of method. In methods of the 
first kind, one determines the tcharacteristic 

polynomial p(A) = det(1Z - A) (where I is the 
unit matrix) of A (or to give an algorithm to 
calculate the value of p(L) for an arbitrary ,?), 
then solves the algebraic equation p(l) = 0 

numerically to obtain the eigenvalues 1, (p = 
1,2, ) (- 301 Numerical Solution of Alge- 

braic Equations), and finally to one deter- 
mines the eigenvectors x, by means of the 

equations (A,1 - .4)x, = 0. In methods of the 
second kind, one obtains eigenvalues and 
eigenvectors directly without resorting to the 
solution of an algebraic equation, relying in- 
stead upon repeated application of similarity 
transformations. (The power method does not 
lit into this classification, being a different 

approach altogether; - Section C.) In partic- 
ular, a real symmetric or complex Hermitian 
matrix is reduced approximately to a diagonal 

matrix. In this article we denote a given square 
matrix of order n by A = (aij) (gj = 1, . , n). 

B. The Jacobi Method 

The Jacobi method is an iterative technique 
for determining all the eigenvalues and eigen- 
vectors of a real symmetric matrix [7]. Before 

the advent of high-speed computers it was 
not considered practical, but at present it is 

one of the most compact and elegant methods. 
The following algorithm can be extended 
to Hermitian matrices by replacing tortho- 
gonal transformations by suitable tunitary 
transformations. 

Roughly, the method transforms a given 
matrix A = (uij) (uji = aij; i, j = 1, , n) into a 

diagonal one by repeated application of 2- 
dimensional rotations of the reference axes. 
We first put A(‘)= A, U(O)= I, and compute 
A(” A’Z’ , ) . . . , @I) U’Z’ ) , . successively as 
follows: 

(1) Select an off-diagonal element of A”) = 

(a$)) with the maximum absolute value and 

denote it by #. 
(2) Compute 

(where sgn x = 1, 0, or -1 according as x > 0, 

=O,or CO), 

co~H=(l+tan*0))~/*, and 

sine=tanfJ.cos8; 

and form T(l) = (t$‘), where ttb = t$i = cos 0, tif) = 

1 for i#p, 4, -c,,- 4P (I) - t(l) = sin 0, and $1 = 0 for 
all other (i, j). 

(3) Determine A(‘+‘) and I?‘+‘) by A(‘+l’= 
T”)‘A(‘)T”) (’ denotes the transpose) and I/(‘+r) 
= U(‘)T(‘). In this process, T(‘) represents an 
orthogonal transformation (rotation) in the 
plane spanned by the pth and qth coordinate 
axes such that u$:‘) = uk,“) is nullified. If we 

put N(B)=Ci,jbi and M(B)=CiZjbi, then 
N(B) is invariant under an orthogonal trans- 
formation, so that N(A”))= N(A). Further- 
more since L$+‘) = u$) (i # p, q) and (L$$“)’ + 
(u&+l~)* =(u~b)‘+(u$’ +2(aFk)*, we have 
M(A”+‘)) = M(A@) - 2(a$‘. Since u:i has the 
maximum absolute value among all the off- 
diagonal elements, we have (a!:)’ > M(A”‘)/ 
(n’ -n). Therefore 

M(A”+“)<(l-2/(n*-n))M(A”‘) 

<(l-2/(n2-n))‘+‘M(A) 

< M(A)exp( - 2(1+ l)/(n’ -n)). 

It has been proved a fortiori [13] that, after 
M(A@) comes down to below a certain thresh- 
old value, the convergence of the iteration 
process becomes quadratic, i.e., there is a num- 
ber c determined by the order n of A and the 
arrangement of the eigenvalues of A such that 

MM (r+n(n-1)i2)) < c(hf(A@)))*. Since the set of 
eigenvalues of A(‘) coincides with that of A 

and the eigenvalues of an arbitrary symmetric 
matrix B can be made to correspond in a one- 
to-one way to its diagonal elements in such a 

way that the difference between an eigenvalue 
and the corresponding diagonal element is not 
greater than M(B)“‘, u$) tends to E., (i= 1, 

“‘2 n) as I tends to infinity. Moreover, as I 
tends to infinity, each column vector of UC’)= 
(ui;‘) tends to the corresponding eigenvector, 
in the sense that x:=1 uiku~j--jiiuj’+O. 

The number of arithmetic computations 
required to obtain A”+‘) and I?“‘) from A”’ 
and U(‘) is at most proportional to n, so that 
for a given E > 0, the arithmetic required to 

reduce maxi la!? - Ai1 below &(M(A))“* is at 

most proportional to n3 (because 1 is at most 
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proportional to n’). On the other hand, the 
search for an off-diagonal element of A(‘) with 
the maximum absolute value, if it is done by 
simply comparing all the elements, will require 
effort proportional to n*, so that the amount 
of work required by the searching process is 
proportional to n4. To bypass this searching 
process, the cyclic Jacobi method and the 
threshold Jacobi method are often used. The 

former method adopts as a:b the off-diagonal 
element for which 4 > p and l= (p - 1) (n-p/2) 

+(q-p), that is, a(,:), a\*J, . . . . a(;,-‘), a#, a(,zl), 
. are adopted in this sequence. The latter 

method adopts as c$, off-diagonal elements 
in a sequence similar to the one above as long 
as they exceed a given threshold value; but if 
an element is less than that threshold value, 
then the next element in the sequence is a can- 

didate for adoption as ati, where the thresh- 
old value is made to decrease gradually as 
the iteration process proceeds. However, the 
search for an element with the maximum 
absolute value can be done more effectively by 

taking account of the fact that only the matrix 
elements lying in rows p and q and in columns 
p and q change their values when we transform 
A”’ into ,4(“1). In fact, we can record for each 
row the value as well as the position of the 
(off-diagonal) element with the maximum 
absolute value in that row. By so doing, the 

effort of searching for an off-diagonal element 
with the maximum absolute value can be 
reduced to something proportional to n on the 
average. 

C. The Power Method 

The power method is suitable for obtaining 
only the eigenvalue of maximum absolute 
value [6]. Let us assume that the eigenvalues 
i,,...,l,ofAarearrangedsothatli,I> 

I~,I~I~,I~...BI1,I,withi, real,andde- 
note by y, the left eigenvector corresponding 
to 1, (which means y,(l,I-A)=O). Starting 

from an arbitrary (real) vector x(O) such that 
( yl, x(O)) #O and $‘) = 1 for a prescribed i,, 
we compute Q(‘), Q(l), . . . and x(l), xc*), . by 
Ax(‘) = Q(‘)x(‘+~) (1 = 0, 1,2, ; xji”) = 1). Then 

we have lim,,, O(‘) = I 1 and lim r+mX(‘)=X 
(the eigenvector corresponding to the eigin- 
value &). The rate of convergence depends on 
11,/1,1 if the telementary divisor of A cor- 

responding to I, is linear, but in the case of a 
nonlinear elementary divisor, the convergence 
is too slow for practical purposes. If i, # 1, 
and~i,l=li,l>~1,~>...>~1,~,thenthese- 
quences of /3(l) and x(l) computed by the for- 

mulas above do not converge but in general 
oscillate. However, from Q(l), @“‘), x(l), x(“‘), 
x(‘+~) for a sufficiently large I, we can obtain 

approximate eigenvalues 1, and 1, as the two 
roots of the quadratic equation in 1: 

(i and j arbitrary, i #j). 

The corresponding eigenvectors are given by 
x =A x(‘+1)-x(‘+*) and x2 =~lx(‘+‘)Lxx(‘+*)~ 

&mpiex conjugate pairs of eigenvalues can be 
dealt with in this manner. This is useful also 

when Iill + Ii,\. The extension to the case of 
more than two eigenvalues with the same 
maximum absolute value is obvious. 

In order to determine the remaining eigen- 

values by the power method we have to com- 
bine it with the deflation or transformation of 
matrices, as discussed later in this section and 
in the following section. The amount of com- 
putation depends on the arrangement of the 
eigenvalues of A and the required accuracy. 

We note that the multiplication of a matrix by 
a vector requires an amount of computation 
proportional to n*. 

Improvement in the approximations can be 
incorporated into the power method. If u = xP 
+ O(E) is an approximation to the eigenvector 

xp corresponding to an eigenvalue 1, of a real 
symmetric matrix A, then the Rayleigh quo- 

tient I, =(u, Av)/(v, u) affords a good approxi- 
mation to i,. In fact, we have 11, - 1, I = O(E*). 

If Izi (i = 1, , n) is an eigenvalue of A and 
xi the corresponding eigenvector, then P(&) 
(i = 1, . , n) is an eigenvalue of P(A) and xi 
the corresponding eigenvector, where P(t) is 
a polynomial in 5 and 5 ml, This fact can be 
utilized to transform the magnitudes of eigen- 
values to accelerate the convergence of the 
power method, to separate eigenvalues with 
the same absolute value, or to obtain inter- 
mediate eigenvalues. The choice P(i) = 1 -c 
or (2-c) -’ is particularly useful, where c is 

an appropriate constant. In fact, an efficient 
algorithm known as inverse iteration exists 

for computing an approximate eigenvector 
when a good approximation to an eigenvalue 

is known. Given a trial eigenvector x cor- 
responding to a computed eigenvalue c, one 
computes an improved approximate eigen- 
vector y by solving (A - cl)y = x or y = (A - 
cl) -1 x. 

Aitken’s 6*-method is also efficient in accel- 
erating the convergence of the power method. 

When an eigenvalue-eigenvector pair is 
known, another eigenvalue-eigenvector pair 
can be computed using the process known as 

deflation. If an eigenvalue 1, and the corre- 

sponding eigenvector x,, (and also the corre- 
sponding left eigenvector ‘y,, if necessary) of A 
are known, it is possible to “subtract” them 
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from A to get a problem containing only the 
remaining eigenvalues. Such deflations are 
often used in combination with the power 
method. The following are two examples of 

deflation methods. 
(1) Assuming that xp and y, are normalized 

in such a way that (y,, xp) = 1, form B = A - 
~,,x,y~. Then B has the same set of eigen- 
values and eigenvectors as A except for 1,. The 

eigenvalue and the eigenvector of B corre- 
sponding to 1, of A are 0 and x,, respectively. 
This kind of deflation process can be gen- 

eralized to the case of nonlinear elementary 
divisors, but that becomes somewhat more 

complicated. 
(2) After normalizing x,, so that its nth com- 

ponent xpn is equal to 1, form B=(bij):bij=aij 
-~,,~a”~ (i,j = 1, . , n - 1). Then B has the same 

set of eigenvalues as A except for 1,. If w, is 
the eigenvector corresponding to the eigen- 
value 3,, of B, then the corresponding eigen- 

vector xk of A is given by xki = wki + d,~,,~ (i = 
1, , II - l), xkn = d,, where d, is determined 

from C:Z,r n, wki = (& - l,)d, if 1, # I,. If 1, = 1, 
and Y = Cy=i a,,,wki = 0, then we can put d, = 0. 
If & = 1, and r # 0, A has a nonlinear elemen- 
tary divisor for 1, = &, and the xk defined by 
xki = wki/r and xkn = 0 is a generalized eigen- 

vector of A in the sense that Ax, = 1,x, + xfi. 

D. Transformation of Matrices 

There are a number of methods of transform- 
ing a given matrix A by means of a suitable 
similarity transformation A+B = S -‘AS into 
another matrix B for which it is easier to solve 
the eigenvalue problem. The Givens method 
[9] transforms a symmetric matrix A into a 
tridiagonal matrix B (i.e., a matrix such that b, 
= 0 for 1 i -jl > 2) by means of a matrix S which 

is the product of 2-dimensional rotation ma- 
trices. The Householder method [lo] also trans- 
forms a symmetric A into a tridiagonal B by 

means of an orthogonal matrix S of special 
type, i.e., a reflection matrix I-2uu* (u*u = 1, 
u* = conjugate transpose of u), and the Lanc- 
zos method [S] transforms a general A into a 
tridiagonal B. To general matrices the follow- 
ing methods are also applicable: (1) The Dani- 
levskii method [l] transforms A into its com- 
panion matrix B by repeated application of 
elimination operations. Here, row interchanges 

can be combined to increase numerical sta- 
bility [14]. (2) The Hessenberg method [3] 
transforms A into a B such that b, = 0 for 
i-j>2 with a triangular S. (3) The Givens 

method [9] transforms A into a B of the same 
form as in (2) by repeated application of 2- 

dimensional rotations. This method now tends 
to give way to the Householder method or to 

the elimination method with row interchange. 
All these methods require an amount of com- 
putation proportional to n3. In general, special 
treatment is necessary for the case of multiple 
eigenvalues. As an example, we explain the 
Givens method for general matrices. Let N = 

(n - 1) (n - 2)/2. For l= 0, 1, . . , N - 1, choose 

(P, 4) = (3,2), (4,2), . . . > (4 2); (4,3), (5,3), . . , 
(n,3);...;(n-l,n-2),(n,n-2);(n,n-l)inthis 
order. Using T(” of the same form as in the 

Jacobi method, and setting tan0 = at!,-l/&l 
in this case, calculate A(‘) = A, U(O) = I, A(‘+‘) = 
T”“A”‘T”’ U(‘+‘) = U”‘T”’ (I = 0, 1, . , N - l), 

and put B = AcN). Then we have b, = 0 for i - 
j > 2. We can solve the eigenvalue problem for 
this simplified B and then retransform the 
eigenvectors of B thus obtained into those of 
A by means of UcN). It should be noted that 

the method of bisection based on tSturm’s 
theorem is effectively used to solve the char- 
acteristic equation of a real tridiagonal ma- 

trix [14]. This method is remarkably stable 
numerically. It is used when the number of 
eigenvalues to be computed is small relative to 
the order of the given matrix. If all eigenvalues 
are desired, an alternative method such as the 
QR method (- Section F) is recommended. 

E. The Lanczos Method 

A more detailed exposition of the Lanczos 

method is now given. Let A be a given real 
matrix of order n. Pick two vectors ci and c1,. 
Determine recursively the vectors ci+i and 

ci+i, i= 1, , n, that satisfy the following con- 
ditions: (i) yi+ici+r = Aci-EiCi-fiici-1 sbi+,, 
Bi+tF,+,=A’Zi--iFi--PiEi~,-~~+,,i=2,...,n; 

(4 ci+l is orthogonal to F,-i and F,; (iii) Ei+i is 
orthogonal to ciml and ci, where CL~, pi, Bi, and 
pi are scalars, and where yi and jri are nor- 
malizing scalars. Actually, C(~ = <Aci/<ci = ii, 
/3i=yic~Fi/~-,ci-,, ~i=yy,~c,/cj-,c”,-,, where 
&Zi, i = 1, , n, are assumed nonzero. It can 
be shown that ci+i is orthogonal to every cj, 

1 <j < i, and that Zi+1 is orthogonal to every cj, 
l<j<i(c,+,=E,,+,= 0). The conclusion is that 
the given matrix A is similar to the tridiagonal 
matrix H = (h,), where hii = tli (i = 1, . , n), /I~,~+, 
=fli+i, hi+l,i=yi+i (i=2 ,..., n). In fact, if C 
denotes the matrix whose jth column equals cj 
(j=l , . , n), one obtains C-’ AC = H. Thus the 
eigenvalues of A are identical to those of H. 

In principle, the Lanczos method transforms 
a given matrix to a tridiagonal matrix similar 
to it if every ciEi is nonzero (i = 1, , n). If ciEi 

does vanish for a certain i, one selects c1 and 
E, again and restarts. On the other hand, if 

bi+l =0 one chooses an arbitrary vector c,+i 
orthogonal to 2,) . , ci and if bi+, = 0 one 
selects an arbitrary vector Ei+1 orthogonal to 
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ci, . , ci. In the actual numerical computation, 
the distinction between zero vectors and non- 

zero vectors is usually blurred by rounding 
errors. 

In the application of the Lanczos method 
one often observes the loss of orthogonality 
ciEj = 0 (i #j). This usually results from cancel- 

lation errors in the computation of b,+i and 
ii+, If the orthogonality is lost, C-’ AC may 
significantly deviate from a tridiagonal matrix. 
As a practical means for preserving the in- 
dicated orthogonality one can reorthogonalize 
the vectors ci and Fi. Indeed, one can add 
to the computed ci+i a linear combination 
of ci, . , ci so that the sum is orthogonal to 
c1i, . , Fi, then take the sum as citl after pro- 
perly normalizing. A similar process applies to 

c"i+l. The Lanczos method is often applied 
in double precision. It has been suggested 
that one first reduces the given matrix to an 

upper Hessenberg form by using the Hessen- 
berg method with row interchange before 
applying the Lanczos method [ 151. 

A further remark on the Lanczos method is 
in order. Recall that yi is determined from 
Aci, cim,, xi-i, and pi-i; pi from ci, E,, ci-i, &i, 
and yi; and xi from Aci, ci, and Fi. This shows 
that the Lanczos method applied to a sparse 
matrix (a matrix whose elements are almost all 
zero) requires only a memory proportional to 

n. The Householder method, on the other 
hand, requires memory proportional to n2 

even for a sparse matrix. 
For a real symmetric matrix one can modify 

the Lanczos method for a general matrix so 
that C is orthogonal and H is real, symmetric, 
and tridiagonal (the details are omitted). 

F. The QR Method 

The QR method was discovered independently 
by J. G. F. Francis and by V. N. Kublanov- 

skaya in 1961 [15]. The method has been 
improved and extended considerably since 
then. In the usual application to matrix eigen- 
value problems, the QR method provides the 
most efficient iterative process for finding all 
eigenvalues of a given matrix. The matrix is 
reduced by means of a similarity transforma- 
tion to Hessenberg form or to tridiagonal form 

before application of the QR method; the re- 
duction process may be effected by the House- 
holder method or by the elimination method 
with row interchange. (If the given matrix 
is a complex matrix, the latter is preferable.) 

The reason is that one step of the QR process 
applied to a full matrix is prohibitively expen- 
sive, requiring a number of operations propor- 

tional to n3, while one step of the QR process 
applied to a Hessenberg matrix requires a 
number of operations proportional to n2. 

We now describe one of the most useful 
versions of the QR method. Let A = A, be a 

given matrix, and define a sequence of matrices 
A,, A,, . obtained from A, as follows. At the 
ith (i = 0, 1, . ) step, choose an appropriate 

constant si, called an origin shift, according to 
the process described below, and decompose 

Ai - s,l into the product of a unitary matrix 
Qi and an upper Hessenberg matrix R, : Ai - 

s,l= QiRi. The matrix Ai+1 is then defined by 
Ai+1 = RiQi+siI = QfAiQi. Hence A,+i is simi- 
lar to A,. The QR method is closely related to 
the power method and to the inverse power 
method. We describe this relationship in order 
to obtain an insight into the nature of the QR 
method. To this end, we first state a well- 

known theorem: Let A be diagonalizable, and 
let its eigenvalues li (i = 1, . . . , n) have distinct 
modu1i,say11,1>11,1>...>11,1.LetX~’AX 
=diag{l,,i,, . ,A,}, and let X have an LU- 
decomposition X = LU, where L and U are, 
respectively, lower triangular matrix and an 
upper triangular matrix. Then the QR al- 
gorithm without an origin shift (si = 0, i = 
0,1,2, . ..) behaves as follows: a$;-+0 (p>q); 
a$+&; agi oscillates (p < q), p, q = 1,2, . . , n, 
i+ co, where u$ denotes the (p, q)th element 

of Ai. In other words, Ai approaches an upper 
triangular matrix as i-+ co so that the diagonal 
elements of Ai converge to the eigenvalues of 
A. 

The relationship between the QR algorithm 

and the power method is given by (QOQ1. . . Qi) 
(R,R,-, . ..R.)=(A-s,I)(A-ss,I)...(A-sJ). 
Ifs,=s,=... = si = 0, then the right-hand side 
reduces to A’+‘, and since the product Ri R, 
is upper triangular, the first column of Qi = 
QoQl . Qi equals a scalar multiple of A’+’ e,, 
where e, = (LO, 0, , 0)‘. Therefore, by the 

power method, the first column of Qi converges 
to an eigenvector corresponding to the eigen- 
value 1, of A that has the largest modulus, 
under a certain fairly mild condition. Since 
A,+,=&A&,, Ai+le,=&A&,~~l,e, for 
large i. In other words, the first column of Ai 

converges to the vector (1,,0,0, . ,O) as i-co. 

The relationship of the QR method to the 
inverse power method and to the Rayleigh 

quotient is now explained. From the definition 
of the QR algorithm with an origin shift, we 
have Qi=[(A-sJml]*RT. Since RF is a lower 
triangular matrix, the nth column of Qi equals 
Qie.=[(Ai-siI)m’]*Rfe,=(A-sil)-l .(a 

scalar multiple of e,), where e, = (O,O, . ,O, 1)‘. 
This last process of obtaining the last column 
of Qi represents a process known as the inverse 

power method. If si is close to an eigenvalue of 
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Ai (and hence to an eigenvalue of A), the last 
column of Ai gives a good approximate eigen- 
vector of A corresponding to the eigenvalue 
under consideration. Now, if x is a given col- 

umn vector such that x*x = 1, the value of 1 
which minimizes (Ax - Lx)*(Ax - J.x) is given 

by the Rayleigh quotient x*Ax. If x(x*x = 1) 
happens to be an eigenvector of A, the Ray- 
leigh quotient equals an eigenvalue of A. If 

we take x = e,, the corresponding Rayleigh 
quotient equals unn. Therefore if we take the 
(n, n)th element of Ai as the origin shift si, then 
si can be regarded as the best approximation 
to an eigenvalue of Ai (hence of A) when e, is 
taken as an approximate eigenvector of Ai, in 
the sense that 1= si minimizes the functional 

(Aien-IZe,)*(Aie,-le,). 
Under the same condition as in the preceed- 

ing theorem, the rate of convergence of the 
QR method with an origin shift is given as fol- 

lows: a$: (n > p 3 q > 1) is asymptotically pro- 
portional to (&/L,)’ for si = 0 (i = 0, 1, . ) (no 
origin shift); and with the origin shift sir the 
behavior of u:i at the ith step is determined by 
(1, - sJ/(n, - si). If si + i, ( = the eigenvalue of A 

with the least modulus), each element in the 
nth row of Ai+l except a$ir) exhibits rapid 

decrease in modulus. A natural and practical 
choice of the origin shift si is given as follows: 
(i) for a real tridiagonal matrix, si is taken to 

be that eigenvalue of the 2 x 2 matrix situated 
at the lower right corner of Ai that is closer 

to u$A [14]; (ii) for a real upper Hessenberg 
matrix, the two eigenvalues of the 2 x 2 matrix 
situated at the lower right corner of Ai as 
si and sifl [14]; (iii) for a complex upper 
Hessenberg matrix, si is chosen as in (i) [ 17, 

COMQR]. 
The QR method with origin shift would 

eventually make each element in the nth row, 
except a$ smaller in modulus than a pre- 
scribed positive number. At this stage of itera- 

tion, L$: is taken as an approximate eigenvalue 
of A. The QR method is then applied anew to 
the (n- 1) x (n- 1) matrix obtained from Ai by 
deleting the nth row and the nth column of Ai, 

and another approximate eigenvalue of A is 
obtained. The method proceeds similarly until 

all the eigenvalues of A are computed. For 
maximum accuracy the eigenvalues of the 
given matrix should be computed in the order 
of increasing modulus. A word of caution is in 

order. When the given matrix A has elements 
of greatly varing modulus, rearrangement of 
elements of A may be necessary before apply- 

ing the QR method with an explicit origin 
shift, where A,--s,l (i=O, 1, . ..) is explicitly 
computed. 

The reader is referred to [14-161 for details 

of the QR method. 

G. Generalized Eigenvalue Problem Ax =23x 

An eigenvalue problem of the type Ax = 1Bx is 
called a generalized eigenvalue problem and is 
often encountered in applied mathematics. A 

necessary and sufficient condition for I to be 
an eigenvalue is det(A -LB) = 0. If B-r exists, 

then Ax = 1Bx is equivalent to B-‘Ax = /zx and 
hence has n eigenvalues, where n is the order of 

A. If B-i does not exist, the eigenvalue prob- 
lem Ax = 1Bx has at most n - 1 eigenvalues. 
We restrict ourselves to one of the most im- 
portant cases: that where A is real and sym- 

metric and B is real, symmetric, and positive 
definite. In this case one could solve the prob- 

lem by reformulating it as B ml Ax = Ix, where 
Bm’A is explicitly computed. However, B-‘A 
is not in general symmetric. Moreover, when 
B has eigenvalues of widely different moduli, 

the elements of B-’ may have widely different 

moduli as well, which would in turn make the 

computation of those eigenvalues of B ml A of 
smaller moduli difficult. An efficient and nu- 
merically stable method is known which obvi- 
ates the aforementioned difficulty by exploit- 

ing the symmetry of A and B. An outline of 
this procedure is now given. Since B is positive 

definite, a lower triangular matrix L exists 
such that IL’= B. This is called the Cholesky 

decomposition of B. The elements of L can be 
computed by equating the correspon.ding ele- 
ments in LL’ = B. The eigenvalue problem Ax 

= /ZBx is now equivalent to L-‘A@‘-’ y = 
ly with y=L’x, where the matrix Lm’A(L’)-’ 
= P is computed in two stages by solving 
LX = A and PL’= X. In this last equation it is 
enough to compute the upper right half of P, 
because P is symmetric while X is not gener- 
ally symmetric. The upper right half of P can 

be computed by equating the corresponding 
elements in PL’= X. The eigenvalues /z of 
Ax = IBx are given by the eigenvalues of the 
matrix P. Other types of eigenvalue problems, 

such as y’AB = ly’, BAy = J.y, and x’BA = lx’, 
often appear in practice, where A is real and 
symmetric and B is real, symmetric, and posi- 

tive definite. By using the Cholesky decomposi- 
tion of B, one can reduce any one of these 

eigenvalue problems to the ordinary eigen- 
value problem for a real symmetric matrix [4]. 

If A and B are general matrices in Ax = iBx, 
the following method is known to be effective 
[IS]. First, reduce B to an upper triangular 
matrix by applying n - 1 Householder trans- 
formations from the left. This reduces the 

eigenvalue problem Ax = /1Bx to the case 
where B is upper triangular. Next, apply to A 
a sequence of plane rotations of Givens type 

from the left, thereby reducing the eigenvalue 
problem Ax = 1Bx to the case where A is an 
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upper Hessenberg matrix and B is an upper 
triangular matrix. Then apply the QR method 
to B-’ Ax = ix without explicitly computing 
B-‘A to reduce the eigenvalue problem Ax 

= iBx to the case where A and B are both 
approximately upper triangular. The eigen- 
values of Ax = 1Bx are then easily computed 
as ratios of corresponding diagonal elements. 
This method is called the QZ method [18]. 

A collection of about 50 excellent FOR- 
TRAN subroutines for various types of ma- 
trix eigenvalue problems is contained in 

[lS]. These subroutines are in most part trans- 
lations from ALGOL procedures given in 

c141. 
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299 (XV.7) 
Numerical Integration 

A. Interpolatory Integration Formulas 

Numerical integration is a method of finding 
an approximate numerical value of a definite 
integral of a given function f(x). Usually the 

integral j,“f(x)dx or Sjf(x)w(x)dx (w(x) is the 
weight function) is approximated by a linear 
combination Cd1 wif(xi) of the values of the 

integrand at the points x 1, 21”‘> x x,. Integra- 

tion formulas are divided into two groups, 
the interpolatory formulas and the formulas 

based on variable transformation. 
In order to obtain an interpolatory formula, 

we interpolate over the integrand f(x) at n 

points x1,x2, . . . . x, by means of the iLagrange 
interpolation polynomial of degree IZ - 1, and 
then integrate the polynomial over [a, b]. 
Depending on the selection of the points xi 
and the weights w, we have several kinds of 
formulas. 

(1) Newton-Cotes Formulas. We assume w(x) 
=constantandxi=x,+ih(i=O,l,...,n).The 
weights Wi are so determined that the value of 
the integral can be calculated accurately if the 
integrand f(x) is a polynomial whose degree 
does not exceed n. There formulas are called 
the Newton-Cotes formulas: SC; f(x)dx = (f. + 
f,)h/2 for n = 1 (trapezoidal rule), lc;f(x)dx = 
(fO +4f, +f,)h/3 for n = 2 (Simpson’s l/3 rule), 

and J:;f(x)dx = (f. + 3fi + 3f2 +f,)3h/8 for 
n = 3 (Simpson’s 3/8 rule). The truncation 

errors of these three formulas are given by 
h”f(*)(5)/12, h5fc4)(5)/90, 3h5f(4)(<)/80, respec- 
tively, where 5 is a number in the interval of 

integration and f@) denotes the ith derivative 
off (differentiability is assumed). For an even 
n, the polynomial of degree n + 1 can also be 
integrated accurately by these formulas. 

In Table 1 the coefficients A and Bi of the 
Newton-Cotes formulas hA &, Bif(xi), h = 
(x,-x,)/n, and the coefficients C of the error 
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Table 1 

n A 4 4 B2 B3 B4 4 43 4 Bs C 

1 w  I 1 -l/12 
2 l/3 1 4 1 -l/90 
3 3/8 1 3 3 1 

4 tJ45 

- 3180 

I 32 12 32 I - 81945 
5 5/288 19 75 50 50 75 19 - 215/12096 
6 l/140 41 216 27 212 27 216 41 - 911400 
I 7117280 751 3571 1323 2989 2989 1323 3517 751 - 8 183/5 18400 
8 4/14175 989 5888 -928 10496 -4540 10496 -928 5888 989 -2368/467775 

term CYZ~“~(~)(~), where p = n + 2 if n is even 

and p = n + 1 if n is odd, are given. 
When the interval [a, b] of integration is 

large, we usually divide it into small subinter- 
vals and apply formulas for small n for each 
part rather than formulas for large n for the 
whole interval. For example, if the interval is 

divided into m equal subintervals, we get the 
following formula by applying the trapezoidal 
rule for each subinterval: 

s 

b 

.f(x)dx=h((f,+f,)/2+(f,+f,+“‘+f,~,)), 
a 

where x0 = a, x, = b, h = (b - a)/m, with trun- 
cation error (b - a)3f(2)/( 12m’). (Here, as in the 
rest of the article, f”) stands for f(‘)(t), with 

differentiability assumed as before.) By apply- 
ing Simpson’s l/3 rule we obtain the formula 

s 

h 

f(x) dx 
c1 

+(.fi +.L+ “’ +f2m-2))r 

where x,, = a, x2,,, = b, h=(b-a)/2m, with 
truncation error (b-~)‘f(~)/180(2m)~. 

For the integral of a periodic analytic func- 
tion over a single period the trapezoidal rule 

with equally spaced points gives the best result 
asymptotically, as the number of points tends 
to infinity. 

Newton-Cotes formulas can also be ob- 
tained by integrating over the interval [a, b] 
the interpolation polynomial for equally 
spaced points. The formulas mentioned so 
far are called closed formulas since they use 
values at the two endpoints of the interval. 

We can also use open formulas, which do 
not use values at the ends. For example, we 
have jc;f(x)dx = 4h(2f, - f2 + 2f3)/3 with trun- 

cation error 14h5f (4)/45. Open formulas are 
useful for numerical solution of differential 
equations. There are also formulas that in- 
clude values outside the interval, for example, 
(-fel+ 13&+13f,-f,)h/24 for l;;f(x)dx. 

Applying these formulas to the m subintervals 
of [a, b], we obtain a trapezoidal formula with 

the correction term h( fi -f-,)/24 + h( f,- 

.f,+,)/24=NAfo+Af-,)/24-&!f,~, +Af,)/24> 
where Afi means fitI -L. 

(2) Chebyshev Formulas. The Chebyshev for- 
mulas are a family of integration formulas in 

which all the weights w  of & &f(xi) are 
equal, while the abscissas xi are chosen so that 
the integral can be evaluated exactly when f(x) 
is an arbitrary polynomial whose degree does 
not exceed n. When Sk1 f(x)dxk W& f(xi), it 
is easy to see that W= 2/n since the right-hand 
side must be equal to the left-hand side when 
f(x) = 1. It is known that the abscissas xi for 
n 9 7 and n = 9 are real, while for n = 8 and 

n > 10 at least one of the abscissas becomes 
complex. It is easy to see that Chebyshev for- 
mulas are interpolatory. 

(3) Gauss Formulas. In the Gauss formulas 
both the weights K and the abscissas xi are 
chosen so that we obtain the accurate value of 
the integral when the integrand is any poly- 

nomial whose degree does not exceed 2n - 1. If 
we put n(x) = n:=, (x -xi), an arbitrary poly- 
nomial of degree 2n - 1 can be expressed in the 
form 

where f (xk) = fk and the first term is the tLa- 

grange interpolation polynomial. By the as- 
sumption that the integral of f(x) with weight 

w(x) equals Xi=, Wkfk, we obtain W, = 
l,“(w(x)Z7(x)/(x-x,)U’(x,))dx and the relations 

s 

b 
w(x)Z7(x)xkdx = 0, k=O,l,..., n-l. 

a 

Accordingly, the abscissas xi are determined as 
the roots of the polynomial n(x) of degree n 
that is orthogonal to xk (k = 0, 1, . , n - 1) with 

respect to the weight function w(x). 
The following are typical examples of inte- 

gration formulas of Gaussian type. 

(i) Gauss integration formulas (in the 
narrow sense). For w(x) = 1 and the interval 
[ - 1, 11, n(x) is the +Legendre polynomial 

P,(x) = (1/2”n!)d”(x* - l)“/dx”. The error is 
(n!)422”+‘f(Zn)/(2n+ 1)((2n)!)3. 
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(ii) Gauss-Laguerre formulas. For the 
weight w(x) = exp( - x) and the interval [0, co), 
n(x) is the tLaguerre polynomial L,(x) = 

(expx)d”(x”exp( -x))/dx”. 
(iii) Gauss-Hermite formulas. For the weight 

function w(x) = exp( - x2) and the interval 
(-co, co), n(x) is the tHermite polynomial 
H,(x)=(--l)“expx’.d”exp(-x’)/dx”. 

(iv) Gauss-Chehyshev formulas. For the 
weight function w(x) = (1 -x2)-‘/’ and the 
interval [ -1, 11, we use the Chebyshev poly- 

nomial T,(x)=2-(“-l)cos(narccosx). In this 
case, the & are all equal to r/n. 

From the definition of W, we see that the 
Gauss formulas are interpolatory. 

(4) Clenshaw-Curtis Formulas. Although the 
Gauss formula is in general more accurate 
than the Newton-Cotes formula with the same 
number of points of interpolation, the points 
of interpolation for a Gauss formula of any 
order are distinct from those of any other 
order except the point zero, which appears in 

all formulas of odd order. The Clenshaw-Curtis 
formulas are interpolatory, with the points 
chosen so that the distribution of the points is 

similar to that of the Gauss formula and such 
that, in proceeding from a computation of 
order n to that of order 2n, all the function 
values evaluated in the former computation 
be used in the latter. For w(x) = 1, the inter- 

val [ -1, 11, and even n, the points xk and the 
weights W, are given by 

kn 
xk=cos--, k=O,l,...,n; 

n 

1 
WOE w,=-. 

n2-1’ 

w,= wnms=y 1 2nj.9 
-cos-, 

?l j=o l -4j2 n 

s=1,2 !! ,..., 
2 

C” mea 
7 

s that the first and the last terms in 

the sum are to be halved. There are some 
different types of Clenshaw-Curtis formulas 
depending on the selection of the points xk [ 11. 

B. Integration Formulas Based on Variable 
Transformation 

If the integrand has some singularity at the 

endpoint, any interpolatory formula based on 
interpolation with a polynomial does not give 

a good result. In such cases integration for- 

mulas based on variable transformation are 
quite effective. 

(1) IMT Formula. The tEuler-Maclaurin 
formula is given by 

&If, 
n 

where the B,,(t) are tBernoulli polynomials 
of degree n and the B, are tBernoulli num- 
bers(B,=l,B,=-l/2,B2=1/6,B,=0,B,= 
-l/30, . ). This formula suggests that if the 
higher derivatives of the integrand vanish at 
the both endpoints, the error of the trape- 
zoidal rule with equally spaced points be- 
comes very small. The IMT formula is based 

on the idea of transforming the variable x of 
ih,f(x)dx in such a way that all the deriva- 
tives of the new integrand vanish at both end- 

points by taking x = q(t), q(t)= K m1 &$(z)dt, 
K=~~$(z)dr,$(r)=exp(-r-‘-(1-7)-‘). 
Then the trapezoidal rule with h = l/n is 
applied to the transformed integral to obtain 
(l/Kn)C;Z: $(j/n)f(cp(j/n)) [l]. The asymptotic 
expression of the error for the IMT formula is 
proportional to exp( - Cfi) with a positive 
constant C. 

(2) Double Exponential Formula. The trape- 
zoidal rule with equally spaced points ap- 

plied to the integral of an analytic function 
over (-co, a) gives in general a result of 

high accuracy. The double exponential for- 
mula is based on the idea of transforming 
s?, f(x)dx to J?,f(q(t))cp’(t)dt with x = 

q(t)= tanh&sinh t) and applying the trape- 
zoidal rule with a mesh size h, which results in 

!~C,“=~,f’(cp(nh))cp’(nh) [4]. The name of the 
double exponential formula is attributed to the 

decay of q’(t) at t-t *co, which is approxi- 
mately proportional to exp( - Cexp 1 t I) with a 
positive constant C. The transformations x = 
exp(n sinh t) and x = sinh($ sinh t) give the 
double exponential formulas for the infinite 

integrals lzf(x)dx and 10aoof(x)dx, respec- 
tively. In the actual computation the infinite 

~ summation is truncated at appropriate upper 
and lower bounds. The asymptotic expres- 
sion of the error for the double exponential 
formula in terms of the number N of the sam- 
pling points actually used is proportional to 
exp( - CN/log N) with a positive constant C. 

The IMT formula and the double exponential 
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formula are robust against the singularities at 
the endpoints. 

C. Automatic Integration 

By an automatic integration scheme we mean a 
computer program for numerical integration 

of Jtf(x)dx in which the user gives the limits 
of integration a and b, a subroutine for com- 

puting f(x), and an error tolerance E. Then the 
program gives a value of the integral which is 
expected to be correct within the tolerance E. 

Usually in an automatic integration scheme 

the mesh size is halved until the desired ac- 
curacy is attained. Automatic integration 
schemes are classified into two groups, non- 
adaptive schemes and adaptive schemes. In a 
nonadaptive scheme, the sequence of integra- 
tion points is chosen according to some fixed 
rule independent of the shape of the inte- 
grand. Newton-Cotes formulas, Clenshaw- 
Curtis formulas, IMT formulas, and double 
exponential formulas can be used as base 

formulas for nonadaptive schemes. 
From the historical point of view, Romberg 

integration should be mentioned; it is a kind of 

nonadaptive automatic integrator. Consider 
an integral I = jif(x)dx. Divide the interval 
[a, b] of integration into 2k subintervals and 
apply the trapezoidal rule with the mesh size 
h = (b - a)/2k, which we denote by Tdk). Then, 
starting from the values obtained for Tf), 
k = 0, 1, . , we compute the sequence 

T’k’ = 
JmT;+;’ - T’k’ 

m  1 
m  

4”-1 ’ 
m=l,2,... 

From the tEuler-Maclaurin formula the as- 
ymptotic error for the trapezoidal rule Tdk) can 

be expressed as I - Tdk)= c, h2 + c2 h4 + . + 
c,hzm+ . . . . where c,=const x (f(2m-1)(b)- 

f (“‘-l)(u)) does not depend on h. If we com- 
pute T:k)=(4Td“+1)- Tdk))/3 using the values 
Tdkfl) and Td”), then we see that the asymp- 
totic error expression of T/k) becomes I - T:k) = 
c; h4 + cj h6 + . + ckh’” + . Romberg inte- 
gration is based on the idea of eliminating 

the term with h’” in the expression of the error 
by successive application of TAk’. This is an 
application of Richardson’s extrapolation 

procedure. 
In the adaptive scheme, the points are 

chosen in a way that depends on the shape of 
the integrand. The Newton-Cotes formula of 
order 8, for example, is used as the base for- 
mula for the adaptive scheme. 

D. Approximate Multiple Integration 

If a region is a product region, such as a rect- 
angular parallelepiped, a product rule ob- 

tained by forming the product of 1 -dimen- 

sional formulas is useful. For integrals over a 
cube or a Sphere there are monomial rules 

which are exact for a certain family of mono- 
mials. These rules can be used for integrals of 
dimension lower than 5 or 6. For integrals of 

higher dimension only methods based on 
sampling make sense. 

E. Numerical Differentiation 

In order to find the numerical value of the 

derivative fd = f ‘(x,) at a point xp from the 

tabulated values fk = f (xk), we usually use the 
derivative of the tLagrange interpolation 

formula. This gives 

f”=k~p(x 

where n(x) = n;=, (x - xk). 
When we compute the derivative of a func- 

tion which can be evaluated at any point in a 
given interval, the approximation 

2h 

is useful; similarly, we can use 

h2 

It must be noted that, as h tends to zero, the 
difference f (x + h) -f (x - h) comes to contain 
fewer significant digits, so that it is meaning- 
less to carry out { f (x + h) -f (x - h)}/2h be- 

yond a reasonable value of h. 
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300 (XV.1) 
Numerical Methods 

In the earlier history of mathematics, the de- 
velopment of methods of numerical calcula- 
tion was one of the main purposes of research. 
Until the beginning of this century, logarith- 
mic calculation played a central role in numer- 
ical calculation, and the main topic of this field 
was to make tables of values of functions. The 

digital electronic computer (- 75 Computers), 
which made its first appearance in the 1940s 
and has been developing at an exponential 
rate, has caused drastic changes in numerical 
technique. Problem solving by numerical 
methods has now become one of the fundamen- 
tal means of research in the physical sciences 
and engineering, and also in the social sciences 
and humanities. In this article we give exam- 

ples of the changes in numerical methods 
brought about by the availability of digital 
computers and portable calculators. 

Computers may be effectively utilized for 
calculating individual values of functions. This 

has led to the reexamination and, in some 
cases, modification of approximate formulas 
for evaluating functions (- 142 Evaluation of 
Functions). For familiar functions, such as 
tlogarithmic, texponential, and ttrigonometric 
functions, tables have been almost completely 
replaced by function keys on electronic cal- 

culators. Microprogramming algorithms for 
obtaining values of these functions have also 
been devised [ 11. A complex function-theoretic 

error-estimation method for use with numer- 
ical integration formulas is given in [2]. In 
this method, graphical outputs of the com- 
puter are utilized. For problems in which the 

existence and uniqueness of solutions have 
been established, as for algebraic equations 

and ordinary differential equations, fairly good 
numerical calculation methods and their error 
estimates have been established (- 301 Nu- 
merical Solution of Algebraic Equations; 

303 Numerical Solution of Ordinary Diffcrcn- 

tial Equations; [3,4]). A method for estimating 
arithmetic taccumulation errors for operations 
involving finite numbers of digits has been 
systematized (- 138 Error Analysis; [S]). 

It is not unusual nowadays for linear equa- 
tions with 10,000 or more unknowns to be 
solved. As new computing systems, such as the 
virtual memory system and the vector oper- 
ation system, come into existence, new al- 

gorithms are examined; a numerical method 
that is optimal for today’s technology may 
well be suboptimal for the next generation 

of computers. General-purpose program 
packages of linear problems, including eigen- 
value problems, have been developed (- 298 

Numerical Computation of Eigenvalues; 

C61). 
Partial differential equations seem to have 

become more familiar because of the visualiza- 
tion of their numerical solutions in graphical 

computer outputs. In 171, which appeared 
much earlier than computers, partial difference 

equations for the fundamental linear prob- 
lems in mathematical physics were discussed 

with a suggested variational treatment (- 304 
Numerical Solution of Partial Differential 
Equations; [S]). The tfinite element method, 

which started as a calculation technique in 
structural mechanics and is based on the +cal- 
culus of variations, is widely accepted as an 
efficient approximation method for partial 

differential equations [9, lo]. The term tsimu- 
lation is used often to describe procedures in 

which partial differential equations describing 
time-dependent phenomena are discretized; 
the resulting difference system can be solved 

for long periods of time [ll]. 
Numerical analysis has heretofore long been 

considered to be the only numerical method 
(for error analysis in particular), and has been 
carried out mainly by means of the discretiza- 
tion of equations. Nowadays, however, mathe- 
matical modeling, taking into account both the 

phenomena to be described and the capabi- 
lities of the computers to be used, has become 

an important numerical method. 
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301 (XV.5) 
Numerical Solution of 
Algebraic Equations 

A. General Remarks 

Methods for finding roots of an equation 

f(x) = 0 (where f(x) is not necessarily a poly- 
nomial, but is assumed to be a function with 
some regularity) by numerical calculation can 
in general be divided into the following two 
types: (i) The first has as its goal the finding 

of good approximate values of the roots; 
examples are the Bernoulli method (Section J) 
and the Graeffe method (Section N). (ii) The 
second improves the accuracy of estimates of 
the roots; an example is the Newton-Raphson 
method (Section D). The methods belonging to 
(i) and (ii) can be used separately. However, in 
(i) convergence of the approximations may be 
excessively slow when a pair of nearly equal 
roots is present, and the size of numbers in- 

volved in the calculation may grow exponen- 
tially as we proceed through the iterations. In 

(ii) convergence of the approximate values is 
not assured unless the initial approximate 
value is suitably chosen. Accordingly, when an 
electronic computer is utilized, it is advisable 

to combine both types of method. Because of 
the development of computers, solutions with 

global convergence have become important 
[1,2,15, 17,211. 

B. Successive Substitutions 

When an equation f(x) = 0 is transformed into 

x = F(x) and the roots are obtained by iterative 
calculation of xi+1 = F(Xi) (i=O, 1,2,. ), suff- 
cient conditions for its convergence are as 

follows: Let one of the roots of the equation be 
s(. Then xi+1 - CI = F(xi) - c(, and therefore (xi+, 
-a)/(~,-a)=F’(() (xi<[<a or x~><>u). 
Accordingly, SC converges monotonically if 0 < 

F’(c) < 1, while it converges with oscillation 
ifO>F’(t)> -1. IfIF’(<)l>l and F-‘(x)de- 
notes the inverse function of F(x), the iteration 

xi+l = F’(xJ converges. To define the speed of 
convergence by iterative processes the follow- 
ing notion of order is utilized: When lim,,, xi 

= CI, the speed of convergence of the sequence 
{xi} is said to be of the kth order if limi+oo(xi+l 
- %)/(xi - ~c)~ = c # 0. Necessary and sufficient 

conditions for the speed of convergence of 
{xi} to be of the kth order are c( = F(X), F’(a) = 
F”(a)= =F’k-l’(a)=O, F’k’(a)#O. 

The main iterative processes used in numer- 
ical calculation are described in the following 
sections. 

C. Regula Falsi 

Regula falsi (or the method of false position) is 
a process of obtaining the real root c( of an 
equation f(x) = 0 by approaching the root 
from both sides. The calculation procedure is 

as follows: Assume that f(x,) > 0 and f(x,) < 0, 
where xp and xq are approximate values of c( 
such that CI lies between them. A new approxi- 
mate value x is then obtained from X=(X$(X,) 

-x$(x,)Y(f(x,) -f&J). Iff(3 > 0, then X-+ 
xp, and if f(x) ~0, then x--*x~, and the pro- 
cedure is repeated (the symbol + means re- 
placement). The conditions and speed of con- 

vergence of regula falsi are as follows: Let F(x) 

= (x,.f(x) - xf(x,)Mf(x) -.f(x,)); then l+d = 
(f(x,) + (a - x,)f’(cc))/f(x,). If f’ and f” exist 
and are continuous near CL, then f(x,) =f(a) + 
(x,-d~)f’(n)+(1/2)(x,-~)‘f”(& where c(> 
< > xq or E < 5 < xq. Accordingly, assume 
that F’(a)=(1/2)(x,--cc)2f”(~)/f(x,)#0. Then 
IF’(x)1 < 1 can be satisfied if x and xq are near 

c(. Therefore, if the initial value is appropriate, 
the convergence is of the first order. In regula 

falsi, only calculation of f(x) is necessary, while 
that of f’(x) is unnecessary. Furthermore, if 

f(x) = 0 has nearby real roots, i.e., CI, 8, . . close 
to each other and f’(x) small near the roots, 

there can be no mistake such as the neighbor- 
ing root fi being obtained in the process of 

finding the root CI by this method. This method 
belongs to the inverse linear interpolation 

method. This kind of inverse interpolation 
includes Muller’s method [3], which uses 
tlagrange’s interpolation formula, the Torii- 
Miyakoda method [4], which uses tHer- 

mite’s interpolation formula, and Whittaker’s 
method [S], which uses tstirling’s interpola- 
tion formula. These methods converge more 
rapidly but have more complicated formulas 
than inverse linear interpolation. The Sturm 
method (in which the interval where the roots 

exist is narrowed by tsturm’s theorem) and the 
Horner method (which obtains the decimal 

part digit by digit), both used to obtain the 
real roots of a high-order algebraic equation 
f(x) = 0, are also of this type. 

D. The Newton-Raphson Method 

In obtaining the real roots of an equation ,f(x) 
= 0, the Newton-Raphson method (or the New- 
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ton iterative process), which converges rapidly, 
is used when f’(x) #O is computable. Let xi be 
a sufficiently close ith approximation of the 
root a; then x,+~ = xi -f(xi)/f’(xi) is closer than 

xi to the true solution. The process is repeated 
until Ix~+~ -x,1 is small enough. Conditions 
and the speed of convergence are as follows 
[6,7]: Let F(x) = x -f(x)/f’(x); then F’(x) = 
f(x)f”(x)/(f’(x))’ and F’(E) = 0. Accordingly, 

F”(E) # 0 if f’(a) # 0 and f”(a) # 0, and the 
convergence is of the second order if it is pos- 
sible to determine an appropriate approxi- 
mate value x, that is close to CI and satisfies 
IF( < 1. In particular, if f(xo)f’(xO)#O, h, = 

-f(xoYf’(xo), IS’WI GM, and If’(x,)l~ 
2 1 h, I M, then every Newton approximation 
xi starting with x,, is contained in the interval 
I=[x,-Ihol,x,+lhol],theequation hasonly 
one root CI in I, and X,+X. Besides, 

(“-x,+,(~M(xi-xi-l(2/2(f’(X,)I, i=l,2 ,.... 

With regard to convergence and evaluation of 
the error, including roundoff error in practical 
computations, M. Urabe’s studies should be 
consulted [8,9]. In general, the convergence 
is of the third order in the Newton-Raphson 
method, which uses not only f’(x) but also 

f”(X) ClOl. 
When f’(x)=O, we must assume f”(x) #O 

and use the value f”(x). With regard to this 

case, the study by S. Hitotumatu should be 
consulted [ll]. In addition, W. Kizner (SIAM 

J. Appl. Math., 12 (1964)) reported an itera- 
tive process in which the convergence is of the 
fifth order without using any derived function 
higher in order than f”(x). The essential part 
of his method lies in a numerical integration of 
the integral part by the tRunge-Kutta formula, 
based on the fact that if x1 is the first approxi- 

mate value of a root X of f(x) = 0, then 

O dx ~ 
x= 

s 
-df+x,. 

ml) df 
There may be several iterative processes for 

solving f(x) = 0, even if the order k of the con- 
vergence is fixed. For example, in obtaining 
the positive root of f(x) = x2 -u = 0 (a > 0), i.e., 
the square root a = a I/’ both iterative pro- , 
cesses xi+, - -(xi + u/x,)/2 and xi+1 = 2x:/(3x: - 
a) give convergence of the second order. In 
obtaining the real root of .f(x) =x3 -a = 0, i.e., 
the cube root ~=a”~, xi+, =xi+(u/xF-xi)/3 
converges of the second order, while xi+1 = 

xi/2 + (a + a/2)/(2x’ + a/xi) converges of the 
third order. 

The Newton-Raphson method is applicable 
also to holomorphic functions of complex 
variables. 

Take simultaneous equations of two vari- 

ables, f (x, y) = 0 and y(x, y) = 0. If it is possible 
to transform the equations into x = cp(x, y) and 

Y = d& YX and if IWW + l@laxl< 1, lWh4 
+ la$/ayl< 1, then the iterative processes xi+, 
= cp(xi, yi) and yi+l = Il/(xi, yi) are applicable. In 
the Newton-Raphson method, let the correc- 
tions to the ith approximate values xi and yi 
be Axi and Ayi, and solve 

.j;(xi,Yi)AXi+f,(xi,Yi)AYi= -f(xiaYJ, 

R(Xi,Yi)Axi+g,(Xi,Yi)AYi= -g(xi>YJ 

Then we can take xi+, = xi + Axi and Y,+~ = 
yi + Ayi as the next approximate values. This 
process is repeated until both ( Axi( and (Ayi( 
are sufficiently small. More generally, the 
Newton-Raphson method for solving a system 
of n nonlinear equations f;(xl, ,x,) = 0, i = 
1,2, . . . , n, is defined by 

X(k+l)=X(k)-~(X(k))-l~(X(k)), k=0,1,2 ,..., 

where xck)- -(x \“), ,xLk))t F(x)=(f,(x,, . . . , 

~~~if~(X~~~~~~Xn))‘iJ(X)=~i)l;(XI~~~~~x~)irlxj) 

XII), 

(the tJacobian matrix of F), and where x(O) is 
chosen appropriately [23]. 

E. The Bairstow Method 

Corresponding to a pair of complex roots CI f 
ib of an algebraic equation f(x) = aOxn + a, xnm’ 
+ + a, = 0 with real coefficients, there is a 
real quadratic factor x2 + p*x + q*. The Bair- 

stow method (or Hitchcock method) obtains 
the coefficients p* and q* of this quadratic 
factor. 

To do this, first choose an appropriate qua- 
dratic factor x2 +px + q as a candidate. Then 
through synthetic division by the quadratic 
factor, bj and cj are computed by means of 
the formulas 

bj=aj-pbjm, -qbjm,, j=O, 1 ,...,n, 

and 

cj=bj-pcj+ -qcj-2r j=O,l,..., n-l, 

where 

b-, =bm,=c-, =cm,=O. 

By solving the simultaneous equations 

c,m,Ap+c,-,Aq=b,-,, 

c,m,Ap+c,-,Aq=b,,, 

where 

the quantities Ap and Aq are obtained. Then 
takingp=p+Ap,G=q+Aq,wehavex’+ 
fix + 4 as a new candidate. This operation is 
repeated until Ap and Aq are sufficiently small. 

Since this method corresponds to the Newton- 
Raphson method in the case of two variables, 
and, accordingly, the convergence is of the 
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second order, a choice of suitable initial values 
of p and 4 leads to rapid convergence. The key 

to this method lies in choosing p and 4 so that 
R,(p,q)=O and R,(p,q)=O, where R, and R, 

are such that R i x + R, is the remainder of f(x) 

divided by the trial quadratic factor x2 + px + 
q. This method was generalized by A. A. Grau 
(SIAM J. Appl. Math., 11 (1963)). Namely, 
when f(x) = (x2 + px f&(x) + r(x) with r(x) = 
r,xkfl +r,xk, the functions r, and r2 can be 
used instead of R, and R,. The process cor- 
responds to the Bairstow method when k = 0, 

and to the McAuley method (SIAM J. Appl. 
Math., lO(1962)) when k=n-2. 

F. The Durand-Kerner Method 

The Durand-Kerner (DK) method [ 121 for 
solving an algebraic equation f(z) = zn + a r z”-l 
+ + a, = 0 (a, # 0) with complex coefficients 
is an iterative method defined by 

i=1,2 ,...) n, k=0,1,2 ,.... (1) 

A feature of this method is that it can deter- 

mine simultaneously all the roots of f(z)=O. 

Let cp&,,..., z,),m=1,2 ,..., n,bethemth 
elementary symmetric functions with respect 
to zl, . . ..z.: 

(Pm(z13...>zn) c zi,zi,...zi m 
i,Xi,C...<i, 

Set ,l;,(z)=( -l)“cp,(z,, . . . ,z,)-u,,,. Then t(= 

(aI, , cc,)‘, a set of the roots off(z) = 0, is a 
solution of a system of the n equations f,(z) = 

0, m= 1,2, . , n. I. 0. Kerner [12] showed 

that the DK method is the Newton-Raphson 
method applied to the system of nonlinear 
equations f,(z) = 0, m = 1,2, , n. Therefore 

the speed of convergence of (1) is of the second 
order, provided that it converges. The initial 
values z’p), , z(O) for the DK method are n 
usually chosen as follows: Let g(z) = f (z - u,/n) 

=z”+c,z”~2+...+~,andh(z)=z”-~c,~z”-2 
- . . . -Ic,I. If (c,, . . . . c,)#(O, . . . . 0) (n>2), then 
it can be shown that h(z) = 0 has exactly one 
positive root r, and all the roots of f(z)=0 lie 
in the disk ]z + al/n1 <r. Now, with a positive 

r. > r and 0 = n/(2n), put 

Zi”‘= -s+roexp[(“n’!n,n)fl], 
n 

i=1,2 ,..., n. (2) 

Such a choice was proposed by 0. Aberth 

[t 31. Hence the process (1) together with (2) 
can be called the Durand-Kerner-Aberth 

(DKA) method. It is shown for the DKA 

method that, if r. is large enough, then 

zikJ+>=( 1 -~)x(;I”)+~), i= 1,2, . . . . n, 

hold nearly for the first several steps. Thus 
the DKA method has a certain kind of global 

convergence property that renders it one of the 
most powerful methods for solving algebraic 
equations. 

A variant of the Durand-Kerner method is 
the Ehrlich-Aberth method [13,14]; it is de- 
fined for i=l, 2, . . . . n, k=O, 1, 2, . . . by 

Z(k+l) 
1 

= Z!k) - f (zlk)) 

’ f ‘(z$) - f(zi”‘) C;=, jzi l/(z!k’ --z!k’) 1 I 

The speed of convergence of this method 
is of the third order. Further variants of 
the Durand-Kerner and the Ehrlich-Aberth 
methods have been proposed by M. Iri et al 
[lS] and A. W. M. Nourein [16]. 

G. The Dejon-Nickel Method 

Let f(z) be a polynomial of degree n with 
complex coefficients, and take z. such that 
f(zo) # 0. Then we can write 

f(z,+h)=f(z,){1+b,h’+b,+,h’+‘+...+b,h”} 

(bi f 0) 

=f(z,){l+b,h’(l+O)}, 0=0(h). 

Now, choose h sufficiently small so that 1 bihil 

<l,~O~<l,andarg(b,hi)=n.Then~l+bihil= 
1 -Ib$‘l and Ibih’Ol<lbihil so that If(zo+h)l 

~~.f(zo)~{~l+b,h’~+~bihiB~}~~f(zo)l.Hence, 
if z. is chosen so that min I f(z)1 = 1 f(zo)l, 

then we must have f(zo) = 0. This is the out- 

line of Cauchy’s existence proof for the roots 
of algebraic equations. The Dejon-Nickel 
method [ 171 is a method in which h is chosen 
as follows: 

h =( -l/bk)l’k, 

where 

( = r, say). 

If several such k exist, take the smallest one. 

The branch of the multivalued function 

(- l/bJ lik is chosen such that zlik is positive for 
zpositive. If If(zo+h)l<(l-s)lf(zo)] with a 
preassigned constant E such that 0 <a < 1, then 
put zi = z. + h. If the inequality does not hold, 
then for each integer m > 1 choose the small- 
est integer I=!(m) such that max{ lb,l(r/2”)j/ 

i<j<n} = 1 b,I(r/2”)‘, and put 2, =zo +(r/2”) 

( - I bJ/bJ’/‘. Find the smallest integer m > 1 such 

that If( <(I -2~1(r/2m)‘lb~l)lf(zo)l, and put 
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z1 =Z,,,. By continuing this process, a sequence 
{zj} is constructed such that If(z,,)l> If(zl)l > 

If(zJ > . It converges toward some root 
of the equation f(z) = 0. S. Hirano has pro- 
posed a similar method. 

H. Methods for Finding Good First Estimates 

of Roots 

Some of the principal methods for obtaining 
good first approximate values of the roots are 

given in the following sections 1-N. 

I. Matrix Methods 

The problem of solving an algebraic equation 
f(z)=z”+a,~“~~+...+a,=Owithcomplex 
coefficients is equivalent to that of finding the 
eigenvalues of the companion matrix 

. . . . . . . . . . . . . . . . . . . . . . . 
0 0 0 1 0 1 

Therefore numerical methods for solving the 
eigenvalue problems for nonsymmetric ma- 

trices are applicable (- 298 Numerical Com- 
putation of Eigenvalues). However, it should 
be remarked that this might be inefficient 
because most of the elements of the matrix A 
are zero [ 1 S] 

J. The Bernoulli Method 

In the Bernoulli method the iterative formulas 
S,=--a,,Sk=-(a,Sk~,+a2Sk~,+...+ak~,S, 

+ka,)(k=2,3 ,..., n), S,= -u,S,~,-a,&,-- 
-an&. (k= n-t 1, n+ 2,. ..) are repeatedly 

applied to an algebraic equation f(x) = x” + 
a,x”~‘+a,~“~~+ +a,=O. When the roots 
off(x)=Oarecl,,x., ,..., a,((a,(>(cc,(>...> 
[x,1), &/&-,+a, if tl, is a real and simple 
root and Ic(, I > It121. When zl, c(~ are complex 
roots, we put c(~ =Re”, cc,=Re-“‘. If Icr,l<R, 
then we have 

$-Sk+, Sk-, 
sk2_1-s,s,-2 

+R2, 

SkSk-1 -Sk+,Sk-2 
s;-, -SJm2 

-+ 2R cos 0, 

and hence the two roots of x2 - (2R cos 0)x + 
R2 = 0 are LYE and a2. S, is the sum of the kth 

powers of the n roots of the equation, CI~, tc2, 
. . . , CI,,. C. Lanczos used xf’(x)/f(x) = II + S,/x $ 

&/x2 + . . . t S,/xk + . . . to compute S, [lo, 

pp. 26-301. Let the eigenvalues of the com- 
panionmatrix Abe1,,12,...,~,((~,l~11,1~ 

> 11, I). Then the Bernoulli method is the 
same as the tpower method for obtaining the 
maximum characteristic value 1, (- 298 Nu- 

merical Computation of Eigenvalues C). 

K. The Lehmer Method 

The Lehmer method [9] is a general method 
for finding the n roots of an algebraic equation 
with complex coefficients 

in the complex plane by repeating the follow- 
ing procedure: First, draw a circle whose cen- 

ter is at the origin and whose radius is R = 
r2 -8, where r is an arbitrary given number 

and tJ an arbitrary given integer. Then, utiliz- 
ing the Lehmer theorem, observe whether a 
root a of f(z) = 0 lies inside the circle. If there is 
no such root, replace R with 2R, whereas if 
such a root exists, replace R with R/2. Con- 

tinue this process until an R for which a root 
2 exists within the annulus R < IzI <2R is 
obtained. 

Second, draw circles with the centers /jk = 

(5R/3)exp(i2nk/S) (k=O, 1, . . . ,7) and com- 
mon radius p = (5R/3)/2 and cover the annulus 
obtained by the first step. Then find out which 

of the circles has the root c( in its interior. If 
c( is in the interior of the circle for k =j, the 
origin is shifted to fij and the operation is 
started again from the first step. If R, satisfy- 
ingR,<lz--/1;<2R, isobtained bythefirst 
step, we have R, <(5/12)R. Therefore, when 
the first step is repeated N times, the root CI 
is confined in a small circle whose radius is 
smaller than 2(5/12)NR. Then the center b of 
this small circle gives a good approximate 
value of c(. 

L. The Downhill Method 

The downhill method is a method for obtain- 
ing the extreme values of a function of many 

variables. It is also applicable in obtaining 
approximate solutions of a system of equa- 
tions. Let us consider the downhill method in 
the case of two variables. The problem of 
obtaining the real roots of simultaneous equa- 
tions f(x, y) = 0 and g(x, y) = 0 can be reduced 
to the problem of obtaining the coordinates 

(a, 8) which give the extreme value 0 of @(x, y), 
where 0(x, y) =,f ’ + g2. The values of @(x, y) 
are calculated at 32 points obtained by the 
combinationofx=x,,x,kh;y=y,,y,+h, 
where (x,, y,) are arbitrary approximate values 
of (a, 8) constituting the centers of those sets of 
points, and h is the given step size. Utilizing 

the values of the function at the 32 points, 
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@(x, y) is approximated by a quadratic surface 

b,+b,x+bzy+b,,(3x2-2) 

+b,,(3y2-2)+h,,xy. 

The values of h,, b,, b,, b,,, b,,, b,, are cal- 
culated by the tmethod of least squares, and 
the center (~7, y:) of the approximate quadra- 
tic surface is obtained. Then the first approxi- 
mations x, and y, are replaced by the sec- 

ond approximations x1 +xT and y, +y:. This 
process is repeated while the step size h is 
made appropriately smaller. This method is 
an improvement on the method of successive 
experimental planning used by G. E. P. Box 

and K. B. Wilson (1954) to obtain optimum 
conditions in the exploration of response 

curved surfaces. 
By using another minimization technique, 

J. A. Grant and G. D. Hitchins [21] gave an 
ever-convergent algorithm for determining 

initial approximations to the roots of algebraic 
equations with real coefficients. The prac- 
tical implementation of this method is given in 

J. A. Grant and G. D. Hitchins (Comput. J., 

18 (1975)). 

M. Continuation Methods 

Let F(x)=(f,(x), . . . . f,(x))‘=0 (x=(x,, . . . . x,))’ 
be a system of n equations. Suppose that no 

reasonable approximation for a solution exists. 
Then, take arbitrary x(O) and define a one- 
parameter family of equations 

H(x, t)-F(x)-(1 -t)F(x’O’)=O, O$f<l. 

(3) 

Suppose that for each t the equation has a 
solution x(t) which depends continuously on 
t. Observe then that x(0)=x(‘) and x( 1) is a 
solution for the equation F(x)=O. Partition 
the interval [0, l] by the points O=t,<t, < 
< t, = 1. First, solve H(x, tl) = 0 by some itera- 
tive method using x(O) as a first approximation. 
Let x(l) be a solution thus obtained. Next, 
solve H(x, tz) = 0 by some iterative mslilui 
using x(l) as a first approximati;,i, and so on. 

Finally, solve H(x, tN) = 0 by some iterative 
method which uses xcN-‘) as a first approxima- 
tion. Then xcN), a solution thus obtained, can 
be used as a first approximation in an itera- 

tive method applied to the equation F(x) = 0. 
This method is called a continuation method 
[22-241. 

As another approach, differentiate (3) with 
respect to t. Then J(x(t))x’(t)+ F(x@))=O, 

where J(x(t)) is the Jacobian matrix of F, 

evaluated at x=x(t). Hence x(t) is the solution 

of the system of ordinary differential equations 

x’(t)= -J(x(t))-‘F(x’O’), O<t< 1, 

subject to the initial condition x(0) =x(O), pro- 
vided that J(x(t)) is nonsingular. Therefore 

numerical solution at t = 1 gives a good ap- 
proximation for a solution of F(x) = 0. This is 
called Davidenko’s method of differentiation 
with respect to a parameter. These methods 
can be used to find initial approximations of 
the Durand-Kerner and the Ehrlich-Aberth 

methods. They are also applicable to a single 
algebraic equation f(x) = 0, which is the special 
case n= 1. 

N. Other Methods 

To obtain the first approximate values of the 

roots of an algebraic equation, the Graeffe 
method has been used, in which the roots of 
the equation are separated by successively 
forming an equation whose roots are the 

squares of the roots of the preceding equation. 
In computer calculations, however, the other 
methods described in previous sections are 
more convenient than the Graeffe method. 

The Lanczos method [ 101 is a method in 
which y(x), an approximate function of f(x), 
is obtained by the process of approximating 
functions, and the roots of y(x) = 0 are taken 

as approximate values of the roots of f(x) = 0. 
The Garside-Jarratt-Mack method [25] is a 
modification of the Lanczos method and ap- 
proximates f(x)/f’(x) by a rational function 

g/(x)=(x-u)/(b+cx). 

0. Error Bounds for Computed Solutions 

Let zl, . , z, be computed solutions of an 
algebraic equation f(z) = 0 which were ob- 
tained by some method. If z,, . , z, are dis- 
tinct, then the following result due to B. T. 
Smith [26] is quite useful for estimating the 
errors of zi: Let 

Then the union of the disks ri contains all 

the roots CI, , , c(, of f(z) = 0. Any connected 
component of IJF~ F”, which consists of just 

m disks ri, contains exactly m roots of f(z) = 
0. Hence if ri n 5 = 0 for every j # i, then 1 CQ - 
zil < yi. Smith obtained a more general result 
for the case where zl, . . , z, are not necessarily 
distinct. 
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302 (XV.4) 
Numerical Solution of Linear 
Equations 

A. Condition of Linear Systems 

The solution of the system of linear algebraic 
equations 

& uijxj=h,; i= 1, . . . . n, aij, hi real, (1) 

which may be written in the matrix form 

Ax=b; A=@,), x=(xi), b=(bJ, (1’) 

is expressed as quotients of determinants by 
+Cramer’s rule. In practice, however, this form 
of the solution is of little value for numerical 

computation, because the direct evaluation of 
the determinants involves (n + l)!(n - 1) multi- 
plications which, even for a moderate-sized 
system, amount to a prohibitive number of 
arithmetic operations to be executed, even 
with modern high-speed computers; besides, 
it requires high-precision calculation. There 
are a variety of practical methods of solving 
efficiently the system (1) with finite-precision 

calculation. These numerical methods are 
generally divided into two classes: direct meth- 
ods and iterative methods. 
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Whatever method is used, inherent diff- 
culties are encountered when the solution of 
the system is unstable. The instability is usu- 
ally measured by the condition number of the 
coefficient matrix, which is defined by 

condA=cr,/a, (=~~AIIIIA-‘ll>l), (2) 

where the IYJ~ (ol > g2 > > gn > 0) are the non- 

negative square roots of the teigenvalues of 
A’A (called the singular values of A), II A // = 
max{llAxll/llx~~:x#O},and 11x// =Jx’x.This 

definition is valid also for an m x n matrix A 
(m > n). The condition number cond A satisfies 

IIW cond A 

TP 1 -wcond A 
IIAII 

where Ax=h, (A+6A)(x+6x)=b+6b, and 
lIdAIl //A-’ II < 1. As the condition number 
increases, solution processes become more 
susceptible to errors. If cond A is large, the 
system is called ill-conditioned. 

B. Direct Methods 

A direct method is one that yields an exact 
solution in a finite number of arithmetic oper- 
ations if they are performed without roundoff 
error. Among the existing direct methods, the 

one known as Gaussian elimination with pivot- 
ing, which is based on systematic elimination 
of unknowns of the equation (l), is found to be 
the best with respect to time or accuracy. Its 
dependability was re-established by means of 

backward error analysis (- 138 Error Analy- 
sis; [l-3]). The method generates successive 
vectors hck) = (b/‘) and matrices Ack’ = (a$), typi- 
tally of the form 

when n = 5 and k = 2. At the kth stage, a pivo- 

tal element uzml # 0 (i,j > k) is chosen in one 
way or another. Then the ith and kth rows 
and the jth and kth columns of Ackm’) are 
interchanged so that at-’ becomes a:. The 
ith and kth elements of hckml) are also inter- 
changed. The pivot alk is then used to elimi- 
nate all the nonzero entries in its column 
below the diagonal as follows: 

a!! = a!.-’ v v ’ i=l,..., k, j=l,..., n; 

bk = bk-’ I I , i=l , . . ..k. 

aF.=a$-’ -(aF;l/aLJaLj, U 

i=k+l,..., n, j=k ,..., n; 

b/=b/-’ -(a,“,-1/a;Jb,k, i=k+l,...n. 

Starting with A (‘I = A and b(O) = b, a system 
of linear equations with an upper-triangular 

coefficient matrix, 

is produced at the stage k = n - 1, where x* is 
a permutation of x, caused by interchanging 
columns. This part of the process is called 
forward elimination. If at-’ = 0 for all i, j > k at 

some stage, then A is a singular matrix of 
+rank k - 1 and the system (1) admits infinitely 
many solutions if bf-l= 0 for i = k, , n, and 
no solution otherwise. If this is not the case, A 
is a nonsingular matrix with det A = a;;’ a;;’ 

a:[:,-‘, and the solution of (1) is given by 

for i = n, n - 1, , 1, which is called back sub- 
stitution. Taking the pivot to be an element 
of the largest absolute value among column 

elements &’ (i> k) at each stage is called the 
partial pivoting strategy. In complete pivoting, 
the pivot is taken to be an element of the 

largest absolute value among a$-’ (i, j > k). 
These pivotings are introduced to prevent loss 

of accuracy due to rapid growth of elements of 
successive Ack). Although a smaller bound for 
the growth factor is obtained for complete 
pivoting, in practice partial pivoting appears 
to be entirely adequate. 

If rows or columns are not interchanged in 
the process, forward elimination effectively 
produces a factorization of A into the product 

of a lower triangular matrix L and an upper 
triangular matrix U, i.e., 

A=LU, (3) 

where L has unit diagonal elements and U = 
A(“-I). This factorization is computed directly 
by the Doolittle method without calculating 
the intermediate Ack). The Grout method also 
produces a similar factorization (3) in which 
U has unit diagonal elements. The Cbolesky 

method determines a similar factorization (3) 
of a tpositive definite matrix A, in which U = 
L’. Once the triangular factorizations (3) are 
formed, the solution of the system (1) is deter- 
mined by solving the two triangular systems 
Ly = b and Ux = y successively. 

The number of multiplicative operations 
required for these factorizations are about n3/3 
for forward elimination, Dootittle’s method, 

and Crout’s method, and about n3/6 for Cho- 
lesky’s method. The solution of each triangu- 

lar system requires about n2/2 multiplicative 
operations. Special properties of A, such as a 

banded structure, can be exploited to reduce 
the number of operations and memory re- 

~ quirements considerably [4]. Gauss-Jordan 
elimination is similar to Gaussian elimina- 
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tion, but the elements above the diagonal 
are also eliminated to dispense with back sub- 
stitution. However, it requires about n3/2 
multiplications. Modern computers can easily 
handle problems of size rr = 100 by these direct 
methods. 

C. Iterative Methods 

An iterative method is a dynamical process 

that generates a sequence of approximations 
{x”} converging to the exact solution. At each 
step of the iteration, an improved approxima- 
tion is obtained from the previous ones. The 
accuracy of the solution depends on the num- 
ber of iterations performed. Most iterative 
methods retain the coefficient matrix in its 
original form throughout the process and 
hence have the advantage of requiring minimal 

memory. They are suitable for solving large 
sparse systems arising in finite-dimensional 
approximations to tpartial differential equa- 
tions, where A is sparse if most of its elements 

are zero. 
Linear stationary iterative processes are the 

most frequently used iterative methods. A 

method in this class is written in the form 

Xk=Xk-‘+R(h-AXk-l), k=1,2,..., (4) 

where R is chosen to approximate the inverse 

of A. Usually, R and b - Axk-’ are not ex- 
pressed explicitly in the actual algorithms. If 
the tspectral radius of the iteration matrix I - 
RA is less than one, the method converges 

to the solution for an arbitrary initial ap- 
proximation x0 [S]. The key matrix R can be 
chosen quite freely as long as this condition 
is satisfied. In the Richardson method, R = 
ctA’, O<at2/jjA112. R=(A +E))’ is the usual 
choice, in which E is a perturbing matrix that 
makes A + E easily invertible. In the Gauss- 
Seidel method and the Jacobi method, R is 

chosen to be the inverse of the lower triangular 
and the diagonal submatrices of A, respec- 
tively, i.e., R=(L+Llml and R=F’, where 
L =(aij) (i>j) and D =(aii). 

Direct methods can be combined with the 
iterative method (4) to obtain an approxi- 
mate inverse R. In the course of factorization 
by a direct method, an artificial perturbation 
E is introduced to produce an incomplete 
factorization, 

L”O=A+E, (5) 

so that z and 0 are of low tcomplexity of 
computation. A combined method is then 

constructed by putting R = 0 -’ L-‘. Even if 

E is not added intentionally, each of the di- 
rect methods actually produces an incomplete 
factorization (5) in which E is a matrix of 

small elements accounting for the effect of 

roundoff errors [i-4]. In this case, the com- 
bined method is called the iterative improve- 
ment of the direct method. If applied to a first 
solution x0 = 0 -‘E-‘h, it produces more accu- 
rate solution in a few steps with only a mod- 
est increase in computation time, when the 
system is not too ill-conditioned [4]. It is 

essential, however, that the residual b - Ax0 be 
computed with higher precision. 

Various convergence criteria have been 
established for a variety of methods [5,6]. For 
example, the Gauss-Seidel method is conver- 
gent for a symmetric positive definite matrix A. 
The smaller the spectral radius, the faster the 
convergence of the method. In general, a larger 
amount of computation is required in each 
iteration to get faster convergence. If the spec- 
tral radius p(l- RA) is close to one, the con- 

vergence is slow, and an acceleration of the 
process is needed. SOR (successive over- 
relaxation) is an accelerated version of the 

Gauss-Seidel method, in which R, = (L + 
w-ID)-’ and the optimum acceleration 
parameter w  (0 < w  < 2) is chosen to minimize 
p(l - R, A) (- 304 Numerical Solution of 
Partial Differential Equations; [6]). There is 
an adaptive acceleration method [7], which, 
if applied to a scalar sequence, reduces to 
Aitken’s G2-method. 

D. The Conjugate Gradient Method 

The conjugate gradient (CG) method is a non- 
linear stationary iterative method for solving 
a system with a symmetric positive definite 
coefficient matrix. The method generates ix”}, 
{rk}, and {p”} by means of the formulas 

Xki-l = xk+ Cc,pk, 

rk+‘-h-AXk+l=yk-akApk, - (6) 

bk=b k+l, rk+‘)/(rk, rk), 

P 
ktl = rk+l + flkkpk, 

where x0 is arbitrary and p” = r” = h - Ax’, 
(r,s)=s’r. 

The CG method shares a feature with the 

direct method. In theory, {x”} converges to 
the solution in less than n steps, and the pi 

are mutually conjugate, i.e., (p’)‘Ap’= 0 (i #,j). 
When Hestenes and Stiefel [9] proposed the 
method in 1952, they created a great sensation 
because of the method’s theoretical elegance. 
The CG method turned out, however, to be 

highly sensitive to roundoff errors. In practice, 

nice theoretical properties, such as finite ter- 
mination, do not hold in the presence of error. 
Recently, the CG method has regained its 
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popularity as an iterative method for solving 
large sparse systems. The iteration (6) is usu- 
ally restarted periodically to accelerate the 

convergence. It may converge in a small num- 
ber of steps, as it takes advantage of the distri- 
bution of eigenvalues of A adaptively. The CG 
method is most effective when it is used to 

accelerate linear stationary iterative methods 
or when it is applied to the preconditioned 
system 

L-‘A(~-‘)ly=L-‘b, x=(L-‘)‘y, (7) 

where e is computed by the incomplete Cho- 

lesky factorization EL”’ = A + E. The matrix 
L-‘A(L-‘)’ is not to be formed explicitly in the 
CG method. 

E. Linear Least Squares Problem 

Let Ax = h be an overdetermined system of 
linear equations, where A is an m x n matrix 
(m > n). The linear least squares problem is 
to find the x that minimizes the Euclidean 
norm /I h - Ax 11. We assume here that A is of 
rank n. The most straightforward method for 

solving the problem is to apply the Cholesky 
method to the normal equation 

(A’A)x = A’b. (8) 

This may result in ill-conditioning of the sys- 
tem, since cond A’A = (cond A)‘. Ill-conditioning 
can sometimes be avoided by forming the 
factorization A = LU by Gaussian elimination, 
where L is an m x n lower trapezoidal matrix 
and U is an upper triangular matrix. The 

least squares solution is then obtained by 
solving successively the systems L’Ly = L’h 
and Ux=y. 

Another approach to avoiding ill- 
conditioning is based on orthogonalization. 
The modified Gram-Schmidt orthogonaliza- 
tion method produces in an effective manner 
the factorization 

where Q is an m x n matrix whose columns 
are a set of torthonormal vectors and U is an 
upper triangular matrix [lo, 11). The least 

squares solution is obtained by solving Ux = 
Q’b. A sequence of Householder transforma- 
tions, Pk = I - 2w, wl/ll w, II’, can produce the 
factorization 

(10) 

where U is an n x n upper triangular matrix 
[12]. The least squares solution is obtained by 

solving Ux = 6, where h IS formed by the first 
n elements of the vector P,,P,-, P2 P, b. A 

similar factorization can also be produced by 

using a sequence of Givens transformations, 
which have the advantage of exploiting the 
sparseness of A. The matrices U in (9) and (10) 
are unique and coincide with the transpose L’ 

of the lower triangular matrix L of the Cho- 
lesky factorization, A’A = LL’, of A’A. The 

multiplicative operations required for the 
factorizations (9) and (10) are about rnn’ and 
mn2 - n3/3, respectively. 

When the rank of the matrix is unknown, 
we can determine an “effective rank” p of A, 
based on the singular value decomposition 
(SVD): 

A= UDV’, 

where U and I’ are torthogonal matrices of 
dimensions m and n, respectively, and D is an 

m x n diagonal matrix whose diagonal ele- 
ments dEi are the singular values oi of A [ 131. If 
singular values smaller than ap can be ignored, 
the approximate least squares solution is given 
by Zp= Vi?,’ U’b, where the ith element & of 
the diagonal matrix B,’ is aimi if i<p and 0 
otherwise. 

These methods certainly solve the system (1) 

but generally require more computational 
work than those based on the triangular fac- 

torization. The least squares solution is com- 
puted also by applying the CC method (6) to 

the normal equation (S), in which A’A is not to 
be formed explicitly [9]. Iterative methods for 
solving linear systems with singular and rect- 
angular coefficient matrices are characterized 
in terms of the +range of RA and the +null 
space of AR [ 151. 

Besides the methods discussed here, numer- 
ous other methods have been proposed for 

solving the system (1) [ 16-181. Recently, vari- 
ous sparse techniques have been developed for 
direct methods to control the growth of non- 
zero entries (fill-in) in the process of matrix 
factorization [19]. In general, direct methods 

have an advantage over iterative methods; 
however, their relative computational effi- 
ciency varies according to the scale, sparsity, 
and type of the coefftcient matrix and to the 
available computational devices. 
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303 (XV.8) 
Numerical Solution of 
Ordinary Differential 
Equations 

A. General Remarks 

Applications of the numerical solution of 

tordinary differential equations include tinitial 

value problems, tboundary value problems, 

and teigenvalue problems. Although solution 
by an tanalog computer is among the numer- 
ical methods in the wide sense, we usually 
mean by “numerical solution” a solution ob- 
tained by approximating a problem of infinite 
degrees of freedom and a continuous variable 

by one of finite degrees of freedom. The ap- 
proximation of an arbitrary function by a 
linear combination of a given finite system of 

functions is an example (- Section I). Succes- 
sive substitution and power series expansion 
are also used but have no particular advan- 
tages over other methods. Among various 
methods of approximation, the so-called dif- 
ference methods (or discrete variable methods) 

are the most flexible and have the largest field 
of application. A difference method reduces a 
given problem to an approximate problem 
in which we deal only with a systematically 
chosen set of discrete values of the variable 

and with values of the unknown functions 
at the chosen points. A difference method is 
usually carried out by a simple iterative com- 
putation, so that it is suitable for tdigital com- 
puters. We confine ourselves almost exclu- 
sively to difference methods [l-7]. 

B. Initial Value Problems 

To solve numerically general initial value 

problems, it suffices to consider the problem 
of determining numerically the values on an 
interval [a, b] of m functions y’(x) (i = 1, . , m) 

that satisfy a system of ordinary differential 
equations of the form y”(x) =f’(x, y’(x), , 
y”(x)) and the initial conditions y’(a) = vi (i = 
1, , m), where the ,fi are given functions with 
appropriate smoothness, and u, b, and vi are 
given constants. We define the mesh points 

x,=a+nh(n=O,l,...),callh thestepsize,and 
determine numerically the values yi approxi- 
mating y’(x,). 

Assuming that the yi were computed with 
infinite accuracy, i.e., without troundoff error, 
we call et = y; - y’(x,) the global truncation 
error (or global discretization error), while 
we call ri = jt - yi the global roundoff error, 
where the jji are the values we actually have 
by means of finite-accuracy computation. On 
the other hand, if the assumption holds locally 
that the solutions at the previous steps are 
exact, we call the ei and ri the local truncation 
error (or local discretization error) and the 
local roundoff error, respectively. To avoid 

confusion, we denote the local truncation error 
by ti. The numerical solution must have the 

property that, for every xe[a, b], lim,,,,,,~=,e~ 
= 0, which is called the condition of conver- 

gence. In particular, if ti = O(hp+l) (x,=x, h-, 
0, where O(hPtl) is Landau’s symbol), then p 



1135 303 D 
Numerical Solution of ODES 

is called the order of the solution process. 

We shall show the typical methods of numer- 
ical solution, using the abbreviation fni for 

f YX”> Yf). 

C. Overall Approximation 

If we rewrite the differential equations on 
the interval [x,,x,+~] as ~~(x,+~)-y’(x,)= 
Jz;+qfi(x, yj(x))dx, q = 1, , P, and substitute 
suitable tnumerical integration formulas for 
the integrals on the right-hand side, then we 

have the overall approximation formulas: 

Y’ n+q -Y~=~,~ocqAL. q=l,...,P, 

from which we can obtain yj+i, , yi,, when 
the yi are given. Since j:+, contains y;+,, these 
equations are nonlinear in yi,,, so that we 
have to use, for example, the iterative proce- 
dure of starting from suitable 0th approxima- 

tions and adopting as the Ith approximations 
of the Y:+~ values computed from the overall 
approximation formulas by substituting the 
(l- 1)th approximations for the y;,, in the fi+, 
on the right-hand sides. These formulas are 

often used to determine a set of starting values 
for a multistep method. The truncation error 
of the formulas depends on that of the numer- 
ical integration formula substituted for the 
integral. A few examples: P = 1, (c, 0, ci i) = 
(l/2,1/2) (error h3yiC3’(x,)/12 + O(h4)); P= 

2,(~~~~~~,,~,~)=(5/12,8/12, -W)tmm 
-h Y hJ+ O(O), (c20, c 21>c22)=(1/3,4/3, 
l/3) (error h5yi~5’(~,)+O(h6)); P=3, (c~~,c,,, 

c,2> c,,)=PP, 19124, -5l24 l/24), (c,,, c2,, 

C22,C23)=(1/3,4/3,1/3,0),(C30,C31rC32,C33)= 

(3/8,9/8,9/8,3/8). 

D. Runge-Kutta Methods 

By a general Runge-Kutta method we mean a 
method of determining yb = vi, yf , yi, suc- 

cessively by means of a formula yi,, - yi = 
h@‘(x,, y,$ h), where the functions @’ are de- 
fined in terms of parameters c(, and /$, as @,’ 
(x,y’;h)=C&cc,k;, k;=f’(x,yj), k;=f’(x+ 

B,oCy’+h(B,,-~,P=,~~,,)k~+hC,P_,B,,k,~)(r= 
1, . . , P). A Runge-Kutta method is called ex- 
plicit if p,, = 0 for r <s, and implicit otherwise. 
In the latter case, if 8, = 0 for r <s, the method 
is called semi-explicit (or semi-implicit). Unless 
otherwise stated, the Runge-Kutta methods 
considered below are assumed to be explicit. 
In order to proceed one step from yr to yj,, 

we have to compute each function f’ (P + 1) 

times. Hence this is called the (P + l)-stage 
method. If we denote by z’(t) the solutions 

of z”(t) =,f’(t, z’(t)) with the initial condi- 

tions zi(x) = y’ and put hAi(x, yj; h) = z’(x + h) - 
z’(x), then we have @,‘(x, yj; h) - A’(x, yj; h) = 

hPvi(x, yj) + O(hPtl), where the qi(x, yj) are 
expressible in terms of the ,f’(x, yj) and their 
(partial) derivatives. Various Runge-Kutta 
methods have been devised by searching for 
values of the c(, and & that make p as large 
as possible for a given p (p is called the order 
of the method). When searching for these 
values of c(, and /&, we usually impose at least 
one of the following conditions: (1) CI, and firs 
are simple; (2) the truncation error is small; (3) 
the region of absolute stability (- Section G) 

is large; (4) c(, and fir, give smaller roundoff 
errors; (5) only a small computer memory is 
required. The ordered pairs (P, p), where p is 
the highest order that can be attained by the 
(P + 1)-stage method, are (P < 3, P + l), (4,4), 

(5,5), (6,6), (7,6), (8,7),(9910,8), (p+2<(P+ 
1) <(l/2) (p2 -2p + 4), p > 9). The following 
formulas are frequently used since they are 

accurate and have simple parameters: for P = 
1 and p = 2, the formulas with c(~ = 0, c(i = 1, 
biO = l/2 (modified Euler method), with CI~ = 
c~i = l/2, Dir, = 1 (improved Euler method) and 

with u0 = l/4, c(i = 314, pi0 = 213 (Ralston’s 
second-order method); for P = 2 and p = 3, 
the formulas with a,=2/9, c(, = l/3, x2 =4/9, 
&0 = l/2, b2,, = 3/4, p2i = 3/4 (Ralston’s third- 
order method), and with go = l/4, c(, = 0, ~1~ = 

314, b10 = l/3, &,=2/3, fl,, =2/3 (Heun’s 
third-order method). For P = 3, p = 4, the for- 
mula with sc,=a,=1/6, c(i =a,=1/3, /$O=&, 

=~21=1/2,~3,,=&2=lr~31=Oiswellknown 
and is frequently referred to as “the fourth- 
order Runge-Kutta method” or “the Runge- 
Kutta method.” It has various desirable fea- 

tures [S]. Gill’s modification of the classical 
Runge-Kutta method (sometimes called the 
Runge-Kutta-Gill method) has some advantage 
in regard to roundoff errors and to the neces- 
sary computer memory size, while Ralston’s 
second-, third-, and fourth-order methods have 
minimum error bounds in Lotkin’s sense for 
the local truncation error [7]. There exist 

“substantially fifth-order” methods for P = 4 
[9]. Today we frequently prefer to use higher- 
order methods, especially fifth-order methods, 
instead of lower-order methods, because the 

former require less computation time for solu- 
tions of given accuracy [lo]. 

For the estimation of the local truncation 
error, the following two practical techniques 
are well known: (i) one-step-two-half-steps 
error estimate. If we let ~15, and yt+i denote 
the approximations that are computed with 
an mth-order method by taking two half-steps 

and one full step (= h,), respectively, then 
an estimate of the local truncation error per 
half-step associated with y::, is given by the 
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formula 

where we assume that yk does not vary much 
over the interval [x,,,x,+,]. (ii) The formula 

of embedding form. The following formula of 
embedding form is more effective than the 
traditional method above. By use of the pth- 
order method yi,, =yA + Cr=‘=, cr,kj and the 
(p+ l)th-order method ys, =yi+C’= cc*k’ I 0 , I’ 
we obtain an estimate of the local truncation 
error in yi,, as tj,, ~yi+, -yt*,, [l l-131. At 
present, formulas of this type are known for p 
= 2-8, where the method for p = 5 is said to be 
the most efficient. Recently, a similar method 

for the estimation of the global truncation 
error has been investigated [ 141. In addition, 
multistep generalizations of explicit Runge- 
Kutta methods, which are known as pseudo- 
Runge-Kutta methods, have also been inves- 
tigated [15]. 

E. Multistep Methods 

A linear multistep method approximates given 
differential equations by difference equations 
p(E)yL = ha(E)fi, where E is the operator of 

increasing n by 1, p(<)=c~,<~+cc,~,<~-’ + 

. ..+a.i+cc,,5(i)=Bik+Bk~15k-1+...+ 

&i+&, akf”, and Icc,l+l/$,l#O. (Ifp and 
0 are of degree k in c, we speak of a linear k- 
step method.) By means of these difference 

equations we can determine Y:+~ from ~i+~-i, 
yifkeP, , yl. Since the ~f+~ are determined 
explicitly if pk = 0 and implicitly if & # 0, the 
difference equations are called explicit and 
implicit, respectively. In the implicit case, if Ihl 

< l(ak/&)Ll, where L is a +Lipschitz constant 
for f’(x, yj), then the Y:+~ can be calculated by 

successive substitutions. In order to obtain the 

y: successively by means of a k-step method 
with k > 0, it is necessary, to begin with, to give 
the k - 1 sets of m values y; , , y;-i (called the 
starting values) in addition to the initial values 

y6 = vi. To determine the starting values, 
Runge-Kutta methods, overall approximation 
formulas, etc., are ordinarily used. The number 
of times we have to compute the fi to pro- 

ceed one step from yi to yi+i is only 1 for an 
explicit case, while for an implicit case it is 
equal to the number of iterations required to 
secure the convergence of the successive substi- 

tutions (ordinarily, the step size h as well as the 
0th approximation for ~f+~ are chosen so that 
the convergence is attained after a few itera- 
tions). We have lim h-O,x,=,eb=O(~ECa,bl) 
for any f i and vi and any starting values such 
thatlim,,,y~=~‘(~=O,l,..., k-l),ifand 

only if the polynomials p and 0 satisfy the 

following two conditions: (i) consistency: p( 1) = 
0, p’( 1) = a( 1); (ii) zero stability: Every root 

of p(c) = 0 lies on or inside the unit circle, and 
every root lying on the unit circle is simple. 

We call ti=(~(E)y’(x,)-ha(E)y”(x,))/cr(l) the 
local truncation error. For a consistent and 
stable method determined by (p, U) there exist 
a real constant C,,,, ( # 0) and an integer p 
(2 1) such that tj = hP+’ C,,, yi@“)(x,)/o( 1) + 

O(hp”); p is called the order of the method 
and C = C,+,/a( 1) the error constant. For a 
given p satisfying (ii), e is chosen to make the 
order as small as possible and then to make 
the error constant as small as possible. How- 

ever, p cannot exceed k + 1 if k is odd or k + 2 
if k is even; moreover, p can be equal to k + 2 
only if all the roots of p(i) = 0 lie on the unit 
circle. 

The following are examples of multistep 
methods. 

(1) Explicit Methods. 
(a) Adams-Bashforth methods. 

k= 1, di)=i--1, 5(i)= 1, p= I: 

C = l/2 (Euler method); 

k=2, /45)=r(l-l), 0(1)=(36-l)/& 

p=2, C=5/12; 

k=3, P(5)=12(5-1), 

0([)=(23[‘-16[+5)/12, p=3, 

C=3/8; 

etc. 

(b) Midpoint rule. 

k=2, m=i2--, m=21, 

p=2, C= l/6. 

(c) Milne’s predictor. 

k=4, M=i4- 1, 

a) = (s53 -412 + 81)/3, 

p=4, c=1/90. 

(2) Implicit Methods. 
(a) Adams-Moulton methods. 

k=l, di)=i--1, 40=(1+1)/2, 

p=2, C= -l/12 (trapezoidal rule); 

k=2, P(i)=1(5-1), 

c(1)=(512 +si- 1)/12, 

p=3, C= -l/24; 

etc. 

(b) Mime’s corrector (or the Milne-Simpson 
formula). 

k=2, PK)=12-L a(i)=(12+41+1)/3, 

p=4, c= -l/90. 
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When an implicit formula (p, rr) is used to 

obtain yLik, the 0th approximation yi*,, for 
Y:+~ is usually determined by an explicit for- 
mula (p*, a*) of the same order as (p, a) (where 
(p*, a*) itself may not necessarily be stable). 
This kind of combination of implicit and ex- 

plicit methods is called a predictor-corrector 
method (or PC method), where the formula 
(p*, u*) is called the predictor and (p, a) the 
corrector. Typical combinations are the mid- 
point rule and the trapezoidal rule, Mime’s 
predictor and Milne’s corrector (this combina- 
tion is called Milne’s method), and an Adams- 
Bashforth method and an Adams-Moulton 
method of the same order. A predictor- 

corrector method has the advantage that the 
local truncation error (of the corrector) can be 
estimated in the course of calculation without 

extra computation. In fact, if the orders of the 
predictor (p*, a*) and the corrector (p, a) are 
equal to p and their error constants to C* and 
C, respectively, then the local truncation error 

tt can be estimated by t: = KDL + O(U”‘) (n = 
0, 1, . ), where 0: = y:T, - yf,, is the differ- 

ence between the value y:+, at x,+~ obtained 
by the predictor and the Y:+~ obtained by the 

corrector, and K = cQC/[(C- C*)a*(l)] [16]. 
The term multistep methods originates from 

the fact that these use the values of the depen- 
dent variables at more than two different mesh 

points in order to proceed one step. These are 
also called multivalue methods since they use 
more than one value of the dependent vari- 
able. The multivalue method is, however, 
a more general concept than the multistep 
method. 

Linear multistep methods are not only ex- 
amples of the PC method; they are also exam- 

ples of the variable-step variable-order algo- 
rithms (VW0 algorithms), where the order of 
the formula as well as the step size are auto- 

matically chosen according to the behavior of 
the solution. In practical VSVO algorithms, 
the Adams-Bashforth-Moulton family of PC 
pairs of order 1 to 13 are usually used, and 
for solving stiff systems (- Section G) those 
correctors with large regions of absolute sta- 
bility are used. In these algorithms we use the 

multivalue method, which saves the informa- 
tion at different steps in a form convenient 
for the change of order and of step size. The 
multivalue method also facilitates error esti- 

mation and stability, and results in an efficient 
use of memory and reduction of the computa- 

tional cost. For example, in Gear’s algorithm 
the information required for computing y,,, 
is saved in the following form: yn = (y,, hy:, . , 
(hk/k!)ykk)), where y’(x) is the polynomial Pk.“(x) 
interpolating f,, fn-tr. ,fn-k+l, where yp= 

d”P,,,(x)/dx’-’ 1 x=x” hold. All the local trun- 
cation error estimators are based essentially 

on Milne’s device. In the VSVO algorithms 
heuristics play an important role [2,17, IS]. 

F. Extrapolation Methods 

Let us assume that the numerical solution with 
the step size h at some fixed point x has the 
form 

y(x,h)=y(x)+ F zih’i+O(h’(m+l)), 
i=l 

where r is a positive integer. Then we can 
approximate y(x, h) by a function R,(x, h) with 
(m + 1) unknowns determined by the require- 

ment that R,(x, hj) = y(x, hj), j = 0, 1,2, , m, 
hi > hj (i <j) in order to approximate y(x) by 
R,(x, 0). If R,(x, h) is a polynomial of degree 

mr in h, we call the foregoing method a poly- 
nomial extrapolation method, where R,(x, h) 

=y(x)+o(h r@“+l)) as h tends to 0. Defining 
Ri = y(x, h,) and R,(x, 0) = Rk for j = i, i + 1, 

“‘2 i + m, we can calculate the Rh by the re- 
cursion relation Rk = Rz?,+_‘, +(Rr?,+_‘, - Rkml)/ 
((hi/h,+,)‘- l), m> 1. It is well known that, for 
the following method (Gragg’s method), there 
exists an asymptotic expansion with I= 2 [ 191: 

x,=nk r1(o,~)=Y(o), I?(X*r~)=Yo+hf(Y”,O), 

r(X,+1,~)=YI(X,~1,~~)+2~f(ll(x,r~)rXn)r n=l,Z 
, N - 1, where xN=x, y(x,h)= 1/2[q(x,-,,h) 

+ v(x,, 4+ W&G, 4, ~11. If K,,(x, 4 is a 
rational function 

wherep=[m/2],v=m-p=[(m+1)/2],j=i, 

i + 1, , i + m, we call this method a rational 
extrapolation method. For r = 2, the following 

formulas were derived by Bulirsch and Stoer 
[20]: 

Rf,,=R;!,+_‘, +(R;?,+_‘, -R;-l)/((hi/hi+,)2 

x [l -(R;t, -R;m,)/(R;?l -R;:2)]-1), 

m>l,R’f,=O, Rb=y(t,h,). 

G. Stability 

Consider the application of the general k-step 
method at the nth point (which is consistent 
and O-stable) 

to y’ =f(x, y), y(x,,) = y,,. Let J, be the numer- 
ical solution at x=x,. Let P, = y(x,) - J,, be the 
global error, and let cp, be the total error at the 
nth application. Then we find 
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where tnij lies in the open interval whose 
endpoints are Y,+~ and Y(x,,+~). If we make two 
assumptions, 8f/ay = i (const), (pn = cp (const), 
the above equation reduces to &,(clj- 
hE.li;.)P,+, = q, whose general solution is given 

by 

where the d, are arbitrary constants and the r, 
are the roots, assumed distinct, of the poly- 
nomial equation 

We call the linear k-step method absolutely 
stableforagivenhiiflr,l<l,s=1,2 ,..., k. 
On the other hand, we call the linear k-step 
method relatively stable for a given hi if 11;1< 
Jr11 (or )rS)<eLh), s=2,3, . . . . k, where rl is the 
root corresponding to the theoretical solu- 
tion. We call the region S, = {h/Z 1 Ir,l< 1, s = 
1,2,...,k) (or S,={hl.(lr,l<e”h(or lrlI),s= 
2,3, , , k}) in the complex plane the region 

of absolute stability (or the region of relative 
stability) of the linear k-step method. Also we 
call S, n R (or S, n R) the interval of absolute 
stability (or the interval of relative stability) of 
the linear multistep method, where R is the 
real line. The explicit methods and the PC 
methods have a finite interval of absolute 
stability. The implicit methods usually have 
larger intervals of absolute stability than the 
corresponding explicit methods, The higher- 

order PC methods have smaller intervals, 
while Runge-Kutta methods do not. The 
PECE methods usually have larger intervals 

of stability than the corresponding PEC or 
P(EC)’ methods, where P indicates an appli- 
cation of predictor, C an application of cor- 
rector, and E an evaluation off [21,22]. 

Let us consider the linear system y’= Ay + 
b(x), where A is an m x m constant matrix 
and y(x), y’(x), q(x)~R”‘. If A possesses m dis- 
tinct eigenvalues 1, = pr + iv,, t = 1,2, . , m, the 
theoretical solution of this system is given by 

Y(x) = 2 Kexp(h + W)C, + v,(x), *=, 

where K, and C,, t = 1,2, , m, are, respec- 
tively, arbitrary constants and the eigenvectors 
corresponding to i, and v(x) is a particu- 
lar solution. We call the linear system stiff 
if(i)pLt<0,t=1,2,...,m,(ii)s>>1,wheres= 

max, ~t4mI~A/min , 4t4m 1.~~1. We call the non- 
linear system y’ =f(x, y), y(x), y”(x), ,f(x, y)~ R” 
stiff in an interval I of x if, for every x E I, the 
eigenvalues i,(x) of the +Jacobian matrix off 

satisfy (i) and (ii). The ratio s is called the stiff- 

ness ratio. To solve stiff systems effectively 
a variety of methods with infinite stability 

regions have been proposed. Some of them 

are: 
(1) A-stability (Dahlquist): S,Z {hiIRe <O} 
(2) Stiff-stability (Gear): S, 2 S, U S,, S, = 

{h1.jRe(hn)< -a<O}, S,={Ml -a<Re(hi),< 
b, -c<Im(h1)<c,b>O,c>O) 
(3) A(cc)-stability (Widlund): S, 2 {hi I -a <n - 
arg(hl)<cx,aE(O,rr/2)} 
(4) A,-stability (Cryer): S, 1 { h3, I Re(hl) < 
0, Im(h1) = 0). 

The order p and the step number k of linear 
multistep methods are restricted by the follow- 
ing stability requirements: 

(i) A-stability: implicit, p<2; trapezoidal rule is 
the most accurate method. 
(ii) Stiff-stability: implicit, p < k; backward 
differentiation formulas c;=, ~~y,,+~ = hfn+k are 

stiffly stable for p = k = 1,2, ,6, O-unstable 
for k=6. 

(iii) A(cc)-stability: implicit; there exist high- 
order A(O)-stable linear multistep methods. 

(A method is said to be A(O)-stable if it is A(a)- 
stable for some sufficiently small c( E (0,7r/2).) 

For the Runge-Kutta (P,p) methods, we can 
write 

c+, = 
I 

1 + hl+(hl)‘/2!+ +(l~/l)~/p! 

P+1 
+ 1 Y&W4 %+cp,+,, 

q=p+l I 

where aflay = i (const) and yq are functions of 
the coefficients of the method in use. We call a 
regionR={hl]~1+hl+(h1)2/2!+...+(hl)P/p! 
+CgZj+, Yq(hA)ql < 1) a region of absolute 

stability of the Runge-Kutta (P, p) method. 
The implicit Runge-Kutta methods have a 
larger region of absolute stability than the cor- 
responding explicit Runge-Kutta methods. 
Therefore the implicit Runge-Kutta methods 
are suitable for stiff equations, and the explicit 

Runge-Kutta methods are suitable for nonstiff 
or mildly stiff equations. 

Recently, Yamaguti and others have pointed 
out that the instabilities occurring in the nu- 
merical solution of ordinary differential equa- 
tions are closely connected to the phenomena 
of chaos studied by Li, Yorke, and others 

[23,24]. 

H. Boundary Value Problems 

A boundary value problem is generally for- 
mulated as the problem of obtaining functions 
y’(x) that satisfy the differential equations 
y”(x) = f’(x, y’(x), . . , y”(x)) and boundary 

conditions B,(~‘(x,,~), , ym(x,,); y’(x& . , 

y”‘(x,,,); . . . ; y’(x,), . . . , y”(x,,)) = 0 (i, k = 1, , 
m), where the fi and B, are given functions. 
If the fi and B, are linear in the y’, we can 
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first calculate the solutions y;(x) of the differ- 
ential equations under an appropriate initial 
condition, as well as a set of m independent 

solutions y:(x) (I = 1, . , m) of the homogene- 
ous differential equations (say, under the ini- 

tial conditions y;(a) = S; at some point x = a), 
and then substitute the expression for the 

desired solution y’(x) =yh(x) + C;“=, X,$(X) in 
the boundary conditions to obtain simulta- 

neous linear equations for the unknowns CQ 
(- 302 Numerical Solution of Linear Equa- 
tions). No universally powerful method is 
known for the case where the ,fi or the B, or 
both are nonlinear. Ordinarily, we resort to 

the trial-and-error method of solving the 
differential equations iteratively under differ- 
ent initial conditions until the solution fully 
satisfies the boundary conditions, or to ap- 
proximating the differential operators by 
suitable difference operators to obtain a set of 
(generally nonlinear) simultaneous equations 
approximating at the same time the differential 
equations and the boundary conditions. For 

related topics - 298 Numerical Computa- 
tion of Eigenvalues; 3 15 Ordinary Differen- 

tial Equations (Boundary Value Problems); 
[25-271. 

I. Methods Other than Difference Methods 

Besides difference methods there are frequently 
used methods for finding in a given iinite- 
dimensional function space a function that 
best satisfies the differential equations as well 
as the initial or boundary conditions. Denote 

the equations by L[y(x)] =0 and assume the 
conditions to be linear. We choose a function 
y,(x) that satisfies the conditions and that is 

considered to approximate the exact solution, 
and also functions yl(x) (/= 1, , q) that are 
considered to represent the typical deviations 
of yO(x) from the exact solution and each of 
which satisfies the homogeneous conditions. 
We then determine the rI in such a way that 
y(x) = y,(x) + CpZ1 ~,y,(x) best satisfies the 
differential equations. Corresponding to differ- 

ent interpretations of the words “best satisfy” 
there are different methods. The collocation 
method determines the CQ so as to nullify the 

values of L[y(x)] at some prescribed points 
xi; the method of least squares minimizes the 
integral of IL[y(x)]l* over the considered 
region; the Galerkin method makes L[y(x)] 
orthogonal to every yl(x) (1= 1, , q); and the 
Ritz method considers the variational problem 
GJ[y(x)] =0 whose +Euler equation is L[y(x)] 
= 0 (- 46 Calculus of Variations F), if such a 

problem exists, and determines the al so as to 

have J[y(x)] take an extremum value with 

Y(x)=ydx)+CP=, w+(x). 
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304 (XV.9) 
Numerical Solution of Partial 
Differential Equations 

A. General Remarks 

The numerical solution of partial differen- 
tial equations became practical in the 1950s 
with the advent of automatic digital compu- 

ters. Nowadays, by means of modern high- 
performance computers, the numerical solu- 
tion of partial differential equations is carried 

out extensively and often on a very large scale 
for problems in physics, engineering, and 
other fields of applied analysis, in order to 
obtain approximate solutions of rigorous 
equations or to simulate real phenomena by 
means of numerical experiments. Various 
numerical-solution schemes have been pro- 
posed, applied, and studied, and programming 
techniques required to implement numerical 

solutions are being invented regularly; some 

are of a general nature, and others are de- 
vised for particular problems. The variational 

method, which includes the Ritz-Galerkin 

method and the finite element method, and 

the difference method deserve special mention 

here because of their generality and scope of 
application. 

B. The Ritz-Galerkin Method 

Having been applied mainly to boundary 
value problems for elliptic partial differen- 

tial equations, the Ritz method is a classical 
method, which has been used since the old era 
of mechanical calculators, and is mathemati- 
cally nothing other than the tdirect method in 
the calculus of variations (- 46 Calculus of 
Variations F) applied to tvariational problems 
that are equivalent to the original boundary 
value problems. In order to exemplify the 
method, let 0 be a bounded domain in RN 
with piecewise smooth boundary S, and con- 
sider the Dirichlet boundary value problem 

comprised of the Poisson equation 

Au= -f 

and the boundary condition 

(1) 

uls=b. (2) 

Here ,f and p are given functions on Q and S, 
respectively. (In the following, given functions 
are assumed to be sufficiently smooth.) The 
boundary value problem (I), (2) is equivalent 
to the variational problem of minimizing the 
+functional 

1 
JCUI=-4u,u)-W) 

2 
(3) 

within the set D(J) of admissible functions u 
subject to (2). In (3) the following notation is 
used: 

4% 4 = (VU> w,<*(n) = s Vu.Vvdx 
0 

and 

(4 4 = (u3 &,(O) = 
s 

uvdx, 
R 

while 

D(J)={uEL*(n)IVuEL2(R), uI,=p}, 

This variational problem is further reduced to 

the condition: 

&hcp)=(Jcp) (V’(PEV, (4) 

where V stands for the Sobolev space H,‘(R) 
(- 168 Function Spaces B), that is, 

V=H,‘(n)={uEL2(R)IVuEL2(~), uI,=O}. 

Note that V is equal to D(J) with j-0. The 

condition (4) is often called a weak form of the 
boundary value problem. In applying the Ritz 
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method to this problem, we introduce un- 

known parameters tl,, Q, . , an and set the 
approximate solution u, in the form 

u,=F(x;cc,,cc 2r...,4~D(J) 

and minimize J[u,] as a function of the n vari- 

ables c(~, c(~, . , LX,,. A standard way to form 
u, is to choose first a heD(J) subject to the 
inhomogeneous boundary condition and ‘pr , 

‘pZ,. , (P,E V subject to homogeneous bound- 
ary condition, and then to set 

u,=b+cc,cp,+a,cp,+...+a,cp,. (5) 

The functions ‘pj (j= 1,2, , n) are called basis 
functions or coordinate functions in the Ritz 
method. Denoting by D,, the set of all possible 
functions appearing on the right-hand side of 

(5) and by V, the linear space generated by 
‘pr, (p2,. , (pn, we can state the condition to 
determine the approximate solution u, as: 

4u,> cp) =(.fi cp) WV K). (6) 

Thus the Ritz method is a kind of projective 
approximation method which approximates the 
weak equation (4) by its projection on a finite- 
dimensional space V,. The condition (6) is 
equivalent to the equations 

a(u,>pj)j)=(LcPj) (j=l,Z...,n). (7) 

Particularly when 8~0 in (2), D, coincides 

with V,, and the equations (7) that deter- 
mine the coefficients LX~ are reduced to a linear 
equation 

Kcc=y (8) 

forc(=‘(c(r,a2,..., E,,), where the matrix K = 
(Kij) and the vector y =‘(y,, yZ, . , y,) are given 
respectively by Kij=a(cpi, qj) and yj=(f; cpj). 
Solving (8) numerically by the +Gauss elimina- 
tion method or by titeration, one eventually 
obtains the approximate solution u, by the 

Ritz method. The Ritz method is also appli- 
cable, for instance, to the eigenvalue problem 
Au = Au, u I\ = 0, since this eigenvalue problem 

is equivalent to the variational problem of 
finding a stationary Rayleigh’s quotient R[u] = 
a(u, u)/(u, u) with V as the set of admissible 
functions. In the approximation to restrict the 
admissible functions to V,, the approximate 
eigenvalue I.(“) is determined through the ma- 
trix eigenvalue problem 

Kcc = rl’“‘Ma, (9) 

where the matrix K is as above and the matrix 
M = (Mij) is given by M, = (pi, qj). Sometimes, 

optimization of J[u,] or R[u,] is carried out 
more directly, e.g., by the tgradient method, 
particularly when u, contains free parameters 

‘* in some nonlinear way. 

Many studies have been made of conver- 
gence and error estimation for the Ritz method 

in general (- e.g., [ 1-41). For instance, it is 
known that, if b=o,f~L’(Q), and {(pl,(pz, 
. , q,,, } spans a linear subspace dense in 
V= H,‘(R), then the approximate solution u, 
obtained through (6) (or through (12) below) 
converges to the rigorous solution in the H’- 

topology (and hence in the L2-topology). 
Nevertheless, success in using the method in 

practical applications can be gained only by 
a clever choice of trial functions. A typical 

but systematic example of such a choice is 
made by the finite element method (- Sec- 
tion C). 

We proceed to the Galerkin method [ 11. 
Suppose that we are to solve the equation 

L[u]=Au+(b.V)u= -J (10) 

which is the equation in (1) perturbed by a 
lower-order term (the convection term). Here b 

=(h,(x), . , b,(x)) and (b.V)u=Cjbj(x)(au/axj). 
For simplicity, the boundary condition (2) 

is assumed to be homogeneous (i.e., ,!I = 0). 
Although the boundary value problem (IO), (2) 
cannot be reduced to a variational problem 
since (10) is not symmetric, it is equivalent to 
its weaker form 

a(u,cp)-((b.V)u,cp)=(f;cp) (vv~v), (11) 

provided that UE V. Note that (11) is ob- 
tained from (L[u] +f; (P)~> = 0 by transforming 

(L[u], cp) through integration by parts. Ac- 

tually, this boundary value problem has a 
unique solution u for any CELL if ldiv bl is 
sufftciently small. According to the Galerkin 
method as applied to the present problem, one 
replaces V by V, in (11) and determines the 
approximate solution u,=c(, ‘pr + +E,(P,E V, 
by the condition 

which is equivalent to the equations 

(13) 

Sometimes it is convenient to project (L[u] + 
A cp) = 0 onto the finite-dimensional space and 
to deal directly with (L[u,] +f,cpi)=O (j= 

1,2, , n). When the coefficients of the equa- 
tion and the given function f are periodic in 
space variables and when sine or cosine func- 
tions are chosen as basis functions, the Galer- 

kin method turns out to be the same as the 
so-called Fourier approximation method and 
can be efficiently implemented with the aid of 

a tfast Fourier transform (FFT) to yield the 
required Fourier coefficients numerically [S]. 

The Galerkin method can be applied to 

the numerical solution of evolution equa- 
tions, namely, in order to approximate time- 
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dependent solutions. This is exemplified 
through the following initial-boundary value 
problem for the diffusion equation (heat 
equation): 

(14) 

with the homogeneous boundary condition 

ul,=O (15) 

and the initial condition 

ul,_,=a(x) (XER). (16) 

We first set the required approximate solution 
u, = u,(t, x) in terms of the basis functions 

vl,e,...,cPnofKas 

u,=~,(eP, +a2(t)(P*+...+a,(t)(P,, (17) 

and then determine the coefficients c(~ (t), ccz(t), 
. . . . a,(t) from the conditions 

(18) 

and 

MO)> cp) = (4 d (Vcp E u. (19) 

Since (18) is equivalent to the equations 

~~"n~'pi)=~a("n~Vj) (j=L2,...,4, 

the vector function a(t)=‘(a,(t),a,(t), . ,a,(t)) 

is obtained by solving the ordinary differential 
equation 

M$a= -Ka, 

where the matrices M and K are those in (8) 
and (9). The initial value a(0) of a should be 

given in accordance with (19). Sometimes the 
procedure above is called a semidiscrete ap- 
proximation based on the Galerkin method. 

Obviously, this method can be applied to more 
general evolution equations, for instance, to 

the diffusion-convection equation 

au 
~=L[u]=Au+(h.V)u, 
at (21) 

which governs time-dependent states corre- 
sponding to stationary states subject to (10). 
As a concrete example, we can refer to the 
finite element approximation for evolution 

equations described in Section D. If the geom- 
etry of 0 is simple enough, e.g., for l-dimen- 

sional R, one can adopt eigenfunctions of L [ ] 
as the basis functions; the resulting version of 
the semidiscrete Galerkin method is called a 

spectral method. 
In order to obtain u,(t) one has to carry out 

numerical integration for (20), discretizing 
the time variable. The Galerkin approxima- 

tion with discretization of the space and time 
variables is called a full discrete approximation. 
Finally, an advantage of the Ritz-Galerkin 

method is that if the boundary condition 
imposed on rigorous solutions is a natural 

boundary condition, then the admissible func- 
tions and particularly the basis functions need 
not satisfy it [4]. 

C. Finite Element Methods for Boundary 
Value Problems 

In recent years the method of numerical solu- 

tion of partial differential equations most 
extensively employed in structural mechanics 
and many other fields of engineering has been 

the finite element method. In its standard form, 
the finite element method can be regarded, 
at least mathematically, as a type of Ritz- 
Galerkin method that adopts as its basis func- 

tions piecewise polynomials of low degree 
and with narrow supports. Although the idea 
leading to the finite element method can be 
traced back to a paper by R. Courant in 1943 
(Bull. Amer. Math. SK), the method acquired 
its popularity in the late 1950s when it was 
rediscovered by engineers on the basis of me- 

chanical considerations [6]. Here we apply 
the method to the boundary value problem 
(I), (2), assuming that /I’ = 0 and 0 a polygonal 
domain in RZ [7-91. First, R = R U S is divided 

into small triangles of which the length of any 
side does not exceed h > 0. Each triangle T 
appearing in this decomposition of 52 is called 
a triangular element, or simply an element 
(following the terminology in structural me- 
chanics), and we denote the set of all triangular 
elements by &, h being equal to max,,,{the 

longest side of T}. The set of all nodal points, 
i.e., the vertices of the triangular elements, is 
denoted by N, and we put 

Ni={P~NIPd2}={P,,P, ,..., Pm}. (22) 

Then a standard choice of admissible functions 
is to adopt as V, in (6) the following V, c V= 

H,j (Cl): 

V, = {u,,E C(n) 1 uh is linear on each element 

and uhls=O}, (23) 

namely, V, is the set of all elementwise linear 

continuous functions satisfying the boundary 
condition. Now the approximate solution 
U,,E V, is determined by the condition 

4% %I) = (A (PA (V% E 6). (24) 

A basis of V, is formed by pyramidal functions 

qj (j= 1,2, ,n)~ V, such that 

cpj(()=l and cpj(Q)=O (QEN\{~}). (25) 
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In order to obtain Us, one has to solve (8) 
numerically for CL Since the support of ‘pj is 

confined to elements adjacent to 5, the matrix 
K turns out to be a sparse matrix of multi- 
diagonal type, and hence particular elimination 

procedures can be applied with high efficiency. 
In the finite element method, the matrix K is 
often called the stiffness matrix. The conver- 
gence of uh to u as h-0 is guaranteed if Y,, 
(O< h Q h,) satisfies a certain regularity con- 
dition. For instance, if any angle of a triangle 
T is not smaller than Q,, > 0, then uh converges 

in the H’(R)-topology. Moreover, when !A is 
convex, it holds that 

[7,9]. Uniform convergence of uh to u and L,,- 
estimation of the error have also been estab- 
lished (e.g., [7, chap. 31). u,, is subject to the 
maximum principle, provided that the trian- 
gulation Y,, is of acute type. Here, Y,, is said to 
be of acute type (or of strongly acute type) if 
any angle 0 of TE Fj is in 0 < 0 < (7r/2) (0 < 
Q < 8, < (7r/2). To acquire higher accuracy, 
more sophisticated admissible functions that 

are piecewise polynomials of higher degree are 
used. To take account of curved boundaries, 

several devices, including the isoparametric 
method, have been proposed. 

In dealing with biharmonic equations or 
other equations of higher order, one can con- 
veniently apply a modified version of the finite 
element method of mixed type or of noncon- 
forming type; in the latter the approximate 

solution is sought within a class of functions 
which are of less regularity at the interface 

of elements and hence do not belong to the 
domain of the original variational problem. i.e., 
which are not admissible in the classical sense 
[lo, 111. 

D. Finite Element Methods for Initial Value 
Problems 

The most basic type of finite element method 
applicable to evolution problems is described 
here, and concerns the initial boundary value 

problem (14))( 16), assuming that R is the same 
as in Section B [S, 91. In the semidiscrete finite 
element approximation one uses the functions 

‘pj of the preceding section as the basis for the 
approximate solution, now denoted by uhr and 
then determines u,, through (17)-( 19) with V, 
replaced by V,. Then u,, converges to u as h-0, 

provided that the triangulation Y,, is regular. 

Furthermore, under the same condition that 
makes (26) hold, the error is given by the fol- 

lowing estimate [ 121: 

II~-~~IIL,~~~211~Il~Z/t (t>o), (27) 

which reflects the smoothing property of the 
diffusion equation. In the terminology of the 

finite element method, the matrix A4 in (20) is 
called the mass matrix. In order to gain a fully 
discrete finite element approximation u,,~ for 
u, one discretizes the time variable with the 
+mesh length z and solves the difference analog 
of (20), i.e., either 

M(a(t+z)-a(t))/z= -Kcr(t) 

or 

(28) 

M(a(t+z)-a(t))/z= -Kcr(t+z), (29) 

where t is restricted to t = kr (k = 0, 1,2,. ). 
The difference schemes (28) and (29) are of 
forward type and of backward type, respec- 

tively. From (29) follows stall < Ila(O)/l, and 

consequently ll~A~)ll ,22< Clla~lL2. In the gener- 
ally accepted terminology, the approximation 
is stable if for each T> 0 there exists a positive 

constant C, depending on T such that 

llu,,,(t)llGC~llall (0<t=k~<T). (30) 

Thus the approximation through (29) is un- 

conditionally stable, while the one through 
(28) is stable only under certain conditions on 
the triangulation Yh and on the time mesh r. 

For instance, the forward scheme (28) is stable 
if & is regular and satisfies the inverse 
assumption 

h 

o<s~&, F< (longest side of T) < +co’ 

and if the ratio t/h2 is sufficiently small 
[13,14]. 

Sometimes, the mass matrix M in (28) and 
(29) is modified by the following procedure, 
called mass lumping: For each Pj, one joins 

alternately the center of gravity of the ele- 
ments with Pj as one of their vertices and the 
middle point of the sides with Pi as one of their 
endpoints, thus forming a closed broken line 
rj surrounding P,. We denote by (pj the char- 
acteristic function of the polygonal domain 
Bj bounded by 5.. When mass lumping is ap- 
plied, the matrix M is replaced by the matrix 
M =(( (pi, I@). Generally, mass lumping re- 

laxes the conditions for the stability and the 
maximum principle to hold, although it may 
lower the accuracy to some extent (H. Fujii, 

Proc. US-Japan Seminar, Univ. Tokyo Press, 
1973). Usually, schemes without mass lumping 
are called consistent mass schemes. 

In principle, there is no difftculty in applying 

the finite element method to the diffusion- 
convection equation (21). However, when llbll 

is large, the stability condition becomes strin- 
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gent. To meet these difficulties, M. Tabata, 
T. Ikeda [ 151, and others have devised some 
schemes that enjoy better stability, the maxi- 
mum principle, and even the law of conserva- 
tion of mass by improving mass lumping and 

introducing the idea of an upstream approxi- 
mation or an artificial viscosity for discretizing 
the convection term. Moreover, finite element 

methods are currently being applied to wave 
equations, the Navier-Stokes equations, and 
various other evolution equations. 

E. Difference Methods for Boundary Value 

Problems 

In difference methods for solving partial dif- 
ferential equations we reduce the original 
equation to its difference analog, replacing 
tdifferential quotients of the unknown function 
by the corresponding difference quotients. The 

difference analog, usually a system of algebraic 
equations, is then solved numerically, yielding 
the desired approximate solution. Since the 
last part of the method, i.e., the numerical 
solution of the difference analog, requires 
a large amount of computation, difference 
methods were not feasible until the develop- 

ment of automatic computers. 
In terms of the variable x, difference ap- 

proximations for the derivative df/dx are the 
forward difference 

ef)(x) = (f(x + 4 -f(x))lk 

the backward difference 

and the central difference (symmetric difference) 

@Y)(x) = w  + 4 -“ox - NP. 

In order to exemplify the difference method 
applied to boundary value problems, we re- 

turn to equations (1) and (2) supposing that R 
is a 2-dimensional square Q = {(x, y) IO < x < 1, 
O<y<li [1,16-181. Then we cover QUS by 
a square net (lattice, grid) with mesh length 
h= l/iv, for N a large integer. The set of net 

points Pm,, = (mh, nh) lying in Q is denoted by 
R,, and S, is the set of net points on S. We 
want to have a net function u,, on R, = Q,, US,, 
that approximates the solution u of (1) and 

(2) where uh is determined by the difference 
equation 

~,~,,(x,Y)= -f(xa~) ((x> YFU 

and the boundary condition 

(31) 

Uh(X,YkB(X,Y) (b>Y)ESh). 

Here Ah is a difference operator, the 5-point 

difference analog of A, which is defined by 

A,cp=D)D:cp+D;D;q 

=(cp(x+h,Y)+~o(x--h,Y)+cp(x,Y+h) 

In view of the maximum principle for net 
functions on R,, it is seen that (31) and (32) 
admit only uh = 0 as a solution if f= p = 0, 
which implies that the solution uh of (31) and 
(32) exists uniquely for all f and fl. When we 

are concerned with the convergence of uh to 

u as h-0, we have to consider (31) and (32) 
for all small h > 0. Such a family of difference 
equations is called a difference scheme. Actu- 
ally, uh obtained through (31) and (32) con- 
verges to u as h+O, and we can say that the 
difference scheme (3 1) and (32) is convergent. 
In general, the order of the error u-u,, de- 
pends on the smoothness of u. For instance, if 

UE C”(n), then (u-u,,] < Ch’ holds uniformly 
on R,. When the asymptotic behavior of the 
error is known to satisfy u-u,, = wh’ + o(11’) 
for some w  = w(x, y), it is possible to attain a 
higher accuracy by eliminating the /?-order 

term if we compute uh for two different values 
of h and form an appropriate linear combi- 
nation of the uh thus obtained (Richardson’s 
extrapolation; - e.g., [ 171). The convergence 

of difference schemes applied to boundary 
value problems is not affected if rectangular 

nets are used instead of square nets. Many 
techniques have been devised to treat curved 
boundaries. There have been attempts recently 
to map 12 into a domain Q of simpler geom- 

etry, say, a rectangular one, and then discretize 
the arising partial differential equations with 
variable coefficients in Q (e.g., J. F. Thompson 
et al., J. Comput. Phys., 1982.) Moreover, 
when information regarding the location and 
nature of singularities of solutions is available, 
one can refine the net near these points. 

The difference analog of elliptic equations 
described above is a system of linear equa- 
tions with the values of the u,, as its unknowns. 
Since the coefficient matrix of this system is of 

multidiagonal type, direct elimination methods 
can be efficiently applied to solve it. Partic- 

ularly, some elimination algorithms employ- 
ing vector computations have been invented 
[19]. Iteration methods of the Gauss-Seidel 
type can also be applied, where acceleration 

of convergence by SOR is effective (- 302 
Numerical Solution of Linear Equations C). 

F. Difference Methods for Initial Value 
Problems 

To demonstrate characteristics of the dif- 

ference method applied to evolution equa- 
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tions [17,20,21], we first consider the initial 
boundary value problem (14)-( 16) for the dif- 
fusion equation supposing that n =(O, 1), a 
l-dimensional interval. Then we cover Q = 
[O, co) x fi by a rectangular net t = nz (n = 
0,1,2 ,... )andx=jh(j=O,l,... )withmesh 
lengths At = z and Ax = h. The value of the 
approximate function u,,~ at the net point 
(nr,jh) is denoted by Uy. Then the simplest 

difference scheme of forward type for (14) is 
written as 

w-q ~+I+UjF-2u/ I zz 
h2 7 

(33) 

Namely, we adopt the difference operator 
L,,, [ ] = D, - D$@! as the difference analog of 
(a/at)-(a2/ax2). Equation (33) is consistent in 
the sense that L,,h[u] =“the residual of u”+O 
(7, h+O) for any smooth solution u of (14). This 
is the case also with the difference scheme of 
backward type 

ur+l - ur 
J J 

(Jn+1+ U?_” -2ur+1 
J+l J 1 = 

h2 ” (34) 
7 

To compute the approximate solution U” = 
{Y]O<j<N}, (33) or (34) must be combined 
with the approximate initial condition cor- 
responding to (16), say Ujo = a( jh), and with 
the boundary condition U,” = Ui = 0. Then one 
can proceed from U” to U’, from U’ to U2, 
and so on. Actually, (33) is rewritten in the 
form 

U~+‘=iu;+,+nu~~,+(1-2~.)u;, J (35) 

with 2. = z/h’, which gives U”” explicitly in 

terms of U”. Hence (33) is an explicit scheme. 
On the other hand, in order to acquire U”+’ 
from U” according to (34), it is necessary to 
solve a system of linear equation with Un+’ as 
its unknown. Hence (34) is an implicit scheme. 
Since the coefficient matrix of the system of 
linear equations to determine U”+’ according 
to (34) is tridiagonal, one can employ a partic- 
ularly efficient elimination algorithm. 

We introduce the maximum norm 11 (P,, 11 h = 

max,Jq(jh)] for net functions (Pi on R,=R,U 
&={x=jhIO<j<N}. Then, as is obvious from 
(35), the approximate solution U”=u,,,(nz) 

obtained through (33) satisfies 11 U”ll,< 11 U’I/,, 
(n = 0, 1, ), provided that 

o<+; (36) 

Generally, a difference scheme approximating 

an initial value problem is said to be stable if 
the approximate solution u,,* for the initial 
value a,, = u,,~(O) satisfies, for small 7 and h, 

II~,,,~~~ll~~~~llU~ll~ (Odc=nrdT) (37) 

for any T> 0, M, being a constant depending 

on T. Lax’s equivalence theorem asserts that 
if the original initial value problem is twell- 

posed and if the approximating difference 
scheme is consistent, then the stability of the 

difference scheme is necessary and sufficient 
for the convergence of the approximate solu- 
tion u,,~ to the rigorous solution u as 7, h&O. 
For instance the explicit difference scheme (33) 
for the l-dimensional diffusion equation is 
convergent under the mesh condition (36). On 
the other hand, the implicit scheme (34) is 

unconditionally stable and hence is conver- 
gent. Many difference schemes more sophisti- 
cated than (33) and (34), of higher accuracy or 
with other favorable properties, have been 
proposed and studied. All these difference 
schemes can be generalized to the case of 
many-dimensional R. For instance, if R c R2, 
then by means of the difference operator Ah in 
(31), the forward scheme and the backward 
scheme are given by D, Cl’= A,, U” and D, U”= 

A,, Cl”+‘, respectively. The former is stable if 
0 <i = r/h2 < l/4, while the latter is uncon- 

ditionally stable. Moreover, in a method called 
the ADI method (alternating direction implicit 
method) one introduces Untliz on fractional 

steps t = nz + 7/2 and discretizes (14) as 

I/n+W-Un =@!D”(J”+DhD”,‘J”+‘l2 
712 x x ’ ’ ’ 

un+1 _ (Jn+1/2 

71-2 
=DhDhUn+’ +D;D$P+‘/~. (38) x x 

Then, starting from U”, the computation goes 
as U”%U1/2 +U’-t...-+U”+U”+‘“...by 
solving at each step alternatively a difference 
equation implicit with respect to x and y, for 
which a particular elimination method can be 
used with good efficiency. Furthermore, the 
ADI method is unconditionally stable. Various 
types of fractional-step method that generalize 
the ADI method have been proposed [ 12,173. 

We now proceed to hyperbolic equations. 
First consider the Cauchy problem where the 
spatial domain is the whole R’. Noting that 

the wave equation u,, = u,,, for instance, can be 
rewritten as 

du 0 1 au 
-= at ( >- 1 0 ax 

by putting u =‘(u,, u,), we here deal with a 
hyperbolic system of the form 

(39) 

where the unknown u is an m-vector u = 
‘(u,,u,,...,u,),andAisaconstantmxm 

matrix that is supposed to be real and sym- 

metric. For hyperbolic equations, explicit 
schemes are generally preferred, and as a typ- 
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ical one we mention the Friedrichs scheme. 

In the Friedrichs scheme applied to (39), the 
approximate solution U = ‘(U, , r/,, , &i,) is 
determined by 

U(t+z,x)-#J(t,x+h)+U(t,x-h)) 

=AQU(t,x). (40) 

Here t is restricted to t = m (n = 0, 1, . . ), while 
x is regarded as a variable ranging over R’. 
Introducing translation operators Th and T-, 

by 

K:(P(x)+(P(x+~) and T-,,:(P(x)+(P(x-h), 

we obtain from (40) 

U(t+z;)=S*U(t;), (41) 

where, with the mesh ratio 1= z/h, S,, is given 

by 

Generally, if a difference scheme is reduced to 
the form of (41), then the operator S,,, which 

yields evolution of the solution of the dif- 
ference equation for one time step, is called 
the amplification operator of the scheme. The 
stability of the difference scheme is implied 
by the uniform boundedness of the operator 

norm jjS:ll of S” acting in the Hilbert space 
(L,(R’))” for 0~ n < T/z. Consequently, the 
scheme is stable if llShll < 1 + Ct, C being a 
constant. The tsymbol s,,(t) of S, with respect 
to the Fourier transform is called the amplifi- 
cation matrix of the scheme. The &-stability 

of the scheme mentioned above is equivalent 
to the uniform boundedness of the matrix 
norm ~~~~(~)ll forO<n~<Tand t~Rl.There- 
fore, denoting by r,,(t) the spectral radius of 
$(<), one can give a necessary condition for 

the stability by lr,,(<)[ < 1 + Cz, which is called 
the von Neumann condition. Concerning gen- 
eral critera for the uniform boundedness of 
powers of S,(l) when ,$,({) is not necessarily 
normal, a fundamental theorem was given by 

H. 0. Kreiss in 1962 [21]. 
If the largest-modulus eigenvalue of A is 

denoted by pO, then the Friedrichs scheme is 
stable and hence is convergent under the con- 
dition on the mesh ratio /z = z/h given by 

I< md (43) 

In particular, (43) implies that for the stable 
Friedrichs scheme 

propagation speed of the difference scheme 

> propagation speed of the original equation. 

(9 

Condition (44) is a necessary condition for 

general difference schemes approximating 

hyperbolic equations to be stable, and is 
known as the CFL condition (Courant- 
Friedrichs-Lewy condition) [22]. For a scheme 

more accurate than the Friedrichs scheme we 
refer to the Lax-Wendroff scheme, which pro- 
ceeds by way of the following amplification 
operator S,: 

=I+;A(T,+T-,)+;(Th-Z+T-,). 

The Lax-Wendroff scheme is stable under (43). 

There are many other difference schemes 
to approximate (39) most of which are appli- 

cable to higher-dimensional spaces. Some of 
these schemes can be conveniently employed 
to solve nonlinear hyperbolic equations, for 
instance, those’arising in the gas dynamics of 
compressible fluids, for which the Friedrichs 
scheme and the Lax-Wendroff scheme were 

originally intended [23]. Concerning difference 
schemes with variable coefficients which ap- 

proximate a tregularly hyperbolic system with 
an x-dependent principal part, criteria for the 
stability of the scheme in terms of the symbol 

S,,(x, 0 of S, have been obtained, making use of 
the theory of tpseudodifferential operators, by 
P. D. Lax and L. Nirenberg (Comm. Pure Appl. 
Math., 1966) M. Yamaguti and T. Nogi (P&l. 
Res. Inst. Math. Sci., 1967), R. Vaillancourt 
(Math. Comput., 1970), Z. Koshiba (J. Math. 
Anal. Appl., 1981) and others. 
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A. History 

The theory of obstructions aims at measuring 

the extensibility of mappings by means of 
algebraic tools. Such classical results as the 
+Brouwer mapping theorem and Hopf’s exten- 

sion and tclassification theorems in homotopy 
theory might be regarded as the origins of this 

theory. A systematic study of the theory was 
initiated by S. Eilenberg [l] in connection 

with the notions of thomotopy and tcoho- 
mology groups, which were introduced at the 
same time. A. Komatu and P. Olum [L] ex- 
tended the theory to mappings into spaces not 
necessarily +n-simple. For mappings of poly- 
hedra into certain special spaces, the +homo- 
topy classification problem, closely related to 

the theory of obstructions, was solved in the 
following cases (K” denotes an m-dimensional 
polyhedron): K”+‘+S” (N. Steenrod [SI), Knt2 
4s” (J. Adem), Kntk*Y, where ni( Y)=0 for 
i <n and n < i < n + k (M. Nakaoka). There 
are similar results by L. S. Pontryagin, M. 
Postnikov, and S. Eilenberg and S. MacLane. 
Except for the special cases already noted, it is 
extremely difflcult to discuss higher obstruc- 

tions in general since they involve many com- 
plexities. Nevertheless, it is significant that the 
idea of obstructions has given rise to various 

important notions in modern algebraic topol- 
ogy, including cohomology operations (- 64 
Cohomology Operations) and characteristic 
classes (- 56 Characteristic Classes). 

The notion of obstruction is also very useful 
in the treatment of cross sections of fiber bun- 

dles (- 147 Fiber Bundles), tdiffeomorphisms 
of differentiable manifolds, etc. 

B. General Theory for an n-Simple Space Y 

The question of whether two (continuous) 

mappings of a topological space X into an- 
other space Y are +homotopic to each other 

cari be reduced to the extensibility of the given 
mapping: (X x {O))U(X x {l})+ Y to a map- 
ping of the product X x 1 of X and the unit 
interval I= [0, 11 into Y. Therefore the prob- 
lem of classifying mappings cari be treated 
in the same way as that of the extension of 
mappings. 

Let K be a tpolyhedron, L a subpolyhedron 
of K, and R” = LU K” the union of L and the 

+n-skeleton K” of K. Let Y be an tarcwise 
connected n-simple space, and ,f’ be a mapping 

of L into Y. Denote by O”(f’) the set of map- 
pings of I?” into Y that are extensions off’, 
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and by @“(jr) the set of thomotopy classes 

of mappings in %“(f’) relative to L. The set 
&O(f’) consists of a single element ‘because of 

the arcwise connectedness of Y, @(f’) is non- 
empty, and @‘(f’) (na 2) may be empty. Let ,f” 
be an element of @“(f’). If we consider the 
restriction off” to the boundary Oni1 of an 
oriented (n + l)-cell (r”+’ of K, then f”: $‘+l -t 

Y determines an element c(f”, on+‘) of the 
thomotopy group 7~,,( Y) (- 202 Homotopy 
Theory). This element gives a measure of ob- 
struction for extending f” to the interior of 
C?+I. We obtain an (n+ 1)-tcocycle c”+‘(f”) of 
the tsimplicial pair (K, L) with coefficients in 
n,J Y), called the obstruction cocycle off”, by 

assigning c(fn,a”+‘) to each (n+ l)-ce11 a”+‘. 
This obstruction cocycle c”“(f”) is the mea- 
sure of obstruction for extending f” to R”“. A 
necessary and sufflcient condition for the 
extensibility is given by c”“(f”) == 0. Clearly, 

c”+l (j”“) is uniquely determined for each ele- 
ment f of @“(f’). The set of a11 c”+‘(f”) with 
S”E@“(~‘) forms a subset o”+‘(f’) of the group 
of cocycles Z”‘l(K, L; n,(Y)). @“‘l(f) is non- 
empty if and only if o”+l(,f’) contains the zero 
element 0. 

LetKn=KxI,Lu=(KxO)L(LxZ)U 

(K x 1). Given two mappings SO, fi : K-t Y 
satisfying f. 1 L =f, 1 L, we cari defïne a natural 
mapping F’ : La -) Y such that an element 
F” of @“(F’) corresponds to a thomotopy 
h”-’ relative to L connecting f. ( K”-’ with 

fi 1 K”-‘. Given an element F”E@“(F’), we 
have the element P’(F”) of Z”“(Km, L”; 
n,(Y)), which we identify with Z”(K, L; n,(Y)) 
through the natural isomorphism of chain 
groups of the pair (Ko, L”) to those of the 
pair (K, L). Thus we cari regard c”+‘(F”) as an 

element of Z”(K, L; 7c”( Y)), which is denoted 
by d”(f,, h”-‘,f,), and cal1 it the separation (or 
difference) cocycle. If ,jo ( R”-l =SI ) i?‘, we 
have the canonical mapping F”: L” U (Ko) 
* Y, and the separation cocycle is denoted 

simply by d”(fo,fi). The set of :separation 
cocycles corresponding to elements of @“(Fr) is 

considered to be a subset of Z”(K, L; n,( Y)) 
and is denoted by o”(.fO,fi). A necessary and 
sufflcient condition for h”-’ to be extensible 
to a homotopy on l?” is d”(f,,h”-‘,f,)=O. 

Therefore a necessary and suffccient condition 
for f0 1 R” =fi ( R” (rel L) (i.e., relative to L) is 
O~o”(f,,f,). Givenf;,f;:K”-tYwithfO[L= 

.fTIL, then d”(&‘,h”-‘,f;) (~o’(f;,f;)) is 
an element of Z”(K”, L; 7c”( Y)): which is also 
considered to be a cochain of the pair (K, L). 

In this sense, we ca11 @(SO, h” -‘, ,f,“) the sepa- 
ration (or deformation) cochain over (K, L). 

The coboundary of the separation cochain 

d”(fl, h”-‘,,f;) coincides (except possibly for 
sign) with c”“(&‘)-c”“(f,“). 

For a tïxed fo E a>“( f’), any n-cochain dn 
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of the pair (K, L) with coefficients in n,(Y) 
is expressible as a separation cochain d”= 
d”(fl,f;) wheref/EQ”(f’) is a suitable map- 
ping such that fil R”-’ =fr” 1 R”-’ (existence 
theorem). 

Therefore if we take an element f”-’ of 
@-I(f’) whose obstruction cocycle c”(f”-‘) 

is zero, the set of a11 obstruction cocycles 
c”“(J”) of a11 such ~“E@“(S’) that are exten- 
sions off”-’ forms a subset of O”“(f’) and 
coincides with a coset of Z”+‘(K, L; n,(Y)) 
factored by B”+‘(K, L; rcL,( Y)). Thus a coho- 
mology class ?+r(f”-~)EH”+~(K, L; rrn( Y)) 

corresponds to an f”-’ E Qn-l (f’) such that 
c”(f”-‘) = 0, and ?“+i(f”-‘) = 0 is a necessary 

and sufftcient condition for f”-’ to be exten- 
sible to I?“” (first extension theorem). 

For the separation cocycle, d”(f,, h”-‘,fJ~ 

H”(K, L;a,(Y)) corresponds to each homotopy 

h”-’ on I?n-Z such that d”-‘(f,, h”-‘,f,)=O, 
and 6”( f& h”-‘, fi) = 0 is a necessary and 
sufficient condition for h”-’ to be extensible to 
a homotopy on R” (tirst homotopy theorem). 

The subset of H”+‘(K, L, K,( Y)) correspond- 
ing to on+’ (f ‘) is denoted by On+’ (f ‘) and is 
called the obstruction to an (n + 1)dimensional 
extension off ‘. Similarly, the subset On( fo, fi) 
of H”(K, L, n,( Y)) corresponding to o”( fo, fi) is 
called the obstruction to an ndimensional 
homotopy connecting f. with fi. Clearly, a 

condition for f' to be extensible to Rn+’ is 
given by 0 E O”+l (f ‘), and a necessary and 
sufftcient condition for f. 1 K” = fi 1 K” (rel L) is 

given by OeO”(fo, fi). 
A continuous mapping <p: (K’, L’)+(K, L) 

induces homomorphisms of cohomology 
groups ‘p*: H”+‘(K, L; n,( Y))+H”+‘(K’, L’, 
n,(Y)), H”(K, L; w,( Y))+H”(K’, L’; n,(Y)). Then 
for f’:LtY, O”“(f’ocp)~rp*O”+‘(f’), and 
for f,, fi : K + Y such that f. 1 L = fi ) L, On( f, o 

cp, f, o cp)~ p*O”( fo, fi). Therefore we also lïnd 

that the obstruction to an extension and the 
obstruction to a homotopy are independent 
of the choice of subdivisions of K, L, and con- 
sequently are topological invariants. 

Let fo, fi, and fi be mappings K-* Y such 
that f. 1 L = fi 1 L = f, 1 L. Given homotopies 
h~;l:f,)~“-l~fi)Rn-l(relL),h;;l:fl)~-l~ 

f2 1 R”-’ (rel L), then for the composite h”,;’ = 
h;;’ o ht;‘, we have 

and for the inverse homotopy h;;’ : f, 1 Z?‘-l T 
f. 1 R”-’ of h”,;‘, clearly 

d”(f,,h;o’,fo)= -d”(fo,h&‘,f,). 

Therefore O”(fO,fO) forms a subgroup of 
H”(K, L, nnn( Y)) that is determined by the 
homotopy class off0 1 em1 relative to L. In 
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general, if On( fo, fi) is nonempty, it is a coset 
of H”(K, L; x,(Y)) factored by the subgroup 
O”(f,, fo). Combined with the existence theo- 
rem on separation cochains, this cari be uti- 
lized to show the following theorem. 

Assume that O”(f ‘) is nonempty. The set 

of a11 elements @‘(f ‘) that are extensions of 
an element of @-l (f ‘) is put in one-to-one 
correspondence with the quotient group of 

Hn(I?‘, L; A,( Y)) modulo On( fo, fô) by pairing 
the obstruction On( fô, f “) with each f” for a 

fixed fô. Among such elements of @“( f ‘), the 
set off” that are extensible to @+’ is in one- 
to-one correspondence with the quotient 
group of H”(R”+1 ,L; ~n(Y))=H”(KL; G(Y)) 
modulo the subgroup On( fô”, f$+‘), assuming 
that fo is extended to fo”+’ (fkst classification 
theorem). 

C. Primary Obstructions 

Assume that H’+‘(K, L; ni( Y))= H’(K, L; ni( Y)) 
=O,whereO<i<p(e.g.,rq(Y)=O,O<i<p).In 
this case, by consecutive use of the lïrst exten- 
sion theorem and the lïrst homotopy theorem, 
we cari show that each @(f ‘) (i <p) consists of 
a single element and OP+‘( f ‘) also consists of a 

single element Pc1 (f ‘) E HP+‘(K, L; xP( Y)). The 
element CP+’ (f ‘), called the primary obstruc- 
tion off ‘, vanishes if and only if f’ cari be 

extended to RP+1 (second extension theorem). 
When Hi+’ (K, L; ai(Y)) = 0 for i > p (for exam- 
ple, when ai(Y) = 0 for p ci < dim(K -L)), 
f’ is extendable to K if and only if the first ob- 
struction off’ vanishes (third extension 
theorem). 

Correspondingly, if H’(K, L; zi( Y))= 
Hi-’ (K, L; rci( Y)) = 0 (0 < i < p), then for any 
two mappings fo, fi : K-+ Y, f. (L = fi 1 L, 

Op(fo, fi) consists of a single element dP(fo, fi) 
E HP(K, L; rcp( Y)), which we cal1 the primary 
difference off0 and fi. This element vanishes 

if and only if f0 1 l@’ = fi 1 &’ (rel L) (second 

homotopy theorem). Moreover, when H’(K, L; 
rci( Y)) = 0 (i > p), the primary difference is zero 

if and only if f. E fi (rel L) (third homotopy 
theorem). 

Assume that the hypotheses of the second 
extension theorem and second homotopy 
theorem are satistïed. If we assign to each 
element f P of @‘(f ‘) the primary difference of 
f P and the tïxed element f{, then Gi”( f ‘) is in 

one-to-one correspondence with HP(RP, L; 
rcp( Y)) by the lïrst classification theorem (sec- 
ond classification theorem). Similarly, assume 

that the hypotheses of the third extension 
theorem and third homotopy theorem are 

satisfîed. Iff,:K+ Y, f’=& 1 L, then homotopy 
classes relative to L of extensions f off’ are 
put in one-to-one correspondence with the 
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elements of HP(K, L; xp( Y)) by pairing dp(,f;fO) 
with ,f (tbird classification theorem). 

D. Secondary Obstructions 

For simplicity, assume that ni(Y) = 0 (i< p and 

p < i < q). If the primary obstruction CP+I (f’)~ 
H P+I (K, L; 7~,,( Y)) off’: L-t Y vanishes, we cari 
detïne 04+’ (,f’) c H4+’ (K, L; 7rIq( Y)), which we 
cal1 the secondary obstruction off’. When Y = 
SP, q = p + 1, p > 2, the secondary obstruction 
Op”(f’) coincides with a coset of HpfZ(K, L; 
Z,) modulo the subgroup Sq2(HP(K, L; Z)), 
where Sq’ denotes the +Steenrod square 
operation [S]. In this case, if L = KP, then 

Op”(,f’) reduces to a cohomology class, 
Sq’(i*)-‘f’*(o) with i: L+K, where o is a gen- 
erator of HP(SP, Z) (in this case (i*)m’f’*(a) # 

0 is equivalent to ?“(f’)=O) [S]. Moreover, 
if Sq2f’*(a) = 0, then there exists a suitable 
extension fp+2:lZp+2 + Y = SP of ,f’. The set of 
obstruction cocycles of all such fp” defïnes 
the tertiary obstruction Op+3( f ‘), which coin- 

cides wit h a coset of Hp+3(K, L; Z,) modulo the 
subgroup SqZ(HP”(K, L; Z,)). By using the 
tsecondary cohomology operation 0 of J. 
Adem, it cari be expressed as @((i*)-‘f’*(o)) 
(- 64 Cohomology Operations). 

All the propositions in this article remain 
true if we take +CW complexes instead of 

polyhedra K. 

References 

[l] S. Eilenberg, Cohomology and continuous 
mappings, Ann. Math., (2) 41 (1940), 231-251. 

[2] P. Olum, Obstructions to extensions and 
homotopies, Ann. Math., (2) 52 (1950) l-50. 
[3] P. Olum, On mappings into spaces in 
which certain homotopy groups vanish, Ann. 
Math., (2) 57 (1953) 561-574. 

[4] N. E. Steenrod, The topology of fibre 
bundles, Princeton Univ. Press, 1951. 
[5] N. E. Steenrod, Products of cocycles and 
extensions of mappings, Ann. Math., (2) 48 
(1947), 290-320. 

[6] E. H. Spanier, Algebraic topology, 
McGraw-Hill. 1966. 

306 (X11.20) 
Operational Calculus 

A. General Remarks 

The term “operational calculus” in the usual 

sense means a method for solving tlinear dif- 
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ferential equations by reducing the operations 
of differentiation and integration into alge- 
brait ones in a symbolic manner. The idea 

was initiated by P. S. Laplace in his Théorie 
analytique des probabilités (18 12), but the 
method has acquired popularity since 0. 
Heaviside used it systematically in the late 

19th Century to solve electric-circuit problems. 
The method is therefore also callec. Heaviside 
calculus, but Heaviside gave only a forma1 
method of calculus without bothering with 
rigorous arguments. The mathematical foun- 
dations were given in later years, tïrst in terms 
of +Laplace transforms, then by ap:$ying the 
theory of tdistributions. One of the motiva- 

tions behind L. Schwartz’s creation of this 
latter theory in the 1940s was to give a sound 
foundation for the forma1 method, but the 

theory obtained has had a much larger range 
of applications. Schwartz’s theory was based 
on the newly developed theory of + topological 
linear spaces. On the other hand, J. Mikusin- 
ski gave another foundation, based only on 
elementary algebrdic notions and on Titch- 
marsh’s theorem, whose proof has recently 

been much simplifïed. 
In this article, we fïrst explain the simple 

theory established by Mikusinski [2] and later 
discuss its relation to the classical Laplace 

transform method. 

B. The Operational Calculus of Mikusibski 

The set % of all continuous complex-valued 
functions a = {a(t)} defïned on t 2 0 is a tlinear 
space with the usual addition and scalar multi- 
plication. %? is a +Commutative algebra with 
multiplication a. b detïned by the tconvolution 

{S;u(t-s)b(s)ds}. Th e ring W has no +zero 

divisors (Titchmarsh’s theorem). (There have 
been several interesting proofs of Titchmarsh’s 
theorem since the tïrst demonstratilon given 
by Titchmarsh himself [3]. For example, a 

simple proof has been published by C. Ryll- 
Nardzewski (1952).) Hence we cari construct 

the tquotient field -2 of the ring %. An element 
of 2 is called a Mikusitiski operator, or simply 

an operator. If we deiïne a(t) = 0 for t < 0 for 
the elements {a(t)} in ??, then V? is a subalgebra 

of %VI, which is the set of all locally integrable 
(locally L,) functions in (-a, a) uhose +sup- 
port is bounded below. Here we identify two 

functions that coincide almost everywhere. 
The algebra J& has no zero divisor, and its 
quotient tïeld is also 2. 

The unity element for multiplication in %, 
denoted by 6 = b/b (b #O), plays the role of the 
+Dirac &function. It is sometimes called the 
impulse function. The operator 1= { 1) ~‘6 is the 
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function that takes the values 0 and 1 accord- 
ing as t < 0 or t > 0. This operator is Heavi- 

side’s function and is sometimes called the 
unit function. Usually it is denoted by l(t) 

or simply 1. The value l(0) may be arbitrary, 
but usually it is detïned as 1/2, the mean of the 
limit values from both sides. The operator I is 
an integral operator, because, as an operator 
carrying a into I. a, it yields 

t 
l.a= 

is 1 
a(s)ds = the integral of a over [0, t]. 

0 

More generally, the operator {t”-‘/I(n)} (ReÂ. 
> 0) gives the Âth-order integral. The operator 
s = 611, which is the inverse operator of 1, is a 

differential operator. If a E +Z is of tclass C’ , 
then we have 

s~a=a’+a(+0)6=a’+{a(+O)}/{l}. 

Similarly, if UEW is of class C”, we have 

S”.a=a’“)+a’“-“(0)6+a(“-2)(0)s 

+ . +a(O)s”-1. (2) 

The operator U+S. a cari be applied to func- 

tions a that are not differentiable in the ordi- 
nary sense, and considering the application of 
s to be the operation of differentiation, we cari 
treat the differential operator algebraically in 
the tïeld 02. In particular, we have s. 1 = 6, and 

this relation is frequently represented by the 
formula 

dl(t)/dt=S(t). (3) 

A rational function of s whose numerator is 

of lower degree than its denominator is an 
telementary function of t. For example, we 
have the relations 

l/(s-~)“={t”-‘ea’/(n-l)!}, 

s/(s2 +/32) = {cos~t}. (4) 

The solution of an ordinary linear differ- 
ential equation with constant coefficients 
C:=,, a,<p(‘)(t) =f(t) under the tinitial condition 
C~“)(O) = yi (0 < i <n - 1) is thus reduced to an 

equation in s by using formulas (1) and (2), and 
is computed by decomposing the following 
operator into partial fractions: 

(5) 

where Li=~,+l~o+~,+2~l + . . . +w~-,-~, 
0 < r < n - 1. The general solution is repre- 
sented by (5) if we consider the constants yo, 
. . . ,yn-i or fio, . ,jI-i as arbitrary parameters. 
If the rational function in the right-hand side 

of (5) is M@)/L)(s) and the degree of the numer- 

ator is less than that of the denominator, then 
the right-hand side of (5) is explicitly repre- 

sented by 

m M(ni) of 

+C 
i=1Zj7Je " 

where we assume that Âo, 1,). . . , i, exhaust the 
roots of the equation o(L) = 0, 1, is a multiple 
root of degree 1, and a11 other roots are simple 
(WI = n - 1). The above formula is called the 
expansion theorem. 

C. Limits of Operators 

A sequence a, of operators is said to converge 
to the limit a = b/q if there exists an operator 
q( # 0) such that q. a, EV and the sequence 
of functions q. a, converges tuniformly to b 
on compact sets. The limit a is determined 
uniquely without depending on the operator q. 

Based on this notion of limits of operators, we 
cari construct the theory of series of operators 

and differential and integral calculus of func- 
tions of an independent variable i whose 

values are operators. They are completely 
parallel to the usual theories of elementary 
calculus (- 106 Differential Calculus; 216 
Integral Calculus; 379 Series). A linear partial 
differential equation in the function V(X, t) of 
two variables, in particular its initial value 

problem, reduces to a linear ordinary differen- 
tial equation of an operational-valued func- 

tion of an independent variable x. 
For a given operator w, the solution (if 

it exists) of the differential equation v’(1) = 

w. <p(Â) with the initial condition C~(O) = 6 is 
unique, is called the exponential function of an 
operator w, and is denoted by ~(1) = e”“. If the 

power series 

j. I”w”/n! (6) 

converges, the limit is identical to the exponen- 
tial function e”‘“. However, there are several 
cases in which eAW exists even when the series 

(6) of operators does not converge. 
For example, for w  = - &, we have 

e -d= {(Â/2&P)exp( -L’/4t)}, , (7) 

and for w  = -s, we have 

e-“S=h”=s.H,(t), (8) 

where the function H,(t) takes the values 0 and 
1 according as t < 1 or t > 1. H,(t) belongs to 
the ring @ and is called the jump function at Â. 

For f(t)e%, we have 

~A~u(t)~=u(t-4~9 

and hence we cal1 (8) the translation operator 
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(or shift operator). For w  = -s, the series (6) 
does not converge, but if we apply the forma1 

relation e~“s=C~o(-is)“/n! to f(t), we have a 
forma1 Taylor expansion 

The solution of linear tdifference equations 
are represented by rational functions of h”. 
The power series C a,h” of operators always 
converges. This fact gives an explicit example 
of a representation by forma1 power series. 

Note that the operators em” and e-“JS play 

an essential role in the solution of the +wave 
equation 

azq a2azp -=- 
ax2 at2 

and the +heat equation 

azq dacp ~=~~ 
5X2 at 

The operator (7) converges to 6 for /2+0, and 
this gives a tregularization of the Dirac 6- 
function. 

D. Laplace Transform 

For every function {f(t)} E %?, the limit 

lim 
s 

Pe-“‘f(l)dl= 
B-+m o s 

m eeAsf(,l)dA (9) 
0 

always exists (in the sense of the limit of oper- 
ators), and as an operator coincides with the 
original function {f(t)}. Therefore, if the usual 
Laplace transform (- 240 Laplace Trans- 

form) of the function f(n) exists and (9) is a 
function g(s), then as a function of the differen- 
tial operator s, g(s) is the operator that is 

given by the inverse Laplace transform ,f(t) of 
g(s). Formulas (4) and (7) are indeed typical 

examples of this relation, where the left-hand 
side is the usual Laplace transform of the 
right-hand side. In the practical computation 
of (5), we cari compute the Laplace inverse 
transform of the right-hand side. However, if 

we took the Laplace transform as the founda- 
tion of the theory, it would not only be com- 
plicated but also be subject to the artifïcial 

restriction caused by the convergence condi- 
tion on Laplace transforms. 

In the theory of operational calculus, the 
transform 

dP)=P 
I 

m 
e-P’f(t)dt (10) 

0 

is sometimes used instead of the Laplace trans- 
form itself. But the difference is not essen- 
tial; we obtain the latter transform merely by 
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changing the variable from s to p and multi- 
plying the former transform by p. 

E. Relation to Distributions 

For f EV?, an operator of the form h’. sk. f is 
identifïed with a distribution of L. Schwartz 

with support bounded from below. We cari 
identify with a Schwartz distribution the limit 
of a sequence f, (or a suitable equivalence class 
of sequences) of operators of the form h” sk .f 
such that f., fn+l, . are identical in the inter- 
val (-II, n). The notions of Schwartz distri- 

butions and of MikusiBski operators do not 
include each other, but both are generaliza- 
tions of the notions of functions and their 

derivatives. For formulas and examples - 
Appendix A, Table 12. 
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307 (XIX.1 3) 
Operations Research 

A. General Remarks 

Operations research in the most general sense 
cari be characterized as the application of 

scient& methods, techniques, and tools to the 
operations of systems SO as to provide those in 
control with optimum solutions to problems. 
This definition is due to Churchman, Ackoff, 
and Arnoff [l]. Operational research began 
in a military context in the United Kingdom 
during World War II, and it was quickly taken 

up under the name operations research (OR) 
in the United States. After the war it evolved 
in connection with industrial organization, 
and its many techniques have found expand- 
ing areas of application in the Uniied States, 
the United Kingdom, and in other industrial 
countries. Nowadays OR is used widely in 

industry for solving practical problems, such 

as planning, scheduling, inventory, transpor- 
tation, and marketing. It also has various im- 
portant applications in the fïelds ojagricul- 
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ture, commerce, economics, education, public 
service, etc., and some techniques developed in 
OR have influenced other lïelds of science and 
technology. 

B. Applications 

Applications of OR to practical problems are 
often carried out by project teams because 
knowledge of disparate aspects of the prob- 

lems are required, and interdisciplinary co- 
operation is indispensable. The following are 
the major phases of an OR project: (i) formu- 
lating the problem, (ii) constructing a mathe- 
matical mode1 to represent the system under 
study, (iii) deriving a solution from the model, 
(iv) testing the mode1 and the solution derived 
from it, (v) establishing controls over the solu- 

tion and putting it to work (implementation). 

When the mathematical mode1 that has 
been constructed in phase (ii) is complicated 
and/or the amount of data to be handled is 

large, a digital tcomputer is often utilized in 
phases (iii) and (iv). 

C. Mathematical Models [2] 

Typical mathematical models and tools that 

appear frequently in OR are: 
(1) Optimization mode1 (- 264 Mathematical 

Programming). This mode1 is characterized by 

one or more real-valued functions, which are 
called objective functions, to be minimized (or 
maximized) under some constraints. According 

to the number of objective functions, the types 
of objective functions, and the types of con- 
straints, this mode1 is classilïed roughly as 
follows: (i) Single-objective model, which in- 

cludes linear, quadratic, convex, nonlinear and 
integer programming models (- 215 Integer 

Programming, 255 Linear Programming, 292 
Nonlinear Programming, 349 Quadratic Pro- 
gramming); (ii) multi-objective model; (iii) sto- 

chastic programming mode1 (- 408 Stochastic 
Programming); (iv) dynamic programming 
mode1 (- 127 Dynamic Programming); (v) 

network flow mode1 (- 281 Network Flow 
Problems). 

(2) Game-theoretic mode1 (- 173 Game 
Theory). Game theory is a powerful tool for 
deriving a solution to practical problems in 
which more than one person is involved, with 
each player having different objectives. 

(3) Inventory mode1 (- 227 Inventory Con- 
trol). It is necessary for most lïrms to control 

stocks of resources, products, etc., in order to 
carry out their activities smoothly; various 

inventory models have been developed for 
such problems. Mathematically, optimization 

techniques (- 264 Mathematical Program- 
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ming), Markovian decision processes (- 127 
Dynamic Programming, 261 Markov Pro- 
cesses), and basic tprobability theory are used 

to construct models for these problems. 
(4) Queuing mode1 (- 260 Markov Chains 

H). In a telephone system, calls made when a11 
the lines of the system are busy are lost. The 
problem of computing the probability of loss 

involved was lïrst solved in the pioneering 
article on tqueuing theory by A. K. Erlang in 

1917. For systems in which calls cari be put on 
hold when a11 lines are busy, one deals with the 
twaiting time distribution instead of the proba- 
bility of 10s~. In the 1930s F. Pollaczeck and 
A. Ya. Khinchin gave explicit formulas for the 
characteristic function of the waiting time 
distribution. In many situations, such as in 
telephone systems, air and surface traffic, 

production lines, and computer systems, vari- 
ous congestion phenomena are often observed, 
and many kinds of queuing models are utilized 

to analyze the congestion. Mathematically, 
almost a11 such models are formulated by 
using Markov processes. For practical uses, 
approximation and computational methods 
are important as well as theoretical results. 

(5) Scheduling mode1 (- 376 Scheduling and 
Production Planning). Network scheduling is 

used to schedule complicated projects (for 
example, construction of buildings) that 

consist of a large number of jobs related to 
each other in some natural order. PERT (pro- 
gram evaluation and review technique) and 

CPM (critical path method) are popular com- 
putational methods for this mode1 (- 281 
Network Flow Problems). Job shop scheduling 
is used when we have m jobs and n machines 
and each job requires some of the machines in 
a given order. The mode1 allows us to lïnd an 
optimal order (in some certain sense) of jobs to 

be implemented on each machine. 
(6) Replacement model. There are two typical 

cases. One is the preventive maintenance model, 
which is suitable when replacements are done 

under a routine policy because a replacement 
or a repair before a failure is more effective 
than after a failure. Probabilistic treatments 

are mainly used, and this mode1 resembles 
those for queues and tMarkov processes. The 
other is a mode1 for deciding whether to re- 
place a piece of equipment in use. In this case, 
we need to compare costs of both used and 
new equipment, and evaluations of various 
types of present cost are important. 

(7) Simulation. This is a numerical experi- 

ment in a simulated mode1 of a phenomenon 
which we want to analyze. Simulation is one of 

the most popular techniques in OR. 

(8) Other models. Besides the models listed 
above, many problems are formulated by way 
of various other models in OR. In modeling, 
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tprobability theory, and mathematical tstatis- 
tics, especially, tMarkov chain, tmultivariate 
analysis, tdesign of experiments, tregression 
analysis, ttime series analysis, etc. often play 
important roles. 
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308 (X11.19) 
Operator Algebras 

A. Preliminaries 

Let 5 be a +Hilbert space. The set of +bounded 
linear operators on @ is denoted by .S(sj) = J. 
It contains the identity operator 1. The notions 
of opera.tor sum A + B, operator product AB, 
and +adJoint A* are defïned on it. A subalge- 
bra of U(sj) is called an operator algebra. In 
this article we consider mainly von Neumann 
algebras. For C*-algebras - 36 Banach Alge- 
bras G-K. 

Any tHermitian operator A (i.e., an operator 

such that A = A*) has the property that (Ax, x) 
is always real for any XE$~. If (Ax,x)>O for 
any x, A is called positive, and we Write A 3 0. 
When Hermitian operators A and B satisfy A 
~ B 3 0, we Write A > B. Thus we introduce an 
ordering A > B between Hermitian operators. 
A set {A,) of positive Hermitian operators is 
said to be an increasing directed set if any two 
of them A,, A, always have a common major- 

ant A,, that is, A,< A, and A, < A,. If a Her- 
mitian operator A satisfies (Ax, x) = sup(A,x, x) 
for such a set, it is called the supremum and is 
denoted by sup A,. The supremum sup A, 
exists if and only if the sup(A,x, x) is finite for 

any x, and then A, converges to A with respect 
to the weak and strong operator topologies. 

B. Topologies in .#I 

Various topologies are introduced in % = 

.a(%): the +uniform operator topology, the 
+strong operator topology, and the tweak 

operator topology (- 251 Linear Operators). 
These topologies are listed above in order of 

decreasing îïneness. The operation in % of 
taking the adjoint, A-t A*, is continuous with 

respect to the uniform operator topology and 

weak operator topology, but not with respect 
to the strong operator topology. The opera- 
tion from 2 x J to &? of taking the product, 
(A, B)-tAB, is continuous with respect to the 
uniform operator topology, is continuous with 
respect to the strong operator topology when 
the first factor is restricted to a set bounded in 
the operator norm, but is not contmuous on 
.-A x %. It is continuous with respect to the 

weak operator topology when one of the fac- 
tors is iïxed (i.e., it is separately continuous). 

The set D is a TBanach space with respect to 

the operator norm, or, more precisely, a +C*- 
algebra. It is a +locally convex topological 
linear space with respect to the strong or weak 
operator topology. 

The Banach space g is the +dual of the 
Banach space ~4, of all tnuclear operators in 
S, (- 68 Compact and Nuclear Operators 1). 
The weak* topology in 33 as the dual of %, is 
called the <T-weak topology. 

C. Von Neumann Algebras 

A subset ./H of .S is called a *-subalgebra if it 
is a subalgebra (i.e., A, BE.~ implies i.A+pB, 

ABE.~) and contains the adjoint ,4* of any 
AEM. The commutant .d’ of a subset .d of Z8 
is the set of operators that commu1.e with both 

A and A* for AE.~. The commutant is a *- 
subalgebra, and .d’ = SZZ”‘. 

A von Neumann algebra .,&! is a =-subalgebra 
of %Y that is delïned by one of the follow- 
ing four equivalent conditions: (i) ,@ is a *- 

subalgebra of 8 containing 1, closed under 
the weak operator topology; (ii) & is a *- 
subalgebra of Ua, containing 1, closcd under 
the strong operator topology; (iii) .&Y is the 

commutant of a subset of 9 (or, equivalently, 
.4? = &“‘); (iv) .4? is a *-subalgebra of .%Y con- 

taining Z, closed under the uniform operator 
topology, and, as a Banach space, coinciding 
with the conjugate space of some Banach 
space. Note that a *-subalgebra of g, closed 
under the uniform operator topology, is a 
C*-algebra. Von Neumann a1gebra.s are also 

called rings of operators or W*-algebras. The 
latter term is usually used for a C*-.algebra 
*-isomorphic to a von Neumann algebra in 
contrast to a concrete von Neumann algebra. 

The study of these algebras was :started by J. 
von Neumann in 1929. He showed the equiva- 

1 lente of conditions (i)-(iii) (von Neumann% 
1 density theorem), and established a foundation 

for the theory named after him [l] The notion 

of von Neumann algebras cari be regarded as 

a natural extension of the notion oFmatrix 
algebras in a lïnite-dimensional space, and 

therein lies the importance of the theory. The 
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fourth condition of the defmition was given by 

S. Sakai (Pacifie J. Math., 1956). 
The following theorem is of use in the the- 

ory of von Neumann algebras: Given a *- 
subalgebra d of LB containing 1, its closure & 

with respect to the weak or strong operator 
topology is von Neumann algebra; and when 
we denote the set of elements of operator norm 
< 1 in d (resp. J&‘) by ~2, (resp. &ZJ, A1 is 
likewise the closure of ~2, with respect to the 

weak or strong operator topology (Kaplan- 
sky’s density tbeorem (Ann. Math., 1951). 

If E is a projection operator in a von Neu- 
mann algebra 4, then EJE = {EAE 1 A Idi’} 
is a *-subalgebra of %? closed with respect to 

the weak operator topology. It is not a von 
Neumann algebra because it does not contain 
I, but since its elements operate exclusively in 

the closed subspace E!& we cari regard it as 
an algebra of operators’on E!-j. In this sense, 
EdE cari be regarded as a von Neumann 
algebra on E4j, which we cal1 the reduced von 
Neumann algebra of &’ on ES, and Write J?~. 
If E is a projection operator in A’, EkfE = 
Ed restricted to the subspace E$j is called 
the induced von Neumann algebra of & on 
Etij and is denoted also by dE. In the latter 

case, the mapping A E J%’ + EA E &fE is a *- 
homomorphism and is called the induction of 

dl ont0 AE. 
The tensor product 5jj, @ & of two Hilbert 

spaces Gi (i = 1,2) is the tcompletion of their 
ttensor product as a complex linear space 
equipped with the unique tinner product satis- 

fying Ch Q.Lgl Og,)=(f,,g,),(f,,g,)* for 
a11 fi, gis!&. For any AicB(Sji), there exists 
a unique operator in a(!& 0 !&) denoted 

by A, 0 A, satisfying (A, 0 A,)(f, 0 fi) = 
A,f, @ A2f2 for a11 fic!&. For von Neumann 
algebras Ai c %(!&), the von Neumann alge- 

bra generated by A, Q A, with Ai~Mi is de- 
noted by A1 0 .,+Y2 and is called the tensor 
product of JZ!, and .L&. The *-isomorphism AE 
&+A @ 1 E & @ 1, where 1 is the trivial von 
Neumann algebra consisting solely of complex 
multiples of the identity operator, is called an 
amplification. 

For two von Neumann algebras .Jz’~ c @ji) 
(i = 1,2), a *-isomorphism n from A1 into &Y2 

is called spatial if there exists a unitary (i.e., a 
bijective isometric linear) mapping U from !& 
to $j2 such that UAU*=nA for a11 Ae.M1, 
and a *-homomorphism R is called normal if 

supanA, = ~(sup, AJ whenever A, is a bounded 
increasing net in A. Any normal *-homomor- 
phism is continuous in the strong and weak 
operator topologies and is a product of an 
amplification, a spatial *-isomorphism, and an 

induction. Its kernel is of the form E&i!, where 
E is a projection operator belonging to the 

tenter ZJ‘= J?! n 4’ of 4. This gives a com- 

plete description of a11 possible normal repre- 
sentations (i.e., a normal *-homomorphism 
into some B) of a von Neumann algebra. 

D. States, Weigbts, and Traces 

A state <p of a C*-algebra & is a complex- 
valued function on ~-4 that is (1) complex 

linear: q(A+B)=cp(A)+cp(B), ~(CA)=~(A) 
for A, BE.&, C~C, (2) positive: q(A*A)>O for 
AE &, and (3) normalized: 11 cp \( = 1 (equiva- 
lent to ~(1) = 1 if I E &). For any positive 
linear functional <p on d, there exists a triplet 

(sj., xc, 5,) (unique up to the unitary equiva- 
lente) of a Hilbert space &,, a representa- 
tion ne (i.e., a *-homomorphism into B(&,,)) 

of LX~, and a vector 5, in a,+, such that <p(A) = 
(n,(A)&, 5,) and sj, is the closure of K,(&‘)&. 
The space $J,,, is constructed by detïning the 
inner product (q(A), q(B)) = @?*A) in the 
quotient of J& by its left ideal {Alq(A*A)= 
0}, where q is the quotient mapping, and by 
completion. Then Z, is defined by n,(A)@) = 

q(AB). This is called the GNS construction 
after its originators 1. M. Gel’fand, M. A. 
Naïmark, and 1. E. Siegel. 

A weigbt <p on a von Neumann algebra Jz’ is 
a function deiïned on the positive elements of 
A, with positive real or infinite values, which 
is additive and homogeneous (q(A + B) = 
q(A)+rp(B) and &A)=~~I(A) for a11 A, BE 
.,&’ and I > 0 with the convention 0. CO = 0 and 
cc + a = CO). It is said to be faitbful if it does 

not vanish except for rp(O)=O, normal if q(A) 
= sup <p(A,) whenever A, is an increasing net 

of positive elements of J%’ and A = sup A,, and 
semihite if the left ideal ‘!Rq, consisting of a11 
elements A~dt’ for which ‘p(A*A) is finite, has 

the property that the linear span !IX, of %m%, 
is dense in A. The restriction of cp to positive 

elements of W, has a unique extension to a 
linear functional on !JJl,, which we denote by 
the same letter <p. Canonically associated with 

a normal semilïnite weight <p, there exists a 
Hilbert space Ç&, a normal *-representation z,+, 

of &!, and a complex linear mapping q from 
‘9&, into a dense subset of $j, such that (q(B’), 
@))=cp(B*B), and q&A)t@)=q(AB), where 
B, B’E’%, and AE 4. If cp is finite (i.e., ‘!R,,, = 
A), then its extension to &’ is a positive linear 

functional for which the triplet (!$,, z,,,, q( 1)) 

is given by the GNS construction. 
The linear span of a11 normal states of a von 

Neumann algebra A is a norm-closed sub- 
space of its dual A*, called its predual and 
denoted by J&, because 4’ turns out to be the 

dual of A.+. 
A trace t on a von Neumann algebra .4? is a 

weight satisfying t(UAU*) = t(A) for U unitary 
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in A and for a11 positive A in A (equivalently, 
t(A*A)= t(AA*) for a11 A EA). 

E. The von Neumann Classification 

A von Neumann algebra for which a semi- 
fmite normal trace does not exist is called a 

purely infinite von Neumann algebra or von 
Neumann algebra of type III. In contrast to 
this, a von Neumann algebra & is called 
semifinite (resp. finite) if for each positive Her- 
mitian operator A (#O) in .I there is a semi- 
fïnite (resp. tïnite) normal trace t such that 
t(A)#O. Every Abelian von Neumann algebra 

is lïnite. If there are no central projection oper- 
ators E #O such that &E is finite, A is called 
properly infinite. Purely infinite &? and .%(4j) 

for inlïnite 5j, for example, are properly in- 
fmite. A nonzero projection operator E in 4 is 
called Abelian when &E is Abelian. We cal1 & 
a von Neumann algebra of type 1 (or discrete) 
when it contains an Abelian projection E for 

which 1 is the only central projection P cover- 
ing E (i.e., E < P). A von Neumann algebra is 

of type II if it is semitïnite and contains no 
Abelian projection. A von Neumann algebra 
of type 1 t is called of type II 1 if it is fïnite and 
of type II, if it is properly infinite. A fïnite von 
Neumann algebra is also characterized as a 
von Neumann algebra in which the operation 
of taking the adjoint is continuous with re- 

spect to the strong operator topology on 
bounded spheres (Sakai, Proc. Japan Acad., 

1957). A properly infinite von Neumann alge- 
bra d is characterized by the property that 
.M and J&? @ g(sj) for any separable 5j is *- 
isomorphic. 

Given a von Neumann algebra A, there 
exist mutually orthogonal projections E,, E,,, 

E,,, in the tenter d of .M such that E, + E,, + 
E,,, = 1, and AE,, AE,,, ME,,, are von Neumann 
algebras of type 1, type II, type III, respec- 
tively. This decomposition is unique. There 

also exist unique central projections E, and 
Ei such that -AE, is f-mite, AE, is properly in- 
finite, and Es + Ei = 1. The two decompositions 
cari be combined. (If some of the projections E 

are 0, the condition on the corresponding .AE 
is to be waived.) 

F. Factors 

A von Neumann algebra whose tenter consists 
exclusively of scalar multiples of the identity 

operator is called a factor. Von Neumann’s 
reduction theory (- Section G) reduces the 
study of arbitrary von Neumann algebras on 

a separable Hilbert space more or less to the 
study of factors. Factors are classified into 

types 1, (n = CO, 1,2,. ), II, (i.e., of type II and 

finite), II, (i.e., of type 11 and not fïnite), and 
III. A factor of type 1, is isomorphic to the 
algebra B(5) of a11 bounded operators on an 
n-dimensional Hilbert space sj. Since the dis- 
covery of two nonisomorphic examples of 
factors of type II, by F. J. Murray and von 
Neumann (1943), classification of factors has 

been a central problem in the theory of von 
Neumann algebras. After 1967, great progress 
was made in the investigation of isomorphism 
classes of factors, and we have uncountably 
many nonisomorphic examples of factors of 

types II,, II,, and III. After the discovery of 
the third to ninth nonisomorphic examples of 

factors of type II, by J. Schwartz (1963) (the 
third example, 1963), W. Ching (the fourth), 

Sakai (the fïfth), J. Dixmier and E. (3. Lance 
(the sixth and seventh), and G. Zeller-Meier 
(the eighth and ninth), D. McDuff showed that 

there exist countably many nonisomorphic 
examples of factors of type II 1, and lïnally 
McDuff (Ann. Math., 1969) and Sakai (J. Func- 

tional Anal., 1970) showed the existN:nce of 
uncountably many nonisomorphic examples 
of factors of type II,. For type III factors - 
Section 1. 

G. Tbe Integral Direct Sum and 
Decomposition into Factors 

The Hilbert spaces considered in this section 
are a11 tseparable. Let (‘%R, d, p) be a tmeasure 

space; with each [E~JI we associate a Hilbert 
space $j([). We consider functions x(5) on 9JI 
whose values are in 5j([) for each <. Let K be 
a set of these functions having the following 

properties: (i) Ilx([)ll is measurable for x([)EK; 
(ii) if for a function y([), the numerical func- 
tion (x(c), y([)) is measurable any x(LJEK, 
then yak; (iii) there is a countable family 
{x1 (<), x,(l), . . } of functions in K such that 

for each fixed [c!IR, the set {xl([),xz([), . ..} is 
dense in b(c). Then K is a linear space. We cal1 
each function in K a measurable vector func- 
tion. We introduce in the set of measurable 
vector functions x(i) with 

an equivalence relation by delïning x(c) and 
y([) as equivalent when 

Thus we obtain a space of equivalence classes 
which we denote by $. $5 is a Hilbert space 
with the inner product 

(x, y) = s (x(i)> y(i)) 440 
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which is called the integral direct sum (or direct 
integral) of fi([). An operator function A(c) 

that associates with each c E YJI a bounded 
linear operator A([) on sj([) is called measur- 
able if for any measurable x(c), A(i)~(i) is also 
measurable. If, moreover, IIA(c)JI is bounded, 
A(c) transforms a function in 6 to a function 
in & and thus defïnes a bounded linear oper- 
ator on b. This operator is called the integral 
direct sum (or direct integral) of A(c), and an 
operator on J3 that cari be reduced to this 

form is called decomposable. 
Generally, let fi be a Hilbert space, and 

consider an Abelian von Neumann alge- 
bra d on 4j. Then we construct a measure 
space (YJI, 8, PL) and represent d as the set of 

bounded measurable functions on ‘!LX. (This is 
possible in different ways. The Gel’fand repre- 

sentation is an example.) Then a Hilbert space 
5(i) cari be constructed SO that b is repre- 
sented as the integral direct sum of a(<). Oper- 
ators in d are a11 decomposable and are called 
diagonalizable. A von Neumann algebra & on 

$j whose elements are a11 decomposable is 
characterized by .,#Y c &‘. The A([) yielded 
by the decomposition of operators A in A 

generate a von Neumann algebra A([) on 
B(l). If we take as d the tenter 3 of A, then 
almost a11 the .,#Y(<) are factors (Von Neumann% 
reduction tbeory), and if we take as d a maxi- 
mal Abelian von Neumann algebra contained 
in .&‘, then almost a11 the A(c) are type 1 
factors (F. 1. Mautner, Ann. Math., 1950). 

H. Tomita-Takesaki Tbeory 

Motivated by the problem of proving the 
commutant theorem for tensor products (i.e., 

(A1 @ AZ)’ =A; @ Ai), which remained 
unsolved for algebras of type III up until that 
time, Tomita succeeded in 1967, after years of 
effort, in generalizing the theory of Hilbert 
algebras, previously developed’only for semi- 

finite von Neumann algebras. The most im- 
portant ingredient of this theory lies in certain 

one-parameter groups of *-automorphisms of 
a von Neumann algebra, called modular auto- 

morphisms (see below), each one-parameter 
group of modular automorphisms being in- 
trinsically associated with a faithful semifïnite 

normal weight of the algebra. Tomita’s theory 
was perfected by Takesaki [ 131, who also 
showed that modular automorphisms satisfy 
(and are characterized by) a condition origi- 
nally introduced in statistical mechanics by 

the physicists R. Kubo, P. C. Martin, and J. 
Schwinger and accordingly known as the 

KMS condition. In the mathematical founda- 
tions of statistical mechanics, this condition 

characterizes equilibrium states of a physical 

system for a given one-parameter group of 
automorphisms (of a C*-algebra) describing 
the time-development of the system. It was a 

fortunate coincidence that this condition was 
formulated in a so-called C*-algebra approach 
to statistical mechanics by R. Haag, N. M. 
Hugenholtz, and M. Winnink [ 141 at about 
the same time that Tomita’s work appeared 

in 1967. The original proofs of the Tomita- 
Takesaki theory have been simplified con- 
siderably by the work of M. Rieffel [16] and 
A. Van Daele [15]. Deeper insight into the 
signifïcance of modular automorphisms is also 

provided by the work of A. Connes [ 191, 
showing that the group of modular automor- 
phisms (up to inner automorphisms) is intrin- 
sic to the von Neumann algebra (i.e., inde- 
pendent of the weight) and belongs to the 

tenter of Out .& (the group Aut A of a11 *- 
automorphisms of the von Neumann algebra 

A modulo the subgroup Int A of a11 inner 
*-automorphisms). 

Some of the basic definitions and results of 
the Tomita-Takesaki tbeory are as follows. If <p 
is a normal semifinite faithful weight on A, 

the antilinear operator S,, deiïned on a dense 

subset r#I, fl X;) of !$, (- Section D) by the 
relation S,+&4)=~(A*), is tclosable and the 

polar decomposition S, = J,Az’ of its closure 
defines a positive self-adjoint operator A,, 
called a modular operator, and an antiunitary 
involution J,,,. The principal results of the 
Tomita-Takesaki theory are (1) if x E A, then 
@‘(A) E A$4Aii’ E &! for a11 real t, and this 
defines a continuous one-parameter group of 
*-automorphisms @ of .L, called modular 

automorphisms, and (2) if AEM, then j,(A)= 
J,AJ,EX, and j, is a conjugate-linear iso- 

morphism of A onto X. A weight rp on A 
is said to satisfy the KMS condition at fi (a real 
number) relative to a one-parameter group of 
*-automorphisms a, of &Z if, for every pair 
A, BE %+, n %$, there exists a bounded con- 
tinuous function F(z) (depending on A, B), on 
0 < Im z < /? holomorphic in 0 < Im z < b and 

such that F(t) = cp(Aa,(B)) and F(t + il?)= 
~(O#S)A). A given one-parameter group a, 
coincides with a group of modular automor- 
phisms a: if and only if cp satistïes the KMS 
condition at p= -1 relative to ut. (In statistical 

mechanics, B = (kT)-‘, where k is the Boltz- 
mann constant and T the absolute tempera- 

ture of the system.) 

1. Structure and Classification of Factors of 
Type III 

At the Baton Rouge Conference in 1967, R. 
T. Powers reported his results [ 171 on non- 
isomorphism of the one-parameter family 
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of factors of type III (now called Powers’s 
factors), which had been constructed by von 
Neumann in 1938 in terms of an iniïnite ten- 

sor product of factors of type 1 (abbreviated 
as ITPFI). Prior to Powers’s work only three 
different kinds of factors of type III, along 
with the same number of factors of type II 1, 
had been distinguished. A systematic classifïca- 
tion of ITPFIs was subsequently given by 
H. Araki and E. J. Woods [18] in terms of two 
invariants, i.e., the asymptotic ratio set r,(,N) 

and the p-set p(&‘) of the von Neumann 
algebra .X. Using the Tomita-Takesaki the- 
ory, Connes [19] introduced two invariants, 
namely the S-set S(.&‘) (the intersection of the 
spectra of all modular operators) and the T-set 

T(.M) (the set of a11 real t for which the modu- 
lar automorphism @’ is inner), and, when J& is 
an ITPFI, proved the equality S(.M) = r,(d) 
and the relation T(d) = 2z110gp(J&)l -l. The 
S-set S(.,#) of a factor of type III on a separa- 
ble Hilbert space is either the set of all non- 
negative reals (type III,), the set of a11 integral 
powers of 3, (where 0 <n < 1) and 0 (type III,), 

or the set {O, 1) (type III,). The work of Araki 
and Woods shows that there exists only one 

ITPFI of type III, for each LE(O, 1) (the exam- 
ples of Powers) as well as for Â = 1, while there 

exist continuously many ITPFIs of type III,. 
Woods [20] has shown that the classification 
of ITPFIs of type III, is not smooth. 

A structural analysis of factors of type III, 
given independently by Connes [ 193, Takesaki 
(Acta Math., 1973), and Araki (Publ. Res. Inst. 

Math. Sci., 1973) expressed independently a 
certain class of factors of type III as a kind of 

crossed product of semifïnite von Neumann 
algebras with their injective endomorphisms 
(automorphism in the case of Connes). These 

analyses led Takesaki [21] to the discovery 
of a duality theorem for crossed products of 
von Neumann algebras with locally compact 
groups of theik *-automorphisms (- Section J) 
and its application to the following structure 
theorem for von Neumann algehras of type III. 
The crossed product of a von Neumann alge- 
bra .LZ with the group of modular automor- 
phisms @’ is a von Neumann algebra M of 

type II,, with a canonical action 0, of the 
dual group as a one-parameter group of *- 
automorphisms which is trace-scaling, i.e., 

z o 8, = e -‘T for some faithful normal trace z. 
If d is properly infinite, the crossed product 
of .,lr with 0, is isomorphic to the original von 
Neumann algebra .L. In particular, any von 
Neumann algebra 4? of type III cari be writ- 
ten as the crossed product of a von Neumann 
algebra X of type II, with a one-parameter 

group of trace-scaling *-automorphisms 0,. 

The isomorphism class of d is determined by 

the isomorphism class of .k’ together with the 

conjugacy class of Q, modulo inner automor- 
phisms. The restriction 8, of 0, to the tenter 3 
of A’ is of special importance. M is a factor if 

and only if 8, is ergodic. In that case, &! is of 
type III 1 if M is a factor, & is of type III,, 
0 < 3, < 1, if 0, is periodic with period - log A, 
and A is of type III, if & is aperiodic and not 
isomorphic to the one-parameter group of 
*-automorphisms of L,(R) induced by the 
translations of the real line R. (The excluded 

case does not occur for &X’ of type Il 1.) 
A von Neumann algebra on a separable 

Hilbert space is called approximately fïnite- 
dimensional (or approximately finite or byper- 
finite) if it is generated by an increasing se- 
quence of finite-dimensional *-subalgebras. 

This class of von Neumann algebras includes 
many important examples, such as ITPFI and 
the von Neumann algebra generated by any 
representation of canonical commulation (or 
anticommutation) relations on a separable 
Hilbert space. The classification of approxi- 
mately finite-dimensional factors is almost 
complete. In fact the uniqueness of an approxi- 
mately finite-dimensional factor of type II, has 
been known since the work of von Neumann. 

It is called the hypertïnite factor. Th’z unique- 
ness of approximately lïnite-dimensional fac- 
tors of type II, (which is then the tensor prod- 

uct of the hyperfïnite factor with a($)) and of 
type III,, 0 <IL < 1, (which are then Powers’s 
factors) has been demonstrated by Connes 
[22]. Approximately fïnite-dimensional fac- 
tors of type III, are classifïed exactly by the 
isomorphism classes of the ergodic groups 8c 
of *-automorphisms of commutative von Neu- 
mann algebras 3. Any such factor is a Krie- 
ger’s factor, Le., a crossed product OF a com- 

mutative von Neumann algebra with a single 
*-automorphism. Examples of such factors 

have been extensively studied by Krieger, who 
has also shown [23] that isomorphism of a 
Krieger’s factor is equivalent to weak equiva- 
lente of the associated nonsingular transfor- 
mation of the standard measure space. 

A von Neumann algebra on a separa- 
ble Hilbert space is approximately finite- 
dimensional if and only if it is injective (- 36 

Banach Algebras H). 

J. Crossed Products 

The crossed product U41 0, G of a vo n Neu- 
mann algebra .&’ (acting on a Hilbert space 
sj) and a locally compact Abelian group G 
relative to a continuous action c( of G on .M 

(by *-automorphisms us, gE G) is the von 
Neumann algebra N generated by 1 he opera- 

tors n(A), AE&? and i(h), heG, defined on the 
Hilbert space L,(G, $j) of all .!j-valued Lz- 
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functions on G (relative to the Haar measure) 

by 

where t: E L, (G, J3). The canonical action 6( 

of the dual G on Jlr is defined by 62,(B) = 
p(p)Bp(p)* for BE&” and pee, where p(p) 

is defined by CAPM (9) = (9, P> t(g). The 
duality theorem of Takesaki [2t] asserts 
that [A 0, G] @e is isomorphic to & 0 
@L,(G)), where the second factor a@,(G)) 
is the algebra of all bounded linear operators 
on L,(G). 

K. Natural Positive Cone 

The closure Vu of the set of vectors A;q(A) 
for all positive A in ‘%+, n ‘%s reflects certain 
properties of the von Neumann algebra & 

for O< c( < l/2 [24,25], In particular, V’i4 is 
called the natural positive cone. It is a self-dual 
closed convex cone, and is intrinsic to the von 

Neumann algebra & (i.e., independent of 
the weight rp). Every normal positive linear 
functional $ on & has a unique representa- 
tive <(+) in this cone (i.e., t+b(A)=(q+,(A)<($), 

t($))), and the mapping l is a concave, mono- 
tone, bijective homeomorphism, homo- 
geneous of degree l/2. The group of all *- 

automorphisms of & has a natural unitary 
representation U(g), gEAut A, satisfying the 

relations U(g)ALJ(g)*=g(A), U(g)s(cp)= 

5((PogP). 

L. C*-Algebras and von Neumann Algebras 

Let a C*-algebra & be given. A *-represen- 
tation x+ TX gives rise to a von Neumann 
algebra A, generated by TX, x E &. The type of 

this representation is defined according to the 
type of &. A C*-algebra is called a C*-algebra 
of type I if its *-representations are always of 
type I. It is known that this class is exactly the 

class of GCR algebras (- 36 Banach Algebras 
H). It is also known that a separable non-type 
I C*-algebra has a representation of type II 
and a general non-type I C*-algebra has a 
representation of type III (J. Glimm, Ann. 
Math., 1961; Sakai [S]). 

For a C*-algebra &, all its representations 
generate tinjective von Neumann algebras if 

and only if & is tnuclear [26,27]. 

M. Topological Groups and von Neumann 

Algebras 

Consider a unitary representation g+ Ug of a 
locally compact Hausdorff group G (- 423 

Topological Groups). If this representation is 
a tfactor representation, the type of this repre- 
sentation is defined according to the type of 
the von Neumann algebra -&’ generated by 
U,, gE G. A tgroup of type I is a group whose 
factor- representations are all of type I. For 
example, connected semisimple Lie groups and 

connected nilpotent Lie groups are of type I 
(Harish-Chandra, Trans. Amer. Math. Sot., 
1953; J. M. G. Fell, Proc. Amer. Math. Sot., 

1962). Examples of groups that are not of type 
I are known (- 437 Unitary Representation 

El. 
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309 (XX.7) 
Orbit Determination 

A. General Remarks 

The purposes of the theory of orbit determi- 
nation are (1) to study properties of orbits of 
celestial bodies, (2) to determine orbital ele- 
ments from observed positions of the celestial 
bodies, and (3) to compute their predicted 
positions utilizing the orbital elements. Celes- 
tial bodies to which the theory is applied are 

mainly planets, asteroids, comets, satellites, 

and artificial satellites in the solar system, 
although orbits of meteors and visual, photo- 

metric, and eclipsing binaries can be deter- 

mined by similar methods. 

B. Kepler’s Orbital Elements 

Consider, for example, an asteroid moving on 
an ellipse with one focus at the sum. The ellip- 
tic orbit is fixed by the initial conditions of the 
motion or the integration constant,3 of the 

tHamilton-Jacobi equation (- 55 Celestial 
Mechanics) and is described by Kepler’s orbital 

elements a, e, w, i, Q, and t, (Fig. 1). 

north 

Fig. 1 
Orbital elements 

The size and shape of the ellipse are deter- 
mined by the semimajor axis (half I:he tmajor 
axis) a and the teccentricity e, while the argu- 
ment w  of perihelion, measured from the as- 
cending node to the perihelion, shows the 
direction of the major axis. (Sometimes, we 

adopt as one of the main parameters the peri- 
helion distance 4 = a( 1 -e) instead of the semi- 
major axis a.) The position of the orbital plane 

is determined by the inclination angle i to the 
ecliptic and the longitude R of the ascending 

node, and then the position of the asteroid 
on the orbit is determined by the time t, of 

the perihelion passage. The period T of one 
revolution, or mean motion n = 2n/T, which 
is the mean angular velocity, is computed by 
Kepler’s third law u2a3 = p, with p a constant 
depending on the mass of the asteroid. The 

mean motion is a fundamental frequency in 
the solution of the Hamilton-Jacobi equation 
and is obtained by differentiating the energy 

constant -p/2a with respect to an action 
variable fi. 

To express the position of the asteroid on 
the ellipse as a function of time, we use the 

true anomaly u, which is the angular distance 
of the asteroid from the perihelion. the eccen- 
tric anomaly E, and the mean anomaly M = 
n(t -to). Of these three anomalies the mean 
anomaly can be derived directly from Kepler’s 

elements, although it must be transformed to 

the true anomaly or to the eccentric anomaly 
when we compute the coordinates of the aster- 
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oid. Kepler’s equation 

E-esinE=M (1) 

holds between E and M. Solving this equation, 
we obtain an expression for E as a function of 
M: 

E = M +“~i~JJne)sinnM, 

where J,, is the tBesse1 function of order n. 
However, in practical computations, we often 
solve equation (1) directly by numerical 
methods or by using tables. 

C. Orbit Determination 

An astrometric observation of a celestial body 
usually consists of measurements of two co- 

ordinates (right ascension and declination) on 
the celestial sphere. Therefore, to derive six 
orbital elements, three sets of observations 
should be made at three moments separated 
by appropriate time intervals. If the topocen- 
tric distance of the celestial body is known, 
the orbital elements can be computed directly 
from observations. However, since the distance 

is not usually known, special methods have 
had to be developed. A method for orbit deter- 
mination was worked out by C. F. tGauss at 
the beginning of the 19th century to find the 

orbit of Ceres, the first asteroid to be dis- 
covered. Although the topocentric distances 
are not known, we know that orbits of aster- 
oids are planar, and Kepler’s second law, the 
law of conservation of area1 velocity, holds 
approximately. Therefore we can assume that 

the area of the triangle made by the sun and 
the two positions of the asteroid observed at 
different moments is proportional to the cor- 
responding time interval. Using this property 
of the orbit we can derive the topocentric 

distance and then the orbital elements. This 
method is called the indirect method, and 

similar methods can be developed for para- 
bolic and hyperbolic orbits. 

D. Osculating Elements and Orbit 
Improvement 

For the ttwo-body problem the orbit is a fixed 

and invariable ellipse, and therefore Kepler’s 
orbital elements are constants. On the other 
hand, when gravitational interactions from 

other bodies cannot be disregarded, the orbital 
elements are found to be variable by comput- 
ing the tperturbations by the tmethod of vari- 
ation of constants. The perturbations are 

expressed as sums of periodic, tsecular, and 
long-periodic terms. 

Because of the perturbations, the orbit 
deviates from the fixed ellipse, although at 
every moment the instantaneous velocity and 
position of the asteroid determines an ellipse. 
The orbital elements of the ellipse thus defined 

at each moment, called osculating elements, are 
variable with time. To compute perturbations 
that cause this change of osculating elements, 

it is necessary to observe the initial conditions 
of motion, i.e., the osculating elements at the 
initial moment. During a time interval shorter 
than the period of one revolution, the vari- 
ations of the osculating elements are usually 
very small. Therefore, by three sets of observa- 
tions made at three moments at short inter- 

vals, it is possible to determine the orbital 
elements that can.be identified with the oscu- 
lating elements observed at the mean moment. 
However, if the intervals are very short, errors 

in the determined values often are very large, 
and it becomes necessary to carry out obser- 
vations at distant moments also. When such 
additional observations are made, those data 
are compared with the respective values that 
follow from the initial observations, and the 

perturbations computed from them; then the 
method of least squares is used to improve the 

estimation of the orbital elements. 

E. Artificial Satellites 

Since the periods of revolution of asteroids 
are of the order of a few years, the osculating 
elements change very little in a few weeks. On 
the other hand, for artificial satellites moving 
around the earth, the periodic as well as secu- 
lar perturbations become very large after a 

few hours because the period of revolution 
may be as short as two hours. Therefore, to 
determine orbital elements for artificial satel- 
lites, observed positions should be corrected 

by subtracting the effects of periodic pertur- 
bations computed from approximate orbital 
elements already known. By using the obser- 
vations thus corrected, mean orbital elements 
are derived by the method of orbit improve- 
ment. The approximate orbital elements can 

be computed if the launching conditions of the 
satellites are known. In this manner, mean 
orbital elements can be derived every day, and 
variations of the mean orbital elements, or 
amounts of secular perturbations, for a certain 

period (say, for 100 days) are found. From 
them, information on atmospheric density and 
the gravitational potential of the earth are 
derived. It should be remarked that for arti- 
ficial satellites distance measurements have 

been made by radar, and velocity determi- 
nations have been made by measuring the 
Doppler effect. 
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For satellites of other planets, measurements 
of two coordinates with respect to the centers 
of the planets are made. Masses of planets can 
be computed by Kepler’s third law when the 
orbital elements of satellites are known, and 
gravitational potentials of the planets can be 

determined from their secular perturbations. 

F. Binaries 

In the study of visual binaries, methods similar 
to those for satellites can be applied, although 
the exact estimation of the distances to bina- 
ries is often impossible. For photometric 
binaries radial components of velocities are 
derived by measuring the Doppler effect; and 
for eclipsing binaries important information, 
such as their masses, densities, and sizes, as 

well as data regarding their internal consti- 
tutions, can be derived from the observed 
orbital elements. 
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310 (X11.4) 
Ordered Linear Spaces 

A. History 

Many spaces used in functional analysis, such 
as +Hilbert spaces, +Banach spaces, and rtopo- 

logical linear spaces, are generalizations of 
Euclidean spaces, where the leading idea has 
been to generalize the distance in Euclidean 
spaces in various ways. On the other hand, 
generalizing the order concept for real num- 
bers has led to spaces of another kind: ordered 
linear spaces and vector lattices. The theory of 
vector lattices was presented in a lecture by F. 
Riesz at the International Congress of Mathe- 

maticians in 1928 [l] and has been developed 
by many authors. Among them we cite H. 
Freudenthal, L. V. Kantorovitch (Mat. Sb., 2 

(44) (1937)), Riesz (Ann. Math., (2) 41 (1940)), 
S. Kakutani, F. Bohnenblust, G. Birkhoff [2], 

H. Nakano [3], B. C. Vulikh [S], and H. H. 
Schaefer [S]. Vector lattices have been used in 
lattice-theoretic treatments of integration (- 

Section I), +spectral resolution, and tergodic 
theory. The central notion is Bana’zh lattices 
(- Section F), but the theory has been ex- 
tended to the case where E is a +locally convex 
topological linear space with the SI ructure of 
a vector lattice [S-S]. 

B. Definitions 

A real tlinear space E is said to be an ordered 

linear space if E is supplied with an torder 
relation > with the following two properties: 
(i)xayax+z>y+z;(ii)x>yan’i/13O(iis 
a real number) j ix > 3,~. 

If, in addition, E forms a UaHice under this 

order 2, we call E a vector lattice (Riesz space 
or lattice ordered linear space). 

For Sections B through E, we assume E to 

be a vector lattice. For any x, YE E, the tjoin 
and +meet of x, y are denoted by x v y and 
x A y respectively. The following relations are 
obvious: 

(x+z)v(y+z)=(xvy)+z, 

ixviy=i(xvy), ixAiy=l.(xAy) (i>O), 

iXViy=i(XAy), iXAiy=i(XVJl) (iGo) 

and 

(XVy)AZ=(XAz)V(yAZ), 

The last relation means that E is a tdistribu- 
tive lattice. 

For x E E, the elements x v 0, ( -.r) v 0, and 
x v( -x) are called respectively the positive 
part, negative part, and absolute value of the 
element x, and are denoted respectively by x+, 
x-, and 1x1. The following identities hold: x= 
X+ -x (Jordan decomposition), Ix I= x+ + 
x ,X+/TX-= 0, XVy+XAy=X+J>, liXl= 

Jillxl, and Ix-yl=xvy-XAY. 

For a, b6E with a<b, the set {xla<x<h} 

is called an interval and is denoted by [a, b]. 
A subset of E is called (order) bounded if it is 
included in an interval. An element e of E is 

said to be a unit or an Archimedean unit if 
for any x E E there exists a natural number n 
such that x < ne. A linear subspace I of E is 
called an ideal (or order ideal) of E if x E I and 

Ivl<lxl imply ~61. 

C. Order Limits 

Given a subset {xZ} of E, if an element x of 

E is an upper bound of {x.} and any upper 
bound JJ of {xZ} satisfies the relation y 2 x, 
then it is called the least upper bound (or su- 
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premum) of {x.} and is denoted by sup, x, or 
VoI x,. The greatest lower bound (or infimum) 
of {x~}, denoted by inf,x, or A\.x#, is defined 

dually. 
A sequence {x,} (x,eE) is said to be order 

convergent to x if there exists a nonincreasing 
sequence {u”} (u, E E) such that A,, u, = 0 and 
Ix, - XI < u,. In this case x is called the order 
limit of {x,} and is denoted by x=o-limx,. For 
order convergent sequences {x,,} and { y,}, we 
can show the following relations: o-lim(lx, + 
py,,) = J(o-limx,) + p(o-lim y,) and o-lim(x,x y,) 

= (o-lim x,) :: (o-lim y,). We say that E is Arcbi- 
medean if the relations 0 < nx < y (n = 1,2,3, . . ) 
imply x = 0. If E is Archimedean, then the 

relations x = o-lim x, and ,? = lim i, imply Ix = 
o-lim &,x,. We say that E is complete (G- 
complete) if any (countable) subset of E that is 
bounded above has a least upper bound. A 
e-complete vector lattice is always Archime- 
dean. If E is a-complete, for any sequence {x,} 
bounded above, o-lim supx, is defined to be 

A”Vm>nxm; we define o-lim infx, similarly. 
With these definitions, x = o-lim x, is equiva- 

lent to x = o-lim sup x, = o-lim infx,. Any 
Archimedean vector lattice can be extended to 
a complete vector lattice in the same way as 

the real numbers are constructed from the 
rational numbers by Dedekind cuts (- 294 
Numbers). 

D. Examples of Vector Lattices 

Sequence spaces, such as c, m, and l,, and 

tfunction spaces, such as C, M, and L,, form 
vector lattices under pointwise ordering (- 

168 Function Spaces). Among these spaces c 

and C are not u-complete, but the others are 
complete. We give two examples. First, let C 
be a a-algebra of subsets of a space 0, and let 
A@, C) be the set of all finite o-additive tset 
functions defined on C. Then A(R, Z) is a 

complete vector lattice if we define pi 2~~ to 
mean pLt(S)>pLz(S) for any SEC. The second 

example is an ordered space consisting of all 
tbounded symmetric operators Ton a Hil- 
bert space H, where we define T, > T, to mean 
(T,x,x)>(T,x,x) for any XEH. In general, this 

space is not a vector lattice. However, if A is 
a commutative tW*-algebra of operators on 

H and S is the set of tsymmetric operators be- 
longing to A, then S is a complete vector lattice 
under the ordering just defined. We can re- 
place the conditions of finiteness in A@, C) 

and boundedness in S with weaker ones and 
still obtain the same situation. The tRadon- 
Nikodym theorem in A@, C) and the tspectral 

resolution theorem of symmetric operators in 

S can be extended to theorems of tspectral 
representations in general vector lattices. 

Let E, be a linear space of functions defined 
on a set R ordered pointwise. If there exists a 

bijective mapping defined on a vector lattice E 
onto E, that is linear and order isomorphic, 
we call E, a representation of E. If E has an 
Archimedean unit and is simple (which means 
that E and (0) are the only ideals of E), then E 
can be represented as the set of real numbers 

such that the Archimedean unit of E is repre- 
sented by the number 1 (H. Freudenthal, Proc. 
A/ad. Amsterdam, 39 (1936)). 

E. Dual Spaces 

Let !2(E, F) be the set of order bounded linear 

mappings of a vector lattice E into a vector 
lattice F, where order boundedness means that 

any bounded (in the sense of the order) subset 
of E is mapped into a bounded set of F. For 
any cpi, qpz E 2(E, F), define ‘pi > ‘pz to mean 
cpl(x)~cp,(x)(x>O,x~E). If F is complete, then 
L?(E, F) is a complete vector lattice. An element 
cp E C(E, F) is called a positive operator if cp > 0. 
If F is the set of real numbers R, then f?(E, F) 

is the set of all (order) bounded tlinear func- 
tionals on E. This space, called the dual lattice 
of the vector lattice E and denoted by Eb, is a 

complete vector lattice. For f6Eb and x 2 0, 
x E E, we have 

Iflc4 = sup f(Y). 
IYI GX 

F. Banacb Lattices 

A linear space E is called a normed vector 
lattice if E is a vector lattice having the struc- 

ture of a tnormed space satisfying 1x1~ 1 yl* 
llxll< Ilyll. Furthermore if a normed vector 
lattice E is complete relative to the norm, we 
call E a Banacb lattice. The examples in Sec- 
tion D are Banach lattices (for PEA@, C) we 

define 11~11 =IM4). 
InBanachlattices, 11x,-x/l+Oand /Iy,-yll 

-0 imply lIx,xy,-xxyll+O. Among relations 
between order convergence and norm conver- 

gence in Banach lattices, the following is one 
of the most fundamental: In a Banach lattice 
E, norm convergence of a sequence {x”} to x is 

equivalent to relative uniform star convergence 
of {x,). to x, i.e., for any subsequence {x,t,)} 
of {x,}, there exists a subsequence {x,(,,,(i))} of 
{x+,,} and an element y of E satisfying the 
relations IX,&(~)) -xlQy/1(1=1,2,...). 

Any set bounded relative to the order is 
bounded relative to the norm, but the con- 

verse does not hold in general. For a linear 
functional, however, these two concepts of 

boundedness coincide, and the order dual of 
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E is the same as the norm dual of E. More- 
over, the dual (in any sense) of a Banach lattice 
is also a Banach lattice. 

G. Abstract M Spaces and Abstract L Spaces 

For a Banach lattice E, we consider the follow- 

ing three conditions: (M) x, y>O*~jxvy~~ = 

max(llxll, Ilvll). WI x, Y~O=~IX+YII = Il.4 + 
IIYII. &,I x~Y=wlx+Yllp= llxllP+ IIYIIP 
(1 < p < co). If E satisfies one of the conditions 
(M), (L), or (L,), we say that E is an abstract M 
space, and abstract L space, or an abstract L, 
space, written AM, AL, and AL,, respectively. 

If the unit ball of an AM space has a +greatest 
element, it is called the Kakutani unit of E. 
The duals of AM spaces, AL spaces, and AL, 

spaces are AL spaces, AM spaces with the 
Kakutani units, and AL, spaces (l/p + l/q = l), 

respectively. An AM space with a Kakutani 
unit is represented by C(n), i.e., the set of all 
real-valued continuous functions defined on a 
compact Hausdorff space Q. The AL spaces 
and AL,, spaces are represented by L, and L,, 
respectively, on a tmeasure space. Here the 
representation of a Banach lattice means a 

representation of a vector lattice preserving 
the norm (Kakutani, Ann. Math., (2) 42 (1941); 
Bohnenblust, Duke Math. J., 6 (1940)). 

H. Spectral Properties of Positive Operators 

The n-dimensional real vector space E, is a 
vector lattice under pointwise order (- Sec- 
tion D). An element x in E, is called strictly 
positive if x, > 0 for all i. A square matrix A = 

(ai, j) of order II is called positive if ai, j > 0 for 
all i and j. It corresponds to a positive opera- 
tor in E, (- Section E). A is called irreducible 

if there exists no permutation matrix P such 

that P-‘AP= , where A, and A, 

are square matrices of order n, (1 d n, < n). We 
denote by cr(A) the tspectrum of A and by r(A) 
the tspectral radius of A, i.e., sup{ 1~11 Ada}. 
The spectral circle of A is the circle of radius 

r(A) having the origin as its center. 0. Perron 
(Math. Ann., 64 (1907)) and G. Frobenius (S. B. 
Preuss. Akad. Wiss., 1908 and 1912) established 
the following remarkable result on the spec- 

tral properties of positive matrices. 
Theorem (Perron-Frobenius). Let A be a 

positive square matrix. Then its spectral radius 
r(A) belongs to a(A), and for this spectrum 
r(A) there exists an eigenvector x 3 0. Assume 

further that A is irreducible and the order of A 

is greater than 1. Then r(A) > 0 and the eigen- 
space of A for r(A) is a 1-dimentional subspace 

spanned by a strictly positive element. In this 
case the eigenvalues of A on the spectral circle 
are the kth roots of unity for some k multiplied 
by r(A), each of which is a simple root of the 

eigenequation of A. 
Since a positive matrix of order II corre- 

sponds to a positive operator in E,, exten- 
sions of this theorem to positive operators in 
ordered linear spaces have been studied by 
many mathematicians. For these extensions, see 
the following articles: M. G. Krein and M. A. 
Rutman (Amer. Math. Sot. Transl., 26 (1950); 

original in Russian, 1948), F. F. Bonsall (J. 
London Math. Sot., 30 (1955)), S. Karlin (J. 
Math. Mech., 8 (1959)), T. Ando (J. Fuc. Sci. 
Hokkaido Univ., ser. 1, 13 (1957)), H. H. Schae- 

fer [8], H. P. Lotz (Math. Z., 108 (1968)), F. 
Niiro and I. Sawashima (Sci. Pap. Cal!. Gen. 
Educ., Univ. Tokyo, 1966), I. Sawashima and F. 
Niiro (Nat. Rep. Ochanomizu Univ., 30 (1979)) 
and S. Miyajima (J. Fat. Sci. Univ. Tokyo, 27 
(1980)). 

I. Integrals Based on Ordering 

As applications of ordered linear space theory, 
we state the integrals of Daniel-Stone and 
of Banach. Let us begin with a set (5 of real- 
valued functions defined on an abstract space 
S and assume that 6 is a vector lattice with 
respect to the usual order relation, addition, 
and scalar multiplication. Assume further that 
a functional E(f) defined on e satisfies the 
following conditions: (i) additivity, i.e., E(f+ g) 
= E(f) + E(g); (ii) positivity, i.e., ,f;> 0 implies 

E(f)>O; (iii) A .f,~& (n= 1,2, . ..) and If] < 

C,% IhI imply E(lfl)~C,“=, -Nf,lh where I.fl 
means ,fv( -,f). A functional on e satisfying 
both conditions (i) and (ii) is called a positive 
linear functional. A positive linear functional 
on & satisfies M. H. Stone’s condition (iii) if 

and only if it satisfies P. J. Daniell’s condition 
(iii)‘: fi >f2 > . . and lim,,, f, = 0 imply 
lim ,,+,E(f,)=O. Next, we define, for every 
function cp on S admitting fco as values, a 
functional N(q) as follows: 

Here we put N(q)= +co when for a function Q 
there are no functions { fn} such that Iv]< 
C,“=, lf,l. A function cp is, by definition, a null 

function if N(q) = 0 holds, and a set A is a 
null set if its tcharacteristic function is a null 
function. Since each function of so = {‘p 1 N(q) 
< +co} takes finite values except on a null set, 

we can define addition and the scalar multipli- 
cation for such functions except on a null set. 
Let 3 be the set of equivalence classes of k,, 
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with respect to the relation cp N $ defined as 
N(cp - $) =O. Then 3 is a Banach lattice with 
the norm N, and (E is included in 5 (by iden- 
tifyingfandgof&whenE(lf-gl)=O). Let us 
denote now by L! the closure of (% in 3. Then 

any function cp belonging to f? is said to be 
Daniell-Stone integrable, and L(q) = N(cp+)- 

N(cp-)(cp+=&ld+d, c~-=%ld--vcp))is 
called the Daniell-Stone integral of rp. The 
integral L thus defined is, as a functional on 2, 
an extension of the functional E on @. For this 
integral, Lebesgue’s convergence theorem is 

easily proved, and a result corresponding to 
Fubini’s theorem has been obtained [9]. Fur- 
thermore, the concepts of measurable func- 
tions, measurable sets, and measure can be 
defined by using L and 2. Also, the relation 
between L and the Lebesgue integral with 
respect to this measure is known [9]. Since 
2 is an tabstract L-space, the Daniell-Stone 
integral L(q) is represented by the Lebesgue 

integral of cp on a certain measure space. The 
Daniell-Stone integral introduced above is due 

to M. H. Stone [9]. Daniel1 (Ann. Math., (2) 
19 (1917-1918)) originally defined the upper 
integral F(cp) by using E(f) on & satisfying 
conditions (i), (ii), and (iii’). Also, he defined 

the set f! of Daniell-Stone integrable func- 
tions by L={cplF(q)= -I(--cp)}. S. Banach 
defined an integral by using methods similar 
to Daniell’s, replacing condition (iii’) for a posi- 
tive linear functional E(f) on 6 by condi- 
tion(iii”): lim,,,f,=O, lf,l<g, andf,, gs(Z 
imply lim,,, E(f,) = 0 [lo]. Furthermore, N. 

Bourbaki [ 1 l] and E. J. McShane (Proc. Nat. 
Acad. Sci. US, 1946) have defined a more gen- 

eral integral than the Daniell-Stone with a 
condition analogous to (iii’), replacing the se- 
quence in it by a tdirected family of functions 

02~ 
Specifically if, in the Daniel&Stone integral, S 

is a locally compact Hausdorff space and & is 

the set of continuous functions with compact 
supports, then a functional E(f) on a satisfy- 

ing conditions (i) and (ii) is proved to satisfy 
the condition (iii’), and the Daniell-Stone 
integral L(q) can be constructed from E(f) 

Clll. 
Banach also defined another integral for all 

real-valued bounded functions on [0, 1) by 
using the tHahn-Banach extension theorem 
[12]. His definition is as follows: Let 5 be the 

set of all real-valued bounded functions on 
[0, 1) and 2I be the family of all finite sets of 

real numbers c( = (c(r) c(~, . . , CL,). Furthermore, 
we define, for x(s) E $j and c( E 2I, 

where x(s) is considered as the periodic exten- 
sion to (-co, +co) of the function defined 

originally on [0, 1) and 

p(x) = in$ M(x, a). 

Then, by the Hahn-Banach extension theorem, 
there exists a linear functional F on 5 satisfy- 
ing F(x)<p(x). If we write Jx(s)ds for F(x), 
then we can prove immediately that jx(s)ds 
has the following properties: (1) ~{UX (s) + 

by(x)}ds=ajx(s)ds+bjy(s)ds, where a 
and b are real constants. (2) x(s) > 0 implies 

Jx(s)ds>O. (3) jx(s+s,Jds=Jx(s)ds, where sc 
is an arbitrary real number. (4) j 1 ds = 1. If 
necessary, we can add the property (5) jx(l - 

s) ds = j x(s) ds by defining 

s 
x(s)ds=;{F(x(s))+F(x(l-s))}. 

Then 

F(x)= x(s)ds 
s 

or 

;{F(x(s))+f(x(l-s))}=Jx(s)ds 

is called the Banach integral of x(s). 
The construction of the Daniell-Stone inte- 

gral and the Banach integral opened avenues 
to several other abstract integrals based on the 

order relation, such as an integral for more 
general functions with values in a vector lat- 

tice, or an integral considered as a mapping 
from a vector lattice into another vector lattice 
(or from an ordered set into another ordered 

set). Indeed, if the function takes values in a 
complete vector lattice, then almost all results 
in this section (e.g., the Hahn-Banach exten- 
sion theorem) hold trivially. For discussions of 
these and other abstract integrals - [13-151. 
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A. Ordering 

The concept of ordering is abstracted from 
various relations, such as the inequality rela- 
tion between real numbers and the inclusion 
relation between sets. Suppose that we are 
given a set X = {x, y, Z, j; the relation be- 
tween the elements of X, denoted by < or 
other symbols, is called an ordering (partial 

ordering, semiordering, order relation, or sim- 
ply order) if the following three laws hold: (i) 
the reflexive law, x <x; (ii) the antisymmetric 
law, x < y and y $ x imply x = y; and (iii) the 
transitive law, x < y and y < z imply x <z. 

A set X with an ordering between its ele- 
ments is called an ordered set (partially ordered 

set or semiordered set). A subset of an ordered 
set X is also an ordered set with respect to the 

same ordering as in X. If for an arbitrary pair 
of elements x, y of an ordered set A either 

x < y or y d x must hold, then the ordering < 

is called a total (or linear) ordering, and A is 

called a totally ordered (or linearly ordered) set. 
We sometimes write x < y as y > .c. The 

binary relation > is called the dual ordering of 
<; it is also an ordering. More generally, the 
duals of concepts, conditions, and propositions 
concerning an ordering are defined by replac- 
ing the ordering with its dual. For example, 
x<y means that xdy and xfy, while x>y 
means that x 2 y and x # y; and > is the dual 
of <. If a universal proposition concerning the 
ordering is true, then its dual is also true; this 

principle is called the duality principle for 
ordering. Incidentally, x < y is equivalent to 

the statement x < y or x = y, according to the 
definition of <. 

B. Definitions 

A subset of an ordered set X of the form 
{x 1 a < x < h} is denoted by (a, h), and a set of 
the form (a, h), {x 1 x < a}, or {x 1 x > a} is called 
an interval. In particular, S(c) = {x 1 x cc} is 
called the segment of X determined by c. A 

pair of elements a, b satisfying a < h is called a 
quotient of X and is denoted by b/u. 

When u<c<b or b<c<u, c is said to lie 
between a and b. A totally ordered set A is said 
to be dense if for any pair of distinct elements a 
and b in A there exists a third element c lying 
between a and b. When u < b and there is no 

element lying between a and b, then a is called 
a predecessor of b, and b a successor of a. In 

this manner, most of the terminology as- 
sociated with the inequality of numbers is 
carried over to general ordering. 

In an ordered set A, an element a is called 
an upper bound of a subset X if x < (2 for 
every element x of X. When an upper bound 
exists, X is said to be bounded from above (or 
bounded above). The dual concept of an upper 

bound is a lower bound of the subset; and if the 
subset has a lower bound, it is said to be 
bounded from below (or bounded below). A set 
bounded both from above and from below is 
simply said to be bounded. When a is an upper 
bound of X and u~X, then a is called the 

greatest element (or maximum element) of X. 
Such an element a (if it exists) is unique and is 

denoted by max X; its dual is the least element 
(or minimum element) and is denoted by 
min X. If there is a least element in the set of 
upper bounds of X, it is called the least upper 
bound (or supremum) of X and is denoted by 
1.u.b.X or supX. Its dual is the greatest lower 
bound (or infimum) and is denoted Isy g.1.b.X 
or inf X. 

If the ordered set X is the image q(A) of a 

set A under a +mapping cp, where A is of the 
form {i& 1 C(n) ), then sup X is also written 
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sup,(,, cp(l) and is called the supremum of cp(i) 
for all 1 that satisfy C(1). When there is no 
danger of misunderstanding, it may be written 
as sup, cp(l) or sup ~(1) and called simply the 
supremum of cp(J.); similar conventions hold 

for inf, max, min, etc. 
An element a of a set X is called a maximal 

element if a <x never holds for any element x 

of X; its dual is a minimal element. If the 
greatest (least) element exists, it is the only 
maximal (minimal) element. But in general, a 
maximal (minimal) element is not necessarily 
unique. 

C. Chain Conditions 

An ordered set X is said to satisfy the minimal 
condition if every nonempty subset of X has a 
minimal element. The dual condition is called 

the maximal condition. An infinite sequence 

{ 4.4, . . . . a,, . } of elements of an ordered 
setXsuchthata,<a,<...<u,<...is 
called an ascending chain, and the condition 
that X has no ascending chain is called the 
ascending chain condition. The notions dual to 
those of ascending chain and ascending chain 

condition are descending chain and descending 
chain condition, respectively. By the chain 
condition, we mean either the ascending or the 
descending chain condition. Under the taxiom 
of choice, the maximal condition is equivalent 

to the ascending chain condition, and the 
minimal condition to the descending chain 
condition. 

If a totally ordered set X satisfies the mini- 
mal condition or, equivalently, if every non- 
empty subset of X has a least element, then the 
set X is called a well-ordered set, and its order- 

ing is called a well-ordering. 
The following theorem is called the principle 

of transfinite induction: Let P(x) be a propo- 
sition concerning an element x of a well- 

ordered set X such that (i) P(x,) is true for the 
least element x0 of X, and (ii) P(x) is true if 
P(y) is true for all y satisfying y < x. Then P(x) 
is true for all x in X. tMathematica1 induction 
is a special case of this principle, where X is 
the set of all natural numbers. To define a 
mapping F from a well-ordered set X into a 
set Y, we may use the following principle: 
Suppose that F(x,) is defined for the least 
element x0 of X, and for each element x of X 
there is given a method to associate an ele- 

ment G(f) of Y uniquely with each mapping 
f: S(x)+ Y with domain S(x), where S(x) is the 

segment of X determined by x. Then there 
exists a unique mapping F: X-+ Y satisfying 

F(x)= G(F 1 S(x)) for all x. The definition of 
the mapping F by this principle is called a 
definition by transfinite induction. The prin- 

ciples of induction are often used for proving 
propositions or giving definitions concerning 
ordinal numbers (- 312 Ordinal Numbers). 

D. Directed Sets 

An ordered set (or in general a preordered 
set (- Section H)) in which every finite subset 
is bounded from above is called a directed 

set. Let B be a subset of a directed set A. If 
{b 1 b 2 u} fl B # 0 for every element a of A, 
then B is said to be cofinal in A; such a subset 
B is itself a directed set. If {b 1 b > u} c B for 

some element a of A, then B is said to be re- 
sidual in A; such a subset B is also cotinal in A. 
The condition that B is colinal in A is equiva- 

lent to the condition that A -B is not residual 
in A. 

E. Order-Preserving Mappings 

A mapping rp: A-A’ of an ordered set A into 
an ordered set A’ is called an order-preserving 
mapping (monotone mapping or order homo- 
morphism) if a ,< b always implies q(a) ,< p(b). 

Moreover, if rp is bijective and qp-’ is also an 
order-preserving mapping from A’ onto A, 
then rp is called an order isomorphism. A’ is 
said to be order homomorphic (order isomor- 
phic) to A when there exists an order homo- 

morphism (order isomorphism) cp such that A’ 
= q(A). If a mapping cp : A-+ A’ gives an order 
isomorphism of A to the dual of A’, cp is called 
a dual isomorphism (or anti-isomorphism). 

F. Direct Sum and Direct Product 

Let S be a set that is the tdisjoint union of a 

family {A,JA,A of its subsets, and suppose that 

each A, is an ordered set. For a, b E S, define 
adb to mean that a, bEA, for some SEA and 
ad b with respect to the ordering in A,. The 

ordered set S obtained in this way is called the 
direct sum (or cardinal sum) of the family 

{AA),,, of ordered sets. When (al)le,, and 

(b,),,, are elements of the Cartesian product 
P = &,, A, of a family {A,},,, of ordered 
sets, we define (a,),,, ,< (b,),,, to mean that 
a, < b, holds for all 1 E A. The ordered set P 
obtained in this way is called the direct product 
(or cardinal product) of the family {A,},,, of 

ordered sets. 

G. Ordinal Sum and Ordinal Product 

Suppose that 2I = {A, B, . . . } is a family of 
mutually disjoint ordered sets and is itself an 
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ordered set. Then an ordering < can be de- 

fined in the disjoint union S = u X (X E %) as 
follows: x <y in S means that either (i) there 
exists an A satisfying x, ye A E 9I and x d y 
holds with respect to the ordering in A; or (ii) 
for A and B satisfying x E A E (II, ye BE 2t, we 
have A <: B. The ordered set S obtained in this 
way is called the ordinal sum obtained from 2I 

and is denoted by C,, X. In particular, if ?I = 
{A, B} and A <B, the ordinal sum is denoted 
by AS-B. 

Suppose that X is a subset of the Cartesian 
product n, X, of a family of ordered sets 

indexed by an ordered set A, and the subset 
{i 1 x2 # y,} of A has a least element whenever 
x=(x,),,, and y = (y,),,, are two distinct 
elements of X. The ordering in X defined by 
setting x < y when xc < y,, for the least ele- 
ment p of { 11 xi # y,} is called the lexico- 
graphic ordering in X. It can be applied to X = 
I”I, X, if A is well-ordered; X is then called 

the ordinal product. When A, B, . . are ordered 
sets, AB . is often used to denote the ordinal 
product obtained from X, = A, X, = B, . . 
with the ordering 1 < 2 < . of indices; the 
ordering in this ordinal product is called the 
lexicographic ordering in the Cartesian product 
AxBx . 

H. Preordering 

A relation R between elements of a set X is 
called a preordering (or pseudoordering) if it 
satisfies the reflexive law and the transitive 
law, but not necessarily the antisymmetric law. 

By defining (x,,y,)R (x,,y,)*x, <x,, for 
example, a preordering of pairs (x, y) of real 
numbers is obtained. From a preordering R an 
equivalence relation - can be defined in X by 
x-yo(xRy and yRx). Let [X]=X/- be 
the tquotient set of set X by this equivalence 

relation, and let [xl, [y] be the equivalence 
classes determined by x, yeX; then an order- 

ing < can be defined in [X] by [x] < [y] 0 
xRy. (For further topics - 52 Categories and 
Functors; 409 Structures.) 
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312 (11.13) 
Ordinal Numbers 

A. General Remarks 

Let A g B mean that two tordered :sets A, B 

are torder isomorphic; then the relation z is 
an tequivalence relation. An equivalence class 
under this relation is called an order type, and 
the class to which an ordered set A belongs is 
called the order type of A. Historically, an 

ordinal number was first defined as the order 
type of a twell-ordered set (Cantor [2]). How- 

ever, it was found that a contradiction occurs 
if order type defined in this way are considered 
to form a set. Hence, another definition was 
given by J. von Neumann [3], which is stated 
in Section B. A similar situation was found 
concerning the definition of tcardinal numbers, 

which led to a new definition of cardinal num- 
bers using ordinal numbers, which is given in 

Section D. 

B. Definitions 

A set tl is called an ordinal number if it satisfies 
the following two conditions: (i) tl IS a well- 
ordered set with the tbinary relation E as its 
ordering; and (ii) p E CL implies /3 c 0:. Accord- 

ing to this definition, the empty set. is an 
ordinal number, which is denoted by 0. Also, 

1 = {0}, 2 = (0, l}, 3 = (0, 1,2}, . are ordinal 
numbers. These ordinal numbers, which are 
finite sets, are called finite ordinal numbers. 
The finite ordinal numbers are identified with 
the natural numbers (including 0). The set w  
= (0, 1,2, . . } of all natural numbers is also an 

ordinal number. An ordinal numb’cr that is an 
infinite set, like w, is called a transfinite ordinal 
number. 

For every well-ordered set A, there exists 
one and only one ordinal number order iso- 

morphic to A. This ordinal number is called 
the ordinal number of A. (Throughout this 
article, lower-case Greek letters denote ordinal 
numbers.) We also write c( E p as a c /?, which 
defines an tordering of the ordinal numbers. 
The least ordinal number is 0, and the order- 
ing of the finite ordinal numbers c’aincides 
with the usual ordering of the natural num- 
bers. The least transtinite ordinal number is o. 
The ordering <, introduced by defining CI < fl 
to mean either R <p or a = /Y, is a tlinear order- 
ing and, in fact, a twell-ordering of the ordinal 

numbers. Therefore ttransfinite induction can 

be applied to ordinal numbers. 
For any ordinal number a, the set a’ = 

{ 5 ( 5 <a} is also an ordinal number, and is 
the tsuccessor of a. There exists at most one 
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ordinal number that is the tpredecessor of tl. A 
transfinite ordinal number without a prede- 
cessor is called a limit ordinal number, and all 
the other ordinal numbers are called isolated 

ordinal numbers. The first limit ordinal num- 
ber is w. For any set A of ordinal numbers, 

(5 13~ (5 < q E A)} is an ordinal number and is 
sup A, the tsupremum of A. 

C. Sum, Product, and Power 

The sum cc+p, the product a.B (or a/?), and 
the power ~8 of ordinal numbers CL, /3 are de- 
lined by translinite induction on /I and have 

the following properties: 

cr+o=a, cc+B’=(a+8)‘, 

a+Y=suP{~+515<r}; 

wo=o, cr.p=cr.fi+a, 

V=suP{~.515<r}; 

CCO= 1, rg=&.c( ) tlY=sup{c(~l~<y}. 

Here y is a limit ordinal number, and for the 
power we assume that tl > 0. The sum and 
product thus defined satisfy the associative 

laws (~(+/I)+y=cc+(B+y), (a./?).~= 
cr.@?.?) and the left distributive law cr.(b+y) 
=cr./I+cc.y; the power satisfies the laws 
c@+~=cx~~~~, @‘=(c@)~. If CI and bare the 
ordinal numbers of the well-ordered sets A 
and B, respectively, then tl+ b is the ordinal 
number of the tordinal sum A + B, and E./I is 
the ordinal number of the tordinal product 
BA. 

When n > 1, any ordinal number c( can be 

written uniquely in the form 

cc=lrSl.yl+K82.yz+...+RB”.yn; 

Bl>DZ>...B”>O, O<Yi<7c, l<i,<n, 

which is called the n-adic normal form for a; 
when n = o, it is called Cantor’s normal form. 

Let f be an ordinal number-valued function 
of ordinal numbers. We say that f is strictly 
monotone when CL < /3 implies f(a) <f( /I). If f is 
strictly monotone, then tl <f(cd. We say that f 
is continuous when f(y) = sup { f(t) 15 < y} for 
each limit ordinal number y. A strictly mono- 
tone continuous function is called a normal 

function. If f is a normal function, then for any 
c( there exists a /I that satisfies f(p) = /3 > t(. In 
fact, it suffices to define /I& < o) by PO =f(cc + 

1X A+, =f(BJ and put B=sup(&In<c4. 
Since f(a) = ob is a normal function, there 

exists an E that satisfies O’ = E. Such an ordinal 
number E is called an c-number. We say that /I 
is cofinal to u. when there exists a monotone 

function f that satisfies c( = sup{ f(t)’ 1 l< 8). 
The first ordinal number that is colinal to CI is 

called the cofinality of c( and is denoted by 
cf(cc). 

D. Cardinal Numbers 

Let M-N mean that a one-to-one corre- 
spondence exists between the two sets M and 
N. An ordinal number a with the property that 

. . 
ct - 5 implies c( < 5 is called an initial number 
or a cardinal number. 

With the taxiom of choice, it can be shown 
that for each set M there exists one and only 
one cardinal number TV satisfying M -CC. This 

unique CC is called the cardinality (or cardinal 
number) of the set M and is denoted by M. 

All finite ordinal numbers are cardinal num- 

bers, and o is the least transfinite cardinal 
number. There exists one and only one mono- 
tone function that maps the class of ordinal 
numbers onto the class of transfinite cardinal 
numbers, and it is a normal function. The 
value of this function corresponding to a is 
denoted by K, (alepb alpha) or 0,. In partic- 

ular, K, = w, and K, is both the smallest un- 
countable cardinal number and the smallest 
uncountable ordinal number. A finite ordinal 
number is called an ordinal number of the first 
number class, and an ordinal number tl satisfy- 

ing K, < CI <K, is called an ordinal number of 
the second number class. The concept of ordinal 
number of the third (or higher) number class is 
defined similarly. 

E. Inaccessible Ordinal Numbers 

The cofinality cf(a) of a always satisfies cf(a) < 
c(. An ordinal number is said to be regular 

when cf(cc) = c( and singular when cf(cr) <a. For 
any ordinal number CC, cf(a) is a regular car- 
dinal number; therefore any regular ordinal 
number is a cardinal number. When tl = e+ is 
regular and /I is a limit ordinal number, c( is 
said to be weakly inaccessible. Let R be the 

set-valued function of ordinal numbers, de- 
fined by R(O)=@ and R(a)=~{~(R(~))~~<a} 
(by ttranstinite induction), where ‘$3(M) de- 
notes the tpower set of M. A regular ordinal 
number LX is said to Lx strongly inaccessible 
when CI > w  and the following condition is 
satisfied: If x, y are a pair of sets such that 

XE R(a), y c R(a), and there exists a mapping 
of x onto y, then ye R(a). If a regular ordinal 
number t( is strongly inaccessible, it is weakly 
inaccessible. A strongly inaccessible ordinal 
number is usually defined as a regular number 

- 
c( > w  such that /I < c( implies ‘p(p) < tl. Under 

the axiom of choice, this definition is equi- 
valent to the one given here. Moreover, under 

the tgeneralized continuum hypothesis, strong 
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inaccessibility and weak inaccessibility are 
equivalent. 
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313 (X111.2) 
Ordinary Differential 
Equations 

A. General Remarks 

Let x be a real (complex) variable and y a real 
(complex) function of x. Assume that y = F(x) 
is a differentiable function of class C” if x, y are 
real, and a holomorphic function if x, y are 
complex. We write y’, y”, , y”” for the first 
n derivatives of y. A relation among x, y, y’, 

(N . ..>y 1 

f(x, y, y’. . ) y’“‘) = 0 (1) 

(which holds identically with respect to x), is 
called an ordinary differential equation for the 

function y = F(x). Here we assume that the 
function f in the left-hand side of (1) is a real 
(complex) function of the n + 2 variables x, y, 
y’, . , y(“) and is defined in a given domain of 

R”+’ (C”+‘). Usually we assume further that f 
has a certain regularity, such as being of class 
c’ (r = 0, 1, , co), treal analytic, or tcomplex 
analytic. A function y = F(x) that satisfies (1) is 
called a solution of (1). To find a solution of (1) 

is to solve or integrate it. Ordinary differential 
equations may be contrasted to partial dif- 
ferential equations, which are equations similar 
to (1) but in which y is a function of two or 

more variables x1, x2, . and which contain 
the partial derivatives a~/&, , ay/dx,, (- 320 

Partial Differential Equations). Ordinarily, the 
term differential equation refers to an ordinary 
or partial differential equation. In this article, 

since we are concerned only with ordinary 
differential equations, we omit the word “ordi- 
nary.” If the left-hand side ,f of (1) contains 

y(“) explicitly or aflay # 0, then we say that 
the order of (1) is n, and if further f is a poly- 
nomial in y, y’, , y(“) that is of degree m with 

respect to y(“), we say that the degree of (1) is 
m. In particular, if f is a linear form in y, y’, 
. . . . y”“, then (1) is said to be linear. 4 differ- 
ential equation that is not linear is :said to be 
nonlinear (- 252 Linear Ordinary IDiffer- 
ential Equations; 291 Nonlinear Problems). 

Let CP(X,Y,C~, . . . . c,) be a function of the 

n + 2 variables x, y, ci, . . , c, of class C’ in 
a domain D, and let (x,,y,,cT, . . . . &ED, 

cp(xo,~o,c~, . . ..c.O)=O, and (py(xo,~3,ci’, . . . . 
c,“) # 0. Then the equation cp(x, y, CT, , c,“) = 0 
defines an timplicit function y(x) of class C’ 

satisfying the condition y(x,) = y,. Consider 
ci, , c, to be constants in cp(x, y, ci, . . . , c,) = 0 
and differentiate cp n times with respect to x. 
Then we obtain a system of n equations in the 
variables x, y, y’, . . . , y(“), c,, . . . , c,. If we can 
eliminate ci, , c, from these n equations and 
cp =O, then we obtain an nth-order differential 
equation of the form (1). Conversel:y, a solu- 
tion of an nth-order differential eqLLation can 
usually be written in the form 

dX,Y,Cl, .“,c”)=o, (4 

which contains n arbitrary constants cl, , c, 
(sometimes called integration constants). A 
solution containing n arbitrary constants of 
the form (2) of an nth-order differential equa- 
tion is called a general solution, and a solu- 
tion cp(x, y, cy, , c,“) =0 obtained from a 
general solution cp = 0 by giving particular 

values co i, , c,” to the arbitrary co,lstants is 

called a particular solution. Some equations 
admit solutions that are not particular solu- 
tions. They are called singular solutions (for 

example, Klairaut differential equations; - 
Appendix A, Table 14.1). 

B. Systems of Differential Equations 

A set of n differential equations containing n 
unknown functions y,, , y, of a variable x is 

called a system of ordinary differential equa- 
tions. Here each equation of the system has a 
form similar to (I), but each left-hand side 
contains y,, , y, and their derival:ives. A set 

of n functions y, , , y, of x is called a solution 

if the functions satisfy the given system of dif- 
ferential equations. The highest order of de- 
rivatives in the left-hand sides is called the 
order of the system of differential eaquations. 

We consider most frequently a first-order 

system of the form 

Yj=,fi(x,Y,,...,Y,), i=l 2 , ,..., n. (3) 
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Ifwe put y=y,, y’=y,, ...,~(“-~)=y~ and solve 
(1) with respect to y(“) to get y(“)=f,(x, y,, 
. . . , y,), then (1) is equivalent to a system of 

equations of the form (3), where fr = y,, fi = 
y,, . , fn =$ In an analogous way, a general 
system of equations can be transformed to a 
system of the form (3). Therefore (3) is called 
the normal form of differential equations. 

C. The Geometric Interpretation 

Whenx,y,,..., y, are real, (3) can be inter- 
preted as follows: Let I = (a, b) be an open 
interval and D a domain of R”. Let 

Yi=(Pi(X~C1~~~~9Cnh i=l,2 )..., n, (4) 

be functions of class C’ defined for (x, ci , 

. . . , C,)E I x D, and let 3(x,) be the image in 
the y, , . . , y,-space of D under the mapping 

yi = cpi(x,, cl, . . , c,) (i = 1,2, . , n) for a fixed 
x0 E 1. We assume that for each fixed x,, E 1 we 
have a((pi, . . . ,cp,)/a(c,, . . . ,c,)#O in D. Then 
for every x = x0 E I, c1 , . . . , c, are considered 

to be functions of ( y , , . . . , y,) defined in a 
neighborhood of every point ( yi, . . . , yt) of 
3(x,), and we have y; = qi(x, c1 , . . . , c,) = 

f;(x,y,,...,y,)(i=1,2, . . . . 4,i.e.,~,,...,y, 
satisfy a system of differential equations of the 
form (3). On the other hand, (4) represents a 
family of curves of class C’ in the x, yr, . . , y,- 
space R”+’ containing n parameters c1 , . . . , c,, 

for which (y;, . . , yi) is the tangent vector (in 
the terminology of physics, (yf, . , y:) gives the 
speed and the direction of a stationary flow in 

R”+l at each point). By solving (3) we find the 
family of curves of class C’ in R”+’ (in the 
terminology of physics, we find a stationary 
flow of which the speed and the direction are 
given at each point). A solution containing n 

parameters analogous to (4) is called a general 
solution of (3), and a solution obtained from a 

general solution by giving particular values to 
the n parameters is called a particular solution. 

As may be imagined by the interpretation in 

this section, there exists in general one and 
only one particular solution passing through 
the point (x,, ~7,. . ,y,“) for x~EI, (~7,. . . , yi)~ 
3(x,). The problem of finding this solution, 

i.e., the solution of (3) for which yi(x,) = yp for 
x = x0, is called the initial value problem (- 
316 Ordinary Differential Equations (Initial 
Value Problems)). 

D. Methods of Integration 

We have different methods of solving differen- 
tial equations. To solve differential equations 

by a finite number of integrations is called the 
method of quadrature. This method is useful 

for some special types of differential equations 
(- Appendix A, Table 14.1). S. Lie gave theo- 
retical foundations for this method by using 
Lie transformation groups (- 431 Transfor- 
mation Groups; Appendix A, Table 14.111). 
There are many other methods, for exam- 

ple, power series methods (assuming that the 
solution can be expanded in a power series 
C a,(x -a)“, substituting the series for y in (1), 
and finding its coefficients); methods of suc- 
cessive approximation; methods using tLa- 

place transforms or tFourier transforms; tper- 
turbation methods; numerical methods; etc. 
(- 303 Numerical Solution of Ordinary Dif- 
ferential Equations). 

Historically, finding explicit solutions of 
various kinds of differential equations has 
been the main object of the theory. Recently, 
however, the importance of qualitative studies, 

in particular theorems on the existence and 
uniqueness of solutions, has been recognized. 
For example, if a solution with a property A is 
given, and if the uniqueness of the solution 
having the property A and the existence of 

solutions having the properties A and B can be 
shown, then the given solution necessarily has 
the property B. In this way, topological and 
analytic studies of differential equations are 
applied to find their solutions (- 314 Or- 

dinary Differential Equations (Asymptotic 
Behavior of Solutions); 315 (Boundary Value 
Problems); 316 (Initial Value Problems); 126 
Dynamical Systems). 
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314 (X111.5) 
Ordinary Differential 
Equations (Asymptotic 
Behavior of Solutions) 

A. Linear Differential Equations 

A system of linear ordinary differential equa- 

tions can be written as 

x’ = A(t)x, (1) 
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where t is a real independent variable, x = 
(x1, . ,x”) is an n-dimensional complex vec- 

tor function oft, and A(t) is an n x n matrix 
whose elements are complex-valued functions 
oft. If /l(t) is a continuous function oft de- 
fined on an open interval I, any solution of (1) 
is continuously differentiable for t E I. The 
question naturally arises as to how the solu- 
tions behave as t approaches either one of the 
endpoints of I; that is, the question of the 
asymptotic properties of the solutions. The 

interval I can always be taken to be O< t < co, 
by applying a suitable transformation of the 
independent variable if necessary. 

The study of the tasymptotic expansions of 
solutions when the coefficient A(t) is an ana- 
lytic function oft was initiated by H. Poincart: 
in 1880. This work was continued by J. Horn, 
J. C. C. A. Kneser, and others in the direction 
of removing assumptions on the structure of 
A(t) and extending the domain where the ex- 
pansions are valid. The theory has been almost 
completed by W. J. Trjitzinsky, J. Malmquist, 
and M. Hukuhara (- 254 Linear Ordinary 

Differential Equations (Local Theory)). On the 
other hand, 0. Perron initiated a new direc- 
tion of research by weakening the regularity 
conditions on the coefficients. His work was 

continued by F. Lettenmeyer, R. A. Spith, 
Hukuhara, and others. The methods used in 

these two lines of investigation were originally 
distinct, but Hukuhara established a unified 

method of treating the problems arising in 
these two different types of investigations. 
Furthermore, he succeeded in sharpening 
those results previously obtained. 

Here we assume that A(t) need not be ana- 
lytic. The following asymptotic properties 
of a solution x(t) as t+ co are considered: 
(i) boundedness of limsup t-’ log[x(t)l; (ii) 

boundedness of solution: limsupIx(t)l< co; 
(iii) convergence of solution: lim x(t); (iv) inte- 

grability: Jmlx(s)lPds< co, etc. We call x(x)= 
limsupt-‘loglx(t)l the type number (or Lya- 
punov characteristic number) of the solu- 
tion x(t). The fact that all solutions of (1) are 
bounded is equivalent to the tstability of the 

solution x = 0, and the fact that all solutions of 
(1) tend to zero as t+ co is equivalent to the 
tasymptotic stability of the solution x = 0. 

B. Constant Coefficients and Periodic 
Coefficients 

We begin with the particular case of (I), where 
A(t) is a constant matrix: 

x’ = Ax. (21 

To study the asymptotic properties of the 

solutions of (2), it suffices to transform the 

matrix A into a tJordan canonical form, since 
the structure of the solution space of (2) is 
completely determined by the Jordan canon- 
ical form of A. Thus all solutions of (2) are 
bounded if and only if every eigenvalue of A 
has a real part not greater than zero, and those 

with zero real parts are of simple type, that 
is, the corresponding blocks in the Jordan 

canonical form are all 1 x 1 matrices; all solu- 
tions of (2) tend to zero as t + cc if and only 
if every eigenvalue of A has negative real part. 

Consider the linear system 

x’ = A,(t)x, (3) 

where A,(t) is a periodic matrix function of 
period w. According to tFloquet’s theorem, (3) 
is transformed into a system with constant 
coefficients by means of a suitable transfor- 
mation x = P(t)y, where P(t) is a nonsingular 
periodic matrix of period w. Thus, at least 
theoretically, the information on the asymp- 
totic behavior of the solutions of the periodic 
system (3) can be derived from the correspond- 
ing theory for the system with con,stant coefli- 
cients (2). 

C. Asymptotic Integration 

Suppose that A(t) is bounded. Then the type 
number x(x) is finite for any nontrivial solu- 

tion x(t) of(l), and the number of distinct 
type numbers does not exceed n. 

Consider the linear system 

x’=[A+B(t)]x, (4) 

where A is a constant matrix and B(t) is a 
matrix function such that j:” IlB(s)ll ds-+O as 
t-+ co. For any nontrivial solution x(t) of (4), 
the limit p=lim t-‘log(x(t)l exists and is equal 
to the real part of one of the eigenvalues of A. 
Conversely, if at least one eigenvalue of A has 
real part p, then there exists a nontrivial solu- 
tion x(t) of (4) satisfying lim tf’log Ix(t)1 = p. 

Suppose in addition that B(t)+0 as t-co. Let 
/* 1 < /** < . <p. be the real parts of the eigen- 
values of A. Then there exists a tfundamental 

system of solutions of (4), {xl(t), . . ,x,(t)}, 
such that for any ci, ck # 0, 

A sharp estimate of the term o(t) was given by 
Hukuhara. 

Next consider the linear system 

x’= [A(t)+ B(t)]x, 

where the matrices A(t) and B(t) satisfy 

~“IIA’(s)llds<co andj”IlB(s)llds< co. 
Let A,(t), .,.,1,(t) and I,, ,I,, ;.,=limI,(t), 
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be the eigenvalues of A(t) and A = lim A(t), 
respectively. N. Levinson proved the follow- 
ing theorem: Assume that I,, . . . ,A, are mutu- 
ally distinct and Mjk(t) = Re r0 [S(s) - n,(s)] ds 
satisfy either Mjk(t)+ co as t-t cc and for each 

pair(j,k),Mj&)-M,(t,)> -Kfor t,<t,,or 
Mjk(t)-+--a as t+oo and Mjk(tZ)-Mjk(tl)<K 

for t, <t2, or IMjk(tZ)-Mjk(tl)(<K for all t,, 

t,, where K is a positive constant. Then (5) has 
a fundamental system of solutions {xi(t), . . . , 

x,(t)} such that 

f 
xj(t) = exp 

(S > 
Aj(s)ds [<j+o(l)], j=l,...,n, 

0 

where gj is an eigenvector of A corresponding 
to 5. 

D. Boundedness and ConvergenCe of Solutions 

Consider again the linear system (5) satisfying 

s”IIA’(s)ll ds< co and j”IIB(s)ll ds< 00. Suppose 
that all eigenvalues of A(t) have nonpositive 
real parts and that the eigenvalues of A = 
lim A(t) whose real parts vanish are simple. 
Then all solutions of (5) are bounded. This 
result is a generalization, due to L. Cesari, of 
the so-called Dini-Hukuhara theorem. 

In the case of general A(t), it is known that 

not all solutions of (5) are bounded even if all 
solutions of (1) tend to zero as t+ 00 and if the 

matrix B(t) is such that j” IIB(s)ll ds < cc and 
B(t)-+0 as t -+ co. However, if A(t) is periodic 
or satisfies 1iminfReptr A(s)ds> -co, then 

under the assumption that s” IIB(s)ll ds< 00, 
the boundedness of all solutions of (1) implies 

the boundedness of all solutions of (5). 
The following inequalities often provide 

useful information about the asymptotic 
behavior of solutions of (1): 

where p[A(t)] =lim,,+, [l/1 + hA(t)JJ - II/h. 
(p[A(t)] was introduced by Lozinskii.) If 
limsupS’p[A(s)]ds< 00, then all solutions of 
(1) are bounded; if limSfp[A(s)] ds exists, then 
for every solution x(t) of (I), Ix(t)1 tends to a 
finite limit as t-co; and if limS’p[A(s)]ds= 
-co, then all solutions of (1) tend to zero as 
t+ co. It can be shown that every solution of 

(1) tends to a finite limit as t+ co, provided 
that~“IIA(s)llds<cc. 

If all solutions of (1) are bounded, then 

limsupRertrA(s)ds<co. IfliminfRertrA(s) 
ds > -co, then (1) has a solution x(t) with the 
property that limsuplx(t)l >O. When limlx(t)l 

exists for every solution x(t) of(l), if there 
exists a nontrivial solution x(t) of (1) such 
that limx(t)=O, then 1imRej’tr A(s)ds= 
-co, but if there is no such solution, then 
Re s’ tr A(s) ds is bounded. 

E. Nonlinear Differential Equations 

Consider a system of nonlinear differential 

equations of the form 

x’ = Ax + f(t, x), (6) 

where A is an II x n constant matrix and f(t, x) 
is an n-vector function that is continuous for 
t > 0,l x 1~ A, and that satisfies f(t, 0) = 0. Sup- 
pose that f(t,x)/lxl+O as 1x1-+0 and t-co. 
Then for every eventually nontrivial solution 
x(t) of (6) that tends to zero as t+co, PC= 

lim t-‘log)x(t)l exists and equals the real part 
of one of the eigenvalues of A. Conversely, 
if at least one eigenvalue of A has real part 
p < 0, then there exists a solution x(t) of (6) 
such that lim t-’ loglx(t)l =p. Suppose that 

f(t,x)/lxl-0 as 1x1-+0 uniformly with respect 
to t. Then if all eigenvalues of A have negative 
real parts, the zero solution x(t) = 0 of (6) is 
asymptotically stable, and if A has an eigen- 
value whose real part is positive, then the zero 
solution of (6) is tunstable. Suppose that fx(t, x) 
=(iYfj(t, x)/ax,)+0 as 1x1-+0 uniformly with 
respect to t. In this case, if A is a matrix such 
that its k eigenvalues have negative real parts 

and the other n-k eigenvalues have positive 
real parts, then there exists a k-dimensional 
manifold S containing the origin with the 
following property: For to sufficiently large, 
any solution x(t) of (6) tends to zero as t-co, 
provided that x(t,)ES, and if x(to)$S, x(t) 
cannot remain in the vicinity of the origin no 

matter how close x(t,) is to the origin. 
In the nonlinear system 

x’ = F(t, x), (7) 

suppose that F(t, x) is of period w  with respect 
to t and has continuous partial derivatives 

with respect to x. Suppose, moreover, that (7) 
has a solution p(t) of period o. If all the tchar- 
acteristic exponents of the tvariational system 

of (7) with respect to p(t), y’= F,(t, p(t))y with 
F,(t, x) = (aQ(t, x)/ax,), have negative real parts, 
then the periodic solution p(t) is asymptoti- 
cally stable. If an autonomous system x’ = F(x) 
has a periodic solution p(t) and the corre- 

sponding variational system y’ = F,(p(t))y has 
n - 1 characteristic exponents with negative 
eigenvalues, then there exists an E > 0 such that 

for any solution x(t) satisfying (x(t,)--(to)1 <E 
for some to and tl, we have (x(t)-p(t+c)l+O 
as t+ 00 for a suitable choice of c (asymptotic 
phase). 
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F. Scalar Differential Equations 

The aforementioned results can be specialized 
to the case of higher-order scalar (or single) 
ordinary differential equations. Much sharper 
results can often be derived through direct 
analysis of scalar equations themselves. In 

particular, detailed and deep results have been 
obtained for second-order linear differential 
equations of the form 

x”+q(t)x=O, (8) 

e.g., tMathieu’s equation. 

If J”slq(s)lds< co, then (8) has a funda- 
mental system of solutions {x1(t), x2(t)} satisfy- 
ing, for t+ co, 

x1(t)= 1+0(l), x2(0= Cl +dl)l, 

x;(t)=l-‘o(l), x>(t)= 1+0(l); 

if j”lq(s)+ 1 Ids< a, then (8) has a funda- 
mental system of solutions satisfying 

xl(t)=f’f[l +0(l)], x2(t)=,-*[1+0(l)], 

x;(t)=f’f[l +0(l)], x;(t)= -em’[l +0(l)]; 

and if 1” 1 q(s) - 11 ds < co, then (8) has a funda- 

mental system of solutions 

x,(t)=<?[l +0(l)], xZ(t)=em”[l +0(l)], 

x;(t)=ie”[l+o(l)], x;(t)= -ie-“[1+0(l)]. 

Suppose that q(t)+c>O as t+m and j”Iq’(s)I 
ds < m. Then x(t) and x’(t) are bounded for 

every solution x(t) of (8). The same is true if 
q(t) is a positive periodic function of period 
w  such that wfiq(s)ds<4. If q(t) is nega- 
tive, then (8) always has both bounded and 
unbounded monotone solutions. 

The number of linearly independent solu- 
tions x(t) of (8) satisfying ~“lx(s)12ds< CC 

plays an important role in teigenvalue prob- 
lems. It is known that the ordinary differen- 
tial operator ![x] =x” + q(t)x is of +limit point 

type at infinity if there exist a positive func- 
tion M(t) and positive constants k,, k, such 
that q(t)< k,M(t), IA4’(t)Mm3’2(t)l Q k,, and 
{” ?~~“~(s)ds= co, and that 1[x] is of +limit 

circle type at infinity if q(t) > 0, j” q-1’2(s)ds = 

c(j, and ~“I[q-3’2(s)q’(s)]‘+(1/4)q-5i2(s)q’2(s)l 
ds<m. 

Finally consider the nonlinear equation 

x”+q(t)l~I~sgnx=O, (9) 

where 11 is a positive constant and q(t) is a 

positive function. If q’(t)>O, then all solutions 
of (9) are bounded; if either q’(t) > 0 and lim q(t) 

< x or q’(t) < 0 and lim q(t) > 0, then all solu- 
tions x(t) of (9) are bounded together with 
their derivatives x’(t); and if q’(t) 2 0, lim q(t) = 

xz and either q”(t)>0 or q”(t)<O, then all 
solutions of (9) converge to zero as t+m. 

Equation (9) is said to be oscillatory if every 
solution of (9) that is continuable to t = co has 

arbitrarily large zeros. If (9) is oscillatory and if 
ql(t)>q(t), then the equation x”+q,(t)lxlYsgnx 
= 0 is also oscillatory. When y = 1, (9) is oscil- 
latory Lf q(t) > (1 + E)/4t2 for some t: > 0, and is 
not oscillatory if q(t)< l/4?. A necessary and 

sufficient condition for equation (9) with y # 1 
to be oscillatory is as follows: l” sq(s)ds = co 

if~>l;~“sYq(s)ds=~ifO<y<l. 
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315 (X111.4) 
Ordinary Differential 
Equations (Boundary 
Value Problems) 

A. General Remarks 

Consider the differential equation in the real 
variable x 

f(x y y’ . y’“‘)=O. ,,1 > (1) 

Let a,, , ak be points in an interval I c R and 
consider several relations between nk values 

YCaib Y’taiX f.. > Y’“-” (ai), i= 1, , k. The prob- 
lem of finding solutions of (1) satisfying these 
relations is called a boundary value problem of 
(1), and the relations considered are called 
boundary conditions. When k = 2 and u, , a2 are 
the endpoints of I, the problem, called a two- 

point boundary value problem, has been a main 

subject of study. We can consider boundary 
value problems in the same way for systems of 
differential equations. 
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B. Linear Differential Equations 

C0nsider.a linear ordinary differential opera- 
tor L defined by 

w,here pk(x) is a complex-valued function of 
Aclass C”-’ defined on a compact interval 
a<x<bandp,(x)#Oforanyxe[a,b]. We 

define a system of linear boundary operators 
u l,...,U,,,by 

Ui[Y] = f M,y’j-“(a)+ t Iv,y”-l’(b). 
j=l j=l 

Given a function f(x) and complex constants 
yl, . . . , y,, the linear boundary value problem 
defined by 

LCYl=f(x), VCYI=Yi, i=1,...9n, (2) 

is a two-point boundary value problem. When 

f(x) = 0, yi = 0, i = 1, . . . , n, the problem is called 
homogeneous; otherwise it is called inhomoge- 
neous. Let L*[y] be a formally tadjoint dif- 
ferential operator of L[y]. A set of m* linear 
boundary conditions 7JF [y] = 0, i = 1, . . . , m*, 
is said to be an adjoint boundary condition of 
U,[y]=O,i=l,..., m, if for any function y of 
class C” satisfying Ui [ y] = 0, i = 1, . . . , m, and 
any function y* of class C” satisfying Vi* [ y*] 
=O,i=l,..., m*, we have J,bL[y]pdx= 
fiyL*[y*]dx. The boundary value problem 

L*cYl=o, ui” CYI =o, i=l,...,m*, (3) 

is said to be an adjoint boundary value problem 
of 

uYl=o, YCYI =O* i=l ,...,m. (4) 

We say that the problem (4) is self-adjoint if 
L[y] = L*[y] and the conditions Ui[y] =O, 
i=l , . . . , m, are equivalent to the conditions 
U,*[y]=O,i=l,..., m*. 

The boundary value problem containing a 
parameter 1 

LCYI = lY, uiCYl=“, i=l ,...,n, (5) 

admits nontrivial solutions only for special 
values of 1. Such values of 1 are called the 
eigenvalues (or proper values) of (5), and the 
corresponding solutions $0 are called the 

eigenfunctions (or proper functions) of (5). For 
any value of 1 that is not an eigenvalue, there 

exists a unique function G(x, 5, A) such that the 
conditions L[y] =,ly+J Ui[y] =0 are equiva- 
lent to y = c G(x, 5, l)f(<)d<. The function 
G(x, 5, I) is called the Green’s function of (5). If 
1= 0 is not an eigenvalue, then (5) is equivalent 
to 

Y(X) = a 
s 

* W, 5M5) dt, 
Ia 

where G(x, 5) = G(x, <, 0). For I 
function G(x, 5, A) of (5) and th 
tion G*(x, &II) of L*[y] =ly, 
have the relation G(x, 5, A) = C? 
the assumption that (5) is self- 
the following four proposition 
has only real eigenvalues whit 
or countably infinite discrete s 
functions corresponding to tw 
values are orthogonal to each 
is an torthonormal set of eiger 

that no eigenfunction is linear 
of {rp,}, then the system {cp,} i; 
orthonormal set in the Hilbert 
consisting of functions that arc 
grable on (a, b), and hence for 

expansion f=a,cp,+a,~,+. 
L,(a, b) the tParseva1 equality 

if S is a function of class C” sal 
0, then the Fourier expansion 

uniformly to ,f on [a, b]. 
The boundary value problet 

order equation 

(P(4Y’)’ + M4 + W))Y = 0, 

aY(4 + PJY’(4 = 0, YY@) + 6Y’ 

is called a Sturm-Liouville pro1 

r are real-valued functions deli 
and CI, fi, y, are real constants. I 
q, r are continuous and p(x) > ( 
[a, b]. Then (i) the eigenvalues 
ing sequence tending to +co; ( 
tion q,(x) associated with A, h, 
zeros in a <x <b, and there ex: 
adjacent zeros of q,,(x) a zero ( 
(iii) the set of eigenfunctions is 
set on [a, b] with weight functi 

When the coefficients pO, . . ! 
defined in an open interval -0 
b < co and pk is of class Cnmk, L 
natural way operators in the H 
consisting of functions that are 
grable in a XX < b, and the gen 
based on operator theory in H 
(- 390 Spectral Analysis of 01 

C. Nonlinear Differential Equ: 

Boundary value problems for 1 

ferential equations are very dif 
sults are obtained only for equ 

form. 
Consider, for example, the SI 

equation 

Y” =f(x, Y, Y’) 
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and boundary conditions y(a) = A, y(b) = 

B. The following theorem has been proved: 
Suppose that f(x, y, y’) is continuous for a < x 
<b, co(x)<y<~(x), -co<y’< +co, and 

I”& Yt Y’)l c MU +y?; u”(X) >f(x, we4 o’(x)) 
and a” <f(x, W(X), O’(X)) for a < x < b; and 

w(u)<A<o(a) and o(b)<B<ti(b). Then (6) 
admits a solution y(x) such that y(a) = A, y(b) 

= B, and Q(X) <y(x) < W(X) for a <x ,< b. If 
in addition f is an increasing function with 
respect to y, the solution is unique. More- 
over, under suitable conditions, the solution 
is obtainable by the method of successive 
approximations. 

The boundary value problem 

y”’ + 2yy” + 2/l&2 - y”) = 0, 

Y (0) = Y’(O) = 0, y’bbk (x+m), 

where i and k are constants, appears in the 

theory of fluid dynamics. It is known that if 
I > 0, the problem has a solution, and that if 

0 < 1, < 1, the solution is unique. 
Consider the system of differential equations 

Y;=&,Y,, . . ..Y.), j= 1, . ../ n. 

The problem of finding a solution such that 

yj(uj) = bj, j = 1, , n, called Hukubara’s prob- 
lem, reduces to the initial value problem when 
the uj coincide. The problem of solving 

y’“‘=f(x y y’ ,, y’“-1’) > > ,. , 

y(uj)=bj, j= 1, . . . . n, 

is reduced to Hukuhara’s problem by a suit- 
able change of variables. The following result 

is a generalization of +Perron’s theorem: Let 
Q~(x), oj(x), j = 1, . , n, be continuous and right 
and left differentiable functions and gj(x) < 
Wj(x) for a <x <b. Suppose that the fi(x, y, , 

, y,) are continuous for c( Q x < p and wL(x) < 
y, $Q(x), k = 1, , n; satisfy (x - uj)(D %$x) - 

fj(x,y,,...,y,))~Oforyj=wj(x)andw,(~)~ 
yk<<wk(x), k#j; satisfy (x-aj)(D’gj(x)-4(x, 

~1, . ,Y,)) ~0 for yj=pj(x) and o,(x)<Y,< 
ok(x), k #j; and satisfy gj(uj) < bj < wj(aj). Then 
there exists a solution y(x) such that yj(uj)= bj 

and gj(x) <y(x) < ai( This theory was ap- 
plied by M. Hukuhara to the study of singular 
points of ordinary differential equations. 
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316 (X111.3) 
Ordinary Differential 
Equations (Initial 
Value Problems) 

A. General Remarks 

Consider a system of ordinary differential 

equations 

dy,ldx=fi(x,~,, . . ..Y.), i=l,...,n. (1) 

A. L. Cauchy first gave a rigorous proof for 
the existence and uniqueness of solutions: 

Iffi, i= l,..., n, and their derivatives aJ/ay, 
are continuous in a neighborhood Iof a point 
(a, b,, . . . , b,), then there exists a unique solu- 
tion of (1) satisfying the conditions yi(u) = bi, 

i=l,..., n. These conditions are called initial 
conditions, and the values a, b,, . . . , b, initial 
values. The problem of finding solutions that 

satisfy initial conditions is called an initial 
value problem (or Cauchy problem) If we con- 
sider (x, y, , . . . , y,) as the coordinates of a point 
in the (n + I)-dimensional space R”+‘, then a 
solution of (1) represents a curve in this space 
called a solution curve (or integral curve). The 

statement that a solution satisfies initial con- 
ditions yi(u) = bi, i= 1, . , n, means that the 
integral curve represented by it passes through 
the point (a, b,, . . . , b,,). 

Since, in general, we can transform a dif- 
ferential equation of higher order into a sys- 
tem of differential equations of the form (1) by 
introducing new dependent variables, all de& 

nitions and theorems concerning the system (1) 
can be interpreted as applying to a higher- 
order equation. For example, for the equation 
y’“)=f(x, y, y’, . . . , y’“-‘1) the conditions y(u)= b, 

y’(u) = b’, . , y’“-‘)(n)= b’“-‘) constitute initial 

conditions, and the values a, 6, b’, . . , b(“-‘) are 
initial values. If f and its derivatives dflay(‘) are 
continuous, then there exists a uni#que solution 

satisfying given initial conditions. 
Suppose that the d are continuous. Then a 

system of functions (yl(x), . . , y,(x:l) is a solu- 
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tion of (1) if and only if 

Yitxlcbi+ xf;(x,Yl(x)~.~~~Y”(x))dx~ 
s II 

i=l ,...,n. 

When the fi are not continuous, we define 
(YlM . ..T y,(x)) to be a solution of (1) for 
the initial value problem y,(a) = bi if (y,(x), 
. . . , y,(x)) satisfied the integral equation just 
given. 

We use the vectorial notation: y = (yl, . . . 
y,),f=(f,,...,f,)togetherwith IIyII’=y:+ 
. . . + yi. The equations (1) are then written 
as the single equation 

Y’ = f(X,Y). 

B. Equations in the Real and Complex 

Domains 

We state main theorems for differential equa- 
tions in the real domain in Sections C-F and 
in the complex domain in Section G. 

C. Existence Theorems 

Suppose that f(x, y) is continuous for Ix-al < r 
and ((y-b\\ <p, and that Ilf(x,y)ll GM there. 
Then equation (1) admits a solution satisfying 
y(a) = b and defined in an interval Ix -al < 
min(r, p/M) (existence tbeorem). There are 
two methods of proving this theorem, one 
using Caucby polygons and one using Qixed- 
point theorems for function spaces. From this 
theorem we deduce that if f(x, y) is continuous 
in a domain D of R”+l, then there exists a 
solution curve passing through any point of D. 

Let y = (pl (x) and y = Q~(x) be solutions of (1) 
defined in the intervals Ii and I,, respectively. 
If Z, cl2 and P~(x)=Q)~(x) for x~l,, we say 
that qz is a prolongation or extension of vi. 
Given a solution of(l), there exists a nonex- 
tendable solution that is an extension of the 
solution. The solution curve of a nonexten- 
dable solution tends to the boundary of D as x 
tends to any one of the ends of its interval of 
definition. 

D. Uniqueness Theorems 

Continuity does not imply uniqueness of the 
solution. If (1) admits at most one solution 
satisfying a given condition, we call this con- 
dition a uniqueness condition. Various kinds of 
uniqueness theorems, which state uniqueness 
conditions, are known. 

The Lipschitz condition: 

Ilf(x,y)-f(x,z)ll <LIIy-zll, LB0 aconstant, 

is one of the simplest. When f is continu- 
ous and satisfies the Lipschitz condition, the 
method of successive approximation, initiated 
by C. E. Picard, is often used to prove the 
existence of solutions. This method is as fol- 
lows: We choose a suitable function, for ex- 
ample y,,(x) = b, and then define yk(x), k = 1, 
2 , . . . , recursively by K(X) = b + cf(x, y,-,(x))dx. 
Then {y,(x)} is uniformly convergent, and its 
limit is a solution of (1) satisfying y(a) = b. 

Assuming the continuity off, H. Okamura 
gave a necessary and sufficient condition for 
uniqueness: Suppose that f is continuous in D. 

Then a necessary and suficient condition for 
there to exist a unique solution curve of (1) 
going from any point of D to the right is that 
there exist a (?-function rp(x, y, z) defined 
for (x, y, z) such that (x, y) and (x, Z)E D and 
satisfying the conditions cp(x, y, z) = 0 for y = z, 
cp(x, y, z) > 0 for y # z, and 

E. Perron’s Theorem 

Consider the scalar equation y’ =f(x, y). We 
have Perron’s theorem: Let w(x) and W(X) be 
continuous functions that are right differenti- 
able in CI < x <p and satisfy w(x) <a(x), and let 
f be a continuous function defined on D : CI < 
x < 8, g(x) < y < W(X). Suppose that D’@(x) < 
f(x,g(x)) and D’?S(x)>f(x,~S(x)). (Dfo de- 
notes the tright derivative of 0.) Then for any 
(a, b)cD there exists a solution defined on 
a <x < fl and satisfying y(u) = b. The fact that 
the interval of definition is a 6 x </l can be 
expressed by saying that if we denote the set 
co<x<B,Iyl<co byR,thenDisclosedinR 
and there exists, among solution curves going 
from a point in D to the right, a curve that 
reaches the boundary of R. 

Perron’s theorem was generalized by M. 
Hukuhara and M. Nagumo. Let R be an open 
set in R”+‘, D a closed set in a, and f a con- 
tinuous function in D. A necessary and suffi- 
cient condition for (1) to admit a solution 
curve going from any point (a, b) in D to the 
right is that there exist a sequence of points in 
D, {(u,,b,)}, such that a& and (bk-b)/&-a) 

+f(u, b). Moreover, every solution curve is 
prolonged to the right to the boundary of Q. 
Let S(y) be a continuous tsubadditive and 
positively homogeneous function and w(x) a 
function continuous and right differentiable 
on CL <x < /?. A sufficient condition for D: E < 
x < fi, S(y) < w(x) to possess the property in the 
statement of Perron’s theorem is given by 
D’w(x)> S(f(x, y)) for llyll =4x). 

A continuous function w(x) is said to be a 
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right majorizing function of (1) with respect to 
S(y) if for any solution p(x), S(&a)) < w(a) 

implies S(q(x)) d w(x) for x > a if both S(q(x)) 
and w(x) are defined. In order for w(x) to be 
a right majorizing function, it suffices that 

D+w(x):>S(f(x, y)) for llyll =0(x). A function 
satisfying this inequality is called a right su- 
perior function of (1) with respect to S(y). If 
F(x, S(y))> S(f(x, y)), then any solution of 
y’= F(x, y) is a right superior function of (1). 
Theorems stating such facts are called com- 

parison theorems. 
If (1) has a unique solution, the condition 

D’w(x)> S(f(x, y)) for S(y) = w(x) implies that 

w(x) is a right majorizing function of (1). Con- 
versely, we can derive from comparison theo- 
rems general uniqueness theorems, one of 
which we state. Suppose that G(x,y) is continu- 
ous for a<x<fl and O<y<r(x); G(x,O)=O; 
a solution of y’= G(x, y) such that y=o(r(x)) as 
x+cc+O vanishes identically; and finally that 

S(f(x, ykfb, yJ)< Gk Sty, -y2)). Then for 
two solutions pi, IJQ of (1) such that S(q, - y)J 
=o(r(x)) as x+c1+0, we have vi EV)~. Assum- 

ing that f is continuous at (a, b) and taking 
y/(x-a) as G, we obtain Nagumo’s condition 

(X-U)S(f(X,Y,)-f(X,Y*))~S(Y,-Yy,). 
G. Peano proved the following theorem: 

With the same notation and assumption as in 
Perron’s theorem, there exist a maximum 
solution cp and a minimum solution cp of y’ = 
f(x, y) such that Y(U) = b for w(a) < b < ~(a), 

and such that there exists a solution curve 
passing through any point in a <x < ,O, q(x) < 

y<Cp(x). This theorem was extended by Huku- 
hara as follows. Suppose that f(x, y) is con- 
tinuousandboundedinD:a<x</$ ~~yll<co. 
Let C be a icontinuum in D, and let g(C) de- 
note the set of solutions intersecting C. Then 
5(C) is a continuum of the tfunction space 

C( [a, /l]). From this theorem we can deduce 
the Kneser-Nagumo theorem, which says that 

the intersection of the set of points belonging 
to the members of s(C) and a hyperplane x = 5 
is a continuum. It was proved by Hukuhara 
that if C is in the hyperplane x = a, then (1) 
admits a solution connecting the two hyper- 
planes x = a and x = p and passing through the 
boundary of the set of points belonging to the 

members of g(C). 

F. Equations Containing Parameters 

We assume uniqueness of the solution of 

Y’ = f(x, Y, 4, 1=(4,...,&J, (2) 

where f is a continuous function of (x, y, I). Let 

(p(x, a, b, 1) denote the solution of (2) satisfying 
y(a) = b. Then ~(x, a, b, 2) is continuous with 
respect to (x, a, b, 2) in its region of definition. 

If the derivatives aflay, are also continuous, 

then (p(x, a, b, 1) is a continuously differentiable 
function of (x, b); zjk = 8cpj/i?bk, j = 1, . . , n, 
satisfy the system of linear ordinary differential 

equations and the initial condition 

and zj = a(pj/au, j = 1, . , n, satisfy the same 
system with the initial condition zj(u) = 

-JJa, b, 4, where G?fjlay,) means (4$/c%+) 
(x, (p(x, a, b, i,), 1). If f further admits continu- 
ous derivatives af/a,$, then ~(x, a, b, A) is con- 

tinuously differentiable with respect to A,, and 
moreover, wjl = arpj/dil,, j = 1, , n, :;atisfy 
the system 

These differential systems are called the varia- 
tional equations of (1). 

C. Caratheodory proved the existence of 
solutions of (1) under the less restrictive as- 
sumption that f is continuous with respect to y 
for any fixed x and measurable with respect to 
x for any fixed y. 

Suppose that f is continuous and satisfies a 
Lipschitz condition. Let z(x) be a function 
such that z(u)=b and Ilzi(x)-J;(x,z(x))ll <E(X), 
and let y(x) be a solution of (1) such that y(a) = 
b. Then we obtain 

lIzi(yi(x)ll <eLixma’ X.z(x)emLIX-‘ldx , 
IS (I 

which gives approximate solutions of (1). 

G. Equations in the Complex Domain 

We assume that the variables x, y,. . , y, all 
have complex values. We have the ,following 
theorem: If f is holomorphic at (a, b), then (1) 
has a unique solution that is holomorphic 
at x = a and takes the value b at x =: a. This 
theorem can be proved by utilizing the method 
of successive approximations and fixed-point 

theorems. Cauchy proved the theorem by 
using majorant series. This method., called the 
method of majorants, proceeds for the scalar 

equations as follows: Let f(x, y) = 1: ujk(x - 
a)j(y - b)k and y = C c,(x - a)“. Substituting 
the latter series into both members. we can 
successively determine the coefficients c, by the 
method of undetermined coefliciems. Assum- 
ingthatlfl<Mforlx-u(<randly-bb(<p, 
consider the solution Y = C C,,(x - t~)n of 

dY M 

%=(l-(x-a)/r)(l-(Y-b)/p) 

1 satisfying Y(a) = b. We have C, 2 lc,,I for any n, 
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which shows that Z C,(x -a)” is a majorant 
series of 1 c,(x -a)“. 

We have the following uniqueness theorem: 
Suppose that f(x, y) is holomorphic at (a, b). 
Let C be a curve having the point a as one of 
its ends and q(x) be a solution with the follow- 
ing properties: y, is holomorphic on C except 
possibly at x = a, and there exists a sequence of 
points on C, {a,}, such that ak+a and ~(a,)- 
b. Then q(x) is holomorphic at a. By a ttheo- 
rem of identity, the analytic continuation 
of a solution continues to be a solution if it 

does not encounter any singularity off. If a 
solution q(x) is holomorphic on a smooth 

curve x = x(t), with 0 < t < t, and x(O) = a, and 
p(a) = b, then y =&(t)) is a solution for 0 < 
t<t, of 

Y’ = X’WW)~ Y) (3) 

satisfying y(0) = b. Conversely, if (3) has a solu- 
tion y = v(t) defined in 0 < t < t, and satisfy- 

ing y(0) = b, and if f(x, y) is holomorphic at 
(x(t), v(t)) for 0 < t < t,, then (1) has a solution 
(p(x) holomorphic on C and y(t)=&(r)) for 
O<t<t,. 

Suppose that f= fi/fi, where fi and fi are 

holomorphic at (a, b). If fi (a, b) #O, fi(a, y) f 0, 
and f,(a,b)=O, then the equation y’=f(x,y) 
admits a unique solution such that y-b as 
x-a, and this solution can be expanded into 
a tPuiseux series: 

y= 5 C,(X-up. 
II=0 

If f is holomorphic at (a, b), then the solu- 
tion y =9(x, x0, yO) of (1) satisfying y(x,) = ye 
is holomorphic with respect to (x,x,,, y,,) at 
(a, a, b). If f(x, y, 1) is holomorphic at (a, b, &), 

then the solution of (2), y = ~(x, x0, ye, A), satis- 
fying y(x,) = y,, is holomorphic at (a, a, b, A,). 
Suppose that x is a real variable and y is a 
complex vector. If f is continuous with respect 
to (x, y) and holomorphic with respect to y, 
then the solution ~(x, x0, yO) is holomorphic 
with respect to yO. If f(x, y, 1) is continuous 

with respect to (x, y, 1) and holomorphic with 
respect to (y, A), then ~(x, x0, ye, 1) is holomor- 
phic with respect to (ye, 1). 
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317 (X.21) 
Orthogonal Functions 

A. Orthogonal Systems 

Let (X, ,u) be a tmeasure space. For complex- 
valued functions A g on X belonging to the 
tfunction space &(X), we define the inner 
product (l;g)=jxf(x)g(x)dp(x) and the norm 
Ilf 11 =(Jf)“*. If(Xg)=O, then we say that f 
and g are orthogonal on X with respect to the 
measure p. If X is a subset of a Euclidean 

space and p is the tLebesgue measure m, then 
we simply say that they are orthogonal. If the 
measure has a tdensity function q(x) with 
respect to the Lebesgue measure and (1 g) 

=jxf(x)S(x)q(x)dm(x)=O, we say that they 
are orthogonal with respect to the weight 
function q(x). If II f II* = 1, then f is said to be 
normalized. A set of functions {f.(x)} (n = 
1,2, . . . ) is said to be an orthogonal system 
(or orthogonal set), and we write {f,} eO(X), if 

any pair of functions in the set are orthogonal. 
The orthogonal set {f.(x)} is said to be ortho- 

normal, and we write { fn} E ON(X) if each f, is 
normalized. 

Let {f,} be a set of linearly independent 

functions in L*(X), and let R be a subset of 
L,(X). If we can approximate any function 
f o R arbitrarily closely by a finite linear com- 

bination of the f.(x) with respect to the norm 
in L*(X), we say that {f,} is total in R. Let 
{f.} E O(X). If (cp, fn) = 0 for all n implies q(x) 
= 0 almost everywhere (a.e.), then { fn} is said 
to be complete in L*(X). An orthogonal system 
{f,} is complete in L,(X) if and only if the 
system is total in L*(X). 

If {f,} E O(X), then the series Czl cnfn(x) is 

called an orthogonal series. If the series con- 

verges to q(x) tin the mean of order 2, then c, 
=(q,f.)/llfn11*.Wecallthec,(n=1,2,...)the 
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expansion coefficients or Fourier coefficients of 

q(x) with respect to {f.}. 
If {g,,} c L,(X) are linearly independent, we 

can construct an orthonormal system {f.} 
by forming suitable linear combinations of 
the g”; {J,} spans the same subspace as { 9”). 
For this purpose we set fi(x)=gl(x)/llgl 11, 

.L(x)=c~~C4lllcp.ll~ where cp,(x)=&4- 
C:Zi (g,,,fJf,(x), n > 2. This procedure is 
called Schmidt orthogonalization or Gram- 

Schmidt orthogonalization. 
If the c, are Fourier coefficients of (P(X)E 

L,(X) with respect to {f,(x)} EON(X), then 
we have the +Bessel inequality C,“=l lc,j’< 
// cp I/ ‘. Equality in the Bessel inequality for all 
(peL,(X) (the tParseva1 identity) is equivalent 
to completeness of {f.} in L,(X). In this case 
C,“=, cJJx) is called the orthogonal expansion 
of cp with respect to {f”}, and conversely, for 

any sequence {c,} such that C jc,l’ < co, there 
is a function cp E L,(X) that has the c, as its 
Fourier coeffkients, and 

This is called the tRiesz-Fischer theorem. 

B. Orthogonal Systems on the Real Line 

We assume that X is a finite interval (a, b) and 
that functions on X are real-valued. We write 
O(a, b) or ON(a, b) instead of O(X), ON(X). 

(1) If {f,} EON@, b), If.(x)l =GM (const.), and 
Cc&x) converges ta.e., then c,‘O as n+ co. 
(2) We can construct a complete orthonormal 
system {f,(x)} and a function (P(x)EL~(u, b) 
such that its orthogonal expansion CcJJx) 
diverges everywhere. (3) If {f.(x)} E ON(a, b) 
and x cf log’ n < co, then C c,f”(x) converges 
a.e. The factor log* n cannot be replaced by 

any other monotone increasing factor w(n) 
satisfying 0 <w(n) = o(log* n) (Rademacher- 

Men’shov theorem). K. Tandori proved that if 
c,JO and C c,(p, converges a.e. for any ortho- 
normal system {cp,}, then I: Ic,Izlog2 n < co. 

(4) If the orthogonal expansion of a function 
cp~L,(a, b) is tsummable by Abel’s method on 
a set E, then it is t(C, l)-summable a.e. on E. 
(C, l)-summability a.e. of the orthogonal ex- 
pansion of a function of cp EL,@, b) is equiva- 
lent to convergence a.e. of the partial sums 
s*“(x) (n = 1,2, .) of its expansion. (5) Sup- 
pose that {f.(x)} eON(u, b), If.(x)1 < M. Then: 
(i) If the a, are the Fourier coeffkients of q(x) 

with respect to {f,(x)}, then 

where 1 < p < 2, l/p + l/p’ = 1. Conversely, if 

(C Ia Ip)l/p < co (1 < p < 2), there exists a func- 
tion b(x) which has the a, as its Fourier coeffl- 
cients and such that 

(F. Riesz’s theorem). When the orthonormal 
system is the trigonometric system, this is 
called the Hausdorff-Young theorem. (ii) Let 
{ uz} be the decreasing rearrangement of { 1 a, I }; 

then 

u~pnP-2 < A p 
s 

(1 .:p<2). 
“=l L1 

If 4 > 2 and x uzqnq-* < co, then there exists a 
function q(x) which has the II, as its Fourier 

coefficients and such that 

s *lp(x)lqdx$Aq f u,*qnq-2 
n=1 

(Paley’s theorem). When the system is trigono- 
metric, this is called the Hardy-Littlewood 

theorem. (6) If for some positive E we have 
C lc,12-‘< 00, then Cc”f”(x) converges a.e. 
(7) If we set s*(x) = sup, 1 C:=1 cJ,(x)l, then 
//s*II~<A~(CC:~V~-*)~/~ (q>2), where {cz} is 
the decreasing rearrangement of { Ic.I}. 

C. Examples of Orthogonal Systems 

(1) {cosnx} EO(0, n), {sinnx} EO(0, t-c). (2) 
{ 1, cos nx, sin nx} E 0(0,27t) (- 159 Fourier 

Series). (3) Suppose that A(x) is positive and 
continuous, and let y,(x) be solutions of y”(x) 
+ 1, A(x)y(x) = 0 satisfying the condition y,(u) 
= y,(b) = 0, where 1, is any teigenvalue. Then 

{JA(x)y,(x)} E O(u, b) (for orthogonality of 

eigenfunctions - 315 Ordinary Differential 

Equations (Boundary Value Problems) B). (4) 
Set r”(x) = -1 or 1 according as the nth digit of 
the binary expansion of x (0 <x < 1) is 1 or 0, 
and r,,(x) = 0 if x is expandable in two ways. 
Then {r,(x)} E O(0, 1). This is called Rade- 

macher’s system of orthogonal functions. The 
system is not complete, but it is interpreted 

as a tsample space of coin tossing. Rade- 
macher’s system is useful for constructing 
various counter-examples. (5) Let the binary 
expansion of n be n = 2’1+ 2’1+ . . . + 2”~ (vl < v2 

< . <v,), and set w~(~)=r~~+~(x)r,~+~(x) 
. . . rvP+l(x). Then {w”(x)} is a complete or- 
thonormal system called Walsh’s system of 
orthogonal functions. This system is interpreted 
as a system of characters of the group of binary 

numbers, and there are many theoI*ems for this 
system analogous to those for the 1 rigono- 
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metric system. (6) In the interval [0, 11, set 

x!m = J2m, x~((k- 1)/2”, (k- 1/2)/2m) 

= -3, xE((k-11/2)/2m, k/2”) 

=o, XE((l- 1)/2”, 1/2”), 

lfk, 1<1<2”‘. 

The orthonormal system x:(x) (1 <k < 2”, 
1~ m) is called Haar’s system of orthogonal 
functions. The Haar expansion of the continu- 
ous function f(x) converges to f(x) uniformly. 

D. Orthogonal Polynomials (- Appendix A, 
Table 20) 

Suppose that we are given a weight function 
cp(x) 30 (q(x) > 0 a.e.) defined on (a, b) and that 
the inner product of functions X g on (a, b) is 
defined by (Jg)=~~f(x)g(x)cp(x)dx. We ortho- 
gonalize {x”} by Schmidt orthogonalization 
and obtain polynomials p,(x) of degree n. Here 
the sign of p,(x) can be determined so that the 
sign of the coefftcient of the highest power of 
x is positive. We call {p”(x)} the system of 
orthogonal polynomials belonging to the 
weight function q(x). This system is complete 
in L$‘)(a, b), which is defined to be the space 
of functions f such that fiIf(x)[*cp(x)dx< ~0. 
In other words, the system (mp,(x)} is a 
complete orthonormal system in the ordinary 
L,(a, b) space. Concerning the convergence 
problem of the orthogonal expansion by 
{p,(x)}, the Christoffel-Darboux formula 

&P,(L)P,(x)=c. 
P,(x)P,+l(t)-P”(~)P”+l(x) 

t-x 

plays an important role. 
Several important special functions in clas- 

sical mathematical physics are given by ortho- 
gonal polynomials: 

(l)Settingcp(x)=(l-~)“(l+x)~(cc>-l,P> 
-1) in [ -1, 11, we get the Jacobi polynomials, 
although they are sometimes defined in [O, l] 
with respect to q,(x) =x’( 1 -x)p (- Appendix 
A, Table 20.V). If we set tl = /J in the Jacobi 
polynomials, we get the ultraspherical poly- 
nomials (or Gegenbauer polynomials) (- 
Appendix A, Table 20.1). Furthermore, if LY = p 
=O, then we get the tLegendre polynomials, 
and if tl = fi = -l/2, we get the Chebyshev 
polynomials T,,(x) = cos(n arc cos x). The T,(x) 
also appear in the best approximation prob- 
lem (- Appendix A, Table 2O.II; 336 Poly- 
nomial Approximation). 

(2) If we set q(x) = x4evX in (0, co), we get the 
Sonine polynomials (or associated Laguerre 

polynomials) with appropriate constant factors. 

If c( is a positive integer m, we get 

The particular case m = 0 gives the Laguerre 

polynomials. In this case, however, it is cus- 
tomary to normalize them as L,(x) = 
(e”/n!)(d”/dx”)(x”e-“) (- Appendix A, Table 
2O.VI). Laguerre polynomials are used in 
tnumerical integrations of a Gaussian type in 
(0, co). Furthermore, associated Laguerre 
polynomials appear in the solutions of the 
Schrodinger equation for the behavior of 
hydrogen atoms. This system of orthogonal 
polynomials is useful in the expansions of 
approximate eigenfunctions of atoms analo- 
gous to hydrogen, velocity distribution func- 
tions of molecules in gas theory, and so on. 

(3) Setting (p(x)=emXZ (or emXzp) in (-co, 
cc), we get Hermite polynomials H,,(x) = 
( -ll)“eXZ(d”e-X2/dx”), modulo constant fac- 
tors (- Appendix A, Table 2O.VI). Hermite 
polynomials are special cases of parabolic 
cylinder functions (- 167 Functions of Con- 
fluent Type). These polynomials appear as 
eigenfunctions of the Schrodinger equation for 
harmonic oscillators. They are also connected 
with probability integrals and are used in 
mathematical statistics. 

(4) Replacing the integral by a finite sum 
-. 

~&j(m)g(m) m the definition of inner pro- 
duct, we get so-called orthogonality for a finite 

sum. (Regarding orthogonal polynomials with 
respect to a finite sum (- Appendix A, Table 
2O.VII) and their application to the mean 
square approximation - 19 Analog Compu- 
tation F.) Since orthogonal polynomials with 
respect to a finite sum are often called simply 
orthogonal polynomials by engineers, one 
must be careful not to confuse these with the 
ordinary ones. 
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Oscillations 

A. General Remarks 

A vibration or oscillation is a phenomenon 

that repeats periodically, either exactly or ap- 
proximately. Exactly periodic oscillations are 
studied in the theory of tperiodic solutions of 

differential equations. The tperiod of a solu- 
tion f(t) is called the period of the oscillation, 
and its reciprocal the frequency. The difference 
between the greatest and least values of f(t) 

(globally or in an interval) is the amplitude. 
The theory of vibrations has its origin in the 
study of mechanical vibrations, but its nomen- 
clature has been used also for electric circuits. 

As examples of practical applications of the 
theory of oscillations, we mention, in engineer- 
ing, the prevention of vibrations and the gen- 
eration of stable sustained oscillations, and in 

geophysics, investigations concerning the free 
oscillation of the earth, the existence of which 

has recently been confirmed. 

B. Linear Oscillation 

Periodic solutions of tlinear differential equa- 
tions have been studied in detail for a long 

time. Perhaps the simplest case of such an 
oscillation is represented by the differential 
equation 

d2xJdt2+n2x=0, (1) 

where the restitutive force is proportional to 
the displacement from the equilibrium posi- 
tion. Typical examples are the free vibration 
of a simple pendulum with small amplitude 
and an electric circuit composed of a self- 

inductance and capacity (without resistance). 
The solution is given by x = A cos(nt + CC). This 
is called harmonic oscillation or simple bar- 

manic motion. Here the amplitude is A, the 
period is 2744 n is the circular frequency, and x 
is the initial phase. 

A system of m tdegrees of freedom (x, , , 
x,) is said to be in free harmonic oscillation if 

the coordinates can be expressed as 

xi = 2 Ai,cos(n,t + a,), i=1,2 ,..., m. 
k=l 

Each of these simple harmonic oscillations is 
called a normal vibration. As a limiting case, 

where the number of degrees of freedom is 
infinite, we have the vibration of a string: 

wzn2 i?=u(x, t) 

at= 3x2 ’ 

u(0, t) = u(/, t) = 0. 

The solution is given by a series 

1 A, sin(knx/l) cos(knnt/l), 
k 

which is just the superposition of tb.e funda- 

mental vibration (corresponding to k = 1) and 
simply harmonic motions of frequencies equal 
to multiples of the fundamental frequency. 

If a resisting force proportional to the veloc- 
ity is acting, the equation becomes 

d2xldt2+2edxJdt+n2x=0, n>E, (2) 

whose solution 

x= AC”‘cos(ot+cc), a=Jn2-Ei (3) 

is not periodic. However, x becomes zero at 
a fixed interval n/a, and the extremal values 
in the intervals decrease to zero in a geo- 
metrical progression with the common ratio 

u = exp( - ns/a). This phenomenon is called 
damped oscillation with damping ratio u and 
logarithmic decrement log u = - Z&/C. In this 

case, too, 27c/(~ is called the period. 
When a driving force term q(t) is present in 

the right-hand side of (2), the solutilsn takes on 
the additional term 

-COSCG 
s 

cp(t)@sin otdt , 
> 

which represents the forced oscillation due to 

do 
If E<O in (2) (negative resistance)> the solu- 

tion (3) increases in amplitude, so that a small 
disturbance is amplified, resulting i:n an auto- 
matic generation of oscillation. This phenom- 
enon is called self-excited vibration. Besides 
being caused by some special kinds of circuit 
elements (e.g., tunnel diodes), such a situation 

often occurs when the vibrating system has 

time delay characteristics (- 163 Functional- 
Differential Equations). 

Among sustained vibrations, other than 
forced oscillations and self-excited ,vibrations, 
are the parametrically sustained vibrations 
caused by periodic variation of a parameter of 
the vibrating system. Electric wires and panto- 
graphs for use in high-speed electric railways 
must be designed to prevent unwanted para- 

metrically sustained vibrations. On the other 
hand, a parametron is an electric element 

utilizing parametrically sustained vibration. 

C. Nonlinear Oscillation 

Actual vibrating systems contain more or less 
nonlinear elements, which give rise to various 

kinds of oscillations different from those de- 
scribed by the linear theory (- 290 Non- 
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linear Oscillation). For example, d2x/dt2 - 
E( 1 -x2) dx/dt +x = 0 (E > 0) represents a stable 

sustained oscillation such that for large values 
of E, two nearly stationary states occur alter- 
nately, the transition from one to the other 
taking place abruptly. This is called relaxation 
oscillation. 
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319 (1.3) 
Paradoxes 

A. General Remarks 

A statement that is apparently absurd but not 

easily disproved is called a paradox. A con- 
tradiction between a proposition and its neg- 

ation is called an antinomy if both statements 
can be supported by logically equivalent rea- 
soning. In practical use, however, “paradox” 

and “antinomy” often mean the same thing. 

B. Paradoxes in Set Theory 

(1) The Russell Paradox (1903). We classify 
sets into two kinds as follows: Any set that 
does not contain itself as an element is called a 
set of the first kind, and any set that contains 
itself as an element is called a set of the second 

kind. Every set is either a set of the first kind 
or of the second kind. Denote the set of all sets 

of the first kind by M. If M is a set of the first 
kind, M cannot be an element of M. But if M 
is of the first kind, then M must be an element 
of M, by definition. This is contradictory. On 
the other hand, if M is a set of the second kind, 
A4 must be an element of M; but since M is an 

element of M, M is a set of the first kind, so M 
cannot be an element of M, by definition. This 
is contradictory. 

Since the kind of reasoning employed in this 

paradox is very simple and is often utilized in 
mathematics, it became popular in set theory. 
To remove this paradox from set theory, Rus- 
sell suggested tramified type theory. If we 
adopt this theory, however, it becomes very 
hard to develop even an ordinary theory of 
real numbers (- 156 Foundations of Math- 
ematics). On the other hand, this paradox, 
together with the Burali-Forti paradox, indi- 

cates that the definition of a set should be 
restrictive. This realization led to the develop- 
ment of +axiomatic set theory. 

(2) The Burali-Forti Paradox (1897). Let W= 
{0, 1,2, , w, } be the +well-ordered set 
(- 3 12 Ordinal Numbers A) of all tordinal 
numbers. Let R be the ordinal number of B! 
Then every ordinal number, being an element 
of w  is less than Q But s2 is an ordinal num- 

ber. Hence, R < R. This is contradictory. 

(3) The Richard Paradox (1905). The expres- 

sions in the English language can be enum- 

erated by the device that is applied to the 
usual enumeration of the algebraic equations 

with integral coefficients. From the specified 
enumeration of all expressions in the English 
language, by striking out those which do not 
define a real number in the interval (0, 11, 
we obtain an enumeration of those which 
do. Consider the following expression: “The 
greatest real number represented by a proper 
nonterminating decimal fraction whose nth 

digit, for any natural number n, is not equal to 
the nth digit of the nonterminating decimal 
fraction representing the real number defined 

by the nth expression in the last-described 
enumeration.” Then we have before us a de& 
nition of a real number in the interval (0, l] by 
means of an expression in the English lan- 

guage. This real number, by its definition, 
must differ from every real number definable 

by an expression in the English language. This 
is contradictory. 

The following paradox was given by Berry 
(1906): “The least natural number not name- 
able in fewer than twenty-two syllables” is 
actually named by this expression, swhich has 

twenty-one syllables. The Epimenides paradox 
is a traditional ancient Greek paradox of this 
kind: Epimenides (a Cretan) said, “Cretans are 
always liars. . .” 

C. Paradoxes of the Continuum 

The problem of the continuum is important in 
both mathematics and philosophy. There are 

several paradoxes of Zeno concerning the 
continuum, among which the following two 
are best known 

(1) Assume that Achilles and a tortoise start 
simultaneously from the points A and B, re- 
spectively, Achilles running after the tortoise. 
When Achilles reaches the point i?, the tortoise 
advances to a point B,. When Achilles reaches 
the point B,, the tortoise advances further to a 
point B,. Thus Achilles can never overtake 

the tortoise. 
(2) A flying arrow occupies a certain point at 

each moment. In other words, at each moment 
the arrow stands still. Therefore the arrow can 

never move. 
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Partial Differential Equations 

A. General Remarks 

A partial differential equation is a functional 
equation 

a2 azz azz 
l>...> X”‘Z,ax, >...> G’ax,ax,‘“’ 

> 

=o 

that involves a function z of independent vari- 

ables x1, x2, . . . . x,, its tpartial derivatives, 
and the independent variables x1, . . ,x,. The 
definition of a system of partial differential 

equations is similar to that of a system of 
tordinary differential equations. (The partial 
differential equation becomes an ordinary 
differential equation if the number of inde- 

pendent variables is one.) 

p,;+P2;+ . . . +P”&=R 
1 2 ” 

has an integral hypersurface V(z, xi, . . , x,) = 0, 
then we have 

P,~+p2~+...+P”~+R~=0, (4) 
1 2 ” 

The torder of the highest derivative appear- 
ing in a partial differential equation is called 
the order of the partial differential equation. 

which is an equation of type (1). From this we 
can obtain a general solution by the method of 

example 1. The same procedure is applicable 
to solving other systems of partial differential 
equations. 

Usually we write pi for az/axi, x for x1, and 
y for x2 when n = 2, and p = &/ax, q = &lay, 
r=aZZlaxZ,~=a2z~axay, t=azzlay2 when2 
is a function of x and y. 

B. Characteristic Manifolds 

A partial differential equation is called linear 

if it is a linear relation with respect to z and its 
partial derivatives. For example, the equation 

&Y)~+%Y)s+ C(x, At+ W,y)p 

We consider a partial differential equation of 

the nth order of two independent variables 

x, y: 

+ % y)q + F(x, Y)Z = G(x, Y) F(~,Y,z,PI~,P~~, . . ..P.o, . . ..~on)=O. 

is a linear partial differential equation. A par- 
tial differential equation is quasilinear if it is 
a linear relation with respect to the highest- 
order partial derivatives. A partial differential 
equation is called nonlinear if it is not linear 
(- 291 Nonlinear Problems). A function z = 

dXl>X2,‘.~, x,) that satisfies the given partial 

differential equation is called a solution of 
the partial differential equation. Obtaining 
such a solution for a given partial differen- 

tial equation is called solving this equation, 
and by analogy to the case n = 2, the integral 
hypersurface of the equation is 

where pjr = g$. (5) 

With this equation, we associate a manifold 
defined by a real parameter 1, 

x =x(n), Y=Y(a)v Pjk=Pjk(A)t 

j,k=O, l,..., n-l; j+k<n- 1, (6) 

and consider the following problem: Find a 
solution cp(x, y) of (5) that satisfies 

aj+kdx, Y) 
asap =Pjk(l), 

z-fp(x,,x, ,...) XJ’O. 

For a system of partial differential equations, 
we define solutions in the same manner. 

Example 1. X,, X2, . . , X, are functions of 

n independent variables xi, x2,. . , x,. Then 
solving the partial differential equation 

j,k=O,1,2 ,..., n-l; j+k<n-1 

on the curve x=x(n), y = y(L). We call this 

problem the Cauchy problem for equation (5). 
If F vanishes for a system of values x0, y”, 

p$(j,k=0,1,2,...,n;p~o=zo;j+k<n)andis 
tholomorphic in a neighborhood of this sys- 
tem of values, if x, y, pjk are holomorphic 

functions of 1 in a neighborhood of 1= 0 and 
take the respective values x0, y”, pi at 1= 0, 
and if 

x,~+,~+...+x”g=o 
1 2 ” 

is equivalent to solving the system of ordinary 
differential equations 

dx, dx, 

Xl x2 

-dx, 

X 
(2) 

Inotherwords,iff,,f, ,..., f,-iaren-lin- 
dependent tintegrals of (2), then for an arbi- 
trary function a’, 2 = @(jr, . . . ,fn-J is a general 

solution of (1) (- Section C). 
Example 2. If PI, P2, . . . , P,,, R are functions 

of independent variables x1, . . . , x, and the 

dependent variable z, and if the quasilinear 

partial differential equation (Lagrange’s dif- 
ferential equation) 

P,,dy”-PP,-,,,dxdy”-‘+ . . . 

+(-l)“Po,dx”#O (7) 
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for (x0, y”, pi), then we have a unique holo- 
morphic solution of this Cauchy problem in 
a neighborhood of (x0, y”, p,;). (Here we use 
the notation l$ = aF/apjk.) This is Cauchy’s 
existence theorem. We cannot apply this theo- 
rem when the left-hand side of (7) vanishes 

at (x0, y”, pi). At such a point, uniqueness of 
the solution fails, and there may be several 
solutions through the point (x0, y”, p$). There 

are n curves on which the left-hand side of (7) 
vanishes on the integral surface z = cp(x, y). 
These curves are called characteristic curves of 
(5). We associate the values 

j+k 

pjk(,)&!?m 

aXjayk x=x(i).Y=Y(A) 

j, k=O, I,..., n; j+k<n, 

with each point (x, y) on these curves. The 

manifold {X(n)> Y(A), P(l)} (P(i) = { Pjk(l)}) of 

the parameter 1 is called a characteristic mani- 

fold of equation (5). Cauchy’s existence theo- 
rem cannot be applied on the characteristic 
manifold. 

The foregoing considerations can be ex- 
tended, to some extent, to the space of higher 
dimensions R” or C”. Let P be a linear partial 
differential operator of order m: 

The coefficients are assumed smooth and real 

in R” or holomorphic in C”. Its homogeneous 
part of order m, denoted by P,,,(x, D), is called 
the principal part of P. Let S be a hypersurface 

defined by q(x)=0 with gradcp(x)#O. S is 
called a characteristic surface if P,,,(x, grad q(x)) 
= 0 holds for x in a neighborhood of S or 
merely for x E S, and q(x) is called a phase 
function. A real vector t”( #O), or a complex 
vector 5” # 0 is called a characteristic direction 

at the point x0 if Pm(xo, 5’) = 0. The zeros (x, 5) 
(5 # 0) of P,,,(x, 5) are called the characteristic 
set. Furthermore (x0, 5’) is called simple if 
grads Pm(xo, 5’) #O. Suppose that (x0, 5’) is 
simple. The integral curve (x(t), t(t)) that 
satisfies 

2 = grad, P,,,(x, 0, 

( = - grad, P,,,(x, 5) 

is called the bicharacteristic strip of Pm. Evi- 
dently P,,,(x, 5) is constant along the bicharac- 

teristic strip. In particular, if this constant is 
zero, it is said to be null-bicharacteristic. The 

phase function q(x) can be obtained at least 
locally by using the bicharacteristic strip. 

C. Classification of Solutions 

First, we consider a partial differential equa- 
tion of the first order of two independent 
variables: 

Fb, Y, z, P, d = 0. (8) 

A solution of (8) that contains two arbitrary 

constants is called a complete solution. If we 
get one complete solution of (8), then we can 
obtain all the solutions by differentiations and 
eliminations. Let (9) be a complete solution: 

V(x, y, z, a, b) = 0. 

Differentiating this, we get 

(9) 

g+pg=o, 
av av 
-+q2=o. 
ay 

(10) 

Eliminating a and b from (9) and (lO), we get 
the original equation (8). Furthermore, solving 
equation (8) is equivalent to getting three func- 

tions a, b, z of x, y from (8), (9), and (10). If we 
regard a, b as functions of x, y, in (9), we get 

avaa c3Vab 

aaax+abax=“’ 
avaa avab 
--+-- =o. (11) aa ay ab a) 

Therefore we can replace (9) and (10) by (9) 
and (11). Hence we have the following three 

cases: (i) When a, b are constants, we get a 
complete solution. (ii) When V = 0, #3V/aa = 0, 

and aV/ab = 0, we get a solution that does not 
contain arbitrary constants, because z, a, b are 

all functions of x and y. We call this solution a 
singular solution of (8). (iii) When aI’/&, aV/ab 
do not vanish simultaneously, the Jacobian 
D(a, b)/D(x, y) vanishes because of ( 11). This 
means that there exists a functional relation 
between u and b. If there are two such rela- 
tions, a and b are constants and the solution 
z becomes a complete solution. Therefore we 
assume that there is only one such relation 
between a and b, whose form is assumed to be 

b = q(a). Then we get 

Vk Y, z, 4 cp(4) = 0, 
av av 
aa+ab’P’(L’)=O. (12) 

If we solve (12) for the unknowns a and z, we 
get a solution z of (8) that contains an arbi- 
trary function cp instead of arbitrary constants. 
Such a solution is called a general solution of 
the partial differential equation (8) ‘of the first 
order. By specializing this function cp, we ob- 
tain a particular solution of (8). Thus (i)-(iii) 
exhaust all the cases, and by obtaining a com- 

plete solution of (8) we can get all the solu- 
tions of (8). The number of compleie solutions 
may be more than 1, or it may be infinite. 

These complete solutions can be tr,znsformed 
into each other by tcontact transformations. 
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Moreover, they are contained in the general 
solutions. 

Now we consider the case where the number 
of independent variables is n. Take an equa- 

tion that contains n-r + 1 arbitrary constants 

a1,az,...,an-,+1: 

V(xl,xz, . . . ,x,:a,,a,, . . . . an-r+l)=O. (13) 

Differentiate this equation assuming that 
a,, . . . , an-,+l take fixed values. Then we get 

av av 
~+Pi~=09 

aZ 
Pi’z? i=l,2 )..., n. 

1 

(14) 

If we eliminate a,, a,, . . . , an-r+l from (13) and 

(14), we obtain r partial differential equations 
of the first order: 

j=l,2 ,..., r. (15) 

We call (13) a complete solution of (15). In this 
case, as in the case when II = 2, we get all the 
solutions of (15) from a complete solution (13) 
of (15). We have the same classification as in 
the case n = 2: (i) When we regard a,, . . . , an-r+1 
as constants, then we have a complete solution 

of (15). (ii) When we can eliminate the con- 
stants a 1, . . . ,u”-~+~ from equations 

v=o, 
av 
-=o, . ..) av 
aal 

-=o, 
aan-r+l 

we get a solution that does not contain an 
arbitrary constant. Such a solution is called a 
singular solution of (15). (iii) If not all of the 
i3V/&zi vanish, there exists at least one func- 
tional relation among a,, a,, . . . , u”-~+~. We 
assume that there exist exactly k ( < n-r) 

relations among a,, a,, . . . ,an-r+l: 

jJa,,a, ,..., an-r+l)=O, j=l,..., k. (16) 

Then there exist numbers 1,) I,, . . . ,1, such 

that 

I=1 ,...,n-r+l. (17) 

Hence, by eliminating a,, a2, . . . ,an-r+l, A,, 
I,, . . , 1, from (13), (16), and (17), we generally 
obtain exactly one relation between x1, . . . , x, 

and z. This is a solution of (15) that contains 
exactly k arbitrary functions fi, f2, . . . , fk. Such 

a solution is called a general solution of (15). In 
particular, if k = n-r + 1, then it is a cdmplete 
solution. We might think that there are n-r 
general solutions corresponding to k = 1, . . . , n 
- r. But these general solutions are not essen- 

tially different. For the partial equation of the 
second order F(x, y, z, p, 4, r, s, t) = 0, this deli- 

nition of a general solution is not applicable 
since we cannot successfully define a general 
solution by using the number of arbitrary 

functions contained in a solution. 

Instead, we now use the following definition, 
due to J. G. Darboux: A solution of a general 
partial differential equation is called a general 
solution if by specializing its arbitrary func- 
tions and constants appropriately we obtain 
a solution whose existence is established by 
Cauchy’s existence theorem. A solution z = 
cp(x, y) of a general partial differential equa- 
tion is called a singular solution if Cauchy’s 
existence theorem cannot be applied on any 
curves on the manifold formed by z = cp(x, y), 

p=acpfax,q=aq~ay. 

D. Cauchy’s Method 

We can regard equation (8) as a relation be- 
tween the point (x, y, z) on the integral surface 
S and the direction cosines of a tangent plane 
at that point. Therefore the tangent planes at 
all points of the surface form a one-parameter 
family. They envelop a cone (T) whose vertex 
is (x, y, z) on S. The tangent plane at a point M 

on the integral surface S is tangent to this cone 
(T) along one generating line G of (T). 

A curve on S whose tangents are all generat- 

ing lines of (T) is a characteristic curve. If we 
write 

then the characteristic curve is given by the 

system of ordinary differential equations: 

dx dy dz 
-=-= -= 

-dp _ -dp 

P Q Pp+Qq X+pZ y+qz’ 
(18) 

We call this system the characteristic differen- 
tial equation or Charpit subsidiary (auxiliary) 
equation of the partial differential equation (8) 

of the first order. System (18) determines not 
only x, y, z but also p and q. The set of these 
tsurface elements (x, y, z, p, q) is the character- 
istic manifold. This characteristic manifold is 

considered as a part of the integral surface 
with infinitesimal width, and in this case we 
call it the characteristic strip. The character- 

istic strip is represented by the equations x = 

x(n),~=y(l),z=z(l),p=~(l),q=q(l)con- 
taining a parameter. On the integral surface 

z = z(x, y), we have 

g=azdx I azdY 

dl ax dl dy dl 

and 

dz=pdx+qdy. (19) 
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Equation (19) is called the strip condition. The 
equations (18) evidently satisfy this condition. 

The solution ~(t, x)= u(t, x1, , x,,) of 

Second, for the twave equation 

ah a% ah i a% 
p+2+~-~p=o’ av (22) 

we have a solution 
‘40,x) = q(x) 

is obtained (at least locally) as follows. Let the 
solution of the differential equations 

(23) 

d5i 

z- 
--.f;,(t,x1,...,x,,51,...,5,), lGi<n, 

where r2 = x2 + y2 + z2, f is an arbitrary func- 
tion, and y is a particular solution of (22). 
Furthermore, u =f(cr, 8) satisfies the equation 
of a characteristic curve of (22): 

issuing from (x,, 5’) at t=O be (x(t; x0, to), 
<(t; x0, [“)). Then specializing ;Jp = cpXr(xO) 
(1 <j < n), the solution u(t, x) is-obtained by 
quadrature along these curves (characteristic 
strips) from the relation 

du 
~ = -ftt> x, 5) + jc tjf<,tt> x, 0 
dt 

In particular, when f(t, x, 5) is homogeneous 
of degree 1 in 5, by Euler’s identity the right- 
hand side is identically zero. This means that u 
is constant along the characteristic strip. 

Such a solution, which is the product of par- 
titular solutions and some function that con- 
tains an arbitrary function, is called a primitive 
solution of the original equation. Equation (22) 
has another primitive solution of the type 

u=$(t+f, s). 

where CJ is an arbitrary function. 
Laplace’s equation has a primitive solution 

E. Homogeneous Partial Differential 

Equations 

1 Z-r 
u=-f ~ 

r ( > x+iy 

Assume that ,f(tr, t2,. ,&,,) is a thomogene- 
ous polynomial of m independent variables 
tr, t2, , 5,. We denote the differential oper- 
ator a/ax, by 0,. Then consider a homogene- 
ous partial differential equation 

f(D,,D, ,..., D,)u=O. (20) 

We can obtain a homogeneous equation from 
an inhomogeneous partial differential equation 
by transformation of the dependent variable. 

For example, Dfw = D, w  becomes the homoge- 
neous partial differential equation (0: - D,D,)u 
=0 by the transformation of the dependent 
variable u = eX”w. The equation (0: - D,D,)u = 
0 corresponds to the homogeneous polynomial 

.f(tl, C2, &I= tf -t2t3. Generally, for ewa- 
tion (20), we consider the solution 

u=F(O,,O,, . . . . OS), (21) 

where 0,) O,, ,0,, are functions of x,, , x, 
and F is an arbitrary function of Oi. Such a 

solution is called a primary solution of (20). 
For example, for the equation (0: -0:)~ = 0, 
there are two primary solutions, u = F(x, +x,) 
and u = F(x r -x2). For +Laplace’s equation 

A basic equation is an equation, such as La- 
place’s equation, that has a primary solution 
and a primitive solution. A solution of an 
equation that has the same charactzristic 
curves as a basic equation can be obtained 
from a particular solution of the basic equa- 
tion by integrations and additions. For exam- 
ple, if we choose a particular solution u = Y-’ 
of Laplace’s equation, which is a specialization 
of the primitive solution u = r-‘f((z -- I)/(x + iy)), 
then 

is a solution of 

Au + 47rF(x, y, Z) =0 

in the interior of the domain of integration. 

F. Determined Systems 

u= [(x-5)2+(y-~)2+(z-1)~‘]-“2 

x F(5, v> 0 d5 dv 4 

The general form of a system of partial dif- 

ferential equations in two independent vari- 
ables is 

a2u a*u a2u 
Au=~,+,,+~=O, 

OY 
Fi(X, y, u(l), u(2), . , U(m), uy, up, ) up, u:“‘, 

we have a primary solution u = F(z + ix cos c( + 
iy sin a), where c1 is a parameter. 

ll$!, . ..)=O. i=l, 2, . . . . h, (24) 

i.e., a system of h equations for m functions 
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u(1), uw ,..., ucrn) of the independent variables x 
and y. The system is called a determined sys- 

tem if h = m, an overdetermined system if h > 
m, and an underdetermined system if h < m. 

An example of a determined system is the 
Xauchy-Riemann equation 

ux-l&=0, u,+v,=o, 

for u(x, y), u(x, y), which can be further reduced 
to two determined equations Au = 0 and Au = 
0. 

A simple example of an overdetermined 
system is 

4 =fk YX u, =f(x, Y). 

A necessary and sufficient condition for the 
existence of a solution of this system is & = f,. 
The Cauchy-Riemann differential equations for 
a holomorphic function f(z,, z2) = u + iv of two 
complex variables z i =x i + iy,, z2 =x2 + iy, 
are 

u,,=uy,, ux2=vy*, uy,= -%,, 

uy, = - ux2> 

which can be reduced to 

ux,x,+uy,y,=o, ux,xl+~y‘y*=o, 

ux2x2 + uy,y, = 0, ux,y, - ux*y, = 03 

which is also an overdetermined system. 
An example of an underdetermined system 

is 

a(4 4 
~ = u,vy - uyv, = 0. 
ak Y) 

If this equation holds, there exists a functional 
relation w(u, v) = 0 that can be regarded as a 

solution of this underdetermined system. 

G. General Theory of Differential Operators 

In recent developments of the theory of par- 
tial differential equations, there is a trend to 

construct a general theory for tdifferential 
operators regardless of the classical types 
of differential equations (- 112 Differential 

Operators). For example, we take a property 
that is satisfied by some equation of classical 

type (e.g., an telliptic differential equation) and 
proceed to characterize all equations that have 
this property. (For example, thypoellipticity is 
a property of classical tparabolic and elliptic 
equations.) There are several basic problems in 
this general theory: the existence of a funda- 
mental solution, the existence of a local solu- 
tion, unique continuation of solutions, the 

differentiability and analyticity of solutions, 

and the propagation of smoothness. We ex- 
plain here only two of them: the fundamental 
solution and the local existence of solutions. 

H. Fundamental Solutions 

L is assumed to be a linear partial differential 

operator with constant coefficients. If a tdistri- 
bution E satisfies the equation 

LE(x)=c?(x), 

where 6(x) is the tDirac b-function, then we 

call E(x) a fundamental solution (or elementary 
solution) of L. Also, if L is a linear differential 
operator and E satisfies the equation 

L-w, Y) = G-Y), 

then we call this distribution E(x, y) a funda- 
mental kernel (or elementary kernel) of L. 

Let L be a differential operator with con- 
stant coefficients and E(x) be a fundamental 
solution of L. Then E(x, y) is a fundamental 
kernel of L. Sometimes E(x, y) itself is called a 
fundamental solution. L. Ehrenpreis and B. 
Malgrange proved that any linear differential 

operator with constant coefficients has a fun- 
damental solution [4]. 

If we take a fundamental solution (funda- 
mental kernel) E and add to it an arbitrary 
solution of the equation Lu = 0, then we get 

another fundamental solution (fundamental 
kernel) of L. This freedom of the fundamental 
solution (fundamental kernel) can be used to 
construct tGreen’s functions of the boundary 
value problem of elliptic equations and of the 
mixed initial-boundary value problem for 
parabolic equations. A Green’s function is a 
fundamental solution (fundamental kernel) 
that satisfies given boundary conditions (- 

188 Green’s Functions; 189 Green’s Operator). 
The fundamental solutions (fundamental ker- 
nels) relative to the Cauchy problem are also 

defined as in this section. For example, con- 
sider a fundamental solution of the Cauchy 
problem concerning the future behavior of 
a differential operator L =.a/at - P(a/ax), 

namely, a distribution E(t, x) that satisfies LE = 
0 (t>O) and E(t,x)I,=,=6(x). If we put &t,x)= 

E(t,x) (t>O) and E”(t,x)=O (t<O), then E”(t,x) 
is a fundamental solution (or kernel) of the 
differential operator L, that is, LE” = s(t, x). 

Sometimes a fundamental solution of the 
Cauchy problem for a parabolic equation is 
called a Green’s function. On the other hand, a 

fundamental solution (or kernel) of the Cauchy 
problem for a hyperbolic equation is called a 
tRiemann function. A Riemann function actu- 
ally is not always a function; in general it is a 

distribution. 
Example 1. A fundamental solution of the 3- 

dimensional Laplacian 

A=$+;+$ 
x2 3 

is E(x)= -1/47cr, where r=Jm. 
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Example 2. A fundamental solution of 
the Cauchy problem for the future of the 3- 

dimensional wave operator 

i.e., a distribution E(t, x) (t 20) that satisfies 
LE=O (t>O), E(O,x)=O, and (a/at)E(O,~)= 

6(x), is given by E(t,x)=(1/4~t)d(r--t) (t>O), 
r=p x1 + xi + xi. A fundamental solution 

for L is given by E(t,x)=E(t,x) (t>O); = 
0 (t < 0) (- Appendix A, Table 15.V). 

I. Existence of Local Solutions 

Given a linear differential operator L and the 

equation Lu =A we have the problem of deter- 
mining whether this equation always has a 
solution in some neighborhood of a given 
point. If the coefficients of L and f are holo- 
morphic in a neighborhood of this point and 
if the homogeneous part of highest order 
does not vanish, then there exists a solution 

that is holomorphic in a neighborhood of the 
given point (+Cauchy-Kovalevskaya existence 
theorem). 

If L is a linear differential operator with 
constant coefficients, E is a fundamental solu- 

tion of L, and ,f is a function (or distribution) 
that is zero outside of a compact set, then we 
have a solution LI that is the tconvolution of E 
and S: u = E *f: On the other hand, H. Lewy 
proposed the following example [3]: 

where f is a real function of x3. He showed 

that if this equation has a solution that is of 
class C’, then ,f must be real analytic. There- 
fore, if j is of class C” but not real analytic, 
then this equation has no Cl-solution. Actu- 
ally, no solution exists even in the distribution 
sense. (Note that, since the coefficients of L are 
now complex-valued, the results mentioned at 
the beginning of this section are no longer 
applicable.) 

For linear differential operators L, a study 
by L. Hiirmander gives some necessary con- 
ditions and also some sufficient conditions for 

the local existence of a solution of the equa- 
tion Lu =f for sufficiently general f [4]. This 
result has been developed and completed by 
L. Nirenberg and F. Treves [ 181 and by R. 
Beals and C. Fefferman [ 191. The operator 
considered by S. Mizohata (J. Math. Kyoto 
Univ., 1 (1962)), 

serves as a standard model in this problem. In 

the neighborhood of the origin, if I; is even, L 

is locally solvable, and if k is odd, it is not 
locally solvable. However, for linear partial 
differential operators with multiple character- 

‘istics, the problem of local solvability becomes 
extremely difficult. 
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321 (X111.21) 
Partial Differential Equations 
(Initial Value Problems) 

A. General Remarks 

First, we give two examples of initial value 
problems for tpartial differential equations. 

(I) Consider the partial differential equation 

u, - u, = 0 of two independent variables x and 
y. If the function q(y) is of class C’, then u = 
cp(x + y) is a solution of this equation that 
satisfies ~(0, y) = q(y). 

(II) We denote a point of R”+’ (or C”‘t) by 

(t,x), x=(x1,..., x,). Let L be a linear partial 
differential operator of order m: 

Ivl=v,+v,+...+v,, v,<m, 

where the coefftcients ayO y,,,,y” (t, x) are func- 
tions of class C” (i.e., treal analytic functions 
or holomorphic functions) in a neighborhood 

of (t, x) = (0,O). If the functions u(t, x) and wk(x) 
(0 <k <m - 1) are of class C” in a neighbor- 

hood of (t, x) =(O,O), then there exists a unique 
solution u(t, x) of class C” in a neighborhood 

of (t, x) = (0,O) that satisfies 

L Cul = 44 4, 

$(o,x)=w,(x), O<k<m-1. (1) 

This is called the Cauchy-Kovalevskaya exis- 
tence theorem (for linear partial differential 

equations). 
As in (II) we choose one of the independent 

variables as the principal variable and regard 
the others as parameters. When we assign a 

value a to the principal variable t, the values of 
the dependent variables (unknown functions) 
and their derivatives are called initial values, 
initial data, or Cauchy data. Conditions to 
determine initial values are called initial con- 

ditions. The problem of finding a solution of 
(1) under given initial conditions is called an 

initial value problem or Cauchy problem. We 
may consider initial value problems not only 
for initial conditions on a hyperplane t = a, but 

also for initial conditions on a hypersurface, 

called an initial surface (- Section C). 
Let a(x, D) be a linear partial differential 

operator of order m: 

4x,D)= 1 a,WD=, DQ=axa, 
alal 

I.1 < m 1 . ..aq’ 

lLYl=a,+...+cc,, 

where the coefficients a,(x) are of class C” in a 
neighborhood of x = 0. Its characteristic poly- 

nomial is 

Let S: s(x) = 0 be a regular surface (i.e., s, = 
(as/ax,, . . . , as/ax,) # (0)) of codimension 1. 
We suppose that S is a tnoncharacteristic 
surface, that is, h(x, s,) # 0 on S. Let u(x) and 

y(x) (0 < k < m - 1) be the functions of class C” 
in a neighborhood of x = 0 and on S, respec- 
tively. We consider the Cauchy problem 

4x, DMx) = u(x). 
a% 

-= wk(x) on S, 
anqx) 

O<k<m-1, (1) 

where n is the outward normal direction of S. 
S is thus the initial surface. Then there exists a 
unique solution u(x) of class C” in a neighbor- 
hood of x = 0. In fact, by the change of vari- 

ables X, = S(X), Xi = xi (2 G i G n) if as/ax, # 
0 on S, this problem can be reduced to the 
Cauchy problem (1) by taking account of the 

fact that h(x, s,) #O on S. 
The Cauchy-Kovalevskaya theorem asserts 

the local existence of solution when the initial 
values are of class C”. Indeed, J. Hadamard 
noted that if the initial values are not of class 
C”, the initial value problem does not always 
have a solution. For example, consider the 
initial value problem 

2 2 2 
!?+!?+a”=() 
a2 ay2 az2 

with the initial values 

40, Y, 4 = W(Y, 4, 
au 

-=o. 
axto, Y, 4 

If the function w(y, z) is not of class C” in any 
neighborhood of y = z = 0, the solution of this 
problem can never exist in (or even on one side 
x > 0 of) any neighborhood of x = y = z = 0. 

B. The Cauchy-Kovalevskaya Existence 
Theorem for a System of Partial Differential 
Equations in the Normal Form 

The Cauchy-Kovalevskaya existence theorem 
(1) is extended for more general systems of 
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partial differential equations in the normal 
form studied by Kovalevskaya. Consider 

[?P’U. 
---=Fi 
iitpr 

t,x,u ,,..., u, ,...I 

where l~i,j~m,Ivl=v,+v,+...+v,~p,,v,< 

I-‘J> and x =(x1, , x,). We assume that Fi (1~ 
id m) are functions of class C” with respect to 
arguments t, x, ur, , u,, _, Ynj/L?tYOi;X;l 

?xin, , in a neighborhood of (O,O, .._ ,O). If 
the functions wik(x) (1 < i ,< m, 0 <k < pi ~ 1) 
are of class C” in a neighborhood of x = 0, 
then there exists a unique solution U, (t, x), , 

u,(t, x) of class c’” in a neighborhood of (t, x) = 
(0,O) that satisfies the equations and the initial 
values 

ikU. 
-$CO> -U) = wik(x), 1 didm, O<k<pi-1 

c2,41. 

C. Single Equations of the First Order 

For a single partial differential equation given 
in the normal form 

weassumethatF(x,y, ,..., y,,u,q, ,..., qk)isa 
real-valued function of class Cz in a neighbor- 
hood of x = u, yi = hi, u = c, q, = di, and that 
‘p(y,, , yk) is also a function of class C2 such 
that cp = c, &p/c;lyi = di at yi = hi. Then there 
is a solution u of (2) in a neighborhood of 
x = a and yi = h, that satisfies u(u, y, , . , yk) = 

y)( y1 , , yk) and is of class C2. 
For the uniqueness of solutions of this 

Cauchy problem, A. Haar (Atti de/ Congress0 

Internazionule dei Matematici, 1928, Bologna, 
vol. 3) showed that if F satisfies the +Lipschitz 

condition 

I Fb, Y, u’, 4’) - F(x, Y, u, 411 

then the solution of the initial value prob- 
lem for (2) is unique. To obtain this result he 

studied the partial differential inequality 

(3) 

Next, we consider more general equations of 

the first order 

i 

?u 

Fx 
?u 

I,..., q.,u,- ).../ ~ 
dX, CX, 

=o. 

Suppose that F(x,, . , xkr u,p,, pk) is a real- 
valued function of class C2 in a neighborhood 
of xi = “i, u = b, pi = ci; cp(x,, ,x,), S(x, / . ) Xk) 
are functions of class C2 in a neighborhood 
of x, = ui that satisfy b = ~(a,, . , aJ, ci = 

(@/dXi),=,, S(a, , . %. , ak) = 0; and 

(5) 

Then there exists a solution u of (4) of class 
C2 in a neighborhood of x = a that satisfies u = 

q(x) on the hypersurface S(x) = 0. 
Furthermore, if F, q, S are of class C’ and 

satisfy (5), then there is at most one solution u 
of (4) of class C’ in a neighborhood of a that 

satisfies u = q(x) on the hypersurfa’ce S(x) = 0. 
These facts can be proved in the following 

way. By choosing S,(x), . , S,-,(x) and then 
S(x) so that the +Jacobian a(& S,, . . . , Sk-,)/ 
i?(x,, , xk) does not vanish and b,y changing 
variables from x to S, S,, . , Sk-t, we obtain 

a normal form solved for &/as by condition 
(5) (this condition means that the bypersurface 
S(x) = 0 is not tangent to the tcharacteristic 
curves). 

D. Quasilinear Equations of the Second Order 

Consider the equation 

where x=(x,, . . . . xk), p=(pl, . . . . p,.), and pi= 

i?‘u/axi. We assume that the initial conditions 

are u = q(x) on S(x) = 0 and 

on the same hypersurface. Taking the other 
functions S, (x), . , S,-,(x) and then S(x) so 
that the Jacobian d(S,S,, ,s,-,)/8(x,, ,x,) 
does not vanish, we change the variables x to 

s,,,sr ,..., skml (s,=S,si=Si).Then weget 

where 

When s,, =O, the initial conditions are trans- 

(6) 
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formed to 

u=cp*(s, , . . . , Sk-J= cp(x(O, s 1, . . ., Sk-l)), 

Suppose that Q(S, S) # 0, and set au/as, = qi. 
Then equation (6) added to the initial con- 
ditions u = cp*(s,, . , sk-i), q. = $*(s 1, . . ..%-I) 
at so =0 is equivalent to the system in the 
normal form of partial differential equations of 
the first order 

au 84, _ aqo. 
Gzqo3 as0 as,’ 

PC=1 ,...,k-1, 

-ZQ(S,,S)f$ -b* 
a > 1 

with initial conditions 

u=cp*(s, ,...,sk-l), qO=$*(Sl,..‘,Sk-I), 

qu = acp*las P 
when so = 0. Thus, if the coefficients are of 
class C”, the preceding theory applies to this 
equation. 

E. Continuous Dependence of Solutions on the 
Initial Values 

First, we consider the following simple exam- 
ple of a linear equation. The wave equation 

a% ,a% 
@=” s 

for v(x, t) is the simplest thyperbolic equation. 
Its solution satisfying the initial conditions 
v(x,O)=f(x), (au/at)(x,O)=g(x) is given by 

u(x,c)=~(f(X+c~)+~(X-c~))+~ _ s 
X+C* 

s(Wa. x et 
It is obvious from this expression that if we 

regard f(x) and g(x) as elements of the tfunc- 
tion space C(R) of continuous functions of 
x E R with the topology of tuniform conver- 
gence on compact sets, then v(x, t) is deter- 

mined as the value of a linear operator from 
C(R2) to C(R’) on xt-space. If such continuous 
dependence on the initial values is established, 
or more precisely, if there is a unique solution 

for sufliciently smooth initial values that de- 
pends on the initial values continuously in a 

suitable sense, we say that the initial value 
problem is well posed (properly posed or cor- 
rectly posed). 

Systematic research on the well-posedness 

of Cauchy problems was initiated by I. G. 
Petrovskii, who considered the following sys- 
tem of partial differential equations, which is 

more general than differential equations of the 
normal form. (The coefficients are all assumed 
to be functions oft only.) 

tg=g ,“~~ujk”~“~...““(t)a”o+v’+“‘+*“uk~x~t) 
a0a.q . . ax: 

+Bj(xlr...,xn9t)9 j=l ,..., N, 

Jvl=v,+v,+...+v,, VO<?lk. (7) 

This has a normal form if nk = m (k = 1, . . , N). 

Now, taking the derivatives 

a nj-1 

0 

a II-2 

at 
uj(x, tb z 

0 
uj(x, t)~ . . P 

0 

i uj(xt t, 

as new unknowns, we get another system: 

+ cj(x, tb j=l,...,N’. (8) 

We take as the space of initial values the 
ttopological linear space composed of all func- 
tions whose derivatives up to a sufficiently 
large order are bounded on the whole space R” 
and equipped with the topology determined by 
the tseminorms that are the maximums of 
derivatives up to a given order on the whole 

space, and we take as the range space a simi- 
lar space on the xl-space, where x E R” and 
0 < t < T. Then we can formulate a necessary 
and sufficient condition for the well-posedness 
of the initial value problem for the future (the 

problem is regarded as specifying a mapping 
that assigns to the initial values on t = 0 the 
values u(x, t) for t > 0). To give such a con- 
dition we consider the following system of 
ordinary differential equations, which are 
given by a tFourier transformation on the 
x-space of system (8): 

x (27rilJ1 . (27ti{,)y”fik(& t) + Cj(& t), 

j=l,...,N’. (9) 

If the tfundamental system of solutions of (9) 
is vjj)(& t) (i = 1, . . . , N’, j = 1, . . . , N’), then the 
condition is that these functions satisfy the 
inequalities 

Iv1”(5,t)l~C(1+151)L, O<t<T, (10) 
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where C and L are constants independent of 5. 

This is the condition obtained by Petrovskii. 
If system (7) is of normal form and is well 

posed for the future, it is also well posed for 
the past. In this case, equation (7) is said to be 

of hyperbolic type (- 325 Partial Differential 
Equations of Hyperbolic Type). An example 
that is not of a normal form and is well posed 
is a parabolic equation (- 327 Partial Dif- 
ferential Equations of Parabolic Type). In 
PetrovskiTs theory it is sufficient to assume 
that the coefftcients in (7) are continuous and 
bounded, and we can take T arbitrarily large 
provided that (10) is satisfied. Hence Petrov- 
skii’s theory guarantees global existence of 

solutions. 

F. Uniqueness of Solutions 

If a linear partial differential equation of the 
first order of normal form has coefficients of 
class c’“, then the solution of class C’ satisfy- 
ing the prescribed initial conditions is unique 
(Holmgren’s uniqueness theorem, 1901). Every 
system of partial differential equations of 
higher order of normal form can be reduced to 
a system of the first order of normal form. 
Therefore, if the coefhcients are of class C”, 

there is only one solution for the original 
initial value problem with continuous partial 
derivatives up to the order of the equation. 
Moreover, if an analytic manifold S of dimen- 
sion n - 1 (n is the number of independent 
variables) is not tcharacteristic for the given 
equation of order m, there is at most one solu- 
tion whose derivatives of order up to m - 1 
coincide with given functions on the manifold 
S. The proof of this fact relies on the Cauchy- 
Kovalevskaya existence theorem. 

The uniqueness problem for the initial value 
problem is in genera1 very diflicult even for 

linear equations when the coefficients are not 
of class C”. 

In particular, if the number of independent 
variables is 2 and the coefftcients are all real, 
then we have a result of T. Carleman (1939) 
about the system: 

where the a,, are of class C2 and the b,,, are 

continuous. He proved that if the eigenvalues 
of the matrix (a,,) are all distinct, then even 
when some of the eigenvalues are complex, 
there is at most one solution of class C’ for the 
initial value problem. If we omit the assump- 
tion about the eigenvalues, however, the theo- 

rem does not hold in general, because we have 
a counterexample due to A. PliS (1954) where 

all coefficients are of class C”, m = 2, bpy = 0. 

A. P. Calderon showed that Carleman’s 

result can be extended to the case n > 2 (Amer. 

J. Math., 80 (1958)). Consider the following 
linear partial differential equation of the kth 

order: 

where Pj(x, y, t) is a homogeneous polynomial 
of degree j of 5 = (lr, . , 5,) with real coefh- 

cients and B is a differential operation in (x, y) 
of order at most k - 1. We assume that the 
coefficients of 4(x, y, 5) are functions of (x, y) of 
class C’, their derivatives are Holder continu- 
ous, and the coefficients of B are bounded and 
continuous. If the characteristic equation of 

(W, 

ik+ 5 qx,y,()lk-j=O, 
j=I 

has only distinct roots for 5 ~0, then the Ck- 
solution of the Cauchy problem is unique in a 
neighborhood of x = a. Calderon proved this 
except for the cases k b 4, n = 2, where a cer- 
tain topological difficulty arises. S. Mizohata 
(J. Math. Sot. Japan, 11 (1959)) succeeded in 
obtaining the proof for the exceptlonal cases. 

This result can be extended to systems of 
equations under similar assumptions. See L. 

Hormander [4] for an extension to the com- 
plex coefftcient case. S. Mizohata, T. Shirota, 
and H. Kumanogo discuss the uniqueness 
theorem for equations of double character- 
istics or of parabolic type. 

For nonlinear equations there are, in gen- 
eral, very few results about the global existence 
of solutions. For example, if the function F in 
equation (2) in the normal form satisfies the 
Lipschitz condition with constants A and B 

that are independent of x, then we get a global 
existence theorem. The method of proof of 
this theorem is as follows: First, we prove the 

existence for 1x1 <Ed and sufficiently small sI 
by Picard’s tsuccessive iteration method. Then 
we regard x = E, as the hyperplane on which 
the initial values are assigned and proved the 
existence of a solution on &r < Ix1 1 <Ed, and so 
on. The same method can be applied to non- 
linear systems of the first order if .:hey are 
special types of quasilinear systems. 

G. Construction of Solutions by Asymptotic 
Expansion 

Let a(x, D) = &~,,,u~(x)Da be a linear par- 
tial differential operator of order m, with 

coefficients of class C”. We write u(x, <)= 

~,,,,,a,(x)5”=h(x,5)+h’(x,5)+ . with h 
I and h’ homogeneous in 5 of degree m and m - 

1, respectively. Let K : Q(X) = 0 be a regular 
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surface of codimension 1. We assume that K 
is a simple characteristic, i.e., h(x, rp,) = 0 
and (ah/&(x, q=))#(O) on K. Let fj(t) (j= 
0, 1, . . . ) be a sequence of functions satisfying 
df,/dt(t)=&(t), j = 1,2, . . . . Then the equation 
a(x, D)u(x) = 0 has a formal solution in the 
form 

u(x)= 2 fj(cP(x))uj(x). 
j=O 

The coefficients uj(x) are obtained by solving 
successively the equations 

Ll C”jl =ki2 LC”j-k+Ilt (13 

where 

+ h’k 4 

and L, (2 < k < m) are differential operators of 
order k depending only on a and rp. By this 
method of asymptotic expansion of solution, 
fundamental solutions and singularities of 
solutions for hyperbolic equations have been 
studied (Hadamard [S, 61; R. Courant and P. 
Lax, Proc. Nat. Ad. Sci. US, 42 (1956); Lax, 
Duke Math. J., 24 (1957); D. Ludwig, Comm. 
Pure Appl. Math., 22 (1960); S. Mizohata, J. 
Math. Kyoto UC., 1 (1962); - 325 Partial 
Differential Equation of Hyperbolic Type). 

If a(x, D) is an operator with analytic coefli- 
cients, this formal solution is convergent. By 
using this fact, Mizohata constructed tnull 
solutions. In fact, put A(t) = tP+m+j/r(p + m + 
j) (p>O), j=O, 1, . . . . Define u(x) by u(x)=0 
for q(x)<0 and u(x)=~~o~((p(x))uj(x) for 
q(x) >, 0 obtained by the preceding process. 
Then u(x) is a null solution of a(x, D)u(x) = 0 
(Mizohata, J. Math. Kyoto Univ., 1 (1962)). 

The Cauchy problem in the case when the 
initial surface has characteristic points had 
been studied by J. Leray and by L. Girding, T. 
Kotake, and Leray. Let a(x, D) be a differential 
operator with holomorphic coefficients in a 
complex domain. Let S : s(x) = 0 be a regular 
surface and T be a subvariety of codimension 
1 of S. Suppose that S is noncharacteristic 
on S - T, but characteristic on T. Consider 
the Cauchy problem (1) of Section A. Then 
the solution u(x) is ramified around a char- 
acteristic surface K that is tangent to S on T, 
and it can be uniformized (Leray, Bull. Sot. 
Math. France, 85 (1957); Garding, Kotake, and 
Leray, Bull. Sot. Math. France, 92 (1964)). 

Next we consider the Cauchy problem (1) 
when the initial surface S (x1 = 0) is nonchar- 
acteristic, but the initial values W&C) (0 6 k < 
m - 1) have singularities on a regular sub- 
variety T (x1 =x1 = 0) of S. We assume that 

w,5,, 60, . . . . 0) = 0 has m distinct roots. Then 
there exist m characteristic surfaces Ki: qi(x) = 
0 (1 < i < m) originating from T. rp,(x) is ob- 
tained by solving the THamilton-Jacobi equa- 
tion h(x, cp,) = 0, ~(0, x2, . . . ,x,)=x2. Now, if 
wk(x) (0 < k <m - 1) has a pole along T, the 
Cauchy problem (1) has a unique solution in 
the form 

u(x) = f i=l a+ Gi(x)lOg Pi(x) + H(x), > 
where F,(x), G,(x) (1 < i < m) and H(x) are holo- 
morphic functions in a neighborhood of x = 
0 and pi (1 <i < m) are integers > 0. In order 
to obtain this solution, we set u(x) in the form 
U(X) = C& C,p”,ojj((Pi(X))Ui,j(x), where fo(t) is 
a function with a pole or a logarithmic sin- 
gularity at t = 0 chosen so that u(x) satisfies 
the initial conditions. Thus we can determine 
the coefficients ui, j(x) by solving successively 
the equations (13) on each K, (1 < i < m) (Y. 

Hamada, Publ. Res. Inst. Math. Sci., 5 (1969); 
C. Wagschal, J. Math. Pures Appl., 51 (1972)). 
When the multiplicity of characteristic roots is 
more than 1, the situation is not the same. For 
example, consider the Cauchy problem 

Dfu-D,u=O, u(O,x,)=$ 

D,u(O,x,)=O. 

The solution is 

with essential singularities along x2 = 0. This 
situation occurs quite generally. We factor 
h(x,()=h,(x, 5)‘~ . . . h,(x,(p, where hi (1 <i<s) 
are irreducible polynomials of degree mi in 5 
with holomorphic coefficients. We assume that 
the equation n;=, hi(O, tl, 1, 0, . . . ,O) = 0 has p 
distinct roots (p = m, + . . . + mJ. Then there 
exist p characteristic surfaces Ki (1 < i < p) 
originating from T. We suppose more gener- 
ally that the initial values y(x) are multi- 
valued functions ramified around T. Then the 
Cauchy problem (1) has a unique holomorphic 
solution on the universal covering space of V 
- ufzl Ki, where V is a neighborhood of x = 0. 
In fact, this is solved by transforming this 
problem into tintegrodifferential equations. 
Such a method of solution is closely related 
to the method discussed in this section. See 
Hamada, Leray, and Wagschal (J. Math. Pures 
Appl., 55 (1976)). In this case, even if the initial 
values have only poles, the solution in general 
may have essential singularities along UfZ1 Ki, 
but if a(x, D) satisfies Levi’s condition (a(~, D) 

is well decomposable), the solution does not 
yield essential singularities along urZ1 Ki. See 
J. De Paris (J. Math. Pures Appl., 51 (1972)). 
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322 (X111.20) 
Partial Differential Equations 
(Methods of Integration) 

A. General Remarks 

The methods of integrating partial differential 
equations are not as simple as those for tordi- 
nary differential equations. For ordinary dif- 
ferential equations, we often obtain the desired 
solution by first finding the general solution 

containing several arbitrary constants and 
then specializing those constants to satisfy 

prescribed additional conditions. The situa- 
tion is more complicated, however, for partial 
differential equations. In the formal general 
solution of a partial differential equation we 

have arbitrary functions instead of arbitrary 
constants, and there are cases where it is im- 
possible, or very difficult, to find a suitable spe- 
cialization of these functions so that the given 
additional conditions are fulfilled. For this 

reason, methods of solution are rather specific 

and are classified according to the types of 
additional conditions. In many cases, we as- 

sume that a problem is mathematcally well 
posed, guess the possible solutions, and verify 

it directly. 
A problem is said to be mathematically well 

posed (properly posed or correctly posed) if, 
under assigned additional conditions, the 
solution (i) exists, (ii) is uniquely determined, 
and (iii) depends continuously on the assigned 
data. By carefully examining problems in 
physics and engineering, we usually obtain 
many well-posed and important problems. In 
these problems, usually the data are suf& 

ciently smooth functions. In these cases, part 

(iii) of the above definition (the continuous 
dependence of the solutions on the data) fol- 
lows often from assumptions (i) and (ii). For 
example, telliptic equations like +Laplace’s 
equation u,, + uYY = 0 for u(x, y) describe laws 
of static or stationary phenomena such as the 
field of universal gravitation, the electrostatic 
field, the magnetostatic field, the steady flow 
of incompressible fluids without vortices, and 

the steady flow of electricity or heat. For this 
equation, ‘boundary value problems are well 
posed, but tinitial value problems are not (- 
323 Partial Differential Equations of Elliptic 

Type). By contrast, for thyperbolic equations 
like utf - u,, = 0 for u(x, t) and +par.abolic equa- 
tions like u, - u,, =0 for u(x, t) which control 

the change (in reference to time) of the various 
stationary phenomena, initial value problems 
or mixed problems with both boundary con- 
ditions and initial conditions are well posed 
(- 325 Partial Differential Equat tons of Para- 

bolic Type). 
For the rest of this article we explain funda- 

mental and typical methods of integration (- 
Appendix A, Table 15). 

B. The Lagrange-Cbarpit Method 

For the partial differential equation of the first 
order 

au au 
Fb, y> u, P> 4) = 0, P=z’ 

q =3 
(1) 

we consider a system of ordinary differential 
equations called tcharacteristic differential 

equations: 

dx dy du _ -dp -& 
K=F, pFp+qF, F,+pF, F,,+qF,’ 

(2) 

If we obtain at least one tintegral of this sys- 
tem containing p, q, and anarbitrary constant 
a in the form 

G(x, Y, u, P, q) = a, (3) 

and if we find p and q from (1) and (3), then du 
= p dx + q dy is an iexact differential form, and 

by integrating it we get a solution 0(x, y, u, a, h) 
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= 0 of (1). A solution of (1) containing two 
arbitrary constants is called a tcomplete solu- 
tion. Here, setting b = g(a) and eliminating u 
from the two equations cD(x, y, u, a, g(u)) = 0 
and Q’, + @,g’(a) = 0, we obtain a solution 
involving an arbitrary function. Such a solu- 
tion is called a tgeneral solution of (1). For 
example, consider pq= 1. Since the character- 
istic differential equations are 

dx dy du -dp -dq 
-=-z-c- =- 
4 P 2Pcl 0 0 ’ 

we have p = a (constant), and hence from the 
original equation we get q = a-‘. Then du = 
a dx + am1 dy is an exact differential form, 
and by integrating it a complete solution u = 
ax + a-’ y + b is obtained. A general solution 
is found by eliminating a from u = ax + a-l y + 
g(a)andO=x-a-‘y+g’(a). 

Likewise, when we have n independent vari- 
ables x 1, . . . , x, in the equation 

F(xl,...,x”,u,Pl,...,P”)=O, 
au 

pi=,xiT 
(1’) 

we can use the tcharacteristic differential equa- 
tions to find a complete solution and a gen- 
eral solution (the Lagrange-Charpit method; - 

82 Contact Transformations). 

C. Separation of Variables and the Principle of 
Superposition 

The simplest and most useful method is the 
separation of variables. Concerning the equa- 
tion uf + u,’ = 1 in u(x, y), for example, by set- 
ting u = q(x)+ $(y) we obtain rp’(x)’ +$‘(y)’ = 
1 or q’(x)’ = 1 -G’(y)‘. Since the right-hand 
side is independent of x and the left-hand side 
is independent of y, both sides must be equal 
to the same constant o?. From this we get a 
(complete) solution involving two arbitrary 
constants t(, /? 

u=L%x+JiTy+p 

For tlinear equations, it is often effective to 
write the solution as a product u = &x)$(y). 
From the theat equation u, = u,,, we obtain by 
this process a relation $‘(y)/$(y)= cp”(x)/cp(x), 
from which we get a particular solution u = 
~e+~ sin v(x - 0~) containing a parameter v. 

Next, when the equation is linear and 
homogeneous, by forming a linear combina- 
tion of particular solutions that correspond 
to various values of a parameter v, we obtain 
a new solution (the principle of superposi- 
tion). For example, by integrating the solution 
P2Ycos vx with respect to the parameter v 
between the limits -co and 00 (namely, by a 
superposition consisting of a linear combina- 
tion and a limiting process), we obtain a new 

solution 

s 
m 

u= -m e?‘Ycosvxdv=&exp( -g) 

(Y>O)> (4) 

which is the tfundamental solution of the heat 
equation. This name refers to the fact that the 
function (4) can be used to obtain solutions of 
the heat equation under some initial condi- 
tions. More exactly, a solution of uY - u,, = 0 
that is a function of class Cz in y > 0, is con- 
tinuous in y 2 0, and coincides with a bounded 
continuous function rp(x) on y = 0 can be ob- 
tained by a superposition of the solution (4) 
such as 

The method of separation of variables ap- 
plied after a suitable transfbrmation of vari- 
ables is often successful. In particular, by using 
orthogonal coordinates, tpolar coordinates, or 
tcylindrical coordinates according to the form 
of boundary, we often obtain satisfactory 
results. For example, concerning the boundary 
value problem for Laplace’s equation Au = u,, 
+ uyY = 0, which is smooth in the circle rz = 
x2 + yz < 1 and takes the value of a given con- 
tinuous function g(0) on the circumference 
I = 1, we can use polar coordinates to rewrite 
the equation in the form 

Au=u,,+~+~uee=O 
r r 

and apply the method of separation of vari- 
ables to obtain particular solutions I” cos no, 
r” sin no. Hence it is reasonable to suspect that 
by a superposition of these particular solutions 
we can obtain the desired solution: 

u&y)=?+ $$ (u,cosnB+b,sinn@r”. 
n=l 

In fact, this series is a desired solution if the 
coefficients a,, bn can be chosen so that the 
series converges uniformly for 0 < r < 1 and can 
be differentiated twice term by term for 0 < r < 
1, and if we have 

g(e)=?+ z (u,cosnB+ b,sinnB). 
n=l 

By virtue of the uniqueness of the solution of 
an elliptic equation, this is the unique desired 
solution. The boundary value problem in the 
preceeding paragraph is well posed. 

D. Mixed Problems 

For linear homogeneous equations of hyper- 
bolic or parabolic type, mixed problems fre- 
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quently appear, i.e., problems in which both 
initial and boundary conditions are assigned. 

These problems are, furthermore, classified 
into two types. 

For the first type, homogeneous boundary 
conditions are assigned. For example, in vibra- 
tion problems of a nonhomogeneous string 
between 0 <x < I, we must find the solution of 

the equation 

satisfying an initial condition u =f(x), ut = g(x) 
for t = 0, under homogeneous boundary con- 
ditions: (i) u = 0 for x = 0 and x = 1 in the case 
of two fixed ends; (ii) u, = 0 for x = 0 and x = 1 
in the case of two free ends; (iii) -u, + a,u = 
Oforx=O,andu,+a,u=Oforx=/(a,,>O, 

err > 0), where the two ends are tied elastically 
to the fixed points; (iv) T(O)u(O)= T(l)u(l), 
T(O)u’(O)= T(/)u’(l) (periodicity condition); 

(v) u, u’ are finite at x = 0 and x = 1 (regularity 
condition). 

The method of separation of variables is 
applicable to problems of this type also. For 
example, suppose that we have two fixed ends. 
Disregarding the initial condition for a while, 
we find a particular solution fulfilling only 

the boundary condition by setting u(x, t)= 

y(x)exp ivt. Here, y(x) must satisfy 

(T(x)y’)‘+v2p(x)y=0, y(O)=y(l)=O. (5) 

Except when the solution is trivial (i.e., u(x, t) 
= 0), y(x) f 0 must hold. But in the special 

case T(x) = 1, p(x) = 1, I= rr, the values of v for 
which functions of this kind exist are only 
l/2,3, . . (the corresponding y(x) is sin vx). 

Also, in more general cases, nontrivial solu- 
tions y(x) exist only for some discrete values 
of v. These v are called teigenvalues of(S), and 
the corresponding solutions y(x) are called 

teigenfunctions for the eigenvalues v. That is, 
the desired particular solution can be obtained 
by solving the teigenvalue problem (5). Again, 
when 7’(x) = p(x) = 1, I= rc, particular solutions 

are sin nx exp int, sin nx exp( - int) (n = 1,2, . ). 
We consider 

cc 
u(x, t)= 1 (a,cosnt+ b,sinnt)sinnx, (6) 

II=, 

which is obtained by a superposition of these 
particular solutions. If we can determine the 
coefficients a,, b. so that this series converges 

uniformly and is twice differentiable term by 
term, and 

f(x) = “El a, sin nx, g(x)= f nb,sinnx, 
II=1 

then the series (6) is a solution of the mixed 
problem in question. If the uniqueness of the 

solution of the mixed problem is proved, it is 
not necessary to look for any solution other 

than the one obtained by combining the 

method of separation of variables and the 
principle of superposition. 

Furthermore, the method described in this 
section is applicable to solving the following 
nonhomogeneous equation, which charac- 
terizes the motion of a string under the in- 

fluence of an external force f(x, t): 

4, - 4, =f(x, t) (7) 

under the boundary condition for the first type 
of mixed problem and the initial condition u = 
u, = 0 for t = 0. In this case, we expand the 
unknown u and the function f(x, t) in terms of 
the system of eigenfunctions {sin nx}, and by 
substituting 

u=“gl a,(t)sinnx, f(x,t)=“z A,(t)sinnx 

into (7), we reduce the problem to determining 

u,,(t) (n = 1,2, . . . ). When the external force 
varies with a harmonic oscillation over time as 

in f (x, t) = - cp(x)exp( - iwt), a similar method 
can be applied by setting u = u(x)exp( - iwt). 

For mixed problems of the second type, the 
homogeneous initial condition u =: 0, ut = 0 for 

t = 0 is assigned, but the boundary condition 
is nonhomogeneous. For example, when an 

oscillating string is at rest until t =: 0, and for t 
> 0 its right end is fixed and its left end moves 
subject to an assigned rule, the behavior of the 
string is described by the solution of utf - u,, = 
0 under the boundary condition ~(0, t) = f (t), 

u(l, t) = 0 (t > 0). This is called a transient prob- 
lem. If we now choose an arbitrary function 
B(x, t) that fulfills all the boundary and initial 
conditions, and if we set u - B(x, t]l= u(x, t) and 
B,, - B,, = f (x, t), then u satisfies 

4, - vxx =f(x,t) for t>O 

withv=v,=Ofort=O;v=Oforx:=Oandx=1. 

Then u(x, t) describes the oscillation of a string 
that is at rest until t = 0 and moves under the 

effect of an external force represented by f(x, t) 
for t > 0. Problems of this kind often appear in 
electrical engineering. 

Such problems can be reduced I:O problems 
of the first type in the manner described in the 
previous paragraph, but there are some direct 
methods that are more effective, the first being 
Duhamel’s method. Consider the case where 
f(t) is the unit impulse function: 

l-1. t>o. 
f(t)= o’ ’ 

I, t<O, 

and let U(x, t) be a solution corresponding to 
this case and vanishing for t Q 0, x > 0. Then a 
solution corresponding to the general case is 

given by 

- U(x, t - z)f(z)dt. 
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The second method is based on application 
of the tLaplace transformation. Denoting the 
Laplace transform of a solution u(x, t) by 

s 
m ue-Pldt=!&@, 

0 P 

we multiply both sides of u,, - u,, = 0 by e-p’ 
and integrate the result with respect to t from 
0 to co. Then, taking account of the initial 
condition, we have 

v,,-p%=o 

with the boundary condition 

v(O,p)=p mf(t)e-p’dt, 
s 

v(l, p) = 0. 
0 

If for p = LX + i/3 (tl > clo) we can find a solution 
v(x, p) of this boundary value problem for the 
ordinary differential equation, then the desired 
solution is given by 

4x, t)=& s 4x9 PI 
-ePdp, 

L P 

where L is a path in c( > a0 parallel to the 
imaginary axis. This is called the Bromwich 
integral. 

E. Green’s Formula and Application of 

Fundamental Solutions 

Given a linear partial differential operator 

L[ul=~a,(x)m4 P=(PI,...,P”), 
P 

Dp,p~+-+pnpXp . ..dxp. 

we call the operator 

L*[v] GC( -1)Pl +~~~+P~DP(Zp(x)v) 
P 

the adjoint operator of L, and the operator 

t~[~]~~(-l)P~+~~~+P~DP(ap(x)v) 
P 

the transposed operator of L. Sometimes ‘L is 
also called the adjoint operator of L. In the 
complex Hilbert space, the adjoint operators 
are more appropriate than the transposed 
operators. In this case, the operator L* defined 
above is usually called the formal adjoint oper- 
ator to distinguish it from the one defined by 

(L[u],v)=(u,‘L*[v]) for all ueD(L), 

D(L) being the domain of the definition of 
L (- 251 Linear Operators). These trans- 
posed or adjoint operators are often used to 
represent (at least locally) the solutions u of 
L[u]=“fI 

We explain in more detail the specific case 
where the number of independent variables is 

2. For the linear partial differential operator 

Lw=A(x,Y)~+2B(x,y) &+c(x.y)~ w 
+D(x,y)~+E(x,y)aU+F(x,y)u 

ay 

and its adjoint partial differential operator 

a2(Av) 
M(v)=axZ 

+ 2 aw4 + awd - ~ 
axay ay2 

ww -- a(w + Fv -- 
ax ay ’ 

we have tGreen’s formula: 

(vL(u)-uM(v))dxdy 

(8) 

where 

P=v{Au,+Bu,}-u{(Av),+(Bu),}+Duu, 

Q=v{Bu,+Cu,}-u{(Bv),+(Cv),}+Euv, (9) 

and dD denotes the boundary curve of the 
domain D, n the internal normal of aD at a 
point of aD, and s the arc length. 

We can apply this formula for solving a 
nonhomogeneous equation L(u) =f as follows. 
Assume that there exists a solution of L(u) =f 

satisfying the assigned additional condition, 
and choose a tfundamental solution of M(v) = 
0 having an adequate singularity at a point 
(x0, y,) of D and fulfilling a suitable boundary 
condition. Then, if we substitute these solu- 
tions u and v into (8), we obtain an explicit 
representation of u(x,, yo). If we can verify that 
the function u(x, y) thus obtained is a solution 
of L(u) =f fulfilling the assigned additional 
conditions, then we see, under the assumption 
of uniqueness of solutions, that this and only 
this function u(x, y) is the desired solution. For 
example, consider a boundary problem for 

L(u)=g+e for which &f(a)=a’“+fi. ay' ax2 ay2 
The problem is, for a circle of radius r with 
center at the origin, to find a function u(x, y) 
that is continuous in the interior and on the 
circumference C, of the circle, and that satis- 
fies L(u)=f in the interior of the circle (f is 
bounded and continuous in the interior of the 
circle) and is equal to a given continuous 
function g on the circumference C,. In this 

~ case, we consider the circumference K, of 
~ sufficiently small radius E with center (x0, y,) 

contained in the interior of the first circle, and 
set 

4% Y) = (w~)lw l/P + &, YX 

p=((x-xx,)2+(y-yy,)2)1’2. (10) 
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We apply formula (8) to the domain 0, en- 

closed by the circumferences K, and C,. If, 
in (lo), h satisfies M(u) = 0 in the interior of the 
circle enclosed by C, and vanishes on C,, then 
we get 

vfdxdy= - 
s 

(vu, - uv,)ds + 
s 

gods. 
Kr C, 

By letting E tend to zero, the first term on the 
right-hand side yields 

-U(Xo,Yo) 
s 

2n 1 a1ogp 
--pdO= -u(x,,Y,), 

0 2n ap 

by the logarithmic singularity of u at the point 

(x,, y,). Therefore we have an explicit repre- 
sentation of u, 

and it is easily verified that this is the desired 
solution. 

As stated in the previous paragraph, to 

apply Green’s formula it is necessary to find a 
solution v of M(v) = 0 possessing a fundamen- 
tal singularity as the logarithmic singularity, 
i.e., a so-called fundamental solution. As fun- 
damental singularities for 

M(~)=!?!-!?! and M(v)=?-??! 
ay ax2 ay2 ax2 

of parabolic type and of hyperbolic type, we 
must take those given respectively by 

@, Y) 

= i 
’ 

QFiii 
exp(-$fJ$), Y>Y,, 

10, Y4Y0, 

and 

4x, Y) = 
{ 

l/2, Ix-Xol<Y-Yo, 

0, Ix-Xol>Y-y, 

(- 323 Partial Differential Equations of Ellip- 
tic Type; 325 Partial Differential Equations of 
Hyperbolic Type; 327 Partial Differential 
Equations of Parabolic Type). 

References 

[l] R. Courant and D. Hilbert, Methods of 
mathematical physics, Interscience, I, 1953; II, 
1962. 
[2] E. Goursat, Cours d’analyse math&ma- 
tique, Gauthier-Villars, III, 1927. 
[3] A. G. Webster and G. SzegG, Partielle 
Differentialgleichungen der mathematischen 

Physik, Teubner, 1930. 
[4] L. Schwartz, Mathematics for the physical 
sciences, Hermann, revised edition, 1966. 

[S] J. L. Lions, Equations diff&entielles opCra- 
tionelles et problkmes aux limites, Springer, 

1961. 
[6] A. Friedman, Partial differential equations, 
Holt, Rinehart and Winston, 1969. 

323 (X111.24) 
Partial Differential Equations 
of Elliptic Type 

A. General Remarks 

Suppose that we are given a tlinear second- 
order partial differential equation 

=fb% (1) 

where x=(x1, . , x,), aji = aij. If the quadratic 
form C aij&lj in 5 is tpositive definite at every 

point x of a domain G, this equation (or the 
operator L) is said to be elliptic (or of elliptic 
type) in G. For n=2, a,,(x)a,,(x)--(a,,(x))‘> 

0 is the condition of ellipticity. In this case, 
by a change of independent variables, the 
equation is transformed locally into the canon- 
ical form 

2 2 

$+‘“+b,(x,y)g+b2(x,y)(;U+c(x,y)u 
aY2 ay 

=.ikY). 

The operator x1=, a2/axf, denoted by A, is 
called Laplace’s operator (or the Laplacian). 

The simplest examples of elliptic equations are 
Au = 0 (Laplace’s differential equation) and 

Au =f(x) (Poisson’s differential equation) (- 
Appendix A, Table 15). 

B. Fundamental Solutions 

Let K be the n-dimensional ball with radius R, 
center x0, boundary R (an (n - l)-dimensional 

sphere), and area S,, and let r be the distance 
from x0 to x. Then for any function u(x) of 

class C2 we have 

for n>2, 

for n=2. 



1205 323 C 
PDEs of Elliptic Type 

Thus, if u is a solution of Poisson’s equation 
Au=f(x), we have a representation of u(xO) by 

replacing Au by f in the integrals just given. 
Next, concerning the solutions of the equation 
Au + cu =0 (c > 0, constant), the following 
relation holds: 

where I is the tgamma function, n’ = (n - 2)/2, 
and J, is the tBesse1 function of order v. 

Now, if we put 

w, 5) = 
(~(Xi-~i)z~-n’*=~2-n, n>3, 

! 
10g(~(xi-&)z)l’2=Iog~, n=2, 

then the function u(x) defined by 

n-2 
c#,=27F- 

W42) 

represents a tparticular solution of Au =f(x), 

where V(x, <) as a function of the variables x 
satisfies A V(x, 5) = 0 except at x = 5. 

Consider now the more general case (1). A 
function E(x, 5) is called a fundamental solution 
(or elementary solution) of (1) or of L if 

u(x)= 
s 

E(x, 5)f(5)& 
G 

provides a solution of (1) for any foci 
with compact support. A fundamental solution 
E(x, 5) is a solution of the equation L[E] = 0 
having a singularity at x = 5 of the form 

-o,‘Jaor’-“(n>,3)oro;‘Jaologr 
(n=2), where a(t)=det(@(l;)) and r= 
(Caij(~)(xi-&)(xj-~j))1/2 and (a’j) is the 
inverse matrix of (a,). 

Roughly, there are three different methods 

of constructing fundamental solutions. The 
first and most general is to use pseudodif- 
ferential operators (- 345 Pseudodifferential 
Operators). The second is that of J. Hadamard 
[ 11, which uses the geodesic distance between 

two points x and 5 with respect to the Rie- 
mannian metric ~aij(x)dxidxj. This is impor- 
tant in applications of elliptic equations to 

geometry. The third method is due to E. E. 
Levi [Z] and is as follows: Let 

w, 5) = { 
r2-n 

-lo;,, 
na3, 
n=2. 

To obtain a solution of L[u] =f(x) we set 

Writing L[V(x, c)] =x(x, c), we obtain the 
following tintegral equation of Fredholm type 

in q(x): 

If we denote the tresolvent of this equation by 

ir(x, 5) and put 

then E(x, 5) = - y(x, <)$@)/w” is seen to 
be a fundamental solution of L. Thus Levi’s 

method enables us to construct a fundamental 
solution locally by successive approximation, 

because the integral equation in rp as above 
has a unique solution expressible by Neumann 
series if the domain G is small enough (- 189 
Green’s Operator). 

C. The Dirichlet Problem 

Let G be a bounded domain with boundary I. 
We call the problem of finding a solution u 
of the given elliptic equation in G that is con- 
tinuous on G U I’ and takes the assigned con- 

tinuous boundary values on T the first hound- 
ary value problem (or Dirichlet problem). In 

particular, the Dirichlet problem for Au = 0 
has been studied in detail (- 120 Dirichlet 
Problem). 

If c(x)<0 andf(x),<O or if c(x)<0 and 
f(x) < 0 in (I), a solution u does not attain its 
local negative minimum in G. This is called 
the strong maximum principle (- [3,4] for 
Hopf ‘s maximum principle and Giraud’s theo- 
rem). The maximum principle is one of the 
most powerful tools available for the treat- 

ment of elliptic equations of the second order 
with real coefficients. From this it follows that 
the solution of the Dirichlet problem for (1) is 

unique if c(x) < 0. Furthermore, concerning the 
uniqueness of the solution, we have the follow- 
ing criterion: If there exists a function w(x) > 
0 of class C2 in G and continuous on GU r 
such that L[w(x)] < 0, then the solution of the 
Dirichlet problem is unique. 

Let G be a tregular domain in the plane. If 
we denote tGreen’s function of A relative to 
the Dirichlet problem in G by K(x, y; t, r/), then 

the solution u of Au =f(x, y) vanishing on I is 
given by 

U(X,Y)’ -& 
ss 

KkYi 5, df(5, ?be&> 
G 

where f(x, y) satisfies a tHolder condition. 
The Dirichlet problem for 
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with prescribed boundary values reduces to 
the problem in the previous paragraph. In fact, 
let h(x, y) be a function that coincides with the 
prescribed boundary value on r. Then if we 
put u = h(x, y) + u, the problem is reduced to 
finding a solution u satisfying an equation 
similar to the one for L[u] (replacing f by 

f- L[h]) and vanishing on r. Now suppose 
that r consists of a finite number of +Jor- 

dan curves whose tcurvatures vary continu- 
ously, II and h are continuously differentiable, 
and c and f satisfy HGlder conditions. Let 

K(x, y; <, ‘1) be Green’s function for the Diri- 
chlet problem relative to A. To find a solution 
of L[uj =,f vanishing on r we set 

Then p is a solution of the integral equation 

Pk Y) -+ 
ss 

H(x, Y, 5, vb(5, v)dtdv =f(x> YX 
G 

where H(x, Y, 5, d = (-1/W {4x, y)K,(x, Y; 

5, VI + 04 YW,(X> y; 5,?) + C(X> Y)K(X, y; 5, II,). 
Therefore we have the following alternatives: 
Either L[u] =f has a unique solution for any 
f and any given boundary values on r, or 
L[u] = 0 has nontrivial solutions vanishing on 
r (in this case the number of linearly indepen- 
dent solutions is finite). 

More general equations of type (1) have 

been studied by J. Schauder and others. 
Schauder proved, first, that when the h,(x) and 
c(x) are zero, aij(x) and f(x) satisfy Hiilder 
conditions, and the boundary r of G is of class 

C’, then there exists a unique solution u(x) 
vanishing on r. Next, when the b,(x) and c(x) 
are continuous and aij and S satisfy HGlder 
conditions, he showed the following alterna- 
tives: Either L[u] =,f admits a unique solution 
vanishing on r for every A or L [u] = 0 has 
nontrivial solutions vanishing on I’ (in this 
case, the number of linearly independent solu- 

tions is finite). 
In (l), suppose that aU, bi, and c are Holder 

continuous of exponent t( (0 < c( < 1) uniformly 
on G and that r is of class C’+“. Then we have 

the following inequality (Schauder’s estimate) 
for any UEC*+‘(G): 

II4 2+a,G~~1~Il~c~lIlo,G+ II4l2CPIJ) 

+~2ll4o,,, (2) 

where IIf IL stands for the norm in the func- 
tion space C?(S) (- 168 Function Spaces). K, 
and K, are positive constants depending on L, 

G, and cx but independent of u. More precisely, 
K, depends only on the ellipticity constant i, 

of L defined as the smallest number > 1 such 

that 

for any (x, 5)~ c x R”. The inequality (2) is one 
of the most important a priori estimates in the 
theory of elliptic equations [S, 63 (- inequality 
(9) in Section H). 

D. Quasilinear Partial Differential Equations 

Consider the second-order partial differential 

equation in u(x,, . , x,): 

F(xl,...,x,,u,P*,...,Pn,P1l,..~,Pijr.~.,Pnn)=o, 

where pi = au/axi, pij = a2 @xi axj. If, for a 
solution u(x), C~,j=,(aF/apij)~i~j is a positive 
definite form, we say that the equation is ellip- 
tic at u(x). Moreover, if for any values of u, p,, 
pij this quadratic form is positive definite, we 
say simply that the equation is of elliptic type. 
The equation is called quasilinear if F is linear 
in pij. For example, the equation of tminimal 
surfaces (- 334 Plateau’s Problern) 

is a quasilinear elliptic equation. Furthermore, 

Au =f(x, Y, u, u,, uy) 

is also elliptic. E. Picard solved this equation 
by the method of successive approximation [7]. 
Specifically, let h(x, y) be the tharmonic func- 
tion taking the assigned boundary values on I-. 

Starting from u,(x, y)= h(x, y), we define the 
functions u,(x, y) successively as the solutions 
of 

coinciding with h on I-. Let K(x, y; 5, q) be 
Green’s function in G and in the region de- 

fined by lu-h(x,y)l<A, Jp-II,..< B, lq- 
h,,l <B, (x, y)~ G, and let the supremum of 
If(x, y, u, p, q)[ be C. Assume now that 

and that f satisfies a HGlder condition in (x, y). 
Moreover, let 

If(X> Y> u’, P’> d-m, Y> %P? 411 

<Llu-u’l+L’(lp’-pl+Iq’-ql). 

Assume finally that 

ss 
(LK+L’(IK,I+lK,l))d5d~~y<l 

G 

Under these assumptions, {u,(x, y)} is uni- 
formly convergent, and the limit 11(x, y) coin- 

ciding with h(x, y) on r satisfies 

AU = f(X, Y, U, h/ax, &lay). 
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Furthermore, it is known that the solution is 
unique within the region mentioned above. 
This method can be applied when G is small 
and the values of h, and h, are limited. 

When f does not contain p and q, the fol- 
lowing method is known. Let w(x, y) and 
0(x, y) both be continuous on G U r and of 
class C2 in G. Suppose that f(x, y, u) satisfies a 

HGlder condition in ~(x, y) < u <0(x, y), and 
that 

Awaf(x,y,w(x,y)), A@,<f(x,~,W,y)). 

Then; given a continuous function rp on r such 
that w  < cp < O, there exists a unique solution u 
of Au = f (x, y, u) such that 

wk Y) ,< 4x, Y) < 0(x, Y) in G, 

u(x, y) = cp on r. 

Finally, consider the equation 

a% 
AZ,2BL +c2u=o, 

axay ay* 

where A, B, and C are functions of x, y, u, p, q 
and AC - BZ > 0. Under the following condi- 
tions, there exists a solution of the Dirichlet 
problem: A, B, C are of class C*, and their 
derivatives of order 2 always satisfy HGlder 
conditions; G is tconvex; and the boundary 
value cp along I- considered as a curve in xyu- 

space represented by the parameter of arc 
length is of class C3+’ (CL > 0). Moreover, any 

plane having 3 common points with this curve 
has slope less than a fixed number A. The 
proof of this theorem is carried out in the 

following way: For any function u satisfying 

lu(x,Y)l~maxlcpI~ lu,l~A, lu,l<A, 

replacing u, P, 4 by u(x, Y), u,(x, Y), u,(x, ~1, 
respectively, in A, B, and C, we have the linear 
equation in v: 

A[u]$+2B[u, &+qu,$=o. 

We can obtain the solution v taking the 

boundary value cp on I-. Thus we have a 
mapping u-v. Applying the Vixed-point 
theorem in function space to this mapping, we 

have the desired solution v(x, y) = u(x, y). 
Concerning the Dirichlet problem for the 

second-order semilinear elliptic partial dif- 
ferential equation 

i~~aij(x)~=f(x,u,~,-..,~), 

1 J n 

a work by M. Nagumo (Osaka Math. J., 6 
(1954)) establishes a general existence theorem. 

For the general nonlinear equation 

Fb l,...,x,,u,Pl,...,P”,Pll,...,Pij,..., Pd = 0, 

if X(6JF/apij)5i5j > 0, F. < 0, the solution of the 

Dirichlet problem for this equation is unique. 
Even when FU < 0 does not hold, the conclu- 
sion remains the same if we can reduce the 
equation to this case by a suitable change of 

variables. 
Quasilinear equations in divergence form 

f&"i(x,u.Y&,....~) 
I 1 " 

=f 
( 

au au 
x,u,-- ,...) - 

ax, ax, > 
, 

or more generally, any quasilinear elliptic 
equation 

$, aij(XThm&, ...tg)& 

n 1, 

=f 
( 

au au 
x,u,- ,..., - 

ax, ax, > 
, 

(4) 

(5) 

and even quasilinear elliptic systems have been 

treated in detail in several recent works [S, 91. 
J. Serrin [lo] treated the Dirichlet problem 

and established the existence and the unique- 
ness of solutions for some classes of equations 
of type (5) containing the minimal surface 
equation. His method is to estimate the maxi- 
mum norms of u and of its first derivatives, to 
apply a result of 0. A. Ladyzhenskaya and N. 
N. Ural’tseva [9] and the Schauder estimate 
(2), and finally to use the Leray-Schauder 
fixed-point theorem [ 111. 

E. Relation to the Calculus of Variations 

Consider the bilinear form 

+2xbi(x)gu+c(x)u’+2f(x)u dx, 
I > 

where we assume ~u~~(x)~~<~>O. Under the 
boundary conditions imposed on u, if there 

exists a function u that makes J minimum, 
then assuming some differentiability condi- 
tion on aij(x), hi(x), c(x), we have the tEuler- 

Lagrange equation 

u-f(x)=O, 

which is a linear second-order self-adjoint 
elliptic equation. 

B. Riemann treated the simplest case, where 

aij(x) = Sj, b,(x) = c(x) = 0, i.e., the case Au = 0. 
He proved, assuming the existence of the mini- 

mum of J, the existence of the solution of Au = 
0 with assigned boundary values. This result, 
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called Dirichlet’s principle, was used by D. 
Hilbert, R. Courant, H. Weyl, 0. Nikodym, 
and others to show the existence of solutions 
for linear self-adjoint elliptic equations. 

If F(x,, . , x,, u,pr, . ,p,) satisfies 
C(ZZF/(ipii?pj)~i[j>O (and F has some regu- 
larity), then the function that minimizes the 
integral 

Î 
J= x ,,..., x.,u,g ,...,; dx,, . . ..dx. 

1 n 

with the given boundary condition satisfies the 
Euler-Lagrange equation (of type (4)) 

(pi = au/Zxi) and the boundary condition as 

well. This is also an elliptic partial differential 
equation in u. The case where F is a function 
of p alone (in particular, the case of tmini- 

ma1 surfaces) has been studied by A. Haar, T. 
Rado, .1. Serrin, and others, particularly for 
F=(1+p:+...+p~)1’2inthecaseofthemini- 
ma1 surface equation. 

F. The Second and Third Boundary Value 
Problems 

Let G be a domain in R” with a smooth 
boundary consisting of a finite number of 
hypersurfaces. Also, let B[u] be the boundary 

operator defined by 

(6) 

where a=(~~=,(~~~, uijcos(voxj))2)‘~2, v0 is the 
outer normal of unit length at the point x E S, 

and v is the conormal defined by 

cos(vxi)= -f aijcos(v,xj)/a, i= 1, . . ..?I. 
j=l 

The problem of finding the solution u(x) of the 
equation L[u] =f continuous on the closed 

domain G and satisfying B[u] = cp on the 
boundary S of G is called the second boundary 
value problem (or Neumann problem) when 
b = 0, and the third boundary value problem 

(or Robin problem) when /I $0. In general, in 
boundary value problems, the condition that 
the solutions must satisfy at the boundary is 
called the boundary condition. We assume that 
the boundary S of G is expressed locally by a 

function with iHolder continuous first deriva- 
tives (G is then called a domain of class C’l”). 
Assume that G is such a domain, c GO, p > 0, 

and at least one of c and p is not identically 0. 
Then the second and third boundary value 
problems admit one and only one solution. 
When c = 0 and p = 0, the solutions of the 

second boundary value problem are deter- 
mined uniquely up to additive constants. Fur- 

thermore, let M be the tadjoint operator of L, 
and let 

IY[v,=ug+(p-b)u, 

where 

b= f cos(v,,xi)[h,-~ 21 i=, 
Then if the boundary S of G is of class C’ and 
,f; cp are continuous, in order that there exist 
at least one solution u of the second or third 
boundary value problem relative to L[u] =,L it 
is necessary and sufficient that 

s s 
fvdx- cpvdS=O, 

G s 

where v is any solution of M[v] =0 with the 
boundary condition B’[u] = 0. Here the neces- 
sity is easily derived from Green’s formula. G. 
Giraud used the notion of fundamental solu- 
tion to reduce the second and third boundary 
value problems relative to L[u] =f to a prob- 
lem of integral equations, under the assump- 
tions that G is a domain of class C’, the co- 
efficients of L and f satisfy Holder conditions, 

and cp and /J’ are continuous [3; also 121. 

G. Method of Orthogonal Projection 

The theory of +Hilbert spaces is applicable to 
the boundary value problems in Section F. In 
general, let H”(G) be the space of functions in 
L,(G) whose partial derivatives in the sense of 
tdistributions up to order m belong to I&(G). 
For elements f and g in H”(G), we define the 

following inner product: 

(Ldm= c J D”f(xP”g(x) dx, lal<m G 
where 

alnl 
DE= 

ax;1 . . ax?’ 
Icrl=a,+...i-a, 

(- 168 Function Spaces). With respect to this 
inner product, H”(G) is a Hilbert space. When 
u satisfies L[u] =f (MEL,) and q(x) is an 
arbitrary element of H’(G), Green’s formula 
yields 

+(c(x)u,q)+ 
s 

ua”. @dS=(f,cp), 
s av 

where b;(x) = b,(x) = - Z,(&I,/~X,). Taking 
account of the boundary condition on u: 
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a aujav+pu=O,we get 

+ sBu(pdS= -(Jcp). s 
Thus the problem is reduced to finding U(X)E 
H’(G) satisfying this equation for all (PE H’(G). 
This equation can be regarded as an equation 
in H’(G). If necessary, by replacing c(x) by 

c(x) - t for a large t, we can show that for any 
f(x)~&(G), there exists a unique solution 
u(x)~Hl(G) [12,13]. Now, for a solution of 
this functional equation, if we take (P(X)E 
9(G), we have (u, L*[q]) = (J rp), where L* is 
the tadjoint operator of L. This means that 
u(x) is a solution of L[u] =f in the sense of 

distributions, and we call such a u(x) a weak 
solution. Such a treatment may be called the 
method of orthogonal projection, following 
Weyl. In this case, it can be shown that if we 
assume smoothness of the coefficients, the 

boundary S, and /?, then the solution U(X)E 
H’(G) belongs to H’+‘(G) when ME H”(G) 

(s = 0, 1, . . . ). Thus, if we apply Green’s for- 
mula, we can see that u satisfies the boundary 
condition a au/h + /Iu = 0. In particular, when 
s> n/2, we see that u(x)~C~(@ by tSobolev’s 
theorem [12]. In other words, u(x) is a gen- 

uine solution. 
Next, we introduce the complex parameter 

1 and consider the boundary value problem 
(L + nr) [u] =L f~ z,,(c), aatqav + flu = 0. If t 
is large, (L - t1) is a one-to-one mapping from 

the domain B(L)= {u~H~(G)~a&@v+~u=O} 
onto L,(G). Thus, denoting its inverse, which 
acts on the equation from the left, by G,, we 
have 

(I+@+ t)G,)[u]=GJ 

Conversely, since the solution u(x) contained 
in L2(G) (hence also contained in g(L)) satis- 

lies the equation and the boundary condition, 
the problem is reduced to the displayed equa- 
tion in L,(G) considered above. Now, since G 
is bounded and G, is a continuous mapping 
from L,(G) into H’(G), Rellich’s theorem yields 
that G, is a tcompact operator when it is re- 
garded as an operator in L,(G). So we can 
apply the tRiesz-Schauder theorem (- 189 
Green’s Operator). 

H. Elliptic Equations of Higher Order 

The differential operator of order m: 

is called an elliptic operator if &=,,, a,(x)<’ # 0 
({ # 0). In particular, if 

Re, z dW>cW, c>O, 
a m 

I-. is called a strongly elliptic operator. In this 
case, m is even. L. Girding studied the Diri- 
chlet problem for strongly elliptic operators 
[14]. If we put m=2b, the boundary value 
condition is stated as @u/&j =fj(x) (j = 0, 1, 
. . , b - l), where v is the normal of unit length 
at the boundary. Using the notion of function 
space, this boundary condition means that 
the solutions belong to the closure fib(G) of 

g(G) in Hb(G) (- 168 Function Spaces). In 
this treatment, Giirding’s inequality 

unfix, (7) 

where 6 and c are positive constants, plays an 
important role. 

In general, for an elliptic operator L defined 
in an open set G, if u(x) satisfies J!,[u] =f(x) 
and f(x) belongs to H” on any compact set in 
G, then u(x) belongs to H”+” on every compact 

set in G (Friedrich’s theorem [ 1.51). 
General boundary value problems for elliptic 

equations of higher order have been consid- 

ered by S. Agmon, A. Douglis, and L. Niren- 
berg [16], M. Schechter [17], and others. 
These problems are formulated as follows: 

Uul =fM Bj(X, D)u(x) = cpj(X), 

XES, j=l,2 ,...,b(=m/% (8) 

where the Bj(x, D) are differential operators 

at the boundary and f and {cpj} are given 
functions. Under certain algebraic conditions 

(Shapiro-Lopatinskii conditions) on (L, {Bj}), 
the problems are treated also in H”(G); hence 
the L2 a priori estimates play a fundamental 

role: If u E H”(G), 

ll”llm~K(llLull +,iI lIBjullm-mj-(1/2).S+ Il”llb 

(9) 

where K is a constant determined by (L, Bj, G), 

II . Ilk,S is the norm in Hk(S), and mj are the 

orders of Bj (compare (9) with (2)). Under these 
estimates the boundary value problem is said 
to be coercive. In applications, the theory of 

interpolation of function spaces are also used 
[lS] (- 168 Function Spaces). Variational 
general boundary value problems have been 

treated by D. Fujiwara and N. Shimakura (J. 
Math. Pures Appl., 49 (1970)) and others. For 
systems of such equations, there are works by 

F. E. Browder (Ann. math. studies 33, Prince- 
ton Univ. Press, 1954, 15-51) and others. 
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I. Analyticity of Solutions 

In a linear elliptic equation Lu =f; suppose 
that all thaoefficients and f are of class C” 
(resp. real analytic) in an open set G and that u 

is a distribution solution in G. Then u is also of 
class C” (resp. real analytic) in G [19]. Hence 

the linear elliptic operators are hypoelliptic 
(resp. analytically hypoelliptic) (- 112 Dif- 

ferential Operators). In particular, tharmonic 
functions (i.e., solutions of Au = 0) are (real) 
analytic in the domain of existence, whatever 
the boundary values may be. 

Hilbert conjectured that when F(x, y, U, p, 

4,r,s,t)(p=p,,q=p,,r=p,,,s=p,,,t=p,,) 
is analytic in the arguments, then any solu- 
tion u of the elliptic equation F = 0 is analytic 
on the domain of existence (1900, Hilbert’s 
19th problem; - 196 Hilbert). This conjec- 
ture was proved by S. Bernshtein, Rado, and 
others, and then H. Lewy proposed a method 
of extending this equation to a complex do- 
main so that it can be regarded as a thyper- 
bolic equation (Math. Ann., 101 (1929)). This 
result was further extended by I. G. Petrovskii 
to a general system of nonlinear differential 

equations of elliptic type (Mat. Sb., 5 (47), 

(1939)). 

J. The Unique Continuation Theorem 

Since all the solutions of Laplace’s equa- 
tion Au = 0 are analytic, it follows that if u(x) 
vanishes on an open set in a domain, then 

u(x) vanishes identically in this domain. This 
unique continuation theorem can be extended to 
linear elliptic partial differential equations with 
analytic coefficients in view of the analyticity 

of solutions. This fact is also proved by apply- 
ing +Holmgren’s uniqueness theorem (- 321 
Partial Differential Equations (Initial Value 
Problems)). The unique continuation theorem, 
first established by T. Carleman for second- 
order elliptic partial differential equations 

L[u] =0 with Cl-coefficients in the case of 
two independent variables, was extended to 
second-order linear elliptic equations with C2- 
coefficients in the case of any number of inde- 
pendent variables by C. Miiller, E. Heinz, 

and finally by N. Aronszajn [20]. This re- 
search was extended by A. P. Calderon [21] 
and others in the direction of establishing the 

uniqueness of the Cauchy problem. However, 
it is to be remarked that even if we assume 

that the coefficients are of class C”, we cannot 
affirm the unique continuation property for 
general elliptic equations. A counterexample 

was given by A. PliS (Comm. Pure Appl. Math., 

14 (1961)). See also the work of K. Watanabe 
(Tohoku Math J., 23 (1971)). 

K. Elliptic Pseudodifferential Operators and 
the Index 

A pseudodifferential operator P(x, ,9) with 

symbol p(x, [)E$‘, (- 345 Pseudodifferential 
Operators) is said to be elliptic, provided there 
exists a positive constant c such that Ip(x, <)I > 

c(l+l~l)” for all XER” and ltl>c-‘. The no- 
tion of ellipticity can be extended to oper- 
ators on a manifold. The theory of elliptic 
pseudodifferential operators has been widely 
applied to the study of elliptic differential 

equations, and is particularly useful in the 
calculation of the +index of elliptic operators. 

B. R. Vainberg and V. V. Grushin [:22] cal- 
culated the index i of the tcoercive boundary 
value problem for an elliptic operator by 

showing that i is equal to the index of some 
elliptic pseudodifferential operator on the 

boundary. 
Example [23]: Given a real vector field 

(vi, v2) on the unit circle x: +x$ = 1, suppose 
the vector (v,(x), v2(x) rotates 1 times around 
the origin as the point x = (xi, x2) moves once 
around the unit circle in the positive direc- 
tion. Then the index of the boundary value 
problem 

( > $+$ 44 =m, 2 

v1(4~+,(x)~=,(x), 1 2 
x:+x;= 1, 

is equal to 2 - 21. 
M. F. Atiyah and I. M. Singer determined 

the index of a general elliptic operator on a 
manifold in terms of certain topological invar- 
iants of the manifold (- 237 K-Theory H). 

The index of noncoercive boundary value 

problems has also been studied by Vainberg 
and Grushin, R. Seeley (Topics in pseudo- 

differential operators, C.I.M.E. 1968,335- 
375), and others. 

L. The Giorgi-Nash-Moser Result 

Let us state the following result (J. Moser 
[24]): Let L be of the form 

Lu= f a a,(x); , 
i, j=) axj 1 cl 

where aij= aji are real-valued, of class Lm(G), 

and such that the ellipticity condition (3) holds 
at almost everywhere in G with some Ia 1. 
Also, let G’ be any subdomain of G whose 
distance from 8G is not smaller tha.n 6 > 0. 
Then, for any weak solution UE H’(G) of the 
equation Lu = 0 and for any two points x and 

y in G’, we have the inequality 
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where A and tl (A > 0,O < c( i 1) depend only on 
(n, i,6) and are independent of the particular 
choice of (I,, G, G’, u). Moser proved that the 

above inequality is a corollary to a Harnack- 
type inequality (- 327 Partial Differential 
Equations of Parabolic Type G). 

M. Asymptotic Distribution of Eigenvalues 

Let L be an elliptic operator on G of order m 
with smooth coefficients realized as a self- 
adjoint operator in L2(G) under a nice bound- 

ary condition, where G is a bounded domain 
in R” with smooth boundary. Let N( T)( T> 0) 
be the number of eigenvalues of L smaller than 
T. Then, it holds that 

N(T)=CT”‘“+an error term, as T+ +a~, 

C =(2x)-” dx 
s s 

4x, 5) -n’m dS,, (10) 
G S”-l 

where a(x, 5) is the tprincipal symbol of L and 
S”-’ is the unit sphere on R”. C is independent 
of the boundary condition and, if L is of con- 
stant coefftcients, of the shape of G. 

Formula (10) was at first established by 
H. Weyl [25] for the case of L = Laplacian, 
and hence it is often called Weyl’s formula. 
Weyl’s method is based on the minimax prin- 
ciple [26]. T. Carleman (Ber. Math.-Phys. 
Klasse der Siichs. Akad. Wiss. Leipzig, 88 

(1936)) studied the behavior of the trace of 
the Green’s function of zl-L as lzl+ co in the 
complex plane (- [27]). S. Minakshisun- 
daram (Canad. J. Math., 1 (1947)) discussed 
this formula in connection with the heat equa- 

tion; see also S. Mizohata and R. Arima (J. 
Math. Kyoto Univ., 4 (1964)). L. Hormander 

(Acta Math., 121 (1968)) treated the case of 
compact manifolds without boundary and 
obtained the best possible error estimate. 
H. P. McKean and I. M. Singer (J. Differential 
Geometry, 1 (1967)) treated the case of mani- 
folds and discussed the geometric meaning of 

this formula. In general, N(T) is no more than 
O(T”im) if L is of degenerate elliptic type (C. 
Nordin, Ark. Mat., 10 (1972)). 

N. Equations of Degenerate Elliptic Type 

An operator L of the form (1) is said to be 
degenerate at x0 E G in the direction 5 E R” if 5 
is a null vector of the matrix (a,(x’)). L is said 
to be of degenerate elliptic type if (aij(x)) is 
nonnegative definite at any x E G and if L 

is degenerate at some point of G in some 
direction. 

Suppose that the coefficients of L and the 

boundary I of G are smooth enough. At XE I, 
denote by v(x) = (vl (x), . . . , v,,(x)) the unit outer 

normal vector to G. Let Z; be the set of x E I 
at which L is not degenerate in the normal 

direction. Also, let Z,, C,, and Z. be the sets 
ofxsI\Z; at which b(x)>O, ~0, and =O, 
respectively, where b(x) is defined by 

b(x)= -i$ v,(x)bi(x)-j$ y}. (11) 
I 

Then the Dirichlet problem for equation (1) is 
to find a function u(x) defined on G U C, U Z3 

satisfying 

L[u] =f in G, (1) 

u=g on Z2U&, WI 

where f and g are given functions. 
Letl<p<co.Wesetq=p/(p-l).Wealso 

Put 
n abi(x) 

c*(x)=cw~l~+ c 
” a2aij(X). 

, i,jEl axiaxj 
(13) 

We have the following existence theorem [28]: 
If(i)eitherc<OonGorc*<OonGandif 
(ii) pc + qc* < 0 on G, the Dirichlet problem 

(1) and (12) (with g = 0) has a weak solution 
UE LP(G) for any f~ LP(G). The regularity of 
solutions is also discussed in [28]. The value of 
b(x) is closely related to the regularity near the 

point XE I if L is degenerate at x in the nor- 
mal direction (- also M. S. Baouendi and C. 
Goulaouic, Arch. Rational Mech. Anal., 34 
(1969)). 

Degenerate elliptic equations of type (1) 
have also been investigated from the proba- 
bilistic viewpoint (- 115 Diffusion Processes). 

The general boundary value problems for 
degenerate elliptic equations of higher order 
have been treated by M. I. Vishik and V. V. 

Grushin [29], N. Shimakura (J. Math. Kyoto 
Univ., 9 (1969)) P. Bolley and J. Camus (Ann. 
Scuola Norm. Sup. Piss, IV-1 (1974)), and 
others. 
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324 (X111.22) 
Partial Differential Equations 
of First Order 

A. Quasilinear Partial Differential Equations 
and Their Characteristic Curves 

Suppose that we are given a tquasilinear 
partial differential equation 

2 pitxT u)&yQ(x, u)9 x=(xl,...,x,). (1) 
I 

A curve defined by a solution xi = ~c,(t), u = u(t) 

of the system of ordinary differential equations 

dx. 
2 = Pi(X, u), 
dt 

i=l,...,n; ~=QW 

is called a characteristic curve of (1:1(- 320 

Partial Differential Equations; 322 Partial 
Differential Equations (Methods of Integra- 

tion)). A necessary and sufficient condition for 
u = u(x) to be a solution of (1) is that the char- 
acteristic curve passing through any point 
on the hypersurface u = u(x) (in the (n + l)- 

dimensional xu-space) always be contained in 
this hypersurface. For example, the: character- 
istic curve of C;=‘=, xiau/axi = ku is xi = xpe’, 
u = u”ek* (a solution of xf = xi, u’ = It u). There- 
fore the solution u = u(x) is a function such 
that u@x,, . . . . lx,)=lku(x,, . . . . xn) @=e’>O), 
i.e., a homogeneous function of degree k. 

B. Nonlinear Partial Differential E,quations 
and Their Characteristic Strips 

We denote the value of au/ax, by pi and define 
the surface element (or hypersurfaoe element) 
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by the (2n + 1)-dimensional vector (x, u, p) = 
(x i, . . . ,x., u, pl, . . . , p,). Consider the partial 
differential equation 

F(x l,...,X.,U,Plr...,Pn)=O, pi = aulaxi. 
(2) 

A set (x(t), u(t),p(t)) of surface elements de- 
pending on a parameter t and satisfying the 
system of ordinary differential equations 

& du n 

dt 
-F&Y zziz PiFpi, $= -(F.ri+PiF,) 

is called a characteristic strip of equation (2), 
and the curve x=x(t), u = u(t) is called a char- 
acteristic curve of (2). For quasilinear equa- 
tions, this definition of characteristic curve 
coincides with the one mentioned in Section A. 
Furthermore, an r-dimensional tdifferentiable 
manifold consisting of surface elements satisfy- 
ing the relation 

du- i pidxi=O 
i=l 

is called an r-dimensional union of surface 
elements. A solution of the partial differential 
equation (2) is, in general, formed by the set 
of all characteristic strips possessing, as ini- 
tial values, surface elements belonging to an 
(n - 1)-dimensional union of surface elements 
satisfying F(x, u, p) = 0. 

An example of a nonlinear partial differen- 
tial equation of first order is pq - z = 0 (where 
x,=x,x,=y,u=z,p,=p,p,=q).Theequa- 
tions of the characteristic strip are x’ = q, y’ = p, 

z’ = 2pq, p’ = p, q’ = q, and therefore the char- 
acteristic strip is given by y = y, + (p,,/q,,)x, 

z = zo + 2PoX +(Pd/qo)x2v P = PO +(Po/qo)x, 
q = q. +x (if we take x as an independent vari- 
able and impose an initial condition y = y,, 
z=zo, p=po, q=qo at x=0). Putting zo= 
W(yo) (an arbitrary function) for x = 0, we 
have, furthermore, y = yo,+ W(y,)/(W ‘(Y~))~, z = 
wYo)+2wYoYw’(Yo)+ ~(Yob2/w(Yo))2. 
The elimination of y. from these expressions 
yields a general solution z = z(x, y). In this 
case, a tcomplete solution is 4az = (x + ay + b)2 
(where a, b are constants), and a tsingular 
solution is z = 0. 

C. Complete Systems of Linear Partial 
Differential Equations 

For functions P;.(x) (i= 1, . . . . x=(x,, . . . . x,)) of 
class C”, define a differential operator X by 

x= t PJx)L 
“=, Y 

We call k differential operators Xi = 
Z;=1 p;(x)a/ax, (i= 1 , . . . , k) mutually inde- 

pendent when the rank of the matrix (Pj) is 
equal to k. If a system of k independent linear 
partial differential equations involving one 
unknown function f(x), 

X&=0, . ..) XJ-=o, (3) 

has the maximum number n -k of independent 
tintegrals, then the system (3) is called a com- 
plete system. A necessary and sufficient condi- 
tion for the system (3) to be a complete system 
is that there exist k3 functions n;(x) of class 
C” such that 

that is, 

Here, [X,, Xi] is a differential operator of first 
order, called the commutator of the differential 
operators Xi, Xi or the Poisson bracket. 

D. Involutory Systems 

For two functions F(x, u, p), G(x, u, p) of x, u, p 
of class C”, we define the Lagrange bracket 

CF> Gl by 

CF, Gl=iI (E($+P~:) 

If F, G do not contain u and are homogeneous 
linear forms with respect to p, then F and G 
are differential operators F = Xi u and G = X2 u 
with respect to u (for pv = au/ax,), and we see 
that [F, G] = [Xi, X2]“. This bracket has the 
following properties: 

CF, Cl = - CG Kl, 

CF, ‘~((5, . . . , %)I = i$I g CF, Gil, 
I 

When F, G are functions of x and p only, we 
usually use the notation (F, G) and call it also 
the Poisson bracket. In this case, the right- 
hand side of the third relation vanishes. 

Consider k partial differential equations 
involving one unknown function u(xl, . . . , x,), 

F,(x,u,p)=O, i=l,..., k; 
au 

PY=aXy. 
(4) 

If a common solution u(x) of these equations 
exists, it is also a solution of [F,, Fj] = 0 (i,j= 
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1 , . . . , k). Therefore, from the equations thus 
obtained, we take independent equations and 
add them to the original system. If we then 
have more than n + 1 equations, the original 
system has no solution. Otherwise, we obtain 
a system Fj = 0 (j = 1, . . . , Y) for which the Fj are 
independent (i.e., the rank of (aFJ@,) is equal 
to r), and all [F,, Fjl = 0 can be derived from 
Fj = 0. A system (4) such that [Fi, 41~ 0 for all 

i, j is called an involutive (or involutory) system. 
We always treat a system by extending it to an 
involutory system. When k = 1, we regard the 

equation itself as an involutory system. 
When the equatians (4) are mutually inde- 

pendent, a necessary and sufficient condition 
for them to have in common a solution with 
n-k degrees of freedom (a solution that coin- 
cides with an arbitrary function on an ade- 
quate manifold of dimension n-k) is that the 
system (4) be a system of equations involving 
unknowns p and equivalent to an involutory 

system. 
An involutory system (4) can be extended 

to an involutory system consisting of n inde- 

pendent equations by adding n-k suitable 
equations 

F~+~(x,u,P)=~~+~,...,F,(x,u,P)=~,. (4’) 

That is, we can find successively f= Fl (I= k + 

1, , n) such that Fl satisfies the system of 
equations 

CFiafl =O, i=l,...,l-1, 

which is a complete system of linear partial 
differential equations for A and the & (i = 
1, . . , n) are mutually independent. Then, if we 

find that py as functions of (x, u, a) (a =(u~+~, 

‘.’ 2 a,)) from (4) and (4’), the system of ttotal 
differential equations 

au 
-=pY(x,u,a), v=l,..., n, 
ax, 

is tcompletely integrable, and we can find u as 
a solution containing essentially n-k + 1 

parameters c, ak+, , . , a,, that is, a complete 
solution of (4). Moreover, if we have an in- 
volutory system of n + 1 independent equa- 
tions F, =O, . . . . F,=O, Fk+l =ak+l, . . . . F,,, = 

a,,, , then we find a complete solution by 
eliminating pl, . . . , p, between the equations. 
This method of integrating an involutory 
system is called Jacobi’s second method of 
integration. 

E. Relation to the Calculus of Variations 

Consider a partial differential equation of first 
order F(x,, . . . . x,,u,p, ,..., p,)=O.Ifasolution 
u(x) of this equation is given as an implicit 

function by ‘p(xI, . . ,x,, u) = 0, we have 

x ,,..., xn,u,-= 
acpiau 1 .‘. ’ 

This gives formally a partial differential equa- 
tion with independent variables u, x1, . ,x, 

and a dependent variable cp. It does not con- 
tain cp explicitly. That is, this equation has the 
form 

Then, by finding a partial derivative, say 

adax.+, , as a function of the rem,aining ones 
from the displayed equation, we get a partial 
differential equation of the form 

arplat+H(t,X,acp/aX)=o, 

which is called the normal form of the partial 
differential equation of first order. Setting pi= 

@/ax,, the equations of the characteristic 

curve of this equation are 

dx. dpi 
~=H”i(t,x,p), z= -ft&x.p), 

i=l,...,n, 

which are called Hamilton’s differential 
equations. 

Now, consider the tEuler-Lagrange dif- 
ferential equations 

dFXi/dt-F+=O, i= 1, . . . . n, 

for the integral 

‘1 dx 
J= F(t, x, x’) dt, x1=1, 

llL 

Under the assumption that det(F,..,;)#O, we 
put FXr = pi, and solve these relations with 
respect to XI in the form, say, xi = tpi(t, x, p). 

Furthermore, if we put 

then the Euler-Lagrange equations are equiva- 
lent to Hamilton’s differential equations 

dxi/dt = H,,, dpildt = - Hxi, i=l,...,n, 

since F(t, x, x’) = zy=‘=l pi Hpi - H. 

A curve represented by a solution of the 
Euler-Lagrange equations is called a station- 
ary curve. Now consider a family of stationary 
curves in a domain G of the (n + l).-dimensional 
tx-space such that passing through every point 
of G there is one and only one curve in this 
family, and suppose that the family is ttrans- 

versa1 to an r-dimensional manifold rU (r < n) 

(that is, F6t -C F,$x, = 0 for the differentials 
6t, 6xi along a?[; in particular, if 2I consists of 

only one point (r =O), a stationary curve pass- 
ing through this point is transversal to IX). In 
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this case, if we denote by V(t, x) the value of 
the integral J along the stationary curve from 
2I to any point (t, x) of G, then the equation 

aV/&+H(t,X,aV/ax)=O 

holds. This equation is called the Hamilton- 
Jacobi differential equation or the canonical or 
eikonal equation. Conversely, a solution of this 
equation is equal to the value of the integral J 

for a family of stationary curves transversal to 
an adequate ‘?I. 

F. The Monge Differential Equation 

Consider the partial differential equation (2). 
By eliminating p and t between 

dxi 
--=Fpp 
dt 

:=A PiFpi, and F(x, u, p) = 0 

(for example, by eliminating p between dxJdx, 

= FPi/FP, and F = 0 when FP, #O), we obtain 

Mb ,,..., ~,,~,a~,la~, ,..., ax,fax,)=o. 

This equation is called the Monge differential 
equation, and the curve represented by its solu- 
tion is called an integral curve of the equation. 
In the (n + 1)-dimensional tx-space, a curve 
that is an envelope of a l-parameter family of 

characteristic curves of the partial differential 
equation (2) is a solution of the Monge equa- 
tion. A characteristic curve is also an integral 
curve. When n = 2, an integral curve that is not 

a characteristic curve is a tline of regression of 
the surface generated by the family of charac- 
teristic curves tangent to the integral curve 
under consideration (which is an integral sur- 
face of F(x, u, p) = 0). If F is linear in pi, i.e., 
quasilinear, all integral curves coincide with 
characteristic curves. 
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325 (X111.25) 
Partial Differential Equations 
of Hyperbolic Type 

A. Second-Order Linear Hyperbolic Equations 

A tlinear partial differential equation in n + 1 

variables t, x=(x,, . . . . x,) of the second order, 

au n au 
-a,-- 1 a,--au=O, 

at i=l axi 

with coefficients aoi, . . . , a that are functions in 
(t, x) is said to be hyperbolic (or of hyperbolic 
type) (with respect to the t-direction) in tx- 
space if the characteristic equation of equation 
(1) considered at each point of tx-space, 

H(t,x;1,5)=1’- ‘f a&l-- i aij&tj=O, 
i=l i,j=l 

(2) 

has two distinct real roots 1= I, (t, x, <), 
l,(t, x, <) for any n-tuple of real numbers 5 = 

(51, . . ..5”)#(0. . . . . 0). In particular, (1) is called 
regularly hyperbolic if these two roots are 
separated uniformly, that is, 

(t?;1~=,ln,(t,x,5)-n,(t,x,5)1=c>o. 
. . 

A typical example of hyperbolic equations is 

the wave equation 

a% as a% q U=c7tZ-@-...-ax,‘=O. (3) 

Equation (3) is also called the equation of a 
vibrating string, the equation of a vibrating 
membrane, or the equation of sound propaga- 
tion according as n = 1,2, or 3. Another exam- 
ple is 

a2u ,a2u au 
z-c @-2%=0, 

which describes the propagation of electric 
current in a conducting wire with leakage and 
is called the telegraph equation (- Appendix 
A, Table 15). 

A hyperplane ,l(t - to) + . . . + &(x” - xz) = 0 

passing through a point p” = (to, x0) in tx-space 
and having normal direction (A,<) is called a 
characteristic hyperplane of (1) at p” if the 
direction (A,<) satisfies the characteristic equa- 

tion at p” : H(t’, x0; A,<) = 0. A hypersurface S : 
s(t, x) = 0 in tx-space is a characteristic hyper- 
surface of (1) if at each point of S the tangent 

hyperplane of S is a characteristic hyperplane 
of (I), that is, H(t, x; st, s,) = 0 everywhere on 
S. According to the theory of lirst-order par- 
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tial differential equations, a characteristic 
hypersurface of S is generated by so-called 
bicbaracteristic curves, i.e., solution curves t = 
t(z), x(z) of a system of ordinary differential 

equations 

dt 

dr- 
-Hi., . ..a dx,- 

dz 
-Hen> 

di 

dz=- 
Ht, . ..> d5,- H 

dz - - %’ 

H(t,x;i,[)=O. 

Now if (1) is hyperbolic, the set of all charac- 
teristic hyperplanes at p” : {l(t - to) + . . . + 5.(x, 
-xi) = 0 1 H(t”, x0; A,() = 0} has as its envelope 
a cone C(p”) with the vertex p”. Moreover, 
since the intersection of any hyperplane t = 
constant and the cone C(p”) is an (n- l)- 
dimensional ellipsoid or two points for n = 1, 

a conical body D+(p”) (k(p’)) is determined, 
whose boundary consists of the part of C(p”) 
with t > to (t < to) and the interior of the ellip- 

soid on the hyperplane t = constant. A tsmooth 
curve y in tx-space is called timelike if the 
tangent vector of y at each point p on y be- 
longs to D+(p) or D-(p). Consider the set of 

points that can be connected with the point p” 
by a timelike curve. We call its closure an 
emission, and a subset 9+(p”) (9-(p’)) of the 
closure for which t 2 to (t < to) a forward (back- 
ward) emission. An emission is a conical body 

surrounded by characteristic hyperplanes in 
some neighborhood of the vertex p”. If the co- 
efficients of (1) are bounded functions, the 

emissions 9+(p”) are contained in a conical - 
body 

independently of the situation of p”, where 

Lax = max,,,x),151=1 (I4(LT5)L IW,x,5N. 

B. The Caucby Problem 

Important for the hyperbolic equation (1) is 
the KZauchy problem, i.e., the problem of 

finding a function u = u(t, x) that satisfies (1) in 
t > 0 and the initial conditions 

40, 4 = u,(x), &/&(0,x)=u,(x), (4) 

where the functions uo(x) and ui(x) are given 
on the initial hyperplane t = 0. 

Suppose that (1) is regularly hyperbolic and 

the coefficients are bounded and sufficiently 
smooth (i.e., of class C’ with v sufficiently 
large). Then for the Cauchy problem the fol- 
lowing theorem holds. Theorem (C): There 

exists a positive integer 1(= [n/2] + 3), depend- 
ing on the dimension n + 1 of the tx-space, 

such that if the functions uo(x) and ur(x) in (4) 

are of class C’, then there exists a unique solu- 
tion u = u(t, x) of class C? in the domain 0 < t < 

co, -cc <xi< co (1 <i<n). Moreover, this 
correspondence {u,(x),ui(x)}+u(~,x) is con- 
tinuous in the following sense: If a sequence of 
initial functions {uOk(x), u,,(x)} (k.= 1,2, . ..) 
and their derivatives up to the Ith order tend 
to 0 uniformly on every compact set in the 
hyperplane t = 0, then the sequenc’e of corre- 

sponding solutions u,(t, x) also tends to 0 
uniformly on every compact set in each hyper- 
plane t = constant. In other words. the Cauchy 
problem for regularly hyperbolic equations is 
twell posed in the sense of Hadamard [2]. 

For dependence of the solution on initial 
data, the following proposition is svalid: The 

values of the solution u at a point p” = (to, x0) 
depend only on the initial data on a domain 
Go (domain of dependence) of the initial hyper- 
plane, which is determined as the intersection 
of the backward emission %(p”) and the 

initial hyperplane. We have the following dual 
proposition: A change in the initial conditions 
in a neighborhood of a point Q. of the initial 

hyperplane induces a change of values of the 
solution only in some neighborhood of the 
forward emission 9+(Qo) (domain of influence). 
If the coefficients of the equation a.re bounded, 

the intersection of emissions 9+(p”) and the 
hyperplane t = constant is always compact. 
It follows that the domain of dependence and 
the domain of influence are bounded. In some 
special cases, there exists a proper subdomain 

of Go such that the solution depends only on 

the initial data on the subdomain. For exam- 
ple, for the wave equation (3) with n = 3, the 
solution for the Cauchy problem a.t a point 
p” = (to, x0) (- Section D) is determined, as 
can be seen from the solution formula (12), 
by the initial data in a neighborhood of the 
cone with vertex p” : (t - to)Z = & (xi - x;)~, 
namely, in a neighborhood of the intersection 
of bicharacteristic curves (lines, in this case) 
passing through p” and the initial hyperplane. 
If the solution of the Cauchy problem has 

such a property, it is said that Huygens’s prin- 
ciple is valid, or that diffusion of waves does 
not occur. For the wave equation l(3), Huy- 

gens’s principle is valid only for odd n > 1. 

C. The Energy Inequality 

The energy conservation law for the wave 
equation (3), 

E(t) 

= constant, 
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is generalized to the so-called energy inequal- 
ity for hyperbolic equations, which plays an 
essential role in deducing the well-posedness of 
the Cauchy problem and the properties of the 
domain of dependence of the solution. Let the 
coefficients of a hyperbolic equation (1) be 
bounded functions, and let G(r) be the inter- 
section of the conical body K = {(t, x) l&&t - 
tl)Z > C;=i (xi - xt)‘} with the hyperplane t = 
r (t < t’). The k( > l)th-order energy integral 
of the solution u(t, x) of (1) on G(7) is defined 

by 

Ef’(u, G(7)) 

Then the following inequality holds: 

Ejk)(u, G(7)) < CE$‘(u, G(t”)), to < 7 < t’, (5) 
where the constant C is independent of u. We 
call (5) the energy inequality (J. Schauder [S]). 
For the wave equation (3), the hypothesis 1= 
[n/2] + 3 in theorem (C) can be replaced by a 
weaker condition I = [n/2] + 2, but if we take 
I= [n/2] + 1, there is an example for which no 
global solution of class C? exists. In general, 
even though the initial functions are of class 
C’, the solution in the Cauchy problem for 
hyperbolic equations may not be of class C’, 
while if the energy of the initial functions is 
bounded, the energy of the solution is also 
bounded. 

D. Representation Formulas for Solutions of 

the Cauchy Problem 

We consider solution formulas that represent 
solutions of the Cauchy problem explicitly as 
functionals of the initial functions. The prob- 
lem of solving (1) under the condition (4), or 
more generally, the problem of solving an 
equation L[u] =f(t, x) under (4), can be re- 
duced, by transforming the unknown function 
u and applying tDuhamel’s method, to the 
Cauchy problem with initial conditions on the 
hyperplane t = 7: 
47, x) = 0, au/at(7, x) = q(x) (4’) 

for arbitrary 7. We define a function x,(s) of a 
real variable s by 

x,(s)= ls1*/4(2zi)“-‘q! (n odd), 

= -sqlogIs1/(2ni)“q! (n even), (6) 

where n is, the dimension of the x-space and q 

is a positive integer such that q + n is even. 
Then for a function q(x) of class C’ (with v 
sufficiently large) with compact support, the 

following equality holds [7]: 

s 
m 

q(x)= A:“+q”2cp(y)dy 
s 

X,((x-Ykw~, 
-cc (ml=1 

(7) 

where AY is the tLaplacian with respect to the 
variables y=(y,, . . . . y.) and dw is the surface 
element of the unit sphere lol= 1 in x-space. 
Now, since the tprinciple of superposition is 
valid because (1) is linear, we can infer from 
formula (7) that the Cauchy problem (1) with 
initial condition (4’) can be reduced to the 
one for initial conditions with parameters 
Y, w: 

u(r,x)=O, &4/&(7,x)=&((x-y)o). (4”) 

In fact, since x,(s) is (q - 1)-times differentiable 
by definition, the Cauchy problem (1) with 
initial condition (4”) has a unique solution 
R&t, x; 7, y; w) for q chosen large enough so 
that theorem (C) can be applied to (1) with 
initial condition (4”). Moreover, R&t, x; 7, y; w) 

is a function of (t, x, 7, y, w) of class C’, and v 
increases with q. Now, let q(x) be a function 
of class C’ with sufficiently large v and with 
compact support. Then, by (7) and the delini- 
tion of R,, the integral 

5 
co A1”+4”2c$y)dy 

s 
R,(t,x;7,y;Ww (8) 

-52 Iwj=1 

is a solution of the Cauchy problem (1) with 
initial condition (4’). Therefore, when R, is 

found explicitly, (8) yields a solution formula 
of the Cauchy problem (1) with initial condi- 
tion (4’) as a functional of the initial func- 
tions. Since in (8), the integral ~,+i R,do is 
not necessarily of class Cnfq as a function of 
(t, x; 7, y), Af+@‘2 & R,do is in general not a 
function in the ordinary sense. But we denote 
it by R(t, x; 7, y) formally, and understand that 
a linear operator 

u(t,x)= W,x; 7,ykdy)dy (9) 

is defined by (8). The kernel R(t, x; 7, y) in this 
sense is called a fundamental solution or Rie- 
mann function of the Cauchy problem. If we 
extend the function ~,o,=l R&t, x; 7, y; w)dw de- 
fined for t > 7 to t < 7, assigning it the value 0 
there, then R(t, x; 7, y) = A$‘+q)‘2 ~l+i R&t, x; 

7, y; o)do can be considered a tdistribution 
on (t, x; 7, y)-space, and the equality L(t, x, 
a/at, a/ax)R(t, x; 7, y) = ~*(7, y, aja7, a/ay)R(t, X; 
7, y)=@t-7)6(x-y) is valid, where L* is the 
tadjoint operator of L and 6 is tDirac’s 6- 
function. In other words, R(t, x; 7, y) is a fun- 
damental solution of L in the sense of distri- 
bution theory. 

The fundamental solution R(t, x; 7, y) can be 
analyzed using the asymptotic expansion with 
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respect to the sequence of functions {x&s)}, 
and we have the following important result: 
If the coefficients of (1) are of class C” (resp. 

real analytic), then the fundamental solu- 
tion R(t, x; T, y) is of class C” (real analytic) 
in (t, x) except for points that are on bichar- 

acteristic curves of (1) passing through the 
point (z. y). In the language of the Cauchy 
problem, the smoothness of the solution u at 
a point p = (t, x) depends only on the smooth- 
ness of the initial conditions on a neighbor- 
hood of the intersection of the initial hyper- 
plane and all bicharacteristic curves pass- 
ing through p. This fact is called Huygens’s 
principle in the wider sense. Behavior of the 

fundamental solution R(t, x; r, y) near dis- 
continuous points has also been investi- 
gated [2]. 

For the wave equation (3), the fundamental 
solution can be constructed, and therefore we 
can write the solution formula explicitly. The 
solution formula for (3) with initial condition 
(4’) for n > 3 is 

u(t, 4 

1 an-2 t 

(n-2)! at”-2 s 
(t2-~2)(n-3”2~Q(~,~)d~, 

() 

1 
Q(x, T) =- 

s 
cp(x+zo)dw, 

W” [w/=1 

where o, = 2Jrr”/I(n/2) is the surface area 
of the unit sphere of n-dimensional space. 
Solutions of the Cauchy problem (3) with 
initial condition (4) for n = 1, 2, and 3 are, 
respectively, 

u(t, x) = 
u,(x+t)+u,(x-t) 1 X+t 

2 +j 
s 

Ul(W5 
x f 

(10) 

(d’Alembert’s solution), 

u(t, Xl > x*1 

1 a 

- s 
uo(51 a 52)d51@2 

2n at 
C~Jt2-(X1-51)2-(x2-52)2 

+k s 

~1(51>52)d51dL 

C~Jt2-(X1-r,)2-(X2-52)2 

(11) 

(Poisson’s solution), and 

1 6 
ukx,,x2,x3)=~at 

s Q 
t f 

+L uI(t,,~2~:3)dw, (12) 

s 471 n, t 

(Kircbhoff’s solution), where C, is a disk in the 
5, (,-plane with center (x,, x2) and radius t, D, 
is a sphere in the 5, t2ii3-space with center 
(xi, x2, xg) and radius t, and dw, is the surface 

element of D,. 

E. Second-Order Nonlinear Hyperbolic 
Equations 

A second-order nonlinear differential equation 

a5 
-=A 

au au a2u a% 
at2 t,x,u,--,--,--- ~- 

at axi ataxi'axialG ' 

1 <i, j<n, (13) 

is called hyperbolic in a neighborhood of a 
function U(t, x) if the linear equation of the 
form (1) obtained from (13) is hyperbolic, 
where aoi(t, x) and aij(t, x) are determined 
by substituting u by U(t, x) in the partial de- 

rivatives of A with respect to a2u/itax, and 
LJ2u/dxiaxj, respectively. If the functions A 
in (13) and U =x0(x) + tu, (x) determined by 
(4) are sufftciently smooth with respect to 
t, x, u, . , a2u/axidxj, the Cauchy problem for 

(13) with initial condition (4) has a unique 
solution in some neighborhood of the initial 
hyperplane under the condition that equation 
(13) is hyperbolic in a neighborhood of U. In 
general, initial value problems for nonlinear 
equations have only local solutions. 

F. Higher-Order Hyperbolic Equations 

An Nth-order linear differential equation in 

n + 1 variables t, x = (xi, . . ,x,) with constant 
coefficients 

=o, (14) 

where cr=(ai, . . . . cc,),lal=cc,+...$-cc,,and 

a fi c-1 - 
alal 

6X ax;1 . ..axp' 

is hyperbolic in the sense of Girding if the 
following two conditions are satisfied: (i) the 

partial derivative aN/atN appears in L; (ii) the 
real parts of the roots i = E., (0, . , L,(l) of the 
characteristic equation L(i, it) = 0 are bounded 
functions of real variables 5 = (<i, , L&J. 
When L is a homogeneous equation of the 
Nth order, condition (ii) is equivalent to the 
following condition: (ii’) 1, (<), , AN(t) are 
purely imaginary for all real 5 = (r, , , I&) # 
(0, . ,O). The principal part (consisting of the 
highest-order terms) of a hyperbolic equation 
is also hyperbolic. If (14) is hyperbolic, a 

theorem analogous to theorem (C) holds for 
the Cauchy problem for (14) with initial 
conditions 

akujatk(o,~)=~k(x), O<k<n-1; (15) 

that is, the Cauchy problem for (14) with initial 

condition (15) is well posed in the sense of 
Hadamard. Conversely, if the Cauchy problem 



1219 325 H 
PDEs of Hy.perbolic Type 

for (14) with initial condition (15) is well posed, 
then (14) must satisfy the hyperbolicity con- 

ditions (i) and (ii) in the sense of Girding. In 
other words, well-posedness of the Cauchy 
problem is equivalent to hyperbolicity in the 

sense of L. Garding [ 141. Girding’s conditions 
for hyperbolicity cannot be generalized to the 
case of variable coefficients, since the influence 
of the lower-order terms in the equation is 
taken into account in the definition of hyper- 

bolicity. However, in the case of constant 
coefficients, an Nth-order homogeneous equa- 

tion remains hyperbolic for any addition of 
lower-order terms if and only if the character- 
istic equation has N distinct purely imaginary 

roots for any real 5 =(li, . . . , 5,) # (0, . . . , 0). In 
this case the equation is called hyperbolic in 
the strict sense. Thus a linear equation with 
variable coefficients 

a,<N 
=o (16) 

is called hyperbolic in the sense of Petrovskii if 
the characteristic equation 

aN+ 1 a,,&, x)ns(io” =o 
.,+/.l=N 

has N distinct purely imaginary roots (called 

characteristic roots) A,(t, x, 0, . . , A,(t, x, 5) for 
each point p = (t. x) and each 5 # 0. Moreover, 
if the characteristic roots 1,) . . . ,1, are sepa- 
rated uniformly, i.e., the inequality 

lim 
(t,x),lSI=l.j#k 

15th x, 5) - &(L x, 5)1= c > O 

holds, (16) is said to be regularly hyperbolic. In 
the second-order case, this definition is equiva- 
lent to the previous one. Theorem (C) holds 

for the Cauchy problem for a regularly hyper- 
bolic equation (16) with initial conditions 
(15). For the domain of dependence of the 
solution, a result analogous to the case of the 
second-order equation can be obtained using 
an energy inequality [9, lo]. If the coefficients 
are of class C”, Huygens’s principle in the 
wider sense is valid, that is, discontinuity of the 
solution is carried over only along bicharacter- 

istic curves. 

G. Systems of Hyperbolic Equations 

For systems of equations 

,$ Lij[Uj]=O, 1 <i<l, 

where the L, are higher-order linear differen- 

tial operators of the form (16), several types 
of hyperbolicity are formulated in connection 

with the well-posedness of the Cauchy prob- 

lem. We take up two important types, hyper- 
bolicity in the sense of Petrovskii and sym- 
metric hyperbolicity due to Friedrichs. 

We call a system of linear differential 
equations 

l,<i<l, (17) 

a system of hyperbolic differential equations (in 
the sense of Petrovskii) if the determinant 

calculated formally using the matrix of dif- 

ferential operators in the system, is hyperbolic 
in the sense of Petrovskii as a single equation 
of N( = $, nj)th order. Petrovskii showed 

that the Cauchy problem for a system that is 
hyperbolic in this sense is well posed [lo]. 
There were some imperfections in his argu- 
ment, which have been corrected by others 

(- S. Mizohata [ 123). In the case of constant 
coefficients, the Cauchy problem for (17) is 
well posed if and only if (18) is hyperbolic in 
the sense of Girding. 

K. 0. Friedrichs, observing that the energy 

inequality played an essential role in Petrov- 
ski% research, studied symmetric hyper- 
bolic systems of equations, since for them 
the energy inequalities are valid most natu- 
rally. A system of first-order linear differential 

equations 

is called symmetric hyperbolic (in the sense of 
Friedrichs) if the matrices A,(t, x) (0 < i ,< n) are 
symmetric and A,(t, x) is positive definite. A 

typical example is provided by Maxwell’s 
equations. For this system it has been shown 
that the Cauchy problem is well posed and 
the domain of dependence of the solution is 
bounded [13]. 

H. Weakly Hyperbolic Operators 

We adopt the following definition of hyper- 

bolicity: a linear differential operator of Nth 
order 

is called hyperbolic if the Cauchy problem for 
L[u] =0 with initial condition (15) is well 
posed in Hadamard’s sense. A hyperbolic 

operator L is called strongly hyperbolic if L 
remains hyperbolic for any addition of lower- 
order terms, and weakly hyperbolic otherwise. 
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A necessary condition for hyperbolicity is 
that all characteristic roots of LN(tr x, ,I,() = 0 
be real for any (t, x, 5) (P. D. Lax [ 151, Mizo- 

hata [ 161). In the case of constant coefficients, 
strongly hyperbolic operators have been char- 

acterized by K. Kasahara and M. Yamaguti 
(Mem. Cdl. Sci. Kyoto Uniu. (1960)). 

As for operators with variable coefficients, it 
is known that not only regularly hyperbolic 
operators but also some special classes of not 

regularly hyperbolic operators are strongly 
hyperbolic (V. Ya. lvrii, Moscow Math. Sot., 
1976). Let us consider the hyperbolicity of an 
operator L which is not regularly hyperbolic 
under the assumption that the multiplicities of 
the characteristic roots are constant and at 
most 2; namely, the characteristic polynomial 

L,(t, x, I”, 5) = AN + c 
a,+lal=N 

a,&, X)2y 

rr,QN-1 

is decomposed in the following way: 

LN(t, x, 1, 5) 

If: l/z,(t,X,5)-n,(t,X,5)l=C>O. 

l<l=i,jik 

Assume that the ij(t, x, 0, j = 1,2, . . , N-s, 
are real. Then L is hyperbolic if and only if it 

satisfies E. E. Levi’s condition, i.e., 

n a2LN a3, 
+C 11 m=,aiacaa~, A=A, 

=o 
forall (t,x,<), j=l,2 ,..., s, 

where L,_, denotes the homogeneous part 

of (N - 1)th order among lower-order terms 
of L (Mizohata and Y. Ohya [17]). Thus, 

for a weakly hyperbolic operator with vari- 
able coefficients, even the principal part is 
not necessarily hyperbolic. J. Chazarain [ 1 S] 

has studied weakly hyperbolic operators 
with characteristic roots of arbitrary constant 
multiplicity. 0. A. Oleinik [ 191 studied the 
Cauchy problem with nonconstant multiplic- 
ities for second-order equations. For higher- 
order equations, if the multiplicity of charac- 

teristic roots at (F, 2) is at most p, or more 
precisely, if there exist positive rational num- 
bers q and r (q 2 r) such that 

(“~ER”\O) 

for a,+lal+q&+r(fil<p, then it is necessary 
for the well posedness of the Cauchy problem 
that 

(‘<ER”\O) 

fora,+/al+qB,+r]/I]+s(l+q)<,7aresatis- 
fied, where L,-, (1 <s d N) are the homoge- 
neous lower-order terms of order N -s of L 
(Ivrii and V. M. Petkov [20]). 

On the other hand, the suffrcieni. condition 
in the case of multiplicity 2 is given by some 
conditions related to the subprincipal symbol 

i a2L, 
L,-, -- 

2 Et+&g$ ( 

which corresponds to Levi’s condition in 

the case of constant multiplicity, and to the 
tPoisson brackets (A. Menikoff, Amer. J. 
Math., 1976; Ohya, Ann. Scuola Norm. Sup. 
Pisa, 1977; L. Hormander, J. Anal. Math., 
1977). 

The Cauchy problem for a weakly hyper- 
bolic system of equations is more complicated, 
because of the essential difficulty that the 

matrix structure 

c 
a,+lal=nj 

a&(t, x),laO[’ 
> 

associated with (17) is not clear in general (- 
references in [20]). 

I. Gevrey Classes 

Classically, the functions of tclass s (s > 1) 

of Gevrey (- 58 C”-Functions and Quasi- 
Analytic Functions G; 168 Function Spaces B 
(14) were introduced into the stud& of the 

fundamental solution for the heat equation: 

$JR”)= {cp(x)~C?(R”)]for any compact 
subset K of R” and any multi-indices 
cc,there exist constants C, and A 
such that ~~p,I(a/ax)“cp(x)I G 
C,A’a’lcrl!“}. 

This class of functions was used efficiently in 
the studies of the Cauchy problem for tweakly 
hyperbolic partial differential equations: 

in [O,T]xR”=Q 

j=O, 1 ,...,h’-1. 

We assume that the multiplicities of the char- 

acteristic roots are constant, i.e., 

L,(t,x,l,r)=Ij(~.-ii(t,x,t))‘i, 
i=l 
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where vi is constant for any (t, x, 5) E R x R”, 
&(t, x, 5) is real and distinct, and Zf=, vi = N. 
Let max 14iakvi=p. If we suppose that L(t,x, 
a/at, a/ax) - Z(t, X, a/at, a/ax) is a (tpseudo) 
differential operator of order at most q, where 

is a (pseudo)differential operator with a,(t, x, 
a/at, a/ax) being strictly hyperbolic (pseudo) 
differential operators associated with L,, 
then for any s such that 1 <s < p/q, the 
Cauchy problem is well posed in yj@), 
provided that all a,&, x) of L and f(t, x) 
belong to y!:\(Q), and that {u~(x)J,,~~~~-~ are 
given in $,L(R”) (Ohya [21], J. Leray and 
Ohya [22]). This result was proved even for 
the case of arbitrary nonconstant multiplicity 
of characteristic roots by M. D. Bronshtein 
1231. 

J. Lacunas for Hyperbolic Operators 

The theory of lacunas of fundamental solutions 
of hyperbolic operators, initiated by Petrovskii 
[24], has been developed further in a paper 
[25] by M. F. Atiyah, R. Bott, and L. Girding. 

Let L(t) = &(I;) + M(t) be a hyperbolic 
polynomial with respect to the vector &R” - 0, 

where J&(C) is the principal part of L; this 
means that LN(0) # 0 and L(< + t0) # 0 when 
IIm t 1 is sufficiently large. Then L has a funda- 
mental solution E = E(L, 0, x) in the form 

E(L,&x)=(27q” 
s 

~(5 -ice)-leix(C-ic8)dg, 

where c is sufficiently large and the integral 
is taken in the sense of tdistribution. The con- 
vex hull of the support of E, denoted by K = 
K(L, 0) = K(A, f?), is a cone depending only 
on the real part Re A of the complex hyper- 
surface A: L(l) = 0, and contained in the union 
of the origin and the half-space x. 0 > 0. Let A, 
be the ttangent conoid of A at 5, transported 
to the origin, and define the wavefront surface 
W(A, 0) by the union of all K(A,, 0) for 5 #O. 
Then it can be shown that the singular sup- 
ports of E(L, 0) and all the E(Lk,, 0) are con- 
tained in W(A, 0) and, moreover, that they are 
locally holomorphic outside W. In [25], the 
Herglotz-Petrovskii-Leray formulas are gen- 
eralized to any nonstrict L(t). Thus we have 

DpE(L;,o,x) 

= const 
5 

Jx. 5)q5flLrm-k45)> q>o, (20) 

DBE(L:,, 0, x) 

= const 
s 

(x~r)“PGr(Kk45b qso 
t; Jo* 

(20’) 

when xeK(A,0)\W(A,@). Here,q=mk-IpI-n 
is the degree of homogeneity of the left-hand 
side,andw=~j”=,(-l)j-‘5jd51/\...Ad~A 
. . Ed&. The integrands are closed trational 
(n - 1)-forms on (n - 1)-dimensibnal complex 
tprojective space and are integrated over cer- 
tain thomology classes c(* = a(A, 8, x)* and t, . 
&*. These formulas provide means of obtain- 
ing topological criteria for lacunas. Let Y c 
g be a maximal connected open set, where 
E(L, 0, x) is holomorphic. dip is said to be a 
weak (strong) lacuna of L if E(L, 0, x) is the 
restriction of an entire function to P(E(L, 8, x) 
=0 in 2). In [25] it is shown that x belongs 
to a weak lacuna for all E(Lk,, 0;) if and only 
if ac(* = 0. The sufficiency directly follows from 
(20’) and the necessity follows from a theo- 
rem of A. Grothendieck (Publ. Math. Inst. 
HES, 1966) which implies that the rational 
forms which appear in (203 span all the tco- 
homology classes in question. 

K. Mixed Initial-Boundary Value Problems 

Let Q be a domain in R” with a sufficiently 
smooth boundary I-, let L(t, x, a/at, a/ax) be a 
linear hyperbolic operator of N th order de- 
fmedin[O,co)xfi={(t,x)It~[O,co),x~fi}, 
and let Bj(t, x, a/at, a/ax), j = 1,2, . , . , b, be linear 
differential operators of N,th order defined in a 
neighborhood of [0, co) x r. 

The problem of finding a function u(t, x) 
satisfying the conditions 

L[u]=O in (0,co)xQ 

Bj[u]=O on (O,co)xr, j=l,2 ,..., b, 

aku/atk(o,x)=uk(x), O<k<N-1, (21) 

is called a mixed initial-boundary value prob- 

lem. A typical example of such a mixed prob- 
lem is provided by the case L = IJ (n = 2) and 
B[u] = u(t, x), which describes the vibration of 
membranes with a fixed boundary. 

The mixed problem (21) is said to be well 
posed if for any initial data uk(x)~Cm(iZ), 
0 < k < N - 1, which are compatible with the 
boundary conditions, there exists a unique 
solution u(t, x)E Cm( [0, 00) x a). 

Mixed problems for second-order hyper- 
bolic equations are considered in [6]. In regard 
to mixed problems for hyperbolic equations 
of higher order, we make the following four 
assumptions: (i) Sz = R”, = {(x’, x,) 1 x’ER”-I, 
x, > 0); (ii) r = {x I x, = 0) is not characteristic 
for L or Bj; (iii) L is regularly hyperbolic; 
(iv) Nj<N-1 and Nj#Nkifj#k. 

We denote the tprincipal parts of L and Bj 
by L,(t,x’,x,,i?/i% alax’, a/ax,) and Bjo(t,x’, 
apt, a/ax’, a/ax,), respectively. By the hyper- 
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bolicity of L, an equation in K 

L,(t,x’,O,i,(‘,~)=0 for Imi<O, t’ER”-’ 

has p roots K: with ImK; >O, and N-p roots 
ic: with Im ~~~ < 0, and the number p is inde- 
pendent of (t, x’) and (A, 5’). A necessary con- 
dition for the well-posedness of the mixed 
problem (21) is that the number of boundary 
conditions coincide with this integer p. The 
function R defined by 

W, x’, At’) 

= det 

where L’ = n&i (K - $ (t, x’, A,[‘)) and C is a 
contour enclosing all xj’, is called a Lopatinski 
determinant. 

We say that L and Bj satisfy the uniform 
Lopatinski condition if 

inf IR(t,x’,&t’)l=c>O. 
(r,x’,,lmA-<(l 

K’l+l4=1 

When the uniform Lopatinski condition is 
satisfied, the mixed problem (21) is well posed, 
and (21) represents a phenomenon with a finite 
propagation speed, which is the same as that 
of the Cauchy problem for L[u] = 0 (T. Bala- 

ban [26], H. 0. Kreiss [27], and R. Sakamoto 
[28]). An analogous result holds in the case 
of a domain R with a compact boundary I, 
provided that L and Bj satisfy the uniform 
Lopatinski condition at every point of I. 

In the treatment of mixed problems for L 
and Bj not satisfying the uniform Lopatin- 
ski condition, the well-posed problems have 
been characterized for operators with con- 

stant coefficients when fi=R’!+ (Sakamoto 
[29]). For general domains, however, the well- 
posedness of mixed problems depends not 

only on the properties of the Lopatinski deter- 
minant but also on the shape of the domain 

(M. Ikawa [30]). 

L. Asymptotic Solutions 

In order to explain some properties of phe- 
nomenon governed by hyperbolic equations, 

where cp is a smooth function satisfying the 
eikonalequationJV~~Z=l.Ifuj,j=C~,l,...,N, 

satisfy the transport equations 

22+2Vo.V0j+Aqnj= -ilJujml, u-1 =o, 

we have 

q w=O(kmN). 

Then w  of (22) is an approximate solution of 
q u = 0 for large k, and it represents a wave 
propagating in the direction Vq. 

When supp w  fl(0, co) x I # cp, if M’ hits the 

boundary I transversally, we can construct 

w+(t, x ;  k),eWe+W-O 

j$o uj’ 0, x)k -j 

such that 

lVcp+l’=l inR, (p+=‘p, and 

and vj+ satisfy the transport equations and vj+ 
= - uj on (0, co) x I, where v is the unit inner 
normal of I. Then w  + w+ is an approximate 

solution, and w+ represents a reflected wave 
propagating in the direction 

vcp + = vq - 2(Vcp v)v. 

These asymptotic solutions show that the 
high-frequency waves propagate approxi- 
mately according to the laws of tgeometric 
optics. 

If asymptotic solution (22) has a caustic, i.e., 

{ {x + IVq(x) 1 IE R} 1 x E supp w} has an envel- 
ope, w  of the form (22) cannot be an asympto- 

tic solution near the caustic. The asymptotic 
behavior of high-frequency solutions near the 
caustic was first considered by G. B Airy 
(Trans. Cambridge Philos. Sot., 1838). Under 
the condition that the principal curvatures of 
the caustic are positive, w  in the form (22) can 
be prolonged to a domain containing the 
caustic satisfying the asymptotic solution 

w(t, x; k) = eik(e(x)-‘){Ai( - kz’3p(x))go(t, x; k) 

+ ikmn3Ai’( - k2’3p(x))g1(t,~; k)}, 

(23) 
asymptotic solutions play an important role. 
Consider, for example, the acoustic problem 

where Ai is the Airy function 

q u=O in (0, co)xR, 

u=O on (0, c0) x r. 
Let w(t,x; k) be a function defined in (0, co) x 

R with parameter k > 1 of the form 

Ai(r i 
s 

ei(zf+f3/3)dt 

m 

and 

g~(,(t,x;k)=Cg,j(t,x)k”‘-j 
j 

w(t, x; k) ,= ,+Ax)--f) jio uj(t, x)k-‘, G53 
(D. Ludwig [31]). 

Concerning the reflection of grazing rays by 
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strictly convex obstacles, the reflected wave 
can be constructed by the superposition of 
asymptotic solutions of the type (23). 

The methods of construction of asymptotic 
solutions of the forms (22) and (23) are also 
applicable to Maxwell equations or more 
general hyperbolic systems (R. K. Luneberg 
[32]; Ludwig and Granoff, J. Math. Anal. 
Appl., 1968; Guillemin and Sternberg, Amer. 
Math. Sot. Math. Surveys, 14 (1977)). 

M. Propagation of Singularities 

Let L be a hyperbolic operator with C” coetfi- 
cients and consider the Cauchy problem L[u] 
= 0 with initial condition (15). When the initial 
data have singularities, the solution also has 
singularities for t > 0, which is a property of 
hyperbolic equations quite different from the 
properties of parabolic ones. It should be 
noted that the tpropagation of singularities 
cannot be derived from the Huygens prin- 
ciple in the wider sense, i.e., even for regu- 
larly hyperbolic operators of second order 
we cannot determine the location and the 
type of singularities of the solutions for ini- 
tial data with singularities directly from the 
singularities of the fundamental solution 
Nt, x; 5 Y). 

Suppose that the multiplicities of character- 
istic roots of L are constant. Assume that uk, k 
=o 1 9 ,..., N - 1, have, on either side of a sufti- 
ciently smooth (n - 1)-dimensional manifold F, 
continuous derivatives of sufficiently high 
order to suffer jump discontinuities across I. 
Then the solution u has continuous partial 
derivatives of sufficiently high order every- 
where except on the characteristic surfaces of 
L issuing from F, and across these the partial 
derivatives of u have jump discontinuities 
(Courant and Hilbert [ 11). 

For more general singularities of initial 
data, it is known that the twavefront propa- 
gates along the tbicharacteristic strips satisfy- 
ingqt--L,(t,x,Vq)=O,1=1,2 ,..., N-s,thatis, 
WFu(. , t) is contained in {(x(t), [(t))~ T*(R”) 1 

Cdxjldt) ts) =tanllatj) ts, x, 513 (dtj/df)(s) = 

-(aW~xi)(s, X, 51, (x(O), ~(O))E iJkWF(d} 
(J. Chazarain [18]). 

The propagation of singularities is more 
complicated in mixed problems because of the 
reflections of singularities at the boundary. 
For the tacoustic problem, R. B. Melrose [33] 
showed the following: Suppose 8 = CR c 
{x 11 x I< R} for some R > 0, and all the broken 
rays according to the geometric optics starting 
from~,=Rfl{]xl<R}gooutof&inafixed 
time. Then for initial data with singularities in 

R,, the solution becomes smooth in R, for 
sufficiently large t. 
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326 (X111.27) 
Partial Differential Equations 
of Mixed Type 

A. General Remarks 

Let A [u(x)] = 0 be a tquasilinear second-order 
partial differential equation. The type (telliptic, 
thyperbolic, or tparabolic) of the equation 
depends on the location of the point x. If the 

type varies as the point x moves, the equation 
is said to be of mixed type. An example is the 
equation 

~2 azq ( > 2uv azq 
‘-7 G-2 -+ 

~2 azq 

c axay ( > 
I-- -=o 

~2 ay2 

(1) 

of 2-dimensional stationary flow without 
rotation of a compressible fluid without vis- 
cosity, where cp is the velocity potential, u = 

&p/ax and v = acp/ay are the velocity compo- 
nents, and c is the local speed of sound, which 
is a known function of the speed q =: (u’ + u2)1/2 
of the flow. Equation (1) is of elliptic type if q < 
c, i.e., the flow is subsonic, and of hyperbolic 
type if q > c, i.e., the flow is supersonic. If there 
exist points where the flow is subsonic as well 
as points where it is supersonic, (1) :IS of mixed 
type. The study of equations of mixNed type has 
become important with the development of 

high-speed jet planes. 

B. Cbaplygin’s Differential Equation 

It is difficult to solve equation (1) directly since 

it is nonlinear. However, we can linearize it by 
taking q and 0 = arc tan(o/u) as independent 
variables (the hodograph transformation). The 
linearized equation takes the form 

$-Iqx)IZ=O, aY2 XW) 2 0, (2) 

which is called Cbaplygin’s differential equa- 
tion. Equation (2) is hyperbolic for :c > 0 and 
elliptic for x < 0. The study of general equa- 

tions of mixed type, even when they are linear, 
is much more difficult and less developed 
than the study of equations of nonmixed type. 

Almost all research so far has been on equa- 
tion (2) or slight modifications of it. 

C. Tricomi’s Differential Equation 

The simplest equation of the form (2) is 

(3) 
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which is called Tricomi’s differential equation. 
F. G. Tricomi considered the following bound- 
ary value problem for (3): In Fig. 1, AC and 
BC are two tcharacteristic curves of (3) and e 
is a Jordan curve connecting A and B. We seek 
a solution of (3) in the domain D bounded by 
AC, BC, and cr that takes given values on u and 
on one of the two characteristic curves, say on 
AC. This boundary value problem is called the 
Tricomi problem. Tricomi proved the existence 
and uniqueness of the solution of his problem 
under some conditions on the shape of Q and 
the smoothness of the boundary values. After 
Tricomi, much research has been done on his 
and similar problems for equations of form (2) 
[Z]. We can also consider problems such as 
finding a solution of (3) (or of (2)) satisfying 
the initial conditions 

on the common boundary x = 0 of the elliptic 
domain and the hyperbolic domain of the 
equation. This is called the singular initial 
value problem. S. Bergman [3] obtained an 
integral formula for the solution under the 
condition that zi(y) and zl(y) are real analytic. 

Y 
A 

0 Q C 

B 
0 

x 

Fig. 1 

D. Friedricbs’s Theory 

For the study of equations of mixed type it 
would of course be most convenient if there 
existed a general theory of boundary value 
problems independent of the type of the equa- 
tion. However, constructing such a general 
theory is considered very difftcult, because the 
twell-posedness of boundary conditions as 
well as the analytic properties of solutions are 
quite different according to the type. The first 
contributor to the solution of this difficult 
problem was K. 0. Friedrichs [4], who noticed 
that although the methods of solving the 
tCauchy problem and the tDirichlet problem 
are quite different, both methods utilize energy 
integrals in the proof of the uniqueness of 
solutions. Using this observation, he succeeded 
in constructing a unified theory that enables 
us to treat various types (including the mixed 
type) of linear equations in a single scheme- 
an admissible boundary value problem for a 
symmetric positive system of first-order linear 

partial differential equations. There is, how- 
ever, a difftculty in Friedrichs’s theory since it 
does not give a unified procedure for reducing 
a given boundary value problem for a given 
equation to an admissible boundary value 
problem for a symmetric positive system of 
partial differential equations. The study of 
equations of mixed type that are of more 
general form than (2) by means of Friedrichs’s 
theory is an open problem. 

E. Further Studies 

Work on equations of more general type than 
(2) or (3) has appeared (not all depending on 
Friedrichs’s theory). For example, the fol- 
lowing equations are treated in [S, 6,7], 
respectively: 

where z=(zl,..., zn) and G(y) and K(y) are 
symmetric matrices. 
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327 (X111.26) 
Partial Differential Equations 
of Parabolic Type 

A. General Remarks 

Consider a second-order linear partial dif- 
ferential equation 

for an unknown function u of (n + 1) indepen- 
dent variables (x, t) = (x1, , x,, t), where aij = 
aji. This equation is said to be parabolic (or 
of parabolic type) if and only if the quadratic 
form x aijtitj in 5 is positive definite at each 

point (x, t) of the region under consideration. x 
and t are sometimes called the variables of 

space and of time, respectively. 
The most widely studied of the parabolic 

equations is the equation of heat conduction (or 
the heat equation): 

L[u,=Au-$0, (2) 

where ,I = x1=, a*/ZxF is the Laplacian taken 

over the space variables. 

B. The Equation of Heat Conduction 

The l-dimensional case of the heat equation is 

for the temperature u(x, t) in a rod, considered 
as a function of the distance x measured along 

the rod and the time t. Equation (3) was one of 
the first treated in the theory of partial differ- 
ential equations. Consider a finite rod with 
constant temperature 0 at its ends x = a and x 
= b. Thermodynamics suggests that the initial 

temperature q(x) (q(a)=cp(b)=O) prescribed at 
t =0 is sufficient to determine the distribution 
of heat u(x, t) in the rod at all later times t >O. 

On such physical grounds, we can expect that 
a solution to the following problem exists: 
Find a continuous function u(x, t) that satisfies 
equation (3) for a < x < b, t > 0, and the bound- 

ary conditions 

~(a, t) == u(b, t) = 0, 

‘~~~U(X, t) = cp(4, a<x<b. (4) 

According to J. Fourier the answer to this 

problem is expressed in a series X:1 c,u, con- 
structed by superposition of the particular 

solutions u, = sin fi (x -a)exp( -- 1, t). Here 
the i, are the roots of sin & (b -a) = 0, and 

the c, are chosen so that C,“=r c,u,(x, 0) = q(x). 
In fact, if v(x) is continuously differentiable, 
then C,“=r c,u,(x, t) is the required solution. 
Thus we are led to the problem of expanding 
a given function q(x) in a tFourier series. 

The temperature distribution in an infinite 
rod is given by a continuous function u(x, t) 
that satisfies equation (3) for t > 0 and that, for 

t = 0, takes values given by q(x), where 

l$ u(x, t) = cp(x). (5) 

If q(x) is bounded, then it can also be repre- 
sented by superposition of particular solutions 
e -(n-xPW of (3) as 

1 3c I-i 2fi -cc 
(p(c()e-(a-xw&, 

u(x, t) = 

I CPM> t > 0, 
t = 0. 

Partial differential equations of parabolic 
type are important because of their connec- 
tion with various phenomena in the physical 
world; they include not only equations that 
govern the flow of heat but also those that 
describe diffusion processes (- 115 Diffusion 
Processes). 

C. Partial Differential Equations of Parabolic 

Type in Two Variables 

We are concerned mainly with the partial 
differential equation of parabolic ‘:ype in two 

variables: 

a(x, t)$+2b(x, t)g+c(x, t)!$ 

+d(x, t)&+e(x, t)+y+f(.r, t)u=g, (7) 

with ac= b’. In the region where Ial + ICI >O, 
equation (7) can be reduced to the: form 

by an appropriate change of variables 5 = 
U(x, t), z = V(x, t). If e’ <O in this region, we 
can assume without loss of genera.lity that our 
equation takes the canonical form 

2 all 
a(x,‘)~+b(x,t)~+c(x,f)u-~-=8. 

/’ 
(8) 

with a > 0, from the outset. It has the single 
family of tcharacteristics 

t = constant. (9) 

There are four typical problems to be posed 
with regard to equation (8). 
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The first consists of determining, in some 
neighborhood of a given curve C nowhere 

tangent to a characteristic, a solution u that 
possesses prescribed values of u and au/an, 
or of a linear combination of u and au/an, 
along C. For instance, the problem of finding 
a solution u(x, t) such that u(x,, t)= g(t) and 
u,(xO, t) = h(t) for given functions g(t) and 

h(t) is a problem of this type. Consider the 
equation 

ah au ---= 
ax2 at 

0 (10) 

in the region a < t <b, x,, <x. According to E. 
Holmgren, a solution u(x, t) satisfying the 
conditions 

$; 4x9 t) = s(t), lg u,(x, t) = h(t), (11) 

where g’(t) is bounded and continuous, exists if 
and only if 

(12) 

is of class C” and satisfies 

1 k’“‘(t)1 < M(n!)‘/r” 

for positive constants M and r. 

(13) 

In the second type of problem we are re- 
quired to find in a region of the form 

cPl(t)~xGcpz(tX t,<t<t,, (14) 

a solution of (8) that takes prescribed values 

on part of the boundary of that region. Here 
we impose the hypothesis on the curves x = 
cpl(t) and x= q2(t) that they are nowhere tan- 

gent to a characteristic (9). M. Gevrey [3] 
showed that if such a solution does exist, the 
functions cpl(t) and q2(t) must satisfy the tH61- 
der condition with exponent c( > l/2: 

I~i(t+h)-~i(t)l~clhl”, c = constant, (15) 

for sufficiently small h. The problem of heat 
conduction mentioned in Section B corre- 
sponds to the particular case ‘pi(t) = constant, 

cp,(t)=constant, for which condition (15) is 
automatically fulfilled. 

The third type of problem is to find in a 
region of the form 

a<x<b, t>o, (14’) 

a solution of (8) that satisfies the conditions 

ljLyu(x, t) = cpb); 

g-hu=O for x=a, h = constant > 0; 

au 
z+H~=O for x=b, H = constant > 0. 

(16) 

This problem, posed for equation (lo), is also a 
mathematical formulation of the problem of 
heat conduction in a rod [4]. If p(x) is of class 

C’, then the solution to this problem can be 
expanded as 

u(x, t)= fJ c,e-“n’cp,(x), 
n=1 

s b 

CT,= dxh(x)dx, (17) 
a 

where cp,(x) is a normalized function (~~q$(x)dx 

= 1) that satisfies the boundary conditions 

d(a) - bA4 = 0, d(b)+HvnW=O (18) 

and the equation 

(19) 

The fourth type of problem is to find a 
function u(x, t) that satisfies (8) for t > 0 and 
the initial condition limtlo u(x, t) = q(x). It 

corresponds to the problem of heat conduc- 
tion in an infinite rod. 

D. Green’s Formula 

The tadjoint of the differential operator L[u] 

in (3) is given by 

(20) 

Integration by parts yields the identity 

where G is the region bounded by the closed 
curve C, and the line integral on the right is 
evaluated in the counterclockwise direction 
over C. We call (21) Green’s formula for the 

partial differential equation of parabolic type 
(3). As in the case of partial differential equa- 
tions of elliptic type (- 323 Partial Differen- 

tial Equations of Elliptic Type), this formula 
is used to establish the uniqueness of the solu- 
tion of (3) and to derive an integral repre- 
sentation for it. 

For example, the uniqueness of the solution 
is established in the following way: Let the 
curve fi and B^E in Fig. 1 be such that no 
characteristic meets either of them in more 
than one point. If u(x, t) is continuous in the 

closed region (ABED), vanishes on A^D, B^E, 
and the segment AB, and satisfies equation (3) 

in (ABED) except on AB, then it vanishes 
identically. Green’s formula (21), applied to the 
region G=(ABQP) and the functions $ = 1, 



327 E 
PDEs of Parabolic Type 

1228 

cp = u2, yields 

In a similar way, by extending Green’s for- 
mula suitably, we are able to prove unique- 

ness theorems for the four problems stated in 
Section C for more general linear parabolic 
equations. 

1 p ------.$ ------- Q / 

Fig. 1 

To obtain a representation for solutions we 

proceed as follows: Let u(x, t) be a solution of 
(3) and Let 

be a particular solution. Applying Green’s for- 
mula to the region (PABQMP) and the func- 
tions cp = u(x, t), rj = CJ(x,, t, + h, x, t), where h 
is a positive number and M is a point with 
coordinates (x0, to), we obtain 

s- 4x., t,)e -(x,-x)2/4h 

PC! 

= 
s--- 

u(x, t) U(x,, t, + h, x, t)dx 
PASQ 

Since the integral in the left-hand side of this 

equality approaches u(xO, to) as hJ0, we can 
establish the basic representation formula 

4% to) = s- u(x, t) U(x,, to, x, t)dx 
PABQ 

+( ug-+J)dt 

where (x, a) E R” x R” and t < 8. For equation 
(3), the following maximum principle holds: 

In the region (ABED) of Fig. 1, suppose that 
L[u] 2 0 and that u takes its maximum value 
K at an interior point M. Then u is identically 
equal to K on the segment QP and in the 

region (ABQP). More generally, various ver- 
sions of the maximum principle are known for 
equation (1) [S]. 

E. The Laplace Transform Method 

Let u(x, t) be a solution of (3) for t >O and 

s 

cc 
u(x, 1”) = e-%(x, t)dt, 1>0, (25) 

cl 

be its fLaplace transform with respect to t. 
Utilizing integration by parts, we lhave 

s 

m 
e-‘*u,(x, t)dt = [C”‘u(x, t)]fI$ 

0 

s 

‘72 
+1 emA*u(x, t)dt 

0 

= - q(x)+ iu(x, A), 6’6) 

provided that lim,,, e-%(x, t)= 0 and 
lirntlo u(x, t) = q(x). We find in view of (3): 

a*u 
s = wx, 4 - cpw. 

Once the solution of (26’) has been found, the 
desired solution of (3) can be derived by invert- 
ing the Laplace transform (25). This idea can 

also be applied to the solution of parabolic 
equations with constant coefficients in (n + 1) 
variables, such as (1). 

F. General Second-Order Equations of 
Parabolic Type 

(23) 
Consider the equation (I) with f=: 0, which can 
be written as 

for solutions u of (3). Formula (23) shows that 
u(xO, to) is determined in terms of the partic- 

ular solution (22) if we know the values of u 
and au/dx on the part PABQ of the boundary 

of the region (ABED). The function (22) is 
called the fundamental solution of (3) because 
it plays the same role as the fundamental 
solution logr (r=((a-x)2+(~-y)2)“2) of 

Laplace’s equation a2upx2+a2Ulay2=0. 

Similarly, the following function E (called 
the Gauss kernel) is a fundamental solution of 
equation (2): 

F,A(r)u 
at ) 

(27) 

where A(t) is a second-order telliptic operator 
with parameter t. Let D be a region (bounded 

or unbounded) of points x whose boundary 
is a smooth hypersurface S. We pose the fol- 
lowing initial boundary value problem for 
(27): Find a function u(x, t) that satisfies in 
D x (0, co) equation (27) together with the 

conditions 

lpi(x,t)=(P(x), XED, 

E(a,B;x, t)=(4n(b-t))-““exp I-&$}, ~u(x, t)/an+h(x, t)u(x, t)=f(x, t), XES, (16’) 

(24) ) where a/&r is the directional derivative in the 



1229 327 G 
PDEs of Parabolic Type 

outward tconormal direction at (x, t) (xES), 
and h(x, t) 2 0. 

The Laplace transform is not suitable for 
solving problems (27) and (16’). Instead, the 
theory of l-parameter semigroups of linear 
operators (- 378 Semigrbups of Operators 
and Evolution Equations) can be applied to 
establish similar fundamental results. Let m be 
a large positive integer. For t > 0, put t, = k6 
fork=0 1 , ,..., m-l witha=tfm. BytheLa- 
place transform method as described above, 
we can associate with $ a unique solution v of 
A(t,)v=lv-$ with 1= l/6. We put R,$=lv. 
By iterating this procedure m times, we have 
a function u,(x, t) = R,-, R,-, . . . R,q start- 
ing from the initial value cp at t =O. Then we 
obtain a solution u(x, t) of (27) and (16’) as 
the limit of u,(x,t) as m-co. The following 
results are known [6,7]: (i) There exists a u = 
U(& T, x, t) (x, 5 ED, t > ‘t 2 0) that, as a func- 
tion of x and t, satisfies equation (27) and the 
homogeneous boundary conditions (16’) with 
rp = 0, f= 0. (ii) The function u(x, t) defined by 

UC% t) = s CPK) w 09x2 w D 

is a solution of (27) and satisfies (16’). Thus 
U(& Z, x, t) is a generalization of the function 
(24), called the fundamental solution of the 
linear parabolic equation (27) with boundary 
conditions (16’). Besides the properties (i) 
and (ii), the fundamental solution satisfies 
UK, 7, & t) 2 0, SD U(<, GZ, w) U(z, w, x, wz = 
U([, z, x, t) (z < w < t), and further SD U(<, T, 
x, t) dx = 1 under some additional assump- 
tions. Therefore this theory is of consider- 
able significance from the point of view of 
the theory of probability (- 115 Diffusion 
Processes). 

It can be shown that a weak solution of the 
parabolic equation (27) is a genuine solution. 
That is, if u(x, t) is locally summable and 

j; jDUW(~ ) +A(t)*cp(x,t) dxdt=O 

for any function rp(x, t) of class Cz in D x (0, co) 
and vanishing outside a compact subset of D 

(A(t)* is the adjoint of the partial differential 
operator A(t) and dx = dx, . . . dx,-I), then 
u(x, t) satisfies (27) in D x (0, m) in the usual 
sense. In particular, when the coefficients of 
A(t) are infinitely differentiable, any solu- 
tion u(x, t) of (27) in the distribution sense is a 
genuine solution (- 125 Distributions and 
Hyperfunctions). 

If the function h in the boundary conditions 
(16’) and the coefficients of A are independent 
oft, then the fundamental solution U(<, z, x, t) 

depends only on 5, x, and t-t and is written 
as U(t, x; t-z) (t > 7). Furthermore, if A is 
tself-adjoint, then there exist a sequence of 
teigenfunctions {$p(x; 2) 1 p = 1,2, . . . } (A$p + 
&Qp = 0) and a sequence {p,(A)} of measures 
on the real line for which the following hold: 
(1) The fundamental solution U(& x; t) is ex- 
pressed in the form 

U(t, x; t) = 2 
s 

m e-“Vp,(5; Wp(x; 4&,(l). 
p=1 -cc, 

(2) The solution u(x, t) of (27) satisfying (16’) 
with f(x, t) = 0 is expanded as 

e-“‘l(l,k 4cp,Wpp(4, 

where 

(q(x) is the function given in (16’). 

G. Nash’s Results 

Let us consider a parabolic equation 

(28) 

where aij = aji are real-valued functions of class 
C” and equal to constants outside a fixed 
compact set of R” for all t 2 t, (this regularity 
assumption can be relaxed). Suppose that 
there exists a constant 12 1 such that 1-‘J<[’ 
~~aij(x~t)5ilj~al~12 for all (4X,S)E(t~,oO) X 
R” x R”. Then, for any bounded solution u(x, t) 
of (28) in (to, co) x R” and for any (x, y, t, s) such 
that x E R”, y E R”, and t, < t < s, the inequality 

(29) 

holds, where B=sup{ lu(x, t)l 1 t > t,, XER”} and 
/I = a/(2cr + 2). In this inequality, the constants 
u and A are positive, depending on (n, 1) but 
independent of the particular choice of (aij), t, 
andofu[9]. 

As a corollary to this theorem, J. Nash 
proved that, if the aij do not contain t and if 
v(x) is a bounded solution in R” of the elliptic 
equation obtained by replacing au/at by 0 in 
(28), the inequality 

Iv(x)-u(y)l<A’B’Ix--yl” (30) 

holds for any (x, y) E R” x R”, where u = or/@ + 1) 
with LY in (29) and B’= sup lo(x)I. The constant 
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A’ depends only on (n, 2) (- 323 Partial Dif- 
ferential Equations of Elliptic Type L). 

H. Partial Differential Equations of p- 
Parabolic Type 

Let p and m be given positive integers. Let us 
consider an equation for an unknown function 
u of (n + 1) independent variables (x, t) of the 

type 

z+c 
a,j 

a,,j(X, t)&$=.f (31) 

where a = (a ,, . . . . u,) and aa/axa=(a/ax,p . 
(a/ax,p. Wewritealso1a(=cc,+...+a,.In 
(31), C,,,i is the summation taken over the 

(aj) such that pj+lal<pm and O<j<m. Let 
us denote by {2,(x, t, [)}r=:=, the roots 1 of the 
equation 

1”” +c’ a,,j(x, t)(g)“v= 0, (32) 
a,i 

where Ch,j is the summation over the (a,j)‘s 

such that pj + 1 aI = pm and that 0 <j < m. We 
say that the equation (31) is p-parabolic (or of 
p-parabolic type) in the sense of I. G. Petrov- 
skii if and only if there exists a positive num- 

ber 6 such that 

Rei,(x,t,t),< -bl&‘, 1 <k<m, (33) 

for any (x, t) in the region under consideration 
and for any <E R”. The integer p is then seen to 
be even. Equation (27) is p-parabolic if --A(t) 
is strongly elliptic of order p. The heat equa- 
tion (2) is 2-parabolic in this sense. Similarly, 
we can define the p-parabolic systems of equa- 
tions [lo]. 

p-parabolic equations are known to be 
thypoelliptic if the coefficients are of class 
C” [ 111. S. D. Eidel’man obtained precise 

estimates of the fundamental solutions and 
of their derivatives for p-parabolic equa- 
tions [lo]. The mixed initial boundary value 
problems are investigated in detail also by 
Eidel’man [lo] and by R. Arima (J. Math. 
Kyoto IJniu., 4 (1964)). 
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328 (V.6) 
Partitions of Numbers 

A partition of a positive integer n is. an ex- 
pression of n as the sum of positive integers. 
The number of partitions of n, where the order 
of the summands is ignored and repetition is 
permitted, is denoted by p(n) and is called the 
number of partitions of n. For example p(5) = 7 
since5=4+1=3+2=3+1+1=;!+2+1= 

2+1+1+1=1+1+1+1+1.Therefore,p(n) 

equals the number of tconjugate classes of the 
tsymmetric group of order n and is closely 
related to the trepresentation theory of this 
group. 

The igenerating function of p(n) is 

f(x)=l+ 5 p(n)x”= 5 (l-X3jl?. 
ft=1 ( n=1 I 

The unit circle 1x1~ 1 is the tnatural boundary 
of f(x), which is holomorphic in Ix I< 1. The 
Dedekind eta function, which is closely related 
to f(x), is defined by the following formula for 

the complex variable t taking values in the 
upper half-plane: 

q(r)=exp(rriz/l2) fi (1 -exp(2ainT)). 
n=1 

Hence ~(7 + l)= exp(rci/l2)n(z). L. Euler (1748) 

obtained the following formula (called the 
pentagonal number theorem because n(3n - 1)/2 
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is a tpentagonal number): 

fJl-x4 
= 1 + 2 ( -l)yXn(3n-w +X”(3~+lYZ)~ 

II=1 

This follows easily from the Jacobi-Biebler 
equality 

= 1+ -f q+(Z”+Z-“) (lql< 1, ZZO). 
“=I 

By using the ttransformation formula for 9- 

functions, we can infer from the pentagonal 

number theorem that n( - l/z)= ,/$ n(r). 
Hence, if a, 6, c, d are integers satisfying ad - 
bc= 1 and c>O, then 

where E is a 24th root of unity. It is known 

that q(r) is a tcusp form of weight -l/2 with 
respect to the full tmodular group F( 1) [9, 111. 
C. L. Siegel (1955) gave a simple proof of the 
formula q( - l/r)= ,/@ q(r). Later S. Iseki 
(1957) gave another proof by using a new 

method, known as the CI - /I formula [ 121. 
The size of p(n) increases rapidly with n; for 

instance p(lO)=42 and p(lOO)= 190,569,292. 
By making use of a remarkable identity, G. H. 
Hardy and S. Ramanujan (1918) proved the 
following inequalities, where A and B are 

suitable constants: 

(A/n)e’&~(n)<(B/n)e~@J”. 

Subsequently they obtained 

~(4 -W4~4exp~~J2n/3). 

After, P. Erdiis (1942) and D. J. Newman 
(1951), A. G. Postnikov [S] succeeded in 
proving 

by means of an elementary function-theoretic 
method. Multiplying both sides of Euler’s 
formula by the generating function of p(n) and 
comparing the coefficients, we obtain 

where o,=k(3k- 1)/2 (k=O, fl, +2, . ..) is a 

pentagonal number. From this formula we 
can calculate p(n) successively; in fact P. A. 
MacMahon obtained in this way the values of 
p(n) for n up to 200. 

Hardy and Ramanujan proved the following 

transformation formula for the generating 
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function f(x) of p(n): 

= W,k&ev($$$J 
Xf(exp(y--z)), 

(h,k)=l, hh’= -l(modk), 

where W,,, is defined by 

W,,, =exp(nis(h, k)) 

and the value of s(h, k) was given by Radema- 

cher in the form 

Here the symbol ((t)) in the sum denotes the 
function that is 0 for integral t and t - [t] - l/2 
otherwise ([ ] is the tGauss symbol). With 
regard to the Dedekind sum s(h, k), we have the 
reciprocity law for Dedekind sums: 

s(h,k)+s(k,h)= -$+A ;+;+A 
( > 

If we make substitutions a = h’, b = (hh’ + 1)/k, 
c = k, and d = -h in the Hardy-Ramanujan 
transformation formula, then the E appearing 
in the transformation formula of ~(7) is seen to 
be equal to exp( - nis(c, d) + 7ci(a + d)/l2c). A 
direct proof of the transformation formula and 
the reciprocity law was given by K. Iseki 

(1952). 
According to Cauchy’s integral formula, p(n) 

can be represented as an integral: 

L f(x)dx 
s 27ri rX”+l ’ 

where the contour I is taken inside the unit 
circle around the origin. The generating func- 
tion f(x) varies greatly: namely, letting r+ 1-O 
in x = r exp(2aip/q), where p and q are fixed 
integers, it follows from the transformation 
formula that f(x) w  exp(w2/6q2(l - r)). Never- 
theless, we can deal with the integral by the 

tcircle method, introduced by Hardy and 
Ramanujan, which threw light on recent addi- 

tive number theory. Hardy and Ramanujan 

thus obtained 

+ O@xp(DJtt)), 

where 

The theory was improved by Rademacher 

I ( 1937,1943), who expanded p(n) into the 
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series 

where 

‘h(n)= c W,,,exp( - 2&m/k). 
h(IllOdk,,(h,k)=I 

Rademacher (1954) proved further that 

where 

L,(z)= 5 z” 
n:=on!T(v+n+l)’ 

Rademacher (1943) had developed an inge- 

nious proof by taking “Ford’s circle” as the 
contour r. 

Ramanujan observed that p(5m + 4) = 0 
(mod5), p(7m+5)=0 (mod7), and p(llm+ 
6) = 0 (mod 11). Rademacher (1942) and New- 

man studied these cases by using q(z). More 
generally, A. 0. L. Atkin proved that if 24n = 1 
(mod5”7b11c) then p(n)-0 (mod5”71+tb~2)llc) 
(Glasgow Math. J., 8 (1967)). At present, this is 
the best result. 

Letn=n,+n,+...+n,beapartitionofn. 
Many problems arise when we put additional 
conditions on the nj. For instance, we may 
require that the nj satisfy certain congruence 

relations (L. K. Hua (1942), S. Iseki (1959)) or 
are powers of integers (E. M. J. Wright (1934), 
L. Schoenfeld (1944) S. Iseki (1959)) or are 

powers of primes (T. Mitsui (1957)). The par- 
tition problem can also be extended to the 
case of an algebraic number field of finite 
degree (Rademacher, G. Meinardus (1953), 
Mitsui (1978)). 

References 

[1] R. G. Ayoub, An introduction to the ana- 
lytic theory of numbers, Amer. Math. Sot. 

Math. Surveys, 1963. 
[2] G. H. Hardy and S. Ramanujan, Asymp- 
totic formulae in combinatory analysis, Proc. 

London Math. Sot., (2) 17 (19lQ 75-115. 
[3] G. H. Hardy and E. M. Wright, An intro- 
duction to the theory of numbers, Clarendon 
Press, fourth edition, 1965. 
[4] K. Iseki, A proof of a transformation for- 
mula in the theory of partitions, J. Math. Sot. 

Japan, 4 (1952), 14-26. 

[Sj H. A. Rademacher, Lectures on analytic 
number theory, Tata Inst. Fund. Res., 1954- 
1955. 

[6] S. Ramanujan, Collected paper:; of Srini- 
vasa Ramanujan, Cambridge Univ. Press, 
1927 (Chelsea, 1962). 
[7] H. Petersson, Uber Modulfunktionen und 
Partitionenprobleme, Abh. Deutsch. Akad. 
Wiss., Berlin Kl. Math. Allg. Nat., 1954, no. 2. 
[S] A. G. Postnikov, Introduction to the ana- 

lytical theory of numbers (in Russian), Mos- 
cow, 1971. 
[9] M. I. Knopp, Modular functions in analy- 
tic number theory, Markham, 1970. 
[lo] T. Mitsui, On the partition problem in an 

algebraic number field, Tokyo J. Math., 1 

(1978). 
[ 1 l] H. A. Rademacher, Topics in analytic 

number theory, Springer, 1973. 
[12] S. Iseki, The transformation formula for 

the Dedekind modular function aml related 
functional equations, Duke Math. J., 24 (1957), 
653-662. 

329 (Xx1.38) 
Pascal, Blaise 

Blaise Pascal (June 19, 1623-August 19, 1662) 
was born in Clermont-Ferrand in southern 
France. He lost his mother when still an infant 
and was brought up by his father, Etienne 
Pascal (discoverer of the curve called Pascal’s 
tlimacon). As a youth, he demonstrated a 
remarkable ability for mathematics. In 1640, 
under the influence of Desargues, he dis- 
covered tPascal’s theorem on conic: sections, 

and in 1642 invented an adding ma.chine. After 
hearing of Toricelli’s experiments in 1646, he 
became interested in the theory of lluids and 

on his own began to conduct experiments; this 
research put to rest the prevailing opinion that 

nature abhors a vacuum and that, therefore, a 
vacuum cannot exist. Pascal formulated the 
principle stating that pressure, when applied at 
any point within a contained liquid, is trans- 
mitted throughout the fluid. By me:ans of this 
principle, he explained various phenomena 
concerning fluids such as the atmosphere and 

laid the foundations for hydrostati’cs. 
Between 1652 and 1654, Pascal was pre- 

occupied with social affairs, but subsequently 

he began to devote himself to religion. He 
entered the Abbey Port-Royal of the Jansenist 

sect, where he remained until his death. Im- 
mediately before his entry, however, he and 
Fermat exchanged correspondence about 
games of chance, and these letters proved to 
be the beginning of the theory of tprobability. 

Concerning games of chance, Pascal had con- 

ducted research on tPascal’s triangle, and in 
this study he formulated and used tmathemat- 
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ical induction. He also indicated a way to 
obtain the sum of the mth powers of the con- 
secutive terms of an arithmetic progression, 
and with an intuitive idea of limits obtained 
the formula j: x”dx = amf’/(m + 1). While in 
Port-Royal, he published Lettres provinciales 
(1657), in which he carried on a dispute with 
the Jesuits. His book Penstes shows his deep 
involvement with religion; however, he did not 
abandon mathematics. In 1658, he determined 
the area enclosed by a tcycloid and its base, 
the barycenter and area of the figure enclosed 
by a cycloid and straight lines parallel to its 
base, and the volume of the figure obtained by 
rotating it around these lines. The study of the 
methods used by Pascal to obtain these re- 
sults, which were forerunners of differential 
and integral calculus, led tLeibniz to discover 
the fundamental theorem of calculus. Pascal 
also formulated clear ideas about axioms. 
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330 (11.8) 
Permutations and 
Combinations 

Let there be given a set R of n elements. If 
we choose k distinct elements of R and ar- 
range them in a row, we have a k-array or k- 

permutation of elements of Q. The number of 
such arrays is (r& = n(n - 1) . . . (n -k + 1). 
The polynomial (x),= x(x - 1) . . . (x -k + 1) 
in x of degree k is called the Jordan factorial of 
degree k. In particular, (n), = n!, n factorial, is 
the number of permutations of R. A subset of 
R is called a k-subset if it contains exactly k 
elements. The number of k-subsets (or k- 

combinations) of R is 
0 

i = (n),/k!. The 

binomial coefficients 
X 

0 
are defined by the 

n 

generating function (1 + 2)” = x:0 z”. For 

any complex number x, the series is conver- 

gent for IzI < 1, and it is verified that x 
0 

= 
n 

(x),/n! in terms of the Jordan factorial (x),. 
The same results hold in a tcomplete field with 
tvaluation, in particular in a tp-adic num- 
ber field. In any case, we have the recursive 
relation 

and in general 

which leads to many identities involving 
binomial coefficients. The recursive relation 

allows us to compute the values of 
n 

0 k 
easily 

for small integers n, k, as was noticed by 
Pascal. The arrangement of these values in a 
triangular form: 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 

is called Pascal’s triangle. For integral values 
x, (1 + z)” are polynomials, and we have (a + 

l~)“=~~=~ i a 
0 

n-kbk (binomial theorem). As 

a generalization, we have 

(a,+...+a~~=~&a~~...a~~ 
. . . . . 

(multinomial theorem), where the sum is ex- 
tended over all nonnegative pi with Z pi = n. 

The number of ways of choosing k elements, 
allowing repetition, from a set of n elements is 

(-i)k~j=~+[p'). This is ais0 the 

number ofnonnegative integral solutions of 
&xi = k. As an example of binomial coefli- 
cients with noninteger arguments, we have 

(-j’2)=(-1)“2-‘“0 
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Perturbation of Linear 
Operators 

A. General Remarks 

Historically, the perturbation method was 
developed as an approximation device in 
classical and quantum mechanics. In the per- 

turbation theory of eigenvalues and eigenfunc- 
tions, created by L. Rayleigh and E. Schriidin- 
ger, the main concern was to find solutions as 
power series in a parameter K that could be 
regarded as small. In the perturbation theory 
for linear operators, however, we are con- 
cerned more generally with the behavior of 

spectral properties of linear operators when 
the operators undergo small change. The 
foundation of the mathematical theory, includ- 
ing a complete convergence proof of perturba- 

tion series, was laid down by F. Rellich [l] 
and T. Kato [2,3]. Another major topic in 

the perturbation theory for linear operators 
is the perturbation of continuous spectra, 

which was initiated by K. 0. Friedrichs (Math. 
Ann., 115 (1938); [4]). It is closely related to 

scattering theory and is discussed more fully 
in 375 Scattering Theory. A standard reference 

in this field is [S] (also - [6,7]). Most of 
the material presented in this article is taken 
from [S:]. 

For problems in Hilbert spaces there are 

two general frameworks in which to formulate 
perturbation situations: the operator formula- 
tion and the form formulation. In the former 
we deal with a family of operators T(lc) direct- 
ly, while in the latter, we deal with associated 
semibounded Hermitian (or, more generally, 
sectorial) forms t(K). The latter is applicable 
only when there is semiboundedness (or a 
sectorial property) inherent in the problem, 

but is usually more general than the former 
in such problems, since the latter (resp. the 
former) requires roughly the constancy of 
the domain of the “square root” of T(K) (resp. 

the domain of T(ti)). In this article we discuss 
problems in the operator formulation. For 
the form formulation - [S] and [7]. 

In this article X, Y, . , are complex Banach 
spaces and T, A, are linear operators unless 
other specifications are made. The following 
notations defined in 251 Linear Operators are 
used without further explanation: D(T), R(T), 

B(X, Y), B(X), r(T) (the graph of T), a(T) (the 
spectrum of T), p(T) (the resolvent set of T), 
and R([; T) (the resolvent of T). We also use 

C(X, Y) (resp. A(X, Y)) to denote the set of all 

+closed linear operators (resp. all tlinear 
operators) from X to Y and C(X) = C(X, X). 

B. Stability of Basic Properties 

(1) Let TE C(X, Y). Important notions for 
characterizing the smallness of A E .4(X, Z) 
relative to Tare the following. (i) A is said to 
be relatively bounded with respect to T (or 
simply T-bounded) if D(A) 3 D(T) and there 
exist a, b > 0 such that 

(*) ~~Aull,~allull.+bllTu//,for all ueD(T). 

The infimum, denoted by I/A 11 T, of b for which 
(*) holds with some a is called the ‘r-bound of 

A. (ii) A is said to be relatively compact with 
respect to T (or T-compact) if D(A) 3 D(T) 
and A is compact from D(T) with the graph 
norm of T to Z (- 68 Compact and Nuclear 
operators F). T-compactness of A implies T- 

boundedness (and in Hilbert spaces 11 AlI T = 0). 
(2) Let TEC(X, Y), and let AEA{X, Y) be T- 

bounded. (i) If II All T < 1 (or if A is :r-compact), 
then T+ AE C(X, Y). (ii) If, in addil.ion, X = Y 
is a Hilbert space, T is +self-adjoint, and A is 

isymmetric, then T+ A is self-adjoint (Rellicb- 
Kato theorem) [l, 81. (iii) Suppose that T is a 

+Fredholm operator. If either A is r-compact 
or the inequality (*) holds with constants a, b 

satisfying bp + a < p for a certain positive 
number p determined by T, then 7’+ A is 

a Fredholm operator and ind( T+ ‘4) = ind T 
(for ind T, nul T, and def T - 251 Linear 
Operators). In the latter case when: bp + a < p, 
we also have nul(T+ A) < nul T anlj def( T-t 
A)<defT. 

C. Continuity and Analyticity of F.amilies of 
Closed Operators 

In order to handle unbounded operators, 
which are important in application:<, it is neces- 
sary to introduce generalized notions of con- 
vergence and analyticity of families of closed 
operators. 

(1) C(X, Y) becomes a +metric space by a 
distance function a(S, T) having the property 

that &r(S), r(T))<&, T)d2&r(S), r(T)), 
where for closed subspaces M and N we put 

&M,N)=max[?j(M,N),6(N,M)], 

6(M, N) = sup dist(u, N); 6(0, N) = 0. 
uthf, Ilull =1 

8(M, N) is called the gap between hi and N [S]. 
When T,-+ T in this metric, T, is said to con- 
verge to T in the generalized sense. This gen- 
eralized convergence coincides with the norm 
convergence if T,, TEB(X, Y). If X = Y and 
p(T) # 0, then ‘i-t T in the generiilized sense 

if and only if for some (or equivalently all) 

[sp(T) we have [gp(T,) for sufficiently large 
n and llR([; T,)-R([; T)/I +O, n+cg. This is 
called norm resolvent convergence. 
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(2) When X = Y, there is also the notion of 
strong convergence in the generalized sense 
[S], which is roughly the strong convergence 
of resolvents. In particular, when T” and T are 
self-adjoint operators in a Hilbert space, T,-t T 
strongly in the generalized sense if R(c; T,)+ 
R(<; T) strongly for some (or equivalently all) 
[ with Im 5 #O. This is called strong resolvent 

convergence. 
(3) Let D c C be a domain. The notion of 

analytic&y (holomorphic property) of a family 
T(K)EB(X, Y), KED, of bounded operators 
is well known (- 37 Banach Spaces K). 

This notion is generalized to a family T(K)E 

C(X, Y), KED, of closed operators [l, 51. 
Namely, T(K) is said to be bolomorphic in D if 
at each K~ E D there exist a Banach space Z 

and U(JC)EB(Z,X), V(K)EB(Z, Y), defined near 
K~, such that (i) U(K) and V(K) are holomor- 
phic at K~ as families of bounded operators; 

(ii) U(K) is one to one and onto D(T(lc)); (iii) 
T(K) U(K) = V(K). Let us mention several spe- 
cial cases. (I) if X = Y and if [E~(T(K)) for all 

ICED, then T(K) is holomorphic in D if and 
only if R([; T(K)) is holomorphic in D. (II) If 

D(T(K)) is independent of K and if T(K)u is 
holomorphic in D for every UE D( T(K)) then 

T(K) is holomorphic in D (holomorphic family 
of type (A) [S]). (III) Let TE C(X, Y), and let 

T(")cA(X, Y)suchthat D(T("))ID(T) and 
~~T(")u~~~c"-'(~~IuII+~IITuII),uED(T), wherea, 
b, c > 0. Then T(K)u = Tu + KT% + . + IC” T(“) 

+ . . , u E D( T) defines a holomorphic family of 

type(A)inD={?cIIicI<(b+c)-‘}.(IV)IfX=Y 
is a Hilbert space and if T(K) is self-adjoint for 
real JC, T(K) is said to be a self-adjoint family. 
In particular, the family discussed in (III) is a 
self-adjoint holomorphic family if T is self- 
adjoint and T(") is symmetric. 

D. Perturbation of Isolated Eigenvalues 

(1) Separation of the spectrum. Let TE C(X). 
Suppose that a bounded subset A of c(T) is 
separated from the rest of c(T) by a simple 
closed contour I- (i.e., r c p( T) and A(o(T)\ A) 
lies inside (outside) of r). Then the operator 

which is independent of r, is a projection (i.e., 
P E B(X) and P* = P). The closed subspaces 
X, = PX and X, = (I - P)X treduce T and give 
rise to the decomposition T= TIxl @ Tlx, = 
Tl @ T2. In particular, a( TJ = c(T) fl {inside 
of r} and a(T,)=o(T)rl {outside of r}. 

(2) Let T(K) be holomorphic in D. We as- 
sume that OED and regard T(O)= T(0) as the 

unperturbed operator. Suppose that A and r 
are as in (1) with T replaced by T(O). Then 

there exists 6 > 0 such that I KI < 6 implies r c p 
(T(K)). This follows from the upper continu- 

ity of compact components of the spectrum 
with respect to the metric d of C(X) [S]. Thus 
the separation of the spectrum discussed in (1) 
is applicable to T(K). In particular, corre- 
sponding to the projection 

R(i; W)di, IKI<6, 

T(K) is decomposed as T(K)= T,(K) @ T2(1c); 

and the problem of determining the spectrum 

of T(K) inside r is reduced to the problem of 
determining the spectrum of Tl(~) (I KI < 6). 

Suppose now that A = {A,} is an isolated 
eigenvalue of T(O) and that m = dim P(O)X < co. 
Then dim P(rc)X = m, I KI < 6. Moreover, a base 
{cpl (K), . . . , (P,(IC)} of P(K)X can be constructed 
in such a way that the (Pi are holomorphic 
in { llcl<6’<6} [3,5]. Thus the problem for 
T,(K) in this case is just the finite-dimensional 

eigenvalue problem det {lhj, -( T(K)c~~(K), 

(pk(lc))} =O. The totality {lj(~)} of solutions 
of this equation, i.e., the totality of eigen- 
values of T(K) near A,, is expressed by one or 
several power series of K~/” with a suitable 
integer p > 0. If T(K) is a self-adjoint family, 
we can take p = 1 so that the eigenvalues are 
holomorphic near 1,. If H(K) = H(O)+ &P 

+ . . . is a self-adjoint holomorphic family 

described in example (IV) in (3) of Section C 
and if m = 1, the power series A(K) = C)Ljd can 

be explicitly cofnputed as A1 =(H(%A,, u,), L, 
=(H%,, uo) +(SH(‘h,, H(‘h,), . . . , where 
H(‘)u, = I,u, with /uoll = 1 and where S 
= lirn<+ R(c; #‘))(I -P(O)) is the reduced 
resolvent. This series is known as the Rayleigh- 
Schriidinger series. The power series for the 
associated eigenvectors U(K) = C &uj can also 
be computed. For details, including the case of 
a degenerate lo (m > l), in which the situation 

becomes more complicated due to the splitting 
of eigenvalues, - [S]. The perturbation theory 

discussed in this subsection is called analytic 
(or regular) perturbation theory. 

(3) Even when a problem cannot be handled 
by means of analytic perturbation, it may 
happen that the coefficients kj and uj of formal 
power series can be computed up to a cer- 
tain j. In many such cases it can be shown 
under general assumptions that an asymptotic 
expansion such as n(lc)=n, +A, K+O(K) is 
valid as long as the coefficients involved can be 
computed legitimately [2,5]. Estimates for 
O(K) can also be given. This provides a rigor- 

ous foundation for the perturbation method in 
many important practical problems. The case 

of degenerate 1, can be treated similarly. The 

strong convergence in the generalized sense 
mentioned in (2) of Section C is used here. This 
theory is called asymptotic perturbation theory. 
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E. Perturbation of Continuous Spectra 

For continuous spectra, studying the mode 

of change under perturbation is not usually a 
tractable problem. Rather, certain parts of 

continuous spectra tend to be stable under 
perturbation; and the study of this stability has 
been a major topic in perturbation theory 

(also - 375 Scattering Theory). In this section 
we discuss only self-adjoint operators and let 
H=jldE(I), H,, . ..) be self-adjoint opera- 
tors in a Hilbert space X. For B, and 11 lip to 
be used below - 68 Compact and Nuclear 
Operators. 

(1) The essential spectrum (- 390 Spectral 
Analysis of Operators E) is stable under com- 

pact perturbation. Namely, if H = HO + K with 
compact K, then CT~(H)=O,(H,,) (H. Weyl, 
Rend. Circ. Mat. Palermo, 27 (1909)). More 

generally, it suffices to assume that R(<; H) 
- R([; HO) is compact for some (or equivalently 
all) [e p(H) fl p(H,,). Conversely, if X is sepa- 
rable and if u~(H)=a,(H,,), then there exist a 
unitary operator U and a compact operator K 
such that H = UH, U-’ + K (J. von Neumann, 
ActualitCs Sci. Ind., 229 (1935)). Moreover, any 
self-adjoint operator H in a separable Hilbert 
space can be changed into H + K with a pure 
point spectrum by adding a K EB, with I/K lip 

< E for any p > 1 and E > 0 (S. T. Kuroda, Proc. 
Japan Acad., 34 (1958)). I. D. Berg (1971) W. 
Sikonia (1971) J. Voigt (1977), and D. Voicu- 

lescu (1979) have extended these results to 
normal operators and m-tuples of commuta- 
tive self-adjoint operators. Also - 390 Spec- 
tral Analysis of Operators I, J. 

(2) The absolutely continuous spectrum (- 
390 Spectral Analysis of Operators E) is stable 
under perturbation by the ttrace class. Name- 

ly, if H = HO + K, with K E B,, then the abso- 
lutely continuous parts of HO and H are tuni- 
tarily equivalent, and in particular o,,(H) = 

a,,(H,) (M. Rosenblum, Pacific J. Math., 7 

(1957); T. Kato, Proc. Japan Acad., 33 (1957)). 
Among generalizations we mention the follow- 

ing two. (i) If R(<; H)- R([; HO)~B1 for some 
[E p(H) fl p(H,), then the absolutely continuous 
parts of cp(H,,) and q(H) are unitarily equiva- 
lent for any smooth strictly increasing real 
function cp (M. Sh. Birman, Izv. Akad. Nauk 
SSSR, ser. mat., 27, (1963); T. Kato, Pac$c J. 

Math., 15 (1965)). (ii) If HO and H act in different 
Hilbert spaces X0 and X, respectively, and if 
there exists J E B(X,, X) such that JD(H,) c 
D(H) and such that the closure of HJ-JH, 

belongs to B,(X,,,X), then the same conclusion 
as in (i) holds (D. Pearson, J. Functional Anal., 
28 (1978)). (i) can be derived from (ii). Perturba- 
tion theory for absolutely continuous spectra 

is closely related to the study of generalized 
wave operators in scattering theory. In fact, 

the existence and the completeness of the latter 
implies the unitary equivalence of absolutely 
continuous parts. All the results mentioned 

above are proved by scattering-theoretic 
methods, either by the wave operator ap- 
proach or by the abstract stationary approach 
(- 375 Scattering Theory, esp. B, C). 

F. Some Other Topics 

(1) For the perturbation theory for semigroups 
of operators and evolution equations, not 
discussed in this article, - [S, 7,9]. 

(2) The detailed structure of continuous 
spectra is hard to analyze. An eigenvalue 1, of 
HO which is embedded in the continuous spec- 

trum may diffuse into the continuous spectrum 
in the presence of a perturbation. In such a 
case, H(K), IC #O, has no eigenvalues near Lo 

but may have a continuous spectrum highly 
concentrated around /I,. This phenomenon 
of spectral concentration is studied, especially 
for some concrete problems, in relation to 
resonance poles (or poles of the holomorphic 
continuation of the resolvent or the scattering 
matrix). In some problems, it is proved that 
the first few terms of the perturbation series for 
L(K) that are still computable are related to the 

real part of the resonance. Some problems of 
resonance can be treated by the technique of 
dilation analyticity, a technique wh.ich is also 

effective in other problems of spectral analysis 
(J. Aguilar and J. M. Combes, Comm. Math. 
Phys., 22 (1971)). 

(3) A vast quantity of results in the spectral 

theory of the Schrodinger operators appear- 
ing in the tschrodinger equation in quantum 
mechanics can be obtained by perturbation 

methods. 
For the topics mentioned in (2) and (3) - 

c71. 
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The ratio of the circumference of a circle to its 
diameter in a Euclidean plane is denoted by A, 

the initial letter of aspz~srpo~ (perimeter). 
Thus rc can be defined as 

The symbol 7c has been used since W. Jones 
(1675-1749) and L. Euler. The fact that this 

ratio is a constant is stated in Euclid’s Ele- 
ments; however, Euclid gave no statement 
about the numerical value of 71. As an approxi- 
mate value of n, 3 has been used from antiq- 
uity. According to the Rhind Papyrus, (4/3)4 
was used in ancient Egypt. Let L,(Z,) be the 
perimeter of a regular n-gon circumscribed 

about (inscribed in) a circle of radius 1. Then 
the relations 

L,>n>l,, &L+!, 
2n -L 4 

lZn=4z 

hold. Archimedes obtained 3%~ rc < 35 by 
calculating L,, and I,,. In 3rd-century China 
Liu Hui used x + 3.14. In Sth-century China, 
Tsu Chung-Chih mentioned 2217 as an inaccu- 
rate approximate value and 355/l 13 as an 
accurate approximate value of n. These values 
were obtained by methods similar to those of 
Archimedes. In 5th~century India, Aryabhatta 

obtained rc + 3.1416, and in 16th-century 
Europe, Adriaen van Roomen obtained 

nk 355/l 13. 
F. V&e represented 2/a in the following 

infinite product: 

Using this formula, L. van Ceulen (1540- 1610) 
calculated rt to 35 decimals. In the 17th and 

18th centuries, the Japanese mathematicians T. 
Seki, K. Takebe, and Y. Matunaga computed 
rc to 50 decimals. Since the 17th century, many 

formulas that represent rc as a sum of infinite 
series or as a limit have been used to obtain 
more accurate approximate values. The fol- 
lowing are representations of x known in those 
days: 

n 2.2.4.4.6.6... 

7=1.3.3.5.5.7... 
(J. Wallis) 

7c 1 12 32 52 
-=- - - - 
4 1+2+2+2+... 

(W. Brouncker; for 

the notation - 83 Continued Fractions) 

=1-1/3+1/5-l/7+ . . 
(J. Gregory, G. W. F. Leibniz) 

= 4 Arc tan l/5 - Arc tan l/239 (J. Machin). 

A formula combining Machin’s representation 
of rr and the power series Arc tan x = x - 
(1/3)x3 +(1/5)x5 - . . . is called Machin’s for- 

mula and was often used for calculating an 
approximate value of n. By utilizing this for- 
mula, in 1873 W. Shanks obtained an approxi- 

mate value of 7c up to 707 decimals. No im- 
provement of his approximation was obtained 
until 1946 when D. F. Ferguson calculated 710 
digits of x and found that Shanks’s value was 
correct only up to the 527th digit. The com- 
putation of an accurate approximate value of 
n has been made easier by the recent develop- 
ment of computing machines, and an approxi- 

mate value up to l,OOO,OOO decimals has been 
obtained. P. Beckmann [Z] gives a detailed and 
humorous historical account of the calculation 

of n from ancient times up to the present com- 
puter age. Various numerical results obtained 

by electronic computers are not formally pub- 
lished, some being deposited in the UMT 
repository of the editorial office of the journal 
Mathematics of coniputation. Choong et al. [3], 
using information in Cl], obtained the first 
21,230 partial denominators of the regular 
continued fraction representation of ?I and 
described how their numerical evidence tallies 
with theoretical results, obtained by the met- 
rical theory of continued fractions, which is 

valid for almost all irrational numbers (e.g. 

- C41). 
In 1761, J. H. Lambert used Brouncker’s 

expression of a in a continued fraction to 
prove that R is irrational. In 1882, C. L. F. 

Lindemann proved that x is a ttranscendental 
number using Euler’s formula eRi= -1. The 

approximate value of K up to 50 decimals is 

3.141592653589793238462643383279502884197 
16939937510.. (- Appendix B, Table 6). 
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A. Domains in the Complex Plane 

A +domain (i.e., a tconnected open set) in the 
tcomplex plane or on the tcomplex sphere is 

called a plane domain. The tclosure of such a 
domain is called a closed plane domain. In this 

article, we consider only subsets of the com- 
plex plane (or sphere), and a plain domain is 
called simply a domain. The tinterior of a 
+Jordan curve J in the complex plane is a 
domain called a Jordan domain. In a domain 

D, a Jordan arc whose two endpoints lie on 
the boundary of D is called a cross cut of D. 

For a domain D, each of the following three 
conditions is equivalent to the condition that 
D is tsimply connected: (1) For every cross cut 

Q of D, D - Q has exactly two tconnected 
components. (2) Every Jordan curve in D is 

thomotopic to one point, that is, it can always 
be continuously deformed to a point. (3) The 
tmonodromy theorem holds in D. 

If D is a domain on a complex sphere, each 
of the following three conditions is equivalent 
to the condition that D is simply connected: (4) 

The boundary of D consists of a single tcon- 
tinuum or a single point. (5) For every Jordan 
curve C in D, either the interior or the exterior 
of C is contained in D. (6) The complement 
of D with respect to the complex sphere is 
a connected (not necessarily arcwise con- 
nected) closed set. Jordan domains are simply 

connected. 
Let n 3 2 be an integer and D a plane 

domain. The thomology group H,(D, Z) is 
identical to Z”-’ if and only if the complement 

of D in the complex sphere has n connected 
components. Then D is said to be n-ply con- 
nected or multiply connected without speci- 
fying n. If D is an n-ply connected domain, 
there exist n - 1 suitable mutually disjoint 

cross cuts Q,, . . , Qn-l such that D - 
(Q, U U Qnml) is simply connected. 

Some typical examples of domains are as 
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follows: (1) Circular domain: Iz - c I< r. (2) 
Half-plane: Re z > 0, or Im z > 0. (3) Angu- 
lar domain: c( < arg(z -c) < p. (4) Annular 

domain: r < 1 z - c I< R. (5) Slit domain: a 
domain obtained by excluding a Jordan arc 

I from a domain D, where all points on F 
(except an endpoint lying on the boundary of 
D) are contained in D. In this case, the Jordan 
arc I is called the slit of the domain. 

B. Boundary Elements 

A boundary point P of a domain D is called 
accessible if there exists a sequence of points 

P, tending to P such that the line Isegments 
P, Pz,... lie completely in D. For example, for 
the domain obtained by removing x = l/(n + 

l),O<y<l/2(n=l,2,...)fromth~zsquare 
0 <x < 1,O < y < 1, the boundary points with 
x = 0,O < y < l/2 are all inaccessible (Fig. 1). 

Fig. 1 

Let the domain D be bounded by a smooth 

Jordan curve, and let P be a boundary point of 
D. Take an angular domain D’ with vertex at 

the point P and the initial parts of the two 
sides of D’ lying in D. A curve in 1) converging 

to the point P from the interior of the angular 
domain D' is called a Stolz’s path or a nontan- 
gential path ending at the point P. 

Let D be a simply connected domain. A 
sequence {qy} of cross cuts mutually disjoint 
except for their endpoints is called a funda- 

mental sequence of cross cuts if it lsatisties the 
following two conditions (Fig. 2): (1) Every q, 
separates qy-1 and qv+l on D. (2) For v-00, 
the sequence qv tends to a point on the bound- 
ary. Let {qv} be a fundamental sequence of 
cross cuts, and denote by D, the subdomain of 
D separated by qy that contains qy+l. The inter- 
section n 0, consists only of the boundary 
points of D. Two fundamental sequences {q”}, 
{q\} of cross cuts are equivalent if every D,, 
contains all qk except for a finite number of v, 
and every 0; contains all qv except for a finite 
number of v. Here D,, Dp are the subdomains 
constructed from q,, and q; as above. This 

condition determines an equivalence relation, 
under which the equivalence class of funda- 

mental sequences of cross cuts is called a 
boundary element. This notion is due to C. 

Caratheodory [2]. The boundary element of a 
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multiply connected domain is defined similarly 
for each isolated component of the boundary. 

For example, each point of a slit domain, 
except for the endpoint of F lying on the 
boundary of the domain, determines two 
distinct boundary elements on each side. A 
closed domain is usually considered to be the 
union of a domain and the set of all its bound- 
ary elements. Various notions of tideal bound- 

ary come from considering suitable boundary 
elements for various purposes (- 207 Ideal 

Boundaries). 

Fig. 2 

C. Domain Kernels 

Let {G,} be a sequence of domains containing 

the origin 0. If a suitable neighborhood of the 
origin is contained in G, for all v, there exists a 
domain G such that every closed domain 
containing the origin and contained in G is 
contained in G, except for a finite number of v. 
The union K of such domains G is called the 
domain kernel of the sequence {G,} (Carathto- 

dory). If there is no neighborhood of the origin 
contained in G, for all v, we put K = (0). 

If every infinite subsequence of {G,} has the 
same domain kernel K, then we say that the 
sequence {GY} converges to K. The notion of 

domain kernel is important in considering the 

limits of a sequence of conformal mappings 
(- 77 Conformal Mappings). 
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Plateau’s Problem 

A. Origin 

Because of surface tension, a soap membrane 
bounded by a given closed space curve takes 

the shape of a minimal surface, i.e., a surface of 
the least area. This experiment was performed 

by the Belgian scientist J. A. Plateau (1873) 
to realize minimal surfaces; hence Plateau’s 
problem is that of determining the minimal 

surfaces bounded by given closed space curves. 
It is a problem of the tcalculus of variations. 

B. Formulation 

Let F be a tsimple closed curve in xyz-space 

such that its projection C on the xy-plane is 
also a simple closed curve. Let D be the finite 
domain bounded by C. We consider surfaces 

z = z(x, y) having common boundary r. Then 
under suitable assumptions on the smooth- 
ness of z(x, y), the problem is to minimize the 
tfunctional 

J[z]= 
JJ 

/mdxdy; 

aZ aZ 
P=z’ 

q=&’ 

with the condition that z = z(x, y) has r as its 
boundary. The +Euler-Lagrange differential 
equation for the functional J[z] is 

or (1 +$)r-22pqs+(l +$)t=O, r=a2.2/ax2, 
s = a2z/axay, t = d2zldy2, which is a second- 
order tquasilinear partial differential equation 
of elliptic type and whose geometric interpre- 
tation had already been given by M. C. Meus- 
nier (1776). 

To formulate the problem more generally, 
let a surface be expressed in vector form x = 
x(u, v) by means of parameters u, u. Let its 
+first fundamental form be dx2 = Edu2 + 
2F du dv + G dv2 and its tsecond fundamental 
form be -drdn=Ldu2+2Mdudv+Ndv2, 
with n = n(u, u) the unit normal vector. By 
equating to zero the +lirst variation of the 
areal functional 

based on infinitesimal displacement in the 
normal direction, we obtain the Euler- 

Lagrange equation in the form 

2H=(NE-2MF+LG)/(EG-F’)=O, 

where H = (R;’ + R;‘)/2 is the +mean curva- 
ture of the surface and R, and R, are the 

+radii of principal curvature. Since +Beltrami’s 
second differential form satisfies A,x = Hn, the 

condition for a minimal surface becomes Ax = 
0 (with A the +Laplace operator) provided 
that isothermal parameters u, u satisfying E = 
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G, F = 0 are chosen, i.e., the vector x(u, u) rep- 
resenting a minimal surface is harmonic (the 

components of this vector are tharmonic func- 
tions of u, u). Let q(u, u) be a harmonic vector 
conjugate to X(U, u). Then isothermality is ex- 
pressed by the condition that the analytic 

vector ~(w)=x(u,u)+~~(u,u) (w=u+iv,i= 
J-1) satisfies r(w)’ = 0 (Weierstrass). In 

general, a minimal surface is defined as a sur- 
face with everywhere vanishing mean curva- 
ture, and Plateau’s problem is to determine the 
minimal surface with a preassigned boundary. 
In this formulation, the problem can be easily 

generalized to an n-dimensional Euclidean 
space R” (- 275 Minimal Submanifolds). 

C. Existence of a Solution 

The existence of a solution of Plateau’s prob- 

lem was discussed by S. N. Bernshtein (1910) 
from the viewpoint of a tboundary value prob- 

lem of the first kind for the elliptic partial 
differential equation in the previous section. A. 
Haar (1927) dealt with the minimal problem 
for the functional J[z] by a tdirect method 
in the calculus of variations. Previously, 

Riemann, Weierstrass, Schwarz, and others dis- 
cussed the case where the given space curve 
r is a polygon, in connection with the +mono- 
dromy group concerning a second-order linear 

ordinary differential equation. Subsequently, 
R. Garnier (1928) investigated the existence of 

a solution by the limit process when l- is a 
simple closed curve with bounded curvature. 
However, when r is assumed merely to be 
trectifiable, the existence of a solution was first 
shown by the limit process by T. Rad6 (1930). 

He further discussed the general case where r 
can bound a surface with finite area. On the 
other hand, by introducing a new functional 
depending on boundary values instead of the 
area1 functional, J. Douglas (193 I) succeeded 
in giving a satisfactory result for the existence 
problem. R. Courant (1937) gave another 

existence proof by reducing Plateau’s problem 
to the IDirichlet principle [3]. 

At present, the methods of discussing the 
existence of solutions of Plateau’s problem can 
be classified into the following three sorts 

(represented, respectively, by Rad6, Courant, 
and Douglas): 

(1) The first method is to minimize directly 
the areal functional jj Jwdu do. The 
variational equation of the areal functional 
becomes H = 0. 

(2) Dirichlet’s functional for a scalar function 

f(u,u)isdefined byD[f]=~~(f,2+f,Z)dudu, 
and for an n-dimensional vector function f(u, u) 

with components fj(u, u) (j = 1, . . . , n) by D[f] = 
&, D[f;]. The existence of a solution of 
Plateau’s problem can be discussed by starting 

from the variational problem of minimizing 
D[f]. The variational equation of D[f] is Af= 

0. 
(3) An analytic vector s(w) is representable 

in terms of the boundary values of its real part. 
For instance, if the domain of w  is the unit 
disk IwI < 1, then Poisson’s integral formula 

1 

s 

2n eie+w 
5(w)=- b(Q)- 

237 0 e’*-w 
de + iIm s(w) 

with the boundary function b(0) =: Re g(e”) 
can be used. On the other hand, the vector 
function that minimizes the Dirichlet integral 

among functions with fixed boundary values is 
harmonic. Based on these facts, Douglas trans- 
formed Dirichlet’s functional with harmonic 
argument functions into a functional whose 
arguments are boundary functions. Specifi- 
cally, by starting from the problem of minimiz- 
ing Douglas’s functional 

2n 2n ss h(4 - bka2 
o 4sin2(0-(p)/2 

dOdq, 
0 

we can prove the existence of solution of 
Plateau’s problem satisfactorily. 

D. The Generalized Case 

Up to now we have been concerned with 
Plateau’s problem in the case of a single simple 

closed curve. Douglas, Courant, and others 
treated the generalized case of a fmite number 

of boundary curves, where +genus and orienta- 
bility are assigned as the topological structure 
of the surface to be found. The existence of a 
solution has been shown in this c,lse also. The 
problem is further generalized from the case of 

fixed boundary to the case where the bound- 
ary is merely restricted to lie on a given mani- 
fold [3]. On the other hand, C. B Morrey 
(1948) generalized the problem by replacing 
the ambient space R” by an n-dimensional 

+Riemannian manifold and gave the existence 
proof in considerable generality [6]. 

E. Relation to Conformal Mappings 

There is a notable relation between Plateau’s 

problem and conformal mapping when the 
dimension of the space is 2. Namely, the exis- 
tence proof of the solution of the former for a 
Jordan domain implies +Riemann’s mapping 
theorem together with W. F. Osgood and C. 
CarathCodory’s result on boundary corre- 
spondence (- 77 Conformal Mappings). 

F. New Developments 

Among recent contributions to the study of 
Plateau’s problem, the following remarkable 
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results have emerged. One of them is con- 

nected with the final result of Douglas (1939) 
on the existence of solution surfaces. The 
mapping of a 2-dimensional manifold with 
boundary into R” defining Douglas’s solution 
of the Plateau problem for a finite number of 
simple closed curves is a tminimal immersion 
with the possible exception of isolated points 

where it fails to be an immersion. These points 
are called branch points. It was then proved 
by R. Osserman (1970) and R. D. Gulliver 

(1973) that for n = 3 the mapping of Douglas’s 
theorem, which is a surface of least area, is 
free of branch points, i.e., is an immersion. 
Osserman also gave examples of generalized 

minimal surfaces in R” (n > 3) with true branch 
points. In this connection, Gulliver also dealt 

with an analogous problem for surfaces of 
prescribed mean curvature. 

Next, we mention the question of boundary 
regularity. H. Lewy (1951) proved that if the 

boundary of a minimal surface is analytic, 
then the surface is analytic up to the bound- 
ary. Subsequently, S. Hildebrandt (1969) and 
others proved that if the boundary is of class 
Cm+, m > 1, the surface is also of class Cm*” up 
to the boundary. There are also some recent 
results on the number of solutions of Plateau’s 
problem. For instance, J. C. C. Nitsche (1973) 
proved the uniqueness of solutions for analytic 

boundaries of ttotal curvature at most 4a. 
Further developments in connection with 

Plateau’s problem have emerged in the work 

of E. R. Reifenberg (1960) and others, who 
sought to minimize the tHausdorff measure 
among general classes of geometric objects, 
not as parametrized manifolds, but as subsets 

of R”. The existence and regularity of solutions 
of Plateau’s problem from this point of view 

have been discussed by H. Federer (1969), W. 
H. Fleming, F. J. Almgren, and others [lo]. 
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Henri Poincare (April 29, 1854-July 17, 1912) 
was born in Nancy, France. After graduating 
from the Ecole Polytechnique, he taught at the 

University of Caen in 1879, then at the Uni- 
versity of Paris in 1881. He was made a mem- 
ber of the Academic des Sciences in 1887 and 
of the Academic Francaise in 1908. He died in 

Paris. 
His achievements center on analysis and 

applications to theoretical physics and astron- 
omy. However, his work covered many fields 
of mathematics, including arithmetic, algebraic 

geometry, spectral theory, and topology. His 
tuniformization of analytic functions by means 
of the theory of tautomorphic functions in 
1880 is especially notable. His paper on the 
tthree-body problem won the prize offered by 
the king of Sweden in 1889. 

The methods he developed in his three- 
volume Mkanique cdeste (1892- 1899) began 
a new epoch in celestial mechanics. In addi- 

tion, Poincare opened the road to talgebraic 
topology and made suggestive contributions to 
the ttheory of relativity and tquantum theory. 

He asserted that science is for science’s own 
sake [4], and his popular philosophical works 
concerning the foundations of natural science 
and mathematics exhibit a lucid style. 
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336 (X.20) 
Polynomial Approximation 

A. General Remarks 

On the existence of polynomial approxima- 
tions, we have Weierstrass’s approximation 
theorem, which is formulated in the following 
two forms: (i) Iff(x) is a function that is con- 
tinuous in the finite interval [a, b], then for 
every E > 0 there exists a polynomial P,(x) of 

degree n = n(s) such that the inequality If(x) 
- P”(x)1 GE holds throughout the interval 
[a, b]. (ii) If ,f(0) is a continuous function of 
period 2n, then corresponding to every posi- 

tive number E there exists a trigonometric 
polynomial of degree n = PI(E), 

P”(0) = u. + t (a,cos k0 + bk sin kO), 
k=l 

(1) 

such that the inequality If(o)-P,,(O)1 <F. holds 
for all values of 0. The second form of Weier- 
strass’s theorem follows from the first, and 
conversely. M. H. Stone obtained a theorem 
that generalizes Weierstrass’s theorem to the 
case of functions of several variables. Of the 

many direct proofs now available for Weier- 
strass’s theorem, we mention two simple ones. 
To prove version (i) of the theorem, we can 
assume that the given function f(x) is defined 
in the segment [0, 11. Consider the Bernshtein 
polynomial 

B,(x)=if ; ; 00 
Xk(l -xp. 

Ii=0 
Then B,(x) converges to f(x) tuniformly. To 
prove (ii), we can apply tFejer’s theorem on 
+Fourier series. We have the following gen- 

eralization of(i): Let p, , p2, be a sequence of 
positive numbers such that limp, = co. Then 
linear combinations of x0 = 1, xp’, Xpz, . can 

uniformly approximate each continuous func- 
tion on [0, 11 with arbitrary precision if and 
only if C pi’ = --co (Miintz’s theorem). 

B. Best Approximations 

Let qo(x), ‘p,(x), be a sequence of linearly 
independent continuous functions on a 

bounded closed domain A in R”. For any 
given continuous function f(x), a function 

P,(x)=C”,=,c,cp,(x) attains 

inf max I.f(x) - P,(x)1 
C,>.....C” xtA 

is called the best approximation of ,T(x) by a 
linear combination of (cp,(x)}. For any given 
n there is a best approximation of Jr(x) by a 

linear combination of q,(x), . , ~JX), but such 
an approximation is not always unique. For 

such an approximation to be unique it is neces- 
sary and sufficient that the determinant of the 
matrix (qk(xi)) (k, i = 0, 1,2, , n) is not zero, 

where x0, xi, . . . . x, are n + 1 arbitrary distinct 
points of A (Haar’s condition) (Math. Ann., 78 
(1918)). If {cp,(x)} satisfies this condition, the 

system of functions {‘pk}k=o,,,,,, is called a 
Chebyshev system (or unisolvent system). The 

sets { 1, x,x*, , x”} on [a, b], { 1, cosx, , 

cos nx} on [0, rr] and {sin x, . , sin nx} on [0, rr] 
are Chebyshev systems. For a Chebyshev sys- 
tem {qk(x)} on [a, b], let P,(x) be a linear com- 
bination of q,(x), , q,,(x) that is not identical 
to the function f~C[a, b]. Then P,,(x) is the 
best approximation for ,f(x) if and only if there 

are at least n + 2 distinct points xi < . . < x,,+~ 
of [a, b], where If(x) - P”(x)1 attains its maxi- 
mum (these points are called deviation points) 

and (f(xi)-p,(Xi))(f(Xi+,)-P,(Xi+ I)<0 (i= 
1,. , n + 1) (Chebyshev’s theorem). 

For example, consider the polynomial P,(x) 
= a,_, xnml + . . + a, x + a, with real coefh- 

cients such that 

max Ix”--a,-ix”-‘-...--a,1 
-1 GXCl 

takes its smallest value. Then x” - P,(x) = 
2-(“m1)T,(x), where T,(x)=cos(narccosx) is 

the Chebyshev polynomial of degree n. 
Since the best approximation is desired for 

numerical computation, several mlethods have 
been developed to find it (- 300 Numerical 
Methods). However, when the set 4 c R” 
(n > 2) contains three nonintersecting arcs 
emanating from a common point, A admits no 
Chebyshev system. Thus we do not always 
have a unique best-approximation polynomial 

C161. 

C. Degrees of Approximation and Moduli of 

Continuity 

For a continuous function ,f(x) defined on 

[a, b], the modulus of continuity of ktb order is 
defined by 

for t <(b -a)/k. In particular, (ui i:< the ordi- 
nary modulus of continuity. Put E.*(f)= 

info “,..., a.,h, ,_... h.max,,,,hlf(x)-~‘,(x)l, where 
f is a continuous periodic function of period 

271 and P.(x) is a trigonometric polynomial of 
the form (I). Then E,*(f)<c,w,(f; l/(n+ 1)) 
(Jackson’s theorem [I]), where ck is indepen- 
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dent off: The best possible coefficient clr has 
been determined by J. Favard [2]. Further 
investigations on the relation between E,*(f) 

and ~~(f; t) have been carried out by S. N. 
Bernshtein [3] and A. Zygmund [4]. S. B. 
Stechkin obtained the following results: 

[S, 61. For the approximation of fec( [ -1, 11) 
by polynomials, there exists a polynomial 
P,,(x) of degree at most n such that for any 

xsc-1,119 

If(x) - P”(X)I G WW)‘~, (f”‘i +4X 

where M, is a constant not depending on J x, 
and n, f(‘)(x) is the rth derivative of f(x), and 
t(x)=(l/n)(m+(lxl/n)). We also have 

theorems evaluating w,(f(‘); t) in terms of If(x) 
- P,,(x)l. For the proof of these theorems, 
estimation of the magnitude of the derivative 
of the polynomial of degree n plays an essen- 
tial role. For example, we have the Bernshtein 

inequality max, 1 T,‘(x)1 < nmax, 1 T,(x)1 for any 
trigonometric polynomial T,(x) of degree n 

and the Markov inequality 

for x E [ -1, l] and any polynomial P,(x) of 

degree n. 

D. Approximation by Fourier Expansions 

If {q,(x)} is an torthonormal system of func- 
tions in &(a, b) and f is any function in 
&(a, b), then among all linear combinations of 
q,(x), . . . , q,(x) the one that gives the best 

mean square approximation to f (i.e., the one 
for which the integral 

attains its minimum) is the Fourier polynomial 
~{=oakpk(x), where uk =ji f(x)cp,(x)dx. Con- 
sequently, the least square approximation (or 
best approximation with respect to the L,- 
norm) by trigonometric polynomials is given 
by the partial sum s,(x) of the Fourier series of 

f(x). For L, (1~ p < co), s,(x) also gives the 
best approximation up to a constant factor, 
but in the case of uniform approximation we 

have If(x)-s.(x)l<A(logn)w,(f;n-‘), and this 
result cannot be improved in general. There is 
no linear operation that gives the best trig- 
onometric approximation. In approximation 
with a linear combination of cpc(x), . . . , q,(x), 
the saturation phenomenon of approximation 

often appears. For example, observe the arith- 
metic means of s,(x) (i.e., tFejCr means e”(x)). If 

fcLipcr(O<a<l)(- 84ContinuousFunc- 
tions A), then If(x)-a.(x)/ =O(nP). However, 
If(x)-a.(x)l=O(n-‘) if and only if the tconju- 
gate function J(x)ELip 1; If(x)--o.(x)1 =o(n-‘) 

if and only if f(x) is constant (M. Zamansky 
[7], G. Sunouchi and C. Watari [S]). 

E. Trigonometric Interpolation Polynomials 

Since the trigonometric system is a Chebyshev 
system, given 2n + 1 distinct points x,,, xi, . . , 
xln and arbitrary numbers c,,, ci, . . . , cZn, 
there is always a unique trigonometric poly- 
nomial of degree n with prescribed values ck at 
the points xk. Given any continuous function 

f(x) with period 27r, the trigonometric poly- 
nomial that coincides with f(x) at the points 
xk is called the trigonometric interpolation 
polynomial with nodes at xk. If xk = 2nk/(2n + 1) 

(k=O,l,..., 2n), then the interpolating trigo- 
nometric polynomial is given by 

M.L-4= &jiof(xJ 
sin((n+ 1/2)(x-xj)) 

sin((x - xj)/2) 

1 

=-s 

2n 

3.c 0 
f(t) 

sin((n + 1/2)(x - t)ldrp (t) 

sin((x- t)/2) ” ’ 

where q,(t) is a step function that has the 

value 2nj/(2n + 1) in [2nj/(2n + l), 2rc( j + l)/ 
(2n + l)]. U.(f; x) resembles the partial sum 
s,(x) of the Fourier series of f(x). If f(x) is con- 
tinuous and of tbounded variation, then 
U,(f; x) converges uniformly to f(x) (D. Jack- 
son Cl]). Although the partial sum s,(x) of the 
Fourier series of a continuous function f(x) 
converges almost everywhere to f(x), there is a 
continuous function for which &(Xx) diverges 

everywhere (J. Marcinkiewicz [9]). Moreover, 
there exists a continuous function for which 

(l/n)(C;=i U,(f;x)) diverges everywhere (P. 
Erdiis [lo], G. Griinwald [ 111). Restating 
these facts for the algebraic polynomial case, 

we can conclude that there is a continuous 
function defined in [ -1, l] for which the tLa- 

grange interpolation polynomial and its arith- 
metic mean are both divergent everywhere if 

we take as nodes the roots of the Chebyshev 
polynomial of degree n. 

F. The Case of a Complex Domain 

If a given function f(z) is holomorphic in a 

bounded tsimply connected domain E in the 
complex plane and continuous in E, then f(z) 
is approximated uniformly by polynomials on 
any compact set in E (Runge’s theorem). This 
theorem was first studied by C. Runge, and his 
results were developed by J. L. Walsh and M. 
V. Keldysh (e.g., [ 123). When E contains no 

interior point, the polynomial approxima- 
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tion of a continuous function defined in E 
was given by M. A. Lavrent’ev. Unifying these 
two results, S. N. Mergelyan obtained the 
following theorem [ 131: A necessary and sufh- 

cient condition for an arbitrary function con- 
tinuous on a compact set E and holomorphic 

inside E to be approximated on E uniformly 
by polynomials is that the set E does not 
divide the complex plane. 

On the degree of approximation of poly- 
nomials to f‘(z) on a simply connected domain, 
there are the following results: Let D be a 
closed bounded set whose complement K is 
connected and regular in the sense that K 
possesses a iGreen’s function C(x, y) with a 
pole at infinity. Let D, be the locus G(x, y) = 

log R > 0. When ,f‘(z) is holomorphic on D, 

there exists the largest number p with the 
following property: ,f(z) is single-valued and 

holomorphic at every interior point of D,. If 
R < p, there exist polynomials P,(z) of degree n 
(n = 1,2, . ) such that I,f’(z) - P,,(z)1 < M/R” for 
ZE D, where M is a constant independent of II 
and z. On the other hand, there exist no such 
polynomials P.(z) on D for R > p (Bernshtein 
and Walsh [12]). 

G. Lagrange’s Interpolation Formula 

For each n (n = 0, 1, ), let z(i”), zy), . , z!$:!, be 
a given set of real or complex numbers, and let 
f(z) be an arbitrary function. Then there is a 
unique polynomial of degree n that coincides 
with f(z) at each point zp) (k = 1, , n + 1). 
This is called Lagrange’s interpolation poly- 
nomial and is given by 

w(z)=(z-zyy...(z-z?$). 

The sequence P,,(z) does not always converge 
to j(z). For example, if we take f(z) = l/z and 
the (n $- 1)st roots of I as zp), then P,,(z) = z” 
and P,,(z) converges to j(z) only at the point 1. 
For real variables also, there are examples 
of divergent P,(z). However, if ,f(z) is holo- 
morphic in Iz( <p (p> l), then P,,(z) with the 
(n+ 1)st roots of 1 as nodes converges to j’(z) 
uniformly in IzI < 1. 

When zp’ is independent of the choice of n, 

P,(z) coincides with the sum of the first n terms 
of iNewton’s interpolation formula. In this 
case, P,,(z) is called Newton’s interpolation 

polynomial and is given by 

P,(z)=a,+a,(z-z,)+a,(z-z,)(z-z,)+... 

+a,(z-z,)...(z-z,), 

where ao=S(zl); al=(~(z,)-f(z,))l(z,-~,) 
(z,#z,), a, =.f’(z1)(z2=z,); and so on. Suc- 

cessive coefficients of the polynomtal P,,(z) can 
be calculated by +finite differences. Conver- 
gence of Newton’s interpolation polynomial is 
closely connected to convergence of +Dirichlet 

series. 

H. Chebyshev Approximation 

Let D be a bounded closed subset of the com- 
plex plane, and f(z) a continuous function on 
D. Then there exists a polynomial n,(z) of de- 

gree n such that max,,, If(z) - rc,(z)( attains 
the infimum E,,(j). The polynomial n,(z) is 

unique and is called the best approximation 
polynomial (in the sense of Chebyshev). If D is 
simply connected and j’(z) is single-valued and 

holomorphic on D, then n,(z) converges to f(z) 
uniformly on D. Moreover, in this case there 
exist a number M that does not depend on n 

and a number R > 1 such that If(z) - n,,(z)1 $ 
M/R”. Assuming that S(z) satisfies certain ad- 
ditional conditions, W. E. Sewell [ 141 proved 
the existence of a constant r such that I,f(z) - 
n,(z)1 < M/n’R”. Furthermore, by approximat- 
ing f(z) = z” by polynomials of degree n - 1, 

we can show that there exists a polynomial 
T,(z) of degree n such that 

min ~~~~z”+a,z”~‘+...+a,l 
1 I 

=:IT,(z)]. 

T,(z) is called a Chebyshev polynomial of de- 
gree n with respect to the domain D. Similar 
statements are valid for functions of a real 
variable. In particular, when D = [ -1, 11, we 
have 

T,(x)=cos(narccosx)/2”-‘, 

which is the ordinary (real) Chebyshev poly- 
nomial. Generally, the limit 

exists, and p(D) coincides with the tcapacity 

and ttranstinite diameter of D [ 151. For new 
results and applications of Chebyshev poly- 

nomials - [17]. 
If the method of evaluating the degree of 

approximation using the absolute value I.f(z) - 
n,(z)] is replaced by methods using a +curvi- 
linear integral or tsurface integral, as explained 
below, we still obtain similar results. Let D be 
a closed domain in the complex plane with a 

boundary C that is a rectifiable Jordan curve. 

If .f(z) is single-valued and holomorphic on D, 
then there exists a polynomial rr,( z) of degree 
n that minimizes the integral ~eu(.z)If‘(z)- 
n,(z)lPldzl (p>O), where u(z) is a given posi- 
tive continuous function on C. Moreover, 
I.f‘(z) - n,(z)] < M/R” for some R > 1 (actually 

{Z,,(Z)} is +overconvergent). If D is a closed 
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Jordan domain and if f(z) is single-valued and 
holomorphic in D, then there exists a poly- 

nomial n,(z) of degree n that minimizes the 

integral rSDu(z)lf(z)-n,(z)lPdS, where u(z) is 
a given positive continuous function on D. 

Moreover, If(z) - rc,(z)l < M/R” for some R > 1 
on D. 

I. Approximation by Orthogonal Polynomials 
on a Curve 

Let C be a rectifiable Jordan curve in the 
complex plane, and let pk(z)~tL2(C). If 

JCPk(4~ldzI = Sk,, then {PAZ)} is called 
an orthonormal system on C. Given a holo- 
morphic function f(z) on D, we set ak = 

JcfWd4ld I d z an consider the formal series 

Ckm,a a,p,(z). If we denote the nth partial sum 
of this series by s,(z), then s,(z) is the least 
square approximation by a linear combination 
of pa(z), ,p,(z). This and other results, such 
as tBessel’s inequality, the tRiesz-Fischer 

theorem, etc., are all valid here as in the theory 
of general torthogonal systems. In particular, if 

wetakelzl=RasC,then{l,z,~~ ,... jisan 
orthogonal system. Since in this case 

1 
ak=2aR2k+’ c 

s 
f(z)zkldzl =L fo,dz, 

s 27ci =zk+’ 

and s,,(z) = a, + a, z + . . + a,~“, the tTaylor 
expansion of f(z) coincides with the ortho- 

gonal expansion of f(z). 
Given a compact domain D and a holomor- 

phic function on D, if there exist orthogonal 

polynomials p,,(z) such that the orthogonal 
expansion of f(z) with respect to p,,(z) con- 
verges to f(z) uniformly on D, we say that 

{p,(z)} belongs to the domain D. The problem 
of existence and determination of such poly- 
nomials for any given domain was proposed 
and first solved by G. Faber. Generalizations 
were given by G. Szego, T. Carleman, and 
Walsh. Roughly speaking, p,,(z) is given by the 
orthogonalization of the system { 1, z, z’, . } 

with respect to the curvilinear integral on C = 
3D or the surface integral on D. 

J. Numerical Approximation of Functions 

The accuracy of the approximation of a given 
function f(z) by the partial sums of its tTaylor 
expansion C a,(x -x0)” decreases rapidly as 
the distance Ix-x01 increases. The accuracy of 
the approximation of f(x) defined on a com- 

pact interval [A, B] by a (polynomial) function 
q(x) can be evaluated by means of the least 

square approximation, the best approximation 
with respect to the uniform norm, and so on. 

The second method is best suited to numer- 

ical calculation of functions. To get the best 
approximating polynomial p(x) = P,(x) = 

C~+c,rp,(x) of f(x) (- Section B), we must 
determine coefficients ck that satisfy the con- 
ditions of Chebyshev’s theorem. The first step 
in this process is the orthogonal development 
of f(x) by Chebyshev polynomials {T,(x)} : 

%(x)=%oak&(u), u=(x-(A+B)/2)/((B- 
A)/2). The error If(x) - rp,(x)l is estimated by 
a constant multiple of T,+,(u): If(x) - cp,(x)l < 

K 1 T,,, (u)l. This Chebysbev interpolation is 
actually given by a, = N ml Ck,f(xi), ak = 

2N-’ CE,f(xi)T(ui) (k= 1, . . . ,n), where N = 
n+ 1 and the ui=(xi-(A + 8)/2)/((8-A)/2) 
(i=l,..., N) are the roots of T,(u). Let M 

be the extremum of the error If(x) - cp,(x)l 
of such an approximation, and set f(xi) - 

9,(x,) = f Mi (i = 1,2, . . , N). Consider a func- 
tion cP,(x) = C ak K(u) satisfying f(xi) - @(xi) = 
+ M. Then solve the linear equation @“(xi) - 
cp,(x,) = f (M - Mi) with respect to Aa, = ak - ak 
and M. Repeat this process until Aa, becomes 
sufficiently small. 

A computer can perform the division very 

quickly, and the rational approximation of a 
function, for example by its tcontinued frac- 
tion expansion, is often useful. 
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A. Polynomials in One Variable 

Let R be a commutative +ring and a 0, 1, “‘> a, a 

elements of R. An expression ,f(X) of the form 

f(X)=a,+u,X+...+u,X (1) 

is called a polynomial in a-variable X over R; if 
a, #O, the number n is called the degree of the 

polynomial f(X) and is denoted by degf: If a, 
= 1, the polynomial (1) is called a manic poly- 

nomial. The totality of polynomials in X over 
R forms a commutative ring with respect to 
ordinary addition and multiplication (whose 
definition will be given later). It is called the 
ring of polynomials (or the polynomial ring) of 

X over R and is denoted by R[X]. We say 
that we adjoin X to R to obtain R[X]. 

B. Polynomials in Several Variables 

Let R[X, Y] denote the ring R[X][Y], name- 
ly, the ring obtained by adjoining Y to R [Xl. 
An element of R[X, Y] can then be expressed 

as Car” X’Y”. This expression is called a 

polynomial in X and Y over R. Generally, 
R[X,, . . . . X,]=R[X,, . . . . X,~,][X,] is called 
the polynomial ring in m variables (on m inde- 

terminates) X,, . , X, over R, and its element 

F(X,,Xz ,..., X,)=~a,l.~...,mX;~~l’~‘X~~ 

(2) 

(C denotes a finite sum for nonnegative in- 
tegral vi beginning with vr = v2 = . = v,,, = 0) is 
called a polynomial in m variables X, , . , X, 
over R. We call each summand a term of the 

Pob-omiaL aY,Y2,..Ym the coefficient and vr + v2 
+ . + v,,, the degree of this term. The greatest 

degree of terms is called the degree of the 
polynomial 8’. The term ~,,,,a of degree 0 

is called the constant term of F. If a polyno- 
mial F in X,, . , X, is composed of terms of 
the same degree n, then F is called a bomoge- 

neous polynomial (or form) of degree n; a 
polynomial consisting of a single term, such 
asaX;lX~...X;~, is called a monomial. 
Now let c(~,cQ, . . ..a. be elements of R (or a 
commutative ring S containing R), and let 
F(sc,,cc,, ,a,,,) denote the element of R (or 
S) obtained by substitution of x1, c(~, , xm 
for X,, X,, , X, in F(X,, X,, , X,). It is 
also called a polynomial in x1, x2, . . , c(,. If 

F(a,,a,,..., c(,J = 0, then (xi, x1, . . , a,) is 
called a zero point (in S) of the polynomial 

F(X,,X,,..., X,) (or a solution of the alge- 

braic equation F(X,, . . , X,) = 0). In the case 
of one variable, it is called a root of F(X,) (or 
of F(X,)=O). 

C. Polynomial Rings 

Addition and multiplication in R[X] are 
defined by 

A polynomial f(X)eR [X] can be regarded 
as a function of a commutative ring R’ con- 
taining R into itself such that c-f(c). In this 

sense, f(X)+g(X) and f(X)g(X) are the func- 
tions such that c++f(c)+g(c) and L Hf(c)g(c), 
respectively. 

It holds that deg(f(X) + g(X)) < 

max{degf(X),degg(X)}, degf(XMX)~ 
degf(X)+degg(X). If R is an tintegral do- 
main, then the latter inequality is an equality, 

and therefore R[X] is an integral clomain. 
For these inequalities and for convenience 

elsewhere, we define the degree of 0 to be 
indefinite. 

Assume that R is a field. For given J gcR [X] 

(degg > l), we can find unique 4, rER [X] such 
thatf=gq+randdegr<deggorr=O(divi- 
sion algorithm). This q is called the integral 
quotient off by g, and r is called the remainder 

of ,f divided by g. The same fact remains true 
in the general R[X] if g(X) is manic. (- 369 

Rings of Polynomials). 
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D. Factorization into Primes 

Let k be an integral domain. Since k[X] and 
hencek[X,,..., X,,,] are integral domains, we 
can define the concepts concerning divisibility 
(such as a divisor, a multiple, etc.) (- 67 Com- 
mutative Rings). If k is a tunique factorization 

domain, then so are k[X] and k[X,, . . ,X/J. 
A polynomial over k is said to be primitive if 
the greatest common divisor of all the coefli- 

cients is equal to 1. Every polynomial over k 
can be uniquely expressed as a product of 
some primitive polynomials and an element of 
k; a product of primitive polynomials is primi- 
tive (Gauss’s theorem). 

Ifkisafield, then k[X] and k[X,,...,X,,,] 
are unique factorization domains. Further- 
more, to find the greatest common divisor 
(f; g) off; g E k[X], we can use the Euclidean 

algorithm, that is, apply the division algorithm 
repeatedly to obtain 

f=9q1+r1, g=rlq2+r2, rl=r2q3+r3,..., 

degg>degr,>degr,>..., 

so that after a finite number of steps we attain 

ry-l = rvq,+l(rv+l = 0). Then r, = (L g). Accord- 
ingly, k[X] is a tprincipal ideal domain. This 
algorithm is applied to Euclid rings (- 67 
Commutative Rings L). 

E. The Remainder Theorem 

Let k be an integral domain, f(X)E k[X], and 
let g(X)= X - a(aE k). Then using the division 

algorithm, we get 

f(X)=@-cMX)+r, 

q(X)Ek[X], rek. 

Therefore, f(cr) = r; that is, the remainder of 

f(X) divided by X - tl is equal to f(cc). This is 
called the remainder theorem. If f(N) = 0, then 
f(X) is divisible by X-cc in k[X]. 

F. Irreducible Polynomials 

Let k be a field. A polynomial f(X)ck[X] of 
degree n is said to be reducible over k if f is 
divisible by a polynomial of degree v < n in 
k[X] (v # 0); otherwise, it is said to be irreduc- 
ible over k. Any polynomial of degree 1 is 
irreducible. A polynomial f is a tprime element 
of k[X] if and only if f is irreducible over k. 
Let I be a unique factorization domain. If 
f(X) is a polynomial (1) in I [X] such that 

for a prime element p in I, a, f 0 (modp), 
a,-, =a,-, = . . . - =a,-O(modp) but a,$0 

(modp’), then f(X) is irreducible over the 
field of quotients of Z (Eisenstein’s theorem). 

If a polynomial (2) in m variables over an 

talgebraic number field k is irreducible, we 
can obtain an irreducible polynomial in 
X i, . . . , XP (0 <p <m) from the polynomial 

F(X1, ..., X,,,) by assigning appropriate values 
inktox,,,,..., X, (Hilbert’s irreducibility 
theorem, J. Reine Angew. Math., 110 (1892)). 
These two theorems have been generalized in 
many ways and given precise formulations. In 

Hilbert’s irreducibility theorem, the algebraic 
number field may be replaced, for example, 
by any infinite field that is Vinitely generated 
over its tprime field (K. Dorge, W. Franz, E. 

Inaba). 

G. Derivatives 

Given a polynomial 

over a field k, we define the (formal) derivative 
off with respect to Xi as L(X,, . . , X,,,) = 

~Viav,v,...vm Xi’. . Xyi-’ . Xvm and denote 
it by af/aX,. The map f H cTf~aXi is called 
the (formal) derivative with respect to Xi. In 
particular, if m = 1, then af/aX is denoted by 
df/dX. The usual rules of tderivatives also 
hold for the formal derivative. If df/dX = 0 for 
an irreducible polynomial f(X) in k[X], then 
f(X) is said to be inseparable; otherwise, f(X) 
is separable. If the tcharacteristic of the field k 

is 0, then every irreducible polynomial f(X) 
( # 0) is separable. When k is of characteristic 
p # 0, an irreducible polynomial f(X) is insep- 

arable if and only if we can write f(X) = g(XP). 

H. Rational Expressions 

The tfield of quotients of the polynomial hng 

4X,,..., X,] over a field k is denoted by 

4X,, . . . . X,,) and is called the field of ra- 
tional expressions (or field of rational func- 
tions) in variables Xi, . . . , X, over k. Its element 

is called a rational expression in X1,. . , X,. 
It can be written as a quotient of one poly- 
nomial f (Xi, . _ , X,) by another polyno- 
mialg(X,,..., X,) # 0. Also, an expression 

f(ccl,...,a,)/s(ccl,..., c(,) obtained by replac- 

ingx,,..., X, with elements c(i, . . . , a, of k 
in the above expression is called a rational 

expression m tli, . . . , c(, (provided that 

d~l,...,~“)ZO). 

I. Symmetric Polynomials and Alternating 
Polynomials 

Let f(X,,..., X,) be a polynomial in vari- 

ablesx,,..., X, over an integral domain I. If 
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,f(X,, , X,) is invariant under every per- 

mutation of Xi,. , X,, it is called a sym- 
metric polynomial (or symmetric function) of 
X,, ,X,. If f(X,, , X,) is transformed 
into -,f(X, , , X,) by every +odd permuta- 
tion of X,, ,X,, it is called an alternating 
polynomial (or alternating function). Also, 
an expression ,f(ai, , a,) obtained from 

f(X,, , X,) by replacing Xi,. , X, with 
elements x, , , an of I is called a sym- 

metric (alternating) function of s1i, , xn if 
f(X,, , X,) is symmetric (alternating). 

Let the coefficient of X”-k in the expansion 
of (X - X,).,.(X -X,) be denoted by (- l)krr,. 
Thenwehavec,=CXi=X,+...+X,,a,= 
CXiXj=X,X,+X,X3+...+X,~,X, ,...) on= 
X,X,, , X,. Obviously, these are sym- 
metric polynomials of X,, , X,. Moreover, 
for every element cp of the polynomial ring 

ICr,,Y,,...,r,l,cp(o,,a,,...,(~,)i~asym- 
metric polynomial of Xi, , X,. Conversely, 
every symmetric polynomial of X, , , X, 
can be uniquely expressed as a polynomial 

‘p(n,, 02,. , a,,). Thus the totality of symmetric 
polynomials of X, , . , X, is identical with the 
ring I[a,,a,, . . . . cr,]. This is called the funda- 
mental theorem on symmetric polynomials, and 
gi, mz, , o, are called elementary symmetric 
polynomials (or elementary symmetric func- 

tions). For example, for s, = C Xi’ (v = 1,2, .), 
we have .s, = g,, s2 = 0: - 2r~~, s3 = 0: - 30, gz + 
3a,,s,=a~-4a:~,+2~:+4a,a,-4rr,. 

Concerning the elementary symmetric poly- 
nomials and the s,, we have the relations 
S,-~,S,-,+~~S,~~-...+(-l)“~~~“~-lS,+ 

(-l)“va,=O(v=1,2,...),ands,-ais,-, 
+...+(--l)“cT&,=O(~=n+l,n+2 )...) 
(Newton’s formulas). 

Let p(X ,,..., X,)=(X,-Xx,)(X,-Xx,)... 

(X,-X,)(X, -X,) (X,, - X,-i) be the product 
of n(n- 1)/2 differences between Xi, ,X,. 
Then the polynomial p is invariant under even 

permutations of Xi, , X,,, and p becomes -p 
under odd permutations. Hence p is an alter- 

nating polynomial of Xi, . , X,. It is called the 
simplest alternating polynomial of these vari- 
ables. Because of its particular expression, p is 

also called the difference product of Xi, , X,. 
If the characteristic of I is different from 2, an 
alternating polynomial f is divisible by the 
simplest alternating polynomial p; it can be 
written as ,f=ps, where s stands for a sym- 
metric polynomial. 

J. Discriminants 

The square D(X,, . ,X,) = p2(X,, , X,,) of 

the simplest alternating polynomial p is a 

symmetric polynomial, and it is therefore a 
polynomial in 0i, ., 0,. D(cc,, x2, , cc,) = 0 

gives a criterion for the condition tl at some of 

xi,. ,gn are equal. If r*i, . , z, are the roots of 
an ialgebraic equation a,X” + a, X”-’ + + 
a, = 0 of degree n, then D(! i , , a,) is called 
the discriminant of the equation. It can be 

expressed in terms of coefftcients a,, u1 , . . , u, 
of the equation. For instance, if n = 2, we 

have a;D = a: -4a,a,; if n = 3, we have a:D = 
a~a~+18a,a,a2a,-4a,u~-4u~u,--27u~u~. 
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338 (X.28) 
Potential Theory 

A. Newtonian Potential 

In dynamics, a potential means a function u 
of n variables xi, , x, such that -grad u = 
-(fh/dx,, . ..) c3u/i?x,,) gives a field of force in 
the n-dimensional (n > 2) Euclidean space R” 
Given a point P in R” and a measure p, the 

functions u(P) given by the integrals 

u(P) = - 
s- 

log PQ dn(Q), n = 2, 

u(P)= PQ2-“&dQX 
s- 

n>3, 

are typical examples of potential fu actions. 

They are called the logarithmic potential and 
Newtonian potential, respectively. H owever, 
some authors mean by Newtonian potential 
the function u(P)=JPQmldp(Q) in R3. Usu- 

ally, the measure p is taken to be a nonnega- 
tive +Radon measure with compact tsupport. 

These potentials are tsuperharmonic in R” and 
harmonic outside the support of n. Conversely, 
any harmonic function defined on a domain in 
R” can be expressed as the sum of a potential 
of a single layer and a potential of a double 

layer (defined in the next paragraph). Because 

of this close relation between potentials and 
harmonic functions, sometimes potlential 
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theory means the study of harmonic functions 
(- 193 Harmonic Functions and Subhar- 

monic Functions). (For the representation by 
potentials of superharmonic functions - 193 
Harmonic Functions and Subharmonic Func- 

tions S.) 
Suppose that the measure p of R3 satisfies 

dp = pdz with sufficiently smooth density p 
and volume element dz. Then the Newtonian 
potential u of /.f satisfies Poisson’s equation 
Au= -4np. If the support of p is contained in 
a surface S and dp = p da with density p and 
surface element da, then the potential u of p is 
called the potential of a singli layer (or simple 

distribution). If p is continuous on S, then u is 
continuous in the whole space, and the tdirec- 
tional derivative of u at a point P in the direc- 
tion of the normal line to S at PO tends to 

-2Tcp(P,)+ ,z= 
s I 3% PQ p=p, 

da(Q) 
s 

as P approaches P,, along the normal line. 
Therefore, as P moves on the line, the direc- 
tional derivative jumps by -47cp(P,,) at P,,. If p 

satisfies the tHiilder condition at PO ES, then 
the derivative at P in the direction of any fixed 

tangent line at PO has a finite limit as P tends 
to PO along the normal line. The integral 

u(p)= p&&(Q) s s Q 

is called the potential of a double layer (or 
double distribution). If p is continuous on S, 
then the limits at PO of u from the two direc- 
tions along the normal line at PO exist and are 

27-cp(P,) + u(P,) and -2np(P,) + u(P,,). If, fur- 
ther, p is of class C2 on S, then each partial 
derivative of u has a finite limit as P tends to a 
point of S. 

B. Generalized Potential 

The classical notion of potentials is generalized 
as follows: Let R be a space supplied with a 
measure p ( > 0) and @(P, Q) a real-valued 
function on the product space R x n. When 
the integral j@(P, Q)dp(Q) is well defined at 
each point PER, it is called the potential of p 

with kernel @ and is denoted by @(P, p) or 
@p(P). The function 6(P, Q) = @(Q, P) is called 
the adjoint kernel of @. When 

= s W’, &W) 
exists for measures p, v 2 0, the value is called 
the mutual energy of p and v. In particular, 

(p, p) is called the energy of p. The definition of 

potential given above may be too general, and 
some restrictions are called for. We assume 
that fi is a tlocally compact Hausdorff space; 

@ is a tlower semicontinuous function on n x 
R satisfying -co < @ d co; and p, v, and i are 
nonnegative Radon measures with compact 

support in R. In particular, when n = R”, the 
potential with the kernel @(P, Q) = PQ-” 

(0 < tl < n) is called a potential of order CL (some- 
times of order n-m) or a Riesz potential. 

C. The Maximum Principle and the Continuity 
Principle 

Let s2 = R”, and let @(P, p) be the kernel of 
the Newtonian potential. Then @(P, p) satis- 

fies the following principles: (1) Frostman’s 
maximum principle (first maximum principle): 

suppen@(P, p) < su~,,,~@(P, p) for any pL, 
where S, is the support of p. (2) Ugaheri’s 
maximum principle (dilated maximum prin- 
ciple): There is a constant c > 0 such that 

SwpenW, P) G c supp+,@,(p~ 14 for any P. (3) 
A variation of Ugaheri’s maximum principle: 
Given any compact set K c a, there exists a 

constant c which may depend on K such that 

suhK @VT P) G c whspW, PL) for any P 
with S,, c K. (4) Upper boundedness principle: 

If @(P, p) is bounded from above on S,,, then 
it is bounded on n also. (5) For any compact 
set Kc rZ and any p with S, c K, if @(P, p) is 
bounded above on S,, then it is bounded on K 
also. (6) Continuity principle: If @(P, p) is con- 
tinuous as a function on S,, then it is also con- 
tinuous in R. Generally, the relations shown 

in Fig. 1 hold among principles (l)-(6), where 
(a)+(b) means that (a) implies (b), and (c)+(d) 
means the negation of (c)+(d). 

& 
(3) 

* 

(1) s (2) (5) ?H (6) 

Fig. 1 

If the continuity principle holds for a gen- 
eral kernel @(p, p) of a potential and if for any 

p there is a sequence {Pk} of points in fi - S,, 
that has an accumulation point on S,, and 
along which @(Pk, p)+sup,-, @(P, p), then (1) 
holds also. The second condition is valid, for 
instance, when R = R”, @(P, p) is tsubharmonic 

in R”-S,,, and lirnsup@(P,~)<s~p~,~.@(Q,/*) 
as P tends to the point at infinity. T. Ugaheri, 
G. Choquet, and N. Ninomiya studied (2) and 
(6). Ugaheri showed that for any nonnegative 
decreasing function q(r) defined in [0, co) and 
satisfying ~(0) = co, the kernel @(P, Q)= (p(PQ) 

satisfies (2) in R”. M. Ohtsuka established 



338 D 
Potential Theory 

1250 

that (6)-t(S) and (S)+(6) in general and proved 
(S)+(6) in the special case where @ is contin- 
uous on R x 0 in the wider sense (i.e., @ may 
have co as its value) and @ is finite outside the 

diagonal set of fi x R. The examples in Sec- 
tions F, I, and J show that the potentials with 
kernels satisfying a weak condition such as (6) 

possess a number of important properties. We 
note that (6) does not necessarily hold in gen- 
eral. (For literature on (l)-(6) and other re- 
lated principles - [ 181.) 

D. The Energy Principle 

Denote by E the class of all measures of finite 
energy. A symmetric kernel is called positive 
definite (or of positive type) if (p - v, p - v) = 
(~,P)+(v,v)-2(1(,v)>Ofor any p, vcE. If 

the equality (p - v, p - v) = 0 always implies LL = 
v, then the kernel is said to satisfy the energy 
principle. Some characterizations for a kernel 
to be of positive type or to satisfy the energy 
principle were given by Ninomiya. Using 
them, he showed that a symmetric kernel that 
satisfies Frostman’s maximum principle or the 

domination principle (- Section L) and a 
certain additional condition is of positive type. 
Choquet and Ohtsuka generalized these de& 

nitions and results [ 1 S]. 

E. Topologies on Classes of Measures 

Let C, be the space of continuous functions 
with compact support in n and MO’ be the 
class of measures in n. The tseminorms p - 
v+lJfd/r-Jfdvl (feC,,) define the vague 
topology on A4:. The class of unit distribu- 

tions can be topologized by the vague topol- 
ogy, which induces a topology on fi itself. This 
topology coincides with the original topology 

in R. A subclass M of Mi is relatively com- 
pact with respect to the vague topology if on 
every compact set in R, the values of the mea- 
sures of M are bounded. Denote by L the class 
of measures i. such that (I., p) is finite for all 
~LEM$, and define the fine topology on M,’ by 
the seminorms ~--~-[(1,~)-(3~,v)l (1cL). This 
topology was introduced by H. Cartan [4] for 
the Newtonian kernel. It is the weakest topol- 
ogy that makes each @(P, I”), 3L~ L, continu- 
ous. Further, when the kernel is of positive 

type, the weak topology is defined on E by the 
seminorms p--v-l&p)-(1,v)l (GEE). The 

strong topology is defined on E by the semi- 
norm J(p-v,p-v). 

For the Newtonian kernel, Cartan [S] 

showed that vague<fine<weak<strong on E, 

where vague<fine, for instance, means that 
the fine topology is stronger than the vague 

topology. He proved that the fine, weak, and 
strong convergences are equivalent for any 

sequence {p,} of measures with bounded 
energies. B. Fuglede [ 161 called a kernel of 
positive type consistent when any +Cauchy 

net with respect to the strong topology that 
converges vaguely to a measure converges 
strongly to the same measure. This notion is 
used to give conditions for E to be tcomplete 
with respect to the strong topology [ 1 I, 181. 
Moreover, Fuglede called a consist’ant kernel 
satisfying the energy principle perfect, and 
studied the cases where tconvolution kernels 
on a locally compact topological group are 
consistent or perfect [ 111. For instance, PQ -a 
(0 <a <n) in R” and the Bessel kernel, which 

was studied by N. Aronszajn and K.. T. Smith, 
are perfect. 

F. Convergence of Sequences of Potentials 

We are concerned with determining when a 

family of potentials corresponding to a class 
of measures {p,} with indices w  in a directed 
set converges. If all S,,. are contained in a 
fixed compact set and p. converges, vaguely 

to pLo, then liminf@(P,&>@(P,p,,) in R. If, 
moreover, Q, is continuous in the wider sense 
and both @ and 6 satisfy the continuity prin- 

ciple, then equality holds quasi-everywhere 
(q.e.) in R in this inequality [18]; WI: now de- 
fine the notion q.e. First, for a nonempty com- 
pact set K in sl, define W(K) to be .nf(p,p), 
where S,, c K and p(K) = 1, and W(M) to be 
w  for the empty set @. Next, set U:(X) = 

inf,,, W(K) for an arbitrary set X in R and 

w,(X) = supxi G K(G), where G is an open set 
in a. When a property holds except on a set X 
such that W,(X) = co (resp. q(X) = co), we say 

that the property holds quasi-everywhere (q.e.) 
(resp. nearly everywhere (n.e.)). The terms q.e. 
and n.e. are also used in the theory of +capac- 
ity, although their meaning is not t:le same as 
here. (For results on the convergence of se- 

quences of potentials - [ 181.) 

G. Thin Sets 

A set X c R is called thin at PO when either PO 
is an isolated point of the set X U {.PO} with 
respect to the original topology of 0 or there 
exists a measure p such that lim inf@(P, p) > 
@(P,,,p) as PEX-{PO} tends to P,,. If PO is 

an isolated point of X U {PO} with respect to 
the topology weakest among those stronger 
than both the original topology and the fine 
topology, then X is thin with respect to the 
adjoint kernel &. The converse is true in a 
special case [S]. The notion of thinness was 
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introduced in 1940 by M. Brelot and inves- 
tigated in detail in [3]. Let q(r) be a positive 
decreasing function. Suppose there exist posi- 

tive numbers r,,, 6, a such that q(r) <acp(( 1 + 
6)r) in 0 < r < r,. Assume that R is a metric 
space with distance p, and take cp(p(P, Q)) 
as the kernel @(P, Q). Then a necessary and 
sufficient condition for X to be thin at P,, is 
xgl sj/We(Xj)< cc (s> 1) [19], where Xj= 
{PEXI sj,<rp(p(P, P,))<sj+‘}. This criterion 
was obtained by N. Wiener in 1924 and uti- 
lized to give a condition for a boundary point 

PO of a domain D in R3 to be tregular with 
respect to the tDirichlet problem for D. In this 
situation, P,, is regular if and only if the com- 

plement of D is thin at PO. When every com- 
pact subset of X is thin at P,,, X is called inter- 
nally thin at PO. A necessary and sufficient 
condition for X to be internally thin at PO is 

c S’/14qXj) < co. 

H. Polar Sets 

Brelot (1941) called a set A polar when there 
is a measure p for which @(P, p) = cc on A. 
Consider ri(D, K) ( = V(K, 0)) as defined 
in 48 Capacity C, and define ri,(n, X) by 

swG,,infKcG ri(n, K) for an arbitrary set X, 
where G is an open set. Then for any p, X = 
{P 1 @(P, p) = co} is a G, set for which the value 

of ri,(o, X) is infinite. Conversely, given a Gh 
set A of TNewtonian outer capacity zero in R” 
(n > 3), there is a measure p such that the set of 
points where the Newtonian potential of p is 

equal to co coincides with A and p(R”-- A) =0 
(Choquet [7]). This result is called Evans’s 
theorem (or the Evans-Selherg theorem) (- 
48 Capacity) in the special case where A is 

compact. 

I. Quasicontinuity 

A function f in R is called quasicontinuous if 

there is an open subset G in n of arbitrarily 
small capacity such that the restriction off to 

R - G is continuous. Naturally, quasicontinu- 
ity depends on the definition of capacity. Sup- 
pose that whenever the potential of a measure 
p with kernel @ is continuous as a function on 
S,, it is quasicontinuous in R; @ is then said to 
satisfy the quasicontinuity principle. Assuming 
in addition that CD is positive symmetric and 
taking l/U@, G) as the capacity of G, we find 

that every potential is quasicontinuous in R 

(M. Kishi). A similar result is valid for a non- 
symmetric kernel if the continuity principle is 

assumed (Choquet [6]). 
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J. The Gauss Variational Problem 

Given a compact set K and a function f on K, 

the problem of minimizing the Gauss integral 
(p, p) - 2 jf& for a measure p such that S,, c K 
is called the Gauss variational problem. When 
an additional condition is imposed on p, the 
problem is called conditional. Among many 
results obtained for this problem [ 181, the 
following is typical: If CD is symmetric, K sup- 
ports a nonzero measure of finite energy, and f 
is finite upper semicontinuous on K, then there 

exists a p such that f(P) <@(P, p) n.e. on K 
and f(P) > @(P, p) on S,. When @ is not sym- 
metric, the same relations hold for some p 

if @ is positive and 6 satisfies the continuity 
principle (Kishi [ 15]), although the method 
using Gauss variation is not applicable. When 
@ is symmetric and of positive type, the Gauss 
integral with f(P) = @(P, v) (v E E) is equal to 
IIp-vII’- llvll*, and the minimizing problem 
is equivalent to finding the projection of v to 

{p E E 1 S,, c K}. In some cases, this projection is 
equal to the measure obtained by the balayage 
of v to K (- Section L). 

K. Equilibrium Mass Distributions 

A unit measure p supported by a compact set 
K is called an equilibrium mass distribution on 
K if @(P, p) is equal to a constant a n.e. on K 
and cD(P, p) < a in R. The kernel is said to 
satisfy the equilibrium principle if there exists 

an equilibrium mass distribution on every 
compact set. If a > 0, l/a can be regarded as a 
kind of capacity, and p/a is called a capacitary 

mass distribution. Corresponding to tinner 
and outer capacities, inner and outer capaci- 
tary mass distributions and their coincidence 
can be discussed [ 111. When @ is symmetric, 
Frostman’s maximum principle is equivalent 
to the equilibrium principle. 

L. The Sweeping-Out Principle 

A kernel is said to satisfy the sweeping-out 
principle (or balayage principle) if for any com- 
pact set K and measure p there exists a mea- 

sure v supported by K such that @(P, v) = 
Q(P, p) n.e. on K and @(P, v) < @(P, p) in R. 
When we find such a v, we say that we sweep 
out p to K, and finding v is called a sweeping- 
out process (or balayage). This terminology 
originated in the classical process for the New- 
tonian potential in which the exterior of K is 
covered by a countable number of balls and 

the masses inside the balls are repeatedly 
swept out onto the spherical surfaces. For any 

i general kernel, the balayage principle implies 
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the domination principle (also called Cartan’s 

maximum principle), which asserts that if the 
inequality O(P, p) < @(P, v) is valid on ,S, for 

PEE and an)i I’, then the same inequality holds 
in 0. The converse is true if @ is positive, sym- 
metric, continuous in the wider sense, and 
finite outside the diagonal set. In contrast to 
the domination principle, @ is said to satisfy 
the inverse domination principle if the inequal- 
ity @(P,p)<O(P,v) on S, for ,LLLEE and any v 
implies the same inequality in Q. In a special 
case, the domination principle implies Frost- 
man’s maximum principle [ 171. For the equi- 
librium and domination principles for non- 

symmetric kernels - [14]. 

Corresponding to inner and outer capaci- 
tary mass distributions, we can examine inner 

and outer balayage mass distributions and 
inner and outer Gauss variational problems 
and their coincidences [S, 181. With respect to 
the Newtonian potential, a point P is called an 

internally (externally) irregular point of X if the 
inner (outer) balayage mass distribution to X 
of the unit measure cp at P is different from cp. 
X is thin (internally thin) at P if and only if P 

is an externally (internally) irregular point of X 

(Cartan [:5]). 

M. Other Principles 

A kernel @ is said to satisfy the uniqueness 
principle if p = v follows from the equality 
@(P, p)=@(P, v), which is valid n.e. in Q. Nino- 
miya and Kishi studied this principle. A ker- 
nel @ is said to satisfy the lower envelope prin- 

ciple if given p and v, there is a i such that 

@(P, jL) = min(Q(P, p), @(P, v)). If Q, satisfies the 
domination principle and 6 satisfies the con- 
tinuity principle, then @ satisfies the lower 

envelope principle on every compact set con- 
sidered as a space. Conversely, if @ satisfies 

the lower envelope principle on every compact 
set considered as a space, then @ satisfies the 

domination principle or the inverse domi- 
nation principle under some additional con- 

ditions (Kishi). A kernel is said to satisfy the 
complete maximum principle if the inequality 
@,(P, p) d @(P, v) + u on S,, implies the same 
inequality in 0 for p E E, any v, and a > 0 (Car- 

tan and J. Deny, 1950). This principle implies 
both Frostman’s maximum principle and the 
domination principle. Potentials of order CI 
(n - 2 d n <n) in R” and the Yukawa potential 
with kernel aPQm’ exp( --im) in R3 satisfy 
the complete maximum principle. Relations 
between this principle and some other prin- 
ciples were studied by Kishi [ 141. 

While all principles discussed so far are 
global, C’hoquet and Ohtsuka made a local 

study. 

N. Diffusion Kernels 

By means of the bilinear form Sf& (f~ C, 
p E M,), we now introduce weak topologies in 

the space C of continuous functions in R and 
in the class A4, of Radon measures of general 

sign with compact support. Similarly, we in- 
troduce weak topologies in C’, and in the class 
M of measures of general sign with not neces- 
sarily compact support. A positive linear map- 
ping G of M, into M that is continuous with 
respect to these two weak topologies is called 
a diffusion kernel. The linear mapping G* of 

C, into C that is determined by Ifa’Gp = 
l G*fdp is called a transposed mapping. We can 
define the balayage principle for G and the 
domination principle for G* as in the case 
where kernels are functions. Then c’ satisfies 

the balayage principle if and only if G* satis- 
fies the domination principle (Choquet and 

Deny). The complete maximum principle has 
been defined and studied for G* (Deny). G. A. 
Hunt obtained a relation between this prin- 
ciple and the representation of GTf in the 
form s: P,fdt with a tsemigroup P,. His result 
is important in the theory of +stochastic pro- 
cesses (- 261 Markov Processes). 

0. Convolution Kernels 

A diffusion kernel G on a locally compact 
Abelian group induces a convolution kernel K 
if G is translation-invariant. It is called a Hunt 
kernel when there exists a vaguely continuous 

semigroup {4,20 such that K = s; c:,dt and cl0 

=E,,, the Dirac measure at the origin. A Hunt 
kernel satisfies the domination prinlsiple and 
the balayage principle to all open sets, and it 

satisfies the complete maximum principle if 
and only if {LY,}~~~ is sub-Markovian, Ida, < 1. 
The Fourier transform of such a sernigroup 
has a closed connection with a negative- 
definite function [l]. 

For a convolution kernel K satisfying the 
domination principle, or, equivalently, the 

balayage principle, the inequality 

is valid for all relatively compact open sets w, 
and w2 [S]. It has a unique decomposition 
IC = cp. (IC,, + ICY), where cp is a continuous ex- 

ponential function, ICY is equal to 0 ‘or a Hunt 
kernel satisfying the complete maxi-mum prin- 
ciple, and ICY is a singular kernel satisfying the 
domination principle such that ICY * E, = ICY for 

every XE&, [12]. 

P. Potentials with Distribution Kernels 

A function f in R” is called slowly increasing 
in the sense of Deny if there exists a positive 
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integer 4 such that jf(P)(l + OP2)-4dr(P) < 
co. A tdistribution K is called a distribution 
kernel if the tFourier transform FK of K is a 

function k > 0 and both k and l/k are slowly 
increasing in the sense of Deny. Given such 
a distribution K, the family W of distributions 
T for which FT are functions and 1) TII * = 
Jk(FT)‘dr < co (this is called the energy of 

T) is a tHilbert space with inner product 
(‘J’i , T2) = j kFT, FT, dr. However, the family of 
Newtonian potentials of measures with finite 
energy is not a Hilbert space (Cartan). The 
family of functions of class C” with.compact 
support is tdense in W. For every TE W the 

function FK x FT is slowly increasing in the 
sense of Deny. There exists a distribution U 
= UT that satisfies FU = FK x FT, called the 
K-potential of T. Since W is complete, the 

method of projection is applicable, and prob- 
lems of equilibrium, balayage, and capacity 
can be examined. For instance, if tDirac’s 

distribution 6 is taken as a distribution kernel, 
then the corresponding capacity is the Le- 
besgue measure. In the case of the Newtonian 
kernel, aUT/axj =fj is defined a.e. in R” for any 
TE W. These A are square integrable, T= 

-c,~~=,afi/ax,,and IITll*=~,C3=~Slfil~dz, 
where l/c, = 2(n - 2)7c”‘*/I(n/2). Furthermore, 

UT=(n-2) s k (xj-Yj)~(Q)PQ-“dz(Q), 
j=l 

where xi, yj are components of P, Q, respec- 
tively. Every ordinary potential of a double 

layer is a special case of UT. Conversely, let f 
be a function in R” that is absolutely continu- 
ous along almost every line parallel to each 
coordinate axis and whose partial derivatives 
are square integrable. Then f is equal to the 
potential of some TE W with Newtonian ker- 
nel up to an additive constant. These results 
are due to Deny [9]. 

Q. Dirichlet Spaces 

In this section, functions are assumed to be 

complex-valued. Let 0 be a locally compact 
Hausdorff space, 5 2 0 a Radon measure in 0, 
and C,, the space of continuous functions with 
compact support. A Hilbert space D consisting 
of locally t-integrable functions is called a 
Dirichlet space if C, I? D is dense in both C, 
and D, the relations Iv(P)-u(Q)l<lu(P)-u(Q)1 

and Iu(P)l<lu(P)l for uoD and a function u 
always imply u~D and (IuI( 6 l/uII, and for any 
compact set K c fi, there exists a constant 

A(K) such that jKIu(dc<A(K)IIuII for every 
u E D. The notion of Dirichlet space was in- 

troduced by A. Beurling. A function u E D is 
called a potential if there exists a Radon mea- 
sure p such that (u, cp) = j cpdp holds for every 

cp E C, n D. If in addition p > 0, then u is called 

a pure potential. For any pure potential, the 
lower envelope principle, the equilibrium 
principle, the balayage principle, and the com- 
plete maximum principle hold [Z]. Suppose 
that n is a locally compact Abelian group and 
D is a Dirichlet space such that U,,u(x) = u(x - 

Y)ED and IIU,ull= Ilull for every UED and 
ysR. Then we call D special and characterize 
it in terms of a real-valued continuous func- 
tion on 0 [2]. (For axiomatic potential theory 

- 193 Harmonic Functions and Subharmonic 
Functions.) 
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Power Series 

A. General Remarks 

Let a and c c 02 1, 2, c be elements of a tfield 

K and z be a variable. A series of the form P = 
zzo cn(z - n)” is called a power series (in one 
variable). We assume that K is the field of 
complex numbers. For a given power series P, 
we can determine a unique real number R 
(O< R < co) such that P converges if [z--al < R 
and diverges if R < lz - al. We call R the radius 
of convergence and the circle lz ---al = R (some- 
times Iz -- al < R) the circle of convergence of P. 
The value of R is given by R = l/lim sup ;/lc.l 
(Cauchy-Hadamard formula) with the conven- 

tions 0= l/co, co = l/O. Also R=lim(c,/c,+,(, 
provided that the limit on the right-hand side 
exists. 

A power series tconverges absolutely and 
uniformly on every compact subset inside 
its circle of convergence and defines there a 
single-valued complex function. Since the 
series is ttermwise differentiable, the function is 

actually a holomorphic function of a complex 
variable. Conversely, any function f(z) holo- 
morphic in a domain can be represented by a 
power series in a neighborhood of each point 
a of the domain. Such a representation is 

called the Taylor expansion of f(z) at a (or in 
the neighborhood of a). A power series that 
represents a holomorphic function is called a 
holomorphic function element. K. Weierstrass 
defined an analytic function as the set of all 

elements that can be obtained by tanalytic 
continuations starting from a given function 

element (-- 198 Holomorphic Functions). 
Besides the series Z$, c,(z - a)“, a series of 

the form Q = C$, c,z -” is called a power series 

with center at the point at infinity, and its value 
at co is defined to be cO. By putting z-a = t 

when its center a is a finite point and z-i = t 
when its center is co, every power series can be 

written in the form C~oc,t”, and such a t is 
called a local canonical pirameter. 

When t is a local canonical parameter, a 
series of the form Z.“= -m c, t” is called a Lau- 
rent series and a series C,“= _ m c,t”lk (k a fixed 
natural number) is called a Puiseux series, after 

the French mathematicians A. Lau:rent and V. 
A. Puiseux. Power series are sometimes called 
Taylor series. 

If we perform tanalytic continuations of a 

power series from its center along radii of its 
circle of convergence, we encounter a tsingular- 

ity on the circumference for at least one radius. 
For a power series with the circle 01‘ conver- 

gence IzI = R, the argument TV of the singularity 
on JzJ = R nearest z = R is given in t.he follow- 

ing way. Suppose, for simplicity, that the 
radius of convergence R of Z c,z” equals 1, 
and put 

P(h) = lim sup m. 
n-m 

Then c( is obtained from 

cos a= P; (0) = ,$I~ (P(h) - 1)/h 

(S. Mandelbrojt, 1937). In particular, if all the 
c, are real and nonnegative, z = R is a singular- 
ity (Vivanti’s theorem). 

B. Abel’s Continuity Theorem 

As a property of the power series on the circle 
of convergence, we have Abel’s continuity 
theorem: If the radius of convergeno: of f(z) = 
C,“=O a,,~” is equal to 1 and xg,, a, coverges 
(or is t(C, k)-summable (k > -1)) to /f, then 
f(z)+A when z approaches 1 in any sector 
{zI]zl<l,larg(l-z)l<(n/2)-6},6>0 
(YStolz’s path). 

The converse of this theorem is not always 
true. The existence of lim,,, f(z) does not 

necessarily lead to the convergence of C.“ea.. 
Even Cesaro summability of x:,, a, does not 
always follow from the existence of lim,,,f(z). 

If a, = o( l/n) and f(z)+A when z approaches 1 
along a curve ending at z = 1, then 1: a, con- 
verges to A (Tauber’s theorem, 1897). The 
theorems concerning additional sufficient 

conditions for the validity of the converse of 
Abel’s theorem are called theorems of Tauber- 
ian type (or Tauberian theorems). In ‘Tauber’s 
theorem, the hypothesis on the a, may be 
replaced by a, = O( l/n) or n Re a,, n Im a, may 

be bounded from above but not necessarily 

from below (G. H. Hardy and J. E. Little- 
wood). Here, the condition a, = 0( l/n) cannot 
be weakened (Littlewood). SuIIicient condi- 
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tions for Z a, to be tsummable for various 
summation methods are also known. 

C. Lambert Series 

A series of the form 

(1) 

is called a Lambert series. If C a, is convergent, 
(1) converges for any z with lzl # 1, and more- 
over, it converges uniformly on any compact 
setcontainedinlzl<lorlzl>l.If~a,is 
divergent, (1) and the power series x a,z” 
converge or diverge simultaneously for IzI # 1. 

There is a detailed study of Lambert series 
by K. Knopp (1913). If R is the radius of con- 
vergence of Z a,z” and Cd,,, ad = A, is the sum 
extending over all divisors of n, then we have 
the reciprocity relation 

which holds for I zI < min(R, 1). As special cases 
of this relation, we have 

where p and rp are the tMijbius function and 
tEuler function, respectively. 

If the na, are real and bounded from below, 

Z” 
lim 5 (1-z)na,-=s 

Z-l-O,=1 1-z” 

implies x a, = s. Hardy and Littlewood (1921) 
showed that this theorem of Tauberian type is 
equivalent to the tprime number theorem. 

D. Singularities of Power Series 

Given a power series P = C a,,z”, if the tbranch 
in Iz( -CR* of the analytic function f(z) deter- 
mined by P is single-valued meromorphic but 
the branch in I z I < R’ with R’ > R* has sin- 
gularities other than poles, then R* is called 
the radius of meromorphy of P and IzI = R* 

(sometimes I z I < R*) is called the circle of 
meromorpby of P. R* can be computed in the 
following way. Put 

Z,=limsupl~(, 
n-rm 

a, a “+I .‘. an+p 
D(P)= ‘.+I %+2 “’ %+p+l 

n 
. . . . . . . . . . . . 

a n+p an+p+l . . . an+zp 
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Then the sequence of numbers I,-, 11, is in- 
creasing, and limI,-,/I,=R*. If R,, R,, . . . are 
different valued of 1,-,/Z,, then f(z) is bolo- 
morphic at points not lying on IzI = R, (Hada- 
mard’s theorem, 1892). 

When a point a and a set A of points in the 
complex plane are given, the set of points that 
can be joined with a by a segment disjoint 
from A is called the star region determined 
by a and A. Take any half-line starting at 
a; the point of A lying on it and nearest to 
a is called a vertex. For a power series x c,z”, 
the set of centers of the function elements 
obtained by analytic continuations along 
half-lines starting at the origin is called the 
star region of C c,z” with respect to the 
origin. Let {a} and {/I} be the set of vertices 
of the star regions with respect to the origin 
of X a,z” and C b,z”, respectively. Then the 
star region determined by the origin and 
the set {x/3} is contained in the star region 
of Za,b,z” (Hadamard’s multiplication theo- 
rem, 1892). 

The following are some results concerning 
conditions for the coincidence of the circle of 
convergence of a power series and its tnatural 
boundary. Let the a, be positive numbers 
and b a natural number greater than 1. If the 
radius of convergence of Ego u,zb’ is equal to 
1, then IzI = 1 is its natural boundary (Weier- 
strass, E. I. Fredholm). If the radius of con- 
vergence of Csoanzln (with (1,) an increas- 
ing sequence of natural numbers) is 1 and 
lim inf n.+m(ln+l -1,)/1,>0, then IzI= 1 is the 
natural boundary (Hadamard’s gap tbeo- 
rem). The latter condition was weakened to 
lim inf,+, (A,,, -A.,,)/& > 0 by E. Bore1 
(1896). E. Fabry (1896) showed that with the 
radius of convergence of Z~oa,z” being 1, if 
there exist a suitable sequence of natural num- 
bersm,<m,<...andanumberB(O<B<l) 
such that lim s,/m, = 0, where the si are the 
number of nonzero a, contained in the inter- 
val (mi(l -O),mi(l +0)), then IzI= 1 is the 
natural boundary of Z a,z”. By applying 
this theorem to Z a,z”n with radius of con- 
vergence 1, it can be shown that if lim,,, 1,/n 
= co, then IzI = 1 is its natural boundary. 
These theorems are called gap theorems 
because they concern power series with 
gaps in their exponents. A generalization 
of Fabry’s theorem was obtained by G. Polya. 
It is known that Fabry’s last condition 
above is in a sense the best possible (Polya, 
1942). 

Regarding the natural boundary of a power 
series, we also have the following result: When 
the radius of convergence of Za,z” is 1, by a 
suitable choice of the sequence {E,) (E,= -Jl), 
the series ~E,u,z” has IzI = 1 as its natural 
boundary (A. Hurwitz, P. Fatou, Polya). 
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E. Overconvergence 

If the radius of convergence of ,f(z) = C a,z” is 
1, the sequence of partial sums S( 1, z), S(2, z), 

. . . . where S(n, z) = C:=O uvzy, is naturally di- 
vergent for IzI > 1, but a suitable subsequence 
S(n,, z) (k = 1,2, . .) may still be convergent. 

A. Ostrowski [7, S] called this phenomenon 
overconvergence and proved the following re- 
sult: By definition, f(z) = C,“,Oa,z’n has a 
lacunary structure if the sequence { 1,) has a 
subsequence {A,} such that A,,,+, > E.,,(l + 0) 
(0 > 0). If this situation occurs, then in a s&i- 
ciently small neighborhood of a point on IzI = 

1 where f(z) is holomorphic, S(&, z) (k = 
1,2, ) converges uniformly. This result in- 

cludes Hadamard’s gap theorem as a special 
case. Conversely, any power series for which 
overconvergence takes place can be repre- 

sented as the sum of a power series having a 
lacunary structure and a power series whose 
radius of convergence is greater than 1. G. 

Bourion [9] gave a unified theory of these 
results using tsuperharmonic functions. 

R. Jentsch [lo] showed that all singularities 
of a power series on its circle of convergence 

are accumulation points of the zeros of the 
partial sums. On the other hand, if the zeros 
of a subsequence S(n,, z) (k = 1,2, ) has no 
accumulation point on IzI = 1, then the power 
series has a lacunary structure and overcon- 

vergence takes place for S(n,, z) (k = 1,2, ). 

If logn,,, =O(n,) and S(n,,z) (k=1,2, . ..) is 
overconvergent, then all boundary points of 
the domain of overconvergence are accumula- 
tion points of the zeros of S(n,,z) (Ostrowski 

cw 
A power series is completely determined by 

its coefficients, but little is known about the 
relations between the arithmetical properties 
of its coefficients and the function-theoretic 
properties of the function represented by the 

series. A known result is that if the power 
series C c,z” with rational coefficients repre- 
sents a branch of an talgebraic function, then 
we can find an integer y such that the c,y” 
(n > 1) are all integers (Eisenstein’s theorem, 
1852). 

For power series of several variables - 21 
Analytic Functions of Several Complex Vari- 
ables; for formal power series - 370 Rings of 
Power Series. For power series expansions - 
Appendix A, Table lO.IV. 
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340 (XVII.1 7) 
Probabilistic Methods in 
Statistical Mechanics 

A. Introduction 

Probabilistic methods are often very useful in 
the rigorous treatment of the mathlematical 

foundations of statistical mechanics and also 
in some other problems related to statistical 
mechanics. As examples of such methods, we 

explain here (I) Ising models, (2) Markov 
statistical mechanics, (3) percolation processes, 
(4) random Schrodinger equations, and (5) the 
+Boltzmann equation. 

B. king Models 

The king model was proposed by II. Ising [ 11 
to explain the phenomena of phase transitions 
of a ferromagnet, in which either a + or - 
spin is put on each site of a crystal lattice, and 

interaction between nearest neighboring sites 
is taken into consideration. 

Let I’ be a cube in the d-dimensional integer 

lattice space Zd and X, = { +l, -1)’ be the 
totality of spin configurations in V. Each ele- 
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ment of XV is denoted by c= {ci}ieV (ci= $1 
or -1). We suppose that a spin configuration 

0 has a potential of the type 

‘V(a)= - 1  Oiiaj+hC CT;, 

(i,j)cV isV 

where (i, j) means that (i, j) is a nearest neigh- 
boring pair of sites and h stands for the para- 
meter of an external field. A tprobability mea- 
sure on Xv is called a state on V. For each 
state p, the free energy is defined by 

where /l= l/kT (k is the tBoltzmann constant, 
T is the tabsolute temperature). Then there 
exists a unique state 

g{.h(a) = exp(-8Wd) 
c ,,x,ew-&424)’ 

aEXv, 

on V which minimizes the free energy F, (vari- 
ational principle). gj,” is called a Gibbs state on 
V of the Ising model with parameter (p, h). 
Physically, a Gibbs state is an equilibrium 

state, in which various physical quantities are 
calculated. 

Since for each Zd-homogeneous (i.e., trans- 
lationally invariant with respect to Z”) state p 
the mean free energy 

1 
.&)= lim -444 v-a 1 VI 

is well defined, a (limiting) Gibbs state can also 
be defined for the infinite domain V= Zd by 
the above mentioned variational principle. 

However, at present the probabilistic deli- 
nition of Gibbs states given by Dobrushin [2] 
and Lanford and Ruelle [3] is prevalent. 

It is known that if an external field is present 
(i.e., h # 0) there is only one Gibbs state for any 
fi. On the other hand when an external field is 
absent (h = 0) and d 2 2, there are at least two 

Gibbs states, i.e., a phase transition occurs, for 
a sufficiently low temperature. 

Finally, we mention some known facts in 
this field. In the following we assume h = 0. (1) 
In the l-dimensional case, the phase transition 

never occurs. (2) For d > 2, there exists a crit- 
ical value /l,(d) such that the phase transition 
does not occur for any b < b,(d) but it occurs 

for every fi > b,(d). The calculation of b,(2) has 
been carried out by Onsager [4]. (3) In the 2- 

dimensional case, every Gibbs state is Z*- 
homogeneous [S, 63. (4) For d 2 3, there is a 
Zd-inhomogeneous Gibbs state for sufficiently 
large p [7]. 

C. Markov Statistical Mechanics 

Stochastic Ising models, infinite interacting 
particle systems, and many models occurring 

in physics, biology, and sociology are formu- 
lated as a class of infinite-dimensional tMarkov 
processes. The field of investigation of station- 

ary states and statistical or ergodic properties 
of these processes is called Markov statistical 

mechanics, which has made rapid progress 
during the last decade. We explain this field by 

looking at a typical class of processes. 
Let Zd be the d-dimensional integer lattice 

space. Putting + or - spin on each site on Zd, 
let us consider a random motion of spins which 
evolves while interacting with neighboring 

spins. Let X= { +l, -lJzd be the totality of 
spin configurations and an element of X be 
denoted by r={~(i)}~,~d (v(i)= +l or -1). The 
process is described in terms of a collection of 
nonnegative functions ci(q) defined for iEZd 
and q E X. For the configuration qt at time t, 
q,(i) changes to -v],(i) in the time interval 

[t, t + At] with probability ci(qt)At + o(At). 
This process on X is called a spin-flip model. 
For an initial distribution p we denote by pt 
the distribution at time t. If pLt = p for all t > 0, 
p is called a stationary state. 

Example 1. Stochastic Ising models. A sto- 

chastic Ising model was proposed by Glauber 
[8] to describe the random motion in a fer- 
romagnet upon contact with a heat bath. Then 
the flip rate {ci(~)j is defined by the potential 
of the Ising model. It is known that any Gibbs 
state of the Ising model is a reversible station- 
ary state of the stochastic Ising model, and the 
converse is also valid. Free energy plays an 

important role in the study of the ergodic 
properties of these models. In particular, the 
mean free energy is a nondecreasing functional 
along the distributions pLt, 0 < t < cc. 

Example 2. Contact processes. A contact 
process was introduced by Harris [ 1 l] to 
investigate the spread of infection. The flip rate 
of the contact process is given by 

1 
ci(T) = 

if q(i)= +l, 

ki if q(i)= -1 and 

#{jllj-il=l, r(j)=+l}=k. 

Here + 1 denotes an infected individual and 
-1 denotes a,healthy one. Denote by -1 the 
configuration at which all sites are healthy and 

by 6-r the unit point mass at -1; then S-i is 
a stationary state. The most important result 
is the following: There exists a critical value 1, 
(0 < 1, < co) such that if A < 1,6-i is a unique 
stationary state, and if 1> 1, there is another 

stationary state p satisfying 

p[qEX; q(i)= +l for infinitely many i] = 1. 

D. Percolation Processes 

A percolation process is a mathematical model 

which describes the random spread of a fluid 
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through a medium. It can be used to describe 
phenomena such as the penetration through a’ 
porous solid by a liquid or the spread of an 
infectious disease [ 141. Usually, the process is 

identified as a site percolation process or a 
bond percolation process. Here we describe the 
latter only. 

Let 1, = {S, B} be a countable connected 
+graph with a set of sites (tvertices) S and a set 
of bonds (tedges) B. Each bond b is open with 
probability p and closed with probability 1 -p 

independently of all other bonds. Suppose that 
a fixed point o is the source of a fluid which 

flows from o along open bonds only. 

Let H(p) be the probability that the fluid 
spreads infinitely far, and define the critical 
percolation probability pH = infj p 1 O(p) > 0). 
Then it is known that (1) pH = l/2 for the 

square lattice [16], (2) p,=2sin(x/lS) for the 
triangular lattice, and (3) pH = 1 - 2 sin(x/l8) 
for the honeycomb lattice. 

E. Random Scbriidinger Equations 

Random Scbriidinger equations are tschrtidin- 
ger equations in R” with random potentials 

U(x, w); therefore the corresponding operators 
are of the form 

A(w)= -A+Uc.,w), 

where w  denotes a random parameter in a 
probability space (52, 3, P) and A denotes the 
+Laplacian in R”. It is assumed that this sys- 
tem of potentials forms a spatially homoge- 
neous random field with the tergodic property. 
This system of equations is considered to be a 
model describing the motion of quantum- 
mechanical particles in a random medium. 

Mathematically, the problem is to investigate 

various spectral properties of the self-adjoint 
operators A(w). Since A(w) and its shifted 
operator A(w(. +x)) are tunitarily equiva- 
lent, the above assumption on the potentials 
U( ., w) implies that the spectral structures are 
independent of each sample w  a.s. if their 
structures of A(o) are measurable with respect 

to @, 8:). 
Several rigorous results have been obtained. 

In the l-dimensional case, if the potentials 
u(., w) are functionals of a strongly ergodic 
+Markov process, then it is proved that A(w) 

has only a pure point spectrum [ 173, and each 
eigenfunction decays exponentially fast [ 1 S]. 
In multidimensional cases, asymptotic behav- 

ior at the left edge of the mean of the resolu- 
tions of the identity for a certain A(w) have 
been investigated [19]. It is assumed that the 
random potential for this A(w) takes the form 

U(x,w)= r cp(X-Y)ddY,4, 
JR" 

where {n(dy, w)} is a +Poisson random mea- 
sure with mean measure dy and cp~:x) is a non- 
negative measurable function satisfying v(x) = 

0(1x1-“-*) as Ixl+‘co. Let E,(x,y,cs) be the 
continuous kernel for the resolution of the 
identity for A(o), and denote by N(A) the mean 
of E,(O, 0, w). Then N(1) is a nondecreasing 
function vanishing on (--co, 0) and has the 
following asymptotic form at A= 0: 

i”‘210gN(i)+ -y, n/z as 2.40, 

where y1 is the first eigenvalue of --A with a 
Dirichlet boundary condition on the ball in R” 

with unit volume. The quantity N(J) can be 

identified with a limiting state density of A(w), 
namely, the limit function of 

as V tends to R” regularly, where {.J.~(w)} is 
the set of eigenvalues of A(w) in a smooth 
bounded domain V in R” with a Dirichlet 

boundary condition and 1 VI is the volume of 
V. To obtain the above asymptotils behavior of 
N(1), the theory of tlarge deviation for Mar- 
kov processes plays a crucial role [20]. 

F. Boltzmann Equation 

In the kinetic theory of gases the tBoltzmann 
equation is derived from the tliouville equa- 
tion by considering the BBGKY hierarchy of 
particle distribution functions for N particles 
and then by taking the limit N --* co under 
certain conditions (- 402 Statistical Me- 
chanics). Mathematically rigorous. discussions 

were given by 0. E. Lanford [21] for a gas of 
hard spheres; he showed that solutions of the 
BBGKY hierarchy converge to those of the 

Boltzmann hierarchy for small time under the 
Boltzmann-Grad limit (N + co, Ntl’+ 1, d = 
the diameter of the hard spheres). 

An approach to the Boltzmann equation in 
the spatially homogeneous case can also be 
based on a tmaster equation. M. Kac [22] 
considered a Poisson-like process describing 
the random time evolution of the n-tuple of 
the velocities of n particles. For a gas of hard 
spheres this is determined by the master 

equation 

a 
--utt,x,, ~~~,X,) at 

-u(t~x,,...,x,)}l(xi-xj,~)ld~, 

t>O, x1 /.... x,gR3, (1) 

where S2 is the 2-dimensional unit sphere, dl is 



1259 340 Ref. 
Probabilistic Methods in Statistical Mechanics 

the uniform distribution on S2 and 

x; = xi + (Xi - xi, Z)Z, x;=xj-(xj-xi,z)z. 

Let u be a positive constant and S(G) 

denote the (3n - 1)-dimensional sphere with 
center 0 and radius ,/&. Given a symmetric 
probability density u, on S(,/&) for each 

n > 1, a sequence {u,} is said to have Roltz- 
mann’s property or to be chaotic (or u-chaotic 
to stress u), if there exists a probability density 
u on R3 such that 

lim 
s 

c~l(x,)...rp,(x,)u,(x,,...,x,)dx, 
“-m S(.JG) 

. ..dx.= fi k=l R3 cp,(x)Wdx 
s 

for each m > 1 and (pk E C,,(R’), 1 <k < m. Kac’s 
assertion is that the Boltzmann equation is to 

be derived from the master equation via the 
propagation of chaos; more precisely, if {u,} is 
a u-chaotic sequence, then {un(t)} is also u(r)- 
chaotic, where u,(t) is the solution of the mas- 
ter equation (1) with u,(O) = u, and u(t) is the 
solution of the following Boltzmann equation 
with u(O) = u: 

&U(f,X)= 
s 

(44 X’ML Y’) - 44 x)u(t, Y,} 
SxR' 

x'=x+(y-x,Z)Z, y'=y-(y-x,1)1. 

The propagation of chaos was verified by 
Kac [22], H. P. McKean [24], and others 

for a considerably wide class of nonlinear 
equations of Boltzmann type (with cutoff). The 

propagation of chaos is the stage correspond- 
ing to the tlaw of large numbers. The next 

stage is the tcentral limit theorem or fluctu- 
ation theory, which was also discussed by Kac 

[23] and McKean [25]. Moreover, based on 
Kac’s work [22], McKean [26] introduced a 
class of tMarkov processes associated with 
certain nonlinear evolution equations includ- 

ing the Boltzmann equation; a process of this 
type describes the time evolution of the veloc- 
ity of a particle interacting with other similar 
particles. In the case of the spatially homo- 
geneous Boltzmann equation of Maxwellian 
molecules without cutoff, such a Markov 
process was constructed by solving a certain 
tstochastic differential equation [27]. This 
implies the existence of probability measure- 

valued solutions of the equation. 
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341 (XVll.2) 
Probability Measures 

A. General Remarks 

A probability measure 0 on a tmeasurable 
space (S, G) is defined to be a imeasure on 
(S, 5) with Q(S) = 1 (- 270 Measure Theory). 
In probability theory, probability measure 
appears usually as the tprobability distribution 
of a irandom variable (- 342 Probability 

Theory). Unless stated otherwise, we regard a 
Yopological space T as a measurable space 
endowed with the topological a-algebra B(T) 

on r, i.e., the +o-algebra generated by the 
+open subsets of T. Hence the distribution of 

an R”-valued random variable is a probability 
measure on (R”, 8”=G1J(R”)). From this proba- 

bilistic background we often call a probability 

measure on (R”, %“) an n-dimensional (proba- 
bility) distribution. For probability measures 

on topological spaces - 270 Measure Theory. 

B. Quantities Characterizing Probability 

Distributions 

Several different quantities characterize the 

properties of probability distributions in one 
dimension: the mean (or mathematical expecta- 
tion) m = s?w x0(x), the variance 0’ = jYZ IX - 
HI(‘~@(x), the standard deviation 0, the kth 
moment c(~ = s?, xkd@(x), the kth absolute 
moment flk=JTw Ixlkd@(x), the kth moment 
about the mean pLk=JTc(x-m)kdG)(~), etc. 

A one-to-one correspondence exists be- 
tween a l-dimensional distribution Q, and its 
(cumulative) distribution function F defined by 
F(x)=@(( -a,~]). A distribution function is 

characterized by the following properties: (1) It 
is monotone nondecreasing; (2) it IS right con- 
tinuous; (3) lim,,-,, F(x)=0 and lim,,., F(x) 
= 1. Similar statements hold for the multi- 
dimensional case. 

Let X(w) be a real random variable on a 
tprobability space (Q, 3, P). Then I.he distri- 
bution of X is given by Q(E) = P( { Q 1 X(W)E 

E)), EE % ‘, and the characteristic quantities 
of @ defined above are given in terms of X((u) 
as follows: m = E(X), d = E(X -m)‘, F(x) = 

P( {w 1 X(w) <x}), etc. The moments and the 

moments about the mean are connected by 

the relation p, = XL=0 
r 

0 k 
cc,-,( - m)k (r = 1,2, 

). When @ is an n-dimensional distribution, 
the following quantities are frequently used: 

the mean vector, which is an n-dimensional 
vector whose ith component is given by mi = 

JxidO(x); the covariance matrix, which is 
an n x n matrix whose (i, j)-element is crij = 

J(xi-mi)(xj-mj)d@(x); the moment matrix, 
which is an n x n matrix whose (i,J’)-element is 
m,j=jxixjd@(x). (The covariance matrix is 

also called the variance matrix or the variance- 
covariance matrix.) The covariance matrix 
and the moment matrix are ipositive definite 
and symmetric. The quantities listed above 
are defined only under some integrability 
conditions. 

C. Characteristic Functions 

Consider a probability measure @ defined on a 
measurable space (R”, W’), where !S” is the g- 

algebra of all +Borel sets in R”. The character- 
istic function of @ is the +Fourier transform 4” 
defined by 

47(z)= c ei@3x)dcqx), ZER”, (1) 
JR” 

where (z, x) denotes the +scalar product of z 

and x (z, x E R”). Let X be an n-dirnensional 

random variable with probability distribution 
Q defined on a tprobability space (a,‘%, P). 
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Then the Fourier transform of Q, is also called 
the characteristic function of X, which can also 

be written as E(ei@,X)) (- 342 Probability 
Theory). 

The following properties play a fundamental 

role in the study of the relationship between 
probability distributions and characteristic 

functions: (i) the correspondence defined by (1) 
between the n-dimensional probability distri- 

bution @ and its characteristic function cp is 
one-to-one. (ii) For any up, b,ER, a,< b, (p= 
1,2, . . , n), we have 

xdz,,..., z,W1,...,~z,, (2) 

where f(t; a, b) denotes the modified indicator 
function of [a, b] defined by 

f(t;a,b)= 

i 

1, t+,b), 
l/2, t=u or b, 

0, t $ Cu. bl, 

and x=(x,, . . . . x,) E R”. If an n-dimensional 
interval I = [a,, . , a,; b,, . . . , b,,] defined by 

ai6xi<bi(i=1,2,..., n) is an interval of con- 
tinuity for the probability distribution Q,, i.e., 
@(al) = 0, where 81 denotes the boundary of I, 
then the left-hand side of (2) is equal to Q(I). 
Equation (2) is called the inversion formula for 
the characteristic function cp. 

The characteristic function cp of an n- 
dimensional probability distribution has the 
following properties: (i) For any points z(l), 
. . . . zCp) of the n-dimensional space R” and any 
complex numbers a,, . . . , up, we have 

j,fl dz”’ - z’k’)uja, 2 0. 

(ii) cp(zCk)) converges to ~(0) as zCk)-+O. (iii) ~(0) 
= 1. A complex-valued function cp of z E R” is 

called tpositive definite if it satisfies the in- 
equality in (i). Any continuous positive deii- 

nite function cp on R” such that ~(0) = 1 is the 
characteristic function of an n-dimensional 
probability distribution (TBochner’s theorem) 
(- 192 Harmonic Analysis). A counterpart to 

Bochner’s theorem holds for any positive 
definite sequence as well (THerglotz’s theorem). 

The characteristic function is often useful for 
giving probability distributions explicitly. (For 

characteristic functions of typical probability 
distributions - Appendix A, Table 22. For 

general information about criteria that can be 
used to decide whether a given function is a 
characteristic function - [8].) 

The moment generating function defined by 

f(z)=lexp( -(z,x))d@(x) (zcR”) does not 

necessarily exist for all n-dimensional distri- 
butions but does exist for a number of useful 
probability distributions @, and then f(z) 
uniquely determines @,. 

Given a l-dimensional distribution @ with 
fik < +co, we denote by yk the coefficient of 
(i~)~/k! in the TMaclaurin expansion of logrp(z). 
We call yk the (kth order) semi-invariant of 0,. 
The moments and semi-invariants are con- 
nected by the relations y1 = CI~, y2 = CQ -a: = 

c?, y,=a,-3a,a,+2a:, y4=a4-3a:-4alag 
+12$a,-6af,.... 

D. Specific Distributions 

Given an n-dimensional distribution @‘, a 

point a with @({u}) > 0 is called a disconti- 
nuity point of Q. The set D of all discontinuity 
points of @ is at most countable. When O(D) 
= 1, Q, is called a purely discontinuous distribu- 
tion. In particular, if D is a lattice, @ is called a 
lattice distribution. If the distribution function 
of @ is a continuous function, @ is called a 
continuous distribution. By virtue of the 
tLebesgue decomposition theorem, every 

probability distribution can be expressed in 
the form 

@=u,@,+u,@,+u,a$ 

a,,~,,%~o, u,+u,+a,=l, 

where Q1 is purely discontinuous, aD, is tab- 
solutely continuous with respect to tLebesgue 
measure, and @‘3 is continuous and tsingular. 
Let @ be an absolutely continuous distri- 
bution. Then there exists a unique (up to Le- 
besgue measure zero) measurable nonnega- 

tive function f(x) (xe R”) such that Q(E) = 
JEf(x)dx. This function f(x) is called the 
probability density of @. 

We now list some frequently used l- 
dimensional lattice distributions (for explicit 
data - Appendix A, Table 22): the unit distri- 
bution with @( (0)) = 1; the binomial distribu- 
tion Bin(n, p) with parameters n and p; the 
Poisson distribution P(1) with parameter i; 

the geometric distribution G(p) with parameter 
p; the bypergeometric distribution H(N, n, p) 
with parameters N, n, and p; and the negative 
binomial distribution NB(m, 4) with parameters 

m and q. The following k-dimensional lattice 
distributions are used frequently: the multi- 
nomial distribution M(n, p) with parameters n 
and p; the multiple hypergeometric distribution; 
the negative multinomial distribution; etc. 

The following l-dimensional distributions 
are absolutely continuous: the normal distri- 

bution (or Gaussian distribution) N(p, CT*) with 
mean p and variance g2 (sometimes N(0, 1) is 

~ called the standard normal distribution); the 
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Caucby distribution C(p, a) with parameters 
,u (+median) and a; the uniform distribution 

U(a, /I) on an interval [x, /I]; the exponen- 
tial distribution e(a) with parameter a; the 

gamma distribution T(p, c); the +X2 distribu- 
tion x’(n); the beta distribution B(p, q); the F- 
distribution F(m, n); the Z-distribution Z(m, n); 
the t-distribution t(n); etc. Furthermore, there 
are several k-dimensional absolutely continu- 

ous distributions, such as the k-dimensional 
normal distribution N( p, C) with mean vector 
p=(pIrpz, . . ..pJ and covariance matrix I= 
(a,), the Dirichlet distribution, etc. 

E. Convolution 

Given any two n-dimensional distributions Or, 
Qz, the n-dimensional distribution @(E) = 
SR2n~E(.~+t)d~l(~)d~Z(y) is called the com- 
position (or convolution) of @, and @, and is 

denoted by Q, *Qz, where xE is the indicator 
function of the set E. Let X, and X, be tinde- 
pendent random variables with distributions 
@, and OI. Then the distribution of X, +X, is 
@I * Qz When Fi is the distribution function of 
Qi (i= 1,2), the distribution function F, * F2 of 

@, * Qz is expressed in the form F, * F2(x) = 
Ja”F,(n:-y)dF,(y). If @, has a density fr(x), 
then @, * Qz has a density f(x) = JR”fi (x - 
y)dF,(y). If q(z) is the characteristic function 
of the convolution of two probability distri- 
butions a, and @)2 with characteristic func- 
tions ‘p, and ‘pz, then cp is the product of ‘pr 

and cp2 : q(z) = ‘p,(z) (p*(z). Therefore, for every 
k, the kth order semi-invariant of the convo- 
lution of two distributions is equal to the sum 
of their kth order semi-invariants. Suppose 
that we are given a family of distributions 
@ = {@(a, p, . )} indexed with parameters 
cc,/l,.... Iffor(a,,/?I ,,... )and(cr,,& ,... )there 

exists(x3,& ,... )suchthat@(cc,,/I, ,... )* 
@(x,, /I’~, . . )= @(cc,, &, ), then we say that ct, 
has a reproducing property. Some of the distri- 
butions listed above have the reproducing 
property: P(Ir)*P(I,)= P(1, +I,), i?in(n,,p)* 

Bin(n,,p)=Bin(n,+n,,p),NB(m,,q)* 
NB(m,,q)=NB(m,+m,,q), Nh,d* 
N(~c,.rr:)=N(~l+~2,~:+~22), r(~l,a)* 

r(P2,F.)=uP,+P2,4, C(P,,~,)*C(/*,,%)= 

W, + v2, o1 + g2), etc. 
Given a l-dimensional distribution function 

F(x). 

QJl)=- max (F(x+i)-F(x-1)), I>O, 
--mcx<‘x 

is called the maximal concentration function of 
F (P. Levy [6]). Since it satisfies the relation 

Q F,*F2(I)<QFI(I) (i= 1,2), we can use it to 
study the properties of sums of independent 

random variables. The mean concentration 
function defined by 

c&j ; 
s 

(F(x + I) - F(x - 1))2 dx 
cc 

is also useful for similar purposes. 
Let N(m, II) be the 1-dimensiona. normal 

distribution with mean m and variance u, and 
let P(I,a) be the distribution obtained through 
translation by a of the Poisson distribution 
with parameter J.. If l-dimensional distri- 

butions Qk, ‘Pk (k= 1,2) exist such that N(m, u) 

=Ql em,,, P(i,a)=Y, *Y2, we have Qk= 
N(m,, ok), Yk= P(R,,a,) (k= 1,2) for some 
mk, c~, i,, uk (k = 1,2). These are known, respec- 
tively, as Cramer’s theorem and Raikov’s 
theorem. Yu. V. Linnik proved a similar fact 
(the decomposition theorem) for a more gen- 
eral family with reproducing property by using 
the theory of analytic functions [9]. 

F. Convergence of Probability Distributions 

The concept of convergence of distributions 

plays an important role in limit theorems and 
other fields of probability theory. When R is a 

topological space, we consider convergence of 
probability measures on 0 with respect to the 

tweak topology introduced in the space of 
measures on Q (- 37 Banach Spaces). Such 
convergence is called weak convergence in 
probability theory. For a sequence of n- 

dimensional distributions (I$ (k = 1,2, ) to 
converge to @ weakly, each of the following 

conditions is necessary and sufftcient. (1) For 
every continuous function with compact sup- 

port, lim,,,Sn.f(x)d~,(x)=Sa.f(x)d~,(x). (2) 
At every continuity point of the distribution 
function F(x,, ,x,) of @, lim,,, &(x1,. ,xJ 
= F(x,, . , x,) (Fk is the distribution func- 
tion of Q. (3) For every continuity set E of 
@ (namely, a set such that Q(E - I?‘) = 0), 

lim,,, Ok(E) = D(E). (4) For all open G c R”, 
lim inf,,, (D,(G) 2 O(G). (5) For all closed F c 

R”, lim sup,,, %(F)< W’). (6) Iirk, P(%, @I 
=O, where p is a metric defined in the follow- 
ing way: Given any n-dimensional distribu- 

tions @r, @I, we put ~~~=inf{~(@~i(F)<@~(F~)+ 
E for every closed F} (F” is the s-neighborhood 
of F) and define p(@1,@‘2)=max(8s,2,c2,). The 
metric p, called the Levy distance. was intro- 
duced by Levy [6] in one dimension and by 
Yu. V. Prokhorov in metric spaces [lo]. Each 
of these conditions except (2) is still necessary 

and sufficient for @)n to converge weakly to @ 
when @, and @ are probability measures on a 

tcomplete separable metric space It should 

also be noted that the probability measures 
on a complete separable metric space consti- 
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tute a complete separable metric space with 
respect to the Levy distance. 

A family @JaEA) of probability measures 
on a complete separable metric space is said to 
be tight if for every E > 0 there exists a tcom- 
pact set K = K(E) such that @,(K’) <E for all 
aeh. A family Qa (aeA) is tight if and only if it 
is ttotally bounded with respect to the topol- 

ogy induced by the Levy distance. Hence a 
tight family Qa (a E A) has a weakly convergent 
subsequence. 

We can give a criterion for the convergence 

of probability measures in terms of their char- 
acteristic functions. Suppose that ak and CD are 
n-dimensional probability measures with char- 
acteristic functions (pk and rp. Then $ con- 
verges weakly to @ if and only if for every z, 
lim, q,Jz) = q(z). Let (pk be the characteristic 
function of an n-dimensional probability dis- 
tribution ak. If the sequence { (pk} converges 
pointwise to a limit function cp and the conver- 
gence of (Pi is uniform in some neighborhood 

of the origin, then cp is also the characteristic 
function of an n-dimensional probability dis- 
tribution CJ and the sequence {@,} converges 
weakly to @ [7] (Levy’s continuity theorem). 

For any probability distribution concen- 
trated on [0, co), the use of tLaplace trans- 
forms as a substitute for Fourier transforms 
provides a powerful tool. The method of 
probability generating functions is available 

for the study of arbitrary probability distri- 
bution concentrated on the nonnegative inte- 

gers [14]. The method of moment-generating 
functions is also useful. There are many results 
on the relation between these functions, proba- 

bility distributions, and their convergence [ 14- 
161. 

Let @r, @z, . . and @ be l-dimensional 
distributions. If all absolute moments exist, 
~~l/?[lu=cc forBj=S”“~lIxljd~(x)<co, 
and lim,,,J?, xjd@,(x)=J:,xjd@(x) (j= 

0, 1,2, . . ), then Qk weakly converges to CD. 

This condition is sufficient but not necessary. 

G. Infinitely Divisible Distributions 

An n-dimensional probability distribution @ 
is called infinitely divisible if for every posi- 
tive interger k, there exists a probability dis- 
tribution Qk such that @ = Qk * @‘r * . . . * @‘k 
(= @tk). Both normal distributions and Pois- 
son distributions are infinitely divisible. If an 

n-dimensional distribution @ satisfies the con- 
dition slxl ,,@(dx) <a, we say that @‘E U(E). Then 
CD is an infinitely divisible distribution if and 

onlyifforeverya>Owecanlind@l,@,,,..., 
@,Eu(s) such that @=@, *Q2* . . . *$. 

Let Xki, i= 1,2, . . . . n(k), be independent 

random variables for every k, and assume that 
the distribution of Xki belongs to a(~&, i = 

1,2, . . . . n(k), where s,-+O as k+m. If the 
probability distributions of the sums X, = 
CyLkj Xki converge to a probability distribu- 
tion as k+ co, then the limit distribution is 
infinitely divisible. 

The characteristic function of a l-dimen- 
sional infinitely divisible distribution can be 

written in the form 

cp(z)=exp irz-gz2 
( 

1 

m 

+ 4% z)- 1 y’ dG(u) 

> 
T (3) 

-02 

where y is a constant, o is a nonnegative con- 
stant, G(u) is a nondecreasing bounded func- 
tion with G(-co)=O, A(u,z)=exp(iuz)- l- 
izu/( 1 + u’), and the value of A(u, z)( 1 + uz)/uz 

at u = 0 is defined to be - z2/2. Formula (3) is 
called Khinchin’s canonical form. For the char- 
acteristic function of an infinitely divisible n- 

dimensional distribution, the canonical form is 
as follows: 

q(z) =exp i(m, z) - t cpqzpzq 
( P.4’1 

+ 

J( 

ei(zsx)-l -$A$ n(dx) , 

R” > > 

z=(z,, . . . . z&R”, (4) 

where rn~:R”, (cp,) is a positive semidefinite 
matrix, and n(dx) is a measure on R” such that 

n({O})=O and 

-n(dx) < co. 

Formula (4) is called L&y’s canonical form. If 
a l-dimensional infinitely divisible distribution 

@ satisfies JR1 x2 d@(x) < co, then its character- 
istic function is given by 

cp(z)=exp imz-iz’ 
( 

+ 
5 

m (eizu 

-a’ 
-1-izu)$dK(u) , (5) 

> 

where m is a real constant, v is a nonnega- 

tive constant, and K(u) is a nondecreasing 
bounded function such that K( -co)=O. It 

is called Kolmogorov’s canonical form. (For 
infinitely divisible distributions on a homo- 
geneous space - 5 Additive Processes.) 

Let CD and Y be n-dimensional distributions. 
Ifforsome1>O,Y(E)=(D(IE)(1E={~~l~~ 
E}) for every set E, we say that @ and Y are 

equivalent. Let @ and Y be probability distri- 
butions with distribution functions F and G 
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and characteristic functions cp and $. Then 
the following three statements are equivalent: 

(1) CD and Y are equivalent; (2) G(x) = F(ix) for 
every x; and (3) tj(jLz) = q(z) for every z. We 
call @ a stable distribution if for every pair of 
distributions al, @)2 equivalent to @, the con- 
volution @I * @)2 is equivalent to @,. If @ is 
stable, every distribution equivalent to @ is 
also stable. We can characterize stable distri- 
butions in terms of their characteristic func- 
tions q(z) as follows: For every pair 1,, , i, > 0, 

there exists a i = i(l, ,&) > 0 such that cp(iz) = 
cp(1,z)cp(iL,z). We can restate this characteri- 
zation as follows: @ is stable if and only if 

for every pair of independent random vari- 
ables X, and X, with identical distribution @ 
and for any positive numbers i., and A,, there 
exists a positive number i, such that (i,X, + 
j.2X2)/). has the distribution 0. By the deli- 
nition we see that all stable distributions are 

infinitely divisible. 
In the l-dimensional case, putting q(z)= 

expll/(z), we have I/J(,~.z)=+(~,z)+$(~“~z), 

which implies ~(z)=(-~~+i(z/~z~)cJ~z~~, 
wherec,>O, -oo<c,<co,O<x<2,The 
parameter x is called the exponent (or index) 

of the stable distribution. The stable distribu- 
tions with exponent x= 2 are the normal dis- 
tributions, and the stable distributions with 
exponent a = 1 are the Cauchy distributions. 

We have +(z) = - c0 lzla for a symmetric stable 
distribution. (For the stable distribution with 

exponent l/2 - Appendix A, Table 22). 
Generalizing stable distributions, we can 

define quasistable distributions, which B. V. 

Gnedenko and A. N. Kolmogorov 1171 called 
stable distributions also. Let F be the distri- 
bution function of a l-dimensional distri- 

bution @. @ is said to be quasistable if to 
every b, >O, b, > 0 and real I,, 1, there corre- 
spond a positive number b and a real number 

i such that we have the relation F((x--I,)/b,)* 

F( (x - i2)/b2) = F( (x - i)/b). 

Let {X,) be a sequence of independent ran- 
dom variables with identical distribution. If for 
suitably chosen constants A, and B, the distri- 
butions of the sums B[‘(Cbl X,)-A, converge 

to a distribution, the limit distribution is a 
quasistable distribution (L&y). A necessary 
and sufficient condition for a distribution to 

be quasistable is that its characteristic func- 
tion q(z) satisfy the relation cp(h,z)cp(b,z)= 

cp(bz)e@ (y = i -2, -&). The characteristic 
function of a quasistable distribution has the 
canonical representation 

d4 = exp $(z)? 

$(z)=imz-c~zlz(l+i~(z/~zl)cr~(z.a)), 

where m is a real number, c > 0,O < n < 2, 

IflI < 1, and Q(z,z)= tan(lrr/2) (ctf l), w(z, z)= 

(2/n)loglzl (SL= 1). The parameter u is called 
the exponent of the quasistable distribution. A 

quasistable distribution with c( # 1 is obtained 
from a stable distribution by tran:jlation, but 
quasistable distributions with a = 1 are not. 

Semistable distributions are another gen- 
eralization of stable distributions. A distri- 
bution is called semistable if its characteristic 
function q(z) satisfies the relation tj(qz) = 

q”$(z) for a positive number q (# l), where 
q(z) = exp(+(z)). Also in this case, the general 

form was obtained by L&y [6]. 
A l-dimensional probability distribution D 

is called an L-distribution if the distribution 

function F of @ is the convolutioc. of F(x/a) 
and some other distribution function F,(x) for 
every 0 <a < I @ is an L-distribution if and 
only if there exists a sequence of independent 
random variables {X,} such that for suitably 
chosen constants B, > 0 and A, the distri- 
butions of the sums B;‘(& X,)-A, con- 

verge to @ and sup,.,,,P(Ix,/B,I>~)~o as 
n+ a for every c > 0. Quasistable distribu- 

tions are L-distributions. 

H. The Shape of Distributions 

Let F(x) be a l-dimensional distr bution func- 
tion. The quantity cP such that F([,, - 0) <p < 

F(l,) (0 < p < 1) is called the quanfile of order 
p of F. In particular, the quantity [1,2 is called 

a median. If F satisfies the relation 1 - F(m + x) 

= F(m-xx), it is called symmetric. In any l- 
dimensional symmetric distribution, every 
moment of odd order about the mean (if it 

exists) is equal to zero. 
The ratio y, = /lx/a3 is used as a measure of 

departure from symmetry of a distribution and 
is called the coefficient of skewness. Further- 
more, the ratio 1~~ = p3/a4 - 3 is called the 
coefficient of excess. For the normal distri- 
bution, we have y, = y2 = 0. If y2 f 0, yZ ex- 
presses the degree of deviation from the nor- 
mal distribution. 

A distribution function F(x) is called uni- 

modal if there exists one value x =: a such that 
F(x) is convex for x <u and concave for x > a. 
All L-distributions (and hence quasistable 

distributions) are unimodal [ 181. 

I. Kolmogorov’s Extension Theorem 

Let R = RT, where T is an arbitrary index set. 
We associate with RT the o-algebra dT gen- 
erated by the cylinder sets, i.e., {o)~nl n,,(w)6 

E,, ,~~Jw)EE,}, where X,(W) denotes the tth 
coordinateofru,EkE93(R1), l<k<n,t,<t,< 

< t,, and n = 1,2,. Given a probability 
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measure @ on (RT, bT), we can define a fmite- 
dimensional tmarginal distribution Qs for any 
finite subset S of T by (D,(E)=@(x;‘(E)), EE 
23’, where rcS is the natural tprojection Q: 
RT-+RS. The measures {Qs} satisfy the follow- 

ing consistency condition: If S, c S, (c T) are 
finite and if EE @I, then 

where A~, s, : R S2-+RS~ is the natural projection. 
Conversely, if we are given a family of finite- 

dimensional probability measures {Qs} which 
satisfies the consistency condition (6), then 

Kolmogorov’s extension theorem [ 1) asserts 
that there exists a unique probability measure 

CD on (RT,23jT) such that Qs(E)=@(rr~‘(E)), 
EE ds, for any finite S c T. 

This theorem is useful in constructing tsto- 

chastic processes. For example, let @)n1,n2 ,.,,,” I 
be the tproduct measure of k copies of a given 
probability measure Q on R’. Then the family 

Pn,,n, ,..., +;nl,n2,.-, nk E Z, k E N} satisfies the 
consistency condition and hence, by Kolmo- 
gorov’s extension theorem, determines a prob- 
ability measure on RZ, which is denoted by CD’. 

Thus X,(~)=R,(O), neZ, (we(RZ,Bz,cDZ)), 
are independent identically @distributed ran- 

dom variables. 
Kolmogorov’s extension theorem is gen- 

eralized to the case where the component 

spaces are tstandard measurable spaces (- 
270 Measure Theory) instead of R’, and also 
to the case where product spaces are replaced 

by tprojective systems [ 193. 

J. Characteristic Function& on Intkite- 
Dimensional Spaces 

Contrary to the finite-dimensional case, 
Bochner’s theorem does not necessarily hold 
in infinite-dimensional spaces. For example, let 

(T, 11.11) be an infinite-dimensional tHilbert 
space and q(t) = exp( - 11 tll’). cp is continuous 
and positive definite, and p(O)= 1. But it is 
known that there is no probability measure on 
T= T* (topological dual of T) which corre- 
sponds to cp. Bochner’s theorem is generalized 
to infinite-dimensional spaces as follows. 

Let T be a real tvector space endowed with 

the topology z defined by a system of tHilbert- 
ian seminorms { 11. IIoL, c( E A}. Define a new 
topology I(7) of T by all Hilbertian semi- 
norms (1. (( each of which is HS-dominated by 

some Il’l/a, C(EA, i.e., SUp{(~i Ileill’)“‘; {ei}:a- 

orthonormal} < co. If I(z) = 7, then (T, 7) is 
called a tnuclear space. 

Let T,* be the topological dual of (T, 7) (i.e., 

the set of all r-continuous real valued linear 
functionals on T). Define a Bore1 structure 

d( T,*) of T,* as the a-algebra generated by 

the system of half-spaces {xeT,*;x(t)<a}, tE 
T, UER’. For a probability measure 0 on 

(T,*,B(T,*)), define 

dt)= s exp(i(x, t))d@(x), tET, 
TT 

which is called the characteristic functional of 
@ A functional cp on T is the characteristic 
functional of a probability measure @ on 

(T,*, b( T,*)) such that Q*( U,, Taz) = 1 for some 
sequence {cc,} c A, where @* is the touter 
measure (- 270 Measure Theory) and T,* is 

the topological dual of (7’, 11. II,), if and only if cp 
is positive definite, ~(0) = 1, and continuous 
with respect to the topology I(z) [23]. 

As special cases of the foregoing theorem, 
we have the following. If (T, 7) is a nuclear 
space, then every positive definite r-continuous 

functional cp with ~(0) = 1 is the characteristic 
functional of a probability measure on T,* 
(Minlos [24]). Schwartz’s spaces Y(R) and 
9(R”) are nuclear. Let (7, r = 11.11) be a Hilbert 
space. A tHilbert-Schmidt operator U is, by 

definition, a tbounded linear operator on T 
such that xi I/ Ueill * < co, by any tcomplete 
orthonormal system {ei} (this quantity does 
not depend on the choice of {ei}). Define a 

seminorm Il.//c by Iltllu= IIUtll, teT, for a 
Hilbert-Schmidt operator U. Then the topol- 

ogy l(7) coincides with the topology induced 
by the system of seminorms 11. jj “, where U are 
Hilbert-Schmidt operators, which is called 

the Sazonov topology. Thus every functional 
cp on T, which is positive definite, ~(0) = 1, 
and continuous with respect to the Sazonov 

topology, is the characteristic functional of a 
probability measure on T,* (Sazonov [25]). 

The probability measure on Y’ with the 
characteristic functional exp( -jFm lf(s)l’ds), 
fe 9, is the probability measure of a Gaussian 

twhite noise on Y’. 
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Probability Theory 

1 A. History 

The origin of the theory of probability goes 
back to the mathematical problems connected 

with dice throwing that were discussed in 
letters exchanged by B. Pascal and P. de Fer- 
mat in the 17th century. These problems were 

concerned primarily with concepts such as 
tpermutations, tcombinations, and tbinomial 
coefficients, whose theory was established at 
about the same time [ 11. This elementary 

theory of probability was later enriched by the 
work of scholars such as Jakob Bernoulli [2], 
A. de Moivre [3], T. Bayes, L. de Buffon, 
Daniel Bernoulli, A. M. Legendre, and J. L. 
Lagrange. Finally, P. S. Laplace completed the 

classical theory of probability in his book 
Thhrie analytique des prohahilitds (I 8 12). In 

this work, Laplace not only systematized but 
also greatly extended previous important 
results by introducing new methods, such as 
the use of tdifference equations and tgenerat- 
ing functions. Since the 19th century, the 
theory of probability has been extensively 
applied to the natural sciences and even to the 
social sciences. 

The definition of a priori probaoility due to 
Laplace provoked a great deal of argument 

when it was applied. For example, R. von 
Mises advocated an empirical theory of proba- 
bility based on the notion of Kollektiv (col- 
lective), which is a mathematical model of 

mass phenomena [S]. However, these argu- 
ments are concerned with philosophical rather 
than mathematical aspects. Nowa’rlays, the 
main concern of mathematicians lies not in the 
intuitive or practical meaning of probability 
but in the logical setup governing probability. 
From this viewpoint the mathematical model 
of a random phenomenon is given by a proba- 

bility measure space (Q23, P), where R is the 
set of all possible outcomes of the phenom- 
enon, P(E) represents the probability that an 

outcome belonging to E be realized, and %3 is 
a o-algebra consisting of all sets E for which 
P(E) is defined. All probabilistic concepts, 
such as random variables, independence, etc., 
are defined on (Q 23, P) in terms of measure 
theory. Such a measure-theoretic basis of 
probability theory is due to A. Kolmogorov 
[6], though similar considerations had been 
made before him for special probllzms, for 

example, in the work of E. Bore1 concerning 
the strong law of large numbers [“I and in the 

rigorous definition of Brownian motion by 
N. Wiener [S]. 

Ever since probability theory was given 
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solid foundations by Kolmogorov, it has made 
tremendous progress. The most important 
concept in today’s probability theory is that of 
tstochastic processes, which correspond to 

functions in analysis. In applications a sto- 

chastic process is used as the mathematical 
model of a random phenomenon varying with 
time. The following types of stochastic pro- 
cesses have been investigated extensively: 
tadditive processes, tMarkov processes and 
tMarkov chains, tmartingales, tstationary 

processes, and tGaussian processes. tBrownian 
motion and tbranching processes are impor- 
tant special stochastic processes. In the same 
way as functions are often defined by differen- 
tial equations, there are stochastic processes 

which can be defined by tstochastic differen- 
tial equations. The theory of stochastic pro- 
cesses and stochastic differential equations 

can be applied to tstochastic control, tstochas- 
tic filtering, and tstatistical mechanics. The 

tergodic theory that originated in statistical 
mechanics is now regarded as an important 
branch of probability theory closely related to 
the theory of stationary processes. 

B. Probability Spaces 

Let fi be an tabstract space and 23 be a to- 
algebra of subsets of R. A probability measure 
(or probability distribution) over R(B) is a set 
function P(E) defined for EE B and satisfying 
the following conditions: (Pl) P(E) 20; (P2) for 
every sequence {E,} (n = 1,2, . . . ) of pairwise 

disjoint sets in 8, 

p 
( > 

UE” =CW,); 
” n 

(P3) P(a) = 1. The triple (a, 8, P) is called a 
probability space. The space R (resp. each 
element w  of a) is called the basic space, space 

of elementary events, or sample space (resp. 
sample point or elementary event). We say that 

a condition E(W) involving a generic sample 
point w  is an event; in particular, it is called a 

measurable event or random event if the set E 
of all sample points satisfying E(W) belongs 
to 23. We assume that an event is always a 
measurable one, since we encounter only 
measurable events in the theory of probability. 

Because of the obvious one-to-one corre- 
spondence between measurable events and b- 

measurable sets (i.e., the correspondence of 
each event E with the set E of all sample points 
w  satisfying E), a b-measurable set itself is 
frequently called an event. If E is an event and 
E is the b-measurable set corresponding to E, 

we call P(E) or Pr(s) the probability that the 

event E occurs, i.e., the probability of the event 

E. The complementary event (resp. impossible 

~ event, sure event) is the complementary set EC 
(empty set 0, whole space Q). For a finite or 
infinite family {E,} (AE A), the sum event (resp. 

intersection or product event) of E, is the set 
U,E,(n,E,).IfEflF=@,thenwesaythatE 
and F are mutually exclusive or that they are 
exclusive events. 

By the definition of P, we have 0~ P(E) < 
1 for any event E, P(0) = 0, and P(n) = 1. 
Moreover, if {E,} (n = 1,2,. . . ) is a sequence of 
pairwise exclusive events and E is the sum 
event of E,, we have 

P(E)= f P(E,). 
II=1 

This property is called the additivity of proba- 

bility. If P(E) = 1, the event E is said to occur 
almost certainly (almost surely (abbrev. a.s.), 
for almost all w, or with probability 1). 

Given a finite sequence {E,} (n = 1,2, . . . , N) 
of events, we say that the events E, (n = 1,2, 
. ..) N) are mutually independent or that the 

sequence {E,} (n = 1,2, . . . , N) is independent 
if every subsequence satisfies 

P(EilflEi2fl...flEi,)=fiP(E,S. 
j=l 

Given an infinite family {E,} (LoA) of events, 
we say that the events E, (Ieh) are mutually 
independent or that the family {E,} (I E A) is 
independent if every finite subfamily is inde- 
pendent. The concept of independence of 

events can be generalized to a family {Bk} 
(noA) of o-subalgebras of b as follows. A 

family {b,} (1 E A) of o-subalgebras of events is 
said to be independent if for every choice of 

E, E 23,, the family {E,} (A E A) of events is 
independent. 

For a sequence {E,} (n = 1,2,. . . ) of events, 
the sets lim sup, E, and lim inf, E, are called the 
superior limit event and inferior limit event, 
respectively. The superior limit event (inferior 

limit event) is the set of all w  for which in- 
finitely many events among E, (all events 

except finitely many E,) occur. Therefore 
P(liminf,E,) is the probability that in& 

nitely many events among E, occur, and 
P(lim sup,, E,) is the probability that the events 

E, occur for all n after some number n,,, where 
n, depends on w  in general. The Borel-Cantelli 
lemma, which is concerned with the evaluation 

of P(lim sup” E,), reads as follows: Given a 
sequence {E,} (n = 1,2, . . . ) of events, we have 
(i) whether the events E, (n = 1,2, . . . ) are mutu- 
ally independent or not, Z,, P(E,) < co implies 
that P(lim sup” E,) = 0; and (ii) if the events 
E, (n = 1,2,. . ) are mutually independent, 
Z” P(E,) = cc imples that P(lim sup” E,) = 1. 

Frequently, applications of part (ii) are greatly 
hampered by the requirement of independence; 

a number of sufficient conditions for depen- 
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dent events to have the same conclusion as 
(ii) have been discovered. The Chung-Erdik 
theorem [9] is quite useful in this connection. 

C. Random Variables 

Let (0.23, P) be a probability space. A random 

variable is a real-valued function X defined on 
R that is %-measurable (i.e., for every real 

number a, the set {w 1 X(w) < u} is in 23). If 
X,, X,, , X, are random variables, the map- 

ping X =(X1, X,, , X,) from s1 into R” is said 
to be an n-dimensional (or R”-valued) random 
variable. More generally, a mapping X from 
(Q, 23) into another imeasurable space (S, C5) is 
called an (S, e)-valued random variable if it is 
measurable, that is, for every set A of e, the set 

{w I X((U)E A} belongs to d. 
Let ‘23’ be the o-algebra of all +Borel subsets 

of the real line R. Then each random variable 
X induces a probability measure @ on (R, B1) 
such that 

The measure @ is called the (l-dimensional) 
probability distribution of the random variable 

X or simply the distribution of X. The point 
function F defined by 

W=P({~IX(4d~}), UER, 

is a monotone nondecreasing and right con- 
tinuous function such that lim,,, F(u) = 1, 
lim,,-, F(u) = 0. The function F is called the 
cumulative distribution function (or simply the 
distribution function) of the random variable X. 
Similarly, an n-dimensional random variable 
X =(X1 , , X,) induces its n-dimensional prob- 
ability distribution (or simply n-dimensional 
distribution) and its n-dimensional distribution 

function F(u, , . , u,)=P({wIX,(w)~a,,..., 
X,(o) :G un}). If the X, (n = 1,2, . , N) are k,- 
dimensional random variables (n = 1,2, , N), 

we say that the I( = Cr=, k,)-dimensional ran- 
dom variable X=(X,, X,, , X,) is the joint 
random variable of X, (n = 1,2, . , N) and that 
the (I-dimensional) distribution @ of X is the 
joint distribution (or simultaneous distribution) 
of X, (n= 1,2, , N). On the other hand, the 
k,-dimensional distribution Qn of X, is called 
the marginal distribution of the /-dimensional 
distribution @,. 

Given a finite sequence {Xn} (n = 1,2, . , N) 
of random variables, if the relation 

P({~IX,(~)EA,(~=~,~,...,N)}) 

holds for every choice of 1 -dimensional +Borel 
sets A,, (n = 1,2, . , N), we say that the random 

variables X, (n = 1,2, , N) are mutually inde- 

pendent or that the sequence {X,) (n = 1,2, 
, N) is independent. Given an infinite family 

{X,} (n E A) of random variables, we say that 
the random variables are mutually independent 

or that the family is independent if every 
finite subfamily is independent. The latter 
definition of independence of random vari- 
ables is compatible with the previous defini- 
tion of independence of c-subalgebras of d; 

i.e., if b [X,] denotes the a-subalgebras of 
23 generated by the sets {w I X,(WIC A,}, with 
A, an arbitrary l-dimensional Bore1 set, the 
independence of the family {X,} (1. E A) in the 

latter sense is equivalent to the independence 
of the family {b [X,] } (1 E A) in the previous 
sense. If the X, (n= 1,2, . . . . N) (X,{ (3,A)) are 
k,- (k,-) dimensional random variables, then 

the independence of the family {X,,} (n = 1,2, 

“‘> N) ({X,} (1 E A)) is defined similarly; it is 

enough to take k,- (k,-) dimensional Bore1 
sets A,, (A,) for l-dimensional Bore1 sets in 
equation (1). 

Given a family {X,} (3, E A) of r,andom vari- 

ables, the smallest o-algebra with respect to 
which every X, is measurable is called the (r- 
algebra generated by {X,} (1eA) and is de- 
noted by 23 [X, I i E A]. Each element of this 
class is said to be measurable with respect to 
the family {X,} (A E A) of random variables. 

Since a random variable X is a 2% 

measurable function, we can speak of the 
tintegral of X relative to the measure P on 8. 

If X is integrable relative to P, the integral of 
,X over A is denoted by E(X; A). E(X; Q), usu- 
ally denoted by E(X), is called the mean, ex- 
pectation, or expected value of X, denoted also 
by M(X) or m,. If (X - E(X))’ is integrable, 

V(X) = E((X - E(X))Z) 

is called the variance of X, denoted by a’(X). 

The standard deviation of X is the nonnegative 
square root a(X) of the variance. If X and Y 
are two random variables for which E((X - 

E(X))(Y-E(Y))) exists, the value E((X- 
E(X))( Y- E( Y))) is called the covariance of 
X and Y. When X and Y have finite variances, 
the correlation coefficient of X and Y is defined 

by 

E((X-E(X))(Y-E(Y))) 

p(x’ Y)={E((X-E(X))2)E((Y--.E(Y))z)}“2. 

It follows that E(aX + b Y) = uE(X) + bE( Y), 

V(aX + b) = u2 V(X) for any real numbers u, 
b, and that, in particular, E(X Y) := E(X)E( Y), 
V(X + Y) = V(X) + V(Y) for mutually indepen- 

dent random variables X and Y. It also fol- 
lows from the definition that -1 :C p(X, Y) d 1 
in all cases. The independence of X and Y 

implies that p(X, Y)=O, but the converse is 
false in general. The variance is important 
because of the well-known Chebyshev inequal- 
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ity: If X is a random variable with finite vari- 

ance e2, 

P(IX-E(X)12c)<02/c2 

for every positive number c. 

D. Convergence of Random Variables 

If P(lim,,, X, = X,) = 1, the sequence {X.} is 
said to converge almost everywhere (almost 
certainly, almost surely (a.s.), or with proba- 

bility l)toX,.Iflim,,,P(IX,-X,I>&)=O 
for every positive number E, the sequence {X,} 
is said to converge in probability to X,. For a 
given positive number p the sequence {X”} is 
said to converge in the mean of order p to X, if 

lim,,, E( 1 X, - X, 1”) = 0. Finally, if the ran- 
dom variables X, (n = 1,2, . . . , co) have distri- 

butions @. (n = 1,2, . . . , co), respectively, and if 

s 

m 
O2 lim f(x) d@“(X) = 

n-m --oo s 
~mfwwx) 

for every continuous function f with compact 
support, the sequence {Xn} is said to converge 
in distribution to X,. Note that the sequence 

of random variables converging in distribution 
may not converge in any ordinary sense. For 
example, random variables converging in 
distribution may even be defined on different 

probability spaces. On one hand, almost sure 
convergence does not in general imply conver- 
gence in the mean. On the other hand, either 
almost sure convergence or convergence in the 
mean implies convergence in probability, and 

convergence in probability implies conver- 
gence in distribution. However, P. Lkvy [lo] 
proved that if the X, (n = 1,2,. . . ) are mutually 
independent, the sequence 

r,=i:X., k=l,2,..., 
“=I 

is convergent almost everywhere if and only if 
it is convergent in distribution (or in proba- 

bility). The famous three-series theorem of 
Khinchin and Kolmogorov [t l] claims that 
the series x,, X, with X,, X2,. . independent is 

convergent almost surely if and only if there 
exists a sequence of independent random 
variables Xi, X$, . such that each of the three 

series 

c PGL z X), 1 EK)> 1 w;) 
n ” n 

is convergent. 

E. Conditional Probability and Conditional 
Expectation 

Let (Q, 8, P) be a probability space and 5 a r~- 
subalgebra of %3. If X is a random variable 

with finite mean, the function p(E)= X(w)dP, s EE5, E 
defines on (Q, 5) a completely additive set 

function which is tabsolutely continuous 
with respect to P. Therefore, by the tRadon- 
Nikodym theorem, there is an g-measurable 
function f such that 

p(E)= 
s 

f(w)dP for every EEG.. 
E 

This function is unique up to a set of P- 
measure zero and is called the conditional 
expectation (or conditional mean) of X relative 
to 5, denoted by E(X 13). When 5 is gen- 

erated by a random variable Y, we also write 
E(X I Y) for E(X I 8) and call it the conditional 

expectation of X relative to Y. In this case, 
there is a tBore1 measurable function f such 
that E(XI Y)=f(Y(w)), and we write E(XI Y= 
y) for f(y). The same fact holds when Y is a 
multidimensional random variable. It follows 

from the definition that the conditional expec- 
tation has the following properties, up to a set 
of P-measure zero: (i) if X > 0, then E(X 1%) 2 

@(ii) E(aX+bY1~)=aE(XJ~)+bE(YJ~);(iii) 
E(E(X 13)) = E(X); (iv) if X and 8 are mutu- 
ally independent, i.e., B[X] and 5 are mutu- 
ally indepent, then E(X I 3) = E(X); (v) if X is 

$-measurable, then E(XI 8)=X and E(XYI 5) 
= XE( Y I 5); (vi) if lim,,, X,, = X, with IX,1 < 
Y and Y is an integrable random variable, 

then lim,,, E(X, I 5) = E(X, 1%); (vii) if 8 is 
a o-subalgebra of ‘& then E(E(X I 5) I 6) = 

E(X 18); (viii) if X2 is integrable and Y is any 
@measurable random variable, then E((X - 

JW IS))‘) G Et@‘- Y)‘). 
When X is the indicator function (i.e., the 

icharacteristic function) xE of a set E in b, 

E(xE I 5) is called the conditional probability 
of E relative to 3 and is denoted by P(E ( 5). 
In particular, if 5 = {F, F’, @, a} with 1 > 
P(F) >O, P(E 15) is the simple function which 
takes the values P(E fl F)/P(F) on F and 
P(E n FC)/P(FC) on 8”. These values are de- 
noted respectively by P(E I F) and P(E I F’). 

The definition of P(E 1 Y) or P(E ( Y = y) is also 
the same as in the case of the conditional 
expectation. 

Let 3 be a o-subalgebra of 23 and Y a real 
random variable. According to the foregoing 
definition, P( YE E I 5) or P( Y-‘(E) 15) is the 
conditional probability of the occurrence of 
the event YE E under &. Since P( YE E I 8) is 
determined except on a P-null set depending 

on E, an arbitrary version of P( YE E 1 g), 
viewed as a function of E, does not always 
satisfy the conditions of a probability measure. 

However, we can prove that there exists a 

nice version of P( YE E 1%;) which is a proba- 
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bility measure in EEL’ for every weR and 

that such a version is unique almost surely. 
This version is called a regular conditional 

probability of YE E under 3 or the conditional 
probability distribution of Y under 5; this is 
written as P,(E 13). P( YE E 1 X), P( YE E 1 X=x), 
P,(E) X), and P,(E 1 X=x) are interpreted 
similarly. The conditional probability distri- 
bution can be defined not only for real ran- 
dom variables but also for every random 
variable which takes values in an tanalytic 

measurable space. 

F. Bayes’s Formula 

Let E,, E,, . , E, be pairwise exclusive events, 
and assume that one of them must occur. If E 
is another random event, we have 

P(E, I El = 
P(EJP(E I EJ 

P(E,)P(E~E,)+...+P(E,)P(E~E,)’ 

where P(E,) is the probability of the event Ei 
and P(E 1 EJ is the conditional probability of E 
under the assumption that the event Ei has 
occurred. This is called Bayes’s formula. In 

practical applications E, , . , E, usually repre- 
sent n unknown hypotheses. Suppose that 
the probabilities on the right-hand side of the 

formula are given. We then apply Bayes’s 
formula to reevaluate the probability of each 

hypothesis Ei knowing that some event E has 
occurred as the result of a trial. This is why 

P(E,) (P(Ei I E)) is called the a priori (a pos- 
teriori) probability. However, the determina- 
tion of the values of a priori probabilities is 

sometimes difficult, and we often set P(E,) = 
l/n in practical applications, although this 
has caused a great deal of criticism. 

When X is a random variable subject to the 
distribution with continuous probability den- 
sity f(x), Bayes’s formula is extended to the 
following form: 

.f(xo I El = 
fW W IX =x01 

jZmP(EIX=x)f(x)dx’ 

where f(x 1 E) is the conditional probability 

density of the random variable X under the 
assumption that the event E has occurred, and 
P(E I X =x0) is the conditional probability of E 

relative to X. 

G. Zero-One Laws 

In probability theory there are many theorems 
claiming that an event with certain properties 

has probability 0 or 1. Such theorems are 

called zero-one laws. Here, we mention two 

famous examples, Kolmogorov’s zero-one law 

[6] and the Hewitt-Savage zero-one law. Let 
a = cc(X, , X,, ) be an event concerning a se- 

quence of random variables {X”}. CI is called a 
tail event concerning {X.} if for every n, occur- 

rence or nonoccurrence of CI depends only on 

{Lx”+l,... }. For example, {lim,,, X, =0} is 
a tail event. a is called a symmetric event con- 
cerning {X”} if occurrence or nonoccurrence of 
c( is invariant under every finite permutation of 
X,, X, . . . For example, the event that xi+ X, 
> 0 for infinitely many n’s is a symmetric 
event. Kolmogorov’s zero-one law: Every tail 
event concerning a sequence of indepen- 
dent random variables has probability 0 or 1. 

Hewitt-Savage zero-one law: Every symmetric 
event concerning a sequence of independent 
and identically distributed random variables 

has probability 0 or 1. 
Kolmogorov’s zero-one law can be extended 

as follows: Let g,, n= 1,2, . . . , be a. sequence of 
independent o-subalgebras of 23. Then the o- 
algebra 2 = nk Un,k s,,, called the tail o- 
algebra of { &}, is trivial, i.e., P(A) = 0 or 1 for 
every A E 2. Kolmogorov’s zero-one law is a 
special case where ‘&, is the o-algebra gen- 
erated by X, for every n. 
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343 (VI.14) 
Projective Geometry 

A. Introduction 

Projective geometry is the most fundamental 
of classical geometries and one of the first 
examples of axiomatized mathematics. 

B. Construction of Projective Geometry 

We construct projective geometry axiomati- 
cally [4]. Given two sets P, Q and a trelation 
I c P x Q, consider the triple !@ = {P, Q, F}. We 
call each element of P a point and each ele- 

ment of Q a line. If (p, 1)~ F holds for a point p 
and a line 1, then we say that the line 1 contains 
the point p. When two lines 1, and 1, contain a 

point p, we say that they intersect at p. When 
several points are contained in the same line, 
these points are said to be collinear, and when 
several lines contain the same point, these lines 
are said to be concurrent. For ‘p we impose the 
following axioms: 

(I) There exists one and only one line that 
contains two given distinct points. 

(II) Suppose that we are given noncollinear 
points po, pl, and pz, and distinct points q,, 

q2. Now suppose that {P~,P~,~~} and {po, 
pz, q2} are collinear triples. Then the line con- 
taining pl, p2 and the line containing q,, q2 
necessarily intersect (Fig. 1). 

Fig. 1 

(III) Every line contains at least three dis- 
tinct points. 

The ‘$3 that satisfy axioms (I) and (II) and 

axioms (I), (II), and (III) are called general 
projective geometry and projective geometry, 

respectively. The set of all points that are 
contained in a line is called the point range 
with the line as its base. In projective geome- 
try, there exists a one-to-one correspondence 
between the set of lines and the set of point 

ranges, so we can identify every line with a 
point range. In this case a line 1 E Q is repre- 
sented as a subset of P, and the relation (p, 1)~ 

I means that the point p belongs to the set 1. 

Let S be a subset of P and p,, pz be any two 
distinct points of S. If the line that contains 
p1 and p2 is always contained in S, then S is 
called a subspace. Points and lines are sub- 
spaces. Now we impose the following axiom: 

(IV) There exist a finite number of points 
such that any subspace that contains all of 
them contains P. 

We call a projective geometry satisfying 
axiom (IV) a finite-dimensional projective 
geometry, which from this point on will be 

the sole object of our consideration. We call 
P a projective space. Consider sequences of 
subspaces of the type P 2 Pnml $ . . . + =P = 1 z 
PO # 0, where 0 is the empty set. The num- 
ber n of the longest sequence is called the 
dimension of P. If P is of dimension n, we 
write P” instead of P. We call P’ a projec- 
tive line and Pz a projective plane. Each sub- 
space S of P, together with the set of lines 
of P contained in S, gives a finite-dimensional 
projective geometry, and so S is a projective 

space. Lines and points are projective spaces 
of dimensions 1 and 0, respectively. By con- 
vention, the empty set is a (-1)-dimensional 

projective space. We call each 2-dimensional 
subspace a plane and each (n - 1)-dimensional 
subspace in P” a byperplane. 

Let M, N be subspaces of P, and for a pair 
of points PE M, q E N consider the set p U q 
of all points on the line that contains p and 

q. The set { p U q 1 p E M, q E N} is denoted by 
MU N, and we call it the set spanned by M 
and N. By convention, we put 0 U M = M 
and p U p = p. Then P’U P” is the projective 

space of the lowest dimension which contains 
P’ and P”. On the other hand, if we denote 
the intersection of P’ and P” by P’n P”, then 
it is the projective space of highest dimension 

that is contained in both of them. We call 
P’U P” and P’ n PS the join and the intersec- 
tion of P’ and P”, respectively. When the 
dimension of the space spanned by r + 1 
points is r, we say that these points are inde- 
pendent; otherwise they are dependent. If any 
r+ 1 points of a given subset M of P” are 

independent for each r < n, we say that points 
of M lie in a general position. The space P’ 
necessarily contains r + 1 independent points, 

and there necessarily exists a P’ that contains 
r + 1 arbitrary given points in a projective 
space; it is unique if the points are indepen- 
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dent. If P’U P” = P’ and P’ f’ P‘= P”, then 
r + s = t + u. We call the latter the dimension 

theorem (or intersection theorem) of projective 
geometry. 

The set C, of all hyperplanes that contain a 
Porn2 in P” is called a pencil of hyperplanes, 
and the Pzm2 common to them is called the 

center of C, If a pencil of hyperplanes contains 
two distinct hyperplanes of P”, then the pencil 
is determined uniquely by these two. When 
n = 2 and 3, it is called a pencil of lines and a 
pencil of planes, respectively. Each pencil of 

hyperplanes of P”, or more generally, each 
pencil of hyperplanes of a subspace of an arbi- 
trary dimension in P”, is called a linear funda- 
mental figure of P” or simply a fundamental 
figure. In P”, the set Zr of all Prier, Prier+‘, , 
Pn--’ that contain the same Ponrml is called 
the star with center P;mrml. Each set that con- 
sists of the totality of subspaces of an arbitrary 
demension in the same P’ or a subset of it is 

called a P’figure. 
Under the assumption that P’ and P” do not 

have points in common, the operation of con- 
structing P’U P” from P’ and P” is called pro- 
jecting P” from P’. Assuming that P’ and P” 
have points in common the operation of con- 
structing P’n P” from P’ and P” is called cut- 
ting P” by P’. Suppose that we are given spaces 
P,,, P, , and Pz, and a fundamental figure Z in 

the space P, By projecting Z from P, and then 
cutting it by P2, we can construct a funda- 

mental figure c’ on P2. This operation is called 
projection of Z from PO onto P2, and we call P, 
the center of projection (Fig. 2). In this case, we 

say that C and L” are in perspective and denote 
the relation by C X c’. If for two fundamental 
figures Z and c’ there exist a finite number of 
fundamental figures F, (1 < i < I) such that C, 
F,~...~F,~C’,thenwesaythatCandZ’are 
projectively related to each other and denote 
this by C,c’ (Fig. 3). Now for arbitrary sub- 

spaces P;, P; (0 < r < n), we take Ponrm’ that 

Fig. 2 

Fig. 3 

have no points in common with ttem and 

project each point of P; onto P$ from P$-rm’. 
The one-to-one correspondence PC-P; thus 
obtained is called a perspective mapping. If a 
one-to-one correspondence P;+P,J is repre- 
sented as the composite of a finite number of 
perspective mappings, then we call it a projec- 

tive mapping. These mappings are extended to 
those of fundamental figures, too. 

Suppose that in a proposition or a figure in 
P”, we interchange P’ and Pnmrml (O<r < n) 
and also interchange contains and is contained 

(and related terms). The proposition or the 
figure thus obtained is said to be dual to the 
original one. In projective geometry, if a pro- 
position is true, then its dual proposition is 
also true (duality principle). This is assured 
because propositions dual to axioms (I))(IV) 
hold; and P’ and .Zr are dual to each other. 
The projective space PG obtained by the prin- 
ciple of duality, by regarding the hyperplanes 
of P” as points of Pi, is called the dual space of 
P”. 

C. Projective Coordinates 

Here we introduce projective coordinates in P”. 
Consider Desargues’s theorem: Suppose that 

p,, p2, p3 and ql, q,, q3, are two sets of points 
in P”, each of which is independent and satis- 

fies pi # q, (i = 1,2,3). If the three lines pi U qi 
(i = 1,2,3) are concurrent, then the three 

points(~,U~,)n(q,Uq,),(~,U~,)n(q,Uq,), 
(pl U p2) n (ql U q2) are collinear. The converse 

is also true. This theorem holds for n > 3 gen- 
erally. However, when n = 2, there exist projec- 
tive geometries for which it does not hold; we 
call these non-Desarguesian geometries. In 
such cases it is impossible to introduce coordi- 
nates, so we assume Desargues’s theorem for 
n=2. 

When four points pi (1 < i < 4) in P” lie on 

the same plane and in general position, we call 
the figure that consists of these four points and 
the six straight lines gij = p, U pj (1 :; i d j < 4) a 

complete quadrangle p,p2p3p4; ea’sh pi is called 
a vertex, and each gij is called a side. If six 
points qi (I d i < 6) on a line I are points of 

intersection of six sides gi2, gi3, g,4r g34, gz4, 
g23 of a complete quadrangle with I, we call 

P? 

AIYi!kL 

P4 

P3 

91 q1 92% 9, 9; 
1 

Fig. 4 
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them a quadrangular set of six points (Fig. 4). 
By Desargues’s theorem, we can show that if 
there are given three fixed distinct points on a 

line 1, then any pair of distinct points on 1 
determines uniquely a point on I such that the 

six points thus obtained constitute a quadran- 
gular set. The quadrangular property is invari- 

ant under projective mappings. On a line 1 
we fix three mutually distinct points p,,, pi, p,. 

For any two points px, pY different from pm on 
I, we take the point s such that pm, px, p,,, pm, 
p,,, s constitute a quadrangular set of six points 
and call s the sum of px and py with respect 

to [po, pm, pJ (Fig. 5). On the other hand, 
the point,t such that p,,, p,, pl, pm, py, t con- 
stitute a quadrangular set of six points is 
called the product of px and py with respect to 

[po,pm,pI] (Fig. 6). When we are given a fixed 
triple [p,, pm, pJ on a line I, as before, the set 
of points on 1 not equal to pm is called a point 
range of the number system, provided that we 
exclude pa, from the point range. We call the 
set of three points [po,pm, pJ a frame (or 

projective frame) of I, and we call p,, the origin, 
p1 the unit point, and pm the supporting point. 

Fig. 5 

Fig. 6 

A point range of the number system consti- 
tutes a tlield (which may be noncommutative) 
with respect to the previously defined sum and 
product. We call the field a Staudt algebra, 

and an abstract algebra isomorphic to it is 
called a coefficient field of P”. We denote by 
K(p,,p,,p,) the Staudt algebra that is deter- 

mined by a frame [p,,, pm, p,]. A projective 
mapping of 1 onto itself that leaves invariant 
each of three distinct points po, pm, p1 on 1 is 
necessarily an tinner automorphism of the held 

K(P~,P,,P,). Denoting by CP~,P~,PJ a frame 
on a line 1 of P” with coefhcient field K, we call 
each isomorphism O:K(pe,pm,pi)+K a co- 

ordinate system of 1. For each point p on 1 we 

call the element 5 = B(p) of K the inhomoge- 

neous coordinate of p with respect to this 
frame. Also, we call the pair (x0, xi) such that 

x0, x1 E K and x1(x0)-l = 5 homogeneous co- 
ordinates of p. Since the supporting point p, is 

excluded from K(p,, pm, pl), we fix (0, x1) such 
that x1 #O as the homogeneous coordinates 
of P,. In order for (x0, x’) and (y”, y’) to be 
homogeneous coordinates of the same point, it 
is necessary and sufficient that there exist an 
element 1# 0 of K such that ya = x”l (c( = 0,l). 

In conformity with these results, we now 
introduce coordinates in P”. A set 5 = [a,, 
a,, . . . , a,, u] of ordered n + 2 points in a gen- 
eral position is called a frame (or projective 
frame) of P”; each of a, (0 <CL <n) is called a 

fundamental point, and u is called a unit point. 
For A=a,~U...Ua,(O~cr,<...<cr,~n), we 
denote by A* the space spanned by the re- 
maining fundamental points. For any point 
p that is not contained in A*, we put pa = 
A n (p U A*) and call it the component of p 
on A. Then & = [aEO, . . , a=,, uA] is a frame 
of A. Hereafter, we shall omit u, for brevity. 
Suppose that isomorphisms &a : K(a=, a+K 

are assigned for each pair CI, fi (0 < c( < /l< n). 
Under a certain condition, the system {f&,} is 
determined by one of the &. In this case we 

denote {Q,,} by 0 and call { 5, O} a projective 
coordinate system of P”. For any point p of P” 
not contained in A, = a, U . . . U a,, we denote 

by pi the component of p on a, U ai (1~ i ,< n), 
and we put 5’ = O(pi). The elements of the 
ordered set (<I, <‘, . . . , 5”) are called the in- 
homogeneous coordinates of p with respect to 
3, and those of the set (x0,x1, . . . ,x”) such that 
xi(xo)-i = r’ are called the homogeneous co- 

ordinates of p. When p is contained in A,, we 
define (0, xi, . . , x”) as homogeneous coordi- 
nates of p with respect to 5, provided that 

(x1 , . . . , x”) are homogeneous coordinates of p 
with respect to sAO. 

Now we represent the point whose coordi- 

nates are (x0, x1 , . . . , x”) simply by x. In P”, 
when coordinates are introduced, a necessary 

and sufftcient condition for points z to be on 
the line that passes through two distinct points 

x and y is that za = x”A + yap (0 < cz < n), when 
1, ALE K are parameters. More generally, a 
point z is contained in the space spanned by 
Y + 1 independent points xg (0 < b < r) in P” if 
and only if z” = &, x;Ls (0 <CI i n, Is E K). In 

particular, the equation of a hyperplane is 
represented in the form ~~=o X,za = 0 (X, E K) 
with respect to variable coordinates z”. There- 
fore each hyperplane is uniquely determined 
by the ratio of X0, X,, . . . , X,. We call X0, 
X 1, . . . , X, hyperplane coordinates of the hyper- 
plane. If n = 2, they are called coordinates of a 

line, and if n = 3, plane coordinates of a plane. 
(For coordinates of P’ in P” - 90 Coordinates 

B.1 
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D. Projective Transformations 

A one-to-one correspondence cp between the 
point sets of two projective spaces P” and P” is 
called a collineation in the wider sense if for any 
three points pl, p2, p3 that are collinear, cp(pi) 
(i = 1,2,3) are also collinear and vice versa. If 
P” = P.J, we call q a correlation; if P” = P”, we 
call cp a collineation. If we denote a correlation 

by zO, any other correlation is obtained as a 
composite of z0 and a collineation. If z is a 
correlation, it naturally induces a mapping 
Pl+P”, which we also denote by r. Then zor 
is a collineation. If 7 o 7 is an identity, we call 7 

an involutive correlation. Suppose that cp: P”+ 
P” is a collineation in the wider sense and 
0 ,< r < n - 1. Then cp induces a one-to-one cor- 

respondence between the set of r-dimensional 
subspaces of P” and the set of r-dimensional 
subspaces of P”; and if P’z P” in P”, then 
cpp’3 CpP”. 

Next, suppose that we are given two projec- 

tive spaces P” and P” that are subspaces of a 
space PN (n < N). (When Desargues’s theorem 
holds, any two projective spaces of the same 
dimension can be identified with subspaces of 
a projective space of higher dimension.) In this 
case, when a collineation in the wider sense 
cp : Pn-P is a projective mapping, we call it a 
projective collineation in the wider sense. A 
projective collineation is also called a projective 
transformation. The totality of collineations of 
P” constitutes a ttransformation group and is 

called the group of collineations of P”; we de- 
note it by K(P”). The totality of projective 
transformations of P” constitutes a tnormal 
subgroup of a(P”); we denote it by O(P”) and 
call it the group of projective transformations. 
The totality of projective transformations that 
leave invariant a frame 5 of P” constitutes a 

subgroup B)l,+l(s). It is isomorphic to the 
group of tinner automorphisms J(K) of the 
coefficient field K of P”. A collineation is not 

necessarily a projective transformation. The 
former is obtained as a composite of a projec- 
tive transformation and an automorphism of 

the coeffkient field. Specifically, if we denote 
the group of tautomorphisms of K by ‘%(K), 
then ~(P”)/B(P”)z’%(K)/~(K). Hence in order 
for all collineations to be projective transfor- 
mations, it is necessary and suffkient that all 

automorphisms of the coeffkient field be inner 
automorphisms. If the coeffkient field is the 
real number field, then collineations are always 
projective transformations. For the complex 
number field, however, this is not necessarily 
true. 

Now, we consider the following three pro- 
positions: (1) The coefficient field of P” is com- 

mutative. (2) Given frames 5 and 5’ of P”, 
there exists a unique projective transformation 

sending 5 onto 5’. (3) Given two distinct lines 
I, and I, contained in a plane in P” and two 
sets of three distinct points pi (i= 1,2,3) and qi 
(i= 1,2,3) that lie on I, and I, respectively, 

then the three points (p2 U q3) fl(p3 J q2), 
(~~Uq,)n(p,Uq,),and(~,Uq,)n(,7~Uq~)are 
collinear. These three propositions are mutu- 
ally equivalent. We call proposition (2) the 
fundamental theorem of projective geometry 
and proposition (3) the theorem of Pappus. If 

the coefficient field is the real (complex) num- 
ber field, we call the projective space a real 
(complex) projective space. In classical geom- 
etry, only these cases were studied. 

Suppose that the coeffkient field is com- 
mutative. Then, if we assign an isomorphism 

Q,,:K(p,,p,,p,)-+K for the Staudt algebra 
K(p,, pm, pJ on a line in a space, then the 
isomorphism 6 of the Staudt algebra K(q,, 
q,, ql) on an arbitrary line onto K can be 
uniquely determined so that 0-l o 8, is a pro- 

jective mapping. Utilizing such isomorphisms, 
we can determine homogeneous coordinates 
in an arbitrary subspace of P” by a frame on it. 

Suppose that the coefficient field is a com- 
mutative field whose characteristic is not 2. 

For four collinear points pi (1 < i < 4) in P”, 
where p, , p2, p3 are distinct and p4 # pl, we 
consider a frame such that pl, pz, and p3 are, 
respectively, the supporting point, l.he origin, 
and the unit point. The inhomogeneous co- 
ordinate 1 of p4 with respect to this frame is 
called the anharmonic ratio (cross ratio or 

double ratio) of these four points and is de- 
noted by [p1,p2;p3,p4]. If we denote the 
inhomogeneous coordinates of pi with respect 
to a general frame by (~0, x!) (i = 1,2,3,4), then 
3, can be expressed as 

Moreover, if we interchange the order of the 

four points, then we have 

i = CP2r Pli P4, P31 

=CP3,P4;P1rP*l 

=cP4>P3;P*~PIl> 

IP,,Pz;P4.P31=:> A 

cPI>P3;P*>P41=l-A 
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In general, these six values are different; how- 

ever, there are the following two exceptions: 
when 1= -1, l/2, and 2; and when 1 is a root 
of 12--1+ 1 =O. When 1= -1, these four 
points are called a harmonic range of points, 
and the points p3, p4 are called harmonic 

conjugates with respect to pl, p2; or pl, p2 and 
pa, p4 are said to be harmonically separated 

from each other. When I2 -A + 1= 0, these 
four points are said to be an equianharmonic 
range of points. For the dual of these, we can 

consider the anharmonic ratio of four hyper- 
planes of a pencil of hyperplanes. The concept 
of the anharmonic ratio can be extended fur- 
ther to the case of four elements of funda- 
mental figures in general. The anharmonic 
ratio is a quantity that is invariant under 
projective transformations. 

Each projective transformation X+X is 
expressed with respect to homogeneous co- 
ordinates xa (0 < CI < n) of P” as 

PZO, det(t,“) #O. 

Conversely, if T= (ti) is a tregular matrix 
(t; EK), then (1) determines a projective trans- 
formation. So there is a one-to-one corre- 

spondence between projective transformations 
and tequivalence classes of the regular ma- 
trices T=(t;) with the tequivalence relation 
T-~T(IEK\{O}). Therefore, when K is com- 

mutative, the group of projective transforma- 
tions 6( P”) of P” is isomorphic to the factor 
group PGL(n + 1, K) of the tgeneral linear 

group GL(n+ 1, K) with the coefficient field K 
by its center {pllp~K\{O}}; that is, 6(P”)g 
PGL(n + 1, K). 

Extending the definition of projective trans- 
formations, we call the transformation repre- 
sented by (l), with an arbitrary square matrix 
that is not necessarily regular, a projective 

transformation. When T is regular, it is called 
a regular projective transformation, and when 
T is not regular, it is called a singular projec- 

tive transformation. In particular, if the frank 
of T is n + 1 -h, then we say that the projective 
transformation is singular of the hth species. If 

(1) is singular of the hth species, n + 1 hyper- 
planes ZFzo tixa = 0 (0 < a < n) have a space 
P*-’ in common. We call Phml the singular 
s&space of this transformation. A projective 
transformation is not defined on its singular 
subspace. A singular projective transformation 
of the hth species is the composite of the pro- 
jection of P” onto some Pneh with the singular 
subspace as its center and a regular projective 

transformation of Pnmh. 

If the coordinates of a point are denoted 
by (x”) and hyperplane coordinates with 

respect to some frame by (X,), then the linear 
transformation 

is a correlation. (Here also, we extend the 
definition of correlation and include the case 
where T, = (t$) is not regular.) The condition 
that z* is an involutive correlation is given by 
T* = + ‘T,. When T, = -IT*, the involutive 

correlation r* is called a null system. The 
correlation r* is a null system if and only if 

any point x of P” is contained in the hyper- 
plane r*(x). When T* =‘T*, we call the involu- 

tive correlation z* a polar system. For a polar 
system r*, the set of points x that are con- 
tained in hyperplanes z*(x) constitutes a qua- 
dric hypersurface (or hyperquadric). 

E. Quadric Hypersurfaces 

Let 7* be a polar system, and let Q;-’ be the 
totality of points x contained in z*(x). Then 
the equation of the quadric hypersurface Q;-’ 
is given by 

(3) 

For such a correlation 7* we call a relation 

between the set of points x of P” and the set of 
hyperplanes z.+(x) a polarity with respect to 
Q!-l. We call 7,(x) the polar of x with respect 
to Q;-‘, and x the pole of z,(x) with respect 
to Q;-‘. If the points of intersection of a line 

passing through a point x with Q”;’ and 7*(x) 

are denoted by zl, z,; y, then x, y; zl, z2 is a 
harmonic range of points. When a point x lies 
on the polar of a point y, we say that x and y 
are mutually conjugate. Each point on Q;-’ is 
conjugate with itself, and the converse is also 
true. We call the polar of a point on Q;-l the 

tangent hyperplane of Q;-’ at that point. 
If 7* is regular or singular of the hth species, 

we call the corresponding quadric hypersur- 
face regular or singular of the hth species. If 7* 

is singular of the hth species, its singular sub- 
space is contained in Qt-‘. We call points on 
this singular subspace singular points of Q;-‘. 
Q”;‘, which is singular of the first species (i.e., 
Qn2-l with just one singular point), is called a 

cone. 
We call a subspace contained in Q;-’ a 

generating space. If it is a line we call it a 

generating line. We put q = (n - 2)/2 or (n - 1)/2 
according as II is even or odd. Then, if the 
coefficient field is an talgebraically closed 

field, for each regular Q;-’ there necessarily 

exist q-dimensional generating spaces. Also, 
Q: is a truled surface covered by two families 
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of generating lines, and Qi” is covered by two 
families of k-dimensional generating spaces. 

If pi (1 < i < 5) are live points in a general 
position in a plane, then there exists one and 
only one Qi passing through these points; we 
call Qi a conic. In order that six points pi 
(1 < i < 6) in a plane lie on Qi, it is necessary 
and sufficient that the three points (pi Up,)fl 

(~4 U ~4, (~2 U ~3) n(ps U PA> and (~3 U ~4) f- 
(p6 Up,) be collinear (Pascal’s theorem). The 

dual of the last theorem is called Brianchon’s 
theorem. 

Given two hypersurfaces Q;-‘, Q;-’ in P”, 
we consider another &’ such that the polar 

of an arbitrary point x with respect to &’ 
belongs to the pencil of hyperplanes deter- 
mined by polars of x with respect to Qn2-l 
and Q’-‘. The set of all such &’ is called a 
pencil of quadric hypersurfaces. It is the set of 
all &’ that pass through the intersection of 

Q;-’ and Q;-i. In the cases n = 2 and 3, we 

call it a pencil of tonics and a pencil of quad- 
rics, respectively. 

Denoting by Iij and Fj (0 < i <j < 3) the 
tPliicker coordinates of two straight lines 1 
and i in P3, we put 

(1 1)=10’t23_102t13+103T12 

+~01~23~~02~13+~03~12, 
(4) 

Then (I, 1) = 0 holds. If we regard these Iij as 
homogeneous coordinates of P5, then there 

exists a one-to-one correspondence between 
the points on the regular quadric hypersurface 
Q: defined by (1, I) = 0 and the lines in P3. We 
say that each point of Qt is the image of the 
line corresponding to it in P3. Two lines 1 and 

7 intersect if and only if (1,T) = 0. Geometrically, 
this means that the images of I and f are con- 
jugate with respect to Qt. Therefore the line 
passing through the images of 1 and 7 is a 
generating line of Q$. The image of a pencil of 
lines in P3 is a generating line of Qt. Quadric 

hypersurfaces and sets of lines in P3 are im- 
portant objects of study in both projective and 
algebraic geometry. In particular, linear line 

congruences (linear line complexes) that are 
families of lines dependent upon two (three) 
parameters are of great interest. In these 
theories, quadric hypersurfaces play a fun- 
damental role. When the coefficient field is 
noncommutative, the above theory has to be 
greatly modified. 

F. Projective Geometry and the Erlangen 
Program 

From the standpoint of the tErlangen pro- 
gram of F. Klein, the aim of projective geom- 

etry is to study properties that are invariant 
under the group of projective transformations. 

Utilizing various subgroups of this group, we 
can reconstruct various classical geometries. 
For example, consider the projective space P” 
whose coefftcient field is the real number field, 
and fix a hyperplane 17,. Let G(P”) be the 

subgroup of projective transformations formed 
by all projective transformations that leave II, 

invariant. Then the geometry that belongs to 
this group is taffine geometry. Similarly, fix 
an imaginary regular quadric hypersurface 

Q;-” in II, and consider the geometry that 
belongs to the subgroup of G(P”) leaving this 
Q;-2 invariant. We thus obtain Euclidean 
geometry. Moreover, if we assign some regular 
quadric hypersurface Qt-‘, then the geometry 
belonging to the subgroup of (li(P”,l that leaves 

thee2 n-1 invariant is a tnon-Euclidean or 

tconformal geometry according as the trans- 
formation space is the set of inner points of 

Q;-’ or the whole Q;-‘. 

G. Projective Geometry and Modular Lattices 

tLattices (lattice-ordered sets) and projective 
geometry are intimately related. The totality of 

subspaces of each dimension in general projec- 
tive geometry ‘p constitutes a tcomplete 
tmodular lattice L(‘p) with respect to the in- 
clusion relation. If ?p is a finite-dimlensional 
projective geometry, then it is an tirreducible 
complemented modular lattice of finite theight. 

Conversely, suppose that L is a modular lat- 
tice with tminimum element @, and denote by 

P the totality of elements p tprime over @ (i.e., 
tatomic elements) and by Q the totality of 
elements 1 prime over atomic elements. Then, if 
p < I and (p, l) E F:, Fp(L) = {P, Q, F} is a general 
projective geometry. If L is an irreducible 
complemented modular lattice of finite height, 
then p(L) is a linite-dimensional projective 

geometry; in this case we have ‘@ % ‘@(L(v)) 
and L e L@(L)). So we may consider projec- 

tive geometry and irreducible complemented 
modular lattices as having the same mathe- 
matical structure. If a lattice L is an n- 

dimensional projective geometry, its tdual lat- 
tice is also an n-dimensional projective geom- 
etry, and this is the principle of duality. 

H. Analytic Representations of Projective 
Geometry 

Let K be an arbitrary field, commutative or 
noncommutative. For an arbitrary natural 

number n, we consider an (n + 1)-dimensional 
(for the noncommutative case, right or left) 

linear space I”‘+‘(K) over K. The totality of 
linear subspaces in it constitutes an irreducible 
complemented modular lattice P”(K) with 
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respect to the inclusion relation, and P”(K) 
gives rise to an n-dimensional projective geom- 
etry. We call it a right or left projective space. 
Points of P”(K) correspond to (right or left) 
l-dimensional linear subspaces. Conversely, 
it can be shown that an n-dimensional projec- 
tive geometry over K is isomorphic to P”(K). 

Therefore projective geometries can be com- 
pletely classified by means of the natural 
number n and the field K except when n = 2 
and the geometry is non-Desarguesian. We 
may restate this fact as follows: We consider a 
space P”= V-“+‘(K) - (0). If we fix a basis of 
I/“+‘(K), then we can represent P” = {x=(x’, 

Xl ,..., x”)~x=~K,O,<cc<‘n}, x#(O,O ,..., 0). If 
there exists a nonzero element 1 of K such that 
y = xl, then the elements x and y are called 
equivalent; we write x N y. We denote by P”(K) 
the factor set of P under the foregoing equiva- 
lence relation, and by [x] the equivalence class 
that contains x. We put I([x],[y])={[z]lz’= 
x”~+Y”P,V~WK) and Q=~~(~xl,C~l)lCxl~ 
[y] EP”(K)}. We call each element of P”(K) a 
point and each element of Q a line. Then these 
points and lines and the natural inclusion 
relation satisfy axioms (I)-(IV) and give an n- 
dimensional projective geometry. When K is a 
ttopological field (e.g., the real number field, 
the complex number field, or the tquaternion 
field), we may define the topology of P”(K) as 
the factor space P”(K) = p/ N. In particular, if 
K is the real number field R, then P”(R) is 
homeomorphic to the factor space obtained 
from the n-dimensional hypersphere S” :(x0)’ + 
. . . + (x”)’ = 1 in the (n + 1)-dimensional Eucli- 
dean space En+’ by identifying the end points 
of each diameter. Hence P”(R) is compact. 
Similar facts hold for the cases of the complex 
and quaternion number fields. Since the group 
of projective transformations 0(P”(K)) acts 
ttransitively on P”(K), if K is a topological 
field we can regard P”(K) as a thomogeneous 
space of the topological group B(P”(K)). 
Moreover, the totality of r-dimensional sub- 
spaces in P”(K) constitutes a TGrassmann 
manifold. In algebraic geometry the tdirect 
product of two projective spaces is important; 
we call it a biprojective space. 

I. Tits’s Theory of Buildings (Generalization of 
Projective Geometry) 

In a situation when a triple (G, B, N) consisting 
of a group G and its subgroups B, N satisfies 
the axioms of a BN-pair or Tits system (- 13 

Algebraic Groups R), a new geometric object, 
called a “building,” was introduced by J. Tits 
[9]. His theory contains projective geometry 
as a particular case. The theory of buildings 
has deep connection with algebraic groups. 

The Tits system corresponds to a projective 
geometry in the following case. Let k be any 
commutative field, and let G be the general 
linear group of degree n over k, i.e., G consists 
of all nonsingular square matrices of degree n 
with entries in k. Let B be the subgroup of G 
consisting of all upper triangular matrices (i.e., 
matrices whose entries below the principal 
diagonal are all zero). Let N be the subgroup 
of G consisting of all monomial matrices (i.e., 
matrices such that each column and each row 
contain just one nonzero entry). Then (G, B, N) 
forms a Tits system called type (A,-,). The 
corresponding theory of buildings of the type 
above is nothing but the projective geometry. 
Thus by means of Tits’s theory of buildings the 
relationships among projective geometry and 
other geometries have been clarified [9]. 
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344 (Vll.22) 
Pseudoconformal Geometry 

A. Definitions 

Let A and A’ be subsets (with relative topol- 
ogy) of tcomplex manifolds X and X’ of dimen- 
sion n, respectively. A homeomorphism f of 
A onto A’ is called a pseudoconformal trans- 

formation if there exists a tbiholomorphic 
mapping f of an open neighborhood of A in X 
onto an open neighborhood of A’ in x’ such 
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that y(x)=f(x) for x6.4. If there exists such a 
mapping ,I; A is said to be pseudoconformally 

equivalent to A’. Pseudoconformal geometry is 
a geometry that studies geometric properties 
invariant under the pseudoconformal equiva- 
lence. However, most studies in pseudocon- 
formal geometry so far have concentrated 

mainly on the investigation of smooth hyper- 
surfaces in a complex manifold-more specifi- 

cally, the smooth (or real analytic) boundaries 
of bounded domains in C”. In fact, to pseudo- 

conformal geometry on hypersurfaces we can 
apply the methods of differential geometry as 
well as those of the theory of functions of 

several complex variables. 
H. Poincare [1] studied perturbations of 

the boundary of the unit ball in C2 that are 
pseudoconformally equivalent. E. Cartan [2] 
studied the equivalence problem of hyper- 

surfaces in C* and gave the complete list of 
all simply connected hypersurfaces on which 
the group of pseudoconformal automorphisms 
acts transitively. Such a hypersurface is called 
homogeneous. 

Let M be a smooth hypersurface in a com- 
plex manifold X with the +almost complex 
structure tensor J, i.e., J,: T,X* T,X is an 
involutive linear automorphism ofjhe tangent 
space T,X of X at x induced by the complex 

structure of X. Put H,M = T,M n J, T,M for 
x E M. The union of all H,M is called the 
bundle of holomorphic tangent vectors of M 

and is denoted by H(M). H(M) is also called 
the CR (Cauchy-Riemann) structure of M. Let 

M’ be a smooth hypersurface in a complex 
manifold X’. A diffeomorphism f: M+M’ is 
called a CR-equivalence if the tdifferential 
mapping rf:f: TM + TM’ off preserves the 
CR-structures, where TM denotes the ttangent 
bundle of M. If f: M-M’ is a pseudocon- 
formal transformation, then f is clearly a CR- 

equivalence. Let E, be the annihilator of H,M 
in TX*(M). Then the union of E, (xEM) defines 
a tline bundle E over M. The Levi form L, at 

XEM, defined only up to a multiplier, is the 
quadratic form on H,M defined by L,(u, u) = 
dO(u, a) for U, UGH,M, where fI is a nonvanish- 
ing section of E in a neighborhood of x. If the 
Levi form is nondegenerate at every point of 

M, M is called a nondegenerate hypersurface. 
In particular, if the Levi form is definite, then 
M is called strictly pseudoconvex. 

B. Equivalence Problem 

Cartan studied the equivalence problem for 
the case n = 2, and obtained a criterion for two 

hypersurfaces in C2 to be pseudoconformally 
equivalent. N. Tanaka (1965) generalized the 

method of Cartan for the case n 2 3 and ob- 

tained a criterion in terms of +Cart.;ln connec- 
tions in some fiber bundle over the hypersur- 
faces. However, he did not publish the proof of 
his result until S. S. Chern and J. Moser [4], in- 

dependently of Tanaka [3], obtained a similar 
result and gave the first proof of this result. 
Let M be a real analytic hypersurface in C”+’ 

(n > 1) whose Levi form has p positive and 
q negative eigenvalues (p + q = n). L.et H be 
the subgroup of SU(p + 1, q + 1) lea,ving the 
point (l,O, , O)EC”+’ fixed. According to the 
Cartan-Tanaka-Chern-Moser result, we can 
construct functorially a principal fiber bundle 
Y over M with structure group H and a Car- 
tan connection w  on Y with values in the Lie 
algebra of SU(p+ l,q+ 1) such that if M and 

M’ are pseudoconformally equivalent, then 
there is a bundle isomorphism cp 01“ Y to Y’ 
preserving the Cartan connections: v*w’ = w, 

where Y’ is the corresponding principal fiber 
bundle over M’ and u’ is the Cartan connec- 

tion on Y’. Conversely, if there is a bundle 
isomorphism cp of Y to Y’ such that ‘p*w’= o, 

then M and M’ are pseudoconformally equiva- 
lent. By using this solution of the equivalence 
problem, we can prove that the group A(M) 
of all pseudoconformal automorphisms of a 
nondegenerate real analytic hypersurface M in 

a complex manifold X of dimension n is a Lie 
transformation group of dimension not exceed- 

ing n* + 2n. H. Jacobowitz [S] con,structed 
a similar bundle B over M and a Cartan con- 
nection on B in a different way fro-m that of 
Chern and Moser. We do not know whether 
B and Y actually coincide. 

C. Classification 

Cartan (1932) classified all simply connected 
homogeneous hypersurfaces in C*. In partic- 

ular, he proved that if M is a compact homo- 
geneous strictly pseudoconvex hypersurface 
with dim M = 3, then M is pseudoconformally 
equivalent to either (1) S3 or its quotient by 
the action of a root of unity or (2) the hyper- 
surface given in the 2-dimensional projective 
space by the equation in homogeneous coordi- 
nates:(z,z,+z,z,+z,~,)* = m*]z~+z~+z~\* 
(m> 1) or the double covering of such a sur- 

face. A. Morimoto and T. Nagano [6] and 
later H. Rossi [7] tried to generalize this 
result and obtained a partial classification of 
simply connected compact homogeneous 

hypersurfaces with dimension > 5 D. Burns 
and S. Shnider [S] classified all sirnply 
connected compact homogeneous strictly 
pseudoconvex hypersurfaces M wrth dim M = 
2n + I 2 5. They proved that A4 is pseudo- 
conformally equivalent to .S*“” or the tangent 
sphere bundle of a rank one isymmetric space 
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or the unit circle bundle of a homogeneous 
negative line bundle over a homogeneous 
algebraic manifold. 

On the other hand, a real hypersurface M in 
a complex manifold X of complex dimension 
n + 1 is called spherical if at every point p E M, 
there is a neighborhood of p in X such that 
U n M is pseudoconformally equivalent to an 
open submanifold of S’“+‘. The hyperquad- 
ric p+l= a&+, is spherical, where U,,, = 

{(z 1 ,..., z,+1)EC”+111m(z,+,)>lz,12+...+ 
1z,12}. If M is spherical, then the universal 
covering space fi of M is also spherical. If M 

is a homogeneous spherical hypersurface, then 
there is a covering into mapping f: a-+S”‘+l, 

and f(fi) is a homogeneous domain in S2n+1. 
We know that the only compact simply con- 
nected spherical M is S 2”+1. Burns and Shnider 
classified all homogeneous domains M in 
S’“+‘: M is pseudoconformally equivalent 
to (I) or (II) of the following: (Ia) S2”+l - 
V fl S’“‘l, where V is a complex vector sub- 
space of C”+’ with O,<dim, V<n. (Ib) Qn+l- 

L, 0, 0 < m < n, where L, is a certain sub- 
group of SU(n + 1, l)/(center). (II) S*“+l - 
S2”+l flR”+‘. At present, it seems difficult to 
extend Cartan’s classification of all simply 

connected homogeneous hypersurfaces to 
higher dimensions. K. Yamaguchi (1976) 
treated a hypersurface M in a complex mani- 
fold of dimension n with a large automorphism 
group A(M). He showed that if dim A(M)= 

n2 + 2n, then M is a real hyperquadric in the 
n-dimensional complex projective space P,,C 

(- Section B). He then showed that the sec- 
ond largest dimension for A(M) is equal to 
n2 + 1 except when n = 3 and the index r = 1, 
for which dim .4(M) = 1 1( = n2 + 1). Under the 
additional assumption that M is homoge- 

neous, he showed that if dim A(M) = n2 + 1, 
then M is the afflne part of a real hyperquadric 
in P,,C (except when n = 5 and r = 2). He also 
obtained a similar result in the nonhomoge- 
neous case. 

D. Relations to Other Equivalences 

Let D, and D, be bounded domains in C” with 
smooth boundary aD,= Mi (i = 1,2) for which 
we denote by H(M,) the CR structures. We 

consider the following propositions (A)-(D) for 
these domains: (A) D, is biholomorphically 
equivalent to D,. (B) Ml is CR equivalent to 
M,. (C) M, is pseudoconformally equivalent to 
M2. (D) There is a diffeomorphism f: fil -0, 
such that fl ,,, : D, -+D, is biholomorphic. 

It is clear that (C) implies (D) and that (D) 

implies (A). On the other hand, we can prove 
that (B) is equivalent to (D). When does (A) 
imply (B) and when does (B) imply (C)? 

C. Fefferman [lo] proved that (A) implies 
(D) when D, and D, are strictly pseudoconvex. 
S. Bell generalized the result of Fefferman in 

the case when one of D, and D, is strictly 
pseudoconvex. Bell and E. Ligocka [ 1 l] 
proved that if M, and M2 are real analytic and 
if D, and D, are pseudoconvex, then (A) im- 
plies (D). When D, and D, are not strictly 
pseudoconvex and Mi is not real analytic, we 
do not know whether (A) implies (D) or not. 

As remarked by Burns, Shnider, and Wells 
(1978), by using the theorem of Fefferman, 

we can prove that (A) implies (C) when M, 
and M2 are real analytic and if D, and D, 
are strictly pseudoconvex. I. Naruki [ 123 

obtained the same result. We do not know 
whether (A) implies (C) when M, and M, are 
real analytic and D, and D, are pseudoconvex, 
though we know that (A) implies (B). We do 
not know whether (B) implies (C) in general. 

S. I. Pinchuk [ 133 proved the following: 
Let D, D’ be strictly pseudoconvex domains in 

C” with simply connected real analytic bound- 
aries aD, aD’. Let f: U+C” be a nonconstant 
holomorphic mapping from a connected neigh- 

borhood U of a point PE aD in C” into C” such 
that f (U n aD) c aD’. Then we can find a holo- 
morphic mapping f:D+D’ such that J(x)= 

f(x) for XED fl U. Combining this theorem 
with Fefferman’s result we see that for two 
domains as above, D is biholomorphically 
equivalent to D’ if and only if aD is locally 

pseudoconformally equivalent to au, i.e, there 
are neighborhoods U and V of a point p E LID 

and q E do’, respectively, such that U n aD and 
V fl aD’ are pseudoconformally equivalent. 

Concerning the tproper holomorphic map- 

pings rather than diffeomorphisms, Burns and 
Shnider (1979) proved the following theorem: 
Let Mi = dD, (i = 1,2) be strictly pseudoconvex, 

and let f: D, +D, be a proper holomorphic 
mapping. (a) If D, =D,, then f extends smoothly 

up to the boundary D, . (b) If aD, is real analy- 
tic for i = 1, 2, then f extends holomorphically 

past the boundary. 

E. Deformations of Domains 

Let M be a compact connected strictly pseudo- 

convex real hypersurface in a complex mani- 
fold X of dimension n + 1. Let cp be a smooth 
strictly tplurisubharmonic function defined 
on a neighborhood V of M such that M = 
{x~VIcp(x)=O} anddq#Oon M. Let U= 
{x E VI --E < p(x) < E} for small E > 0 such that 
Z? is compact and aU is smooth. Let g(u) 
be the open set in Cm(U) of strictly plurisub- 

harmonic functions $ with dt+b A & A (d&b)” #O 

on u. Let B c Rk be a small open ball around 
0. We denote by p( u x B) the set of $ cCm( u 
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x B) such that +(x, t) = $,(x)E~( U) for all t E l?. 
For(1,EY(UxB)wesetM,,,={xcUl$,(x)= 

6). After introducing these notations, Burns, 
Shnider, and Wells (1978) proved the following 
theorem. There exists an open dense set V c 
Y( U x B) with cp E V and a set of tsecond 
category &? c V such that for every $ E%?, 
ti~B and 6,cR small enough, (i) Mt,,d, is CR- 
equivalent to Mfl,dl if and only if t, =t,, 6, = 
6,. (ii) The group of CR-automorphisms of 
M reduces to the identity only. For $E 
Y[$; B), taking t E B, 6 E R small enough, Mf,d 

is a compact connected strictly pseudoconvex 
hypersurface in X. If M bounds the relatively 
compact region D in X then M,,, also bounds 

a relatively compact region D,,,. In particular, 
there exist smooth families of deformations 
of the unit ball in C”+’ of arbitrary high di- 
mension. There are arbitrary small perturba- 
tions of the unit sphere in C”+’ that admit no 
pseudoconformal transformations other than 
the identity. 

F. Topics Related to Pseudoconformal 
Geometry 

(1) Pinchuk (1975) proved the following: Let 
D,, D, be strictly pseudoconvex domains in C” 
with C” boundary aD,, aD,. Let U be a neigh- 
borhood of a point psaD, in C”. If there is a 

Cl-mapping f: U fl o1 +C” such that f is 
holomorphic on U fl D, and f( U n aD,) c aD,, 
then there is a holomorphic mapping 7: U’-+ 
C” of a neighborhood U’ of U f’aD, into C” 
such that y(x) =f(x) for XE U n & n U’. This 

result is related to the implication (B) Z-(C) in 
Section D. 

(2) H. Alexander [14] proved the follow- 

ing: Let U be a connected neighborhood of a 
point p6S “-i in c” and f: U-42” a holomor- 
phic mapping such that f( U n S’“-‘) c S2”-‘. 
Then either f is a constant mapping or there is 
a biholomorphic automorphism 7: B,+B, of 
the unit open ball B, such that y(x) =f(x) for 
XE U n B,. He also proved that every proper 

holomorphic mapping f: B,+B, is necessarily 
an automorphism of B, if n > 1. G. M. Henkin 
(1973) proved that every proper holomorphic 

mapping f: D, +D, of a strictly pseudoconvex 
domain D, into a strictly pseudoconvex D, can 
be extended continuously to a function 7: 0, + 
0,. More precisely, there is a constant c > 0 
such that If(zl)-f(zz)I<cIz, -~~lr/~ for every 

~1, ~2~4. 

(3) Let M be a real hypersurface in C”+’ 
with H(M) the bundle of holomorphic tan- 
gent vectors to M. We take a real nonvanish- 

ing l-form 0 that annihilates H(M). S. M. 
Webster (1978) called the pair (M, 0) a pseudo- 
Hermitian manifold. He considered the equiv- 

alence problem of pseudo-Hermitian mani- 
folds by applying Cartan’s method of equiv- 

alence. He proves, among other things, that 
the group of all pseudo-Hermitian transforma- 
tions of the nondegenerate pseudo-Hermitian 
manifold (M, 0) of dimension 2n + 1 is a Lie 
transformation group of dimension not ex- 
ceeding (n + 1)‘. Webster considered the rela- 
tion between pseudo-Hermitian manifolds 
and pseudoconformal geometry and proved 

that for n > 2 the ellipsoid E given by the equa- 
tion A,x:+B,y:+...+A,+,x,Z+,+B,+,y,2+,= 
l,wherez,=x,+iy,(k=l,...,n+l)ispseudo- 
conformally equivalent to the hypersphere 
S2”” if and only if A, = B, (k = 1, . , n + 1). 

This result gives, by virtue of Fefferman’s 
theorem, a necessary and sufficient condition 
for an ellipsoidal domain to be biholomorphi- 
tally equivalent to the unit ball. 
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345 (X111.33) 
Pseudodifferential Operators 

A. Pseudodifferential Operators 

Pseudodifferential operators are a natural 
extension of linear partial differential opera- 
tors. The theory of pseudodifferential opera- 
tors grew out of the study of singular integral 
operators, and developed rapidly after 1965 
with the systematic studies by J. J. Kohn and 
L. Nirenberg [ 11, L. Hiirmander [2], and 
others. The term “pseudodifferential operator” 
first appeared in Kohn and Nirenberg [ 11. 

Let P be a tlinear partial differential opera- 
tor of the form 

p = p(x, DX) = c aa(x) 
lal<m 

(1) 

and let u(x) be a function of class C;(G) 
(c Cz(R”)). Then by means of the tFourier 
inversion formula, Pu(x) can be written in the 
form 

z%(x) =(27pZ 
s 

exp(ix. 5)p(x, tMW5, (2) 
R” 

where t2([) denotes the tFourier transform of 
u(x) (- 160 Fourier Transform H). But this 
representation of Pu(x) has a meaning even if 
p(x, r) is not a polynomial in <. Thus, for a 
general function p(x, 0, the pseudodifferential 
operator P =p(x, 0,) with the symbol p(x, 5) is 
defined by (2). A symbol class is determined in 
accordance with various purposes, but it is 
always required that the corresponding opera- 
tors have essential properties in common 
with partial differential operators. Horman- 
der [3] defined a symbol class SF,(G) for real 
numbers m, p, and 6 with p > 0 and 6 > 0 in the 
following way: Let p(x, 5) be a Cm-function 
defined in R x R”. If for any pair of multi- 
indices E, p and any compact set K c R”, there 

exists a constant Cb,B,K such that 

lD~DrsP(x,r)l~c,,,,,(l +It3m+d’=‘-p’fl’, 

XEK, PER”, 

then p(x, 5) is said to be of class S:,(G). The 
operator P defined by (2) is called a pseudo- 
differential operator (of order m) of class 
SE,(n) and is often denoted by P = p(x, 0,) E 
S,l#). When 0 = R” and constants Ca,fi,,s,x = 
C,,@ are independent of K, we denote SEd(R”) 
simply by Szd, and set 

Differential operators (1) with coefficients of 
class g (- 168 Function Spaces B(13)) belong 
to s;l,,. The complex power (1 -A)@ of l- 
A = 1 - & a*/i?x,2 is defined as a pseudo- 
differential operator of class Sf,ei by the sym- 
bol (1 + l (I*)‘/*. Operators of class SF, are 
continuous mappings of Y into Y. Therefore, 
for any real s, the operator (1 - A)s” can be 
uniquely extended to be a mapping of Y’ into 
Y’ by the relation 

((1-A~‘*u,u)=(u,(1-A)s’*~), 

UEY’, VEY. 

For any 1 < r < co and real s, the tSobolev 
space H”,’ is defined by 

HS*‘={u~Y’l(l-A)S’*ueL,(R”)}, 

which is a Banach space provided with the 
norm ~Ju//,,,= j/(1 -A)““uII,. In particular, 
H”= Hsg2 is a Hilbert space with the norm 
lI4,= II~lls,z. Set 
H-“J- 

- u 
H”.‘, H-=O=H-W.2, 

-m<s<m 
fp’- - n H”,‘, H” =H”,*. 

-m<s-cm 

Then 

Choosing the Hormander class SF, in the 
case0<6<p<l anda< asamodelclass, 
we here list the main results of the theory of 
pseudodifferential operators: 

(i) Pseudolocal property. The operator P of 
class SF6 in general does not have the local 
property u E Y’ * supp Pu c supp u, but if p > 
0, then P has the pseudolocal property u E 9” * 
sing supp Pu c sing supp u [3]. 

(ii) Algebra of pseudodifferential operators. 
Let P=p(x,D&Sz, and 3=pj(x,DX)~Sz,, 

j= 1,2. Then there exist P*=p*(x,D&S~, 
and Q = q(x, D,)E SF;+mz such that (Pu, v) = 
(u, P*u) for u, UEY, i.e., P* is the forma1 ad- 
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joint of P, and Q = P, PI. Furthermore, if 

we set POX, 5) = WD$P(X, 5) and qAx, 5) = 
(iD,)ap, (x, <)D&(x, <), then for any integer 
N we have 

and 

(4) 

Hence the operator class SFn is an algebra in 
the sense 

where m, = max(m,, m2). In particular, if 0 < 
fi<p<l, we havem-(p--6)N+-m and 

m, +m,-(p--G)N-+-co as N+co. Then, we 
say that p*(x, 5) and q(x, () have asymptotic ex- 
pansions in the sense of (3) and (4), respectively: 

P*k i)-gP:(x> 0 

and 

c3,41. 
(iii) H”-boundedness. For P E Srd and any 

real s there exists a constant C, such that 

llp4dCsllulls+,, UEW+” 

c41. 

(5) 

(iv) A sharp form of Gkding’s inequality. 

Let p(x, <) = (pj,(x, 5); j, k = 1, . , I) be a Her- 
mitian symmetric and nonnegative matrix of 

P~,~(x, 5) E SFd. Then for P = p(x, 0,) there exists 
a constant C such that 

WPu,u)> -Cll~Ilf~-~~-~,,~~, (6) 

whereu=(u, ,..., u,)withujEHm”,j=l ,..., 1, 

and Il~ll~~~=C,!=~ll~~ll~~~~ 
(v) Invariance under coordinate transfor- 

mations. Assume that 0 < 1 - p $6 < p < 1. Let 

x(y)=(x,(y), .,.,x,(y)) be a Cm-coordinate 
transformation from R; onto R: such that 
ax,(y)/Zyjeg, j, k= 1, . . . . n, and Cm’ < 
Jdet(a,x(y))l<C for a constant C>O, where 
det(Z,x(y)) denotes the determinant of the 
Jacobian matrix (3,x(y)) = (ax,(y)/ayj). Then 
for any P = p(x, D,)E SE8 in R:, there exists 
an operator Q = 9(x, Dx)eSEd in R; such that 

(Qw)(y)=(Pu)(x(y))for w(y)=u(x(y))~Y. This 
fact enables us to define pseudodifferential 
operators on C”-manifolds [3,4]. 

(vi) Parametrix. For a given PsSE,, an 

operator E E SE, is called a left (resp. right) 
parametrix of P if EP - I (resp. PE - I) is of 

class Se r”. If E is a left and right parametrix of 

P, we call it a parametrix of P. For a differen- 

tial operator P, the existence of a left (resp. 
right) parametrix is a sufficient condition for P 

to be thypoelliptic if p > 0, (resp. the equation 
Pu = f ~9’ is locally solvable). 

The estimate (5), in particular, when m = s = 
0, has been obtained by Hiirmander [3], V. V. 
Grushin (Functional Anal. Appl., 4 1:1970)), 

H. Kumano-go (J. Fat. Sci. Univ. Tokyo, 17 
(1970)) when 0 < 6 <p < 1, and A. P. Calder6n 
and R. Vaillancourt [S], H. 0. Cordes (J. 
Functional Anal. 18 (1975)), T. Kato (Osaka 

J. Math., 13 (1976)), Kumano-go pt], and 
otherswhen0<6<p<landfi<l. Asharp 
form of Girding’s inequality has been proved 

by Hkmander [6], P. D. Lax and L. Niren- 
berg [7], and sharpened by A. Melin (Ark. 
Mat., 9 (1971)), C. Fefferman and D. H. Phong 
(Proc. Nat. Acad. Sci. US, 76 (19791), and 
HGrmander [S]. A general sufficient condition 
for the existence of a parametrix for an opera- 

tor of class Sz, was obtained by HGrmander 
[3]. Let P=p(x,D,) belong to S:, with 0~ 

6 <p < 1. Assume that the symbol ,7(x, 5) satis- 
lies the following conditions: (i) for some C, > 

O,realm’(<m),andR>O,wehave Ip(x,<)l> 
C, I< I”” (I 5 I> R); (ii) for any c(, b there exists a 
constant C,.,,, such that 

lD,pD;~(x> O/p(x> 01 G Co,,,D1516’p’-p’a’, 

1512R. 

Then there exists a parametrix Q = q(x, D,) of 

P in the class Sp;r’. 
By means of operators of class S;t,#) we 

can define the wave front set of u E g’(n), 

which enables us to resolve sing supp u on 
T*(R)\O, the cotangent bundle of R minus its 
zero section. An operator P = p(x, DX) E S;lo(0) 
is said to be microlocally elliptic at (x0, 5’)~ 

T*(R)\0 if lim,,, Ip(~~,z~~)l/l~~~1”>0. For 
a distribution u E s’(O), we say that a point 

(x0, 5’) of T*(R) 10 does not belong to the 
wave front set (or the singular speclrum) of u, 
denoted by WF(u), if there exist a(.<), ME 

CW), 4x0) #O, b(xO) 20, and PE S;to(n), 
which is microlocally elliptic at (xc’, to), such 
that aPhu~C~(R). Then we easily see that 
WF(u) is a closed conic subset of 7’*(R)\O. An 
important fact is that the relation smgsuppu = 

Proj, WF(u) (the projection of WF(u) on a) 
holds, from which we can perform a so-called 

microlocal analysis, the analysis on T*(R)\O, 
of sing suppu. As the sharp form of the pseudo- 
local property of an operator PE SFdr if 
0 < 6 < p < 1, P has the micro-pseudolocal prop- 

erty: u~Y’ 3 WF(Pu)c WF(u). 
Pseudodifferential operators of multiple 

symbol have been defined by K. 0. Friedrichs 

(Courant Inst., 1968) and Kumano-go [4]. 
More refined and useful classes of pseudo- 
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differential operators have been defined by R. 
Beals (Duke Math. J., 42 (1975)) Hormander 
[S], and others. 

The theory of pseudodifferential operators 

has found many fields of application, such 
as M. F. Atiyah and R. Bott (Ann. Math., 86 

(1967)) on the tLefschetz fixed-point formula; 
Friedrichs and P. D. Lax (Comm. Pure Appl., 
18 (1965)) on symmetrizable systems; Horman- 
der [6], Yu. V. Egorov (Russian Math. Surveys, 
30 (1975)) on subelliptic operators; Kumano- 
go (Comm. Pure Appl. Math., 22 (1969)), F. 

Treves (Amer. J. Math., 94 (1972)), S. J. Alin- 
hat and M. S. Bouendi (Amer. J. Math., 102 
(1980)) on uniqueness of the Cauchy problem; 

S. Mizohata and Y. Ohya (Publ. Res. Inst. 
Math. Sci., 4 (1968)) Hormander (J. Analyse 
Math., 32 (1977)) on tweakly hyperbolic equa- 
tions; C. Morawetz, J. V. Ralston, and W. A. 
Strauss (Comm. Pure Appl. Math., 30 (1977)), 

M. Ikawa (Pub. Res. Inst. Math. Sci., 14 (1978)) 
on the exponential decay of solutions; and 

Nirenberg and Treves [ 161, Beals and Feffer- 
man [ 173 on local solvability theory. 

For recent developments in the theory of 
pseudodifferential operators and its applica- 
tions - Kumano-go [4], M. Taylor (Prince- 

ton Univ. Press, 1981), Treves (Plenum, 1981), 
and others. 

B. Fourier Integral Operators 

A Fourier integral operator A: C$‘(R”)+GS’(R”) 
is a locally finite sum of linear operators of the 

type 

Af(~)=(2n)-‘“+~)” 
s 

exp(icp(x, 0, Y)) 
RN+” 

x4x, 6 YMY) dY de. (7) 

Here a(x, 19, y) is a Cm-function satisfying the 

inequality 

pp,BD;a(x, 8, y)l <C(l + lel)m-P’S’+(l-P)(‘“‘+‘u’) 

for some fixed m and p, l/2 < p ,< 1, and any 
triple of multi-indices c(, p, y, and for rp(x, 8, y) 

a real-valued function of class C” for 0 # 0 and 
homogeneous of degree 1 in 0 there. The func- 
tion cp is called the phase function and a the 

amplitude function. 

Let C,={(x,e,y)Id,cp(x,8,y)=O,e#O} and 
W={(x,y)ER”xR”l38#Osuchthat(x,@,y)E 

C,}. If d,,,,,rp(x,& y)#O for 6~0, then the 
kernel distribution k(x, y) of A is of class C” 

outside W. There have been detailed studies 
of the case where the d,,,,,(acp(x, 8, y)/&?j), 
j=l,2 , . . , N, are linearly independent at 

every point of C,. In this case, C, is a smooth 
manifold in R” x (RN\O) x R”, and the mapping 

0: c,+, ~Y)-+,Y, 5,~)~ 5 =ba e,~), ff= 

d,cp(x, e,y), is an immersion of C, to T*(R” x 
R”) ~0, the cotangent bundle of R” x R” minus 
its zero section. The image @C, = A,, is a conic 

Lagrange manifold, i.e., the canonical 2-form 
e = Cjdtj A dxj - Cjdqj A dyj vanishes on A, 
and the multiplicative group of positive num- 

bers acts on A,. Let a,, . . ,a,, be a system of 
local coordinates in A,. These, together with 
adae,, . . . . acp/aeN, constitute a system of 
local coordinate functions of R” x (RN ~0) x R” 

in a conic neighborhood of C,,,. Let J denote 
the Jacobian determinant 

m6.d . 

The function a,@=@ uJ,~@-’ is called the 
local symbol of A. Here ~1,~ is the restriction of 

a to C,. The conic Lagrange manifold A+, = 
A,(A) and the symbol aAm = u,,?(A) essentially 
determine the singularity of the kernel distri- 
bution k(x, y) of the Fourier integral operator 
A. Conversely, given a conic Lagrange mani- 
fold A in T*(R” x R”)\O and a function a, 
on it, one can construct a Fourier integral 
operator A such that A,(A) = A and u,,~(A) = 

a,. Those Fourier integral operators whose 
associated conic Lagrange manifolds are the 

graphs of homogeneous tcanonical transfor- 
mations of T*(R”)\O are most frequently used 
in the theory of linear partial differential equa- 
tions. Let A be a Fourier integral operator 
such that A,+,(A) is the graph of a homoge- 
neous canonical transformation x. Then the 
adjoint of A is a Fourier integral operator 
such that the associated conic Lagrange mani- 

fold is the graph of the inverse transformation 
x-l. Let A, be another such operator; if the 
associated conic Lagrange manifold is the 

graph of xi, then the composed operator A, A 
is also a Fourier integral operator and the 
associated conic Lagrange manifold is the 
graph of the composed homogeneous canon- 
ical transformation xix. 

A pseudodifferential operator of class 
8: i-JR”) is a particular type of Fourier inte- 
gral operator. In fact, a Fourier integral oper- 
ator A is a pseudodifferential operator of class 

8: ,-JR”) if and only if A,(A) is the graph of 
the identity mapping of T*(R”)\O. Hence for 

any Fourier integral operator A, A*A and 
AA* are pseudodifferential operators. 

The following theorem is due to Egorov 
[ 111: Let P and Q be pseudodifferential opera- 
tors of class Sz ,-JR”) with the symbols 
p(x, 5) and q(x, <), respectively, and let A be a 
Fourier integral operator such that the asso- 

ciated conic Lagrange manifold A,(A) is the 
graph of a homogeneous canonical transfor- 
mation x of T*(R”)\O. If the equality PA= AQ 
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holds, then 9(x, <)-p(x(x, 5)) belongs to the 
class S,1~k;2p(R”). 

Assume that m = 1, p = 1, and that p1 (x, 5) 
is a real-valued ?-function, homogeneous 

of degree 1 in r for /<I> 1, such that p(x, 5) 

-pl(x,<)~S~,,(R”) and drp,(xo,~O)#O at 
(x0,5’), [loI> 1, where p,(x”,to)=O. Then one 

can find a Fourier integral operator A such 
that the function 9(x, 5) of Egorov’s theorem 
satisfies the relation 9(x, 5) - 5, E Sp, o(R”). 

The theory of Fourier integral operators has 
its origin in the asymptotic representation of 
solutions of the wave equation (- 325 Partial 
Differential Equations of Hyperbolic Type 

L; also, e.g., [12,13,14]). G. I. Eskin (Math. 
USSR-,%., 3 (1976)) used a type of Fourier 
integral operator in deriving the energy esti- 
mates and constructing the fundamental solu- 
tions for strict hyperbolic operators. H6r- 

mander (Acta Math., 121 (1968)) introduced 
the term “Fourier integral operators,” and 
applied these operators to the derivation of 
highly accurate asymptotic formulas for spec- 
tral functions of elliptic operators. Egorov 
(Math. USSR-Sb., 11 (1970)) applied his theo- 
rem and the corollary stated above to the 

study of hypoellipticity and local solvability 
for pseudodifferential operators of principal 
type. Using Egorov’s theorem and the same 
corollary, Nirenberg and Treves [ 161 obtained 
decisive results concerning local solvability for 

linear partial differential operators of principal 
type; these results were completed by Beals 
and Fefferman [ 171. Hiirmander and J. J. 
Duistermaat [9,15] constructed a general 
global theory of Fourier integral operators 

making use of Maslov’s theory [14], which 
was originally published in 1965. By virtue 

of this research, the Fourier integral oper- 
ator has come to be recognized as a powerful 
tool in the theory of linear partial differential 

operators. An interesting application of the 
global theory of Fourier integral operators 
appeared in J. Chazarain (Inoentiones Math., 

24 (1974)). The boundedness of Fourier inte- 
gral operators in the spaces L*(R”) (or the 
space H”) has been studied in several cases. 
Some suflicient conditions for boundedness 
have been obtained by Eskin (Math. USSR- 
Sb., 3 (1967)), Hiirmander [9], D. Fujiwara 
[ 181, Kumano-go (Comm. Partial DiJff: Eq., 1 

(1976)), K. Asada and Fujiwara (Japan. J. 
Math., 4 (1978)), and others. A calculus of 

Fourier integral operators in R” was given in 
Kumano-go [4]. 

The propagation of wave front sets by 

means of a Fourier integral opera&r is de- 
scribed as follows. Let us consider a phase 
function of the form cp(x, 5, y) = S(x, 5) - y ‘5 in 
R: x R; x R;, and let a(x, 5) be an amplitude 

function independent of y of class S;l,. Then 
by (7) the Fourier integral operator A = A, is 
defined by 

A,u(x)=(27c-“‘2 
s 

exp(iS(x, 5)M:c W(5M. 
R” 

(8) 

Let T be the canonical transformation with 
the tgenerating function S(x, <), i.e., T is de- 
fined by y = V$(x, q), 5 = V,S(x, q). Then for 
the Fourier integral operator A, we have 

WF(A,u)= {(x> 5)= T(y,~)I(y,rl)~‘~F(u)}, 

UEY. (9) 

Next consider a hyperbolic operator L = 0, + 

p(t, x, 0,) for a real-valued symbol p(t, x, 5)~ 
B”( [O, To]; Sl,,) with some To > 0. .For a small 
0 < Tg To the solution S(t, x, 4) of the eikonal 
equation a,S+p(t,x,V,S)=O on [O, T] with 

the initial condition SI,,, = x. 5 exists in g” 
([0, T]; S:,,). Consider the Cauchy problem 
Lu = 0 on [0, T], ultEO = uo. Then t.nere exists 
an amplitude function e(t, x, <)E&?’ ([0, 7’1; 
SF,,) such that the solution u(t) is found in 
the form u(t) = E,(t)u,. On the other hand, 
let (x, 5) =(X(t, y, q), z(t, y, a)) be the bichar- 
acteristic strip defined by +Hamilton’s ca- 
nonical equation dxJdt = V,p(t, x, 0, d</dt = 

- V,P(~, x, 5) with (x, 5),,=, = (Y, 4. ‘Then 
(X(t, y, q), E(t, y, q)) can be solved by means 
of the relations y = V,S(t, X, q), E = V,S(t, X, II), 
as a family of canonical transformations with 

a parameter tc [0, T]. Thus by means of (9) 
we have 

WF(u(O)c {(x, 5) = (XQ, Y, d, W> Y, 4) 

l(~~d~WF(uo))> (10) 

which is the fundamental result in the study of 
the propagation of wave front sets as solutions 
of general hyperbolic equations (-. 325 Partial 
Differential Equations of Hyperbolic Type M). 

The works of Egorov, Nirenberg and 

Treves, and HGrmander motivated the theory 
of hyperfunctions developed by M. Sato and 
gave rise to the concept of tquantized contact 
transformations, which correspond to Fourier 
integral operators in the theory of distribu- 
tions. The above-stated transformation theo- 
rem of Egorov has been studied in detail with 

reference to systems of pseudodifferential 
equations with analytic coefficients [ 19](- 
274 Microlocal Analysis). 
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346 (XVlll.17) 
Psychometrics 

A. General Remarks 

Psychometrics is a collection of methods for 
drawing statistical conclusions from vari- 
ous psychological phenomena which are ex- 
pressed numerically or quantitatively. It con- 

sists chiefly of statistical methods to deal with 
psychological measurements and of theories 
dealing with mathematical models concerning 

learning processes, social attitudes, and mental 
abilities. 

B. Sensory Tests 

A measurement wherein human senses are 
taken as the gauge is called a sensory test. The 

panel of judges must be composed appropri- 
ately, and the examining circumstances must 
be controlled. Various methods of psycholog- 
ical measurements are applied. In the following 

sections we describe the basic statistical proce- 
dures used in sensory testing. 

C. Paired Comparison 

When there are t objects (treatments or stimuli 
in some cases) O,, O,, . . . , O,, the method of 
comparing them two at a time in every pos- 
sible way is called paired comparison. The 

following are typical mathematical models of 
this method. 

(1) Thurstone-Mosteller Model. Suppose that 
the probability that Oi is preferred to Oj for a 
pair (Oi, Oj) is pij. Of the 12 judges who compare 
this pair, the number who prefer Oi is nij, and 
the number who prefer Oj is nji = n - nij. In this 

comparison it is assumed that the strengths of 
the stimuli Oi, Oj to the senses are random 

variables Xi, Xi, and Oi is preferred when Xi > 
Xi. Furthermore, it is assumed that the joint 
probability distribution of Xi and Xj is the 2- 

dimensional tnormal distribution with pi and 
0’ as mean and variance of Xi, and ,p as corre- 
lation coefficient of Xi and Xj. There is no loss 
of generality in assuming that 2a2( 1 -p) = I 
and & pi = 0. Let Q(x) be the standardized 
normal distribution function and pij = @(pi - 
pj). Using p;= n,/n as estimates of the true 

pij, we can obtain the estimates pi. Using pz 
= @(pi - fij) and p; we can test the hypothesis 
thatp,=p,=...=p,. 

(2) The Bradley-Terry Model. The experi- 
mental method in the Bradley-Terry model 
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is the same as in the Thurstone-Mosteller 
model. It is postulated that, associated with 

O,, O,, , O,, there exist parameters ni for Oi 

(rci>O, &, rci= 1) such that P~~=z,/(zT+~L~). 
Obtaining the tmaximum likelihood estimator 

of ni, we can test the appropriateness of the 
models. 

(3) Scheffk’s Model. Each pair Oi, Oj is pre- 

sented to 2n judges; n of them examine Oi first 
and 0, next, and the remaining n examine the 

pair in the opposite order. A judgment is re- 

corded on a 7-point (or 9-, 5-, or 3-point) scale. 
In the 7-point scaling system a judge pre- 

sented with the ordered pair (Oi, Oj) marks one 
of the seven points 3, 2, 1, 0, -1, - 2, - 3, 
meaning, respectively, that Oi is strongly pre- 

ferable to Oj, Oi is moderately preferable to Oj, 
Oi is slightly preferable to Oj, no preference, Oj 
is slightly preferable to Oi, etc. The mark given 
by the kth judge on his preference of Oi to 0, is 
denoted by X,, which can be regarded as the 
sum of a main effect, deviation of subtractivity, 
order effect, and error. Significance tests for 
these effects and estimates of various para- 
meters are given by using statistical tlinear 
models. +BIBD, +PBIBD, etc., can also be 

applied to paired comparisons. 

D. The Pair Test, Triangle Test, and Duo-Trio 
Test 

The pair test, triangle test, and duo-trio test 
are sensory difference tests. The methods are 
as follows. Pair test: A judge is requested to 
designate a preference between the paired 

samples A and B. Triangle test: A judge is 
requested to select two samples of the same 
kind out of A, A, B. Duo-trio test: A judge is 

first acquainted with a sample A and then is 
requested to choose from A and B the one he 
has seen in the previous step. In all the above 
cases, the hypothesis that A and B are different 
and that the judge has no ability to determine 
the difference between them is tested by using 
the tbinomial distribution. 

E. Scaling 

(I) One-Dimensional Case. Psychometric 

scaling methods are procedures for construct- 
ing scales for psychological phenomena. Some 
of them require judgments concerning a par- 
ticular attitude that is considered unidimen- 
sional. Under the assumption that a psycho- 
logical phenomenon is a random variable 
with some distribution law and the parameters 

of the distribution law determine psycholog- 

ical scales, a psychological scaling is given by 
estimating the parameters. The Thurstone- 

Mosteller model is a method for scahng a set 
of stimuli by means of observable proportions. 

(2) Multidimensional Scaling (MDS). Multidi- 

mensional scaling is a collection of methods to 
deal with data consisting of many measure- 
ments on many objects and to characterize the 
mutual distance (dissimilarity), or closeness 
(affinity), by representing those objects by a 
small number of indices or by points in a 
small-dimensional Euclidean space. It has seen 
useful applications in the analysis of people’s 
attitude and perception and their characteri- 
zations by means of a few numbers or points 
in a space of low dimension. 

Historically, MDS was first developed 
by Torgerson (1958) and refined further by 

Shepard (1962) and Kruskal(l964). The 
method developed by Torgerson and also the 
INDSCAL method by Carrel and Chang 
(1970) are called metric multidimensional scal- 
ing, while the method by Shepard and Kruskal 
is called the nonmetric MDS. The former is 
applied when the data are represented in con- 
tinuous scales and the latter when the data are 
in discrete nominal or ordinal scale,s. Tech- 

niques of multidimensional scaling are closely 
related and sometimes actually equtvalent to 
various methods of multivariate analysis, 

especially principal component analysis, ca- 
nonical correlation analysis, and discriminant 

analysis (- 280 Multivariate Analysis). 

F. Factor Analysis 

Though factor analysis can be considered to 
be a method to deal with multivariate data in 

general (- 280 Multivariate Analysis), it has 
had close connections with psychometric 
studies, in both theoretical developments and 

applications. Historically, it was initiated by 
Spearman (1927) and developed further by 
Thurston (1945) in order to measure human 
abilities from test scores. Mathema+.ically, the 

model of factor analysis is formulated as fol- 
lows: Let zjk be the standardized score of the 
jth test achieved by the kth subject, j = 1, . , p; 
k= l,..., N; then it is assumed that it can be 
represented as a linear combination of r com- 
mon factors and one specific factor as 

zjk = aj,.f,k + aj2f2k + + aj,f,k + uju,jka (1) 

wherefi,,i=l,..., r,k=l,..., N,re,presentsthe 
magnitude of the ith common factor (ability) 
in the kth subject and aji is the size of contri- 
bution of the ith factor to the score of the jth 
test. 

Usually it is assumed that (i) V(z,) = 1, (ii) 
V(J)= 1 and Cov(f,,fi.)=O for i# i’, (iii) V(vj) 

= 1 and Cov(vj, vj,)=O, j#j’, (iv) Cov(fi, vj)=O. 
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Then it follows that 

and 

where hi” is called the communality of thejth 
variable zj and uf is called the specificity. It 

follows easily from (1) that any orthogonal 
transformation of the scores does not affect the 
model. 

Problems of factor analysis are classified 
into three types: 
(1) Estimation of communality: There are 
several methods of determining communality 

or initial estimates of it when some iterative 
procedure is used. 
(2) Determination of factor loadings, which is 

the estimation of the aji: A number of methods 
have been proposed, among which those often 
used are the MINRES by Harman (1967), the 
varimax by Kaiser (1958), and the tmaximum 
likelihood based on the normal model by 
Lawley and Maxwell. 
(3) Estimation of factor scores fi,: Usually fac- 

tor scores are estimated after factor loadings 
have been determined. Thurstone proposed 

p=ZR-‘A and Harman F=ZA(A’A)-‘, 

where F, Z, A are the matrices of factor scores, 
test scores, factor loadings, respectively, and R 
is the correlation matrix of the Z’S 

G. Learning Theory 

(1) General Description. Assume that a se- 
quence of trials is done in order to study some 
given behavior and that on each trial 
particular events occur (stimuli, responses, 

reinforcements, etc.) that influence the en- 
suing behavior. Then the behavior itself is 
modified by such a sequence of trials. Learning 
models refer to such processes of behavior 

modification, and they are frequently repre- 
sented by recursive formulas for response 

probabilities. 
Assume that two mutually exclusive re- 

sponse alternatives A, and A, occur on the nth 
trial (n = 1,2, . . . ) with respective probabilities 
P,, and 1 -P,,, and that an event Ei occurs on 
the nth trial with Pr(& = Ei) = xi (i = 1,2, . . , t; 

xi=, 7ti = 1). Then the recursive formula for P,, 
is of the form Pn+l =f(Pn; 6$, CI?“.-~, . . , gl). If 
the formula can be written as f=f(P.; & 

Gl,..., &,,), then the response probability is 
called d-trial path dependent. In the special 

case d = 0, it is called path independent. For 
simplicity we write f(P,; c?“= I$, CF.-~ = Ej, . . , 

8, =Ek)=Jj..,k(Pn) (ij, . . . . .k= 1,2, . . . . t). If the 
response probability is path independent, 

then &...,(Pn) =I&. . . fk(Plb where f,(R) = 

f(P,; G?~ = E,) (v = i, j, . . , k). When the recursive 
formula can be expressed as f=f(P.; &, n), 
the response probability is said to be quasi- 
independent of path [ 111. In the recursive for- 
mula J two events Ei and Ej (i #j) are said to 

be commutative if~..i...j...(P,)=~..j...i...(P.). If 
any two events are commutative, the condi- 
tion of event commutativity is satisfied. By 

making f explicit with respect to n, we write 
P”=F(n;&“-,, . . . . &I ; P,). Under the condition 
of event commutativity, the explicit formula 
can be written P,, = F(N,, N,, . . . , N,; PI), where 
Ni is the frequency of occurrence of Ei in the 
first (n - 1) trials (& Ni = n - 1). If both event 
commutativity and path independence of re- 
sponse probability are satisfied, the explicit 
formula P, =fylfp . . .f;Nf(Pl) can be obtained. 

(2) Linear Models. In a linear model, the re- 
cursive formula is written as a linear function 
of P”. 

Example (1). Bush-Mosteller model [6]. The 
Bush-Mosteller model assumes the response 
probability to be path independent. The re- 
cursive formula is expressed as fi(P.) = aiPn + 
(1 - cc&, &‘” = Ei. Here ai (0 < ai < 1) represents 
the degree of ineffectiveness of Ei for learning 
and Izi (0 < Ai < 1) is the tfixed point of fi. A 
necessary and sufftcient condition for Ei and Ej 
(ifj) to be commutative is that either fi or fj 

be an tidentity operator or li = S. 

Example (2). Estes’s stimulus-sampling 
model [7]. We can consider the stimulus as a 
set composed of m elements, each of which 

corresponds to either response A, or A,; the 
manner of their correspondences depends on 
each trial. If J,, elements correspond to A, 

on the nth trial, then we have P,, = J,/m. Sup- 
pose that on the nth trial s ( <m) elements are 
sampled, among which X, elements corre- 
spond to A,, and the remaining XL ( = s - X,) 
elements correspond to A,. As a result of 
the nth trial, if A, is reinforced, we set Y, = 1; 

otherwise, we set Y, = 0. Furthermore, assume 

that J n+l = Jn +X, Y. - XA( 1 - Y,,). Hence, we 
obtain the recursive formula Pn+l = P, + {Xx Y, 

- XA( 1 - Y,)}/m. In this model, the response 
probability is path independent and 8” = 
(X,,, YJ. Other linear models have been pro- 
posed in which the response probability is 
either quasi-independent of path [8] or path 
dependent [lo]. 

(3) Nonlinear Models. In nonlinear models the 
recursive formula cannot be written as a linear 

function of P,. 

Example (3). Lute’s P-model [9]. Let the 
response strengths of A, and A, on the nth 

trial be u, and oh, respectively (both positive), 
and assume that P,, the response probability 
of A,, is expressed as un/(un + ub). The response 
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strengths u,, and L$ depend on each trial. Under 

the assumption that the response strength is 
path independent and that u.+~ changes in- 
dependently from ub, the recursive formula of 
u, is written as u,,+~ = cpi(u,), &” = Ei. Here, if we 
assume ~i(u)>O for u>O and cpi(cu)=ccpi(u) for 
u > 0 and c > 0, then cpi(u,,) = /&u. with /ii > 0. In 
a similar way, the recursive formula for vi can 
be expressed as cpi(uL) = /j’iuL (/$ > 0). Therefore 
we have P n+~ =P,l{Pn+bi(l -4)) (bi=Pi’lPA 
gn = Ei. This model is nonlinear, and the re- 

sponse probability is path independent. By 
making the recursive formula explicit, we 
obtain P,, = P,/{P, +(l -Pl)exp(& N,logb,)}. 
Hence it is clear that the events are commuta- 
tive. Other nonlinear models in which the re- 
sponse probability is either quasi-independent 
of path [S] or path dependent [9] have also 
been proposed. 

Here we have taken up only the case in 
which the number of response alternatives is 

2, but we can generalize to the case of more 
than two alternatives. For fitting a model and 
experimental data, expected response prob- 

abilities and various other statistics deduced 

from the model (total error, trial number of 
first success or last error, and sequential sta- 

tistics such as length of response +run or +auto- 
correlation between responses) are used. Es- 
timation methods have also been devised for 
the parameters involved. 
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Quadratic Fields 

A. General Remarks 

Any tcxtension field of the rational number 

field Q of degree 2 is called a quadratic field. 

Any quadratic field k is obtained from Q by 
adjoining a square root of a square-free integer 
(i.e., an integer #O, 1 with no square factor) 

m:k=Q(fi). If m is positive (negative), k is 

called a real (imaginary or complex) quadratic 
field (- 14 Algebraic Number Fields). Let 

t 

(1 + fi)/2 for mz 1 (mod4), 

(O= fi 
for m = 2,3 (mod 4). 

Then (1, w) is a +minimal basis of k. That is, 
any talgebraic integer x of k has the unique 
expression x = u + bw with a, b E Z. The +dis- 
criminant d of k is given by d = m in case m z 1 
(mod 4) and d = 4m in case m E 2,3 (mod 4). The 
conjugate element of an element a = a + b& 

(a, bE Q) of k over Q is given by a’ = n -b&. 
The mapping (r: a+x’ is an tautomorphism of 

the field k. 

B. IJnits 

Let k be an imaginary quadratic field. The 
tunitsofkare +l, +iincasem=-1; fl, 
+ uo, + o~(w, =( 1 + fl)/2) in case nr = - 3; 
and _+ 1 in all other cases. 

L,et k be a real quadratic field. There exists 
a unit E” that is the smallest one among the 
units (> 1) of k. Any unit E of k can be uniquely 

expressed in the form F: = + a$ (no Z). That is, 
*E; ’ is a ifundamental unit of k. The fun- 

damental unit ~~=(~+y&)/2 (> 1) can be 
calculated by finding a minimal positive inte- 

gral solution (x, y) of +Pell’s equation x2 - 
dy’ = + 4 by using continued fractions (- 83 

Continued Fractions; for a table of the fun- 
damental unit of k for m < 100 - [ 11). 

C. Prime Ideals 

The decomposition of a prime number p in the 
tprincipal order D of k is given as follows: (i) 
Let p 1 d, where d is the discriminant of k. Then 
p is decomposed in o in the form (p) = p2. (ii) 
Letp#2and(p,m)=l.lf(m/p)=l,then(p)= 

pp’ in o (p # p’) and N(p) = N(p’) = p. If (m/p) = 
-- 1, then (p)=p in o and N(p)=p’. Here p, p’ 
are prime ideals of o, N means the +norm, and 
(m/p) is the +Legendre symbol. (iii) Let 2/ld, 

that is, m E 1 (mod4). If m = 1 (mod 8), then 
(2) = pp’(p # p’) and N(p) = N(p’) = 2. If m = 5 

(mod 8) then (2) = p and N(p) =4. 

D. The Kronecker Symbol 

Let k = Q(&), and let d be the discriminant 
of k. We define the symbol x for k as follows: 

(i) x(p)= 1 if (p)=pp’ (pfp’) in 0; (ii) x(p)= - 1 
if (p) = p in o; (iii) x(p) = 0 if (p) = c ’ in O; and 
(iv) x(n) = ni x(pi)‘i for n = ni p;i 3> 0. In partic- 

ular, we define x(l)= 1. If (n,d)= 1, the sym- 
bol x can also be defined using the +Jacobi 
symbol as follows: If m 3 1 (mod4), then x(n) = 
(n/jml); and if m=2,3 (mod4), then x(n)= 
xz(n)(n/lm’j) for d=2em’, where (i) x:(n)= 
(- I)(“-‘)‘~ for e = 2, m’ E 3 (mod 4); (ii) x:(n) = 
(- l)(nz-‘)/B for e=3, m’s 1 (mod4); and (iii) 

x:(4=(- 1) (n*~lm+(n-1)/2 for e=3,m'c3 

(mod 4). If (n, d) # 1, then x(n) =C#. For a nega- 
tive integer -n, we define X(-n+=(sgnd)X(n). 
The symbol x(n) for nE Z is called the Kro- 

necker symbol for k. 
The Kronecker symbol for k has the follow- 

ing four properties: (1) x(n) = 0 ii‘ (n, d) # 1, and 
x(n)=*1 if(n,d)=1;(2)X(m)=X(n)ifm=n 

(modd); (3) x(mn)=X(m)X(n); (4) x(n)= 1 if and 
only if n= N(a) (modd) for some integral ideal 

a of k such that (a,(d)) = 1. (Property (4) shows 
that a quadratic field provides a class field; - 

59 Class Field Theory.) 

E. Ideal Classes 

The +class number h of k was calculated by 
P. G. L. +Dirichlet (1840) by analytical meth- 
ods as follows: 

hlog+,= -idi &)logsinF for m>O, 
I 1 

h=Gldir x(v)r for m<O, 
I I 

where d is the discriminant of k, Ed is the 
positive fundamental unit (> I) of k, w  is the 

number of roots of unity in k, and x is the 
Kronecker symbol. 

Denote by h(d) the class number of the 
imaginary quadratic field with discriminant d. 
It was conjectured from the time of C. F. 
+Gauss that h(d)-+ cxz as Id I+ co. This conjec- 

ture was proved by H. Heilbronn (1934). More 
precisely, C. L. Siegel (Acta Arith., 1 (1935)) 
proved 

h(d)=1 holdsfor(d(=3,4,7,8,11,19,43,67, 
163. In 1934, Heilbronn and E. H. Linfoot 

proved that there can be at most one more 
such d, and finally A. Baker and H. M. Stark 
independently proved that these nine numbers 
are the only ones for which h(d)= 1 (Baker, 

Muthematica, 13 (1966); Sta.rk, Michigan Math 
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J., 14 (1967)). Also, Baker and Stark proved 

independently (Ann. Math., (2) 94 (1971); Math. 
Comp., 29 (1975)) that h(d) = 2 holds only for 
IdI = 15,20,24,35,40,51,52,88,91,115,123, 
148,187,232,235,267,403, and 427. 

For real quadratic fields, we have 

2-i (log(h(d)log&,))/(log Jli, = 1, 

where .sd is the fundamental unit of k = a(,/$ 
(E, > 1). However, it is not yet determined 
whether there exist infinitely many d with h(d) 
= 1 (- Appendix B, Table 4). 

F. Genera 

Let G be the group of all (tfractional) ideals of 
k, and let H be the group of all tprincipal 
ideals (a) of k such that N(a) > 0. Each coset of 

G modulo H is called an ideal class in the 
narrow sense. (This notion is a special case of 
the notion of ideal classes in the narrow sense 
of algebraic number fields; - 14 Algebraic 

Number Fields G.) In the cases (i) m < 0 and 
(ii) m > 0, N(E,,) = - 1, the usual classification 

of ideals and classification of ideals in the 
narrow sense are identical. When m > 0, N(E,,) 
= 1, each ideal class is divided into two ideal 
classes in the narrow sense. We call an ideal 
class in the narrow sense simply an ideal class. 

Let p1 , . . . , pt be the set of all prime numbers 
dividing d. For n EZ with (n, d) = 1, we define 

x1(4,..., x,(n) as follows: For pi # 2, we define 
x,(n) = (n/pi); for pi = 2, we identify xi with XT in 

the definition of the Kronecker symbol. In 
order that xl(n)= . . . =x,(n)= 1 for neZ with 
(n, d) = 1, it is necessary and sufficient that 

n = N(a) (modd) for an integer tl of k (where 
N(a) = a~‘). Since x1 xz . . . xt is equal to the 
Kronecker symbol, it follows that n = N(a) 
(mod d) for an integral ideal a of k is a neces- 
sary and sufficient condition for x1(n) . . . 
x,(n)= 1 to hold for ncZ with (n,d)= 1. Put 
&i = xi(N(a)) (i = 1, . . , t), where a is an integral 

ideal with (a, (d)) = 1. Then (Ed, . . . , Ed) is uni- 
quely determined for the id&al class C contain- 
ing a and does not depend on the choice of a. 

The set fi of all ideal classes of k such that 

(E l ,...) Et)=(l, . ..) 1) is called the principal 
genus of k, and 9 is a subgroup of the ideal 
class group (r of k. Each coset of (E modulo 43 
is called a genus of k. For each genus, the 
values ci = Xi(N(a)) (i = 1, . . , t) are uniquely 
determined. We call (cl, . . . , EJ the character 
system of this genus, and each genus is uni- 
quely determined by its character system. A 

necessary and sufficient condition for (cl, . . . , EJ 
to be a character system for some genus is that 
~~=fland~~~~... E, = 1. Hence there are 2’-’ 

genera of k, and a/$ is an Abelian group of 
type (2,2,. . . ,2). 

In order that an ideal class C belong to the 
principal genus, it is necessary and sufficient 
that C = C: --d = C: hold for some ideal class 
C,. From this it follows that there are t - 1 
tinvariants of the ideal class group 6 of k 

that are powers of 2. Each ideal class C such 
that C” = C is called an ambig class of k. There 

are 2’-’ ambig classes, and they form an 
Abelian group of type (2,2, . . . ,2). Each ideal a 
of k with au= a is called an ambig ideal of k. 

Let (pi) = pf (i = 1, . , t). Then each ambig 
ideal is uniquely expressed in the form a = 
p;’ . . . pft(a) by some a~ Q and vi = 0, 1. Each 
ambig class contains exactly two ambig ideals 
of the form p ;I.. . p,“*. For example, for k = 

Q(n) we have d= -2’.5.13, t=3, h= 
8, CL = {E, A, A’, A3, B, AB, A’B, A3B}, where 
A4 = E, B2 = E, A”= A3, and B”= B; the prin- 
cipal genus is 8 = {E, A’}, and the ambig 
classes are {E, A*, B, A’B}. 

G. Norm Residues 

A quadratic field k is the tclass field over Q for 
an ideal group H. The tconductor of H is said 
to be the conductor of kJQ or simply the con- 
ductor of k. The conductor f = n,, f, of k = 

Q(Ji)isgivenbyf=dform>Oandf= 
dp, for m < 0. That is, the p-conductor f, = p 
forpId,p#2;andfz=2’for2jd,d=2’m 
((2, m’) = 1). By means of the tHilbert norm- 
residue symbol, the Kronecker symbol x is 
expressed by 

x(a)= g $ for(d)= 1, 
(i) 0 for (a, d) # 1. 

H. History 

The arithmetic of quadratic fields was origi- 
nally developed in terms of the theory of binary 
quadratic forms with rational integral coefi- 
cients by Gauss and Dirichlet [2]. The theory 
was then translated into the terms of ideal 

theory by J. W. R. Dedekind [2] (- 348 Qua- 
dratic Forms M). For example, the theory of 
genera for quadratic fields explained in Section 

F was first developed by Gauss in terms of 
binary quadratic forms, and the class number 
formula was obtained by Dirichlet as a formula 
for binary quadratic forms. Hilbert [4, ch. 21 
developed the arithmetic of quadratic fields 
systematically by introducing the Hilbert 
norm-residue symbol (- [1,5,6]). Later the 

arithmetic of quadratic fields assumed the 

aspect of a simple example of class field theory 
(- 59 Class Field Theory). 
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348 (III.1 5) 
Quadratic Forms 

A. General Remarks 

A quadratic form Q is a quadratic homoge- 
neous polynomial with coefficients in a +field 
K, written 

Q(xl, . . . . x,)= c cikxjxk. 
1biQkSn 

If the coefficients cik belong to the field of real 
(complex) numbers, we call Q a real (complex) 
quadratic form. Let V be an n-dimensional 

vector space over K. For a vector x in V 
whose coordinates are x1, ,x., we put Q(x) 

= Q(x 1, , x,). This gives rise to a mapping 
X-Q(I) of I/ into K. Such a mapping satisfies 

the following two conditions: (i) Q(ax)=a*Q(x) 

((1 E K); and (ii) Q(x + Y) - Q(x) - Q(Y) = B(x, Y) 
is a tsymmetric bilinear form on V. Conversely, 
if a mapping Q: V+K satisfies these two con- 
ditions. then Q must come from a quadratic 

form (-- 256 Linear Spaces). B(x, y) is called 
the symmetric bilinear form associated with Q. 

We assume that the tcharacteristic of K is 
not 2. Putting uik = ski = cik/2 (i < k), a,, = cii 
(i= 1 , , n), we have Q(x) = x& uitxixk. The 
matrix A = (uik) is the matrix of the quadratic 
form Q, and the determinant 1 A 1 is the dis- 
criminant of Q, denoted by A(Q). (Sometimes, 
instead of 1 Al, we call ( -l)n(n-‘)‘22”l Al, the 

discriminant of Q.) The rank of the matrix A is 

called the rank of Q. Using the notation for the 
tinner product of vectors, we can write Q(x) 

=(x,Ax)=‘xAx; 2-‘B(x,y)=(x,A,y)=‘xAy. 
We say that Q is nondegenerate if B(x, y) is 
nondegenerate (i.e., if 1 A I# 0). 

Consider a linear substitution xi = Cjm& PijxJ 
(i.e., x = Px’, with an n x m matrix P). Then we 
get a new quadratic form Q’(x’) with the ma- 
trix ‘PAP. If each pij belongs to the field K (to 
a subring R of K that contains the unit ele- 
ment of K), we say that Q represents Q’ over 
K (resp. R). A basic problem in the theory of 
quadratic forms is to determine the exact 
conditions under which a given quadratic form 
Q represents another quadratic form Q’. The 

problem of representing numbers by a quadra- 
tic form (representation problem) is the par- 
ticular case corresponding to m = 1. Any qua- 
dratic form Q represents 0 by taking the zero 

matrix as P. Hence, by the expression “Q 
represents 0 over K,” we usually mean the 

nontrivial representation of 0 over K by Q, i.e., 
Q(x) = 0 for some nonzero vector :r. If Q is 

nondegenerate and represents 0, then it repre- 
sents any element of K*. Given an element p 
in K*, we consider the quadratic form Q’ de- 
fined by Q’(~~,...,x~+~)=Q(x)--px~+~. Then 
Q represents p if and only if Q’ represents 0. 

Another important special case is that of 
n = m. Then the discriminant of Q’ is given by 
IPI’(AI. In particular,ifIPI#O(IP( is an inver- 
tible element of R), we say that Q is equiva- 
lent to Q’ over K (resp. R). This gives rise to 

an equivalence relation. Equivalent forms 
have the same rank. On the other hand, if the 
rank of Q is Y, then Q is equivalent to a form 
Cf=, a,x? over K (ui # 0, i = 1, . . . , 7). Generally, 
for elements a and b in K* = K - { 0}, we write 
a-b if a. b-’ E (K*)2. Then if Q is (equivalent to 

Q’, we have A(Q) - A(Q’). 

When we specify a field K, we assume that 
the coefficients of the quadratic forms and the 
coordinates of linear transformations are all 
contained in the field K. In particular, the 
equivalence of the forms is equivalence over K. 

B. Complex Quadratic Forms 

If K is the field of complex numbers C, then 
a form of rank r is equivalent to the form 
CI=l x”; hence over C two forms of the same 

dimension are equivalent if and only if they 
are of the same rank. 

1 C. Real Quadratic Forms 

Now let K be the field of real numbers R. If Q 
is of rank r, then it is equivalent to the form 
cfL’=, xf 1 x4= , lxi+j(p+q=r).Here,pandq 

are uniquely determined by Q (Sylvester’s law 

of inertia). We call (p, q) the signature of Q. 
Two quadratic forms of the same dimension 
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are equivalent if and only if they have the 
same signature. A quadratic form with the 
signature (n, 0) (resp. (0, n)) is called a positive 
(negative) definite quadratic form. Q is called a 
definite quadratic form if it is either positive or 
negative definite; otherwise it is an indefinite 
quadratic form. Each of the following con- 
ditions is necessary and sufficient for a form Q 
to be positive definite: (i) for any nonzero real 
vector x we have Q(x) > 0; (ii) all the tprincipal 
minors of the matrix of Q are positive. Q is 

negative definite if and only if -Q is positive 
definite. A form with n variables is called a 

positive (negative) semidefinite quadratic form 
if its signature is (r, 0) (resp. (0, r)), where 
1 <r<n. 

A linear transformation x’+x = 6%’ that 
leaves invariant the unit form Cy=i XT is an 
orthogonal transformation. Then P is an tor- 
thogonal matrix. Any quadratic form can be 
transformed into a diagonal form CG1 a,xf via 

an orthogonal transformation. Here a,, . . . , a, 
are the teigenvalues of the matrix of the form. 
Two forms Q and Q’ are equivalent with re- 

spect to an orthogonal transformation if and 
only if the corresponding matrices have the 
same eigenvalues. 

D. Quadratic Forms over Finite Fields and 
p-adic Number Fields 

Let Q and Q’ be nondegenerate quadratic 
forms over the tlinite field F,. They are equiva- 
lent if and only if they have the same rank and 

A(Q) - A(Q’). Moreover, if the rank of Q is not 
less than 3, then Q represents 0. 

Next, suppose that Q and Q’ are nondegen- 
erate quadratic forms over the tp-adic number 
field K. They are equivalent if and only if they 
have the same rank, A(Q)-A(Q’), and they 

have the same Minkowski-Hasse character x, 
where 1 is defined as follows: Let C(Q) be the 
tclifford algebra of Q, and let C*(Q) denote 
C(Q) if n is even and C’(Q) if n is odd. Then 

x(Q) = 1 or -1 according as C*(Q) = M,(K) or 
M,(K) @ D(K). (Here M, is the total matrix 
algebra of degree t over K and D(K) is the 
unique tquaternion algebra over K.) Also, if Q 

has rank not less than 5, then Q represents 0 in 
K. 

E. Quadratic Forms over a General Field K 

The following facts are valid on any field K 

whose characteristic is not 2. Given a quadra- 
tic form Q i with variables xi, . . . , x, and an- 

other form Qz with variables x”+i, . . . , x,+,, 
we get a new quadratic form Qi @ Qz or 

Q,+Q,definedbyQ,OQ,(x,,...,x,+,)= 

Q~(x~,...,x,)+Q,(~~+~,...,x.+,).Q,~Q, 
is called the direct sum of Q, and Q2. The 

matrix of Qi 0 Qz is the direct sum of the 
matrices of Qi and Q2. If Qi and Q; are 
equivalent and Q1 @ Qz and Q; @ Q; are also 
equivalent, then Qz and Q; are equivalent 
(Witt’s theorem). 

The quadratic form xi x2 +x3x4 + . . . + 
x+~x~~ is called the kernel form and is de- 
noted by N,. Any nondegenerate quadratic 
form Q(x, , . . . ,x,) is equivalent to the direct 

sum of a kernel form N,(x, , . . , x,,) and a form 

Q&,+1. . . . > x,), where if Q,,#O, i.e., n> 2r, we 

have Q,,(x2,+i, . . . . x,)=0 only if xa,+i = . . . =x, 
=O. N, and Q,, are uniquely determined by Q 

up to equivalence. The decomposition N, @ Q. 
is called the Witt decomposition of Q (E. Witt 

[S]). The number r is called the index of Q. An 
element x in I’ is said to be singular with re- 

spect to Q if Q(x) = 0. A subspace IV of V is 
said to be totally singular if all the elements 
in IV are singular. Let B be the symmetric 
bilinear form associated with Q. Then x is 

singular with respect to Q if and only if B(x, x) 
= 0 (characteristic of K # 2). We say that x is 
isotropic if B(x, x) = 0. Thus a subspace W is 
totally singular if and only if it is totally iso- 

tropic (i.e., B(x, y) = 0 for all x, y E W). The 
index I of Q is the dimension of a maximal 

totally singular subspace of K In particular, if 
K = R and (p, q) is the signature of Q, then the 
index r = min(p, q). Here we must be careful, 
since some authors call the number p-q or p 
or q the index of Q. To make the distinction 

clear, we also call our r the index of total 
isotropy, and the number p-q the index of 
inertia. 

Necessary and sufficient conditions for a 
nondegenerate Q to be a kernel form are: 
n = the rank of Q = 0 (mod 2) when K = C; 
n=O (mod2) and p-q=0 when K=R; nz 

0 (mod2) and A(Q)- 1 when K=F9; n=O 
(mod2), A(Q)- 1, and x(Q)= 1 when K is a 

p-adic number field. 
Let N, 0 Qo, N, @ Qb be Witt decompo- 

sitions of Q and Q’, respectively. We say that Q 
and Q’ belong to the same type if Q. and Qb 
are equivalent and denote the set of types of 

nondegenerate quadratic forms over K by W. 
We define the sum of the types of Q and Q’ as 
the type of Q @ Q’, and this gives W the struc- 
ture of a commutative group. The type of a 
kernel form is the identity element of this 
group W, called the Witt group. The structure 
of the Witt group depends on K. If K = C, then 
W=Z/2Z,ifK=R,thenWzZ;ifKisa 

tlocal field with a tnon-Archimedean valua- 
tion, then W is a finite group; if K = F4, then 

W~(Z/2Z)+(Z/2Z)ifq=l(mod4),W~Z/4Z 
if q = 3 (mod4), and W z Z/22 if q is a power 
of 2. 
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F. Hermitian Forms 

An expression H(x) = x7,,=, ai&xk is called a 
Hermitian form if aik E C, uik = a,,,. (Here Zik, Xi 
are the complex conjugates of aikr xi, respec- 
tively.) The value H(x) is a real number. As for 

quadratic forms, we define the notions of the 
matrix of H and the discriminant, rank, and 
+sesquilinear form associated with H. The 
matrix A of H is a +Hermitian matrix whose 
principal minors are real numbers. If we 

apply a linear transformation P(x’) =x, we 
obtain a Hermitian form with respect to x’ 
whose matrix is given by ‘PAP. Any Her- 
mitian form is equivalent to a form Cp=i Xixi 
-C&, T~+~x,+~; (p. 4) is called the signature of 
H. We define the notions of positive definite, 
negative definite, and indefinite Hermitian 

forms as we did for quadratic forms over the 
field of real numbers. Each of the following 

conditions is necessary and sufficient for H to 
be positive definite: (i) H(x)>0 for any non- 
zero complex vector x; (ii) all the principal 
minors of the matrix of H are positive. The 

definition of a semidefinite Hermitian form is 
given in the same manner as for a quadratic 
form. 

A linear transformation that leaves the 
Hermitian form Cy=, Yixi invariant is called a 
unitary transformation, and its matrix is a 
iunitary matrix. Any Hermitian form can be 
transformed via a unitary transformation into 

a diagonal form Cr=, aixixi, where a,, , a, 
are the eigenvalues of the matrix of the Her- 
mitian form. 

The notion of Hermitian forms can be gen- 

eralized as follows: Suppose that K is a tdivi- 
sion ring with an involution u+u (LIE K) (i.e., 
n-5 is a linear mapping of K onto itself such 
that Z = u, ah = ha). Then a Hermitian form H 
over K is defined by 

H(x)= t riuikxk, 
i,k=l 

where xig K, U,~E K, uik =uki. In particular, if 
we have, for any given vector x whose coordi- 
nates belong to K, an element u in K such that 

H(x) = a + a, then we have a Witt decompo- 
sition for H. Two examples of such K having 
involutions that differ from the identity map- 
ping are a separable quadratic extension K of 
a field I, and a tquaternion algebra K over a 
field L. 

G. Quadratic Forms over Algebraic Number 

Fields 

Let K be an algebraic number field of fi- 
nite degree, p be an +Archimedean or non- 

Archimedean +prime divisor of K, K,, be the 

p-completion of K, and Q and Q’ be nonde- 

generate quadratic forms over K. Then Q rep- 
resents Q’ over K if and only if Q represents 
Q’ over K, for all p, and Q represents 0 in K 
(i.e., there exists a nonzero vector :c whose co- 
ordinates belong to K such that Q(x) = 0) if 

and only if it represents 0 in K, for all p [3,4]. 
In particular, Q and Q’ are equivalent over K 
if and only if they are equivalent over K, for 
all p. Hence the invariants with respect to 

equivalence over K of a nondegenlzrate qua- 
dratic form Q over K are n = the rank of Q, A 

= the discriminant of Q, the Minkowski-Hasse 
character xP for +prime divisors p of K, and the 
index of inertia j, of Q over K,m,i for each 
+realinfiniteprimedivisorp,,,(i~=l,...,r,)of 
K. Here the following properties hold: (i) xP= 1 
for all but finitely many p; (ii) npxp = 1 (this is 
equivalent to the tproduct formula of norm- 
residue symbols); (iii) A -( -l)(n2+j;!12 in K,%,,; 
and (iv) xp, i = 1 ifj,-0, 1, 2, 7 (mod 8), = -1 
if j, = 3, 4, 5: 6 (mod 8) [3,4]. Conversely, if 

the system {n, xv, x y,,,,jl, A} satislies condi- 
tions (i)-(iv), then it is the set of invariants of a 
quadratic form over K (Minkowski-Hasse 

theorem). In general, if a property concerning 
K holds if and only if it holds for all K,, we 
say that the Hasse principle holds for the 
property. 

H. Class and Genus of a Quadratic Form 

Let K be an algebraic number field of finite 
degree. Quadratic forms Q and Q’ over K are 

said to be of the same class if they are equiva- 
lent over the tprincipal order o in K. On the 
other hand, Q and Q’ are said to be of the 
same genus if(i) they are equivalent over 
the principle order oy in K, for all non- 

Archimedean prime divisors p of K and (ii) 
they are equivalent over K, for all the Archi- 
medean prime divisors p of K. A genus is 
decomposed into a finite number Iof classes. 
For example, if K is the field of rational num- 
bers, the number of classes in the genus of 
X:1 x2 is 1 for m < 8, while it is > 2 for m > 8. 

I. Reduction of Real Quadratic Forms 

Let A be an m x m matrix and X an 112 x n 
matrix. We put A[X] ='XAX. Then we can 
write Q(x) = S[x] = ‘xSX, where S is the matrix 
of the quadratic form Q. In this section we put 

K = R and define two forms to belong to the 
same class if they are equivalent over the ring 
of rational integers. We identify the form Q 
with its matrix S = (sij). Let S be a positive 

definite form in m variables. Then S is said to 
be a reduced quadratic form if S[gJ > skk and 

s,r+i>O(l ,<k<m,l</<m-I), whereq,isan 
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arbitrary vector whose coordinates gl, . , gm 

are integers such that (gk, . , g,,,) = 1. Any class 
of positive definite quadratic forms contains at 

least one (and generally only one) reduced 
form. For a reduced form R = (rkl), the follow- 
ing inequalities hold: 0 < r, 1 < rz2 < . . < r,,; 
f2r,,<r,,, k<l; r11r22...rmm<c(m)~R~, where 
c(m) depends only on m. The set of all sym- 

metric matrices of degree m forms a linear 
space of dimension m(m + 1)/2 in which the 
subset ‘$3 formed by the positive definite sym- 
metric matrices is a convex open subset. More- 
over, the subset ‘% formed by all reduced 
positive definite symmetric matrices is a con- 
vex cone whose boundary consists of finitely 

many hypersurfaces and whose vertex is the 
origin. Let S be an indefinite quadratic form 
whose signature is (n, m - n). The set of positive 

definite quadratic forms H such that S-’ [H] 
= S forms a variety of dimension n(m - n), 
which is denoted by H(S). We say that S is 

reduced if H(S) fl % # 0. Given a natural 
number D, there are only a finite number of 
definite or indefinite reduced quadratic forms 
with rational integral coefficients whose dis- 
criminant is +D. Hence the number of classes 
of quadratic forms with rational integral coef- 

ficients and discriminant fD is also finite. 

J. Units 

Let S be a symmetric matrix of degree m with 
rational coordinates. Let O(S) be the set of all 

real m x m matrices W for which S[ W] = S, 
and T(S) be the subset of O(S) consisting of 

the integral matrices. An element of T(S) is 
called a unit of S. T(S) is a finite group if S is 

definite, but otherwise it is infinite (except for 
the case m = 2, --IS1 =r*, with rational r). O(S) 
is a tLie group, and T(S) is a discrete subgroup 
with a finite number of generators. The thomo- 
geneous space o(syr(s) is of finite measure 

with respect to a tHaar measure defined on the 
space. 

K. Minkowski-Siegel-Tamagawa Theory 

Let S and T be rational integral positive de- 
finite symmetric matrices of degree m and n, 
respectively (m 2 n). Let A(S, T) be the number 
of rational integral solutions for the equation 

S[X] = T, and E(S) be the order of the group 
of units r(s). We put 

‘WlJ-)+‘w,J) 
Mb% T) = E(Sl) 

E(S,) +..., 

1 1 
M(S)=- - 

E(S,)+E(S,)+.-’ 

Mb% T) 
4dS> T)= M(S) > 

where S,, S,, . . is a complete system of re- 
presentatives of the classes in the genus of 
S. M(S) is called the measure of genus of S. 

On the other hand, for a natural number q, 
we denote by A,($ T) the number of the solu- 
tions of the congruence equation S[X] = T 

(mod q). If q is a prime power p”, then the ratio 

ht,” q-mn+“(n+1)‘zA4(S, T) takes a constant value 
SC,@, T) for sufficiently large a (where E,,,= l/2 
if m = n > 2; = 1 otherwise). Furthermore, let us 
consider a domain B in the Euclidean space of 
dimension n(n + 1)/2 formed by the set of n x n 
symmetric matrices containing T, and let B, be 

the domain formed by the matrices X such 
that S [X] E B. Then B, is a domain in the 
space of dimension mn formed by all m x n 

matrices. Let a,@, T) be the limit of the ratio 
@,)/u(B) of the volumes of B and B, as the 
domain B shrinks toward the point T. Then 

Siegel’s theorem states: CL,(S, T)&cr,(S, T) = 
~A,(S,T),where.~=2ifm=n+l orm=n>2 

and E = 1 otherwise. The infinite product of the 
left-hand side of this equation does not con- 
verge absolutely if either m = n = 2 or m = n + 2, 
and in those cases the order of the product Q, 

is considered to be the natural order of the 
primes p. 

A special case of Siegel’s theorem was 
proved by H. Minkowski, but it was C. L. 
Siegel [6] who proved it in its general form. 

Except for a finite number of p, the numbers 
cr,(S, T) have been calculated. The explicit 
form of tl,(S, T) is also known. In particular, if 

we take the identity matrix E(“‘) of degree m as 
S, then the formula in Siegel’s theorem is re- 
lated to the problem of expressing natural 
numbers as sums of m squares. For m = 
2,3, . ,8, the genus of E(“‘) contains only 

one class. Hence, putting n = 1, T = t ( = a 
natural number), we obtain from Siegel’s 
theorem the number of ways in which we can 
express t as the sum of m squares [6, pt. I]. 
Siegel’s result was generalized by Siegel himself 

to the case where the form S is indefinite [6, pt. 
II] and where the coefficients of the forms are 
elements of an algebraic number field of finite 
degree [6, pt. III]. Also, regarding the number 
of possible ways to express a natural number t 
as a sum of m squares, the following formula 
was obtained by C. G. J. Jacobi for the case 
where m=4, n= 1: 

For the case m = 3, n = 1, it is known that if t is 

odd and A(Ec3), t) > 0, then t + 7 (mod 8) (for 

details - P. T. Batemann, Trans. Amer. Math. 

sot., 71 (1951)). 

T. Tamagawa used the theory of tadelized 
algebraic groups and proved that the tTama- 
gawa number t(SO(n, S)) of the special ortho- 
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gonal group is 2. He also showed that from 
this fact, Siegel’s theory in this section can be 
deduced (- 13 Algebraic Groups P) [lo]. 

L. Theta Series 

Let Q(xi, , xm) be a positive definite form 

with integral coefficients. For a complex num- 
ber z, we put 

Fk Q) = c expWiQ(x,, , x,)4, 
11 . . ...*. 

where xi, , x, run over all the integers. If 
Tm z > 0, the series converges and represents 
an tentire function of z. These series are 

called theta series. If we denote by A(n) the 
number of integral solutions of the equation 

Q(x, , , x,) = II, we have 

F(z, Q) = t .4(n)e2ni"z. 
n=O 

Moreover, if m = 2k, we have the following 
transformation formula: 

= ~(d)(cz + d)kF(z, Q,, 

where ~1, b, c, d are integers such that ad - bc 

= 1, c z 0 (mod N), N is a natural number 
determined by Q, and E is a character mod N. 
In other words, F(z, Q) is a tmodular form 

with respect to the tcongruence subgroup of 
level N. Using the theory of modular forms, E. 

Hecks showed that A(n) = A,(n) + O(nk/*), 
where .4,(n) is a number-theoretic function of 
n determined by the genus of Q. 

M. Binary Quadratic Forms with Integral 

Coefficients 

Now put m = 2. Given a form Q(x, y) = ax* + 

bxy + cy*, we put D(Q) = b* -4ac and call it 
the discriminant of Q (i.e., D(Q) = -4A(Q)). Q is 

said to be primitive if (a, b, c) = 1. When D(Q) 
is not a square, the theory concerning Q is 

closely related to the arithmetic theory of the 
iquadratic field Q(3) = k. Let d be the +dis- 
criminant of k and put D=df*. When f= 1, 
there is a one-to-one correspondence between 
the tideal classes of k and the classes of qua- 
dratic forms with discriminant d (when D < 0, 

we consider the classes of positive definite 
forms). The correspondence is given in the 

following manner: If a is an ideal in k with a 
basis x, , x2, then the corresponding form is 
given by Q(x,y)= N(a)-‘N(a,x+a,y), where 

N is the absolute +norm. If f > 1, we must 
replace the ring of integers o by the +order of 
the tconductor ,f That is, if we consider the 

ring formed by the elements x +fjiw (x, y are 
rational integers; the meaning of w  is ex- 

plained shortly), we again have a one-to-one 

correspondence between the classes of ideals of 
this order and the classes of quadratic forms 
[3]. We let w=$/2 if d=O (mod4);=(1+ 
$)/2 if d = 1 (mod 4). When D > 0, we can 
introduce the notion of proper equivalence as 
follows: Q and Q’ are properly equivalent if the 
matrix of Q is transformed to the Imatrix of Q’ 

by a linear transformation P whose determi- 
nant is 1. Then, in the correspondence for the 
casef=l,ifwetakea,=r>O,a,:=s+tw,t>O 
(r, s, teQ), then we get a relation between the 
classification of the forms and the classification 

in the finer sense of the ideals in k 

Suppose that D > 0 is not a square. Let (t, u) 
be an integral solution of +Pell’s equation t* - 
Du* = +4. Then the units of the form Q(x, y) 
= ax2 + bxy + cy* with discriminant D are 
given by 

+ (t-bu)P 

( 

-cu 
- 

au > (t+bu)/2 . 

Let (to, ue) be the smallest positive integral 
solution of t* -Du’ = 4, put eD =(t, + u,fi)/2, 
and let h, be the class number in I:he finer 
sense of the forms of discriminant D. Then the 
following formula holds (Dirichlel.): 

where (D/n) is the +Kronecker symbol (here D 

=f2d;weput(D/n)=Oif(f,n)#1,and(D/n) 
= (d/n) if (J n) = 1). For D < 0, the order w, of 
the units is known: it is 6 if D = -3; 4 if D = 

-4; and 2 otherwise. We also have 

With respect to the numbers h, and .sD, little 

else is known. 
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A. Problems 

A quadratic programming problem is a special 

type of mathematical programming (- 264 
Mathematical Programming) where the objec- 
tive function is quadratic while the constraints 

are linear. A typical formulation of the prob- 
lem is as follows. 

(Q) Maximize z = c’x -4x’Dx under the 
condition Ax < b and x > 0, x E R”. 

Let the Lagrangian form for this problem be 

q(x, 1) = c’x -)x’Dx + I’(b - Ax). 

Then, from the general properties of Lagran- 
gian forms, the following theorem can be 
proved. 

Theorem: If x =x* is an optimal solution of 
the problem (Q), there exists a vector 1* satis- 
fying the conditions 

-Dx*+c<L*, b*>O; 

b’l* = (c - Dx*)‘x*. 

Moreover, if the matrix D is nonnegative de- 
finite, the above conditions are also sufftcient 

for x =x* to be optimal. The second condition 
can be shown to be equivalent to 

b*‘(b-Ax*)=0 and x*‘(A’)L*+Dx*-c)=O. 

By introducing the slack vectors u > 0 and 
v > 0, the conditions can be expressed as 

x20, yao, u>o, v>o; 

(C) Ax+u=b, A’y+Dx-v=c; 

y’u=O, x%=0. 

When D is nonnegative definite, any feasible 
solution of the above system of equalities gives 

an optimal solution of the primary problem 
(Q), and when D is positive definite, the solu- 
tion is unique. When D is not nonnegative 

definite, the optimal solution of(Q), if it exists, 
is one of the feasible solutions of(C). The last 
line of(C) implies that the solution must be a 

basic solution of the linear system of equalities, 
and it also restricts the possible combinations 
of the basic variables. Since there exist only a 
finite number of possible combinations of the 
basic variables, the quadratic programming 
problem can be solved in a finite number of 

steps, if it has an optimal solution. 

B. Duality 

The dual problem of(Q) is the following. 
(QD) Minimize w  = b’y + +x’Dx under the 

condition A’y + Dx > c and x > 0, y 2 0. 
If D is nonnegative definite, the following 

theorem holds. 
Theorem: If the primary problem (Q) has a 

solution x = x*, then the dual problem has a 
solution x = x* and y = y*, and max z = min w. 

A more general form of the quadratic pro- 

gramming problem can be given as follows. 
(Q) Maximize z = c’x -$x’Dx under the 

condition XE V and b-Axe W, where V and 
Ware closed convex cones in R” and R”, 
respectively. 

Then the dual problem is expressed as 
follows. 

(QD) Minimize w  = b’y - +x’Dx under the 
condition XE V, YEW* and A’y+ Dx-CE V*, 
where V* and W* are the dual cones of V and 
W. 

The above theorem holds for both (Q) and 

(QW 

C. Algorithms 

Various algorithms have been proposed for 
quadratic programming [ 1,2,4], most of 
which are based on condition (C). Wolfe [4] 
proposed a method based on the simplex 
method for linear programming. If we intro- 
duce the artificial vectors 5 and q, we can find 
a feasible solution of(C) by solving the follow- 

ing linear programming problem. 
(LQ) Maximize z = -l’G- l’q under the 

condition that 

Ax+u-k=b, A’y+Dx-v+q=c; 

x20, y>o, uao, v>o, 520, q>o; 

y’u=O, x%=0. 

(LQ) can be solved by applying the simplex 
algorithm with the only modification being 
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that the last line of the condition restricts the 
possible changes in the basic variables. When 

D is positive definite, we can always obtain 

a solution if there is a feasible solution of 
the original problem, and Wolfe proposed a 
moditication of the foregoing algorithm for the 
case when D is nonnegative definite that tells 
whether or not it has an optimal solution, and 
gives it if it has one. Some other algorithms are 
also effective when D is positive or nonnega- 
tive definite, but when D is not nonnegative 
definite, no simple effective method has been 
found to reach the optimal solution even when 

its existence has been established. 
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350 (VI.1 0) 
Quadric Surfaces 

A. Introduction 

A subset F of a 3-dimensional Euclidean space 

E3 is called a quadric surface (surface of the 
second order or simply quadric) if F is the set of 
zeros of a quadratic equation C(X, y, z)=O, 
where the coefficients of G are real numbers. 
The equation G(x, y, z) =0 is written as 

ax2+hy2+cx2+d+2fyz+2yzx+2hxy+2f’x 

+ 2y'y + 2h’z = 0. (1) 

In general, a straight line intersects a quadric 

surface at two points. If it intersects the sur- 
face at more than two points, then the whole 
straight line lies on the surface. Suppose that 
we are given a quadric surface and a point 0. 
Suppose further that we are given a straight 
line passing through the point 0 and intersect- 
ing the quadric surface at two points A and A’. 

If A0 = OA’ for all such straight lines, then the 

point 0 is called the center of the quadric 
surface. 

B. Classification 

The subset defined by equation (111 may be 

empty; for example, x2 + y2 + z2 + 1 = 0. In this 
article, we consider only quadric surfaces that 
are not the empty set. When a quadric surface 
F without tsingular points has a center or 
centers, we say that F is central. 

If we choose a suitable rectangular coordi- 
nate system, the equation of a central quadric 

surface is written in one of the following forms: 

x2 y2 
a2 bd 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

When the equation takes the form (2), (3), (4), 
(5), or (6), we call the quadric surface an ellip- 

soid, hyperboloid of one sheet, hyperboloid of 
two sheets, elliptic cylinder (or elliptic cylin- 
drical surface), or hyperbolic cylinder (hyper- 
bolic cylindrical surface), respectively. When 

the equation takes the form (711, the surface 
coincides with a pair of parallel planes. If a = 

b in (2), (3), (4), or (5) the surface is a tsurface 
of revolution with the z-axis as the axis of revo- 
lution. In this case, we call the surface an 
ellipsoid of revolution, hyperboloid of revolution 

of one sheet, hyperboloid of revolution of two 
sheets, or circular cylinder (or circular cylin- 
drical surface), respectively. If a = b = c for an 
ellipsoid of revolution, then t ne surface is a 
sphere with radius a. 

If we choose a suitable recl.angular coordi- 
nate system, the equation of a noncentral 
surface of the second order is, written in one of 

the following forms: 

(8) 

(9) 

(10) 

1 When the equation takes the form (8), (9), or 
(lo), we call the surface an elliptic paraboloid, 

hyperbolic paraboloid, or parabolic cylinder (or 
parabolic cylindrical surface), respectively. If a 
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= b in (8), the surface is called an elliptic para- 
boloid of revolution. 

Among these, (2), (3), (4), (8), and (9) are 
sometimes called proper quadric surfaces, and 
the others degenerate quadric surfaces. 

Equations (2)-( 10) are called the canonical 
forms of the equations of these surfaces (a, b, c 
in canonical forms should not be confused with 
a, b, c in (1)). The planes x=0, y=O, and z=O 

in surfaces (2), (3), and (4) and the planes x = 0 
and y = 0 in surfaces (8) and (9) are called 
principal planes of the respective surfaces; and 
lines of intersection of principal planes are 
called principal axes. For a surface of revo- 

lution, positions of principal planes and prin- 
cipal axes are indeterminate. We call a, b, c in 
equations of canonical form the lengths of the 
principal axes, or simply the principal axes. If 
F is a hyperboloid of one sheet or a hyperbolic 
paraboloid, there are two systems of straight 
lines lying on F; two straight. lines belonging 
to the same system never meet (and are not 
parallel), and two straight lines belonging to 

different systems always meet (or are parallel). 
If F satisfies (3), these systems of straight lines 
are given by 

If F satisfies (9), then two such systems are 

given by 

(1 and ,U are parameters). We call these straight 
lines generating lines of the respective surfaces. 
A hyperboloid of one sheet and a hyperbolic 
paraboloid are truled surfaces described by 
these generating lines. 

When a quadric surface has singular points, 
they are double points. The set of double 
points of a quadric surface F is either a single 

point 0, a straight line I, or a plane rc. In the 
second case, F consists of two planes passing 
through 1 or I itself, and in the third case, F 

coincides with rc. In the first case, we say that 

F is a quadric conical surface (or quadric cone) 
with vertex 0. Its equation is written in the 
form Ax’ + By’ + Cz* = 0 (ABC # 0). When A, 
B, C are of the same sign, F consists of only 
one point 0. Otherwise, we can assume that A, 
B>O, C= -1. In this case, if A=B, F is called 

a right circular cone, and if A #B, F is called 

an oblique circular cone. 

Given hyperboloids (3) and (4), we call the 

quadric cones 

~+y’-~=, 
a2 b2 c2 

and 

-x’-y’+“=o 
a2 b2 c2 

(3’) 

(4’) 

asymptotic cones of (3) and (4), respectively. 

C. Poles and Polar Planes 

Suppose that we are given a straight line S 
passing through a fixed point P not contained 

in a quadric surface F, and S intersects the 
surface at two points X, Y. The locus of the 
point Q that is the tharmonic conjugate of P 

with respect to X and Y is a plane. We call this 
plane rc the polar plane of P with respect to the 
quadric surface F, and P the pole of the plane 
rc. If the polar plane of a point P contains a 
point Q, then the polar plane of Q contains P. 
In this case, we say that the two points P and 
Q are conjugate to each other with respect to 
the quadric surface. When the point P is on 
the quadric surface, the tangent plane at P is 

regarded as the polar plane of P. If the polar 
plane (with respect to a quadric surface) of 
each vertex of a tetrahedron is the face corre- 
sponding to that vertex, we call this tetra- 
hedron a self-polar tetrahedron. If the polar 
planes (with respect to a quadric surface) of 
four vertices of a tetrahedron A are four faces 
of a tetrahedron B, the same property holds 
when we interchange A and B. We say that 

such tetrahedrons are polar tetrahedrons with 
respect to the quadric surface. Suppose that we 
are given a quadric surface and two planes. If 

the pole (with respect to the quadric surface) of 
one plane is on the other plane, these two 
planes are said to be conjugate with respect to 
the surface. 

When we are given two tpencils of planes in 
tprojective correspondence, the locus of lines 
of intersection of two corresponding planes is 
generally a hyperboloid of one sheet or a 
hyperbolic paraboloid. In particular, if the 
axes of these pencils of planes intersect, the 
locus is a quadric conical surface, and if the 

axes are parallel, the locus is a quadric cylin- 
drical surface (i.e., an elliptic or hyperbolic 

cylinder). When there exists a projective corre- 
spondence between two straight lines not on a 
plane, the locus of lines joining corresponding 
points is a quadric surface (M. Chasles). 

D. Surfaces of the Second Class 

A surface F in E3 is called a surface of the 

second class if it admits two tangent planes 
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passing through an arbitrary straight line L 
provided that F fl L = 0. This surface can be 

represented as the set of zeros of a homoge- 
neous equation of the second order in +plane 
coordinates ui, u2, us, u4. It is possible that a 
surface of the second class degenerates into a 
conic or two points. In general, quadrics are 

surfaces of the second class, and vice versa. 
As in the case of quadrics, we can define 

poles, polar planes, and polar tetrahedrons 
with reference to surfaces of the second class. 
Four straight lines joining corresponding 

vertices of two tetrahedrons polar with respect 
to a surface of the second class are on the same 
quadric. We say that two such tetrahedrons 
are in hyperboloid position. 

E. Confocal Quadrics 

A family of central quadrics represented by the 
following equations is called a family of con- 
focal quadrics: 

2+yz+;2=1 
a+k b+k cfk ’ 

a>b>c>O, (11) 

where k is a parameter. For a quadric belong- 
ing to this family, any point on the ellipse 
x’/(a - c) + y’/(b -c) = 1, z = 0 or the hyperbola 
x’/(a-b)-z’/(b-c)=,l, y=O is called a focus. 
This ellipse and hyperbola are called focal 
conies of the quadric. 

Given an ellipsoid F and a point X(x, y, z) 

not contained in the principal plane, we can 
draw three quadrics F’, F”, F”’ passing through 
X and confocal with F. These surfaces F’, F”, 

F”’ intersect each other and are mutually per- 
pendicular. One of them is an ellipsoid, an- 
other one a hyperboloid of one sheet, and the 
third a hyperboloid of two sheets. Let k,, k,, 

k, be the values of the parameter k in (11) 
corresponding to these three surfaces. Then 
the coordinates x, y, z of the point X are given 

by 

x= (a+W(a+k2)(a+k3) 
J - (b-a)(c-a) ’ 

y= (b+Mb+Mb+k,) 

J 
- 

(a-b)(c-b) ’ 

z= (c+Wc+Mc+k,) 
J (a-c)(b-c) 

We call k,, k,, k, the elliptic coordinates of the 
point X. 

Two points (x, y, z), (x’, y’, z’) are called corre- 

sponding points if they belong to confocal 
quadrics of the same kind, 

x2 y2 22 
;+r+;= 1, 

r2 r2 
(x)+(4.)+(21)2=1, 

a+k b+k c+k 

and satisfy 

$=& ~-jk 

If Pi, P2; Qi, Q2 are corresponding points, 
then Pi Q2 = P2Q, (J. Ivory). 

F. Circular Sections 

When the intersection of a plane and a quadric 
is a circle, the intersection is called a circular 
section. In general, circular sections are cut off 
by two systems of parallel planes 1:hrough a 
quadric. The point of contact on the tangent 
plane parallel to these is an +umbilical point of 
the quadric. 

G. Quadric Hypersurfaces 

A subset F of an n-dimensional Euclidean 

space E” is called a quadric hypersurface (or 
simply hyperquadric) if it is the set of points 
(x, , ,x,) satisfying the following equation of 
the second degree: 

where aik, bi, c are all real numbers. We can 
assume without loss of generality that the 
matrix A = (aik) is symmetric. Assume that A is 
not a zero matrix. In the case n = 2, F is a 
conic, and in the case n = 3, it is a quadric 

surface. The theory of classification of quad- 
ric surfaces can be generalized to t.he n- 
dimensional case as follows: Let r(A*) = r* be 
the rank of the (n + 1) x (n + 1) matrix 

a,, . al, b, 

A*= ... I 1 a,, . . . arm bn 
b, . b, c b, 

A ; = [ 1 bn ’ 
b, . . b, c 

and put r(A) = r. Then we have the following 
three cases: (I) r = r*; (II) r + 1 = r*; and (III) r + 

2 = r*. Corresponding to each case, equation 
(12) can be simplified (by a coordinate trans- 
formation in E”) to the following canonical 
forms, respectively: 

(I) i liXF =o, 
i=l 

(II) i liXf + 1 =o, 
i=l 

(III) i &XT + 2x,+i = 0, 
i=l 
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where (A,, . . . . 1,,0, . . . . 0) (with n-r zeros) is 
proportional to the teigenvalues of the matrix 
A. In general, we have 1 < r < n. In the cases 
where r = n in forms (I) and (II) and r + 1= n in 
(III), the hypersurface is called a properly (n - 
l)-dimensioaal quadric hypersurface, and in 
other cases, a quadric cylindrical hypersurface. 

In cases (I) and (II), the quadric cylindrical 
hypersurface is the locus of (n - r)-dimensional 
subspaces passing through each point of a 
properly (r - l)-dimensional quadric hypersur- 
face and parallel to a fixed (n - r)-dimensional 
subspace. In case (III), the quadric cylindrical 
hypersurface is the locus of (n - r - l)-dimen- 
sional subspaces passing through each point 
of a properly r-dimensional quadric hypersur- 
face and being parallel to a fixed (n-r - l)- 
dimensional subspace. For form (I) with li > 0 
(i= 1 , . . . , n), a properly (n - 1)-dimensional 
quadric hypersurface reduces to a point in E”; 
for form (II) with Izi > 0 (i = 1, . . . , n) it becomes 
the empty set. Suppose that we are given a 
quadric hypersurface F that is neither a point 
nor empty. Then the system {A,, . . . , A,} as- 
sociated with F in its canonical equation is 
unique up to order (and signature in form 
(III)). Suppose that we are given a quadric 
surface F and a point P on F. Suppose further 
that if a point X other than P is on F, then the 
whole straight line PX lies on F. In this case, 
the hypersurface is called a quadric conical 
hypersurface (or simply quadric cone). For 
example, for case (I), we can take P = 0 (the 
origin), and the hypersurface is a quadric cone. 
In cases (I) and (II), the hypersurface is sym- 
metric with respect to the origin. In these 
cases, a hypersurface is called a central quadric 
hypersurface, and in case (III), it is called a 
noncentral quadric hypersurface or parabolic 

quadric hypersurface. When we cut a parabolic 
quadric hypersurface by a (2-dimensional) 
plane containing the x,+,-axis, the section is a 
parabola. If Izi < 0 (i = 1, . . . , r) in form (II), then 
the surface is called an elliptic quadric hyper- 
surface, and if there are both positive and 
negative numbers among the Li, the surface is 
called a hyperbolic quadric hypersurface. The 
section of an elliptic quadric hypersurface by a 
plane is always an ellipse. The section of a 
hyperbolic quadric hypersurface by a plane is 
an ellipse, a hyperbola, or two straight lines. In 
general, the section of a quadric hypersurface 
by a subspace is a quadric hypersurface on 
that subspace. 

H. Quadric Hypersurfaces in an Affine Space 

In Section G we considered a quadric hyper- 
surface defined by (12) in an n-dimensional 
Euclidean space E” and transformed the equa- 
tion to canonical form by an orthogonal 

transformation of coordinates in E”. If we 
regard E” as an n-dimensional taffrne space 
over the real number field and reduce (12) to 
the simplest form by a coordinate transforma- 
tion in the affme space, we have the following 
canonical forms corresponding to cases (I), (II), 
and (III) discussed in Section G: 

(I) (S&ix:- i x;=o, 
i=l j=s+l 

(II) w$x:- i x:+1=0, 
j=s+l 

(III) (S,&- i x;+2x,+1=o, 
i=l j=s+l 

where 0 <s < r and r-s = t. The terms properly 
(n - l)-dimensional, cylindrical, conical, para- 
bolic, elliptic, and hyperbolic can be defined in 
terms of this affine classification. For example, 
a cone is of type (I), a parabolic hypersurface is 
of type (III), an elliptic hypersurface is of type 
(II) (0, r), a hyperbolic hypersurface is of type 
(II) (s, t) (s, t > 0), and type (II) (s, 0) represents 
the empty set. A necessary and sufficient con- 
dition for a (nonempty) hypersurface to be 
represented by two canonical forms N(s, t), 
N’(s’, t’) is that (i) N = N’ and (ii) if N =(I) or 
N = (III), then s = s’, t = t’ or s = t’, t = s’, and if 
N = (II), then s = s’, t = t’. 

I. Quadric Hypersurfaces in a Projective Space 

Suppose that we are given a field K of charac- 
teristic not equal to 2 and an n-dimensional 
tprojective space P” over K. A subset F of P” is 
called a quadric hypersurface (or simply hyper- 
quadric) if F is represented by a homogeneous 
equation of the second degree &=,,aikxixk 

= 0, where (x,, x1, . . . , x,) are homogeneous 
coordinates in P” and aik E K, A = (aik) is a 
nonzero symmetric matrix. The problem of 
classifying such surfaces is reduced to that of 
tquadratic forms or, equivalently, to that of 
symmetrix matrices in K. Two symmetric 
matrices A and B are equivalent if there exists 
a regular matrix T such that B =‘TAT (- 348 
Quadratic Forms). In particular, when K is an 
talgebraically closed field or a treal closed 
field, a simple result is obtained. If K is an 
algebraically closed field, then the equation of 
the quadric hypersurface is reduced to the 
canonical form &, xf = 0, where r = r(A) = the 
rank of A. When K is a real closed field, then 
the canonical form is xi=,, x? - &+i xj’ = 0. 
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351 (Xx.23) 
Quantum Mechanics 

A. Historical Remarks 

+Newtonian mechanics (classical mechanics) 
successfully explained the motion of mechan- 
ical objects, both celestial and terrestrial, on 
a macroscopic scale. It failed, however, to 
explain blackbody radiation, which was dis- 
covered in the last decade of the 19th century. 

M. Planck introduced a hypothesis of discrete 
energy quanta, each of which contains an 
amount of energy E equal to the frequency of 
the radiation v multiplied by a universal con- 

stant h (called Planck’s constant). He applied 
this hypothesis to derive a new formula for 

radiation that gives predictions in good 
agreement with observations. A. Einstein 
proposed the hypothesis of the photon as a 
particlelike discrete unit of light rays. Assum- 
ing that many physical quantities, including 
energy, have only discrete values, N. H. Bohr 
explained the stability of electronic states in 
atoms. As illustrated in these examples, quan- 

tum mechanics is applied to study the motion 
of microscopic objects, including molecules, 
atoms, nuclei, and elementary particles. 

B. Quantum-Mechanical Measurement 

Fundamental differences between the new 
mechanics and classical mechanics are due 
to the facts that many physical quantities, 
for example, energy, can take only discrete 
values in the microscopic world, and that 

states of microscopic objects are disturbed 
by observation. 

A (pure) state at a certain time is expressed 

by a unit vector $ in a +Hilbert space X, and 
observables, or physical quantities, are ex- 
pressed by +self-adjoint operators in such a 

space. 
Let a, (n = 1,2, . . . ) be teigenvalues of an 

observable A, and let P,, be a tprojection opera- 

tor onto the eigenspace spanned by teigen- 
vectors belonging to the eigenvalue a,. Sup- 
pose that A =Zna,P,. Then the hypothesis 
on measurement in quantum mechanics is 

given as follows. 
When an observable A is observed in a state 

+, one of the eigenvalues a, is found with 

probability proportional to (II/, P.$)‘. When an 
eigenvalue a, is.once observed, a :state jumps 
from $ to an eigenstate P,,t+b which belongs to 
the eigenvalue a,. Quantum mechanics pre- 
dicts only a probability pn with which a certain 

value a, is found when an observable A is 
observed. This probability, given by (+, P,,$), 

is not changed even if $ is replaced by e’?$, 
0 < 0 < 27~. Therefore ei”$ represents the same 
state as $. The set of e”$, 0 <B < 27t, for a 
fixed ti (11$/I = 1) is called a unit ray. 

If Pn is 1 -dimensional and P,,cp := cp, // cp II = 1, 
then ($, Pn$) = I($, (p)l’ is called the transition 

probability between the two states. 
The expectation value (or expectation) of an 

operator A in a state $, usually nsormalized to 
f,“‘p=,l, is defined to be (A)=(I), A$)= 

n% n 
A general self-adjoint operator A can be 

written as A = JA dP(i). When A is observed in 
a state $, the probability for a value to be 
found between /I, and 1, (&>A,: 1, included 
and I, excluded if P(L) is right continuous) is 
($(P(I,)-P(i,)), $) (- 390 Spectral Analysis 

of Operators). 

The quantity (cp, All/) is called the matrix 
element of A between the two states cp and $. 
A state $ can be viewed as a functional $(A) = 
(A) on the set of all observables A (its value 
being the expectation), which is linear in A, 
positive in the sense $(A*A)>O for any opera- 
tor A, and normalized: $( 1) = 1. If 0 < 1< 1 and 
$(A)=@,(A)+(l-1)$,(A) for all obser- 
vables A, then the state Ic, is called a mixture of 

states $i and ti2 with weights /z and (1 - 1). If 
a state is not a nontrivial (i.e., I # 0, 1, $i # ti2) 
mixture, it is called pure. The state (A) = 

(+, All/) on the set of all self-adjoint operators 
A given by a vector $ is pure in this sense. If 
sup, $(A,) = +(A) whenever A, is an increasing 
net of positive operators with A as its limit, 
then + is called normal. Any normal positive 
linear functional on the set of all self-adjoint 
operators can be described by a trace-class 
positive operator p, called the density matrix, 
as (A) = tr(Ap). If {&} is a complete ortho- 
normal set, where each & is an eigenvector of 

p belonging to the eigenvalue A,,, then (A) = 

~ CnUh Atin). 

C. Canonical Commutation Relations 

In quantum mechanics, canonical variables 
are represented by the self-adjoint operators 
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Qk (coordinates) and Pk (momenta), k = 1, . . . , 
N, which satisfy the canonical commutation 
relations 

D. Time Evolution and the Schriidinger 

Equation 

where 1 is the identity operator, [A, B] de- 
notes the commutator AB - BA, h = h/(24, and 
the relation is supposed to hold on a certain 

dense domain of vectors. Self-adjoint opera- 
tors Qk and Pk satisfying the above relations 
are unique up to quasi-equivalence under a 

suitable domain assumption, e.g., if &Q: + 
C, Pt is essentially self-adjoint on a dense 
domain invariant under multiplication of the 
Q’s and P’s and on which the above relations 
are satisfied. Under such an assumption, Qk 
and Pk are unitarily equivalent to a direct 
sum of the Schriidinger representation on 

L,(RN,dx, . . . dx,), where Qk is multiplication 
by the kth coordinate xk and Pk is the differen- 
tiation - ih(3/3x,) (Rellich-Dixmier theorem). 

The time t of an observation is fixed in the 
foregoing discussion. A state changes, how- 
ever, as the time t changes, in such a way that 
the transition probability between states is 
preserved. By Wigner’s theorem (- Section 

H), this time evolution of states can be im- 
plemented by unitary operators U, defined by 
the transformation of vectors $-U,$= $,. 

Furthermore, under some continuity assump- 
tion, such as that of (cp, U,$), U, can be made a 
continuous one-parameter group. By Stone’s 
theorem, U, = eeiHtlh for a self-adjoint operator 
H. This operator is called the Hamiltonian 
operator (or simply Hamiltonian) determined 
by the structure of a system. An infinitesimal 

change in $ corresponding to an infinitesimal 
change in t can be generated by this operator 
H as follows: 

The above Schrodinger representation 
is called the position representation (or q- 

representation). The formulation using the 
function space L, of real variables pk, k = 
1,2, . . , N, on which the operators Pk act as 
multiplications by pkr is called the momentum 
representation (or p-representation). 

This equation is called the time-dependent 
Schriidinger equation. 

If Hermitian operators A and B satisfy the 
canonical commutation relations in the form 

(A$, B$)-(B$, A$) = ih(lC/, +), then the follow- 
ing Heisenherg uncertainty relation holds for 
the expectation: 

A state $ changes but observables do not 
change with time in the Schriidinger pic- 
ture above. The other picture, known as the 
Heisenberg picture, is equally possible. In 

this picture, the state is expressed by a time- 
independent vector, while operators A vary 
with time as follows: A+ U** AU, = A(t). Rates 

of change of operators A(t) can be calculated 
by means of the equation 

This gives the uncertainty in observations, 
which means that two observables A and B 

cannot simultaneously be observed with ac- 
curacy. This is another important property of 

microscopic motion that cannot be found in 
macroscopic motion. 

F=fCH, A(t),, 

In a direct sum of the Schrddinger repre- 

sentation of the canonical commutation re- 
lations, the unitary operators 

U@)=expi~a,Q,, V(b)=expiCb,P, 
k k 

which is called the Heisenherg equation of 
motion. When time t changes, the expectation 
value of an operator A in a state II, changes in 
both pictures according to 

d(A)/dt=i([H,A])/h. 

According to classical analytical dynamics, a 

change of a dynamical quantity that is a func- 
tion of tcanonical variables qi (positions) and 
pi (momenta) is given by 

dA/dt = -(H, A), 

with real parameters uk and 4, k = 1, . . , N, 
satisfy the following Weyl form of the canon- 
ical commutation relations: 

U(a)U(a’)= U(a+a’), V(b) V(b’) = V(b + b’), 

U(a)V(b)= V(b)U(a)exp -iCa,b, 
( > 

. 
k 

Conversely, any pair of families of unitary 
operators U(a) and V(b) satisfying these rela- 

tions and depending continuously on para- 
meters a and b are unitarily equivalent to 

those obtained as above (von Neumann unique- 
ness theorem). 

where H is a THamiltonian function and the 
parentheses ( , ) denote the tPoisson bracket. 

A replacement of the Poisson bracket (A, B) by 
[A, B]/ih transforms this classical equation 
into the quantum-mechanical equation above. 
It should be noticed that the mathematical 
structure of the Poisson bracket is similar to 

that of commutator. In this transition from 

classical to quantum mechanics the corre- 
spondence principle can be used. This requires 
that the laws of quantum mechanics must lead 
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to the equations of classical mechanics in the 
classical situation, where many quanta are 

involved and h can be regarded as infinites- 
imally small in the commutation relation. 
The correspondence principle suggests that 

Hamiltonian operators in quantum mechanics 
can be obtained from Hamiltonian functions 

H(p,, qk) of canonical variables pk and qk in 
classical mechanics after replacing pk and qk by 
the operators Pk and Qk in the Schriidinger 
representation (up to uncertainty of about the 
order of operators). This process of moving 
from canonical variables and the Hamiltonian 
function in classical mechanics to canonical 

operators and the Hamiltonian in quantum 
mechanics is called quantization. Taking a 
system of s particles and letting xk, y,, and zk 

be the Cartesian coordinates of the kth parti- 
cle, we usually write the equation of motion as 

a* ih---= at -rfl gAk 

+ ~(X,,Y,,Zl, . . ..~.,Y,,Z,) 
> 

*> 

which is a second-order partial differential 
equation. Here rn,, is the mass of the kth par- 

ticle; Ak is the tLaplacian of xk, ykr and zk; and 
V is a real function called the potential energy. 
This equation is the time-dependent Schriidin- 

ger equation. The partial differential operator 
on the right-hand side is called the (s-body) 
Schriidinger operator and $(x1, y,, z,, . , 
x,, y,, z,, t) is called a wave function. The prob- 

ability of finding a particle in the volume 

dx,dy,dz, bounded by xkr xk + dx,, y,, yk + dy,, 
and zk, z,+dz, is proportional to ($(x,,y,,z,, 
. . ..x y z t)l*. Usually \+I’ is normalized 83 s1 S’ 
so that its integral over the whole space is 1. 
We sometimes call $ the probability ampli- 

tude. When $ is given by e--iEf’h+I, . . . ,zJ, 
the expectation value of an operator A in a 
state $, (A)=j+*A$dx, . ..dz., does not de- 
pend on time. When this is the case, II, is 
called a stationary state. 

A real value E and a function &,, . . , ZJ 

are found by solving an teigenvalue prob- 
lem H~J = Ep. This equation is the time- 

independent Schriidinger equation, which is a 

second-order partial differential equation. 
Since the Hamiltonian H stands for the energy 
of this system, the eigenvalues E are the energy 
values that this system can take. 

When a potential function V is given, it is 
a nontrivial matter to prove that the (s-body) 
Schrodinger operator with the given V is es- 

sentially self-adjoint on the set of, for example, 
all P-functions with compact supports so 

that its closure H defines mathematically the 

continuous one-parameter group of unitaries 

U =e-ietih for the time evolution of the quan- t 

turn system of s particles with the given inter- 
action potential V. If V satisfies an estimate 

11 V$jj <illH,,ll/l] +p]/$ll (called the Kato per- 

turbation on Ho) for some nonnegative 1< 1 
and p > 0 and for all $ in a dense domain on 
which If,, is essentially self-adjoin& where Ho 
denotes the Schrodinger operator with V=O 
(called the free Hamiltonian or the kinetic 

energy term), then Ho + V is essentially self- 
adjoint on the same domain. For the case 
where V consists of Coulomb interactions 
between electrons and Coulomb potentials 

on electrons by fixed nuclei, for example, 
such an estimate and hence the essential self- 
adjointness of Hamiltonians for atoms and 

molecules were established first by T. Kato 
(Trans. Amer. Math. SOL, 70 (195 1)). 

For a l-body Schrodinger operator (or 2- 
body Schrijdinger operator after the center 
of mass motion has been separated out), the 
point spectrum is that of the particle trapped 
by the potential, and the state represented by 

its eigenvector is called a bound state. The 
eigenvalue is nonpositive for a reasonable class 
of potentials V (for example, if V(x) (xER~) is 
continuous and 8(1x)-‘-‘) as J:cJ+oo for some 

E > 0), and its absolute value is called the bind- 

ing energy. The eigensolutions of the Schrii- 
dinger equation are what have been called 
stationary states above. 

There are also stationary solutions that 
do not correspond to the point spectrum and 

hence are not square integrable. They are used 
in the stationary methods of scattering theory 
(- 375 Scattering Theory). 

E. Some Exact Solutions for t:he l-Body 

Schradinger Equation 

(1) Harmonic oscillator. First consider the case 
in which the space is of 1 dimension, so that 
the Laplacian A is (d/dx)‘. Let m be the mass 
of the particle and V(x) = ma? x2/2 for a posi- 
tive constant w (called the angular frequency). 

The Hamiltonian 

H = -(h2/2m)(d/dx)’ + mw2.c2/2 

has simple eigenvalues 

E, = hw(n + (l/2)), n=0,1,2 )..., 

with a complete orthonormal set of eigen- 

functions 

&,(x)=c,H,(q)e-q2’2, q=(mw/h)1’2x, 

where H,(q) is a tHermite polynomial and c, is 
the normalization constant: 

rm 
H,(q)= 1 (-l)kn!(2q)“-2k/{(n-2k)!k!}, 

k=O 

c, = {22”(n!)2nh/(mw)}-114, 
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When the space is of r dimensions, n in E, is 

replaced by n, + . . . + n, with nonnegative 
integers n,, . . , n,, and the corresponding eigen- 

function is n,l=, Il/,,(xj). 

(2) One-dimensional square-well potential. 
Let l’(x)=VforIxl,<a/2and V(x)=Oforlxl> 
a/2 (x ER). If V>O, there are no point spectra. 
If V<O and 

then there are N eigenvalues (N = 1,2,. . .) 
obtained as the roots E < 0 of one of the fol- 
lowing equations: 

{(V/E)- l}1~Z=tan{a(-2mE)1~2/(2h)}, 

{(V/E)-l}“*= -cot{a(-2mE)“*/(2h)}. 

(3) Separation of angular dependence for 
central potential. If V(x) (x E R3) depends only 
on r = 1 x I= (zkl (xj)*)“’ (called a central poten- 
tial), then all eigenvalues E and a basis for 
eigenfunctions $(x) can be obtained in terms 
of the polar coordinate r, 0, cp (x1 = r sin Qcos rp, 
x,=rsinesincp, x,=rcosB) as 

N4= k;,(R dr-‘4rb 

-(h*/(2m))u”(r)+{h*l(l+ 1)/(2mr) 

+ V(r)-E}u(r)=O, 

s 

‘x 
lItill= 14r)12dr<=b 

0 

where the angular function &, is an eigenfunc- 
tion of the square L* of the orbital angular 
momentum L = - ix x V: 

I;, = c,,P;t(cos O)&mr, 

c,,=(-1)“{(21+l)(l-m)!/(47r(l+m)!)}”Z, 

m=l,l-l,...) -1+1, -1, 1=0,1,2 )..., 

Here P;“(x) is an tassociated Legendre 
polynomial: 

P;“(x) = (1 - X*)+(dl+m(XZ - l)‘/dx’+“)/(2’1!). 

The above equation for u(r) is called the radial 
equation. The nonnegative integer 1 is the 
azimuthal quantum number, and the integer m 
is the orbital magnetic quantum number. The 
wave function $(x) with the angular depen- 
dence &,(0, cp) is called the S-wave, P-wave, D- 
wave,. . . according as I= 0, 1,2, . . . . 

(4) Hydrogen-type atom. Let V(r) = -Ze’/r 
(2 > 0). For each 1 and m, there are eigenvalues 
- e2 .Z2/(2an2) with eigenfunctions I,&~ = 
r-‘u,I(r)I;,(Q,cp), where n=l+ 1, 1+2, . . is 

the principal quantum number, 

uJr) = ~,,L~~,~::‘)(s)s’+’ e-‘/*, s = 2Zr/(na), 

cnl= -{(n-I-- 1)![2Z/(na(n+l)!)]3/(2n)}“2, 

and L:(x) is the @h derivative of the tLaguerre 

polynomial 

The eigenvalue is determined by n, and its 
multiplicity is n2, corresponding to the differ- 
ent possible values of 1 and m. 

F. Path Integrals 

R. P. Feynman (Rev. Mod. Phys., 20 (1948)) 
has given the solution of the Schrijdinger 

equation as an integral of eiLih over all possible 
paths q(t), where L = L(q, 4) (4 = (d/dt)q(t)) is 

the classical Lagrangian for the Hamiltonian 
system. This integral is called the Feynman 
path integral. Mathematical reformulation of 

the formula in terms of the Wiener measure 
has been given by M. Kac (Proc. 2nd Berkeley 

Symp. Math. Statist. Probability, 1950; Proba- 
bility and related topics in the physical sciences, 
Wiley, 1959). 

Consider the l-body Schriidinger operator 
H = Ho + V (form sum), where V is the sum of a 

locally integrable function bounded below and 
a Kato perturbation on Ho. Let b(t) (t 20) be 
the Wiener process and q(t)= hb(t)/(2m)“‘. For 
any L, functions f; 

(e-‘“‘*f)(x) ’ 

for almost all x, where E denotes the expecta- 
tion for the Wiener process. If V is a sum of 
L, and L, functions (for spatial dimension 
< 3), then the right-hand side is continuous in 
x for t > 0. This is called the Feynman-Kac 

formula. 

Let Lo be the Hamiltonian for a l-dimen- 
sional harmonic oscillator with m = w  = 
h = 1 and I++~ be the eigenfunction $o(x) = 

n-li4exp( - x2/2). Consider H = Lo + V (form 
sum), where V is a sum of a locally integrable 
function bounded below and a Kato pertur- 
bation on Lo. Let q(t) (tsR) be Gaussian ran- 
dom variables with mean 0 and covariance 
E(q(t)q(s))=2-‘exp(-It-sl) (called the oscil- 
lator process). For any J(x) in L,(R, $02 dx) 
(j=l ,..., n)andt,,<t,...<t,<t,+,, 

The above path integral formulas are closely 
related to the Trotter product formula 

e-t(A+B)= lim (em tA/ne-rB’n)n (t&O), 
n-m 

where A and B are self-adjoint operators 
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bounded below and A + B is essentially self- 
adjoint. (The same formula holds without the 
bdundedness assumption when t E iR.) 

G. The Dirac Equation 

The Schradinger equation is not relativistically 

invariant. The Klein-Gordon equation 

is obtained by replacing pk by (h/i)a/dx, 
(k = 1,2,3) and E by ih8/& in the relativistic 

identity 

E2=m2c4+p2c2, 

where c is the speed of light. Wave functions of 

free particles are believed to satisfy this equa- 
tion. P. A. M. Dirac assumed that the $ of a 

free electron is expressed in terms of a tspinor 
with four components satisfying a linear dif- 
ferential equation that automatically implies 
the Klein-Gordon equation. Relativity re- 
quires the equal handling of space and time. 
The Dirac equation 

(8) 

(x0 = ct) satisfies these requirements. The 
coefficients y” can be so determined that 

every component of $ also satisfies the Klein- 

Gordon equation. Thus the yv are found to be 
4 x 4 matrices satisfying the commutation 
relations yUyY+yVy’=2gfiY (p, v=O, 1,2,3), 
where g”‘=O for p#v and go’= -gkk=l (k= 

1,2,3). Sixteen linearly independent matrices 
are obtained by repeated multiplication of five 
matrices, which include the four matrices y”, 
y’, y2, y3 and the identity matrix. Any 4 x 4 

matrix can be expressed as a linear combina- 
tion of these sixteen matrices. 

The Dirac equation has +plane wave 

solutions 

where the energy eigenvalues E are 

_+Jm2c4fp2c2. 

There are four independent eigensolutions u(l), 
IL(=), uc3), and uc4), because u has four compo- 

nents. Two of them are of positive energy and 
the other two are of negative energy. Although 

the negative energy case is physically undesir- 
able, it has to be taken into account in order 

to obtain a mathematically complete set. To 
solve this difficulty, Dirac proposed the hypoth- 
esis (Dirac’s hole theory) that all the negative 

energy states are filled up by an infinite num- 

ber of electrons in the normal state of the 
vacuum. The absence from the vacuum of a 
negatively charged electron in a negative 
energy state could then be expected to mani- 

fest itself as a positively charged particle (posi- 
tron) with positive mass and kinetic energy. If 
gamma rays are absorbed to excitl: an electron 
from a negative energy state into a positive 
energy state, an electron-position pair must be 

created. Y. Nishina and 0. Klein calculated 

the cross section of Compton scattering (the 
Klein-Nishina formula) by use of the Dirac 
equation and found good agreement with 
observations, thus providing evidence that the 
Dirac equation is correct. The existence of 
negative energy states, however, forces us to 

give up considering the Dirac equation as 
an equation of one electron. The positron 
theory is introduced, and the Dirac equation 
is considered as the classical field of electron 
waves and is second-quantized (-- 311 Second 

Quantization). 
The Klein-Gordon equation can also be 

considered to be the classical wave equation of 
matter and can be second-quantized. Motions 
of particles with zero spin, pi mesons (n) for 
example, obey this equation. 

We can rewrite the Dirac equation as 
ih&+h/& = He, H = cu. p + mc’p, where yk = 

,8tlk (k = 1,2,3), and y” =/I Since H cannot 
commute with the orbital angular momentum 
of an electron L = r x p = - ihr x V, L is not 

conserved. However, the total angular momen- 
tum J = L + (h/2)a can be conserved when c~ is 
a vector whose components can be given as 

(: i), where B=(i ol), ~~i(i~ :), 

and the ckr called Pauli spin matrices, are given 

by ox=c A), ay=(:’ ii)> %=(:A “1>. 

(The y’ are called Dirac’s y matrices.) The 

quantity S =z c is the intrinsic angular momen- 

tum of the eI&tron, also called the spin. Many 

particles besides the electron, the neutron for 

example have spin. The matri Y S2 = Sz + S,’ + 
.S,2 is diagonal and is equal to s(s+ l)h21 (I is 
the identity matrix). For the electron s = l/2, 
and h/2 is called the absolute value of the spin. 
Therefore we say that electrons are particles of 
spin h/2. This was predicted in the theory of 
light spectra. 

When the speed of an electron is very small, 
so that (o/c)’ can be neglected, states of the 
electron can be expressed in 1:erms of two- 
component wave functions. This approxi- 

mation is called the Pauli approximation. If 
the spin-orbit term that appears in the Pauli 

approximation is also neglected, these two 
components become independent of each 
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other and individually satisfy the SchrGdinger 
equation. 

H. Application of Representation Theory of Lie 
Groups 

A symmetry (with active interpretation) is 
a bijective mapping of pure states (repre- 
sented by unit rays in a Hilbert space) preserv- 
ing transition probabilities between them. 
Wigner’s theorem says that any symmetry can 

be implemented by either a unitary or an 
antiunitary mapping of the underlying Hilbert 
space as a mapping of unit rays onto them- 
selves. Furthermore a connected Lie group 

of symmetries is implemented by unitaries, 
which form a projective representation. Eigen- 
states + of the Schriidinger equation are func- 
tions of the coordinates of each particle. Let 
these coordinates be denoted together as x. 

Suppose that an operator T operates on the 
x, as, for example, a rotation of the coordinate 
system or a permutation of the labels of the 

particles. If T commutes with H or H is invar- 
iant under the transformation x-+x’= TX, 
then T$(x) = q(x) = $(T-‘x) satisfies the same 
Schriidinger equation as $, where the trans- 
formation of the function is defined by t,V(x’) = 
$(x). The set of transformations x-+x’= TX 
forms a tgroup {T}, and the corresponding 
transformations $- T$ give a (generally 
infinite-dimensional) representation of this 
group, which should be tunitary on L,-space 
relative to the Lebesgue measure dx if T leaves 

the measure invariant. There are degeneracies 
of the energy eigenvalues, each of which is 
equal to the dimension of the corresponding 

representation of the group {T}. If the repre- 

sentation for each eigenvalue is decomposed 
into irreducible ones, then the decomposed 

stationary state can be labeled by an tirreduc- 
ible representation. 

When H is spherically symmetric, i.e., H is 
invariant under the 3-dimensional rotation 

group, states are classified by the irreducible 
representations DL of the trotation group (- 
258 Lorentz Group). The square of the sum L 

of all orbital angular momenta has eigenvalues 
L(L + l)h’, where L must be 0 or a positive 
integer. There are 2L + 1 degenerate states, 

each of which belongs to a different M, the 
z-component of L, where M ranges from L to 

-L by unit steps. Even when there is an inter- 
action between the orbital angular momentum 
and the spin angular momentum, states are 
labeled by the irreducible representations DJ 
of the rotation group, where J is the sum of 

the orbital angular momentum L and the spin 
angular momentum S (J = L + S) and eigen- 

values of J* are given by J (J+ l)h*. Each J 
must be zero, a positive integer, or a half- 

integer. Adding inversions to the pure rota- 
tions, we obtain the 3-dimensional orthogonal 
group (- 60 Classical Groups I). Irreducible 
representations of this group are written as 
0: , where f corresponds to the characters 

of the inversion relative to the origin. States 
with + are called even states and those with 

-> odd states. For example, energy levels of 
atoms and nuclei can be classified by 0:. 

To obtain matrix elements of observables 
between two stationary states, group repre- 
sentation theory is useful. The transformation 

of every observable obeys a certain rule under 
the transformation of coordinates. The scalar 
is transformed according to D:, the vector 
according to 0; , the pseudovector according 
to DC, and the traceless tensor according to 
0:. If the transformation of an observable 
is given by DJ, then a matrix element of this 
observable between the states belonging to DJv 
and DJ,, vanishes unless the tensor product 

representation DJ @ DJ, contains as a factor a 
representation equivalent to DJpv. In electro- 
magnetic transitions in atoms or nuclei, D, @I 
D,.=D,.+,+D,,+D,.-,(J’>l)iftheelectric 
dipole transition dominates (J = 1). This im- 
plies the selection rule J’-+J’+ 1, J’, J’- 1. 
When J’= 0, only the transition O+ 1 is pos- 
sible. More general selection rules can be 
obtained in the same way for general multi- 
pole transitions. Representation theory is 

useful in determining general formulas of 
transition strengths. 

There is a class of particles, many of which 
can occupy the same state, called bosons. 
There is another class of particles, of which 

only one can occupy a given state, called fer- 
mions. For example, the electron, neutron, and 
proton are fermions, while the photon and pi 

meson are bosons. Two identical particles, 
both of which are either fermions of the same 

kind or bosons of the same kind, cannot be 
distinguished. Therefore the Hamiltonian 

should be invariant under permutations be- 
tween identical fermions, or between identical 
bosons. A system consisting of N identical 

particles can be classified by the irreducible 
representations of the tsymmetric group S, of 
N elements. When the particles are fermions, 

two of them cannot occupy the same state (this 
law is called the Pauli principle), so that only 

totally antisymmetric states are permissible 
for fermions. When a system consists only of 

fermions of the same kind with spin h/2 and a 
Hamiltonian of this system does not include 

terms depending on spins, then the wave func- 

tions are just products of spin and orbital 
parts. In order to make wave functions totally 
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antisymmetric, orbital wave functions with a 
total spin u/2 should be limited to those corre- 
sponding to the tYoung diagram [2Nm”, l”] = 

T(2,2, . ..) l,l). 

I. Polyatomic Molecules 

The group generated by the 2-dimensional 
rotations about the axis connecting two atoms 

and the reflections with respect to the planes 
containing this axis is used to classify states 
of diatomic molecules. Stationary states can 
be classified by the absolute value A of the 
angular momentum of the diatomic system 
around this axis, which can be zero or a posi- 

tive integer. When A > 1, the corresponding 
state has twofold degeneracy, whereas when A 

=O, two states (labeled by &) arise, depending 
on the character of the reflections. If these two 
atoms are identical, the molecular states can 
be classified further as even and odd according 
to the character of reflections with respect to 
the plane containing the center of mass and 
perpendicular to the axis. The classification of 
the spectral terms of a polyatomic molecule is 
related to its symmetry, described by the set of 
all transformations that interchange identical 
atoms. For example, stationary states of meth- 

ane molecules CH, are classified by the irre- 
ducible representations of the group Td (which 
is generated by adjoining reflection symmetry 
to the ttetrahedral group T). Level structures 
of a crystal are classified by the irreducible rep- 
resentations of its symmetry groups. 

In the approximation of many-body prob- 

lems by means of independent particles, the 
wave function of the total system is con- 
structed by multiplying the wave functions of 
the individual particles. To construct such a 

wave function, it is useful to consider the re- 
duction to irreducible parts of the ttensor 

products of representations of the groups 
attached to the individual particles. For exam- 
ple, an atom with two electrons carrying the 
angular momenta J, and JZ has 25’ + 1 differ- 
ent angular momentum states, where J’= 
min(J,, J2) corresponding to the decompo- 

sitionD,10DJ2=DJ,+JZ+DDJ,+JZ-1+...+ 
D,J,-J,,. The right-hand side of this equation 

gives all possible states of the atom. 

J. Charge Symmetry 

The proton and the neutron can be considered 
to be different states of the same particle, 
called the nucleon, because these two particles 

have very similar natures except for their 
charges, masses, etc. As an approximation, the 

Hamiltonian of a system consisting of protons 

and neutrons may be taken to be invariant 
under the interchange of protons and neu- 
trons. This invariance is called charge sym- 

metry. Analogous to ordinary spin, isospin can 
be introduced to describe the two states of nu- 

cleans. The up state of the isospin corresponds 
to the proton and the down state corresponds 
to the neutron. Consider transformations 
belonging to the tspecial unitary group SU(2) 
in the 2-dimensional space spanned by the 
proton state and the neutron state. If a Hamil- 
tonian of N nucleons is invariant under any 
transformation belonging to SU(2), then the 
eigenstate of these N nucleons is classified 

by its irreducible representations I),, where 
T stands for the total isospin of each state. 
This invariance, called isospin invariance, 
holds in the nucleus and elementary particles 

if electromagnetic and weak interactions, and 

possibly the interaction responsible for the 
proton-neutron mass difference, are neglected. 
When a state of N nucleons has an isospin 
T= v/2, the orbital-spin wave function of this 
state must correspond to the Young diagram 
[2Nm”, l”], since the isospin wave function 

multiplied by the orbital-spin wave function is 
a totally antisymmetric wave funcl:ion. If this 

Hamiltonian is also independent of spin, it is 
invariant under unitary transformations in the 

4-dimensional space spanned by the four inter- 
nal states of the nucleon: up and down spins, 
up and down isospins. Therefore the states of 
N nucleons can be classified by the irreducible 
representations of the group U(4) (Wigner’s 
supermultiplet theory). 

K. The C*-Algebra Approach 

The uniqueness of operators satisfying the 

canonical commutation relations (represen- 
tations of CCR’s) up to quasi-equivalence (- 
Section C) no longer holds if the number of 
canonical variables become infinit~e (a so-called 

system of infinitely many degrees of freedom), 
a point first emphasized by K. 0. Friedrichs 
(Mathematical aspects of the quantum theory 
offields, Interscience, 1953), and p.hysical 
examples illustrating this point were given 
by L. van Hove (Physica, 18 (1952)) and R. 
Haag (Mat. Fys. Medd. Danske Vid. Selsk., 29 

(1955)). The use of C*-algebras in physics was 
first advocated by I. E. Segal (Ann Math., 

48 (1947)), and the physical relationship 
among all inequivalent representations of a 
C*-algebra was first discussed by K. Haag and 
D. Kastler (J. Math. Phys., 5 (1964)). 

In C*-algebra approach, a physical obser- 

vable is an element of a C*-algebra ‘QI and a 
state is a functional cp on VI (its value q(A) is 
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the expectation value of the observable A E 2I 
when measured in that state) that is linear, 
positive in the sense q(A*A) > 0 for any A E ‘%!I, 
and normalized, i.e., 11 cp II= 1 or equivalently 
cp( 1) = 1 if 1 &I. The tGNS construction associ- 
ates with every state cp a Hilbert space H,, a 

representation n,(A), A E 2l, of ‘u by bounded 
linear operators on H,, and a unit cyclic vec- 
tor R, in H, such that rp(A) = (Q,, a,(A)n,). 
Two states cp and $ (or rather 7crn and 7tJ are 
called disjoint if there is no nonzero mapping 

T from H, to H, such that TX,,,(A) = 7c,(A) T 
for all As2l. Abundant disjoint states occur 
for a system of infinitely many degrees of 
freedom, e.g., equilibrium states of a infinitely 
extended system with different temperatures 

(- 402 Statistical Mechanics), superselection 
sectors explained below (- 150 Field Theory) 

and equilibrium or ground states with broken 
symmetry. 

Because actual measurement can be per- 
formed only on a finite number of observables 
(though chosen at will from an infinite number 

of possibilities) and only with nonzero experi- 
mental errors, information on any state cp can 
be obtained by measurements only up to a 
neighborhood in the weak topology: 1 rp(A,) - 
ail<Ei,i=l,..., n. A set K, of states can 
describe measured information on states at 
least equally well as another set K, (K, physi- 
cally contains K2) if the closure of K, in the 

weak topology contains K,. From another 
viewpoint, all states of K, are weak limits of 
states in K, and are physically relevant if 
states in K, are physically relevant. The set of 

all mixtures of vector states ($, a(A)+) for any 
fixed faithful representation 71 of 2l is weakly 
dense in the set of all states of Cu, a point em- 

phasized by Haag and Kastler as a foundation 
of the algebraic viewpoint in the formulation 

of quantum theory. 
Under 360” rotation a vector representing 

a state of a particle with spin h/2 acquires a 
factor -1 (- 258 Lorentz Group), while the 
vacuum vector would be unchanged. A non- 

trivial linear combination (superposition) of 
these two would then be changed to a vector 
in a different ray. If the 360” rotation is not to 

produce a physically observable effect, then we 
should either forbid nontrivial superpositions 
of states of the two classes or, equivalently, 
restrict observables to those leaving the sub- 
space spanned by vectors in each class invar- 
iant so that the relevant linear combinations 
of vectors, when considered as states on the 

algebra of observables in the form of expecta- 
tion functionals ($, A$), are actually mixtures 
(rather than superpositions) of states in two 

classes and are invariant under the 360” rota- 
tion. This is called the univalence superselec- 
tion rule and has been pointed out by A. S. 

Wightman, G. C. Wick, and E. P. Wigner 

(Phys. Rev., 88 (1952)). 
In quantum field theory, the vacuum state 

can be taken to be pure (by central decompo- 
sition if necessary) and in the associated GNS 
representation (called the vacuum sector) all 

vectors can be assumed to be physically rele- 
vant pure states. In principle, all physically 
relevant information is in the vacuum repre- 
sentation; for example, a particle with spin h/2 
can also be discussed in the vacuum sector if 

we consider a state of this particle in the pre- 
sence of its antiparticle at a far distance, such 
as behind the moon (the behind-the-moon 

argument). However, it is mathematically more 
convenient to consider the states of the par- 

ticle without any compensating object (in the 
same way that an infinitely extended gas is 
more convenient for some purposes than a 
finitely extended gas surrounded by walls), 
which can be obtained as weak limits of states 
in the vacuum sector by removing the com- 
pensating particle to spatial infinity and which 

produce inequivalent representations called 

superselection sectors. 

L. Foundation of Quantum Mechanics 

Hilbert spaces and the underlying field of 
complex numbers, which constitute a mathe- 

matical background for quantum mechanics, 
are not immediately discernible from physical 

observations, and hence there are various 
attempts to find axioms for quantum mechan- 

ics that imply the usual mathematical struc- 
ture and at the same time allow direct physical 
interpretation. 

One approach of this kind focuses attention 
on the set of all observables that have only 
two possible measured values 1 (yes) and 0 
(no), called questions, together with their order 
structure (logical implications) and associated 

lattice structure (join, meet, and orthocomple- 
mentation as logical sum, product, and nega- 

tion). This is called quantum logic in contra- 
distinction to the situation in classical physics, 
where it would form a Boolean lattice. The 

lattice of all orthogonal projections (corre- 
sponding to all closed subspaces of a Hilbert 
space) in quantum mechanics is a tcomplete, 
torthocomplemented, weakly modular (also 
called orthomodular) tatomic lattice satisfy- 
ing the covering law, where weak modularity 
means cr\(c’vb)=b and bv(b’Ac)=c when- 

ever b < c, and the covering law means that 
every b # 0 possesses an atom p under it (p < b) 

and that if an atom q satisfies q A b = 0, then 

anycbetweenqvbandb(qvb>,c>b)isb 
or q v b. Conversely any such lattice is a di- 
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rect sum of irreducible ones, each of which, 
if of dimension (length of longest chain) > 3, 

can be obtained as the lattice of subspaces V 
satisfying (T/l)’ = V in a vector space over a 
(generally noncommutative) field with an anti- 
automorphic involution *, equipped with a 
nondegenerate Hermitian form. In this ap- 

proach, an additional requirement is needed 
to restrict the underlying field and its * to be 

more familiar ones, such as real, complex, or 
quaternion fields and their usual conjuga- 
tions *. If that is done, then the set of all prob- 

ability measures on the lattice (i.e., assign- 
ment of expectation values 0 <p(a) < 1 for all 
elements a in the lattice such that p(Vi ai) = 

xi ~(a~) if ai I aj for all pairs i # j, ~(a) > 0, 
p( 1) = 1) is exactly the restriction to questions 
of states p(A)= tr(pA) given by the density 
matrices p (Gleason’s theorem). 

It is also possible to characterize the set of 
all states equipped with the convex structure 
(mixtures) geometrically. The set of all states 

(without the normalization condition) of a 
finite-dimensional, formally real, irreducible 

tJordan algebra over the field of reals (the 

positivity of a state cp is defined by ~(a*) > 0) 
has been characterized as a transitively homo- 
geneous self-dual cone in a finite-dimensional 
real vector space (a cone V is transitively 
homogeneous if the group of all nonsingular 
linear transformations leaving V invariant is 
transitive on the topological interior of V) by 
E. B. Vinberg (Trans. Moscow Math. Sot., 12 
(1963); 13 (1965)), where the relevant Jordan 
algebras were completely classified earlier by 
P. Jordan, J. von Neumann, and E. P. Wigner 

(Ann. Math., 36 (1934)) as direct sums of the 
following irreducible ones: the Jordan algebra 
(with the product A o B = (AB + BA)/2) of all 

Hermitian n x n matrices over the real, com- 
plex, or quaternion field, all 3 x 3 Hermitian 
matrices over octanions, or the so-called spin 
balls (the set of all normalized states being 
a ball) linearly generated by the identity and 
yj (j = 1, . , n) satisfying yj o yk = 0 ifj # k and 
yj2=1. 

In infinite-dimensional cases, this type of 
characterization extends to the “natural” posi- 

tive cones of vectors (A. Connes, Ann. Inst. 

Fourier, 24 (1974); J. Bellissard and B. Iochum, 
Ann. Inst. Fourier, 28 (1978)); while the convex 
cone of all states (without normalization) of 
Jordan algebras and C*-algebras have been 
characterized in terms of a certain class of 
projections associated with faces of the cone, 
called P-projections, by E. M. Alfsen, F. W. 

Shultz, and others (Actu Math., 140 (1978); 144 
(1980)). In finite-dimensional cases, Araki 

(Commun. Math. Phys., 75 (1980)) has given a 
characterization allowing direct physical inter- 

pretation by replacing P-projection with a 

notion of filtering corresponding to quantum- 
mechanical measurement. 

Due to some features of quantum- 

mechanical measurement not in conformity 
with common sense, there have arisen hidden 

variable theories that are deterministic and 
reproduce the quantum-mechanical prediction. 
For a situation where a pair of (correlated) 
particles in states a and b are created and 
their spins (1 or -1, i.e., up or down spin) 
measured at positions distant from each other, 
the expectation value E(u, b) for the product 

would be given in a hidden variables theory 

by E(u, b)= A,(l)B,(L)dp(L) for a probability 

measure p and the functions A, and B, of 
hidden variables 1, representing spins and 
hence satisfying 1 A,[ < 1 and 1 B,I < I. Then the 
following Bell’s inequality holds: 

IE(u, b)-E(u, b’)+E(u’, b)+E(u’, b’)1<2. 

This contradicts both quantum-mechanical 
predictions and experimental results, so that 

hidden variable theories of this type have been 
rejected. 
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352 (XI.1 5) 
Quasiconformal Mappings 

A. History 

H. Griitzsch (1928) introduced quasiconformal 
mappings as a generalization of conformal 
mappings. Let f(z) be a continuously different- 

iable homeomorphism with positive Jacobian 
between plane domains. The image of an in- 
finitesimal circle (dzl = constant is an inlini- 
tesimal ellipse with major axis of length (If,1 

+ Ifsl)ldzl and minor axis of length (If,1 - 
I&l)ldzl. When the ratio K(z)=(lf,l+ 
l&1)/( If,1 - lf?l) is bounded, f is called quasi- 
conformal. If K = 1, then f is conformal. 
Griitzsch noticed that Picard’s theorem still 

holds under the weaker condition; he deter- 
mined the quasiconformal mappings between 
two given domains, which are not conformally 
equivalent to each other, providing the smallest 

sup K, that is, those closest to conformality 

VI. 
We cannot speak of the history of quasi- 

conformal mappings without mentioning the 
discovery of extremal length by A. Beurling 
and L. V. Ahlfors (- 143 Extremal Length), 
which has led to the precise definition for 

quasiconformality itself. 
Quasiconformal mappings have less rigidity 

than conformal mappings, and for this reason 
they have been utilized for the type problem or 

the classification of open Riemann surfaces 
(Ahlfors, S. Kakutani, 0. Teichmiiller, K. I. 
Virtanen, Y. Toki; - 367 Riemann Surfaces). 
Quasiconformal mappings have important 
applications in other fields of mathematics, 
e.g., in the theory of tpartial differential equa- 
tions of elliptic type (M. A. Lavrent’ev [Z]) 
and especially in the problem of moduli of 
Riemann surfaces, including the theory of 
Teichmiiller spaces (- 416 Teichmiiller 
Spaces). These applications are explained in 

Sections C and D. 

B. Definitions 

The current definitions of quasiconformality, 
which dispense with continuous differentia- 
bility, are due to Ahlfors [3], A. Mori [4], and 

L. Bers [S] (- C. B. Morrey [6]). Consider an 
orientation-preserving topological mapping f 
of a domain D on the z( =x + iy)-plane. The 

quasiconformality off is defined as follows. (1) 
(the geometric delintion) Let Q be a curvilinear 
quadrilateral, i.e., a closed Jordan domain with 
four specified points on the boundary, and 

let the interior of Q be mapped conformally 
onto a rectangular domain I. The ratio (> 1) 
of the sides of I, called the modulus of Q and 
denoted by mod Q, is uniquely determined. If 
modf(Q) < K mod Q for any curvilinear 
quadrilateral Q in D, then f is called a K- 
quasiconformal mapping of D. This is equiva- 
lent to: (2) (the analytic definition) f is ab- 

solutely continuous on almost every line seg- 
ment parallel to the coordinate axes contained 
in D (this condition is often referred to as ACL 

in D) and satisfies the inequality lfr:;I <K+l K-1lf I I 

almost everywhere in D with some constant 

K > 1. When the value of K is irrelevant to the 
problem considered, K-quasiconformal map- 
pings are simply said to be quasiconformal. 

The K-quasiconformal mapping f satisfies 
the so-called Beltrami differential equation 

almost everywhere in D with the measurable 
coefficient p. The maximal dilatation (1 + 

ll~llm)/(l-ll~ll,)does not exceedK. Some- 
times f is called, for short a p-conformal map- 
ping. These notions are also defined for map- 

pings between tRiemann surfaces, where the 
(-1, l)-form p&dz-’ is independent of the 
choice of the local parameter z. 

If in the above statements f is not neces- 

sarily topological but merely a continuous 
function satisfying the same requirements, 
we call it a p-conformal function. (If in addi- 

tion //pII m <(K - l)/(K + l), we call it a K- 
quasiregular function or K-pseudoanalytic 
function.) A p-conformal function is repre- 

sented as the composite go h of an analytic 
function g with a p-conformal mapping h. 

C. Principal Properties and Results 

The inverse mapping of a K-quasiconformal 

mapping is also K-quasiconformal. The com- 
posite mapping fi ofi of a K,-quasiconformal 

mapping fi with a K,-quasiconformal 
mapping fi, if it can be defined, is K, K,- 
quasiconformal. A 1-quasiconformal mapping 

is conformal. Every quasiconformal mapping 

is ttotally differentiable a.e. (almost every- 
where), its Jacobian is positive a.e., and (If,1 + 

I.fMlf,l - I -;I) 6 K a.e. 
Let f be a K-quasiconformal mapping of lzJ 

< 1 onto 1 w  I< 1. Then f extends to a homeo- 
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morphism of ]z] < 1 onto (WI d 1. If, further- 
more, ,f(O) = 0, then the Holder condition 

holdsfor]z,]<l,]z,]<l,and16isthebest 
coefficient obtainable independently of K 
(Mori). This shows that any family of K- 
quasiconformal mappings of ]z] < 1 onto ]w] 

< 1 is tnormal. For further properties and 
bibliography - 0. Lehto and Virtanen [7] 
and Ahlfors [S]. 

(a) Boundary Correspondences and Extensions. 
Ahlfors and Beurling characterized the corre- 

spondence between ]z] = 1 and 1 WI = 1 induced 
by f [9]. What amounts to the same thing, the 
following theorem holds: Let p(x) be a real- 
valued monotone increasing continuous func- 

tion on R such that lim,, +m p(x) = k 00. Then 
there exists a quasiconformal mapping of the 

upper half-plane y > 0 onto itself with bound- 
ary correspondence x H p(x) if and only if 

1 k4x-+t)-Ax) -<-------<p 
P /4+/4--t) 

for some constant p > 1 and for all x, t E R. 
Theorem of quasiconformal reflection (Ahl- 

fors [lo:]). Let L denote a curve which passes 
through cc and divides C U {a} into two 
domains Q, Q* such that R U L U a* = C U {m}. 
Then there exists an orientation-reversing 

quasiconformal mapping of II onto R* which 
keeps every point of L fixed if and only if some 

constant C exists satisfying I& -5, ]/I[, - 
[,I d C for anyzree points <, , c,, & on L 
such that [3~6,<2. 

(b) Mapping Problem. Given a measurable 
function p in a simply connected domain D 

with llpll I, < 1, there exists a p-conformal 
mapping of D onto a plane domain A which is 

unique up to conformal mappings of A [S]. 
When p is real analytic and the derivatives of 
functions are defined in the usual manner, a 

classical result concerning the tconformal 
mapping of surfaces asserts the existence of a 
solution of Beltrami’s differential equation 

fi=A!fZ. 
Concerning the dependence of p-conformal 

mapping on p, Ahlfors and Bers [ 1 l] obtained 
the following important result: Denote by f p a 

p-conformal mapping of the whole finite plane 
onto itself that preserves 0 and 1. The space of 
functions p has the structure of a Banach 
space with L&-norm, and the space of map- 
pings f@ also has the structure of a Banach 

space with respect to a suitable norm. If {p(t) 

= ~(z; t)) is a family of p depending on the 

parameter t with IIp(t)li ~ <k < 1 and p(t) is 

continuous (resp. continuously differentiable, 
real analytic, complex analytic) in t, then fr@) 
is also continuous (continuously differentiable, 

real analytic, complex analytic). For the proofs 
of these important results, which have opened 
up a new way to study +Teichmiiller space, the 
extension and reflection of quasico.?formal 
mappings are made essential use of. 

(c) Extremal Quasiconformal Mappings. Let 

K(f) denote the maximal dilatation of a quasi- 
conformal mapping f: Suppose that a family 
9 = { jJ of quasiconformal mappings is given. 
If some f0 E$ exists such that K(j,) attains 
the infimum of K(f) for all fog, then f0 is 
called an extremal quasiconformal mapping in 
9 

Let R={(x,y)(O<x<a,O<y<h}, R’= 
{(x’,y’)IO<x’<a’,O<y’<b’} be a pair of 
rectangular domains. Let 9 be the family 

of all quasiconformal mappings of R onto 
R’ which map each vertex to a vertex with 
(O,O)- (0,O). Then the unique extremal quasi- 

conformal mapping for 9 is the aftine map- 
ping x’=(a’/a)x, y’=(b’/b)y (Grotzsch Cl]). 

Next suppose that we are given 1.~0 homeo- 
morphic closed Riemann surfaces 19, S and a 

thomotopy class .P of orientation-preserving 
homeomorphisms of R onto S. Then 9 con- 

tains a unique extremal quasiconfcmrmal map- 
ping. More precisely, either R and S are con- 
formally equivalent to each other or else R 
admits an essentially unique analytic (2,0)- 

form @ such that the respective local co- 
ordinates z, w  of R, S satisfy the dilferential 
equation 

(I?w/Z)/(C~W/~~Z)=[(K - l)/(K + l)]‘o/I@, (1) 

with some constant K > 1 everywhere on R, 
at which @ #O (Teichmiiller [ 121, Ahlfors 
[3]). This turns out to be a generalization of 

Grotzsch’s extremal affrne mapping. The ex- 
tremal mapping f satisfying equation (1) is 
sometimes referred to as the Teichmiiller 
mapping. 

Consider again a p-conformal mapping 9 
of the unit disk D: ]z] < 1 onto itself which 
induces a topological autom0rphis.m of the 
boundary ]z] = 1. If we define 9 as the family 
of all quasiconformal automorphisms f of D 
satisfyingf(e”)=g(e”), then the extremal 
quasiconformal mapping in 9 exists but is not 
always determined uniquely (K. Strebel [ 133). 
As to the Teichmiiller mapping, the unique- 
ness theorem is as follows: If the norm II@11 = 
jJ,I@(z)ldxdy of @ in (1) is finite, the Teich- 
miiller mapping is the unique extremal quasi- 

conformal mapping in 9. Otherwse, the 

uniqueness does not hold in general (Strebel 
[ 131). On the other hand, a necessary and 
sufficient condition is proved for the Beltrami 
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coefficient p of a quasiconformal mapping of 

9 to be extremal (R. S. Hamilton [14], E. 
Reich and Strebel in [ 151). Moreover, this 
last result can be extended to the extremal 

quasiconformal mapping between arbitrary 
Riemann surfaces. 

D. Applications 

In the earlier stage of development of this 
theory, quasiconformal mappings were applied 
only to the ttype problem of simply connected 
Riemann surfaces and to the classification of 
Riemann surfaces of infinite genus (- 367 

Riemann Surfaces). This application is based 
on the fact that it is often possible to find a 
quasiconformal mapping with the prescribed 

boundary correspondence even when no 
equivalent conformal mapping exists and 

the fact that the classes 0, and O,, (- 367 
Riemann Surfaces) of Riemann surfaces are 

invariant under quasiconformal mappings, as 
they are under conformal mappings. 

It is worth remarking that the investigation 
of quasiconformal mappings is intimately 
connected with the recent development of the 
theory of tKleinian groups via Teichmiiller 

spaces. 
The theory of quasiconformal mappings was 

also applied by Lavrent’ev [16] and Bers [2] 
to partial differential equations, particularly 
to those concerning the behavior of fluids. 
They utilized the fact that if the density and its 
reciprocal are bounded in a steady flow of a 
2-dimensional tcompressible fluid, then the 

mapping of the physical plane to the potential 
plane (the plane on which the values of the 
tvelocity potential and the tstream function 
are taken as coordinates) is quasiconformal, 
and that if in addition the supremum of the 

tMach number is smaller than 1, then the 
mapping from the physical plane to the thodo- 
graph plane is pseudoanalytic. 

E. Similar Notions 

The term quasiconformal was used differently 
by Lavrent’ev, as follows: A topological map- 
ping f= u + iv is called quasiconformal with 
respect to a certain system of linear partial 

differential equations when u and u satisfy 
the system. This is a generalized definition 
because the system may not be equivalent 

to a Beltrami equation. However, it is reduced 
to a quasiconformal mapping if the system is 
uniformly elliptic. Bers used the term pseudo- 
analytic to describe a certain function related 

to linear partial differential equations of ellip- 

tic type. This function is pseudoanalytic in 
the sense of Section B on every relatively 

compact subset and has properties similar to 
those of analytic functions. 

Analytic transformations in the theory 
of functions of several variables are called 

pseudoconformal by some mathematicians, 
and there is a similar term quasi-analytic. The 
latter is an entirely different notion from the 
one discussed in this article. 

F. Generalization to Higher Dimensions 

Let f be a continuous ACL-mapping of a 

subdomain G of R” into R” whose Jacobian 
matrix is denoted by f’(x). Furthermore, the 
operator norm and the determinant off’ are 
denoted by Ilf’ll and det f ‘, respectively. Then 

f is said to be quasiregular if all the partial 
derivatives off are locally of class L” on G 
and if there exists a constant K > 1 such that 
(11 f ‘Il(x))n < K. detf’(x) almost everywhere in 
G. The smallest K > 1 for which this inequality 
is true is called the outer dilatation off and 
is denoted by K,( f ). If f is quasiregular, 
then the smallest K >, 1 for which the inequal- 

ity det f ‘(x) < K. [min,,, =i 1 f ‘(x + y) I”] holds 
almost everywhere in G is called the inner 

dilatation off and is denoted by K,( f ). If 

max(K,(f),K,(f))<K’, thenfis said to be 
K’-quasiregular. An orientation-preserving 
mapping is called K-quasiconformal (J. VHi- 
sala [ 173) if it is a K-quasiregular homeomor- 

phism. When n = 2, these definitions agree 
with those given in Section B. 

For n > 3 the following properties also still 
hold: A quasiregular mapping is discrete, 
open, totally differentiable a.e. and is abso- 
lutely continuous (0. Martio, S. Rickman, 
and VHidlH [ 181). Quasiconformal extension 
of higher-dimensional half-spaces have been 

studied by Ahlfors and L. Carleson [15]. 
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353 (XX.25) 
Racah Algebra 

A. General Remarks 

Racah algebra is a systematic method of cal- 
culating the tmatrix element (I/I, A$‘) in tquan- 
turn mechanics, where A is a dynamical quan- 

tity and $ and $’ are irreducible components 
of the state obtained by combining n tangular 
momenta. The angular momentum j has x-, 
y-, z-components j,, j,, j,, respectively. Each 
component is i times the infinitesimal rotation 

around the respective axis and is the generator 
of the infinitesimal rotation for every irreduc- 
ible component $. The addition of two angu- 
lar momenta leads to a +tensor representation 
D(j,) @ O(j,) of two tirreducible representa- 
tions of the 3-dimensional rotation group. 
The problem is to decompose this tensor rep- 
resentation into the direct sum of irreducible 

representations. 

B. Irreducible Representations of the Three- 
Dimensional Rotation Group 

Irreducible representations of the group SO(3) 
of 3-dimensional rotations can be obtained 
from irreducible representations D(j) (j = 
0, 1,2,. ) of its tuniversal covering group 
SU(2) of 2 x 2 matrices with determinant 1, 
through the 2-fold covering isomorphism 
SO(3) g SU(2)/{ +I} (- 60 Classical Groups I). 

The representation D(j) (j = 0,1/2,1,3/2,. ) of 
SU(2) is the 2j-fold tensor product A 0 . . . 0 A 
of AESU(~) restricted to the totally symmetric 

part of the 2j-fold tensor product space. Let 
u = (A) and u=(y) be a basis for the complex 2- 
dimensional space on which SU(2) operates. 
The symmetrized tensor product of (j + m)-fold 
u and (j - m)-fold u multiplied by a positive 
normalization constant (m=j,j- 1, . , -j) 
defines an orthonormal basis of the represen- 
tation space of D(j), which we shall denote by 

Wm). 
Decomposition of the tensor product of two 

irreducible representations D(j,) and D(j,) 
into irreducible components leads to 

WI)0 D(j2)=~W9 

j=j, +j2, j,+j,-L...,Ij,-j21. 

For the basis we can write 

=mFm Wlmlh4j ,m2)(j,m,j2m21jlj2jm), 
2 

and the coefficients are called the Clebscb- 
Gordan coefficients or Wigner coefficients. The 
vectors ti(jm) in each irreducible represen- 

tation space are determined only u.p to an 
overall phase factor (a complex number of 
modulus 1). By a suitable choice of the result- 

ing arbitrary phase (which may depend on 
,jI, j2, j), the coefficients are given by 

(2j+ l)(j, +j,-j)!(j+j, -j,)!(j+j,-j,)! x 

J (j, +j2+j+ I)! 

xc (pl)vJ(.i, +ml)!(j,-m,)!(j:,+m2)! 

Y  ( 
v!(j, +j,-j-v)!(j, -in, -v)! 

X 
J(j,-m,)!(j+m)!(j-m)! 

(j,+m,-v)!(j-j,+m,+v)!(j-jl-m,+v)! >. 

They satisfy torthogonality relations. Another 
concrete expression for the same coeffkients, 

but of a different appearance, was obtained 
earlier by Wigner. Wigner introduced the 3j- 
symbol, given by 

.ilj2j3 

( > 

=( -l)j,-j2-m3(2j3 + l)-1’2 

ml m24 

x (jlW2m2 Ij,j2.& -4 

for m, + m2 + m3 =0 and zero otherwise. This 
is invariant under cyclic permutations of 1,2, 3 
and is multiplied by ( -l)ilij2+j3 under trans- 
positions of indices as well as under the simul- 
taneous sign change of all the m’s. The 3j- 
symbol multiplied by (-l)jz+j,-jl is the V- 
coeffkient of Racah. 

There are two ways, (D( j,) 0 D( j,)) 0 D( j,) 
and D( j,) @ (D( j,) 0 D( j,)), to reduce the 
tensor product of three irreducible representa- 

tions, and two corresponding sets of basis 
vectors. The transformation coefficient for the 
two ways of reduction is written in the form 

=JGj12+ 1)(&3+ 1) Wl.hj ALj23). 

Here W(abcd; ef), called the Racah coefficient, 
can be written as the sum of products of four 
Wigner coeffkients. W has the following sym- 
metry properties: 

W(abcd; ef) = W(badc; ef) 

= W(cdab; ef) 

= W(acbd;fe) 

= ( -l)e+fmomd W(ebcf, (ad) 

=( -l)‘+/-“-‘W(aefd; IX) 

and satisfies an orthogonality relation. The 6j- 
symbol {$} is related to the Racah coefficient 

~ by 

W(abdc; ef) = ( -l)o+b+c+d 
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C. Irreducible Tensors 

A dynamical quantity qk (q = k, k - 1, . . . , -k) 
that transforms in the same way as the basis of 

D(k) under rotation of coordinates is called an 
irreducible tensor of rank k. That is, it satisfies 

Cj,+ij,,~kl==(kTq)(kfq+l) T,k+l, 

CL, qkl =qT,“. 

Here [a, b] = ab - ba. The matrix element of 
this quantity between two irreducible compo- 
nents can be written in the form 

where CL is a parameter to distinguish multiple 

components with the same j, and components 
of different CI are assumed to be orthogonal. 
In this formula the Clebsch-Gordan coefh- 

cients are determined from group theory, while 
(a(ill T@IIGL’~‘) depends on the dynamics of the 
system. 

When Vk) and Uck) operate only on the state 
vectors in the subspaces H, and H,, respec- 

tively, of the total space (tHilbert space) H = 
H, x Hz, their scalar product ( Tck), Uck)) = 

C,( -l)q qk U,” has the matrix element 

(a1C(2jlj2jml(T(k),U(k))la;C(;j;j;jm) 

=(-1)j1’j;-jW(j,j,j;j;; jk) 

For an irreducible component of the tensor 
product of two irreducible tensors, 

[TV+’ 0 U’kz’]: 

the matrix can be written as 

(aj, j,jll[T’kl’@ Uck2)]@lldj;j;jl) 

=J(2k+1)(2j+1)(2jf+1) 

x )$rjl I/ T(“~)lla’j;)(cCj,~~ U(k2)IIalj;) 

The last factor, the 9j-symbol, is defined as 
the matrix element between basis vectors of 

CNjd x WJI x CWA x W4)l and CWJ x 
%)I x VU) x W4)l: 

(j,j,(j,,)j,j,(j,,)jmlj,j,(j,,)j,j,(j,,)jm) 

=JGj12+ l)Ch+ 1)(2j13+ 1)(2L4+ 1) 

The 9j-symbol can be written as a weighted 
sum of the products of the three w’s. 

See [6] and [7] for explicit formulas of 
Clebsch-Gordan coefficients and [S] for Racah 

coefficients. 
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354 (XVl.5) 
Random Numbers 

A. General Remarks 

A sequence of numbers that can be regarded 

as realizations of independent and identi- 
cally distributed trandom variables is called 
a sequence or table of random numbers. It is 

a basic tool for the tMonte Carlo method, 
tsimulation of stochastic phenomena in nature 
or in society, and fsampling or trandomiza- 
tion techniques in statistics. Random numbers 
used in practice are pseudorandom numbers 
(- Section B); theoretically, the definition 
of random numbers leads to an algorithmic 
approach to the foundations of probability 

CL 21. 

B. Pseudorandom Numbers 

Tables of numbers generated by random 
mechanisms have been statistically tested and 
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published. To generate random numbers on a 
large scale, electronic devices based on sto- 
chastic physical phenomena, such as thermo- 
electron noise or radioactivity, can be used. 
For digital computers, however, numbers 
generated by certain simple algorithms can be 
viewed practically as a sequence of random 
numbers; this is called a sequence of pseudo- 

random numbers. 
Distribution of random numbers that are 

easily generated and suitable for general use is 

the continuous uniform distribution on the 
interval (0, I), which is approximated by the 

discrete distribution on (0, 1, . , N - 1) (N >> 1). 
Random numbers with distribution function 
F( .) are obtained by transforming uniform 
distributions by F’( .). For typical distribu- 
tions, computation tricks avoiding the direct 
computation of F-‘( .) have been devised. 
Among them the use of +order statistics and 

acceptance-rejection techniques have wide 
applicability. 

For the generation of uniform pseudoran- 

domnumberson{O,l,...,N-l},N=n”(n=a 
computer word length), the following algo- 
rithms are used. Each of them is written in 
terms of simple computer instructions. (1) The 
middle-square method was proposed by von 
Neumann. We square an integer of s digits of 

radix (or base) n and take out the middle s 
digits as the next term. We repeat this process 
and obtain a sequence of pseudorandom num- 

bers. The sequence thus generated might be 
cyclic with a short period, possibly after many 
repetitions. The lengths from initial values to 
the terminal cycles are empirically checked. 
(2) The +Fibonacci sequence {u,,} defined by 
uk+r --uk-r + uL (modn”) is apparently regular, 
but it is uniformly distributed. (3) The con- 

gruence method [3]: Define a sequence by 
uk+, = auk + c (mod n’) or (mod ns k 1). If c = 0, 
the procedure is called the multiplicative con- 
gruence method, otherwise the mixed con- 

gruence method. The cycle, that is, the mini- 
mum k such that uk = uO, and the constants 

a, c, and u0 that make the cycle maximum 
for given n and s are determined by number 
theory. The points (u,,, uk,+r, , ukl+r-r), k= 
0, 1, 2, . . . , he on a small number of parallel 

hyperplanes in the /-dimensional cube. Good 
choice of the constant a makes the sequence 

quite satisfactory. (4) H. Weyl considered 
sequences f(k) = kcc (mod l), where c( is an 
irrational number and k = 1, 2, . , whose 
values are uniformly distributed on the inter- 
val (0,l). They are not independent, though 

they can be used for some special purposes. A 
modified sequence xk = k2Cr (mod 1) is known 

to be random for any irrational s( in the sense 
that the tserial correlation N-’ C,“=, xLxL+,- 
l/4 converges to 0 uniformly in 1 as N+co. 

C. Statistical Tests 

To check uniform random numbers on (0,l) 
the following tests are used: (1) Divide (0,l) 

into subintervals; then the frequency of ran- 
dom numbers falling into these is a. multi- 
nomial sample. +Goodness of tit can be tested 
by the +chi-square test; independence can be 

tested by observing the frequency of tran- 
sitions of subintervals in which a pair of con- 
secutive numbers falls, as well as by observing 
the overall properties, such as uniformity of 
the frequency of patterns of subintervals in 
which a set of random numbers falls. (2) For a 
set of random numbers, the distance of the 
empirical distribution function from that of the 
theoretical one is tested by the +Kolmogorov- 

Smirnov test. (3) Observe the rank orders of a 
set of random numbers, and test the random- 
ness of their permutations (test the number of 

runs up and down). 

D. Kolmogorov-Chaitin Complexity and Finite 
Random Sequences 

As Shannon’s entropy is a quantity for mea- 
suring the randomness of random variables, 
the Kolmogorov-Chaitin complexity [4,5] 
is that of individual objects based on logic 
instead of probability. For constructive ob- 
jects x E X, y E Y and a partial recursive func- 
tionA:Yx{l,2,...}~X,detine 

&(xIY)= 
i 

min(log,nlA(y, n)=x), 

co (if A(y,n)=x for no n). 

The function A is said to be asymptotically 
optimal if for any B there exists a constant 
C such that K,(x 1 y) < K,(x 1 y) + C for any 
x E X and ye Y. For an asymptotically op- 
timal A, which is known to exist, K,(x) y) is 
simply denoted by K(x 1 y) and is called the 
Kolmogorov-Chaitin complexity of x given y. 

P. Martin-Liif [6] discussed a relation be- 
tween complexity and randomness. Consider 
any statistical test for the randomness on the 

set of (say) finite decimal sequences which is 
effective in the sense that it has a finite algo- 
rithm. Then there exists a constant C indepen- 
dent of L and M such that 

implies the acceptance of the decimal sequence 

5,) . , tL by the test at the level 1 --2-M-C. 
This condition on the complexity is satisfied 

by at least (1 -2-M) 10L sequences iamong the 
decimal sequences of length L. 

E. Collective and Infinite Random Sequences 

For finite sequences, the notion of randomness 
is obscure by nature. For infinite sequences, 
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however, clearer definition is possible. Based 
on the notion of collectives by R. von Mises, a 
definition of infinite random sequences has 
been given by A. Church [7]. A selection func- 

tion is a (0, 1}-valued function on the set of 
(say) finite decimal sequences such that {n, 

d<1,52,..., en-r)= l} is an infinite set for any 
infinite sequence <i, tZ, . . . For a selection 
function rp and an infinite sequence 5 [ 1, 2,“‘, 
the cp-subsequence is defined as &, &,,, . . . , 
where{n,<n,<...}={n,(p(~, ,..., &i)=l}. 
For a class Ic/ of selection functions, an infinite 
decimal sequence is called a @collective if each 
of the numbers 0, 1,. . . ,9 appears in it with a 
limiting relative frequency of l/10, and the 
same thing holds for any q-subsequence with 
(PE $. By definition, a random sequence is a $- 

collective for the class $ of recursive selection 
functions. Almost all real numbers are random 
in their decimal expansions. 

F. Normal Numbers 

Let x - [x] = Z x,9 be the r-adic expansion 
of the fractional part of a real number x. For 
any ordered set B, = (b, , . . . , &) of numbers 
0, 1, . . , r - 1, let N&x, Bk) be the number of 

occurrences of the block B, in the sequence 
x1, . . . ,xn. If Nn(x,B,)/n+r-k as n-+cc for every 
k and every B,, then x is said to be normal to 

base r. Almost all real numbers are normal to 
any r. D. G. Champernowne [S] constructed a 
normal number given by the decimal expan- 
sion 0.1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11, 12, 13, . . . 
No one has so far been able to prove or dis- 
prove the normality of such irrational num- 
bers as rr, e, fi, fi, . . . . W. Schmidt [9] 
proved that the normality to base r implies the 
normality to base p if and only if logr/logp is 

rational. A real number whose decimal expan- 
sion is random in the above sense is normal to 
base 10. For the converse, a necessary and 

sufftcient condition for a selection function cp 
(for which (p(l,, . . . , &) depends only on L) to 
have the property that the normality implies 
the {cp}-collectiveness has been obtained in 

ClOl. 
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355 (11.10) 
Real Numbers 

A. Axioms for the Real Numbers 

The set R of all real numbers has the following 

properties: 
(1) Arithmetical properties: (i) For each pair 

of numbers x, PER, there exists one and only 

one number w  E R, called their sum and de- 
noted by x + y, for which x + y = y + x (com- 
mutative law) and (x + y) + z = x + (y + z) 
(associative law) hold. Furthermore, there 
exists a unique number 0 (zero) such that 
x + 0 = x for every x E R (existence of tzero 
element). Also, for each x, there exists one and 
only one number -XER for which x+(-x) 
= 0. (ii) For each pair of numbers x, ye R, 

there exists one and only one number w  E R, 

called their product and denoted by xy, for 
which xy = yx (commutative law), (xy)z = 
x(yz) (associative law), and (x + y)z = xz + 
yz (distributive law) hold. Furthermore, 
there exists a unique number 1 (unity)ER 
such that lx = x for every XER (existence of 
tunity element). Also, for each x # 0 (x ER) 
there exists one and only one number x-l ER 
for which xx-i = 1. Owing to properties (i) 
and (ii), all tfour arithmetic operations.obey 

the usual laws (with the single exception of 
division by zero); in other words, R is a ttield. 

(2) Order properties: (i) For each x, y E R, 
one and only one of the following three rela- 

tions holds: x < y, x = y, or x > y. With x < y 
meaning x < y or x = y, the relation < obeys 
the transitive law: x < y and y < z imply x ,< z, 
which makes R ttotally ordered. (ii) Order and 
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arithmetical properties are related by: x < y 
implies x+z<y+z for any ZER, and x<y 
and 0 <z imply xz < yz; in other words, R is 

an tordered field. 

In particular, x E R with x > 0 is called a 
positive number, and x E R with x < 0 a negative 
number. WewriteIxI=xifx>OandIxI= 
-x if x < 0, and call 1x1 the absolute value 
ofx. 

(3) Continuity property: If nonempty subsets 
A and B of R, with a < h for each pair a E A 
andhEB,satisfyR=AUBand AflB=@ 
(empty set), then the pair (A, B) of sets is called 

a cut of R. For each cut (A, B) of R, there exists 
a number XER (necessarily unique) such that 

for every u E A, a <x, and for every b E B, 
h 3 x (i.e., x = sup A = infB). This property of 
R is called Dedekind’s axiom of continuity (- 

294 Numbers). 
The set R of all real numbers is determined 

uniquely up to an isomorphism, with respect 
to arithmetic operations and ordering, by 
properties (l)-(3). R forms an additive Abelian 
group; its subgroup {0, + 1, + 2, , k n, . } 
generated by 1 can be identified with the 
group Z of integers. The subset of all positive 
integers { 1,2, , n, } may be identified with 

the set N of all natural numbers. The subset 
{m/n I m, n E Z, n # 0) of R forms the subfield of 

R generated by 1. It can be identified with the 
field Q of all rational numbers. A real number 
that is not rational is called an irrational 
number. 

B. Properties of Real Numbers 

(1) For each pair of positive numbers u and 
h > a, there exists a natural number n with 
u < nh (Archimedes’ axiom). 

(2) For each pair of positive real numbers a 

and b with a < b, there exists a rational num- 
ber x such that a <x <b (denseness of rational 
numbers). 

(3) For any subset A in R tbounded from 
above (below), the ‘least upper bound of A: a 
= sup A (tgreatest lower bound of A: b = infA) 

exists. 
Let {u,,) be a kequence of real numbers. 

Assume that for each arbitrary positive num- 
ber E there exists a number n, such that la, - bl 
<E for all n > n,. Then we write lim,,, a, = 

h (or a,-+b) and call b the limit of {a,}. We 
also say that {a,} is a convergent sequence 
or that a, converges to b. 

(4) If for two sequences {a,,}, {b,}, we have 

u,<u*z:..., <u,<...<b,<...db,db, and 

lim(b, -a,) = 0, then there exists one and 

only one number c E R with lim a, = lim b, = c 
(principle of nested intervals). 

(5) Let {a,,} be a sequence of real numbers. 
If for any arbitrary positive E there (exists a 
natural number n,, satisfying 1 a, - 6 n I< E for 
all m, n> n,, then {a,} is called a fundamental 

sequence or Cauchy sequence. Any funda- 

mental sequence of real numbers is convergent 
(completeness of real numbers). 

For a set with properties 1 and 2 of Section 
A, it can be proved that property 3 of Section 
A is equivalent to property 3, or properties 1 
and 4, or properties 1 and 5 of this section. 

C. Intervals 

For two numbers a, b E R with a < h, we write 

(u,b)={xIu<x<b}, 

(a,b]={xlu<x<bJ, 

[a,b)={xlu<x<b), 

[a,bl={xIa<x<b}, 

and call them (finite) intervals, of which a and 
b are their left and right endpoints, respectively. 
Specifically, (a, b) is called an open interval and 
[u, b] a closed interval. The symbols x and 

--cu are introduced as satisfying cc > x, x > 
-io, a > -m for all XER. Writing fco for 
x, we call +m and --co positive infinity and 
negative infinity, respectively. To extend the 
concept of intervals, we define (-co, b) = 

jxIx<b,xER},(-m,b]={xIxdb,xER}, 
(a,~)={xIu<x,xER}, [u,co)={xIa<x, 
XER}, and (-co, ccj)=R, and call them infinite 
intervals. 

Let {a,} be a sequence of real numbers. If 
for each infinite interval (a, co) (( -:~,a)) there 
exists a number n, such that U,E(U. w) (U,E 

(-co,a)) for all n>n,, then we write (I,+ +m 
(a,* -co) and call co (-co) the limit of an, 
denoted as before by lima,. 

D. Topology of R 

With the collection of all its open intervals 

(a, b) as an topen base, R is a ttopological 
space (+order topology) that satisfies the kep- 
aration axioms T,, T,, T4. In R every (finite or 
infinite) interval (including R itself 11 is tconnec- 
ted, and the set Q of rational numbers is dense. 
A necessary and sufficient condition for a 

subset F of R to be tcompact is that F be 
bounded and closed (Weierstrass’s theorem). 
In particular, any finite closed interval is com- 
pact. R is a locally compact space satisfying 
the second tcountability axiom. Further, any 

(finite or infinite) open interval is homeomor- 
phic to R. The topology of R may :also be 
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defined by the notion of convergence (- 87 

Convergence). 
Arithmetic operations in R are all con- 

tinuous: If a,+a and b,+b, then a, + b,-+a + b, 

a,- b,-m- b, a,b,+ab, and a,/b,,-*a/b (where 
b #O, b, #O). Hence R is a ttopological field 
(regarding the characterization of R as a topo- 
logical group or a topological field - 422 
Topological Abelian Groups). 

R as a topological Abelian group (with 
respect to addition) is isomorphic to the top- 
ological Abelian group R+ of all positive real 
numbers with respect to multiplication. To be 

precise, there exist topological mappings f : R 
+R+ withf(x+y)=f(x)f(y) and g:R++R 

with g(xy)=g(x)+g(y). Iff(l)=a, g(b)= 1, 
then J g are uniquely determined and are 
written f(x)=aX, g(x)=log,x. 

Regarding R as a topological Abelian group 
(with respect to addition), any proper closed 
subgroup I of R is discrete and isomorphic to 
the additive group Z of integers. That is, for 
some a>0 we have T={neln~Z}. In parti- 

cular, the quotient group R/Z as a topological 
group is isomorphic to the rotation group of a 
circle (l-dimensional ttorus group). Elements 
of R/Z are called real numbers mod 1. 

E. The Real Line 

Let 1 be a Euclidean straight line considered to 
lie horizontally, say from left to right. Let PO, 
pi be two distinct points on 1, with p. situated 

to the left of pl. Then there exists one and only 
one bijection cp from the set L of all points of 1 
to R satisfying (i) ‘p(pJ=O, cp(pl)= 1; (ii) if p 

lies to the left of q, then q(p) < cp(q); and (iii) 
for two line segments pq and p’q’ (where p and 
p’ are to the left of q and q’, respectively), 
pq = p’q’ (pq and p’q’ are tcongruent)o cp(q) - 
cp(p)=cp(q’)-a. Then q(p) is called the 

coordinate of the point p, and (po, pJ the frame 
of the line 1. A Euclidean straight line with a 
fixed frame is called a real line (identified with 
R by the mapping cp) and is usually denoted by 
the same notation R or R’. 
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356 (1.9) 
Recursive Functions 

A. General Remarks 

A function whose tdomain and trange are both 
the set of natural numbers (0, 1,2, . } is called 
a number-theoretic function. In this article, the 
term natural number is used to mean a non- 
negative integer. Hilbert (1926) and K. Godel 
[l] considered certain number-theoretic func- 
tions, called recursive functions by them and 

now called primitive recursive functions after S. 
C. Kleene [2] (the definition is given in Section 
B). Godel introduced an efficient method of 

arithmetizing metamathematics based on 
representing certain linitary procedures in 
metamathematics by primitive recursive func- 
tions. Then the following problem naturally 

arises: How shall we define a finitary method? 
In other words, how shall we characterize a 
number-theoretic function that is effectively 
computable, or provided with an algorithm of 
computation? Gijdel defined the notion of 

general recursive function by introducing a 
formal system for the elementary calculation of 

functions, following the suggestion given by J. 
Herbrand. Kleene later improved Godel’s 
definition and developed the theory of gen- 
eral recursive functions [2]. Furthermore, A. 
Church and Kleene defined I-calculable func- 
tions using the l-notation (Church [4]), and E. 
L. Post and A. M. Turing defined the notion of 
computable functions by introducing the 

concept of Turing machines. These notions, 
introduced independently and almost simulta- 
neously, were found to be equivalent. Hence 

such functions are now simply called recursive 
functions. Here, instead of giving the definition 
of recursive functions in the original style (the 
Herbrand-Godel-Kleene definition), we give it 

by utilizing the idea of introducing schemata, a 
natural extension of the notion of primitive 

recursive functions. We employ the letters x, y, 

z, Xl, x2, ... for variables ranging over the 
natural numbers. 
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B. Primitive Recursive Functions 

Consider the following five definition 
schemata: 

(I) q(x) = x’ (=x+1), 

(11) 4)(X,, . . ..x.)=q 

(4 a given natural number), 

(III) 4)(X , ) / x,) = xi (1 ,<i<n), 

(IV 4)(X,, .“> x,)=~(x,(x,,...,x,),..., 

X&l > . . .1 X,1)> 

x2, . . ..x.), 

where li/( ) is a constant natural number if 
n = 1. A function is called primitive recursive if 
it is definable by a finite series of applications 
of the operations (IV) and (V) ($,x,x1, . . . . x,, 

are already-introduced functions) starting from 
functions each of which is given by (I), (II), or 
(III). Given the functions G1, . . . , $[, we define 

the relativization (with respect to +, , , $J of 
the definition of primitive recursive functions 

as follows: A function is called primitive recur- 
sive in $1, , $I if it is definable by a finite 

series of applications of (IV) and (V) starting 
from $1, , tjr and from functions each of 

which is given by (I), (II), or (III). 
We say that a function cp(x,, . , x,) is 

the representing function of a tpredicate 
P(x 1, , x,,) if cp takes only 0 and 1 as values 

and satisfies 

P(x,, . . . . X”)O’p(Xl, . . . . x,)=0. 

Then we call P a primitive recursive predicate if 
its representing function cp is primitive recur- 
sive. The following functions and predicates 

are examples of primitive recursive ones: a + b, 
a’b, a”, a!, min(a,b), max(a,b), la-bJ, a=b, 
u < b, a ( b (a divides b), Pr(a) (a is a prime 
number), pi (the (i + 1)st prime number, p,, = 2, 
p1 = 3,. . . ), (a), (the exponent of pi of the unique 

factorization of u into prime numbers if a #O; 

otherwise, 0). 
Whenever we are given a concept or a 

theorem, we always transform it by replacing 
the predicates contained in it (if any) by corre- 
sponding representing functions. Then an 
operation R is called primitive recursive if 
the function or the predicate a($, , . . , &, 
Q 1, , Q,) that results from the application 
of 51 to functions tjl, , $I and predicates 

Q,, ,Q, (1,maO, I+m>O) is primitive 
recursive in +, , , Q,. Put cp(x,, . ,x,, z) 

=~y<I.$h,..., x,, y). Then cp is primitive 
recursive in $, and the finite sum ZYcZ is a 
primitive recursive operation in this sense. 

Similarly, the following operations are primi- 

tive recursive: the finite product n:y<rr the 
logical connectives 1, v , A, + (-- 411 

Symbolic Logic), definitions by cases, the 

bounded quantifiers Sly,,,, VyY,,,, and the 
bounded p-operator pyYcz defined :as follows: 
py,,,R(x,y) is the least y such that y<z and 
R(x, y) holds, if there exists such a number y; 
otherwise, it equals z. The following operation 

is also primitive recursive: 

cp(Y,X,, . . ..x.) 

=x(y,@(y;x2 /..., x,),x* ,..., x,), 

where 

i<y 

A function cp is said to be primitive recursive 
uniformly in $1, . . , $, when cp is definable by 
applying a primitive recursive operation to 

* I, . ..> *,. 
Almost all results mentioned in this section 

were given by Gadel [ 11. There are further 

investigations on primitive recursive functions 
by R. P&er (1934), R. Robinson (1947), and 
others. Note that a function definable by a 

+double recursion is not necessarily primitive 
recursive. Ptter (1935, 1936) inveslzigated in 

detail functions that are definable: in general, 
by k-fold recursions for every positive interger 

k PI. 

C. General Recursive Functions 

The following p-operator is used to define 

general recursive functions by extending primi- 
tive recursive functions. For a predicate R(y) 
on the natural numbers, pyR( y) is the least y 
such that R(y), if 3yR( y); otherwise, pyR( y) is 
undefined. Generally, py($(xl, . . ,x,, y)=O) 
is not necessarily defined for each n-tuple 

(x 1, . . , XJ of natural numbers. Now, a func- 
tion is called a general recursive function (or 
simply recursive function) if it is definable by a 
series of applications of schemata including a 

new schema 

(VI) dXI> . ..1 x,)=~Y(lcl(x,,“‘,:c,,Y)=o) 

for the definition of cp from any function II, 
that satisfies 

vx, ... VXJY(~(X,, . ../ x.,y)=O), 

in addition to those used to define the primi- 
tive recursive functions. Thus, by (definition, 
a primitive recursive function is general recur- 
sive. A general recursive predicate is a predicate 

such that its representing function is general 
recursive. The facts, including the ones con- 
cerning relativization, that are valid for pri- 
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mitive recursive functions are also valid for 
general recursive functions. 

Kleene’s Normal Form Theorem. For each n, 
we can construct a primitive recursive predi- 
cate T,(z,xl, . . . , x,, y) and a primitive recursive 
function V(y) such that given any general 
recursive function rp(x,, . . . , x,), a natural 
number e can be found such that 

VX , . ..Vx.3yT,(e,x,,...,x,,y), (1) 

4$x,, . . . . x,1= UWT,(e,x,, . . ..x..Y)). (2) 

Any natural number e for which (1) and (2) 
hold is said to define q recursively or to be a 
Giidel number of a recursive function cp. Let 
$, , . . . , JII (abbreviated Y) be any given func- 
tions. We can relativize Kleene’s normal form 
theorem with respect to them as follows: 
For each n, we can construct a predicate 
y(z,x,,..., x,, y) that is primitive recursive in 
Y such that given any function cp that is gen- 
eral recursive in Y, a natural number e can be 
found such that 

Vx,...Vx,3y~‘(e,xx, ,..., x,,y), 

dx,, . . ..x.)= UWGy(e,xl, . . ..x.,y)), 

(3) 

(4) 

where U(y) is the primitive recursive function 
mentioned in Kleene’s normal form theorem. 
A natural number e for which (3) and (4) hold 
is said to define cp recursively in Y or to be a 
Giidel number of q from Y. In particular, a 
Gijdel number e of cp from Y can be found 
independently of Y (except for I and the re- 
spective numbers of variables of $I) . . . , $J 
when cp is general recursive uniformly in Y. 

Now let S be a tformal system containing 
ordinary number theory. A number-theoretic 
predicate P(x 1, . . . , x,) is said to be decidable 

within S if there is a formula P(a,, . . . , a,) (with 
no tfree variables other than the distinct vari- 
ables a,, . . . , a,) of S such that for each n-tuple 
(x1, . . , x,) of natural numbers (the symbol k 
means provable in S), 

6) l-WI,..., XJ or I- lP(xl,...,x,) 

and 

(ii) P(x, ,..., x,)-l-PP(x,,...,x,), 

wherex,,..., x, designate the numerals corre- 
sponding to x1, . . , x, in S. If S is a consistent 
system such that primitive recursive predicates 
are decidable within S and the predicates PfA 

(for any formula A, PfA(xl, . . . , x., y) means 
that y is the GSdel number of a proof of 
A@ ,, . . . , x,)) are primitive recursive, then a 
necessary and sufficient condition for P to be 
decidable within S is that P is a general recur- 
sive predicate (A. Mostowski, 1947). 

Church (1936) proposed the following state- 

ment: Every effectively calculable function is a 
general recursive function. The converse of this 
is evidently true by the definition of recursive- 
ness. So Church’s thesis and its converse pro- 
vide the exact definition of the notion of effec- 
tively computable functions. Though this 
notion is somewhat vague and intuitive, the 
definition seems to be satisfactory, as men- 
tioned at the beginning of this article. There- 
fore, any function with a computation proce- 
dure or algorithm can be assumed to be gen- 
eral recursive. Utilizing this, various decision 
problems have been negatively solved (- 97 
Decision Problem). Furthgmore, traditional 
descriptive set theory can be reinvestigated 
from this point of view, and the concept of 
effectiveness used in tsemi-intuitionism is 
clarified using general recursive functions 
(- 22 Analytic Sets). 

D. Recursive Enumerability 

A set {q(O), q(l), q(2), . . .I enumerated by a 
general recursive function cp (allowing repe- 
titions) is called a recursively enumerable set. 
The empty set is also considered recursively 
enumerable. It is known that in this definition 
“general recursive” can be replaced by “primi- 
tive recursive” (.I. B. Rosser, 1936). A set E of 
natural numbers is recursively enumerable if 
and only if there is a primitive recursive pre- 
dicate R(x,y) such that x~Eo!lyR(x,y) 
(Kleene [2]). 

Generally, a predicate E(x 1, . . . , x,) is called 
a recursively enumerable predicate if there is a 
general recursive predicate R(x,, . . ,x,, 
yl, . . . , y.) such that E(x,, . . . . x,)o~y, . . . 
3y,R(x,, . . , ~~,y,, . . ,y,). (Here “general 
recursive” can be replaced by “primitive 
recursive.“) 

We call a set E a recursive set if the predi- 
cate x E E is general recursive. The set C = 
(x j3yT, (x, x, y)} is an example of a set that 
is recursively enumerable but not recursive, 
and it has the following remarkable property: 
For every recursively enumerable set E, there 
is a primitive recursive function such that 
XE E 9 (P(X)E C. In this sense, the set C is said 
to be complete for the class of recursively 
enumerable sets. Post’s problem, which asked 
whether the sets that are recursively enumer- 
able but not recursive have the same tdegree of 
(recursive) unsolvability as that of C, was 
negatively solved simultaneously by R. M. 
Friedberg (1957) and A. A. Muchnik (1956- 
1958). A recursively enumerable set E is gen- 

eral recursive if and only if there is a gen- 
eral recursive predicate R(x, y) such that 
x&lZo3yR(x,y) (Kleene [S], Post [6]). 
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E. Partial Recursive Functions 

A function cp(x , , , I,,) is called a partial func- 
tion if it is not necessarily defined for all n- 
tuples (xi, , x,) of natural numbers. For two 
partial functions $(x1, , x,) and x(x,, , x,), 

$(x1, , x”) e x(x,, , xn) means that if either 
$(x,, ,x,) or x(x,, ,xn) is defined for 
x,, ,.x,, so is the other, and the values are 
the same. For any given natural number e, 

(P(x, , ,x,) = U(PYT,(~, x1, ,x,, Y)) (or 
2 U(IIJ~;:‘(~, x,, , x,,y))) is a partial func- 
tion, in general. We say that such a function is 
partial recursive (partial recursive (uniformly) in 

‘I’) and that a natural number e defines cp 
recursively ((uniformly) in Y) or is a GSdel 

number of a partial recursive function 47 (from 
‘I’). When a natural number e is a Godel num- 
ber of 47(x,, , x,) (a Godel number of 4” 

trom Y), 47(x,, , x,) is sometimes written as 
{e) (x,, , x,)( {e)“‘(x,, , x,)). If a predi- 
cate R(x,, J,,, y) is general recursive, then 
pyR(x,, ,x,, y) is partial recursive. There- 
fore, {z) (x, , , x,) is a partial recursive func- 
tion of the variables of z and of xi, ,x,. 

On the partial recursive functions, the fol- 
lowing two theorems, given by Kleene [3], are 
most useful. (1) For natural numbers m, n, a 

primitive recursive function ,Snm(z, y,, , y,) 
can be found such that, for any natural num- 

bere,je}(y,,...,y,,x,,...,x,)-{S,”(e,y,,..., 
y,))(x,, , x,,). (2) For any partial recursive 

function $(z, xi, , x,), a natural number e 
can be found such that {e} (x1, , x,,) N 

$4%X,. . . . . x,). 
The notion of partial recursive functions 

appeared first in the theory of tconstructive 
ordinal numbers of Church and Kleene (1963). 

Partial recursive functions can be defined in 
the Herbrand-Godel-Kleene style as a natural 

extension of general recursive functions, and 
they are also definable by a finite series of 
applications of the schemata (IV), (V), and (VI) 

(in each schema, = used for the definition of q 
should be replaced by 2) starting from func- 
tions given by (I), (II), and (III). 

F. Extension of Recursive Functions to 

Number-Theoretic Functionals 

Let xi, , a, be number-theoretic functions of 
one variable. If cp(xi, ,x,) is (partial) recur- 
sive uniformly in u,, , a,,,, then a Giidel 

number e of cp is found independently of 

s(i, . . . . x,, and 47(x,, . . . . x,) is expressed as 
U(;1y7;pl..-“m(e, x,, , x,,y)). Now suppose 
that 2,) ,x, range over the set NN of all 

number-theoretic functions of one variable, 

and put 

= U(pyrl-“m(e,x,, ,x,,y)). 

We call such a functional ‘p(c~i, , E,,,, 
xi, . . , x,) (partial) recursive, and with it we 

can develop a theory of recursive functions of 

variables of two types. 
Extending the notion of recursive func- 

tionals, Kleene introduced and investigated 
the recursive functionals of variables of arbit- 

rary (finite) types [lo, 111. The natural num- 
bers are the objects of type 0, and the one- 
place functions from type,j objects to natural 
numbers are objects of type j-t 1. Denote 

variables ranging over the type-j objects by r’, 
bj, ‘/j, , or ai, a$, cl;, . . . , etc. Consider a 
functional (simply called a function) of a given 

finite number of such variables of types taking 
natural numbers as values. A function cp is 

called a primitive recursive function if it is 
definable by a finite series of applications of 
the following schemata (I)-(VIII), where a is a 
variable of type 0, b is any list (possibly empty) 
of variables that are mutually distinct and 
different from the other variables Iof the 
schema, and $, x are given functicns of the 
indicated variables. (I) cp(a, 6) = a’; (II) cp (6) = 
q (q is a natural number); (III) cp(a, 6) = a; 

(IV db) = 44x(b), 6); (VI do, b)= h(b), da’, b) 

= xh da, 61, 6); (VI) da) = $(a, 1 I a, is a 
list of variables from which a is obtained by 
changing the order of two variables of the 
same type); (VII) (p(ai,u, b)=a’(a); (VIII) 
cp(rj, b) = ccj(iccj-‘~(aj, aj-‘, b)) (j&’ desig- 
nates that 1 is a function of the variables cc’-‘). 

We assign to each function cp(a:+ a natural 
number called an index (which plays the same 
role as a Godel number) in such a way that 
it reflects the manner of application of the 
schemata used to introduce q(a). Yaw, we 

write cp(a) with an index e as {e}(e). We call 
a function cp(a) partial recursive if it is detin- 
able by a finite series of applications of the 

schemata (I)-(VIII) (= is employed instead of 

= in (IV)-(VI) and (VIII)), and (IX) cp(u, 6, c) N 
{u} (6, c) (c is a finite list of variables of arbitrary 

types). In particular, cp(a) is called a genera1 re- 
cursive function if it is defined for all values of the 

argument a. These notions can be relativized 
also with respect to any given functions. Note 
that for the case of types < 1, primitive recurs- 
ive functions, partial recursive functions, and 

also general recursive functions in the present 

sense are equivalent to the corresponding 
notions (introduced via relativizat.ion with 
uniformity) in the ordinary sense already de- 

scribed. The following theorem is important: 
Let r be the maximum type of a. Then there 
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are two primitive recursive predicates M, N 
such that 

@)(a)- 

woV(‘-13v]‘-2M(e, a, w, (‘-l,q’-‘), 

ra2, 

wo3pVf-2N(e a w  (-1 tf-2) 99, 3 2 

r>2. 

Every function definable using (IX’) $(a)- 
px($(a, x) = 0) instead of (IX) is partial recur- 
sive. However, not all the partial recursive 
functions of variables of types > 2 can be 
obtained by applying schemata (I))(VIII) and 
(IX’). 

Further developments have been pursued by 
J. E. Fenstad, J. Moldestad, and others in 
abstract computation theory [20&23]. 

G. Recursive Functions of Ordinal Numbers 

G. Takeuti introduced a notion of primitive 
recursiveness for functions from a segment of 
the ordinal numbers to ordinal numbers. 
Using this, he constructed a model of set 

theory in ordinal number theory. In connec- 
tion with recursive functions of ordinal num- 
bers, there are also investigations by A. Levy, 
M. Machover, Takeuti and A. Kino, T. Tug& 

S. Kripke, and others. 
Early treatments of recursive functions of 

ordinal numbers dealt only with functions on 
infinite cardinals. For example, Takeuti con- 
sidered functions with a fixed infinite cardinal 
IC as a domain and a range, and defined IC- 
recursive functions using schemata similar to 
the abovementioned (I)-(VI). Subsequently 

Kripke observed that the assumption that IC is 
a cardinal is not necessary, and introduced 
the notion of admissible ordinals. An admis- 
sible ordinal K has the closure properties 
required for the construction of the calculus, 

and whenever a, /l< K and /I =f(a) is com- 
putable, then /?=f(cc) is computable in fewer 
than K stages. Given an admissible ordinal K, 

K-recursiveness can be defined, as in the case of 
general recursiveness, by various equivalent 

methods, e.g., schemata, the equation calculus, 
and definability in both quantifier forms. Most 
of the elementary properties of general recur- 
sive functions (e.g., the normal form theo- 
rem, parametrization theorem, enumeration 

theorem, etc.) are also valid for K-recursive 
functions. The notions of degrees of unsolva- 
bility and recursive enumerability can also be 
generalized, yielding the notions of k-degrees 
and K-recursive enumerability, respectively. 

The fine structures of these properties are 
currently the objects of intensive research. 

Every infinite cardinal is admissible. The 
least admissible ordinal is w, and the next is 

the ordinal wi of Church and Kleene, i.e., the 
first nonconstructive ordinal. In fact, for every 
n 2 1, the first ordinal not expressible as the 
order type of a A,’ predicate is admissible (- 

Section H). For each infinite cardinal IC there 
are K+ admissible ordinals of power K. Platek 
investigated recursion theory in a still wider 
setting. He dealt with functions defined, not on 
a segment of ordinal numbers, but on a set, 

and introduced the notion of admissible sets, 
i.e., sets on which a well-behaved recursion 

theory can be developed. An admissible set is a 
transitive s-model of a certain weak set theory, 
and an ordinal K is admissible if and only if 

there exists an admissible set A such that 
A n 0, = K, where 0, is the class of all ordinal 
numbers. 

Recent developments have shown that 
generalized recursion theory, set theory, and 
infinitary logic are closely related. In addition 
to the abovementioned, there are some investi- 

gations by Y. N. Moschovakis and others 
[14-271. 

H. Hierarchib 

Utilizing the theory of trecursive functions, S. 
C. Kleene succeeded in establishing a theory 
of hierarchies that essentially contains class- 

ical descriptive set theory as an extreme case 
[S, 10,31,32]. Although research following a 
similar line had also been done by M. Davis, 

A. Mostowskii, and others, it was Kleene who 
succeeded in bringing the theory to its present 
form. 

Sets or functions are described by tpredi- 
cates, which we classify as follows. Let a, b, . , 

al,0 2,. . . , x, y,. . . , be variables ranging over 
the set N of natural numbers, and GI, p, . . . , 

%>‘32,...,5>%... be variables ranging over 

the set NN of all tnumber-theoretic functions 
with one argument. Let $i, . . . ,11/# 2 0) be 
number-theoretic functions. A predicate 

P(a 1 ,..., cc,,a, ,..., a,)(m,n>O,m+n>O) 
with variables of two ttypes is called analytic 

in $i, . , $r (la 0) if it is expressible syntacti- 
cally by applying a finite number of logical 

symbols: +, v, A, 1,3x, Vx, 35, V<, to tgen- 
era1 recursive predicates in $i, . . , &. In partic- 

ular, when P is expressible without function 
quantifiers 35, V& it is called arithmetical in 
$i , . . . , $r (I > 0). When 1= 0, they are called 

simply analytic and arithmetical, respectively. 
For brevity, consider the case I= 0, 

and denote by a a finite list of variables 
(a,, . . , a,, a,, . , a,). Every arithmetical pre- 
dicate P(a) is expressible in a form contained 
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in the following table (a): and their dual forms. For any general recur- 

(4 R(a): 
sive predicate R, there is a primitive recursive 

predicate S such that 

3xR(a, xl, Vx 3yR(a, x, Y), . . , 
3ctR(a,a)o3a3xS(a(x),a)93yS(y, a) (5) 

VxR(a,.x), 3x VyR(a, x, YX , and its dual hold. Using these facts, we can 

where each R is tgeneral recursive. In order to classify the forms of all analytic predicates by 

obtain such an expression we first transform the table(b): 

the given predicate into its tprenex normal 
form and then contract successive quantifiers 

04 A(a); 

of the same kind by the formula Vx3xR(a,a,x), 3crVa?lxR(a,c~,P. x), . . . , 

3x, 3x,A(x,, . . . . x,) &VxR(a, LX, x), Va3/IVxR(a,cc,/J,x), . . . , 

o3xA((x),,...,(x),-,) (1) where A is arithmetical and each R is general 
recursive. Similarly, denote by Zi, Z7,l each 

and its “‘dual form.” Each form in (a) (or the 

class of all predicates with that form) is de- 
form of predicate in (b) (or the class of all 

noted by Cf or II,“, where the suffix k refers 
predicates reducible to that form), where k is 
the number of function quantifiers prefixed; 

to the number of quantifiers prefixed, and Z also, denote by Ai the (class of) predicates 
or I7 shows that the outermost quantifier is 
existential or universal, respectively. A predi- 

expressible in both forms CL and 17;. For Ci, 

cate that is expressible in both forms Cf and 
l7,l (k > l), we have the enumeration theorem, 

I7,” (or the class of such predicates) is denoted 
the hierarchy theorem, and the theorem on 

by A:. A predicate belongs to AT if and only if 
complete form. The hierarchy given by table 
(b) is called the analytic hierarchy. 

it is general recursive (an analog of +Suslin’s For 1> 0 (namely, when predicates are 
theorem). 

For k 3 1, there exists in Cf (or fl,“) an 
arithmetical or analytic in $i, . , &), we can 

tuniformly trelativize the above results with 
enumerating predicate that specifies every 
predicate in Cf (L$. For example, for Z7: 

respect to $i, . . , $t. Now let {Z[,“‘~,...,wL, 

and m = n = 1, there is a tprimitive recursive 
L$~v~~~~.~W[}k (r =O, 1) be the corresponding 

hierarchy relative to $1, , $t. Given a set 
predicate S(sc, z, a, x, y) such that, given a C ( c NN) of functions with one argument, 
general recursive predicate R(a, a, x, y), we we can consider hierarchies of predicates 
have a natural number e such that which are arithmetical or analytic in a finite 

Vx~yR(cc,u,x,y)oVx3yS(sc,e,a,x,y) number of functions in C. Such a hierarchy is 
called a C-arithmetical or C-analytic hierarchy 

(enumeration theorem). In this theorem, we and denoted by {Zf[C], n,“[C]},, or jCi[C], 
can take Tt(z, a, x, y) (- Section F) as 4,f CCI~,, respectively. That is, when we re- 
S(Z, z, a, x, y). For each k > 0, there exists a gard LL[C] as a class of predicates (or sets) 
C~+,(@+,) predicate that is not expressible in P, it is the family {P/PEC;~~~~~..~~~: is,, . . . <[E 
its dual form L$‘+, CC:+,) (hence, of course, in C, 1= 0, 1,2,. . }. These notations have been 
neither Cf not TZ,“) (hierarchy theorem). There- given by J. W. Addison [28,29]. The NN- 
fore, table (a) gives the classification of the arithmetical hierarchy and the NN-analytic 
arithmetical predicates in a hierarchy. This hierarchy for sets correspond respectively to 
hierarchy is called the arithmetical hierarchy. the finite Bore1 hierarchy and the !orojective 
For each k 2 1, there exists a complete predi- hierarchy in the tspace of irrational numbers. 
cate with respect to &?(Z7,“), that is, a C,“(Z7,“) Addison called the theory of those hierarchies 
predicate with only one variable such that classical descriptive set theory, and in contrast 
any &“(@) predicate is expressible by sub- to this, the theory of arithmetical and analytic 
stituting a suitable general (or more strictly, hierarchies for sets (C = 0) effective descrip- 
primitive) recursive function for its variable tive set theory [28]. 
(theorem on complete form). When m = 0, all We now restrict our consideration to pre- 
the general recursive predicates in Cf exhaust dicates for natural numbers (i.e., to the case 
Ai+, (Post’s theorem). m = 0). Define the predicates L, by L,(a)* 

Concerning the function quantifiers, we a = a, Lk+l(a)03xTlL~(a, a, x). For each k > 0, 
have ~,+,(a) is a Z,oCi predicate which is of the 

3a, . . . iIa,A(a,, . ,a,,,) 
highest +degree of recursive unsolvability 
among the L’f+i predicates, and its degree is 

-3aA(lt(a(t)),, . ,Lt(a(t)),-,) (2) prbperly higher than that of L,(a). Thus L,, 

3xA(x)-=3aA(a(O)), (3) 
k = 0, 1, 2, , determine the arithmetical 

hierarchy of degrees of recursive unsolvability. 

Vx3aAIx,5()03aVxA(x,ita(2”.3’)), (4) Kleene has extended the series of L, by using 
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the system S, (- 81 Constructive Ordinal 
Numbers) of notations for the constructive or- 

dinal numbers as follows [6]: H,(a)- a = a; 
for yo0, H,,(a)o3xT,H~(a,a,x); for 3. 5y~0, 

H~.~Y(u)~H,,~~,~(u),), where Y, = (~1 (no). This 
H, is defined for each y E 0, and it is of a prop- 
erly higher degree than that of Hz when 

z<,y. If lyl=lzl (lyl is the ordinal number 
represented by y), then Hy and Hz are of the 

same degree (C. Spector [34]). Thus a hierar- 
chy of degrees is uniquely determined by con- 

structive ordinal numbers. This hierarchy is 
called the hyperarithmetical hierarchy of de- 
grees of recursive unsolvability. A function or 

predicate is said to be hyperarithmetical if it is 
recursive in H, for some y E 0. These concepts 
and the results mentioned below can be rela- 
tivized to any given functions or predicates. 

A necessary (Kleene [31]) and sufficient 
(Kleene [32]) condition for a predicate to be 
hyperarithmetical is that it be expressible in 
both one-function quantifier forms Ai (an 
effective version of Suslin’s theorem). Denote 
by Hyp the set ( c NN) of all hyperarithmetical 
functions a. For an arithmetical predicate 

A(a, a), 3aacHypA(a, a) is always a n: predicate 
(Kleene [33]). Conversely, for any l7: predi- 
cate P, there is a general recursive predicate R 

such that P(u)- 3tl.,nyp VxR(u, a, x) (Spector 
[35]). As to tuniformization, for a II: predi- 
cate P(u, b), we have Vx 3yP(x, y) a 3tlmEHYp 
VxP(x, a(x)) (G. Kreisel, 1962). Let E be an ob- 

ject of type 2 defined by: E(a) = 0 if 3x@(x) =0), 
otherwise E(a) = 1. A function &z,, . . . , a,) is 

hyperarithmetical if and only if it is general re- 
cursive in E (Kleene [lo]). A predicate that is 
hyperarithmetical relative to ZT; predicates 

(k>O) is of A:+i (Kleene [32]), but the con- 
verse does not hold in general (Addison and 

Kleene, 1957). 
Kleene extended his theory of hierarchy 

to the case of predicates of variables of any 
type by utilizing the theory of general recur- 
sive functions with variables of finite types 

0, 1,2, . . [lo]. Let a’ be a list of variables of 
types < t. We say a predicate P(d) is of order Y 
in completely defined functions $i, . . . , I+$ 
(I > 0) (for brevity, denote them by Y) if P is 
syntactically expressible in terms of variables 

of finite types, predicates that are general 
recursive in ‘I”, and symbols of the tpredicate 
calculus with quantification consisting only of 
variables of types cr. The predicates of order 
0 in Y are exactly the general recursive ones in 
Y. When t > 1, and Y are functions of vari- 
ables of type 0, a predicate P(d) is of order 1 
(of order 2) in Y if and only if P is arithmetical 
(analytic). 

We have theorems similar to (2)-(4) and 

the following theorem and its dual for I > 2: 
For any given general recursive predicate 

P(a’, &, t’-‘), there is a primitive recursive 
predicate R(a’, n’-i, l’-‘) such that 

30’V~r-zP(a’, cr’, t’-‘) 

03n’-1V<r-ZR(a’, VI-i, <r-2). (6) 

Using these equivalences, each predicate P(a’) 

of order r + 1 (r > 0) is expressible in one of 
the following forms: 

(4 B(a); 

Va’3<‘-‘R(a, a’, <‘-‘), 

3a’V/I’Zll’-‘R(a, LX’,/?, <‘-‘), . . . , 

3a’V<‘-‘R(a, a’, <‘-‘), 

VC(‘38rVS’-1R(a,cr’,8r, <‘-‘), . . . , 

where B is of order r and each R is general 
recursive. When t = r + 1, table (c) gives the 
classification of the predicates of order r + 1 
into the hierarchy. In fact, for the predicates 
P(a’+‘) in each form, we have the enumera- 
tion theorem, the hierarchy theorem, and the 
theorem on complete form (Kleene [lo]). 

D. A. Clarke [30] has published a detailed 
review of the general theory of hierarchies. 
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357 (Vl.6) 
Regular Polyhedra 

A. Regular Polygons 

A +polygon in a Euclidean plane bounding a 
tconvex cell whose sides and interior angles 
are all respectively congruent is called a regu- 
lar polygon. When the number of vertices 
(which equals the number of sides) is n, it is 
called a regular n-gon. There exist a circle 

(circumscribed circle) passing through all the 
vertices of a regular n-gon and a concentric 
circle (inscribed circle) tangent to all the sides. 

We call the center of these circles the center of 
the regular n-gon. The n vertices of a regular 
n-gon are obtained by dividing a circle into 
n equal parts. (When a polygon in a Eucli- 
dean plane bounds a tconvex cell, this 2-cell is 

sometimes called a convex polygon. Thus 
regular polygon sometimes means the convex 
cell bounded by a regular polygon as de- 
scribed above.) A necessary and sufficient 
condition for a regular n-gon to be geometri- 

cally constructible is that n be decompo- 
sable into the product of prime numbers n = 
2”p,...p,(m>O),wherethepi(i=1,2 ,...) 

are different +Fermat numbers (- 179 Geo- 
metric Construction). 

B. Regular Polyhedra 

Consider a regular polygon on a plane, and 
take a point on the line perpendicular to the 
plane at the center of the polygon. The set of 

points on all half-lines joining this point and 
points on the polygon (considered as a convex 

cell) is called a regular polyhedral angle having 
this point as vertex (Fig. 1). 

Fig. 1 

When a iconvex polyhedron 5 in E3 satis- 

fies the following two conditions, we call it a 

regular polyhedron: (1) Each face of 3, which is 
a 2-dimensional cell, is a regular polygon, and 

all faces of 3 are congruent to each other. (2) 
Its vertices are all surrounded alike. That is, by 
the projection of 3 from each vertex of 3, we 
obtain a regular polyhedral angle; these regu- 

lar polyhedral angles are all congruent to each 
other. From (2) we see that the number of 

edges emanating from each vertex of 3 is 
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independent of the vertex. It has been known 
since Plato’s time that there are only five kinds 
of regular polyhedra: tetrahedrons (Fig. 2), 
octahedrons (Fig. 3), icosahedrons (Fig. 4), cubes 
or hexahedrons (Fig. 5), and dodecahedrons 
(Fig. 6) (see also see Table 1). 

Fig. 2 
Regular tetrahedron. 

Fig. 3 
Regular octahedron. 

Fig. 4 
Regular icosakedron. 

Fig. 5 
Regular hexahedron 
(or cube). 
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Fig. 6 
Regular dodecahedron. 

From a given regular polyhedron, we can 
obtain another one by taking as vertices the 
centers of all the faces of the given polyhedron 

(Fig. 7). We say that the given regular poly- 
hedron and the one obtained in this way are 

dual to each other. The octahedron and hexa- 

hedron are dual to each other, as are the 
icosahedron and dodecahedron. The tetra- 
hedron is dual to itself. For a regular poly- 
hedron 5, there exist concentric circumscribed 
and inscribed spheres whose center is the 

center of symmetry of 5 and is called the 
center of ‘& Drawing tangent planes to the 

circumscribed sphere at each vertex, we can 
obtain a regular polyhedron dual to the given 
one (Fig. 8). 

Fig. I Fig. 8 

In a regular polyhedron, let a be the length 
of an edge, f3 the magnitude of the dihedral 

angle at each edge, and R and Y the radii of 
circumscribed and inscribed spheres, respec- 
tively. Then the following relations hold (we 

assume that each face is a regular p-gon and q 
faces meet at each vertex): 

(1) 

BR AR 
r=%otEtan- 2 p 2, ;=tanptanq 

(see Table 2). Corresponding to these poly- 
hedra, we have finite subgroups of O(3) called 
regular polyhedral groups (- 15 1 Finite 
Groups). 

C. Higher-Dimensional Cases 

It is possible to generalize these considerations 
to higher dimensions to define inductively 

Table 1. Regular Polyhedra in 3-Dimensional Euclidean Space E 3 

Number of 
Number of Number of Number of Faces around 

Figure Face Vertices Edges Faces a Vertex 

Regular Equilateral 
tetrahedron triangle 4 6 4 3 

Regular Equilateral 
octahedron triangle 6 12 8 4 

Regular Equilateral 
icosahedron triangle 12 30 20 5 

Regular 
hexahedron Square 8 12 6 3 

Regular Regular 
dodecahedron pentagon 20 30 12 3 
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Table 2. Numerical Values for Eqs. (1) 

Number of 
Faces sine e R/a r/a 

4 2ti/3 7OO31’43.6” G/4 ti/12 

6 1 90” a/2 l/2 
8 2ti/3 109O28’16.4” 1/a l/G 

12 2/G 116O33’54.2” 
fi(ti +I> lhGi77 

4 2fi 

20 2/3 138” 11’22.8” 
2fi 4ti 

Table 3. Regular Polyhedra in 4-Dimensional Euclidean Space E4 

Figure 

3-Dimensional Regular Polyhedra 

Kind Number 
Number of 
Vertices Duality 

Regular 5-hedron Tetrahedron 

Regular 8-hedron Cube 

Regular 16-hedron Tetrahedron 

Regular 24-hedron Octahedron 

Regular 120-hedron Dodecahedron Regular 600-hedron Tetrahedron 

a: dual to itself: b: dual to each other 

5 

8 

16 

24 

120 600 

5 a 

16 

8 
b 

24 a 

600 120 I 
b 

Table 4. Regular Polyhedra in n-Dimensional Euclidean Space (n > 5) 

Regular Polyhedron in R” - ’ 
Number of 

Figure Kind 

Regular (n + I)-hedron Regular n-hedron 

Regular Zn-hedron Regular (2n - 2)-hedron 

Regular 2”-hedron Regular n-hedron 

a: dual to itself; b: dual to each other 

Number Vertices Duality 

n+l n+1 a 

2n 2” 
b 

2” 2n 

regular polyhedra in E”, n > 4. When n = 4 we 

have 6 kinds of regular polyhedra (Table 3). 
For n > 5 we have only 3 kinds (Table 4) (- 70 
Complexes). 
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358 (11.2) 
Relations 

A. General Remarks 

In its wider sense the term relation means in- 
ary relation (n = 1,2,3, . . . ) (- 411 Symbolic 

Logic G), but in this article we restrict our- 
selves to its most ordinary meaning, i.e., to the 

case n = 2. Let X, Y be two sets and x, y be 
two variables taking their values in X, Y, 
respectively. A proposition R(x, y) containing 
x, y is called a relation or a binary relation if it 
can be determined whether R(a, b) is true or 
false for each pair (a, b) in the Zartesian prod- 
uct X x Y. For example, if both X and Y are 
the set of rational integers, then the following 
propositions are relations: x < y, x - y is even, 
x divides y. A relation R(x, y) is sometimes 

written as xRy. 
For a given relation R, we define its inverse 

relation R -’ by yRm’xoxRy. Then R is the 
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inverse relation of R-‘. In the example above, 
the inverse relation of x < y is y > x, and the 
inverse relation of x is a divisor of y is y is a 
multiple of x. A relation R is called reflexive if 
xRx holds. R is called symmetric if xRy o yRx 
(namely, if R and R-’ are identical). R is called 

transitive if xRy and yRz imply xRz. R is 
called antisymmetric if xRy and yRx imply 

x = y. A reflexive, symmetric, and transi- 
tive relation is called an equivalence relation 
(- 135 Equivalence Relations). A reflexive and 
transitive relation is called a tpreordering. A 
reflexive, transitive, and antisymmetric relation 
is called an tordering (- 3 11 Ordering). 

Suppose that we are given a relation xRy 
(xoX, YE Y). Then the set G = {(x, y) 1 xRy}, 

which consists of elements (x, y) of the Car- 
tesian product X x Y satisfying xRy, is called 
the graph of the relation R. Conversely, for any 

subset G of X x Y, there exists a unique rela- 
tion R with the graph G given by xRyo 

(x, Y)E G. 

B. Correspondences 

For a subset G of the Cartesian product X x 

Y, the triple I = (G, X, Y) is called a corre- 
spondence from X to Y. The set X is called the 
initial set of the correspondence I, and Y the 
final set of I. A relation xRy (x E X, y E Y) 

determines a correspondence r = (G, X, Y) by 
its graph G, and conversely, a correspondence 
I determines a relation R. Given a corre- 

spondence I = (G, X, Y), the sets A = prx G 
and B = prr G, where prx :X x Y-+X and 
pr,: X x Y+ Y are the kanonical projections, 
are called the domain and range of the corre- 
spondence I, respectively. For x E X, the set 
{ye Yl (x, y)~ G} is denoted by G(x) or I(x), 

and we say that any element y of G(x) corre- 
sponds to x by I. 

For a subset G of X x Y, we define a subset 
G-‘of YxXby(x,y)~Go(y,x)~G-‘.Given 

a correspondence I = (G, X, Y), the corre- 
spondence (G-l, Y, X) is denoted by I--’ and is 
called the inverse correspondence of I. If G is 
the graph of a relation R, then G-’ is the 
graph of the inverse relation R-‘. The domain 
of the correspondence I is the range of r-i, 

and vice versa. We have (I-‘)-’ = I. 
Suppose that we are given correspondences 

I1 = (Cl, X, Y) and I, = (G,, Y, Z). We define 
a subset G of X x Z by: (x, Z)E Go there exists 
ys Y satisfying (x, y) E Gi and (y, z) E G2. Then 

the correspondence I =(G, X, Z) is denoted by 
I, o I1 and is called the composite of I, and 
r, We have the associative law (r, o r,) o rl = 

r,o(r,orl)andthelaw(r,orl)-l=r;lo 
r;l. 

Let I be a correspondence from X to Y, and 

assume that to any x belonging to the domain 

A of I there corresponds one and only one 
ye Y, namely, I(x) = {y} for any XE A. Then I’ 
is called a univalent correspondence. If I and 
I-’ are both univalent correspondences, I is 
called a one-to-one correspondence. For given 

sets A and B, a univalent correspondence with 
domain A and range B is called a tmapping (or 
tfunction) with domain A and range B (- 381 
Sets C). 
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359 (XX.21) 
Relativity 

A. History 

The theory of relativity is a system of theoret- 
ical physics established by A. Einstein and is 
composed of special relativity and general 
relativity. Toward the end of the 19th century, 
it was believed that electromagnetic waves 

propagate through the ether, a hypothetical 
medium. A number of experimenters tried to 
find the motion of the earth relative to the 

ether, but all these attempts were unsuccessful 
(A. A. Michelson, E. W. Morley). Studying 
these results, in 1905 Einstein proposed the 
special theory of relativity, which extended 
Galileo’s relativity principle of tNewtonian 
mechanics to telectromagnetism and radically 
revised the concepts of space and time. Almost 
all the conclusions of special relativity theory 

are now confirmed by experiments, and this 
theory has even become a guiding principle for 

developing new theories in physics. By extend- 
ing special relativity, Einstein established 
(1915) the general theory of relativity. Its prin- 

cipal part is a new theory of gravitation con- 
taining Newton’s theory as a special case. Its 
conclusions about the solar system are com- 
patible with observed facts that are regarded 

as experimental support for the theory. Effects 
due to general relativity other than those just 
described have been studied to a considerable 
extent, but it is hard at present to test theoret- 
ical results experimentally, and there are some 

doubts about the limit of its applicability. 

B. Special Relativity 

In Newtonian mechanics, natural phenomena 
are described in a 3-dimensional Euclidean 
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space considered independent of time. In spe- the following two postulates: (i) Special prin- 

cial relativity, however, it is postulated that ciple of relativity: A physical law should be 

space and time cannot be separated but are expressed in the same form in all inertial sys- 

unified into a 4-dimensional pseudo-Euclidean tems, namely, in all coordinate systems that 

snace with the tfundamental form move relative to each other with uniform 

ds2=Cgahdxadxb=c2dt2-dx2-dy2-dz2, 
a,b 

where a, b=O, 1, 2, 3 and 

(x0, x’,x2,x3)=(ct, x, y, z). 

Here (x, y, z) are spatial Cartesian coordinates, 
t is time, and c is the speed of light. This space 
was introduced by H. Minkowski and is called 
Minkowski space-time. By means of it Min- 
kowski gave an ingenious geometric interpre- 
tation to special relativity. 

velocity. (ii) Principle of invariance of the speed 
of light: The speed of light in a vacuum is the 
same in all inertial systems and in all direc- 

tions, irrespective of the motion of the light 
source. From these assumptions Einstein 

derived (1) as the transformation formula 
between inertial systems x = (ct, x, y, z) and 
x’ = (ct’, x’, y’, z’) that move relative to each 
other with uniform velocity u along the com- 
mon x-axis. This was the first step in special 
relativity, and along this line of thought, Ein- 
stein solved successively the problems of the 

Lorentz-Fitzgerald contraction, the dilation of 
time as measured by moving clocks, the aber- 
ration of light, the Doppler effect, and Fresnel’s 

dragging coefficient. 

A nonzero vector I’ is called timelike, null 

(or lightlike), or spacelike according as V2 > 0, 

= 0, or < 0, where V2 = C,, b gob V” Vb. 

The group of motions in Minkowski space- 

time is called the inhomogeneous Lorentz 
group. Its elements can be written as 

I 
xi’=~c:x~+-ci, CgabCqCjb=gijr 

0 o,b 

C. Relativity and Electromagnetism 

where cj and ci are constants. The transfor- 
mations with ci = 0 are usually called Lorentz 
transformations, and the group G composed of 
these transformations is called the homoge- 
neous Lorentz group or simply the Lorentz 
group. These are important concepts in special 
relativity. If Go denotes the tconnected compo- 

nent of the identity element of G, the factor 

group G/G, is an Abelian group of type (2,2) 
and of order 4. We call G, the proper Lorentz 

group. A frequently used element of Go is 

x-vt t -(v/2)x 

Lu:xr=Jjq7 t’=*p’ 

Y’=Y, z’=z; IuI<c. (1) 

Such transformations form a l-dimensional 
subgroup of Go with u as a parameter, and the 
composition law of the subgroup is given by 

u+v 
L; L,= L,, 

w=ix@+ 

Elements of G not belonging to G, are 

~~~0’~ --a, xi’=x’; i=1,2,3, 

fj:xO’=xO xiI, -xi. , i=l,2,3. 

Both T (time reversal) and S (space reflection 
or parity transformation) have aroused much 

interest among physicists. 
Historically, the transformation formula (1) 

was first obtained by H. A. Lorentz, under the 

assumption of contraction of a rod in the 
direction of its movement in order to over- 

come the difftculties of the ether hypothesis, 
but his theoretical grounds were not satisfac- 
tory. On the other hand, Einstein started with 

In special relativity, a physical quantity is 
represented by a ttensor (or a scalar or a vec- 
tor) in Minkowski space-time, and physical 
laws are written in tensor form and are invar- 

iant under Lorentz transformations of coordi- 
nates. This is the mathematical expression of 
the special principle of relativity. Since the 

transformation (1) tends to a Galileo transfor- 
mation in Newtonian mechanics as c + co, the 
special principle of relativity is a generalization 

of the Newton-Galileo principle of relativity. 
To summarize mathematically, it may safely 

be said that special relativity is a theory of 
invariants with respect to the Lorentz group. 
To illustrate this conclusion we consider elec- 
tromagnetic theory. 

The electric field E is usually represented by 

a “polar vector” and the magnetic field H by 
an “axial vector” in a 3-dimensional Euclidean 
space. Even if the magnetic field does not exist 

in one inertial system, the field can arise in 
another system that moves uniformly rela- 
tive to the original system. In view of this, 
electric and magnetic fields are considered in 
relativity to form one physical quantity with 

components 

This quantity transforms as an talternating 
tensor of degree 2 under Lorentz transfor- 

mations. In like manner, the electric charge 

density p and the electric current density J 
are unified into a tcontravariant vector with 
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respect to Lorentz transformations: 

s=(s0,s1,s2,s3) 

= (P. Jxlc, J,lc, Jzlc). 

Such a vectors in Minkowski space-time 
is sometimes called a four-vector as distin- 
guished from an ordinary vector such as J. If 
the electromagnetic field Fij and the current 
four-vector s are thus defined, the +Maxwell 
equations, the basic equations of electro- 
magnetism, can be written in tensor form: 

where 

o,b 

Cg’“gja=Sji. 
a 

In the same way, the equation of motion for a 
charged particle in an electromagnetic field 
can be expressed as 

where e and m are the charge and mass of 
the particle, respectively, and s is the arc 
length along the particle trajectory (- 130 

Electromagnetism). 
Though special relativity originated in 

studies of electromagnetic phenomena, it has 
gradually become clear that the theory is valid 
also for other phenomena. One interesting 
result is that the energy of a particle moving 
with uniform velocity u is given by 

E = rnc’/Jw, 

and accordingly even a particle at rest has 

energy mc2 (rest energy). This shows the equiv- 
alence of mass and energy, with the conversion 
formula given by E = mc’. This conclusion has 

been verified experimentally by studies of 
nuclear reactions and has become the basis 
of the development of nuclear power. The 
special principle of relativity also showed its 
validity in the electron theory of P. A. M. 
Dirac (1928) and the quantum electrodynamics 
of S. Tomonaga (1943) and others. It has, 

however, been shown that the invariance for 
space reflection (namely for the coset SG, of 
the Lorentz group G) is violated in the decay 

of elementary particles (T. D. Lee and C. N. 
Yang, 1956; C. S. Wu et al., 1957). Similar 
results have been obtained for time reversal 
(J. H. Christenson, J. W. Cromin, V. L. Fitch, 
and R. Turlay, 1964). 

D. General Relativity 

Special relativity has its origin in studies of 
electromagnetic phenomena, while the central 

part of general relativity is a theory of gravita- 
tion founded on the general principle of rela- 

tivity and the principle of equivalence. The first 
principle is an extension of the special prin- 

ciple of relativity to accelerated systems in 
general. It requires that a physical law should 
be independent of the choice of local coordi- 
nates in a 4-dimensional tdifferentiable mani- 
fold representing space and time (space-time 
manifold). Since a physical quantity is repre- 
sented by a tensor on the space-time manifold, 
physical laws are expressed in tensor form, in 

agreement with the first principle. The second 
principle claims that gravitational and inertial 
mass are equal, and accordingly fictitious 

forces due to acceleration (such as centrifugal 
force) cannot be distinguished from gravita- 
tional force. This had been shown with high 
accuracy by the experiments of R. von Eotvos 
(1890) and others. 

Starting from these two principles, Einstein 
was led to the following conclusion. If a gravi- 
tational field is produced by matter, the cor- 
responding space-time structure is altered; 
namely, flat Minkowski space-time is changed 
into a curved 4-dimensional manifold with 

+pseudo-Riemannian metric of tsignature (1,3). 
The tfundamental tensor gij of this manifold 

represents the gravitational potential, and the 
gravitational equation satisfied by gij can be 
expressed as a geometric law of the manifold. 
Gravitational phenomena are thus reduced to 
properties of the geometric structure of the 
space-time manifold. This idea, which was not 
seen in the older physics, became the motif in 
the development of tunified field theories. 

Now the gravitational law proposed by 
Einstein is an analog of the +Poisson equation 
in Newtonian mechanics. Let R, and R be the 

+Ricci tensor and the tscalar curvature formed 
from gij. Then outside the source of a gravita- 
tional field, gij must satisfy 

Gij = R, - g,R/2 = 0, that is, R, = 0, (2) 

and inside the source, 

where K is the gravitational constant. Here the 
energy-momentum tensor Tj is a tsymmetric 
tensor representing the dynamical state of 

matter (energy, momentum, and stress). Usu- 
ally (2) and (3) are called the exterior and 

interior field equations, respectively. 
Next, the equation of motion of a particle in 

a gravitational field is given by 

if the particle mass is so small that its effect on 
the field is negligible. Here 6/&s stands for 

tcovariant differentiation with respect to the 
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arc length s along the particle trajectory. In 
other words, a particle in a gravitational field 
moves along a timelike tgeodesic in the space- 

time manifold. Similarly, the path of light is 
represented by a null geodesic, whose equation 

is formally obtained from (4) by replacing the 
right-hand side of the second equation by zero. 

Experimental verification of the theory of 
general relativity has been obtained by detec- 
tion of the following effects: the shift of spec- 
tral lines due to the gravity of the earth and of 
white dwarfs, the deflection of light or radio 

waves passing near the sun, the time delay of 
radar echo signals passing near the sun, and 
the advance of the perihelion of Mercury. All 

the observational data are compatible with the 
theoretical results. Time delay and the advance 
of the perihelion have been observed in a 

binary system of neutron stars. It is generally 
accepted that these results are experimental 
verifications of general relativity. 

It should be noted that (2) has wave solu- 
tions, which have no counterpart in Newton’s 
gravitational theory. This fact implies that 
gravitational effects propagate with the veloc- 

ity of light. The gravitational waves transport 
energy and momentum, and the gravitational 
mass is decreased by the emission of the waves. 

Experiments to detect gravitational waves 
generated in the universe have been planned, 
and the decrease of the orbital period of a 
binary star system due to the emission of 
gravitational waves has been observed. 

The concept of gravitational waves suggests 
the existence of a quantum of the gravitational 

field (graviton); however, the detection of the 
graviton is far from feasible. 

In the interior equation (3), the matter pro- 
ducing a gravitational field is represented by a 
tensor Tj of class Co. But there is also a way of 

representing it by singularities of a solution of 

the exterior equation (2). From this point of 
view, the equation of motion of a material 
particle (i.e., singularity) is not assumed a 
priori as in (4), but is derived as a result of (2) 
(A. Einstein, L. Infeld, and B. Hoffman, 1938). 

In the static and weak field limits, the funda- 
mental form is approximately given by New- 

ton’s gravitational potential cp as 

-(1+(p/cZ)(dx2+dy2+dz2), 

and (2) and (3) reduce in this limit to Laplace’s 
and Poisson’s equations, respectively. New- 

ton’s theory of gravity is valid in the limit 
$7/c* << I. 

Stimulated by the discoveries of neutron 

stars and black holes and by the big-bang 
theory of the universe in the 1960s numerous 
studies of general relativity have been carried 

out on such problems as the gravitational field 

of a spinning mass, the dynamical process of 
gravitational collapse, the space-time structure 

of black holes, the generation of gravitational 

waves, the global structure and dynamics of 
the universe, and so on. A comparison of the 
theoretical predictions and the observations is 
generally favorable, but the phenomena in the 
universe are so complex that the effects of 
general relativity cannot always be isolated. 

E. Solutions of Einstein’s Equations 

The isometric symmetry of space-time is de- 
scribed by tKilling vectors. The stationary 

metric is characterized by a timelike Killing 

vector, in which case equation (2) reduces to 
an telliptic partial differential equation on a 
3-dimensional manifold. If the space-time is 
axially symmetric as well as stationary, (2) 

reduces to the Ernst equation: 

(&+&*)V*&=2V&.VE, (5) 

where V represents divergence in a flat space. 

The metric tensors are derived from the com- 
plex potential E. The solutions of (5) can be 

obtained using techniques developed for the 

soliton problem. 
One example of stationary and axially sym- 

metric solutions is the Kerr metric, which is 
written as 

ds’=c*dt*-F(asin’edrp-cdt)* 

2 

-P2 -(r2+u2)sin2Bd~2, 

(6) 

withp2=r2+a2cos20andA=r2-2mr+ 
a*. This metric solution represents a gravita- 

tional field around a spinning mass with mass 
M = mc2/G and angular momentum J = 
Mac. When a = 0, this metric reduces to the 

Schwarzschild metric. 
Applying a Backlund transformation to the 

Kerr metric, an infinite series of stationary and 
axially symmetric solutions can be derived. All 
these solutions belong to the space-time metric 
with, in general, two Killing vectors. 

The dynamical evolution of space-time 

structure has been studied by means of the 
+Cauchy problem of general relativity. Choos- 
ing appropriate dynamical variables, equation 

(2) or (3) is divided into constraint equations 
in terms of the initial data and evolution 
equations in terms of the dynamical variables. 
The latter thyperbolic equations may also be 

written in Hamiltonian form. 
A typical example of such a problem is 

the dynamics of a spatially homogeneous 3- 
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dimensional manifold; this has been studied as 
a cosmological model. The space-time with 
a constant scalar curvature R is called de Sitter 
space, and reduces to the Minkowski space if 
R = 0. If the 3-dimensional space is isotropic 
as well as homogeneous, the metric takes the 
form 

ds* =c2dt2-a(t)*{dx2 +f(x)* 

x (de* +sin* Od#)}, 

where f(x) = sin x, x, or sinh x. These are called 

Robertson-Walker metrics and are considered 
to describe a realistic expanding universe. 

F. Global Structure of Space-Time 

Following the advances of modern differential 
geometry, manifestly coordinate-independent 

techniques to analyze space-time properties 
have been applied to general relativity. The 
mathematical model of space-time is a con- 
nected 4-dimensional THausdorff C”-manifold 

endowed with a metric of signature (1,3). The 
metric allows the physical description of local 
causality and of local conservation of energy 
and momentum. The metric functions obey the 
Einstein field equation (2) or (3). 

In order to clarify the global structure of 
the solutions of Einstein’s equations, maxi- 
mally analytic extension of the solutions has 
been studied. The maximal extension of the 
Schwarzschild metric is given as 

ds* = 
32m3 --e-*i*“‘(dv* -du*) 

r 

- r*(dB* + sin’ Odq2), 

using the Kruskal coordinates, which are re- 
lated to the coordinates of (6) by 

( > k-1 e r/*m = u2 _ “2, 

tanh t/4m = UJV or v/u. 

To study the global structure at infinity, a 
tconformal mapping of the metric is used. For 
example, the Minkowski metric is written in 

the form ds* = O* &*, where 

andfi=secpsecq, tanp=t+r, tanq=t-r. 

By means of this mapping, all points, includ- 
ing infinity, are assigned finite p, q coordinate 

values in - n/2 < q < p < n/2. 
Singularities in space-time are one of the 

major problems concerning the global struc- 
ture of the manifold. For some Cauchy prob- 
lems relevant to cosmology and gravitational 

collapse, the inevitable occurrence of a sin- 

gularity has been proved (singularity theorem). 

A sufficient condition for occurrence of a 
singularity is that there be some point p such 
that all the null geodesics starting from p 
converge to p again, In addition to this con- 
dition, for the proof of the singularity theorem 
it is presumed that the space-time is free of 

closed nonspacelike curves, that a Cauchy 
surface exists, and that the energy-momentum 
tensor satisfies the condition 

for any timelike vector Vi. The singularity 
whose existence is implied by this theorem 
means that the space-time manifold is geodesi- 

tally incomplete (the space-time is complete if 
every geodesic can be extended to arbitrary 
values of its affine parameter). 

The causal structure of space-time is also 
related to the global structure of the manifold. 
In this regard, black holes have been intro- 
duced as the final state of gravitational col- 

lapse. In the black-hole structure of space- 

time, there exists a closed surface called an 
event horizon in an asymptotically flat space. 

The event horizon is the boundary (the set 
of points) in space-time from which one can 

escape to infinity, or the boundary of the set 
of points that one can see from the infinite 
future. Then the black hole is a region from 
which no signal can escape to the exterior of 
the event horizon. 

If we assume that singularities do not exist 
in the exterior of the event horizon, a station- 

ary black-hole structure is uniquely described 

by the Kerr metric [6]. In the case of spheri- 
cally symmetric collapse, this assumption 

is verified and the final metric is given by 
the Schwarzschild metric. However, it is not 

known whether this assumption is true in 
more general gravitational collapse. 
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360 (Xx1.8) 
Renaissance Mathematics 

Toward the middle of the 13th century, scho- 
lastic theology and philosophy were at their 
height with the Summu theologiae of Thomas 
Aquinas (1225‘?-1274); but in the latter half 
of the century, the English philosopher Roger 
Bacon (1214-1294) attacked Aquinian philoso- 

phy in his Opus majus, insisted on the impor- 
tance of experimental methods in science, and 
strongly urged the study of mathematics. The 

Renaissance flourished first in Italy, then in 
other European countries in the 15th and 16th 

centuries, in the domains of the arts and liter- 
ature. Newer ideas in mathematics and the 

natural sciences dominated the 17th century. 
However, it was the invention of printing in 

the 15th century, the translation of the Greek 
texts of Euclid and Archimedes into European 

languages, and the importation of Arabian 
science into Europe during the Renaissance 
that prepared for this development. 

In the 15th century, the German priest 
Nicolaus Cusanus (1401- 1464) discussed 
infinity, the convergence of infinite series, and 

some problems of quadrature. During the 
same period, the German scholar Regiomon- 
tanus (143661476) wrote the first systematic 
treatise on trigonometry independent of as- 
tronomy. Leonardo da Vinci (145221519), 
the all-encompassing genius born in the same 
century, left manuscripts in which he wrote 
about mechanics, geometric optics, and per- 
spective. Da Vinci’s contemporary, the Ger- 

man painter A. Diner (1471I1528), wrote a 
textbook on perspective. In 1494, L. Pacioli 
(1445?% 15 14) published Summa de arithmetica, 

one of the first printed books on mathematics. 
Its content, influenced by Arabian mathemat- 
ics, includes practical arithmetic and double- 
entry bookkeeping. The book enjoyed wide 
popularity. 

The best known result of l6th-century 
mathematics is the solution of algebraic equa- 

tions of degrees 3 and 4 by the Italian mathe- 

maticians Scipione del Ferro, N. Tartaglia 

(1506- 1557) G. Cardano (1501~ 1576), and L. 
Ferrari (1522-I 565). Cardano published the 

solution of equations of the third degree in his 
book Ars magna (1545). The solution was due 

to Tartaglia, to whom acknowledgment was 
made, although publication of the method 
was against his will. This constitutes a famous 
episode in the history of mathematics, but 
what is historically more important is the fact 
that essential progress beyond Greek mathe- 
matics was made by mathematicians of this 
period, since the Greeks were able to solve 

equations only of degrees 1 and 2. Algebra 
was subsequently systematized by the French 
mathematician F. Viete (1540- 1603). 

By the end of the 15th century, practical 
mathematics (influenced by the Arabians) had 
become popular in Europe, and more ad- 
vanced mathematics began to be studied in 
European universities, especially in Italy. In 
1543, N. Copernicus (147331543) published 

his heliocentric theory (1543); G. Galilei (called 
Galileo) (1564- 1642), the indomitable propo- 
nent of this theory, was also born in the 16th 
century. Copernicus studied at the Univer- 
sities of Bologna, Padua, and Ferrara; Galileo 

studied at the University of Pisa and taught at 
the Universities of Pisa, Padua, and Florence. 
A system of numeration was imported from 

Arabia to Europe in the 13th century; by the 
time of S. Stevin (1548?? 1620?) it took the 

definite form of a decimal system, and with the 
development and acceptance of printing, the 
forms of the numerals became fixed. 
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361 (Xx.32) 
Renormalization Group 

A. Introduction 

The concept of renormalization was intro- 
duced by S. Tomonaga, J. S. Schwinger, M. 
Gell-Mann, and F. E. Low in order to over- 
come the difficulty of divergence in field theory. 

If the upper bound of the momentum is limited 

to a finite cutoff value A, then physical quan- 
tities, for example, the mass WI of an electron, 
can be obtained as finite quantities by letting 
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A go to infinity after summing all divergent 
terms. This is called the renormalization method 
using subtraction. Since the cutoff A is arbitrary 
insofar as it is finite, the Green’s functions are 

indefinite because they depend on A. This 
dependence on the cutoff A corresponds to 

the response for the scale transformation of 
length, and this transformation is a certain 
(semi) group, called a renormalization group. 
Several kinds of renormalization group have 
been used in field theory, as well as in the 
statistical mechanics of phase transition. 

B. Renormalization Group in Field Theory 

Cl-31 

A typical method t6 resolve the ultraviolet 
divergence is to add subtraction terms in the 

Lagrangian so that they cancel the divergence. 
This cancellation is usually performed in each 
order of the perturbation expansion. When 
the addition of a finite number of subtraction 
terms cancels the divergence, the relevant 
Hamiltonian is said to be renormalizable. 
Otherwise it is called unrenormalizable. The 

Lagrangian density 

for example, can be renormalized by the trans- 
formation ‘pO = Zj’2q, g,, = Z, Z;*g, and rni = 
m2 + am’. All the divergences are taken into 
the renormalization constants Z,, Z,, and 
6m2, so that the renormalized quantities cp, 
g, and m are finite. These renormalization 
constants can be calculated by means of a 
perturbation method, but the requirement of 

circumventing the divergences alone is not 
sufficient to determine them explicitly. This 
indeterminacy is usually expressed as Z,(p) 
and Z,(p), i.e., in terms of a parameter p, 

called the renormalization point. The p- 
dependence of these functions can be deter- 
mined by means of the following renormaliza- 
tion conditions: 

r(Pi,PL)= l, pipj+l -46,). 

Since the renormalization constants depend on 

the continuous parameter p, the renormalized 
Green’s function and coupling constant g 
are also functions of p, and consequently the 

quantity dCzN)( {pi}, p, g(p)) defined by 

satisfies the renormalization equation 

( P$+P$-2NY d’2N’({Pi},/4g)=0, 
> 

where fl= p dg/dp and y = fp d log Z,( p)/dp. If 

the coefficients jl and y are calculated pertur- 
bationally up to a certain order, the renormal- 
ized Green’s function is obtained up to the 

same order by solving the foregoing renor- 
malization equation. This is the first kind of 
renormalization group. A second kind ex- 
presses the response of the renormalized 
Green’s function to the change in the mass and 
coupling constant, and is expressed by the 
Callan-Symanzik equation [4,5] 

m&+/?(g)$+2Ng,(g) GfN)=AGgN), 
> 

where /?(g) = Zm, ag/am,, and y,(g) = +Zrn,. 
alogZ,/am,, and where Z is determined by 
Zm,am/am, = m. The inhomogeneous term is 

defined by 

a AGjfN)=Zmo-G~2N) 
am0 

+Zm,~(NlogZ,)G~2N’~ 
0 

The irreducible Green’s function rihZN) satisfies 

m&+B(g)$-ZNy,(g) rA2N)=iArA2N). 
> 

Since the inhomogeneous term can be neg- 
lected in the high-energy region, the foregoing 
equation becomes homogeneous, and con- 
sequently its solution is 

[ s So.) 
=exp -2N y(g’M-W&’ 

9 1 x rA2N’(Pi, m, s(4). 
Here g(n) is the solution of the equation 
~,S(“)p-‘(g’)dg’ =log1. Since dimensional analy- 
sis yields Th2N)(lpi, m, g) = 14-2NTR (pi, m/A, g), 
the foregoing solution shows that high-energy 
phenomena can be described by the low- 
energy phenomena whose coupling constant is 
given by g, = g( co). In particular, when gm = 0, 
high-energy phenomena are described by the 
asymptotically free field. This circumstance is 

called asymptotic freedom. 

C. Renormalization Group Theory in 
Statistical Physics 

The renormalization group technique has 

proved to be powerful in statistical physics, 
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particularly in studies of phase transitions and 

critical phenomena [6&10]. The correlation 
length < diverges like t(T)-(T- T,)-” near 
the critical point T,, where v is called the crit- 
ical exponent of 5. Similarly, the correlation 
function C(R) for the distance R behaves like 
C(R)-Rm(dm2+q)~exp(-~R), K=<-‘, where 
d is the dimensionality of the system and q is 
the exponent describing the deviation of the 

singular behavior of C(R) from classical the- 
ory. Renormalization is useful in evaluating 
these critical exponents systematically. The 
fundamental idea is to eliminate some degrees 

of freedom, to find recursion formulas for 
interaction parameters, and then to evaluate 
critical exponents from their asymptotic be- 
havior near the fixed point. There are many 
different ways of carrying out this idea ex- 

plicitly. Roughly classifying these into two 
groups, we have (i) momentum-space renor- 
malization group theories [6&10] and (ii) 

real-space renormalization group theories 
[IO, 1 I]. 

The common fundamental structure of these 
renormalization group techniques is explained 
as follows. First the momentum space or real 

space is divided into cells and rapidly fluctuat- 
ing parts, namely, small-momentum parts 

inside each cell are integrated or eliminated, 
and consequently the remaining slowly fluc- 
tuating parts, namely, long-wave parts, are 

renormalized. The original Hamiltonian X0 is 
transformed into Z1 by means of this elimi- 
nation process and by some scale transforma- 

tion that preserves the phase space volume. 
This renormalization operation is written as 
R,: i.e., Z, = RbXO. Similarly we have X1 = 
R,P,=R;& /..., s’?~=R,,~~~-,=R$F,, ,.... 
This transformation R, has the (semi) group 

property R,,. = R,R,.. A generator G is defined 
by G = lim,,, +O (R, - l)/(b - 1). That is, R, = 
exp(lG), e’ = h. The transformation of X is 
expressed as dX/dl= G [X]. The fixed point 
A‘*=R,,8* is the solution of G[X*] =O. In 

order to find critical exponents from the as- 
ymptotic behavior of G near Z*, we consider 
a Hamiltonian of the form 2 =X* + wQ and 

expand G[X] as G[X* + wQ] = wKQ + 
0(w2). If the operator K thus defined has a 
negative eigenvalue ii, the corresponding 
physical quantity Qi becomes irrelevant after 
repeating the renormalization procedure, and 
the physical quantity Q, corresponding to a 

positive eigenvalue lLj > 0 becomes relevant. 
Thus, by introducing a field hj conjugate to 
the relevant operator Qj, we study the Hamil- 
tonian ,% =X0* + CjhjQj. The free energy per 

unit volume f[X] =f(h,,h2, . ..) is found to 

have the scaling property 

.fV 1 ,..., hj ,... )~b-~f(b”lh ,,..., h’~h, ,... ). 

By taking Q1 as the energy operator, we have 
h, -T- T,= t. By the normalization h”lh, = 1, 
we obtain the scaling law 

.f‘(t ,..., h, ,... )-td’il,f(l ,..., hj/t’+ ,...) 

The critical exponent of the specific heat de- 
fined by C-t P is given by the formula c( = 

2 -d/l,. Other scaling exponents { qj} can be 
obtained via the formula ‘pj = ?,/A, from the 
eigenvalues of K. The simplest example of 

R, is the case where a single interaction para- 
meter K is transformed into a new parameter 
K’ by K’=f,(K). The fixed point K* is given 
by the solution of K* =fb(K*). The correla- 
tion exponent v defined by 5 -(K-K*)-’ is 
given by the Wilson formula v = log b/log A, 

A=(df,/dK),=,,. In most cases, R, is con- 
structed perturbationally, and critical expo- 
nents are usually calculated in power series of 

E-d,-d, as ~=~o+~,~+~2~2+..., where 
d, denotes the critical dimension. This is called 
the c-expansion. The first few terms are cal- 

culated explicitly for specific models, such as 
the cp4-model. By applying the Bore1 sum 
method to these &-expansions, one can esti- 
mate critical exponents [IO, 111. 

The renormalization group method can be 
applied to other many-body problems, such as 
the Kondo effect [ 121. 
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A. General Remarks 

For a mathematical system A, a mapping from 
A to a similar (but in general “more concrete”) 
system preserving the structure of A is called a 
representation of A. In this article, we consider 

the representations of tgroups and tassociative 
algebras. For representations of other alge- 
braic systems - 42 Boolean Algebras; 231 

Jordan Algebras; 248 Lie Algebras. For topo- 
logical, analytic, and algebraic groups - 13 

Algebraic Groups; 69 Compact Groups; 249 
Lie Groups; 422 Topological Abelian Groups; 

423 Topological Groups; 437 Unitary Repre- 
sentations. For specific groups - 60 Classical 

Groups; 61 Clifford Algebras. 

B. Permutation Representations of Groups 

We denote by 6, the group of all tpermuta- 
tions of a set M (- 190 Groups B). A permuta- 

tion representation of a group G in M is a 
homomorphism G-+Gw. We denote by aM the 
permutation of M corresponding to a~ G and 
write Q(X) = ax (x E M). Then we have a con- 
dition (ab)x = a(bx), lx = x (a, be G, 1 is the 
identity element, x E M). In general, if the prod- 

uct axcM of aEG and XCM is defined and 

satisfies this condition, then G is said to oper- 
ate on M from the left, and M is called a left 

G-set. Giving a permutation representation of 

G in M is equivalent to giving the structure of 
a left G-set to M. A reciprocal permutation 
representation of G in M is an tantihomomor- 

phism G-+G,, which becomes a homomor- 
phism if we define the multiplication in G, by 
the right notation x(fg) = (xf)g. If the product 
xa E M of a E G and x E M is defined and satis- 
ties the conditions x(ab) = (xa)b and xl =x, 
then, as before, G is said to operate on M from 
the right, and M is called a right G-set. Giving 
a reciprocal permutation representation of G 

in M is equivalent to giving the structure of a 
right G-set to M. 

A (reciprocal) permutation representation is 

said to be faithful if it is injective; the corre- 
sponding G-set is also said to be faithful. In 

particular, we can take G itself as M and de- 
line the left (right) operation by the multipli- 

cation from the left (right). Then we have a 
faithful permutation representation (reciprocal 

permutation representation), which is called 
the left (right) regular representation of G. For 
UE G, the induced permutation ac:x-+ax (xa) 
is called the left (right) translation by a. 

We call a left G-set simply a G-set. If a sub- 

set N of a G-set M satisfies the condition that 
a E G, x E N implies ax EN, then N forms a G- 
set, which is called a G-subset of M. If a G-set 
M has no proper G-subset (i.e., one different 
from M itself and the empty subset), then for 
any two elements x, ye M there exists an ele- 
ment a E G satisfying ax = y. In this case, the 
operation of G on M is said to be transitive, 
and the corresponding permutation represen- 
tation is also said to be transitive. If an equiva- 
lence relation R in a G-set M is compatible 

with the operation of G (i.e., R satisfies the 

condition that a E G, R(x, y) implies R(ax, ay)), 
then the quotient set M/R forms a G-set in the 
natural way, called the quotient G-set of M by 
R. If a G-set M has no nontrivial quotient G- 
set, i.e., if the only equivalence relations com- 
patible with the operation are 

R(x, x’) for any x, X’E M 

and 

R(x, x’) if and only if x = x’, 

then the operation of G on M and the corre- 
sponding permutation representation are said 
to be primitive. 

A mapping f: M+ M’ of G-sets is called a 

G-mapping (G-map) if the condition f(ax) = 
af(x) (a~ G, x E M) is satisfied. G-injection, G- 
surjection, and G-bijection are defined natur- 
ally. The inverse mapping of a G-bijection is 
also a G-bijection. Two permutation represen- 

tations are said to be similar if there exists a 
G-bijection between the corresponding G-sets. 
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Let M be a transitive G-set, and fix any 
element XE M. If we view G as a G-set, the 
mapping f: G+ M defined by f(a) = ax is a G- 
surjection and induces a G-bijection f: G/R 

+ M. Here an equivalence class of R is pre- 
cisely a left coset of the stabilizer (stability 
group or isotropy group) H, = {u E G 1 ax = x}. 

Hence we have a G-bijection G/H,+ M. Con- 
versely, for any subgroup H of G, G/H is a 

transitive left G-set. A transitive G-set is called 
a homogeneous space of G. 

For a family {Mnjnci\ of G-sets, the Car- 
tesian product n,,, M, and the tdirect sum 
CIE,, M, become G-sets in the natural way; 
they are called the direct product of G-sets and 
the direct sum (i.e., disjoint union) of G-sets, 

respectively. Every G-set M is the direct sum of 
a family {M,} of transitive G-subsets, and each 
M, is called an orbit (or system of transitivity). 

For a G-set M, the direct product G-set Mk = 
M x . . x M (k times) contains a G-subset 

M’k)={(xl,...,xk)Ii#jimpliesxi#xj}.IfM(k) 
is transitive, M is said to be k-ply transitive. If 

M is transitive and the stabilizer of each point 
of M consists of the identity element alone, M 
is said to be simply transitive. 

If M has n elements, a permutation repre- 
sentation of a group G in M is said to be of 

degree n. When G is a group of permutations 
of M, the canonical injection G+ 6, is a 
faithful permutation representation; this case 

has been studied in detail (- 151 Finite 
Groups G). 

C. Linear Representations of Groups and 

Associative Algebras 

Let K be a tcommutative ring with unity ele- 
ment and M be a K-module. Though we shall 
mainly treat the case where K is a field and M 

is a finite-dimensional tlinear space over K, the 
case where K is an tintegral domain and M is 
a tfree module over K of finite rank is also 
important. Since K is commutative, we can 
write Ix=xi (~EK,xEM). Let c?~(M) be the 
tassociative algebra over K consisting of all K- 
endomorphisms of M, and let GL(M) be the 
group of all tinvertible elements in G,(M), 
where we assume M # (0). Let A be an as- 

sociative algebra over K. A linear represen- 
tation of the algebra A in M is an algebra 
homomorphism A+c?~(M). We always assume 

that A has a unity element and the homomor- 
phisms are unitary. For convenience, we can 
also consider a linear representation in the 
trivial space M = {O}, which is called the zero 
representation. A reciprocal linear represen- 
tation is an antihomomorphism A-P&~(M). A 

linear representation of a group G in M is a 
group homomorphism G+GL(M). This can 

be extended uniquely to a linear representa- 
tion of the tgroup ring K [G] in M, and con- 
versely, the restriction of a linear representa- 

tion of K[G] in M to G is a linear representa- 
tion of G; and similarly for reciprocal linear 

representations. Thus the study of (reciprocal) 
linear representations of a group G in M can 
be reduced to the study of (reciprocal) linear 
representations of the group ring K [G] in M. 

We now consider the linear representation 
of associative algebras, which we call simply 
“algebras.” (Note that a group ring has a 
canonical basis-the group itself-and allows 
a more detailed investigation; - Sections G, 

I.1 
Given a commutative ring K with unity and 

a linear representation p of a K-algebra A in a 
K-module M, we introduce the structure of a 
left A-module into M by defining ax=p(a)x 

(as A,XE M); the structure of a K-module in M 
obtained by the canonical homomorphism K 

+ A coincides with the original one. This A- 
module is called the representation module of 
p. Conversely, for any left A-module M we can 
define a linear representation p of A in M 
(with M viewed as a K-module via K + A) by 
putting p(a)x = ax; the representation module 
of p coincides with the original one. This rep- 

resentation p is called the linear representa- 
tion associated with M. A reciprocal linear 
representation of A corresponds to a right A- 
module. Thus the study of (reciprocal) linear 
representations of A is equivalent to the study 
of left (right) A-modules. For instance, if the 
operation of a group G on M is trivial: crx =x 

(0~ G, x E M), the corresponding representation 
of G in M assigns the identity mapping I, to 

every e E G. Furthermore, if M = K, this repre- 
sentation is called the unit representation of G 
(over K). 

Let p, p’ be linear representations of A in 
K-modules M, M’, respectively. Then an 
A-homomorphism M-M’ is precisely a K- 

homomorphism f: M -+ M’ satisfying the con- 
dition fop(a)=p’(a)of(a~A); this is some- 
times called a homomorphism from p to p’. 
In particular, an A-isomorphism is a K- 
isomorphism f: M + M’ satisfying the con- 
dition fop(a)o =$(a) (uEA); in this case 
we say that p and p’ are similar (isomorphic or 
equivalent) and write p g p’. 

Let M be the representation module of a 

linear representation p of an algebra A. If p is 
injective, p and the corresponding M are said 
to be faithful. For example, the linear represen- 
tation associated with the left A-module A is 
faithful; this is called the (left) regular represen- 
tation of A. If M is tsimple as an A-module, 

p is said to be irreducible (or simple). A homo- 
morphism from an irreducible representation p 
to p must be an isomorphism or the zero 
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homomorphism (Schur’s lemma). In particular, 
if K is an talgebraically closed field and M is 
finite-dimensional, then such a homomor- 
phism is a scalar multiplication. A linear rep- 
resentation is said to be reducible if it is not 
irreducible. If M is tsemisimple as an A- 
module, p is said to be completely reducible (or 
semisimple). If A is a semisimple ring, any 
linear representation of A is completely reduc- 
ible. The converse also holds (- 368 Rings G). 

The linear representations associated with a 
submodule and a quotient module of M as an 

A-module are called a subrepresentation and a 
quotient representation, respectively. The linear 
representation associated with the direct sum 
M, + . . . + M, of the representation modules 
M,, . . , M, of linear representations pl, . . , pr is 
written p1 + . . . + p, and called the direct sum of 

representations. If p is never similar to the 
direct sum of two nonzero linear representa- 
tions, then p is said to be indecomposable; this 
means that M is tindecomposable as an A- 

-module. 
For linear representations p, p’ of a group G 

in M, M', we define the linear representation 

P 0 P’ in M 0 ~4’ by (P 0 p’M=p(d 0 p’kd 
(go G); this is called the tensor product of repre- 

sentations p and p’. 

D. Matrix Representations 

Let K” be the K-module consisting of all n- 
tuples (ci) of elements in a commutative ring 

K. cY~(K") is identified with the K-algebra 
M,(K) of all n x n matrices (1,) over K:(&)(tj) 
=(&r nijtj). Thus a linear representation of 
A in K", i.e., a homomorphism A-t M,(K), is 
called a matrix representation of A over K, and 
n is called its degree. A matrix representation 
of a group G over K of degree n is a homo- 
morphism G+GL(n,K), where GL(n, K) is 
the group of all n x n invertible matrices. If 

(e i, . . . , e,) is a +basis of a K-module M, then by 
the K-isomorphism K"+ M given by the as- 
signment (&)-C~=i ei&, we have a bijective 

correspondence between the matrix represen- 
tations of A of degree n and the linear repre- 

sentations of A in M, and the corresponding 
representations are similar. Explicitly, the 
linear representation p corresponding to a 
matrix representation a-*(Aij(u)) is given by 

P(akj= t eilij(a), UCA. 
i=l 

Hence giving the finite-dimensional linear 
representations over a field K is equivalent to 
giving the matrix representations over K. Let 

T, T’ be matrix representations of degree n, n’. 
Then a homomorphism from T to T’ is an n’ 

x n matrix P satisfying PT(a)= T'(a)P (as A). 
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Therefore T and T' are similar if and only if 
n = n’ and PT(a)P-' = T'(a) (a~ A) for some 
n x n invertible matrix P. For a representation 
of a group G, it suffices that this equation is 

satisfied by all a E G. 
We always assume that K is a field. Then a 

K-module is a linear space over K. A linear 
representation p over K of a K-algebra A is 
said to be of degree n if its representation 
module M is of dimension n over K. Suppose 
thatasequence{O}=M,,cM,c...cM,=M 

of A-submodules of M is given. We take a 
basis (ei, . , e,) of M over K such that (er, 

.‘.> e,i) forms a basis of Mi over K (1 < i < r). 
Then the matrix representation corresponding 
to p relative to the basis (er , . . . , e,) has the 
form 

r 
T,,(a) Z-n(a) . . . T,, (~1 

T,,(a) . . . T,,(a) 
u-+T(u)= 

0 T, 6) 

where, if we put n, = dim M,/M,-, = m, - m,-, , 
Ti(a) is an ni x nj matrix and 7$1) = 0 for i > j. 
The residue classes of e,i+,+, , . . . , e form a mi 

basis of the quotient space Mi/Mi-, over K, 
and the matrix representation corresponding 

to the linear representation pi associated with 
M,/M,+, relative to this basis is given by qi. 

The sequence { Mi} is a tcomposition series if 
and only if each pi (hence Ti) is irreducible. In 
this case, pl, . . . , p, are uniquely determined by 

p up to their order and similarity (Jordan- 
HSlder theorem). An irreducible representation 
p’ similar to some pi is called an irreducible 
component of p. The number p > 0 of pi similar 
to p’ is called the multiplicity of p’ as an irre- 
ducible component of p. We also say that p 
contains p’ p times or p’ appears p times as an 
irreducible component of p. The representa- 
tion p is completely reducible if and only if it 
is similar to the direct sum of its irreducible 
components (admitting repetition). In this case, 
p is similar to the matrix representation 

I 
T,, (a) 0 

1 

E. Coefficients and Characters of Linear 
Representations 

We consider the linear representations of an 
algebra over a field K. A right (left) A-module 
M is regarded as a linear space over K. In its 

dual space M*, we introduce the structure of a 
left (right) A-module using the inner product 
( , ) as follows: (x. ax*) = (xa, x*) ((x, x*a) 
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zz (ux,x*)), where UEA, XCM, x*EM*. If p is 
the representation associated with M, the rep- 
resentation associated with M* is called the 

transposed representation (dual representation 
or adjoint representation) of p, and is denoted 
by ‘p. The linear mapping ‘p(a) is the ttrans- 
posed mapping of p(a). If M is finite- 
dimensional over K, we have (M*)* = A4 as an 
A-module. For a linear representation p of a 
group G, the mapping g+‘p(g)-’ (ysG) is 
called the contragredient representation of p. 
The reciprocal linear representation associated 

with the right A-module A is called the right 
regular representation of A, and its transposed 
representation (i.e., the representation as- 

sociated with the left A-module A*) is called 
the coregular representation of A. For any 
finite-dimensional semisimple algebra and 
group ring of a finite group, the regular repre- 

sentation and the coregular representation are 
similar (- 29 Associative Algebras H). 

Let p be a linear representation of A over K 
and M be its representation module. For any 
x E M, x* E M*, we define a ilinear form p,,,* E 

A* on A by p&u) = (ax,x*) (a~ A). This is 
called the coefficient of p relative to x, x* and 
is determined by its values at generators of 
A as a linear space. In particular, a coefficient 
of a linear representation p of a group G can 
be regarded as a function on G taking values 
in K. For a fixed X*E M* the assignment x+ 
pX,X* gives an A-homomorphism M + A*, 
where A* is considered as a left A-module. 

Therefore any nonzero coefficient pX,X* of an 
irreducible representation p generates an A- 
submodule of A* isomorphic to M. In other 
words, any irreducible representation of A is 
similar to some subrepresentation of the co- 

regular representation of A. In particular, 
any irreducible representation of a finite- 
dimensional semisimple algebra or a finite 
group is an irreducible component of the 

regular representation. Let AZ be the subspace 
of A* generated by all coefficients p,,,* (XE M, 
x* E M*) for a given linear representation p. 
Then p z p’ implies Af = A$. If pl, , p, are 
irreducible representations of A such that pi 
and pj are not similar unless i = j, the sum 
AZ, + + A;, in A* is direct. In particular, for 

a semisimple algebra A, let the p, (I< i < r) be 
the irreducible representations associated with 
the minimal left ideals of the +simple compo- 
nents Ai of A. Then any irreducible represen- 
tation is similar to one and only one of pl, , 
pV, and A* can be decomposed into the direct 
sum of Ap*, , , AZ,. In addition, each A;T, is 
canonically identified with A*. 

We shall treat finite-dimensional representa- 

tions exclusively. Let (el, . . , , e,) be a basis of 

the representation module M of p over K, and 
let a+ T(u)=(>.~~(u)) be the matrix representa- 

tion that corresponds to p with respect to 
this basis. Then i, = P?,.~: (1 < i, j < n), where 

(eT, . . . . e,*) is the dual basis. If K is algebrai- 

cally closed and p is irreducible (or more gen- 
erally, tabsolutely irreducible), then {n,} is 
linearly independent; therefore we have dim AZ 
= nz (G. Frobenius and I. Schur). We take a 
matrix representation T corresponding to p 
and put x,(u) = tr T(u) (a~ A). Then xP is a 
function on A that is uniquely determined by p 
and belongs to AZ; xp is called the character of 
p. For a linear representation p of a group G, 

the character of p can be regarded as a func- 
tion on G. Moreover, it can be viewed as a 
function on the set of all tconjugate classes of 

G. The character of p is equal to the sum of the 
characters of the irreducible components of p 
taken with their multiplicities. The character 
of an irreducible representation is called an 
irreducible character (or simple character). If K 
is of characteristic 0, then p g p’ is equivalent 

to &=x&7’, and the different irreducible charac- 
ters are linearly independent. The character 
of an absolutely irreducible representation 
(- Section F) is called an absolutely irreducible 
character. If we consider absolutely irreducible 

characters only, the statement holds irrespec- 
tive of the characteristic of K. 

The sum of all absolutely irreducible charac- 
ters of A is called the reduced character (or 
reduced trace) of A. The direct sum of all ab- 
solutely irreducible representations of A is 

called the reduced representation of A, and its 
character is equal to the reduced character. 
The determinant of the reduced representation 
is called the reduced norm of A. 

F. Scalar Extension of Linear Representations 

Let K, L be commutative rings with unity 
element, and fix a homomorphism 0: K +I?.. 

We denote by M” the scalar extension a*(M) 
= M OK L of a K-module M relative to 
rr:xiO/*=xOi”~(x~M;~~K,~~E)(- 277 
Modules L). For an algebra A over K, the 
scalar extension A” of the K-module A has 
the natural structure of an algebra over 

L:(uOi)(bO~)=ahO3.~(u,b~A;~,~~L). 
For a group G, we can regard (K[G])“= 

L[G]:g@i~=gl(gEG,iEL).IfMisaleft 
A-module, then M” has the natural structure 
of a left Au-module; (a @ 1”) (x @ p) = ax @ 1.p 
(a E A, x E M; J., ,u E L). For the linear represen- 
tation p associated with M, the linear repre- 
sentation p” over L associated with M” is 
called the scalar extension of p relative to 
a:p”(u@l)=p(u)@l,. Let(e,,...,e,)bea 

basis of M over K. If the matrix representation 

u-(&(u)) corresponds to M relative to this 
basis, then the matrix representation corre- 
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sponding to M” relative to the basis (el @ 1, 
. , e, 0 1) over L is given by a @ 1 -@,(a)“). 
A linear representation over L is said to be 

realizable in K if it is similar to the scalar 
extension p” of some linear representation p 
over K. 

In particular, if e: K -+L is an isomorphism, 

p” is called the conjugate representation of p 
relative to 0. The conjugate representation 

relative to the automorphism a:i-+X (complex 
conjugation) of the complex number field is 

called the complex conjugate representation. If 
m is an ideal of K and 0: K + K/m (tresidue 

class ring) is the canonical homomorphism, 
then the construction of p” from p is called the 
reduction modulo m (- Section I). If p is a 
prime ideal of K and o: K + K, (tlocal ring) is 
the canonical homomorphism, then the con- 
struction of p” from p is called the localization 
relative to p. If K is an integral domain and p 
= K - {0}, then K, is the tfield of quotients of 
K. We can also consider the “completion of 
representation” with respect to p. 

Let K be a field, L a field extension, and 

0: K +L the canonical injection. Then for a 
linear representation p of A and its represen- 

tation module M, the scalar extensions p”, M” 
are written pL, ML, respectively. In view of M 
c ML, A c AL, 8&V) c &‘L(ML) by the natural 

injections, we can regard pL as an extension 
of the mapping p. We shall consider finite- 
dimensional representations exclusively. For 
linear representations pl, p2 over K, p1 g pz is 

equivalent to pf g pg. An irreducible repre- 
sentation p over K is said to be absolutely 

irreducible if its scalar extension pL to any field 
extension L is irreducible; an equivalent con- 

dition is that the scalar extension p’ to the 
talgebraic closure I? is irreducible. Another 
equivalent condition is that every endomor- 

phism of the representation module M of p 
must be a scalar multiplication. If every irre- 
ducible representation of A over K is absolutely 
irreducible, K is called a splitting field for 
A. For a group G, if the field K is a splitting 
field for the group ring K[G], then K 
is called a splitting field for G. Let A be linite- 
dimensional over K. If K is a splitting field for 
A, any irreducible representation of AL is 
realizable in K for any field extension L of K. 
For an arbitrary field K, the scalar extension 
pL of an irreducible representation p to a 
tseparable algebraic extension L of K is com- 
pletely reducible. For simplicity, we assume 

that K is tperfect and L = K. Then the multi- 
plicities of all irreducible components of pL are 
the same; this multiplicity is called the Scbur 
index of p. 

The set S(K) of talgebra classes over K, each 

of which is represented by a (central) simple 

component of the group algebra K [G] of 

some finite group G, is a subgroup of the 
tBrauer group B(K) of K, known as the Scbur 

subgroup of B(K). Recent research has clarified 
considerably the structure of this group [19]. 

G. Linear Representations of Finite Groups 

Let G be a finite group of order g. The linear 
representation of G over K is equivalent to the 
linear representation of the group ring K [Cl, 
concerning which we have already stated the 
general facts. If K is the ring Z of rational 
integers, a linear representation over K is 
sometimes called an integral representation. 

We assume that K is a field. If the character- 
istic of K is zero or more generally not a divi- 
sor of g, every linear representation of G over 

K is completely reducible (H. Maschke). Such 
a representation is called an ordinary represen- 

tation. If g is divisible by the characteristic of 
K, we have a modular representation (- Sec- 
tion I). 

The exponent of G is the smallest positive 
integer it satisfying u” = 1 for every element 
UE G. A field containing all the nth roots of 
unity is a splitting field for G (R. Brauer, 1945). 
Consequently, for such a field K, any scalar 
extension of an irreducible representation over 

K is irreducible, and any irreducible represen- 

tation over any field extension of K is realizable 
in K. We fix a splitting field K for G and as- 
sume that K is of characteristic 0, for example, 
we can assume K = C. 

The number of nonsimilar irreducible repre- 
sentations of G is equal to the number of 
conjugate classes in G. Each irreducible repre- 
sentation appears as an irreducible component 
of the regular representation with multiplicity 

equal to the degree. In addition, each degree is 
a divisor of the order g of G. Let p be a linear 
representation of a subgroup H of G and M 
be its representation module. Then the linear 
representation of G associated with the K [Cl- 
module K[G]6&, M is called the induced 
representation and is denoted by pG. If the 
matrix representation T corresponds to p, then 
using the partition of G into the cosets G = 

a 1 H U . U a, H we can write the matrix 
representation corresponding to pG as 

a+ 

I 

T(a;‘aul) . . . T(a;‘uu,) 

. . . . . . . . . 

T(u;‘uu,) . . . T (a,- sm,) 
1 

’ 

where we define T(b) = 0 for b# H. The induced 
representation from a representation of degree 
1 of a subgroup is called a monomial represen- 
tation. To such a representation corresponds 
a matrix representation T such that T(u) has 

exactly one nonzero entry in each row and 
column for every UE G. For the trivial sub- 
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group H = {e}, we obtain the regular represen- 
tation of G. In general, for an irreducible 
representation c of G and an irreducible repre- 
sentation p of a subgroup H, the multiplicity 
of CJ in pG coincides with that of p in the res- 

triction a, of g to H (the Frobenius theorem). 
The following ortbogonality relations hold for 

irreducible characters x and $ of G: 

In the second formula, x ranges over all the 
irreducible characters of G, C(a) denotes the 
conjugate class of G containing a, and g, is the 
number of elements in C(a). 

H. Linear Representations of Symmetric 
Groups 

All irreducible representations of a tsymmetric 
group 6, over the field Q of rational numbers 
are absolutely irreducible. Hence the represen- 
tation theory of 6, over a field of character- 
istic zero reduces to that over Q. Since the 

group algebra A = Q [S,] is semisimple, to 
obtain an irreducible representation of 5,, it is 

sufficient to find a tprimitive idempotent (i.e., 
an idempotent that is not the sum of two 
orthogonal nonzero idempotents) of A. Such 
an idempotent can be obtained in the follow- 

ing way. As in Fig. 1, we draw a diagram T 

consisting of n squares arranged in rows of 
decreasing lengths, the left ends of which are 
arranged in a single column. Such a diagram T 

is called a Young diagram; if it has k rows of 

lengths fi 2f22 >&>O,fi +fi+ +f,=n, 
then it is written T= T(f,, ,fJ. We put the 
numerals 1 to n in any order into the n squares 

of T= T(fi>fz, . ..>.L). as in Fig. 1, for example. 
We then denote by 0 any permutation of G, 
that preserves each row and construct an 
element of A : s = C cr. Similarly, we denote by 

r any permutation of 6, that preserves each 
column and set t = C(sgn r)r. If we set u = t. s 
= C f r. (T, then u is a primitive idempotent of 
A except for a numerical factor. This implies 
that u yields an irreducible representation of 
5,. The element u of A is called the Young 

symmetrizer associated with T. 

Fig. 1 
Young diagram. n = 26; fl = 8, .f~ = 6, .& = 6, .f, =4, f’ 
=2. 

If we put the numerals 1 to n into the n 

squares of Tin a different order, we obtain 
another symmetrizer u’ associated with T. 

However, these two irreducible representations 
associated with LI and u’ are similar. Hence 
there corresponds to T a fixed class of irre- 
ducible representations of 6,, i.e., a fixed irre- 
ducible character of 6,. Moreover, any two 

different Young diagrams yield different 
irreducible characters, and any irreducible 

character is obtained by a suitable Young 
diagram. Thus there exists a one-to-one corre- 
spondence between the Young diagrams and 
the irreducible characters of 6,. 

The method of determining the character 
associated with a given diagram was found by 
Schur and H. Weyl (- 60 Classical Groups). 

I. Modular Representations of Finite Groups 

Let G be a finite group of order g, and let K be 
a splitting field of G of characteristic p # 0. If p 
is a divisor of g, we have the case of modular 
representation, in which the situation is quite 
different from the case of ordinary representa- 
tion. The theory of modular representations 
of a finite group was developed mainly by 
Brauer after 1935. 

The elements of G whose orders are prime 
to p are called p-regular. Let k be the number 
of p-regular classes of G, i.e., conjugate classes 

of G containing the p-regular elements. Then 
there exist exactly k nonsimilar absolutely 
irreducible modular representations F,, F2, 

, Fk. The number of nonsimilar indecom- 
posable components of the regular representa- 
tion R of G is also equal to k, and we denote 
these representations by U,, U,, , U,. We 
can number them in such a way that F, ap- 
pears in UK as both its top and bottom compo- 
nent. If the degree of F, is f, and that of U, is 
u,, then UK appears f, times in R and F, ap- 
pears u, times in R. The multiplicities c,* of Fl 

in U, are called the Cartan invariants of G. 
Take an algebraic number field R that is a 

splitting field of G. Let p be a prime ideal in 

R dividing p, and let o be the domain of +p- 
integers of 52. Then the residue class field o/p is 
a finite field of characteristic p and a splitting 
field of G. Hence we can assume that o/p = K, 
where K is the field considered at the begin- 
ning of this section. Let Z,, Z,, . , Z, be the 
nonsimilar irreducible representations of G in 
0. We can assume that all the coefftcients of 
Zi are contained in o. Replacing every coeffi- 
cient in Zi by its residue class mod p, we obtain 

a modular representation Zi. The modular 
representations Z,, . . . , Z, thus obtained may 

be reducible. The multiplicities di, of F, in Z, 
are called the decomposition numbers of G. 
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They are related to the Cartan invariants by 

the fundamental relations 

The determinant Ic,J of degree k is a power 
of p. We set g = p’g’, (p, g’) = 1. Then we may 
assume that R contains a primitive g’th root of 

unity 6(~ 0). Since (p, g’) = 1, the residue class 
Z(E K) of 6 is a primitive g’th root of unity. 
Let M be a modular representation of G. The 
characteristic roots of M(a) for a p-regular 

element a are powers 2 of 8. We replace each 
p by 6’ and obtain an element ((a) of R as the 
sum of these 6’. In this manner we define a 
complex-valued function r on the set of p- 
regular elements of G. We call 5 the modular 
character (or Brauer character) of M. Two 

modular representations have the same irre- 
ducible components if and only if their modu- 

lar characters coincide. Denoting by cp. the 
modular character of F, and by I], that of U,, 
we have the following orthogonality relations 
for the modular characters: 

In the first sum, a ranges over all p-regular 
elements of G. 

We say that F, and FL belong to the same 
block if there exists a sequence of indices K, c(, 

p, . . . . y, 1 such that cKa#O, c,~#O ,..., c,,#O. 
This is obviously an equivalence relation, and 
F,, Fz, . , Fk are classified into a finite number, 

say s, of blocks B,, B,, . . . , B,. If F, belongs to 
a block B,, we say by a stretch of language 
that the corresponding U, also belongs to B,. 
All the irreducible components of Zi belong 
to the same block since c,~ # 0 if di, # 0 and 

di, # 0. If the irreducible components of Zi 
belong to B,, we say that Zi belongs to B,. Let 
x, be the number of Zi belonging to B, and y, 
the number of F, belonging to B,. Then x, > y,. 
If xi is the ordinary character of Zi, then xi 

can be considered as the modular character 
of Zi. If we denote the degree of Zi by zi, then 

g,x,(a)/z, for a~ G is an algebraic integer and 
hence belongs to o. Now Zi and Zj belong to 

the same block if and only if g,xi(a)/zi = 
g,Xj(a)/zj (modp) for all p-regular elements 
aofG. 

If p” is the highest power of p that divides all 
the degrees zi of Zi belonging to E,, then it is 
also the highest power of p dividing all the 

degrees f, of F, belonging to B,. We call d = 

e-u the defect of B,; obviously 0 <d < e. If Zi 
belongs to a block of defect d, then the power 

of p dividing zi is pe-d+ki (hi 2 0). A block of 

defect 0 contains exactly one ordinary repre- 
sentation Zi, hence also exactly one modular 
representation F, (x, = y, = 1). Moreover, we 
have Zi = F, = U,. It follows that all the de- 
grees zi of Zi belonging to a block of defect 1 
are exactly divisible by p’-‘; the converse is 

also true. Zi belongs to a block of defect 0 if 
and only if x,(a) = 0 for any element a of G 
whose order is divisible by p. 

Let D be any p-Sylow subgroup of the tcen- 
tralizer C,(a) of an element a of G, and let 
(D: l)=pd. Then d is called the defect of the 

class C(a), and D is called a defect group of 
C(a). The number of blocks of defect e is equal 
to the number of p-regular classes of defect e. 
Let B, be a block of defect d. Then there exists 
a p-regular class of defect d containing an 

element a such that g.Xi(a)/zi + 0 (mod p) for 
any Zi in B,. The defect group D of C(a) is 
called the defect group of B,, and D is uniquely 
determined up to conjugacy in G. The number 
of blocks of G with defect group D is equal to 
the number of blocks of the tnormalizer N,(D) 
with defect group D. 

An arbitrary element x of G can be written 
uniquely as a product x = sr = r’s, where s, 
called the p-factor of x, is an element whose 
order is a power of p, and r is a p-regular 
element. We say that two elements of G belong 
to the same section if and only if their p-factors 
are conjugate in G. This is an equivalence 
relation. Obviously, each section is the union 

of conjugate classes of G. If the p-factor of x is 
not conjugate to any element of the defect 
group D of B,, then xi(x) = 0 for all Zi in B,. 

Let cp?, cp; , . . . , cpi&, be the absolutely irre- 
ducible modular characters of Cc(s), and let xi 
be the absolutely irreducible ordinary charac- 
ters of C,(s). Since 

xX=-) = w.Xr) = &IX dhC(4 rc Cc(s)9 
a 

we have 

XiW=C ri&r) =I &d(r). 
0 

The db are called the generalized decompo- 
sition numbers of G. If the order of s is p’, then 

the db are algebraic integers of the field of the 
p’th roots of unity. Let s be conjugate to an 
element of D. There corresponds to B, a union 
B, of blocks of Cc(s), and if Q # p, then fi, and 
BP contain no irreducible modular represen- 
tations in common. We have di”, = 0 for any 
Zi in B, (i.e., &$ B,). Brauer’s original proof 
of this result was considerably complicated; 
simpler proofs were given independently by K. 
Iizuka and H. Nagao. From these relations we 
get the following refinement of the orthogon- 

ality relations for group characters. If Zi and 

Zj belong to different blocks of G, then 
~,,s~i(a)~i(a-l)=O, where a ranges over all 
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the elements belonging to a fixed section S of 
G. If elements a and h of G belong to different 
sections, then C,, xi(a)xi(h -‘) = 0, where xi 
ranges over all the characters of G belonging 

to a fixed block B,. 

J. Projective Representations of Finite Groups 

Let V be a finite-dimensional linear space over 

a field K, and let P(V) be the tprojective space 
associated with V (- 343 Projective Geom- 
etry). The set of all projective transforma- 
tions of P(V) forms the group PGL( V), which 
can be identified with the quotient group 

GL(V)/K*l,. Here K*=K-{0} and K*l, is 
the set of all scalar multiples of the identity 
transformation 1 v of V and is the center of 

CL(V). A homomorphism G+PGL(V) is 
called a projective representation of G in V or 
simply a projective representation of G over 
K. Two projective representations (p, V) and 
(p’, V’) of G are said to be similar if there exists 
an isomorphism q: PGL(V)+PGL(V’) induced 
by a suitable isomorphism V-r V’ such that 

cp0P@)0cp-’ =~‘(a) (uEG). Let Vi #{O} be a 
subspace of V. We can assume that P( V,) c 
P(V). If (p, V) is a projective representation 
of G such that each p(a) (a~ G) leaves P( V,) 
invariant, we get a projective representation 

(pr , Vi) by restricting the p(a) to P( V,). In this 
case (p, , V,) is called a subrepresentation of p. 
A projective representation is said to be irre- 
ducible if there exists no proper subrepresen- 
tation of p. 

A mapping (T: G+GL( V) is called a section 
for (p, V) if n(o(u)) = p(u) for each UE G, where 
z is the natural projection of GL( V) onto 

PGL( V). Any section (T defines a mapping 
,f: G x G+K* satisfying a(u)g(b) =,f(u, b)o(uh) 

(a, hi G). The set {f(u, b)}a,btc is called the 
factor set of p with respect to cr. The mapping 

f is a +2-cocycle of G with values in K*. The 2- 
cohomology class c,,EH’(G, K*) off is deter- 
mined by p and is independent of the choice of 
sections for p. A projective representation p 
has a section o which is a linear representation 
ofGin Vifandonlyifc,=l. IfGisafinite 

group, for any ceH’(G, K*) there exists an 
irreducible projective representation p of G 
over K which belongs to c, i.e., cp = c. If p and 
p’ are similar, then cp = cp.. The tensor product 
p @ p’ of two projective representations p and 

p’ can be defined as in the case of linear repre- 
sentations, and we have cpol,, - - cIj. cp.. If K is 
algebraically closed, then H’(G, K*) is deter- 
mined by the characteristic of K. When K is 
the complex field C, the group ff’(G, C*) = 

cJ?l(G) is called the multiplier of G. If 9X(G) = 1, 

then G is called a closed group, and any pro- 
jective representation of G is induced by a 

linear representation of G. In general, if p is a 
projective representation of G over C, then the 
order of c, is a divisor of the degree of p (di- 
mension of V). Moreover, if p is irreducible, 
then both the degree of p and the square of the 

order of cp are divisors of the order of G. K. 
Yamazaki, among others, studied the projec- 
tive representations of finite groups in detail. 

K. Integral Representations 

Every complex matrix representation of G is 

equivalent to a matrix representation in the 
ring of algebraic integers. If an algebraic num- 

ber field K is specified, every K[G]-module V 
contains G-invariant R-ilattices (briefly, G- 
lattices), where R is the ring of integers in K. 

A G-lattice L is characterized as an R [G]- 
module, which is finitely generated and +tor- 
sion free (hence tprojective) as an R-module. It 
provides an integral representation of G as an 
automorphism group of the R-projective 
module L. 

R[G]-modules L and M need not be iso- 
morphic even when the K [G]-modules K @ L 
and K @ M are isomorphic. The set of G- 

lattices in a fixed K [G]-module V is divided 
into a finite number of R[G]-isomorphism 
classes (Jordan-Zassenbaus theorem). Let p be 

a prime ideal of R and R, be the localization 
of R at p. The study of R,-representations is 
intimately related with modular representation 
theory. For any R [G]-module L there is an 
associated family of R,[G]-modules L, = 
R, 0 L, where p ranges over all primes of R. 
G-lattices L and M in a K [G]-module V are 
said to be of the same genus if L, g M, for 
every p. The number of genera of G-lattices in 

V is given by &hp (9 = order G), where h, 
denotes the number of R,[G]-equivalence 
classes of R,[G]-lattices in V. When V is ab- 

solutely irreducible, the number of R[G]- 
equivalence classes in a genus equals the (ideal) 
+class number of K (J. M. Maranda and S. 
Takahashi). 

The +Krull-Schmidt theorem, asserting the 
uniqueness of a direct sum decomposition into 

indecomposable R[G]-modules, holds if R is a 
complete discrete valuation ring or if R is a 

discrete valuation ring and K is a splitting field 
of G. The condition for the finiteness of the 
number of nonisomorphic indecomposable G- 

lattices is known. In particular, for R = Z it 
reduces to the requirement that the Sylow p- 
subgroup of G be cyclic of order p or p2 for 

every p 1 y. Regarding projective Z [G]-modules 
- 200 Homological Algebra G. 

The isomorphism problem, i.e., the question 
of whether the isomorphism Z[G] gZ[H] of 

integral group algebras implies the isomor- 
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phism G g H of groups, has been answered 

affirmatively for certain special cases such 
as tmeta-Abelian groups. 

R[G] is an R-torder in K[G], and in this 
context, a considerable portion of the integral 
representation theory has been extended to 

more general orders in separable algebras [ 14- 
161. 
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Bern hard 

Georg Friedrich Bernhard Riemann (Septem- 
ber 17,1826-July 20,1866) was born the son 

of a minister in Breselenz, Hanover, Germany. 
He attended the universities of Giittingen and 
Berlin. In 1851 he received his doctorate at the 

University of Gottingen and in 1854 became 
a lecturer there. In 1857 he rose to assistant 
professor, and in 1859 succeeded P. G. L. 
tDirichlet as full professor. In 1862 he con- 
tracted tuberculosis, and he died at age 40. 
Despite his short life, his contributions en- 
compassed all aspects of mathematics. 

His doctoral thesis (1851) stated the basic 
theorem on tconformal mapping and became 
the foundation for the geometric theory of 
functions. In his paper presented for the posi- 

tion of lecturer (1854), he defined the tRie- 
mann integral and gave the conditions for 
convergence of trigonometric series. In his 
inaugural lecture in the same year, he dis- 
cussed the foundations of geometry, intro- 
duced n-dimensional manifolds, formulated the 
concept of tRiemannian manifolds, and defined 
their curvature. In his paper of 1857 on tAbel- 
ian functions, he systematized the theory of 

tAbelian integrals and Abelian functions. In 
his paper of 1858 on the distribution of prime 
numbers, he considered the tRiemann zeta 

function as a function of a complex variable 
and stated tliiemann’s hypothesis concerning 
the distribution of its zeros. It remains for 
modern mathematics to investigate whether 
this hypothesis is correct. In his later years, 
influenced by W. Weber, Riemann became 
interested in theoretical physics. He gave lec- 
tures on the uses of partial differential equa- 
tions in physics that were edited and published 
by H. Weber. 
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364 (Vll.3) 
Riemannian Manifolds 

A. Riemannian Metrics 

Let M be a tdifferentiable manifold of class C 
(1 < r < o), and y be a +Riemannian metric of 
class c’-’ on M. Then (M,g) or simply M is 
called a Riemannian manifold (or Riemannian 
space) of class c* (- 105 Differentiable Mani- 
folds). The metric g is a fcovariant tensor field 
of order 2 and of class c’-‘; it is called the 
fundamental tensor of M. Using the value g, of 

g at each point PE M, a positive definite inner 
product g,(X, Y), X, YE TP, is introduced on 
the ttangent vector space T, to M at p, and 
hence TP can be considered as a fvector space 

over R with inner product that can be identi- 
fied with the Euclidean space E” of dimension 
n = dim M. Utilizing the properties of the space 
E”, we can introduce various notions on T, 
and M. (For example, given a tangent vector 
LET,, we define the length (IL.11 = IILl\g,P of L 
to be the quantity g,(L, I,)“‘. A normal vector 

at a point p of a submanifold N of M is well 
defined as an element of the orthogonal com- 

plement of the subspace T,(N) of T,(M) with 
respect to g,; a differential form of degree 1 is 
identified with a tangent vector field.) A neces- 

sary and sufficient condition for a differenti- 
able manifold M of class c’ to have a Rie- 
mannian metric is that M be tparacompact. A 
Euclidean space E” has a Riemannian metric 
expressed by C&dx’ Q dx’ in terms of an 
orthogonal coordinate system (xi). 

We assume that M is connected and of class 

C”. A curve x : [a, b] + M is called piecewise 
smooth or of class D” if x is continuous and 

there exists a partition of [a, b] into finite 
subintervals [tiei, ti] such that the restrictions 
x 1 [tieI, tJ are timmersions of class C”. The 

length ((x(( of such a curve x is defined to be 

[a” llx’(t)ll dt, where x’(t) is the tangent vector of 
x defined for almost all values oft. As in a 
Euclidean space, the length (/x([ is independent 
of the choice of parameter t, and the concepts 

of tcanonical parameter and orientation of x 
can be defined (- 111 Differential Geometry 

of Curves and Surfaces). A function d : M x M 
+ [0, co) is dctincd so that the value d(p, q), p, 
y E M, is the i&mum of the lengths of curves of 

class D” joining p and q. The function d is a 
tdistance function on M, and the topology of 

M defined by d coincides with the original 

topology of M. There exists an essentially 

unique structure of a Riemannian manifold on 
(real or complex) telliptic or thyperbolic space 
(- 285 Non-Euclidean Geometry), and d is 
the distance function of these spaces. 

If there exists an immersion cp of a differenti- 
able manifold N in a Riemannian manifold 
(M, g), then a Riemannian metric ‘p*g is de- 
fined on N by the tpullback process ( 11 L II,+,., = 
lldc&L)l\,). (For example, a submanifold and 

a ‘covering manifold of M have Riemannian 
manifold structures induced by the natural 
mappings (- 365 Riemannian Submanifolds).) 

If M = E3 and N is a 2-dimensional submani- 
fold of M, then ‘p*g is the Q’irst fundamental 
form of N. Assume further that ‘p is a diffeo- 
morphism and N has a Riemannian metric 
h. If ‘p*g = h, then (N, h) is said to be isometric 
to (M, g), and q is called an isometry. The set 
I(M) of all isometries (isometric transforma- 

tions) of M onto M is a group. A necessary 
and sufficient condition for a mapping II/ : 
N--t M to be an isometry is that d,(p, q) = 

d,($(p),$(q)), p, 4~ N. In particular, I(E”) is 
the tcongruent transformation group. 

If a differentiable manifold M is the product 

manifold of Riemannian manifolds (M,, gl) 
and (M2,g2), then (M,n:g, +n:g2) is called 
the Riemannian product of M, and M,, where 
a,, c( = 1, 2, are projections from M to M,. 

Let F be the ttangent n-frame bundle over 
M and B = B,(M) be the subset of F consisting 
of all orthonormal frames with respect to g. 

Then B is an O(n)-subbundle of F of class C”, 
called the tangent orthogonal n-frame bundle 
(or orthogonal frame bundle). In this way we 

get a one-to-one correspondence between the 
set of all O(n)-subbundles of F and the set of 
all Riemannian metrics of M. 

B. Riemannian Connections 

There exists a unique +afftne connection in the 
orthogonal frame bundle B whose ‘torsion 
tensor is zero. This connection is called the 

Riemannian connection (or Levi-Civita connec- 
tion; - 80 Connections K). Let V denote the 
tcovariant differential operator defined by this 

connection (- 80 Connections, 417 Tensor 
Calculus). (For a vector field X, the covariant 
differential operator V, acts on any tensor field 
T defined on a submanifold having X as a 
tangent vector field.) The covariant differen- 

tial Vg of the fundamental tensor g vanishes 
identically. The tconnection form of the Rie- 

mannian connection is expressed by n2 differ- 
ential l-forms (~j),~~,~~~ on B, and we have 
wj+o{=O. Let (w’),~~~” be the tcanonical 
l-forms on B. Then (~()r$~$,~~ together with 

(Q~) give rise to an absolute parallelism on 
B (that is, they are linearly independent at 
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every point). Let (@) and (@) be the corre- 

sponding set of differential l-forms on the 
orthogonal frame bundle &., over another 
Riemannian manifold N with dim N = dim M. 

If there exists an isometry + : M -+ N, then the 
differential dt,h is a diffeomorphism from B = 

B, to BN, and we get (dJ/)*(@) = coi, (dtJ)*(@) = 
o{. Conversely, if there exists a diffeomorphism 
Y: BIM+BN satisfying Y*(P)= oi, ‘r*(eij)= 
w/ and M is torientable, then there exists an 

isometry II/ : M + N such that dl(/ = Y holds on 
a connected component B,, of B. Moreover, $ 
is uniquely determined if we choose one B,. In 
this way the problem of the existence of an 

isometry from M may be reduced to one of the 
existence of a diffeomorphism from B preserv- 

ing absolute parallelism (as well as the order of 
the basis (w’, oi’,). 

According to the general theory of alhne 
connections, the Riemannian connection on M 
determines a Wartan connection uniquely 
with E” = I(E”)/O(n) as tfiber, which is called 

the Euclidean connection. As a consequence, 
every tangent vector space T,(M) is regarded 
as a Euclidean space E”,, and for a given curve 

x: [a, b] + M of class D” and for t E [a, b] there 
exists an isometry Ix,,: E&--+E’& satisfying the 
following three conditions (we denote Ix,* by 

I,): (1) If x is a composite of two curves y and 
z, then I, = I,, . I,. (2) Differentiability: If x is of 
class C” at t,, then t-+1,,, is of class C” at t,. 
(3) I, depends on the orientation of x but not 
on the choice of its parameter. The develop- 
ment X of x is the curve in E:,,, defined by x(t) 

=1&x(t)), and we get [lx/l = IIxII. (1, is some- 
times called the development along x.) Utilizing 
the concept of development, the theory of 
curves in E” can be used to study curves on M 
(- 111 Differential Geometry of Curves and 

Surfaces). For example, if X is a segment, then 
x or x( [a, b]) is called the geodesic arc (- 80 
Connections L); the tFrenet formula is auto- 

matically formulated and proved. The rotation 
part I,” of I, (the composite of I, and the paral- 
lel displacement of E; translating I,(x(b)) to 
x(a)) is regarded as an isomorphism of the 
inner product space Txe,r to T&. I: is ex- 
tended to an isomorphism of the ttensor alge- 

bra y( Tx& to g( T,,,,), which is denoted by 
the same symbol I,” and called the parallel 
displacement or parallel translation along x. 

Given a tensor field K on M, we have V,.,,,K 
= [dI$(K(x(t)))/dtll=,. In particular, a neces- 

sary and sufficient condition for VK =0 is that 
I:(K(x(b)))= K(x(a)) for any x, in which case 

K is said to be parallel. 

C. Exponential Mapping (- 178 Geodesics) 

A curve x on M or the image of x is called a 

geodesic if any subarc x 1 [a, b] of x is a geo- 

desic arc. Let N(S) be the normal bundle of a 
submanifold S of M, that is, the differentiable 

vector bundle over S consisting of all normal 

vectors at all points of S. Then S is contained 
in N(S) as the set of zero vectors at all points 
of S. There exist a neighborhood U of S in 
N(S) and a mapping Exp,: U+M of class C” 
with the following property: There exists a 
geodesic arcx with the initial tangent vec- 
tor LE U, length [[XII = IlLll, and final point 
Exp,(L). Let U, be the largest U with this 
property. Then Exp,: Us+ M is determined 
uniquely by S. The mapping Exp, is called 
the exponential mapping on S. If the rank of 

the Jacobian matrix of Exp, is less than n at 

LE Us, then L or Exp,(L) is called the focal 
point of S on the geodesic s+ Exp,(sL) (0 <s, 
SL E IQ. If S is compact, then S has an open 
neighborhood V, in N(S) satisfying the follow- 

ing three conditions: (i) V, c Us; (ii) llLl[ = 
d(Exp,(L), S) for LE V’, where the right--hand 
member expresses the intimum of the distance 
between the point Exp,(L) and points of S; (iii) 
the restriction Exp, 1 V, is an embedding. The 
image Exp,( V,) is the tubular neighborhood of 
S. In the special case where S consists of only 

one point p, N({ p}) coincides with the tangent 
vector space T,(M), and the focal point of p is 
called the conjugate point of p, given as the 
zero point of the tJacobi field (- 178 Geo- 
desics, 279 Morse Theory). In this case, V, is 
denoted by V,. If Tp is identified with R” (or 
E”) by means of an orthonormal basis of T,, 
then (Exp,))’ defined on Exp,( V,) is a coordi- 
nate mapping, called the normal coordinate 
mapping. Furthermore, Exp,( VJ contains a 
neighborhood W, of p such that there exists a 

unique geodesic arcx joining any two points q 
and r of W, with llxll= d(q, r) and contained in 
W,. W, is called a convex neighborhood of p. 

D. Curvature 

The set of differential l-forms (w’, oi), by 
means of which absolute parallelism is given in 

the orthogonal frame bundle B of M, satisfies 
the tstructure equation dw’= - C,w,! A oj, 
dwj = - &‘w: A oj” + Qj, and (4) is called the 
curvature form of the Riemannian connection 

of M. This form is expressed by a tensor field 
R (- 80 Connections; 417 Tensor Calculus ) of 
type (1,3) on M, called the curvature tensor; if 
Rjkl are the components of R with respect to 
an orthonormal frame b E B of the tangent 
vector space T, of M, then K$ = (1/2)x R&ok A 
0’ at b. Let (X, Y) be an orthonormal basis of 
a 2-dimensional subspace P of Tp. Then the 

inner product K,(P) of X and R(X, Y) Y is 
determined by P independently of the choice 

of the basis (X, Y), where the i-component of 
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R(X, Y)Z with respect to the basis b of T, is 
given by C R&ZjXkY’. K,(P) is the +Gauss- 
ian curvature of the surface Exp,( V, n P) and 

is called the sectional curvature (or Riemannian 
curvature) of P. The curvature tensor R is 

uniquely determined by the function K,(P) 
of p and P. If dim M > 3 and if at every point p 
of M, K,(P) has a constant value M, indepen- 

dent of the choice of P, then M, is a constant 
independent of the choice of p (F. Schur). If 
K,,(P) is constant, then M is called a space of 
constant curvature. If VR = 0, then M is called 
a locally symmetric space (- 412 Symmetric 
Riemannian Spaces and Real Forms; 413 
Symmetric Spaces). In a local sense, Riemann- 

ian metrics of these spaces are uniquely deter- 
mined by the curvature tensor R up to a con- 
stant factor. If M is of constant curvature K, 
complete, and simply connected, then M is 
isometric to E”, the sphere (which is the uni- 

versal covering Riemannian manifold of a real 
ielliptic space), or a real thyperbolic space 
according as K is 0, positive, or negative. The 
compact spaces of positive constant curvature, 
that is, the Riemannian manifolds having the 

sphere as the universal covering Riemannian 
manifold, were completely classlied by J. A. 

Wolf [l]. A complete, simply connected, 
and locally symmetric space is a tsymmetric 
Riemannian space. The Ricci tensor (Rij) is 

defined by R,= --xkRbk. Let Q be the qua- 
dratic form on T, given by (R,). Then the 
value Q(L) for a unit vector LE T, is the mean 

of K,(P) for all sections P (2-dimensional 
subspaces of T,) containing L and is called the 
Ricci curvature (or mean curvature) of the 
direction L at p. The mean R of Q(L) for all 
the unit vectors L at p is called the scalar 
curvature at p (- 417 Tensor Calculus). Q(L) 
and R are expressed by Q(L) = Cig,,(R(Xi, L)L, 

Xi) and R = c,Q(X,), up to positive constant 
factors, in terms of an orthonormal basis (Xi) 
of T,. If the Ricci tensor of M is a scalar mul- 
tiple of the fundamental tensor, then M is 
called an Einstein space. (When dim M > 3, this 

scalar is constant.) If M is a +Kahler manifold 
and P is restricted to a complex plane (in- 
variant under the almost complex structure), 
then K(P) is called the holomorphic sectional 
curvature. A Klhler manifold M of constant 
holomorphic sectional curvature is locally 

isometric to a complex Euclidean space, ellip- 
tic space, or hyperbolic space. 

The properties of the sectional curvature 
and the Ricci curvature are closely related to 
the behavior of geodesics of Riemannian mani- 

folds, and these properties reflect those of the 
topological structures of the manifolds (- 178 

Geodesics). The compact simply connected 
homogeneous Riemannian manifolds of strict- 
ly positive sectional curvature have been 

classified [224]. Related to algebraic geome- 
try, as the solution of the Frankel conjecture, 
the following holds: If a compact Kahler mani- 
fold has strictly positive sectional curvature, 
then it is biholomorphic to the complex pro- 
jective space [S, 61 (- 232 Kahler Manifolds). 

Furthermore, curvature tensors are related to 
tcharacteristic classes. For example, we have 
the Gauss-Bonnet formula: If M is an even- 

dimensional compact and oriented Riemann- 
ian manifold, the integral of a,Kc,+o on M is 
equal to the tEuler-Poincare characteristic, 
where 

u, = n!/(2”n@(n/2)!), 

o is the volume element of M, and K,,, is 
defined as follows: For a positive even num- 
ber s, K,,, is a real-valued function of the s- 
dimensional subspaces P of the tangent vector 
spaces Tp of M, which is given by 

in terms of an orthonormal basis (Xi, , X,) of 
P, where b, = ( - l)s/2/(2si2 s!), C is summation 

over all pairs of s-tuples satisfying {ii, , i,}, 
{j,, , j,} c { 1,2, . . . , n}, E~,...~, is the sign of 
(ii, , i,), ( , ) is the inner product in T, with 
respect to gp, R, is the value of the tensor R 
at p, and R,(X,, Xj)Xk is as already defined 

at the beginning of this section. In particular, 

Kc,, = K. If K,,, of a compact and orientable 
M is constant for a certain s, then the kth 
tpontryagin class of M (with real coefficients) 
vanishes for all k > s/2. 

E. Holonomy Groups 

Let p be a fixed point of M, and let 0, be the 
set of all closed oriented curves of class D” 
with initial and final points p and with para- 

meters neglected. The set H = {Ix 1 xcn,,}, 
called the holonomy group of M, is a subgroup 
of I(T,) (T, is identified with E”) independent of 

the choice of p (- 80 Connections), and x*1, 
is a homomorphism from ap to H. The restric- 
tion Ho of this homomorphism to all closed 
curves homotopic to zero is called the re- 

stricted holonomy group. The rotation part h of 
H, called the homogeneous holonomy group, is 

a subgroup of the orthogonal group O(n) of 
T,. The rotation part h, of Ho, called the re- 
stricted homogeneous holonomy group, is a 

connected component of h and a tcompact Lie 

group. The tLie algebra of h, is spanned by 
{I,(R,,,,(X, Y))l x: [a, b]-M is of class D”, 
x(a)=p, and X, YE Tx(,,,j, where R,,,,(X, Y) is 
the endomorphism of the linear space TxcbJ 
defined in Section D. 
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If M = E”, then H = (e}, where e is the iden- 
tity element. If h = {e} (ha = {e}), then M is 
called flat (locally flat) (- 80 Connections E). 

Local flatness is equivalent to M being locally 
isometric to E”. If M is complete and H (re- 
garded as a transformation group of E”) has a 
fixed point, then M is isometric to E”. Any 
finite rotation group h is the homogeneous 

holonomy group of some locally flat and com- 
pact Riemannian manifold. 

With respect to the linear group h of T,, 
we get a unique decomposition T, = I$,, @ 
$, @ . @ I$, of mutually orthogonal sub- 
spaces, where I/;,,(dim I’&, > 0) consists of all 
h-invariant vectors and I$,, i= 1,. . . , r, are 

irreducible h-invariant subspaces. If h or h, is 
irreducible (reducible) on T,, then M is called 
irreducible (reducible). If M is complete and 
simply connected (hence h = h,), then M is the 
Riemannian product of closed submanifolds 

MC,,, cc=O, 1, . . . . r, satisfying I$, = T( M,,,). 
This decomposition M = l-J MC,, is determined 
uniquely by M and called the de Rbam de- 
composition of M [7]. In this case h is the 
direct product of closed subgroups h(,,, where 
every h(,, acts on I&,, /? # t( as the identity, 
and can be regarded as the homogeneous 
holonomy group of MC,,. If h, is irreducible 
and M is not locally symmetric, then h, acts 

ttransitively on the unit sphere of Tp. The 
classification of possible candidates for such 
h, has been made [8,9]. For example, if n 

is even and h, is the tunitary group U(n/2), 
then h acts transitively on the unit sphere. A 
necessary and sufficient condition for h to be 
contained in U(n/2) is that M have a tcom- 
plex structure and the structure of a Kahler 
manifold. 

The group h acts naturally on the ttensor 
algebra F(Tp) of Tp. If a tensor field A on M is 
parallel, then A, is invariant under h. Con- 

versely, if A, E y( T,) is invariant under h, there 
exists a unique parallel tensor field A satisfying 

A, = A,. The orthogonal frame bundle B is 
treducible to the h-bundle. 

F. Transformation Groups 

The group I(M) consisting of all isometries of 
M with the tcompact-open topology is a tLie 
transformation group. The isotropy subgroup 

at any point is compact. In particular, if M is 
compact, so is I(M). The differential dcp of 
cp~1(M) is a transformation of the orthogonal 
frame bundle B. If b, is a fixed point of B, then 

the mapping fi defined by cp+dq(b,,) embeds 
I(M) as a closed submanifold of B, and the 

differentiable structure of I(M) is thus deter- 
mined. If b is surjective, it follows from the 
structure equation that M is of constant curva- 

ture and equals E”, a real thyperbolic space, or 
a real telliptic space (or a sphere). A necessary 
and sufficient condition for the image of p to 
be a subbundle of B is that I(M) be transitive. 
If the image of fi contains the h-bundle, then 

M is a symmetric space. If M is compact and 
I(M) is transitive, then the image of /I is con- 

tained in the h-bundle (- 191 G-Structures). If 
I(M) is transitive on M, then M is complete 

and is the thomogeneous space of Z(M). Con- 
versely, a homogeneous space M = G/K of 
a Lie group G by a compact subgroup K has 
a Riemannian metric invariant under G. In 

general, an element of I(M) preserves quan- 
tities uniquely determined by the Riemannian 
metric g, such as the Riemannian connection, 
its curvature, the set of all geodesics, etc. Fur- 
thermore, any element of I(M) commutes with 
V and the tlaplace-Beltrami operator. If M is 

compact and oriented, then the connected 
component I,,(M) of I(M) preserves any thar- 
manic differential form. If M is complete and 
simply connected, then I,(M) is clearly decom- 

posed into a direct product by the de Rham 
decomposition of M. An element of the Lie 

algebra of I(M) is regarded as a vector field X 
on M, called the infinitesimal motion, which 

satisfies the equation L,g = 0; that is, Vjti + 
Vi tj = 0, where L, denotes tLie derivation 
and the & are tcovariant components of X 
with respect to a natural frame (a/ax,), i = 
1, . . , n (- 417 Tensor Calculus). This equa- 

tion is called Killing’s differential equation, 
and a solution X of this equation is called a 
Killing vector field. The set of all Killing vec- 
tor fields is a Lie algebra of finite dimension 
( < dim B). If M is complete, then this Lie alge- 
bra coincides with that of I(M). If M is com- 
pact and the Ricci tensor is negative definite, 
then I(M) is discrete. If, furthermore, the sec- 
tional curvature is nonpositive, then an iso- 

metry of M homotopic to the identity trans- 
formation is the identity transformation itself. 

It is known that dim I(M) < n(n + 1)/2 if 
dim M = n, and the maximum dimension is 

attained only when M is a space of constant 
curvature. For Riemannian manifolds with 
large I(M), extensive work on the structures of 
M and I(M) has been done by I. P. Egorov, S. 
Ishihara, N. H. Kuiper, L. N. Mann, Y. Muto, 
T. Nagano, M. Obata, H. Wakakuwa, K. 
Yano, and others [lo, 11). 

The fixed point set of a family of isometries 
has interesting differential geometric properties 
[lo]. For example, let G be any subset of I(M) 

and F the set of points of M which are left 
fixed by all the elements of G. Then each con- 

nected component of F is a closed ttotally 
geodesic submanifold of M. If M is compact 
and f is an isometry of M, then A, = x(F), 
where Af denotes the TLefschetz number and 
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X(F) the tEuler characteristic of the fixed point 
set F off: As for the existence of fixed points 

of an isometry, the following are known: Let f 
be an isometry of a compact, orientable Rie- 
mannian manifold M with positive sectional 

curvature. If dim M is even and f is orientation 
preserving, or if dim M is odd and f is orienta- 
tion reversing, then f has a fixed point. In the 

case of nonpositive curvature, the following is 
basic: Every compact group of isometries of a 
.complete, simply connected Riemannian mani- 
fold with nonpositive sectional curvature has a 
fixed point (E. Cartan). If a compact, orien- 
table Riemannian manifold admits a lixed- 
point-free l-parameter group of isometries, 

then its tpontryagin numbers vanish. 
On a Riemannian manifold M, a transform- 

ation of M which preserves the Riemannian 

connection, or equivalently which commutes 
with covariant differentiation V is called an 

affine transformation. Let A(M) denote the 
group of all affme transformations of M. A 

transformation preserving the set of all geo- 
desics is called a projective transformation. Let 
P(M) denote the group of all projective trans- 
formations of M. A transformation preserv- 

ing the angle between tangent vectors is called 
a conformal transformation. Let C(M) de- 

note the group of ail conformal transforma- 
tions. They are Lie transformation groups 
with respect to suitable topologies. Clearly, 
I(M)cA(M)cP(M), I(M)cC(M)(- 191 G- 
Structures). 

A,(M), the connected component of A(M), is 
decomposed into a direct product according to 

the de Rham decomposition of M when M is 
complete and simply connected (J. Hano). If 
M is complete and irreducible, then A(M) = 
I(M) except when M is a l-dimensional Euclid- 
ean space. If M is complete and its restricted 

homogeneous holonomy group h, leaves no 
nonzero vectors, then A,(M)=I,(M). If M is 
compact, then A,(M) = I,(M) always. 

If M is complete and has a parallel Ricci 
tensor, then the connected component P,,(M) 

= A,(M), unless M is a space of positive con- 
stant sectional curvature (n > 2) (Nagano, N. 

Tanaka, Y. Tashiro). If M is compact, simply 
connected, and has constant scalar curvature, 
then P,(M) = I,(M), unless M is a sphere (n > 2) 
(K. Yamauchi). 

Similarly to the case of P(M), it is known 
that if M is complete and has a parallel Ricci 
tensor, then the connected component C,(M) 
= I,(M), unless M is a sphere (n > 2) (Nagano). 
A conformal transformation remains con- 
formal if the Riemannian metric g is changed 
conformally, namely, to e21g, f being any 

smooth function on M. A subset of C(M,g) is 
called essential if it cannot be reduced to a 
subset of I(M, 3) for any metric g conformal to 

g. When M is compact, C(M) or C,(M) is 
essential if and only if it is not compact. If 

C,,(M) is essential, then M is conformally 
diffeomorphic to a sphere or a Euclidean space 

(n>2) [12-151. When M is compact and has 
constant scalar curvature and C,(M) # I,(M), 
sufficient conditions for M to be isometric to a 
sphere have been obtained by S. I. Goldberg 
and S. Kobayashi, C. C. Hsiung, S. Ishihara, A. 
Lichnerowicz, Obata, S. Tanno, Tashiro, K. 
Yano, and others. For example, if C,(M) is 
essential, then M is a sphere [14]. In general, 
however, there are compact Riemannian mani- 

folds with constant scalar curvature for which 
C,(M)#I,(M) (N. Ejiri). 

G. Spheres as Riemannian Manifolds 

A Euclidean n-sphere S” (n > 2) has the prop- 
erties of a Riemannian manifold. It is a space 
of positive constant sectional curvature l/r2 
(Y = radius) with respect to the natural Riemann- 
ian metric as a hypersurface of the Euclidean 
(n + 1)-space En+‘. A sphere is characterized by 

the existence of solutions of certain differential 
equations on a Riemannian manifold. On a 
unit sphere S” in E”+l, the eigenvalues of the 

tlaplace-Beltrami operator A on smooth 
functionsaregivenbyO<I,<...<&<...,/?, 
= k(n + k - 1). It is known that eigenfunctions 
f corresponding to L,, Af= &f, are the restric- 
tions to S” of harmonic homogeneous poly- 
nomial functions F of degree k on En+‘. On a 

compact Riemannian manifold M, if the Ricci 
curvature of M is not less than that of S”, then 
the first eigenvalue 1, of A on M satisfies 1, > 
Ai = n [16]. Conversely, under the same as- 
sumption on the Ricci curvature, if xi = n, 

then M is a sphere (Obata). On the other 
hand, if g is the standard metric on S”, then 
Af = nfis equivalent to the system of differen- 
tial equations 

vjvif+fgji= 0. (E,) 

A complete Riemannian manifold M (n > 2) 
admits a nontrivial solution of (E,) if and only 

if M is a sphere (Obata, Tashiro). In general, 
the restriction f to S” of a harmonic homogene- 
ous polynomial of degree k satisfies Af= 
k(n + k - 1)f as well as a certain system (Ek) 
of differential equations of degree k + 1 involv- 
ing the Riemannian metric. For example, 

If a complete Riemannian manifold M admits 
a nontrivial solution of (Ek) for some integer 

k b 2, then M is locally isometric to a sphere 
(Obata, Tanno, S. Gallot [17]). The gradient of 
a solution of (E,) is an infinitesimal conformal 
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transformation and that of (E,) is an inlini- 

tesimal projective transformation. 
As the Kahler or quaternion Kahler version 

of (E2), there is a system of differential equa- 
tions characterizing the complex projective 
space or the quaternion projective space as a 
Klhler manifold (Obata, Tanno, D. E. Blair, 
Y. Maeda). 

On a sphere, a Riemannian metric which is 
conformal to the standard metric and has the 
same scalar curvature as the standard one is 

always standard, namely, it has a positive 
constant sectional curvature [ 143. 

H. Scalar Curvature 

On a 2-dimensional Riemannian manifold M, 
the sectional curvature, the Ricci curvature, 

and the scalar curvature all coincide with the 
tGaussian curvature, which is a function on 

M. If M is compact, by the tGauss-Bonnet 
theorem the Gaussian curvature K of M must 

satisfy the following sign condition in terms of 
the tEuler characteristic x(M): 
if x(M) > 0, then K is positive somewhere; 
if x(M) = 0, then K changes sign unless it is 
identically zero; 
if x(M) < 0, then K is negative somewhere. 
This sign condition is also sufficient for a given 
function K to be the Gaussian curvature of 

some metric on M. More precisely, starting 
with a Riemannian metric with constant Gaus- 

sian curvature, one can say that a smooth 
function K is the Gaussian curvature of some 
metric conformally equivalent to the original 

metric if and only if K satisfies the foregoing 
sign condition [ 183. 

H. Yamabe [ 191 announced that on every 
compact Riemannian manifold (M, g) of di- 
mension n > 3, there exists a strictly positive 
function u such that the Riemannian metric 
B = uq(n-2)g has constant scalar curvature. N. 

S. Trudinger, however, pointed out that his 
original proof contains a gap in some cases. 
The problem reduces to the following non- 
linear partial differential equation on a com- 

pact manifold M: 

&p+m-2) =4n-l*u+Ru, 
n-2 

where R is the scalar curvature of g and R a 

constant which should be the scalar curva- 
ture of ~=u4’(“-‘)g (- 183 Global Analysis). 
Nevertheless, Yamabe’s original proof can be 
pushed to cover a large class of metrics with 

jM RdM < 0. Furthermore, it has since been 

solved for a wider class: namely, if M is not 
conformally flat and n > 6, or if it is conform- 
ally flat and its fundamental group is finite, 

then the problem has been solved affirmatively 

c201. 
On the other hand, any smooth function on 

a compact manifold M of dimension n > 3 that 
is negative somewhere is the scalar curvature 
of some metric on M. In particular, on a com- 
pact manifold (n > 3) there always exists a 
Riemannian metric with constant negative 
scalar curvature [18]. Any smooth function 

can be the scalar curvature if and only if M 
admits a metric of constant positive scalar 
curvature. The foregoing results show that 

there is no topological obstruction to the 
existence of metrics with negative scalar curva- 
ture of a compact manifold of dimension n >, 3. 

For positive scalar curvature, there is a 
topological obstruction. A compact tspin 
structure (spin manifold) having nonvanishing 
ta-genus cannot carry a Riemannian metric of 
positive scalar curvature. The existence of such 
a manifold has been shown. If a compact, 
simply connected manifold M of dimension 
n > 5 is not a spin manifold, then there exists a 

Riemannian metric of positive scalar curva- 
ture. Furthermore, if M is a spin manifold and 
spin tcobordant to M’ with positive scalar 
curvature, then M carries a Riemannian metric 
of positive scalar curvature [22]. A torus T” 

cannot carry a metric of positive scalar curva- 
ture. In fact, any metric of nonnegative scalar 
curvature on T” must be flat [22]. 

Let K, and R, denote the sectional curva- 
ture and the scalar curvature, respectively, of a 
Riemannian metric g. Then the following are 

known for a compact manifold M of dimen- 
sion > 3: If M carries a metric g with K, < 
0, then it carries no metric with R > 0. If M 
carries a metric g with K, ~0, then it carries 
no metric with R > 0. If M carries metrics gi, 
g2 with Kg1 < 0 and Rgl 2 0, then both metrics 

are flat [22]. 
If the assignment of the scalar curvature to a 

Riemannian metric is viewed as a mapping of 
a space of Riemannian metrics into a space of 

functions on a manifold M, then locally it is 
almost always surjective when M is compact 

(A. E. Fischer and J. E. Marsden, 0. Koba- 
yashi, J. Lafontaine). 

I. Ricci Curvature and Einstein Metrics 

In this paragraph the manifolds under con- 
sideration are assumed to be of dimension 

n 2 3. The Ricci tensor (Rij) is a symmetric 
tensor field of type (0,2) on a Riemannian 
manifold. The problem of finding a Riemann- 
ian metric g which realizes a given Ricci 

tensor reduces to the one of solving a system 
of nonlinear second-order partial differential 

equations for g. The Bianchi identity (- 417 



364 Ref. 
Riemannian Manifolds 

1354 

Tensor Calculus) 

must be satisfied. There is a symmetric (0,2)- 
tensor on R” which cannot be the Ricci tensor 
for any Riemannian metric in a neighborhood 
of OER”. However, if a C” (or Cw) symmetric 
tensor field (Rij) of type (0,2) is invertible at a 

point p, then in a neighborhood of p there 
exists a C”’ (or C”‘) Riemannian metric g such 
that (Rij) is the Ricci tensor of g [24]. 

The positivity of the Ricci curvature on a 
Riemannian manifold puts rather strong re- 
strictions on the topology of the manifold 
(- 178 Geodesics). However, nonnegative 
Ricci curvature and positive Ricci curvature 
are not too far from each other. If, on a com- 
plete Riemannian manifold M with nonnega- 
tive Ricci curvature, there is a point at which 
the Ricci curvature is positive, then there 
exists a complete metric on M with positive 
Ricci curvature [25&271. 

If a Riemannian manifold (M, y) is an Ein- 
stein space, then g is called an Einstein metric 
on the manifold M. Let uy denote the volume 
element determined by g. When M is compact, 
.1 denotes the space of Riemannian metrics 

on M with total volume 1. The integral of the 
scalar curvature y(g) = sM R,~I, is a functional 
on .X. The critical points of $? are Einstein 
metrics (D. Hilbert). Let &Z, ( c A) denote the 
space of metrics with constant scalar curva- 
ture. Then if ?? is restricted to &‘, , then the 

tnullity and +coindex at the critical point are 
finite [28,29]. 

An Einstein metric is always real analytic in 
some coordinate system. In particular, if two 
simply connected Einstein spaces have neigh- 
borhoods on which metrics are isometric, then 
they are isometric [30]. Though S” with stan- 
dard Riemannian metric is a typical example 
of an Einstein space, S4h+3 (k > 1) carries an 

Einstein metric that is not standard [31]. 
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365 (VII.1 3) 
Riemannian Submanifolds 

A. Introduction 

If an timmersion (or an tembedding) f of a 
tRiemannian manifold (M, g) into a Riemann- 
ian manifold (fi, g) satisfies the condition f*g 

= g, then f is called an isometric immersion 
(or embedding) and M is called a Riemannian 
submanifold of ii?f. In this article, f(M) will be 
identified with M except where there is danger 
of confusion. Suppose dim M = n and dim fi = 
n +p. Then the tbundle F(M) of orthonormal 
tangent frames of M, the bundle F,(M) of 
orthonormal normal frames of M, and their 

twhitney sum F(M) @ F,(M) are tprincipal 
fiber bundles over M with tstructure groups 
O(n), O(p), and O(n) x O(p), respectively. These 

are subbundles of the restriction to M of the 
bundle F(fi) of orthonormal frames of fi. The 
vector bundles associated with F(M), F,(M), 
and F(M) @ F,(M) are, respectively, the ttan- 

gent bundle T(M), the tnormal bundle v(M), 
and their Whitney sum T(M) @ v(M). 

B. General Results for Immersibility 

An n-dimensional real analytic Riemannian 
manifold can be locally isometrically embed- 

ded into any real analytic Riemannian mani- 
fold of dimension n(n + 1)/2 (M. Janet (1926), 
E. Cartan (1927)). The generalization to the 
C” case is an open question even when the 

ambient space is Euclidean. 
An n-dimensional compact C’ Riemannian 

manifold (3 < r < co) can be isometrically em- 
bedded into an (n(3n + 11)/2)-dimensional 
Euclidean space (J. F. Nash (1956)). An n- 

dimensional noncompact c’ Riemannian 
manifold (3 < r < co) can be isometrically em- 
bedded into a 2(2n + 1)(3n + 7)-dimensional 
Euclidean space (Nash (1956), R. E. Greene 

(1970)). 
Let M be an n-dimensional Riemannian 

manifold with tsectional curvature K, and iii 

an (n + p)-dimensional Riemannian manifold 
with sectional curvature Ka. Then M cannot 

be isometrically immersed into fi in the fol- 
lowing cases: 
(1) p<n-2 and Knr<Ka (T. Otsuki (1954)); 

(2) P < n - 1, K, < KG < 0, M is compact, 
and fi is complete and simply connected 
(C. Tompkins (1939), S. S. Chern and N. H. 

Kuiper (1952), B. O’Neill(l960)); 
(3) p < n - 1, K, < 0, KG is constant ( < 0), M is 
compact, and fi is complete and simply con- 
nected [2]. 

C. Fundamental Equations 

Let f: (M, g)+(fi, Q) be an isometric immer- 
sion. Let V and V denote the tcovariant differ- 
entiations with respect to the tRiemannian 

connections of M and fi, respectively. For 
vector fields X and Y on M, the tangential 
component of vx Y is equal to Vx Y. Put 

0(X, Y)=VxY-V,Y. (1) 

Then c is a v(M)-valued symmetric (0,2) tensor 
field on M, which is called the second funda- 
mental form of M (or off). For a normal 
vector 5 at XE M, put g(A,X, Y)= Q(cr(X, Y), 5). 
Then A, defines a symmetric linear transfor- 
mation on T,(M), which is called the second 

fundamental form in the direction of 5. The 
eigenvalues of A, are called the principal curva- 

tures in the direction of 5. The connection on 
v(M) induced from the Riemannian connec- 
tion of fi is called the normal connection of 
M (or off). Let V’ denote the covariant differ- 
entiation with respect to the normal con- 
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nection. For a tangent vector field X and a 
normal vector field < on M, the tangential 
(resp. normal) component of vxt is equal to 
-A:X (resp. V,‘<), that is to say, the relation 

vx,I;= -A<X+V;< (2) 

holds. (1) is called the Gauss formula, and (2) is 

called the Weingarten formula. 
Let R, i?, and R’ be the icurvature tensors 

of V, V, and V’, respectively. Then the tinte- 
grability condition for (1) and (2) implies 

d(X. Y)Z= R(X, Y)Z+ Aoo,,, Y- Aoo,,,X 

+(v~~)(y,z)-(v;~)(x,z) (3) 

for vector fields X, Y, Z tangent to M, where 
V’ denotes covariant differentiation with re- 

spect to the connection in T(M) @ v(M). (3) is 
called the equation of Gauss and Codazzi. 
More precisely, the tangential component of 

(3) is given by the equation of Gauss and the 
normal component of (3) is given by the equa- 
tion of Codazzi. Similarly, for vector fields t 
and q normal to M, the relation 

-dCA<>A,lX> Y) (4) 

holds, which is called the equation of Ricci. 
Formulas (l)-(4) are the fundamental equa- 
tions for the isometric immersion ,f: M+fi. 

As a particular case, suppose fi is a ispace 
form of constant curvature c. Then the equa- 

tions of Gauss, Codazzi, and Ricci reduce 
respectively to 

R(X, Y)Z=CMY,W--Y(X,Z) Y)+A,(,,,,X 

A Y O(X.Z) ) (3,), 

(V;,~)(Y,Z)-(V;~)(X,Z)=o, (3,)” 

Q(R%‘, Y)~,~)=Y(CA<>~JX, Y). (4,) 

Conversely, let (M, g) be an n-dimensional 
simply connected Riemannian manifold, and 

suppose there is given a p-dimensional +Rie- 
mannian vector bundle v(M) over M with 
curvature tensor R’ and a v(M)-valued sym- 
metric (0,2) tensor field g on M. For a icross 
section 5 of v(M), define A, by q(A,X, Y)= 
(a(X, Y), 0, where ( , ) is the fiber metric 

of v(M). If they satisfy (3,),, (3,),, and (4,) then 
A4 can be immersed isometrically into an (n + 
p)-dimensional complete and simply connected 
space form M”+“(c) of curvature c in such a 
way that v(M) is the normal bundle and 0 is 

the second fundamental form. Moreover, such 
an immersion is unique up to an tisometry of 
M”+“(c). 

Let (e,), sACn+p be a local cross section of 
F(R) such that its restriction to M gives a 

local cross section of F(M) @ F,(M), and let 
(w”) be its dual. Then ,f*o’= 0 for n + 1 <a < 

n+p. Let (G% QA,BQn+p and (&% QA,BCn+p 
be the iconnection form and the tcurva- 
ture form of fi with respect to (eJ, and put 
wi=,f*Gg. Then (wj), 4i,j,(n is the con- 
nection form of M with respect to (ei)isisn. 
(~9)~ Qign<aGn+p gives the second fundamental 
form, thatis, 

a(q, ej) =C wT(ej)e,. (1’) 

Put wr = C !I@‘. Then (h$) is the matrix repre- 
senting the symmetric linear transformation 
A, with respect to (e,), that is, 

A,%ei = 1 htej. (2’) 

Moreover, (u$),+, sa,pgn+p is the connec- 
tion form of the normal connection with re- 

spect to (eJn+lgoGn+p. Let C@jj,, <i,jgn and 

(@;),+I $n,p<n+p be the curvature forms of (w;) 

and (c$), respectively. Then the equations of 
Gauss, Codazzi, and Ricci are given respec- 
tively by 

D. Basic Notions 

Let M be a Riemannian submanifold of iii. A 

point x E M is called a geodesic point if cr = 0 at 
x. If every point of M is a geodesic point, then 
M is called a totally geodesic submanifold of 
fi. M is a totally geodesic submanifold of fi if 
and only if every geodesic of M is a geodesic of 
IGJ. 

A mapping h: M+v(Mj defined by x* 

ic:=, a(e,, ei) is independent of the choice of 

an orthonormal basis (ei). h is called the mean 
curvature vector and 11 h 11 is called the mean 
curvature. M is called a minimal submanifold 
of fi if b = 0 (- 275 Minimal Submanifolds). 

A point XE M is called an umbilical point if 
rr = g 0 h at x. x E M is an umbilical point if 

and only if A, is proportional to the identity 
transformation for all <E v,(M). If every point 
of M is an umbilical point, then M is called a 
totally umbilical submanifold of fi. 

A point XE M is called an isotropic point if 
Ila(X,X)ii/llXl12 does not depend on XE 
T,(M). If every point of M is an isotropic 

point, then M is called an isotropic submani- 
fold of a. It is clear that an umbilical point is 
an isotropic point. 

A4 = dim nSEY,cM, ker A, is called the index 
of relative nullity at XE M. 
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E. Rigidity 

An isometric immersion f: M+fi is said to be 
rigid if it is unique up to an isometry of !i?, 
that is, if f’:M-+fi is another isometric im- 
mersion, then there exists an isometry rp of iii 
such that f’ = cp of: If f: M-+ti is rigid, then 
every isometry of M can be extended to an 
isometry of A. 

An isometric immersion f: M-+M”+l(c) of 
an n-dimensional Riemannian manifold into 

an (n + 1)-dimensional complete and simply 
connected space form is rigid in each of the 
following cases: 

(1) n = 2, c = 0, and M is compact and of posi- 
tive curvature (S. Cohn-Vossen (1929)). 
(2) The index of relative nullity is < n - 3 at 
each point (R. Beez (1876); - [S]). 
(3) n 2 5, c > 0, M is complete, and the index of 
relative nullity is < n - 2 at each point (D. 
Ferus (1970)). 
(4) n > 4, c # 0, and the tscalar curvature of M 
is constant (# n(n - 1)~) (C. Harle (1971)). 

A generalization of (2) for the case of higher 
codimension was obtained by C. Allendoerfer’ 
(1939). Various rigidity conditions have been 

studied by S. Dolbeault-Lemoine, R. Sack- 
steder, E. Kaneda and N. Tanaka, and others. 

F. Totally Geodesic and Totally Umbilical 
Submanifolds 

A totally geodesic submanifold of a space form 
is also a space form of the same curvature. 

Totally geodesic submanifolds of compact 
tsymmetric spaces of rank 1 were completely 
classified by J. A. Wolf (1963), and totally 

geodesic submanifolds of symmetric spaces of 
rank 2 2 were studied by Wolf and B. Y. Chen 
and T. Nagano [4]. 

Let f: M +M”‘p(C) be a totally umbilical 
immersion of an n-dimensional Riemannian 
manifold M into an (n+p)-dimensional space 
form. Then M is a space form M”(c) with c > E, 

and f(M) is contained in a certain (n + l)- 
dimensional totally geodesic submanifold 

M”‘l(?) of M”+P(i?). If E> 0, then f(M) is local- 
ly a hypersphere; if E=O, then f(M) is locally 
a hyperplane or a hypersphere; if E < 0, then 

,f(M) is locally a geodesic sphere, a horo- 
sphere, or a parallel hypersurface of a totally 
geodesic hypersurface [2]. 

G. Minimal Submanifolds 

For general properties of minimal submani- 
folds - 275 Minimal Submanifolds. 

There is no compact minimal submanifold 
in a simply connected Riemannian manifold 

with nonpositive sectional curvature (O’Neill 

(1960)). On the contrary, a sphere has plenty 
of compact minimal submanifolds. 

For each positive integer s, an n-dimensional 

sphere of curvature 
n 

s(s+n-1) 
can be minimal- 

ly immersed into a (2s + n - l)(“,~n~~~! - l}- 

dimensional unit sphere and the immeision ’ 
is rigid if n = 2 or s < 3 (E. Calabi (1967), M. 
do Carmo and N. Wallach (1971)). 

Among all n-dimensional compact minimal 
submanifolds of an (n + p)-dimensional unit 

sphere, the totally geodesic submanifold is 
isolated in the sense that it is characterized by 

each of the following conditions: 

n 
(1) sectional curvature > __ 

2(n + 1) 
(T. Itoh 

WW), 
(2) Ricci curvature > n - 2 (N. Ejiri (1979)), 

(3) scalar curvature > n(n - 1) -n 
2-l/P 

(J. 

Simons (1968)). 

H. Submanifolds of Constant Mean Curvature 

A manifold of constant mean curvature is a 

solution to a variational problem. In partic- 
ular, with respect to any volume-preserving 

variation of a domain D in a Euclidean space, 
the mean curvature of M = aD is constant if 
and only if the volume of M is critical. 

The interesting question “If the mean curva- 
ture of an isometric immersion-f: M-M”+‘(c) 
of an n-dimensional compact Riemannian 
manifold M into an (n + l)-dimensional space 

form M”+‘(c) is constant, is M a sphere?” has 
not yet been completely solved, where M”+l(c) 
denotes a Euclidean space, a hyperbolic space, 

or an open hemisphere according as c = 0, < 0, 
or > 0. The answer is affirmative in the follow- 
ing cases: (1) dim M = 2, and the tgenus of M is 
zero (H. Hopf (1951), Chern (1955)). (2) f is an 
embedding (A. D. Alexandrov (1958); - [S]). 

These results remain true even if the as- 
sumption “the mean curvature is constant” is 
replaced by the weaker condition “the prin- 
cipal curvatures k, > . . > k, satisfy a relation 

dk 1, . . . , k,) = 0 such that &p/dki > 0.” 
Unlike an open hemisphere, a sphere S”+’ 

admits many compact hypersurfaces of con- 
stant mean curvaturej among which totally 
umbilical hypersurfaces and the product of 
two spheres are the only ones with nonnega- 
tive sectional curvature (B. Smyth and K. 
Nomizu (1969)). 

A nonnegatively or nonpositively curved 
complete surface of nonzero constant mean 

curvature in a 3-dimensional space form M3(c) 
is either a sphere or a tclifford torus if c > 

0 and is either a sphere or a right circular 
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cylinder if c < 0 (T. Klotz and R. Osserman 
(196661967) D. Hoffman (1973)). 

I. Isoparametric Hypersurfaces 

A hypersurface A4 of fi is said to be isopara- 
metric if M is locally defined as the tlevel set 

of a function f on (an open set of) fi with 
property 

dfr\dlldfl12=0 and dfr\d(Q”)=O, 

A hypersurface A4 of a complete and simply 

connected space form A4”+‘(c) is isoparametric 

if and only if M has locally constant principal 
curvatures (Cartan). If c GO, A4 has at most 
two distinct principal curvatures (Cartan). If 

c > 0, the number of distinct principal cur- 
vatures of M is 1,2, 3,4, or 6 (H. Miinzner 
(1980)). If c = 0, then M is locally Sk x E”mk, 
and if c < 0, then M is locally E” or Sk x Hnmk 
(Cartan). Isoparametric hypersurfaces of S”+’ 
having at most three distinct principal curva- 

tures were completely classified by Cartan. R. 
Takagi, T. Takahashi, and H. Ozeki and M. 
Takeuchi obtained several results for isopara- 

metric hypersurfaces of Sn+i with four or six 

distinct principal curvatures [7]. 
If a subgroup of the isometry group of 

M”+l(c) acts transitively on M, then M is 
isoparametric. The converse is true if c < 0, or 

if c > 0 and M has at most three distinct prin- 
cipal curvatures (Cartan), but not true in gen- 
eral (Ozeki and Takeuchi [7]). 

J. Isometric Immersions between Space Forms 

Let f: M”(c)+M”+“(?) be an isometric immer- 
sion of an n-dimensional space form into an 
(n + p)-dimensional space form. 
(1) If n=2, p= 1, c>O, c>F, M’(C) is complete, 
and M3(c?) is complete and simply connected, 
then ,f is totally umbilical (H. Liebmann 
(1901); - [2]). 

(2) If II = 2, p = 1, c < 0, c < ?, M2(c) is complete, 
and M3(?) is complete and simply connected, 
then .f does not exist (D. Hilbert (1901); - 

cm 
(3) If n=2, p= 1, c=O<?, M2(0) is complete, 

and M3(n is complete and simply connected, 

then there exist infinitely many f (L. Bianchi 
(1896); - 121). 
(4) If n = 2, p = 1, c = 0 > ?, M’(0) is complete, 
and M3(t) is complete and simply connected, 
then f(M2(0)) is either a horosphere or a set of 
points at a fixed distance from a geodesic (J. 
Volkovand S. Vladimirova, S. Sasaki; - [Z]). 

(5) If n > 3, p = 1, and c > ?, then ,f is totally 

umbilical. 
(6) If p = 1, c = ?= 0, M”(O), is complete, and 
M”+l(O) is complete and simply connected, 

then f is cylindrical (A. Pogorelov (1956), P. 

Hartman and L. Nirenberg (1959), and others). 
(7) Ifpdn-1, c=F>O, and both M”(c)and 

M”+P(?) are complete, then f is totally geodesic 
(D. Ferus (1975)). 

(8) If p<n- 1, ?>c>O, M”(c) is complete, and 
M”+P(F) is complete and simply connected, 

then f does not exist (J. Moore (1972)). 

K. Homogeneous Hypersurfaces 

Let M be an n-dimensional thomogeneous 
Riemannian manifold which is isometrically 

immersed into an (n + 1)-dimensional complete 

and simply connected space form M”+’ (c). 
(1) If c= 0, then M is isometric to Sk x E’mk (S. 
Kobayashi (1958), Nagano (1960) Takahashi 

C91). 
(2) If c > 0, then M is isometric to EZ or else is 
given as an orbit of a subgroup of the isometry 
group of M”+‘(c) (W. Y. Hsiang, H. B. Lawson, 

Takagi; - [7]). 
(3) If c ~0, then M is isometric to E”, Sk x H’-k, 
or a 3-dimensional group manifold 

with the metric ds2 =em2rdx2 +e2’dyZ +dt2 
(Takahashi (1971)). Each of the hypersurfaces 
above except E2 in (2) and B in (3) is given as 
an orbit of a certain subgroup of the isometry 
group of M”“(c). 

L. KIhler Submanifolds 

A tcomplex submanifold of a +Ktihle’r manifold 
is a Kahler manifold with respect to the in- 
duced Riemannian metric. A complex analytic 
and isometric immersion of a Kahler manifold 
(M, J, g) into a Kahler manifold (A, 1, y”) is 
called a Kiibler immersion, and M is called a 
Kgihler submanifold of iii. A Kahler submani- 

fold is a minimal submanifold. A compact 
KChler submanifold M of a Kahler manifold 
@ can never be homologous to 0, that is, there 
exists no submanifold M’ of fi such that M = 
8M’. If [M] E H.+(Ii?, Z) denotes the +homology 

class represented by a Kahler submanifold M 
of A, then vol(M)<vol(M’) holds for any 

submanifold M’E [M] with equality if and 
only if M’ is a Kahler submanifold (W. Wir- 
tinger (1936)). 

A Kahler manifold of constant tholomor- 
phic sectional curvature is called a complex 
space form. An n-dimensional complete and 
simply connected complex space form is either 

P,(C), Cn, or D,. Every Kghler submanifold of 
a complex space form is rigid (Calabi [ 10)). 

KChler immersions of complex space forms 
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into complex space forms were completely 
determined by Calabi [lo] and by H. Naka- 

gawa and K. Ogiue (1976). 
C” (resp. 0.) is the only THermitian sym- 

metric space that can be immersed in Cm (resp. 
D,,J as a Klhler submanifold (Nakagawa and 
Takagi [ 1 I]), and KHhler immersions of Her- 
mitian symmetric spaces into P,(C) were 
precisely studied by Nakagawa, Y. Sakane, 

Takagi, Takeuchi, and others. More generally, 
Kghler immersions of homogeneous Klhler 
manifolds into P,,,(C) were determined by 

Takeuchi (1978). 

Q~={[zil~P~+~(C)ICzf=O} inP,+,(C)is 
the only Einstein-Kghler hypersurface of a 
complex space form that is not totally geodesic 

(B. Smyth (1967), S. S. Chern (1967)). The 
result remains true even if “Einstein” is re- 

placed by “parallel Ricci tensor” (Takahashi 
(1967)). Besides linear subspaces, Q” is the only 
Einstein-KHhler submanifold of P,,,(C) that is a 

complete intersection (J. Hano (1975)). 
Integral theorems and pinching problems 

with respect to various curvatures for com- 
pact KBhler submanifolds of P,,,(C) have been 
studied by K. Ogiue, S. Tanno (1973), S. T. 
Yau (1975), and others [ 121. For example, if 
the holomorphic sectional curvature of P.+,(C) 

is 1, then each of the following is sufficient for 
an n-dimensional compact Klhler submani- 
fold to be totally geodesic: 
(1) holomorphic sectional curvature > l/2 (A. 
Ros (1985)), 

(2) sectional curvature > l/8 (A. Ros and L. 
Verstraelen (1984)), 
(3) Ricci curvature >n/2 [12], 

(4) embedded and scalar curvature > n* (J. H. 
Cheng (198 1)). 

The index of relative nullity p(x) of an n- 

dimensional complete KHhler submanifold M 

of P,,,(C) satisfies Min,,,p(x)=O or 2n (K. Abe 
(1973)). 

M. Totally Real Submanifolds 

An isometric immersion of a Riemannian 
manifold (M, g) into a KBhler manifold 
(a, J,g) satisfying JT,(M) c v,.(M) at each 
point x E M is called a totally real immersion, 
and M is called a totally real submanifold of 
iii. A totally geodesic submanifold P,(R) in 
P,(C), S’ x S’ in P2(C) and an immersion P.(C) 

+P n(n+Z)(C) defined by [zi]+[zizj] give typical 

examples of totally real submanifolds. 

N. Submanifolds with Planar Geodesics 

A surface in E3 whose geodesics are all plane 
curves is (a part of) a plane or sphere. More 

generally, let f: M + M”(c) be an isometric 
immersion of M into a complete and simply 
connected space form M”(c). If the image 
of each geodesic of M is contained in a 2- 

dimensional totally geodesic submanifold of 
M”(c), then f is either a totally geodesic im- 
mersion, a totally umbilical immersion or a 
minimal immersion of a compact symmetric 
space of rank 1 by harmonic functions of de- 

gree 2; the last case occurs only when c > 0 
(S. L. Hong (1973), J. Little (1976), K. Saka- 
mot0 [14]). 

A KBhler submanifold of a complete and 

simply connected complex space form with 
the same property as above is either a totally 
geodesic submanifold or a Veronese sub- 
manifold (a KHhler immersion of P.(C) into 
P ntn+3j,2(C)) W. Nomizu W’W. 

Submanifolds with the above property are 

closely related to isotropic submanifolds with 
V’o = 0. Submanifolds with V’a = 0 in sym- 

metric spaces have been studied by Ferus, H. 

Naito, Takeuchi, K. Tsukada, and others. 

0. Total Curvature 

Let J’: M + E” be an isometric immersion of an 
n-dimensional compact Riemannian manifold 
M into a Euclidean space. Let vi(M) be the 
unit normal bundle, S”-’ the unit sphere cen- 

tered at 0 E Em, and let fi : v1 (M)+Smel be the 
parallel translation. Let o and R be the tvol- 
ume elements of v, (M) and P-l, respectively. 

Then for each 5 E vi(M), f?fi = (det A@ holds. 
As a generalization of the ttotal curvature for 

a space curve, the total curvature of the im- 
mersion f is defined as 

If?Ql 

1 

s voU~“-‘) v,(M) 
ldetA<lo. 

If /l(M) is the least number of critical points of 
a tMorse function on M, then 

iqf$f)=/?(M)>2 

holds (Chern and R. Lashof (1957, 1958), 

Kuiper (1958)). 7(f) = 2 if and only if f is an 
embedding and f(M) is a convex hypersurface 
of some En+’ in E” (Chern and Lashof (1958)). 
If 7(f) < 3, then M is homeomorphic to S” 
(Chern and Lashof (1958)). These results gen- 
eralize theorems for space curves by W. Fen- 
chel(1929), I. Fary (1949), J. Milnor (1950), 

and others. 
An isometric immersion f which attains 

inf(f) is called a minimum immersion or a 
tight immersion. tExotic spheres do not have 
minimum immersions (Kuiper (1958)). tR- 
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spaces have minimum immersions and, in 
particular, a minimum immersion of a sym- 
metric R-space is a tminimal immersion into a 
hypersphere (Kobayashi and Takeuchi (1968)). 

The total mean curvature of an isometric 
immersion f: M-E,,, of an n-dimensional 
compact Riemannian manifold into a Euclid- 

ean space is, by definition, 

i llbll"* 1. 
JM 

It satisfies 

1 llbll”* 13vol(S”), 
JM 

where S” is the n-dimensional unit sphere. The 

equality holds if and only if f is totally umbil- 
ical (T. J. Willmore (1968), Chen [3]). 
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366 (Vlll.6) 
Riemann-Roth Theorems 

A. General Remarks 

The +Riemann-Roth theorem (abbreviation: 
R. R. theorem) is one of the most significant 
results in the classical theory of ‘algebraic 
functions of one variable. Let X be a compact 
+Riemann surface of tgenus g, and let D = 

C mi Pi be a tdivisor on X. We denote by 
deg D the degree of D, which is defined to be 
C mi. The divisor D is said to be positive if 
D # 0 and mi > 0 for all i. A nonzero tmero- 
morphic function f on X determines a divisor 
(f)=CaiQi-CbjRj(ai,bj>O), where the Qi are 
the zeros of order ai and the Rj are the poles of 

order bj. The set of meromorphic functions .f 
such that (f) + D is positive, together with the 

constant ,f= 0, forms a finite-dimensional 
linear space L(D) over C. The R. R. theorem 
asserts that dim L(D) = deg D - g + 1 + r(D), 

where r(D) is a nonnegative integer determined 
by D. If K is the tcanonical divisor of X, then 
r(D) = dim L(K -D) (- 9 Algebraic Curves C; 
11 Algebraic Functions D). (For the R. R. 
theorem for algebraic surfaces - 15 Algebraic 
Surfaces D.) 

Generalizations of this important theorem 
to the case of higher-dimensional compact 
tcomplex manifolds were obtained by K. 
Kodaira, F. Hirzebruch, A. Grothendieck, M. 

F. Atiyah and I. M. Singer, and others. Let X 
be a compact complex manifold, B be a +com- 

plex line bundle over X, and B(B) be the +sheaf 
of germs of holomorphic cross sections of B. 
When B is determined by a divisor D of X, we 
have H”(X, @(B))z L(D). Hence a desirable 
generalization of the R. R. theorem will pro- 
vide a description of dim, H’(X, 19(B)) in terms 
of quantities relating to the properties of X 
and B. Following this idea, various theorems 
of Riemann-Roth type have been obtained. 

B. Hirzebruch’s Theorem of R. R. Type 

Keeping the notation given in Section A, we 
put x(X, c’(B)) = C,( -1)4 dim H4(X, 8(B)). 
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Generally, if 9 is an arbitrary tcoherent ana- 
lytic sheaf on X, we can define x(X, 9) using 
the same formula (replacing O(B) by F). The 
quantity x(X, 9) has simple properties in 

various respects. For example, if the sequence 
O-tF-+S+F’+O is exact, we have x(X,9) 
=x(X, 9’) + x(X, 9”). If an tanalytic vector 
bundle F depends continuously on auxiliary 
parameters, then x(X, Lo(F)) remains constant. 

Let X be a projective algebraic manifold of 
complex dimension n. We consider the tChern 
class c = 1 + ci + . . + c, of X and express it 
formally as the product I-& (1 + yi). Thus the 
ith Chern class ci is expressed as the ith ele- 
mentary symmetric function of yi, . , y.. Con- 
sider the formal expression T(X) = I$=, yi/ 
(1 - e-?i). T(X) can be expanded as a formal 
power series in the yi, and each homogeneous 
term, being symmetric in the yi, can be ex- 
pressed as a polynomial in ci, . . , c,, and thus 

determines a cohomology class of X. Similarly, 

we consider the formal expression of the Chern 
class of the vector bundle F as 1 + d, + . . + d, 
= n&t (1 + Sj), where q is the dimension of the 
fiber of F. We put ch(F) = &i e% The formal 
series ch(F) is also an element of the coho- 
mology ring of X whose (v + 1)st term consists 
of a 2v-dimensional cohomology class. We call 
h(F) the tChern character of F (- 237 K- 
Theory B), and define T(X, F) to be the value 
of ch(F) T(X) at the tfundamental cycle X. 
(The multiplication CA(F). T(X) is formal. 

T(X, F) is determined by the term of dimen- 
sion 2n alone.) T(X, F) is called the Todd char- 
acteristic with respect to F. Hirzebruch’s theo- 

rem of R. R. type asserts that x(X, B(F))= 
T(X, F). In particular, when n = 1, F = [II] 

(the line bundle determined by the divisor D), 
Hirzebruch’s formula yields the classical R. R. 

theorem. If F satisfies the conditions for the 
vanishing theorem of cohomologies, the for- 

mula gives an estimate for dimH’(X, O(F)) 

1111. 
In 1963, Atiyah and Singer developed a 

theory on indices of elliptic differential 
operators on a compact orientable differenti- 
able manifold and obtained a general result 

that includes the proof of Hirzebruch’s 
theorem for an arbitrary compact complex 

manifold [4,.5] (- 237 K-Theory H). 

C. R. R. Theorem for Surfaces 

If X is a compact complex surface, i.e., a com- 
pact complex manifold of dimension 2, then 
for complex line bundles F, and F,, the inter- 

section number (FI F2) is defined to be cl(F,) U 

c1(F2)[X]. The R. R. theorem for a line 
bundle F on X is stated as follows: x(X, 0(F)) 

=(F’)/2-(KF)/2+((K2)+c2(X))/12, where 

K is the canonical line bundle of X and cz(X) 
denotes the value at X of the 2nd Chern class 
of X, that is, the Euler number of X. 

The Noether formula xx =((K’) + c,(X))/12 
follows from the above identity. The R. R. 
theorem for surfaces is a powerful tool for the 
study of compact complex surfaces. 

D. Grothendieck’s Theorem of R. R. Type 

Grothendieck took an entirely new point of 
view in generalizing Hirzebruch’s theorem. 

The following is a description of his idea as 
reformulated by A. Bore1 and J.-P. Serre [S]. 
We consider a nonsingular quasiprojective 
algebraic variety X (- 16 Algebraic Varieties) 
over a ground field of arbitrary characteristic. 
Namely, X is a closed subvariety of an open 
set in a projective space (over an algebraically 

closed ground field). Consider the group K(X), 
which is the quotient of the free Abelian group 
generated by the equivalence classes of alge- 

braic vector bundles over X modulo the sub- 
group generated by the elements of the form 
F-F’- F”, where F, F’, F” are classes of 
bundles such that there exists an exact se- 
quence O+F’+F+F”+O. A similar construc- 
tion for the (equivalence classes of the) tcoher- 

ent algebraic sheaves instead of the vector 
bundles yields another Abelian group K’(X). 

It can be shown that K(X) is isomorphic to 
K’(X) by the correspondence F-+0(F) (= the 
sheaf of germs of regular cross sections of F). 

Addition in K(X) is induced by the twhitney 
sum of the bundles, and K(X) has the struc- 
ture of a ring with multiplication induced by 
the tensor product. For a vector bundle F, its 

Chern class c(F)=l+c,(F)+...+c,(F)(q= 
the dimension of the fiber) is defined as an 
element of the tChow ring A(X) with appro- 
priate properties. (,4(X) is the ring of the 

rational equivalence classes of algebraic cycles 
on X, and c,(F) is the class of a cycles of co- 
dimension i.) We define h(F) as before. It 

can be shown that c(F) and ch(F) are deter- 
mined by the image of F in K(X), and we have 

45 + 4 = c(&(?b CM5 + f7) = cm3 + CW? 
&(&)=&(&h(q) (<,qsK(X)). If we have a 
tproper morphism f: Y-X between quasi- 
projective algebraic varieties Y and X, we 
have homomorphismsf!:K(X)-tK(Y) and 
$:K(Y)+K(X). The former is defined by 
taking the induced vector bundle and the 
latter by the correspondence 

F-+X( -l)q(aqf)F, 

where S is a coherent algebraic sheaf on Y 

and (.!Sqf)P is the qth tdirect image of 9 
under f: (Since f is proper, (aqf)F is coher- 
ent.) Between Chow rings we have homomor- 
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phisms,f*:A(X)+A(Y) and,f,:A(Y)+A(X), 
defined by taking inverse and direct images of 
cycles. With this notation, the theorem asserts 
that if X and Y are quasiprojective and ,f: Y+ 

X is a proper morphism, then f,(ch(t) T( Y)) = 
ch(f;(<))T(X). This is called Grothendieck’s 
theorem of R. R. type. If X consists of a single 

point, the theorem gives Hirzebruch’s theorem 
for algebraic bundles. Since algebraic and 
analytic theories of coherent sheaves on a 
complex projective space are isomorphic, this 
result covers Hirzebruch’s theorem (- 237 K- 
Theory). 

The subgroup R(Y) of A(Y) given by R(Y) = 

{ ch(Q T(Y) I< E K( Y)} is called the Riemann- 
Roth group of Y. Thus, using the notions 
developed by Grothendieck, the R. R. theorem 

can be expressed as follows: R(Y) is mapped 
into R(X) by a proper morphism ,f: Y-X. 
Generalizations to +almost complex manifolds 
and tdifferentiable manifolds were made by 
Atiyah and Hirzebruch in this latter form [I]. 
One of the remarkable results is that an ele- 
ment of R( Y) takes an integral value at the 

fundamental cycle. This theorem is obtained 
by taking X to be a single point. 

E. R. R. Theorem for Singular Varieties 

Let X be a projective variety over C and let 
H.(X) (resp. H’(X)) denote the singular ho- 
mology (resp. cohomology) group with rational 
coefficients. Note that K(X) may not agree 
with K’(X) when X is singular. The R. R. 

theorem for X formulated by P. Baum, W. 
Fulton, and R. MacPherson [6] says that 
there exists a unique natural transformation 
?:K’(X)+H.(X) such that (I) if <EK(X) and 

~EK’(X), then <@~EK’(X) and ~(<@q)= 
ch(<) (7(q)); (2) whenever X is nonsingular, 
z(Io,) = T(X)(X). Note that the naturality of 7 

means that for any f: X+ Y and any 4 E K’(X), 

f*7(9)=7(,f*II). 
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367 (XI.1 2) 
Riemann Surfaces 

A. General Remarks 

Riemann considered certain surfaces, now 
named after him, obtained by modifying in a 
suitable manner the domains of definition of 
multiple-valued ianalytic functions on the 
complex plane in order to obtain single-valued 

functions defined on the surfaces. For example, 
consider the function z =f(w) = w2, where w  
varies in the complex plane, and its inverse 
function w  = g(z) = J. Then g(0) = 0 and 

g( co) = cc, whereas if z # 0, m, there exist two 
values of w  satisfying g(z) = w. By setting z 
= rei0 (r > 0,O < 0 <27-c), the corresponding 

two values of w  are w1 = ~e(0i2)’ and w2 = 

J;e (0/2+n)i. Now consider how we should 

modify the complex z-plane so that we can 

obtain a single-valued function on the modi- 
fied surface representing the same relationship 
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between z and w. Let rc, and rcz be two copies 
of the complex plane. Delete the nonnegative 
real axes from rci and rc2 and patch them 
crosswise along the slits (Fig. 1). The surface R 
thus obtained is locally homeomorphic to the 

complex plane except for the origin and the 
point at infinity, and situations at the origin 
and the point at infinity are as indicated in 

Fig. 1. For z#O, co, there are two points zi 
and z2 in rrr and rc2, respectively, with the 
same coordinate z. Let w1 and w2 correspond 
to zi and z2, respectively. Then the function 

w  = & becomes single-valued on R, and wr 
and w2 are holomorphic functions of zr and 
z2, respectively. The surface R is called the 
Riemann surface determined by w  = $. 

Fig. 1 

Working from the idea illustrated by this 
example, H. Weyl and T. Rado gave rigorous 
definitions of Riemann surfaces. The usual de- 

finition nowadays is as follows: Let ‘$l be a set 
of pairs (U, $c) of open sets U in a tconnected 
tHausdorff space R and topological mappings 
$, of U onto plane regions satisfying the 
following two conditions: (i) R= UcU,wojea U; 
(ii) for each (U,, tiu,), (U,,$u2)~21 with I/= 

U, n U, # 0, &, 0 $;: gives an (orientation- 
preserving) tconformal mapping of each con- 
nected component of ti”,(V) onto a corre- 
sponding one of tic,(V). Two such sets 2X, 
and 211, are equivalent, by definition, if QII, U 

91u, also satisfies conditions (i) and (ii). The 
equivalence class (2I) of such Iu is called a 
conformal structure (analytic structure or com- 
plex structure) on R (- 72 Complex Mani- 
folds). A pair (R, (2l)) consisting of a connected 
Hausdorff space R and a conformal structure 
(‘?I) is called a Riemann surface, with R its 
base space and (2X) its conformal structure. (A 
Riemann surface in this sense is sometimes 

called an abstract Riemann surface.) It is a 
complex manifold of tcomplex dimension 1. 

For (U, $c) in 2lu(%), (U, $c) (or sometimes U 
itself) is called an analytic neighborhood, and 
$c is called a local uniformizing parameter (or 

simply a local parameter). In the remainder of 
this article we call R itself a Riemann surface. 

From condition (i) it follows that a Riemann 

surface R is a real 2-dimensional ttopological 

manifold. Moreover, by condition (ii) it can be 
deduced that R satisfies the tsecond counta- 
bility axiom and consequently is a tsurface 
and admits a tsimplicial decomposition (T. 

Rado, 1925). It is also orientable (- 410 Sur- 
faces). Therefore R is a tlocally compact metric 
space. It is not possible to define curve lengths 

on R compatible with the conformal structure, 
but since angles can be defined, R is consid- 
ered to be a real 2-dimensional space with a 
tconformal connection. It is customary in the 
theory of functions to call R closed if it is 
compact and open otherwise. A plane region D 
is considered an open Riemann surface with 

the conformal structure ‘u =(D, 1: D+D). A 
Riemann sphere is also considered to be a 
closed Riemann surface whose analytic neigh- 
borhoods are given by {U,, cp} and {U,, l/q}, 

where U, (U,) is the domain corresponding to 
{1~~<2]({121>1/2}U{co})underthestereo- 
graphic projection cp. 

A function f on a Riemann surface is said to 
be meromorphic, holomorphic, or harmonic 
on R if f o $6’ is tmeromorphic, tholomor- 
phic, or tharmonic in the usual sense on tie(U) 
for every analytic neighborhood (U, I+&). More 
generally, suppose that for mappings between 
plane regions we are given a property ‘$3 that 
is invariant under conformal mappings. A 

mapping T of a Riemann surface R, onto 
another Riemann surface R, is said to have 
the property ‘$3 if the mapping $“, o To I+&,’ 

of I,&, (U,) into Il/u,( U,) has the property ‘p 
for every pair of analytic neighborhoods 

VJ,, h,) nd W, h2) in R, and R,, respec- 
tively. Thus such a mapping T may be con- 
formal, tanalytic, tquasiconformal, harmonic, 
etc. If there exists a one-to-one conformal 

mapping of a Riemann surface R, onto an- 
other Riemann surface R,, then R, and R, are 
said to be conformally equivalent. Two such 
Riemann surfaces are sometimes identified 
with each other. 

B. Covering Surfaces 

One of the main themes of the theory of func- 
tions is the study of analytic mappings of a 
Riemann surface R into another Riemann 
surface R,, i.e., the theory of covering surfaces 
of Riemann surfaces. 

Suppose, in general, that there are two 

surfaces R and R, and a continuous open 
mapping T of R into, R, such that the inverse 
image of a point in R, under T is an tisolated 
set in R. Then T is called an inner transfor- 
mation in the sense of Stoilow and (R, R,; T) a 

covering surface with R, its basic surface and 
T its projection. Often R is called simply a 
covering surface of R,. A point p0 with p,, = 
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T(p) is called the projection of p, and p is said 
to lie above pO. In this case, there exist sur- 

face coordinates (U, $) and (U,,, I&,) at p and 
po, respectively, such that $(U)= {z 1 lzl< l}, 

~(P)=O,~,(U,)=(~II~I<~},~,(P,)=O,~~~ 
w=(t&o TOI+-‘)(z)=z”, with the positive 
integer n independent of the choice of coordi- 

nate neighborhoods. If n > 1, then p is called a 
branch point, n the multiplicity, and n - 1 the 
degree of ramification. The set of all branch 
points forms an at most countably infinite 
set of isolated points. If there is no branch 
point, then the covering surface (R, R,; T) and 

the projection Tare said to be unramified. For 
a given curve C,, in R, and a point p in R lying 

above the initial point of C,, a curve C in R 
with p its initial point satisfying T(C) = Co is 

called the prolongation along C, (or the lift of 
C,) starting from p. If any proper subarc of 
C, sharing the initial point with C, admits a 
prolongation along itself starting from p but 
C, does not admit a prolongation along itself 
starting from p, then R is said to have a rela- 
tive boundary above the endpoint of C,. A 

covering surface without a relative boundary is 
called unbounded. A tsimply connected surface 
R” that is an unramilied unbounded covering 

surface of R, is said to be a universal covering 
surface of R,. The universal covering surface 
exists for every R. 

Suppose that R is an unbounded covering 
surface of R,. Then the number of points on 
R that lie above each point of R, is always 
constant, say n (< +co), where the branch 
points of R are counted with their multiplic- 

ities. n is called the number of sheets of R over 
R,, or R is said to be n-sheeted over R,. If R 

and R, are compact surfaces with tEuler char- 
acteristic x and x0, respectively, and if R is an 
n-sheeted covering surface of R,, then we have 
the Riemann-Hurwitz relation: x = nXo - V, V 
being the sum of the degrees of ramification. A 
topological mapping S of an unramilied un- 
bounded covering surface R of R, onto itself 

such that To S = T is called a covering trans- 
formation. The group of all covering trans- 
formations of a universal covering surface of 
R, is isomorphic to the tfundamental group 
(i.e., the l-dimensional homotopy group) of 

Rw 
In a covering surface (R, R,; T) whose basic 

surface R, is a Riemann surface, T can be 
regarded as an analytic mapping of R onto R, 
by giving R a conformal structure in a natural 
manner. In particular, if R, is the sphere, then 
its covering surface is a Riemann surface. 

Conversely, any Riemann surface can be re- 
garded as a covering surface of the sphere. This 

fact had long been known for closed Riemann 
surfaces; for open Riemann surfaces, it can be 

deduced from the existence theorem of an- 

alytic functions proved by H. Behnke and K. 
Stein, which states that an open Riemann 
surface is a Stein manifold. Historically, by a 

Riemann surface mathematicians meant either 
the abstract Riemann surface or a covering 
surface of the sphere, until the two notions 
were proved identical. 

Suppose that R is a covering surface of the 
z-sphere R, with the projection T: R+R,, and 
denote by R, the region that lies above 0 < lz - 
al < r,. If there exists a topological mapping 
Ic, of R, onto {(r,@IO<r<r,, -cc <@<co) 

such that a+rei8= T(I,-‘(r,@), then R is said 
to have a logarithmic branch point above a; in 
contrast, a branch point of multiplicity n of the 

type defined previously is sometimes called an 
algebraic branch point. 

Ahlfors’s theory of covering surfaces, which 
treats covering surfaces (R, R,; T) not only 
from the topological viewpoint but also from 
the metrical one, is particularly important. 
Let R and R, be either compact surfaces with 
simplicial decompositions or their closed 
subregions with boundaries consisting of l- 

simplexes and vertices such that T preserves 
simplicial decompositions. Here we call the 
part of the boundary of R whose projection is 

in the interior of R, the relative boundary. 
With respect to a suitable metric on R,, let S 
be the ratio of areas of R and R,, L the length 
of the relative boundary, and --p and -pO the 
tEuler characteristics of R and R,, respec- 
tively. Then Ahlfors’s principal theorem asserts 
that max(O, p) 2 p,S - hL, where h > 0 is a 

constant determined only by R,. This has been 
applied widely in various branches of mathe- 
matics, including the theory of distribution of 

values of analytic mappings between Riemann 
surfaces. 

C. Uniformization 

Suppose that we are given a correspondence 

between the z-plane and w-plane determined 
by a tfunction element p,, =(z,*, wz) (zz = P,(t), 
w: = QJt)). This correspondence generally 
gives rise to a multiple-valued analytic func- 
tion w  =f(z). We show how to construct a 

Riemann surface so that the function w  =f(z) 
can be considered a single-valued function on 
it. We use f again to mean the connected 

component of the set of function elements 
p = (z*, w*) (z* = P(t), w* = Q(t)) in the wider 

sense containing po, where the analytic neigh- 
borhood of each point p is defined to be the set 
of elements that are direct analytic continua- 
tions of p. Then f is a Riemann surface. For a 

point p =(z*, w*) (z* = P(t), w* = Q(t)) in f; set 
z=F(p)=P(O), w= G(p)=Q(O). Then two 
meromorphic functions z = F(p) and w  = G(p) 
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are defined on J and f can be considered as a 

covering surface of the z-sphere and the w- 
sphere. We call f an tanalytic function in the 
wider sense. Thus we obtain a single-valued 
function w  = G(p) on the Riemann surface f 
that can be regarded as a modification of the 

original function w  = f (z). Suppose that there 
exist two meromorphic functions z = cp(c) and 
w  = $([) on a region D in the c-plane, and let 
z = P(< - [,,) and w  = Q([ - &,) be tLaurent 
expansions of cp and 1(1 at each point &, in D. If 
the function element psO = (z*, w*) (z* = P(t), w* 
= Q(t)) belongs to the Riemann surface f; then 
the correspondence w  = f(z) determined by the 
function element pro is said to be locally unifor- 
mized on D by z = cp(<) and w  = $([). In par- 
ticular, if { pF 1 [ED} =A then f is said to be 

uniformized by z = cp([) and w  = $(c). If an 

analytic function fin the wider sense, consid- 
ered as a Riemann surface, is conformally 
equivalent to a region D in the c-plane, then f 
can be uniformized by z = F(p) and w  = G(p). 
In general, f is not conformally equivalent to a 
plane region, but if an unramified unbounded 
covering surface (f;” f; T) off is conformally 
equivalent to a region D in the [-plane, then f 
is uniformized by z = F o T(c) and w  = Go T(c) 

(Schottky’s uniformization). In particular, since 
the universal covering surface (f m, f; T) off is 
simply connected, it is conformally equivalent 

to the sphere l[l i co, the finite plane ill < co, 
or the unit disk Ill< 1. Consequently, f is 
uniformized by z = F o T(c) and w  = Go T(c). 
Therefore analytic functions in the wider sense 
are always uniformizable. 

For example, an talgebraic function f consid- 

ered as a Riemann surface is always closed. If 
its tgenus g =0, then f is the sphere and is thus 
uniformized by rational functions z = F(c) and 
w  = G(c). If g > 0, then (f m, f; T) is conformally 
equivalent to I(1 < 1 or l[l< co, and hence f is 

uniformized by z = F o T(c) and w  = Go T(c). 
When l<l< 1, z and w  are tautomorphic func- 
tions with respect to the group of linear trans- 
formations preserving l<l< 1, while if l[l< co, 
they are telliptic functions. 

D. The Type Problem 

A simply connected Riemann surface R is 
conformally equivalent to the sphere, the finite 

plane, or the unit disk. Then R is said to be 
elliptic, parabolic, or hyperbolic, respectively. 
The problem of determining the types of sim- 

ply connected covering surfaces of the sphere 
by their structures, such as the distributions of 
their branch points, is called the type problem 

for Riemann surfaces. For example, if a simply 
connected covering surface does not cover 

three points on the sphere, it must be hyper- 

bolic (Picard’s theorem). The Nevanlinna 
theory of meromorphic functions stimulated 
this type problem. However, it is difticult to 

measure the ramifications of covering surfaces, 
and many detailed reuslts of the type problem 
obtained in the 1930s are limited mainly to 

the case where all branch points lie above a 
finite number of points on the sphere. A s&Ii- 

cient condition for R to be of parabolic type, 
given by Z. Kobayashi (using the so-called 

Kobayashi net, and a sufficient condition for 
R to be of hyperbolic type, given by S. Kaku- 
tani (using quasiconformal mappings), are 
significant results on the type problem. The 
type problem had by then been extensively 

generalized to the following classification 
theory. 

E. Classification Theory of Riemann Surfaces 

Riemann surfaces are, as pointed out by Weyl, 

“not merely devices for visualizing the many- 
valuedness of analytic functions, but rather an 

essential component of the theory . . the only 
soil in which the functions grow and thrive.” 
So the problem naturally arises of how to 
extend various results in the theory of analytic 
functions of a complex variable to the theory 

of analytic mappings between Riemann sur- 
faces. In general, open Riemann surfaces can 
have infinite genus and are quite complicated. 
So to obtain fruitful results and systematic 
development, one usually sets certain restric- 
tions on the properties of the Riemann sur- 
faces. In connection with this, R. Nevanlinna, 

L. Sario, and others initiated the classification 
theory of Riemann surfaces, which classifies 
Riemann surfaces by the existence (or non- 
existence) of functions with certain properties. 

Denote by X(R) the totality of functions on 

a Riemann surface R with a certain property 
X. The set of all Riemann surfaces R for which 
X(R) does not contain any function other than 
constants is denoted by Ox. The family of 
analytic functions and the family of harmonic 
functions are denoted by A(R) and H(R), re- 
spectively. The family of positive functions, 
that of bounded functions, and that of func- 
tions with finite Dirichlet integrals are denoted 
by P(R), B(R), and D(R), respectively. From 
these families, various new families are created, 

e.g., MD(R) = ,4(R) n B(R) tl D(R). Usually 

OHB, OHD, OHBD, Oas, Oao, OaBD, and also OG, 
the family of Riemann surfaces on which there 
are no Green’s functions, are considered. P. J. 
Myrberg found an example of a Riemann 
surface of infinite genus which has a large 
boundary but belongs to O,,. The idea behind 

Myberg’s example is often used to construct 
examples in classification theory. From works 



367 F 
Riemann Surfaces 

1366 

of Y. TBki, L. Sario, K. I. Virtanen, H. L. 
Royden, M. Parreau, M. Sakai, and others, it 
can be seen that there are inclusion relations, 
as indicated in Fig. 2, among the classes just 
mentioned. There is no inclusion relation 

between O,, and O,,. For Riemann surfaces 
of finite genus, 0, = O,,. Closed Riemann 
surfaces are all in 0,. 

Open Riemann surfaces in 0, are also said 

to be parabolic (or of null boundary), and those 
not in O,, hyperbolic (or of positive boundary). 
Several characterizations for parabolic 
Riemann surfaces are known. 

Fig. 2 

From a similar point of view, the classifica- 
tion problem for subregions was studied in 
detail by Parreau, A. Mori, T. Kuroda, and 

others. We call a noncompact region 0 which 
is the complement of a compact subset of a 
Riemann surface a Heins’s end. M. Heins 
called the minimal number (< co) of gen- 
erators of the semigroup of the additive class 
of HP-functions that vanish continuously at 
the relative boundary of a Heins’s end Q the 
harmonic dimension of Q. Its properties were 

investigated by Z. Kuramochi, M. Ozawa, and 
others. Generally, a function f is said to be X- 
minimal if f is positive and contained in X(R) 
and there exists a constant C, for every g in 

X(R) with fag>0 such that g-C,& The 
family of Riemann surfaces R not belonging to 
0, and admitting X-minimal functions on R is 
denoted by U,. C. Constantinescu and A. 
Cornea and others studied Riemann surfaces 

in U,, and r/,, where m is the class of posi- 
tive functions in HD or limits of monotone 
decreasing sequences of such functions. There 
are inclusion relations U,, !$ O,, - O,, Um 
$ On, - O,, and UHDg U,,. One of the inter- 

esting results in classification theory is the fact, 
discovered by Kuramochi, that U,,U O,$ O,, 
and U,,UO,~O,,. 

Classification theory has a very deep con- 
nection with the theory of +ideal boundaries. 
A. Pfluger and Royden showed that the classes 
0, and O,, are invariant under quasicon- 
formal mappings. However, it is still an open 
problem whether O,, is invariant in this sense. 

F. Prolongations of Riemann Surfaces 

As classification theory shows, pathological 

phenomena occur for Riemann surfaces from 
the viewpoint of function theory in the plane. 
These are caused by the complexity of ideal 

boundaries of Riemann surfaces, and in par- 
ticular by the complexity of the set of ideal 
boundary points at which handles of Riemann 
surfaces (i.e., parts with cycles not homologous 
to 0) accumulate. Hence it is desirable to find 

larger Riemann surfaces so that ideal bound- 
ary points of original surfaces that are not 

accumulating points of handles become inte- 
rior points. Suppose that a Riemann surface 
R is conformally equivalent to a proper sub- 

region R’ of another Riemann surface R,. 
Then R, is said to be a prolongation of R, and 
R is prolongable. A nonprolongable Riemann 
surface is said to be maximal. Closed Riemann 
surfaces are always maximal, but there also 
exist maximal open Riemann surfaces (Rado). 
However, every open Riemann surface is 
homeomorphic to a prolongable Riemann 
surface (S. Bochner). Characterizations of 

prolongable Riemann surfaces and relation- 
ships between the various null classes men- 
tioned in Section E and prolongations were 

investigated from several viewpoints by R. de 
Possel, J. Tamura, and others. 

G. Analytic Mappings of Riemann Surfaces 

Apart from the development of the classifica- 
tion theory of Riemann surfaces, efforts have 
been made to extend various results in the 
theory of analytic functions of a complex 

variable to the case of analytic mappings be- 
tween Riemann surfaces. L. Sari0 studied the 

method of normal operators, which is utilized 
to construct harmonic functions on Riemann 
surfaces with given singularities at their ideal 
boundaries; and he extended the main theo- 
rems of Nevanlinna to analytic mappings 
between arbitrary Riemann surfaces (- 124 

Distributions of Values of Functions of a 
Complex Variable). M. Heins introduced the 
notions of Lindelof type, Blaschke type, and 
others which are special classes of analytic 

mappings. Utilizing these notions, Con- 
stantinescu and Cornea, Kuramochi, and 

others extended various results in the theory 
of cluster sets (- 62 Cluster Sets) by studying 
the behavior of analytic mappings at ideal 
boundaries. The theory of tcapacities on ideal 

boundaries has also been developed. 
On every open Riemann surface R there 

exists a nonconstant holomorphic function 
(Behnke and Stein). Furthermore, Gunning 
and Narasimhan proved that there exists a 

holomorphic function on R whose derivative 
never vanishes. In other words, R is conform- 
ally equivalent to an unramified covering 

surface of the sphere. Such a locally homeo- 
morphic analytic mapping is called the im- 
mersion of R. The proof is based on the fol- 
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lowing deep result (S. Mergelyan’s theorem): 
Suppose that K is a compact set on R such 

that R -K has no relatively compact con- 
nected component. Then every continuous 
function which is holomorphic on the interior 

of K can be approximated uniformly on K by 
a holomorphic function on R [22]. 

A surface of genus 0 is said to be planar (or 
of planar character or schlichtartig). A simply 

connected surface is planar. Using the Dirich- 
let principle, P. Koebe proved the following 

general uniformization theorem: Every planar 
Riemann surface R can be mapped conform- 
ally to the canonical slit regions on the ex- 
tended complex plane C. More precisely, given 
a point p on R, there exists the extremal hori- 

zontal (vertical) slit mapping F,(F,) such that 
(i) Fi (F,) maps R conformally to a region on C 

whose boundary consists of horizontal (ver- 
tical) slits and possibly points; (ii) F1 and F, 
have a simple pole at p with residue 1; (iii) the 
total area of the slits and points is zero. Sup- 

posethatFi=l/z+ai+ciz+...(i=1,2)in 
terms of local parameter z at p. Then s = (cl - 
c,)/2 is called the span of R. It is known that 
s (= Ild(Fi - F,)/2 I( *) > 0, where the equality 
holds if and only if R belongs to O,,. In the 

case of finite genus g, there also exist the con- 
formal mappings of R onto the parallel slit 
regions on the (g + 1)-sheeted covering surface 
of C (Z. Nehari, Y. Kusunoki, and others). 
L. Ahlfors proved that a Riemann surface 
of genus g bounded by m contours can be 
mapped conformally to an at most (2g + m)- 
sheeted unbounded covering surface of the 
unit disk. 

The structures of closed Riemann surfaces 
are determined by the algebraic structures of 
meromorphic function fields on them. H. Iss’sa 
obtained a noteworthy result which estab- 

lished that open Riemann surfaces are also 
determined by their meromorphic function 
fields [24]. It is known too that open Rie- 
mann surfaces are determined by their rings 
of holomorphic functions. 

H. Differential Forms on Riemann Surfaces 

Since Riemann surfaces are considered real 2- 

dimensional differentiable manifolds of class 
C”, differential l-forms o=udx+udy and 
differential 2-forms CI = c dx A dy are defined on 
them, and operations such as the exterior 
derivative dw = (au/ax - &lay) dx A dy and 

exterior product can be defined (- 105 Dif- 
ferentiable Manifolds). Since coordinate trans- 
formations satisfy the Cauchy-Riemann dif- 
ferential equation, the conjugate differential 

*co= -vdx+udy of w  can be defined. A dif- 

ferential form o satisfying dw = d * w  = 0 is 

called a harmonic differential, and one with * o 
= - iw is said to be pure. A pure differential is 

expressed as w  =fdz. Here, if f is a holomor- 
phic function, then w  is called a holomorphic 
(or analytic) differential, and if f is a meromor- 

phic function, then o is called a meromor- 
phic (or Abelian) differential. The differential 

form w  is a holomorphic differential if and 
only if it is closed (i.e., dw = 0) and pure. The 
differential o is called exact (or total) if o is 
written as dF = F, dx + Fy dy with a globally 
single-valued function F. 

Next, the set of all measurable differentials 
w  with IIwllz=jsR - wr\*o<coformsatHil- 
bert space with respect to the norm IIw//. The 

method of orthogonal decomposition in the 
theory of Hilbert spaces is the main device to 
study this space and also its suitable subspaces 
and to obtain the existence theorem of har- 
monic and holomorphic differentials with 
various properties (- 194 Harmonic Inte- 
grals). However, in contrast to differentiable 
manifolds, it should be noted that finer or- 

thogonal decompositions into subspaces with 
specific properties hold for open Riemann 
surfaces. For instance, let r’(T,) be the Hilbert 
space of analytic (harmonic) differentials with 
finite norm, and set F,, = {WC r, 1 w  is exact}, 

F,,,, = {o E I,, 1 w  is tsemiexact}; then we have 
the orthogonal decompositions 

r, = *r,,, i r,, = r,,, i *rhm, etc., 

where *F, stands for the space {w I *w E TX} and 
I,, and I,, are known as the space of analytic 

Schottky differentials and the space of dif- 
ferentials of harmonic measures, respectively. 
Both spaces r,, and F,, have remarkable 
properties [9]. 

I. Abelian Integrals on Open Riemann Surfaces 

The systematic effort to extend the theory of 
Abelian integrals on closed Riemann surfaces 
to open Riemann surfaces was initiated by 
Nevanlinna in 1940. At the first stage of the 
development, only those Riemann surfaces 
with small boundaries (i.e., ones in 0, or O,,) 
were treated, later a more general treatment 

was made possible by the discovery of the 
notion of semiexact differentials (K. Virtanen, 
Ahlfors). 

Let R be an arbitrary open Riemann sur- 
face. A l-dimensional cycle C is called a divid- 
ing cycle if for any compact set in R there 
exists a cycle outside the compact set homol- 
ogous to C. A differential is said to be semi- 
exact if its period along every dividing cycle 

vanishes. 



367 Ref. 
Riemann Surfaces 

1368 

Ahlfors defined the distinguished (com- 
plex harmonic) differentials with polar sin- 

gularities and obtained in terms of them a 
generalization of Abel’s theorem. Indepen- 
dently, Y. Kusunoki defined.the semiexact 

canonical (meromorphic) differentials and 
gave in terms of them a formulation of Abel’s 
theorem and the Riemann-Roth theorem on R 

[27]. It was proved that a meromorphic dif- 
ferential df =du + idu is semiexact canonical if 

and only if du is (real) distinguished, and then 
u is almost constant on every ideal boundary 
component of R (in appropriate tcompactifi- 
cation of R). Hence every meromorphic func- 
tion ,f for which df is distinguished is almost 

constant on every ideal boundary component, 
and therefore f reduces to a constant by the 
boundary theorem of Riesz type if R has a 

large boundary. Whereas by the Riemann- 
Roth theorem above a nonconstant meromor- 
phic function ,f such that df is (exact) canon- 
ical exists on any open Riemann surface R 
with finite genus, and f gives a canonical par- 
allel slit mapping of R (- Section G). H. L. 
Royden [28] and B. Rodin also gave gener- 
alizations of the Riemann-Roth theorem. 
M. Yoshida, H. Mizumoto, M. Shiba, and 

others further generalized the Kusunoki type 
theorems. The Riemann-Roth theorem for a 
closed Riemann surface can be deduced from 

that for open Riemann surfaces by considering 
an open Riemann surface obtained from a 
closed surface by deleting a point. 

Riemann’s period relation on R has been 
studied for various classes of differentials, but 

for the case of infinitely many nonvanishing 
periods, no definitive result has been obtained. 
The same is true for the theory of Abelian 
differentials with infinitely many singularities. 

On the other hand, the analogy to the classical 
theory is lost completely if no restriction is 

posed on the differentials on R. In this con- 
text the following results due to Behnke and 
Stein [26] are outstanding: (I) There exists an 
Abelian differential of the first kind on R with 
infinitely many given periods. (2) For two 

discrete sequences {p,} and {q,,} of points in 
R, there exists a single-valued meromorphic 
function with zeros at pm and poles at 4,. It is 
further proved that there exists an Abelian 
differential with prescribed divisor and peri- 

ods (Kusunoki and Sainouchi). This gener- 
alizes the results above and the Gunning- 
Narasimhan theorem. 
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368 (111.9) 
Rings 

A. Definition 

A nonempty set A is called a ring if the follow- 
ing conditions are satisfied. 

(1) Two toperations, called addition and 

multiplication (the ring operations), are defined, 

which send an arbitrary pair of elements a, b 
of A to elements a + b and ub of A. 

(2) For arbitrary elements a, b, c of A, these 
operations satisfy the following four laws: (i) 
a + b = b + a (commutative law of addition); (ii) 
(a+ b)+c=u+(b+c), (ab)c=u(bc) (associative 
laws); (iii) u(b+c)=ab+uc, (a+ b)c=ac+ bc 
(distributive laws); and (iv) for every pair a, b of 
elements of A, there exists a unique element c 

of A such that a + c = b. Thus a ring A is an 
tAbelian group under addition. Each element 
a of a ring A determines operations L, and R, 
defined by L,(x) = ax, R,(x) = xu (x E A). Thus a 
ring A has the structure of a tleft A-module 

and a fright A-module. Since the operations 
L, and R, commute for every pair a, b of ele- 
ments of A, the ring A is also an A-A-bimodule 

(- 277 Modules). 
The identity element of A under addition is 

called the zero element and is denoted by 0. It 
satisfies the equation a0 = Ou = 0 (a E A). An 

element eE A is called a unity element (identity 
element or unit element) of A if it satisfies ae = 
ea = a (a E A). If A has such a unity element, it 

is unique and is often denoted by 1. A ring with 
unity element is called a unitary ring. Most of 
the important examples of rings are unitary. 

Hence we often call a unitary ring simply a 
ring. If a ring has only one member (namely, 
0), then 0 is the unity element of the ring. Such 
a ring is called a zero ring. However, if a ring 
has more than one element, the unity element 
is distinct from the zero element. A ring is 
called a commutative ring if it satisfies (v) ab 
= ba (a, be A) (commutative law for multipli- 

cation) (- 67 Commutative Rings). 
In this article we shall discuss associative 

rings. Certain nonassociative rings are impor- 
tant; an example is tLie algebra. (An algebra is 
a ring having a tground ring.) 

B. Further Definitions 

An element a # 0 of a ring A is called a zero 

divisor if there exists an element b # 0 such that 
ub = 0 or ba = 0. A commutative unitary ring 

having more than one element is called an 
integral domain if it has no zero divisors (- 67 
Commutative Rings). Elements a and b of a 
ring are said to be orthogonal if ub = bu = 0. An 
element a satisfying a” = 0 for some positive 
integer n is called a nilpotent element, and a 
nonzero element a satisfying a2 = a is called an 
idempotent element. An idempotent element is 
said to be primitive if it cannot be represented 
as the sum of two orthogonal idempotent 

elements. For any subsets S and T of a ring A, 
let S + T(ST) denote the set of elements s + 
t(st) (s E S, t E T). In particular, SS is denoted 
by S2 (similarly for S3, S4, etc.), and further- 

more, {a} +S({a}S) is denoted by a+S(uS). If 
ST= 7’S= {0}, then subsets S and Tare said 
to be orthogonal. A subset S of a ring is said to 
be nilpotent if S” = 0 for some positive integer 
n, and idempotent if S2 = S. 

For an element a of a unitary ring A, an 
element a’ such that u’a = 1 (au’ = 1) is called a 
left (right) inverse element of a. There exists a 
left (right) inverse element of a if and only if A 
is generated by a as a left (right) A-module. If 
there exist both a right inverse and a left in- 
verse of a, then they coincide and are uniquely 

determined by a. This element is called the 
inverse element of a and is denoted by a-‘. An 
element that has an inverse element is called 
an invertible element (regular element or unit). 
The set of all invertible elements of a unitary 
ring forms a group under multiplication. A 
nonzero unitary ring is called a tskew field (or 
tdivision ring) if every nonzero element is inver- 
tible. Furthermore, a skew field that satisfies 
the commutative law is called a commutative 
field or simply a field (- 149 Fields). In a 

general ring A, if we define a new operation 
(u,b)+aob by setting aob=a+b-ub, then 
A is a tsemigroup with the identity element 

0 with respect to this operation. The inverse 
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element under this operation is called the 

quasi-inverse element, and an element that has 
a quasi-inverse element is called a quasi- 
invertible element (or quasiregular element). An 
element a of a unitary ring is quasi-invertible if 
and only if the element 1 -a is invertible. 

C. Examples 

(1) Rings of numbers. The ring Z of rational 

integers, the rational number field Q, the real 
number field R, and the complex number field 

C are familiar examples (- 14 Algebraic 
Number Fields, 257 Local Fields). 

(2) Rings of functions. The set K’ of func- 
tions defined on a set I and taking values in a 
ring K forms a commutative ring under point- 
wise addition and multiplication. In particular, 
let K = R, and let I be an interval of R. Then 
the set C’(1) of continuous functions, the set 
C’(I) of functions that are r-times continuously 
differentiable, and the set C”(l) of analytic 
functions on I are subrings (- Section E) of 

R’. 
(3) Rings of expressions. The set K [X,, . , 

X,] of polynomials and the set K [ [X,, . . , 
X,,]] of tformal power series in indeterminates 
Xi, , X, with coefficients in a commutative 
ring K are commutative rings (- 369 Rings of 
Polynomials, 370 Rings of Power Series). 

(4) Endomorphism rings of modules. The set 
&K(M) of tendomorphisms of a +module M 
over a ring K is in general a noncommutative 
ring. In particular, if M is a finite-dimensional 
+linear space over a field K, then &JM) can 

be identified with a +full matrix ring (- 256 
Linear Spaces, 277 Modules). 

(5) For other examples - 29 Associative 

Algebras, 36 Banach Algebras, 67 Commuta- 
tive Rings, 284 Noetherian Rings, and 439 
Valuations. 

D. Homomorphisms 

A mapping 1‘: A +B of a ring A into a ring B 
satisfying conditions (i) f(a + h) =f(a) +f(b) 
and (ii) f(ub)=f(a)f(b) (a, bs A) is called a 

homomorphism. If a homomorphism f is 
tbijective, then the inverse mapping f-’ : B-rA 
is also a homomorphism, and in this case f 

is called an isomorphism. More precisely, a 
homomorphism (isomorphism) of rings is 
often called a ring homomorphism (ring isomor- 
phism). There exists only one homomorphism 
of any ring onto the zero ring. For unitary 
rings A and B, a homomorphism f: A+ B is 
said to be unitary if it maps the unity element 

of A to the unity element of B. By a homomor- 

phism, a unitary homomorphism is usually 
meant. In this sense there exists a unique hom- 

omorphism of the ring Z of rational integers 
into an arbitrary unitary ring. A composite of 

homomorphisms is also a homomorphism. The 
identity mapping 1, of a ring A is an isomor- 
phism. A homomorphism of a ring A into itself 
is called an endomorphism, and an isomor- 
phism of A onto itself is called an automor- 
phism of A. If a is an invertible element of a 
unitary ring A, then the mapping x+axa-’ 
(x E A) is an automorphism of A, called an 

inner automorphism. 
When condition (ii) for a homomorphism is 

replaced by (ii’) f(ab) =f(b)f(u) (a, bE A), a 
mapping satisfying (i) and (ii’) is called an 
antihomomorphism. In particular, if an anti- 
homomorphism f is bijective, then the inverse 

mapping f -’ is also an antihomomorphism, 
and f is called an anti-isomorphism. Antiendo- 
morphisms and antiautomorphisms are defined 
similarly. 

E. Subrings, Factor Rings, and Direct Products 

A subset S of a ring A is called a subring of A if 
a ring structure is given on S and the canon- 

ical injection S+ A is a ring homomorphism. 
Thus the ring operations of S are the restric- 
tions of those of A. If we deal only with uni- 
tary rings and unitary homomorphisms, then a 
subring S necessarily contains the unity ele- 
ment of A. The smallest subring containing a 
subset T of a ring A is called the subring gen- 

erated by T. The set of elements that commute 
with every element of T forms a subring and is 
called the commuter (or centralizer) of T. In 

particular, the commuter of A itself is called 
the center of A. 

A tquotient set A/R of a ring A by an equiv- 
alence relation R is called a factor ring (quo- 
tient ring) of A if a ring structure is given on 
A/R and the canonical surjection A-+ AIR 
is a ring homomorphism. This is the case if 
and only if the equivalence relation R is com- 
patible with the ring operations (i.e., aRu’ and 
bRb’ imply (a + b)R(u’ + b’) and (ab) R(a’b’)). 

Let LY and /J’ be elements of the factor ring A/R, 
represented by a and b, respectively. Then the 

definition of factor ring implies that c( + /?(G$) 
is the equivalence class represented by a + 
b(ab). Every ring A has two trivial factor 
rings, namely, A itself and the zero ring 0. If A 
has no nontrivial factor rings, then A is called 
a quasisimple ring (- Section G). If f: A-t i? is 

a ring homomorphism, then the image f(A) is 
a subring of B, and the equivalence relation R 
in A defined by f(uRbof(u)=f(b)) is com- 
patible with the ring operations of A. Thus / 

induces an isomorphism A/R df(A) (- Sec- 
tion F). 

If { AijiE, is a family of rings, the Cartesian 
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product A = niel Ai forms a ring under the 
componentwise operations (a,) + (bi) = (ai + bi) 
and (ai) =(aibi). This ring is called the direct 
product of the family of rings {Ai}i,,. The 
mapping pi:A-+Ai that assigns to each (a,) its 
ith component a, is called a canonical homo- 
morphism. For any set of homomorphisms 
h:B+Ai (iEI), there exists a unique homomor- 
phismf:B+A such that fi=pioffor each i. 

F. Ideals 

A subset of a ring A is called a left (right) ideal 

of A if it is a submodule of the left (right) A- 
module of A (- 277 Modules). In other words, 
a left (right) ideal J of A is an additive sub- 

group of A such that AJ c J (JA c J). Under 
the operations induced from A, J is a ring 
(however, J is not necessarily unitary). A sub- 
set of A is called a two-sided ideal or simply 

an ideal of A if it is a left and right ideal. 
For an ideal J of a ring A, we define a rela- 

tion R in A by aRboa-bsJ. Then R is an 
equivalence relation that is compatible with 
the operations of A. Each equivalence class is 
called a residue class modulo J, and the quo- 
tient ring AIR is denoted by A/J and called the 
residue (class) ring (or factor ring) modulo J. If 
it is a field, it is called a residue (class) field. 
Conversely, given an equivalence relation R 
that is compatible with the operations of A, 
the equivalence class of 0 forms an ideal J of 

A, and the equivalence relation defined by J 
coincides with R. 

If f: A+B is a ring homomorphism, then 
the tkernel off as a homomorphism of addi- 
tive groups forms an ideal J of A, and f in- 
duces an isomorphism A/J+f(A). It S is a 
subring and J is an ideal of a ring A, then S + 
J is a subring of A and S fl J is an ideal of S. 

Furthermore, the natural homomorphism S+ 
(S + J)/J induces an isomorphism S/S ll J+ 
(S + J)/J (isomorphism theorem). 

A left (right) ideal of a ring A is said to be 
maximal if it is not equal to A and is properly 
contained in no left (right) ideal of A other 
than A. Similarly, a left (right) ideal of A is said 
to be minimal if it is nonzero and properly 
contains no nonzero left (right) ideal of A. 

If e is an idempotent element of a unitary 

ring A, then 1 -e and e are orthogonal idem- 
potent elements, and A = Ae + A( 1 -e) is the 

direct sum of left ideals. This is called Peirce’s 
left decomposition. Peirce’s right decomposition 
is defined similarly. A left ideal J of A can be 

expressed as J = Ae for some idempotent 
element e if and only if there exists a left ideal 

J’ such that A = J + J’ is a direct sum decom- 
position. More generally, if e,, . . , e, are ortho- 

gonal idempotent elements whose sum is equal 

to 1,then A=Ae,+... + Ae, is the direct sum 
of left ideals. Conversely, if A = J, + . . . + J, is 
the direct sum of left ideals and 1= e, + . + 
e, (e,E Ji) is the corresponding decomposition 
of the unity element, then e,, . . . ,e, are ortho- 
gonal idempotent elements. In particular, if 
J i, . . . , Jn are two-sided ideals, then each Ji is a 
ring with unity element e,, and by a natural 
correspondence, the ring A is isomorphic to 
the direct product nyZ1 Ji. In this case, A is 
called the direct sum of ideals J,, . . . , J, and is 
denoted by A= @;=‘=, Ji, or A=CZ, Ji. 

A ring A is called a left (right) Artinian ring 
if it is tArtinian as a left (right) A-module (i.e., 
if A satisfies the tminimal condition for left 
(right) ideals of A). A ring A is called a left 

(right) Noetherian ring if it is tNoetherian as a 
left (right) A-module (i.e., if A satisfies the 
tmaximal condition for left (right) ideals of A). 
If A is commutative, left and right are omitted 
in these definitions. The property of being 

Artinian or Noetherian is inherited by quo- 
tient rings and the direct product of a finite 
family of rings, but not necessarily by subrings. 
For general rings, the maximal and minimal 
conditions for left (right) ideals are indepen- 
dent, but for unitary rings, left (right) Artinian 
rings are necessarily left (right) Noetherian (Y. 
Akizuki, C. Hopkins). 

G. Semisimple Rings 

The statement that a unitary ring A is tsemi- 
simple as a left A-module is equivalent to the 

statement that A is semisimple as a right A- 
module; in this case A is called a semisimple 

ring (- Section H). Every module over a semi- 
simple ring is also semisimple. A semisimple 

ring is left (right) Artinian and Noetherian. A 
semisimple ring is called a simple ring if it is 
nonzero and has no proper ideals except {0}, 

that is, if A is a quasisimple ring. Thus A is a 
simple ring if and only if A is a nonzero, uni- 

tary, quasisimple, left (right) Artinian ring. If A 
is a semisimple ring, then it has only a finite 
number of minimal ideals A,, . . . , A,, and A is 
expressible as the direct sum A = A, + . . + A,, 
where each Ai is a simple ring, called a simple 

component of A. Any ideal of A is the direct 
sum of a finite number of simple components 
of A. Quotient rings of a semisimple ring and 
the direct product of a finite number of semi- 

simple rings are also semisimple. 
Any left (right) ideal of a semisimple ring A 

is expressible as Ae (eA) for some idempotent 
element e, and Ae (eA) is minimal if and only if 

e is primitive. In particular, a minimal left 
(right) ideal is a simple left (right) A-module 
that is contained in a certain simple compo- 
nent. Two minimal left (right) ideals are iso- 
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morphic as A-modules if and only if they are 
contained in the same simple component. If ,&, 
1 < i < n, are the simple components of A, then 
for each simple left A-module M there exists 

a unique i such that A,M # {0}, and M is 
isomorphic to a minimal left ideal contained 
in Ai. 

If M is a finite-dimensional linear space over 
a (skew) field D, then the endomorphism ring 
A =&D(M) of M over D is a simple ring. Con- 

versely, for any ring A, the endomorphism ring 
D = &A(A4) of a simple A-module M is a (skew) 
field (Schur’s lemma). If A is a simple ring, then 
any simple A-module M can be considered as 

a finite-dimensional linear space over D = 
gA(M), and A is isomorphic to &,(M) (Wed- 

derburn’s theorem). Furthermore, if r is the 
dimension of M over D, then gD(M) is isomor- 
phic to the full matrix ring M,(D”) of degree 
r over the field D”, which is anti-isomorphic 
to D. The dimension r is also equal to the 

ilength of A as an A-module. The center of 

A = G,(M) is isomorphic to the center of D, 
which is a commutative field. Thus a simple 
ring is an associative algebra over a commuta- 
tive field (- 29 Associative Algebras). 

H. Radicals 

Let A be a ring. Then among ideals consisting 
only of quasi-invertible elements of A, there 
exists a largest one, which is called the radical 

of A and denoted by %(A). The radical of the 
residue ring A/%(A) is (0). A ring A is called a 
semiprimitive ring if ‘%(A) is {O}. On the other 
hand, A is called a left (right) primitive ring if it 
has a tfaithful simple left (right) A-module. The 

radical ‘%(A) is equal to the intersection of all 
ideals J such that A/J is a left (right) primitive 

ring. In a unitary ring A, %(A) coincides with 
the intersection of all maximal left (right) 
ideals of A. Furthermore, in a left (right) Ar- 
tinian ring A, %(A) is the largest nilpotent 

ideal of A, and the condition ‘%(A) = {0} is 
equivalent to the condition that A is a semi- 

simple ring. 
Among ideals consisting only of nilpotent 

elements of A, there exists a largest one, which 
is called the nilradical (or simply the radical) 
and denoted by %(A) (- 67 Commutative 
Rings). The nilradical of A/‘%(A) is (0). In 
general, %(A) is contained in %(A), and if A is 

left (right) Artinian, we have %(A)= %(A). A 
ring A is called a semiprimary ring if A/%(A) is 
left (right) Artinian and therefore semisimple. 

Furthermore, a ring A is called a primary ring 
(completely primary ring) if A/%(A) is a simple 
ring (skew field). A primary ring is isomorphic 

to a full matrix ring over a completely primary 
ring. 
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369 (III.1 3) 
Rings of Polynomials 

A. General Remarks 

In this article, we mean by a ring a tcommuta- 
tive ring with +unity element. Let R be a ring, 
and let X,, . , X, be variables (letters, indeter- 
minates, or symbols). Then the set of +poly- 
nomials in Xi, . , X, with coefficients in R is 
called the ring of polynomials (or polynomial 
ring) in n variables Xi, . , X, over R and is 
denoted by R[X, , . , X,] (- 67 Commuta- 

tive Rings; 284 Noetherian Rings; 337 Poly- 

nomials; 368 Rings). On the other hand, when 
R and R’ are rings with common unity element 
and R c R’, then for a subset S of R’ we denote 
the subring of R’, generated by S over R, by 
R[S]. When S= {xi,. , xn}, then there is a 
homomorphism cp of the polynomial ring 
R [X,, , X,] onto R [S] defined by 

If cp is an isomorphism, then xi, . . ,x, are said 
to be algebraically independent over R; and 

otherwise, algebraically dependent over R. 
Thus the ring of polynomials in n variables 

over R may be regarded as a ring R [x, , . ,x,] 
generated by a finite system of algebraically 
independent elements xi, . ,x, over R. 
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B. Ideals, Homogeneous Rings, and Graded 
Rings 

Consider the polynomial ring R [X] = R [X, , 
. . . , X,] in n variables over a ring R. A poly- 
nomial fcR[X] is a tzero divisor if and only if 

there is a nonzero member a of R for which af 
=O. If a is an tideal of R, then R[X]/aR[X] 2 
(R/a) [Xi, . . ,X,1. Therefore, if p is a tprime 
ideal of R, then pR [X] is a prime ideal of 
R[X]. If R is a tunique factorization domain 
(u.f.d.), then R[X] is also a u.f.d. If R is a nor- 
mal ring, then so is R[X]. By the tHilbert 
basis theorem, if R is tNoetherian, then R [X] 
is also Noetherian. If m is the tKrul1 dimen- 
sion of R, then Krull dim R [X] > n + m; the 
equality holds if R is Noetherian. If R is a 

field, then R[X] is not only a u.f.d. but also a 
tMacaulay ring. 

A homogeneous ideal of R [X] is an ideal 
generated by a set of thomogeneous poly- 
nomials fA (the degree of fi may depend on 2). 
When a is a homogeneous ideal, an element in 
R [Xl/a is defined to be a homogeneous ele- 
ment of degree d if it is the class of a homoge- 
neous polynomial of degree d modulo a, and 
the quotient ring R[X]/a is called a homoge- 
neous ring. More generally, assume that a ring 
R is, as a tmodule, the tdirect sum C,?e Ri 
of its submodules Ri (i = 0, 1,2, . . . ) and that 

RiRjc Ri, for every pair (i,j). Then we call R 
a graded ring, and an element in R, a homo- 
geneous element of degree d. (In some literature 

the term graded ring is used in a wider sense; 
see below) In a graded ring R, if an ideal is 

generated by homogeneous elements, then the 
ideal is called a homogeneous ideal (or graded 
ideal). In a graded ring R = C&Ri, if the ideal 

Clpa_i Ri has a finite basis, then R is generated 
(as a ring) by a finite number of elements over 
its subring R,. Therefore, the graded ring 
R = x Ri is Noetherian if and only if R, is 

Noetherian and R is generated by a finite 
number of elements over R,. In this case, every 
homogeneous ideal is the intersection of a 
finite number of homogeneous tprimary ideals, 
and every prime divisor of a homogeneous 
ideal is a homogeneous prime ideal. 

The notion of a graded ring is generalized 
further as follows: A ring R is graded by an 
additive semigroup I (containing 0) if R is 

Cier Ri (direct sum) and if RiRjc Ri+j. 

C. Zero Points 

(1) Zero Points in an AfRne Space. We consider 
the polynomial ring K [X] = K [Xi, . . . , X,] 
in n variables over a held K and a field R 

containing K. A point (a,, . . , a,) of an n- 
dimensional tafhne space R” = {(a,, . . . , a,) 1 aie 

a} is called a zero point of a subset S of K[X] 

iffb, ,..., a,)=Oforeveryf(X, ,..., XJES. 

A point (a, , . . . , a,) is called algebraic over K 
(K-rational) if every ai is algebraic over K (is 
an element of K). In this way we define alge- 
braic zero points and rational zero points. 
Zero points of S are zero points of the tideals 
generated by S. Therefore, in order to investi- 
gate the set of zero points of S, we may restrict 

ourselves to the case.where S is an ideal. De- 
note by V(S) the set of zero points of S. If a,, 
a, are ideals of K[X], then (i) Y(a, II a,) = 
V(a,a,)= V(a,)U V(a,); (ii) V(a, +a,)= V(a,)fl 
l’(a,); and (iii) if a, and a2 have a common 
tradical, then V(a,)= V(a,). 

(2) Zero Points in a Projective Space. A point 
(la,, . . , da,,) of an (n - l)-dimensional tprojec- 

tive space over R (with a,sR, some ai#O, 1~0, 
2 # 0) is called a zero point of a polynomial 
f(X,, . . ,X,) if, f being expressed as Cfi with 
homogeneous polynomials fi of degree i, 

f;@ i, . . . , a,) = 0 for every i (this condition 
holds if and only if f&z,, . . , da,) = 0 for any 
element I in R, provided that D contains in- 
finitely many elements). Therefore, zero points 
of a subset S of K[X] are zero points of the 
smallest homogeneous ideal containing S. 
Thus, in order to study the sets of zero points, 

it is sufficient to consider sets of zero points of 
homogeneous ideals, and propositions similar 
to (i), (ii), and (iii) of part 1 of this section hold 
for homogeneous ideals a,, a2. 

D. The Normalization Theorem 

Let a be an ideal of theight h in the poly- 

nomial ring K [X] = K [Xi, . . , X,] in n vari- 
ables over a field K. Then there exist elements 
Yi , . . , K of K[X] such that (i) K[X] is tin- 
tegraloverK[Y]=K[Y,,...,Y,]and(ii) 
Y 1, ..., K generate a n K [ Y] (normalization 

theorem for polynomial rings). 

Using this theorem, we obtain the following 
important theorems on finitely generated 
rings. 

(1) Normalization theorem for finitely gen- 
erated rings. If a ring R is finitely generated 
over an integral domain I, then there exist an 

element a ( # 0) of I and algebraically indepen- 
dent elements zi, . . . , zt of R over I such that 
the king of quotients R, (where S = {a” 1 n = 
1,2, . . . }) is integral over I [a-‘, zi, . . . , z,]. 

(2) If p is a prime ideal of an integral domain 

R that is finitely generated over a field K, then 
(height of p) + (tdepth of p) = (ttranscendence 
degree of R over K), and the depth of p coin- 
cides with the transcendence degree of R/p 
over K. In particular, if m is a maximal ideal 
of R, then R/m is algebraic over K. 
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(3) Hilbert’s zero point theorem (Hilbert 
Nullstellensatz). Let a be an ideal of the poly- 
nomial ring K [X] = K [X, , , X,] over the 

field K, and assume that the field Q containing 
K is talgebraically closed. If f~ K [X] satisfies 

the condition that every algebraic zero point 
(- Section C) of a is a zero point of ,L then 
some power off is contained in a. 

E. Elimination Theory 

Let fi, , fN be elements of the polynomial 
ringR=I[X ,,..., X,,Y, ,..., Y,] inm+n 
variables over an integral domain I. For each 
maximal ideal m of I, let cp,,be the canonical 
homomorphism with modulus m, and let R,,, 

be an algebraically closed field containing I/m. 
Let w,:,, be the set of points (ai, . , a,) of the n- 
dimensional afline space fi!, over R,,, such that 
the system of equations cp,,,(f;)(X,, , X,, 
a ,,..., a,)=O(i=1,2 ,..., N)hasasolutionin 

0:. To eliminate X,, . , X, from fi, ,fN is 
to obtain g( Y,, ) Y,)E I[ Y, , , Y,] such that 

every point of VI, is a zero point of q,,,(g) for 
every m; such a g (or an equation g = 0) is 
called a resultant of fi, . . . ,fN. The set a of 
resultants forms an ideal of I[ Y,, . . . , Y,], and 
{ gi , . , g,,,} is called a system of resultants if 

the radical of the ideal generated by it coin- 
cides with a. If I is finitely generated over a 
field, then, denoting by b the radical of the 
ideal generated by fi, , fN, we have a = b n 
1[Y,, . , Y,l. In particular, let I be a field. It is 

obvious that I$,, is contained in the set V of 
zero points of a. However, it is not necessarily 

true that V= I$,,. If every L is homogeneous 
in X,, . . , X, and also in Y,, . , Y,, then we 
have V= yo,. 

If we wish to write a system of resultants 
explicitly, we can proceed as follows: Regard 
the fi as polynomials in Xi with coefficients in 

I[X,, . . . , X,, Y,, , Y”], and obtain resultants 
R(fi,h) by eliminating Xi from the pairs ,fi, fi. 

Then eliminate X, from these resultants, 
and so forth. To obtain R(fi,fj), we may use 
Sylvester’s elimination method. Namely, let f 
and g be polynomials in x with coefficients 
inI:f=a,x”+a,x”-‘+...+a,,g=h,x”+ 

b, xn-’ + . + b,. Let D(h g) be the following 
determinant of degree m + n: 

a, a, “. a, 0 . 

0 a, “. a,-, a, 0 “. 

n . . 
. 

0 . . 0 a, a, ... 

c 
b, b, ... bn-l bn 0 

. . . 
In 

II . 
110 ... 0 b, b, ... 

Then D(A g) = 0 if and only if either .f and g 
have a common root or a, = b, = 0. Therefore, 
if I is a u.f.d. and a, and b, have no common 

factor, then D(A g) is the required resultant 
R(f,g). (For other methods of elimination see 
B. L. van der Waerden, Algebra, vol. II. For 

criteria on whether a finitely generated ring 
over a field is tregular - 370 Rings of Power 

Series 8.) 

F. Syzygy Theory 

(1) Classical Case. The notion of syzygy was 
introduced by Sylvester (Phil. Trans., 143 

(1853)), then generalized and clarified by Hil- 
bert [3], whose definition can be formulated 
as follows: Let R = k[X,, , X,] be a poly- 
nomial ring of n variables over a field k. R 
has the natural gradation (i.e., R is a graded 
ring in which each Xi (1 Q i < n) is of degree 1 
and elements of k are of degree 0). Let M 
be a finitely generated graded R-module. If 
fi, . ,f, form a minimal basis of M over 
R consisting of homogeneous elements, we 
introduce m indeterminates u,, . . , u, and 

Put F=Ci <jsrn Ruj, the free R-module gen- 
erated by ui, . . . . u,. Set deg(uj) = deg(&) (1 d 
j < m) and supply F with the structure of a 
graded R-module. Let cp be the graded R- 

homomorphism of F onto M defined by cp(uj) 
=fj. Then N = Ker(cp) is a graded R-module 
uniquely determined by M up to isomorphism 
(of graded R-modules); N is called the first 
syzygy of M. For a positive integer r, the rth 
syzygy of M is inductively defined as the first 
syzygy of the (r- 1)st syzygy of M. The Hilbert 
syzygy theorem states that for any finitely 

generated graded R-module M, the nth syzygy 
of M is free. In other words, M admits a free 
resolution of length <n, i.e., an exact sequence 

of the form 

where v < n and each F(‘) (0 < i < v) is a finitely 
generated free graded R-module. It follows 
that if M, denotes the homogeneous part of 
degree d in M, there exists a polynomial P(X) 

of degree <n - 1 such that dim,(M,) = P(d) for 
sufficiently large d; P(X) is called the Hilbert 

polynomial (or characteristic function) of the 

graded R-module M. 

(2) Generalization by Serre. The syzygy theory 
was generalized by J.-P. Serre [2] as follows: 
Let R be a Noetherian ring and M a finitely 
generated R-module. Then we can find a fi- 
nitely generated free R-module F and an R- 
homomorphism cp of F onto M. The kernel of 

cp, called a first syzygy of M, is not uniquely 
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determined by M. However, if N, and N, are 
first syzygies of M, then there exist finitely 
generated tprojective R-modules P1 and PZ 
such that N, @ P, z N2 @ P2 (- 277 Modules 

K). For a positive integer r, an rth syzygy is 
defined inductively as in (1) of this section. An 
important result of Serre is that R is a tregular 
ring of tKrul1 dimension at most n if and only 
if an nth syzygy of every finitely generated R- 
module is tprojective. 

(3) Serre Conjecture. D. Quillen (Inuertiones 
Math., 36 (1976)) and A. Suslin (Dokl. Akad. 

Nauk SSSR (26 Feb. 1976)) solved the Serre 
conjecture by proving that every projective 
module over a ring of polynomials over a field 

is free. 

(4) Special Cases. In the following special 
cases, we can define the first syzygy of M 
uniquely up to isomorphism: (i) R is a Noe- 
therian tlocal ring and M is a finitely gen- 
erated R-module; and (ii) R is a graded Noe- 
therian ring xdb0 R,, where R, is a field and 
M is a finitely generated graded R-module [4]. 
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370 (111.14) 
Rings of Power Series 

A. Rings of Formal Power Series (- 67 Com- 
mutative Rings; 284 Noetherian Rings; 368 

Rings) 

Let R be a commutative ring with unity ele- 

ment 1. Let Fd be the module of thomogeneous 
polynomials of degree a’ in X,, . . . , X, with 
coefficients in R. A formal infinite sum Cdm,,, ad 

=a,+a,+... +a,+...+ ofelementsa,EF,is 

called a formal power series or simply power 

series in n variables X, , . . . , X, with coefficients 
in R, and ad is called the homogeneous part of 

degree d of the power series. The homoge- 
neous part a, of degree zero is called the 
constant term. Addition and multiplication 

are defined by (C ad) + (I: bd) = C(ad + bd), 

(C Q)(C bJ=C&+j=daiQ BY these.oper- 
ations, the set of power series forms a com- 
mutative ring, which is called the ring of 
(formal) power series (or (formal) power series 
ring)inX,,..., X,, over R and is denoted by 
R[[X,, . . . ,X,1] or R{X,, . . ,X,}. If there is a 
natural number N such that ad = 0 for every d 
> N, then the power series x ad is identified 
with the polynomial a, + a, + . . . + aN. Thus 

RCX 1 ,..., X,]cR[[X, ,..., X”]].SetX= 

IZiXiR[CXl, . . ..XJl. Then R[[Xl, . . ..XJl 
is tcomplete under the X-adic topology 
(- 284 Noetherian Rings B). 

Assume that R’ is a commutative ring con- 
taining R and having a unity element in com- 
mon with R, a’ is an ideal of R’ such that R’ is 
complete under the a’-adic topology, and 
X 1, . . , x, are elements of a’. Then an infinite 

sum Cci ,,,, i,~f’ . . . x,$ (each ij ranges over 
nonnegative rational integers and c~,...~,ER) 

has a well-defined meaning in R’ (namely, if S, 
is a finite sum of these terms such that C ij < d, 
then the infinite sum is defined to be lim,,,S,,). 
This element x ci, ...i,~f’ . . x,$ is also called a 

. . 
power series m x1, . . . , x, with coefficients in 
R. The set of such power series in x1, . . . ,x, 
is a subring of R’, called the power series 
ring in x 1, . , x, over R and denoted by 

RCCxl,..., x.11 or R{x, , . . . ,xn}. Defining cp by 
cp(Cci ,... i,X$ . ..X~~)=~C~~.,,~,X~’ . ..x$. we 
obtain a ring homomorphism cp: R[ [X,, . . , 

Xnll-RCCxl, . ..> x.]]. If cp is an isomorphism, 

then we say that x1, . . . , x, are analytically 
independent over R. 

If iii is a tmaximal ideal of the formal power 
series ring R[[X,, . . ..X.,]], then nt=?iillR is 

a maximal ideal of R and iii is generated by m 
and X 1, . . . , X,. An element f of the power 

series ring is tinvertible if and only if its con- 
stant term f0 is an invertible element of R, and 
in this case f-’ = C&f;“-’ .(fo-f)“. If R 
is one of the following, then R[ [X,, . . . , X.11 is 

also of the same kind: (i) YNoetherian ring, (ii) 
tlocal ring, (iii) tsemilocal ring, (iv) tintegral 

domain, (v) tregular local ring, (vi) Noetherian 
tnormal ring. But even if R is a tunique fac- 
torization domain (u.f.d.), R[ [X,, . . . , XJ] 
need not be a u.f.d. (If R is a field, or more 
generally, if R is a regular semilocal ring, then 

RCCX,,..., X.11 is a u.f.d.). In particular, a 
‘formal power series ring k[ [Xl] in one vari- 
able X over a field k is an integral domain 
whose field of quotients is called the field of 

(formal) power series (or (formal) power series 
field) in one variable X over k and is denoted 
by k((X)); an element of k((X)) is expressed 
uniquely in the form C~,a,X” (a,~k,rcZ). 



370 B 
Rings of Power Series 

1376 

B. Rings of Convergent Power Series 

Let K be a field with multiplicative +valuation 
L’ (for instance, K = C, the complex number 

field, and t.(z) = 1~~1 for ~EC). A formal power 
seriesf(X, ,..., X,)=Ccil,,,i”X;l...Xbnis 
said to be a convergent power series if there 
are positive numbers r,, . . . , r,,, M such that 
u(ci, ,,,i,)r;l rtn ,< A4 for every (il, , i,). 

In this case, if ui E K and ~(a,) < r;, then 
2 ci, ,.,i,afl _. u,$ has its svrn in the tcompletion 
of K. The set of convergent power series is a 

subring of K[ [X,, , X,,]]. It is called the ring 
of convergent power series (or convergent power 

series ring) in n variables over K and is de- 
noted by K((X,, _.., X,)) or K{X,, ._., X,). 
It is a regular local ring of +Krull dimension 
n. Hence it is a u.f.d. and its completion is 

K [[X,, _. , X,]]. If L‘ is a +trivial valuation, 
thenK((X ,,..., X,))=K[[X ,,..., X,]]. 

Weierstrass’s Preparation Theorem. For an 
element ,f= C c,, ,,.i, xfl...xgwK((X I,..., 

X,)), assume that c,,,,,i=Ofor i=O, l,..., 

Y- 1 and cO. ,Or #O. Then for an arbitrary 

element g of K ((X, , , X,)), there exists a 
unique q E K ((X, , , X,)) such that g - 
~~EC:Z~X;K((X,, ,X,-,)>. In partic- 
ular (considering the case where g = XL), there 
is an invertible element u of K ((X, , , X,)) 

such that .fu =,f, +.f, X, + +,f,-, X,l-’ + 

X: (f;~K((x,,...,x,~,))). 
By this theorem, we see easily that if n is an 

ideal of theight h of K ((X,, ,X,)), then 
K ((X,, , X,))/a is isomorphic to a ring that 
is a finite module over K ((X,, , Xnm,)). 

If Q is a +prime ideal of K (( X, , , X,)), 
then QK [ [X, , , X,]] is a prime ideal. 

The Jacobian Criterion. Let K be a field, and 

let R be the ring of polynomials K [X,, . , X,], 
the ring of formal power series K [ [X, , . , 

X,]], or the ring of convergent power series 
K ((X, , . ,X,)) in n variables X,, , X,, 

over K. tPartia1 derivatives ?/c?Xi are well 
defined in R. For ,fl, ,f,~ R, a iJacobian 
matrix J( fi, . , ,f;) is defined to be the t x n 
matrix whose (i, j)-entry is <fi/aXj. Let Q be a 

+prime divisor of the ideal CifiR, and let q be 
a prime ideal containing Q. If the +rank of 
(J(,fi. ,f,) modulo q) is equal to the height 
of Q, then the ring R,/Z,f, R, is a regular local 
ring. The converse is also true if K is a tperfect 
field (if K is not a perfect field, then, modifying 
J(,f,, ,f,), we can have a similar criterion 

Cll). 

C. Hensel Rings 

A Hensel ring (or Henselian ring) is a com- 
mutative ring with unity element satisfying the 

following two conditions: (i) R has only one 

maximal ideal m (i.e., R is a tquasilocal ring); 
and (ii) if ,I; go, h, are manic polynomials in 
one variable x (here, a polynomial in x is 
called manic if the coefficient of the term of the 
highest degree is 1) such that f-g,h,ErnR[x], 
g,R[x] +h,R[x] tmR[x] = R[x), then there 
are manic polynomials 9, hc R[x] such that 
,f= gh and g 3 go, h 3 h, modulo m. 

Important examples of Hensel rings are 
complete local rings, rings of convergent 

power series, and tcomplete valuation rings. 
When R is a Hensel ring, a commutative ring 
R’ with unity element such that R’ is a finite R- 

module is the direct sum of a finite number of 
Hensel rings. For any quasilocal ring Q, there 
exists a Hensel ring &, called the Henseliza- 
tion of Q (for details - Cl]), for which the 
following statements hold: (i) 0 is a ifaithfully 
flat Q-module; (ii) if tn is the maximal ideal of 
Q, then the maximal ideal of 0 is nto, and 
&me = Q/mQ; (iii) if R is a Hensel ring that 
contains Q and has a maximal ideal n, and 

n n Q = m, then there is one and only one Q- 
homomorphism q of 0 into R; (iv) if Q is a 
‘normal ring, then the Q-homomorphism q is 

an injection; (v) if Q is a local ring. then e is 
also a local ring, and Q is dense in 0. 
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371 (XVIII.1 0) 
Robust and Nonparametric 
Met hods 

A. General Remarks 

Robust and nonparametric or distribution-free 
methods are statistical procedures specifically 
devised to deal with broad families of proba- 
bility distributions. 

In the theory of statistical inference it is 
usual to assume that the probability distri- 
bution of the population from which the ob- 

served values are chosen at random is specified 
exactly except for a small number of unknown 

parameters (- 401 Statistical Inference). In 
practical applications, however, it often hap- 

pens that the assumptions made for the model, 
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especially those about the shape of the distri- 
bution, may not hold for the actual data. In 

such cases robust and/or nonparametric pro- 
cedures that do not require exact knowledge of 
the shape of the distribution and yet prove to 
be relatively efficient or valid are required. The 
term nonparametric or distribution-free is used 
for problems of testing hypotheses, and the 
term robust is mainly used for problems of 
point estimation (- 396 Statistic; 399 Statis- 
tical Estimation; 400 Statistical Hypothesis 

Testing). 
Although the idea of the sign test appears in 

the work of J. Arbuthnot (1710), the theoret- 
ical foundation for nonparametric tests was 
first given in the proposals for the permutation 
test by R. A. Fisher (1935), the rank test by F. 
Wilcoxon (1945), and the test based on U- 
statistics by H. B. Mann and D. R. Whitney 
(1947). In the years that followed two impor- 

tant ideas appeared: the concept of asymptotic 
relative efficiency by E. J. G. Pitman (1948) 
and the development of the theory of U- 
statistics by W. Hoeffding (1948). H. Chernoff 
and I. R. Savage (1958) showed, in studying 

the asymptotic distribution of a class of rank 
statistics, that the asymptotic efficiencies of 
nonparametric tests are incredibly high. These 
findings accelerated the studies of nonpara- 
metric tests; recent progress is summarized in 
the books by J. Hgjek and Z. $idik Cl], M. L. 
Puri and P. K. Sen [2], R. H. Randles and 

D. A. Wolfe [3], and P. J. Huber [6]. 
On the other hand, G. E. P. Box (1953) first 

coined the term robustness in his sensitivity 
studies, in which he investigated how the 
standard statistical procedures obtained under 

certain assumptions are influenced when such 
assumptions are violated. Two papers by J. W. 
Tukey (1960, 1962) provided the initial founda- 
tion for robust estimation. J. L. Hodges and 
E. L. Lehmann (1963) noticed that estimators 
of location could be derived from nonpara- 
metric tests and that these estimators have 
sometimes much higher efficiency than the 
sample mean. A similar study for scale was 

made by S. Kakeshita and T. Yanagawa 
(1967). Huber (1964) proposed an estimator of 
location by generalizing the method of least 

squares. Along with the idea of the influence 
curve introduced by F. R. Hampel(l974) the 
estimator proposed by Huber has become a 
core of subsequent studies of robust estimation. 
K. Takeuchi (1971) proposed an adaptive 
estimate that is asymptotically fully efficient 

for a wide class of underlying distribution 
functions. The developments of the theory of 
robust estimation are reviewed by Huber 

[4-61 and R. V. Hogg [7]. Various proposed 
estimators are compared in the book by D. F. 
Andrews et al. [S]. 

B. The One-Sample Problem 

Let F(x) be a tdistribution function of a tran- 
dom variable X, (X1, . . ,X,) be an indepen- 
dent trandom sample of size n from F(x), and 

(x 1, . . . , x,) be an observed sample value. The 
100~ percentile of F is denoted by tp, i.e., 
F(<,,) =p. For testing the thypothesis H: 5, < 

5’ against the talternative hypothesis A : 
t,> to, the following procedure is proposed. 
Let i(x,, . . ,x,) be the number of xi that are 
greater than co. A test procedure by the fol- 
lowing ttest function cp is tuniformly most 

powerful in some neighborhood of 5, = 5” for 
the double exponential distribution, where 
cp(x,, . . ,x,) is defined by the equations 

1 when i(xl ,..., x,)>c, 

cpb,, . . . . x,)= 

1 

a when i(xl ,..., x,)=c, 

0 when i(x,, . . ..x.)<c 

(0 < a < 1, 0 < c < n). This procedure is called 
the sign test. 

Suppose that F(x) is symmetric about x = 

lliz. Let R: be the rank of IX,- 5’1 among 

Ix1-5°1,..., IX.-t”l, and let Y(t)= 1,0 ac- 
cording as t > 0, < 0. Set 

ux,, ..‘, X,)= f: a,(R+)Y(Xi-to) 
i=l 

for some weights a,(l), . . , a,(n). The following 

procedure rp, called the signed rank test, is 
also used for testing the hypothesis H: <Ii2 < 5’ 
against the alternative hypothesis A: <1/Z > 5’: 

1 when &(x1, . . . . x,)>c, 

dx,,..., x,)= 

1 

a when &(x1 ,..., x,)=c, 

0 when &(x1, . . . . x,)<c. 

The procedure with a,(i) = i is frequently used 
and is called the Wilcoxon signed rank test, 
which is the uniformly most powerful rank 
test in a neighborhood of (I,2 = 5’ for F(x) = 

l/( 1 + eex), the logistic distribution. 

C. The Two-Sample Problem 

Let F and G be continuous distribution func- 
tions of random variables X and Y, respec- 

tively, (X,, . . . ,X,,,) and ( Y1, . . . , Y.) be the corre- 
sponding random samples, and (x 1, . . . , x,,,) and 
(yl, . . , y.) be the respective sample values. 
Consider the problem of testing the hypothesis 
H: F(x) = G(x) against the alternative hypoth- 
esis A, : F(x) f G(x) or A,: F(x)> G(x) for all x 

and F(x) f G(x). When the alternative hypoth- 
esis A, is true, we say that the random vari- 
able Y is stochastically larger than X and write 

F > G. A frequently used example of such an 
alternative hypothesis A, is G(x) = F(x - e), 0 
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> 0. Let x be the family of all strictly increas- 
ing continuous functions. Then the hypothesis 
H and the alternative hypothesis A, are in- 

variant under the group of transformations 
of the form xf=h(xJ, y;=h(yj) (i= 1, . ,m; j 
= 1, . , n; he ,X). The tmaximal invariant 

statistic in this case is the rank (R,, . , R,) 
of (X,, , X,) or the rank (S,, . . . , S,) of (Y,, 
. ..) Y.) when the combined sample (X,, . . . , 

X,; Y,, , YJ is ordered in an ascending order. 
If a test function cp(x,, . . . ,x,; y,, , y,) satis- 
fies PJF, F) < CI and PJF, C) > c( for any F > G, 
then cp is considered a desirable test, where 

p#‘,G)= 
JJ 

CP(X,,...,X,;Y,,...,Y.) 

x n dF(xi) jj dG(Yj). 
I i 

Lehman& Theorem. If cp satisfies the con- 

ditions stating that y? > yj (j = 1, . . . , n) yield 

cp(x,,...,x,;Y:,...,Y,*)~cp(x,,...,x,;Y,,...,Y,), 
then PJF, G) > P,(F, F). If in addition cp is a 

tsimilar test, then cp is unbiased (- 400 Statis- 
tical Hypothesis Testing C). 

The Wilcoxon test (or the Mann-Whitney U- 
test) is described by a test function cp = 1 when 

U>candcp=OwhenU<c,whereUisa+U- 
statistic defined by 

with $(x,y)= 1 when xiy and $(x,y)=O 
when x > y. This test is similar and unbiased. 

Testing the hypothesis H : F = G against 
the alternative hypothesis A : F # G = F(x/a), 
CT> 1, is another two-sample problem, for 
which the following test was proposed by T. 
Tamura. The test function is given by cp = 
lforU>candcp=OforU<c,whereU= 

(y)-‘(;)-’ Ci<i, Cj<f $(xi, xi,; Yj> Yj,) with $(~a u’; 
v,v’)=l whenv<u<v’,v<u’<v’orv’<u< 
v, v’ < ti <v and $(u, u’; v, v’) = 0 otherwise. 

The following statistic TN is used frequently 
in nonparametric problems. Let x1, . ,x,; 

y,, . , yn be arranged in order of magni- 
tude. Set zk = + 1 or 0 when the kth value (k = 
1,2, , n + m) in the arrangement is an xi or 
yj, respectively. For a given set of N = n + m 
reals {ek}, TN is defined by T,=m-’ C,“=, ekzk. 
Set HN(x)=&F,,,(x)+(l -QG,,(x), where 
F,(x) and G,(x) are the iempirical distribution 
functions based on (x,, ,x,,,) and (y,, . , y,), 

respectively, and 0 < I, -i A., = m/N < 1 - I, < 1. 
Then TN is represented by the integral 

J 
J,Uf,(x))~Fm(x) 

with ek = J,(k/N). Chernoff and Savage [9] 
proved that under some regularity conditions 

the asymptotic distribution of TN is normal 
and that the asymptotic mean p and the vari- 

ante o2 of TN are given by 

P = 
J 

J(H(x)) Wx), 

Na2=2(1 -i) IJJ W4(l -G(Y)) X<Y x J’(H(x))J’(H(y))dF(x)dF(y) 

1-i 

+T JJ F(x)(l -F(Y)) 

X<Y 

x J’(H(x))J’(H(y))dG(x)dG(y) a 

where J(H) = lim iv-m J,(H), H(x) = Nx) + 
(1 - A)G(x), and I = lim 1,. When tnk = k/N, the 
statistic TN is equivalent to the +U-statistic in 

the Wilcoxon test. When ek is the mean E(Z,) 
of the kth order statistic Z, in an independent 

sample of size N from N(0, l), then the test by 
TN is called the Fisher-Yates-Terry normal 
score test. When J is the inverse function of the 
distribution function ‘of N(0, l), then the test is 
called the van der Waerden test. 

D. The k-Sample Problem 

Let (X,, j = 1, . . , ni) be a random sample of 
size ni from the population with a distribu- 

tion function Fi(x) for each i = 1, , k. The k- 
sample problem is concerned with testing the 

hypothesis H: F,(x) = . = Fk(x) against an 
alternative hypothesis A,: not all the F,(x) 
are equal, A,: F,(x) = F(x - Q,) with ei f B, or 
A,: F,(x) = F(x/ai) with ai$ (T. Several tests have 
been proposed for this problem, using quadra- 
tic forms of the vector-valued U-statistic U = 
(U ‘, , Uk) whose coordinates U’ are defined 

by means of a function 

*TX ll,...,Xlm,,;...;Xkl,...rXkmxi, 1 i=l,...,k. 

WhenN=Cni-,oowithni=piN,O<pi<l,and 

C pi = 1, then 

V=(JN(U’-E(U’)),...,JN(Uk-E(Uk))) 

has asymptotically a tmultivariate normal 

distribution N(0, ,?J. Let B be the projection 
matrix corresponding to the eigenspace for the 

zero eigenvalues of the matrix ,E, and let A be 
a matrix such that AB = 0, CA = I .- B. The 
statistic VA’V has asymptotically a tnoncen- 
tral chi-square distribution with degrees of 
freedom = rank C. Several kinds of test repre- 

sented by a critical region of the form VAV’ > 
c are proposed, among which the Kruskal- 
Wallis test is a particular one having 

ii(x,:...;xk)=~~ii(x,,xi). i:=l,...,k, 
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as basic functions, where 6(x, y) = 1 when x < y 
and 6(x, y) = 0 otherwise. 

E. Asymptotic Relative Effkiency of Tests 

If there is more than one test procedure for a 

given testing problem, then one may wish to 
compare these procedures. Let {cp,} and { &} 
be two sequences of level tl tests, where cp,, and 

$” are test functions based on a sample of 
size n. The tpower functions of (P” and $” are 
denoted by p(0 1 cp,) and p(0) $J, respectively. 
Let 0 be a real parameter and {0,} be such that 
&+0, as i+co. Consider a hypothesis 0=0, 
and a sequence (0,) of alternative hypotheses. 
If, for any increasing sequences {n,} and {nl} 
of positive integers satisfying tl < lim p(e, ) cp,,) = 

limB(eiI~~,,:)<l,limn~lni(=e({cp,},{~~,,)),say) 

exists and is independent of u and lim fi(@,I cp,,), 
then e is called Pitman’s asymptotic relative 
efficiency of { cp,} against {IL,}. Suppose further 

that the tests {cp,} and {&} are based on sta- 
tistics T. = t.(X) and T,,* = t:(X), respectively, 
in the following manner: 

q,(x)= 

1 

1 when t,(x)>c, 

a when tn(x)=c, 

0 when t,(x)<c, 

1 

1 when t:(x) >c*, 

Icl,(x)= b when t,*(x) =c*, 

0 when t,*(x)<c*, 

whereX=(X, ,..., X,)andx=(x, ,..., x,). Put 

0, = 0 and 0, = k/& (k = constant) for simplic- 
ity. If T, and T”* are asymptotically normal, 
then under some conditions e is given by the 

formula 

As an example, consider a two-sample prob- 
lem on a tlocation parameter. If the popula- 
tion distribution is normal and the Wilcoxon 

test is used to test the hypothesis of equality of 
means, then its asymptotic relative efficiency 
against Student’s test is 3/n. For the same 
problem, the asymptotic relative efficiencies of 
the Fisher-Yates-Terry normal score test and 
the van der Waerden test against Student’s test 
are both unity. For the hypothesis of equality 
of means in the k-sample problem, the asymp- 
totic relative efficiency of the Kruskal-Wallis 
test against the F-test is 3/n, provided that 
the sample is distributed normally. 

F. Kolmogorov-Smirnov Tests 

Let F,(x) be the empirical distribution function 
based on a random sample of size n from 

F,(x). Set 

dn=swIF&)--&)I, 

4 = sup(F,(x) - E&4), 

s,= sup 
F,(x) - F,(x) 

(I < F&G F,(x) . 

Then 

=,=g, ( -l)ke-Zk2rZ, 

Ii-Ii P,(D,<z/&)=K(z)= 1 -e-“‘, 

x(2k+l)-‘e- ((Zk+l)*n*/E)((l-o)/o)r* 

e-‘*‘2dt. 

The statistics d,, D., s,, S, are frequently used 
to test the hypothesis F(x) = F,(x). (This prob- 
lem is called testing goodness of fit.) 

In a two-sample problem, let F,(x) and 
G,(x) be two empirical distribution functions 
based on samples of sizes m and n from F(x) 
and G(x), respectively. Set 

d,,,=supIF,(x)-G,(x)l, 

On,. = sup(l;,(x) - G,(x)). 

If the hypothesis F = G is true, we have 

lim P,(d,,, <z/,/$ = L(z), 

limP,(D,,,<z/JN)=K(z), 

provided that m and n tend to co so that N= 
mn/(m + n)+ co and m/n is constant. Taking 
account of these facts, d,,, and D,,,” are used 
to test the hypothesis F = G. The tests using 
the statistics d,, D., d,,,, D,,,, are called 
Kolmogorov-Smirnov tests. 

G. Interval Estimation 

Let(X,,..., X,) be an independent random 
sample from the population with a distri- 

bution function F(x - 0), where 0 is an un- 
known location parameter, and (x,, . . . , x,) 
be its observed value. Suppose that F(x) is 
continuous and symmetric about the origin. 
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Using the statistic S, = S(x,, , x”) for the 
one-sample nonparametric test for testing the 
hypothesis H: 0 = 0, a tconlidence interval of fJ 

is constructed as follows. For an appropriately 
given y (O<y < l), select constants d, and d, in 
the range of S(x,, . , x,,) that satisfy 

P,{d,<S(X, ,..., X,)<d,}=l-y, 

where P,, means the probability under the 
hypothesis H: 0 = 0. If there exist statistics 

L,?(xI, . , x,) and U,(x,, ,x,) such that 
L,(x,, . , x,) d 0 < U,(x,, , x,) if and only if 
d, <S(x, -8, . . ..x.-@cd, for all 0, then the 
confidence interval of 0 with lOO( 1 - y)% con- 
fidence coefficient is given by (L,(x r , . , x,), 

4(x 1, . ..> x,)). This interval is distribution- 
free, i.e., it holds that 

P(L,y(x,, . . . . x,)<0<u,(x,, . . . . X,)} = 1 --y 

for all F. 

When S,, is the statistic for the Wilcoxon 
signed rank test, L, and U, are given by L, = 

K&+, -,,,) and U, = M/;M-dIjr where M = n(n + 
1)/2 and q,,$. < K&, are ordered values 
for M averages (xi + xi)/2 (i <j = 1,2, . , n). 

H. Point Estimation 

Let (X,, ,X,) be an independent random 
sample from the population with a distri- 
bution function F(x - H), where Q is an un- 
known location parameter, and let (x1, . ,x,) 
be its observed value. 

There are four methods of constructing 
robust estimators of 8. Let X(,, < <X,,, be 

ordered values of X,, . . , X,. The first method is 
touse T,=a,X~,,+...+a,X~,,forsomegiven 
constants a,, . . , a, such that & a, = 1. T, is 

called the L-estimator. An example is 

T,(~)=(Px~[,,l+,)+x~[,“,+2)+ 

“’ +PX,,-[,,,,)ln(l - 2c0, 

where p = 1 + [car] -cm. This estimator is called 
the a-trimmed mean. Let J be a real-valued 
function such that j; J(t)dt = 1, and set ak = 

lf/Ll,,,,J(t)dt; then as n+co, T. converges to 
T(F)= fhJ(t)F-‘(t)dt in probability. Suppose 

that F is a distribution function having an 
+absolutely continuous density function f: 
Denote the derivative off by f’, and let I(F) 

be the tFisher information on 0. Set $(t) = 
-,f’(t)/f(t) and J(t)=$‘(F-‘(t))/l(F). Then 
Chernoff, J. L. Gastwirth, and M. V. Johns 
[lo] proved that under some regularity con- 
ditions TR is an tasymptotically efficient es- 
timator of 0 for F. 

Let p be a real-valued (usually convex) 

function of a real parameter with derivative ti 
= p’. The second method is to estimate 0 by T, 

by minimizing Cf=r p(xi - T,) or by satisfying 

T, is called the M-estimator. When p(t) = t2, it 
agrees with the least squares estimator. Let 
CD(x) be the distribution function of the stan- 
dard normal distribution, H(x) be an arbi- 
trary continuous distribution function which 
is symmetric about the origin, 9 be a class 
of distribution functions of the form F(x) = 
(1 -E)@(x)+EN(x) for a given s (O<.s<l), 

and V(p, F) be the asymptotic variance of 
T,. Huber [ 1 l] proved that p minimizing 
s~p,,~I/(p,F)isgivenbyp,(t)=t’/2,K(t(- 

K2/2 defined for (t] < K, > K, respectively, for 
some constant K. Under quite general condi- 
tions, the M-estimator converges as n+ 00 
to T(F) in probability, which is defined by 
jt,b(x- T(F))dF(x)=O. If $(t)= --f’(t)/f(t) is 
chosen for $(x), then T, is the tmaximum likeli- 
hood estimator of 0 for F and is asymptoti- 

cally efficient under some regularity condi- 
tions. Generally, the M-estimator defined 
above is not scale invariant. A scale invariant 
version of the M-estimator is obtained by 

replacing the defining equation by 

&$(y)=o, 

n 
(1) 

where S, is any robust estimate of scale, e.g., 
the median of { ]xi- M1/0.6745}i,1,2,,,,,. where 
M is the sample median, or by solving the 
simultaneous equations (1) and 

gx(fq)=o 
n 

with respect to T. and S,,. In the context of the 
maximum likelihood estimation, 1 is chosen to 

be x(t) = t$(t) - 1 (- 399 Statistical Estimation 

PI. 
The third method employs nonparametric 

tests for testing the hypothesis H: 0 = 0 against 
the alternative hypothesis A : 0 > 0. Let J be a 
real-valued and nondecreasing function such 
that jhJ(t)dt =0 and R:(O) be the rank of IX, 

-O(among(X,-O( ,..., IX,-Q(.SetY(t)=l,O 
according as t > 0, < 0 and S(X, -- 0, , X, - 0) 
=Ci=, J((R:(@+n)/(2n+ l))Y(X;-8). Let 

fI*=sup{t);s(x,-8,.,.,X,-tI)>n}, 

fI**=inf{&S(X,-0 ,..., X,-O)<p}, 

where n is the expected value of S(X,, ,X,) 
under the hypothesis H: 0 = 0. Then an es- 
timator of Q is defined by T, =(Q* + 0**)/2. 
Hodges and Lehmann [ 121 first proposed this 
technique, and this estimator is called the R- 

estimator. When F(x) is symmetric about the 
origin and J(t) = t-i, S tends to be the statis- 
tic for the Wilcoxon signed rank test, and the 
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R-estimator reduces to the median of n(n+ 1)/2 
averages (Xi+Xj)/2 (1 <i<j<n). As n-co, the 
R-estimator converges in probability to T(F), 

defined by 

F(x)+l-F(2T(F)-x) 

2 
dF(x) = 0. 

For symmetric F, the R-estimator defined by 
the statistic S with J(t)= -f’(F-‘(t))/f(F-l(t)) 
is asymptotically efficient under some regular- 
ity conditions. 

Although the above three methods provide 
robust estimators, which are seldom affected 

by outlying observations or contamination by 
gross errors, their behavior still depends on F. 
The last method of constructing robust es- 
timators consists of estimating 0 adaptively 
by utilizing information on the shape of F. 

Among these, a striking one is the asymptoti- 
cally fully efficient estimator for a wide class 
of F proposed by Takeuchi [ 131. The es- 
timator is constructed by using subsamples 

of size K (K <n) drawn from the original 
sample, estimating the elements of the tco- 
variance matrix of the order statistics by U- 
statistics, and selecting the best weights of the 
L-estimator. L. A. Jaeckel [14] made an a- 
trimmed mean adaptive estimator by selecting 
an a that minimizes the estimated asymptotic 

variance. 

I. The Influence Curve 

Let T(F) be a functional of a distribution 
function F, and let an estimator T. of 0 cal- 
culated from an empirical distribution function 

F, converge to T(F) in probability as n+ co. A 
real-valued function IC(x; F, T) defined by 

IC(x; F, T) = by 
T((l-e)F+s6,)--T(F) 

& 

for all x 
K. Dependence 

is called the influence curve, where S, is the Let (Xl, Y,), . . . ,(X,, Y,) be random samples 

distribution function of a point mass 1 at x. from a population with a bivariate distri- 

The curve was first introduced by Hampel bution function, R, be the rank of Xi among 

[lS] to study the stability aspect of estima- X 1, . . . , X,, when they are rearranged in an 

tors against a small change of F. As an exam- ascending order, and Sj be the rank of yj 

ple, when F is symmetric about the origin, among Y,, . . , Y, defined similarly as Ri. Vari- 

the influence curve for the cl-trimmed mean ous quantities are devised to measure the 

IC(x; F, T) is given by degree of dependence between X and Y. 

F-+$/(1 -201) 

x/(1-2a) 

when x < F-‘(a), 

when F-‘(cc)<x 

<F-‘(l-a), 

F-‘(l--)/(1--a) when x>F-‘(l-a). 

(1) Spearman’s Rank Correlation. Set di = Ri 
-Si.Thenr,=l-6Zid’/(n3-n)iscalled 
Spearman’s rank correlation. If there is no 
dependence between X and Y, i.e., if the Xi and 
3 are independent random variables, then 
E(rs)=O and V(r,)=(n-1)-l. 

By substituting the empirical distribution 
function F, for F in T(F), we can represent the 

robust estimators discussed in Section H, at 

(2) Kendall’s Rank Correlation. Take pairs 

(Ri,Si) and (Rj,Sj). If (Rj-Ri)(Sj-Si)>O, set 

least approximately, by T, = T(F,). Under some 
conditions, it can be proved that as n-+ co, 

n”z(T(F,)-7’(F)-;~~lIC(Xi;F,T))+0 
I 

in probability. Thus it follows that n’j2(T,- 

T(F)) is asymptotically normally distributed 
with asymptotic variance S(IC(x; F, T))2dF(x). 

J. The Regression Problem 

Consider the linear regression problem (- 403 
Statistical Models D) 

xi= f ejaij+&,, i = 1,2, . . , n, 
j=l 

where the Xi are observable variables, the Qj 
are regression coefficients to be estimated, the 

aij are given constants, and Ed, Ed,. . . , E, are 
identically and independently distributed 
random errors whose distribution function is 
given by F(x). The idea of the M-estimator is a 
direct generalization of the method of least 
squares; namely, to adopt (&, . . , “,) as an 
estimator for (0,, . . ,0,) that minimizes 
x;Zl p(X, - Cjejaij) for some function p such as 
the one described above. 

R-estimators of the regression coefficients 
are obtained by minimizing & a,(Ri)Ai, 
where Ai = Xi - CjQjaij, Ri is the rank of Ai 

amongA,,..., A,, and a,( .) is some monotone 
function satisfying CyZl a,(i) = 0. It has been 
proved that minimizing & a,(Ri)Ai is asymp- 
totically equivalent to minimizing 

the properties of which were first studied by J. 

JureEkov& [ 163. 
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‘pij= 1; otherwise, ‘pij= -1. The statistic r,= 

is called Kendall’s rank correla- 

tion, where 2 runs over all possible pairs 
chosen from (R 1, S,), , (R,, S,). 

If there is no dependence between X and Y, 
then E(rk) = 0 and V(r,) = 2(2n + 5)/(9n(n - 1)). 

(3) Rankit Correlation. Ri and &, i= 1, , n, 

are replaced by the corresponding normal 
scores, i.e., the means of order statistics in an 

independent sample of size n from N(0, 1); then 
the usual rsample correlation coefficient is cal- 
culated from these scores. This correlation co- 
efficient rR is called rankit correlation; and if 
there is no dependence between X and Y, then 
E(z) = 0, V(z) = (n - 3)-i, asymptotically, where 

l-i-r, 
z=;log~ 1 -r (TFisher’s z-transformation). 

These stat%tics are used to test the hypoth- 
esis of independence. 
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372 (Xx1.3) 
Roman and Medieval 
Mathematics 

The Romans were interested in mathematics 
for everyday use; their arithmetic consisted of 

computation (by means of the abacus), weights 
and measures, and money. For their mone- 
tary system, they developed a computational 
method using duodecimal fractions. Julius 
Caesar (102?%44 B.C.), known for his calendar 
reform in 46 B.C., also undertook to measure 
his territory, which aroused a demand for 
land surveying techniques. Books on prac- 
tical geometry which provided this knowledge 

were called gromatics (a “groma” was a land 
surveying instrument). Toward the end of the 
Western Roman Empire (476) Greek mathe- 

matics was studied; during this period Boe- 
thius (c. 480-524) wrote his two books on 
arithmetic and geometry. The former was a 
summarized translation of Nichomachus’ 
book, and the latter included propositions 

from the first three books of Euclid’s Elements 
(without proof) and practical geometry. 

Music, astronomy, geometry, and arith- 
metic, which constituted the “mathemata” of 
Plato’s Academy (closed in 529) were treated 
as the “quadrivium” (the four major subjects) 
in the Encyclopedia of Martianus Capella, 

Cassiodorus, Isidorus, Hispalensis, and others. 

After the establishment of the Roman Church 
in the 5th century, the quadrivium was to be 
studied for the glory of God. Books on mathe- 
matics from this period laid emphasis on the 
computation of an ecclesiastical calendar and 
mystical interpretations of integers, as seen 
in books by Bede Venerabilis, Alcuin, and 
Maurus from the 7th through 9th centuries. 

Arabian science was imported first through 

Spain-under Moorish influence beginning in 
711, the year of the fall of the Visigoths-and 

then through the Crusades (1096- 1270). Com- 
putation with figures, originating in India, 

replaced the abacus in the 12th century, when 
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Arabian books on arithmetic and algebra, 
along with Greek books on geometry and 

astronomy (such as books by Euclid and 
Ptolemy), were translated into Latin. Italian 
merchants, whose occupation necessitated 

computation, rapidly adopted the new system. 
Representative books of this period are Liber 

abaci (1202) and Practica geometrica (1220) by 
Leonardo da Pisa (also known as Fibonacci, 

c. 1170- 1250). The former includes the four 
arithmetic operations, showing Indian in- 
fluence, commercial arithmetic, and algebra. 
The new methods were not limited to mer- 
chants. The French bishop Nicole Oresme 

(c. 1323-1382), who influenced Leonardo da 
Vinci (1452-1519), introduced fractional expo- 
nents and conceived the graphic representa- 
tion of temperature, a precursor of coordi- 
nates and functions. 

From the 1 lth century, universities de- 
veloped from theological seminaries, first in 

Italian cities such as Bologna and Palermo, 
and later in Paris, Oxford, and Cambridge. 
Mathematics was taught in these universities, 
although no remarkable creative contributions 
were made. However, theologians such as 

Albertus Magnus (c. 1193-1280) and Thomas 
Aquinas (1225?-1274) discussed infinity in a 
way that went beyond Greek thought and thus 
helped to lay a basis for the modern philo- 
sophy of mathematics. 
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373 (xvlll.13) 
Sample Survey 

A. General Remarks 

The sample survey is a means of getting sta- 
tistical information about a certain aggregate 
from the observation of some but not all of 
it. The aggregate concerned is usually called 
the finite population, and the observed part 

is called the sample. Introducing a random 
mechanism, J. Neyman established a method 
of ascertaining objectively the reliability of 

such information. This method is mainly ap- 
plied to demographic statistical surveys and 
opinion polls, but it is also applicable to ran- 
dom samples of physical materials. We briefly 
sketch the mathematical structure of this 
method without going into detail about tech- 
nical problems that arise in the practical sur- 

vey situation. 

. . . PrC4=.LIJ,,Xl, ...,J,-I,X,-,}~e(X.), 

where xs(Xi) is defined as 1 if Xi =: clJi and 0 
otherwise. This formula can be shortened to 
the form 

Pr{(J,X)) =p(J,XhK J), 
where 

(1) 

ifXi=aJi,i=l ,..., n, 

0 otherwise. 

Expression (1) is the fundamental model for 
the sample survey problem. Note that P(J, X) 
is independent of the parameter 0. Therefore 
ifweletI=(I,,..., I,) (I, < . . <I,,,) be the set 
of numbers in (Jr, . . , J”) after deleting dupli- 
cations, and let Y = (Yr , . . , Y,) be the corre- 

sponding X values, then the joint distribution 
of I and Y can also be expressed as 

Suppose that the population consists of N 

units, where N is called its size. Each unit has 
some characteristic c(, which is an element of 

some set R. The set of all characteristics of the 
units in the population is designated by 6’= 

{ c(~ , , a,}, which we regard as a parameter. 
The set of all possible Q is denoted by 0 c @‘. 

Pr{(I, Y)> = p(I, Y)xs(Y, I), 

where 

XOW> II = 
1 if I;=xlj,j= l,..., nz, 

0 otherwise. 

Suppose that one unit is chosen and ob- 
served according to some procedure, the index 

number of the unit in the population is J, and 
the observed characteristic is X. It is assumed 
that the observation is without error, hence 
X=a,. 

Since xe(Y, I) = x0(X, J) for all 8, the tcondi- 

tional probability distribution of (J, X) for 
given (I, Y) is independent of x0(X, J), and 
hence (J, X) is a tsuflicient statistic. According 
to the general theory of sufficient statistics, we 
can restrict ourselves to the class of procedures 

depending only on (I, Y). 
Denote the whole sample by (J, X) = (5i, . . , 

J,, X,, . , X,), where n is the sample size and 

Xi = c(~,. The sample size n may be a random 
variable, and among J,, . . , J., duplication 
may be allowed. The probabilistic scheme 
for J is called the sampling procedure, and if 

it satisfies the condition 

C. Estimation 

Suppose that g(0) = g(cr,, . . , c+) is a real para- 
meter whose unbiased estimators are under 
discussion. 

(c) Pr {Ji =j} is independent of tlJ, and of Xi+r , Theorem. There exists an unbiased estimator 

. ,X,, (but may depend on Xi, . . . ,X,-i), of g(0) if and only if there exists a decomposition 

it is called a random sampling procedure. More- 
over, if the tjoint distribution of J is indepen- 

dent of 0, it is called regular. Specifically, if n is 
constant and Pr{J} is symmetric in J, it is 

called uniform. 

Pr{I=(j,(v), . . . . j,(v))}>O, v= 1,2, . . . . (2) 

If the sampling procedure is regular, the 

The two main mathematical problems of 
sample surveys are to determine a random 
sampling procedure and to provide methods 
whereby statistical inferences can be made 
concerning 0 (- 401 Statistical Inference). 

second condition can be replaced by Pr {I 3 

(jl(v), . . . . j,(v))}>O, v=l, 2, . . . . Hence, for 
example, if cli is real and the sampling proce- 
dure is regular, Cr = Z q/N is testimable if and 
onlyifPr{I~i}>Oforalli,ande~=~(ai- 
-2 a) /(N - l)=EX(ct-aj)‘/N(N - 1) is esti- 
mable if and only if Pr{I 3 i, j} > 0 for all i and 
j. Also, I-I:, ai is not estimable unless Pr{I= 
(1, . . , N)} > 0. The decomposition (2) is not 

unique, and corresponding to different decom- 
positions, different unbiased estimators are 
derived. Also, for the case of regular sampling 

B. The Problem of Inference 

Condition (c) is assumed. The probability of 

(J, X) is given by 

Pr{(J,W=(j I,... J,,X,,...,X,)} 

=Pr{J,=j,}Xs(X,)Pr{J2=j21J1,X1JXB(XZ) 



1387 373 F 
Sample Survey 

procedures, for any 0 = 0, it is always possible 
to construct an unbiased estimator g(0) such 
that Pr{~(0)=g(8,,)10=00} = 1 if g(0) is esti- 
mable. Hence the variance of the locally best 
unbiased estimator is always 0, and the tuni- 
formly minimum variance unbiased estimators 
exist only in the trival case. 

If some kind of symmetry exists among the 
population units as well as the sampling pro- 
cedure and the parameter, it would be natural 
to require the same kind of symmetry for the 
estimators. Let G be a group of permutations 
among N numbers. Assume that for any 0EO 
and ycG, we have ~0~0 and g($)=g(e). If 
Pr{yJ} =Pr{J} for all y, then the sampling 
procedure is said to be invariant with respect 
to G. An estimator is also called invariant if its 
value does not change under any permutation 
YE G of the numbers of sample units. Thus if G 
is the set of all permutations (i.e., the tsym- 
metric group), then the invariant estimator is a 
function of Y (or X) only. Moreover, if the 
dimension m of Y is constant, Y is complete 
(under some mild conditions); hence there 
exists a unique minimum variance invariant 
unbiased estimator. 

When there is some additional information, 
it can be represented by auxiliary variables 
/Ii, . . . , jN, which are known and assumed to 
have some relation to tli, . . . , tlN. Assume that 
the xi are real numbers and that the parameter 
to be estimated is f3=8=(zcci)/N. If we can 
assume that tli and pi are approximately pro- 
portional, we can estimate the unknown popu- -- 
lation mean % by %* =(X/Z) x fi where x is 
the sample mean of the U’S and Z the sample 
mean of the /?‘s. Although g* is not unbiased, 
we may expect that it has small error if the 
relation between two variables is close. &* is 
usually called the ratio estimator. 

In practical research, as an estimator of the 
population total A = C fxi, we usually use A  ̂= 
xX,/Pi, where P,=Pr{J3i}. Its variance is 
V(d) = xx(Piq- Pij)(ai/Pi - aj/4)’ and is 
estimated by ~(2) = x:C { (Pipi - P&/s} (Xi/Pi - 
Xj/Pj)', where Pij=Pr{J~(i,j)}. When N is 
unknown, it can be estimated by the same 
procedure as A (say A), and the population 
mean Al can be estimated by 2 = A/N, which is 
called a ratio estimator. % is biased except 
when N is known. 

D. Asymptotic Confidence Intervals 

It is usually impossible to obtain any meaning- 
ful tconfidence interval based on exact small- 
sample theory. But when the cli are real and 
the sampling procedure is uniform and with- 
out replacement, the sample mean d is asymp- 
totically normal with mean CC and variance 

N and n-1 co, and lim sup n/N < 1, provided 
that 

Also, the sample variance converges to c,’ as 
n-rco. From these results we can construct 
asymptotic confidence intervals for Cc. 

E. The Problem of Sampling Procedures 

In determining the sampling procedures, both 
the technical aspects of sampling and the 
accuracy of the estimators should be consid- 
ered. The most commonly used methods are 
multistage sampling and stratified sampling, or 
some combination of the two. For example, 
the population is partitioned into several 
clusters. First we select some of them accord- 
ing to a probability scheme and then choose 
units from the selected clusters. This procedure 
is called two-stage sampling. The probabilities 
for the selection of clusters may be uniform or 
proportional to the size of the clusters. Strati- 

fied sampling is the method of dividing the 
population into several subpopulations, called 
strata, and selecting the sample units within 
each stratum. If the size of the ith stratum is 
Ni, the size of the sample chosen from this 
stratum is n,, and the probability is uniform 
within each stratum, then the most common 
estimator for the population mean B is given 
by 

where xi is the mean of the sample values in 
the ith stratum. The variance of G is given by 

where CT,? is the population variance within the 
ith stratum. 

If the cost of drawing one sample unit in the 
ith stratum is equal to ci, then for fixed cost, 
the variance of the estimator is minimized 
when 

which is called the condition of optimum 

allocation. 

F. Replicated Sampling Plan 

W. E. Deming proposed an effective method in 
practical sample surveys, called a replicated 
sampling plan, following J. W. Tukey’s hint. It 
enables us to easily evaluate variances of esti- 
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mates for any estimator and any sampling 
procedure. Let the sample be composed of k 

subordinate samples which are selected by the 
same random sampling procedure from the 
same population, and let &Ji, Xi) be the esti- 
mate from the ith subordinate sample by the 
same estimator and o^ be the estimate from the 
whole sample by the same estimator. Then, 
provided 8=x&/k approximately, the var- 

iance of 8 can be estimated by o(G) = C(e - 
@2/k(k - 1). If the sample is selected by the 

simple random sampling procedure and is of 
large scale, 4 and 8 are approximately normal 

variates, and u(0) is evaluated by using the 
sample range of the &. In large-scale sample 
surveys, even when the random sampling 
procedure is not simple, the theory related to 
the normal distribution can be applied to the 
4 and 6. It has been shown that u(8) evaluated 

by the above method includes not only the 
sampling error but also the random part of the 
nonsampling errors. 

G. Conceptual Problems 

Although it has been established that the 

sample survey method is useful in large-scale 
social or economic surveys, there are difficult 

conceptual problems about the foundations of 
the method (especially when auxiliary informa- 

tion exists) that are still far from being settled. 
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374 (XVlll.4) 
Sampling Distributions 

A. General Remarks 

To perform statistical inference, it is necessary 

to find the tprobability distribution of a +sta- 

tistic involved in the situation (- 396 Statistic, 

401 Statistical Inference). In general, the proba- 
bility distribution of a statistic is called the 
sampling distribution. A set {Xi, X,, . . . , X.} 

of +random variables that are independently 
and identically distributed according to a 
distribution F is called a random sample 
from F. A common sampling distribution de- 
scribed in this article is that of the statistic Y = 
f(X, , ,X,), where the set {X,, , X,,} is a 
random sample from a tnormal distribution. 

Examples of such a statistic Y of dimension 1 
are the tsample mean, tsample variance, linear 

or quadratic forms of {X, , ,X,}, their ratios, 
and torder statistic, while examples of Y of 
higher dimensions are the sample mean vec- 
tor and the sample covariance matrix and 

its eigenvalues. The tnormal distribution 
with tmean p and tvariance c2 is denoted by 
N(p, a’), while the +p-dimensional (p-variate) 
normal distribution with mean vector p and 
covariance matrix C is denoted by N(p, Z) 
(- Appendix A, Table 22). 

B. Samples from Univariate Normal 
Distributions 

If random variables Xi, . , X, are distributed 
independently according to N(p, , a:), , 
N(p,,, a:), then a linear form Cia,Xi has the 
distribution N(&aipi, Ciu~~~). In particu- 
lar, if {Xi, , X,,} is a random sample from 

N(p, o*), then the sample mean X = xi Xi/n 
has the distribution N(p, cr’/n). 

Let {Xi,..., Xn} be a random sample from 

the distribution N(0, 1). The sampling distri- 
bution of the statistic Y = x,X,” is called the 
cbi-square distribution with n degrees of free- 
dom and is denoted by x2(n). It has the tproba- 
bility density 

for O<y< cc,fi(y)=O elsewhere, where I is 
the tgamma function. The distribution of Y = 
Cyz’=,(Xi + pi)’ depends only on n and i = 

zip!, and is called the noncentral cbi-square 
distribution with n degrees of freedom and 
noncentrality A and denoted by ~‘(n, a). It has 
the probability density 

for O< y< co, where f.+Zk and f, are the prob- 
ability densities of chi-square distributions 
and ,F, is an extended hypergeometric func- 
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tion. Noncentral chi-square distributions 

have the following treproducing property: If 
Yi , . . , yk are distributed independently ac- 

cording to ~‘(n,,l,), . . ..~‘(n.,i,), then xix 
has the distribution x2( xi ni, &1,). Also, we 
have Cocbran’s theorem (Proc. Cambridge 
Philos. Sot., 30 (1934)): If Xi, . , X, are dis- 
tributed independently according to N(p,, l), 

.‘., N(p”, 1) and if for quadratic forms Q,= 
C. C &‘)X.X. for m = 1, . . . , k the matrices 
Al =‘(ib) ci6 trank r, satisfy the condition 
A, + . . + A, = I (unit matrix), then a necessary 
and sufficient condition for Q r , . . . , Qk to have 

independent noncentral chi-square distri- 
butions with rl, . . . , r, degrees of freedom, 
respectively, is that rl + . . . + r, = n. In partic- 
ular, when pi = 0 for all i, they have (central) 
chi-square distributions, and the theorem 

implies their reproducing property. 
Let X and Y be independent random vari- 

ables having distributions N(6,l) and x*(n), 
respectively. Then the sampling distribution 

of T = X/e is called the noncentral t- 
distribution with n degrees of freedom and 
noocentrality 6 and is denoted by t(n, 6). Its 
probability density is given by 

L,a(t)= f e-,y2&‘Wtn+k+ 1)/2) 
k=O k! ,,/Gr(n/2) 

for -cc < t < cc. In particular, when 6 = 0, the 
distribution is called the t-distribution with n 
degrees of freedom and is denoted by t(n). Its 
probability density is simplified to 

-(“+t),* 
f,(t) = W+ U/2) 1 +c 

&W2) ( > 
for -co<t<co. 

Let {Xi, . . . . X.} be a random sample from 
N(p, cr’). Exact sampling distributions of the 
tsample variance Sz =x(X, - x)*/(n - 1) and of 
the t-statistic T = &(x -po)/Js’, where p = 
p. is a given number, were essentially obtained 
by Student [S]: (n- l)S’/a* and T are dis- 
tributed according to X’(n - 1) and t(n - l), 
respectively. His proof was made rigorous by 

R. A. Fisher (Metron, 5 (1925)), who proved in 
particular that X and S2 are independent. If 
p # po, then T follows the distribution t(n - 

LJd~-~oY4 

Let X be a p-dimensional random vector, 
namely, a vector having real random variables 
as its components. X has the p-variate normal 
distribution N(,u, JJ if and only if for any real 
vector a=@,, . . . . up)‘, the random variable a’X 
has the normal distribution N(a’,u, a’Za). If 
X i , . . . , X, are independent and have p-variate 

normal distributions N(p,, z,), . . . , N(p,, &J, 
respectively, and if A,, . . , A, are m x p real 

matrices, then the random vector A, X, + . + 
A,X, has the m-variate normal distribu- 
tion N(,u, JJ, where p = & Ajpj and C= 

& AjqA;. 
Let X and Y be distributed independently Suppose that {Xi, . . . , X,} is a random 

according to ~‘(m, 1) and x*(n), respectively. sample from the p-variate normal distribution 
The distribution of Z = (X/m)/( Y/n) is called N(O,a,andletX=(X, ,..., X,)beapxnma- 
the noncentral F-distribution with m and n trix. Then the probability distribution of IV= 
degrees of freedom and noncentrality 1. In XX’ is called the Wishart distribution with 

the special case when I = 0 it is called the F- scale matrix z and n degrees of freedom and 
distribution with m and n degrees of freedom is denoted by IV,@, n) or simply W(& n). If 
and is denoted by F(m, n). The probability n > p - 1, the joint probability density function 

densities fm,n,l and f,,, of these distributions 
are given by 

fm&) = (m’n)m’2 
zw) -1 

B(m/2, n/2) (1 + mz/n)(m+n)‘2 ’ 

f,.,,i(z)=k~oe-~/z(~~~B(~~~~~~~,2) 

Z(m,2)+k-l 

x (1 + mz/n)((m+W*)+k 

=e -w* F 1 1 
( 

y;;;g$ L.“(Z) 
> 

for 0 <z < co, where B and I F’r are the theta 
function and the confluent hypergeometric 
function (- 167 Functions of Confluent Type), 
respectively. 

Let X be a random variable having the 
distribution F(m, n). The distribution of Z = 

flogX is called the z-distribution with m and n 
degrees of freedom and is denoted by z(m, n). 
Its probability density is given by 

2(m/n)“l* em2 

B(m/2, n/2) (1 + me2Z/n)(m+“)i2 

for -co<z<co.IfS:=C&(Xi-@‘/(m-l) 
and Sz = &(x - y)*/(n - 1) are sample var- 

iances based on independent samples of sizes m 
and n taken from N(p, G’) and N(v, z*), respec- 
tively, then the statistic z=ilog(S:/Si), which 
was introduced by Fisher (Proc. Int. Math. 
Congress, 1924), is distributed according to 
z(m - 1, n - 1) under the hypothesis o2 = z*. 
Fisher [6] tabulated percent points of z(m, n). 

C. Samples from Multivariate Normal 
Distributions 
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of p(p+ 1)/2 arguments of W=(M/I,) is 

f~,,(w)=(rp(n/2)12~l”‘2)~’ 

x etr(--C-i W/2)1 Wl(n-p-1)i2 

for W> 0, where W > 0 means that W is tposi- 
tive definite, etr(A) = exp(tr A), and rP, a multi- 

dimensional gamma function, is defined as 

rp(a)=nP(P~‘)“Rr(a-~(i-l)) 

i=l 

for a>(~- 1)/2. When n<p- 1 the distri- 
bution is singular and has no probability 
density. 

Suppose that Xi, . . , X, are independent 
and obey normal distributions N(p,, c), 
. , N(pu,, C), and let X =(X1, . , X,), M = 

(pl, . . ,p,J. Then the distribution of W= XX’ 
is called the p-dimensional noncentral Wis- 
hart distribution with scale matrix Z:, n de- 
grees of freedom, and noncentrality matrix 

0 = C-’ MM’ and is denoted by W(C, II, Q). If 
n > p - 1, the probability density function is 

for W> 0. aF, is a hypergeometric function 

with matrix argument, which is defined by 
aFp(al ,..., a,;b ,,..., ba;S)=@(a, ,..., a,; 
b,, . . . . bp;S,I), where 

Jf”(a, /..., a,;b, ,..., b,;S,T) 

ti = (k 1, . , kp) is an ordered set of integers such 
thatk,+...+k,=kandk,>,...>k,~O,and 
where C,(S) is a zonal polynomial (- [S]) of a 
symmetric matrix S. The multivariate hyper- 

geometric coefficient (u), is given by 

(a),=a(a+l)...(a+k-1). 

The noncentral Wishart distribution is sin- 
gular when n < p - 1. Similarly to the noncen- 

tral chi-square distribution, the noncentral 
Wishart distribution has the reproducing 

property with respect to both the number of 
degrees of freedom and the noncentrality 

matrix. Also, Cochran’s theorem can be ex- 
tended to the multivariate case: Let Xi, . ,X, 
be p-variate random vectors independently 
distributed according to N(pr,C), . . , N(p,,,Z), 
respectively, and let A, = (a!$“)), m = 1, , k, be 

p x p real matrices of trank r,,, and such that 
A, + A, + . + A, = I (unit matrix). A necessary 

and sufficient condition for random matrices 
Q, = Ci,jaF’XiX;, m = 1, , k, to be indepen- 

dently distributed according to noncentral 

Wishart distributions with rr , . , rk degrees of 
freedom, respectively, is that rl + + r, = n. If, 

in particular, pi = . . . =p,=O and ifr,,,ap, then 
Q, is distributed according to W(C, r,,,). 

If W has the distribution W(C, II) with n > 
p-1,thentheeigenvaluesi ,,..., &(a,>...> 
& > 0) of W have the joint probability density 
function C,,,lCl -‘I2 &P’( - p/2, A)lApP-w2 

&,(+ij), where A is a diagonal matrix 

with diagonal elements 1,) ,1, and C,,, = 
7rp”2(2pn/2~p(p/2)Tp(n/2))-1. If C= I, then the 
joint probability density function becomes 

Suppose that S, and S, have independent 
Wishart distributions W(C, n,) and W(C, n2), 
respectively. The random matrix R = (S, + 
S2)-1/2S1(SI +S2)-1’2 is called the beta matrix, 

and its distribution is denoted by B(n, 12, n,/2). 
Its probability density function is 

for O<B<I. 
Suppose that S has the distribution W(L’, n) 

and B has B(n, 12, n,/2); then, for any non- 
singular symmetric matrix fi, 

P{s<~= 
{ 

p+l’ 
12ccxy2rp 2 

( ,i 

and 

x2F, 2, ( 
n, p+l n,+p+l 

2 -1+2;- -;R 
2 > 

If {X r , . . . ,X,} is a random sample from 

N(,B, C), then the sample mean X == Cf=i X,/n 
and the sample covariance matrix S = Ez=i (X, 
-it) (X, - X)‘/(n - 1) are distributed indepen- 
dently according to the respective distributions 
N(p,C/n)and W(C,n-l).Ifn>p-l,T’= 
n(X-p,)‘S’(~-,u,) is called the noncentral 

Hotelling T2 statistic with n- 1 degrees of 
freedom and noncentrality /Z=~(,I-,u,J’C-‘(,u 
-&. (n-p) T’/p(n - 1) has a tnoncentral F- 

distribution with p and n-p degrees of free- 
dom and noncentrality 1. 

LetX=(X, ,..., X,)‘andY=(Y, ,..., YJ’, 

p < q denote two random vectors, C, i and 
Zz2 their respective covariance matrices, and 
C,, the p x q matrix of covariances between 
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the components of X and Y. Each of the 

nonnegative roots p1 , . . . , pP of the equation 
jZ1 & ZZ I - pzC, 1 I= 0 is called the canonical 
correlation coeffkient. Let (Xi, Yi), . . . ,(X,, Y,) 
be a random sample from the (p + q)-variate 

normal distribution N(0, Z), and let S, 1 = 
C~=,X,X&ln, S1,=Sz, =ELX,Y:Jn, S,,= 
Zcbf=i Y,Yh/n, and S = (Sij)i, j=l, Z. The sample 
canonical correlation coefficients are the non- 
negative roots rl, . . . , rpofI~12~~~~21-r2~111 
= 0 and for n > p + q the probability density 
function of rf , . . . , I,’ is 

where 

C P.4.n 

and R2 and P2 are diagonal matrices with 
elements rf and p,:, respectively. If, in partic- 

ular, p = 1, then p1 and rl are, respectively, 
the population and the sample multiple cor- 
relation coefficients, and (n - q)rf /q( 1 - rf) 
follows the distribution F(q, n - q) whenever 
pl=o. 

Let {(X1, Y,), . . . ,(X,, Q} be a random 
sample from the 2-dimensional normal distri-’ 
bution with tcorrelation coefficient p. Then the 

sample correlation coefficient 

zi(xi-x)(l,- y, 

R=(zi(xi-x)2zi(&- Y)2)1’2 

has probability density 

f.(r; P) 
=(2n-3/n(n- 3)!)(1 -p2p-w(1 _ r2yn-4)/2 

for -1~ r < 1. For the special case p = 0, the 
probability density becomes 

1 r $n-I) 
( > f,(r) =z=2qU -r2)(“-4)‘2, 

2 

which implies that T=mRJdm 
has the V-distribution with n - 2 degrees of 
freedom. 

Given a random sample from a p-variate 

normal distribution, the probability density of 
the tsample partial correlation coefficient 

RI,.,..., between the first and the second 

components with the remaining components 
fixed is given by fn-p+2(r;p12.3,,.p), where f is 

the density of R mentioned in the previous 
paragraph and p1 2, 3 ,,, p is the population par- 
tial correlation. 

D. Large-Sample Theory 

So far we have dealt with random samples 

{Xl, . ..> X”} composed of finitely many ran- 
dom variables (or vectors). The theory dealing 
with such finite cases is called small-sample 
theory, which is not always suitable for numer- 

ical applications. In comparison with this, in 
large-sample theory, where the sample size is 
assumed to be sufficiently large, an approxima- 
tion of the sampling distribution can often be 
obtained easily by means of the tcentral limit 

theorem. 
If for three sequences X,, pc,, and o,, n= 

1,2, . . . . of random variables, real numbers, 
and positive numbers, respectively, the se- 
quence (X, -~“)/a. tconverges in distribution 
to N(0, 1) as n+co, then the sequence X, is 
said to be asymptotically distributed according 

to N(p,, 0,‘). The definition can be extended 
to higher dimensions. We write X, = op(rJ for 

a sequence r, of positive numbers if and only 
if X,/r, tconverges in probability to zero as 
n-rco. The following theorem is useful: If 
X, = a + o,(r.), where a is a constant and 
r, = o( l), and if a real-valued function f(x) is 
of class c” in a neighborhood of x = a, then 

If X,, is asymptotically distributed according 
to N( p, a2/n) and f(x) is differentiable at x = 
p with the derivative f ‘(p) #O, then f (X,) is 

asymptotically distributed according to N(f(p), 
(f’(p))’ 02/n). In higher-dimensional cases, if 
X, is asymptotically distributed according to 
N(p, Z/n) and f(x) is continuously differenti- * 

able in a neighborhood of x =,u with nonzero 
vector c=(~?f/ax,, . . . ,i3f/d~~)~=~, then f(X.) 
is asymptotically distributed according to 

N(f (A czc’/n). 
Let {X1, . . . . X.} be a random sample from 

a univariate distribution with finite tmoments 
vi=E(Xi)fori=l,...,k,andletai=C,X$ 

be its ith sample moment. Then the random 

vector (a,, . . , uk) asymptotically follows the k- 
variate normal distribution as n+ co with 
mean vector (vi, . . . , vk) and covariance matrix 
nml(crij), where CQ~=V,+~-V~V~. Let Mi=C,(X,- 
Zy/n and pi=E(X-vv,)‘for i=2, . . ..k be the 
sample central moment of order i and popula- 
tion central moment of order i, respectively. 

Then the random vector (X, M2, . . . , Mk) obeys 
the k-variate normal distribution asymptoti- 

cally as n+ cc with mean vector (vi, p2, . . , pk) 
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and covariance matrix nml(oij), where g1 1 = 

P2, ali=/4+l-ihPik~~ oijijPi+j-iPi-lPj+l- 

i~i+~~j-~-~i~j+fijll2lli~~~j-~ for i,j>2. 
A random variable xl that has a tchi-square 

distribution with n degrees of freedom obeys 

the distribution N(n, 2n) asymptotically as 
n+co. Also, m-m obeys N(O,l) 
asymptotically. The latter distribution approx- 
imates xf indirectly better than N(n, 2n) ap- 
proximates x,’ directly. The t-distribution with 
n degrees of freedom obeys N(0, 1) asymptoti- 
cally as n+ co. If X, obeys an F-distribution 
with m and n degrees of freedom, then mX, 

obeys asymptotically the distribution x’(m) as 
n* co. If X, obeys a tbinomial distribution 
Bin(n, p), then X, obeys asymptotically the dis- 
tribution N(np, np(1 -p)), and Arcsinm 

obeys asymptotically N(Arcsin&, 1/4n) as 
n+ m. This transformation is called the arcsin 
(or angular) transformation. If (X,, X,, . . . , X,) 
obeys the multinomial distribution Mu(n; pl, 
pz, , pk), then it is asymptotically distributed 
according to the normal distribution N&U,, Z,,), 
where ,u” = (np, , , np,), C, = (CT/,:)), ai:) = 

np,( 1 -pi), and c$‘) = - npipj, (i #j), and the 
random variable C:‘: (Xj - npj)*/npj, where 

X,+,=n-(X,+...+X,)andp,+,=l-(p,+ 
. . . fp,), obeys asymptotically the distribution 

x’(k) Clll. 
If X, has the +Poisson distribution with 

mean I,. where I.,+ co as n + co, then X,, and 

Jg obey the respective distributions N(i,, &) 
and N(&, l/4) asymptotically. If R is the 
sample correlation coefficient based on a ran- 
dom sample of size n from a 2-dimensional 
(bivariate) normal distribution with popula- 
tion correlation coefficient p, then R is asymp- 
totically distributed according to N(p, (l- 

p’)‘/n) as n+co, and therefore z=ilog((l+ 
R)/( 1 -R)) obeys asymptotically the distri- 
bution N(i log(( 1 + p)/( 1 - p)), l/n) asymptoti- 

cally. This transformation is called Fisher’s z- 
transformation. The distribution 

gives a better approximation. 

E. Empirical Distribution Function 

Let {X, , , X,} be a random sample from a 
distribution F. The random function 

F,,(x) = 1 {number of X’s that are <x} 
n 

is called the empirical distribution function. For 
any collection of fixed x’s (--co =x0 <x, < 

< xk < oo), the random vector (nF,(xl), n(F,(x,) 

-F&d), ,n(F,h-FAX,-J)) obeys the 
tmultinomial distribution Mu(n; pl, , pJ, 

where pj= F(xj)- F(xjm,), j= 1, . k, provided 
that the p’s are positive. In particular, the 
vector is asymptotically distributed according 
to the k-variate normal. The result is substan- 

tially strengthened as follows: the Glivenko- 
Cantelli theorem states that sup, IF,(x) - F(x)1 
converges to zero with probability 1 as n tends 

to infinity. If F(x) is continuous, then the ran- 
dom function &F,,(t)- F(t)) converges in 
distribution to a tGaussian process X(t) such 
that E(X(t))=O and E(X(s)X(t))=: F(s)(l - 
F(t)) for s< t. A Gaussian process X(t), Og 
t < 1, with this moment condition is called a 
Brownian bridge if F(t)= t, for O< t < 1. If F(x) 
is continuous, then the distributions of the ran- 
dom variables C, = $sup,(F,(x) -F(x)) and 

0, =&sup 1 F,(x) - F(x)1 do not depend on F. 
Asymptotically, they have identical distribu- 

tions with supt B(t) and supt IB(t)l, respectively, 
where B(t) is a Brownian bridge. We have 

P(sup,B(t)<x)= 1 -6x2, 

P(sup,IB(t)I<x)=1+2 2 (-l)%@“*, 
k=l 

x>o. 

Let {X,, ,X,} and {Y,, , Y,} be random 

samples from continuous distributions F and 
G, respectively, and let F,(x) and G,,(x) be their 
empirical distribution functions. IJnder the 

hypothesis H, : F = G, the distribution of the 
Kolmogorov-Smirnov test statistic 

does not depend on F (or G), and asymptoti- 
cally, as m+ co and m/n+,l< 1, the random 
function &(F,(t)- G,,(t)) converges in distri- 
bution to a Gaussian process X(t) such that 
E(X(t))=O and E(X(s)X(t))=(l +i)F(s)(l - 

F(Q),s<t. 

F. Edgeworth and Cornish-Fisher Expansions 

Let {X, , X,, . ,X,} be a sample from a distri- 
bution with mean p and variance 0’. The 

random variable (X, + X, + +X, - np)/&a 
is called the normalized sum of the sample. 

The distribution function F,(x) of the normal- 
ized sum of a sample from an absolutely 
continuous distribution F with higher-order 
moments admits the Edgeworth expansion 

[15-j: 

F,(x) 

where Q and 4 are the tcumulative distribution 
and the iprobability density functions, respec- 
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tively, of N(0, 1), and B is a quantity bounded 
by a constant depending on F and v. Rk(x) is 
the polynomial given by 

where Hk(x) is the tHermite polynomial of 
degree k, yk is the tcumulant (tsemi-invariant) 

of order k of the distribution of (Xi -PO/~, the 
summation extends over all nonnegative m’s 
suchthatm,+2m,+...+km,=k,and1=m, 

+ m, + . . . + mk. In particular, we have R,(x) = 
-ys(x*- 1)/6 and R,(x)= --7,(x3-3x)/24 
-&x5 - 10x3 + 15x)/72. For a tlattice distri- 
bution F concentrated on 0, fl, + 2, . . but 
not on 0, +p, f2p, . . for any p> 1, the fol- 
lowing expansion is valid for x = 0, f 1, 
+2 _ ,...: 

where z = (x - np + 1/2)/&a and the Q’s are 
suitable polynomials; Qi(z)= R,(z) and Qz(z) 
= R,(z) + 21240~. 

The Edgeworth expansion makes it possible 
to derive asymptotic formulas for the relation 
between those u and u such that F,(u) = a(u). If 

F is an absolutely continuous distribution with 
moments of order v (2 3), then we have the 
Cornish-Fisher expansions [ 161: 

and 

where the A’s and B’s are polynomials derived 

from the R’s of the Edgeworth expansion; 
A,(u)= -y3(u2-1)/6, A,(u)= -y4(u3-31#24 
+ y:(4u3 - 7u)/36, B,(u)= y3(u2 - 1)/6, B2(u) = 

y4(u3-3u)/24-y;(2u3-5u)/36. 
The expansions imply, in particular, that the 

random variable u + Cl=: Ak(u)nek” with u = 

(X, +X, + . . . + X,-- np)/Jtra is asymptoti- 
cally distributed according to N(0, 1) and that 
the lOOa% point u, of F. is approximated by u, 
+ zvZz B (u kl k II )n-k’2,where u, is the lOOcr% point 
of N(0, 1). These approximations can be im- 

proved further in some cases by a suitable 
transformation of the sum Xi +X2 + . . + X,. 
Thus, for example, if X is distributed accord- 

ing to x2(n), then the Cornish-Fisher expan- 
sions with v = 3 are 

._,t&2-1)+0(i) 

and 

where u =(X - n)/fi. However, the distri- 

bution of the random variable 

is much better approximated by N(0, l), and 

n( 1 -&+&u=) 

gives a more accurate approximation to the 

lOOc(% point of the distribution x’(n). These 
are called the Wilson-Hilferty approximations 
(Proc. Nat. Acad. Sci. US, 17 (1931)). 

The Edgeworth expansion was shown to be 
valid in more general situations by R. N. Bhat- 

tacharya and J. K. Ghosh [17]. In particular, 
they obtained the following: Let {X1,X2, 

. . . ,X,} be a random sample from a p-variate 
distribution with a nonzero tabsolutely con- 
tinuous component w.r.t. tLebesgue measure 
on RP. Let f0 (E l), fi, . . ,X be linearly in- 
dependent, real-valued, and continuously dif- 
ferentiable functions. For i = 1, . . . , n, put Zi = 

(ft (Xi), fi(XJ, . . t fk(xi)b and assume that 
the distribution of Z, has moments up to the 
order v (2 3). Let H be a real-valued function 

on Rk such that the vth order derivatives are 
continuous in a tneighborhood of p = E(Z,). 

Let V=(u,), i, j= 1, . . . , k, be the covariance 
matrix of the random vector Z,, and put c2 = 
C uijlilj, where li = 8H(z)/Bz,].=,, and z= 

(z i, . . . , zk). Then 

where z = & Z,/n, the supremum is taken 

over all Bore1 measurable sets B, 

4,,(x) is the probability density function of the 
normal distribution N(0, o’), and the P’s are 
polynomials whose coefficients are indepen- 

dent of n. 

G. Order Statistics 

Let {Xi, . . . . X,} be a random sample from a 
univariate distribution with continuous prob- 
ability density f(x) and distribution function 

F(~),andletX~,,,<..., <Xc”, be torder statistics. 
The joint probability density of Y1 =X(.), Y2 = 
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x (/iJ, . . . , Y&i = X,,,, and Y,= XC,i) is given by 

n! 

(a-l)!(B-a-l)!...(q-E-l)!(n-q)! 

x (F(Y,))“-‘(F(Y*)- F(Yl))-’ “’ 

x(F(y,)-F(y,~,))“-“~‘(l -F(y,))“-q... 

Xf(YJf(Yz)...f(Yp) 

for -co<y,<...<y,<co,wherecc<B<...< 

E < q. If for given constants 0 < 1?i < < $ < 
1, each of the subscripts CC, , r~ tends to inlin- 
ity as n-t cu under the conditions ri = ni, + 

o(G), where g= rl, , r~ = rP, then the ran- 
dom vector (Y,, . . . , Y,) asymptotically obeys 
the p-dimensional normal distribution with 
mean vector (<i, , 5,) and covariance matrix 
n -l(o,), where aij = oji = &( 1 - lj)/)lf([i)f(t) for 
i<j and ti is the &quantile of the population, 
defined by iLi = F(&). 

Suppose that there exist two sequences a, 

and b, of real and positive numbers, respec- 
tively, such that as n+ co the sequence (X,,, - 
a,)/b,, converges,in distribution to a nonde- 
generate distribution G. The underlying dis- 

tribution F is said to belong to the domain 
of attraction of the limiting distribution G 
(DA(G), for short). Except for the change of 
location and scale, only the following three 
distributions have nonempty domains of 
attraction: 

G,= 
e-(-x)y x<o 

1, x20' 

Writing F(x) = 1 -F(x), cc(F) = inf{x 1 F(x) > 0) 

and w(F)=sup{xlF(x)< l}, we have the fol- 
lowing theorem (B. V. Gnedenko, Ann. Math., 

44 (1943)): 
FEDA iff m(F)= CC and there exists an a 
such that 

lim F(a+ux)/F(a+u)=xC for all x; 
u-m 

FEDA iff a-w(F)< m and 

limF(a-ux)/F(a-u)=xY for all x>O; 
u-0 

FeDA iff there exists a positive function 

R(t) such that 

lim F(t+xR(t))/F(t)=e-” for all x. 
r-w(F) 

If F(x) is twice differentiable, f(x) = F’(x) 
is positive for sufftciently large x, and 
lim .+,&{U -FWf(x)il~x =O, then 
FEDA( Noticing the relation XC,,= 
-max{ -Xi, -X2, , -X,}, we can also 
derive the possible limiting distributions for 

the sequence (X, i) - a,)/b, and their domains of 

attraction. The statistics R, = X,,, - XC,) and 
M, = (XC,, + XC,,)/2 are called the range and the 

midrange of the sample, respectively. If, for 
some a,, a;, and b,, both sequences (XC,,- 

4/h and (4 1) - ak)/b,, converge to nondegene- 
rate distributions G and H, respectively, then 
they are asymptotically independent, and we 

have 

lim Pr{(R,-a, +a’,)/b,<x} 

zz 
s 

Oc (1 -H(y-x))dG(y), 
- aa 

lim Pr { (2M, -a, - c&)/b, <x) 

s 

m 
= ff(x-~W(y). 

--2 

H. Characterization of the Distribution by 
means of a Property of the Sampling 
Distribution 

A distribution or a family of distributions can 

be characterized by a property of the sam- 
pling distribution of a suitable statistic. Let 
{X,, X,, . . . , X,,} be a random sample from a 

nondegenerate distribution F, and let XC1, d 
<XC,, be the torder statistics. The tsample 

mean X is independent of the tsample var- 
iance S* = x(X,- X)‘/(n - 1) iff F is normal 

N(p, c?) (Kawata and Sakamoto, J. Math. Sot. 
Japan, 1 (1949)). Let aij, i, j = 1, , n, be real 
numbers such that C aij = 0 and Z a,, # 0. If F 
has a finite second moment, then the condition 
E( C uijXiXj 1 X) = const. implies that F is nor- 

mal. Two linear statistics L, = a, Xi + + 
u,,X,, and L, = b, X, + + b,,X, are inde- 

pendent only if F is normal, provided that 
ujbj#O for somej. In fact, the X’s need not be 
identically distributed: If L, and L, are inde- 
pendent and ujbj # 0, then the distribution of 

Xj is normal (Skitovich-Darmois theorem). Yu. 
V. Linnik [23] gave a necessary and sufficient 

condition for the normality of F IO be equiv- 
alent to the identity of the distributions of L, 
and L,. The condition is stated in terms of the 
zeros of the entire function (T(Z) = (a i 1’ + . . + 

~cI,~~--(~~~~- . . . -lb,,l’. The result contains as 
a special case the following characterization 
theorem for the normal distribution: If C aj’ = 
1 and L, has a distribution identical to that of 

X,, then Fisnormal N(p,a2)withp(Zuj-1) 
= 0. R. Shimizu gave a complete description of 
the characteristic function of the distribution 
for which L, has the same distribution as X,. 
In particular, it was proved that if loglu, I/ 
loglu, 1 is an irrational number, c( is the posi- 

tive number given by Cla,l”= 1, and if L, has 
a distribution identical to that of X,, then F is 
the +stable distribution with +characteristic 
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exponent ~1. The result was extended in [24] 
to the cases where the a’s are random variables 

independent of the x’s If E(X,) = 0 and E(X 
IX,-X,X,-X ,..., X,-X)=O,thenFis 

normal [26]. Let pi, p2, . , p. be a set of real 
numbers. If the sampling distribution of the 

statistic z(Xi + pi)* depends on the p’s only 
through C ,L$ , then F is normal. If Xi is posi- 
tive and has finite mean, then the condition 
E(X 1 X,/X,, X,/X,, . . . , X,/X,) = const. implies 
that F is the gamma distribution. If the distri- 
bution F is not concentrated on a lattice 0, 

P,h..., then JW&+~) - Xckj 1 Xc,,) = const. 
for some k implies that F is the texponential 
distribution: F(x)= 1 -em”“, x>O. XClr+iJ-XCk) 
has the identical distribution for some k with 

min{X,,X,, . . . . X,-,} iff F is exponential. If 
a a i, 2,. , a, are positive numbers such that 

a,+a,+... +a,= 1 and such that loga,/Ioga, 
is irrational, then the sampling distribution of 
min{X,/a,,X,/a,, . . . ,X,/a,} is the same as 
that of X, iff F is exponential. Xo, is indepen- 
dent of XC1, - X iff F is exponential. 

Suppose that the distribution F has a 
bounded density function and that the integral 
&e’“dF( ) f ‘t x is mt e on a neighborhood oft= 
0. Let {X1,X,, . . . . X”} be a random sample 
from a distribution of the family 8= {F((x - 

p)/a)l -co<p<co,o>O}. For n>9, the sam- 
pling distribution of the statistics 

{ 
(X,--Xl) (X*-X,) (X6--X‘s) (X,-X,) 
(X,-X,)’ w,-X7)’ (X9-m’ 0’ 

sgn(X, - Xl), sgn(X, - Xl), 

w4& -X4), wK -X4) 

uniquely determines the family 9. If F is 
symmetric, then for n > 6 the distribution of 

~I(&-m/w*-m Iw,-x,Y(x,-xx,)I} 
uniquely determines B [25]. 

I. U-Statistics 

Let {Xi, . . , X.} be a random sample from a 
certain distribution, and let cp(x,, . . . , x,) be a 
real-valued function that is symmetric with 

respect to the arguments xi, . . . ,x,. The 
statistic 

U= 
0 
; -l~dxal ,..., x, 1, II) 

where the summation extends over all combi- 

nations (cli, . . . . cr,,,)takenfrom(1,2 ,..., n),is 
called a U-statistic. Let fI=E((p(X,, . . . , X,)), 
and assume that E((p(X,, . . , X,,,)‘) is finite. 
Then the mean and variance of U are given by 

where ii is the covariance between (p(X,, 
. . . , X,,,) and (p(X,, . . . , Xi,Xi+i, . . . ,XL), with 
X! ,+, , . . . , XL an additional independent 
random sample of size m-i from the same 
distribution. If ii #O, then U obeys the distri- 

bution N(0, m*~i/n) asymptotically as n-+ co 
(W. Hoeffding, Ann. Math. Statist., 19 (1948)). 

These results can be generalized to the case 

of several populations and samples. Let 
X ll,“‘, X I”,; ..., .-G,..., XC”, be c independent 
random samples, each drawn from one of c 
populations. Assume that a real-valued func- 
tionrp(x,, ,..., xim,;...;x,i ,..., x&issym- 
metric with respect to the arguments xii, . . . , 
ximi for each i = 1, . . . , c. Then 

u=fi Q 
0 

-1 
i=l m, 

.C(P(Xla(ll),...,Xlcr(lm,);...; 

where the summation extends over all combi- 
nations (cr(il), . . . , cc(imi)) of mi numbers taken 
from(1,2,..., ni) for each i = 1, . . , c, is called a 
U-statistic. The mean and variance of U can 
be obtained as before, while U is asymptoti- 
cally normally distributed as the sample sizes 
n, , . . . , n, tend to infinity in fixed proportion. 
Furthermore, if there are given several U- 

statistics, their tjoint distribution is asymptoti- 
cally normal. 

J. Distributions Having Monotone Likelihood 
Ratio, and P6lya-Type Distributions 

Let (S, b) be a sample space and 

be a family of probability densities with re- 
spect to a fixed ta-finite measure. The function 
p&c) regarded as a function of f3 with a fixed 
observed value of x is called the likelihood 
function, and its value at a particular point 0 is 

called the likelihood of that point. The family 
B with R c R is said to have monotone likeli- 
hood ratio with respect to a real-valued function 
T(x) if and only if for any 0 < 9’ such that f3 
and 0’ belong to R the ratio p,.(x)/p,(x) is a 
nondecreasing function of T(x). Under the 
assumption that %Y c R and a2 log p&)/d&l 
exists, a necessary and sufficient condition for 
9 to have monotone likelihood ratio with 

respect to T(X) E x is that a2 logp,(x)/MM 2 0 
for any x and 8. If {Xi, . . . , X,} is a random 
sample from a distribution that has a mono- 
tone likelihood ratio and if a real-valued func- 
tion$(x,,..., x,) is nondecreasing in each of 

its arguments, then the expectation E&(X1, 
. . . , X,)) is a nondecreasing function of 8. 

The family B is said to be of P6lya type n 
if and only if for any m = 1,2, . . . , n and any 
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realnumbersx,<...<x,and0,<...<&,,, 
the determinant of the matrix (peL(xj)), i, j = 

1,. . . , m, is nonnegative, and ,y is said to be 
strictly of P6lya type n if the determinant is 

positive. Being of Polya type 2 is equivalent to 
having a monotone likelihood ratio. If 9 is 
(strictly) of Polya type n for any positive in- 
teger n, then it is said to be (strictly) of P6lya 
type. An texponential family of distributions 

with probability density p,(x) = exp(0x + a(0) 
+ s(x)) for x E X c R and HE !Z c R is strictly 
of Polya type. Each of the noncentral chi- 
square distribution, noncentral t-distribution, 
and noncentral F-distribution is strictly of 
Polya type with respect to the noncentrality 
parameter. 
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375 (Xx.26) 
Scattering Theory 

A. General Remarks 

The path of a moving (incident) particle is 

distorted when it interacts with another (tar- 
get) particle, such as an atom or a molecule. 

Phenomena of this sort are generally called 
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scattering. Scattering is called elastic when the 
internal properties of the incident particle and 

the target remain unchanged after the colli- 
sion, and inelastic when the internal properties 
change, other particles are emitted, or the two 
particles form a bound state. 

The extent of scattering depends on the sizes 

of the incident and target particles. The scat- 
tering cross section is defined as the probability 
that the incident beam will be scattered per 

unit time (normalized to one particle per unit 
time crossing unit area perpendicular to the 
direction of incidence). In tclassical mechanics 

the scattering cross section is equal to the 
cross section of the target perpendicular to the 
incoming beam, hence the term “cross sec- 

tion.” The probability of scattering into a unit 
solid angle in a particular direction is called 
the differential cross section. The probability 
that the incoming particle is absorbed by the 
target, called the absorption cross section, is 
intimately connected with the scattering cross 
section. Analyses of scattering give infor- 

mation on the structure and interactions of 
atoms, molecules, and elementary particles. 
One can also study the scattering of acoustic 
and electromagnetic waves by inhomogeneous 

media and obstacles, by considering notions 
similar to the above. 

Scattering theory may be dated back to 
Lord Rayleigh. Since the advent of quantum 
mechanics in the mid-1920s, scattering prob- 

lems, mainly for central (spherically sym- 
metric) potentials, have been investigated 
strenuously by physicists. It may be said, how- 

ever, that a scattering theory having mathe- 
matically rigorous foundations began around 

the 195Os, when the pioneering work of K. 
Friedrichs (Comm. Pure Appl. Math., 1 (1948)), 
A. Ya. Povzner (Mat. Sb., 32 (1953)), T. Kato 

(J. Math. Sot. Japan, 9 (1957)), J. M. Cook 
(J. Math. Phys., 36 (1957)), and J. M. Jauch 
(He/u. Phys. Acta, 31 (1958)), among others, 
appeared, and scattering theory has now grown 
into a branch of mathematical physics. 

General references for mathematical scatter- 
ing theory are, e.g., [l-5]. 

B. Wave and Scattering Operators 

In tquantum mechanics the dynamics of 
an interacting system is given by a tone- 
parameter group of unitary operators emitH, 
where t denotes the time and H, called the 
Hamiltonian of the system, is a tself-adjoint 
operator acting in a tHilbert space X. Ele- 
ments of 2 represent (pure) states of the sys- 

tem. Let H,, be the “free” Hamiltonian of the 

corresponding “noninteracting” system. (There 
are at present no generally accepted definite 

criteria for “free” and “noninteracting.“) H,, is 

assumed to be tabsolutely continuous, which 
is the case in most practical situations. Then 

the outgoing and incoming wave operators 
W, = W,(H, H,) are defined, if they exist, by 

w  
k 

= s-lim ei’He-i% 
*-*cc 

(s-lim = tstrong limit). 

This means that given any free motion emifHou 
there is an initial (t = 0) state u+ ( = IV+ u) such 
that emitHuk and emitHou are asymptotically 
equal at t = *co. W+ are tisometric, intertwine 

the two dynamics: eyiz’j W’+ = W, emi*“,, and 
map X (which is nothing but the tabso- 
lutely continuous subspace 2a,(H,) for H,) 

onto a closed subspace of X&3). The scatter- 
ing operator S is defined as S = I%‘,* W- (A* is 
the Hilbert-space tadjoint of A). S commutes 
with H,, and maps states in the remote past 
into states in the distant future. One of the 
most important problems in scattering theory 
is to prove the tunitarity of S, or equivalently, 
Ran IV+ = Ran W- (Ran = trange = timage). IV+ 
is called complete if Ran IV+ = #a,(H). The - 
completeness of W, implies that S is unitary. 

As a typical example we consider the l-body 
problem. Note that the 2-body problem re- 

duces to the l-body problem by separating out 
the center-of-mass motion, which is free. Then 

H,, = -A (the negative TLaplacian in R3), H = 
-A + V, the operator Y being multiplication 

by a real-valued function V(x), called the po- 
tential, and .A? = L,(R3). If I/ is short range, i.e., 
if, roughly speaking, V(x)=O(lxl-‘-‘) (E>O) at 
co, the wave operators are known to exist and 
to be complete (S. Agmon, Ann. Scuola Norm. 

Sup. Piss, (4) 2 (1975)). If the potential V(x) 
is long range, i.e., if, roughly speaking, V(x) = 
0(1x(-“) (E>O) at cx), then the foregoing defmi- 
tion of the wave operators has to be modified. 

For the Coulomb potential V(x) = c/x, for 
instance, one can adopt the following detini- 
tion of modified wave operators: 

IV+ =;-I& eitHexp( --it& - i(c/2)&“* log t). 

It can be shown that the @+ exist (which - 
implies that the ordinary wave operators do 
not exist) and are complete: Ran @* = Za,(H) 

(J. D. Dollard, in [6]). The same result obtains 
for more general long-range potentials (H. 

Kitada, J. Math. Sot. Japan, 30 (1978); T. 

Ikebe and H. Isozaki, Integral Equations and 
Operator Theory, 5 (1982)). 

If the wave operators exist and are com- 
plete, they give tunitary equivalence between 

the tabsolutely continuous parts of Ho and H 
(- T. Kato [7]; 331 Perturbation of Linear 

Operators). 
In the foregoing discussion it was tacitly 

assumed that in dealing with scattering phe- 

nomena we adhere to states in JZ’~,(H,) and 
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y%,,(H). A more physically intuitive definition 
in the case of potential scattering (H,, = -A, 
H = H, -+ V) of scattering states C+(H) is the 
following: FEZ+ if and only iffor any r>O, 

(II II = b-norm), 

where F, is the (projection) operator of multi- 
plication by the characteristic function of 

(x E R3 1 Ix I < Y}. In general no inclusion rela- 
tions between C,(H) and J?~,(H) are known. 

But for a wide class of potentials it is known 
that Z”,(H) as well as the tcontinuous sub- 
space of H coincides with C+(H) (in this case 
there is no tsingular continuous spectrum) (W. 

0. Amrein and V. Georgescu, Helv. Phys. Acta, 
46 (1973); C. Wilcox, J. Functional Anal., 12 

(1973); Amrein, in [S]). 
A purely abstract result in scattering theory 

may be noted. Let H, and H be self-adjoint 

R(,l k iO), 1> 0 (limiting absorption principle; - 
Agmon, lot. cit., for short-range potentials; for 
long-range potentials - R. Lavine, J. Func- 

tional Anal., 12 (1973); T. Ikebe and Y. Saito, 

J. Math. Kyoto Uniu., 12 (1972); and Saito, 
Publ. Res. Inst. Math. Sci., 9 (1974). With these 
boundary values we can define “stationary” 

wave operators whose range is easily proved 
to coincide with X8,(H), and show their equal- 
ity to the time-dependent wave operators 
discussed in Section B, thus obtaining the 
completeness of the latter. 

H,, is known to have generalized (improper) 
eigenfunctions cp,,(x, f) = eiX’t with generalized 

(improper) eigenvalues I< 12. The associated 
eigenfunction expansion is nothing but the 
Fourier integral expansion. An eigenfunction 

expansion, similar to the Fourier expansion, 
that diagonalizes H can be obtained by using 
generalized eigenfunctions 

operators in an abstract Hilbert space .Y? such 
that 1/= H - H, is a ttrace-class (+nuclear) 

=cp,(x,5)-(R(l5~*~iO)~cp,(~,5))(x), 

operator. Then the generalized wave operators 
W,(H, H,,)=s-lim,,,, exp(itH)exp( -itH,) 

P,,( H,,) exist, where I’,,( H,,) is the tprojection 
onto .?Q(H,). Since this statement is sym- 
metric in H, and H, the “inverse” generalized 

wave operators W+(H,,, H) also exist, from 
which one can con&de that W,(H, H,) are 
complete. Moreover, the invariance principle 
holds, which means roughly the following: 
If 4 is a strictly increasing function on R, 
then W,(&H),q5(H,)) exists and is equal to 
W,(H, H,). This result can be applied to poten- 
tial scattering when I/(x)EL~(R~)~L,(R~) 
(Kato [7]; D. B. Pearson, J. Functional Anal., 

28 (1978)). 

which are the solutions to the Lippmann- 

Schwinger equation 

1 s efilCllx-Yl -~ 
47l 

~ Wv+(y> WY. 
R” ix-Y1 

A rough statement of this is the following: 
Let 12,(5)=(2~)-3’2S~I-(~,S)~(x)dx. Then 

lltlll= ll4, VW-(5)=1512~(5X and u(x)= 
(271)-3’2s(p+(x,5)a(5)d5 (- e.g. [4,X1.6] for a 
more precise statement). 

In view of the fact that S commutes with H,, 

we can show that S admits the following repre- 
sentation: Let ti(t)=(2n)-3’21~O(~, <)u(x)dx be 
the tFourier transform of u. Then 

C. Stationary (Time-Independent) Approach 

We again consider the 1 -body problem as in 
Section B. V(x) is assumed to verify certain 
appropriate decay conditions at co as the 
case may be. Consider the tresolvents R&)= 
(Ho-z)-’ and R(z)=(H-z)-’ for zEC-R, 
which are well-defined bounded integral opera- 

tors on Z = L2(R3). Here we note the follow- 
ing: [0, co) is the tcontinuous spectrum of 
H, and H, (-co, 0) is contained in the tresol- 

vent set of H,, and H has possibly tdiscrete 
teigenvalues in [ -a,O) with (-co, -a) con- 
tained in the resolvent set, where a is a posi- 

tive number. When z approaches a positive 
real value, R,(z) and R(z) do not have limits as 

Tbounded operators on E. But if we regard 
them as operators from L,,, to LZ, -y (L2,a= 

{u[(l +Ix~)%(x)EL~(R~)}), y> l/2, they can be 
shown to have boundary values R,(i + i0) and 

=0(5)-k s~161~(~,l~l~‘)~(l~l~‘)d~‘, 
J 

where 

T((,(‘)=(~z)-~ cp,,(x,~)v(x)cp(x,~‘)dx 
s 

is the kernel of the so-called T-operator, which 
is a tcompact operator on L2(S2) under suit- 

able conditions on V(x). T(& l’) is related to 
the experimentally measurable total cross 
section (for incident momentum ii) (r(t): 

45)=2z 
s 

lf(151;w,M2dw’ (w=5/151)> 
S’ 

.f(& Co, cd) = - 27c2 T(lw, Ad) (a. > 0). 

The quantity f(k w, w’) is called the scattering 

amplitude and appears in the asymptotic 
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expansion of cp +(x, 5) as 

where d=a/lal for acR3. 

An abstract version of the limiting absorp- 
tion principle and eigenfunction expansion 
is known as the Kato-Kuroda theory, for 
which the reader is referred to Kato and S. T. 
Kuroda in [6] and in Functional analysis and 
related fields, Springer, 1970, and to Kuroda 
(J. Math. Sot. Japan, 25 (1973)). 

D. Time-Dependent Approach 

Consider the same situation as in Section C. 
Since scattering is a time-dependent phenom- 
enon, it seems natural to develop scattering 
theory in a time-dependent fashion. Indeed, 
there is an approach to the completeness of 
wave operators that does not resort to any 
eigenfunction expansion results, but instead 
follows the temporal development of the wave 
packet e -irH~. The completeness of W, will be 
established if one can show that any UEX’~,(H) 
orthogonal to Ran W+ is 0. A crucial step to 
prove this is to find aclever decomposition of 
a wave packet into an outgoing and an incom- 
ing one, or to find projections P, such that 
P+ + P- =I and Pke-““o goes to 0 as t+ Tco. 
Some compactness arguments are also needed. 

To construct such a decomposition or pro- 
jections one looks at the scalar product x. 5, 
x and 5 being the position and momentum 
(operators), respectively. The main idea is that 
if this is positive, the particle will be outgoing 
(to infinity), and if negative, incoming (from in- 
finity). But since we work in the framework of 
quantum mechanics, this classical-mechanical 
intuition should be properly modified. 

Besides the completeness of wave operators 
it can also be shown through the above ap- 
proach that the singular continuous spectrum 
of H is absent. For details - [4, XI.171 and 
V. Enss, Comm. Math. Phys., 61 (1978). 

E. Partial Wave Expansion 

In this section we assume that the potential 
V(x) is central, i.e., V(x) is a function of 1x1 
alone. Then the scattering operator S turns out 
to commute not only with H, but also with the 
tangular momentum operator L = x x i-l V 
(vector product). The eigenvalues of L2 = L. L 
(scalar product) are I(1 + 1) (1 =O, 1,2,. . . ), and 
those of L,, the third component of L, are m = 
-I, -(l-l), . . . ,I- 1,1 if L* has eigenvalue 
l(l+ 1), while simultaneous eigenfunctions are 
given by suitably normalized tspherical har- 

monies k;,(w), weSz. Let E, be the projection 
onto the subspace spanned by functions of the 
form Z~=-,U~~(~).)~(O) (r= 1x1 >O,w=x/r). .X 
becomes an orthogonal sum of *l = E,#. The 
aforementioned commutation property claims 
that E,S = SE, = S,, and the operator 9, reduces 
to multiplication by a scalar function ezidI(‘) in 
$r (- Section C). s,(n) is called the phase shift. 
Defining the partial wave scattering amplitude 
fi(A)=(2il)-‘(ezidl(“)- l), one obtains the 
partial wave expansion of the scattering 
amplitude: 

f(n;w,co’)= F (21+ l)fr(l)P~(COS@, 
I=0 

where 0 is the angle between o and w’, and P[ 
is a tLegendre polynomial. The total cross 
section is o(A)=47~l-~C~=,(21+ l)lfi(n)(’ 
[l-5,9]. 

F. Many-Body Problem (Multichannel 
Scattering) 

We consider only the 3-body case, which is 
complicated enough compared with the 2- 
(essentially l-) body case. The complications 
are both kinematical and dynamical. The 
configuration of a 3-body system is given by 
a point in Rg. Once we choose the center-of- 
mass coordinates, there is no kinematically 
natural way to choose the remaining six co- 
ordinates. In the 2-body case a freely moving 
particle in the remote past will be freely mov- 
ing in the distant future. But in the 3-body 
case there come into play various other dy- 
namical processes, such as capture, breakup, 
rearrangement, and excitation. 

The 3-body Hamiltonian is a self-adjoint 
operator in L,(R’) of the form 

'= -i$ &k+ 1 Kj(xi-xj), 
I i<j 

where Ai is the 3-dimensional Laplacian as- 
sociated with particle i, m, is the mass of par- 
ticle i, and each vj(x) (= qi(x) = Kj( -x)) is 
a real-valued function decaying at cc in R3 
(not in R’). If we remove the center-of-mass 
motion, I? can be written in the form 

R = Ho 0 I + I 0 H (0 = ttensor product), 

where Ho is the center-of-mass Hamiltonian in 
L2(R3) representing the uniform free motion 
of the center of mass, and H is the Hamiltonian 
of relative motion in L2(R6). One should note 
as mentioned above that there is no unique 
natural way of choosing coordinates in R6 and 
representing H, but there are many equivalent 
representations. Suppose, for instance, that 
particles 1 and 2 and particles 1 and 3 form 
tbound states (12) and (13) and that there are 



375 G 
Scattering Theory 

1400 

no bound states between 2 and 3. We partition 
the whole system into clusters: (1) (2) (3), (12) 

(3) and (13) (2) (( ) represents a cluster and 
figures in ( ) are the particles forming the 
cluster). A channel is a partition into clusters 

together with a specified bound-state eigen- 
function. Take, for instance, channel (12) (3), 

and suppose $E&(R~) is the eigenfunction 
in question. If we take x=x2 -x, and y = xj - 
(m,+m,)-‘(m,x,+m,x,), then 

H= -&fly-&A,+ V,,(X) 

+ h3(s-Y)+ &I(*+ y), 
wherem~‘=m;‘+(m,+m,)-‘,n-‘=m;‘+ 
tn;l. Let us neglect the interactions between 

(12) and (3), i.e., set V,,= V31 =0 to define the 
cluster decomposition Hamiltonian 

H (12)(3)= -&k&L+ KzW 

Let XC12jC3)= L2(R3) (called the channel Hil- 

bert space consisting of functions of y), and 

define a mapping 7:Y~,,~~,,-+~=L,(R6) 
(functions of x and y) by (~f)(x, y) = $(x),f’(y). 
The channel wave operators y12jC3jk are de- 
fined by 

as isometries from flc,2)(3) into 2. Their 
ranges are not expected to coincide as in the 

l-body case. Y1jc2)(3)~ and Y13jc2j* are 
similarly defined. Note that Xt1,(2,(3,=~. 
If x and p are distinct channels, we have 
Ran W,, I Ran Wp+ and Ran W,_ I Ran Wp-, 

but no such relations exist between Ran W,, 
and Ran Wp- or Ran W,- and Ran Wp+. De- 
fine, for channels CI and /j, Sap : y;“p-X* by Sap 
= (W,,)* Wp- Now the scattering operator 
S for the 3-body system is defined as the 
tdirect sum of SZp acting in the Hilbert space 
2, @ 2%: S = C.,B @ SZp. Naturally the ques- 
tion arises: Is S unitary? The first affirmative 

answer was made by L. D. Faddeev (Israel 
Program for Scient$c Translations, 1965 (in 
English; original in Russian, 1963)), and later 

the work of J. Ginibre and M. Moulin (Ann. 
Inst. H Poincari, A21 (1974)) and L. Thomas 
(Ann. Phys., 90 (1975)) came out. The method 
of these authors is stationary. There have also 
been some attempts using time-dependent 

methods. 

G. Inverse Problem 

The inverse problem in potential scattering 
may be formulated at least mathematically as 

follows: Given the scattering operator or scat- 

tering amplitude, determine the potential(s) 

giving rise to the operator or amplitude. We 
consider here only the 2-body case (as to the 
many-body case, almost nothing is known). 
The central-potential case can be reduced to 
l-dimensional problems on (0, m). In the l- 
dimensional case the celebrated Gel’fand- 

Levitan theory (- 112 Differential Operators 
0) has long been known and has been success- 

fully applied even to nonlinear problems such 
as the +Korteweg-de Vries equation. In the 

3-dimensional case, however, the problem 

becomes difficult; so far there has not been 
any satisfactory theory comparable to that for 
the l-dimensional case. The potential V(x) is a 
function R3+R. The scattering amplitude 
f(& w, w’) is a function f: R x S2 x S2 +C. Let 
A4 be the mapping that takes V into f: The 
inverse problem deals with M-‘. Several ques- 
tions may be posed (in order of increasing 

difficulty): (1) Is M one-to-one? (2) When it is 
known that M is one-to-one and f is in the 
image of M, how does one (re-)construct the 
V that yields f? (3) What conditions charac- 

terize the image of M? Question (1) has been 
rather satisfactorily answered insofar as short- 
range potentials are concerned. Concerning 

questions (2) and (3), attempts have been and 
are being made to generalize the Gel’fand- 

Levitan theory, but it may be said that we 
are still at the beginning stage. References are 
[2,9, lo] and R. G. Newton (J. Math. Phys., 
20 (1980); 21 (1981); 22 (1982)). 

H. Scattering for the Wave Equation 

Consider the +wave equation u,, --Au = 0 in R3. 

The solution u(t) = u(t, x) is uniquely deter- 
mined by the initial data {f; g} = {u(O), u,(O)}, 
and U,(t){f;g} ={u(t),u,(t)} defines the solu- 
tion operator LJJt). The set of data {,fig} with 
finite energy: S(IVf12+lglZ)dx<Co forms a 
Hilbert space &,. Uo(t) is a unitary group 
on X,,. A similar description is possible for 

solutions of the wave equation in an exte- 
rior domain R outside an obstacle with zero 

boundary condition. Denote the resulting 
Hilbert space and solution operator by X 

and U(t), respectively. Let J:z&-+Y? be the 

identification operator defined by (J { A g;)(x) 
= {f; g} (x), x E s2. The wave operators are de- 
fined by W+ = s-lim,, +u: U( -t)JU,(t). The 
existence of W+ is shown rather easily by using 
+Huygens’s principle. As in Section B, we 
define the scattering operator S = W,! W- and 

say that W+ is complete if Ran WI, = I&(H), 
where H is the self-adjoint tinfinitesimal gen- 

erator of U(t): U(t) = e mirH. The completeness 
of W+ and the unitarity of S are proved on the 

basis of the abstract translation representation 
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theorem: Let U(t) be a unitary group on a 
Hilbert space Z”. Suppose there exist sub- 
spaces D, and D- , called outgoing and incom- 
ing subspaces, such that U(t)D, CD+ for 

kt20, ntsR WW, = {O), and UreR WP, 
is dense in ti. Then we have two unitary 

operators W, : ti+&(R; IV), where N is an 
auxiliary Hilbert space, such that W, U(t). 
9,’ is right translation by t, and D, (D-) is 

mapped onto L,(O, a; N) &(-co,@ N)) by 

a+ (W-1. 
Turning to the concrete situation, one can 

study the detailed properties of S. The unique- 
ness theorem in the inverse problem is also 
obtained, to the effect that S determines the 
obstacle uniquely. The foregoing treatment of 
scattering is known as the Lax-Phillips theory 
(P. D. Lax and R. S. Phillips, in [6,8,11]. 
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376 (XIX.1 5) 
Scheduling and Production 
Planning 

Production planning emerges in many situ- 
ations. Models of economic planning can be 

classified as (1) fiscal policy-oriented, (2) final 
demand-oriented, (3) structure-oriented, (4) 

expenditure-oriented, and (5) industrialization- 

oriented. Types (2), (3), and (5) belong to pro- 
duction planning in a broad sense, as emphasis 
is placed on production in these models. 

A typical production planning theory of 
primary importance is activity analysis, which 
has made remarkable progress since its initi- 

ation by T. C. Koopmans [ 11. Its principal 
theoretical content consists of tlinear pro- 
gramming. Most applications of linear pro- 
gramming are more or less concerned with 
production activities. Because of the additivity 
and divisibility of production as well as the 
limitation of production intensities, problems 

of production planning can be formulated as 
problems of linear programming. The meth- 

ods of tlinear algebra are used to obtain an 
optimal production plan and are very impor- 

tant in modern economic analysis, because 

these methods not only provide practical 
algorithms but also clarify the role of price, 

especially in tdual linear programming 
problems. 

The originators of general equilibrium 
theory (- 128 Econometrics) failed to give an 
analytical demonstration of the existence of 
solutions of certain systems of equations of 
economic relevance. The existence of a deter- 
minate equilibrium was established first by 

A. Wald for a system of equations of the 
Walras-Cassel type. On the other hand, J. von 
Neumann [3] proved the existence of non- 

negative solutions CI, /3, xi, yj for a system of 
inequalities 

m 
c( 1 UijXi< f bijXi, j=l,2 ,...,n, 

i=l i=l 

B jZfIl %Yj a j$ bijYj7 i=l,2 ,...,m, 

by reducing the problem to the proof of the 
existence of a tsaddle point (- 292 Nonlinear 
Programming A) of the function 

@(X, Y)= F t bijxiyj/ f $ aijxiyj 
i=l j=l i=l j=l 

by means of Brouwer’s fixed-point theorem. In 
this result an equilibrium is defined in the 

broad sense that demand for goods does not 
exceed their supply, rather than requiring 
exact balance. 

A second important kind of production 

planning is related to both tinventory control 
(- 227 Inventory Control) and sales planning. 
An example is the minimization of 

s 

T 
(z(t)+Bmax(dz/dt,O))dt 

0 

subject to the condition z(t)>r(t), where z(t) 
and r(t) are the output and demand, respec- 
tively, at time t. Stabilization of employment 
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and production can also be classified as a 
production planning problem of this kind, in 
which inventory holding is considered as a 
means for lessening the change of employment 

level. This is related to the problem of smooth- 
ing production by inventory control. Dynamic 

programming (- 127 Dynamic Programming) 
is very useful in dealing with problems of 
smoothing production. 

Production planning as a production man- 

agement tool is often embodied in scheduling. 
Consider a project that consists of n indivi- 
sible tasks (jobs or activities) Ji, i = 1,2, , n, 
each requiring pi units of time for processing, 
where pi is given either deterministically or 
probabilistically. A precedence constraint 
(generally a tpartial ordering) partially specify- 
ing the order in which these tasks are to be 
processed is also imposed by technical con- 

siderations: One attempts to find a schedule 
(i.e., a specification of the time to process the 

tasks Ji) consistent with the given precedence 
constraint. 

Well-known techniques developed for this 

purpose are PERT (program evaluation and 
review technique) [4] and CPM (critical path 
method) [S], in which the precedence con- 
straint is represented by an acyclic tdirected 
graph, called an arrow diagram, a project 
network, or a PERT network, such that each 
task Ji corresponds to an arc of length equal 
to pi. An arrow diagram is illustrated in Fig. 1. 

The longest path from the start node to the 
end node in the network is called the critical 
path, and gives the minimum time necessary to 

complete the project. Following computation 
of the critical path by means of dynamic pro- 
gramming, computations are also made for the 
earliest (latest) start time, the earliest (latest) 
finish time, and the floats (i.e., the allowances 
for such start and finish times) of each task to 

be satisfied in order to complete the project 
within the indicated minimum time. These are 
used to review and control the progress of the 

project. In PERT the processing time of each 
task is probabilistically treated on the basis of 
three estimates: most likely, optimistic, and 

pessimistic. From these data other parameters, 

Fig. 1 
A, B, , M denote tasks, while the associated in- 
tegers are their processing times. Bold arrows indi- 
cate the critical path. The start node is on the left, 
the end node is on the right. 

such as the probability of completing the 

project before the specified due date, are com- 
puted. In CPM, on the other hand, a mini- 
mum cost schedule to attain the given due 
date is obtained by utilizing tnetwork flow 
algorithms (J. E. Kelley [6], D. R. Fulkerson 

[7]), in which the processing time of a task is 
determined by linear interpolation between the 
normal time (achieved with low cost) and the 
crash time (high cost). 

PERT and CPM are used in various areas 

of application, e.g., civil engineering and the 
construction industry, shipbuilding, produc- 
tion of automobiles, machines, and electric 
apparatus, and management of research and 
development programs. PERT was originally 

developed by the US Navy to monitor and 
control the development of the Polaris fleet 
ballistic missile program, while CPM was 
developed by the RAND Corporation and the 

Du Pont Corporation, both in the late 1950s. 
Computers have been essential from the begin- 
ning, to handle the large amount of associ- 

ated data. A number of application program 

packages, each with some additional features, 
are currently available, e.g., PERT/TIME, 
PERT/COST, CPM, and RAMPS. 

The machine sequencing (scheduling) prob- 
lem arises when the resources, instruments, 
workers, and so forth, required to process a 
task are abstractly formulated as machines 
and if the restriction on the number of avail- 
able machines is taken into consideration 

(i.e., the conflict between tasks competing for 
the same machine at the same time must be 
resolved). Usually one machine is assigned 

to each task. Such a machine is either (a) 
uniquely determined for each task or (b) chosen 
from a given set of machines; in the latter case, 
there might be (i) parallel machines with the 
same capability or (ii) machines with different 

capabilities. The precedence constraints are 
also ramified into independent (i.e., no con- 

straint), in-tree, out-tree, series-parallel, and 

general partial ordering constraints. Each task 
has a ready time (release time) r, such that J, 
cannot be processed before it, and a due time 

di. One is asked to find a schedule satisfying 
the above machine constraints, precedence 
constraints, and ready time constraints, while 
considering an optimality criterion that is a 
function of the completion time Ci of J, (i = 

1,2, . . , n). Typical criteria for minimization 
are: (1) maximum completion time (makespan) 

C,,, = maxi Ci; (2) flowtime (total completion 
time) F = C Ci; weighted flowtime C wiCi, 
where wi > 0 are weights representing the rela- 
tive importance of Ji; (3) maximum lateness 

L max =max; Li, Li= C; -d;; (4) total tardiness 
T= C T, T = max(O, L,), and weighted total 
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tardiness x y’T;:; (5) number of tardy tasks 

U = C Ui, Ui = 1 (if Ci > di), 0 (otherwise), and 
weighted number of tardy tasks C wi Ui. 

Numerous problems can be defined by 

combining the above conditions. Typical ones 
might be: the job-shop scheduling problem, in 
which n tasks are scheduled on m machines of 

type (a), and where the maximum completion 
time is minimized; the flow-shop scheduling 

problem, which is the same as the job-shop 
scheduling problem except that n = n’m tasks 
are divided into n’ groups of m tasks processed 
on machme 1, machme 2, . . . , machine m, re- 
spectively, in this order; the multiprocessor 
scheduling problem, in which the maximum 
completion time of n independent tasks on 

m parallel machines is minimized; the one- 
machine sequencing problem, assuming only 
one machine (with various types of precedence 

constraints and optimality criteria), and others 

P, 91. 
These machine sequencing problems are 

examples of the combinatorial optimization 
problem (- 281 Network Flow Problems E), 
as the processing time pi is usually considered 

to be a given constant. Their computational 
complexity (- 71 Complexity of Computa- 
tions) has been extensively studied with an 
emphasis on the classification between those 
problems solvable in polynomial time and 
those that are tNP-complete, as summarized 

in [lo]. Table 1 lists representative results for 
one-machine sequencing problems with ri = 0 
(i = 1,2, . , n). The improvement of the algo- 
rithm efficiency is pursued for both polynomi- 
ally solvable problems and NP-complete prob- 
lems. tBranch and bound (- 215 Integral 
Programming D) is a common approach used 

to solve NP-complete problems such as the 

job-shop and flow-shop scheduling problems 

[S, 91. Many approximation algorithms to 
obtain good suboptimal schedules in reason- 
able computation time are also known, and 

their worst-case and average accuracies have 
been analyzed [lo], as these are important in 
practical applications. 

In more realistic scheduling situations, 
other factors, such as the set-up cost, balanc- 

ing of production lines, frequent modifications 
and updatings of project data, capacity of 
factories, manpower planning including the 
possibility of overtime and part-time employ- 

ment, should be taken into account. Both 
deterministic and probabilistic models have 
been proposed for these cases. Mathematical 

tools used to compute adequate schedules 
include tmathematical programming, tqueu- 
ing theory, and tsimulation techniques. 
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Table 1. One-Machine Sequencing Problems with ri =0 

Optimality Precedence Other 

Criterion Constraint Constraints 
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377 (Xx.27) 
Second Quantization 

A. Fock Space 

For a complex Hilbert space K with dim K > 1, 
Km” denotes the n-fold tensor product of K 

with itself (where the vectors fi @ . . . of, with 
fjc K are total). Let E$!) be the projection - 
operators on totally symmetric and antisym- 
metric parts of Km”: 

where the sum is over all permutations P, 
s+(P)= 1 and s-(P) is the signature of P (+1 

for even permutations and -1 for odd permu- 
tations). The following orthogonal direct sum 
is called a Fock space (symmetric for E,, and 

antisymmetric for Em): 

Here the term for n = 0 is the 1 -dimensional 
space C, and a vector 51 represented by 1 EC is 
called the vacuum vector in P*(K). The sub- 
space F+(K) = E!J)K@” is called the n-particle 
subspace. Th% operator N = Co,“=, n, which 

takes the value n on P+(K),, is called the num- - 
ber operator. 

On the algebraic sum 

the creation operator a’(f) for f~ K is defined 
as the unique linear operator with domain D, 

satisfying 

a+(f)q’fi 0 1.. of. 

=(n+ l)“ZE~+“f@f, @ . Of.. 

For f 6 K, f denotes the element of the dual 
K* satisfyingf(g)=(g, f) for geK (the inner 
product is linear in the first entry). The annihi- 
lation operator a(f) is defined by 

=n -‘:2,$ P(fj, f)E!yfi 8 . . . . . . . Of”, 

where the tensor product of fk, k #j, appears in 
the jth term and E = f 1 depending on which 
of k is taken in F+(K). For n = 0, a(f)Q is 
defined to be 0. The adjoint of a’(f) coincides 
with a(f) on D,. 

The creation and annihilation operators 

map D, into itself and satisfy the following 
commutation relations on D, : 

Ca+(fJ>a+(f2)1T =C4fJ>4mT =Q 

C4fi)>a+(f2)lr =(f2,f1), 

where [A, B] T = AB T BA and f is used de- 
pending on the choice of + in F*(K). These 
relations are often called canonical commuta- 
tion relations for [ , ] - (CCRs) and canonical 

anticommutation relations for [ , ] + (CARS). 
On F-(K), a+(f) and u(f) are bounded 

with Ila+(f)ll= lIa(f)ll= Ilfll. On cF+(K), both 
a+(f) and a(f) are not bounded, though 
u’(f) N -i” and a(f) N -u* are bounded. 

On F+(K), 2-“‘(a+(f)+a(f)) is essentially 
self-adjoint. Let tj(f) be its closure. The oper- 
ator W(f) = &W(f) is unitary and satisfies the 

identity 

Let K, be a real subspace of K such that the 
inner product (L g) in K is real for any f and g 

in K, and K = K, + iK,. (K, is then a real 
Hilbert space.) The unitary operators U(f) = 

B’(f)and V(f)=lV(if)forfeK,satisfythe 
following Weyl form of the CCRs: 

U(,fl,) U(f2) = U(fl +fA 

Vfl) Vf2) = Vfl +fh 

WfJ Uf2) = Vf2) WfJev( - i(f, ,f2)). 

The infinitesimal generators of the continu- 

ous one-parameter groups of unit aries U(tf) 

and V(tg) (PER) are denoted by q(f) and rr(g) 
and satisfy the following CCRs: 

C44flX 44fi)l‘r = C4Sl)> 492)lY = 0, 

Cdf ), 4dlY = i(AgY3 

where [A, B] = AB - BA and YE n+ 
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If Q is a linear operator on K, r(Q) denotes 
the linear operator on F+(K) defined as the 

closure of Z@,“,, Q@” 10; It is bounded if 

IlQll Gl. UQl)UQ2)=r(Q1Q2) on D+. IfH is 
a self-adjoint operator on K, then r(@‘)= 
exp it dT(H) defines a self-adjoint operator 
dT(H) on T,(K), usually called a bilinear 
Hamiltonian and denoted (a+, Ha). More 
explicitly, 

dT(H)E!J)fi @ . . of n 

=~E:"'f,Q...~H~Q...Qf,. 

If U is a unitary operator on K, then 

r(u)w(f)r(u)-l=w(uf). 

B. Second Quantization 

A single (scalar) particle in quantum mechan- 

ics is described by a wave function Y(x), x E 
R3, considered as a unit vector in a Hilbert 
space K = L2(R3). The system consisting of n 
such identical particles is described by a totally 
symmetric function Y(x,, . . . ,x,), xjsR3, con- 

sidered as a unit vector in the totally sym- 
metric part E’$)K@” of the n-fold tensor prod- 
uct of the one-particle Hilbert space K, where 

the restriction to totally symmetric wave func- 
tions is referred to as Bose statistics. In a non- 
relativistic system, the Hamiltonian operator 
on a l-particle space is 

T= -h*(2m)-‘A,, 

called the kinetic energy (AX denotes the La- 

placian); on an n-particle space it is typically 
given by 

H,= -h2(2m)-’ f: AXj+i V(x,-xi), 
j=l i<j 

where V is a 2-body potential. 

The totality of multiparticle spaces Ey)K@‘” 
can be described in terms of the Fock space 

F+(K), the vacuum vector R (no-particle 
state), and the annihilation and creation oper- 

ators, denoted by 

47)~ 'Wf(x)d3x, 
s 

u*(f)= Y+(x)f(x)d3x. 
s 

Since the CCRs (for operator-valued 

distributions) 

cwx), WYII- = C’y’c4 y+(Y)l- =o, 

CWA‘y’(Y)l- =S3(x-y) 

are a continuous generalization of CCRs for 

canonical variables in quantum mechanics and 
since Y(x) comes from the wave function by 
way of quantization, the above formalism is 

called second quantization. The Hamiltonians 
Hn for all n can now be combined into the 
expression 

H= Y+(x)TY(x)d3x 
5 

+; Y+(x)Y+(y)v(x-y) 
s 

x Y(x)Y(y)d3xd3y, 

where the first term is dT( T). 
For particles such as electrons the system of 

n identical particles is described by a totally 
antisymmetric wave function, the total anti- 

symmetry being referred to as Fermi statistics. 
Then the antisymmetric Fock space E(K) 
can be used in exactly the same manner as 
F+(K) in the preceding case. 

The method of second quantization was 
introduced by P. Dirac [2] for the case of 

bosons and extended by P. Jordan and E. 
Wigner [3] to fermions. Electromagnetic 

waves, when quantized in this way, represent 
a system of photons, and the quantization of 
electron waves leads to the particle picture of 

the electron. The method of second quantiza- 
tion is intimately connected with the notion 
of fields, as shown below for free lields, and is 
the basis of the perturbation approach in field 
theory (- 150 Field Theory). 

C. Free Fields 

Let crj (j= 1,2,3) be tPauli spin matrices and 
0, = (h 7). Let p” = C,“=, a& for a 4-vector p = 
(p”,p)withp=(p’,p2,p3)andpo=(m2+p2)1~Z. 

Let uj(a, A) be the irreducible unitary repre- 
sentation [m+ , j] of .!?I on a Hilbert space 
Kj=L2(R3,CZj, (2p”)-‘(m@)@‘jd3p) (- 258 

Lorentz Group C (3)). 
Consider first the symmetric Fock space 

g+ (K,). For any complex-valued rapidly 
decreasing (?-function f (f l Y(R4)), let 

j(p)=(2~)-~” eip’“f(x)d4x 
s 

(P = (PO, p), PO = (p’ + m2)‘“), 

A(f)=a+(j)+a$) (=j44fW'+ 

where p. x = pox0 - &%1 pjxj and the bar 
denotes the complex conjugate. Then A(x) as 
an operator-valued distribution satisfies the 
twightman axiom and is called the free scalar 
field of mass m. It satisfies the Klein-Gordon 
equation 

1 (Cl,+m2)A(x)Y=0 

( q ,=(alaxo)2- jil ww2 
> 
, 
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it has the 4-dimensional scalar commutator 

and it has the two-point function 

i(A(x)A(y)!2,R)=A,+(x-y). 

Here Y is any vector in D,; for example, R is 

the vacuum vector, and the invariant distri- 
butions A,,, and A,’ are defined by 

A,‘(x)=i(2~)-~ e-‘p’“(2p0)-‘d3p, 
s 

A,,,(x)=(~TT~~ (sinp.x)(p’)-‘d3p. 
s 

If we define U(a, A(A)) = T(u,(a, A)), then 

If gEY(R3) and hgY’(R3), J(p) and h”(p) 
obtained by substituting g(x)6(x”) and 
-!-r(x)S’(x’) into fin the defining equation 
of ,I above are in K,. We then define 

as before, and let 

where g2 = (p -i) = -is. Then $,(x) as an 
operator-valued distribution satisfies the 
+Wightman axiom and is called the free Dirac 

field of mass m. In the present formulation, 
{I,!J~, IJ,} is a contravariant spinor of rank (1,O) 

and { ti3, $,} is a covariant spinor of rank 
(0, I). This field satisfies the Dirac equation 

( 
Cy’(3/8x”)+im $(x)=0, 
P > 

as well as the relations 

c+kd> &?(Y)l +y = 0, 

cw4 &J(Y)*1 +y 

= 

The operator-valued distributions q(x) and 

rr(h)=u+(ii)+u(R) 

X(X) are the canonical field and its conjugate 

~ ( =jn(x)h(x)d3x)’ 

field at time 0 for the free scalar field and 
satisfy the following canonical commutation 
relations: 

Here YE D,, A,,, and A,’ are as described 

above, and the y’s are Dirac matrices in the 

~ =j(Zi.l’(a/a,~)-im)~“}~~A’(x--y), 

following form (somewhat different from but 
equivalent to the usual form; - 351 Quantum 

Mechanics): 

CV(X)>cp(Y)l -‘r,=C~(x),~(Y)lLy=O0, 

[q(x), n(y)] -Y = iP(x - y)Y. 

If we set T(t)- U(te,, 1) for e,=(l,O,O,O) 
and (~(Qg)(x)=r(x~)g(x) for KEY and 
g E sP(R3), then for YE D, 

s 

m 
.4aQgY= WMd W)*Wt)& 

-cc 

s 

cc 
-A(cr’Qg)Y= T(t)n(g)T(t)*Ycc(t)dt, 

-cc 

or, equivalently, 

.4(x)= T(x”)cp(x)T(xo)*, 

If .4(x) is a classical field, then q(x) and z(x) 
are the value of A(x) and its time derivative at 
x0 = 0, and they serve as initial data for the 

Klein-Gordon equation 

(0,+m2)A(x)=0. 

Consider next the antisymmetric Fock space 
9-(K,,, @ Ki,*). For ,f+ EY’(R~,C~) (C?-valued 

rapidly decreasing C”-fUnCtiOnS), Write f= 

(.f+ J-1, .f+ =(.fi J2X .f- =(f3Ar define .fk 

and the 0’s are +Pauli spin matrices. 

D. Coherent Vectors and Exponential Hilbert 
Space 

In the symmetric Fock space F+(K), a vector 
of the form 

for f~ K is called a coherent vector. The set of 
expf is linearly independent (in the algebraic 
sense) and total. The inner product is given by 

Conversely, we can define F+(K) abstractly by 

introducing this inner product into the formal 
linear combinations of expA f~ K, and by 
completion. In this sense, 9+(K) is also de- 
noted as exp K and is called an exponential 
Hilbert space [S]. Then 

expx@ Kj = @ exp Kj, 



1407 378 B 
Semigroups of Operators, Evolution Equations 

where expC@fi is identified with @ expfj. 

If the number of indices is infinite, the right- 
hand side is the incomplete infinite tensor 
product containing the product of the vacuum 
vector a. 

If K = ja K, dp(l) and the measure p is 
nonatomic, then for any measurable set S in 
E, there corresponds a decomposition exp K = 
(exp K(S)) 0 (exp K(F)), where K(S)= 
ss K,&(i) and SC is the complement of S in 

E, and an associated von Neumann algebra 
R(S)=B(K(S))@ 1, where B(K(S)) is the set of 

all bounded linear operators on K(S). The 
system {R(S)} forms a complete Boolean lat- 
tice of type I factors on exp K. Coherent vec- 
tors are characterized by the property of being 
a product vector for {R(S)} in the sense that 
for any S, AER(S) and A’ER(S’), the vector 
Y = expf satisfies 

In this sense, we can interpret exp K as a con- 
tinuous tensor product of exp K, and also, if 
Y = S Y’, +(A), exp Y as a continuous tensor 

product of exp Y’n [S]. 
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378 (XII.1 4) 
Semigroups of Operators 
and Evolution Equations 

A. Introduction 

The analytical theory of semigroups was 

inaugurated around 1948 in order to define 
exponential functions in infinite-dimensional 

function spaces. Then it was generalized to the 
theory of evolution equations as ordinary 
differential equations in infinite-dimensional 
linear spaces. 

B. The Hille-Yosida Theorem 

Let X be a tlocally convex topological linear 

space, and denote by L(X) the totality of con- 
tinuous linear operators defined on X with 

values in X. A family { 7; 1 t > 0) of operators 
7; E L(X) is called a (one-parameter) semigroup 
of class (CO) or a strongly continuous semigroup 
if it satisfies the following two conditions: (i) 
IT; T, = 7;+, (the semigroup property), To = 1 (the 
identity operator); and (ii) limt+ 7;x= TOx 
(VXE X, Vt, > 0). When X is a Banach space, 
(ii) is implied by w-lim,lo IT;x =x (V’xc X), as 

proved by N. Dunford in 1938. In this case 
there exist constants M > 0 and p > 0 such that 
(iii’) II 7;1/ <Meat (Vt > 0). Hence, considering 

emB1 7; in place of 7;, we can assume the equi- 
continuity: (iii) For any continuous seminorm 
p on X, there exists a continuous seminorm 

q on X such that p( 7;~) < q(x) (Vx EX, Vt 2 0). 
Such semigroups are called equicontinuous 

semigroups of class (Co) (abbreviated e.c.s.g. 

(co)). 

Example 1. X = L,(O, co) with co > p > 1. 

(T+)(s)=x(t+s). 

Example2.X=Z&co,co)with oo>p>l. 

(7;x)(s)=(27ct)-“* Jymexp(v)x(u)du, t>O, 

=x(s), t = 0. 

Example 3. X = BC( -co, CO). 

(7;x)(s)=e-Ark~o~x(s-kii). t>O. 

Here 1 and p are positive constants. (For these 
examples, we have // IT;11 < 1; hence (iii) is satis- 
fied.) For L, and BC - 168 Function Spaces. 

We assume in the remainder of the article 
that X is sequentially complete, that is, if a 
sequence {x.} of X satisfies limn,m-tao p(x, - x,) 
= 0 for every continuous seminorm p on X, 

then there exists a unique xcX such that 
lim,,,p(x-x,)=0. 

The infinitesimal generator A of an e.c.s.g. 
(Co) { rI; 1 t 2 0} is defined by 

(This is also called the generator of IT;.) Then 

we have the following results. 

(1) 
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(I) Differentiability theorem. For every 

complex number 1 with Re 1> 0, the resolvent 

(A1 -A)-’ E L(X) exists and 

(Al-A)-lx= “e-“‘rl;xdt 
5 

(Vx E Xl, (2) 
0 

where the integration is Riemannian. Hence 
the domain D(A) of A is dense in X and coin- 

cides with the range R((,U - A))‘), and A is a 
closed linear operator such that the family 

((A(A-A)-‘)“Ii>o, n=O,1,2 ,... } (3) 

is equicontinuous. 
(II) Representation theorem. Let J” = 

(I-n-IA) ml and consider the approximations 
to 7;: 

?;‘“‘x=P f (m!)-‘(ntJ”)mx, 
II=0 

Then 

TX = lim T(“)x = lim pcn)x L f f (5) n-co n-cc 

uniformly on every compact set oft. 
(III) Converse theorem. Let a linear opera- 

tor A with both dense domain D(A) and range 
R(A) in X satisfy the condition (n1- A) ml E 
L(X) for n = 1,2, . . Then a necessary and 
sufftcient condition for A to be the inlinitesi- 
ma1 generator of an e.c.s.g. (Co) is that the 
family of operators 

{(I-n~‘A))ml.=1,2 ,... ;m=O,l,... } (3’) 

be equicontinuous. Since such a semigroup 

{ 7; 1 t 2 0) is uniquely determined by A, we can 
write 7; = exp(tA). 

These three theorems together are called the 

Hille-Yosida theorem or the Hille-Yosida- 
Feller-Phillips-Miyadera theorem. 

Examples of Infinitesimal Generators. A = 
d/ds for example 1 above, A = 2 m’d2/ds2 for 
example 2, and (Ax)(s)=~,(x(s-p)--(s)) for 
example 3. 

C. Groups 

An operator A in a Hilbert space X gener- 
ates a group { 7; 1 --co < t < co} of tunitary 
operators of class (CO) satisfying 7; T, = T,,, 
for --co < t, s < co if and only if A is equal 
to iH for some +self-adjoint operator H (M. 
H. Stone’s theorem, 1932). In a locally con- 
vex space, a necessary and sufficient condi- 
tion for a given e.c.s.g. (Co) {T, 1 t 2 0} to be 

extended to an equicontinuous group of class 

(Co) {IT; 1 --co <t < co} is that the family (3’) 
be equicontinuous also for n = f 1, +2, . . 

D. Holomorphic Semigroups 

For an e.c.s.g. (Co) { 7; 1 t > 0}, the following 

three conditions are equivalent (K. Yosida, 
1963; the equivalence between (ii) and (iii) for 
Banach spaces was proved earlier by E. Hille, 
1948): (i) When t > 0, 

7;‘x=I,iny(T,+,-7;)x 

exists for all x E X and { (Ct 7;‘)” 1 n = 1,2, 

and 0 < t $1) is equicontinuous for a certain 
constant C > 0. (ii) When t > 0, 7; admits a 

convergent expansion TL given locally by T,x 

= Zz,(n - t)" 7;(“)x/rr!. The extension exists 
for largil <arc tan(Ce-‘), and the family of 
operators {e-i T,} is equicontinuous in ,? for 
largil <arctan(2-kCem1) with some positive 
constant k. (iii) For the infinitesimal generator 

A of 7;, there exists a positive constant C, such 
that {(C, /l(il- A)-‘)“} is equicontinuous in 
n = 1,2, and in 3, with Re(i) 2 1 + E, E > 0. 
An e.c.s.g. (Co) { 7;} satisfying the above condi- 
tions is called a holomorphic semigroup. 

For example, introduce 

s 

a+im 

f,,,@)=(27q ezA-trn dz, 
a-ice 

120, t>o, cr>o, O<a<l, 

=o, /.<O, (6) 

where the branch of za is taken so that Rez”> 
0 for Re z > 0. Following S. Bochner (1949), 
we define 

i;,,x=i;x= “f;,,(s)T,xds, 
s 

t > 0, 
0 

=x, t = 0, (7) 

from a given e.c.s.g. (Co) { 7; I t > 0). Then 
{z,, I t >O} is a holomorphic semigroup (Yo- 
sida, T. Kato, and A. V. Balakrishnan, 1960). 
Its infinitesimal generator A^, can be consid- 

ered as the fractional power ( -A)” of -A, 
multiplied by -1. 

Fractional powers (-A)“, aE C, of operators 
have also been defined for operators A satisfy- 
ing the weaker condition than (3’) that {A(1 - 

A)-’ 11>0} is equicontinuous (Balakrish- 
nan, H. Komatsu). If A is such an operator, 

-m generates a holomorphic semigroup 
and the unique uniformly bounded solution of 
the “elliptic” equation 

x;‘= -Ax,, t > 0, lim x,=x0 
r-0 

(8) 

is the solution of 

xi= --J-A xtr t>O, limx,=x,, 1-ro 

and therefore x, = exp( - t-)x, (Balakrish- 
nan). Equation (8) has also been discussed by 
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M. Sova and H. 0. Fattorini from a different 
point of view. 

E. Convergence of Semigroups 

Let a sequence {exp(tA,) 1 n= 1,2, . . . } of e.c.s.g. 
(C”) be equicontinuous as a family of operators 
EL(X). Then a necessary and sufficient con- 

dition for there to exist an e.c.s.g. (Co) exp(tA) 
such that lim,,,(exp(tA,))x=(exp(tA))x uni- 

formly on every compact interval oft is that 
lim,,, (LoI - A,)-‘x = JAOx exist (for some 3Lo 
with Re 1, > 0 and for all x E X) and be such 
that R(JAO) is dense in X (H. F. Trotter, Kato). 

F. Miscellaneous Semigroups 

(i) Distribution semigroups. The semigroup 

of translations (TX)(S) = x(t + s) in X = 
L,( -co, co) is not continuous and hence not 
measurable in t. However, IT;x is an X-valued 
distribution. For semigroups (7;) such that 7;~ 
is an X-valued distribution for x E X, an ana- 
log of the Hille-Yosida theorem is known 
(J.-L. Lions, 1960). It has been generalized to 
ultradistribution semigroups by J. Chazarain 

and to hyperfunction semigroups by S. Ouchi. 
(ii) Dual semigroups. The above semigroup 

{‘I;} of translations in L,( -co, co) is obtained 
as IT; = SF from the e.c.s.g. (Co) {St} defined by 

(S,x)(s)=x(s-t) in &(-co, co). Let B=d/ds be 
the infinitesimal generator of {St}. The restric- 
tion of {SF} to the space of uniformly con- 
tinuous functions, which is the closure of the 
domain D(B*) of the dual B* in L,( -co, co), 
is an e.c.s.g. (CO). This fact holds for the semi- 
group {SF} of an e.c.s.g. (Co) {St} in a Banach 
space X in general (R. Phillips, 1955) and also 

in a locally convex space. 
(iii) Locally equicontinuous semigroups. The 

infinitesimal generator A of the semigroup of 
translations (7;x)(s)=x(t+s) in X=C( -00, co) 

is d/ds. A has no resolvent since all complex 
numbers are eigenvalues of A. {T} is not 
equicontinuous but locally equicontinuous, 
i.e., {T IO < t < tl} is equicontinuous for any 
t 1 > 0. For locally equicontinuous (Co) semi- 
groups an analog of the Hille-Yosida theorem 

is obtained by using the notion of generalized 
resolvents (T. KGmura, 1968; Ouchi, 1973). 

(iv) Differentiable semigroups. The notion of 

the holomorphy of semigroups in Section D is 
weakened to the differentiability. A character- 

ization of a semigroup {T,} such that T,x is 
infinitely differentiable in t > 0 is given by 
using the resolvent of the infinitesimal gen- 

erator (A. Pazy, 1968). 
(v) Nonlinear semigroups. For a (Co) semi- 

group { ?;} of contractions (i.e., 117;~ - 7;yll< 

11x--yII for x, VEX) in a Hilbert space X, an 
analog of the Hille-Yosida theorem is known 
(Y. KBmura, 1969). This result has been par- 
tially extended to Banach spaces (- 286 Non- 
linear Functional Analysis X). 

G. The Evolution Equation 

Let ?; = exp(tA) be an e.c.s.g. (CO). Then for 

x 6 D(A), 

7;‘x= A7;x( = TAX). (9) 

Considered in suitable function spaces, the 
tequation of heat conduction (A= A = the 

tlaplacian), the tSchr6dinger equation (A = 
J-1 (A - V(x))), and the twave equation 
given in matrix form 

are all of the form (9). For a linear operator A, 
in X depending on t, the ordinary differential 
equation in X 

4 = Ax, +fW, tao, (10) 

is called the evolution equation. A family of 

operators { V(r, s) 1 r > s > 0) in X which gives 
general solutions to the homogeneous evolu- 
tion equation 

x; = A,x, (11) 

(i.e., for any s>O, aeD( x,= V(t,s)a is a 
solution to (11) for x, = a) is called the evolu- 
tion operator associated with the generators 
{A,}. An evolution operator { V(r, s)} satisfies 

(i) V(r, r) = I, (ii) V(r, s) V(s, t) = V(r, t). The 
solution to (10) is formally expressed by 

x, = V(t, 0)x, + 
s 

* V(t, s)f(s)ds. 
0 

(12) 

H. Integration of the Evolution Equation 

For equation (11) we have the following result 
(Kato, 1953; Yosida, 1966). Assume the follow- 
ing four conditions: (i) D(A,) is independent of 
t and dense in the Banach space X, and for all 
a>O, (I-ccA,)-‘EL(X) with the estimate i/(1- 
WA,)-‘11 < 1; (ii) B,,,=(I-A,)(I-A,)-’ is uni- 
formly bounded in the norm for 0 <s, t < 1; 

(iii) C;Z,i IIBtj+,,to - B,+,. II < N, where N is inde- 

pendent of the partition (0 = to < t, < . < t, = 
I); (iv) B,,. is weakly differentiable with respect 
to t such that the differentiated operator 

dB,,/at is strongly continuous in t. Under 
these assumptions, we can prove that for x0 E 
D(A,), the limit V(t, 0)x, = s-lim,,, b(t, 0)x,, 
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with 

~(I.s)=(I-(I-~)A(~))-l 

x(I-~*(~))-’ 

x x(I-;*(yy 

x(I-(Ep+(!!q 

(0 <s < t < /), exists and gives the unique solu- 

tion of (11). If f(t) is continuously differenti- 
able, the right-hand side of (12) exists and 
gives a unique solution to the inhomogeneous 
equation (10). 

I. The Evolution Equation of Parabolic Type 

Equation (lo), for which every A, is the in- 
finitesimal generator of a holomorphic semi- 
group, is said to be of parabolic type by ana- 

logy to parabolic partial differential equations. 
Under weaker conditions, especially without 
the condition that D(A,) is independent oft, 
the existence of solutions of an equation of this 
type is obtained. Moreover, differentiability or 
analyticity of solutions follow from some 
natural assumptions. 

(i) Existence of weak solutions. Let X be a 
Hilbert space. For t E [0,1], let r/; be a subspace 
and at the same time a Hilbert space with 

respect to a norm 111. lllf stronger than //. /(. 
Since the form (.4,x, y) is tsesquilinear (linear 
in x and antilinear in y), we get a sesquilinear 

functional a(t, , .) on 1/; x y such that 

4LX, Y)’ -V,X,Y), X,Y~D(A,), 

if D(A,) is dense in 1/; with respect to 111 ‘IlIt and 
if 

v, a(t, -, .) should be measurable in a certain 
sense. A solution x, of the equation (10) in 

[0, I] satisfies 

s 

I 
a(t,x,,u,)dt- f(x,:u;)dt 

0 s 0 

= b-(tb,)dt+(Xo:uo) 
s 

(13) 
0 

for any differentiable X-valued function u, such 
that u,EI/;, ~,=O,~h~~uJ~dt<rn, and~~llu~l12dt 
< cx3. A solution x, of (13) is called a weak 

solution of equation (lo), though it does not 
necessarily satisfy (10). If the relation 

~(~,x,x)+~.llxl12~alllxll11, xe V,: 

holds for some i, a > 0, a weak solution of (10) 

in the sense of (13) exists for a given x0 E X 

(Lions, 1961). In order to obtain the unique- 
ness or the differentiability of weak solutions, 

we need some additional conditions. 
(ii) Some properties of strong solutions. Let 

X be a Banach space. Let every semigroup 
{T,“)} generated by A, be holomorphic in a 
complex sector 1 arg 1” I < 0,O > 0, independent 

oft. Suppose one of the following conditions 
holds: (1) For some x, 0 < c( < 1, D(&) is in- 
dependent of t and for 1 -x < p < 1, 

l/(A;-A:)AJ <C’lt-sl”, t,sE[:O, 1] 

(P. E. Sobolevskii, 1958-1961; Kato, 1961); 
(2) A,’ is differentiable in t, 

//dA,‘/dt-dA,‘/dsll <C’lt-sl” 

for some C’>O, O</J<l, and 

for every I:Iargil>n/2-Ofor some N, O< 
c( < 1 (Kato and H. Tanabe, 1962). Then a 

differentiable evolution operator { V(t, s)} as- 
sociated with (11) exists. 

The most interesting property of evolution 
equations of parabolic type is the analyticity 
of solutions. If A, is holomorphic in t in a cer- 
tain sense, then the solutions are holomorphic 
(Tanabe, 1967; first noted by Komatsu, 1961). 
Furthermore, a characterization of evolution 

operators { V(t, s)} holomorphic in some com- 
plex neighborhood of [0,1] (called holomorphic 
evolution operators) is obtained by using the 

resolvent of A, (Kato and Tanabe, 1967; K. 
Masuda, 1972; - [S]). 

J. Application to Semilinear Evolution 
Equations 

The evolution equation with a nonlinear addi- 

tive term f’(t, x,): xi = A,x, +f(t, x,) can be writ- 
ten as an inhomogeneous integral equation x, 
= V(t, 0)x, + & V(t, s)f(s, x,)ds in the Banach 
space X, by means of the evolution operator 

{ V’(t, s)} introduced in Section G. The exis- 
tence, differentiability (Kato, H. Fujita, and 
Sobolevskii, 1963-1966), and analyticity 
(Masuda, 1967) of solutions of the Navier- 

Stokes equation has been obtained by reduc- 
ing it to an integral equation of this type. 

Concerning quasilinear equations in which 
A, depends on xc, the existence, differentia- 
bility, and analyticity of their solutions have 

been discussed. 
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A. Convergence and Divergence of Infinite 
Series 

Let {a,} (n = 1,2,3,. . . ) be a sequence of real or 
complex numbers. Then the formal infinite 
sum a, + a, + . . is called an infinite series (or 

series) and is denoted by x.“=i a, or C a,. The 
number a, is the nth term of the series C a,, 
ands,=a,+a,+...+a,isthenthpartialsum 
of C a,,. Also, for a finite sequence a,, a,, . . , a,, 
thesuma,+a,+... + a, is called a series. To 
distinguish these two series, the latter is called 
a finite series. In this article, series means an 

infinite series. If the sequence of partial sums 
{s,} tconverges to s, we say that the series C a, 
converges or is convergent to the sum s and 
write C,“=i a, = s or C a, = s. If the sequence 

{s,} is not convergent, we say that the series 
diverges or is divergent. In particular, if {s”} is 
divergent to +co (-co) or toscillating, we say 
that the series is properly divergent to +co 
(-00) or oscillating, respectively. 

The notation I: a, is customarily used for 
both the sum s of the convergent series and the 
formal series, which may or may not be con- 

vergent. When the series is convergent, the 
sum is sometimes called the Cauchy sum in 
contrast to the “summations” of series, which 
are not necessarily convergent (- Sections K 

ff.). 
Applying the Xauchy criterion for the 

convergence of a sequence, we see that a neces- 
sary and sufficient condition for C a, to be 
convergent is that for any given E > 0, we can 

take N sufficiently large so that 

IS,--S,J=Ja,+,+...+a,JcE 

for all m, n such that M > n > N. Hence if X a, 

converges, the a,+0 as n-co, but the converse 
is not always true. 

Elementary properties of the convergence of 

series are: (1) If z a, and C b. converge to a, b, 
respectively, then x(a, + b,) converges to a + b. 

(2) If C a, converges to a, then C ca, converges 
to ca for any constant c. (3) Suppose that {b,,,} 
is a subsequence of {a,} obtained by deleting a 
finite number of terms a, from {a,}. Then x b, 

is convergent if and only if Z a, is convergent. 
(4) When a series C a, converges to a and {b,,,} 
is a sequence such that b, = a, + a2 + . . . + ql, 

bz=a,l+,+a,l+,+...+ur2,b,=a,Z+1+...+ 
a Is> ‘..1 then z b, also converges to a. The 
converse, however, is not always true. For 
example, 1 - 1 + 1 - 1 + . . . is oscillating, but 

(l-l)+(l-l)+,..=O. 

B. Series of Positive Terms 

Suppose that C a, is a series of positive (or 
nonnegative) terms. Since its partial sums s, 

form a tmonotonically increasing sequence, 
the series is convergent if and only if {sn} is 
bounded. For example, the series xzl n-p 

(p > 0) converges if p > 1 because s,, < 2p-1/ 
(2P-’ - l), whereas it diverges if p ,< 1 because 
++I > 1 + (m + 1)/2. The geometric series 

Z,“, a”-’ (a > 0) converges for a < 1 because 

s, = (1 - a”)/( 1 -a), and diverges for a 2 1 be- 
cause s, > n. 

Some criteria for the convergence of a series 
X a, of nonnegative terms are: (1) If {a,) is 
monotone decreasing, then the series C a, and 
Z 2”a,” have the same convergence behavior 
(Cauchy’s condensation test). (2) Suppose that 
f(x) is a positive monotone decreasing func- 
tion defined for x > 1 such that f(n) = a, (n = 

1,2,. . . ). Then the series C a, and the inte- 
gral JFf(x)dx have the same convergence 
behavior (Cauchy’s integral test), for example, 

En-“(p>O) and s?x -Pdx. (3) If for any posi- 
tive constant k we have a,, < kb, except for a 

finite number of n, then the convergence of 
Z b,, implies the convergence of C a,. If kb, ,< 

a, and C b, diverges, then Z a, also diverges 
(comparison test). (4) Let a, > 0 and b. > 0. If 

a,+,/a, ,< b,+,/b,, except for a finite number of 
values of n and C b, converges, then X a, also 
converges; if a,+,/a,>, b,+,/b, and Z b, di- 
verges, then C a, also diverges (- Appendix A, 

Table 10). 

C. Absolute Convergence and Conditional 
Convergence 

A series C a, (with real or complex terms a,) is 

~ called absolutely convergent if the series C 1 a,[ 
is convergent. If a convergent series is not 
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absolutely convergent, then it is called con- 
ditionally convergent. An absolutely convergent 

series is convergent. A real series C a, whose 
terms have alternating signs is called an alter- 
nating series. An alternating series C a, is 
convergent if the absolute values of terms IanI 
form a monotone decreasing sequence which 

converges to zero (Leibniz’s test). An abso- 
lutely convergent series remains absolutely 

convergent under every rearrangement of 
terms and retains its sum under the rearrange- 
ment (Diricblet’s theorem). If a series with real 

terms is conditionally convergent, then it is 
possible to rearrange its terms so that the 
rearranged series converges to any given num- 
ber, diverges to +cc (or -co), or is oscillating 
(Riemann’s theorem). A convergent series 
whose convergence behavior is unaffected by 

rearrangement and whose sum remains un- 
changed is called unconditionally convergent 
(or commutatively convergent). A real or com- 

plex series is unconditionally convergent if and 
only if it is absolutely convergent. The notion 
of infinite series can be extended to any com- 
plete tnormed linear space, and absolute con- 
vergence can be defined by replacing the ab- 
solute values of the terms by the norm of the 
terms. However, in general, unconditional 
convergence is not always equivalent to ab- 

solute convergence. 

D. Abel’s Partial Summation 

Let {aO,a,,a,, . . . } and {b,, b,, b,, . } be 
arbitrary sequences, and put A, = a, + a, + 

+ a, for n > 0. Then the following formula 
of Abel’s partial summation holds: 

“+k “+k 
C a&,= C Uv-b,+J-A&n+, 

v=n+, v=n+, 

for any n > 0 and any k > 1; this formula also 
holds for n= -1 if we put A_, =O. 

Abel’s partial summation enables us to 
deduce a number of tests of convergence for 
series of the form C a,b,,. In particular, the 
following criteria are easy to apply: 
(1) C u,b, is convergent if x a, is convergent 

and if the sequence {b,} is monotone and 
bounded (Abel’s test). 
(2) Cu,b, is convergent if the sequence {s”} of 
partial sums of C a, is bounded and if {b,} is 
monotone and converges to zero (Dirichlet’s 

test). 
(3) C a, b, is convergent if C(b, - b,,,) is ab- 
solutely convergent and if C a, is (at least 

conditionally) convergent (test of du Bois- 

Reymond and Dedekind). 
For example, criterion (2) implies that if {b,,} 

is monotone and converges to zero, then the 
power series C b,,z” of a complex variable z is 

convergent on the unit circle lzl = 1 except at 
most for z = 1; the case z = -1 gives Leibniz’s 

test for alternating series (- Section C). 

E. Double Series 

A sequence with two indices, i.e., a mapping 

from the Cartesian product N x N of two 
copies of the set of natural numbers N to a 

subset of the real or complex numbers, is 
called a double sequence and is denoted by 

{a,,} or {a,,,}. If there exists a number 1 such 
that for any positive E there is a natural num- 
ber N(E) satisfying 1 umn - II <E for all m > N(E) 
and n > N(E), then we say that the sequence 
{a,,} has a limit 1 and write lim,,, ,n-tm umn = 1. 

This limit should not be confused with re- 
peated limits such as lim,,, tm,,:, a,,,,,). If 
lim = a uniformly in! and lim m+m%n n n-a 4 
= I, then lim m-m,n+m amn = 1. For a given 
double sequence {a,,}, the formal series 

z&=1 %n is called a double series and is some- 
times denoted by C a,,,“. In contrast with 

double series, the ordinary series discussed 
previously is called a simple series. 

Given a double series Xumnr when the double 
sequence of partial sums s,, = C& Cy=i ukl 
is convergent to s, then Cum” is said to be 

convergent to the sum s. On the other hand, 

if s,, is not convergent, C a,,,” is said to be 
divergent. If X:1 a,,,” converges to I),,, for 
each m, then C,“=, b, = C,“=, (C,“=, cl,,,,,) is called 
the repeated (or iterated) series by rows. If 

cz i amn converges to c, for each n, then 
C.“=, c, = C.“=,(C,“=, umn) is called the re- 
peated (or iterated) series by columns. Even if 

two repeated series by rows and columns are 
convergent, the two sums are not always iden- 
tical, and C umn is not always convergent. 

However, if the double series C umn is conver- 
gent and C,, a,,,” is convergent for each m, then 
the repeated series by rows is convergent to 

the same sum. A similar statement is valid for 
the repeated series by columns. 

Suppose that we are given a double series 
x umn of nonnegative terms. If any one of 

c m,.%m LCn%m and C, C, a,,,,, is conver- 
gent, the other two converge to the same sum. 

If the diagonal partial sum s,, = C& x:1 ukl 
converges to a, then the double series C a,,,,, 
also converges to a. 

If C 1 umn 1 converges, the double series Z urn,, 
is called absolutely convergent, whereas if C a,,,” 
converges but not absolutely, then Z umn is 

called conditionally convergent. If C a,, is 
absolutely convergent, then any series ob- 
tained from z a,,,” by arranging the terms in an 

arbitrary order is convergent to the same sum. 
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F. Multiplication of Series 

The series xc.“=, cnr where c, = a, b” + a,b,-, 
+ . . . + anbl, is called the Cauchy product of 
two series C.“=1 a, and X$1 b.. (1) Let x a, and 
C b” be two convergent series and A, B be the 
sums of these series. If their Cauchy product 
Cc, is also convergent, then it has the sum C = 
AB (Abel’s theorem). (2) If at least one of the 

two convergent series x a, and C b. with the 
sums A, B, respectively, is absolutely conver- 
gent, then their Cauchy product Cc, is also 

convergent and has the sum C= AB (Mertens’s 
theorem). (3) If C a, and x b. are absolutely 
convergent, then their Cauchy product Cc, is 
absolutely convergent (Cauchy’s theorem). (4) 
Let C a, and C b. be two convergent series 
with the sums A, B, respectively. If {na,} and 
{nb,} are bounded from below, then z c, is 
convergent and has the sum C = AB (Hardy’s 
theorem). 

G. Infinite Product 

Let {a,} be a given sequence with terms a, # 

0 (n = 1,2, . . . ). The formal infinite product 
u,.u,.a,.... is denoted by Hz=, a,. We call 

p” = a, . a, . . . . a, its nth partial product. If the 
sequence {p,} is convergent to a nonzero limit 
p, then this infinite product is said to converge 
to p, and p is called the value of the infinite 
product. We write n a, = p. If {p”} is not con- 
vergent or is convergent to 0, then the infinite 
product is called divergent. Sometimes we 

consider the infinite product n a, with a, = 0 
for a finite number of n’s; and then by conver- 
gence or divergence of n a, we mean that of 
the infinite product n ah, where the sequence 
{u:} is obtained by deleting zero terms from 
{a,}. Usually we do not treat an infinite prod- 

uct with a, = 0 for an infinite number of n’s 
A necessary and sufficient condition for 

Hz=, a, to be convergent is that for any posi- 
tive E there is a number N such that Ip,/p, - 
11 <E for all n, m > N. If n a, converges, then 
a,+ 1, but the converse is not always true. 

It is often convenient to write an infinite 

product as n(l + a,). Then n( 1 + a,) and 
x log( 1 + u,) have the same convergence be- 

havior, where the imaginary part i0 of the 
logarithm is assumed to satisfy 0 < 101 <R. If 
a, > 0, convergence of n( 1 + a”) implies con- 
vergence of C a,, and vice versa. 

If n(l +la”l) converges, then n(l +a.) is 

said to be absolutely convergent. An absolutely 
convergent infinite product is also convergent, 

and the value of the infinite product is un- 

changed by the alteration of the order of 
terms. 

H. Termwise Differentiation of Infinite Series 
with Function Terms 

Uniform convergence of an infinite series 
Xf.(x) is defined by uniform convergence of 
the sequence of the partial sums z;=lfk(x) 
(- 435 Uniform Convergence). If the infinite 
series Cf.(x) defined on an interval I of the 
real line is convergent at least at one point of I 
and Cf.‘(x) is convergent uniformly in I when 
the derivatives f;(x) exist, then zcf”(x) is con- 
vergent to f(x) uniformly in I, and Cf.(x) is 

termwise differentiable, that is, f’(x) = Cf,‘(x). 
If the cp,(z) are holomorphic in a complex 
domain D and z cp,(z) converges to p(z) uni- 
formly on every compact subset of D, then 
C q;(z) also converges to q+(z) uniformly on 
every compact subset of D (Weierstrass’s 

theorem of double series). (For termwise inte- 
gration - 216 Integral Calculus.) 

I. Numerical Evaluation of Series 

In some special cases, we can express the nth 

partial sum s, of a series C a, as a well-known 
function of n. Specifically, if Z a, is an arith- 
metic progression x:=1 (a + (k - 1)d) or a geo- 
metric progression J& uq’-‘, we have 

&” - 1) 
s.=5(2u+(n-l)d), s”=p 

q-l ’ 

respectively. If lql< 1, then CPouq” converges 
to a/( 1 - q). If B,+l (x) is the (r + 1)st tBer- 
noulli polynomial, then s, = l’+ 2’+ . . . + n’= 
[B,+I(x)];‘l/(r + 1). This sum was studied by 
J. Bernoulli, who gave formulas up to r = 10 in 

his Ars conjectundi. 
In the series C u,, if we can find another 

sequence {v”} such that u, = v, - v”-~, then s, 
=u,+u,+... + u, = v, - vO. For example, if u, 
=n(n+l)(n+2), then v,=n(n+l)(n+2)(n+ 
3)/4 and s, = v, because v0 = 0 (- 104 Dif- 
ference Equations). Series with trigonometric 
function terms are calculated analogously. 

There are cases where the sum x a, itself can 

be expressed in a satisfactory form although 
we cannot find an appropriately simple ex- 
pression for each partial sum s,. For example, 

c(r) = C,“=l l/mr can be represented by tBer- 
noulli numbers if r is even. In particular, c(2) = 
7?/6, c(4) = a4/90 (- Appendix A, Table 10). 

If an infinite series converges rapidly, we can 
get a good approximation by taking a suitable 
partial sum. On the other hand, if the series 
converges less rapidly, an effective means for 
evaluating series is afforded by transformation 
of series. If the kth tdifference is exactly zero, 

then 
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Since the absolute value of finite differences 
often decreases rapidly, it is sometimes con- 
venient to consider the series whose terms are 

the differences of the original series. One finite 

difference method is Euler’s transformation of 
infinite series. In particular, the formula 

is useful for numerical calculation of sums of 
slowly converging alternating series. In numer- 
ical calculation of the series, we usually start 

calculating the numerical values of the first few 
terms; we then apply such transformations as 

Euler’s to the remainder, and calculate the 
partial sums of the transformed series. 

When we calculate the sum of an infinite 

series approximately, we must estimate the 
error, i.e., the remainder that must be added to 

yield the sum of the series itself. We can esti- 
mate the maximum error by derivatives or 

differences of higher orders. We also have the 
transformations of Markov and Kummer. In 
the former, every term of the series is repre- 
sented by convergent series, and in the latter, 
the given series is reduced by subtracting an- 
other convergent series, which has a known 

sum and similar terms Cl]. 

J. Infinite Series and Integrals 

In numerical calculation of functions, we 

sometimes use the Euler-Maclaurin formula 

c51: 

f(z) dz 

+R,, 

R,= --w 
s 

l m-4 

0 
Tf’m’(x + wz) dz, 

where 

The speed of the convergence for this formula 
is greater than that for Taylor’s expansion 
when tw is large, since the terms of the for- 

mula are +Bernoulli polynomials B,(t) in 
0 < l< 1. We also have Boole’s formula, with 
+Euler polynomials as its terms [4]. The for- 

mulas discussed in this section are also used to 
calculated approximately the partial sums of 

infinite series. 
Another method of evaluating sums of 

infinite series analytically entails transforming 

infinite series to definite integrals using the 

tresidue theorem. If an analytic function f(z) is 

holomorphic except at poles a, (n := 1,2, . , k) 
in a domain bounded by the closed curve C 

and containing the points z = m (m = 1,2, . . . , 
N), then 

-i, Res[n(cot 7cz)f(z)lZZa,. 

When the left-hand side of this equation is 

replaced by 

? (-l)“f(m), 

we replace cot nz by cosecnz. Res[F(z)],,, is 
the tresidue of F(z) at z = a. The line integral 

along C is often calculated easily by choosing 
a suitable deformation of C. Sometimes it 

can be shown immediately that the integral 
along C is zero, or its asymptotic value can be 

evaluated by the tmethod of steepest descent. 

K. History of the Study of Divergent Series 

Mathematicians in the 18th century did not 
concern themselves with the question of 

whether tseries were tconvergent or tdivergent. 
This indiscriminateness led to various con- 
tradictions. In 1821 an exact definition of the 
notion of convergence of series (Section A) was 

given by A. L. Cauchy; since then, mathema- 
ticians have mostly concerned themselves with 
convergent series. However, since divergent 
series appeared in many problems in analysis, 
the study of such series could not be neglected, 
and it became desirable to give a suitable 
definition of their sum. Although some results 

were given by L. Euler, N. Abel, and others, it 
was during the latter part of the 19th century 

that methods of summation of divergent series 
were studied systematically. This study consti- 
tuted a new branch of mathematics. 

In the following sections, some important 
methods of summation of divergent series 
are mentioned. Cesaro’s method (-- Section 
M) was the forerunner of the theory whose 
general foundation is now the theory of linear 

transformations. 

L. Linear Transformations 

For a sequence {s”} (n = 0, 1,2, . ) of real or 
complex numbers, assume that o,, = C,p”_, anisi 
converges for n = 0, 1,2, , where (,uik) is a 
given matrix (i, k = 0, 1,2,. . ). The mapping 
T: {s,} + {on} is called a linear transformation, 

and (on} is called the transform of {s”} under 

T. If the matrix satisfies uik =O (k > i), then T is 
defined for any sequence {s”} and T is said to 
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be triangular. If the transform {on} under T is 
defined and convergent whenever {s,} con- 
verges, then T is called a semiregular transfor- 
mation. If in addition {a,} has the same limit 
as {s”}, then T is called a regular transforma- 
tion. If for any bounded sequence {s,} the 

transform {a,} is defined and convergent, then 
T is called a normal transformation. If T is tri- 
angular and the transform {on} of {s,,} under 

T is divergent to co whenever s,+co, then T 
is called a totally regular transformation. 

Let T be a regular transformation. If for at 
least one divergent sequence {s,} the transform 
{a,} of {s,} under T converges, then T is called 

a method of summation. The limit s of {c”} is 
called the sum of {s”} under the method T of 

summation, and {s”} is said to be T-summahle 
to s. For a given method of summation Tl, let 

D(T,) be the set of sequences that are Tl- 
summable. If D( TJ = D( Tz), then the methods 
Tl and T, are called equivalent. If D( TJ c D( T,), 

then we say that Tl is weaker than Tz and 
T, is stronger than Tl . If D( TJ $ D( T,) and 
D( TJ + D( T2), then Tl and T, are called mutu- 
ally noncomparable. The following theorems 
on linear transformations of sequences are 
important: 

(1) Kojima-Scbur theorem. In order that T 

be semiregular it is necessary and sufficient 
that (i) lim n--rm ank exist for each k; (ii) t, = 
x&, lank1 exist and {t.} be bounded; and (iii) 

lim,,, Z& ank exist. In that case, we have 

and 

In particular, in order that {a,} converge 
whenever s,+O it is necessary and sufficient 
that conditions (i) and (ii) be satisfied. In that 
case, 

lim a, = lim f anksk 
n-m n-m k=O 

m 
= 

I(. > 
hm ank sk 

k=O n-m 

(I. Schur, J. Reine Angew, Math., 151 (1921); T. 
Kojima, Tbhoku Math. J., 12 (1917)). 

(2) Toeplitz’s theorem. In order that T 
be regular it is necessary and sufficient that 
(i’) lim,,, ank = 0 for each k; (ii); and (iii’) 

lim,,,,, cE,O ank = 1 (0. Toeplitz, Prace Mat.- 
Fiz., 22 (1914)). In particular, (ii) and (i”) 

lim,,, Z,& ank = 1 for each K imply that T is 
regular (Perron’s theorem). 

(3) Schur’s theorem. In order that T be 
normal it is necessary and sufficient that (i); (ii); 
(iii); and (iv) for any E > 0 there exist a K > 0 
such that Cgx+i lank1 <E for each n. 

(4) In order that the regular triangular trans- 

formation T be totally regular, it is necessary 
and suffkient that ank 2 0 except for a finite 
number of k. 

M. Cesaro’s Method of Summation 

We write 

(l-x)-“-‘= f &x”, 
II=0 

n+a 
A;= N- ( > na 

n T(a+ 1) ’ 

(1 -X)-U-i 5 u,x”=(l -x)-u 2 s,x” 
n=o n=O 

=“~oSiX 

where s, = Z:Go ui. Thus the series x ui is as- 
sociated with the sequence {si). If OF)= s,“/A; 

converges to s as n-+ co, then we say that C u, 
is summable by CesAro’s method of order c( (or 
simply (C, a)-summable) to s and write xzZo u, 
= s (C, a). This method of summation is called 
Cesiro’s method of summation of order CI (or 

simply (C, cc)-summation). 
It is natural to consider (C, cc)-summa- 

tion for a> -1. We say that Zu, is (C, -l)- 
summable if x u, converges and nu, = o( 1). 
Here Es0 U, = s (C, 0) means lim,,, s, = s, and 

Zgl u, = s (C, 1) means s = lim,,,(s, + si + 
. . . + s,-Jn. Generally, we have the following 
results: 

(1) AZ is increasing if a > 0 and decreasing if 
O>a> -1. AZ= 1 and Ai>0 if a> -1. 

(2) s;+fl+l =C;=oA:-kS;, Yl:-Li:-, =A;-‘, 
ol-1 g-&-l =sn . 

(3) (C, a) (a > 0) is regular, and D(C, a) 1 
D(C,jl) if a>/?> -1. 

(4) If C u, = s (C, a), then u, = o(n’). More- 
over, if C uk = s’ (C, a), then C(u, + ub) = s + 
s’ (C, a) and C Au, = Is (C, a) for any number 1. 

(5) If C u, = s (C, a) and E uk = s’ (C, /I), 
then their tCauchy product x u, = ss’ (C, a + 

p + 1) (Chapman’s theorem). Moreover, if 
~;=oA~ls~~~-‘(~:,-k)I/A~=O(l), then Xv,= 
ss’ (C, /I) (T. Kojima). If a’, /I’> -1, sf’)(u,)= 
O(n”‘), and $‘)(ub) = O(r#‘), then C u, = 

ss’ (C, a’ + 8’ + 2) (G. Doetsch). 
(6) For any integer a > 0, in order that C u, 

= s (C, a) it is necessary and sufftcient that 

there exist {D”} such that u,=(n+ l)(o.-u.,,) 
and C u, = s (C, a - 1) (G. H. Hardy, Proc. 
London Math. Sot., (2) 8 (1910)). This condi- 
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tion is equivalent to (i)-(iii) together: (i) the 
series C&s,“-*/(k + 1). (k + a) converges to 
the limit b,; (ii) b,, = o(1) as n+ co; and (iii) 
(s,“-‘/A;-‘)+(n+a)T(a)b,,+,+s as n+co. 

(7) If z u, = s (C, a) (a > 0), one of the follow- 

ing five conditions is sufficient for the conver- 
gence of C u, (this is a kind of TTauberian 
theorem): (i) nu, = o( 1); (ii) t, = Et=1 vu, = o(n); 
(iii) CnpIu.Ip+l <co(p~O);(iv)nu,>-K(Kis 
independent of n); (v) lim inf(s, - s,) > 0 as m > 

~-CD, m/n+ 1 (R. Schmidt’s condition). 
(8) Ifa’>a> -1 and Xu.=s(C,a’), then Zu,, 

=s (C,a+c) for any E>O. 

For a given series 2 u,, we write H,” for s,, 
Hi for the arithmetic mean of { Hf}, and H,’ 

for the arithmetic mean of {Hi}. Similarly, we 
can define {Hl} for any integer p. If H,P+s 

as n+ co, then C u, is said to be summahle 
by Hiilder’s method of order p (or (H, p)- 
summable) to s, and we write C u, = s(H, p). 

For any integer p b 0, (H, p)-summability is 
equivalent to (C, p)-summability (Knopp- 
Schnee theorem). 

N. Abel’s Method of Summation 

If the radius of convergence of the power series 
z:n”Ou,r” is > 1 and C$=Ou,r”+s as r+l, then 
z IL, is said to be summable by Abel’s method 
(or A-summable) to s, and we write C u, = s (A). 
The transformation matrix is denoted by A, 

and the transformation is called Abel’s method 
of summation. 

(l)IfCu,=s(A),thenlimsup,,,Iu,llin<l. 
(2) If C u, = s (A) and C u; = s’ (A), then C(u, + 

uk)s + s’ (A) and C lu, = Is (A) for any constant 
i. Moreover, Czk+, u, = s - u0 - u1 - . . . - uk 
(A). (3) If C u, = s (A) and C u; = s’ (A), then 
the Cauchy product is C u, = ss’ (A). (4) If C u, 
= s (A) and one of the following five conditions 

is satisfied, then C u, = s: (i) nu, = o( 1); (ii) t, = 
Et=1 vu, = o(n); (iii) nu, = 0( 1); (iv) nu, > -M; 

(v) liminf(s,-s,)>O as m>n+co and m/n-+1. 
These theorems are tTauberian, in the original 

form proved by Tauber (Mom&. Math., 8 
(1897)). (5) The matrix A is regular, and D(C, a) 

cD(A)foranya>-l.(6)Ifzuu,=s(A)and 
s, > 0, then C u, = s (C, 1). Moreover, if @) = 

O(l), then Cu,=s(C,a+E) for a> -1 and 
&>O. 

0. Borel’s Method of Summation 

If for a given series C u,, 

u(x)= “go% 

is convergent for all x, and u(x)/ex+s as x 
+ cx), then C u, is said to be summable by 

Borel’s exponential method to the sum s, and 

we write C u, = s (B). The transformation thus 
determined is denoted by B and is called 
Borel’s method of summation. If 

s 

cc 
u(x)e-“dx = s, 

0 

then C u, is said to be summable by Borel’s 
integral method (or d-summable) to s, and we 
write I; u, = s (23). Then we have: (1) B is regu- 
lar and D(C,a)cD(B) (a> -I), while D(C,a) 

and D(d) are noncomparable. (2) If the radius 
of convergence of CEO u,x” is > 1 and C u, = 

s(B), then Cu,=s (A). (3) If C;=k+l u,=s (B) 
(resp. (%J)), then Xu,=s+u,+u, + . . +u,JB) 
(resp. (d)), but the converse is not always true. 
(4) Cu,=s (B) implies Iu,I1’“=o(n). (5) If Cu,= 
s(B) and Cub=s’ (B), then C(u.+ub)=s+s’ (B), 
and C iu, = is (B) for any constant 1. The 
same is true for summation (d). (6) If C u, = s 
(B) and if one of the following two conditions 
is satisfied, then C u, =s: (i) & u, = o( I); 

(ii) lim inf(s, -s,) > 0 as m > n+ cc and (m - 

n)$-0. (7) if Cu,=s (B) and si1: =o(n”-“*), 

then Cu,=s (C,a) (a>O). (8) If Cu,=s (A) and 
u(t)> -MM~-‘expt, then Xu,=s (B). (9) If the 
sequences {nk} and {nkS} satisfy nk+l > nkS, 

n,~/n,>1+~(k=1,2,...;.z>O),u,=:O(nk<v< 
nkz), and Cu,=s (B), then s,~-s as k+co. 

IfCu,=s(b)and = d”u(4 si I -xdx 
0 Fe 

converges for all i = 0, 1,2, , then C u, is 
said to be absolute Bore1 summable (or 1% )- 
summahle). Concerning this we have: (1) If 

C I u, 1 converges, then Z u, is 123 I-summable, 
but even if C u, converges, C u, is not always 
123 I-summable. If Z u, is 1% I-summable, then 
C u, is 2%summable to s. In this case, we 
write Cu,=s (ISI). (2) C.“=ou,=s (ISI) implies 

C~,+,Un=S-(Uo+Ui+...+U~)(I~l).(3)1f 

C u, = s (B), x uk = s’ (B), and if at least one of 
them is 123 I-summable, then their Cauchy 
product is Cu,=ss’ (IS]). 

P. Euler’s Method of Summation 

In the series x u,, if 

+ 

(s, = C;=. uk) converges to s as ke+ co, then C u, 
is said to be summable by Euler’s method, and 

we write C u, = s (E). The transformation thus 
obtained is called Euler’s method of sum- 

mation. A necessary and sufficient condition 
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for 2 u, = s (E) is that C v, = s, where u, = 

2-(n+l)C;=o n 
0 k 

uk. This summation method 

is regular. We have C u, = s if C u, = s (E) and 

if one of the following two conditions is satis- 

lied: (i) & u, = 0( 1); (ii) lim inf(s, - s,) 2 0 for 

m>n+cc, (m-n)/&-*l. Cesaro and Euler 
summations are noncomparable. As an ex- 
tension of Euler’s method, the Euler method 
of summation of pth order is also defined 

(e.g., - C61). 

Q. Niirhmd’s Method of Summation 

For a positive sequence {p,}, let P. = xt=,,py+ 
cc as n+cc and p,/P,-+O as n+oo. If 

converges to s as n --* co, then C u, is said to be 
summable by Niirlund’s method of type (p,}, 
and we write x u, = s (N, {p”}). The transfor- 
mation thus obtained is also regular and is 
called Nurlund’s method of summation. If 
~u,=s(C,l)andO<p,<p,< . . . . thenCu,= 

s (N, {p,}). Cesaro’s method is actually a 
special case of this method. 

R. M. Riesz’s Method of Summation 

Let (1,) be a sequence with increasing terms 
and tending to +cc as n+co. If 

converges to s as r+co, then Cu, is said to be 
summable by Riesz’s method of order k and 
type d,, and we write C u, = s (R, A,, k). The 

transformation thus obtained is regular and is 

called Riesz’s method of summation of the kth 
order. In particular, if L, = n, then D(R, A,, k) = 

NC, 4. 

S. Riemann’s Method of Summation 

If 

g1 U”($qk, u,=o, 

converges for h>O and tends to s as h+O, then 

C u, is said to be (R, k)-summable to s. When 
k = 1, this method, often called Lebesgue’s 
method of summation, is not regular. When k = 
2, it is ordinarily called Riemann’s method of 
summation and is regular. Corresponding to 
these cases, if 

as h+O, then C u, is called (R,)-summable or 
(R,)-summable to s, respectively. The summa- 
tion method (R,) is not regular, while (R2) is 
regular. If C u, is (R,)-summable, then it is 

also (R,)-summable, but (R, 2) and (R2) are 
noncomparable. 

Other methods of summation were devel- 
oped by G. H. Hardy and J. E. Littlewood, E. 
Le Roy, C. J. de La Vallee Poussin, and others 

(e.g., - C61). 
For related topics - 121 Dirichlet Series, 

159 Fourier Series, 339 Power Series. 
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380 (X.15) 
Set Functions 

A. General Remarks 

A tfunction whose domain is a tfamily of sets 

is called a set function. Usually we consider 
set functions that take real values or fco. 
For example, if f(x) is a real-valued function 
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defined on a set X, and if we assign to each 
subset A of X values such as sup,f; inf,f, or 
sup,f--inf,f; then we obtain a corresponding 
set function. In particular, a set function whose 
domain is the family of left open intervals in 
R” is called an interval function. To distinguish 

between set functions and ordinary functions 
defined at each point of a set, we call the latter 
point functions. For example, if f(x) is an tinte- 

grable (point) function with R ( = R’) as its 
domain and we put F(I) = C,f(x) dx for I = 
(a, b], then we obtain an interval function F 
on R. 

B. Finitely Additive Set Functions 

Let Q(E) be a real-valued set function defined 
on a tfinitely additive class 23 in a space X. If 

@ satisfies the finite additivity condition: 

E,,E,E5 E,flE,=@ imply 

WE, U E,) = WV + WUr 

then B(E) is called a finitely additive set 
function on 23. For each E E 23 we denote 
sup{@(A)~AcE,A~23}(inf{@(A)~AcE,A~ 
‘21)) by V(@,; E) (_V(@; E)), the upper (lower) vari- 
ation of 0. Since Q(0) = 0, we have _V(@,; E) < 
06 v(q E). V(@; E)= v(@,; E)+ I_V(@,; E)I is 

called the total variation of @ on E. When 
we deal with a fixed @,, instead of v(@,; E), 
I/(@,; E), V(@; E) we write simply 1/(E), I/(E), 

V(E). If I’(@,; E) is bounded, then @ is said to 
be of bounded variation. If Q(E) > 0 ( < 0) for 
every EEB, i.e., Ec E’ implies @(E)<@(E’) 
(Q(E) 2 @(E’)), then @ is said to be monotone 
increasing (decreasing). Every finitely addi- 
tive set function of bounded variation can be 
represented as the difference of two monotone 

increasing finitely additive set functions. 
Let 1, be a fixed interval in R” and F(I) be 

an interval function defined for left open inter- 

vals I c I,, where 0 is considered as a degener- 
ate left open interval. If, for any two left open 
intervals I,, I, such that I, U I2 is an interval 

and I, n I, = 0, we have F(I, U I,) = F(I,) + 
F(Z,), then we call F(I) an additive interval 
function in I0 Specifically, if f(x) is a real- 
valued bounded function on R and D is an 
interval function determined by D(I) =f(b) 

-f(a), where I = [a, h) (i.e., D(I) is the incre- 
ment of f(x)), then D is an additive interval 
function on R, called the increment function 
of 1: For a given f the increment function is 

determined uniquely. Conversely, for a given 
D, a function f such that D is its increment 

function is determined uniquely up to an addi- 
tive constant. In this sense an additive interval 
function in R may be identified with the corre- 

sponding point function on R. 
Let ‘%(I,) be the finitely additive class of all 

finite unions R of left open intervals in 1,. 
Then any additive interval function F(I) can 
be extended to a finitely additive set function 
F(R) defined on %(1,,). For the rest of this 
article, it is understood that an additive inter- 
val function means this extended set function. 

If for any E > 0 there exists a 6 > 0 such that 
111<6 implies F(I)<E (where 111 is the vol- 

ume of the interval I), then we say that F is 
continuous. 

C. Completely Additive Set Functions 

Let @(E) be a real-valued set function defined 
on a tcompletely additive class B in a space X. 
If @ satisfies the complete additivity condition: 

Ej,E,EB> EjnE,=O (jfk) 

imply @ 

then Q(E) is called a completely additive set 
function (or simply additive set function) on 23. 
In this case the corresponding upper variation 
V(E), lower variation y(E), and total variation 
1/(E) are all completely additive set functions, 
and for every Es23 we have Q(E)= T/(E)+y(E) 
(Jordan decomposition). Furthermore, V(E) = 
sup&, I@(Ej)l, where the supremum is taken 

over all decompositions of E such that E = 
lJ/?=,Ej(Ej~d,EjnE,=O,j#k).‘~hecom- 
pletely additive nonnegative set functions are 
the same as the finite measures. Hence the 
Jordan decomposition implies that every com- 
pletely additive set function is represented as 
the difference of two finite measures. A com- 
pletely additive set function is also called a 
signed measure. 

Any continuous additive interval function 
of bounded variation can be extended to a 
completely additive set function. The notion 

of additive interval function of bounded 
variation is a generalization of that of function 
of bounded variation (- 166 Functions of 

Bounded Variation). 
Let Q, be a completely additive set func- 

tion and p a finite or o-finite measure, both 
defined on %3. If p(E) = 0 implies Q(E) = 0, then 
Q is said to be absolutely continuous with 
respect to p or p-absolutely continuous. Then @ 
is p-absolutely continuous if and only if for 

any E > 0, there exists a 6 > 0 such that p(E) < 6 
implies I@(E)1 <E. If for given @ and /* there 

exists an E,EB such that p(E,)=O and m,(E) 
= Q(E f? E,) for every E E 23, then @ is said to 

be singular with respect to p or p-singular. 
In a to-finite measure space (X, $23, p), every 

completely additive set function m(E) defined 
on 23 can be represented uniquely as the sum 
of a p-absolutely continuous set function and a 
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p-singular set function (Lebesgue decompo- 

sition theorem). Also, Q(E) is p-absolutely 
continuous if and only if Q,(E) can be repre- 
sented as the indefinite integral JEf(x)dp of a 
function f that is integrable on X with respect 
to ~1 (Radon-Nikodym theorem). This function 
f(x) is called the Radon-Nikodym derivative, 

d@/dp, of @ with respect to p (- 270 Measure 
Theory L (iii)). 

D. Differentiation of Set Functions 

Let m be the Lebesgue measure in R” and 

E a Lebesgue measurable set. We denote 
sup(m(E)/m(Q)) for all cubes Q such that E c Q 
by r(E) and call it the parameter of regularity 
of E. If for a sequence of sets {E,} there exists 
an CL such that r(E,) > c1> 0, then {E,} is called 
a regular sequence. If all the E, contain a point 
P and the tdiameter of E, tends to 0 as n+ 00, 

then we say that {E,} converges to the point P. 
Let @ be a set function in R”. For a regular 
sequence {E,} of closed sets converging to a 
point P, we put I = lim sup(@(E,)/m(E,)) and 

define the general upper derivative of @ at P to 
be the least upper bound of I for all such se- 
quences {E,}, denoted by D@(P). Similarly, the 
general lower derivative @m(P) of @ at P is 
defined to be the greatest lower bound of 
liminf(@(E,)/m(E,)) for all regular sequences 
{E,} of closed sets converging to P. The or- 
dinary upper (lower) derivative, denoted by 
@(E)@)(E)), is defined in the same way by taking 

regular sequences of closed intervals instead 
of closed sets. o@, lJ@, @,q are point func- 
tions derived from @. Clearly, D@(P) <g(P) < 
@(P) < D@(P). If D@(P) =_D@(P), then we write 

it simply as D@(P). If D@(P) is finite, then we 
call it the general derivative of @ at P and say 
that @ is derivable in the general sense at P. If 
@(P)=@)(P), then we write it as Q(P). If m,(P) is 
finite, then we call it the ordinary derivative of 
@ at P and say that @ is derivable in the ordi- 

nary sense. We have the following theorems: 
(1) A completely additive set function is deriv- 
able in the general sense talmost everywhere 
(Lebesgue). The Radon-Nikodym derivative of 

a set function absolutely continuous with 
respect to the Lebesgue measure is equal 
almost everywhere to the generalized deriva- 

tive of the set function. (2) An additive interval 
function of bounded variation is derivable in 

the ordinary sense almost everywhere (Lebes- 
gue). (3) An additive interval function CD is 
derivable in the ordinary sense at almost all 
points such that @i(P)< +co or q(P)> -co. 

For the proof of these theorems, Vitali’s 

covering theorem is essential: Let A be a given 
set and 5 a family of measurable sets in Eu- 
clidean space. If for each x E A there is a 

regular sequence of sets belonging to 5 that 
converges to x, then there exists a finite or 
countable set of disjoint E, E 5 such that 

m( A \ lJ,2 1 Ej) = 0. 
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381 (11.1) 
Sets 

A. Definitions and Symbols 

G. Cantor defined a set as a collection of ob- 
jects of our intuition or thought, within a 
certain realm, taken as a whole. Each object in 
the collection is called an element (or member) 
of the set. The notation a E A (A3 a) means 
that a is an element of the set A. In this case 

we say that a is a member of A or a belongs to 
A. The negation of a E A (AS a) is written a # A 

or acA (A$a or AKIN). The set having no 

element, namely the set A such that a$ A for 
every object a, is called the empty set (or null 
set) and is usually denoted by 0. Two sets A 
and B are identical, i.e., A = B, if every ele- 
ment of A belongs to B, and vice versa. The 
set containing a, b, c, . . . as its elements is 
said to consist of a, b, c, . and is denoted by 
{a, b, c, . . . }. The symbol {xl C(x)} (or {x; C(x)}, 
sometimes E,[C(x)]) denotes the set of all 
objects that have the property C(x). Thus {a} 
is the set whose only element is a, and {a, b} is 
the set with two elements a and b, provided 

that a # b. A set is called a finite set or an 
infinite set according as the number of its 
elements is finite or infinite. 

A set A is a subset of a set B if each element 
of A is an element of B. In this case we also say 
that A is contained in B or that B contains A, 
and we write A c B and B 3 A. The negation 
ofAcB(BzA)isA#B(B$A).Forevery 
setA,@cA.AcBandBcCimplyAcC. 

IfAcBandBcA,thenA=B.Aisaproper 

subset of B (in symbols: A $ B, B $ A) if A c 
B and A #B. Some authors use 2 ( 2) for c 
(I),and c (3)for z(z). 
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B. Algebra of Sets 

The union (join or sum) of sets A and B, 

written A U B, is the set of all elements which 
belong either to A or to B or to both. The 
intersection (meet or product) of sets A and B, 

written A n B, is the set of all elements which 
belong to both A and B. In other words, XE 

AUBifandonlyifxEAorxsBorboth,and 
xEAnBifandonlyifxEAandxEB.Given 

sets A,B,and C, AUB=BUA, AflB=BflA 
(commutative law); (A U B) U C = A U (B U C), 

(A n B) n C = A n (B n C) (associative law); 
AU(BnC)=(AUB)fl(AUC), An(BUC)= 

(A fl B) U (A n C) (distributive law); A U (A fl B) = 

A, A n (A U B) = A (absorption law). 
Two sets A and B are disjoint if A fl B = 0. 

In this case the set C = A U B is said to be the 
disjoint union (or sum) of A and B, and is 
written sometimes as C = A + B. The set of 
elements of A which are not members of B is 
denoted by A - B, and is called the difference 
of A and B (or relative complement of B in A). 
If A = B, A - B is called the complement (or 
complementary set) of B with respect to A. 

We often consider a theory in which we 
restrict our attention to elements and subsets 
of a certain fixed set R, and call it the universal 

set of the theory. In geometic terms, R is also 
called the space or the abstract space, elements 
of fi are called points, and subsets of fi point 

sets. If A is a subset of Q R - A is simply 
called the complement of A and is denoted A”. 
For AcR and BcQ AIBand ACcBC are 
equivalent. Furthermore, we have A U A’ = 0, 
AnA’=@, A’“=A;and(AflB)‘=A’UB’, 
(A U B)” = A’ n B” (de Morgan’s law). 

The power set of a set X, written ‘q(X), is 

the set of all subsets of X. A set whose ele- 
ments are sets is often called a family of sets. 

The pair consisting of objects a and b is 

denoted by (a, b). Two pairs (a, b), (c, d) are 
defined to be equal if and only if a = c and 
h = d. A pair (a, h) is called an ordered pair, 
while the set {a, b} is sometimes called an 
unordered pair. Generally the n-tuple 

(a,h,c ,.._, d)ofngivenobjectsa,b,c ,..., d 
is defined to be (( . ((a, b), c), . . ), d), so that 

(u, b, c, . . , d) =(a’, h’, c’, , d’) if and only if a = 
a’, b = h’, , d = d’. The Cartesian product (or 
direct product) of sets A and B, written A x B, 

is the set of all pairs (a, b) such that LZE A and 
beB.AxB=(ZIifandonlyifeitherA=@or 
B=@;AxBcCxDifandonlyifAcCand 

B c D, provided that neither A nor B is empty. 
Furthermore, 

(AxB)U(A’xB)=(AUA’)xB, 

(AxB)n(CxD)=(AnC)x(BflD). 

The subset {(a, a) 1 a~ A} of A x A is called 

the diagonal of A x A and is denoted by A,,. 

Generally the Cartesian product (or direct 

product) of sets A, B, . . . , D, written A x B x 
x D, is defined as the set {(a, b, . . , d) 1 a~ A, 

bEB, . . . . deD}. 

C. Mappings 

If there exists a rule which assigns to each 

element of a set A an element of a set B, this 
rule is said to define a mapping (or simply 
map), function, or transformation from A into 
B. The term transformation is sometimes re- 
stricted to the case where A= B. Usually 
letters L y, cp, $, stand for mappings. The 

expression f: A-B (ALB) means that f is a 
function which maps A into B. If f: A-B and 

a~ A, then f(a) denotes the element of B which 
is assigned to a by f: We call f(a) the image of 
a under f: The notation f: a /-+ b (or f: a + b) 
is often used to mean f(a) = b (but not in the 
present volumes). The domain of a mapping 
f: A+B is the set A, and its range (or codo- 
main), written f(A), is the subset {f(a) 1 LIE A} 

of B. Two functions f and g are equal (f=g) 
if their domains coincide and f(a) = g(u) for 
each a in the common domain. 

For a mappingf:A+B and a set CE‘$(A), 

f(C) is defined to be the set { ,f(x) 1 .x E C}. This 
definition induces the mapping from p(A) to 
s@(B) which is usually also denoted by f: If 

A,~q(A)(i=1,2),thenf(A,UA,)=f(A,)U 

f(4) and ./IA1 n 4) cf(AJ nf(AJ. The 
inverse image of DE’@(B), denoted by J -l(D), 
is defined to be the set {xjx~A,f(x)~D}; thus 
the mapping f-’ :‘@(B)+‘Q(A) is defined. If 
B,~‘p(B)(i=1,2),thenf-‘(B,UBJ=,f-’(BJU 

f-‘(Bd;f-‘(B1 nB,)=f-‘(B,)nf~‘(B2); 
f-‘(B-B,)= A-,fm’(B,). Furthermore, A, c 

f-I of andfof-‘(B,)cB,. 

A mapping g is an extension of a mapping f 
to a set A’ if A’ is the domain of g and contains 
the domain A of i and if g(u) =f(u) for each a 
in A. In this case f is called a contraction (or 
restriction) of g to A or simply a partial map- 
ping of g, and is denoted by g 1 A. A mapping .f 
is the constant mapping (or constant function) 
with the value b, if f(u) = b, for every a in the 
domain off: The identity mapping (or identity 
function) on A, often denoted by l,, is the 
mapping with the domain A such that f(u) = a 

for every a in A. Given two mappingsf: A-+B 
and g : B + C, the mapping from A to C which 

assigns g(f(a)) to each a~ A is called the com- 
posite off‘ and g and is denoted by g of: If ,f: 
A-B, g:B+C, and h:C+D, then (hog)of= 
h o (g of) (associative law for composition of 

mappings). 
A mapping f: A+B is from A onto B if 

f(A) = B. In this case f is also called a surjection 

(or a surjective mapping). A mapping f: A +B 
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is one-to-one (l-l, or injective) if a #a’ implies 
f(a) #f(a’) for every pair of elements a and a’ in 
A, that is, if for each b in the range of A, there 

exists only one element a of A such that f(u) = b. 
Such an f is also called an injection. In par- 
ticular, given a subset B of a set A, the injec- 
tion f: B-+A defined by the condition f(b) = 
b for each be B is called the inclusion map 
ping (inclusion or canonical injection). A neces- 
sary and sufficient condition for f: A-B to be 

a surjection is that g of= h of imply g = h for 
every pair of mappings g:B+C and h: B-C. 
For f: A-B to be an injection it is necessary 
and suffkient that fog =fo h imply g = h for 
every pair of mappings g : C + A and h : C+ A. 
A mapping which is both a surjection and an 
injection is called a bijection (or bijective map 

ping). If f: A-+B is a bijection, then the mapping 
from B to A which assigns to each element b of 
B the unique element a of A such that f(u) = b 

is called the inverse mapping (inverse function 
or simply inverse) of J and is denoted byf-‘. 
We have fof-’ = 1, and f-’ of= 1, for every 
bijection f: A-B. 

If the domain A of a mapping f: A+B is the 

Cartesian product of A, and A,, f(u) = b 
(where u=(u,,u,)) is written asf(u,,u,)= b. 
Given A= A, x A,, B=B, x B,, and fi: Ai-+Bi 
(i= 1,2), the mapping f: A+B defined by the 

condition f(u,, u,)=(fi(u,),fi(u,)) is called the 
Cartesian product (or direct product) of the map- 
pings of fi and f2, and is denoted by f, x f2. 

For a mapping f: A-+& the subset G = 
{(a, f(u)) 1 UE A} of A x B is called the graph 

off: The basic properties of the graph G off 
are: (1) For every a E A there exists a b E B such 
that (a, b)sG. (2) (a, b)cG and (u,b’)~G imply 
b = b’. Conversely, a subset G of A x B with 
these two properties determines a mapping 
f: A+B such that (u,‘b)~G if and only if f(u)= 
b. All notions concerning a mapping f: A-B 
can be transferred by means of its graph to 

those concerning a subset of a Cartesian prod- 
uct A x B. 

Given sets A and B, we denote by BA the set 

of mappings from A to B. If a mapping is 
identified with its graph, BA is considered to 
be a subset of Fp(A x B). For XE!JI(A), the 
mapping cx: A+{O, 1) such that cx(x)= 1 if 
x E X and cx(x) = 0 if x 4 X is called the cbarac- 
teristic function (or representing function) of X. 
By assigning to each X E Ep(A) its characteristic 
function c~E{O, l}A, we obtain a one-to-one 
correspondence between ‘$(A) and (0, l}A; 

hence ‘$(A) is sometimes denoted by 2A. 

D. Families of Sets 

A mapping from a set A to a set A is also 
called a family of elements of A indexed by A. 
A is its index set (or indexing set). In this case, 

the image f(l) of 1eA is denoted by a,, and 
the mapping itself is denoted by {ul}lsr2 ({a,} 
(LEA), or simply {a,}). In particular, if the set 

A is the power set of a set, the family {a,},,, is 
called a family of sets indexed by A, or simply 
a family of sets. (Moreover, if A is chosen to be 
a subset of the power set ‘Q(X) of a set X and 
f to be the identity mapping on A, then the 
family of sets resulting from f can be identified 
with the set of subsets A itself.) 

The union U Is,, A, of a family of sets 

{AJ,,, is the set of all elements a such that 
UE A, for at least one 1 in A. Their intersection 

f-l le,, A, is the set of all elements a such that 
a E A for all 1 in A. A family of sets {A,},,, is 
mutually disjoint if I #p implies A, n A, = 0. 
In this case A = u 1Eh A, is called the disjoint 

union (or direct sum) of the sets of the family, 

and {AAJA,A is called a partition (or decompo- 

sition) of A. For families of sets, the following 

hold: U AA,= u~(upAd n-4,,= n~~n,A~~ 
(SEA, HEMP) (associative law); (Un.,,AA,)n 

IFBY)= u 

(l,p)Ehx~(A~nB,),(nlEhA~)U 
~EM4~=n~A.fl,EAxM (A, U BP) (distributive 

law); (UA~,,AA)C= nd;, (nl.aA,~= 

U Ish A; (de Morgan’s law). 

A family kLIAEA of sets is a covering of a set 
A, or covers A, if Ac Ule,, A,. 

Given f:X-Y, {A,},,, and {B,},,, (where 
A,cX and B,c Y), then f(UIEaA,)= 

+f(A,h f(cL,Ak= L,f(AJ; and 
6 dJd$,= i.hf -‘(Bh, f -‘(nLe,,B+ 

leh 1 

E. Direct Sum and Direct Product of Families 
of Sets 

Given a family {A,},,, of sets indexed by A, a 
set S, and a family of injections {i,: A1-+S}lE,,, 
then the pair (S, {i,},,,) is called the direct sum 
of {A,},,, if { ii(An)}lsa is a partition of S. In 
this case, S is written &,, A, (or &, A, or 

u I A,). Each A, is called a direct summand of 
S, and each i, is called a canonical injection. 

The Cartesian product (or direct product) 

lLA4 (lIlAI) of {41AEA (where 4c-V is 
the set of all mappings from A to X such that 
fiat for every 1~12. The sets A, are the 
direct factors of nLEh A,. Each element f of 
&,, A, is denoted by {x~}~.~ or ( . . . , x1. . . .) 
(where xI = f (A)). The element xrl is the Ith 
component (or coordinate) off: The mapping 
prI : &,, AA+ A, which assigns x1 to each 

{XAlkAErI ls,, A, is called the projection of 
&, A, onto its Ith component. If A = { 1,2}, 

HAS,, A, can be identified with A, x A,. 

F. Set Theory 

It was G. tCantor who introduced the concept 
of the set as an object of mathematical study. 
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Cantor stated: “A set is a collection of definite, 
well-distinguished objects of our intuition or 
thought. These objects are called the elements 
of the set” (G. Cantor, Math. Ann., 46 (1895)). 
Cantor introduced the notions of tcardinal 
number and tordinal number and developed 
what is now known as set theory. He proved 
that the cardinal number of the set of tran- 
scendental numbers is greater than that of 

algebraic numbers, and that all Euclidean 
spaces have the same cardinal number regard- 

less of their dimension. He stated the tcon- 
tinuum hypothesis and also conjectured the 

twell-ordering theorem (G. Cantor, Math. 
Ann., 21 (1883)), which was proved by E. Zer- 
melo 121. In this proof Zermelo stated the 
+axiom of choice explicitly for the first time, 
and used it in an essential way. 

Meanwhile it was pointed out that Cantor’s 
naive set concept leads to various logical 
tparadoxes (- 3 19 Paradoxes). Since the set 

concept plays a fundamental role in every 
branch of mathematics, the discovery of the 
paradoxes had a serious impact upon math- 
ematics, and led to a systematic investigation 
of the ifoundations of mathematics. In the 

course of attempts to avoid paradoxes, set 
theory was reconstructed as taxiomatic set 
theory (- 33 Axiomatic Set Theory), in which 
Cantor’s theory of cardinal numbers and 
ordinal numbers was restored. Also, the theory 
of the algebra of sets, which forms a basis for 
various branches of mathematics, was re- 

constructed. Axiomatic set theory is consid- 
ered to be free from paradoxes. 

G. Classes 

A set in the naive sense is a collection 
{x 1 C(x)} of all x which satisfy a certain con- 
dition C(x). The only principle for generating 
sets in naive set theory is the axiom of compre- 
hension, which asserts the existence of the set 
{.x 1 C(x)} for any condition C(x). However, this 

principle leads to paradoxes if the notion of an 
arbitrary set is considered to be well defined; 
for example, the iRussell paradox is caused by 

the set {x1x$x}. This situation necessitates 
some restrictions on the axiom of comprehen- 
sion. The simplest way to overcome the para- 
doxes is to adopt Zermelo’s axiom of subsets: 
Given a set M and a condition C(x), there 

exists a set {x 1 XE M, C(x)}. But this axiom 
cannot produce any sets other than subsets of 
sets whose existence is preassumed. Hence 
further generating principles of sets had to be 
introduced. The following axioms are usually 

chosen as generating principles. 
Axiom of pairing: For any two objects (pos- 

sibly sets) a and h, there exists a set {a,/~}. 
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Axiom of power set: Given a set A, its power 
set ‘1)(A) exists. 

Axiom of union: For any family of sets the 
union exists. 

Axiom of substitution (or replacement): For 
any set A and any mapping f from A, there 
exists a set of all images f(x) with XE A. 

In ordinary theories of mathematics the set 

of natural numbers, the set of real numbers, 
etc., are assumed to exist, in addition to sets 
generated by the axioms in this section. In 
pure set theory the axiom of infinity is needed 
to secure the existence of infinite sets. 

The concept of the “set” {x 1 x 4 x} does not 
automatically lead to Russell’s paradox. The 
trouble arises when this “set” is regarded as a 
member of a collection represented by x. This 
leads to a narrower concept of sets. Consider a 

fixed collection I/ consisting of sets in the naive 
sense and closed under the set-theoretic oper- 
ations mentioned in the axioms. Call a mem- 
ber of V a set in the narrow sense. Then set 
theory becomes free from the known para- 
doxes if the qualification for being a set is 
restricted in this narrow sense. When sets in 

the narrow sense are called simply sets, sets in 
the naive sense are called classes. The object 
{x ( x$x} (where x ranges over sets in the nar- 
row sense) is a class which is not a set. Those 
classes which are not sets are called proper 
classes; for example, the class 1/of all sets and 
the class of all ordinal numbers are both pro- 

per classes. For classes, unrestricted use of the 
comprehension axiom again leads to para- 
doxes, but other set-theoretic operations are 
justifiably applicable to classes. 

The notion of classes was first introduced 
in connection with the construction of an 

axiomatic set theory. The term class was used 
originally to denote certain subclasses of the 
class V of all sets. In these volumes the term 
set is mostly used to mean a set in the naive 
sense, and most of the notions defined for sets 
are applicable to classes. 
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A. General Remarks 

In 1968 K. Borsuk introduced the notion 

of shape as a modification of the notion of 
thomotopy type. His idea was to take into 
account the global properties of topological 
spaces and neglect the local ones. It is a classi- 
fication of spaces that is coarser than the 
homotopy type but that coincides with it on 

tANR-spaces. 
Let 9 be the category whose objects are all 

tpolyhedra and whose morphisms are homo- 

topy classes of continuous mappings between 
them. For spaces X and Y, denote the set of all 
thomotopy classes of continuous mappings of 
X to Y by [X, Y] and the homotopy class of a 
mapping f by [f]. For a space X, let n, be 
the functor from 9 to the tcategory of sets 
and functions that assigns to a polyhedron P 
the set ZZx(P)=[X, P]. A morphism rp: P+Q 

of 9 induces the function ‘p# : [X, P] -+ [X, Q] 
defined by q#([f])=p.[f] for [f]:X+P. A 
tnatural transformation from ZZ, to Ux is a 

shape morphism from X to Y. A continuous 
mapping f:X+ Y defines the shape morphism 
f# of X to Y as follows: For [g]: Y+P in 
Z&(P), the composition [g.f] is an element of 
17,(P). The correspondence: [g]+[g .f] de- 
tines a natural transformation from ZZ, to nx 
and hence determines the shape morphism 
f # :X+ Y. The identity mapping 1 x on X 
defines the identity shape morphism l,# on 

X. Given spaces X and Y, X shape dominates 
Y if there are shape morphisms 5: Y+X and 
n:X+Y such that tr~=lx#, and we write 

Sh(X) ,< Sh( Y). If, in addition, 15 = 1 y#, then 
X and Y are of the same shape, and we write 
Sh(X) = Sh( Y). A shape category 9’ is the 
category whose objects are all topological 

spaces and whose morphisms are shape mor- 

phisms between them. If we replace topo- 
logical spaces by pointed ones, the pointed 
shape category is obtained. In what follows, 

for simplicity, we assume that all spaces are 

metrizable and the mappings are continous. 
General references are Borsuk [ 11, J. Dydak 
and J. Segal [3], R. H. Fox [4], S. MardeSic 

c71. 

B. Chapman’s Complement Theorem 

Let X be a compactum. A closed set A of X is 
a Z-set in X if for any E > 0 there is a mapping 
f: X-X - A such that d(x,f(x)) <E for x E X, 

where d is a metric on X. The Hilbert cube Q is 
the countable product n& Zi, where Zi is the 

closed interval [0, 11. The subset s = nF=, ZF 
(ZF =(O, 1)) is called the pseudointerior of Q. The 
following facts are known: (1) If a compact 

metric space X is contained in s or Q -s, then 
X is a Z-set in Q. (2) For any continuous 
mapping f of a compact metric space X into 
Q, there exists an embedding g of X into Q 
such that g is arbitrarily close to f and the 
image g(X) in Q is a Z-set. The complement 
theorem (T. A. Chapman [2]) states: Let X 

and Y be Z-sets in Q. Then Sh(X)= Sh( Y) iff 
Q-X and Q - Y are homeomorphic. 

C. FAR, FANR, Movability, and Shape 

Group: Shape Invariants 

A closed set A of a compactum X is a funda- 
mental retract of X if there is a shape mor- 
phism I: X + A such that r. i” = lA#, where i is 
the inclusion of A into X. A compactum X is 
a fundamental absolute retract (FAR) (resp. 
fundamental absolute neighborhood retract 
(FANR)) if for any compactum Y containing 
X, X is a fundamental retract of Y (resp. of 

some closed neighborhood of X in Y). A com- 
pactum X is movable if for any embedding 
Xc Q and for any neighborhood U of X in Q 

there is a neighborhood V of X satisfying the 
following condition: For any mapping f of a 
compactum Y to V and for any neighborhood 
W of X, there is a homotopy H: Y x I+ U 
such that H(y,O)=f(y) and H(y, 1)~ W for 
YE Y. In this definition, if Y is replaced by a 
compactum with dimension <k, then X is said 
to be k-movable. Pointed FAR, FANR, mova- 
bility, and k-movability are defined similarly 
in the pointed shape category. The follow- 
ing facts are known (Borsuk [ 11, Dydak and 
Segal [3], J. Keeslings [S], J. Krasinkiewicz 

[S]). A compactum X is a FAR if and only 
if X is a pointed FAR iff Sh(X) = Sh(point), i.e., 
X has the same shape as a one-point space. A 
pointed compactum (X,x) is a pointed FANR 
iff Sh(X, x)< Sh(K, k) for some pointed poly- 
hedron (K, k). An FANR is movable. A com- 

pact connected Abelian topological group is 
movable if and only if it is locally connected. 
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A continuous image of a pointed l-movable 
compactum is pointed l-movable. It is un- 
known whether (i) an FANR is a pointed 
FANR and (ii) movability means pointed 
movability. For a pointed compactum (X,x), 
let { (Ki, ki) 1 i = 1,2, } be a countable tin- 
verse system consisting of pointed finite poly- 
hedra whose limit is (X,x). The limit group 

@rc,,(Ki, ki) is the kth shape group of (X, x), 
where rc”(K, k) is the kth homotopy group of 
(K, k). It is known that the shape groups for 
movable compacta behave like homotopy 
groups for ANR. A property P of spaces is 
a shape invariant if whenever X has P and 

Sh(X) = Sh( Y), then Y has P. FAR, FANR, 
movability, k-movability, and shape groups 

are shape invariants. 

D. CE Mappings 

A mapping f of a space X onto a space Y is 
a cell-like (CE) mapping if it is proper and 

Sh(f-‘(y))=Sh(point) for each point y of Y. It 
is known (R. B. Sher [9], Y. Kodama [6]) that 
if there is a CE mapping of X to Y with finite 

dimension, then Sh(X) = Sh( Y). Here the finite- 
dimensionality of Y is essential. A Q-manifold 
is a space, each point of which has a closed 
neighborhood homeomorphic to Q. The fol- 
lowing are known (Chapman [Z], J. E. West 
[lo]): (1) If f is a CE mapping of a Q-manifold 
M to an ANR X, then the mapping g: M x Q + 

X x Q defined by g(m,x)=(,f(m),x) for (rn,x)~ 
M x Q is approximated by homeomorphisms. 
As a consequence, if X is a locally compact 
ANR, then X x Q is a Q-manifold. (2) Every 
compact ANR is a CE image of a compact Q- 
manifold. (3) Every compact ANR has the 

same homotopy type as that of a compact 
polyhedron. The following problem raised by 
R. H. Bing is open: Is a CE image of a linite- 
dimensional compactum finite-dimensional? 
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A. Presheaves 

Let X be a ttopological space. Suppose that 
the following conditions are satisfied: (i) There 
exists an (additive) Abelian group F(U) for 
each open set Cl of X, and g(0) = {O}; and 
(ii) there exists a homomorphism r,,:g(V)+ 
F(U) for each pair U c V, such that ruU = 1 
(identity) and ruw = rur or,, for C’c Vc W. 

We call 5, consisting of a family ::F( U)} of 
Abelian groups and a family of mappings 
{r,,}, a presheaf (of Abelian groups) on X. If 

u E 9( V) and U c V, we write r&(z) = a 1 U and 
call it the restriction of a to U. A homomor- 

phism cp between two presheaves 9 and 3 on X 
is a family {cp( U)} of group homomorphisms 
q(U):F(U)+Y(U) satisfying ruvocp(V)= 
cp( U) o ruv whenever U c V. The presheaves 
on X and their homomorphisms form a 
tcategory. 

B. Axioms for Sheaves 

A presheaf 9 is called a sheaf (of Abelian 

groups) if it satisfies the following condition: If 
U is open in X and ( Ui)is, is an topen covering 
of U, and if for each ie I an element si of P( Ui) 

is given such that si 1 Ui n Uj = sj 1 Ui n Ui for all i 
and j, then there exists a unique SE g( U) such 
that s 1 Ui = si for all i. By definition, a homo- 
morphism between two sheaves is a homomor- 
phism of the presheaves. The sheaves on X 
also form a category. 

Let fl be a presheaf, x a point of X, and ‘%, 
the idirected set of open neighborhoods of x, 

with the order opposite to that of inclusion. 
Then {F(U) 1 U E an,} is an inductive system of 
groups. The tinductive limit l$,,F( U) of 

groups {Y”(U)} is denoted by gx and called 
the stalk of 9 over x. The image of SE P( U) in 
& is called the germ of s at x and is written s,. 
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A homomorphism rp : S-+9 of presheaves 

induces a homomorphism CP,:F~-@~ of stalks. 

C. Sheaf Spaces 

We introduce a topology on the tdirect sum 
9’ = uxsx 9” in the following way: For each 
open set U of X and each s E 9( U); consider 
the set Mu,, = {sx 1 XE U} of the germs defined 
by s at the points of U, and take the set of all 
such +4u,S as a tbase of open sets of the to- 

pology. If p:F’+X is the mapping that maps 
the points of FZ to x, then p is continuous, and 
each p-‘(x) (= Px) has the structure of an 

Abelian group. Moreover, the following con- 
ditions are satisfied: (i) p is a tlocal homeo- 

morphism, and (ii) the group operations on 
p-‘(x) are continuous in the sense that (a, b)+ 

a + b is a continuous mapping from the 
tfiber product 9’ xx 9’ (i.e., the subspace 

{(a, b) 1 p(a) = p(b)} of the product space S’ x 
9’) to s’ and a--+ -a is a continuous map- 

ping from y to itself. In general, a topological 
space 9’ with a structure satisfying these 

conditions is called a sheaf space over X. 
When P’ is a sheaf space, a continuous 

mapping s from a subspace A of X to 5’ such 

that p o s = 1, is called a section of 9’ over 
A. The set of sections over A, denoted by 

T(A, S’), is an Abelian group in the obvious 
way. If we associate I( U, 9”) with each open 
set U and define ruV by the restriction of sec- 
tions (I&S) = s 1 U), then we get a sheaf P” on 
X. If we start from a presheaf 9 and get 9” 

via F’, the correspondence P-+9” is a tcovar- 
iant functor from the category of presheaves 

to the category of sheaves, and V’ is called the 
sheaf associated with the presheaf 9. If S is a 
sheaf, we can prove 9” Q 9. Conversely, if we 
start from a sheaf space 9’ and construct the 
sheaf gV and then the sheaf space P, then 
9”’ is canonically isomorphic to 9’. Since we 

can identify a sheaf and the corresponding 
sheaf space, both are usually denoted by the 
same letter. In particular, when g is a sheaf, 
P(U) is usually written I( U, SF). 

Given a section s E I-(X, 9) of a sheaf, the 
points x E X for which s, # 0 in Px from a 

closed set (the sheaf space 9 is not necessarily 
Hausdorff even if X is so). This set is called the 
support of s and is denoted by supp s. 

In the theory of this and the previous two 
sections, we can replace Abelian groups by 
groups, rings, etc. Then F(U) is a group or 
ring accordingly, and 9(1(o) the group consist- 
ing of the identity element or the ring consist- 
ing of the zero element, respectively. We thus 

obtain the theories of sheaves of groups, 

sheaves of rings, etc. In general, a presheaf 9 
on X with values in a category V is a tcon- 

travariant functor from the category of open 
sets of X to %?, and a homomorphism between 
presheaves .9 and 9 on X is a tnatural trans- 
formation between the functors 9 and 9. 

The presheaves (sheaves) of Abelian groups 
on a space X form an tAbelian category, de- 

noted by Bx (U’). For a homomorphism f: 
S-& of presheaves, the image, coimage, 
kernel, and cokernel off in Bx are given by 

(Coimf)(U)= Coimf(U), 

WrfW)=Ker.W), 

(Cokerf)(U)=Cokerf(U). 

When 9 and 9 are sheaves, the kernel off in 
wx coincides with the kernel in Bx, while the 
image and cokernel off in Vx are the as- 
sociated sheaves of the image and the cokernel 

in Bx, respectively. Thus, f:9+% induces 
fx:9~-6?~ at each XEX, (Kerf),=Kerfx, 
(Imf), =Imf,, (Cokerf), =Cokerf,, and a 
sequence of sheaves O-+F&$S-+O is exact 
if and only if 0-+9~%~%%7+0 is exact at 

each x E X. 

D. Examples 

(1) Let G be an Abelian group (or some other 
talgebraic system) with tdiscrete topology. 
The Cartesian product X x G gives rise to a 

sheaf on X, called a constant sheaf (or trivial 
sheaf ). 

(2) Let X be a topological space and Y be a 
topological Abelian group (e.g., the real or 
complex numbers). We obtain a sheaf 9 on X 

by putting 9(U) = the set of all continuous 
mappings U -+ Y and ruv = the natural restric- 
tion. The stalk over x E X is the set of germs at 
x of continuous functions into Y. This sheaf is 
called the sheaf of germs of continuous func- 
tions with values in Y. 

(3) When X is an tanalytic manifold and Y is 
a commutative tLie group, we define the sheaf 
of germs of analytic mappings with values in Y 
in the same way. If Y is the complex number 

field C, this sheaf is the sheaf 8 of germs of 
analytic (or holomorphic) functions. A tcon- 

netted component of the sheaf space Lo can be 
identified with the tanalytic function deter- 
mined by the function element corresponding 
to a point on that component. The sheaf of 
germs of functions of class C’ on a C-manifold 
(r < s) is similarly defined. 

(4) Given a tvector bundle B over a topolog- 
ical space X, we define a sheaf on X by 9(U) 
= I(U) ( = the module of sections of B over U) 

and ruV = the natural restriction. Here the stalk 

over x E X consists of the germs at x of sections 
of B, and is called the sheaf of germs of sec- 
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tions of the vector bundle i?. We have similar 
definition for the sheaf of germs of differenti- 

able (analytic) sections when X is a tdifferenti- 
able (complex) manifold. The case where B is a 
itensor bundle (e.g., the tcotangent bundle 

Z*(X)) is important. The sheaf 9P(X) of germs 
of C”-sections of the r-fold texterior power of 
2*(X) is called the sheaf of germs of differen- 
tial forms of degree r (0 < r < dim X). 

E. Sheaf Cohomology 

The category @ of sheaves of Abehan groups 
on X has sufficiently many tinjective objects. A 

sheaf 9 with the property that rox: T(X,.F) 
+T( U, 9) is surjective for any open set U is 
said to be flabby (or scattered). An injective 
sheaf is flabby. 

Fix a nonempty family @ of closed subsets 
of X satisfying the following two conditions: (i) 
A, BE @ => A U BE 0’; (ii) any closed set con- 
tained in an element of @ belongs to a,. Put- 
ting T,(p)= {sls6T(X,.F), supps~@} for 
each .FE@, we obtain a +left-exact tcovariant 
functor T, from 9Zx to the category (Ab) of 

Abelian groups. Therefore, by the general 
theory of homological algebra, we can define 
the +right derived functors R4T,r,:wx-t(Ab) 

(q = 0, 1,2, ). We put R4ro(9) = H&(X, 9) 

and call the Hg(X, 9) (q = 0, 1, ) the coho- 
mology groups with coefficient sheaf 9 and 
family of supports CD (- 200 Homological 
Algebra I). When Q, is the family of all closed 
subsets of X, we write Hq(X, ,9) instead of 

Hg,(X, 9). 
Thus the cohomology group H;(X, 3) 

is the qth cohomology of the complex 
r,(l?O)~:r,(l?‘)~:r,(e2)~... induced by an 

tinjective resolution O~9~~“~~1~... 

of the sheaf 9 : &(X, 9) = Kerd”/Im dye’ 
(q=O, 1, . . ..d-’ =O). 

H$(X, 9) = r,(9), and from an exact se- 
quence of sheaves 0+9+9+x+0 we get an 

exact sequence O+H$(X, F)+Hg(X, te)+ 
H~(X,~)-tH~(X,,~)~Hb(X,re)~H~(X,,~) 
+H;(X,F)+.... 

Similarly, the cohomology groups H$(X, 9) 
can also be calculated with an exact sequence 
O-.F-i?“+iZ+..., where each Q!‘is as- 

sumed to be T,-acyclic (i.e., H$(X, Q!‘) = 0 for 
q > 0) instead of injective. The flabby sheaves, 

for instance, are l-,-acyclic, so we can compute 
H,$(X, 9) by a flabby resolution of 9 (R. 
Godement). For example, let X be an n- 

dimensional +paracompact C”-manifold and 
9=R. Then O+R+2f”(X)%%‘(X)~... is 

exact, where V14(X) is the +sheaf of germs of 

(?-differential forms of degree q, d4 is +ex- 
terior differentiation (Poincare’s theorem), and 
we have HP(X, U4) = 0 for p > 0. Therefore 

Hq(X, R) is the 4th cohomology of the com- 
plex O-tD”(X)sD’(X)%..., where D’(X) 

= T(X, 91’(X)) = the group of C” -differential 
forms of degree i on X. This proves the de 
Rham theorem, which says that the +de Rham 

cohomology group is isomorphic to the +(sin- 
gular) cohomology group of X with real coefl- 

cients (- 105 Differentiable Manifolds R). For 

a sheaf 9 of noncommutative groups, we can 
define the first cohomology H’(X, 9) [2]. 

F. The Tech Cohomology Group 

Let U = {U,} be an open covering of X, and 

write Uin Uj= U,, etc. Put 

Cp(~W= n r(~i,...i,~~)~ p==o, 1, 2 ,.... 
io,...,ip 

An element of Cp(9) is called a cochain of 
degree p. Define d: Cp(F)-tCp”(F) by 

(df‘ ho...ip+l =Cf=‘:,(-lY(f, “... ~...ip~l I uil ,... i,+,)a 
and denote the qth cohomology of the com- 
plex (Cp(F), d) thus obtained by If “(U, 9). 
When an open covering b is a refinement 
of U, there is a canonical homomorphism 
H4(11,.F)+Hq(F3,F). So we can take the 
inductive limit of the groups H4(U, 9) with 

respect to the refinement of open coverings. 
This limit group is denoted by fil(X, 9) and is 
called the Tech cohomology group with coeffi- 

cient sheaf 9. It coincides with H4(X,F) for 
q < 1, and if X is paracompact, for all q. 

G. Relation to Continuous Mappings 

Let X and Y be topological spaces and ,f: X 
--t Y be a continuous mapping. If 9 is a sheaf 

on Y, the fiber product X x ,4 (where 9 is 
viewed as a sheaf space over Y) is a sheaf on 
X. It is denoted by f*(9) or f-‘(9) and is 

called the inverse image of 9. The correspon- 

dence F+,f*(F) is an exact functor from Vy 
to Vx. Next, let 9 be a sheaf on X. Associating 
r(f-‘( U), 9) with each open set I/ of Y, we 
obtain a sheaf on Y, which we denote by f,(3) 
and call the direct image of 3. The corre- 
spondence f, is a left-exact functor %‘+@, 
and we can consider its right derived functors 

Ryf*. The sheaf Rqf,(Y) is the sheaf associated 
with the presheaf that associates H4(,jm1 (U), 3) 
with each open set U. 

A homomorphism $ from B to ,f,(9) is also 
called an ,f-homomorphism from 9 to 9. To 

give such a $ is equivalent to giving a family 
of homomorphisms of the stalks IL,:~~(,,+??, 
(xEX) satisfying the continuity condition: For 
any open set U of Y and any section SE r( U, F) 

over U, the mapping cp from f-‘(U) to S 
defined by q(x)= $,(s(,f(x)) is continuous. 

The functors ,f* and ,f. are related by 
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Hom(f*(~),%)~Hom(~,f,(Q)). The Leray 
tspectral sequence 

Q-4 = HP( Y, Pf*(cq) * H”(X, 9) 

exists and connects the cohomologies of X and 

of Y. 

H. Ringed Spaces 

Let X be a topological space and Lo be a sheaf 
on X of commutative rings with unity element 
such that 0x # (0) for any XEX. Then the pair 

(X, 0) is called a ringed space, and 0 is called 
its structure sheaf. A morphism (X, 0)+(X’, 0’) 
is by definition a pair (f; 0) consisting of a 
continuous mapping f: X-*x’ and an f- 
homomorphism 8: 040’. When each 0x is a 

tlocal ring, (X, 0) is called a local ringed space. 
A morphism of local ringed spaces is defined 
to be a pair (j Q):(X, 0)+(X’, 0’) as before, 
satisfying the additional condition that f3 is 
local (i.e., 0,: Of,,, -c?, maps the maximal ideal 
into the maximal ideal for each x E X). These 
concepts are important in algebraic geometry 
and the theory of functions of several complex 
variables. 

I. Direct Products and Tensor Products 

Let FA (LEA) be sheaves of Abelian groups on 
a topological space X. The sheaf F on X 
defined by S(U)=n,FA(U) and ruv=nnr2” 
is denoted by 9 = n, FA and called the direct 
product of sheaves {FA}. For each XCX there 
is a natural mapping Fx+nI(gA),, which is in 
general neither injective nor surjective. When 

A is a finite set, n 4 is also written F= FI 

+ . . . + 5” and is called the direct sum of the 
sheaves. The inductive limit F= ind lim & of 
an inductive system of sheaves on X also 

exists, and FZ = ind limgA,,. 
Let (X, 0) be a ringed space. A sheaf of 

Abelian groups 9 on X is called a sheaf of 8- 

modules (or simply an Lo-module) if F( U) is an 
0( U)-module for each U and ruV : S( V) +F( U) 

is a module homomorphism compatible with 
0( V)+Lo( U) for each U c v. Then px is an ox- 
module for each x E X. For a fixed (X, 8), the 

O-modules form an Abelian category. When 
9 and Q are O-modules, the tensor product 
Z = 9 0 $ of 9 and 9 as sheaves over 0 is 

defined as follows: Define a presheaf by U-r 
F(U) @ Ocu,g( U) and rLiy = r& 0 r&, and let 
2 be the associated sheaf of this presheaf. 

Then we have %x = @x 0 0,%x. 
The notion of coherent sheaves is important 

in the theory of O-modules (- 16 Algebraic 
Varieties E). 

J. History 

About 1945, J. Leray established the theory of 
sheaf coefficient cohomology groups (in a form 
slightly different from that in Sections E and 
F) and the theory of spectral sequences to 

study the relation between the local properties 
of a continuous mapping and the global coho- 
mologies. In the theory of functions of several 

complex variables, K. Oka conceived the idea 
of “ideals of indefinite domain.” These two 

ideas were unified by H. Cartan into the pre- 
sent form of sheaf theory. As a link between 
local properties and global properties, sheaf 
theory has been applied in many branches 
of mathematics (- 16 Algebraic Varieties; 
21 Analytic Functions of Several Complex 
Variables; 23 Analytic Spaces; 72 Complex 

Manifolds). 
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A. Siegel Domains 

Let D be a bounded domain in C” and G,,(D) 
the full tholomorphic automorphism group of 
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D, which is a +Lie transformation group with 

respect to the tcompact-open topology. If 
G,,(D) acts transitively on D, then D is called a 
thomogeneous hounded domain. The study of 
homogeneous bounded domains was initiated 
systematically by E. Cartan in 1936, while the 
notion of Siegel domains, which was intro- 
duced by I. I. Pyatetskii-Shapiro, has made 

remarkable contributions to the study of 
homogeneous bounded domains. 

Let V be a convex domain in an n- 
dimensional real vector space R. V is called a 
regular cone if for every x E V and 1> 0, ix E V 

and if V contains no entirely straight lines. Let 

W be a complex vector space. A mapping F : 
Wx W-1 RC (the tcomplexification of R) is a V- 

Hermitian form if the following conditions are 
satisfied: (Fi) F(u, u) is C-linear in u, (Fii) F(u, u) 
= F(u, u), where the bar denotes the tconjuga- 
tion with respect to R, (Fiii) F(u, U)E V (the 

closure of V), and (Fiv) F(u, u) = 0 implies u = 0. 
Given a regular cone Vc R and a V-Hermitian 
form F on W, one can define a Siegel domain 
D( V, F) (of the second kind) by putting D( V, F) 
={(x+iy,u)~R~x WIy-F(u,u)~V},whichis 

holomorphically equivalent to a bounded 
domain in RC x W. When W=(O), D(V, F) is 
reducedtoD(V)={~+iyER~Iy~V},which 

is called a Siegel domain of the first kind. A 
mapping L : W x W+ RC is a nondegenerate 

semi-Hermitian form if L can be written as L 
= L, + L,, where L, and L, are Rc-valued 
functions satisfying the conditions: (Li) L, 
satisfies (Fi) and (Fii); (Lii) L, is a symmetric 
C-bilinear form; (Liii) L(u, u)=O for all UE W 

implies v=O. Let B be a bounded domain in a 
complex vector space X and L, (pi B) an RC- 
valued nondegenerate semi-Hermitian form on 

W depending differentiably on p E B. Consider 
a domain D( V, L, B) in RC x W x X defined by 
puttingD(V,L,B)={(x+iy,u,p)eRCx WxXl 
y - Re L&u, U)E V,~EB}. The domain D( V, L, B) 
is called a Siegel domain of the third kind over 
B if it is holomorphically equivalent to a 
bounded domain. D( V, L, B) is a fiber space 

over B. 
By the affine automorphism group G, of a 

Siegel domain D( V, F) c RC x W we mean the 

group consisting of all elements in the complex 
affine transformation group of RC x W leaving 
D( V, F) stable. The full holomorphic automor- 

phism group G, of D( V, F) contains G, as a 
closed subgroup. If G, acts transitively on 

D( V, F), then D( V, F) is said to be homogene- 
ous. A homogeneous Siegel domain is 
necessarily affinely homogeneous, i.e., G, acts 
transitively on D( V, F) [2]. The +Bergman 
metric of D( V, F) which is a G,,-invariant +KHh- 

ler metric, is tcomplete [3], and so D(V, F) is a 

+domain of holomorphy. 

Examples. H(n, R) denotes the vector space 
of all real symmetric matrices of degree n, and 
H +(n, R) the regular cone consisting of all 

positive definite matrices in H(n, R). 
(i) The Siegel domain of the first kind 

D(H+(n,R))={X+iY(XEH(n,R),YE 
H+(n, R)} is called the Siegel upper half- 
plane, which is holomorphically equivalent to 
the classical tsymmetric domain of type III. 

(ii) Let u, u E C and F(u, u) be the 2 x 2 diag- 

onal matrix diag(u& 0), which is an H+(2, R)- 
Hermitian form on C. The resulting Siegel 

domain is 

DW+G’, RI, F) 

= (Z,,Z,,Z3,U)EC4 { I( Imz, -1uI’ Imz, 

Im z3 Imz, > 

eH+(2,R) 
I 

(iii) Let B={t~CI[tl<l}, and let u,oeC. 
Put LJu, u)=(l - It(2)-1(~U+t~~). Then L,(u, u) 
is a nondegenerate semi-Hermitian form, and 

wehaveD(H+(2,R),L,B)={(z,u.t)EC311mz 
-(1-~t~2)~1Re(~u~2+~u2)>0,~t~<1},which 

is a Siegel domain of the third kind and is 
holomorphically equivalent to the Siegel upper 
half-plane of dimension 3. 

The domains in (i) and (ii) are both afhnely 
homogeneous; the latter was originally found 
by Pyateteskii-Shapiro in 1959 [I] and pro- 
vides the least-dimensional example of non- 
symmetric homogeneous bounded domains, 
which answered afftrmatively Cartan’s con- 
jecture (1936): Are there non-tsymmetric 

homogeneous bounded domains in C” (n > 4)? 

B. Infinitesimal Automorphisms of Siegel 
Domains 

For a Siegel domain D( V, F) c RC x W, the Lie 

algebra gh of Gh can be identified with the Lie 
algebra of infinitesimal automorphisms, i.e., all 

complete holomorphic vector fields on D( V, F). 
Let G(V) be the group consisting of all the 
linear automorphisms of R leaving V stable. 
Let us fix a base in R, and let (zi, zz, . , z,,) be 
the complex linear coordinate system in RC 

corresponding to it. Choose a complex linear 
coordinate system (u,, uz, , u,) in W. We 

write F(u, u) as F(u,u)=(F,(u,v), . . ,F,(u, u)). 
Consider the following two vector fields in the 

Lie algebra g0 of G,: 

andputg~={XEg,I[E,X]=iX},1EZ.Then 

g, can be written as a tgraded Lie algebra in 

the following way: g, = g;’ + g:’ + gf Here 
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we have 

c = (4, C&C , 
I 

and g,” consists of all vector fields Xta,B) of the 
form 

where the matrices A = (akj), B = (b,,) satisfy 
the conditions: exp tA E G( V), ts R, AF(u, u) = 
F(Bu, u) + F(u, Bu). For XcA,Bj~ 9." we define 

tr XfA,, to be the sum of the trace of A and 
that of B. Let Q" be the I-eigenspace of ad E in 
g,, (2 E Z). Then gh can be written also in the 
form of a graded Lie algebra: gh = g-’ + g -’ + 
go + g’ + g2, and g” = gi is valid for 1= - 2, 

-l,O. Furthermore g,, can be nicely deter- 
mined by go in the following manner. pBi de- 
notes a polynomial on RC x W homogeneous 

ofdegreepinz,,..., z,, and homogeneous of 

degreelinu,,...,~,. Let Q’ (resp. Q’) be the 

set of all polynomial vector fields of the form 

Then we have g1 = {XE~’ 1 [X, g-‘1 cg’}, and 

Q2={x&Icx>Q-21~Qo> cx,Q-‘l~Q’, 
ImTr[X, Y] =0 for YEQ-‘}. Another descrip- 
tion of g1 and g2 has been given in terms of 
Jordan triple systems [4]. The explicit descrip- 
tions of g1 and g2 have been given for most 

homogeneous Siegel domains D( V, F) over 
irreducible self-dual cones V (- Section D, T. 
Tsuji, Nagoya Math. .I., 55 (1974)). g,, = g. is 
valid for the Siegel domains which are irreduc- 
ible quasisymmetric but not symmetric (- 
Section D). Main references for this section are 
[2-61. 

C. j-Algebras and Homogeneous Bounded 

Domains 

The notion of j-algebra was introduced by 
Pyatetskii-Shapiro [ 11, which reduces the 
study of homogeneous bounded domains to 
purely algebraic problems. Let g be a Lie 
algebra over R, and I a subalgebra of g, (j) a 
collection of linear endomorphisms of Q, and o 

be a linear form on g. Then the quadruple 

{g, f, (j), w} (sometimes abbreviated g) is called 

a j-algebra if the following conditions are 
satisfied: (i) jfct for jo(j) and j=j’(modf) for j, 
j’s(j); (ii)j*= -id(modf); (iii) j[k,x]=[k,jx] 

(modf) for kef, XEQ; (iv) [jx,jy]=j[jx,y]+ 

XxJyl + IIx, ~1 (mod f) for x7 Y E Q; (4 4Ck xl) 
= 0 for kc f; (vi) w( [ jx, jy]) = o( [x, y]); (vii) 
w( [ jx, x]) > 0 for x 4 I. Let g’ be a subalgebra 

of g such that jg’ c g’ + I. Then, putting I’ = 
g’ fl I, one can naturally induce a j-algebra 

structure on the pair {g’, t’}. The j-algebra 
thus obtained is called a j-subalgebra of {g, I, 
(j), w}. A j-algebra {g, f, (j), w} is called proper 
(resp. effective), if, for any j-subalgebra {g’, I’} 
with g’ compact semisimple, g’ is contained in 

f (resp. if {g, f} is an effective pair). 
Now let D be a homogeneous bounded 

domain in C”, G a connected +Lie subgroup 
of G,(D) acting ttransitively on D, and K the 
tisotropy subgroup at a point in D. The Lie 

algebras of G and K are denoted by g and I, 
respectively. Then the pair {g, I) becomes an 

effective proper j-algebra. Conversely, to every 
effective proper j-algebra there corresponds a 
homogeneous bounded domain. The identity 
component of G,,(D) is isomorphic to the iden- 
tity component of a treal algebraic group via 

the tadjoint representation. Let {g, I,(j), o} 
be a j-algebra. Suppose that g satisfies the 
following conditions: (i) g = gm2 +g-’ + go as a 
graded Lie algebra; (ii) go = f +jg -‘; (iii) there 
exists a jc(j) such that jg-‘=g-i; and (iv) 

there exists an r E g-’ such that [ jx, r] =x 
for xog-*. Such a decomposition is called 
a Siegel decomposition of g. To an effective j- 
algebra admitting a Siegel decomposition 
there corresponds a unique Siegel domain up 
to affme equivalence. Vinberg, Gindikin, and 
Pyatetskii-Shapiro (Appendix in [l] or Trans. 

Moscow Math. Sot., 12 (1963)) proved that 
the Lie algebra g,,(D) of G,,(D) contains a j- 
subalgebra admitting a Siegel docomposition 
and corresponding to the same domain D, 
and obtained the realization theorem: Every 
homogeneous bounded domain D is holomor- 
phically equivalent to a Siegel domain. In con- 
sequence, D is diffeomorphic to a Euclidean 
space, and the isotropy subgroup K,(D) is a 

maximal compact subgroup of G,(D). We have 
the decomposition G,,(D) = K,(D). T (semi- 
direct), where T is an R-splittable solvable 

subgroup of G,,(D) acting simply transitively 
on D. T is uniquely determined up to conju- 
gacy in G:(D) (= the identity component of 
G,,(D)), and is called the Iwasawa group of D. 

The j-algebra structure of the Lie algebra t 
of the Iwasawa group T is characterized by 
the following properties: (i) for every t E t, the 
eigenvalues of ad t are all real; (ii) there exists 

a tcomplex structure j such that [ jx, jy] = 
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j[jx, y] +j[x,jy] + [x, y] for x, ye t; and (iii) 
there exists a linear form w  on t such that 

~([jx,jy])=o([x,y]) and that w([jx,x])>O 
for x #O. A Lie algebra satisfying (i)-(iii) is 

called a normal j-algebra. There exists a one- 
to-one correspondence between the set of 
holomorphic equivalence classes of homog- 

eneous bounded domains and the set of j- 
isomorphism classes of normal j-algebras; by a 
j-isomorphism here we mean an isomorphism 

which commutes with j. Let {g,j,w} be a 
normal j-algebra and define an inner product 
( , ) on g by (x, y) = w( [ jx, y]). The ortho- 
gonal complement b with respect to ( , ) of 
the +commutator subalgebra g, of g is an 
Abelian subalgebra of g, and the adjoint repre- 
sentation of !J on g1 is fully reducible. One has 

g=C,f,, 6=f,, and g, =Ca+Ofa, where f,= 
{.wggI [h,x] =~(h)x,h~t)}. The linear form t( 

on b is called a root of g. There exist I roots 
s(, , , s(~ (2 = dim I)) such that lo can be written 
in the form b =jtal + +jfnl, 1 being the rank 
of 9. Then, after a suitable change of the num- 

bering of the c(;s, any root c( will be seen to 
be of the form (xi + aJ2, (ai - cr,)/2 or aJ2, 

where 1 d i < k < 1. A normal ,j-algebra admits 
a unique Siegel decomposition which can be 
constructed by using root spaces. 

D. Equivariant Holomorpbic Embedding 

We retai.: the notation of Section B. Let 

D( V, F) c RC x W be a Siegel domain and gc be 
the +complexiiication of the Lie algebra g,,. g-’ 
has the complex structure defined by the endo- 
morphism ad I. Let g;’ be the k i-eigenspaces 
in the complexificatioi gel of 9-l under adl. 
Let us consider the complex subalgebras b = 

n:‘+rr~+d+$ and n=G’+g; ofg,, 
where the subscripts C denote the complexi- 
fication of the respective space. Let G, be the 
connected tcomplex Lie group generated by 
gc and containing G,” (= the identity com- 

ponent of Gh) as a subgroup. The Lie algebra 
of the normalizer B of b in G, coincides with 

b. Identifying RC x W with n as a complex 
vector space, and denoting by 71 the natural 
projection of G, onto the complex coset space 
G,/B, the composite mapping z = n exp is a 
holomorphic embedding of n into Cc/B, 

which induces a holomorphic Gf-tequivariant 
embedding of D( V, F) into G,/B as an open 

submanifold. This embedding is called the 
Tanaka embedding. By the (Sbilov) boundary S 
of D( V, F) we mean the real submanifold S = 

{(x+iy,u)~R~x Wly=F(u,u)} ofRCx IV, 

which is a subset of the boundary of D( V, F). S 

has the natural +CR-structure induced from the 
complex structure of RC x IV. Every element 

of g,, can be extended to a unique holomorphic 

vector field on RC x W which is tangent to S, 
and its restriction to S is an infinitesimal tCR- 
automorphism on S, i.e., a complete vector 
field generating a 1 -parameter group of tCR- 

equivalences of S onto itself. Conversely, every 
infinitesimal CR-automorphism on S can 

be extended uniquely to a holomorphic vector 
field on RC x W, and an element of g,, is char- 
acterized as an infinitesimal CR-automorphism 

on S whose extension leaves the TBergman 
kernel form of D( V, F) invariant [6]. Let FI = 
dim,g,, m= dim,b, and let k=(g)- 1. Then 
Cc/B, and consequently D( V, F), is embedded 
holomorphically into the complex tGrass- 

mann manifold of m-dimensional subspaces in 
gc and so into the tcomplex projective space 
Pk(C). Any element of Gf is induced from a 
projective transformation and hence is a bi- 
rational transformation on D( V, F). 

Let D be a homogeneous bounded domain 
in C”, g,, the Lie algebra of G,,(D), and f, the 
isotropy subalgebra of g,,; and let gc be the 
complexification of g,,. g,, is a j-algebra. Let us 

define the complex subalgebra g- of gc by 
putting g- ={x+ijxIx~g,,,j~(j)}. Then we 
have gc=g,,+gm, g,,flg-=f,. Let G, be the 

connected Lie group generated by gc and 
containing G:(D) as a subgroup. Let G- be the 

connected (closed) Lie subgroup of G, gen- 
erated by g-. Then D can be holomorphically 
embedded in G,/G- as the open G:(D)-orbit of 
the origin of G,/G- [S]. This embedding is 

called the generalized Bore1 embedding. G,/G- 
is compact if and only if D is symmetric, and in 
this case G,/G- coincides with the compact 

dual [9]. 
Let {t,,j, w} be a normal j-algebra of rank 1 

corresponding to a homogeneous bounded 
domain D,, and define the Hermitian inner 
product h by h(x, y) = w( [ jx, y]) + iw( [x, y]) for 
x, yet,. t, has I - 1 (normal) nontrivial j-ideals 
(i.e., j-invariant ideals) up to j-isomorphisms. 
Take a j-ideal t 1 oft,. Then we have t, = t 1 + 

t,, t, being a (normal) j-subalgebra oft, de- 

fined as the orthogonal complement oft, in 
t, with respect to h. The geometric version of 
this is that D, is represented as a holomorphic 
fiber space over the homogeneous bounded 
domain D, corresponding to t,, with fibers 

holomorphically equivalent to the homog- 
eneous bounded domain D, corresponding to 
t, For this fibering there exists a universal 
fiber space D over the product & of certain 
classical symmetric domains, with the same 
fibers, which plays the same role as that of a 

tuniversal fiber bundle in topology. Here, D is 
again a homogeneous bounded domain. The 

fiber space Do-D, is induced from the fiber 

space D-+6, by the classifying mapping i of 
D, to 8,. Let /3 be the generalized Bore1 em- 

bedding of D into G,/G-. Then there exists a 
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complex Abelian subalgebra m of oc satisfying 
gc = g- + m (semidirect), and one can con- 
struct a biholomorphic mapping f of p(D) onto 
a certain Siegel domain of the third kind over 

D, in the vector space m [8]. The fiber space 
D,+DZ coincides with the one induced from 
the aforementioned Siegel domain of the third 

kind by the composite mapping of I and f.8. 
Every realization of a homogeneous bounded 
domain as a Siegel domain of the third kind is 

obtained by this method. 

E. Classification of Homogeneous Bounded 

Domains 

The main concern is to classify all homoge- 
neous bounded domains in C” up to holomor- 
phic equivalence. Since the realization as 

Siegel domains has been set up, the second 
step is to get the uniqueness theorem: The 
holomorphic equivalence of two homogeneous 

Siegel domains implies that they are linearly 
equivalent, that is, there exists a (complex) 
linear isomorphism between the ambient vec- 
tor spaces which carries the one domain to the 
other. The uniqueness theorem was first stated 
in 1963 (Appendix in [l J), rigorously proved 
in 1967 [lo], and in 1970 the homogeneity 

assumption was removed [2]. A homogeneous 
Siegel domain is called irreducible if it is not 
holomorphically equivalent to a product of 
two homogeneous Siegel domains. Every 

homogeneous Siegel domain is linearly equiva- 
lent to a product of irreducible homogeneous 
Siegel domains [3, lo]. A homogeneous Siegel 
domain D( V, F) is irreducible if and only if the 
regular cone V is irreducible, i.e., if V cannot 
be written as a direct sum of two regular 
cones. So the problem is to classify irreducible 
homogeneous Siegel domains up to linear 

equivalence. This reduces to classifying two 
kinds of nonassociative algebras with bigrada- 

tion, called T-algebras and S-algebras [ 111. 
Nonsymmetric homogeneous Siegel domains 
appear in dimension 4. The numbers of such 

domains are finite up to dimension 6, but in 
every dimension 2 7 there is at least one con- 
tinuous family of nonsymmetric irreducible 
homogeneous Siegel domains, which are not 
mutually holomorphically equivalent. 

There is a remarkable class of homogene- 
ous Siegel domains, called quasisymmetric 
[ 121, which contains the class of symmetric 

bounded domains. A regular cone Vc R is 
called self-dual if there exists an inner product 
( , )onRsuchthat V={xcRI(x,y)>Ofor 

ye v-(O)}, v denoting the closure of V. V is 

called homogeneous if the group G(V) is tran- 
sitive on V. Suppose that V is homogeneous 
self-dual. Then the group G(V) is tself-adjoint 

with respect to the inner product ( , ) on R. 
Let g(V) be the Lie algebra of G(V). Then the 
totality f(V) of skew-symmetric operators in 
g(V) with respect to ( , ) is a tmaximal com- 

pact subalgebra of g(V) and is the isotropy 
subalgebra of g(V) at a point eE V. Consider 
the associated Wartan decomposition g(V) = 
t(V) + p(V). For each x E R there exists a 
unique element T(x) E p( V) such that T(x)e = x. 

Let F be a V-Hermitian form on a complex 
vector space W. Define a Hermitian inner 
product ( , ) on W by (u, o) =(e, F(u, u)) 
for u, UE W, and let H(W) be the set of Her- 
mitian operators on W with respect to ( , ). 
A (homogeneous) Siegel domain D( V, F) c 
RC x W is called quasisymmetric if V is homo- 
geneous self-dual and if for each XE R there 

exists R(x)cH( W) such that F(R(x)u, u) + F(u, 
R(x)v)= T(x)F(u, II) for u, UE W. The normalj- 
algebra t of an irreducible quasisymmetric 
Siegel domain is characterized by the following 

. 
condltlons: dim fc.i+.,J,2 = a (1~ i < k < I); and 
dim ktii2 = b (1 < i < I), where a, b are some 
constants and I is the rank oft (D’Atri and de 
Miatello). Quasisymmetric Siegel domains 
have been completely classified (M. Takeuchi, 

Nagoya Math. J., 59 (1975), also [12]). 

F. Generalized Siegel Domains and Further 
Results 

Let 0 be a domain in c” x Cm (n, m 2 0) which 

is holomorphically equivalent to a bounded 
domain and contains a point of the form (z, 0), 
z E C”. R is called a generalized Siegel domain 
with exponent c (ceR), if n is invariant under 
holomorphic transformations of C” x Cm of the 

types 

(z, u)t+(z+ a, u) for all UER”, 

(z, u)m(z, e%) for all PER, 

(z, u)++(e’z, e%) for all teR. 

Let D be a bounded domain in C”, and r a 
subgroup of G,,(D). r is said to sweep D if there 
exists a compact set K c D such that TK = D. 
r is said to divide D if r, provided with dis- 
crete topology, acts properly on D and sweeps 
D. D is called sweepable (resp. divisible) if there 
exists a subgroup r of G,,(D) which sweeps 

(resp. divides) D. A divisible generalized Siegel 
domain is symmetric. A sweepable generalized 

Siegel domain with exponent c 20 (resp. c =0) 
is a Siegel domain (resp. a product of a Siegel 
domain of the first kind and of a homogene- 

ous bounded circular domain) ([ 133; also A. 
Kodama, J. Math. Sot. Japan, 33 (1981)). 

Some results have been obtained concerning 

geometry of bounded domains, homogeneous 
bounded domains, and Siegel domains in 
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complex Banach spaces [ 141, and also con- 
cerning the unitary representations of the 

generalized Heisenberg group on the square- 
integrable cohomology spaces of a,-complexes 
on the Shilov boundary of a Siegel domain 

Cl51. 
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385 (XVl.6) 
Simulation 

A. General Remarks 

Simulation, in its widest sense, is a method of 
utilizing models to study the nature of certain 
phenomena. This method is employed when 
experimentation with the actual phenomena in 

question is difficult because of high cost in 
time or money. Also, it is sometimes almost 

impossible to carry out observations when the 
behavior of the objects can be influenced by 
their surroundings. 

We can classify simulation techniques into 
the following four types, although simulations 

in practical use are usually a mixture of them. 
The first type is model experimentation, 

which includes model basins and wind tun- 

nels in hydrodynamics and pilot plants in the 
chemical industry. In advance of construction 

in a real situation, we perform experiments 
on a small scale and verify or modify those 
theories upon which the construction is based. 

The second type is analog simulation or 
experimental analysis. We investigate the 
properties of real objects by experiments on 
alternative phenomena satisfying the same 

differential equations as those known for or 
assumed to be satisfied by the real objects. For 
example, we use an equivalent electric network 
to study dynamic vibration, and dynamic 
systems to study heat conduction problems. 

When theoretical analysis of the actual phe- 
nomenon is difficult, we look for other phenom- 
ena with similar properties and study them 
in order to construct mathematical models for 
them. This type of simulation has come into 
practical use mainly in engineering problems, 

but recently it has been utilized for the study 
of economic phenomena, nervous systems, the 

circulating system of an artificial heart, etc. 
Analog simulation was in the past often per- 

formed by means of tanalog computers. Now- 
adays, analog simulation is more frequently 

performed by digital computers than by ana- 
log ones. And with the progress of electronics 
it has become easier to make special-purpose 
simulators. 

The third method of simulation, simulation 
in the narrow sense, has become more impor- 

tant as tdigital computers have been developed. 
In general this method is applied to problems 

that are more complicated and of larger scale 
than problems treated by analog simulation. 
When the mathematical expressions of the 
phenomenon and the algorithms of its dy- 

namic structure are known, it is easy to simu- 
late it by means of a computer program. In 
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particular, when these techniques are used to 
study systems such as sets of machines, equip- 
ment at factories, or management organiza- 
tion, we call them system simulations. Major 
fields where system simulation techniques have 

been used are traffic control on highways or at 
airports, arrangement or operation of ma- 
chines at factories, balancing problems in 
chemical processes, production scheduling in 
connection with demands and stocks, overall 

management problems, and design of informa- 
tion systems. The method has also been ap- 
plied in designing plants and highways and in 
the study of social or biological phenomena. 
Also, when we investigate instruction systems 
of computers that are yet to be completed 
or develop programming systems for such 

computers, existing computers can be used to 
simulate the new ones. tRandom numbers play 

an important role where the simulation must 
include random fluctuations (- 354 Ran- 
dom Numbers). In such instances, the method 

is often called the Monte Carlo method (- 
Section C). 

The fourth method of simulation deals with 
systems containing human beings. Among 
them are war games for training in military- 
operation planning, business games for train- 
ing in business enterprises, and simulators for 
training pilots and operators of atomic power 
plants. The contribution of human decision to 

simulation processes is characteristic of these 
cases. For example, the participants in a busi- 

ness game are divided into several enterprise 
groups. Each group discusses and decides how 
to invest in plants, equipment, research, and 
advertising and how to schedule production 
for each quarter. On the basis of the deci- 
sions, a computer outputs the records of sales, 

stocks, and cash for each quarter, according 
to hidden rules. From the results, each group 
decides on the next steps. In this way, the 
groups compete for development. This type 
of simulation is important not only for train- 

ing but also for investigating the mechanism 

of human decision. Slightly different from 
this type of simulation, the “perceptron” and 

EPAM (Elementary Perceiver and Memorizer) 
are related to artificial intelligence and have 
been used extensively in the cognitive sciences 
and in research into the structure and function 
of the human brain. 

The third type of simulation has attracted 
attention in particular and has been,used both 

in theoretical problems, such as the explication 
of various phenomena, and in practical prob- 
lems, such as design or optimum operation of 

systems or prediction of their behavior. For 
school education and training of technicians, 
this is put to use together with simulations of 

the fourth type. But their use has also induced 

heated discussions and controversies on the 
validity of results. 

B. Programming Languages for Simulation 

We usually describe models by using general 
purpose language: such as FORTRAN, or list 

processing languages such as LISP to simulate 
situations on computers. For system simula- 
tion, a number of programming languages 
have been developed and put to practical use. 
They can be divided roughly into two cate- 
gories: those for which systems change continu- 
ously and those describing discrete changes. 
CSMP (Continuous System Modeling Pro- 
gram), CSSI (Continuous System Simulation 

Language), and DDS (Digital Dynamics 
Simulator) belong to the former, and hence all 

involve integration mechanisms; but each 

has a different way of describing a model. 
DYNAMO, which has been implemented, or J. 

W. Forrester’s Industrial Dynamics and World 
Dynamics, are used extensively. To control 
simulation time, one may use GPSS (General 
Purpose Simulation System), SIMULA 
(Simulation Language), or SIMSCRIPT 
(Simulation Scriptor), each employing a differ- 
ent method to describe state transitions. 

C. The Monte Carlo Method 

The Monte Carlo method was introduced by J. 
von Neumann and S. M. Ulam around 1945. 
They defined this as a method of solving deter- 
ministic mathematical problems using tran- 
dom numbers. L. de Buffon’s needle experi- 
ment, in which the approximate value of 71 is 

obtained by dropping needles at random many 
times, is a classical example of this method. 

Another example is the problem of evaluat- 
ing a definite integral I =cf(x)dx (B>f(x)> 

A 2 0). First we generate many pairs of (uni- 

form) random numbers (x, y), where a <x < b 
and A < y < B. The proportion (p) of pairs 
satisfying y <f(x) gives an estimate of the inte- 
gral, i.e., I + p(B - A) (b -a). The techniques 
for inverting matrices, solving tboundary value 
problems of partial differential equations, and 
so on, are also examples of the Monte Carlo 
method in this sense. However, direct numer- 

ical calculation seems to be more useful in 
dealing with this sort of problem. At present, 
Monte Carlo methods are usually used when it 
is difficult to construct (or solve) mathematical 

equations describing the phenomena in ques- 
tion, for example, when the phenomena in- 

volve tstochastic processes such as trandom 
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walks. Some methods have been devised so as 
to get precise results efficiently. 

References 

[l] B. P. Zeigler, Theory of modeling and 

simulation, Wiley, 1976. 
[2] R. S. Lehman, Computer simulation and 

modeling, Wiley, 1977. 
[3] R. E. Shannon, Systems simulations: The 
art and science, Prentice-Hall, 1975. 
[4] J. M. Hammersley and D. C. Handscomb, 

Monte Carlo methods, Wiley, 1964. 
[S] A. Newell and H. A. Simon, Human prob- 
lem solving, Prentice-Hall, 1972. 

[6] M. Minsky and S. Papert, Perceptrons, 
MIT Press, 1969; second printing with correc- 
tions by the authors, June 1972. 

[7] J. W. Forrester, World dynamics, Wright- 
Allen Press. 1972. 

386 (Xx.29) 
S-Matrices 

A. Basic Notion 

It is often useful to focus attention on the 
relation between a physical system’s input and 
output, without worrying about intermediate 
processes (the black box), which may be in- 
sufficiently understood or too complicated to 

analyze. For the scattering of particles, this 
leads to the notion of an S-matrix that directly 

relates the state of incoming particles (before 
scattering processes take place) to that of 
outgoing (scattered) particles. 

In typical cases, the incoming and outgoing 
particles are described as mutually noninter- 
acting (these are called free particles). This 
implies particle motions along straight lines at 

constant speeds (asymptotic to the actual 
motion at infinite past for incoming particles 

and at infinite future for outgoing particles) in 
classical mechanics, and wave functions (or 
vectors in a Hilbert space) obeying the Schro- 

dinger equation with a free Hamiltonian H, in 
quantum mechanics and more or less the same 
in quantum field theory. 

A wave function for n particles is an L,- 
function of their momenta pr , , p, (each pj 

being a 3-dimensional vector) with respect to 
an appropriate measure (normally the Le- 
besgue measure dp(p) = n d3pj in quantum 

mechanics and the Lorentz-invariant measure 

d~(p)=~{(m2+p/2)~‘~2d3pi} in quantum field 

theory, where m is the mass of the particle), 
and the S-matrix S is described in terms of the 

S-matrix elements (pl,. . . ,p,lSlp;, ,pb,) 
(which is a distribution) as 

mw= @(P)(Pl~lP’)~(P’)4(P’w4P’)> 
s- 

where Q, and Y are wave functions for n and n’ 
particles, p = (p, , . , p,), and similarly for p’. 
(pISIp’) gives quantities measured in scattering 

experiments, as will be explained in Section B 

(2). 
In quantum mechanics, the free and actual 

(interacting) motion of particles is described in 

the same Hilbert space with free and interact- 
ing Hamiltonians H, and H. A vector @ in 
interacting motion behaves like a vector cp in 
free motion at infinite past if 

Il(exp[ -iHt])@-(exp[ -iH,t])cpll +O 

and hence 

a,= W-(H; H&p, 

Wm(H; Ho)= lim eiHfeeiHot. 
1-t-m 

Such a @ is often written as 

as t+ --oc 

@=@“(cp)= @‘“(P)cp(PMP)> 
s 

and is called an in-state. A definition for an 
out-state aout is obtained by changing t + -IX 
to t+ +cc and IK to W+. The S-matrix ele- 

ment is defined (as a distribution) by 

(PI.YP’)=(@““‘(P), @“(P’)). 

The existence and properties of IV+ (called 

twave operators) are central subjects in scat- 
tering theory (- 375 Scattering Theory). 

In quantum field theory, the asymptotic 
description is given in terms of vectors in 
+Fock space, and the in- and out-states are 
constructed in terms of tasymptotic fields 
(- 150 Field Theory). 

The foregoing description actually applies 
only to a system of one-component particles 
of the same kind. More generally. additional 
(discrete) variables, say IX, are needed to dis- 
tinguish different kinds of particles and differ- 

ent spin components of each kind of particle, 
and the p’s appearing in the above formulas 
should be replaced by (p, a)‘~, along with re- 
lated changes in the measure. 

Even in a quantum mechanics of many 
identical particles a bound state, if it exists, is 
to be treated as another particle (different from 

the original one) and should be distinguished 

by a’s in the asymptotic description r& 
If the interaction is of long range (e.g., 
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Coulomb interaction), the classical path of a 
particle does not have an asymptote in gen- 
eral, and correspondingly the wave operators 

W+ do not exist for the usual free Hamil- 
tonian. Still, an asymptotic description of 
scattering is possible in some cases. 

In the presence of massless particles, such 
as photons in quantum field theory, another 
difficulty, called the infrared problem, can arise 

in the asymptotic description of scattering 
because the scattered particle may be accom- 
panied by an infinite number of massless par- 
ticles (with very small energy). In such a situ- 
ation, a representation of a free massless field 

not equivalent to the standard Fock represen- 
tation is believed to be a possible candidate 
for the asymptotic description of scattering. 

B. Basic Properties 

(1) Invariance. Let Ye, be the Hilbert space for 
the asymptotic description of scattering, such 
as the space of &-functions (p(pI, . . . , pm) rela- 

tive to the measure dp(p). The S-matrix is an 
operator on &e whose matrix element is as 

described above. (The corresponding operator 
S in the Hilbert space & describing the inter- 
acting states is defined by S@‘“‘(rp) = @‘“(cp) 

and is sometimes called an S-operator.) 
S is said to be invariant under a group G of 

transformations of the p’s (and possibly the a’s) 
if (U(g)rp)(p)=cp(g-‘p) defines a continuous 
unitary representation U(g) and if U(g)S= 
SU(g) for all g E G. First, S is usually invari- 
ant under time translation. In the quantum 

mechanics of a particle scattered by a rotation- 
ally invariant potential, S is invariant under 
the group of rotations of 3-dimensional vec- 

tors p; in the quantum mechanics of many 
particles (mutually interacting through central 
potentials), S is invariant under the 3-dimen- 

sional Euclidean group of transformations 
p+Rp + a with rotation R; in relativistic field 
theory, S is assumed to be invariant under the 
tinhomogeneous Lorentz group of transfor- 
mations p+hp + a with p =(p’, p) and homo- 
geneous Lorentz transformation A. 

In all these examples, G is of type I, i.e., 
there is a direct integral decomposition 

z. = s 2”(k) 0 Y(k)dv(k), 
u(g) = Q(g) 0 1,&W> 
into irreducible representations U, on S(k), 
which are mutually inequivalent, where Z’(k) is 
some Hilbert space for each k. The S-matrix is 

invariant under G if and only if 

s= 
s 

l,(,, 0 S(k)dv(k). 

When a (scalar) particle is scattered by a 

central potential, irreducible representations 
are labeled by the energy E(p) = pZ/(2m) (for 
time translation) and the angular momentum 1 

(for rotations) with dim P@(p), I) = 1. There- 
fore each S(k) = Sr( IpI) is a number. For any 
given energy, I= 0, 1,2,. . are referred to as the 
S-wave, P-wave, D-wave,. . . or generally as 

partial waves. 
For relativistic scalar particles, irreducible 

representations (with positive energy and 
nonzero real mass) are labeled by the center- 
of-mass energy squared s (= (Z(m’ + pf)“*)” - 

(Z pi)*) and the total angular momentum 1. Ifs 
is below the threshold (3m)* of 3-particle 
scattering, dim P(k) = 1 and S(k) = S,(s) is a 

number. 

(2) Unitarity. Sq is supposed to represent the 
t= +co asymptotic (free) behavior of the state 
that initially (i.e., at t = -co) behaves like a 
free state cp. If there is no loss of probability in 

the description of scattering, the S-matrix is 
isometric. If all asymptotic configurations 
are realized as a result of scattering, the S- 

matrix must also be unitary. The mappings 
put put 

a’” :(pE&?o+@‘n ((P)EZ (IV+ in quantum 
mechanics) are proved to be isometric under 
a general assumption. The unitarity is then 
proved in potential scattering (under some 
conditions on the potential) by showing that 
the two wave operators W, have the same 
range. In fact, a somewhat stronger result- 
that this range is the same as the absolutely 
continuous spectral subspace for the interact- 
ing Hamiltonian H-is usually proved and is 

called completeness (of scattering states in the 
absolutely continuous spectral subspace of H). 
If the mappings @‘“’ and @” (or IV’,) are iso- 

metric and have the same range, then @‘“(cp)= 
@‘“‘(So), which shows that the state behaving 
like cp at t= -cc behaves like Srp at t = +co. 

In the simple multiplicity cases such as 
S,(lpI) and S,(s) above (which correspond to 
the physical situation of purely elastic scatter- 
ing without any production or change of par- 
ticles), these numbers must be of the form ezidl 

due to unitarity, where the real number 6, is 
called the phase shift. In terms of the phase 

shift, the differential cross section do/da, which 
is the average number of particles scattered per 
unit time per unit solid angle around the direc- 
tion forming an angle 0 with the incident 

uniform parallel beam of unit intensity (one 
particle per unit time per unit area) when 
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viewed in the center-of-mass system, and the 
total elastic cross section Gc, = [(da/dR)dQ are 
given by the following formulas, called the 
partial wave expansion: 

drr/d!a = I.f(s, @I*, 

,f(s, U)= k-’ 2 (21+ l)j;Pl(cosU), ,f;=sin6,e’61, 
1=0 

I 

where dQ = sin 0 dO dq (invariant measure on a 
2-dimensional sphere S’) and k is the wave 
number of the particle in the center-of-mass 
system (k=h~‘~pJ=h-‘[(s/4)-m2]“2). The 
function .1‘ is called the scattering amplitude. 

The forward scattering amplitude ,f(s, 0) is 
related to the total cross section otot by the 
optical theorem: 

rr,,,, = 4nk -’ Imf(s, 0), 

which follows from the unitarity of the S- 
matrix. Here the total cross section is expressed 
as the area of the transverse cross section 

of a classical (impenetrable) scatterer that 
would scatter the same amount of particles. 
In a purely elastic region, a,,, = oe,, and the 
optical theorem is the same as the assertion 

Imh=lf;l’. 
Even for values of s above the threshold of 

inelastic scattering, the restriction of S, to the 
subspace of two particles is again described by 

numbers ezisl, where 6, is now complex, and 
the same formulas for the differential and total 
elastic cross sections hold, except that uni- 

tarity of S, now implies Im,fr>],fi12. 

(3) TCP Symmetry. In the framework of either 
iaxiomatic quantum field theory or the itheory 
of local observables, the TCP theorem (or 
PCT theorem) shows [l] that to every particle 
there corresponds another particle with the 

same mass and spin, which is called the anti- 
particle and can be the original particle itself, 
such that any particle is the antiparticle of its 

antiparticle, and the following relation, called 
TCP invariance (or PCT invariance [Z]) holds 
for S-matrix elements: 

=rle4llbY F(o)-F(a’)(p’,Oo”‘ISIp,Bo”). 

Here F(a) and F(cc’) are the number of particles 
with half odd integer spin amongst the incom- 
ing and outgoing particles (i.e., in s( and c(‘), 

q(x) and ~(cc’) are the product of I1 assigned 
to each particle in CI and a’, respectively, with 
the assignment to a particle and its antiparticle 
the same for bosons and opposite for fermions, 

(p, 2) is an abbreviation for an ordered n-tuple 

of energy-momentum 4-vectors pi and other 
indices CX~ (for spin components and particle 
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species), i = 1, , n, and similarly for (p’, x’), and 
0, is the mapping from particles to their anti- 
particles (without changing spin indices). We 

may view the mapping Jp, a)-+q(cc)iF’“‘(p, 0,cx) 
as an antiunitary operator 0, on .X0 satisfying 
O,SO,’ = S* so that 

This is related to the +TCP operator 0 in 
quantum field theory by OY”“‘(~)=‘-I”“(O,cp) 

and @‘I”‘“(~)=Y”‘(@,,(p). The name TCP 
comes from the combination of 7‘ for time 
reversal (incoming F? outgoing, t’=p/m+ -u), 
C for charge conjugation (particle ti anti- 
particle), and P for parity, which is a quan- 
tum number for space inversion (p-+-p). 

TCP symmetry was suggested to G. Liiders 
(Dansk. Mat. Fys. Medd., 1954) by B. Zumino 
in the form that P-invariance implies TC sym- 
metry. W. Pauli (Niels Bohr and the deuelop- 

rnent of physics, Pergamon 1955, 30) realized 
that TCP is a symmetry. R. Jest (He/v. Phys. 

Acta, 1957) gave its proof in the framework of 
axiomatic quantum field theory. 

(4) Crossing Symmetry. In the framework of 
either axiomatic quantum field theory or the 
theory of local observables, it has been shown 
by J. Bros, H. Epstein, and V. Glaser (Comm. 

Math. Phys., 1 (1965); also [3]) that there exist 
analytic functions H(k, r) of complex variables 
k = (k, , . . , k4) in a certain domain D such that 

each kj is a complex 4-vector, the variables are 
on the mass-shell manifold defined by kf = rn; 
(kf is in the Minkowski metric) and C kj = 0, 

and the boundary value of H(k, CI) as kj ap- 
proaches cjpj from Im s > 0 (s being the square 
of the sum of two k’s for incoming particles) in 
D is the scattering amplitude for the following 
processes involving the particles A, and their 

antiparticles Ai (j = 1, ,4) with 4-momenta 
pj, 4= 1 for Aj and -1 for xj (some of the A’s 
and A’s may coincide): 

(i) A, + A,-tA, +&, 

(i’) A,+A,-tx,+x2, 

(ii) Al+A3+~2+.&, 

(ii’) A,s-A,-,~~+~~, 

(iii) A, + A4-+xz + I%~, 

(iii’) A,+A,-+&+.&. 

Any pair of relations taken from (i)-(iii) con- 

stitutes a crossing symmetry. 

(5) High Energy Theorems. M. Froissart (Phys. 

Rev., 123 (1961)) obtained from the Mandel- 

stam representation the following bound for 
the forward scattering amplitude (called the 
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Froissart bound) at large s: 

IF(s,O)( <(const)s(logs)‘, 

F(s, 4 7 MS, 4, t=2k2(cos&l). 

A. Martin has obtained such a bound in the 
axiomatic framework. As a consequence we 
have the Froissart-Martin bound: 

where .E > 0 is arbitrary, R can be taken to be 
4m;5 (m, is the mass of a pion) for many cases, 
such as XK, nK, EN, and 7cA scattering, and s0 

is an unknown constant. 
Many other upper and lower bounds for 

scattering amplitudes have been obtained 
under other assumptions [4,5]. 

I. Ya. Pomeranchuk (Sou. Phys. JETP, 7 
(1958)) suggested the asymptotic coin- 
cidence of total cross sections at high energy 
for scattering of AB and AB, where B is the 
antiparticle of B. This Pomeranchuk theo- 
rem has been shown to hold by Martin 

(Nuovo Cimento, 39 (1965)) by using the ana- 
lyticity derived in the axiomatic framework 
under the following sufficient condition: 
The existence of lim,,, [a(AB) -@@)I and 
lim,,,(slogs)-‘f(s, 0) =O. 

C. S-Matrix Approach 

(1) History. All the information needed to 
understand the experimental elementary- 

particle scattering data seems to be expressible 
by S-matrix elements. It was therefore natural 
to try to develop a foundation (and practical 
methods of calculation) for the theory of ele- 
mentary particles on the basis of some gen- 

eral properties of the S-matrix, especially 
when other approaches, such as quantum field 
theory, faced difficulties. W. Heisenberg (Z. 

Phys., 120 (1943)) first pointed out the possi- 
bility of such an approach soon after the intro- 
duction of the S-matrix by J. A. Wheeler (Phys. 
Rev., 52 (1937)). Unfortunately, in the early 
1940s not much dynamical content could be 
given to such an S-matrix-theoretic approach 
because only unitarity and some invariance 

properties, such as tLorentz invariance, were 
used to characterize the S-matrix. In the late 
195Os, through the study of the analyticity of 

the S-matrix in connection with dispersion 
relations in quantum field theory, it became 
evident that causality is another important 
determinant of S-matrix structure. In practice, 
causality in position space is used in the form 
of the analyticity of the S-matrix elements in 
the energy-momentum space (variables dual to 

space-time positions in the Fourier transform). 

Subsequently it was realized that analyticity 
combined with unilarity gives surprisingly 

386 C 
S-Matrices 

strong control over the structure of the S- 
matrix (G. F. Chew [6]; H. P. Stapp, Phys. 

Rev., 125 (1962); J. C. Polkinghorne, Nuouo 

Cimento, 23 and 25 (1962); J. Gunson, J. Math. 
Phys., 6 (1965); D. I. Olive, Phys. Rev., 135B 

(1964); Chew [7]; R. J. Eden et al. [S]). The 
study of the S-matrix based on its general 
properties, such as invariance, unitarity, and 
analyticity, is called S-matrix theory. In the 
present form, it is adapted only to massive 

particles with short-range interactions, and 
its applicability is believed to be limited to 

strongly interacting systems. 

(2) Landau-Nakanishi Variety. C. Chandler 

and Stapp (J. Math. Phys., 10 (1969)) and D. 

Iagolnitzer and Stapp (Comm. Math. Phys., 14 
(1969)) clarified the analytic structure of the S- 
matrix in terms of Landau equations (- 146 
Feynman Integrals) based on the important 
physical idea of macroscopic causality, which 
gives much more precise information in the 
physical region than a superficial application 
of tlocality (also called microcausality) in 
axiomatic quantum field theory, though it is 

possible that a detailed study starting from 
microcausality and incorporating tasymptotic 
completeness (the so-called nonlinear program 

in axiomatic quantum field theory) might 
eventually entail the macroscopic causality 
condition (e.g., J. Bros, in [9]; Iagolnitzer 
[lo, ch. IV]; also K. Symanzik, J. Math. Phys., 
1 (1960)). 

(3) Microlocal Analysis. An important fact is 

that the normal analytic structure of the S- 
matrix discussed by Iagolnitzer and Stapp 
essentially coincides with the notion of analy- 
ticity in microlocal analysis, i.e., with micro- 
analyticity (- 274 Microlocal Analysis; F. 

Pham and Iagolnitzer, Lecture notes in math. 
449, Springer, 1975; M. Sato, Lecture notes 
in phys. 39, Springer, 1975)). In a word, the 

tLandau equations have acquired a new inter- 
pretation in the description of the micro- 
analytic structure of the S-matrix. In the new 
developments, the Landau equations define a 
variety in the cotangent bundle (over the mass- 

shell manifold in momentum space), and the 
+singularity spectrum of S-matrix elements is 

assumed to be confined to Ucp’+(G) (except 

for the so-called Jo-points), where G ranges 
over all possible Feynman graphs and y+(G) 
denotes the positive-a Landau-Nakanishi 
variety associated with G (- 146 Feynman 
Integrals). The union U,y’(G) is known to 
be locally finite and hence makes sense (Stapp, 
J. Math. Phys., 8 (1967)). The old interpre- 

tation of Landau equations, as defining a 
variety in energy-momentum space, corre- 

sponds now to considering the variety L+(G) 
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obtained by projecting 5?‘(C) from the co- 
tangent bundle to the base manifold (i.e., the 
mass shell manifold). The new interpretation of 

Landau equations led Sato (Lecture notes in 

phys. 39, Springer, 1975) to make a further 
intriguing conjecture that the S-matrix would 

satisfy a special toverdetermined system (a 
tholonomic system) of +(micro-) differential 

equations whose tcharacteristic variety is given 
by the complexitication of Landau-Nakanishi 
varieties. This conjecture is closely related to 
the monodromy-theoretic approach by T. 
Regge (Pub/. Res. Inst. Math. Sci., 12 suppl. 
(1977) and the references cited therein) and his 
co-workers. 

(4) Discontinuity Formula. It has turned out 

that the above approach is closely related to 
the so-called discontinuity formula obtained by 
combining the unitarity and the analyticity of 
the S-matrix. Actually T. Kawai and Stapp 
(Puhl. Res. Inst. Math. Sci., 12 suppl. (1977)) 
have shown that Sato’s conjecture can be 
verified at several physically important points 
on the basis of the discontinuity formula. The 
discontinuity formula was first found by R. E. 
Cutkosky (J. Math. Phys., 1 (1960)) for Feyn- 

man integrals. It describes the ramification 
property of the integral around its singularities 

(- 146 Feynman Integrals). An analogous 
formula has been shown to be valid also for 
the S-matrix, and it demonstrates how strict 
are the constraints derived from unitarity and 
analyticity (Eden et al. [S, ch. 41; M. J. D. 
Bloxham et al., J. Math. Phys., 10 (1969); J. 

Coster and Stapp, J. Math. Phys., 10 (1969); 
also Stapp in [l l] and Iagolnitzer [lo]). Note, 
however, that the derivation of the hitherto- 

known discontinuity uses either some ad hoc 
assumptions or some heuristic reasoning 
which is not rigorous or sometimes is even 

erroneous from the mathematical viewpoint. 

Efforts to give a rigorous proof are still being 
made, and these present several mathemati- 

cally interesting problems (e.g., Iagolnitzer in 
[9] and M. Kashiwara and Kawai in [9]). 

(5) Regge Poles. The results stated so far con- 
cerning the analyticity of the S-matrix have 
been primarily derived in the low-energy 
region. It is commonly hoped that these results 

can be related to its high-energy behavior 
through the inner consistency of S-matrix 
theory, even though it is still unclear to what 

extent such a relationship can be developed. 
Such a hope was advocated by Chew, who had 
been inspired by the results of Regge (Nuouo 
Cimento, 14 (1959); 18 (1960)) for potential 

scattering. After being adapted to the relativ- 
istic case, Regge’s idea took the following 

form: Consider the scattering of two incoming 

and two outgoing scalar particles with equal 
mass m > 0. Let f;(s) be the partial scattering 
amplitude defined earlier. Regge introduced 

the idea of extending the function A(s) to an 
analytic function f(l, s) (16 C) and of applying 

the Sommerfeld-Watson transformation in 
order to replace the partial wave expansion by 
the integral 

 ̂
&i/2 Jc(2i+ l)f(l,s)P,(-cosQ)dl/sinxl 

= F(s, t) 

for a certain contour C in the complex I-plane 

which encircles {0, 1,2,. }. If f(i, s) is mero- 
morphic in Re I> -l/2 and if it tends to zero 
sufficiently rapidly at infinity, then one can 

change the contour C so that, with the help of 
Cauchy’s integral formula, F-constant. t’@), 

a(s) = max Re I(s), where the maximum is taken 
over all the poles of f(l, s). Thus the poles of 
the extended function f(l, s) determine the 
asymptotic behavior of F as t * a (Regge 
behavior) under the assumption that f(l, s) can 
be chosen to satisfy suitable analyticity and 
growth order conditions. These poles are 
called Regge poles. Even though meromorphy 
conditions are found to be satisfied for scatter- 

ing by a (Yukawa) potential, they do not seem 

to be satisfied for the full S-matrix in the relati- 
vistic case. More general cases than those 
discussed here, i.e., the cases where more vari- 
ables are considered, are also being studied 
but without full success at the moment. For 
details and references - [7,12,13]. 

(6) Veneziano Model. In connection with 
Regge-pole theory, we note an interesting 

observation by G. Veneziano (Nuovo Cimento, 
57A (1968)) to the effect that r( 1 - a(s))r( 1 - 
cc(t))/T( 1 -a(s) - a(t)), with a(s) being linear 

in s, satisfies a crossing symmetry (in s and t) 
and shows an exact Regge-pole behavior. 
Although the many results that have been 
obtained give rise to a hope of constructing a 
realistic model of the S-matrix starting from 
the aforementioned function, no one has yet 
succeeded [ 141. A more promising approach is 
the topological expansion procedure in which 
the first term of the expansion apparently 
shares with the potential-scattering functions 

the property of having only poles in the com- 
plex I-plane, along with several other physi- 
cally important properties of Veneziano’s 

function. 
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387 (XX.34) 
Solitons 

A. General Remarks 

Solitons are nonlinear waves that preserve 
their shape under interaction. Mathematically, 
the theory of solitons continues to develop as 
a theory of completely integrable mechanical 
systems. Typical examples are the Korteweg- 

de Vries equation (- Section B), the Toda 

lattice (- 287 Nonlinear Lattice Dynamics), 
and the Sine-Gordon equation 

u,, - u,, = sm u, 

studied classically in connection with trans- 
formations of surfaces of constant negative 
curvature. 

B. The KdV Equation 

In the late 19th century J. Boussinesq and then 
D. Korteweg and G. de Vries obtained equa- 

tions describing water waves having traveling- 
wave solutions. The equation 

u, - 6uu, + u,, = 0, u = u(x, t), (1) 

derived by de Vries is called the KdV equation 
for short. Putting u(x, t) = s(x - ct - 6), we find 
that s is an telliptic function, and we obtain 

as its degenerate form. This solution is called a 
solitary wave. 

Around 1965, M. Kruskal and N. Zabusky 
solved the KdV equation numerically, taking 
several separated solitary waves as the initial 
data. They found that the waves interact in a 
complicated way but that eventually the initial 
solitary waves reappear. Noting the particle- 
like character of the waves, they called each of 
these waves a soliton. Subsequently, the KdV 
equation was found to have an infinite number 
of constants of motion. 

C. Gardner, J. Greene, Kruskal, and R. 
Miura associated the l-dimensional tschriidin- 
ger operator - d2/dx2 + u(x, t) to each solution 
u(x, t) of the KdV equation and showed that 
its teigenvalues are preserved in time. More- 
over, they applied inverse scattering theory 
(- Section D) and obtained explicit formulas 
for the solutions. 

C. Lax Representation 

Let 

L= -D’+u(x), D = a/ax. 

For 

M= -4D3+6uD+3u,, 

the commutator [M, L] = ML - LM is the 
operator of multiplication by the function 
6uu, - u,,, . So u = u(x, t) is a solution of the 
KdV equation if and only if 

L,=[M, L]. (2) 

Equation (2) is also the condition that all L = 

L(t) are tunitarily equivalent to each other 
and the tspectrum of L is preserved through 
time. 

Most equations having soliton solutions can 
be represented in the form of (2) for a suitable 
pair of L and M. This representation is called 
the Lax representation. One sometimes says 
that an isospectral deformation of L is given 
by (2). 

On the other hand, isomonodromic defor- 
mations (- 253 Linear Ordinary Differential 
Equations (Global Theory)) have been studied 
extensively by M. Sato and his co-workers, 
and relations to soliton theory have been 
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discovered (Sato, T. Miwa, and M. Jimbo, Publ. 
Res. Inst. Math. Sci., 14 (1978), 15 (1979)). 

In the present case, the requirement that the 

commutator [M, L] be a multiplication by a 
function determines an essentially unique 
(2n + l)th-order ordinary differential operator 

A4 = A,, the differential operator part of the 
+fractional power L”+l/*. [A,, L] is a poly- 
nomial in u and its derivatives, denoted by 
K,[u]. The equation u,=K,[u] is called the 

nth KdV equation. The transformation taking 

the initial data u(x) to the solution u,(x, t) of 
the nth KdV equation is denoted by r,(t). 
Then T,(t) T,(s) = T,(s) T,(t), i.e., the flows de- 
fined by these higher-order KdV equations 
commute. This property and the existence of 
infinite number of invariant integrals are con- 
sequences of the complete integrability of the 

higher-order KdV equations considered as 
infinite-dimensional Hamiltonian systems. 

The KdV equations can be studied group- 
theoretically as Hamiltonian systems on a 
certain coadjoint orbit in the ‘dual space of 

the iLie algebra of a certain class of +pseudo- 
differential operators (M. Adler, Inventiones 
Mnth., 50 (1979); also - B. Kostant, Advances 
in Math., 34 (i 979) for the analogous facts for 
the Toda lattice). 

The ordinary differential equation K,[u] = 0 
is called a stationary KdV equation. By the 

commutativity of the flows r,(t), each KdV 
flow leaves invariant the space of solutions of 
K,[u] =O. The flows restricted to this space 

form a completely integrable Hamiltonian 
system with finitely many degrees of free- 
dom (S. P. Novikov, Functionul And. Appl., 8 
(1974)). 

K,[u] =0 is also the condition that there 
exist an ordinary differential operator M 
which commutes with L. J. Burchnal and T. 

Chaundy (Proc. London Math. Sot., (2) 21 
(1922)) studied this problem and showed that 
such L and M are connected by the relation 
M2 = P(L), where P is a certain polynomial of 
degree 2nt 1 and that the potential u is ex- 

pressed by the +theta function associated with 

the thyperelliptic curve w2 = P(z). 

D. Inverse Scattering Method 

Let u(x) be a potential such that u(x)*0 as 

x--t Fm. The equation &f=[i2f’(Im<>0) has 
solutions ,f+(x, 0 that can be represented as 

f&q<)=cA”“(l +J;K+(X,t)P!‘dr). 

Putting i = 4 + iv and noting that f+(x, 0 and 
.f+(x, -t) are independent solutions of Lf= 

[*,L one can express ,f- as 

.1-(x, 4)=44).f+,(x, -cT)+b(<)f+b, 5). 
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The coefficient a(<) can be continued analyti- 
cally to the upper half-plane, where it has only 
a finite number of zeros, all of which are sim- 
ple and lie on the imaginary axis. Denote 
them by iqj (j = 1, . , n). The +point spectrum 

of the operator L consists of the numbers 
- $, and the associated eigenfunctions are 
f*(~, iv,), which are real-valued. Put 

cj=(S.f+(X,i~J)2dX)-', 

and call t(<)=a(<)-’ and r(t)=b(<)/a(<) the 
transmission coefficient and the reflection 
coefficient, respectively. The triplet r(r), vi, c, 

(.j= 1, , n) is called the scattering data. It is 
connected with the kernel K = K + by the 

Gel’fand-Levitan-Marchenko equation 

s 

m 
K(x,t)+F(x+t)+ F(x+t+s)K(x,s)d,s 

0 

(t>O), 

F(.x)=n^’ PA 
s 

r(<)e2”“dx+2f ciem2qJ”. 
-w j=1 

The potential is given by 

U(X)’ -(2K/dx)(x,O). 

When the reflection coefficient r(g) vanishes 
identically, the potential is called a reflection- 
less potential. The kernel K then becomes a 

tdegenerate kernel and the potential is ex- 
pressed by 

u(x)= -2$logu(z), 

where D(x) is the determinant of the n x n 

matrix whose j, k entry is S,, + cjexp { - (qj + 

‘?!Jx}l(Vj + V!J 
The authors of [ 1) showed that if u(x, t) is a 

solution of the KdV equation and if u(x, t)-0 
(x-r km), then the time development of the 
scattering data of the potential u(.u, t) is as 
follows: n and vi do not depend on t, and 

cj(t) = cjes+, r(<, t) = r(<)e8ir'r, 

The solution associated with the reflectionless 
potentials are obtained by replacing c,, by c)(t) 

in the formula for D(x). These are soliton 
solutions of the KdV equation. 

R. Hirota developed a method of treating 
functions like D(x) directly for most of the 
equations in the soliton theory (Lecture notes 
in math. 515, Springer, 1976). 

A certain geometric method that enables 
one to obtain solutions of the Sine-Gordon 
equation from a known solution has been 
studied in the transformation theory of sur- 
faces of constant negative curvature (G. Dar- 
boux, Leqons sur la thiorie gh&de des sur- 

,&aces, Chelsea, 1972, vol. 3, ch. 12), and its 

generalizations are called BLcklund transfor- 
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mations. Soliton solutions of the KdV equa- 

tion can also be constructed by this method. 
Relations to the inverse scattering method, 
differential systems, and transformation groups 

have also been studied (Lecture notes in math. 
5 15, Springer. 1976). 

E. Periodic Problem 

Let the potential u(x) be of period 1, and con- 

sider Hill’s equation (- 268 Mathieu Func- 
tions E) Lf= /if: The real (i-) axis is divided 
into intervals of unstable solutions (u-intervals) 

alternating with intervals of stable solutions. 
One of the u-intervals is of the form (--co, &,I 
and the others are finite, possibly degenerating 
to points. The special potentials that have only 
a finite number of nondegenerate u-intervals 

are the periodic analog of the reflectionless 
potentials, and are called the finite-gap (or 

-band) potentials. 
Consider the eigenvalue problem &f=I& 

.f(~) =,f(z + I) = 0 for a fixed real parameter T. 
Exactly one of its eigenvalues belongs to each 

finite u-interval. These eigenvalues move with 
5, but those in degenerate intervals cannot 
move. 

Let u be a finite-gap potential, 3= [i.,j-,, 
&j] (j = 1, , y) be the nondegenerate (finite) 
u-intervals, and pj(z) be the associated eigen- 
values in Ij. The potential is recovered by the 
formula 

&l 

u(x)= 1 ;,-2f /Lj(X). 
j=O j=l 

Put P(i) = n&,(i. - I,), realize the +Riemann 
surface S of the hyperelliptic curve wz = P(z) as 
a two-sheeted cover of the +Riemann sphere, 

and consider the pj(z) as points on S. Let wj 
(j=l , ,g) be a basis for the space of the 
+differentials of the first kind on S. Fix a point 

PO in S and put 

wj(j(5)= -f 
s 

P,(r) 
wj (j=L...,d 

!f=1 PO 

(- 3 Abelian Varieties L). Then the locus 
(w,(z), . . . , w&T))( -m ~7 <“o) on the +Jacobian 
variety turns out to be a straight line, the 
direction u, being determined by the tperiods 

of certain idifferentials of the second kind on 
S. Employing the solution of +Jacobi’s inverse 

problem, we can write the potential in terms of 
the TRiemann theta function as 

d2 
u(x)= -2dxLlogo(xu,+c)+ c, (3) 

where c is a certain constant vector and C is a 

constant. 
Suppose now that u(x, t) is a solution of the 

KdV equation which is a finite-gap potential 

for each t. Then g and iLj are preserved in time. 
The determination of the direction II* on the 

Jacobian variety is similar to that of u,, and 

the solutions of the KdV equation are ob- 
tained by replacing the vector c by tu, + c’ in 
(3). The case g = 1 is the elliptic traveling wave 
solution (- Section B). Most of these results 
have been extended to the general periodic 
problem (H. P. McKean and E. Trubowitz, 
Comm. Pure Appl. Muth., 29 (1976)). 

F. Two-Dimensional KdV Equation 

Let S be a compact TRiemann surface of tgenus 

g, and let pu be a fixed point on S. Put F(K) = 
a&+ . ..+a. and G(~)=b,,,~“‘f...+h~. A 
function $(x, y, t, p) of p E S and of x, y, t is 
uniquely determined by the following con- 
ditions: (a) it is meromorphic on S - {p,}, and 
its pole idivisor is a general divisor of degree g 
and does not depend on x, y, t; (b) for a tlocal 
parameter z at p7) (z&)=0) and ti=z-‘, tiO= 

$exp(-KX-F(K)~-GG(K-)~) is holomorphic 

near P,, and MP,) = 1. 

Moreover, there is a differential operator 

L=a,D”+a,~,D”~’ +CJ’:;uj(x,y, t)Dj such 
that $Y = L$. Expanding tiO at pw as 1+ 
xi=, (Jx, y, t)zj, one can express the coeff- 

cients uj by tl, &, . . Analogously, there is an 
M = b,,,D”+b,,~,D”-’ +J$&‘u,Dj such that 

$, = M$. The operators L and M satisfy the 
relation 

L, - M, = [L, M], (4) 

which is a generalization of the Lax represen- 
tation. The coefficients of L and M satisfy a 

certain system of nonlinear differential equa- 
tions (V. E. Zakharov and A. B. Shabat, Func- 
tional Anal. Appl., 8 (1974); I. M. Krichever, 

Functional Anal. Appl., 11 (1977)). 
Example. Let F(K) = K’ and G(K) = ti3 + cti. 

Then one finds 

L = 0’ + u, M=D3+(3u/2+c)D+v, 

where u = - 25; and v = 35,<; - 3<; - 35; 
Eliminating u from (4), one has 

3u,, + ( - 4u, + 4cu, + u,,, + ~uu,), = 0, 

the so-called two-dimensional KdV equation 

(Kadomtsev-Petvyasbvili equation). If u(x, y, t) 
does not depend on y, the equation reduces to 
the KdV equation, and if u does not depend 
on t, to the Boussinesq equation. 

The condition for reduction to these spe- 
cial cases can be described in terms of the 

meromorphic functions admitted by S. Sup- 
pose that there is a meromorphic function 

EF( p) holomorphic for p # p, and of tprin- 

cipal part F(K) at p =pK. Then $ is writ- 
ten as cp(x, r,p)exp{E,(p)y), and the coeffi- 
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cients of L and M do not depend on y. q 
satisfies Lcp = Eq, and (4) reduces to the Lax 
representation. 

If such an E, exists, S js hyperelliptic, and 

pw is one of its tbranch points over the Rie- 
mann sphere. Thus the result of the previous 
section is recovered. 

G. Solvable Models in Field Theory 

The Sine-Gordon equation has been studied 
extensively as a solvable model in +tield theory. 
It is a special case of a field in two space-time 
dimensions with values in a +symmetric space; 
this can also be treated by a variant of the 

inverse scattering method (V. E. Zakharov and 
A. V. Mikhailov, SOD. Phys. JEEP, 47 (1978)). 

Much work has been done on the semiclass- 

ical tquantization of equations encountered in 
soliton theory. Recently, a method of exact 
quantization (called quantum inverse scatter- 
ing) was developed (see, for example, L. A. 
Takhtadzhyan and L. D. Faddeev, Russian 

Muth. Surveys, 34 (5) (1979)). 
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388 (X111.32) 
Special Functional Equations 

A. General Remarks 

The term special functional equations usually 
means functional equations that do not in- 

volve limit operations. Such functional equa- 
tions appear in various fields, but there is no 
systematic method for solving them. Usually 

they are solved by reduction to functional 
equations of some standard type. In this article 
functions are all real-valued functions of real 
variables unless otherwise specified. 

B. Additive Functional Equations and Related 
Equations 

Suppose that we are given an equation 

.f(-u+Y)=.f(x)+f(Y). (1) 

Clearly, ,f(x) = cx (c a constant) is a solution. If 
f(x) is continuous, (1) has no other solution 
(Cauchy). The same conclusion holds under 
any one of the following weaker conditions: 
(i) f(x) is continuous at a point; (ii) f(x) is 
bounded in a neighborhood of a point; (iii) 

f(x) is tmeasurable in a neighborhood of a 

point. However, it was shown by G. Hamel 
and H. Lebesgue by means of ttransfinite in- 
duction that equation (1) has infinitely many 
nonmeasurable solutions. On the other hand, 
it was proved by A. Ostrowski [2] that if a 
solution f(x) of equation (1) does not take any 
value between two distinct numbers for x on 
a set of positive measure, then f(x) is con- 
tinuous. This result can be extended to the 
case where x is a point (x1, . . . , x,) of an n- 
dimensional Euclidean space. In this case, any 

continuous solution is of the form 

f(x)= i cjxj 
j=l 

(Cj constant). 

Next, we consider the equation 

(2) 

Any solution of equation (1) satisfies this equa- 

tion. When x is a point (x1, . , x,) of an n- 
dimensional Euclidean space, any continuous 

solution of (2) is of the form f(x) = Cy=, Cjxj + 
C,, (Cj constant). If a solution f(x) of (2) de- 
fined on a tconvex set K does not take any 
value between two distinct numbers for x on a 
set of positive measure, then f(x) is continuous 
(M. Hukuhara). 

Consider the equation 

dx + Y) =dMY). (3) 

If a solution g(x) vanishes at some point 5, 

then g(x) = 0. Excluding this trivial case, we 
assume that g(x) never vanishes. Then, putting 

y =x, we see that g(x) > 0 for all x. The substi- 
tution j’(x)=logg(x) then reduces equation (3) 
to equation (1). Thus we see that any continu- 
ous solution of (3) is of the form g(x) = exp(cx). 

Next, we consider the equation 

du4 = Ymm. (4) 
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If a solution g(u) vanishes at some 5 #O, then 

g(u) = 0. Excluding this case, we assume that 
g(u) # 0 for u # 0. For u, v > 0, by the substi- 
tution x = log u, y = log u, we have an equation 
of the form (3). On the other hand, putting u = 

-1, we have g(-u)=g(-l)g(u). Since g2(-1) 
= g( 1) = 1, we see that any continuous solution 
of (4) is of the form 1~1’ or (sgnu)lul’ according 
asg(-l)=l or -1. 

C. The General Addition Theorem and Related 
Functional Equations 

The general addition theorem is: If the equation 

f(x+Y)=w(x)>f(Y)) (5) 

has a continuous nonconstant solution ,f(x) on 
--oo <x < +co, then f(x) is strictly monotone, 
and F(u, u) is strictly monotone increasing and 
continuous with respect to u and v for t( <u, 
v</Iand satisfies a<F(u,v)<p for GL<U, u< 

fl. There is also a constant c satisfying F(c, c) = 
c, and the identity F(F(u, u), w) = F(u, F(v, w)) 
holds for any u, v, w  in the interval (c(, b). Con- 

versely, if F(u, v) is such a function, then (5) has 
a continuous nonconstant solution on --co < 
x < +co. Let f(x) be such a solution. Then any 
other continuous solution is given by f(cx). 
When F(u, v) is continuously differentiable, a 
continuow solution f(x) of (5) can be obtained 
as a solution of the differential equation 

f’(x) = F”(f(X)> 4G c =.f’(O), 

satisfying the initial condition f(0) = a. 

Consider the equation 

Suppose that F(u, u, w) is a polynomial in u, v, 
and w. If this equation has a tmeromorphic 
solution f(x), then f(x) must be a rational 

function, a rational function of expcx, or an 
elliptic function [l, p. 641. 

Next, consider the equation 

.f(x+Y)+f(x-y)=2(f(x)+f(y)). (6) 

Any solution continuous on -co <x < co is of 

the form f(x) = cx2. When x is a point (xi, 

. . ,x,) of an n-dimensional Euclidean space, 
any continuous solution of (6) is given by a 
quadratic form j(x)=C? .c..x.x.. 1.1 ‘I 1 J 

Consider the equation 

Rx + Y) +f’tx - Y) = 2f(MY). (7) 

Any solution continuous on - co <x < m is 
of the form f(x) = cash cx = (ecX + e -‘“)/2 or 

f(x) = cos cx. If f(x) is allowed to take com- 

plex values, then any continuous solution can 
be written in the form f(x)=(eb”+embx)/2 in 
terms of a complex number b. A special case 

is cos x, since b may take purely imaginary 
values. 

D. SchrSder’s Functional Equation 

Schriider’s functional equation is 

f(W) = cm> (8) 

where O(x) is a given function and c is a con- 
stant. A general solution of (8) can be written 

as f(x)=fi(x)cp(x), where fi(x)#O is a particu- 
lar solution of (8) and q(x) is a general solu- 

tion of the equation cp(Q(x)) = q(x). Suppose 
that there is a point a such that O(a) = a, and 

.9(x) and f(x) are both differentiable in a neigh- 
borhood of x = a. Then we have f’(a) = 0 or 

H’(a) = c. Consider the case where Q’(a) = c, and 
suppose that B(x) is twice differentiable at 
x=a. WhenIcl=]O’(a)l<l,defineO,(x)(n= 
0,1,2, . ..) by 0,(x)=x and &(x)=0(6,-,(x)). 
Then the sequence {(0,(x-a)~-“} (n=O, 1, 
2,. ) converges uniformly in a neighborhood 

of x = a, and its limit function f(x) is a solu- 
tion of (8). When ICI= ]0’(a)l> 1, put O(x)=u. 

Then we have the equation f(Q -i(u)) = c -‘f(u), 
and the problem reduces to the previous case. 
The results obtained for equation (8) can be 
extended to the following system of equations: 

.I#4 (4, Q,(x), . . 9 e&4) 

=Ajfj(x)+Sifjml(x)+gj(x), j=1,2,...,n, (9) 

where the Q,(x) are given functions holomor- 

phic in a neighborhood of x = 0, Oj(0) = 0, 
the coefftcients off in the right-hand side of 
(9) are numbers such that the matrix A=(u,) 

(au=0 except for ~~=$u~~i,~=S~) is the +Jor- 
dan canonical form of the matrix formed by 
{ (dOj/a~k)x=O}, and the gj(x) are polynomials 
consisting of terms of the form constant x 
x;’ x72 . ..X.“” with exponents m,, m2, . , m, 
forwhich1Vj=1;“1...1~.IfO<I~Vj]<1(j=1,2, 

“‘2 n), then we can always choose the coeffi- 
cients of the polynomials gj(x) so that equa- 
tion (9) has a solution {A(x)} holomorphic in 

a neighborhood of x = 0. The same conclusion 
canbeobtainedforIS]>l(j=l,...,n). 

Consider Abel’s functional equation 

.f(W)=f(x)+ 1. (10) 

If we put expf(x) = p(x), then we have Schrii- 
der’s functional equation 

cp(@)) = 44. 

Consider the equation 

.0x + 1) = AWW (11) 

If we put cp(x)=logf(x), then we have a tlinear 

difference equation of the form 

cp(x+l)---(x)=logA(x). 
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389 (XIV.l) 
Special Functions 

A. Special Functions 

The term special functions usually refers to 
the classes of functions listed in (l)-(4) (other 
terms, such as higher transcendental functions, 

are sometimes used). (1) The tgamma function 
and related functions (- 174 Gamma Func- 
tion); (2) +Fresnel’s integral, the terror function, 
the tlogarithmic integral, and other functions 
that can be expressed as indefinite integrals of 
elementary functions (- 167 Functions of 
Confluent Type D); (3) telliptic functions (- 

134 Elliptic Functions); (4) solutions of ilinear 
ordinary differential equations of the second 
order derived by the method of separation of 
variables in certain partial differential equa- 

tions, e.g., tlaplace’s equation, in various 
tcurvilinear coordinates. Recently, new types 
of special functions, such as +PainlevC’s, have 
been introduced as the solutions of special 
differential equations. 

In this article we discuss class (4); for the 

other classes, see the articles quoted. Class 
(4) is further divided into the following three 
types, according to the character of the tsin- 
gular points of the differential equations of 
which the functions are solutions. Equations 

with a smaller number of singular points than 
those indicated in (l))(3) below can be in- 

tegrated in terms of elementary functions. 
(1) Special functions of hypergeometric type 

are solutions of differential equations with 
three tregular singular points on the Riemann 
sphere. Examples are the thypergeometric 
function and the +Legendre function. Any 

function of this type reduces to a hypergeo- 

metric function through a simple transforma- 
tion (- 206 Hypergeometric Functions; 393 
Spherical Functions). 

(2) Special functions of confluent type are 
solutions of differential equations that are 

derived from thypergeometric differential 
equations by the confluence of two regular 

singular points, that is, by making one of the 
regular singular points tend to the other one 
so that the resulting singularity is an tirregular 
singular point of class 1 (- 167 Functions of 
Confluent Type). Any function of this type can 
be expressed by means of +Whittaker func- 
tions, of which many important special func- 
tions, such as +Bessel functions, are special 
cases (- 39 Bessel Functions). Also, one can 

reduce to this type the iparabolic cylindrical 
functions, that is, the solutions of differential 

equations with only one singular point which 
is at infinity and is irregular of class 2. 

(3) Special functions of ellipsoidal type are 
solutions of differential equations with four or 
five regular singular points, some of which 
may be confluent to become irregular singular 
points. Examples are +LamC functions, +Math- 
ieu functions, and tspheroidal wave functions 
(- 133 Ellipsoidal Harmonics; 268 Mathieu 

Functions). In contrast to types (1) and (2), 
functions of type (3) are difficult to charac- 

terize by means of tdifference-differential 
equations and have not been fully explored. 
Sometimes the term special ,function in the 
strict sense is not applied to them. To specify 
the special functions of types (1) and (2) 
the term classical special functions has been 
proposed. 

B. Unified Theories of Special Functions 

Though many special functions were intro- 

duced separately to solve practical problems, 
several unified theories have been proposed. 
The classification in Section A based on dif- 
ferential equations may be regarded also as a 
kind of unified theory. Other examples are: 

(1) Expression by iBarnes’s extended hyper- 
geometric function or its extension to the case 

of several variables by means of a definite inte- 
gral of the form 

s (r-al)b1(i-u2)b’...(i--am)b-(i-z)Cd5 

(- 206 Hypergeometric Functions). 
(2) A unified theory [ 143 that includes the 

gamma function and is based upon Truesdell’s 
difference-differential equation 

SF(z, ccyaz = F(z, cl + 1). 

(3) Unification from the standpoint of ex- 
pansions in terms of tzonal spherical functions 

of a differential operator (the Laplacian) in- 
variant under a transitive group of motions 
on a tsymmetric Riemannian manifold (- 437 
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Unitary Representations). With this approach 
a great variety of formulas can be derived in a 
unified way [3,4]. 
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390 (XII.1 2) 
Spectral Analysis of 
Operators 

A. General Remarks 

Throughout this article, X stands for a +com- 
plex linear space and A for a +linear operator 

in X. Except when X is finite-dimensional, 
A need not be defined over all X. A linear 
operator A in X is by definition a linear map- 
ping whose tdomain D(A) and +range R(A) are 
linear subspaces of X. A complex number i is 
said to be an eigenvalue (proper value or char- 

acteristic value) of A if there exists an x E D(A) 
such that Ax =/1.x, x # 0. Any such x is called 
an eigenvector (eigenelement, proper vector, 
characteristic vector) associated with i. When 
X is a ifunction space, the word eigenfunction 

is also used. For an eigenvalue i of A, the 
subspace M(i) of X given by 

M(i.)=M(i;A)=jx(Ax=ix}, 

i.e., the subspace consisting of 0 and all eigen- 
vectors associated with i, is called the eigen- 

space associated with i, and the number m(i) 
= dim Nl(i,) is called the geometric multiplicity 
of i. The eigenvalue i is said to be (geometri- 
cally) simple or degenerate according as m(i) 

= 1 or m(A) > 2. The problem of seeking eigen- 
values and eigenvectors is referred to as the 
eigenvalue problem. 

When X is a ttopological linear space, the 

notion of eigenvalues leads to a more general 
object called the spectrum of A. Let i, be a 
complex number and put A, =?.I - A, where 1 
is the iidentity operator in X. Furthermore, 

put RA=(AJ -’ = (7.1 -A)-‘, if the inverse 

exists. Then the resolvent set p(A) of A is de- 
fined to be the set of all i such that R, exists, 

has domain +dense in X, and is continuous. 
The spectrum o(A) of A is, by definition, the 
complement of p(A) in the complex plane, and 

it is divided into three mutually disjoint sets: 
the point spectrum cp(A), the continuous spec- 
trum ac( A), and the residual spectrum (T~( A). 

These are defined as follows: CJJA) = (2) R, 
does not exist} = { i, 1 i, is an eigenvalue of A); 
q.(A) = {A 1 R, exists and has domain dense in 
X, but is not continuous}; g,JA) = IT.1 R, exists, 

but its domain is not dense in X}. 
Let X be a tBanach space and B(X) the set 

of all +bounded linear operators with domain 
X. If A is a iclosed operator in X, then do 
p(A) if and only if R, E B(X). Moreover, a( A) 

is a closed set. In particular, if AcB(X), then 
o(A) is a nonempty compact set. In this case 

the spectral radius r,(A) is defined as r,(A)= 
SUP~,~,,(~) I>.(. Then r,(A) < I/ A”(( ‘In, n = 1,2, , 
and 11 A”11 ‘jn jr,,(A), n-+x’. 
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In many problems of analysis crucial roles 
have been played by methods involving the 
spectrum and other related concepts. This 
branch of analysis is called spectral analysis. 

For an infinite-dimensional X the theory is 
well developed when X is a +Hilbert space and 

A is +self-adjoint or tnormal. 

B. Eigenvalue Problems for Matrices 

Throughout this section let X be an N- 

dimensional complex linear space (N < co) and 
A a linear operator in X. (We assume that A 
is defined over all X.) With respect to a fixed 
basis ($,, . . . , tiN) of X, the operator A is repre- 
sented by an N x N matrix, also denoted by A. 
Then the eigenvalues of A coincide with the 
roots of the icharacteristic equation det(il- 

A) = 0. There are no points of the spectrum 
other than eigenvalues, that is o(A) = op(A), 
Let i,~a(A). The multiplicity C?(n) of 3. as a 

root of the characteristic equation is called 
the (algebraic) multiplicity of the eigenvalue i.. 
The sum of C?(n) over all the eigenvalues of A 

is equal to N. The eigenvalue 3, is said to be 
(algebraically) simple or degenerate according 

as G(i)= 1 or fi(i)>2. Let v= 1,2, . . . . and 
N,,(i)= {x1(1.1- A)“x=OJ. Then {N&)} forms 
a nondecreasing chain of subspaces M(%) = 
N,(i)c N&)c . . . . which ceases to increase 
after a finite number of steps. When v > G(1.), 

the space N,(i) is equal to a fixed subspace 
a(n), sometimes called the root subspace (or 
generalized eigenspace or principal subspace) of 

A associated with 3.. A vector in the root sub- 
space is called a root vector (or a generalized 
eigenvector). Then dim lii(i,) = %(I.) and hence 
m(i) < Cz(,i). When A is a inormal matrix, 
M(i,)= fi(1.) and m(i)=fi(n). 

If two matrices A and B are tsimilar, i.e., if 
there exists an invertible matrix P such that 

B = Pm’ AP, then A and B have the same eigen- 
values with the same algebraic (and geometric) 
multiplicities. The same conclusion holds for 
A and A’, where A’ is the ttranspose of A. 
For the adjoint matrix A* we have o(A*) = 

a(A)-jnjn~a(A)}. For an arbitrarypoly- 
nomial f the relation a(,j’(A))=f(a(A))= 

[ ,f’(>.) 11. E o(A) ) holds (Frobenius’s theorem). 
These relations can be extended to operators 
in a Banach space. In particular, a(f(A)) = 

,f(a(A)) if A is a bounded operator and f is a 
function holomorphic in a neighborhood of 
o(A) (for the ispectral mapping theorem 
- 251 Linear Operators). 

In the next four paragraphs, in which the 
spectral properties of tnormal or +Hermitian 

matrices is discussed, we introduce into X the 

Euclidean tinner product ( , ), regarding X 
as a space of N-tuples of scalars. Let A be an 

N x N normal matrix. Then the eigenspaces 
associated with different eigenvalues of A are 
mutually orthogonal. Moreover, the eigen- 
spaces of A as a whole span the entire space 
X. One can therefore choose a +basis of X 
formed by a tcomplete orthonormal set of 

eigenvectors of A. Specifically, there exists a 
basis{cpjlj=l,...,N} ofxsuchthat Aqj= 
pjqj and (vi, qj) = 6,, where 6, is the +Kro- 
necker delta. Moreover, p,, , p,,, exhaust 
all the eigenvalues of A. In terms of the basis 

{ cpj}, an arbitrary x E X can be expanded as 

where PA is the orthogonal tprojection on the 
eigenspace associated with the eigenvalue 3.. 

Of particular importance among normal 
matrices are Hermitian matrices and ‘unitary 
matrices. The eigenvalues of a Hermitian 
matrix are real, and those of a unitary matrix 
have the absolute value 1. 

Solving the eigenvalue problem of a normal 
matrix A leads immediately to the diagonali- 

zation of A. For instance, let U be the N x N 
matrix whose jth column is equal to qj, Here 
the basis {cp,} is as before, and each qj is re- 
garded as a column vector. Then U is unitary, 
and the transform U*AU of A by U is the 
diagonal matrix whose diagonal entries are 
the pj. The problem of transforming a +Hermi- 
tian form to its canonical form can also be 
solved by means of U. In fact, a Hermitian 

form Q = Q(x) on X is expressed as Q(x) = 

(Ax, x) with a Hermitian matrix A. For this 
A, construct U as before. Then by the trans- 
formation x = Uy of the coordinates of X, the 
form Q is converted to its canonical form 

Q=~L11y1(2+...+~,(y~~z. WhenXisareal 
linear space and A is a real symmetric matrix, 
U is an orthogonal matrix. By means of the 
orthogonal transformation x = UJ~, the sur- 
face of the second order Q(x) = 1 in RN is con- 
verted to the form p, y: + + pNyi = 1. The 

orthogonal transformation x = Uy is called 
the transformation to principal axes of the sur- 
face Q(x)= 1. 

When A is not normal, it can be transformed 
into +Jordan’s canonical form by a basis qj 
taken from the root subspaces fit’n). However, 
‘pj need not be orthonormal even when A is 
diagonalizable. 

C. Spectral Analysis in Hilbert Spaces 

Throughout the rest of this article except for 
the last section, X is assumed to be a Hilbert 

space with inner product ( , ). Furthermore, 

the most complete discussions will be confined 
to +normal or +self-adjoint operators. A funda- 
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mental theorem in spectral analysis for such 
operators is the spectral theorem, which as- 
serts that a representation such as (1) holds 
in a generalized form. When the operator is 
+compact, we have only to replace the sum by 

an infinite sum (- 68 Compact and Nuclear 
Operators). In the general case we need a kind 
of integral. This is discussed in detail in Sec- 

tions D and E. The general theory of spectral 
analysis for nonnormal operators, however, is 
rather involved even in Hilbert spaces, but two 
important developments can be noted. One is 
the theory of Volterra operators, and the other 
is the theory of essentially normal operators. 
The former is discussed in Section H and the 

latter and its related results in Sections I and J. 

D. Spectral Measure 

Let 98 be a tcompletely additive class of sub- 
sets of a set 0, that is, (a, 9) is a tmeasurable 
space. An operator-valued set function E = 
E( .) defined on g is said to be a (self-adjoint) 
spectral measure if(i) E(M), M ~g, is an 
+orthogonal projection in X; (ii) E(R) = I; and 
(iii) E is tcountably additive, that is, 

E 

(istrong convergence) for a disjoint sequence 

{Mn} of subsets in 8. A spectral measure E 
satisfies E(MnN)= E(M)E(N)=E(N)E(M), 

M, NE a. Spectral measures which are fre- 
quently used in spectral analysis are those de- 
fined on the family 9$ (&Q of all +Borel sets in 
the field of real (complex) numbers R (C). A 

spectral measure on &?, (@) is sometimes re- 
ferred to as a real (complex) spectral measure. 

For such a spectral measure E the support (or 
the spectrum) of E, denoted by A(E), is defined 
to be the complement of the largest open set G 

for which E(G) = 0. A complex spectral mea- 
sure such that A(E)cR can be identified with 
a real spectral measure. 

Let E be a spectral measure on gr, and put 

~,=~((-~,4), -co<l<co. (2) 

Then E, satisfies the relations 

s-lim E, = 0, 
i--m 

s-lim E, = I, 
A-+CC 

where s-lim stands for strong convergence. A 

family { EI,JAER of orthogonal projections satis- 
fying the relation (3) is called a resolution of the 
identity. Relation (2) gives a one-to-one cor- 
respondence between the resolutions of the 

identity and the spectral measures on ?&. 
Let E be a spectral measure on @, and let x, 

y~x. Then the set function M+(E(M)x,x)= 

IIE(M)xll’ is a bounded regular tmeasure in 
the ordinary sense, and the set function M-+ 
(E(M)x, y) is a complex-valued regular +com- 
pletely additive set function. For every com- 

plex Bore1 tmeasurable function f on R, the 
operator S(f) in X is defined by the relations 

cxf1% Y) = 
s 

a: f(4ww, YX (4) 
-co 

x~W(f)), YEX. 

S(f) is a densely defined closed operator and 
is denoted by S(f)=l?,f(l.)E(di). The corre- 

spondence ,fwS(f) satisfies formulas of the 
so-called operational calculus (- 25 1 Linear 
Operators). In particular, S(f) = S(f)*, and 
hence S(f) is self-adjoint if f is real-valued. If f 
is bounded on the support of E, then S’(f) is 

everywhere defined in X and is bounded. S(f) 
is sometimes called the spectral integral off 
with respect to E. The operator S(f) can be 
defined in a similar way for a spectral mea- 
sure on @ (and for a more general spectral 
measure). 

E. Spectral Theorems 

For every self-adjoint operator H in a Hilbert 

space X, there exists a unique real spectral 
measure E such that 

H= 
s 

O” /IE(di). (5) 
-co 

In other words, H and E correspond to each 
other by the relations 

D(H)= x 
1 IS 

m 12(E(dl)x, x)< +cc , 
-cc 

m Wx, Y) = r WWx, Y), 
J-CC 

x E D(H), YEX. 

This is the spectral theorem for self-adjoint 
operators. The support of E is equal to the 

spectrum a(H), so that we can write 

where x,,., stands for the tcharacteristic func- 
tion of M. Formulas (5) and (6) are called the 

spectral resolution (or spectral representation) 
of the self-adjoint operator H. We call E the 
spectral measure for H, and the {E,} corre- 

sponding to E by formula (2) (or sometimes 
E itself) the resolution of the identity for H. 
Let 1 be a real number. Then 1 E op(H) if and 

only if E( { n}) # 0. Also, i, E o,-(H) if and only if 
E( { 1.)) = 0 and E( I’) # 0 for any neighborhood 
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V of 1. The spectral measure E can be repre- 
sented in terms of the resolvent R(a; H) = 
(a1 -H))’ of H by the formula 

E((a,b))=limlim~ 
s 

b-d 

610 do 27ri 
{R(p-G;H) 

a+a 

-R(p+-tEi;H)}dp 

(strong convergence). 
For every normal operator A in X, there 

exists a unique spectral measure E on the 
family of all complex Bore1 sets $ such that 

A= zE(dz). 
s C 

This is called the complex spectral resolution 
(or complex spectral representation) of the 
normal operator A. The support A(E) is equal 
to a(A). There are characterizations of point 

and continuous spectra similar to the case of 
self-adjoint operators. Normal operators have 
no residual spectra. For a unitary operator U, 
the support of the associated spectral measure 

is contained in the unit circle I, so that U can 
be represented as 

u = e’“F(dO) s (7) 
r 

with a spectral measure F defined on I. For- 

mula (7) is the spectral resolution of the unitary 
operator U. 

For a self-adjoint operator H =l?& /IE(di) 
the following two types of classification of 
a(H) are often useful. 

(i) The essential spectrum o,(H) is by defini- 
tion the set o(H) minus all the isolated eigen- 
values of H with finite multiplicity. When H is 
bounded this definition of the essential spec- 
trum coincides with that to be given in Section 
I for a general AEB(X). o(H)\a,(H) is called 
the discrete spectrum of H. 

(ii) The set X,,(H) (resp. X,(H)) (called the 
space of absolute continuity (resp. singularity) 

with respect to H) of all u E X such that the 
measure (E(d/Z)u, U) is absolutely continuous 
(resp. singular) with respect to the tLebesgue 
measure is a closed subspace of X that reduces 
H. The restriction of H to X,, (resp. X,(H)) is 
called the absolutely continuous (resp. sin- 
gular) part of H, and its spectrum, denoted by 
o,,(H) (resp. a,(H)), is called the absolutely 

continuous (resp. singular) spectrum of H. Note 
that na,,(H) and (T,(H) may not be disjoint. 

F. Functions of a Self-Adjoint Operator 

Let H = l?, iE(di,) be a self-adjoint operator 

in X. For a complex-valued Bore1 measurable 
function ,f on R, we define f(H) to be the oper- 
ator S(f) determined by (4) in reference to the 

resolution of the identity E associated with H: 

For an arbitrary UEX, let L,(a) be the L,- 
space over the measure ,u~ = p(,( .) = (E( .)a, a). 

In other words, f~L,(a) if and only if UE 
D(f(H)). The correspondence f-j(H)u gives 
an isometric isomorphism between L,(a) and 
the subspace M(a)= {f(H)uIf~L~(u)} of X. 
(In particular, M(u) is closed.) H is reduced by 
M(a), and the part of H in M(u) corresponds 

to the multiplication ,f@)-y(n) in L,(u). 
For a given self-adjoint operator H there 

exists a (not necessarily countable) family 
{a,,},,, of elements aH of X such that 

x= 1 M(qd 
BE@ 

(8) 

where C stands for the tdirect sum of mutually 

orthogonal closed subspaces. Consequently, X 
is represented by the direct sum &,,sL,(u,) of 
L,-spaces. If XED(H) is represented by {fHJBEo 
in this representation, Hx is represented by 

inf,h& 

G. Unitary Equivalence and Spectral 
Multiplicity 

In this section X is assumed to be a tseparable 
Hilbert space. Then (8) can be made more 
precise. Namely, for a self-adjoint operator H, 
we can find a countable family {a,,‘;;:, of ele- 
ments of X such that 

x = f M(u,) = f L,(u,), (9) 
"=I n=, 

k+, is tabsolutely continuous 

with respect to p,,, n-1,2,.... (10) 

Furthermore, if {a;} is another family satisfy- 
ing (9) and (lo), then ~1~. and pO, are absolutely 

continuous with respect to each other 
(Hellinger-Hahn theorem). pL,I is said to be the 
maximum spectral measure. 

Two operators H, and H2 are said to be 
unitarily equivalent if there exists a unitary 
operator U such that H2 = U*H, U. A crite- 
rion for unitary equivalence of self-adjoint 
operators can be given in terms of the spectral 
representation given previously. Namely, let 
{u):‘}, i = 1, 2, be a sequence satisfying (9) and 

(10) with respect to Hi. Then H, and H2 are 
unitarily equivalent if and only if F(,~I) and p,pl 
are absolutely continuous with respect to each 

other for all n = 1,2, . 
A self-adjoint operator H is said to have a 

simple spectrum if there exists an a E X such 
that M(u)=X. Such an a6X is called a gen- 

erating element of X with respect to H. 



1449 390 I 
Spectral Analysis of Operators 

Self-adjoint operators with simple spectra 
are closely related to Jacobi matrices. Let H 
be such an operator with a generating ele- 

ment a~ X. Take a complete orthonormal set 
{G,},“, in L,(a) such that G,, = G,(i) is a poly- 
nomial of degree n - 1 and ~.G,(;.)E L,(a). Then 
I 1 X’ , sf/z=l~ R = G,(H)a, is a complete orthonor- 
ma1 set in X. The matrix representation {urn,,), 
u =(Hg,,,g,,,) of N with respect to the basis 

{iI} has the following properties: (i) a,,,“=0 if 
lm-n132; (ii) u, n+, =u,+,.,#O; (iii) unn is real. 
Any infinite matrix {u,,,.) satisfying (i), (ii), and 
(iii) is called a Jacobi matrix. A Jacobi matrix 
determines a +symmetric operator whose +de- 
ticiency index is either (0,O) or (1,l). Any self- 

adjoint extension has a simple spectrum. (For 
more details about Jacobi matrices and their 
applications - 181.) 

H. Triangular Representation of Volterra 

Operators 

A linear operator A in a Hilbert space X is 
called a +Volterra operator if it is +compact 
and iquasinilpotent (i.e., 0 is the only spec- 
trum). The name is justified because under 
very general assumptions such an operator is 

unitarily equivalent to the integral operator 
of Volterra type in the vector-valued L, space 

on [0, 11. Let ‘I3 be a maximal ttotally ordered 
family of orthogonal projections in X such 
that PX is an tinvariant subspace of a Volterra 

operator A for every P E p. Such a family $ 
always exists and is called a maximal eigen- 
chain of A. Then generalizing the triangular 
representation of nilpotent matrices, we have 

the integral representation 

A=2i 
s 

P,4, dP, 
‘8 

where A, =(A - A*)/(2i) is the imaginary part 

of A and the integral is the limit in norm of 
approximating sums of the form EQ,A,(P,- 
Pi-i) for finite partitions 0 = PO < P, < < P, = 
I of $3 in which Qi is an arbitrary projection 
in ‘p such that Pi-i < Qi < P, (M. S. Brodskii). 
Conversely, let ‘$3 be a totally ordered family of 
orthogonal projections that contains 0 and 
the identity. If the integral A = se PBdP con- 

verges in norm for a compact linear operator 
B, then A is a Volterra operator and ‘p is an 
eigenchain of A. If, moreover, B is self-adjoint, 
we have B = A, (I. C. Gokhberg and M. G. 

Krein; Brodskii). Furthermore, assume for 
simplicity that ‘@ is continuous in the sense 

that for every P, < P2 in ‘$3 there exists an 
element P in ‘I3 such that P, cc P < P2. If B is a 

+Hilbert-Schmidt operator, then the integral 
A = [,pPBdP converges in the +Hilbert-Schmidt 

norm and the mapping Bw A is an orthogonal 

projection to the set of all Volterra operators 
of Hilbert-Schmidt class possessing $3 as an 
eigenchain (Gokhberg and Krein). Volterra 

operators with the imaginary part of the +trace 
class are especially important for applications. 
In this case we have the following fundamen- 

tal theorem on the density of the spectrum of 
the real part A, of the Volterra operator A: 
Let n+(r; AR) and n-(r; AR) be the numbers of 
eigenvalues of A, in the intervals [l/r, CD) and 
(--rx?, -l/r], respectively. 

Then lim n+(r; A,# = lim n_(r; AR) = /i/n. r-u r-m 

The number h is given by 

h= j\dP A,dPiJ, 1 

where the norm is the +trace norm and the 
infimum is taken over all finite partitions Pi of 
a maximal eigenchain $3 for A. We refer for 

further details and applications to the books 
by Gokhberg and Krein [9, lo]. 

1. Fredholm Operators and Essential Spectra 
of Operators 

Throughout Sections I and J we assume that 
X is a separable infinite-dimensional complex 
Hilbert space, and we consider only bounded 
linear operators in X. The set B@)(X) of all 
+compact linear operators in X is a +maximal 
two-sided ideal of the +C*-algebra B(X) of all 
bounded linear operators. The simple quotient 
C*-algebra A(X) = B(X),/B(“)(X) is called the 
Calkin algebra. We denote the quotient map- 

ping by z:B(X)+A(X). Then an operator 
A E B(X) is a +Fredholm operator if and only if 

its image n(A) is an invertible element of A(X). 
Let F(X) be the set of all Fredholm operators 
in X, and let F,(X), neZ, be its subset of all 
operators of +index n. F,(X) is a connected 
set in B(X), and in particular, F,(X) is the 
inverse image of the connected component of 

the identity in the multiplicative topological 
group n(F(X)) of all invertible elements in 
A(X). The index gives the group isomor- 
phisms F(X)/F,(X)~~(F(X))/~(F,(X))EZ. 
More generally, we have for any compact 

topological space Y the group isomorphisms 
[Y, F(X)] z [Y, n(F(X))] z K(Y) of the groups 
of thomotopy classes of continuous mappings 

and the K-group in the +l<-theory (M. F. 
Atiyah [12]). 

If N is a +normal operator, its essential 
spectrum o,(N) is defined to be the set of all 
~-E(T(N) that is not an isolated eigenvalue of 

finite multiplicity. Let H, and N, be self- 

adjoint operators. Then (T~( H,) = rre(H2) if and 
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only if VU, I/ = H2 + K for a unitary opera- 
tor U and a compact operator K (Weyl-von 

Neumann theorem). 
I. D. Berg and W. Sikonia (1971) extended 

this result to normal operators N, and N2. 
Moreover, for any compact subset Y of C 
there exists a normal operator N such that 
(T,(N) = Y. Hence it follows that the essential 
spectrum a,(N) of a normal operator N coin- 
cides with the tspectrum o(n(N)) of the image 
in A(X). Thus we define the essential spec- 
trum a,(A) of an arbitrary operator A to be 

the spectrum a(n(A)) in A(X). An operator 
A EB(X) is said to be essentially normal (resp. 
essentially self-adjoint, essentially unitary) if 

n(A) is normal (resp. self-adjoint, unitary) in 
A(X). (Note that this definition of essentially 
self-adjoint operators is completely different 
from that in 251 Linear Operators E.) Since an 
essentially self-adjoint operator is the sum of a 
self-adjoint operator and a compact operator, 
the Weyl-von Neumann theorem classifies 
essentially self-adjoint operators up to tunitary 

equivalence modulo B@)(X). An operator A is 
essentially normal if and only if the commu- 
tator [A, A*] is compact, but it need not be 

the sum of a normal operator and a compact 
operator. For example, let V’ be the unilateral 

shift operator that maps the orthonormal basis 
e, of X into e,+l for every i = 1,2, Then V is 

essentially unitary, but it cannot be written as 
the sum of a normal operator and a compact 
operator. The essential spectrum a,(V) is 
the unit circle, whereas the spectrum cr( V) 
is the unit disk and ind(V-I)= -1 for )il<l. 

J. The Brown-Douglas-Fillmore (BDF) Theory 

The following is the main theorem for essen- 
tially normal operators, due to L. G. Brown, 
R. G. Douglas, and P. A. Fillmore [ 141. Let A, 

and A, be essentially normal operators. There 
are a unitary operator U and a compact oper- 

ator K such that CJ*A, U = A, + K if and only 
if oJA,)=a,(A,) and ind(A, -iJ=ind(A,-I.) 
for every 1, in the complement of the essential 
spectrum. An essentially normal operator 
A is the sum of a normal operator and a 

compact operator if and only if ind(A -A) = 0 

for every /( in the complement of a,(A). 
To prove this and many other facts, they 

developed the theory of extension of B@)(X) by 
the C*-algebra C(Y) of continuous complex- 
valued functions on a compact metrizable 
space Y [ 14- 161. This revealed deep relations 
between the theory of operator algebras on 

Hilbert spaces (- 36 Banach Algebras, 308 

Operator Algebras) and algebraic topology (in 
particular, K-theory; - 237 K-Theory). Exten- 

sion theory also gives a natural setting for the 
r-index theory of elliptic differential operators 
due to Atiyah and I. M. Singer [ 13,163. 

An extension of B@)(X) by C(Y) is a +short 
exact sequence 

O+B(‘)(X)&E%(Y)-0 (11) 

of a C*-subalgebra E of B(X) and .+*-homo- 
morphisms, i.e., E is a C*-subalgebra of B(X) 
containing the identity 1 and including B(‘)(X) 
as a C*-subalgebra, and cp is a *-homomor- 
phism onto C(Y) whose kernel is equal to 
B(‘)(X). Or equivalently, an extension is a uni- 
tal (identity preserving) *-monomorphism 7: 

C(Y)+A(X) defined by z=7cocp-‘. (For general 
extension of C*-algebras - 36 Banach Alge- 
bras.) Two extensions (I!$, cpJ and (E2, q2) 
(or 7, and 74 are said to be equivalent if there 
exists a *-isomorphism $: E, +E, such that 
q2 o ti = ‘p, (or equivalently there exists a uni- 
tary operator U such that n(U*) z,(,f)n(U)= 

zz(,f) for every ,f~ C( Y)). We denote by Ext( Y) 
the set of all equivalence classes of extensions 
of B@‘(X) by C(Y). 

Let A be an essentially normal operator in 
X with the essential spectrum a,(A) = Y. Then 
the C*-algebra E, generated by B(‘)(X), A and 

the identity 1, and the *-homomorphism (PA of 

EA onto C(Y) which sends A to the function 
x(z)=z define an extension (E,, (PA). It is easy 
to see that two essentially normal operators A, 
and A, are unitarily equivalent module B(‘)(X) 

if and only if a,(A,) = ce(A2) and the extensions 
(EA,, (PAN) and (EA,, cpa,) are equivalent. Con- 
versely, if Y is a compact subset of C and (11) 
is an extension, then (E, cp) is equivalent to 
(E,, q,J, where A is an essentially normal 

operator in E such that q(A) = x. 

Extensions of B(‘)(X) by C(Y) appear also 
in different parts of analysis. Let X be the Hil- 
bert space L,(M) on a compact differentiable 
manifold M relative to a fixed smooth measure 
and let E be the C*-subalgebra of B(X) gener- 
ated by all zeroth-order tpseudodifferential 
operators together with B@)(X). Then E and 

the tsymbol mapping q:E+C(S*(M)) define 
an extension of B@‘(X) by C@*(M)), where 

S*(M) is the tcosphere bundle of M. This 
extension is closely related to the +Atiyah- 
Singer index theorem. Let fi be a +strongly 

pseudoconvex domain in c”. Then the C*- 
algebra generated by +Toeplitz operators with 
continuous symbol gives rise to an extension 

of B”‘(H,(8Q)) by C(aQ. 
Let 7, and tp be *-monomorphisms from 

C(Y) into A(X) and a, = [z,] and a2 = [7J 

be corresponding elements in Ext( Y). Then 

the sum a, + a2 E Ext( Y) is defined to be the 

equivalence class of 2: C( Y)+A(X) which 
sendsfto T,(~)@T~(~)EA(X)@A(X)C 
A(X 0 X)gA(X). It does not depend on the 
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choice of 7,) rz and the unitary X 0 X z X. 
An extension t: C( Y)+A(X) is said to be triv- 
ial if there exists a unital *-monomorphism 
u: C( Y)+B(X) such that 7 = x o u. For each 

compact metrizable space Y there exists a 
unique equivalence class of trivial extensions 

in Ext( Y). Ext( Y) is an Abelian group in 
which the class of trivial extensions is the 
identity element. The extension (EA, (PA) for 
an essentially normal operator A is trivial 
if and only if A = N + K with N normal and 

K compact. Hence follows the Weyl-von 
Neumann-Berg-Sikonia theorem. The BDF 

theorem for essentially normal operators is 

proved by the pairing Ext(Y) x K’(Y)-+Z 
defined by the index, where K’(Y) = R(SY+) = 

lim,,, [Y, GL(n, C)] (- 237 K-Theory; [ 131). 
The induced homomorphism y, : Ext( Y)-t 
Hom(K’(Y), Z) is always surjective, and it 
is an isomorphism for Yc R3 or Y = s” but 
not for Y c R4. 

Ext is a tcovariant functor from the cate- 
gory of compact metrizable spaces to the 

category of Abelian groups. It is thomotopy 
invariant. Define for n = 0, 1, the group 
Ext,-,( Y) by Ext(S” Y), where S” Y is the n-fold 

tsuspension. Then we have the periodicity 
Ext,+,(Y)gExt,(Y). Moreover, for each pair 
of compact metrizable spaces Y 3 Z we have 
the long exact sequence 

Ext(Z)%Ext(Y)r;Ext(Y/Z)%$Z)1-: ..,, 
” n ” 

where Y/Z is the space obtained from Y by 
collapsing Z to a point and 8 is q*r;’ : 
Ext,( Y/Z)+Ext,(SZ) defined by q: YUCZ-, 

(YUCZ)/Y=SZandr:YUCZd(YUCZ)/CZ= 
Y/Z, CZ being the +cone over Z. Ext, satisfies 
the +Eilenberg-Steenrod axioms for homology 
theory except for the dimension axiom, which 

is replaced by Ext,(S’) = Ext(S”-‘) = Z for M 
even and =0 for n odd. 

The von Neumann algebra B(X) is classified 
as a tfactor of type I,. In the case of a factor 

M of type II, another index theory has been 
developed by H. Breuer [ 171 and others re- 
placing B@‘(X) by the closed ideal of M gen- 

erated by finite projections and using the 
tsemifmite trace on M for the dimensions of 
kernels and cokernels of operators in M. 

K. Spectral Analysis in Banach Spaces 

Spectral analysis becomes rather involved for 
general operators in a Banach space as well as 

for nonnormal operators in Hilbert space. 
For a tcompact operator A, the nature of 

the spectrum cr(A) and the structure of A in the 

root subspace associated with a nonzero eigen- 
value are well known (- 68 Compact and 
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Nuclear Operators). However, a full spectral 

analysis may not be possible without further 
assumptions. 

For a tclosed operator with nonempty re- 

solvent set p(A), an toperational calculus can 
be developed by means of a function-theoretic 

method based on the fact that the resolvent 
R, =(il- A)-’ is a B(X)-valued holomorphic 
function of 1 in p(A). In particular, the +spec- 
tral mapping theorem holds (- 25 1 Linear 
Operators G). 

A general class of operators having asso- 
ciated spectral resolution was introduced by 
N. Dunford. Let X be a Banach space. An 

operator E E B(X) is called a projection if EZ = 
E. As before we can define a (projection- 
valued countably additive) spectral measure on 
Bc. An operator AfB(X) is said to be a spec- 
tral operator if there exists a spectral measure 
E on @ satisfying the following properties: (i) 
E(M)A=AE(M),ME~~;(~~)~(A~,~,,,,,)cM, 

MEB~,, where A[, is the restriction of A to Y 
and A is the closure of M; (iii) there exists a 
k>O such that IIE(M)II dk for all ME& E is 

unique. A spectral operator A is expressed as 
A = S + N, where S = iczE(dz) and N is +quasi- 
nilpotent. A is said to be a scalar operator if N 

=O. Unbounded spectral operators are defined 
similarly, with (i’) E(M) A c AE( M) in place of 
(i). However, for unbounded spectral opera- 
tors A we no longer have the decomposition 
A = S + N. (For more details about spectral 
operators - [3]. For other topics related to 
the material discussed in this section - 68 

Compact and Nuclear Operators; 25 1 Linear 
Operators; and 287 Numerical Computation 
of Eigenvalues.) 
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A. General Remarks 

Let E3 be a Euclidean 3-space with a standard 

coordinate system (x,, x2, x3) and E2 be the 
x1 x,-plane. Consider a domain D in EZ as a 
vibrating membrane with the fixed boundary 

(?D. Then the height x3 = F(x, ,x2, t) obeys 
the differential equation of hyperbolic type, 

i*F(x,, x2, t)/&* = c’AF(x,, x2, t), where A = 
c?‘Jc’x: +d2/?xz denotes the +Laplacian in E2 
and c is a constant (we put c = 1 in the follow- 
ing). For solutions of the form F(x, , x2, t) = 
U(x, , xz) v(t), Cl is a solution of the TDirichlet 
problem in DcE’; AU+A”U=O, where 1, 
is a positive constant called an teigenvalue 
of A. Solutions of the form F(x,, x2, t) = 

CI(x,, x,)sin$t represent the pure tones that 
the membrane produces as normal modes. 

That is, the shape of D is related to the possi- 

ble sounds or vibrations (i.e., to the eigen- 
values of A) through the Dirichlet problem. 
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The set of eigenvalues of A is called the spec- 
trum of D and is denoted by Spec(D). There 
arises the question of how much information 

Spec(D) can impart about the geometric prop- 
erties (i.e., the shape, extent, and connected- 
ness) of D. Generally, spectral geometry is the 
study of the relations between the spectrum 
of domains D of +Riemannian manifolds or 

compact Riemannian manifolds (A/l, g) and the 
geometric properties of D or (M, 91. 

B. Spectra 

Let gp(M) denote the space of smooth +p- 
forms on a compact m-dimensional C”- 
Riemannian manifold (M, g). Then eigenvalues 
of the +Laplacian (Laplace-Beltrami operator) 
A acting on gP(M) are discretely distributed in 

[0, co), and each multiplicity is finite (- 68 
Compact and Nuclear Operators, 323 Partial 
Differential Equations of Elliptic Type). The 
spectrum for p-forms Spe@(M, .y) is { 1,. 1 d 

i,,, 2 6 }, where each eigenvalue is repeated 
as many times as its multiplicity indicates. 
If 0 is an eigenvalue, its multiplicity is equal 
to the pth +Betti number of M. 

In the following, mainly the case p = 0 

is explained. Spec’(M, g) is denoted by 
Spec(M,g). 0 is always in Spec(M, g) and its 

multiplicity is 1. So we put i, = 0, and I,, is 
the first nonzero eigenvalue. A geometric 
meaning of A,f at x for a function ,f is as fol- 
lows: If {~,,};;f=~ are m geodesics mutually or- 

thogonal at x and parametrized by arc length, 

then @f)(x) = C,,(f’o Y,,)“(O). 
Let {cpi}zo be an orthonormal basis of 

go(M) consisting of eigenfunctions: A’pi +ii’pi 
=O, (cp,, cpj) =ib, qicpj= 6,. Then the +funda- 
mental solution E(x, y, t) of the heat equation 

A-a/t = 0 is given by E(x, y, t) = Xi em”c’cp,(x) 0 
vi(y) as a function on A4 x M x (0, m). We 

put Z(t)=i, E(x,~,t)=&e~“c’. Z(t) and 
Spec(M, g) are equivalent. The Minakshisun- 
daram-Pleijel asymptotic expansion of Z(t), 

Z(t)-(1/4nt)m’~(uo+a,t+a,t~+...), tl0, 

is the bridge connecting Spec(M, g) and geo- 
metric properties of (M, g), because uo, a,, . 
can be expressed as the integrals of functions 

over M defined by y =( gij), the components 
Rjkl of the +Riemannian curvature tensor, and 

their derivatives of finite order [ 11. a, is the 
volume of (M, g) and a, = (l/6) sM S, where S is 
the tscalar curvature. a2 was calculated by H. 
P. Mckean, I. M. Singer, and M. Berger, and 
a3 by T. Sakai. 

Let D be a bounded domain in E* or, more 

generally, a bounded domain in a Riemannian 
manifold. and assume that the boundary SD is 

piecewise smooth. For smooth functions which 
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take the value 0 on aD, eigenvalues of the 
Laplacian A are discretely distributed in (0, m), 
and each multiplicity is finite. We denote the 
spectrum of D by Spec(D) = {i L < i, < . }. The 
multiplicity of 1.1 is 1, and an eigenfunction 

,f corresponding to 1, takes the same sign in 
D. The behavior of Z(t) = xi e -‘I’ for D is dif- 

ferent from that for (M, g) since Z(t) reflects the 
geometric situation of aD in this case. 

(M, g) and (N, h), or D, and D, are called 
isospectral if they have the same spectra. 

Examples for which the spectrum is explic- 

itly calculable are as follows: spheres (Sm, go = 
canonical), real projective spaces (RPm, go), 
complex projective spaces (CP”, Jo, go), (S2n+1, 
gs = suitably deformed from go), flat tori, (and 
for domains D) unit disks, rectangles, equi- 
lateral triangles, etc. 

C. Congruence and Characterization 

Let D, and D, be bounded domains in E’. An 

open question is whether isospectral D,, D, are 
congruent. Concerning this, there is M. Kac’s 
paper with the famous title “Can one hear the 
shape of a drum?” Let D be a bounded domain 
in E2 with smooth boundary 3D. If D has r 
holes, then 

Z(t)-A(D)/4ntH@D)/4&i+(l -r)/l2, 

tl.0, 

holds (A. Pleijel, Kac, P. Mckean, I. M. Singer; 
- [7]), where A(D) denotes the area of D and 
L(iTD) denotes the length of 8D. This theorem 

implies that the area, the length of t3D, and the 
number of holes are determined by Spec(D). 
In particular, if D, is a unit disk, Spec(D,) = 
Spec(D,) implies that D, and D, are congruent. 
There are some other results on Z(t) for do- 
mains D of surfaces in Em or for domains D in 
Riemannian manifolds (M, g). 

Two isometric (M, g), (N, h) are isospectral. 

Concerning the question of whether isospec- 
tral (M, g), (N, h) are isometric, there are some 
counterexamples. The first is the case of two 
flat tori T16, given by J. Milnor. Examples 

with nonflat metrics were given by N. Ejiri 
using warped products and by M. F. Vigneras 
for surfaces of constant negative curvature. 
In those examples, M and N are homeo- 
morphic. A. Ikeda showed that there are tlens 
spaces that are isospectral but not homotopy 
equivalent. 

Examples of affirmative cases are as follows: 

Spec(M, g) = Spec(S”, go), m < 6, implies that 
(M, g) is isometric to (Sm, go) (M. Berger, S. 
Tanno). The result is the same for (RPm, g,,), 

m < 6. For n < 6, (CP”, Jo, go) is characterized 

by a spectrum among +K%hlerian manifolds 

CM, J, d. 

The number of nonisometric flat tori (or 
more generally, compact flat Riemannian 
manifolds) with the same spectrum is finite (M. 
Kneser, T. Sunada). 

If one considers spectra for two types of 
forms, then the situation turns out to be sim- 
pler. For example, if SpecP(M, g) = SpecP(N, h) 
for p = 0, 1, then (M, g) is of constant curvature 
K if and only if (N, h) is also and K’= K (V. K. 
Patodi [9]). 

D. The First Eigenvalue 

The first eigenvalue 3,, for (M, g) or for a 

domain D in (M, g) reflects the geometric situ- 
ation of (M, g) or D. A lower bound of 1, given 

by J. Cheeger is Aw1 >h(M)‘/4, where h(M) is 
the isoperimetric constant, defined by 

h(M)=inf{vol(S)/min[vol(M,),vol(M,)]}, 

where the inf is taken over all smoothly em- 
bedded hypersurfaces S dividing M into two 

open submanifolds M, , M2, t3M, = aM2 = S, 
and vol means the volume. l/4 is the best 
possible estimate. 

Let p denote the maximum radius of a disk 
included in a simply connected D c E2. Then 
i, B l/(4$) (W. K. Hayman, R. Osserman). 

If (M, g) has +Ricci curvature > k > 0, then 

A, > mk/(m- 1) holds, and the equality holds if 
and only if (M, g) is isometric to (Sm, (l/k)g,) 
(A. Lichnerowicz, M. Obata). E., can also be 
estimated from k and the diameter d(M) of M 
(P. Li, S. T. Yau). 

To obtain upper bounds of 2, the minimum 

principle of 1, is useful. We state it only for 

Of, 9): 

where inf is taken over all piecewise smooth 

functions f satisfying jM f = 0, f # 0, and ( , ) 

denotes the local inner product with respect to 
g. An upper bound of 1, for (M, g) of nonnega- 
tive curvature is A., <~(m)/d(M)~, where c(m) is 
some constant depending on m (Cheeger). 

For (M, g) or D a submanifold of another 
Riemannian manifold, there exist some esti- 
mates of i, in terms of second fundamental 
forms, etc. 

i, >j2/(A(D)) holds for DC E2, and the 
equality holds if and only if i?D is a circle (C. 
Faber, E. Krahn), where j denotes the first zero 

of the tBesse1 function Jo. This estimate is 
generalized in many directions; for example, 

for D c(M2, g) in terms of the integral of the 
Gauss curvature, etc. It is very useful to note 

that the estimate of 1, for D is deeply related 

to the isoperimetric inequality (- 228 Isoperi- 
metric Problems). 
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E. Hersch Type Theorem 

With respect to the first eigenvalue n,(g) 
and the volume Vol(M,g) of (M,g), n,(g). 
vol(M, g)“” is invariant under a change of 

metric g&g (c is a constant). Hersch’s proh- 
lem is stated as follows: Is there a constant 

k(M) depending on M so that for any Rie- 
mannian metric g on M, 1, (9). vol(M, g)2/” < 
k(M)? J. Hersch proved this for a 2-sphere M 
= S2 with k(S2) = 8x, and in this case the 
equality holds if and only if g is proportional 
to the canonical metric go. 

The Hersch type theorem holds for an 
oriented Riemann surface M of genus q with 
k(M) = 8n(q + 1) (P. C. Yang, S. T. Yau). There 

is no such constant k(S’“) for an m-sphere S”, 
m > 3 (H. Urakawa, H. Muto, S. Tanno). 

F. The Multiplicity of Ai 

By a theorem of K. Uhlenbeck each eigenvalue 
for a Riemannian manifold (M, g) is simple. 
However, for (Sm, go) the first eigenvalue 1, is 
m and its multiplicity is m + 1. Furthermore, for 
some gs deformed from go, i, ( gs) of (S2”+l, g,) 
has multiplicity n2 +4n + 2, which is larger 

than m+ 1 (=2n+2). 
The multiplicity m&) of the ith eigenvalue 

l-i for a Riemann surface of genus q satisfies 

m(1.J < 49 + 2i + 1 (S. Y. Cheng, G. Besson). 

G. kth Eigenvalue 

The minimum principle for 1, of Spec(M, g) is 
stated as follows: Let f, be an eigenfunction 
corresponding to ii, 0 < i < k - 1. Define H,-, 
to be the set of piecewise smooth functions 

f # 0 orthogonal to each f;, i.e., sMfJ;. = 0. Then 

where inf is taken over f~ Hk-l. We have the 

minimax principle for i, of the first and second 
type. We state the second type only: 

where L, denotes a k-dimensional linear sub- 

space of so(M). From this, for l-parameter 
metrics g. (a < u < b) on M, the continuity of 
&(gu) with respect to u follows. 

H. Courant-Cheng Nodal Domain Theorem 

Let f be an eigenfunction on (M, g) or D. The 

set of all zero points off is called the nodal set 
of ,f (or the nodal curve off if m = 2). Each 

connected component of the complement of 

the nodal set in (M, g) or D is called a nodal 
domain off: The nodal set off is a smooth 
submanifold of (M, g) or D except for a set 
of lower dimension. The number of nodal 

domains of an eigenfunction corresponding to 
the ith eigenvalue is <i + 1 for (M, g) and <i 
for D (Courant-Cheng nodal domain theorem). 

I. Estimate of N(A) 

No.) is defined as the number of elgenvalues of 
(M, g) or D which are less than or equal to i. 
For D c E2, H. A. Lorentz conjectured that the 

behavior of N(i) for I+ co does not depend on 
the shape of D but only on the area A(D) of D, 

i.e., lim,,, N (A)/1 = A(D)/4n. This was proved 

by H. Weyl. Generally, for D or (M, g), the 
behavior of N(i) for I+ co is v~l(D)/l”‘~/ 

(4n)“‘2T(m/2 + l), and this is related to the 
first term v0l(D)/(4nt)“‘~ of the asymptotic 
expansion of Z(t) by +Tauberian and +Abelian 

theorems. 

J. Spec(M, g) and Geodesics 

Let T”= Em/l- be a flat torus, I- being the 
lattice for T”. Let I-* be the lattice dual to r. 
Then Poisson’s formula, 

gives a clear relation between Spec( T”‘) = 
j4.rr21y(2,ycT*} and the set {lx(,xET} of 
lengths of closed geodesics on T”. 

If (M, g) satisfies some conditions, then 

Spec(M, g) determines the set of lengths of 
periodic geodesics (Y. Colin de Verdiere), and 
the spectrum characterizes those Riemannian 
manifolds whose geodesics are all periodic (J. 
J. Duistermaat, V. W. Guillemin). 

K. SpecP(M, g) and the Euler-PoincarC 
Characteristic 

Let (M, g) be oriented and even dimensional. 
Let EP(x, y, t) be the tfundamental solution of 
the theat equation for p-forms. Corresponding 
to Z(t) for Spec(A4, g), we get ZP(t‘l = $,,,, EP = 
Cie-ip,,t. Then 

p$O(-l)“Zp(t)= 5 (-l)P{ tr Ep =x(M), 
p=o M 

where x(M) denotes the +Euler-PoincarC char- 
acteristic of M (Mckean, Singer). 0n the other 
hand, the +Gauss-Bonnet theorem is x(M) = 

SW C, where C is a function on A4 expressed 
as a homogeneous polynomial of components 
of the Riemannian curvature tensor. Then 
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Patodi proved 

L. q-Function 

Let (X, g) be a compact oriented 4k-dimen- 
sional Riemannian manifold with boundary 
dX = Y and assume that some neighborhood 

of Y in (X, g) is isometric to a Riemannian 
product Y x [0, E). Define an operator B 
acting on forms of even degree on Y by 

Bw=(-l)“+“+‘(*d-d*)w, WEsqY), 

where * denotes the +Hodge star operator and 

d denotes exterior differentiation on Y. Then 
BZ = A holds. Using the spectrum { p} of B, we 
define the q-function by 

q(s) is a spectral invariant, and 

w(X)= Lh,...,~~)-vr1(0) 
s x 

holds (Atiyah, Patodi, and Singer [2]), where 
sgn(X) is the tsignature of the quadratic form 
defined by the +cup product on the image of 
HZk(X, Y) in tfzk(X), L, is the kth +Hirzebruch 
L-polynomial, and pl, , pk are the Pon- 

tryagin forms of (X, g). 

M. Analytic Torsion 

Let x be a representation of the fundamental 
group n,(M) of (M,g) by the orthogonal group 

and E, be the associated vector bundle. Let Ax 
be the Laplacian acting on E,-valued p-forms 

on M and {i;,i} be its spectrum. Then 

logT(M,x)= f (-l)‘plog; C(n;,i)m.T 
I”0 (i )I .s=ll 

is independent of the choice of g. T(M, x) is 
called the analytic torsion of M. T(M, x) is 

equal to the tR-torsion z(M, x) (W. Miiller, 
Cheeger). 

N. Concluding Remarks 

An tisometry $ of (M, g) commutes with the 
Laplacian and induces a linear transformation 
$p of each eigenspace V,. Using the asymp- 
totic expansion of C tr($P)e-“‘, the Atiyah- 
Singer tG-signature theorem has been proved 
(H. Donnelly, Patodi). 

The Atiyah-Singer +index theorem has been 

proved by using Gilkey’s theory and the heat 
equation (Atiyah, R. Bott, Patodi). 

Let (N, h) be a complete Riemannian mani- 

fold of negative curvature. Then A is extended 

to an unbounded self-adjoint operator for 
L,(N). Generally A has a continuous spec- 
trum. Some conditions for (N, h) to have pure 
point spectrum were given in terms of curva- 

ture (Donnelly, P. Li). 
If D is a minimal submanifold of another 

Riemannian manifold, estimates of 1, are 
related to the stability of D (- 275 Minimal 

Submanifolds). 
On the nonexistence of the l-parameter 

isospectral deformation (M, g,)-*(M, gt), there 
are results for (i) m = 2 and go of negative 
curvature, m> 3 and negatively pinched go (V. 
Guillemin, D. Kazhdan); (ii) flat metrics go (R. 
Kuwabara); and (iii) go of constant positive 
curvature (Tanno). 

As for spectral geometry for complex La- 
placian on Hermitian manifolds, there are 

results by P. Gilkey, Tsukada, and others. 
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Spherical Astronomy 

Spherical astronomy is concerned with the 
apparent positions of celestial bodies and their 
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motions on a celestial sphere with center at an 
observer on the Earth, while tcelestial mechan- 
ics is concerned with computing heliocentric 

true positions of planets and comets and geo- 
centric true positions of satellites. The purpose 
of spherical astronomy is to find all possible 
causes of displacement of the apparent posi- 
tions of celestial bodies on the celestial sphere 
from their geocentric positions and to study 
their effects. Atmospheric refraction, geo- 
centric parallax, aberration, annual parallax, 
precession, nutation, and proper motion are 

examples of these causes. 
When light from a celestial body passes 

through the Earth’s atmosphere, it is refracted 

since air densities at different heights are differ- 
ent. This phenomenon is called atmospheric 
refraction. The effect of refraction on the 
apparent direction of the celestial body is a 

minimum when the body is at its culmination, 
and vanishes when this coincides with the ob- 
server’s zenith, while the maximum refraction 
of 34’5 occurs when the body is at the horizon. 

Topocentric positions differ appreciably 
from geocentric positions for the Moon and 
planets, since their geocentric distances are not 

large compared with the radius of the Earth. 

The difference is largest when the observer is 
on the equator and the celestial body is at the 
horizon, and this largest value is called the 
geocentric parallax. The geocentric parallax of 
the Moon is between 53i9 and 6Oi2; those of 
the Sun, Mercury, Venus, Mars, Jupiter, and 
Saturn are, respectively, 8:‘64&81’94, 6”-161’5, 
5”-32”, 31’5-231’5, li’4&2i’l, and 01’8~11’1. For 
fixed stars geocentric parallaxes can be re- 

garded as zero since the stars are far from the 
Earth. 

The Earth moves in an orbit around the Sun 

with period of one year (365.2564 days) and 
rotates around the polar axis, which is inclined 

at 66’5 to the orbital plane (the ecliptic), with 
period of one day (23 hours, 56 minutes, 4.091 

seconds). Therefore the observer on the Earth 
moves with a speed depending on the latitude 
(0.465 km/set on the equator) due to the rota- 

tion and moves with an average speed of 
29.785 km/set on the ecliptic. Due to these 
motions of the observer, apparent directions of 

celestial bodies are displaced from their geo- 
metric directions. Displacement due to the 
rotation is called diurnal aberration, and that 

due to the orbital motion, annual aberration. 
The effect of diurnal aberration is between 0” 

and Oi’32 and varies with a period of one day, 
while that of the annual aberration is between 
0” and 201’496 and varies with a period of one 
year. Moreover, to compute the positions of 

celestial bodies, the travel time of light to the 

observer should be taken into account. 

Annual parallax for a fixed star is half the 
difference of its apparent directions, which are 

measured at the ends of a diameter perpendic- 
ular to the direction of the star from the orbit 
of the Earth. The effect of the annual paral- 
lax varies with a period of one year. However, 

except for nearby stars, it is not necessary to 
take this effect into account when computing 
apparent positions. 

The pole of the Earth on the celestial sphere 
moves on a circle around the pole of the eclip- 
tic due to the gravitational attraction of the 
Moon, Sun, and planets, and therefore the 
equinox moves clockwise on the ecliptic. 

Because the resultant of the attractive force of 
the Moon, Sun, and planets changes periodi- 
cally, the motion of the equinox is not uni- 
form. Therefore the motion is expressed as the 

sum of secular motion, called precession, and 
periodic motion, called nutation. Since the 

positons of fixed stars on the celestial sphere 
are measured with respect to the equator and 
the equinox, their right ascensions and decli- 
nations are continuously changing because 
of precession and nutation. 

Since the stars are not fixed in space but 
themselves have proper motions, their posi- 
tions on the celestial sphere are continuously 
changing. 

Spherical astronomy also includes predic- 

tions of solar and lunar eclipses, the theory 
of +orbit determination to compute apparent 

positions of celestial bodies in the solar system 
by use of orbital elements, and the compu- 
tation of ephemerides for the Sun, Moon, 
planets, and fixed stars. Practical astronomy, 
which develops theories and methods of ob- 

servation by use of meridian circles, transit 
instruments, zenith telescopes, sextants, the- 
odolites, telescopes with equatorial mountings, 

and astronomical clocks, and navigational 
astronomy, which deals with methods for 

determining the positions of ships and aircraft, 
are closely connected to spherical astronomy. 

It should be noted that recently radar has 
been used to measure distances to the Moon 
and planets accurately, a contribution to de- 

termining the size of the solar system with 
precision. 
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393 (XIV.6) 
Spherical Functions 

A. Spherical Functions 

The term spherical functions in modern termi- 
nology means a certain family of functions on 
tsymmetric Riemannian spaces obtained as 
simultaneous teigenfunctions of certain inte- 

gral operations (- 437 Unitary Representa- 
tions). In this article, however, we explain 
only the classical theory of Laplace’s spherical 

functions with respect to the rotation group in 
3-dimensional space. 

Solutions of tlaplace’s equation AI/=0 that 
are homogeneous polynomials of degree n 

with respect to the orthogonal coordinates x, 
y, z are called solid harmonics of degree n. If n 
is a positive integer, there are 2n + 1 linearly 
independent solid harmonics of degree n. In 
+polar coordinates (r, 0, q) they are of the form 

r” Y,(O, cp), where Y,(O, cp), the surface harmonic 
of degree n, satisfies the differential equation 

1 a au, 

( > 

1 a2Y 

sin 0 80 
smOay +-’ 

sin*0 a(p2 

+n(n+l)Y,=O. 

Here, if we apply keparation of variables to 0 
and cp and put z = cos 8, then the component in 
cp is represented by trigonometric functions, 

and the other component in 0 reduces to a 
solution of Legendre’s associated differential 
equation 

(1 -z’)$-2z$ 

+ n(n+l)-& ( > w=o. (1) 

B. Legendre Functions 

With m = 0 in (1) and II replaced by an arbi- 
trary complex number v, the equation is re- 
duced to Legendre’s differential equation 

d2w dw 
,(l-z2)~-22-+v(V+l)W=0, 

dz2 dz 

whose fundamental solutions are represented 

by 

P”(Z) =& 
(l+.z+) (52L1)V 

q- 0”” dL (3) 

QM=& 
P 

(l+,-'+) (p-1)’ di 
,“(,-i)‘” ' (4) 

where the contour of integration in (3) is a 

closed curve with positive direction on the 
c-plane, avoiding the half-line (--co, -l), 

and admitting 1 and z as inner points of the 
domain it bounds, whereas the contour in 
(4) is a closed cc-shaped curve encircling the 

point 1 once in the negative direction and 
the point -1 once in the positive direction. 
The functions P,,(z) and Q”(z) are called Le- 
gendre functions of the first and second kind, 
respectively. The integral representation (3) is 
SchPfli’s integral representation. If Re(v + 1) > 
0, we can deform the contour of integration 

and obtain 

(5) 

If v is an integer, it is convenient to use the 
representation (5). 

From (3)-(5), we can obtain the recurrence 
formulas for Legendre functions of distinct 
degrees. The recurrence formulas for P,,(z) and 
Q,(z) have exactly the same form (- Appendix 

A, Table 18.11). Expanding the integrand in (3) 
and (4) with respect to z- 1 and c/z, the fol- 
lowing identities are obtained: 

P,,(z)=F 
( 

Vf 1, --v, l,? 
> 

) ll-z1<2, 

Q&z) = 
&I-(v+l) 

(2~)“~’ r(v + 3/2) 

( v+lv+2 31 
XF --,-,v+-,- 

2 2 222 > 
, 

where F(sl, /$ y, z) is the thypergeometric func- 
tion. These expansions are the solutions in 
series of Legendre’s differential equation in the 

neighborhood of the tregular singular points 
z = 1 and x), respectively (- Appendix A, 
Table 18.11). 

If v is a positive integer, since [ = 1 is not a 
+branch point in (3), P,(z) is represented by 

Rodrigues’s formula 

r.,(z)=& (12 - 1) 
2”(z-i)“” 

di 

In this case, P,,(z) is a polynomial of degree n 

such that 

[n/21 

P,(z)= c t-11 

(2n - 2r)! 
Z"-2r 

t-=0 2”r!(n-r)!(n-2r)! ’ 

PO(z)= 1, 

which is called the Legendre polynomial (Le- 
gendre, 1784). The tgenerating function for the 
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Legendre polynomials is (1 - 2pcos fI + p2)-1/2, 
whose expansion with respect to p is of the 
form Es0 P,,(z)p”, z =cos 8. Here the tgenerat- 
ing function (1 - 2p cos fI + p2) -‘I2 is the inverse 
of the distance between two points (p, e) and 

(1,0) in polar coordinates. Hence P,,(z) is also 
called the Legendre coefficient. If z is real, { ((2n 
+ 1)/2)“2P,(z)},“0 constitutes an orthonormal 
system on [ -1, l] (- 317 Orthogonal Func- 
tions). The n zeros of P.(z) are all real, simple, 

and lie in (-l,l). For sufficiently large n, we 
have 

PJCOS e) 

Qn@s 0) 

C. Associated Legendre Functions 

For any positive integer m, the functions 

P;(z) =( 1 - z2p2 d”P”(Z)/dZ”, 

Q;(z)=(l -z’)“‘2&“Qy(~)/d~m 

are called the associated Legendre functions of 
the first and second kind, respectively. This 

definition, due to N. M. Ferrers, is convenient 
for the case -1 <z < 1. For arbitrary com- 

plex z in a domain G obtained by deleting the 
segment [ -1, l] from the complex plane, the 
following definition, due to H. E. Heine and 
E. W. Hobson, is used: 

P=“(z) = (22 - 1)“‘2 d”P”(Z)/dZ”, 

Q;(Z) = (z’ - l)m’z d”Q,(z)/dz”. 

The associated Legendre functions satisfy the 
associated Legendre differential equation (1). 

In particular, for v = n (a positive integer) and 
z=x (real), 

{(2n+l)(n-m)!/2(n+m)!}“2P,m(Z), 

n=O, 1, . ..m=constant. 

constitute an orthonormal system on [ -1, 11. 

The addition theorem for the Legendre func- 
tions is 

=P”(z,)P”(z,)+2 ,f (n-m)!PF(Z,) 
m=,(n+m)! 

x P,“(z2)cosmcp, 

where the equality with the plus sign was 

obtained by Ferrers and that with the minus 
sign by Heine and Hobson. 

D. Surface Harmonics 

From the considerations so far for the sur- 

face harmonics K(0, cp), 2n + 1 independent 
solutions 

P”(COS 4, P,“(cos @sin mcp, 

qP,“(cos 0)cos mcp, 1 <m<n, 

are obtained. Since P,(cos e) vanishes on II 
latitudes of the unit sphere, and P,“(cos 0). 
cos mcp and P,m(cos @sin mrp vanish on n -m 
latitudes and m longitudes of the unit sphere, 
respectively, the former functions are called 
zonal harmonics and the latter, tesseral har- 

monics. The general form of surface harmonics 
x of order n is given by a linear combination 

of zonal and tesseral harmonics: 

Y,(R cp) = A,,oP,(cos Q) 

n 
+ 1 (A,,,cosmcp+B,,,sinmcp)P,“(cosfI). (7) 

WI=1 

Expressing two surface harmonics Ybl) and 
Yj’) in linear combinations such as (7), the 
following orthogonality relations hold: 

YL’)(B, cp)Yj’)(Q, cp)sinBdBdq 

47l 
=k,,- 

2nSl ( 
,4p#’ 

’ n’” 

Since the family of all zonal and tesseral har- 
monics constitutes a komplete orthogonal 
system, it is possible to expand a function 
f(e, cp) on the sphere into an orthogonal series: 

+B,,,sinmcp)P,“(cos@ 1 

To obtain surface harmonics, the following 
method is effective. Let v be a direction pro- 
portional to the direction cosines 1, m, n. Then 
a function 

is a solution of Laplace’s equation. Physically, 
this corresponds to a tpotential of double pole 
with moment a and direction v. A more gen- 
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era1 multipole potential 

also satisfies Laplace’s equation. If we put V= 

wx, Y, zb -‘“-l, U, is a spherical function of 
order n (Maxwell’s theorem). Various spherical 
functions correspond to particular directions 
vi. For example, if every vi is equal to z, we 
have zonal harmonics; and if n-m of the vi are 

equal to z and m of the vi are symmetric on the 
xy-plane, we obtain tesseral harmonics. Let y 
be an angle between two segments connecting 

the origin to the points (r, 0, cp) and (r’, 0’, cp’) in 
polar coordinates. Then cos y = cos 0~0s 0’ + 
sin Osin @cos(q - cp’), and if we choose the 
line connecting the origin to a point (r’. H’, cp’) 

as the axis defining P,,, we have 

r”+l X' a 4" a 
ww9=(--l)“~ rz+r’ay 

( 

zr a n i 
+Tz -' 

>(> r 

These are called biaxial spherical harmonics, 
which can also be represented (by the addition 

theorem) by means of spherical harmonics 
with respect to each axis. 

E. Extension of the Legendre Functions 

We extend the associated functions with posi- 
tive integer m to any number m. First, if m is a 

negative integer, we put 

s s 

im 
P”-“(z)=(l -ZZ))m’* =K,, d[,-, . . . 

1 1 

Is 

s s 

12 
X di, PAi,M, a 

1 1 

Q,“(z)=(l -z’))~” 
s s 

*dim 
<m 

d[,-, . . . 
m m 

r3 
X 

s s 

i2 
4, QXM, > 

a2 cc 

a definition due to Ferrers. Then 

P”-“‘(z)=(-l)“r(v-m+l)P~(z), 
T(v+m+l) 

When we use the definition due to Heine and 
Hobson, the factor (-1)” in these formulas is 
excluded. Two fundamental solutions, called 

hypergeometric functions of the hyperspherical 
differential equation 

(1 -z2)d2w/dz2-2(/*+1)zdw/dz 

+(v-p)(v+p+ l)w=O, 

are 

e -vni 
P?qz) = _ y P 2’ ‘471sinvn 

where the contour of integration for the latter 
integral is a curve encircling the point -1 once 

in the positive direction and the point 1 once 
in the negative direction. Then the associated 

Legendre functions for an arbitrary number p 
are defined as follows: 

P,“(z) = 

Q:(z)= ;;r;f;l:‘(zz - l)““Q$!!$‘(z). 

If v-p is a positive integer Pckfin is called 
the Gegenbauer polynomial, a;sg denoted by 

C,-,(z). The C,-,(z) are obtained as coefli- 
cients of the expansion of the generating func- 
tion (1 - 2hz + z’)-(~~+~)~* (- Appendix A, 
Table 20.1). 

For spherical functions of several variables 
there is an investigation by P. Appell and J. 
Kempe de Feriet [23 (- 206 Hypergeometric 
Functions D). 
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394 (XIII.1 3) 
Stability 

A. General Remarks 

Stability was originally a concept concerned 
with stationary physical states. When a state 

is affected by a small disturbance, this state 
is said to be stable if the disturbance subse- 
quently remains small, and unstable if the dis- 
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turbance gradually increases. For instance, 
consider a rod placed in the Earth’s gravi- 
tational field with one end fixed at a point 
around which the rod can rotate freely. When 
the rod is placed vertically, this state is station- 
ary. It is stable if the rod is hanging down from 
the fixed end, and unstable if it is standing on 

the fixed end. In physical systems only the 
stable state is practically realizable, so this dis- 
tinction is important. 

The concept of stability is used not only in 
relation to physical states but also in many 
other fields of science. We shall restrict our- 
selves to stability of solutions of differential 
equations. There, the term stability is used in 
the sense that a small change in the initial 

values results in a small change in the solution. 
As long as the solution is considered within a 
finite interval of the independent variable, this 
stability is naturally guaranteed by the con- 
tinuity of the solution with respect to its initial 

values (- 316 Ordinary Differential Equations 
(Initial Value Problems)). The problem arises 
when an independent variable moves over an 

unbounded interval. 
Let (x1, , x,)=x, (x, (t), ,x,(t)) = x(t), 

(x;(t), . . ..xb(t))=x’(t) (the symbol ’ means 
differentiation by t), and 1x1= &, IxjI. Con- 
sider the differential equation 

x’=f(t, x), (1) 

for which the existence and uniqueness of the 
solution of the initial value problem is as- 
sumedforItl<co,Ixl<co.Letx=p(t)bea 

solutionof(l).Ifforany~>Oandt,,a6>0 
can be chosen so that (x(t,) - p(t,)J < 6 implies 
Ix(t)-(p(t)l<Efor t,<t<ccj (-x-ctgt,), 
where x(t) is any solution of(l), then x = p(t) is 
said to be (Lyapunov) stable in the positive 

(negative) direction. If it is stable both in the 
positive and negative directions, it is said to be 

stable in both directions. In the remainder of 
this article we will consider stability in the 
positive direction only. Corresponding asser- 
tions for stability in the negative direction can 
be obtained by reversing the sign oft. 

B. Classification 

We denote by x = x(t, to, x0) a solution of (1) 
such that x=x0 at t=t,. 

Suppose a solution x = p(t) is stable. If for 
any to there exists a < > 0 such that 1 x(t, t,, x0) 

-q(t)l-0 as t+cO for any x(t, t,,x,) with Ix0 
-q(to)( < [, p(t) is said to be asymptotically 

stable. 
If a constant 6 in the definition of stability 

can be chosen independently of to, q(t) is said 

to be uniformly stable. When equation (I) 

is tautonomous, stability implies uniform 
stability. 

If (1) p(t) is uniformly stable and (2) for any 
t, and 4 > 0, there exist a [ > 0 independent 
of to and a T > 0 independent of t,, such that 

Ix,-q$t,)I <i and t>t,+ T imply Ix(t, t,,x,) 
-v(t)1 <II, then q(t) is said to be uniformly 

asymptotically stable. 
Suppose that there exists a positive number 

I with the following property: For any to 
and E > 0 one can take a 6(~) > 0 such that 

Ix0 - 4(k4l <W implies Id4 to, x0) - 4Wl< 
~e~‘(*~~o) for t > to. Then c)(t) is said to be 
exponentially stable. Exponential stability 
implies uniform asymptotic stability. 

C. Criteria 

To deal with the stability of x = q(t), we need 
consider only the case q(t) = 0, since the trans- 
formation x = y + b(t) reduces equation (1) to 

Y’ = W, Y + dt)) - f(t, r(t)) = F(t, Y), 

F(t, 0) = 0, (2) 

and thus x = p(t) is transformed into y = 0. If F 
is continuously differentiable with respect to y, 
(2) can be written in the form 

Y’ = F&c 0)~ + g@> YX g(LY)=4lYl). 

The linear part of this equation, 

Y’ = F,(t, WY, 

is called the variational equation for (1). So, 
in this section, we can state several criteria 

for stability of the null solution y = 0 of the 
equation 

Y’ = WY + gk Yh Ig(LY)l=4Yl). (3) 

(I) If (3) is linear (i.e., g(t, y) = 0). then y = 0 is 
stable if and only if every solution of (3) is 
bounded as t j co. 

(II) If (3) is linear, uniform asymptotic sta- 

bility implies exponential stability. 
Let .f(t, y) be a function defined for IyI <p, t 

> SL. If there exists a continuous function w(y) 

such that w(O) = 0, w(y) > 0 (y # 0). f(t, y) 3 w(y) 
(IyI <p, t > a), then f(t, y) is said to be positive 
definite. If -f(t, y) is positive definite, then 
,f(t, y) is said to be negative definite. 

(III) The existence of a Lyapunov function 
V(t, y) with the following properties implies the 
stability of y = 0: (i) V(t, y) is positive definite 
and differentiable, (ii) V(t, 0) = 0, (iii) P(t, y) = 

r/; + V” (WY + gk Y)) GO. 
The existence of V(t, y) with the following 

properties implies the uniform asymptotic 

stability of y=O: (i) same as (i) above, (ii) there 
exists a continuous function u(y) such that 
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40) = 0, U(Y) > 0 (Y Z 01, Ut, Y) G U(Y), (iii) PO, Y) 

is negative definite. 
Hereafter we shall assume that Ig(t, y)I = 

o(lyI) as y-0 uniformly with respect to t. 

(IV) If P(t) is a constant matrix all of whose 
teigenvalues have negative real parts, then 

y = 0 is asymptotically stable [3,4]. 
(V) Let P(t) be continuous and periodic with 

period T and Z be a ifundamental system of 
solutions of the variational equation 

2’ = P(t)z. (4) 

Then there exists a constant matrix C such 
thatZ(t+T)=Z(t)C. Leti,,...,i,bethe 
eigenvalues of C. Then the numbers pLk = 
(log E.,)/T (k = 1, , n) are called the charac- 
teristic exponents of (4). Obviously they are 
determined up to integral multiples of 2ni/T. If 
the real parts of the characteristic exponents 

are all negative, then y = 0 is asymptotically 
stable [3,4]. 

(VI) If f(t, x) in (1) is periodic in t with period 

T and (1) admits a periodic solution x = q(t) 
with period T, then (1) can be reduced to (3) by 
putting x = y + p(t), and P(t), g(t, y) are both 
periodic in t with period T. Thus criterion (V) 
can be applied as a stability criterion for the 
periodic solution of (1). There are many other 
criteria for various particular forms of the 
equation (- 290 Nonlinear Oscillation). For 
the +autonomous case where f(t, x) is of the 

form p(x) or p(x)+q(t) with q(t+ T)=q(t), 
many results have been found. 

(VII) If the solution z = 0 of 

z’ = P(t)z 

is uniformly asymptotically stable, then the 
solution y = 0 of (3) is also uniformly asymp- 
totically stable [4]. 

D. Conditional Stability 

Let p(t) be a solution and 3 a family of solu- 
tionsof(l).IfforanyF:>O,a6>Ocanbe 

determined so that 1 x(t,) - q(t,,)l < 6 implies 

Ix(t) - r(t)1 <E for t, d t < n3 for any solution 
x(t) in 3, then q(t) is said to be stable with 
respect to the family 3. If a family 3 can be 
found so that a solution is stable with respect 
to 3, the solution is said to be conditionally 
stable. For instance, in equation (3), if P(t) is a 

constant matrix some of whose eigenvalues 
have negative real parts, g(t, y) is differentiable 
with respect to y, and g,(t, y) = o( 1) uniformly 
in t as ~‘0, then y = 0 is conditionally stable. 

We now mention a weaker kind of stabil- 

ity called orbital stability. Let q(t) be a solu- 
tion and E any positive number. If there can 

be found a positive number 6 such that for 

any solution x(t) with Ix(tl)-p(tJc6 for 
some t, and t,, lJt, gr<io x(t) belongs to the E- 
neighborhood of U t,st<z ~(0, then r(t) is said 
to have orbital stability. 

When f(t,x) in equation (1) is independent of 
t, (I) is often called a tdynamical system. In the 
theory of dynamical systems, not merely the 
stability of a solution itself but also the sta- 

bility of a closed invariant set is of importance 
(- 126 Dynamical Systems). 

It is also of importance to investigate the 

change in solution caused by a small change in 
the right-hand member of the equation. Sup- 
pose, for instance, that the right-hand member 

of the equation depends continuously on a 
parameter E. Then the question arises as to 
how the solution changes if E changes. The 
theory of such problems is called iperturbation 
theory. Suppose that the equation 

x’ = f(t, x, R) 

admits a periodic solution q(t) for E=O. Then 
q(t) is said to be stable under perturbation if 
for E # 0 the same equation admits a periodic 
solution lying near q(t). In tcelestial mechanics 
and ‘nonlinear oscillation theory this concept 
plays an important role. 
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395 (XVII.1 2) 
Stationary Processes 

A. Definitions 

Stationary process is a general name given to 
all tstochastic processes (- 407 Stochastic 

Processes) that have the property of being 
stationary (to be defined in the next para- 
graph) under a shift of a time parameter t that 
extends over T, which is either the set of all 
real numbers R (a continuous parameter) or 

the set of all integers Z (a discrete parameter). 
Let (Q, 23, P) be a tprobability space and 

{Xt(w)} (TV T,wEQ) a complex-valued tsto- 
chastic process. If for every n, every t,, t,, , 
t,~ T, and every +Borel subset E, of complex 
n-dimensional space C”, the equality 

P(Gq.C> “‘,Xc,+l)~Kl) 

=p((x,*>...>X,,,&~,) (1) 

holds, then {X,} is called a strongly (or strictly) 
stationary process; while if E(lX,j’) is finite for 
every t, and if the tmoments up to the second 
order are stationary, i.e., if 

WC+,) = E(X,), 

Jw,+,Xs+,) =wws), (4 

then {X,} is called a weakly stationary process 
or a stationary process in the wider sense. The 

“stationary” in the latter sense obviously in- 
cludes the former if E(jX,[‘)< co. Condition 

(2) is equivalent to 

E(X,) = m (a constant independent of t), 

E((X*-m)(X,-m))=p(t-s) 

(a function oft-s). (3) 

We call m and p(t) the mean and the covari- 

ante function of {X,}. 
In the continuous parameter case, we as- 

sume tcontinuity in probability, 

f? P(lX,+* -XJ>&)=O, &>O, 

for a strongly stationary process, and continu- 
ity in me5n square, 

for a weakly stationary process. The latter 

assumption is equivalent to continuity of the 
covariance function p(t). 

A +Gaussian process is strongly stationary if 
and only if it is weakly stationary; and so it is 

simply called a tstationary Gaussian process. 
Such processes constitute a typical class of 

stationary processes (- 176 Gaussian Pro- 
cesses C). 

B. Spectral Decomposition of Weakly 
Stationary Processes 

The covariance function p(t) is obviously 
tpositive definite and continuous. Therefore, 
by +Bochner’s theorem, we have the tspectral 
decomposition of p(t): 

p(t) = 
s 

e’“‘F(dl), 
1” 

(4) 

where T’ is either R (when T= R) or [-n, x] 
(when T= Z) and F is a bounded measure on 
T’. The decomposition (4) is called the Khin- 
chin decomposition of p(t), and F(dl) is called 
the spectral measure. If the process {X,} is real- 
valued, then the spectral measure F(d) is 
symmetric with respect to the origin. 

To obtain the spectral decomposition of a 
weakly stationary process X, itself,, we intro- 
duce the tHilbert space &(R) (where fi = 

Q(%, P) is the basic probability space on 
which each X, is regarded as a tsquare inte- 
grable function). Let m(X) be the subspace of 
&(R) spanned by the X, (te T) and the con- 
stant function 1. Since {X,} is weakly station- 
ary, we can define a one-parameter group of 
+unitary operators U, (t E T) determined by 
U,X, = X,,, and U, 1 = 1. By Mane’s theorem 
we have the spectral decomposition of U,: 

u, = s e’“‘E(di). (5) 
T’ 

Setting M(A) = E(A) (X,-m), we obtain the 
spectral decomposition of X,: 

X,= U,X,=m+ 
s 

e’“‘M(di). (6) 
T’ 

We also have 

W(A,)>M(A,))= W, nM. (7) 

The study of weakly stationary processes is 
based on the decomposition (6). For example, 

the weak law of large numbers for {X,}, 

1 B 
1.i.m. ~ 

s s-a-mB-A A 
X,dt=m+M({O}), (8) 

is an immediate consequence of (6). In the 
discrete parameter case a similar result is 

obtained by replacing the integral sign in 
expression (8) by the summation sign. In partic- 
ular, if F is continuous at the origin, we have 
M({O})=O, and only the constant m remains 
in the right-hand side of (8) [l, 21. 

C. Weakly Stationary Random Distributions 

Just as we introduce tdistributions as gen- 

1 eralizations of ordinary functions, we define 
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weakly stationary random distributions as 
generalizations of weakly stationary processes. 
Let 2 be the space of all functions of class C” 
on T= R with compact support. We introduce 

the same topology on 9 as in the theory of 
distributions. If a random variable X,EL,(R) 
is defined for every cp E 2 and the mapping cp 
+X, is continuous in the &-sense and linear, 
then the family {X,} of random variables is 

called a random distribution in the wider sense 
(- 407 Stochastic Processes). Furthermore, if 

KhC> 1)=(X,, 11, 

(XTh(p, X*,J = cx,> Xv) (9) 

for every PER’, where ( , ) stands for the inner 
product in L2(Q) and 

then {X,} is said to be a weakly stationary 
random distribution. With a weakly stationary 

process we can associate a weakly stationary 
random distribution by the relation 

x,= X,q$)dt. s (10) T 
This correspondence is one-to-one, and there- 
fore we can identify {Xt} with {X,} as we 
identify an ordinary function with a distri- 

bution. From equations (9) it follows that 
there exist a constant m and a distribution 
p such that E(X,)=mlcp(t)dt and ./2(X,- 

E(X,))(X,-E(X,)) =p(q*Ij/), where * de- 
notes convolution, and $(t)= $( -t). We call m 

and p the mean value and covariance distri- 
bution of {X,}, respectively. By the generalized 
Bochner theorem p can be expressed in the 
form 

p(q)= f$(A)F(di), 
s 

c)(i)= eiAffp(t)dt, 
s 

where F(dl) is a slowly increasing measure, i.e., 

s (1 + 3,yF(di) < Co (11) 
for some positive integer k. F(di) is called the 
spectral measure. This expression is the gen- 
eralization of the Khinchin decomposition. 
The spectral decomposition corresponding to 
(6) and the +law of large numbers for X, can 
be discussed in a manner similar to that for 
weakly stationary processes (K. It8 [3]). 

D. Prediction Theory 

Let {X,} be a weakly stationary process. Sup- 

pose that its values X, (s < C) up to time t are 
observed. Prediction theory deals with the 

problem of forecasting the future value X,,, 

(t > 0) from the known values X, (s < t). If the 
domain of the admissible predictors is limited 
to linear functions of X, (s < t), the theory is 
called linear prediction theory. We can assume 

without loss of generality that the mean value 
m of X, is zero and that the spectral measure 
F(d2) of {X,} is not a zero measure. 

Let J&(X) be the subspace of L,(R) spanned 
by the X, (s < t), then A(X) = Vt.AfC(X). A linear 
predictor for X,,, from X, (s d t) is an element 
Y of J%‘!(X). If a linear predictor minimizes 
the prediction error a2(r)=E(IX1+,- Yl’) in 

J@,(X), it is called an optimum linear predictor, 
which turns out to be the t(orthogona1) projec- 

tion of X,,, on J&(X) and which is denoted by 
&. Since {X,} is stationary, the error a’(z) 
does not depend on t for such a predictor. 
Corresponding to the spectral decomposition 
(6) of X,, the optimum linear predictor is ex- 

pressed in the form 

x1,,= s e’“‘$,(i)M(dl), (12) T’ 
where &( .) is square integrable with respect to 
the spectral measure F(dl). 

The subspace &&(X) is nondecreasing in t. If 
J&(X) is independent of t, i.e., &&(X) = d(X) 
for every t, then {X,} is said to be determinis- 
tic. In this case we have r?,,, = X,,, for every t 
and z > 0, since X,,, E J&(X). This means that 

the linear predictor enables us to determine 

the unknown quantities without error, and 
therefore such a process is of no probabilistic 
interest. On the other hand, if &&$(X)= {0}, 
then {X,} is said to be purely nondeterministic. 
A general {XI} is expressed as the sum of the 
deterministic part {Xf} and the purely nonde- 
terministic part {X:} (Wold decomposition). 
Furthermore, we have &(X”)= &@JX), and 
J&(X) = &(Xd) + &JX”) (direct sum). Thus 

{Xp} and {X:} can be dealt with separately. 
A weakly stationary process {Xc} is purely 

nondeterministic if and only if the spectral 

measure F(di) is absolutely continuous with 
respect to the Lebesgue measure, and the 
density f(i) is positive almost everywhere and 
satisfies 

s 

li 
logf(i)di> -cc, 

-n 

(discrete parameter case), 

s O” bm.) di > --co 
-~ I+/12 

(continuous parameter case). 

By using f(1) the optimum linear predictor can 

be obtained. 

First, we explain the discrete parameter 
case. There exists a function y(z) = C,zO a,z’ in 

the +Hardy class H2 relative to the unit disk 
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such that its boundary value satisfies 

Then we can find a sequence of mutually or- 
thogonal random variables {t,) (t E Z) such 
that {X,} admits a backward moving average 

representation 

f 
&= c %,i’s. (13) 

s=--u, 

There are many pairs {u,} and {t,} which give 
the representation (13), but if y(z) is maximal 
(optimal), namely, if y(z) is expressed as 

‘:(z)=J%exp & 
( s 

1 
-Sfz 

I 
logf(i)f+dl. ) 

-Z > 
(14) 

then the representation (13) is canonical in the 
sense that J&(X) = J&(<) for every t. Hence the 
optimum predictor r?,,, for X,,, is given by 

where 

The prediction error G’(T) of this predictor is 
given by 

r-l 
d(1)= 1 1a,12. 

S=O 

Example. Let the covariance function of a 
weakly stationary process {X,} be emal” (a > 0). 

Then we have 

The maximal y(z) is expressed as m( 1 - 

fiz)-‘, and 

We now come to the continuous parameter 
case. By replacing the holomorphic function 

y(z) on the unit disk with the one on the half- 
plane, we see that almost all results obtained 

in the discrete parameter case hold similarly in 
this case. The maximal y(z) is expressed as 

lsiz di 
logf(i,)---- 

z-i 1+12 

Using the +Fourier transform a, of the bound- 
ary function of y(z) and a process { &} with 
orthogonal increments, we have the canonical 

backward moving average representation for 

the process {X,}: 

s 

f 
x,= a,-.&,> 

- x, 

which enables us to obtain the optimum pre- 

dictor and the prediction error in a manner 
similar to the discrete parameter case [4]. In 
particular, if the optimal y(z) is of the form i)(z) 
= c/P(iz), where c is a constant and P(z) is a 
polynomial of degree p, then X, is p- 1 times 
differentiable and P(d/dt)X, = (d/dt)& up to a 
multiplicative constant; therefore zr,., is ob- 
tained explicitly. To obtain the optimum linear 
predictor for YE.&(X), we first establish the 
expression 

and then take c,“=-,f(s)<, or s’!% f(s)di;, for 
the optimum linear predictor. 

The results stated above can be generalized 
to multivariate (n-dimensional) stationary 
processes [6,7] and to the case where the 
parameter space T is multidimensional. 

N. Wiener observed the individual tsample 
process X(t, 0~) and discussed a method of 
finding the optimum predictor for X(t + z, tu) 

by using a linear functional 

s 

s 
X(t-s,w)dK(s) 

0 

(K is of tbounded variation) of the values X, 

(s d t) [S]. The spectral measure played an 
important role in his observation. Calculations 
in this case are analogous to those mentioned 
above. 

For a weakly stationary random distribu- 

tion {X(q)} (QEZ), the prediction theory is 
reduced to that for ordinary stationary pro- 
cesses. Assume that the spectral measure F(di,) 

of {X(q)} satisfies (11). Set e(t)=exp(t) (t<O), 
= 0 (t > 0), and let e,(t) be the k-times convo- 
lution of e(t) with itself. Set Y(p) =: X(e, * (p). 
Then {Y(v)} is equivalent to a weakly station- 
ary process. It is obvious that J&‘~( X) = J&( Y) 

for every t, where .&Z’,(X) is the linear subspace 
spanned by {X(v)Isupport ofcpc(-m,t]}. 
This consideration allows us to reduce the 
prediction problem for {X(v)} to that for the 
stationary process corresponding to {Y(q)}. 

Nonlinear prediction theory is formulated 
as follows. Let ‘23, be the smallest o-algebra 

with respect to which every X, (s d t) is mea- 
surable and H,(X) be the subspace of&(R) 
consisting of all ‘%,-measurable elements. The 
problem is to forecast X,,, (z > 0) by using 
an element of H,(X). The optimum predictor is 

obviously equal to E(X,+,I 8,). For a station- 
ary Gaussian process it has been proved that 
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the optimum predictor found in H,(X) belongs 
to A’*(X). Therefore the optimum nonlinear 

predictor coincides with the optimum linear 
predictor. However, except for stationary 

Gaussian processes, no systematic approach 
for nonlinear prediction theory has been es- 
tablished so far. (For a typical case that arises 
from a stationary Gaussian process - 176 
Gaussian Processes H.) 

E. Interpolation and Filtering 

Interpolation and filtering of stationary pro- 
cesses have many similarities with prediction 
theory, both in the formulation of the prob- 

lems and in their method of solution. 
Let {X,} be a weakly stationary process, all 

of whose values {X,1 t# T,}. T, some interval, 
are known with the exception of those at tc T,. 
The problem of linear interpolation of the 
unknown value X, (t E T,) is to find the best 

approximation of this random variable by the 
limit of linear combinations of the known 
values. The following example illustrates the 
problem in the discrete parameter case. 

Example. Let Tl = {to} and f(A)dA be the 

spectral measure of {X,}. The interpolation of 
XrO has an error if and only if 

s 

= 1 
-,f.(9di.< (@2 

Expressing X, in the form (6) with m = 0, the 
best (linear) interpolation X1, of X, is given by 

and the error of the interpolation is expressed 

by 

E(~X,o-2J)=4n2 

The problem of interpolation for multivariate 
stationary processes has also been discussed 

c71. 
The filtering problem originated in com- 

munication theory as a technique to extract 
the relevant component from a received signal 
with noise [S, 131. Suppose that a complex- 

valued stationary process {Xtl with continu- 
ous parameter is expressed in the form 

a; 
x,= 

s 
e’“‘M(d/l) = SC + N,, 

-m 

where (S,, NJ is a (2-dimensional) weakly 
stationary process with mean vector 0. Here, S, 
and N1 indicate the signal and noise, respec- 
tively. The filtering problem is to find the 

element of J&(X) that approximates S,,, as 

closely (relative to the A(X)-norm) as possible. 
The best approximation is the projection of 
S,,, on A&(X), but its expression in terms of 

the spectral measure becomes extremely com- 
plicated [S]. This problem is usually discussed 

under the assumption that S, and N, are ortho- 
gonal. Let us further assume that their spectral 

measures are absolutely continuous. The den- 
sity functions are denoted by fs(A) and j&), 
respectively. If {X, 1 TV T} is observed, then the 
best (linear) approximation S, of S, is given by 

cc 
S*= 

s 
e’“‘q,(i)M(dl), 

-m 

where cp&) =L&MLd4 +f&U). The mean 
square error E( 1 S, - $1’) of this filtering is 

F. Strongly Stationary Processes and Flows 

Let {X,(o)} (TV T, ~ER(!B, P)) be a strongly 
stationary process. To study it we take the 
coordinate representation of {Xt} as follows. 
Let R be the complex vector space CT, 23 the cr- 
algebra generated by the Bore1 tcylinder sets, 

X,(w) the tth coordinate of the function WE 
CT, and P the probability distribution of the 
process {X,) defined on (Q %3). Define the 
shift transformation S, of Q onto itself by 

(SW) (s) = w(s + t). Then {St} forms a group 
of tmeasuie-preserving transformations 
on Q(%3, P) (- 136 Ergodic Theory) since 
{X,} is strongly stationary. Thus we are given 

a (measure-preserving) Wow {St} (TV T) 
on Q(23, P). Conversely, if {St} (TV T) is a 
(measure-preserving) flow on a probability 

space Q(23, P), then {X,}, given by X,(w) = 
f(S,w), is a strongly stationary process, pro- 
vided that f is measurable. Many properties 
of a strongly stationary process are closely 
related to those of the corresponding flow. 
For example, the tstrong law of large num- 
bers for a strongly stationary process follows 
from +Birkhoff’s individual ergodic theorem 

for flows. +Ergodicity, several kinds of tmixing 
properties, and the spectra1 properties of a 
strongly stationary process are defined in 
accordance with the respective notions for 

the corresponding flow. Now we give some 
examples of flows corresponding to strongly 
stationary processes. 

(1) If X, (t E Z) are mutually independent and 
have the same probability distribution, then 
the process {Xt} (FEZ) is strongly stationary 
and &%3~ is trivial (the definition of ‘93-D). 

Hence the corresponding flow is a +Kolmo- 

gorov flow. 
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(2) Similarly to (1) the flow corresponding 
to iGaussian white noise (- 176 Gaussian 

Process) is also a Kolmogorov flow. 
(3) The mixing properties of the flow corre- 

sponding to a stationary Gaussian process is 
determined by the smoothness of its spectral 
measure F(di). The flow is ergodic if and only 
if F is continuous (i.e., F has no point mass). In 
this case, the flow is also tweakly mixing. For 
the flow to be tstrongly mixing, it is necessary 
and sufficient that the covariance function p(t) 

of the process tend to zero as 1 t I+ io. In this 
case the flow is +mixing of all orders (- 136 
Ergodic Theory) [ 14- 161. 

G. Analytic Properties of Sample Functions of 
Stationary Processes 

In the continuous parameter case, we always 
assume that tcontinuity in probability holds 
for strongly stationary processes and tmean 
square continuity holds for weakly stationary 
processes. Hence the processes discussed here 
are all continuous in probability, and without 

loss of generality we can assume that the sta- 
tionary processes are tseparable and +mea- 
surable (- 407 Stochastic Processes). 

Let {Xc} be a weakly stationary process. 
Assume that the moments up to order 2n of 
the spectral measure F(di) are all finite. Then 
almost all tsample functions of {Xt} are n - 1 

times continuously differentiable, and almost 
all sample functions of {X:-i)} are absolutely 
continuous. Define the spectral distribution 
function F(n)=F(( -co,n]) for the spectral 
measure F(d).) of {X,}. If F satisfies 

for a nonnegative integer Y, then almost all 
sample functions of {Xt} have continuous 
rth derivatives. In particular, if the condition 
(16) is satisfied for r = 0, then almost all sam- 
ple functions are continuous. Conditions for 
Holder continuity of almost all sample func- 
tions of a weakly stationary process have also 

been obtained [ 17,l S]. (For sample functions 
of stationary Gaussian processes - 176 

Gaussian Processes F.) 
For a strongly stationary process {X,} with 

E(X,) = 0 and finite E(X& the sample covari- 
ante function 

R(t)= lim i s T 
~-m2T -., 

X,+,(4X,(4 ds 

is determined with probability 1. We can 
therefore apply the theory of igeneralized 
harmonic analysis, due to Wiener [9]. (Further 

results on sample function properties are 
found in [ 191.) 

H. Strongly Stationary Random Distributions 

Let % be the space of all C”-functions with 
compact support and 3’ be the space of tdistri- 

butions. If X,+,(w) is defined for w~R(23, P) and 
q E 9, and if for almost all w, X,(w) belongs to 

9’ as a linear functional of cp, then {X,} is 
called a random distribution. Suppose that the 

joint distribution of the random variables 

x Th’Pl’ x4(p2’ . ../ XThVn (r,,(~(t)=p(t-hh)) is inde- 
pendent of h. Then we call {X,(w)} a strongly 
(or strictly) stationary random distribution. If 
we identify random distributions that have the 
same probability law, then {X,} is determined 

by the characteristic functional 

C(q) = E(eiX.). 

For {X,} to be strictly stationary it is neces- 
sary and sufficient that the equality C(z,,cp) 

= C(q) hold. The simplest example of a strictly 
stationary random distribution is the Gaussian 
white noise (- 176 Gaussian Processes, 341 
Probability Measures) [20]. 

I. Generalizations of Stationary Processes 

The concept of stationary processes is gen- 

eralized in many directions. 
(1) Let T be a set different from R or Z, and 

suppose that there is given a group G of trans- 
formations that map T onto itself. If a family 
{X,} of random variables with parameter t E T 
has the property that for every choice of ran- 
dom variables X,,, Xtl, ,X,“, the joint distri- 
bution of (X,,, , , X,,J is always independent 
of gE G, then {X,} (TV T) is said to be a strictly 

G-stationary system of random variables. 
Similarly, a weakly G-stationary system of 
random variables can be defined [21,22]. 

(2) Let T be a Riemannian space, and let G 
be the group of all isometric transformations 
on T or one of its subgroups. Suppose that a 
ttensor field X,(w) of constant rank is asso- 
ciated with any o~Q(2$ P) at every point t. 
Then X(w) = {X,(w) 1 t E T} is called a random 
tensor field over the Riemannian space T. Any 

gE G induces an isometric transformation of 
the tangent vector space at t to that at gt. 
Hence g maps a tensor field X(w) to another 

tensor field gX(w) for every o. If X(w) and 
gX(w) have the same probability law, then 
X((l)) is said to be strictly G-stationary. X(w) is 
defined to be weakly G-stationary in a similar 
way [21,22]. 

(3) In the same way as we extended stochas- 
tic processes to random distributions, we can 
generalize random tensor fields to random 

currents and discuss stationary random cur- 

rents [21]. 
(4) Stochastic process with stationary incre- 
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ments of order n. Assume that {X,} (PER) is not 
necessarily a stationary process but that the 
nth-order increment of X, is stationary. Then 
by taking the nth derivative D”X, in the sense 
of random distributions, we obtain a station- 
ary random distribution. From the properties 
of D”X, we can investigate the original process 
itself. Brownian motion is an example of a 

stochastic process with stationary increments 
of order 1. 

(5) Weakly stationary processes of degree k. 

A weakly stationary process is a process whose 
moments up to order 2 are stationary. Gen- 
eralizing this, we can define a weakly station- 
ary process of degree k by requiring the mo- 
ments up to order k to be stationary. We can 
obtain more detailed properties of such pro- 
cesses than those of weakly stationary pro- 
cesses [23]. 
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A. General Remarks 

A statistic is a function of a value (i.e., a 
sample value) observed in the process of sta- 

tistical inference (- 401 Statistical Inference). 
A statistic is used for two purposes: (a) to 
characterize the set of observed values or 

sample values, and (b) to summarize the in- 
formation contained in the sample about the 
unknown parameters of the population from 

which it is assumed to have been drawn. 

B. Samples and Statistics 

The basic concepts in statistical inference are 
+population and tsample. Let (D, a, P) be a 
+probability space, where P is a tprobability 
measure on a. A trandom variable X defines a 

l-dimensional probability distribution @(A) 

= P{w\ X(w)tA}, where A is a l-dimensional 
‘Bore1 set, which gives rise to a 1 -dimensional 
probability space (R, &I’, a). Here 9’ is the 
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family of all l-dimensional +Borel sets. Let 

x*,x,,..., X,, be tindependent random vari- 
ables with identical l-dimensional distribu- 
tions. The +n-dimensional random variable 
X =(X, , X,, . , X,) is called a random sample 
of size n from the population (0, g, P). In 
particular, when each of X,, . . . , X, takes only 
two values (usually 0 and l), the sample is 
called a Bernoulli sample or a sequence of 
Bernoulli trials. Generally, if Qn is the tn- 

.dimensional probability distribution deter- 
mined by X (i.e., the direct product of n copies 

of the l-dimensional probability distribu- 
tion Q), then the n-dimensional probability 
space (R”, &J!“, @,.), where !F is the family 
of n-dimensional Bore1 sets, is called an n- 

dimensional sample space. A point belonging 
to the set of actually observed values of the 
sample X, which is a random variable by 
definition, is called a sample value and is de- 
noted by x. Thus the sample value can be 

expressed as x=X(w) (weQ) and regarded as 
a point in the sample space (sample point). The 
basic underlying structure which determines 

the probability distribution is the set Q, which 
we can view as describing the physical struc- 

ture of the observed phenomena, but statistical 
procedures are always carried out through the 

observations of samples, and R itself is often 
disregarded. The l-dimensional probability 
distribution Q, (the n-dimensional probability 
distribution a’, determined by X) is called the 
population distribution in the l-dimensional (n- 

dimensional) sample space, since it is induced 

from the probability measure on (Q &9). 
A statistic Y is a random variable expressed 

as Y=f(X), where f is a tmeasurable func- 

tion from the sample space (R”, S?“, @J into a 
measurable space (R, gi). The value of the 
statistic Y corresponding to a sample value x 
of the sample X is denoted by y =f(x). 

When we deal with a statistical problem we 
often have no exact knowledge of the popula- 

tion distribution @(@,.) except that it belongs 
to a family 9 = {P, 18~ 0) of probability mea- 
sures on L@(%“). We call fI the parameter of 
the probability distribution and 0 the para- 
meter space. The typical cases described in this 

section can be extended as follows: (1) The 
distribution Q, may be an r-dimensional proba- 
bility distribution. In this case a sample of size 
n induces an nr-dimensional sample space. (2) 
Random variables Xi, . ,X,, being mutually 

independent, may not have identical distri- 
butions. (3) Random variables Xi,. . . , X, may 
not be mutually independent. In both cases 
(2) and (3) the sample space is of the form 
(R”, 9, O,,), but n may not be the sample size 

itself, nor Qn be the direct product of n copies 

of identical l-dimensional components. (4) The 
most general sample space is expressed as a 

certain measurable space (%, &) and a family 
9 = {P, 10~ O} of probability measures on d. 

A statistic, in general, is a random variable 
expressed as Y=f(X) by a measurable func- 
tion f defined on a sample space (F, Se) taking 
values in another meaurable space (g, U). 
When (“Y, q) is (R, 3”) or (R”, a”), Y=f(X) 
is accordingly called a l-dimensional or n- 

dimensional statistic. 

C. Population and Sample Characteristics in 
the l-Dimensional Case 

In a l-dimensional probability space (R, 
@, PO) the following quantities, called popu- 
lation characteristics, are used to characterize 
the population distribution PO: Letting F(z) = 
P3(( -co, z]) be the tdistribution function of 
P,,, we use the population mean p = jz dF(z); 

the population variance 0’ = s(z - p)’ dF(z); the 
population standard deviation cr( > 0); the popu- 

lation moment of order k p; = s zk dF(z) (p’, = p); 

the kurtosis p4/04; the coefficient of excess 

(p4/g4) - 3; the skewness p3/03; the cc-quantile 
or 100QO-point m satisfying F(m - 0) < CY < 

F(m + 0); the median, which is the SO%-point; 
the first and third quartiles, which are the 
25x-point and 75x-point, respectively; the 
range, which is the third quartile minus the 
first quartile; and the mode, which is the value 
or values of i for which dF(z)/dz attains its 
maximum. 

Sometimes the kurtosis and others are 
called population kurtosis, etc. Here the word 
“population” is used when it is desirable to 

distinguish population characteristics from the 
sample characteristics defined in 341 Proba- 
bility Measures. 

Letx=(x,,...,x,)beapointofann- 
dimensional sample space (a sample value). 
Corresponding to each l-dimensional Bore1 
set A, the number of components of x that 

belong to A is called the frequency of A in the 
sample value x = (xi, . , x,), and (frequency)/n 

is called the relative frequency of A. If we take 
A=( -co, z] and regard its relative frequency 
F,(z) as a function of z, it becomes a tdistri- 

bution function for every x E R”, called the 
empirical distribution function based on x. 

Various characteristics can be defined from 
the empirical distribution function in exactly 
the same way as population characteristics are 
derived from a population distribution func- 
tion. These are called sample characteristic 

values and can be expressed as functions of 
x ,,“‘, X”. 

Assuming that x = (xi, . , x,) is a sample 

value of a sample X = (Xi, . . , X,,), the statistic 
obtained by substituting X for x in the func- 

tion denoting a sample characteristic value is 
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called a sample characteristic and given the 
same name as the corresponding population 
characteristic, except that the word “popula- 
tion” is replaced by the word “sample.” A 

sample characteristic is a function of random 
variables. Hence it is also a random variable, 
and the problem of deriving its probability 

distribution from the assumed population 
distribution is called that of sampling distri- 
bution (- 374 Sampling Distributions). Thus 
we define the sample mean X =CG1 X,/n; the 
sample variance J& (Xi - X)‘/n (sometimes 
CFZ’=l (Xi - X)‘/(n - 1) is taken as the sample 
variance); the sample standard deviation 

which is the positive square root of the sample 
variance; the sample mode, which is the value 
taken by the largest number of Xi; and the 

sample moment of order k Zy=, (Xi - X)‘/n. 
Among other statistics of frequent use are 

the order statistic, i.e., the set of values of 
X, , . , X, arranged in order of magnitude and 

usually denoted by X,,) < X,,, < <X,,,. 
Various other statistics are defined in terms 

of order statistics: the sample median Xmed = 

Xc(n+l)i2) for odd n and = (Xcniz, + Xccn,2j+1J/2 
for even n, the sample range R = max Xi - 
minXi=Xc,,-Xc,,, and so on. The empir- 
ical distribution function F,(z) or its standard- 
ized form S,(z) = &{ F,(z) - F(z)} can also be 

considered to be a function of the order sta- 
tistics, and hence is a statistic taking values in 
the space of functions of a real variable. So is 
the empirical characteristic function 

&(t)= exp(itz)dF,(z)=Cexp(itx(j,)/n. 
s i 

In a sequence of Bernoulli trials, a set of 

successive components with an identical value 
is called a run. For example, (01100010) has a 
run of 0 of the length 3 and a run of 1 of the 

length 2. 
Among the statistics listed in the previ- 

ous paragraphs, the order statistic is an n- 
dimensional statistic and all others are l- 
dimensional. 

D. Other Cases 

Let (R*, @, P,) be a 2-dimensional probability 

space with a 2-dimensional population distri- 
bution P,, and let (X, , . . . , X,) (Xi = ( Ui, v)) be 
a random sample of size n from P,,. In this 

case also, the population characteristics for 
the tmarginal distributions of Ui and q and 

sample characteristics for (U, , . . . , U,) and 

(V, , , V,) are defined as in Section C. 
As an index for association between Ui and 

F the population covariance J(u-p(,,)(u- 
p&dF(u, u) of Ui and y and the population 
correlation coefficient, which is equal to (popu- 
lation covariance)/rr(,,+,, are defined. Here 
F(u, u) is the joint distribution function of Ui 

and K pcl) and pc2) are the respective popula- 
tion means of Ui and 6, and a(,, and a(,, are 
the respective standard deviations. As corre- 

sponding sample characteristics, we have the 
sample covariance CL1 ( Ui - U) (y - V)/n of 
(U,, . , U,) and (V,, , V,) and the sample 
correlation coefficient 

Similarly, statistics of the samples from a 

population of k-dimensional distribution 
(k 2 3) can be defined (- 280 Multivariate 
Analysis). More generally, in statistical in- 

ference we encounter samples where observed 
values may not be mutually independent or 
identically distributed, but have more com- 
plicated probability structures. Statistics as 
functions of such samples are also considered. 

E. General Properties of Statistics 

The general theory of statistics has been 
studied in a measure-theoretic framework. 
(3, -r4,P) is called a statistical structure, where 
(%, Se) is a measurable space and B is a family 

of probability measures on (X, d). A (r- 
subfield &? of & (hereafter abbreviated a-field) 

is called sufficient for B if for any A EJZZ there 
exists a g-measurable conditional proba- 
bility of A independent of PO E 8, that is, ‘a a- 
measurable function (PA(X) satisfying 

PotA n B) = 
s 

v,kW’,,(x) 
B 

for all Poe9 and BE.%?. 
For any two g-fields gl and gZw,, the nota- 

tion 9, c~[P] means that to each set A, 
in til there corresponds an A, in aZ satisfy- 

ing P,((A, -A,)U(A,-.4,))=0 for all PogB. 
When the reverse relation &?* ca’, [P] also 
holds, we write G?, = & [P]. 

For a statistic t which is a measurable func- 
tion from (X,d) to (Y,%?), g(t)={BIB~.ti, 
ME%?} is a c-field and is called the o-field 

induced by t. If a(t) is sufficient for .Y, t is said 
to be sufficient for 8. Since sufficiency of a 
statistic means that of a a-field, we consider 
only sufficiency of a a-field. 

3 is called necessary if for any sufficient g0 
we have B c &$[P]. A necessary and sufficient 
u-field is called a minimal sufficient g-field. A 
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necessary and sufficient statistic is also called 
a minimal sufficient statistic. Such a statistic 
does not always exist; .%32 containing a sufh- 
cient 28i is not always sufficient. 

D is said to be complete if for every 8- 

measurable integrable function cp, Jx Q(X)&‘,(X) 
=Oforall P,EYimplies PJ{xlcp(x)#O})= 
0 for all P,EY. 93 is said to be boundedly com- 
plete if for every bounded &?-measurable cp, 
~.r(p(x)dPo(x)=O for all Po~9 implies P,({xl 

q(x)#O})=O for all P,eY. When 3(t) is 
(boundedly) complete, t is called (boundedly) 
complete. If .%, c .GY2 and 9& is (boundedly) 
complete, 93, is also (boundedly) complete. If 
.%, is (boundedly) complete and sufficient and 
9& is minimal sufficient, we have 9, = 9J2 [Yj. 

F. Dominated Statistical Structure 

When all P,,E~ are absolutely continuous with 

respect to a o-finite measure i on .d, then 
(Z, :d, 9) is said to be a dominated statistical 

structure and .oP is said to be a dominated 
family of probability distributions. In this case, 
Ps has the density ,&(x) = dP,/di with respect to 

i by the Radon-Nikodym theorem. If SZ? is 
separable, 9 is a separable metric space with 

respect to the metric p(Pol, PB,)=supBt d IPo,(B) 

-Pe2(B)I. There exists a countable subset Y= 
{P,,,Po2,...) of 9 such that P,(N)=0 for all 
P,EY implies P,(N)=0 for all P,ES. If we put 
i.,=CiciPol, c,>O, Cici= 1, &, dominates 9, 

and if .?8 is sufficient for Y we can choose a 1?A- 
measurable version of dP,/di,,. Conversely, if 
there exists a a-finite measure i such that we 

can choose a g-measurable version of dP,/di 
for all PotzY, then 98 is sufficient. 

If 9 is dominated by a a-finite 2, .“A is suffi- 
cient if and only if there exist a d-measurable 
g,, and an .d-measurable h independent of 0 

satisfying 

dpo -=g& a.e. (&,A) for all PoE9. 
di 

This is called Neyman’s factorization theorem. 
With a dominated statistical structure, there 

exists a minimal sufficient c-field, and a o-field 
containing a sufficient o-held is also sufficient. 

We say that a o-field g is pairwise sufficient 
for 9 if it is sufficient for every pair {PO,, P,,} 

of measures in .Y. A necessary and sufficient 
condition for 9 to be sufficient for a domi- 
nated set B is that 3 be pairwise sufficient for 

.“p. 
Recently, a more general statistical struc- 

ture has been studied. Put =,(p)= {A 1 A~sd, 

p(A) < a}. A measure p on d is said to be a 

localizable measure if there exists ess-sup 9( p) 
for any subfamily B c &Jp), that is, if there 

exists a set E E .d such that p(A - E) = 0 holds 

for all AEF-, and p(A-S)=O for all Ae,F 

implies p(E - S) = 0. A a-finite measure is 

localizable. A measure p is said to have the 
finite subset property if for any A satisfying 0 < 
p(A), there exists a B c A satisfying 0 <p(B) < 

co. A statistical structure (S, &, 9) is said to 
be weakly dominated if 9 is dominated by a 
localizable measure p with the finite subset 

property and a density dP,/dp exists for all 
Polyp. In this case a minimal sufficient a-field 

exists, and a pairwise sufficient o-field is suffi- 
cient. For example, let .d = 2” and B be the 
set of all discrete probability measures on .d. 
9 is weakly dominated by the counting mea- 

sure p which is localizable on J&‘. 
The order statistic is sufficient if 9 is domi- 

nated, Xi, , X, are mutually independent 
and identically distributed random variables 
with Z = R”, and each Ps 6.9 is invariant under 
every permutation of the components of the 
points x=(x, , , x,) in 3. Moreover, the 

order statistic is complete if 9 is large enough. 
For example, we have the following theorem: 

The order statistic is complete if every P,” (the 
component of P. on a0 c @, f3 E 0) is ab- 
solutely continuous with respect to the Lebes- 
gue measure I on R and { Pj 10~ 0) contains 
all Pi for which g(z) = dPi/dl is constant on 

some finite disjoint intervals in .SYO c R. A 
similar result holds for discrete distributions. 

We call 0 a selection parameter when ,/i(x) 
= c(f?)~,~(x)h(x), where h(x) is a positive a- 
measurable function, xER(x) is the indicator 

function of a set &E&Y, and c(0) is a constant 

depending on 0. Here 0 determines the carrier 
E, of f&x) but does not essentially affect the 
functional form of f&x). A necessary and suffi- 
cient statistic is given by t*(x)= n {Es1 E,ZIX, 

P,E.~‘}. Here the class of sets of the form given 
in the right-hand side of this expression is 
takenasY,andweset%‘={ClCc:Y,t*~‘(C)E 

28). We call t*(x) the selection statistic. Two 
examples follow. 

(I) TUniform distributions. Let 0 = {(a, /J) I 
--x <a<B< a}, T,,=R, Pj be the uniform 

distribution on (a, /J’), and X=(X,. , X,) be a 
random sample of size n having P,p as its popu- 
lation distribution. Then E, = {x 1 (x ,< mini xi < 
max,x,<fi} and fk(x)=(B-a)~“~l,,(x). If we 
put t(x)=(minixirmaxixi), Y=R’, and %= 
the set of all Bore1 sets of R2, it follows that 

r(x) = t*(x) [Y], where t*(x) is the selection 
statistic. Hence t(x) itself is necessary and 
sufficient. 

(II) tExponentia1 distributions. Put 0 = 

(-co,co),TO=R,and 

where r is a known constant, and let X = 
(X,, , X,) be a random sample of size n 
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having a population distribution with density 
function c&). Then 

t,=(x\O<mjnx,}, 

&lx) = x”e”““~,u(x)exp --3 f xi 
( > i=, 

If we put t(x)=min,xi and let t*(x) be the selec- 
tion statistic, it follows that t(x) = t*(x) [S], 
and t(x) is necessary and sufficient. If 0 = 

{(a,B))O<:a<~,--n~<O<co},thent(x)= 
(mini xi, C, x~) is a necessary and sufficient 
statistic. 

G. Exponential Families of Distributions 

A dominated B is called an exponential family 
of distributions if and only if ,f&) = dP,/di can 
be expressed in the form 

.A,(4 = ew 
c 

i sji(x)aji(fl) + aO(u) + sO(x) 
> 

, 
j=l 

XEX, UEO, (1) 

where the sj(x) (j = 0, 1, , k) are real-valued 

S-measurable functions and the E,(B) (j = 0, 
1. , k) are constants depending on 0. If there 
exists a sufficient statistic for Y that is not 
equivalent to but is in a certain sense simpler 
than the sample itself or the order statistics, 
then it can be shown under some regularity 

conditions that Y must be an exponential 
family. The following theorem provides an 

instance of the hypotheses that guarantee 
such a conclusion: Let X be a sample from 
a l-dimensional probability space (x0, a,,, P,“) 
with Pf the population distribution, where x0 

is a finite or infinite interval in R and a0 is 

the class of all Bore1 sets. Let I denote the 
Lebesgue measure. Assume that {Pi) is domi- 
nated by I and g,,(z) = dPj/di is greater than a 
positive constant and continuously differenti- 
able in z on SO. Assume further that there 
exists a sufficient statistic t(x) with the prop- 
erty that for each open subset B of 9’ ( t R”) 
and i-null set N there are two points x f x’ 

in B - N such that t(x) # t(x’). Then :Y is an 
exponential family, and the k given in (1) is 
less than n. Similar results are known also 

for cases where X, , X, are not identically 
distributed. 

It is evident from the construction of a 
necessary and sufficient statistic that the 
statistic t(x)=(si (x), . . . ,.s~(x)), where the s/(.x) 

are those appearing in (1) is sufficient for an 
exponential family and necessary if xi(H), , 
~(0) arc linearly independent. If ((cI, (O), _. , 
a,(U)) ( UE 0 1 contains a k-dimensional interval, 

t(x) is complete. The distribution of t(x) is of 
exponential type. When X,, . . . , X, are mutu- 

ally independent with a common distribu- 
tion of exponential type, the distribution of 
X = (X, , . X,,) is of exponential type, and 

vice versa. The family (1) of distributions is a 
special form of +Polya-type distributions, and 

various distributions given in (III)-(VII) below 
are written in this form. In the following exam- 

ples, for a sample of size n from the specified 
distribution, h(x) is the density with respect 
to Lebesgue measure in (III), (IV), and (V) 
and to counting measure in (VI) and (VII) 
(- Appendix A, Table 22). 

(III) +Normal distributions N(,u, a’), ~rO,= 

(--‘lj> m30). 

(IV) +I-distributions T(p, a), X0 = (0, co). 

.h(x)=exp 
( 

(P- lli$logxie~,$ xi 

-tIplogo-nnloglJp) . 
> 

(V) tExponentia1 distributions e(l, a), X0 = 

h xi). 

,f,(x)=exp 
cc > 

- f: xi i--n*ogn+nz 
i=l ! 

(VI) +Binomial distributions Bin(N, p), To = 

(0,l ,.I., N). 

.hW=exp 
(( > 

f: xi lOg&fnNlOg(l -p) 
i=, 

n 
- 

c i=l 

(VII) +Poisson distributions P(A), So = 

(0, 1,2,3, . . . ). 

.&x)=exp 
cc ) 

i xi log/z- f log(x,!)-ni 
i=l i=l > 

H. Ancillary Statistics 

A statistic t(x) is called an ancillary statistic 
when for every element A in .&(t), P,(A) is 
independent of 0, or in other words, when the 
distribution of t(x) is independent of 8. A sufft- 

cient condition for a statistic to be ancillary is 
that it is independent of some sufftcient statis- 

tic. Conversely, an ancillary statistic is inde- 
pendent of all boundedly complete sufficient 
statistics. 

I. Invariant Statistics 

Suppose that we are given groups of one-to- 
one measurable transformations G and G  ̂on 
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P’ and 0, respectively. Suppose also that we 
are given a thomomorphism g-3 from G to c 
satisfying P&g-‘B)=P,,(B). In this case p= 

{ PR 18~ O} is called G-invariant. If G 1s transi- 
tive, there exists a fixed element 0, of 0 that is 
sent to an arbitrary Q by an element g of G. In 
this case, B is called a transformation para- 

meter. In particular, if 0 = R, X is a random 
sample from a population distribution, and 
P,(B)=Poo(B-O), whereB-O={xI(x,+ 
0, , x, + 0) E B}, then 0 is called a location 
parameter. When 0 = (0, co) and P,(B) = 
P,(B/B), where B/H={xI(Ox,, . . . . HxJEB}, f3 
is called a scale parameter. Now assume that B 
is a combination of these two kinds of param- 
eterssuchthatO=(sr,fi)(-a<<a<,O< 

b < co) and P,(B) = Peo((B - x)/B), where 0, = 
(0,l). Then if 9 is an exponential family, (1) 

of Section G can be written as 

where the kj (j = 0, 1, , m) are constants. 
We call t(x) an invariant statistic with re- 

spect to a general transformation group G 
when t(gx)=t(x) for all gEG and x~%“. An 
invariant statistic is said to be maximal invar- 

iant with respect to G if, for t(x) = t(x’), there 
exists a g E G such that x = gx’. If t, is maximal 
invariant with respect to G, a statistic t is 
invariant under G if and only if t,,(x) = t,(x’) 

implies t(x) = t(x’). 
When 9 is G-invariant, a set A (E.&) is called 

G-invariant if gA = A for all g E G. We denote 
by -do the set of all G-invariant sets in &. 

.d” is clearly a c-field. A set A (E&) is called 
almost G-invariant if gA = A (~2, .Y) for all g E G. 
We denote by zZ* the o-field consisting of all 
almost G-invariant sets. If 9 is G-invariant, % 
is sufficient for 9, g%? = 8 for all g E G, and 
moreover, 8’ = &?* (,d, g), then go is a sutli- 
cient o-subfield of do, where go = a fl do and 
93*=and*. 

J. Various Definitions of Sufficiency 

There are many different definitions of sufi- 
ciency, and the relations among them have 

been investigated. A cr-field 8 is called decision- 
theoretically sufficient or D-sufficient if for a 
given d-measurable decision function 6 there 
exists a g-measurable decision function 6’ 
such that 

s 
6(x, E)dP,(x)= 6’(x, E)dP,(x) 

!/ s .!l 

for all E E 9, PB~.Y, where a decision space 
(D, 9) is quite arbitrary. % is called test suffi- 

cient if for any given &-measurable test func- 
tion cp, there exists a g-measurable test func- 

tion cp’ satisfying E,(q)= E,(cp’) for all P,EY. 
Let (0, +Z) be a measurable space of parameter 
0 and 6 be the set of all probability measures 
on %‘. Moreover we assume that P,,(B) is +Z- 
measurable as a function of f3 for any fixed 
BE&. For any 5~6, we define 1, by 

i&A x C)= P,(A)d<(O), Aed, CEW. 
s C 

We denote by & the extension of i, to & x V. 
# is said to be Bayes sufficient if 

E~~(l,.,l~xx)=E~~(I,.,I~xx) 

for all 5~ 6, CE W, that is, the a posteriori 
distribution on 0 given & coincides with that 
given a for any a priori 5. When B is domi- 
nated, these definitions coincide with the class- 
ical definition of sufficiency. Generally, a D- 
sufficient g-field contains at least one sufficient 

g-field. A a-field containing a sufficient o-field 
is Bayes sufficient. Hence Bayes sufficiency 
follows from D-sufficiency and from classical 
sufficiency. If a D-sufficient g-field is separable 
it is sufficient. 

The notion of prediction sufficiency or ade- 
quacy was defined by Skibinsky [lo]. Let 
(X, Y) be a pair of random variables defined 

over the probability space (?Z x 03, & x g’, yO). 
We suppose that X is the sample to be ob- 

served, and Y is (are) the value(s) of future 
observation(s) about which we are to make 
prediction(s) based on X. X and Y have joint 

probability distribution with an unknown 

parameter. A statistic T= 7’(X) or a subfield 
V of zz! is said to be prediction sufficient or 

adequate if (a) given T, X and Y are condition- 
ally independent (or given %‘, & and g are 
conditionally independent or Markov) and (b) 
T is sufficient for X (% is sufficient for d). It 
was proved that in any form of prediction on 
Y, we may restrict ourselves to the class of 
procedures that are functions of 7 (or are %- 

measurable). 
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A. Statistical Data 

Statistical data analysis is comprised of a col- 
lection of mathematical methods whereby 
we can deal with numerical data obtained 
through observations, measurements, surveys, 

or experiments on the “objective” world. The 
purpose of statistical analysis is to extract the 
relevant information from that numerical data 

pertinent to the subject under consideration. 
The nature and the properties of the subject 

and also the purpose of the analysis may vary 
greatly. The subject may be physical, biolog- 
ical, chemical, sociological, psychological, 

economic, etc. in nature, and the purpose of 
the analysis can be purely scientific, as well as 
technological. medical, or managerial. Because 
of the great diversity of statistical data, the 
methods of statistical data analysis and the 
manner of application should differ greatly 
from situation to situation; we cannot expect 

a single unified system of methods to be ap- 
plicable to all cases. Nevertheless, we have 
several formal methods of statistical analysis 

that are more or less mutually related and 
have been successfully applied to most, if not 
all, statistical data. 

Statistical data can be classified into several 
types according to a few criteria: according 
to the property of each observation or mea- 
surement, they can be either quantitative or 

qualitative; according to whether only one 
observation is made on each object under 
investigation or many observations on the 
same object, they can be either univariate or 

multivariate; and according to whether the 
observations are made at one time or consecu- 
tively in the course of time, they may be either 

cross sectional or time series. Each different 
type of statistical data requires a different 
type of procedure (- 280 Multivariate Anal- 
ysis, 421 Time Series Analysis). 

B. Frequency Distributions and Histograms 

Statistical data have the simplest structure 

when they consist of a collection of observa- 
tions made on an aggregate of objects sup- 
posedly of the same kind. Such an aggregate is 

usually called a population, and the number of 
its members (its size) is denoted by N. When 
the data are qualitative or categorical, each 
member of the population is classified into 
several types according to some criteria, the 
data consist of the numbers of the members 
of the population classified into each of the 

categories. Such numbers are usually called 
frequencies, and the set of frequencies is called 
the frequency distribution. 

When the data are quantitative and univari- 
ate, one quantitative attribute of each member 
of the population is observed, and the results 
are given as a set of N real numbers (x1, x2, 

“‘/ xN). When N is large, as is usually ex- 
pected, it is necessary to summarize these 
results in some manner. One common method 

is to tabulate the frequency distribution: We 
define a certain number of intervals (aim,, ai], 
i=l,..., K,a,<a,<...<a,,a,dminx,, 
max xi < a,; and we count the numbers of 
those x’s falling within each of the intervals 

and tabulate those numbers or frequencies f., 
i= 1,2, , K. Frequency distribution is often 
represented in the form of a histogram, where 

the endpoints of the intervals are marked on 
the horizontal axis, and above each interval a 
rectangle of area proportional to the frequency 
for the interval is drawn. It is usually recom- 
mended that the widths of the intervals in the 
frequency distribution be equal, especially 
when it is to be represented by a histogram. It 

is, however, often impossible or impractical to 
do so, and sometimes a logarithmic or other 

functional scale is used in the abscissa of the 

histogram; then it is desirable that the inter- 
vals of the transformed values are approxi- 
mately of equal lengths. The number K of the 
intervals should also be of an appropriate 
magnitude, neither too large nor too small; K 
is often constrained by the size N of the popu- 
lation, the shape of the distribution, or other 
factors. Usually, K is chosen to be between 6 

and 20. 
From the frequency distribution, we obtain 

the cumulative distribution by associating with 

each endpoint ai of the intervals the number Fi 

of x’s not greater than ai, namely, Fi = Cjsih. 
The curve obtained by connecting K + 1 points 
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of coordinates (ai, FJ, i = 0, 1, , K, by linear 

segments is called the cumulative distribution 
curve (or polygon). 

C. Characteristics of the Distribution 

In order to summarize univariate quatitative 
data, various values are calculated from the 
values x,, . , xN. Such values are called statis- 

tics (singular, ‘statistic) and are used to char- 
acterize the distribution of the values. Various 

types of statistics characterize different aspects 
of the distribution: 

(a) Representative value or measure of loca- 

tion: a value which is supposed to give the 
“representative,” “ typical,” or “most common” 

value in the population. By far the most com- 
monly used measure is the mean X=x:, xi/N. 
Z is sometimes called the arithmetic mean, and 

some other “means” are also calculated: es- 
pecially when all the values are positive, the 
geometrical mean Xc = (n,xil’“) or harmonic 
mean X,= (Ci(l/xi)/N))’ may be calculated; 
more generally, for some monotone function 

j’(x) we can calculate the S-mean by x,. = 
f-‘(Cif(xi)/N), of which the geometric and 

the harmonic means are special cases. Another 
measure of location is the median, which is the 
value in the population located exactly in the 
middle of the ordering of the magnitudes; more 
precisely, if x(r) < x,~) < . . < x,~) are the values 
in the population arranged according to their 
magnitudes, the median x,,,,~=x~~~+~~,~~ for odd 

N, and =~(x~~,~,+x~(~,~)+~)) for even N. The 
mode is also sometimes used; this is defined as 

the value (usually the center) corresponding to 
the highest frequency. 

(b) The measure of variability or dispersion 
shows how widely the values in the popula- 

tion vary. The most common measure is the 
standard deviation, which is defined by s,= 

dm, and its square is called the 
variance VX2. A similar measure is the mean 
absolute deviation D, = xi jxi - xl/N. Another 
type of a measure of dispersion is the range R, 
= max xi - min xi, and the interquartile range 

Qx = -YJN/~) - xw/4) and more generally the 
interquantile range x~,~) - x(r, +Nj for some cc 

The ratio of the standard deviation to the 
mean is called the coefficient of variation (C. V. 
for short) and is used as a measure of relative 
variability when all the values in the popula- 
tion are positive. 

(c) Characteristics often used to characterize 
the “shape” of distributions are the moments 
(around the origin) mk = N -’ xix” and the 
central moments (moments around the mean) 
M, = N -’ &(xi - X)’ for a positive integer k; for 

a specific k these are called the kth moments. 

Central kth moments with odd k are equal to 
zero when the distribution is symmetric, i.e., 
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when the histogram is symmetrically shaped. 
Hence the third moment or its ratio to the third 
power of the standard deviation s,” is used as a 
measure of the asymmetry of a distribution; 

this is called the skewness. The fourth moment 
is large if there are some values which are far 
off from others and small when all values are 

concentrated; hence it tends to be large when 
the histogram has a rather sharp peak in the 

center and has a long tail in either direction 
or both, and tends to be small when the histo- 
gram is flat in the center and drops off sharply 

at both ends. Accordingly, the ratio M,/V,f is 
used as a measure of long-tailedness of the 

distribution; this ratio minus 3 is called the 
kurtosis. 

D. Theoretical Frequency Distribution 

When the observed values can be any real 
number (sometimes in an interval), the size of 
the population N is increased indefinitely, and 

the widths of the intervals are decreased to 
0, the histogram is expected to approach a 
smooth curve. And in the limit when N is 

infinity, we can assume that the distribution is 
represented by a mathematically well-behaved 

function f(x) and that the ratio of the numbers 
of those values in the population within the 
interval (a, b) to the size of the population 

approaches jif(x)dx. Such a function j’(x) is 
called the frequency function or density func- 
tion. Various types of functions have been 
proposed and used as “theoretical” frequency 
functions to approximate the actually ob- 
served frequency distributions. The most im- 

portant is the normal density function 

cp(x)=- qkexp i -&X-P)’ 1 
The following density functions most com- 

monly appear in applications: the gamma 
density, f(x) = xp-’ exp(-x/a)iaPT(p) for x>O 
and = 0 for x < 0; the beta density, f(x) = 
xP-‘(1-x)4-1/B(p,~)forO<x<1 and =0 
otherwise. 

We can conceive of a population of infinite 
size with some density function; the term 

theoretical distribution is used to mean such 
a population with its density function, and 
more specifically the tnormal distribution, etc. 

Such a population and associated density is 
often called a continuous distribution. For a 
theoretical distribution, the mean, variance, 

and moments are naturally defined by 

/I = 
s 

xf(x) dx, d = 
s 

(x - p)‘f(x)dx, 

pk= (x-dkfWx> 

s 

p;= xkj”(x)dx. 
s 
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It should, however, be noted that the mean, 
the variance, or the moments may not exist for 
particular distributions. 

K. Pearson introduced a system of density 
functions defined as solutions of the differen- 

tial equation 

dInf(x)/dx=(A+Bx)/(C+Dx+Ex?), 

where A, B, , E are constants. A distribution 
thus obtained is called a Pearson distribution. 

The normal, gamma, and beta distributions 
together with some other commonly used dis- 
tributions, such as the t- and F-distributions, 
are Pearson distributions. 

E. Measure of Concentration 

When all the observed values are nonnegative 

in nature, we may sometimes require some 
measure of inequality or concentration of the 
distribution. For such a purpose we order the 
observed values according to their magnitudes 
and obtain x cI,~x~2,~...<x,,,; wedefineSi= 
&,ix,i,fori=l,...,N,andS,=O,plotN+ 
1 points (S,/S,, i/N), i=O, 1, . . . , N, and con- 

nect them by line segments. The graph thus 
obtained is called the Lorentz curve or the 
curve of concentration, and it connects the 

origin and the point (1,l). It lies below the 45” 
line, and if all the values are nearly equal the 
curve comes close to the 45” line, but if values 
are widely unequal, the curve comes close to 
the horizontal axis and suddenly jumps to the 
point (1,l). The area between the curve and the 
45’ line is called the area of concentration, and 
it is equal to one-fourth of the mean difference 
5 divided by the mean, where 6 is defined by 

G = h/j~ is called the Gini coefficient of con- 

centration and is used as a measure of con- 
centration or inequality of distribution. Other 
measures, including the coefficient of variation, 
are also used to represent the concentration. 

F. Discrete Distributions 

There are cases where the observed values 
are taken only from the nonnegative integers, 

e.g., the number of individual animals of a 
specific species in an area, of accidents during 

a specified time, etc. In such cases, when we 
increase the number of observations, the distri- 
bution does not approach one with a contin- 
uous density function but rather one with 

a certain theoretical discrete distribution. 
Among theoretical discrete distributions, the 
most commonly used are the binomial distri- 
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bution: .h = .C,pj( 1 - p)“-j for 0 d j d n, and 
the Poisson distribution: fj = e -’ iL’/j! for j = 
0, 1, The bypergeometric distribution: ji = 

MCj.N-MCn-jlNC,,r for max(O, M+n-N)< 
j < min(n, M), and the negative binomial distri- 
bution:,&=j+,~,C,~,pr(l-p)‘,j=O,l ,..., are 

also often used. 
For discrete distributions we can defme 

moments by p = C,jr;. and pk = Cj( j- p)“.fi, and 
pL;=cjjk,fi, k=2,3 ,.... 

G. Generating Functions and Cumulants 

For a theoretical distribution with the density 

function j’(x), the moment generating function 
M(O) is defined by M(0)=~esX,f(x)dx. When 
M(O) is well defined in an open interval includ- 
ing the origin, the distribution has all kth 

moments, and it can be expanded as 

1 I 1 
M(0)=l+~‘,6+2j~,02+...+~~;Ok, 

from which the term “moment generating 
function” is derived. When 6 is replaced by it 
with real t, we have the characteristic function 
cp(t)= M(u), which can be expanded as 

~(f)=l+p)(if)+~,r~(if)‘+...+~p~(if)k 

+41tlk) 

if the distribution has moments up to the 

kth. The function K(O) = In M(0) is called the 
cumulant generating function, and the coeffi- 
cients xj in the expansion 

are called the cumulants. The kth cumulant kk 
is expressed as a polynomial of the moments of 

order not exceeding k; thus 

ICI =LL;, $ =c(; -$12> K3 = p; -3/L&‘; + 2143, 

etc. 

For the normal distribution, 

M(U)=exp pQ+E 
i I 2 ; 

hence 

and the kth cumulant for k > 3 is equal to 0. 

Cumulants are used as measures indicating 
whether the distribution is close to or different 
from the normal. 

For discrete distributions, the moment 

generating function is defined as M(0) = 
C e’j.6, but the probability generating func- 
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tion P(t)= C&l’= M(lnt), the factorial 
moment generating function Q(O) = P(B + I), 

and the factorial cumulant generating functions 
R(t) =ln A(t) are also of use. The coefficient of 

tj in the Maclaurin expansion of a(t) is ex- 
pressed as +, and called the kth factorial 
moment; it is equal to j+, = Ej j( j - I) . . (j - 
k + l)fj. That in the expansion of R(t) is the 
factorial cumulant. The factorial cumulant rctkl 

is expressed by the same polynomial in pt,, as 
K~ is expressed in p;. For the Poisson distri- 
bution, M(O)=expA(e’ - 1); hence r?(t)= Jr 

and it follows that the factorial cumulants ICKY, 
for k > 2 are all equal to zero if and only if the 
distribution is Poisson. 

H. Bivariate Distribution 

When two quantitative observations are ob- 
tained for each member of a population of 
size N, the results are given as N pairs of real 

numbers (xi, yJ, i = 1,2, . . , N. Such data are 
called bivariate data and the distribution, 
bivariate distribution. Those data can be illus- 
trated as N points in a plane with coordinates 
(xi, yJ, and such an illustration is called a 
scatter diagram. In order to characterize a 
bivariate distribution, we often use bivariate 
moments 

where ? and y are the means of x and y, re- 
spectively; especially, the (1,l) moment M,,, 

is called the covariance and is denoted as 
COV(X, y). The most often used measure of 
the strength of the relation between x and 
y values is the correlation coefficient rX,Y = 

Cov(x, y)/s+ where s, and sY are the stan- 
dard deviations of x and y. It is easily shown 
that -1 <I , x,y G 1, and when there exists a 
nearly linear relationship between x and y 

values, rx,Y is close to either +1 or -1 accord- 
ing to whether the x and y values change in 
the same direction or in opposite directions. 
When there is no clear relationship between x 

and y, the correlation coefficient is close to 
zero, but it may not be a good measure of the 
relationship when x and y values are related 
nonlinearly. 

A linear function y = a + bx is called the 
linear regression function of y on x, for which 
the sum of the square distances Ci(yi - a - 

bx,)’ is minimized. For the linear regression 
function the coefficients u and b are deter- 
mined by b = Cov(x, y)/s: and u =y - bx, and b 

is called the regression coefficient. We have 

that Zi(yi-a-bxi)2/C(yi-~)2= 1 -r$, i.e., 
that the square of the correlation coefficient is 
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equal to 1 minus the ratio of the variance of 
the residual yi-a- bxi to that of y; hence it is 
sometimes called the coefficient of determina- 
tion. Similarly, the linear regression function 

of x on y is defined by x = c + dy, where d = 

Cov(x, y)/s: and c = X- dy. We have bd = r&,, 

and Il/dl=Ib/&J>jIbJ. 

We can tabulate the bivariate frequency 
distribution by splitting the range of x values 

into K intervals (aiel, ai], i = 1, . * K, and the 
range of y values into L intervals jbje,, bj], j= 

1, . . , L, and counting the number fj of cases 

for which ai-l <x<ai and bj_, <ydbj. In 
contrast to the bivariate frequency distribu- 
tion, the distributions of x and y values are 
called the marginal distributions. 

I. Bivariate Density Function 

As we did for the univariate distribution, we 

can consider the limiting shape of the bivariate 
frequency distribution when the size N of the 

population tends to infinity and define a con- 
tinuous bivariate distribution with density 
function f(x, y), with which the ratio of those 
members in the population with values (x, y) in 
a set S in a plane is given by jjSf(x, y) dx dy. 

The bivariate density function is also called 
the joint density, and then the density functions 
of x and y are called the marginal density 
functions and are given by f,(x) = jf(x, y)dy 

and f,(y) = jf(x, y) dx. The joint moments of a 

continuous bivariate distribution are defined 

by ~k,l=~jb-dk(~ -~r,)‘f(h y)dxdy, where 
p, and p(2 are the means of x and y, respec- 

tively. The joint moment generating function is 
defined by M(t,, tz) =~~erlx+*2Yf’(x, y)dxdy, and 
the cumulant generating function by K(t t, t2) 
= log M(t,, t2), from which the joint cumulants 

(jk+l 

K “-‘-atfat: ---K(t,,tJl*,=o,r,=o 

are derived. 
The conditional density of y given x is de- 

fined by f(y 1 x) =j(x, y)/f, (x), and the distri- 

bution with this density function is the con- 
ditional distribution of y given x; this latter can 
be interpreted as the distribution of y of those 
members in the population with x values in 
the interval (x,x + dx], where dx is small. The 
conditional density and the conditional distri- 
bution of x given y are similarly defined. The 
mean and the moments of the conditional 
distribution are called the conditional mean 

and the conditional moments. The conditional 
mean of y given x, considered as a function of 

x, is called the regression function of y on x. 
By far the most important theoretical bivari- 

ate density is the bivariate normal density, 
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which is given by 

f(x,Y)=(2~~1~2J1-p2)-’ 

1 (x-PlY (Y-d 
xexp 2(1-$) (r:+ { [ 0: 

~2p(x-Pl)(Y--I”2) 

a1 02 II1 

for which the mean of x is pI and that of y is 
p2, the variances of x and y are 0: and ~22, 
respectively, and the covariance of x and y is 
equal to per 02. The bivariate normal distri- 
bution has several remarkable properties: All 
the k, 1 joint cumulants are equal to zero for 

k + 12 3; the marginal distributions of x and 
y are normal; the regression functions of y on 
x and x on y are both linear; the conditional 
distribution of y given x (and x given y) is 
normal and the conditional variance is con- 
stant; and the contours f(x, y) = c for different 
values of c are equicentric ellipsoids. 

J. Higher-Dimensional Data 

When the data are of more than two dimen- 
sions, i.e., more than two observations are 

made on each of the objects, we designate the 
data by Nk-tuples of real numbers (xii, xi2, 
. ..) Xik), i= 1, . . . . N (k 2 3). Then we can calcu- 
late the moments of each of the variates and 
the joint moments, which are defined by 

M k,,k, . . . . . kk 

=~~(xil-XI)kI(Xi2-22)*2 . ..(Xik-Xk)kk. 

Also, we can arrange the variances and covar- 

iances in a symmetric matrix of order k, and 
we call it the (variance-) covariance matrix. A 
covariance matrix is easily shown to be non- 

negative definite. The determinant of the covar- 
iance matrix is called the generalized variance. 
The matrix with the (i,j) element equal to the 
correlation coefftcient of the ith and the jth 
variates rii (rii is set equal to 1) is called the 
correlation matrix and is denoted by R. R is 
also nonnegative definite. If we denote the 

(i, j) cofactor of R by R,, the quantity defined 

by 

R,~,,.,., (i) . .._. kc&f 

is called the multiple correlation coefficient of 
the ith variate and all other variates; and 

rijl1 (1) ,...,(j) ,.._, k= -RijIJRLiRjj . . 

is called the partial correlation coefficient of 
the ith and the jth variates given all other 

variates. The meaning of these coefficients will 
be elucidated below. A linear function a0 + 
u,~,+a,x,+...+a,~,x,~, iscalledthelinear 

regression function of xk on x r , . . , xkml, when 

the coefficients a r, . . , ukml are so determined 

that the sum Q=Ci(xik-a,-ua,xi, -...- 
ak-1~ik-1)2 is minimized. They are determined 

from the equation 

Cila,+Ci2a2+...+Cik-lUk~l=Cikr (*) 

i=l,...,k-1, 

witha,=x,-a,~,-...--a,-,~,-,, where C, 

are the covariances. a,, . , ak-r thus deter- 
mined are called the regression coefficients of 
xk on x,, . . . . xk-r, and such a procedure is 
called the method of least squares. The equa- 
tion (*) is called the normal equation. If we 

write~ik=a,+a,xi,+...+ak~Ixik~,,wehave 
Q=~(x~~-~~~)~=~(x~~-X~)~-~C(~~~-X~)~= 

C(Xik-Xk)2 X(1-R,,, ,.._, k-l*), where &I1 ,.._, k-1 
is the multiple correlation coefficient of xk and 
xl, . . . , xk-r, which is also equal to the correla- 
tion coefficient of xk and gk. The square of the 
multiple correlation coefficient is also called 
the coefficient of determination. The quantities 

xik -tik are called the residuals. Let ti k-l and 
fik be the values of regression functions of xkml 
and xk, respectively, on x1, . , xke2, and let 
yik-l =xikm, -iik-, and yik=xik-iik be the 

residuals; then the correlation coefftcient of y,-, 
and y, is equal to the partial correlation co- 

efficient of xk-r and xk given x1, , xkm2. 
We have the following relation between the 
multiple and the partial correlation coefftcients: 

l-R2 kll,...,k-I 

=(I -Rk2,, ,_.., k-2)(1 -rk2_l,k(L ,..., k-2). 

Multiple and partial correlation coefftcients 
are also expressed in terms of the correlation 

coefficients of the variates. For example, it can 

be shown that 

and that 

r2311 =(rz3-r12r13U (1--rf2)(l -rf3). 

For higher dimensions, we can also define 
the (joint) density function f(xr ,x2, , xk) and 
the (joint) moment generating function 

M(t,,tz>...,tk) 

=S...Sexp(t,slfr?x2+...+r,xk) 

xf(x,,x, ,..., x,)dx, . ..dX.. 

The most important multivariate joint den- 
sity is that of the multivariate normal distri- 
bution, which is expressed by 

- Pi) txj - Pj) 

1 

, 
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where Z is the covariance matrix with ele- 
ments ‘TV,, C-’ =(c#j), and p’i is the mean of the 

ith variate. For the multivariate normal dis- 
tribution the moment generating function is 
given by 

M(t,, . . ..t.)=exp 
( 

~,liti+~~cijtitj 

1 

K. Contingency Tables 

When several qualitative observations are 
made on N objects, each object is classified 

according to the combination of the cate- 
gories, and the data are summarized by the 

numbers N(i,, i,, , ik) of the objects that 
fall in the i, th category according to the first 
observation, i,th category in the second obser- 
vation, etc. A table that shows the results 

of such observations is called a (k-way) contin- 
gency table. If there are m, categories in the 

first criterion, m2 categories in the second, 
etc., the contingency table is also called an m, 
by m2 by.. by mk table. The numbers fi(,j, i,) of 
the objects which are classified into the i,th 
category according to thejth criterion are 
called marginal frequencies. If we have 

N(i,,i, ,..., i,)/N=fl(l,i,)fl(2,i,)...m(k,i,)/Nk 

for all i,, i,, , i,, 

then the k observations or criteria are 
independent. 

The simplest contingency table is a 2 by 2 
table, where several measures for the relation 
of two observations or criteria have been 
proposed, among which the most commonly 
used are the measure of association defined by 

Q= 
N(l,l)N(2,2)-N(1,2)N(2,1) 
N(1,1)N(2,2)+N(1,2)N(2,1) 

and the odds ratio 

6_N(L 1WW) 
N(l,WG 1) 

and also 

,,=W, 1)N(2,2)--N(l,W(Z 1) 
@l, l)fi(1,2)fl(2, l)N(2,2) 

where N(i,jJ are marginal frequencies. The 

two observations are independent if and only 
ifQ=Oora=I and V=O. Visequaltothe 
correlation coefficient of the variables x, and 
-x2, for which x, = 0 if the object is classified 
into the first category according to the ith 

criterion and xi = 1 if it is classified into the 
second category. In a two-way m, by m2 table 
a measure of association is defined by 

it can be shown that X2/N =0 if and only if 
the two criteria are independent, and that 
O<X’/N<min(m, - l,m,-1). When we take 

-xi = 1 if the object is classified into the ith 
category according to the first criterion and 
x, = 0 otherwise and take yj = 1 if it belongs to 
the jth category in the second criterion and 
yj=O otherwise, it is shown that the sum of 

squares of the multiple correlation coefficients 
of xi and y,, ,y,,,-, is equal to X2/N. 

L. Decomposition of the Variance 

When one observation is qualitative while 
another is quantitative the objects are classi- 
fied into several categories according to the 
first observation, while for each object the 

value of the second observation is also given. 
Let xij be the observed value of thejth object 

in the group of the ith category; then for each i 

we can obtain frequency distributions of xii, 
and compare these distributions. Let Ni be the 
number of objects in the ith category, and 
xi = 2 xij/Ni be the mean in the ith category. 
Then the weighted variance of the .Yi defined 
by uB = CiNi(i(xi -@/N, where X is the mean of 
all the observations, i.e., X= C N,Y,lN, is called 
the between-group variance, and the weighted 

mean of the variances of each of the groups 
defined by uw = xi Cj(xij - YJ’/N is called the 
within-group variance. It can be shown that V, 

+ Vw = k’= z C(xii - X)‘/N, i.e., the variance of 
all the observations is decomposed as a sum of 

the between-group and the within-group var- 
iances. The ratio V,/V is called the correlation 
ratio, which is equal to the square of the multi- 
ple correlation coefficient of x and y,, , y,, 
where yi= 1 if the object is in the ith category 
and yi = 0 otherwise. 

M. Ordinal Data 

When the observation is not quantitative but 
there exists a natural ordering among the 
categories into which the objects are classified, 
the observation is said to be in an ordinal 
scale, or simply ordinal. 

When two ordinal observations are made 
on the same set of N objects, we can define 
several measures of association between the 
two ordinal scales. For each pair of objects we 
define a variable cij, i, ,j = 1, , N, i # j, as cij = 1 

if the ith object is classified as “better” (or 
“superior”) than the jth object according to 
both of the measurements, cij= -1 if the order- 

ings are different in the two scales, or cij = 0 if 
they are in the same category according to 
either or both of the scales. A measure of asso- 
ciation is then given by S = C C c,jiN(N - l), 
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which takes a value between -I and +l but 

usually cannot attain kl. Other ways of nor- 
malizing the sum C C cii have been proposed. 

Another method of calculating the associ- 
ation is the scoring method, i.e., giving a set of 
ordered real numbers to the categories of each 

of the scales and calculating the correlation 
coefficient between the scores. The simplest 

scores are 0, 1, , m - 1 when there are m 
categories, but other methods of scoring are 
also used. Scores that give the largest pos- 

sible correlation are called canonical scores, 
which are obtained as the characteristic vec- 
tors of the matrices NN’ and N’N, where N is 
the matrix of the contingency table. 

N. Time Series Data 

Time series data can be recorded in a con- 
tinuous time scale, but usually measurements 
are made at discrete times, which are most 
commonly equally spaced. Hence we here 
denote them as x(t), t= 1,2, , T. First we 

consider the quantitative univariate case. The 
intertemporal change of x(t) is often decom- 

posed into three parts: 

x(t)=m(t)+c(t)+e(t), 

where m(t) is called the trend, and represents 
the secular, systematic change of x; c(t) is 

called the cycle, and represents the recurrent 
pattern of the change; and e(t) is called the 
error or random fluctuation, and represents 
the irregular changes. Such a decomposition 
cannot be defined rigorously without assuming 

some probabilistic or stochastic model for x(t), 
but it is intuitively clear and practically useful 
in many applications. 

There are two ways to estimate the trend. 
One is to calculate the moving average a(t) = 
(x(t-k)+x(t-k+l)+...+x(t)+...+x(t+ 
k))/(2k + 1) and use it as an estimate of the 
trend of x(t); here k should be chosen to sub- 
stantially eliminate the cyclic and random 

parts. More generally we can use the weighted 
moving average defined as x(t) = xi”= -k w(j)x 

(t+j), where w(-j)= w(j) and Cw(j)= 1. The 
second method is to assume some functional 
form, usually a polynomial in t, for the trend: 
m(t) = u0 + a, t + + LIP tk, and to determine the 
coefficient by least squares, i.e., to calculate the 
values of uO, u,, . . , uk which minimize J$(x(t) 
-u,-u,t--...-uktk)2. 

There are two cases of cyclical changes. One 
is the case when there is a clearly defined rele- 

vant external time period, such as the seasons 
of the year or the days of the week. In such 

cases the effects of such external periodical 
cycles must be eliminated, and the process 
which does that is called seasonal adjustment 

of the time series data. Various methods of 
seasonal adjustment have been proposed and 

applied, but none is definitive. The other case 
is where the cyclical changes are produced 
from the observed process itself; here, the 
length of the period and the pattern of the 
cyclical change must be estimated. 

Now assume that the data do not contain 
any trend, or that the trend has been effec- 

tively eliminated. First we calculate the cor- 
relation coefficient between x(t) and x(t +.s) by 

where 

T-s 
-u:= 1 x(t)/(T-s), 

1=1 z= ,=$, XOMT-4, 

or more simply by 

r(s)=TC(x(t)-X)(x(t+s)-5x)/ 

((T-.+J~m), 

where X= C x(t)/T. r(s) is called the serial 
correlation coefficient or the autocorrelation 
coefficient of lags. When there exists a clear 
and definite cyclical change of period s in the 
data, r(s) is close to 1. The diagram in which 
the serial correlation coefficient r(s) is plotted 

against s is called the correlogram. In order to 
see the cyclical properties of the data more 
clearly, we calculate the power spectral density 

w(l)= 1+2Cr(s)cosis. 
s 

The graph of w(i) is called the power spectrum, 

or simply the spectrum. w(i) represents the 
square of the width of the sine curve of fre- 
quency 3.12~ or of period 271/j& contained in the 
data. The spectral density is closely related to 
the intensity, defined by 

[(A)=+( (Tx(t)cosir)l + (Tx(Qsin;1>3, 

which is proportional to the square of the 

multiple correlation coefficient of x(t) and the 
functions cos it and sin It and is large if the 

data contains a sine curve of frequency I/271. It 
can be shown that I(I) is approximately equal 

to w(R)V(x)/n. The spectral density thus ob- 
tained usually oscillates irregularly and far 

from smoothly; hence smoothing by use of a 
“spectral window” is often applied (- 421 

Times Series Analysis). 
When several observations are made in time 

series data, we speak of multivariate time 
series. Let x,(t) be the ith observation in the 
tth period. The correlation coefficient between 

x,(t) and x,(t + s) is called the serial cross- 

correlation coefficient and is denoted by r,j(s) 

(s=O, kl, f2,. .). Analogously to the univari- 



397 0 
Statistical Data Analysis 

ate case we define 

w,(i) = 1 rij(s) cos is + ix rij(s) sin is 
s s 

= Pzjti) + iqij(A), 

and we call pijo.) the cospectral density be- 

tween the ith and the jth variables, and yij(n) 
the quadrature spectral density. pi + qc is called 
the amplitude, and 

where wi and wi are the spectral densities of 

the ith and the jth variables, is called the 
coherence. 

0. Events in Time Scale 

Some data give us the time points at which a 
specific event occurs. Let 7; be the time when 
the event occurs for the ith time. Then usually 

the most important information we want to 
obtain is about the time intervals di= T+, - 7;. 
If there is a periodicity in the occurrences of 
the event, the di will be approximately equal. 
On the other hand, if the event tends to occur 
repeatedly after its first appearance, some di 

will be small while others will be large. When 
there is no periodicity, no tendency to repeti- 
tion, and no increasing or decreasing trend 
in the occurrences, we can suppose that the 

event occurs simply by chance, and this is 
good reason to suppose that the density func- 
tion of the distribution of the intervals is 
exponential, i.e., it can be expressed by ,f(d) = 

(exp( - d/a))/a for d >O. Also in such a case 
the number of occurrences in fixed time in- 
tervals are distributed according to the Pois- 

son distribution. Such a sequence of occur- 
rences of an event is called a +Poisson process. 
More generally, let f(d) be the density function 
of the time intervals; then 

f(d) 
h(d)= 1 -j;f(c)dc 

is called the hazard rate or hazard function. 
The hazard function is constant if and only if 
the process is Poisson. 

P. Probabilistic Models 

In many applications of statistical data anal- 
ysis, the data exhibit variabilities and fluctu- 
ations that are due to fortuitous or hazardous 
causes or chance effects and that obscure the 

information contained in the data. In such 

cases we assume that the chance variabilities 
and fluctuations are random variables distri- 

buted according to some probability distribu- 
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tion, and the information we require is repre- 
sented by a set of unknown constants that 
characterize the probability distribution of the 

data as unknown parameters. Suppose, to take 
the simplest case, that we have repeated obser- 

vations of results of some experiment under a 
fixed condition and that we obtain the values 
x1,x;, . . . , x,. Since the experimental condition 
is fixed, the variations among the xi values can 
be considered to be due to chance causes, 
such as variations in materials, uncontrolled 
small fluctuations in experimental conditions 

or instruments, and various other variations 
usually called the errors. Whatever the true 
causes of the variations, we can consider them 
to be random, and we can regard the values 

X1,X2,.‘., x, as the results of random experi- 

ments or the realizations of random variables 

X, ,X2, . ,X, independently and identically 
distributed according to some probability dis- 
tribution. Or we may think of a hypothetical 
infinite population of the results of supposedly 
infinite replications of the experiment under 

the same fixed condition, and regard the actual 
observations as n values chosen from this 
population at random. We may also consider 
that in this hypothetical infinite population, 
the frequency distribution is represented by a 

density function J which in turn determines 
the probability distribution of each observa- 

tion We may be interested in the “average” 
values of the result of the experiment as well as 
the magnitude of the variability; then those 
values are represented by the mean and the 

variance of the population distribution. If the 
form of the population distribution is assumed 

to be completely specified except for the mean 
p and the variance 02, the density function f is 
determined without these two parameters, and 

is expressed as f(x; p, cr). The joint density for n 
repeated observations is l-&j’(xi; ,u, n). The set 
of assumptions that determines the probability 

distributions of the observations in terms of 
the unknown parameters is called the probabi- 
listic model, and its determination is called the 
problem of specification. 

Once the probabilistic model is given, the 
purpose of statistical data analysis can be 
formulated as making judgments on the values 
of the parameters, which may sometimes go 
wrong but can be relied on with some margin 
of probability of error that can be mathemati- 
cally rigorously ascertained. The formal proce- 

dure of making such judgments is called sta- 
tistical inference, and its mathematical theory 
has been well established over the last hundred 
years (- 401 Statistical Inference). 

In most cases of statistical inference, the 

joint density function of the data plays an 
important role, and when it is regarded as a 
function of the unknown parameters for given 
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values of observations it is called the tlikeli- 
hood function. 

Q. Exploratory Procedures 

In many applications of statistical data anal- 
ysis, we are not quite sure of the validity of the 

probabilistic model assumed, or we admit that 
the models are, at best, approximations to 
reality and hence cannot be exactly correct; 
the approximation may not be precise enough 
for the conclusions drawn from the assump- 
tions to be practically reliable. Therefore we 
have to check whether the model assumed is at 
least approximately valid for the data, and 
if not, we have to look for a better model that 

reflects more accurately the structure of the 
actual data. Thus in many practical appli- 

cations of data analysis, we have to scruti- 
nize the structure of the data and try various 
models before settling on a model and draw- 
ing final conclusions (which are still suscep- 
tible to further revisions when more data are 
obtained). Methods used in such a process 
are called exploratory procedures, which de- 
pend partly on the formal procedure of testing 
hypotheses and partly on intuitive reasoning 
sometimes combined with graphical presen- 
tations of the data, and also on scientific and 

empirical understanding of the subject matter. 
Suppose in the simplest case that n obser- 

vations X,, , X, are assumed to be indepen- 

dently and identically distributed. Under the 
condition that all those values are observed 
under the same well-controlled situation, this 
assumption is reasonable. But in reality some 

of the observations may be subject to some 
unexpected effect due to either a fortuitous 

outside cause or some “gross error” in the 
measurement procedure, the process of re- 
porting, etc., and may show much greater 
variation than others. Such observations can 

be detected by certain outlier tests or simply 
by looking at the data carefully, and if it is 

established that some observations are de- 
finitely outside of the possible random varia- 
bility or are subject to some hazardous ex- 
ternal effect, those data could be omitted from 
consideration. Further, the assumed proba- 

bility density f(x, 0) may not well approximate 
the distribution of the actual data even after 
the “outliers” are omitted. Some test for good- 
ness of fit should be applied, and if the hy- 

pothesis is rejected, we have to modify our 
model. Also, if we are provided with several 
candidates for the model to be adopted, we 

have to apply some procedure of model selec- 
tion (- 400 Statistical Hypothesis Testing, 

403 Statistical Models). It could also happen 
that the supposedly uniform conditions of 

observation, measurement, or experimentation 
did not actually prevail but that there has been 
some heterogeneity among the observations. 
Bimodality or multimodality of the histogram, 
i.e., existence of two or more peaks in the 

histogram, usually strongly suggests such 
heterogeneity. In such cases, grouping or stra- 
tification of the observations is required to 

make the conditions of observation within 
each group nearly uniform. 
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398 (XVlll.6) 
Statistical Decision 
Functions 

A. General Remarks 

The theory of statistical decision functions was 
established by A. Wald as a mathematically 
unified theory of statistics (- 401 Statistical 
Inference). In this theory, the problems of 
mathematical statistics, for example, statistical 
hypothesis testing and tstatistical estimation, 
are formulated in a unified way [ 11. 

A tmeasurable space (X, 23) with a fixed 
tprobability measure is called a sample space, 
and an element x~% is called a sample point. 

Suppose that we are given a family 9 = {PO 1 

OER} of probability measures on (?Z, 23), 
where Sz is called the parameter space, and a 
+random variable X takes values in % accord- 
ing to a true probability distribution P as- 
sumed to belong to 9. This article deals with 
the problems involved in making a decision 
about the parameter 0, called determining the 
true value of the parameter, such that P = PO. 
To describe the procedure for such a decision 

based on the observation of the behavior of X, 
we need a triple (&, (5; D) consisting of a set .d, 
a +a-algebra a of subsets of .d, and a set D of 

mappings 6 from Z into the set of probability 
measures on (.&, %), 6 :x+6(. 1 x), such that 
for a fixed CE&, the function 6(C 1 x) is %- 

measurable. We call .r4 an action space or 
decision space, 6 a statistical decision function 
(or simply a decision function) or statistical deci- 
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sion procedure, and D a space of decision func- 
tions. In actual decision procedures, 6(C 1 x) is 

the probability that an action belonging to C 
is taken, based on the observation of sample 
point x. We further consider a nonnegative 
function w  : R x ,ti + R, called a loss function, 
such that for a fixed 8, ~(0, a) is (S-measurable. 
By averaging the loss, we obtain the risk 
function: 

r(N, 6) = 

Two decision functions 6 and 6’ are identified 
if 6(C 1 x) = 6’(C 1 x) for almost every x with 
respect to PO, for all 0~0 and all CEK When 
to each x E .!X there corresponds a unique ac- 
tion a, such that 6( {a,} 1 x) = 1, the decision 
function 6 is said to be nonrandomized; other- 

’ wise, randomized. The system (%, 8,Y, R, .d, 
6, W, D) is called a statistical decision problem. 

From the point of view of this theory, ipoint 
estimation, tinterval estimation, and statistical 
hypothesis testing (- 400 Statistical Hypoth- 

esis Testing) are described as follows. 
(1) In point estimation we assume that the 

action space .d is a subset of R and that we 
are given functions cp:%‘+.d and I:P+R. 
The problem is to estimate the value of I(P) 
by using the real value q(x) at an observed 
sample point XEX. As the loss function, we 
often set w(~,u)=C(B)(~-I(P,J)~, where C(0) is 
a function of 0, and call it a quadratic loss 
function (- 399 Statistical Estimation). 

(2) In interval estimation we assume that 
each action is represented as an interval in 
R. Each interval [u, u] can be represented 

by a point (u, V) of the half-space R2’ = {z = 
(zl, z2) 1 z, <z2}, which may be taken as the 
action space. A weighted sum XW, (0, z) + 

[jw,(B, z) (c(, /j 2 0) of two functions, 

often supplies the loss function (- 399 Statis- 

tical Estimation). 
(3) In testing a hypothesis H:OE~, versus 

antalternativeA:OEWl(W,,r)W1=O,W,,UW1 

= a), the action space can be expressed by the 
set consisting of two points a,, a2, where a, 
denotes the decision to reject H and a2 the 
decision to accept H. The loss function is 
defined as follows: 

This is called a simple loss function. Whatever is nonempty and Q-measurable for ),-almost 

testing procedure 6 is adopted, the proba- 
bilities of the terrors of the first or second kind 
coincide with the values of r(O, 6) for BEW~ or 

OEW~, respectively (- 400 Statistical Hypoth- 
esis Testing). 

When Q is the union of mutually disjoint 
nonempty sets We, w2,. . . ,a,, &= {ul, u2, 

“‘, a,}, and w(O,uj)=cij (Qewi) with cij>O 
(i #j), cii = 0, the decision problem is called 
an n-decision problem. 

B. Optimal&y of Statistical Decision Functions 

Consider the problem of choosing the best 
decision function 6. When r(O,6,) < r(O, 6,) for 
all 0 and there exists at least one B0 such that 
r(Q, 6,) < r(B,, 6,), the decision function 6, is 
said to be uniformly better than 6,. If there 
exists a decision function 6, in D that is uni- 

formly better than any other 6 in D, it is the 
best decision function. However, such a func- 
tion 6, does not always exist. A decision func- 
tion $ in D is said to be admissible if there 

exists no other decision function 6 in D that is 
uniformly better than 6: In other words, g is 
admissible if and only if the validity of the 
inequality r(@, 6) < r(O, 5) for some 6 ED and all 

8~52 implies r(O,6)=r(B,8) for all OER. When 
there is no information about P except that it 

is a member of 9, we follow the minimax 
principle and choose a function 6* for which 
we have inf,,,sup,,,r(0,6)=sup,,,r(B, a*). 
This decision function 6* is called a minimax 
decision function or minimax solution. 

Let 5 be a c-algebra of subsets of R, and 

suppose that r(O, 6) is g-measurable for any 
fixed 6. If, furthermore, we are given a proba- 

bility measure 5, called an a priori distribution, 
on (0, s), we choose a s^ that satisfies 

inf r(O,tT)d<(f3)= 
s s 

r(O,i)d<(O). 
6ED R 0 

Such a 6 and the integral of r(0, 8) are called a 
Bayes solution and the Bayes risk relative to 5, 
respectively. Let F be a family of a priori dis- 

tributions on (Q 8). If $ satisfies 

s^ is called a Bayes solution in the wider sense 
relative to F. If .Y is tdominated by k with a 
b x 3-measurable f(x, 0) =dP,/dl, ~(0, a) is 

3 x K-measurable, and 
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every x, then a Bayes solution 6 with respect 

to t satisfies &(A, (x) = 1 for I-almost every x. 

For a sample point x with j&(x, O)d<(fl)#O, a 
probability measure r~(. ( x, 5) on (Q 3) defined 

by 

s 
fk ‘WW) 

v(BIx,5)=2 

s 
fk 0) dt(@ 

n 

is called an a posteriori distribution. To get a 
Bayes solution it is enough to minimize the 
value of lo w(Q, a)dq(U( x, 5) for every observed 
X. 

If c in the definition of A, defined above is a 

a-finite measure on (Q, B), a decision function 
6 satisfying &A, 1 x) = 1 for I-almost every x is 
called a generalized Bayes solution with respect 
to 5. 

Let D’ be a subset of the space D. If for any 
6 ED -D’ there exists a 6’ E D’ that is uniformly 
better than 6, then D’ is called a complete class. 

If for any 6~ D there exists a TED’ that is 
either uniformly better than 6 or has the same 
risk function as 6, then D’ is called an essen- 
tially complete class. If D’ is complete and any 

proper subset of D’ is not complete, then D’ is 
called a minimal complete class. If a minimal 
complete class exists, it is unique and coin- 
cides with the set of all admissible decision 
functions. 

C. n-Decision Problems 

In an n-decision problem where &= {ai, 

, a,), we set hi(x) = ~?(a, [ x) for a decision 
function 6, where C&(X) is B-measurable and 
satisfies Sj(x)>,O, 6,(x)+ . . . +6,(x)= 1. We 

consider the set 9 of vector-valued functions 
A(x) = (6, (x), . , S,(x)) whose components hi(x) 
satisfy the conditions just given. Such a vector- 
valued function A(x) can be identified with 
S(x); we write 6(x) instead of A(x) also. If in 
addition the parameter space R is a finite set 
{Q,, Q,, . . . , a,), we can consider a mapping 

$:9+R” defined by $(s)=(r(O,, 6), . . . , r(&, 6)) 
and then S=$(9)={$(6)\6~9} is convex and 
closed in Rk. If 6 is nonrandomized, then for 

each x, one and only one of the C&(X) is 1, and 
all others are 0. Hence, in this case, 3 is the 
disjoint union of d-measurable subsets Bi 

(i=l,...,n)suchthat?I(a,Jx)=l ifandonly 
if x E Bi. A probability measure m on (X, 23) is 
said to be atomless if for any set A~23 with 
m(A)>Oand any b with O<b<m(A), there 
exists a subset BE 23 of A such that m(B) = b. If 
R is finite and every member of B is atomless, 

the image $(63’) of the set 9’ of all nonrandom- 

ized decision functions coincides with $(k%). 

This shows that 9’ is an essentially complete 

class in 9. However, when some members of 
9 are not atomless, *(9) is not always equal 
to $(9”), but $(C@‘) is a closed subset of Rk. In 

particular, when n = 2 for given probability 
measures Pi, , Pk over (%,23), the set S of all 

points (P,(B), . . ..P.(L?))(BEB) in Rk is a closed 
set. If in addition P,, . . . , Pk are all atomless, S 
is convex. These results are known as the 
Lyapunov theorem. 

A two-decision problem with oi = { l), 
w2 = {2}, and cij= 1 (ifj), =0 (i=j) is called a 
dichotomy. We discuss this problem in some 

detail in order to explain the concept of opti- 
mality of decision functions. For a dichotomy, 
S= $(9) is a set in R2 that (i) is convex, (ii) is 

closed, (iii) is symmetric about (l/2, i/2), (iv) 

contains the points (0, l), (l,O), and (v) is a 
subset of interval [0, l] x [0, l] (Fig. 1). The set 

of decision functions 6 that is mapped under $ 
onto the curve ACDB in Fig. 1 constitutes the 
minimal complete class, and a decision func- 
tion 6 mapped onto the point D is a minimax 
solution. Let 5 be an a priori distribution such 
that 

i”(l)=4 5(2)=8 (c(+p=1,a>o,B~o). 

0x i py = consta 

Fig. 1 

Then a Bayes solution relative to 5 is mapped 

under II/ onto a supporting point c with direc- 
tion ratio -E/B and is obtained as the char- 
acteristic function of the set E = {x 1 u,,(x) < 

/$J(x)}, where f and g are tRadon-Nikodym 
derivatives dP, Jdl and dP, JdL with respect to 
E. = P, + P2, that is, f, g are measurable func- 
tions on 57 such that for any measurable set 
E, we have 

PI (El = 
s 

Id5 P,(E)= gdl. 
E s E 

This fact implies that the most powerful test 

constructed in the Neyman-Pearson funda- 
mental lemma (- 400 Statistical Hypothesis 
Testing B) is precisely a Bayes solution. 

D. Complete Class Theorems 

Suppose that 9 is tdominated by a cr-finite 

measure I, and let f(x, 0) be the Radon- 
Nikodym derivative of Pe with respect to i 
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Consider a subspace L of L, (:X, i.) containing 
(f(x, 0)I Uefi}, and the following equivalence 
relation between bounded 2%measurable func- 
tions on 1’: ‘p, and qz are defined to be equiv- 
alent if and only if l ‘pi f& = 1 q2j% holds 

for every f~ L. We further assume that the 
dual space of L is the linear space %I1 of the 
equivalence classes of bounded measurable 
functions just defined. Let C,(&) be the set of 

all continuous functions on .d with compact 
support, rt o !x the integral of 2~ C,(,c3) with 
respect to a probability measure TI over ~2, 
and 9 o 6 the integral 

for 9 EL, fi E D. As a base for neighborhoods of 

the space of decision functions around &ED, 
weconsider I’(&,:% ,,..., a,,g ,,..., y,,s)= 
~6~(g,06,0a,-g,060a,(<&, i=l, . . ..n}. 
where cli E C,(&), gi E L, E > 0. 

Let F be the set of all a priori distributions [ 
on (Q, 3) each of which assigns the total mass 
I to a finite subset of !& B the set of all Bayes 
solutions relative to some <(EF), and W the set 
of all Bayes solutions in the wide sense relative 
to F. Suppose that .d is a tlocally compact, 
separable metric space and w(O,a) is lower 
semicontinuous with respect to a for every 
fixed 0. Then if D is compact and convex, 
the intersection of Wand the closure B of i? 

constitutes an essentially complete class [2]. 
Moreover, if Q is compact with respect to the 

metric d(0,,0,)=su~,,,(P,~(B)-P,~(B)( and 
{ w(. , a) 1 a E &} is a uniformly bounded and 
tequicontinuous family on R, then the class of 
Bayes solutions relative to some a priori distri- 

bution is a complete class [ 11. These propo- 
sitions are called complete class theorems (for 

complete classes in specified problems and 
admissibility of individual procedures - 399 

Statistical Estimation; 400 Statistical Hypoth- 
esis Testing; and Appendix A, Table 23). 

Two measurable spaces (S, -vi) and (R, W) are 

said to be isomorphic if there exists a corre- 
spondence p of S and R (E E Y implies p(E) E .X 

and, conversely, p(E) EB implies E E Y) where 
p is one-to-one onto. Let 3 be the set of all 
decision functions associated with a sample 
space (:I,‘%) and an action space (,d, K), T be a 
+statistic on (5, %) taking values in a measur- 
able space (?U, E), and g* be the set of all 
decision functions having sample space (“y, @) 
and action space (rA, K). The set of all 6 E 9 for 
which there exists a fi* E%* satisfying 6(C 1 x) 

=6*(CI T(x)) (CEK) is denoted by gr. If(i) 
T is a +sufIicient statistic and if (ii) (.z!, K) is iso- 
morphic to the measurable space Rk associated 
with the u-algebra of its Bore1 subsets, then t%), 

is essentially complete in 9. Conversely, if(i) .‘P 
is a dominated family, (ii) f(x, 0) > 0 always 

holds on %, and (iii) for any pair tl,, &(ER), 

there exists a I, such that no element a in 
.d makes two of the w(Qi, a) (i= 1,2,3) attain 
their minimum simultaneously, then essential 
completeness of sT in 9 implfes that T is 
sufftcient [3] (- 399 Statistical Estimation). 

E. Invariance 

Suppose that there exist one-to-one transfor- 
mation groups G, G, and G of X, Q, and -01, 
respectively, onto themselves (transformations 
belonging to G, G, and G are tmeasurable with 
respect to 23, 8, and K, respectively) and that 
there exist homomorphisms g-3, g-Q of G to 
G and e, respectively, such that for BE% we 
have Po(gm’B)=Pge(B) and w(gO,ga)=w(O,a). 
Then a decision problem (%,23, B, R, &, K:, 

w, D) is said to be invariant under (G, G, G). In 
a decision problem invariant under (G, G, G), a 
decision function satisfying 6(#C 1 gx) = 6(C 1 x) 

is called an invariant decision function. 
Suppose that the transformation group G is 

locally compact and is the union of a count- 
able family {Kn} of compact subsets. Let I be 
the o-algebra of Bore1 subsets of G such that 
the mapping (g, x)-(g,.gx) is measurable in 
the sense that the inverse image of any set in 
I- x 23 is also a set in I x %3. For such a I the 
+orbit G(x) of G through x is r-measurable. 

We assume that following conditions: (1) 9 is 
dominated; (2) G operates teffectively on 3; (3) 

C operates ttransitively on Q, (4) for any com- 
pact subset J of G, 

where ,u’ is a right-invariant Haar measure 
(- 225 Invariant Measures C) on G and 
K;J-‘={gh-‘Ig~K,,h~J};(S)there 

is a tconditional probability distribution 
P,(.:z), given zig, on X; (6) the integral 

jww(@> iWPo(dg : 1 tt x z a ams its minimum 

value b(& z) for any 0 and z E G(x); and (7) 

w(O,@)Po(dgx:z)-b(B,z) 

uniformly in a, where K,x = { gx 1 YE K,}. Then 
the best invariant decision function exists 

which is also minimax in 9 [4] (- 400 Statis- 
tical Hypothesis Testing). It is shown in [9] 
that some invariant minimax decision func- 
tions are not admissible. 

F. Sequential Decision Problems 

In the general framework of statistical deci- 
sion theory, not only the decisions to be taken 

but the number of samples to be observed 
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may be determined based on the previous 

observations. 
A simple formulation is illustrated for the 

sequential decision problem given below. 
Suppose that X, , X,, , X, are independently 
and identically distributed random variables 
with probability measure PH. We assume that 
the X’s are to be observed one by one, and 
at the ith stage, when we have observed X,, 

“’ > Xi, we are to decide whether to continue 

sampling and observe Xi+l or to stop obser- 
vation and choose an action or decision in 3, 
utilizing all the observations thus far obtained. 

Then a decision rule is defined by a sequence 
of pairs (S,,, s,), n = 0, 1, , where 6, is a map- 
ping from the space X” to 9 (for the sake of 
simplicity we here exclude randomized deci- 
sions), and s,=s,(x~, . ,x,) is a measurable 
function from X” to the interval [0, 11. s, gives 
the probability of stopping the sampling when 

the first II of the x’s are observed, and 6, de- 
tines the decision taken when the observations 
are stopped. We include s0 and S, to denote 

the probability of taking a decision without 
making any observation and the decision to be 
taken then. We call 6, the terminal decision 
rule and s, the stopping rule. Then for such a 
decision rule 3 the total expected loss or the 
risk is given by r(O,cY)= f n~(l-sj(x, ,...) Xj)) II=0 s j=O 

where c,(x,j x1, , x”~,) is the cost of observa- 
tionofX,=x,whenX,=x,,...,X,-,=x,-,. 
The rule 5 is called a sequential decision rule 
or a sequential decision function, and the whole 
setup a sequential decision problem. In most of 
the sequential decision problems the cost of 
observation is assumed to be equal to a con- 
stant c per observation, and then the Bayes 
risk r*(t) for the prior distribution &, satisfies 

the relation 

r*(&)=min i;f 
IS 

w(O,d)d&, 

ss 
r*(nH(x,,Te))dPs(x,)dTe+c 

where x,(x,, &J denotes the posterior distri- 
bution when X, =x, is observed under the 
prior distribution &; and the Bayes decision 

rule satisfies the condition 

sn(xl, ,x,)= 1 if r*(7rB(xlr ,x,; &J) 

=inf 
s 

~(0, d)dx,(x,, , x,; to), 

= 0 otherwise, 

and&(x, ,..., x,)=d* ifJw(O,d*)dlr,(x, ,..., 

x,;<,J=inf,,~w(B,d)d~,(x, ,..., x.;&), where 
x,(x,, , x,; &) is the posterior distribution 

given X,=x1, . . . . X,=x, under the prior 5,. 
For the dichotomy problem with the simple 

loss function discussed above, the Bayes deci- 
sion rule has the form 

s,(x,, . ,x,)= 1 if nO(x,, . . . . x,)<n, or >7cr,, 

= 0 otherwise, 

and 

d”n(X,,..., x,,)=dl if rr,(x,, . . . . x,)<n,, 

=d, ifn,,(x ,,..., x,) ax,, 

where nO(xl, . . . . x,) is the posterior prob- 
ability that O=Q,, given X, =x,, Xn=x,,. This 
amounts to the following rule: Continue sam- 
pling as long as 

and decide on d, as soon as 2(x,, . . . , x,) > y2 

andond, assoonasI(x,,...,x,)dy,,which 
is actually equivalent to a tsequential proba- 
bility ratio test (- 400 Statistical Hypothesis 
Testing). 

G. Information in Statistical Experiments 

The part &=(X, b,P, 0) of a decision problem 
A = (%, 23,8, s1, d, 6, w, D) is called a statistical 
experiment In this section, we consider n- 

decision problems, i.e., those wherein fi con- 

sists of a finite number { 1,2,. . . , n} of states, 
and we denote the set S = {r( 1,6), r(2,6), , 

r(n, S) 16 EGO} by L(A). Let 8, and & be two 
experiments having a common parameter 
space R, and let A1 and A2 be two decision 
problems composed of Q, and gZ, respectively, 
and a common (&, c;, w). We say that the 
experiment &, is more informative than the 
experiment &* if L(A,)zJL(A,) for any action 

space (&,a) and any loss function w  [6]; 
that is, whatever the actions proposed and the 
loss incurred, the experiment 6, can offer a 

decision procedure at least as efficient as the 
experiment &Z. Thus the set L(A) with A = 
(8, .d, a, w, D) represents some feature of infor- 
mation that d can provide about the states Q. 
However, comparison of L(A) is not easy to 
carry out. S. Kullback and R. A. Leibler de- 
fined the concept of information for the case of 
a dichotomy A [S]. If the probability distri- 

bution induced by a random variable X has a 
Radon-Nikodym derivative fi(x) (>O) or f*(x) 

(> 0) with respect to 1, we define 
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calling this the Kullback-Leibler information 
number (or K-L information number). This 

number is uniquely determined by the set S = 
L(A) in Fig. 1, and the larger S becomes, the 

larger r(fi ,fi) becomes. If x, fl (a + /I = 1) are a 
priori probabilities and ;rl( 11 x) and ~(2 1 x) are a 
posteriori probabilities of 1 and 2, respectively, 

we have, from the Bayes theorem, 

f,(x) rl(l Ix) 
~o”/zo=lw~(2,x) 1w;. 

Here the right-hand side stands for the change 
in the probability of the occurrence of the state 

after an observation of x, and the texpectation 
of the left-hand side under ,1; is I(,j; ,,f2). The K- 

L information number has the following prop- 
erties: (i) 1(X: 1,2)>0, and 1(X: 1,2)=00 

,f= y; (ii) tindependence of X and Y implies 
I(X:1,2)+l(Y:1,2)=I(X, Y:1,2);(iii)for a 
statistic T=t(x), 1(X: 1,2)<I(T: 1,2), where 
the equality holds if and only if T is sufficient 
for J = {P, , P2}, in which dP, /di =fi and dP,/ 

dl=f,; and, as a result of (ii), (iv) if X,, , X, 

are distributed independently with the same 
distribution, 1(X,, ,X,,: 1,2) = nl(X, : 1,2). 

Suppose next that R is the real line and that 
the Radon-Nikodym derivative g(t: 0) of the 
distribution of a statistic T with respect to a 

measure i has the following properties: (i) the 
set of all t at which g(t : 0) > 0 is independent of 
0; (ii) g(t: 0) is continuously twice differentiable; 
and (iii) the order of differentiation with re- 
spect to U and integration with respect to t 
can be interchanged. Then I(T: 0,0 + dfl) = 

1(T: O)dO’ for an infinitesimal displacement d0 

of 0. where 

Here I( T: H) coincides with the Fisher infor- 

mation (- 399 Statistical Estimation). 
Suppose that we are given a sequence (Xi, 

X,, ) of independent random variables 
whose distributions have as their density either 

(.A ,f2,. .I or (sl, g2,. .I, that is, .A and gi are 
candidates for the density of distribution of Xi 
(i = 1,2, ). A method to determine which of 
the sequences (,fi), (gi) actually corresponds to 
(Xi) is given by the Kakutani theorem. Let F be 

the distribution of (X, , X2,. ) when each Xi is 
distributed according to ,fi, and let G be that of 
(X,, X2, ) when each Xi is distributed accord- 

ing to gi. To see how X,, X2,. are actually dis- 
tributed, we assume that the loss incurred by an 
incorrect decision is 1 and the loss incurred 
by a correct decision is 0. Denote such a deci- 
sion problem (dichotomy) by A. Then we gen- 
erally have L(A)cl, where I= {(x,y)lO<x, 

y < 1). A necessary and sufficient condition for 

L(A)=1 is that ns, p(,Jm,g,J=O, where 

,h%ii6%x. 

Consequently, if the X, (n = 1,2,. ) have the 
same distribution, we have L(A) = 1, and the 

correct decision can be made with no error 
based on infinitely many independent obser- 
vationsofX,,X,,.... 

H. Relation to Game Theory 

The theory of statistical decision functions 
is closely related to game theory. From the 
game-theoretic viewpoint, a statistical decision 
problem is considered to be a zero-sum two- 

person game played by the statistician against 
nature. A strategy of nature is the true distri- 
bution P of the variable X or the true value of 
0, and a strategy of the statistician is a decision 
6. In this setup, the risk function r(O, 8) can be 
regarded as a +payoff function paid by the 

statistician to nature. An a priori distribution 
[ is a +mixed strategy of nature. A randomized 

decision function is a mixed strategy of the 
statistician. A minimax decision function cor- 

responds to a minimax strategy of the statis- 
tician. A minimax strategy of nature is called a 
least favorable a priori distribution. If a deci- 

sion problem is tstrictly determined as a game, 
a minimax solution is a Bayes solution in the 
wide sense. 

If 6, is a Bayes solution with respect to to 
and r(O,6,) Q R(&,, 6,) for all 0, the decision 
problem is strictly determined, and 6, is mini- 
max and to is a least favorable a priori distri- 

bution, where R(i;,,fi,)=S,r(O,fi,)dr,((l). If 
b, is a Bayes solution in the wide sense and 

r(U, 6,) is constant as a function of 0, the deci- 
sion problem is strictly determined, and 6, 
is minimax. If 6, is admissible and r(O, 6,) 3 

c < x, 6, is minimax. If 0 is a finite set and 
inf,sup,r(@ 6) < cx), the decision problem is 
strictly determined and there exists a least 
favorable a priori distribution. We have few 
general results about generalized Bayes solu- 
tions (- 173 Game Theory; 161). 
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399 (XVlll.7) 
Statistical Estimation 

A. General Remarks 

Statistical estimation is one of the most im- 
portant methods of statistical inference (- 401 
Statistical Inference). Its purpose is to estimate 
the values of iparameters (or their functions) 
involved in a distribution of a statistical ‘popu- 

lation by using observations on the popula- 
tion(- 396Statistic). Let:Y={P,IOEO) bea 
family of tprobability distributions, indexed by 
a parameter 0 and defined over a +measurable 

space (i.e., sample space) (2, a). Let X be a 
+random variable taking values in .r and dis- 
tributed according to a probability distribu- 
tion P that is a member of .Y. Statistical esti- 
mation is a method of estimating the +true 
value of the parameter 0 (i.e., the parameter 0 
such that P = Pf,) or the (true) value q(O) of a 
given parametric function (1 (i.e., a function 
defined over 0) or both, at 0, based on the 

observed value x of the random variable X. 
The function y maps the parameter values into 
R, Rk, or some function space. Statistical esti- 

mation methods are classified into two types: 
point estimation, which deals with individual 
values of s(O), and interval (or region) estima- 

tion, by means of which regions that may con- 
tain the value g(0) are considered. We can also 

include in statistical estimation the problem 
of predicting the tolerance region in which the 
value of a yet unobserved random variable 

may come out. 

B. Point Estimation 

In the method of point estimation for a given 
parametric function g, we choose a measurable 
mapping q from the sample space (,“x, %) into a 
measurable space (&‘, 6) and state that “the 
value of g(0) is p(x)” for an observed value x, 
where -d is a set containing the range of g and 
K is a tcomplete additive class of subsets in &. 
The mapping cp, or the random variable q(X) 
taking values in the space .vY, is called an 

estimator of g(O), while the value q(x) deter- 
mined by the observed value x is called an 
estimate of g(0). This estimate is sometimes 

termed a nonrandomized estimate in contrast 
to the following generalized notion of esti- 
mator. A mapping from 2 to a set of proba- 
bility distributions defined over (.&‘, a) is called 
a randomized estimator, which reduces to a 
nonrandomized estimator when each image 
distribution degenerates to a single point. We 

assume that .d = R and 6 = the class 23 of all 
+Borel sets in R, unless stated otherwise. We 
denote the texpectation and +variance with 

respect to P, by E, and V,, respectively. 

C. Unbiasedness 

An estimator q(X) of g(0) may not be exactly 
equal to g(0) for any OEO except for trivial 

cases, but could instead be stochastically 
distributed around it. An estimator p(X) is 

said to have unbiasedness if it is stochastically 
balanced around s(0) in some sense, such as 
mean, median, or mode. A statistic Q(X) is 
called a (mean) unbiased estimator of g(0) if 

4ddW) = d4 

for any OE 0. A parametric function 9 is said 
to be estimable if it has an unbiased estimator. 
For example, the sample mean is unbiased for 
the population mean: E,(X) = E,,(X) for any 
0 E 0. Unbiasedness usually implies mean un- 

biasedness, and we assume this unless stated 
otherwise. The function 

is called the bias of the estimator q(X). If we 
restrict ourselves to unbiased estimators q(X) 

only, it is best to choose, if possible, a q(X) 
whose variance V,((p(X)) is minimum uni- 
formly for every OE 0. 

Theorem (Rao-Blackwell). If T= t(X) is a 
+sufflcient statistic, then for any unbiased 
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estimator q(X) of g the tconditional expecta- 

tion $(t) = E((p(X) 1 T= t) yields another un- 
biased estimator q*(X) = $(t(X)) of g, which 
satisfies V,(cp*) < I$(cp) for all fle@, with the 

equality holding if and only if q(x) = q*(x) 
(a.e.9). The notation a.e.8 means that the 
statement concerned holds with probability 1 
with respect to P0 for each 0~0. An estimator 
cp of g(O) is called a uniformly minimum var- 
iance (or UMV) unbiased estimator if cp is 
unbiased for g(0) and has a minimum variance 
uniformly in 0 among the class of unbiased 
estimators for g(O). 

Theorem (Lehmann-Scheffk). If T is a sufli- 

cient and tcomplete statistic, then for any 
estimable parametric function g(O), there 

exists a unique UMV unbiased estimator 
of g(Q) that is a function of T. For exam- 
ple, suppose that X = (Xi, X,, . , X,) is a ran- 
dom sample from a population with exponen- 
tial type distribution PO with density p,(x) = 
p(O)u(x)exp(Cf,, ai(0)ti(x)) with respect to 
Lebesgue measure and that the set {(a,(O), , 
a,(O)) 1 OE 0: contains some open set of Rk. In 
this case, T=(t,(X), , tk(X)) is a sufficient 

and complete statistic, and hence every real- 
valued measurable function $(T) is the unique 
UMV unbiased estimator of the parametric 
function EB($( T)). If for any OE 0 the tmedian 
of the distribution of an estimator q(X) equals 
a real parametric function g(0) when X is dis- 
tributed as PO, i.e., if 

then q(X) is called a median unbiased esti- 

mator. For example, a sample median (suitably 
defined for the case of an even number of 

samples) is median unbiased for the popula- 
tion median. If q(X) is a median unbiased 
estimator of g, then for any real-valued mono- 

tone function h, an estimator h(p(X)) for 
/Q(O)) is median unbiased, that is, median 
unbiasedness is preserved under monotone 
transformations, which is not the case with 

mean unbiasedness. 
Restricting our consideration to the class of 

all median unbiased estimators, we can use the 
function 

as an indicator of the behavior pattern of an 
estimator cp. The estimator cp that minimizes 

a(u, 0, cp) for all values of u and 0 (u # 0) is said 
to be uniformly best. This property is also 
preserved under monotone transformations. 

Theorem (Birnbaum). If a family of distri- 

butions {PO 10 E 0 c R} has a monotone +like- 

lihood ratio with respect to a statistic t(x) and 
the distribution function F(t, 0) of T = t(X) is 
continuous both in t for any 0 and in 0 for any 

t, then there exists a uniformly best median 
unbiased estimator of 0. Actually, if 0 = 6(t) is a 
solution of F(t,O)= l/2, then cp(X)=O^(t(X)) is 
such an estimator. 

If for any 0~0 the +mode of the density 
function or the probability mass function of an 
estimator Q(X) is equal to g(O), then q(X) is 
called a modal unbiased estimator of g(0). 

D. Lower Bounded of the Variance of an 

Unbiased Estimator 

When there does not exist a sufficient and 
complete statistic, we can still seek. to minimize 

the variance of the (mean) unbiased estimator 
at every fixed point O= 0,. In the remainder 
of this section, B is assumed to be dominated 
by a measure p, and p,(x) denotes the density 

function of PO with respect to p and Q(X) = 
p,(~)/p,~(x). The following theorem guaran- 
tees the existence of the locally best unbiased 
estimator. 

Theorem (Barankin). Let &? be the set of all 
unbiased estimators of a parametric function 
g(O) with finite variance at 0 = 0,. 4ssume that 

~62 is not empty and Es,((ns(X))‘) < co. Then 
there exists an estimator ‘p,, in JZ that mini- 
mizes the variance at 0, within &‘. Actually, 
{ cpO} = JZ n Y,,, where Y,, is the linear space 
generated by { rtO(x) 1 OE 0). The minimum 
variance is given as follows: 

=sup,, f: f: !l(ei)h(ej)nij 
1 

) 
i=l j-1 

where h(O)=g(O)-g(O,J and i’jis the (i,j)- 
component of the inverse of the II x n matrix 
(lij) with iij= E,p(~B,(X)~,j(X)) and where the 
supremum sup1 ts taken over all positive in- 
tegersn,O,,..., O,~Oanda, ,..., a,~R,and 
becomes sup,, when the supremum is taken 
over n and the (3,. This theorem leads to the 

following three theorems with respect to the 
lower bound of the variance of an unbiased 
estimator. The first is immediate and the last 

two are obtained by replacing sorne order 
differences of rr8 with the corresponding 
differentials. 

Theorem. For any unbiased estimator q(X) 

of g and 0, E 0, we have 

%O((P(X))asuP {(s(e)-g(e,))2/E,,(~,(X) 
*t* 

- ~oo(m2~ 

(Chapman-Robbins-Kiefer inequality). 
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Theorem. Suppose 0 c R. For any unbiased 

estimator q(X) of g and under certain regular- 
ity conditions, we have 

(Cram&r-Rao inequality), where the equality 
holds only for the exponential type distri- 
bution p,(x)=j(%)u(x)exp(a(O)cp(x)). An ex- 
ample of such regularity conditions is (i)-(iii): 
(i) ER,((ns(X))‘)< co for all 0~0; (ii) p,(x) has 

a partial derivative p:(x) at % = 0, (a.e. P,J; 
and (iii) 

lim EOO 
[( 

pBo+‘w(xh?ow) P&(X) * 

ps,(X)A% 

=o, 
M-0 PO&X) >I 

Corollary. Let X =(X1, ,X,) be a random 

sample from a distribution with density .f’(x, %) 
and let 

Since E,((d logpO(X)/a%)*) = n1(%), the CramCr- 
Rao inequality implies 

The number I(0,) is called the Fisher infor- 
mation of the distribution f(x, %). When the 

equality holds for an unbiased estimator q(X), 
Q(X) is called an efficient estimator of g(0). In 
general, the efficiency of an unbiased estimator 
cp at 0 = 8, is defined by 

Wcp) = (s'(~o))'lW(~o) Y&P)). 

Theorem. For any unbiased estimator q(X) 

of g(B) and under certain regularity conditions. 
we have 

(Bhattacharyya inequality), where g(i)(%o)= 

d’g(O)/d%‘) 8=B,, and K’j is the (i,j)-component 
of the inverse of the matrix (K,j) with 

K, = EOO (ss), i,j=l,..., k 

An example of such regularity conditions is 
(i)-(iii): (i) Es,((ns(X))*) < co; (ii) p,(x) is k-times 

differentiable with respect to 0 at 0 = 0,; (iii) 
the ith partial derivative pgA(x), i < k, satisfies 

lim EOO =o, 
LW-0 

where APO(X) IsZe, = P80+A8(X) - P80(X) and 
AiPO(X) = A(A”P,(X)) for i > 2. For k = 1 the 
Bhattacharyya lower bound is the same as the 
Cram&-Rao lower bound. In general, the 
former gives a sharper lower bound than the 
latter. 

If the parameter is multidimensional, % = 

(0, , , %J, then for any unbiased estimator 

q(X) of g(%) and under similar conditions to 
those for the l-dimensional case, we have 

where g,‘(%o)=ag(%)/a%ilB=O, and Jij is the (i,j)- 
component of the inverse of the matrix (Jij) 

with 

J,= E~,(~logP~(X)l~~i I ~=~,~logP~(X)l~Qjl~=~,)~ 

If %*(X)=(%:(X), , Q(X)) is an unbiased 
estimator of % = (0,) . . , 0,)’ (i.e., Ee(6T(X)) = 0; 
for i = 1,2, . . , k), then the tcovariance matrix 
V,&%*(X)) of O*(X) at B. satisfies I&(%*(X))> 

J-l, that is, the difference VJ%*(X))- J-’ is a 
nonnegative definite matrix. If X = (X,, . , X,) 
is a random sample from a distribution having 

density ,f(x,, %), then by setting 

1, = E,,,(d lOg.f(Xl> @/a%i I H=@, 

x a l”gftXl > 41aej I8=8J 

we have J, = nl,. The matrix I =(lij) is called 
the Fisher information matrix of the distri- 

bution f(xl, %). 

E. Decision-Theoretic Formulation 
(- 398 Statistical Decision Functions) 

Let W(%, a) ( 2 0) be the loss incurred from an 
estimate (or action) a of the parameter when 
the true value of the parameter is 0. The risk 
function of an estimator q(X) of the para- 
metric function g(0) is then defined as 

46 cp) = E,W(Q> cp(W)). 

Statistical decision theory deals with the prob- 
lem of minimizing, in an appropriate manner, 

the risk function by a suitable choice of cp. The 
notions of complete class, Bayes estimator, 
admissibility, minimax estimator, and invar- 

iant estimator, explained here and in Sections 
F-I, are the most important of the theory. The 

unbiased estimator explained in Section C 
may also be considered an important concept 
of the theory. 

A class C of estimators is said to be essen- 
tially complete if for any estimator cp there 
exists an estimator ‘p. in C such that 

f-(0, cpo) d r(O, cp) 

for any %E 0. The following two theorems 
hold, provided that the action space .d is R 
and the loss function VV(%, a) is convex with 
respect to a~& for any OEO. 

Theorem (Hodges-Lehmann). If w(%, a)-+ GO 

as ) aJ + cc, then the class of all nonrandomized 
estimators is essentially complete. 

Theorem. If T= t(X) is a sufficient statistic. 
, then the class of all functions of T is essentially 
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complete. Actually, given any estimator p(X) 
of g(O), the conditional expectation tj(t)= 

E(rp(X)I T=t) yields an estimator C&X)= 
$(t(X)) satisfying r(U, qo)< r(U, cp) for any 0, 
where the equality holds when and only when 
47 = pO, provided that W is convex in the strict 

sense. 
A loss function of the form 

W(U,U)=~.(U)(U-~(U))~, i(U)>O, 

is called a quadratic loss functions. If, in partic- 
ular, i(0) = 1, then 

40, cp) = E,((dX) -d@Y) 

is called the mean square error of the estimator 
q(X) of g(0). This error coincides with the 

variance when the estimator is unbiased. 

F. Bayes Estimators 

Let 5 be an a priori distribution over the 
parameter space 0 associated with a certain 

to-algebra 3, and assume that r(U, cp) is 3- 
measurable for every 4”. Denote by EC the 
average operator relative to 5. The infimum 
of the average risk r(&cp)= E<(r(U,cp))= 

ErE,( W(U, q(X))) for cp running over its range 
is called the +Bayes risk relative to <, while an 

estimator q(X) of g(0) at which the average 
risk r(t, cp) attains the intimum is called a 

Bayes estimator relative to 5. A Bayes esti- 
mator is obtained as follows: Assume that 9 
is dominated by a measure p with B x 3- 

measurable density pH(x), the loss function 
W(0, a) is 3 x K-measurable, and 

s 
P,(X)d5(4 < Q’. 

0 

For each observed value of x, the Bayes esti- 
mator v(x) takes the value a that minimizes 

r(a 1 x)= Ei(W(U,a)Ix) 

= 
s 

WfL U)P(O I x)@(@, 
0 

where ~(0 ( x) is the probability density, with 

given x, of 0. We call r(a 1 x) the posterior risk. 
Theorem (Girshick-Savage). Suppose that 

the loss function is quadratic. For any x the 
value of the posterior risk is either CC (for 
every value of a) or finite (for all or only one 
value of u). If the Bayes risk relative to t is 
finite, then a Bayes estimator p*(X) relative to 
5 is determined uniquely as follows: q*(x) = a, 
if r(u, I x) < zz for only one value a,, whereas 

~*(x)=EF(g(0)E.(O)(x)/Er(E.(O)(x)ifr(u(x)<r3 
for every a. If E'(l.(U))< CO, then a Bayes esti- 
mator is either biased or has average risk zero. 

G. Admissibility of Estimators 

An estimator (pO(X) of a parametric function 
g(0) is said to be admissible if and only if for 
any estimator q(X) of g(0) the inequality 
r(U,cp)<r(U,cp,) for all 0~0 implies that 

for all 0~0. If an estimator is the unique 
Bayes estimator relative to some a priori 
distribution, then it is admissible. For exam- 
ple, let Xi, , X, be a random sample from 
N(U, l),and let W(U,u)=(u-0)'. Then q(X) 

= (c + r&X)/( 1+ nr?) is the unique Bayes 
estimator relative to the prior distribution 
N(c, rr2) of 8, where X is the sample mean. 
Hence any estimator of the form r,,(X) = UX + h 
is admissible when 0 <a < 1 and --nc, <h < cx). 

In the rest of this section and the next sec- 
tion, we restrict ourselves to quadratic loss 

functions. If a statistic of the form cp(X) with 
real c is an admissible estimator of g(U), then 

Theorem (Karlin). Let X be a random vari- 
able having a 1 -dimensional exponential type 
distribution dP,(x)=~(0)es”&(x) with a param- 

eterspaceO=Z(_H, U)={UIJ?,Pdp(x)<m) 

a closed or open interval, and let g(B) = E,(X) = 

-/l'(U)/B(U) be a parametric function to be 
estimated. Then the estimator cpJX) = X/ 
(E. + 1) for real i is admissible provided that 

jf(/j(U))m"dU-x as h-U and ~~(fl(U))m'dU+;73 

as u-tf) for any c~(d,U). 

Corollary. When 0 =( -“o, co) the estimator 

cpO(X) = X is admissible. 
Corollary. Let 0 =(-co, co), and assume 

that both intervals (--cc, 0] and [O, x) have 
positive measure with respect to p. Then every 
estimator of the form q(X) = uX with 0 <u < 1 
is admissible. This theorem can be applied to a 
random sample Xi, , X, drawn from an 
exponential type distribution because the 
sufficient statistic X = C X,/n has an exponen- 
tial type distribution and E,(X) = E,(X,). 

Theorem (Karlin). Let X be a random 

variable having a distribution 0,(x) = q(U). 

r(x) dx for 0 d x < 0 and = 0 otherwise, with the 

parameter space 0 = (0, co), where st r(x) dx < 

+co and s; r(x)dx= co. Among the estima- 
tors of the type Q,(X) = c(q(X))-” for g(U) = 

(q(U))-< with c( > 0, only one estimator with the 
value c = (2~ + l)/(~ + 1) is admissible. This 
theorem is applicable also when the size of the 
random sample is larger than 1. 

Theorem (Stein). Let Xi, , X, be a random 
sample from a univariate distribution d!‘,(x) = 
f(.u - U)dx with a location parameter 0. Define 

A,=A,(x,.....xn)=[;T Uk(nf(x,-U))dU 
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for k=O, 1, 2. If 

then the Pitman estimator (p&X,, , X,) = 
,4,(X,, . , X,$&,(X,, . , X,) of the parameter 
0 is admissible. 

Inadmissibility of the Usual Estimator for 

Three or More Location Parameters. Let X = 
(X,, , X,y be a k-variate normal random 
variable with mean 0 = (0, , , 0,)’ and covar- 
iance matrix I, the identity. Then the Pitman 
estimator of 0 is 6=X. However, Stein showed 
that X is inadmissible. It is strictly dominated 
by the estimator @*(X)=(1 -(k-2)/(X(‘)X, 

where 1.1 denotes the Euclidean norm IX)‘= 
&X/. That is,ifk>3, E/0*(X)-01’< 

EIX-Uj2 for any 0. 
An estimator such as O*(X) is called Stein’s 

shrinkage estimator (James and Stein, Proc. 4th 

Berkeley Symp., 1 (1960)). 

H. Minimax Estimation 

An estimator (p*(X) is said to be minimax if 
and only if 

supr(O, q*)=infsupr(O, cp). 
n ‘p n 

If an estimator q* is admissible and the risk 
r(0, q*) is constant with respect to 0, then ‘p* is 
minimax. 

Theorem (Hodges-Lehmann). A Bayes esti- 
mator ‘p* relative to an a priori distribution 

t is minimax if 5 assigns the whole proba- 
bility to a subset w  c 0, r(0, q*) is constant 
(say, c) for OEW, and r(Q, cp*)<c for 0~0. 
Let X have a binomial distribution B(n, O), 0 < 
0< 1; I) is unknown. If the prior distribution 
of 0 is a beta distribution b(&/2, m), then 

the Bayes estimator is T*(X) = (X + &/2)/(n + 
&), which has constant risk ER( T*(X) - Q2 = 
(2( 1 + $))-’ for all 0,O < 0 < 1. Thus, ac- 
cording to this theorem, T*(X) is minimax. It 

is interesting to compare the mean square 
error of T*(X) to that of minimum variance 
unbiased estimator o^= X/n, O( 1 -0)/n. 

Theorem (Wald). If there exists a sequence 
of prior distributions { <,} such that 

for any 0~0, then (p* is minimax. For exam- 

ple, the last theorem led to the proof of the 

fact that the Pitman estimator of a location 

parameter is minimax 141. In the discussion of 
robust estimation, Huber (Ann. Math. Stutist., 

35 (1964)) proved that Huber’s minimax robust 
location estimator minimizes the maximum 
asymptotic variance over some family of sym- 
metric distributions in a neighborhood of the 
normal distribution (- 371 Robust and Non- 

parametric Methods). 

I. Invariant Estimator 

For simplicity, assume that the range A of a 

parametric function g(0) coincides with the 
parameter space, and consider the point esti- 
mation of g(B) = 0 (0 is not necessarily real). 

Suppose that there exist two groups G = (7) 

and G = {t} of one-to-one measurable trans- 

formations of !X and 0, respectively, onto 
themselves such that (i) there exists a homeo- 

morphic mapping r-t? from G to G; (ii) if X 
has a distribution Pe, then ZX has the distri- 
bution Pi@; and (iii) W@O,za) = W(0, a) for 
any 0, a, and z. An estimator cp is said to be 
invariant if it satisfies q(zx)=Tcp(x) for any 

7 E G, a.e. 8. An estimator cp is called a best 
invariant estimator if the risk function r(N, cp’), 

where cp’ is an invariant estimator, takes its 
minimum value when cp’= cp. 

If the group G is ttransitive on 0, then the 
risk function of any invariant estimator is 
independent of the value of 0, and hence any 
admissible invariant estimator is best invar- 

iant. For example, in the point estimation of a 
location parameter with a quadratic loss func- 
tion, the Pitman estimator is best invariant. 

Theorem. If 0 is a compact topological 

space, c is a group of homeomorphisms of 0 
onto itself, and G 1s homeomorphic to 0 
under gE&&,EO with a fixed &,E@, then 

any Bayes estimator relative to the +right- 
invariant Haar measure over G is best in- 

variant. This result can be generalized to a 
locally compact 0 (- 398 Statistical Decision 
Functions). 

J. Sequential Estimation 

Estimation methods based on sequential sam- 
pling are not as popular as tsequential tests, 

because their efficiency is not very large com- 
pared to that of nonsequential estimation. A 
generalization of the Cram&r-Rao inequality to 
any sequential unbiased estimator q(X) of a 
parametric function g(0) is the Wolfowitz 

inequality, 

for every 0 E 0, under regularity conditions 

similar to those for the fixed-size sample prob- 
lem, where N is the sample size and I(0) the 
Fisher information. 
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K. Asymptotic Theory 

In practical problems of statistical inference 

the sample size n is often large enough to give 
sharp estimates of the parameters involved; 
then the sample distributions of estimators can 
be approximated closely by their asymptotic 
distributions, which are of a simpler nature. 

Assume that X =(X1, X,, . ) is a sequence of 
independent and identically distributed (i.i.d.) 
random variables with the common distri- 
bution Ps, 0~0. For each n, let cp,= ‘p”(X,, 

“‘> X,) be an estimator of g(0) that is a func- 
tion of 0 to & (c RP). Thus cp, is a measurable 
mapping from (%“, an) to (&, %). Let us de- 
note the distribution of (P” by Y(cp,), Y((p,) 0) 
or Y(cp, 1 P,), the last two emphasizing that the 

underlying probability distribution is Ps. For 
example, if the mean vector E,(cp,) = m,(O) and 
the covariance matrix u,,(O)= V,(cp,) exist for 

every n, and if ~[u,(O)-“‘(~~,(X)--~(O))I O]+ 
N,,(O, I) as n+ co, then Y(cp,, 10) is approxi- 
mated by a p-variate normal distribution 
N,,(m,(O), u,,(O)) (- 341 Probability Measures 
D). (P” is said to be asymptotically (mean) 
unbiased for g(H) if m,(O)+g(O) for any a~@ as 
n+co. But we often calculate the asymptotic 
distribution without obtaining the exact mean 
and covariance matrix of the estimator cp, for 
each n. In the asymptotic theory it may be 
reasonable to regard the sequence of estima- 

tors {cp,} rather than each estimator cp, as an 
“estimator,” but we do not bother with the 
difference between these definitions of an 

estimator. 

Consistency. { cp,} is called a consistent esti- 
mator of g(0) if (P” converges to g(0) in proba- 
bility as n-co: 

limP,{Icp,-g(Q)/>E}=O foranyE>Oand 

every OE 0. 

If the convergence is almost sure, it is called 

a.s. consistent. For example, if cp, is asymptoti- 
cally unbiased with the covariance matrix u,,(O) 
such that lu,(O)l+O as n+co, then cp, is a 
consistent estimator of g(0). A sufficient con- 
dition for exist\ence of a consistent estimator is 
given by the following result. 

Theorem (LeCam). Let !Z be a Euclidean 
space and !I3 the a-algebra of all Bore1 sets in 

.F. If the parameter space 0 is a locally com- 
pact subset of Rk, Ps # Pep for any 0 # 8’ (identi- 
fiability condition), and P,“-+P, whenever 0,-r 
0, then there exists a consistent estimator of 0. 
cp, = g( T,) is a consistent estimator of g(0) if 

{T,} is a consistent estimator of 0 and g(0) is a 
continuous function of 8. 

Asymptotic Normality. The class of estimators 
is restricted to what are called consistent esti- 

mators. An estimator {cp,} is said to be asymp- 
totically normally distributed if the asymptotic 
distribution of n”‘(q,-g(8)) is normal: 

-LP[n”‘(cp,-g(8))1e]-N,(~(8),v(O)) as n-co. 

~(0) and u(6) are called the asymptotic bias and 
asymptotic covariance matrix, respectively. 
They are not always equal to the limits, if any, 

of the mean and covariance matrix of n”*(cp,- 

g(0)). { cp,} is usually called a consistent and 
asymptotically normal (CAN) estimator if the 
asymptotic distribution of n112(q, -g(O)) is 
normal with the asymptotic bias zero. Then 
the distribution 14((p, IO) is approximated 
by N,(O, u(O)/n). For example, the *moment 
method estimator is a CAN estimator. 

Theorem. Let {cp,} be a CAN estimator of 

g(O)ER’ with asymptotic variance u(0). Then 

liminfE,{n~cp,-g(~)~2}~u(~) for every 0cO. 
“-CJZ 

Theorem. Suppose that g(0) is a continu- 
ously differentiable function from 0 (c Rk) to 

RP (pGk). Let G(0)=(agi(Q)/aQj), the tJaco- 
bian matrix. If {T,} is a CAN estimator of /3 

with asymptotic covariance matrix u(e), then 
{ g( T,)} is a CAN estimator of g(Q): 

An estimator {T,} is said to be a best asymp- 
totically normal (BAN) estimator of B if {T,} 

is a CAN estimator of 0 with asymptotic 
variance I-‘(e), where I(Q) is the tFisher in- 
formation matrix on 6’ in a single observation. 
We can see that the maximum likelihood (ML) 

estimator (- Section M) is a BAN estimator. 

Functional on Distribution Functions. Let q(F) 
be a functional on distribution functions to R’. 
Let us consider the class of estimators that 
are defined by 50, = cp(fi”), where pfi is the tern- 
pirical distribution function of n samples X,, 
. . ,X,. An estimator {cp,j with (P” = cp(~$) 

for each n is said to be Fisher consistent for 
g(0) if cp(F,)=g(Q) for every OEO when F, is 
the true distribution function. {(pm), is also a.s. 
consistent for g(Q) if {cp,} is a Fisher consistent 
estimator of g(0) and if cp is a contmuous func- 
tional. Furthermore, if cp is differentiable, we 

can see that {cp,} is also a CAN estimator by 
using the fact that n”‘(&Fi’(t))- t), O<t< 1, 
converges weakly to the tBrownian bridge. 
Let S be a set of distribution functions. S is 
said to be a star-shaped set of F if HE S 

implies F(‘)=(l -t)F+ tHeS for any t~[O,l]. 

Theorem (Von Mises). Assume that 

(Fl) there exists a star-shaped set S, at F such 
that lim, Pe{pn~Ss} = 1; 
(F2) for any t~[0, l] and HE&, there exist 

derivatives (d’/dt’)cp[(l -t)F+ tH], i= 1, 2; 

(F3) there exists &(y) from R’ to R’ such that 
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$[(I-f)&+tH]I,=,= m s -oo ~~YMH(Y) 

- F,(y)) for all HE S,,; and 

for any 6 and a>O,where F#=(l -t)F~+&~. 
Then if 40, with (P” = q(p”‘,) is Fisher consistent 

for g(O), we have 

where 

s 

m 
m u(0) = -n 441(Y)2 dF,(Y) - 

{S --io 

{c,}-Consistency. For a sequence of positive 

numbers c, tending to infinity as n-+co, an 
estimator T, is called consistent for OE 0 with 
order c, (or {c,}-consistent for short) if for 
every a > 0 and every 0 E 0 there exist a sufti- 
ciently small positive number 6 and a suffi- 

ciently large number K satisfying 

n-m 

Let {c,,} be a maximal order of consistency. 
This notion was introduced by Takeuchi and 

Akahira. They studied consistent estimators of 
location parameters with various orders. Let 
Z = 0 = RI. Suppose that for every HE 0, Ps 
has a density function f(x - 0) with respect to 
the Lebesgue measure. 

Theorem. Assume that 
(OCl)f(x)>Oifa<x<bandf(x)=Oifx<a 
or x,<b; 
(OC2) there exist positive numbers 0 < c( < b < 
m and 0 <A’, B’ < co such that 

lim (b-x)‘-fif(x)=B’; 
x-b-O 

(OC3) f(x) is twice continuously differentiable 
in the interval (a, b) and there exist positive 

numbers 0 < A”, B” < cc such that 

x~ho(x-a)‘-=~f’(x)(= A”, 

lim 
x-h-O 

(b - x)‘-O I,f’(x)I = B”. 

Assume further that f”(x) is bounded if ~2 2. 
Then for each CI there exists a consistent esti- 

mator with the order given in Table 1. 

Table 1 

c! order c, 
{c,}-consistent 
estimator 

o<ct <2 nl/a { min Xi + max Xi - 

(a+b))/2 
r=2 (n log .p* ML estimator 
E>2 n l/2 ML estimator 

L. Moment Method 

The moment method is also utilized to obtain 

estimators. Suppose that K c R’ and 0 c Rk. 
Denote the tpopulation distribution function 
by FB and the iempirical distribution function 
of n samples Xl,. , X, by p”. The following 

system of simultaneous equations is derived 
from letting thejth tpopulation moment 

Pj(0) = E,(XJ) = s xj&(dx) 
be equal to thejth tsample moment 

mnj=n” 5 Xij= x’fl”(dx). 
i=l s 

For example, for j = 1, , k, 

cc(O) =(k(O), . , c(~(O))‘= (m,, , , m,,Y = m,. 

A moment method estimator is determined as a 
solution O=&(X)E@ of k numbers of simulta- 
neous equations. 

Theorem. Assume that the function ~(0) 
from 0 to Rk is continuously differentiable and 
that the Jacobian matrix M(O) = a~(@)/80 = 
(8pi(0)/aQj), i, j= 1, , k, is nonsingular in a 
neighborhood of the true parameter. Then the 
moment method estimator exists and is a 

CAN estimator: 

where u(Q)=(cov,(X’, Xj)), i, j= 1, . . . , k. In 

general, a moment method estimator is not 
a BAN estimator. However, in view of its 
simple form, a moment method estimator is 
important and often utilized as a first-step 
estimator in order to determine the maximum 

likelihood estimator by the iteration method. 

M. Maximum Likelihood Method 

Suppose that a distribution Ps has the density 
function f(x, 0), OE 0 c Rk, with respect to a +rr- 

finite measure p, and let xl, ,x, be observed 
values of random samples X, , . , X, from the 
population f(x, 0). Then the function L, of 0 
defined by 

L,(O;Xll...,X,)=~f(xi,o) 
i=l 

is called the likelihood function. If 0 = &(x, , 

“‘2 x,) maximizes the value of L,(O) for fixed 
x 1, , x, and if it is a measurable mapping 

from (X”, W) to (0, ‘6’) with W a to-algebra 
of subsets of 0, then &(X)= &(X1, , X,) is 
called the maximum likelihood (ML) estimator 

of 0. This method of finding estimators is 
called the maximum likelihood method. If the 
parameter is transformed into a new para- 

meter n = h(0) by means of a known one-to- 
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one bimeasurable transformation h and if 

there exists a unique ML estimator 8,, of 0, 
then Q,,(X)= h(&(X)) is a unique ML estimator 
of q. In other words, the ML estimator is in- 

variant for every one-to-one transformation. 
Many statisticians have investigated and 

improved known adequate regularity con- 
ditions under which the ML estimator exists 
and is a BAN estimator. 

Theorem (Wald). Assume that 

(AN3) I$,( I$logj”(x.D))i)< co for OEO”; 

(AN4) the Fisher information matrix I(H) = 

i, [ (Al”gf(x, 0)) ($logf.(x, O):J] exists and 

is positive definite for 0~0’; and 
(AN5) there exists an H(x) such that 

$logf(x,II) <H(x) and E,(H(X))<C, a 

(Cl) 0 is a closed subset of Rk with nonempty 
interior 0”; 

constant for 0~0’. 

(C2) for any XE.~, f‘(x, 0) is continuous with 
respect to II and lim,,,,,,f(x, 0) = 0 if 0 is not 
bounded; 

(C3) if 0, #O,, then PSI # PSI and s ]S(x, 0,) - 

fk 0,) &b) > 0; 

Then the maximum likelihood estimator is 
a BAN estimator: Z’[n”‘(& - 0) I 0-t 
N(O,I(O)-‘) as n’m for 8~0’. Note that 
under assumption (ANl) the likelihood func- 
tion attains the maximum in 0’ with proba- 

bility tending to 1 as n+ co if the true value 

of the parameter exists in 0’. Hence the ML 
estimator is determined as a root 0 =8,(x,, , 
x,) of the likelihood equation with the same 
probability as above: 

(C4) &,(llogfW, O,)l)< a; and 
(C5) &o(log ‘fW, 0, ~1) < ~0 and 4,0(hzicp(X, 4) 
<co,where,f(x,O,p)=sup{f(x,0’);(0’-H(~p) 
and cp(x, r) = sup{ f(x, 0); IO]> Y}. (The last 
two functions are measurable according to 

assumption (C2).) 
=o. 

j=l,...,k 

Then if a sequence of measurable functions, 
{0,(x r , , x.))., satisfies 

We also call n-‘8logL,,(H)/c?O the likelihood 
estimating function. The essential fact used in 

lim inf 
L,(Q;x,,...,x,) 

L(~o;x,,...,x,) 
2 C > 0 

n-x 
(a.s. P,J, 

the proof of the above theorem is the asymp- 
totic equivalence of the ML estimator and 

then as n--, co, 0,(X,, . . . , X,) converges a.s. to 
the true value 0, of the parameter. Hence if 
the ML estimator exists, it is as. consistent. 
Pfanzagl (Metrika, 14 (1969)) and Fu and 
Gleser (Ann. Inst. Statist. Math., 27 (1975)) 
gave rigorous proofs for the existence of the 

ML estimator. 

the likelihood estimating function: 

A,(O)-I(O)~I”~(&@~~ in PO as n+co, 

where A,(0)=n~1’2a10gL,(0)/8Q. Note the fact 
that 

Y[A,(Q)IH]~N,(O,I(f!I)) as n-cc 

holds according to the central limit theorem 
(- 250 Limit Theorems in Probability Theory 

B (1)). 

Theorem. Under assumptions (Cl) and (C2), 
there exists a maximum likelihood estimator 
8” for any positive integer n. That is, & = 

&(x,, ,x,) is a measurable function from 
(.V. !B”) to (O,%) and satisfies L(i),; x,, , x,J 
= sups L(0; x, ) , XJ. 

In the remainder of this section we suppose 

that assumptions (Cl)-(C5) are satisfied. We 
use the notation 

?f 1= 
(‘0 

a k-column vector, 

g=(&,(lx,Q), a k x k matrix, 

a3 log f r=(‘;;;;;i”)> h,i,j=l,...,k. 

Theorem (Cram&r). Assume that 
(AN 1) for a.s. [p] x, f(x, 0) is three-times con- 

tinuously differentiable with respect to each 
component of 0=(0,, . . ..@J’E@~. 

(AN2) for OE@‘, mf(x> 0) 
aodp=O 

and s a2.Kx, 0) - 
-dp=O; 

,r au2 

Contiguity. We now turn to the situation 
where we need asymptotic distributions under 

the alternative distribution Po+n-l:2h with 0+ 
n-“‘hE@ in estimation as we do in testing 

hypotheses (- 400 Statistical Hypothesis 
Testing). The notion of contiguity, due to 

LeCam (1960) is basic for the asymptotic 
methods of estimation theory. We consider 

sequences {P,) and {PA} of probability mea- 
sures on (!~‘,‘B“) with the +Radon-Nikodym 

derivatives p, and pi with respect to a a-finite 
measure, such as P, + Pi. Denote by x,, = 
A[P;; P,] a generalized log-likelihood ratio 

that is defined by logp’,/p, on the set { p,pL 
> 0) and is an arbitrary measurable function 
on the set { p,pl, = 0). Let {B,} be any sequence 

of {%‘}-measurable sets, and let { T,} be any 
sequence of {23”}-measurable functions. A 
sequence of distributions {Z[T’,J PJ} is said to 

be relatively compact if every subsequence 
in’} c {n) contains a further subsequence 

(m) c {n’} along which it converges to a prob- 
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ability distribution. In the Euclidean space 
relative compactness is equivalent to tight- 
ness: that is, for every E > 0 there is a b(~) such 

that P,,{ 1 T,] > h(a)} <E for every n. 
Theorem. The following statements are all 

equivalent. 
(1) For any { 7;,}, T,+O in P,, if and only if T,+ 
0 in PJ. 
(2) For any {T,), (Z[T,I P,]} is relatively 
compact if and only if (YpCT, 1 Pi]) is relatively 
compact. 
(3) For any (B,), P,{B,) -0 if and only if 

P;{B,}+o. 
(4) Whatever the choice of x,, {U[x, ( P,] 1 and 
{ Y[,Y, ] P,‘] } are relatively compact. 
(5) Whatever the choice of xn, { .,rU[x, 1 P,,] ) is 

relatively compact. Furthermore, if {m) c {n) 
is a subsequence of {n} such that -le[x,,, 1 Pm] 
converges to U[x], then E{e”) = 1. 

Two sequences {Pn} and {PA) satisfying 
requirements (l)-(5) of the above theorem are 
said to be contiguous. 

Theorem. Suppose that {Pn} and {Pi} are 
contiguous. Let {m} c in} be a subsequence 

such that Y[x,,, T,) P,,,] converges to a limit 
Y[x, T]. Then p[x,,,, T,) PA] converges to 
@Y[x, T], where v=@‘Y[x, T] is given by 
v(A)=~,eXd~[~, T]. 

Now, set P,, = Pl and Pi = P:+,- L,2h for each 

n. Under suitable regularity conditions, such 

as assumptions (Cl)-(C5) and (ANl)-(ANS), it 
is easy to see that {P;) and {Pi+, , z,,} are 
contiguous. At the same time, we can see that 
the asymptotic linearity of A,(0 + n-i” h; 0) = 

AC&- I 2h; P,“] holds (say) in the vicinity of 
the true parameter as follows: 

A,,(O+~~‘/‘h;0)-h~~,(0)+~h’,(~~)h-O in PO. 

The asymptotic equivalence of the ML es- 
timator and A,(O), and the asymptotic linearity 

of the log-likelihood function and A,(O), leads 
to the regularity (- Section N) of the ML 
estimator. 

Theorem. Under suitable regularity con- 
ditions as above, the ML estimator is regular: 

~[n”2(e,-O)-hIO+n-“2h]~N,(0,1(B)-’), 

for any ~~~~ with O+n-“2he0. 

N. Asymptotic Efficiency 

In Section D we discussed lower bounds of 

variances of unbiased estimators for finite 
sample size and defined the efficiency of an 
unbiased estimator with variance u,(0) by 
(u,(@11(0)))‘. In this section we first discuss 
the asymptotic efficiency of a CAN estimator 
in the same vein as in the case of finite sample 

size. Second, we see a specific approach to the 
large-sample theory of estimation. Throughout 
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this section we assume (Cl)-(CS) and (ANl) 
(AN5) stated in Section M. 

BAN Estimators. We suppose that the para- 
meter space 0 is a subset of R’ in this para- 
graph. We restrict our attention to the class 

of CAN estimators {T,} of the real-valued 
parameter 0 for which Y[n”‘( Y&, - Q) IQ] + 

N(0, u(0)) as n+cZI. Fisher’s conjecture con- 
cerning the lower bound to asymptotic var- 
iance u(0) of any CAN estimator is 

where I(0) is the Fisher information on 0 in a 

single observation. The asymptotic efficiency 
of a CAN estimator with asymptotic var- 

iance u(B) is defined by (u(0)1(0)))‘. A CAN 
estimator with asymptotic variance I(e)-’ is 
called a BAN estimator or an asymptotically 
efficient estimator. Note that under suitable 

regularity conditions there always exists an 
asymptotic efficient estimator, for example a 
ML estimator, although for a sample of finite 
size there exists an efficient estimator if and 
only if the family of density functions is of the 
exponential type. 

Unfortunately, Fisher’s conjecture is not 

true without further conditions on the compet- 
ing estimators. A counterexample was pro- 

vided by Hodges and reported by LeCam 
(1953). Let {T,,} be any CAN estimator with 

the asymptotic variance u(0). Consider the 
estimator 

T,‘= 
{ 

rT, if 

T, if 

where O<a< 
CAN estimatl 
such that 

1 is a constant. {T,‘} is also a 
or with asymptotic variance u’(0) 

u’( 0) = 
a2u(0) if O=O, 

40) otherwise. 

Let { T,} be a BAN estimator; then T,’ is an 
estimator with asymptotic variance less than 
I(0))’ and is called a superefficient estimator. 

Theorem (LeCam). The set of points H for 
which the inequality due to Fisher fails is of 
Lebesgue measure zero. A condition due to 

Bahadur leads to the continuity of asymptotic 
variance which implies the validity of the 
above inequality. 

Theorem (Bahadur). Suppose that {T,,} is a 
CAN estimator with asymptotic variance t:(O) 

satisfying the condition 

1 
liminfP,,l+,m 

n-oo 
1/2{T”<00+n-“2}<j 

or 
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Then the following inequality, due to Fisher, 

holds at 0 = 0,: 

L’(Oo) > z(e,)-‘. 

Regular Estimators. Wolfowitz and Kaufman 
considered an operationally more justifiable 

restriction on competing estimators, called 
the uniformity property, stating that, for an 

estimator {T,} of 0, Y[nl”(T,-O)IO](y) con- 
verges to any limit L,()i) uniformly in (y, 0)E 
Rk x C, where C is any compact subset of the 

interior 0’ of 0 c Rk. The ML estimator { &} 
also has this uniformity property under suit- 
able regularity conditions, such as (Cl)-(C5) 

and (ANI)-(ANS) to which some uniform- 
ity properties are added [29]. We note that 
asymptotic variance is not a good measure- 
ment of asymptotic efficiency unless an estima- 
tor is a CAN estimator, and that asymptotic 
concentration is in general a more pertinent 
measurement. 

Theorem. For an estimator {T,} with uni- 

formity property above, it holds that the limit 
L,,(y) is a probability distribution function and 
continuous for either one of the variables y or 0 
if the other is fixed and furthermore that the 

probability measure L, is absolutely contin- 
uous with respect to the Lebesgue measure on 
Rk. 

Theorem. The asymptotic concentration of 

the ML estimator {&} about 0 is not less than 
that of any estimator {T,} with uniformity 
property: For any convex and symmetric set 
S c Rk about the origin, 

lim P,jn1~2(&O)~S}>lim Ps{n”‘(Tn-O)Es}. 
n-r, n--u 

Schmetterer (Research papers in statistics, F. 
N. David (ed.), 1966) provided the notion of 
the continuous convergence of distributions of 
estimators of f3 which is weaker than uniform 
convergence. An estimator {T,} is said to be 

regular if 

~[n’~2(T,-~)-h~I+nn-‘~2h]~L, as n+co, 

where L, is a probability distribution inde- 
pendent of h with 0+nm1/2h~0. It was shown 
that the ML estimator {&} is regular under 

ordinary regularity conditions. Hijek obtained 
the following characterization of the asymp- 
totic distribution of any regular estimator and, 

independently Inagaki (Ann. Inst. Statist. 

Muth., 22 (1970); 25 (1973)) obtained a similar 
result. 

Theorem. The asymptotic distribution L, of 

any regular estimator {T,} is represented as 
the tconvolution of a normal distribution NC, 
and some residual distribution G,: 

LB=N,,*GO, 

where N,,= Nk(O, I(O)-‘), the asymptotic distri- 

bution of the ML estimator {&} in the ordinary 

regular case. It follows from the characteriza- 
tion L, = N, * GB, that the first two theorems 
in this section hold also for regular estimators. 
(- LeCam, Proc. 6th Berkeley Symp., 1972, 
and Roussas and Soms, Ann. Inst. Statist. 

Math., 25 (1973).) 

0. Higher-Order Asymptotic Efficiency 

In Section N it was shown that the ML esti- 
mator is a BAN estimator. In general, how- 

ever, there exist many BAN estimators. For 
example, consider the case of a +multinomial 
distribution where probabilities of events are 

parametrized. That is, let X =(nl, , n,)‘, n= 
n, + + n,, be distributed as a multinomial 

distribution M(n; T[ I,..., n,),n,+...+7r,=l, 
and let L$ be a subset of m-vectors, I& = 
{n(O)=(n,(O), . . . . q,,(Q))‘;fl~@}, 0 CR’. De- 

fine fi=(fil, . . . . &J’=(nI/n, . . . . n,/n)‘. Then 
we consider (i) the ML estimator, (ii) the 
minimum-chi-square estimator, (iii) the mini- 

mum modified chi-square estimator, (iv) the 
minimum Haldane discrepancy (Ilk) estima- 
tor, (v) the minimum Hellinger distance (HD) 
estimator, and (vi) the minimum Kullback- 

Leibler (K-L) information estimalor. These are 
defined as the values of the parameter 0 that 

minimize the following quantities, respectively: 
(i) ML= -logL,= -nn~“=,fiilogxi(0); (ii) 
~~=C~,(nfi~-wr~(Q))~/(nz~(0)); (iii) modX2= 

C:=,(nbi-nn,(0))2/(nbi); (iv) Dk=GE1 7Ci(o)k+1/ 
3:; (v) HD=cosY’ C~l(fii7ci(0))1i2; and (vi) 
K-L = CE”=, 7ci(H)log(ni(0)/fii). Rao [:32] showed 

that under suitable regularity conditions these 
estimators are Fisher consistent and BAN 

estimators. 

Fisher-Rao Approach to Second-Order Asymp- 
totic Efficiency. For 0 E 0 c R’, let ps. be the 
density for n i.i.d. observations x.=(x1, , x,), 
and let qs,, be the density of estimator T,. The 
+Fisher information contained in X and in T, 
are defined by nI(O) = E(d log psJdQ2 and 
n1,“(0)= E(dlogq,,/dQ)2, respectively. Rao 
defined the first-order (asymptotic) efficient 

estimator T, satisfying one of the following 
conditions: (1) n112 Idlogp,,/dO-dlogq,,/d@l+O 

in probability; (2) I(0) - Zrn(B)+O as n+ 

a; (3) the asymptotic correlation between 
n”2(T,-0) and n1/2dlogp,,/d0 is unity; (4) 

In”2dlogp,,/dQ-a-fln”2(T,-0)1+0 in prob- 
ability. We note that the larger the condition 
number (j), the stronger the condution. A tirst- 
order efficient estimator is a BAN estimator. 
Fisher proposed 

E; = lim (n1(O)-nl,.(@)=!iz V,(dlogp,,/dO 
“-CC 

-dlwq,,ld@ 
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as a measure of second-order (asymptotic) 

efficiency to distinguish different BAN es- 
timators. Fisher stated without any sort of 
proof that the maximum likelihood estimator 
minimizes E;, i.e., maximizes second-order 
efficiency. Rao proposed 

E,=m:n I/,(dlogp,,/dO-an”‘-Bn(T,-I)) 

as a measure of second-order efficiency for 
first-order efficient estimators ( T,J satisfying 

condition (4). He showed that the estimators 
mentioned above for multinomial distribution 
are first-order efficient estimators satisfying 
condition (4) and furthermore calculated 
second-order efficiencies of these estima- 
tors measured in terms of E,: (i) E,(ML)= 
l;‘(O)I(O); (ii) E2(~‘)=A(0)+E2(ML); (iii) 
E,(modX2)=4A(0)+ E,(ML); (iv) El(Q)= 

(k+ 1)2A(0)+ E,(ML); (v) E,(HD)=A(0)/4 
+ E,(ML); (vi) E,(K-L)=A(O)+E,(ML) with 

Rao [33] gave another definition of second- 
order efficiency based on the expansion of the 
variance of T, after correcting for bias: V,( T,) 
=(nI(fl))-’ + $(0)ne2 + o(n-‘). The quantity 
G(O) is considered to be a measure of second- 
order efficiency. The results of Fisher and Rao 
were confined to multinomial distributions. 
Efron (Ann. Statist., 3 (1975)) and Ghosh and 

Subramanyan (Su)tkhy& sec. A, 36 (1974)) 
extended the results to the so-called curved 
exponential family of distributions. Efron gave 
a geometric interpretation to the effect that 
second-order efficiency is related to the curva- 

ture of a statistical problem corresponding 
to y(O) above, and S. Amari recently extended 
this differential-geometric approach to the 
discussion of higher-order efficiency of esti- 
mators. Rao suggested that E; is equal to E,. 
Ghosh and Subramanyan gave a sufficient 
condition for the equality to hold, whereas 
Efron provided a counterexample to show that 
E; #E, in general. 

Pfanzagl and Takeuchi-Akahira Approaches to 
Higher-Order Asymptotic Efficiency. For each 

k = 1, 2, . , a +jc,}-consistent estimator { T,J is 
said to be the kth-order asymptotically median 
unbiased (AMU) estimator if for any 0 E 0 
(CR’) there exists a positive number 6 such 
that 

lim sup c,“-’ PC{T,<7}-i =0 
n-x lr-HI<6 

or 

lim sup c,“-’ lP~(7.2r):~=O. 
n-r lr-Ol<d 

This notion, which is an extension of the con- 
dition due to Bahadur for the asymptotic 

efficiency, was introduced by Takeuchi and 
Akahira. For a kth-order AMU estimator 
{7;,), G,(~,O)+~,‘G,(~,O)+...+C,~+~G~-~(~,O) 
is called the kth-order asymptotic distribution 
of c,(T,-0) if 

-c,‘G,(t,O)-...-c,“+‘G,+,(t,O)I=O. 

Pfanzagl and Takeuchi and Akahira obtained 

the concrete form of the second- or third-order 
asymptotic distribution of the ML estimator. 
A kth-order AMU estimator is said to be 
&h-order asymptotic efficient if the kth-order 

asymptotic distribution of it attains uniformly 
the bound for the kth-order asymptotic distri- 
butions of the kth-order AMU estimators. 
Takeuchi and Akahira showed that under 
suitable regularity conditions, r, is second- 
order asymptotic efficient if 

+ ~P~~VWW(~)~‘~) 

x t2fp(t)+O(n-“2), 

where O(t) is the standard normal distribution 
function and q(t) is its density function, and 
further that the modified ML estimator 

for the ML estimator & is second-order asymp- 
totic efficient. Pfanzagl (Ann. Statist., 1 (1973)) 
obtained a similar result. The formulation due 

to Takeuchi and Akahira is more extensive 
since it can be applied to the so-called non- 
regular cases. 

P. Estimating Equations 

We often determine an estimator as a solution 
0 = T,(x,, ,x,) of an equation Yn(x,, ,x,; 0) 
= 0; for example, the ML estimator as a solu- 

tion of the likelihood equation. In such case, 

such an equation is called an estimating equa- 

tion and Y”(O)= Y,,(X,, . . . , X,; Q), a random 
function, is called an estimating function [3]. 



399 Q 
Statistical Estimation 

1498 

Call T, an estimator based on an estimating 
function Y,,(O). The following result is a modifi- 
cation of a theorem due to Hodges and Leh- 
mann (Ann. Math. Statist., 34 (1963)). 

Theorem. Let 0 be an interval of R’. Sup- 
pose that a real-valued estimating function 

Y,,(Q) satisfies the following three conditions: 
(M 1) Y,(0) is a nonincreasing function of the 

real parameter 0; 

(M2) for any real number h, n”‘Y,JO, + n-‘/‘h) 
- n”‘Y~(O,,) + yh+0 in probability, where y is a 
positive constant; and 
(M3) ~[n”2Y~(Bo)](y)~~(y/cr), where @ is a 
continuous distribution function with zero 
mean and unit variance. 
Define an estimator based on Y” by T. = (0: + 
0,**)/2, where Q,* =sup{tI) Y,(e)>O} and (I,** 

=inf{O]Y’n(Q)<O}, Then we have X[n1’2(T,- 
O,)](y)*Q(yy/~) as n+co. Huber consid- 
ered a formulation that guarantees the asymp- 
totic normality of an M-estimator. An M- 
estimator T, is defined by a minimum problem 

of the form Cy=‘=, p(Xi, T,) = min, C;=, p(Xi, 0) 
or by an implicit equation C:=, $(Xi, T,) = 0, 
where p is an arbitrary function and $(x, 0) = 
Zp(x, 0)/80. Note that p(x, 0) = - logf(x, 0) 
gives the ordinary ML estimator. Let 0 be a 
closed subset of Rk, let (?Z, 9, P) be a proba- 
bility space, and let t//(x, 0) be some function 
on Z x 0 with value in Rk. Assume that X,, 

X 2r... are independent random variables with 
values in !Z having the common probability 
distribution P that need not be a member of 

the parametric family. Consider an estimating 
function 

Assume that 
(Nl) for each fixed 0~0, $(x,Q) is d- 

measurable and $(x, 0) is keparable; 
(N2) the expected value n(0) = E{ $(X, O)} 
exists for all 0~0, and has a unique zero at 
tl=O”EOO; 
(N3) there exists a continuous function that 

is bounded away from zero, b(0) > b, > 0, 

suchthat~(su~,{I$(X,Wb(@})<~, 
liminf,,,,,{ I,‘.(O)]/b(O)} > 1, and 

Wmsup,,,+,{ I~(x,,I))--i(H)llb(B)})< 1; 
(N4) for u(x, 0, 4 = SUP { I $(x, 4 - Icl(x, OIlI 

IT-Hldd}, 
(i) as d--rO, E(u(X, 0, d))+O, 

(ii) there exist positive numbers do, b,, and b, 
such that E(u(X, 0, d)) < h, d and E(u(X, 0, d)2) 
<b,dforOanddsatisfyingO<IO-fJ,I+d<d,; 

(N5) in some neighborhood of Q,, I(Q) is con- 
tinuously differentiable and the Jacobian ma- 

trix at 0 = O,, A = (a&(0,)/8,), is nonsingular; 
and 

(N6) the covariance matrix C=E{$(X, 0,). 
$(X, 0,)‘) exists and is positive definite. 

Theorem. Suppose that an estimator {T,} 

satisfies Y’,(T,)-tO a.s. (or in probability) as 
n+co. Then, under (Nl))(N4) (i), T,+O, a.s. 
(or in probability) as n+ co. 

Lemma. Under (Nl))(N5), 

SuPi ly’.(4 - yn(Qo) - 44An ml’2 + I$d); 

in probability as n-t co. 

Suppose that {9[n1’2Y,,( ‘Q] } is ttight. It 
implies that Yn( 7”)+0 in probability, and 
hence from the above theorem T,-+O, in prob- 
ability. Thus letting z = T, we have 

in probability. That is, for any E > 0 there 
exists an no such that for n>n,, F’{n”2jL(T,)I 

<c+ln r12Y (T,)-n1’2Yn(Oo)I}> 1 -a. This 
and the tigh;ness of { 2[n”2 Y,( T,)] } and 
{Lf[n112Y,,(Bo)]} lead to the tightness of 

{~[n1~2(~-00)]}, and the converse is also 
true. At the same time we have n’#‘YJ T,) - 
n’~2Y,(~o)-An1~2(T,-~o)-+0 in probability. 
The following theorem is a straightforward 
consequence. 

Theorem. Suppose that an estimator & satis- 
fies n1’2Yn(&)+0 as n-co. Then, under (Nl)) 
(N6), ~[n112(~,-Ho)I P]+N,(O,A -I CA’- ‘) as 
n+co. 

Q. Interval Estimation 

Interval estimation or region estimation is a 
method of statistical inference utilized to esti- 
mate the true value g(0) of the given para- 
metric function by stating that g(0) belongs to 
a subset S(x) of &‘, based on the observed 
value x of the random variable X If 

P,{g(@S(X)}>l-- for any 0~ 0 

for a constant x (0 < c( < 1), then the random 
region S(X) is called a confidence region of g(0) 
of confidence level 1 - c(, and the intimum of 
the left-hand side with respect to r’l E 0 is called 

the confidence coefficient. In particular, if 0 c 
R and a confidence region is an interval, as 

is often the case, then the region is called a 
confidence interval, and two boundaries of the 
interval are called confidence limits. If a partic- 

ular subset S(X) among the set of confidence 
regions of g(0) of confidence level 1 - 51 mini- 
mizes PB{g(O’)ES(X)} for all pairs ‘9 and 0’ (#O), 
S(X) is said to be uniformly most power- 
ful. If a confidence region S(X) of g(0) of confi- 

dence level l--51 satisfies P,{g(fl’)t~S(X)} Q l- 
t( for all pairs 0 and 0’ (#O), then it is said to 

be unbiased. The notion of invariance of a con- 
fidence region can be defined similarly, and 

the definition for S(X) being uniformly most 
powerful unbiased (UMPU) or uniformly most 
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powerful invariant (UMPI) can be formulated 

in an obvious manner. 
For each t&e@ let A(&) be an tacceptance 

region of a ttest of level CI of the thypothesis 
Q=Q,. Foreachx~.%letS(x)={B]x~A(B), 
8~ O}. Then S(X) is a confidence region of B 

of confidence level 1 - 0~. If A(fi,) is an accep- 
tance region of a UMP test of the hypothesis 
0 = &, for each Q,,, then S(X) is a UMP con- 
fidence region of 0 of confidence level 1 - c(. 

Furthermore, corresponding to an acceptance 
region A(&,) of a UMP unbiased (invariant) 
test, a UMP unbiased (invariant) confidence 
region can be constructed in a similar manner. 

R. Tolerance Regions 

Let X and Y be distributed according to prob- 

ability distributions P,X and &,” labeled by a 
common 0~0 over measurable spaces (X, 23) 
and (V, g), respectively, and consider the prob- 
lem of predicting a future value of the ran- 
dom variable Y using the observed value x of 
the random variablC X. If a mapping S(x) 
sending a point x to a set belonging to % is 
used to predict that the value of Y will lie in 
the set S(x), then the random region is called a 

tolerance region of Y. In particular, if a toler- 
ance region of a real random variable is an 
interval, it is called a tolerance interval and its 

boundaries tolerance limits. 
For simplicity, suppose that X and Y are 

independent. There are several kinds of toler- 
ance regions. First, if P~(PJ{YES(X)} ap)>y 
for any 0 E 0, then S(X) is called a tolerance 
region of Y of content p and level y. Second, if 
E~(&“{YES(X)})>/I for any OEO, then S(X) 
is called a tolerance region of Y of mean con- 
tent 8. Suppose that the random variable X = 
(Xi, . . , X,,)’ is a trandom sample and that 

both Xi and Y obey the same distribution. 

If further the set {Pll Qe 0) forms the totality 
of l-dimensional tcontinuous distributions 
and the distribution of Pf{ YES(X)} does 
not depend on the choice of 0, then S(X) is 
called a distribution-free tolerance region. 
For example, if X,,, < Xc*, < . <Xc., is an 
torder statistic, then the interval [X(,,, Xcs,] (for 

I < s) is a distribution-free tolerance interval 
for a random variable Y, independent of Xi, 
. ..) X,,, which has the same distribution as Xi. 
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Statistical Hypothesis 
Testing 

A. General Remarks 

A statistical hypothesis is a proposition about 

the tprobability distribution of a tsample X. If 
it is known that the idistribution of X belongs 
to a family of distributions 3 = {PO 1 OER} with 
a parameter space R, the hypothesis can be 
stated as follows: The value of the parameter 0 

belongs to wH, where oH is a nonempty subset 
of the parameter space 0. This hypothesis is 
also written simply as H:HEw,,. When w,, 

consists of one point, it is called a simple hy- 
pothesis, otherwise a composite hypothesis. 

Let .“x’ be a tsample space associated with a 
to-algebra % of subsets of X. To test a hypoth- 
esis H is to decide whether H is false, based on 

the observation of a sample X(E.‘)‘). The asser- 
tion that H is not false does not necessarily 
imply the validity of H. Such an assertion is 

called the acceptance of H, while the opposite 
assertion, that H is false, is called the rejection 
of H. In this framework for the testing prob- 
lem, H is often called a null hypothesis (- 401 
Statistical Inference). 

Consider a testing procedure in which H is 
rejected with probability q(x) (0 6; q(x) d 1) 
and accepted with probability 1 - q(x), when 
x E x is observed. This testing procedure is 

characterized by the function cp on .% with 
range in [0, 11. Here q(x) is taken as 8- 
measurable on I’, and is called a test function 
or test. If q(x) is the indicator function xR(x) of 
a set B (E !B), then the test is rejecting H when 

x belongs to B and accepting H otherwise. The 
set B is called a critical region, and its comple- 

mentary set an acceptance region. A test is 
called a nonrandomized test if it is the indicator 

function of a set. Other tests are called random- 
ized tests. 

Suppose that the tdistribution Iof the sample 
X is a probability measure Ps on I Y’, %). The 
probability of rejecting H when 0 is the true 

value of the parameter is calculated from 

E,(v) = vW’&W. 
s -x 

Let x be a given constant in (0,l). If a test 
(i?(x) satisfies &(~)<a for all 0Ea),, or, in 
other words, if the probability of rejecting H 
when H is true is not greater than a, a is called 
the level of cp and such a test is called a level c( 
test. We denote the set of all level c( tests by 

W4, and supRtoH E,(v) is called the size of cp. 
To judge the merit of tests, we introduce a 
different hypothesis A: The true value of 0 
belongs to w, ,Q - (of,. This is called an alter- 
native hypothesis, or, for simplicity, an alterna- 

tive. The errors of a test are divid’ed into two 
kinds: errors owing to the rejection of the 

hypothesis H when it is true, and errors owing 
to the acceptance of H when it is false. The 
former are called errors of the first kind, and 
the latter, errors of the second kind. The proba- 
bility E,(q) of rejecting H when HEW,.,, that 

is, the probability of the correct decision being 
made for OE~~, is called the power of a test or 
the power function. The probability of com- 

mitting an error of the second kind is 1 -E,,(q) 
for OEW,,,. A testing problem is indicated by 
the notation (x, 23,Y, wH, cl,,,,). A test cp in a 

class cP(!x) of tests is said to be uniformly most 
powerful in m,(x) (or UMP in m(2)) if for any 
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(I/E@(E), E,(q)>&($) for all DECO,,. When ~3~ 
consist of a single point, it is said to be most 

powerful. 

B. The Neyman-Pearson Fundamental Lemma 

Let p be a to-finite measure over (Y, %) and 
,f; , _, ,,f,+, be p-integrable real-valued func- 
tions. If c 1, , c, are constants such that the 
set @(c, , , c.) of test functions cp satisfying 

P.f;dPGci, i=1,2 ,,.., n, 

is not empty, then there exists at least one test 
‘p,, in @(c,, , c,) that maximizes lv).fn+, dp 
among all cp in @(c,, , c,). A test $5 is one 
of these tests if it satisfies the following two 
conditions: 

(I ) For appropriate constants k, , , k, B 0, 

1 when .A,+, C-d> i kAx), 
i=, 

Q(x)= 

0 when .L+l(x) < t ki,fi(X) 
i=l 

almost everywhere with respect to .u, and 

(2) the equation 

I $.A dP = Cir i=1,2 )..., II, 

holds. 
If (cl, , c,,) is an interior point of the subset 

of the n-space R” and @ satisfies (2) and maxi- 

mizes J ~,f,+ 1 dp among all cp in cD(c 1, , c,,), 
then 4 satisfies (1). These statements are called 
the Neyman-Pearson lemma. 

As an illustration, suppose that R =( 1,2, , 
n, n $- 1) and that {PO 10~0) is dominated by a 
o-finite measure kt. Let ,fi(x) be the density of 
Pi with respect to p. When wH is a finite set 

(l,..., n) and wA consists of a single point 
n + 1, then 4 satisfying (1) and (2) with c, = 

= c, = x is a uniformly most powerful level 
s( test. 

If B is generated by a countable number of 

sets, then there exists a most powerful level c( 
test for any hypothesis against a simple alter- 
native A: 0 = I!?. A method of obtaining such a 
most powerful test is given in the Lehman- 
Stein theorem: Denote by f0 the density func- 
tion of Ps with respect to a o-finite measure p, 
and define 

h,(x) = 1 .Ik(x)d40) 
J% 

for a probability measure F. on wH. Consider 

testing the simple hypotheses H,: The density 

of distribution of the sample is h,, against 
the alternative A: H= g, and let (pi be a most 
powerful level c( test for this problem (H,: A). If 

SU~~.~~ E,(cp,) < tl, (pI is a most powerful level cI 
test for testing H : Q E wH against A : fI = 8. The 
measure 1, satisfies E,(cp,.) 2 E,(cp,) for any 
probability measure I.’ on wH and is called a 
least favorable distribution. 

When the alternative hypothesis w, consists 
of more than one point, a uniformly most 

powerful test does not generally exist. How- 
ever,ifR=R,w,=(-co,&J,(~~,=(&,,m),and 
,&(x) is a density function with tmonotone 

likelihood ratio with respect to a statistic 7’(x), 
then a UMP level a test v(x) exists and is 
defined by q(x)= 1 if T(x)>c; = a constant 
if T(X) = c; and = 0 if T(x) < c. For a one- 
parameter exponential family of distributions, 
there exists a UMP level CI test for testing 
H:w,=(-cc,O,]U[O,,co)against A:w,= 
(O,, 0J (0, < 0,). However, a UMP test does 
not exist for the problem obtained by inter- 

changing the positions of (0” and oA. 
Since hypothesis-testing problems admitting 

UMP tests are rather rare, alternative ways for 

judging the merit of tests are needed, and two 
have been devised. The first is to restrict the 
class CD of tests and to find a UMP test in this 
restricted class. The second is to introduce an 
alternative criterion of optimality and to select 
a test accordingly. The first is discussed in 
detail in Sections C, D, and E, and the second 

in Section F. 

C. Unbiased Tests 

The unbiasedness criterion is based on the 
idea that the probability of rejecting the hy- 
pothesis H when it is true (the probability of an 
error of the first kind) should preferably be no 
larger than that of rejecting H when it is false 
(the power). If a level CY test cp satisfies E,(v) B CI 
for OEW~, then q is called an unbiased level a 
test. Let a,,(n) be the set of all unbiased level CI 
tests. A UMP test in @Jr) is called a uni- 

formly most powerful (or UMP) unbiased level 
SI test. 

If PO is of the texponential family whose 

parameter space Q is a finite or an infinite 
open interval of Rk, then there exists a UMP 
unbiased level c( test for the following two 
problems: (1) H: 0, da, A: 0, > a, where 0, is 
the first coordinate of Q = (O,, , Ok); and (2) 
H: 0, = a, A: 0, # 11. For example, when the 
sample is normally distributed with unknown 
mean p and unknown variance rs2, the Student 

test (defined in Section G) for a hypothesis 
H : ,u = p0 against an alternative A : p # fLO is a 
UMP unbiased test. 
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D. Similar Tests and Neyman Structure 

If E,(q) is constant for all BEw (~a), cp is 
called a similar test with respect to o. If E,(q) 
is a continuous function of 8, an unbiased 

test cp is similar with respect to the common 
boundary 5 of wH and w,, provided that 52 

is a topological space and the density function 
is continuous in w. Therefore, in this case, 

unbiased tests are found in the class of all 
tests similar with respect to 6. Let a statistic 
y = T(x) be tsufficient for gw = { Ps 10 E w}. A 
test cp is said to have Neyman structure with 
respect to T if the conditional expectation 

E(cp 1 T(x) = y) of cp equals a constant [pm]. 
(For the notation [$,] - 396 Statistic.) A test 

cp having Neyman structure with respect to the 
statistic T(x) is similar with respect to w. A test 
cp similar with respect to w  has Neyman struc- 
ture with respect to T(x) if and only if the 
family $ = { Qs = Ps T-’ 18~ w} of imarginal 
distributions of T is tboundedly complete. 

E. Invariant Tests 

Consider groups G and c of one-to-one trans- 
formations on X and R, respectively. Suppose 

that each element of G is a measurable trans- 
formation of X onto itself (i.e., gi?E% for any 
BE 2J) and that a homomorphism g-g of G 
into G is defined so that P,(g-‘B)=P,,(B). 
The hypothesis H:Qw+ and the alternative A: 
OEW~ are said to be invariant under G if gwH = 
wH and gwa = w, for all g E G, and in this case 

the testing problem (%, 23,9, wH, ma) is said 
to be invariant under G. A test is called an 

invariant test if cp(gx) = q(x) for every g E G, 
and E&q)= E,(cp) holds for any invariant q. 
Accordingly, if G is ttransitive on wH, and 

invariant test is similar with respect to wH. If 
the sample space %” is a subset of R” that is 
invariant under the translation (x 1, ,x,)’ 
(x, + a, , x, + a) with a real a and if there 
exists a 8’=.?i.@~R such that P,.(B)=P,({(x, 
--a, . . . . x,-a)l(x,, . . . . xJEB}) for any f3~n, 
then z is a transformation on Sz. In this case 
the real number a is called a location para- 
meter. Furthermore, if the sample space Z” is a 

subset invariant under the similarity trans- 
formation (x,, . . . . x,,)*(nx,, . . . . ax,) (a>O) and 
if there exists a O’=Z. fl~fi such that P,.(B)= 

Pd{(x,la, . . ..x.&)l(x,, . . ..x.)~B)l for any 
OER, then the real number a is called a scale 
parameter. The invariance principle states that 
a test for a testing problem invariant under G 
should preferably be invariant under G. A test 
q(x) is called an almost invariant test if cp(gx) 

= q(x) [Y] for all gE G. 

Suppose that the testing problem of a hypoth- 
esis under consideration is invariant under a 

transformation group G on the sample space 
3’. Denote the set of all invariant 1e:vel tl tests 

by @[(cc). A test that is uniformly most power- 
ful in CD,(a) is called a uniformly must powerful 

(in short, UMP) invariant level x test. If there 
exists a unique UMP unbiased level tl test ‘p*, 
then a UMP invariant level a test (if it exists) 
coincides with (p*[9]. When T(x) is tmaximal 
invariant under G, a necessary and sufficient 
condition for q(x) to be invariant i:s that q be 
a function of T(x). 

For example, suppose that the sample X 
=(X,, , X,) is taken from N(p, 0’) with 
unknown p and 0’. In this situation, Y = (X, S) 

is a sufficient statistic, where x=&X,/n and S 
= d-. Let G be the group of trans- 

formations (x, s)-(CT, cs) (c > 0) on the range 
<V of Y and c be the group of transformations 
(p, o’)+(cp, ca’) (c > 0) on the parameter space. 
Both the hypotheses H, :p/02 <O and H, : 
p/a2 = 0 are invariant under G. Since t = 4. 

xl(slJn-l) 1s maximal invariant, any invari- 
ant level a test is in the class of functions of 
t. The Student test, defined in Section G, is 
UMP invariant under G. 

F. Minimax Tests and Most Stringent Tests 

Minimax tests and most stringent tests are 
sometimes used as alternatives to 1JMP tests. 
Suppose that B = {P, 1 @EQ} is a tdominated 
family and 23 is generated by a countable 
number of sets. A level a test (p* is called a 
minimax level a test if for any level a test cp, 

inf E,(cp*) > inf E,(q). 
BEWl flEWA 

Such a test exists for any ac(0, 1). If a group G 

of measurable transformations on F leaves a 
testing problem invariant, then an intimate 
relation exists between the minimax property 
and invariance. Concerning this relation, we 
have the following theorem: For each ae(0, 1) 
there is an almost invariant level a test that is 
minimax if there exists a a-field % of subsets 
of G and a sequence {v”} of probability mea- 
sures on (G,cLI) such that (i) BE% implies 
{(x,g)IgxEB}E% x!!l; (ii) AE’LI, gc:G implies 

AgEzZ; and (iii) lim,,,lv,(Ag)-v,,(A)I=O for 
any AE% and gEG. Fundamental in the invar- 
iant testing problem is the Hunt-Stein lemma: 

Under the condition just stated, for any cp 
there exists an almost invariant test $ such 

~ that 

The following six types of transforlmation 

groups satisfy the condition of the theorem: (1) 
the group of translations on R”, (2:l the group 
of similarity transformations on R”, (3) the 
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group of transformations q=(a, h):(x,, ,x,)E 

R”+(ax,+h....,ax,+h)~R”(O<a<x, --~j< 
b c m), (4) finite groups, (5) the group of ortho- 
gonal transformations on R”, and (6) the direct 
product of a finite number of the groups men- 
tioned in (l)--(5). 

We call lI’,*(O) = suprpcDCo) E,(q) an envelope 

power function, and q* (E@(E)) is called a most 
stringent level 5( test if 

sup (K(O) - E&Q*)) d sup (fiZ(O) - E,(V)) 
RFOA REmA 

for any cp~@(x). There exists a most strin- 
gent level C! test for each ae(O, 1). If a testing 
problem is invariant under a transformation 
group G on X and G satisfies the condition 
in the Hunt-Stein lemma, then a uniformly 

most powerful invariant level r* test is most 
stringent among the level CI tests (- 398 Sta- 
tistical Decision Functions). 

Admissibility of a test and completeness of a 

class of tests are defined with respect to the 
probability of an error of the second kind (- 

398 Statistical Decision Functions). The uni- 
formly most powerful level 51 test and the 

uniformly most powerful unbiased level c( test 
are admissible. 

G. Useful Tests Concerning Normal 
Distributions (- Appendix A, Table 23) 

In this section, we treat the rejection regions S 

that are commonly used in testing problems 
related to normal distributions. Let c( be the 
level of S, and let c(a) and d(a) be positive 
numbers determined by a. In (l)-(5) below, the 
sample consists of n mutually independent 
random variables X,, ._ ,X, each of which 
is assumed to be normally distributed with 
mean p and variance cr2. For any sample point 

x=(x ,,..., x,),denoteC:=,xJnbyxand 
& (xi- $ by s2. (1) To test the hypothesis 
p<pLo against an alternative n> pO, we can 

use as a critical region S={xl t(x)>c(a)}, 
where the test statistic t(x) is given by &(?? 
-p,JJs2/cn- 1). (2) To test the hypothesis p 
= bico against an alternative p # pLo, we can use 
S = {x 11 t(x)1 2 C(X)} with the same test statistic 
t(x) as in (1). These tests based on the statistic 

t(x) are generally called Student tests or t-tests. 
(3) To test the hypothesis a2 = 0,’ against the 

alternative o2 > g,’ with 00’ > 0, we can use S = 
{xIx2(x)>c(z)), where x2=s2/ot. (4) To test 
the hypothesis g2 > 0: against the alternative 

cr2 <a& we can use S = {x ( x’(x) < C(U)}, where 
x2 is the same as in (3). (5) To test the hy- 
pothesis o2 = 00” against g2 # I$, we can use 

S={X(X~(X)<C(Z) or >/d(a)}, where x2 is the 
same as in (3). Each of these tests based on the 
statistic x2 is called a chi-square test. Among 

these tests, (3) is UMP and (1) is UMP when 
x > l/2. All tests (l)-(5) are UMP unbiased, 
and (3)-(5) are UMP invariant under the 
translations (xi, . . . ,x,)+(x, +a, . . . . ~,+a) 
(-Q <a < co). Since (1) and (2) are also UMP 

invariant under the transformations (x,, , x,,) 
+(ux,, . ..) ax,) (0 <a < co), they are most 
stringent tests. 

Suppose that X, , , X, are independently 
distributed according to N(p,,o:) and that 
Y1, , K are independently distributed ac- 

cording to N(p2, cri), where pi, n2, (T,, and (r2 
are assumed unknown unless otherwise stated. 

Here we give the important tests for pi, n2, crt, 
0:. Letx=(x ,,..., x,)andy=(y ,,..., y,)be 
sample points in R” and R”, respectively, and 
denote Cz, xi/m, Cb, yJn, C~,(X~-Y)~, and 
Cy=,(yi-L)2 by X, 7, s,‘, and st, respectively. (6) 
Assume that (T, and oz are known, and con- 
sider a hypothesis p, =p2. When an alterna- 

tive p, >n2 (pi #p2) is taken, we can use as a 

critical region S = {(x, y) 1 T(x, y) 3 c(x)} (S = 

{k Y) 1 I T(x, Y)I 2 44) 1, where W, Y) = (F - 

y)/&m. These tests are both UMP 
unbiased and invariant under the translations 

(x,,...rx,, y,, . . . . y,)-(x, +a, . . ..x.+a,y, + 
u, , y, + a). (7) Assume that o1 = cr2, and 
consider a hypothesis p, =p2. When pr #p2 
(pi >p2) is the alternative, S= {(x, y)]) T(x,y)l 

3 C(M)} (S = {(x, y) I T(x, y) > c(a)}) can be 
used as a critical region, where T(x, y) = 

(x-y)JhTiq(JJ~). 
Both tests are UMP unbiased and are in- 

variant under (xi, ,x,, y,, . . , y,)+(uxi + 
b ,..., ax,+b,ay,+b ,..., ay,+b)(-a<bi 
zoo, 0 <a < co). (8) Testing the hypothesis H: 
IL, = nL? is called the Behrens-Fisher problem. 
Note that nothing is assumed about the rela- 
tion of the variances 0: and 0: of the two 
samples X and Y, in contrast to (7). It is dif- 
ficult to construct a statistic whose distribu- 
tion is independent of C: and cr: when H is 
true. Compare this with (l))(7), where the 

proposed statistics have this property and are 
used to construct similar critical regions S. 

The critical region 

with an appropriately chosen J is similar to 
such a region S. This test is called Welch’s test. 

(9) For a hypothesis cri = g2, we can use as a 
critical region S = {(x, y) 1 F(x, y) < c(m)}, S = 

{(x, Y) I Fb, Y) > c(cO~~ or S = {(x3 Y) I W6 Y) 2 44 
or <c(a)}, when rrl <cr2, g2<cr,, or r-r1 #a,, 
respectively, is taken as alternative, where 
F(x, y)=(n- l)s:/(m- I)$. All these tests are 

UM P unbiased and are invariant under the 

transformations (x,, . . , x,, y,, , y,)+ 
(ux,+b ,..., ux,+h,ay,+h ,..., uy,+b)(-m< 
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h < E, 0 <a < ~3). A test based on F(x, y) is 
called an F-test. 

H. Linear Hypotheses 

Let Xi, , X, be independent and distributed 
according to N(pLi,02) (i= 1,2, ,n), where pi, 
p2, , pS (s <n), D are assumed to be unknown 
and pi = 0 (s < id n). The hypothesis is H: pL1 = 

pL2 = = p, = 0 (r < s), and the alternative 
hypothesis is that at least one pi, 1 < i < r, does 
not vanish. The critical region S = {(x, , , x,) 1 

F(X,r...rX,;X,+l,, x.) = c;=, xf/c:,b+, x2 > 
C(E)} is a UMP unbiased test for this prob- 
lem, and S is invariant under the group gi of 
translations 

4x ,,..., X,,&+,fU ,...1 x,+4x,+,,...,x,), 

the group g2 of similarity transformations 

(Xl,...,X,)‘(CX1,..., cx,), the group g3 = O(r) 
of orthogonal transformations in R’= {(x1, 

, x,)}, the group g4 = O(n - s) of orthogonal 
transformations in R”-“= {(x,+, , ,x,)), and 
finite products of elements of the groups gi, 
g2, g3, and g4. This test is also a kind of F- 
test. More generally, let us denote X=(X,, 
X,, , X,)’ and assume that it is expressed as 

X=A<+W, W=(W,, w,..., WJ’, (1) 

where 5 = (5,) &, , t,)‘, s d n is a vector of un- 
known parameters and A a matrix of known 
constants, and W,, W,, , W, are distributed 

independently according to the normal distri- 
bution with mean 0 and variance c2. Then a 
general linear hypothesis is a hypothesis stating 
that the vector 5 lies within a linear subspace 
M of R”. The set of points A< with 6 satisfying 

a linear hypothesis H is the linear subspace 
L(B) of L(A) spanned by the column vectors 
of an n x k, matrix B. Assume, for example, 
that the dimension of L(B) (= the rank of B) is 
s-r. Let C be an y1 x k, matrix whose column 

vectors span the orthocomplement L;(B) of 
the space L(B) with respect to the space L(A). 
Then the model (1) can be written as 

X=Bg+Cc+W, E(W) = 0, (2) 

with a k,-vector 1 and a k,-vector [, and hence 
the hypothesis H is represented by 6 = 0’. We 

denote by Y = P,X the projection of X onto 
the space L(A) and by Z the projection PRX of 
X onto the space L(B). The quantity QH =X’(P, 

- P,)X equals the square of the length of the 
vector Y-Z and represents the sum of squares 

of residuals for the hypothesis H. The error 

mean square 8’ = X’(I - P,)X/(n - s) = Q,/(n - s) 
and also (ii = Q,,/r under H are unbiased 
estimators of g2. 

Assume that B’C = 0. Let U be an orthogo- 
nal transformation in R” such that the first, 

, rth, (s + l)st, . , nth rows of UB and the 
(s + l)st, . , nth rows of UC are all equal to 
zero vectors. Using the notation X = UX, @= 
UBq, l= UC<, and W= UW, we obtain the 
canonical form X = 4 + 4 + W of the: model (2). 

W is also a vector of independently and identi- 
cally distributed normal random variables. 
The hypothesis H is expressed as 4 =O. In this 

model, we have E(X,) = 0 for i = s $- 1, . . . , II, and 
moreover, @X,)=0 for i= 1, . . . . r,.i+ 1, . . . . n if 
and only if H is true. 

The least squares estimator Y of A< is the 
tmaximum likelihood estimator, and X -Y, 

Y-Z, Z are distributed independently ac- 
cording to the n-variate normal distributions 

N(O, a2u - PA)), N((P, -P&x a2(Pa -P,)), 
and N(Bq+ P,C<, 02Ps), respectively. Hence 
Q/a’, QH/g2, and X’P,X/a’ are distributed 
independently according to the tnoncentral x2- 
distributions with n-s, r, and s-r degrees of 

freedom and tnoncentrality parameters 0, 

cC’(P,-P,)C{/cr*, and (Bq+PsCi)‘(Bq+ 

PBc~Y~2, respectively. The tlikelihood ratio 
test of the hypothesis H has a critical region 
Sijfr’ > c, is a +uniformly most powerful invar- 
iant test with respect to the group of linear 
transformations leaving the hypothesis H 
invariant, and is the +most stringent test. This 
test is also uniformly most powerful among the 
tests whose tpower function has a single vari- 
able cC’(P, - Ps)Cc/~2. Furthermore, for s - 

r = 1, this test is a tuniformly most powerful 
unbiased test. In the decomposition X’X = 

X’(P,-P,)X+X’P,X+X’(I-P,)X=Q,+ 
Qs + Q, the terms QH and Q, are called the 
sum of squares due to the hypothesis and due 
to the error, respectively. Such a process of 

decomposition is called the analysis of var- 
iance and its result is summarized in the anal- 
ysis of variance table (Table 1). 

I. The Likelihood Ratio Test 

The likelihood ratio test is comparatively easy 
to construct. Let L(x,, , x,; 0) be: the tlikeli- 
hood function. Then 

Nx l,...,x”)= SUPBEwH 
L(x,, . . ..x..O) 

suPfJEoHuw,~(x,> ‘.’ >x,; 0) 

is called the likelihood ratio, and the test corre- 
sponding to the critical region S = {(xi, , x,) 1 

fvx , , , x,) < c,} is called the likelihood ratio 
test, where c, is a positive constant deter- 
mined by the level CI. Let i&,(x,, . . . ,x,) and 
& VA(~l, , x,) be the tmaximum likelihood 

estimators for f3 in o, and in w, Li w,, respec- 

tively; that is, L(x; &(x)) = supBtwH L(x; 0) and 

Ux; &HVA(x))=su~BEoHUwA I&; 0 Then 
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Table 1 

Factor Sum of Squares 

H QH=X’(Pa-P,)X 
B Q,=X’P,X 

Error Q,=X’(I-P,)X 

Total X’X 

Degrees of Ratio of 
Freedom Mean Square Variances 

r 8; = QH/r r3j#’ 
s-r (i,2/(s-r) 
n-s cf2 = Q&I-S) 
n 

Jw; ii,, 
A(x)=--. 

The F-test for a linear hypothesis is a likeli- 
hood ratio test, and other examples of the like- 
lihood ratio test are shown in Appendix A, 
Table 23. However, the likelihood ratio test 
does not necessarily have the desirable prop- 
erties stated in the preceding sections. 

J. Complete Classes 

The set of critical regions of the type {x 1 T(x) > 

c} for the problems H : 0 < 0, and A : B > O,, 
where the distribution family :Y of the statistic 
T is of +Polya type 2 in the strict sense, and the 
set of regions of the type {x 1 c < T(x) < d} for 
the problem H:O, <tY<tI, and A:O<t), or 0, 
< 0, where the distribution family 9 of the 
statistic T is of tPolya type 3 in the strict 
sense, are examples of minimal complete 

classes [6]. It has been proved under a mild 
condition that the set of all tests with convex 
critical regions is essentially complete when 

the underlying distributions are of exponential 
type and the null hypothesis is simple. 

Let Po,~,Y (i=O, 1) and let ‘B, be a g- 
subalgebra of 8. 8, is sufftcient for ‘B w.r.t. 
(P,,, P,,,] if and only if the class of all 9,- 
measurable test functions is essentially com- 
plete, i.e. iff for every critical region BE B there 

exists a ‘%,-measurable test function p0 such 

that K+,((P~~ &&J and ~%~(nJ3 &,hJ. 
Assume that 9 = {P, 1 OE 0) is dominated; if for 

every ‘B-measurable test function cp there 
exists a %,-measurable test function I/ such 

that E,($)=E,,(cp) for all (1~0, then 8, is 
sufficient for ‘B w.r.t. .Y [9, lo] (- 398 Statis- 
tical Decision Functions D, 399 Statistical 
Estimation E). 

K. Asymptotic Theory 

Let (Xv, 8,, P,,) (v = I, 2, , n) be a sequence of 

probability spaces, where the parameter space 

fi is common to all v. Let (GX(n) .’ 1 B (“), Pg’) be the 
direct product probability space of (Xv, B”, Pyo) 

for v = 1,2, . , n. For each sample space (Y(‘), 

‘B@), Pr),n,), denote a test function for H : 0 E 
~,(~R)~~~A:OELI)~(C~-w,,) by (pn(xl, 

“‘> x,,). A sequence { cp,,) (n = 1,2, ) is often 

called a test. For example, a likelihood ratio 
test is frequently understood as a sequence 
of tests S, = {(x li ~“,X,)lMX,, ~~~>X,)~&}, 
where {i} is a sequence of constants and 
A&, , . , x,) is the likelihood ratio defined by 
(X”“‘, (13(“), Pi”)) and wr,. If a test { cp,} satisfies 

4dcp,bO (QE~ and ~%(cp,,)+l (0~~~1 as 
n-tm, (47,) is said to be a consistent test. If 
these convergences are uniform with respect to 
0, {cp,} is said to be a uniformly consistent test. 
When a uniformly consistent test exists, wH 

and wA are said to be finitely distinguishable. 
Suppose that the observed values are identi- 
cally distributed (that is, (Xv, !B,, P,,) is a copy 

of a probability space (X, 8, PO)) and wH and 
(uA are both compact with respect to the met- 

ric ~(O,~‘)=SU~,,~IP,(B)~P,.(B)I. In this 
case, wH and w,,, are finitely distinguishable if 

E,(q) is a continuous function of 0 for any q 
[4]. Kakutani’s theorem (- 398 Statistical 

Decision Functions) is regarded as a proposi- 
tion concerning distinguishability when the 

null hypothesis and the alternative are both 
simple. 

The following result about the tlimit distri- 
bution of a likelihood ratio is due to H. Cher- 
noff [3]: Let %“(“I be an n-space and R be an 
open subset of Rk containing the origin 0. 
Suppose that the observed random variables 
are independent and distributed according to a 
density ,f(x, 0); that is, the likelihood function 
L(x; 0) is n~=,f’(xi, 0). Moreover, assume the 
following regularity conditions: 
(1) logf(x, 0) is three-times differentiable with 

respect to 0 at every point of the closure of 
some neighborhood N of 0 = 0. 

(2) There exist an integrable function F and a 
measurable function H such that (i) 1 gf/%I, I< 
F(x) for every ()E N; (ii) ]82f/(:0iZ0jl < F(x) for 
every 0~ N; (iii) Ia3 logf/~(liZIj~H,,,~ < H(x); and 

(iv) supsE,(H(x))< x. 
(3)Foreveryi,,j=1,2 ,..., k,wehaveJf= 

E,,[(cilogf;iL:0J (alogf/dHj)] < co, and the 
matrix J, = (Jj) is positive definite for all 0 E N. 

Let P(x,, , x,; w) = supHEw L(x, , . , x,; 0) for 
a subset w  of R. Consider testing a hypothesis 
UEW~ against an alternative BEW*, where 0 is 
an accumulation point of oH. If 3,*(x,, , xn) 

= P(x,, ,x,; wH)/P(x,, ,x,; w,), i* plays 

essentially the same role as the likelihood ratio 
i and hence can be used in its place. We call a 
subset C of Q a cone if OE C implies UOE C for 
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any a > 0. A subset w  of R is said to be appro- 
ximated by C if w  satisfies inf,,cilx-yII = 

~(llvll) for all Y~O and inf,,,llx-A =~(ll.ll) 
for all xcC around the origin, where ~~xl12= 

Cy=, x2. Suppose that wH and s,, are appro- 
ximated by two cones C, and C,, respectively. 

Then, setting z, = 4 J,’ .4(x) with 

A(x)= naxl 
[ 

1 n alogf(x,,o) 
c’(j 1 

L 

the limit distribution of - 2 log i*, when 0 
= 0, coincides with that of infgEc,(z, - @‘J&z, 
- 0) -infssc,(z, - @yJ,(z, - 0). In particular, 
whenR=Rkandw,={(@ ,..., Q,“,O,+, ,..., Ok)1 
--co <Oi< co, i=s+ 1, . . . . k} and some regular- 
ity conditions are assumed, the limit distri- 

bution of - 2 log i.* is the +X2-distribution 
with s degrees of freedom if the hypothesis is 
true. 

The asymptotic behavior of the chi-square 
test of goodness of fit is also very important. 
Suppose that (X,, ,X,) has a multinomial 
distribution n!(x,! . . . xk!))‘p;l . ..p.“(Cf,, xi 
=n, xi>O), and consider testing H:p, =pT, 

, pk = pi. The chi-square test of goodness of 
fit has a critical region of the type {x 1 x2(x r, 

“‘> xk)>c}, where x2(x,, . . . ,xk) is Cfi=,((xi- 
np~)‘/np~), i.e., the weighted sum of the squares 

of the differences between the value po of pi 

and the maximum likelihood estimator x,/n of 
pi. The limit distribution of x2(x,, , xk) 
when pi = ~0, i = 1,2, , k, is the chi-square 
distribution with k - 1 degrees of freedom. 

Suppose moreover that k functions p,(H) 

(i=l,...,k;s<k)ofO(ERS)aregivenandthat 

the hypothesis to be tested is that the sample 
has been drawn from a population having a 
distribution determined by H : pi = pi(O) (i = 

1, , k; s < k) for some value of 0. In this 
case the chi-square test of goodness of fit could 
be applied after replacing the parameter 8 

in pi = p,(O) (i = 1,2, . , n) by the solutions 

&(x1, . , xk) of the system of equations of the 
modified minimum chi-square method, 

k xi - npi dp, c ---=O 
i=L pi aej 

(j=l ,...,~).Supposethat(l)p,(O)>c~>O 
(i= 1, . . ..k) and C~zlpi(B)= 1; (2)pi(Q) is twice 
continuously differentiable with respect to the 
coordinates of 8; and (3) the rank of the matrix 

(api/aOj) is k. Then the system of equations 
above has a unique solution 0 = &(x1, , x,), 
and g,, converges in probability to 0, when @ = 
&. The asymptotic distribution of x2(x)= 

Cl=,((xi- np,(&))Z/npi(&)) is the chi-square 
distribution with n-s - 1 degrees of freedom 

[S]. For the test of goodness of fit, the em- 
pirical distribution function may a!so be used 

(- 371 Robust and Nonparametric Methods). 
A test of independence by contingency 

tables is one application of the chi-square test 

of goodness of fit. We suppose that n individ- 
uals are classified according to two categories 
A and B, where A has r ranks A,, A,, . . . . A, 

and B has s ranks B,, B,, , B,. Let ~~.,p.~, pi, 

be the probabilities that the observed value 
of an individual belongs to Ai, Bj, Ai n Bj, re- 
spectively. Let xi,, x.~, xij be the numbers of 
individuals belonging to Ai, Bj, and Ai n Bj, 

respectively. Table 2 is called a contingency 
table. To test the null hypothesis H that the 
divisions of A and B into their ranks are inde- 
pendent, that is, H: pij = ~~.p.~, the statistic 

x2=& ~,“=1(xij-xi.x.j/n)2/(xi.x.j~n) is ap- 
plied. When H is true, x2 is asymptotically 
distributed according to the chi-square distri- 

bution with (r - l)(s - 1) degrees of freedom as 
n-co. 

Likelihood ratio tests and chi-square tests of 
goodness of fit are consistent tests under con- 

ditions stated in their respective descriptions. 
In general, there are many consistent tests for 
a problem. Therefore it is necessary to con- 
sider another criterion that has to be satisfied 
by the best test among consistent tests. Pit- 

man’s asymptotic relative efftciency is such a 
criterion. Other notions of efficiency have also 
been introduced. 

A completely specified form of distribution 
is rather exceptional in applications. More 
often we encounter cases where distribution of 
the sample belongs in a large domain. Various 
tests independent of the functional form of 
distribution have been proposed, and the 
asymptotic theory plays an important role in 
those cases (- 371 Robust and Nonparamet- 
ric Methods). 

The following concept of asymptotic effi- 
ciency is due to R. R. Bahadur [l 11: Let {T,} 
be a sequence of real-valued statistics defined 

on %-(“). { 7”) is said to be a standard sequence 
(for testing H) if the following three conditions 
are satisfied. 

(I) There exists a continuous probability 

distribution function F such that for each 
8EwH, lim,,, Pg){ T, < t} = F(t) for every 
teR’. 

Table 2. Contingency Table 

B, B, ... B, Total 

A, x11 x,2 ... XIS Xl. 

A2 x21 XI2 .” x2.v x2. 

k, xi, xi2 “’ XL, x;. 

Total x.r x.~ 1.. x., n 
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(II) There exists a constant a, O<a < co, 
such that log{1 -F(t)}= -(at2/2)(1+o(l)} as 
t-xl. 

(III) There exists a function b(0) on R-o, 
with O<b(O)< co such that for each O~fi--w,, 

~~~P4”‘{I(T,,‘n”‘)-b(O)l>t}=O 

for every t > 0. 
Suppose that {T,} is a standard sequence. 

Then T, has the asymptotic distribution F if H 
is satisfied, but otherwise T,+ co in proba- 
bility. Consequently, large values of T, are 
significant when T, is regarded as a test statis- 
tic for H. Accordingly, for any given XE.%“(“), 

1 - F( T,(x)) is called the critical level in terms 
of T,, and is regarded as a random variable 
defined on Z(“) [ 11. It is convenient to describe 

the behavior of this random variable as n+ m 
in terms of K,, where K,(x) = - 2 log[ l- 
F(T,(x))]. Then for each OEW~, K, is asymp- 
totically distributed as a chi-square vari- 
able xi with 2 degrees of freedom and for OE 

n-w,, K,/n-tab2(8) in probability as n-ma. 
The asymptotic slope of the test based on {T,} 

(or simply the slope of { T,}) is defined to be 
c(0)=ab2(0). Note that the statistic K,“’ is 
equivalent to T, in the following technical 
sense: (i) {K,“‘} is a standard sequence; (ii) for 

each OE~, the slope of {K,!“) equals that of 
{T’}; and (iii) for any given n and x, the critical 

level in terms of K,!‘* equals the critical level in 
terms of T,. Since the critical level of K,“* is 
found by substituting K,“* into the function 
representing the upper tail of a fixed distribu- 
tion independent of F, {KA”} is a normalized 
version of {T,}. Suppose that {T,(l)} and {T,‘*)} 
are two standard sequences defined on Xc”), 
and let F(‘)(x), a,, and hi(Q) be the functions and 
constants prescribed by conditions (I)-(III) for 

i= 1,2. Consider an arbitrary but fixed /3 in 

0 -wH, and suppose that x is distributed 
according to P,. The asymptotic efficiency 

of {T,“)} relative to {T,*)} is defined to be 
~12(0)=c,(Q)/c,(O), where c,(O)=a,b~(O) is the 
slope of {T,‘)}, i = 1, 2. The asymptotic effi- 

ciency is called Bahadur efficiency. 
Several comparisons of standard sequences 

are given in [ 111. The relationship between 
Bahadur efficiency and Pitman efficiency for 
hypothesis-testing problems has also been 

studied. Under suitable conditions the two 
efficiencies coincide. 

L. Sequential Tests 

Let X,, X,, . be a given sequence of random 
variables. To test a hypothesis concerning the 

distributions of these variables (sample sizes 
are not predetermined), we observe first X,, 

then X,, etc. At each stage a decision is made 
on the basis of the previously obtained data 

whether the observation should be stopped 
and a judgment made on the acceptability of 
the hypothesis. Such a test is called a sequen- 

tial test. Let X, , X2,. . be independent and 
identically distributed by&(x). For testing a 
simple hypothesis H : 0 = 0 against a simple 
alternative A: 0 = 1, we have the sequential 
probability ratio test: Let G,(x,, x2, . . . , xn) 

= l-I:=, fi (xi)/l-& fO(xi), and preassign two 
constants a, < ul. After the observations of 
X 1, . . . , X, are performed, the next random 
variable X,,, is observed if a, < G,,(x,, , x,) 

<a,. Otherwise the experiment is stopped, 
and we accept H when G,, < a, or accept A 

when a, d G,. The constants a, and a, are 
determined by the desired probabilities CI~ and 

x2 of errors of the first and second kind, re- 
spectively. It is known that, among the class of 

sequential tests in which the probability of 
error of the first (second) kind is not greater 
than CI~ (a,), the sequential probability ratio 
test minimizes the expected number of obser- 
vations when either H or A is true (- 398 Sta- 
tistical Decision Functions; 404 Statistical 
Quality Control). 
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401 (XVlll.2) 
Statistical Inference 

A. The Statistical Model 

Broadly and loosely speaking, the term “statis- 
tical inference” may imply any procedure for 

drawing conclusions from statistical data. But 
now it is usually understood more rigorously to 

mean those procedures based upon a +proba- 
bilistic model of the data to obtain conclusions 
concerning the unknown parameters of the 
population that represents the probabilistic 
model by viewing the observed data as a ?-an- 
dom sample extracted from the population. 

As the simplest example, suppose that, for 
some system, we have a number of observa- 
tions from repeated measurements or experi- 
ments under a supposedly uniform condition. 
If we can assume that there are no systematic 

trends or tendencies involved, we can suppose 
that the variations among repeated observa- 
tions are due to random causes and assume 
that the observed values X,, X,, are inde- 
pendently and identically distributed random 
variables. Our purpose in making observations 
is to draw some information from the data, that 

is, to make some judgment on an unknown 
system quantity 0, which together with some 
other quantity (quantities) q characterizing the 
measurement or the experiment, determines 

the distribution of the Xi. We assume that the 
distribution has a density function J’(x; 0, q). 

This amounts to assuming that the observed 
values X, , X,, . are a sample randomly 
drawn from a hypothetical population of the 

results of the measurements or experiments 
supposedly continued indefinitely. Then the 
problem of statistical inference is one of mak- 
ing some judgment based on the random 
sample. The set of hypotheses postulating the 
distribution of the observed values is called the 

probabilistic model of the observations, and 
the problem of determining a model in a spe- 
cific situation is called that of specification. 

B. Bayesian and Non-Bayesian Approaches 

There are two different ways to make infer- 
ences on the population parameters: the Baye- 

sian approach and the non-Bayesian approach. 
In the Bayesian approach it is assumed that 

we have some probability density ~(0, I?) for 

the parameters 0 and ‘1. Then, given the ob- 
servations X, =x, , X, =x2, , the conditional 

probability density for 0 and 4 is given by 

7~ is called the prior density and b the posterior 
density for the parameters. Then all the in- 
formation obtained from the sample is consid- 
ered to be contained in the posterior distri- 
bution with the density p(O, q), and conclusions 

on the parameters can be drawn from it. 
The prior density ~(0, q) does nol. necessarily 

represent a frequency function of a population 

of which the parameters are a random sample, 
but in most cases treated by the Bayesian 
approach it is considered to be a summary of 
the statistician’s judgment over relative possi- 
bilities of the different values of the parameters 
based on all the information obtained before 
the observations are made. Bayesians claim 
that it is always possible to determine such a 
prior distribution in a coherent way, specifying 

the subjective probability, representing a per- 
son’s judgment under uncertainty, as opposed 
to the objective probability, representing the re- 

lative frequencies in a population. 1,. J. Savage 
[7] succeeded in developing a formal mathe- 
matical theory of the subjective probability 
from a set of postulates about the consistent 
behavior of a person under uncertainty. 

The non-Bayesian statisticians, however, do 
not accept the Bayesians’ viewpoint and insist 
that statistical inference should be free from 
any subjective judgment and be based solely 
on the objective properties of the sample de- 

rived from the assumed model. The theory 
developed by R. A. Fisher, J. Neyman, and E. 

S. Pearson, and others is based pn the non- 
Bayesian approach. 

C. Problems of Non-Bayesian Inference 

The most commonly used forms of statistical 
inference are point estimation, used when we 

want to get a value as the estimate for the 
parameter; interval estimation, when we want 
to get an interval that contains the true 

value of the parameter with a probability not 
smaller than the preassigned level; and hypoth- 
esis testing, when it is required to determine 

whether or not some hypothesis about the 
parameter values is wrong (- 399 Statis- 
tical Estimation, 400 Statistical Hypothesis 
Testing). 

In any type of statistical inference, the prob- 
lem can be abstractly formulated by deter- 

mining a procedure that defines a rule, based 
on the sample observed, for choosing an ele- ’ 

ment from the set of possible conclusions. 
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Such a procedure is evaluated by the probabil- 
istic properties derived under different values 

of the parameter from the distribution of the 
sample, and it is usually required to satisfy 
some type of validity criteria (such as un- 
biasedness of an estimator, size of a test, etc.), 
and among those satisfying them, one which 
is considered to be best according to some 
optimality criterion (such as minimum var- 
iance or most-powerfulness) is looked for. But 
in the sense of objective probability, the prob- 

abilistic property of a procedure is relevant 
only for the frequencies in repeated trials when 
the same procedure is applied to a sequence of 

samples obtained from the population and has 
no direct implications for the conclusion ob- 
tained by applying the procedure to a spe- 
cific sample we have in hand. For this reason 
Neyman argued that in statistical inference 
there is really no such thing as inductive in- 
ference but only inductive behavior. Fisher 

disagreed strongly with this argument and 
emphasized that statistical analysis is induc- 
tion and that its purpose is to allow us to 

draw the proper conclusions from a particular 
sample and that the probabilistic properties 
of the procedure should and could have rele- 

vance for a particular conclusion obtained 
from a specific sample, provided that all the in- 
formation contained in the sample is used. The 
arguments between Fisher and Neyman led to 
a heated controversy between their followers 
that is still not completely settled. Fisher’s 
arguments lead to the principle of sufficiency 
and the principle of conditionality. The prin- 
ciple of sufftciency dictates that all inferences 

should be based on a sufficient statistic if there 
is one, and the principle of conditionality re- 

quires that any inference should be based on 
the conditional distribution given the ancillary 
statistic, i.e., a statistic whose distribution is 
independent of the parameter, if there is such a 
statistic. These two principles are accepted by 

many statisticians who do not follow all of 
Fisher’s arguments, though the principle of 
conditionality sometimes leads to difficulties 
due to nonuniqueness of the ancillary. 

D. Specification Problem 

It is often difficult and sometimes impossible 
to have an exactly correct model for the data, 
and we must be satisfied with a model that 
gives a sufficiently close approximation and is 
mathematically tractable as well. It may also 
happen, however, that a model first specified 

may be far from reality and could lead to 
erroneous conclusions if relied on blindly. 
Here, the problem of model selection arises (- 

403 Statistical Models), i.e., choosing the best 
of various possible models. 

We may also seek procedures that are little 

affected by the departure of the distribu- 
tion of the data from the assumed or some 
other model that satisfies the condition of 
validity without any assumption about the 
exact shape of the distributions (- 371 Robust 
and Nonparametric Methods). Generally, the 
problem of determining the model or specifi- 
cation should not be dealt with by mathemat- 
ical methods alone, and it should be consid- 

ered by taking into account the properties 
and nature of the subject under considera- 

tion and also the process of measurement or 
experimentation. 

E. History 

The first appearance of statistical inference as 
a method of grasping numerical characteris- 
tics of a collective was seen in the study by J. 
Graunt (1662) of the number of people who 
died in London. W. Petty applied Graunt’s 

method further to the comparison of commu- 
nities in his Political arithmrtic (1690). J. P. 

Siissmilch, a member of the Graunt school, 
perceived the regularity in mass observations 
and stressed the statistical importance of this 
regularity. The development of the theory of 
probability inevitably affected the theory of 
statistical inference. The method of T. Bayes 
was the first procedure of statistical inference 
in the current meaning of this expression. We 
now have a theorem bearing his name (the 
Bayes theorem), which is stated in current 

language as follows: If we know the proba- 
bility P,(E) that a cause C produces an effect E 
and if the prior (or +a priori) probability P(C) 
of the existence of the cause C is also known, 
then the posterior (or +a posteriori) probability 

of C, given an effect E, is equal to 

I-‘,(C) = P(Wc(E) 
cc P(Wc(E) 

(- 342 Probability Theory F). This theorem, 
easily extendable to the continuous case, sug- 

gests the following inference procedure: If we 
are informed that an effect E has taken place, 
then we calculate the probabilities PE(C) for 

every cause C, compare them, and infer that 
the C* with PE(C*)=max,P,(C) is the most 
probable cause of E. 

Both P. S. Laplace and C. F. Gauss dis- 
cussed the theory of estimation of parameters 
(- 399 Statistical Estimation) as an application 

of the Bayes theorem. In his research, Laplace 

considered a monotone function fV((t- Ol), 

and W= 1 t - 0) in particular, of the distance 
1 t - 01 between a parameter value fl and its 
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estimate t as a measure of significance of the 
error of the estimate t. Gauss, following La- 
place, used this weight function W( 1 t - 01) of 
error, and going beyond Laplace, realized that 
it would be mathematically fruitful to put 

W( 1 t - 01) = (t - Q2. Such considerations led 
him to the study of the tleast squares method, 
in which the terminology and notation he de- 

vised are still in use. He also developed the 
theory of errors and recognized the impor- 
tance of the normal distribution and found 

that the least square estimate is equal to the 
most probable value if the errors are normally 
distributed. 

F. Galton, a biologist, revealed the useful- 
ness of statistical methods in biological re- 
search and explored what we call iregression 

analysis (- 403 Statistical Models) by intro- 
ducing the concepts of regression line and 
tcorrelation coefficient. His research on re- 
gression analysis originated from the study of 
the correlation between characteristics of 

parents and children, but he failed to realize 
the difference between tpopulation character- 
istics and tsample characteristics. 

Following Galton, K. Pearson developed 
the theory of regression and correlation, with 
which he succeeded in establishing the basis of 
biometrics (- 40 Biometrics). He arrived at 

the concept of population in statistics: A sta- 
tistical population is a collective consisting of 

observable individuals, while a sample is a set 
of individuals drawn out of the population and 
containing something telling us about charac- 
teristics of the population. Thus statistical 
research is regarded as investigation that 

focuses not on a sample as such but on a 
population from which the sample has been 
drawn. This consideration raised the problem 
of the goodness-of-fit test (- 400 Statistical 
Hypothesis Testing), that is, the problem of 
knowing whether a sample is likely to have 
been drawn from a population whose distri- 
bution was determined by theoretical con- 

siderations. K. Pearson characterized some 
population distributions occurring in practice 
by a differential equation, and classified them 

into several types. Using this classification, he 
discussed goodness-of-fit tests and developed 
the X2-distribution (tchi-square distribution) in 
relation to the problem of testing hypotheses. 

Statisticians in the time of K. Pearson 
thought of a population as a collective having 

infinitely many individuals (i.e., an infinite 
population), which led to the idea that the 
larger the size of a sample (i.e., the number of 
individuals in the sample), the more precisely 
could the sample give information about the 

population. They carried out inferences, in- 
cluding the testing of hypotheses (- 400 Sta- 
tistical Hypothesis Testing), by approximate 

methods, which later came to be termed large 
sample theory. Suppose, for instance, that 

{X,,..., X,} is an tindependent sample of size 
n from a normal population N( p, tag). The 
random variable Z = &(x - pO)/f~ with x = 

xiXi/n is distributed according to N(0, 1) 
when p = pLo. Therefore, if the size n is suffl- 

ciently large (n-, co), we estimate CF by B = 
{Ci(Xi-X)2/(n- 1)}1’2 and deal with the 
random variable T= ,,&(x - pO)/B obtained 

by inserting B in place of u in the expression 
for Z, as if T itself were distributed according 
to N(0, 1). 

F. Development in the 20th Century 

W. S. Gosset, writing under the pen name 
“Student,” reported in 1908 the discovery of 

the exact distribution of T and thereby opened 
the new epoch of exact sampling theory (- 374 
Sampling Distributions). This work of Student 

made it possible to perform statistical in- 
ference by means of small samples and conse- 
quently changed statistical researc:h from the 
study of collectives to that of uncertain phe- 
nomena; in other words, the concept of popula- 
tion was once again related to a tprobability 
space with a tprobability distribution (i.e., a 
population distribution) containing unknown 
parameters. Thus it began to be emphasized 
that a sample has to be drawn at random (i.e., 
a random sample) from the population if we 

are to make an inference about a parameter 
based on the sample. 

Fisher presented a complete derivation, 
using the multiple integration method, of 
the +t-distribution (the sampling distribution 

of T). In addition, Fisher introduc:ed the con- 
cepts of tnull hypothesis and significance test, 
which were the starting points for later pro- 
gress in the theory of hypothesis testing. He 
also added the concepts of tconsistency, teffl- 
ciency, and tsufflciency to the list lof possible 
properties of testimators, and he studied the 

connection between the information contained 
in a sample and the accuracy of an estimator, 

which led to the idea of amount of informa- 
tion. Fisher also proposed the tmaximum 
likelihood estimator, which is formally equi- 
valent to the most probable value, but he 
renamed it and gave it a foundation com- 
pletely independent of any prior information 
and showed that it leads to the at least asymp- 
totically efficient estimator. 

Fisher made efforts to obtain a distribution 
of the parameter directly from the sample 
observation, hence independently of the con- 

cept of prior probability. He sought in this 
way to be released from the weakness of the 
Bayes method. For this purpose hie introduced 
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the concept of fiducial distribution, which was 

the subject of bitter controversy in the period 
that followed. As an example of a fiducial 

distribution, we consider here the +Behrens- 
Fisher problem: Let X,, . ,X, and YI, . , K 
be samples drawn independently from the 
populations N(pI, $) and N(p2, gg), respec- 
tively, where the parameters pl, p2, ol, and g2 
are all unknown. The problem raised is to test 
the hypothesis p, =p2 or to estimate 6 =p, - 

p2 by an interval. To solve this problem, we 

Put 

Z=CX,/m, Y=C rjJn, 
I j 

Sf=C(Xi-X)‘/(m- l), 
I 

and learn that TI = &(x--~JS1 and T2 

= &( r- p2)/S2 are mutually independent 
and distributed according to the t-distribution 
with degrees of freedom m - 1 and n - 1, re- 
spectively. From this fact Fisher reasoned as 

follows: Given observed values X, 7, sl, s2 of 
the variables X, Y, S,, S,, the distributions of 
the parameters pL1 and p2 are induced from 
the distributions of Tl and T, by means of 
transformations 

Jm Jn 
Consequently the distribution of 6 =X-J- 

(T,s,/&- Tzs2/&) is obtained. These 
distributions are called the fiducial distribu- 
tions of the parameters pI, p2, and 6. The 

interval IS-(X-y))l<c of 6 deduced from the 
fiducial distribution of 6 is called a fiducial 
interval of 6. 

Neyman and E. S. Pearson developed a 
mathematical theory of testing hypotheses, in 
which they deliberately defined a family of 
population distributions admissible for formal 
treatment and considered alternative hypoth- 
eses within the family. They proposed to 

relate a test to its tpower function, on the basis 
of which the test would be judged. Their ideas 

brought mathematical clarity to the theory of 
inference. Furthermore, concerning interval 
estimation, Neyman devised an alternative to 
the fiducial interval, the tconfidence interval, 
which has full mathematical justification. 
Unfortunately it was later found that the 
confidence interval, fiducial interval, and the 
Bayes posterior interval based on the posterior 

distribution often gave distinctly different 
results to the same problem, which became a 

source of controversy among different schools 

of thought. 
Since the publication of A. Wald’s theory of 

statistical decision functions (- 398 Statistical 

Decision Functions) in 1939, there has been 

a steady increase in its importance. In this 
theory the totality 9 of available statistical 
procedures, which is considered implicitly in 
the Neyman-Pearson theory, is put forth ex- 
plicitly as a set and defined as the space of 
decision functions. Wald also defined the +risk 
function of a statistical decision procedure and 
used it as a basis for judging procedures. In 
addition, he employed the concept of prior 

probability and the Bayes procedure for the 
purpose of proving the tcomplete class theo- 
rem. Wald’s idea of bringing the concept of 
prior probability back into statistical theory 
carried a great deal of weight, and much litera- 

ture has now been accumulated on this sub- 
ject. Prior probability as a technique in statis- 

tics was abandoned after Fisher’s introduction 
of the maximum likelihood method indepen- 
dent of prior probability and Neyman’s 
assertion that a probability distribution on the 
tparameter space made no sense. In addition, 

Wald linked statistical inference to games (- 
173 Game Theory) and introduced the tmini- 
max principle into statistics. The decision- 

theoretic setup also enabled him to develop a 
theory of sequential analysis by comparing 
the cost of sampling with the risk of erro- 
neous decisions (- 400 Statistical Hypothesis 

Testing). 
After the publication of Savage’s book in 

1954, there was a revival of the Bayesian ap- 
proach, i.e., one based on the concept of sub- 

jective probability, and now the group of those 
statisticians who accept the Bayesian approach 

are called Bayesians or neo-Bayesians. 

G. Applications 

Methods of statistical inference are applied in 
many fields where statistical data are used for 

scientific, engineering, medical, or managerial 
purposes. Methods of producing data that 
are appropriate for statistical inference have 
also been developed. R. A. Fisher developed 

the method of statistical +design of experi- 
ments (- 102 Design of Experiments) that 
when it is impossible or impractical to elimi- 
nate completely experimental errors or vari- 
abilities, provides the procedures to obtain 
such data. These data, though subject to ran- 
dom errors, are susceptible to rigorous statis- 
tical inference. For this purpose Fisher intro- 
duced the principles of trandomization, tlocal 
control, and treplication in the design of experi- 

ments. W. A. Shewhart defined the tstate of 

statistical control in mass-production pro- 

cesses, where the variabilities of the products 
can be considered to be due to chance causes 
alone and hence are statistically analyzable. 
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Applying the idea of statistical inference to this 
situation, Shewhart established the method of 

statistical quality control (- 404 Statistical 
Quality Control). Neyman introduced the 

method of irandom sampling into statistical 
surveys and developed the theory of estima- 

tion and allocation based on the theory of 
statistical inference (- 373 Sample Survey). 

In many applied fields there exist systems 
of statistical methods which have been devel- 
oped specifically for the respective fields, and 
although all of them are based essentially on 

the same general principles of statistical in- 
ference, each has its own special techniques 
and procedures. Specific names have been 
invented, such as biometrics (- 40 Biometrics) 
econometrics (- 128 Econometrics), psycho- 

metrics (- 346 Psychometrics), technometrics, 
sociometrics, etc. 
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402 (XX.1 9) 
Statistical Mechanics 

A. General Remarks 

One cubic centimeter of water contains about 
3 x 10” water molecules. A macroscopic sys- 

tem of matter thus consists of an enormous 
number of particles incessantly moving in 
accordance with the laws of dynamics (- 271 

Mechanics; 351 Quantum Mechanics). Dy- 
namical description of such microscopic mo- 
tion in full detail is impossible and even mean- 

ingless. A physical process in thermodynamics 
or thydrodynamics is described in terms of a 

relatively small number of macroscopic vari- 

ables, such as temperature, pressure, and a 
velocity field. Such a process shows a remark- 
able simplicity which is a statisticail result of 
the molecular chaos. This is the reason why 
statistical mechanics is needed as a theoretical 
model to unify microscopic dynamics and 
+probability theory. Thus statistical mechanics 

aims at deriving physical laws in the macro- 
scopic world from the atomistic structures of 
the microscopic world on the basis of micro- 
scopic dynamical laws and probabilistic laws. 
Its function is twofold. First, statistical me- 

chanics should give microscopic proofs of the 

macroscopic laws of physics, such as those of 
thermodynamics or the laws of macroscopic 
electromagnetism. Second, it should also pro- 
vide us with detailed knowledge of physical 
properties of a given material system once its 
microscopic structure is known. In this sense, 
statistical mechanics is an essential basis of the 
modern science of materials. 

Strictly speaking, the dynamics of the 

microscopic world obeys iquantum mechanics. 
However, even before the birth of quantum 

mechanics, statistical mechanics had pro- 
gressed on the basis of classical mechanics. 
This stage of statistical mechanics is often called 
classical statistical mechanics, in contrast to 

quantum statistical mechanics based on quan- 
tum mechanics. Statistical mechanics has a 
fully developed formalism to apply to physical 
systems in thermal equilibrium. This is some- 
times called statistical thermodynamics or 
equilibrium statistical mechanics. Until the 

1950s the term “statistical mechanics” had often 
been used in this narrow sense. In a wider 

sense it is concerned with systems m more 
general states, for instance, in nonequilibrium 
states. In the modern literature, a general 
statistical mechanical theory of nonequilib- 
rium systems is often referred to as the statis- 
tical mechanics of irreversible processes. 

1 B. History 

The early stage of statistical mechanics can 
be traced back to the kinetic theory of gases, 

which started in the 18th century. In dilute 
gases, gas molecules fly freely through the 

whole volume of the vessel and collide only 
from time to time. In thermal equilibrium, the 

average energy of each molecule is determined 
by the temperature of the gas; namely 

m 0212 = m z/2 = m 0,212 = kT/2, 



1513 402 D 
Statistical Mechanics 

where (u,, u,,, u,) is the velocity, an overbar 
means the average, m is the mass of a mole- 
cule, T is the absolute temperature, and k is 

the Boltzmann constant (= 1.38 x 10-l” erg. 
deg-i). The velocity of each molecule is only 
probabilistic, and a idistribution function 

,f’(n,, ry, vZ) is defined as the tprobability den- 
sity that the velocity of a given molecule is 
found to be m the neighborhood of (a,, ryr u,). 
In a dilute gas, this is given by 

./Xv,, ug, 0,) = Cexp -;(v;+v;+vi)/kT , 1 (1) 

the Maxwell-Boltzmann distribution law. 
L. Boltzmann viewed the velocity distri- 

bution function as changing in time as a result 
of molecular collisions and gave an equation 

of the form 

a- 
;,=AIfl+rlfl, (4 

where A[,f’] is the change of the distribution 
function ,f by acceleration due to the presence 
of external forces and I[.f] is the change 
caused by molecular collisions. r[,J’] is an 
integral which is nonlinear in ,J This type of 

equation is called a Boltzmann equation [ 1,2]. 
Boltzmann introduced the H-function by the 

definition 

H= 
SIS 

f logf dv,dv,dv; (3) 

and proved on the basis of equation (2) that 
dH/dt,<O. This theorem is known as the H- 

theorem [l-4]. The equilibrium distribution 
(1) is therefore obtained from equation (2) as 
the solution that makes H a minimum. In fact 
the H-function is related to the entropy S by 

S= -kH. (4) 

Boltzmann further showed (1877) that the 
distribution function of a system in thermal 

equilibrium can be obtained on more general 
grounds without relying on a kinetic equa- 
tion of the type (2) and that the statistical 
mechanics of systems in equilibrium can thus 
be constructed on a basis much more general 
than that given by a kinetic theory. It was W. 
Gibbs, however, who clearly established (1902) 

the complete framework of statistical thermo- 
dynamics, although he had to confine himself 
to classical statistical mechanics [S]. 

C. The Ergodic Hypothesis 

For a given dynamical system with n tdegrees 

of freedom, the phase space is defined as a 2n- 
dimensional space with tgeneralized coordi- 
nates q i , , q, and tgenerahzed momenta 

p,, , p,. Dynamical states of the system 
constitute a set of points in this space. At a 
given time, the state of the system is repre- 

sented by a point P in the phase space, and 
hence the motion of the system is represented 
by the motion of P. If the system is conserva- 

tive, its energy function is constant. Let X be 
the +Hamiltonian function. Then the motion 
of P is confined to an energy surface defined 

by the condition .Z = E = constant. Measure 
on an energy surface is defined as the limit of 
the volume element lying between two neigh- 
boring energy surfaces corresponding to the 
energies E and E + dE. The motions of P form 
a ttopological group that makes this measure 
invariant (+Liouville’s theorem). 

A dynamical quantity A(p, y) of the system 
changes its value as the phase point P moves 
on the energy surface. The time average A of 

A is identified with the value of A observed in 
the equilibrium state of the system, namely, 
the average of A with respect to the invariant 
measure. Boltzmann justified this assumption 
by the following reasoning. If the energy sur- 
face has a finite measure and the trajectory of 
P does not make a closed curve on the energy 
surface, it can be assumed that the trajectory 
will move around practically everywhere on 
the surface. Mathematically formulated, the 

on!y measurable subset of the surface that has 
a nonzero measure and is invariant under the 

motion is the whole surface. This assumption 
is the ergodic hypothesis [669]. The long-time 
average of A will then equal the average of A 

over the entire energy surface with weight 
function equal to the measure previously in- 
troduced. The latter average is called the phase 
average and is denoted by (A). Boltzmann 
thus asserted that 

A =(A). (5) 

Efforts of mathematicians to study the ergodic 
hypothesis created an important branch of 

mathematics called ergodic theory (- 136 
Ergodic Theory). 

D. Ensembles in Classical Statistical 
Mechanics 

Once we admit the ergodic hypothesis, or 
more specifically the assumption (5) the cal- 
culation of the observed value of a physical 

quantity A for a system in equilibrium is re- 
duced to finding the phase average of A on 
an energy surface. The task of statistical me- 
chanics of systems in equilibrium is thus re- 

duced essentially to calculating phase averages 
and establishing relationships between them 
[10P13]. 

For a set (called an ensemble in this case) of 
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identical systems with the same energy, we 
consider the phase average for the tprobability 

space with the measure mentioned in Section 
C on the energy surface corresponding to the 

given energy value. Gibbs called a probability 
space of this kind a microcanonical ensemble. 
An average in this probability space is defined 

by 

where .# is the Hamiltonian function, grad%’ 

is its gradient in the 2n-dimensional phase 
space, and the integration is carried over the 
energy surface with dS as surface element. 

When the observed system is in mechanical 
contact with a heat reservoir, the composite 
system consisting of the system and the heat 
reservoir is regarded as an isolated system 
with constant energy. Then an ensemble of the 
composite systems is treated as a microcanon- 
ical ensemble. It is more convenient and more 

physical, however, to consider the heat re- 
servoir simply as providing an environment 

characterized by its temperature T, and to 
concentrate only on the system in which we 
are interested. Then the system is no longer 

isolated and exchanges energy with its en- 
vironment. Since the energy of the system is 
no longer constant, the system will be found 
in any part of the phase space with a certain 
probability. To find the probability distri- 
bution for an ensemble of this system is a 
problem of asymptotic evaluation which is 

solved on the basis of the ergodic hypothesis 
and the fact that a heat reservoir has an ex- 
tremely large number of degrees of freedom. 

This asymptotic evaluation is traditionally 
done with the help of +Stirling’s formula or by 
using the Fowler-Darwin method [lo], but 

it is essentially based on the tcentral limit 
theorem [ 111. 

The probability space of this kind of en- 
semble of systems in contact with heat re- 

servoirs was called a canonical ensemble by 
Gibbs [S]. If dT is a volume element of the 
phase space of the system, the probability of 
finding a system arbitrarily chosen from the 
ensemble in a volume element dT is given by 

Pr(dT) = Cexp( -X/kT)dr. (7) 

Accordingly, the average of a dynamical quan- 
tity A is given by 

(1)=~Ae-““dTi’Se-.““‘d1. (8) 

For example, the average energy is 

By a traditional convention we introduce the 

parameter 

/I= l/kT 

and write (9) as 

E = - a log Z(/?)/d/?, 

where Z(b) is called the partition function or 
the sum over states and is given for a system 
composed of N identical particles by 

Z(P) = s emBx dT/N!. (10) 

If an exchange of particles with the environ- 
ment takes place in addition to an exchange of 

energy, the probability of finding a system 
with particle number N in the volume element 
dT is given by 

where p is a real parameter called I he chemical 
potential; this characterizes the environment 
with regard to the exchange of particles. This 
ensemble is called the grand canonical en- 

semble. The average of a dynamical quantity A 
is then given by 

where the dependence of A and X on N is 
now explicitly written, and where 

is called the grand partition function. 

E. Ensembles in Quantum Statistical 
Mechanics 

The quantum counterpart of the classical 
ergodic hypothesis is that to each of these 
quantum states an equal probabi1it.y weight 
should be assigned [lo]. A microcanonical 
ensemble is then defined by this principle of 
equal weight, which yields in turn 

<A)=~A,ICI (13) 
I I 

instead of (6). Here the index 1 refers to the 
quantum states lying in the interval AE, and 

A, is the quantum-mechanical expectation of 
a dynamical variable A in the quantum state 
1. A canonical ensemble is now defined by 
assigning 

(14) 

to thejth quantum state as the probability 
that the system will be found in that state. The 
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expectation value of A must be given by 

(A)=~Aje-BE~/~e~BEJ=tr,4e~PH/tre~PH, 
i j 

(15) 

where H is the Hamiltonian. The partition 
function is defined by 

Z=Ce-fJE,=tremP”, (16) 

corresponding to (10). 
For a system consisting of identical parti- 

cles, quantum mechanics requires a particular 
symmetry of its twave function; namely, the 

wave function must be even or odd with re- 
spect to permutation of any two particles 

according as the particles are bosons or fer- 
mions. This symmetry requirement is peculiar 

to quantum mechanics. Thus, even for an ideal 
gas consisting of noninteracting particles, 

quantum statistics leads to results characteris- 
tically different from those of classical statis- 

tical mechanics. This difference becomes more 
significant when the particle mass is smaller, 
the density is larger, and the temperature is 
lower. Quantum effects of this kind are seen in 

metallic electrons, in liquid helium, in an as- 
sembly of photons or phonons, and in high- 
density stars. The statistical laws obeyed by 
bosons are called Bose statistics, and those 
obeyed by fermions, Fermi statistics. 

The expectation value of A in the grand 
canonical ensemble is given in quantum sta- 
tistics by 

(A)=E(~,~))‘tr(Ae~PH+P@‘), (17) 

where H is the tsecond-quantized Hamil- 
tonian, N is the number operator, the trace tr 

is taken on the (nonrelativistic) +Fock space 
(symmetric or antisymmetric according to 
Bose or Fermi statistics), and Z(/3, p) is the 
grand partition function given by 

(18) 

F. Many-Body Problems in Statistical 
Mechanics 

Since statistical mechanics is primarily con- 

cerned with systems with large numbers of 
particles, problems in statistical mechanics 

are essentially many-body problems. In prac- 
tice, however, there are some cases where 
extreme idealization is possible, as in ideal 
gases, where the interaction between gas mole- 

cules is ignored. In some cases we can proceed 
by successive approximation, taking the par- 
ticle interactions as perturbations. Such per- 
turbational treatments are, however, entirely 

useless for some problems, such as phase tran- 
sitions, of which an example is the conden- 
sation of gases into liquid states, where the 

interaction of particles plays a critical role. 
Such problems are clearly many-body prob- 
lems. There are a number of important and 

interesting problems in this category, for 
example, transitions between ferromagnetic 
and paramagnetic states and those between 
the superconducting and normal states of 
metals. Transition from a high-temperature 

phase to a low-temperature phase is generally 
regarded as a consequence of the appearance 
of a certain type of order in thermal motion. 
This kind of phase change is called an order- 
disorder transition [14-161. 

G. Thermodynamic Limit and Characterization 

of Equilibrium States 

Although an actual system is finitely extended, 
the enormous sizes of the usual macroscopic 
systems in comparison to the sizes of their 
constituent particles justifies the idealization to 
infinitely extended systems. At the same time, 
there are several mathematical advantages in 
considering infinitely extended systems, such 

as the absence of walls (replaced by the bound- 
ary condition at infinity, should it be relevant), 

appearance of phase transitions as mathemat- 
ical discontinuities rather than mathematically 
smooth though quantitatively sudden changes, 
and mathematically clear-cut occurrence of 
broken symmetries. 

Equilibrium states of infinitely extended 
systems are usually obtained by taking the 
limit of the equilibrium states of systems in a 
finite volume V as both V and the number of 

particles IV tend to co with the density p = N/V 
fixed; this is called the thermodynamic limit. 

It is sometimes possible to formulate the 
dynamics of infinitely extended systems direct- 
ly and to characterize their equilibrium states, 
which more or less coincide with the thermo- 
dynamic limit of equilibrium states of finitely 
extended systems [ 17-211. The simplest and 
most fully investigated case of lattice spin 
systems is explained below in detail [ 171. Since 
classical systems can be viewed as special cases 

of quantum systems, we start with the latter. 
To be definite, we take a v-dimensional cubic 
lattice Z” with a lattice site n = (nr , , n,) 

specified by its integer coordinates nj. (In the 
lattice case, the thermodynamic limit is simply 
the limit as V+ co.) 

The C*-algebra ‘11 of observables is gen- 
erated by the subalgebra 53, at each lattice site 
n, which is assumed to be the algebra of all d x 
d matrices (for example, linear combinations 
of +Pauli spin matrices ~(“)=(c$‘r, a:), @)) and 

the identity for d = 2) and to commute with 
operators at other lattice sites. The group of 
lattice translations n -tn + a is represented by 
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automorphisms yu of 2t, satisfying ~~21, = 2l,+, 
(ya#) = o(“+~‘)). F or any subset A of Z”, 21(A) 
denotes the C*-subalgebra of 2I generated by 
21,, rlEc\. 

A model is specified by giving a potential @ 
which assigns to each finite nonempty subset 
I of Z” an operator @(I)=@(I)* E 21(I). The 

Hamiltonian for a finite subset A of Z” is given 

by U(A)=C ,,,@(I). In order to control long- 
range interactions, various assumptions are 

introduced. Examples are finiteness of either of 
the following: 

ll@ll =sup 1 N(I) -I ll@,(I)ll, 
n li” 

(19) 

(20) 

Here N(I) is the number of points in I. 
Let 21:’ be a maximal Abelian *-subalgebra 

of ‘2l,, (such as (c, +c,@‘)) satisfying r,2l;‘= 
2[::, and 21” be the Abelian C*-subalgebra 

of 21 generated by ‘LIZ’, M E Z’. If @(I) is in 2V’ 
for all I, we call the potential Q Ahelian or 
classical. There exists a conditional expecta- 

tion 7~” which is a positive mapping of norm 
1 from 21 onto 21” satisfying n”(ABC)= 
II@(B)C for A and C in 21” and x”‘( 1) = 1. If 

a state cp on 21 satisfies q(A)= 47(7?(A)), we 
call the state cp classical. Classical states are in 
one-to-one correspondence with the restriction 
on 2V’, which can be viewed as a probability 

measure on the spectrum (also called configu- 
ration space) of the C*-algebra ‘II” of obser- 

vables for classical spin lattice systems. This 
correspondence makes it possible to view 

classical spin lattice systems as quantum spin 
lattice systems with Abelian interactions. 

For a given potential @, the time evolution 
of the infinitely extended system is described 
by the one-parameter group x,, PER, of *- 
automorphisms of 2l defined as the following 

limit: 

The limit exists if @(I) = 0 for N(I) > IV 

and Ill@lll< a, or if for some i>O 

C,~^“(suP,C,{ll~(~)ll Jl% NU)=n})< 
w, or if v = 1 (1 -dimensional lattice) and 

~~~~c,iii~uii Irw W,X)ZIZI, mcx,~)f 
0) < W. An alternative way is first to de- 
fine S,(A)=C,i[@(I),A] for AEU~%(A) 
(A is a finite subset of Z’), which exists if 

~~~@~~~ < w, and to prove that the closure 6, 
of &, is a generator of a one-parameter sub- 
group X, ( = exp r&J. In the above cases, &, is a 
generator. 

A general canonical ensemble for a system 
in a finite subset A of the lattice Z’, with 

some boundary condition in the outside A’= 
ZV\A, is given by v~(A)=(T,, @ $)(r-OH(A) x 

AemPH(““‘), where T, ,  0 IJ? is the product of 
the unique tracial state z, on ‘U(A) and a state 
$ on 2l(A’) (the boundary condition), H(A)= 

U(A)+ W(A) and W(A)=C,{@(I) InA#Qi, 
In A” # 0) (the surface energy). The follow- 

ing conditions on a state cp of 21 are mutually 
equivalent under the condition that & is a 
generator (which holds under any one of the 

conditions described above) and is satisfied 
by any limit state of the above VI,, as A /*Z” 
(i.e., a state in &, {cpA I A’ c A, $}, with the 
bar denoting weak closure). 

1. KMS condition: cp(Accip(B))= q(BA) for 
any A, BE’LI such that a,(B) is an entire func- 
tion of t. (4” is called a b-KMS state.) 

2. Local thermodynamic stability: For any 
finite subset A of Z” and for any state t/j having 

the same restriction to ‘U(A) as the state cp 
under consideration, F,,Jcp) d FA,6(11/) (the 
minimality of the free energy multiplied by fi), 

where ~A,ab) = BdW)) - &(cp), .sA(cp) = 
lim{S,,.(rp)--S,,. ,,((p)) as A’7 Z’(the open 

system enWd, s,(cp) = -&log p,(v)) (the 
closed system entropy) and the density matrix 
p,,(cp)~Sl(A)+ is defined by cp(A)=r,(p,(cp)A) 
for all A E 21(A). 

3. Gibbs condition: For every finite subset A 
of Z”, the perturbed state ~fl~‘~’ (not neces- 
sarily normalized) is the product qz x $ of 
the Gibbs state q:(A)= tr(e~P”cA)A)/tre-“u(A’ 

on AE~I(A) and some (unknown) state $ on 
21(Ac), where the representative vector @ for p 

for the GNS representation no, is assumed to 
be separating for 71$X)“, and then q?“(“)(A)= 

(0, ~&A)fi) for 

x ( W(A))A~~l-‘n.. A;-%JW(A))a), 

(22) 

where AQ is the tmodular operator for @ and 

the series converges. 
For a classical potential, this condition re- 

duces to the conditions that q is classical and 
that the restriction of 40 to 2V’ as a measure on 

the configuration space { 1 d)“’ satisfies the 
following DLR equation due to R. L. Do- 
brushin, 0. E. Lanford, and D. Ruelle: The 
conditional probability for <(A)E { I d}A 
knowing ME (1 d}““” is proportional 
to exp( -bH(A)), where H(A) = U(.I) + W(A) is 
a function of t(U(A) depending only on <(A)). 

4. Roepstorff-Araki-Sewell inequality: For 

any AE UA21(A), @(A*&,(A)) is real and 

- ih(A*&(A)) 3 S(dA *A), dAA ‘I), (23) 

where S(u,u)=ulog(u/v) if u>O, vr0, S(O,o)= 

0 for a30 and S(u,O)= +cx3 for u,O. 
5. Roepstorff-Fannes-Verbeure inequality: 
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where F(u, 2;) = (u - u)/log(u/u) for u > 0, u > 0, 

IA # u, F(u, u) =: u for u > 0, F(u, 0) = F(0, 0) = 0. 
If the interaction is translationally invariant 

(i.e., y,@(l) = @(I + a) for all UE Z” and I) and if 

we restrict our attention to translationally 
invariant states (i.e., cp(y,(A))= q(A) for all 
A~‘11 and UEZ”), then the following conditions 
are also equivalent to the above. 

6. Variational principle: [k(cp)- s(q) < be($) 
-s($) for all translationally invariant II, (the 
minimality of the mean free energy), where 
e(cp)=limN(A)~‘cp(U(A))=limN(A)~’~(H(A)) 
(the mean energy), s(v) = lim N(A)-lS,,(v) (the 
mean entropy), the infimum value Be(cp) - s(v) is 
-P(/?@) with P([j@)=limN(A)--’ logT,(e-Pu(A)) 
(the pressure), and the limits exist if A 7 Z” is 

taken in the following van Hove sense: For 
any given cube C of lattice points, the mini- 
mal number ni (C) of translations of C that 
cover A and the maximal number n,(C) of 
mutually disjoint translations of C in A satisfy 

II; (C)/n, (C)d 1 as A 7 Z”. 
7. Tangent to the pressure function: P(Q) 

is a continuous convex function on the Ba- 
nach space of translationally invariant Q, with 
I/@(/ < cry. A continuous linear functional c( on 
this Banach space is a tangent to P at (I, if 

I’(@ + Y) B P(Q) + X(Y) for all Y. For a trans- 
lationally invariant state $, we define cc,(Y) = 

$(C,,O N(I)-’ Y(I)). The condition is that 
- rrp is a tangent to P at p@. (Conversely, any 

tangent CI to P at [j@ arises in this manner.) 
The set I<, of all (normalized) [j-KMS states 

is nonenipty, compact, and convex. A P-KMS 
state v is an extremal point of K,] if and only if 
it is factorial (i.e., the associated von Neumann 
algebra n,(SI)” has a trivial center). It then has 
the clustering property lim,-,, { cp(Ay,(B)) - 
cp(A)q(y,(B))) =0 and is interpreted as a pure 

phase. Any /I-KMS state has a unique integral 
decomposition into extremal B-KMS states. 

For any @,, K, is a one-point set for suffi- 
ciently small IpI. For a l-dimensional system 
(V = l), K, consists of only one point (unique- 
ness of equilibrium states usually interpreted 
as indication of no phase transition) if the sur- 

face energy W([ - N, N]) is uniformly bounded 
(H. Araki, Comm. Math. Phys., 44 (1975); A. 

Kishimoto, Comm. Muth. Phys., 47 (1976)). For 
the two-body interaction @({m,n})= -Jim- 
n-zo~m)c7~), this condition is satisfied if r > 2 
while 11@11 < w  and c(, defined if c(> 1. There is 
more than one KMS state (with spontaneous 

magnetization) for 2 >, r > I and large /U > 0, 

and hence a phase transition exists (F. J. 

Dyson, Comm. Muth. Phys., 12 (1969); J. FrGh- 
lich and T. Spencer, Comm. Math. Phys., 83 
(1982)). If a l-dimensional interaction has a 

finite range (i.e., @(I) = 0 if the diameter of I 
exceeds some number rO) or if it is classical 

and Cls,, N(l)-‘(diaml-t 1)11@(1)11< 00 for 
d=2, then q(A) for cp~K, and AE~I(A) for 
a finite A is real analytic in a and any other 

analytic parameter in the potential (Araki, 
Comm. Math. Phys., 14 (1969); [22]; M. Cas- 
sandro and E. Olivieri, Comm. Math. Phys., 

80 (1981)). 

For a 2-dimensional king model with the 
nearest-neighbor ferromagnetic interaction 
[23], K, consists of only one point for 0 <[j < 
I$ while K, for fi > /& has exactly two extremal 

points corresponding to positive and negative 
magnetizations (M. Aizenman, Comm. Math. 

Phys., 73 (1980); Y. Higuchi, Colloquia Math. 
Sot. J&OS Bolyui, 27 (1979)). In this case, all 
KMS states are translationally invariant, 

while there exist (infinitely many) translation- 
ally noninvariant KMS states for sufficiently 
large b if v = 3 (Dobrushin, Theory Prob. Appl., 

17 (1972); H. van Beijeren, Comm. Math. Phys., 
40 (1975)). 

The accumulation points of b-KMS states 
as [j- +cr, (or -m) provide examples of 
ground (or ceiling) states defined by any one of 
the following mutually equivalent conditions 
I +, 2 + (or 1 - ,2 -) (0. Bratteli, A. Kishimoto, 

and D. W. Robinson, Comm. Math. Phys., 64 
(1978)): 

1 + (1 -). Positivity (negativity) of energy: For 

any A E uA %(A), -@(A*&,(A)) is real and 
positive (negative). 

2, (2-). Local minimality (maximality) of 
energy: For any finite subset A of Z” and for 
any state $ with the same restriction to %(A’) 

as the state cp under consideration, cp(H(A)) < 

44HbV) (v(H(N)>+(H(A))). 
For translationally invariant potentials and 

states, the following condition is also equiva- 

lent to the above: 
3 + (3 ). Global minimality (maximality) of 

energy: e(v)<e($) (e(v)>e($)) for all trans- 

lationally invariant states $. 
The totality of KMS, ground, and ceiling 

states can be characterized by the follow- 
ing formulation of the impossibility of per- 
petual motion: Let P, = PF E 91 be a norm- 

differentiable function of the time t E R with a 
compact support, representing (external) time- 
dependent perturbations. Then there exists a 
unique perturbed time evolution X: as a one- 
parameter family of *-automorphisms of \LI 
satisfying (d/&)x:(A) = x/(&,(A) + i[Pt, A]) 
for all A E’LI in the domain of 6,. A state cp 

changes with time t as q,(A)= cp(s,“(A)) under 

the perturbed dynamics $, and the total 
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energy given to the system (mechanical work 
performed by the external forces) is given by 

LP(~)=~Zn. cp,(dPJdt)dr. For KMS states at 
any /I, as well as ground and ceiling states, 

L’(cp)>O for any P,. If cp is a factor state, the 

converse holds, i.e., L’(q) > 0 for all P, implies 
that cp is either a KMS, ground, or ceiling 
state. The condition L’(q) > 0 for all P, is 
equivalent to - icp( U*&,( U)) > 0 for all unitary 
U in the domain of 6, and in the identity 
component of the group of all unitaries of ‘Il. 
A state cp satisfying this condition is called 
passive, and a state cp whose n-fold product 
with itself as a state on ~Jl@” IS passive relative 

to at’” for all n is called completely passive. 
The last property holds if and only if cp is a 
KMS, ground, or ceiling state (W. Pusz and 

S. L. Woronowicz, Comm. Math. Phys., 16 

(1970)). 

The totality of KMS, ground, and ceiling 
states can be characterized by a certain sta- 
bility under perturbations (P, considered 
above) under some additional condition on 
z, (R. Haag, D. Kastler, and E. B. Trych- 
Pohlmeyer, Comm. Math. Phys., 38 (1974); 0. 

Bratteli, A. Kishimoto, and D. W. Robinson, 

Comm. Math. Phys., 61 (1978)). 
When a lattice spin system is interpreted as 

a lattice gas, an operator Nn~YtU:’ (such as ($1 

+ 1)/2) is interpreted as the particle number 
at the lattice site n and N(A) = &,, N, is the 
particle number in A. It defines a representa- 
tion of a unit circle T by automorphisms Z, 
of % defined as r,,(A) = lim eiN(“)BAe-iN(h)B 

(A /*Z”), called gauge transformations (of the 
first kind). The grand canonical ensemble can 

be formulated as a /I-KMS state with respect 
to t(,r@, (instead of x,), where the real constant 
p is called the chemical potential. It can be 

interpreted as an equilibrium state when the 
gauge-invariant elements {A E% 1 T,(A) = A} 
instead of 91 are taken to be the algebra of 

observables or as a state stable under those 
perturbations that do not change the particle 
number. 

H. The Boltzmann Equation 

Statistical mechanics of irreversible processes 

originated from the kinetic theory of gases. 
Long ago, Maxwell and Boltzmann tried to 
calculate viscosity and other physical quanti- 

ties characterizing gaseous flow in nonequilib- 
rium. The +Boltzmann equation is generally a 
nonlinear +integrodifferential equation. On the 
basis of this equation mathematical theories 

were developed by D. Enskog, S. Chapman, 
and D. Hilbert [2]. 

Free electrons in a metal can be regarded 

as forming an electron gas, in which electron 
scattering by lattice vibrations or by impurities 
is more important than electron-electron scat- 

tering. Following the example of gas theories 
H. A. Lorentz set forth a simple theory of 

irreversible processes of metallic electrons. 
His theory was, however, not quite correct, 
since metallic electrons are highly quantum- 
mechanical and classical theories cannot 
be applied to them. Quantum-mechanical 
theories of metal electrons were developed by 
A. Sommerfeld and F. Bloch. 

1. Master Equations 

The Boltzmann equation gives the velocity 

distribution function of a single particle in the 
system. This line of approach can be extended 
in two directions. The first is the so-called 
master equation. For example, consider a 
gaseous system consisting of N particles, and 

ask for the probability distribution of all the 
momenta, namely, the distribution function 

fN(pI, ,pN; t), where p,, . . . ,pN are the mo- 
menta of the N particles. The equations of 

motion are deterministic with respect to the 
complete set of dynamical variables (x 1, ,,‘..3 p 

xN, pN). The equation for ,f(p,, , pN, t) may 
not be deterministic, but it may be stochastic 
because we are concerned only with the vari- 

ablesp,,...,p,, with all information about 
the space coordinates x1, , xN disregarded. 
This situation is essentially the sa.me in both 
classical and quantum statistical mechanics. 

If the duration of the observation process is 
limited to a finite length of time and the preci- 
sion of the observation to a certain degree of 
crudeness, the time evolution of the momen- 
tum distribution function fN can be regarded 

as a +Markov process. In general. an equation 
describing a Markov process of a certain dis- 

tribution function is called a master equation. 
Typically it takes the following form for a 

suitable choice of variables x: 

= s dx’( W(x’, x)f‘(x’, t) - W(x, x’).f”(x, t)), (25) 

where W(x, x’) is the transition probability 

from x to x’. By expanding the first integrand 
into a power series in x-x’, with x’ fixed and 
by retaining the first few terms, we obtain the 

Fokker-Planck equation: 

(alat)f(x, t) = - (dlo?x)(a, (x)f(x, t)) 

+ (~2/~x2H%(xMx.~ t))/Z (26) 

a,(x) = 
s 

W(x, x + r)r”dr. (27) 
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J. The Hierarchy of Particle Distribution 
Functions 

Another way of extending the Boltzmann 

equation is to consider a set of distribution 
functions of one particle, of two particles, and 

generally of n (<N) particles selected from the 
whole system of N particles. For example, a 
two-particle distribution function is the func- 

tion fi(xl, u,,x*, L’~, t) for positions and veloc- 
ities of two particles at time t. The complete 
dynamics of the entire system of particles 
can be projected to the time evolution of this 
hierarchy of distribution functions. The equa- 
tion of motion for ,fi then contains the func- 
tion fi if the interaction of particles if pairwise, 
the equation for f2 contains f3, and so on. 
Thus the equations of motion for the set of 

distribution functions make a chain of equa- 
tions. The whole chain is equivalent to the 
deterministic equations of motion for the 

dynamics of N particles. However, if the parti- 
cle number N is made indefinitely large, with 
the time scale of observation always finite, the 
chain of equations for the distribution func- 
tions asymptotically approaches a stochastic 
process if certain conditions are satisfied. 
Approximate methods of solving the hierarchy 
equations in classical cases have been devel- 
oped by J. Yvon, J. G. Kirkwood, M. Born, 

H. S. Green, and others. 
In quantum statistics, similar hierarchy 

equations can be considered. A typical exam- 

ple is the so-called Green’s function method 

c271. 

K. Irreversible Processes and Stochastic 
Processes 

The statistical mechanics of physical processes 
evolving in time is a hybrid of dynamics and 
the mathematical theory of stochastic pro- 
cesses. A typical example is the theory of 

Brownian motion. A colloidal particle floating ’ 
in a liquid moves incessantly and irregularly 
because of thermal agitation from surrounding 

liquid molecules. For simplicity, an example of 
l-dimensional Brownian motion is considered 
here. Phenomenologically we assume that a 
colloid particle follows an equation of motion 

of the form 

mti = - myu + f( t), (28) 

called the Langevin equation, where m is the 
mass of the colloid particle and u is the veloc- 
ity. The first term on the right-hand side is the 

friction force due to viscous resistance, and the 
second term represents a random force acting 

on the particle from surrounding molecules. 
If (28) describes the Brownian motion in 

thermal equilibrium, the friction constant my 

and the random force cannot be independent, 
but are related by a theorem asserting that 

s 

cr 
my= <f(tJf(t1 +t))dt. (29) 

0 

In an electric conductor, the thermal motion of 
charge carriers necessarily induces irregular- 

ities of charge distribution, and so an electro- 
motive force that varies in time in a random 
manner is created. This random electromotive 

force is similar to the random motion of a 
Brownian particle and is called the thermal 
noise. For such a thermal noise there exists a 
relation similar to (29) between the resistance 
and the random electromotive force. This 
relation is known as the Nyquist theorem. 
These theorems are contained in a more gen- 

eral theorem called the fluctuation-dissipation 
theorem. 

When an external force is applied to a 

system in thermal equilibrium, some kind 
of irreversible flow, an electric current, for 
example, is induced in the system. The rela- 

tionship between the flow and the external 
force is generally represented by an admit- 
tance. If the external force is periodic, the 
admittance is a function of frequency (0 and 

is given by 

(30) 

where $(t) is equal to the correlation function 

of the flow that appears spontaneously as the 
fluctuation in thermal equilibrium when no 
external force is applied. This general ex- 
pression for an admittance, often called the 
Kuho formula, gives a unified viewpoint from 
which responses of physical systems to weak 
external disturbances can be treated without 
recourse to the traditional kinetic approach. 

The static limit (w-+0) of the admittance is 
the transport coefficient. The reversibility of 
dynamics leads to relations among transport 

coefficients, called Onsager’s reciprocity rela- 

tions in the thermodynamics of irreversible 
processes. 

When external disturbances are so large that 
the system deviates considerably from thermal 
equilibrium, the responses may show character- 
istic nonlinearities. Such nonlinear phenomena 
are important from both experimental and 
theoretical points of view, and constitute a 
central subject of modern research (- 433 
Turbulence and Chaos). 
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A. General Remarks 

A statistical model is defined by specifying the 

structure of the probability distributions of the 
relevant quantities. When a statistical model is 

used for the analysis of a set of data, its role is 
to measure the characteristics of a certain con- 
figuration of the data points. R. A. Fisher [l] 
advanced a systematic procedure for the appli- 
cation of statistical models. The process of 
statistical inference contemplated by Fisher 
may be characterized by the following three 
phases: (1) specification of the model, (2) esti- 
mation of the unknown parameters, and (3) 
testing the goodness of tit. The last phase is 

followed by the first when the result of the 
testing is negative. Thus the statistical in- 
ference contemplated by Fisher is, realized 
through the process of introduction and selec- 

tion of statistical models. 
We always assume that the true distribution 

of an observation exists in each particular 
application of statistical inference, even though 
it may not be precisely known to us. Our par- 
tial knowledge of the generating Imechanism of 
the observation suggests various possible con- 

straints on the form of the true dl!stribution. 
The basic problem of statistical inference is 
then to generate an approximation to the true 

distribution by using the available obser- 
vational data and a model defined by a set 
of probability distributions satisfying the 

constraints. 

B. The Criterion of Fit 

The use of statistical models can best be ex- 
plained by adopting the predictive point of 
view, which defines the objective of statistical 

inference as the determination of the predictive 
distribution, the probability distribution of a 
future observation defined as a function of the 

information available at present. The perfor- 
mance of a statistical inference procedure is 

then evaluated in terms of the expected dis- 
crepancy of the predictive distribution from 

the true distribution of the future observation. 
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The probabilistic interpretation of thermo- 

dynamic entropy developed by L. Boltzmann 
[2] provides a natural measure of the discre- 
pancy between two probability distributions. 

The entropy of a distribution specified by the 
density f(y) with respect to the distribution 
specified by g(y) is defined by 

where, as in what follows, the integral is taken 
with respect to some appropriate measure dy. 
This definition of entropy is a faithful repro- 
duction of the original probabilistic interpre- 
tation of the thermodynamic entropy by Boltz- 

mann and allows the interpretation that the 
entropy B(f;g) is proportional to the logar- 
ithm of the probability of getting a statistical 

distribution of observations closely approxi- 
mating f(y) by taking a large number of inde- 
pendent observations from the distribution 
g(y). (For a detailed discussion - [3].) 

Obviously we have 

Nf;d= 
s 

.f(Y)l%dY)dY- .l’(Y)lwf(YVY. 
s 

The second term on the right-hand side is a 
constant depending only on f(y). The first 
term is the expected log likelihood of the dis- 

tribution g(y) with respect to the true distri- 
bution f(y). Thus a distribution with a larger 
value of the expected log likelihood provides a 

better approximation to the true distribution. 
Even when ,f(y) is unknown, logy(y) provides 
an unbiased estimate of the expected log like- 
lihood. This fact constitutes the basis of the 

objectivity of the rlikelihood as a criterion for 
judging the goodness of a distribution as an 
approximation to the true distribution. 

C. Parametrization of Probability 
Distributions 

When we construct a statistical model it is a 
common practice to represent the uncertain 
aspect of the true distribution by a family of 
probability distributions with unknown para- 

meters. This type of family is called a para- 
metric family; the model is called a parametric 
model. The parameters in a parametric model 

are the keys to the realization of the infor- 
mation extraction from data by statistical 
methods. Accordingly, the introduction of 

mathematically manageable parametric 
models forms the basis for the advance of 
statistical methods. 

(I) Pearson’s System of Distributions. A wide 

family of distributions can be generated by 
assuming a rational-function representation of 

the sensitivity of the density function f(y) 
given by 

&ilY) = 
a,+a,y+...+a,yP 

b,+h,y+...+b,yq’ 

Pearson’s system of distributions is defined by 
putting p = 1 and q = 2 and by assuming vari- 
ous constraints on the parameters ai and hj 
and the support of f(y) [4]. 

E. Wong [S] discussed the construction of 
continuous-time stationary Markov processes 
with the distributions of Pearson’s system as 
their stationary distributions. This allows a 

structural interpretation of the parameters of a 
distribution of the system. 

(2) Maximum Entropy Principle and the Ex- 
ponential Family. To develop a formal theory 
of statistical mechanics E. T. Janes [6] intro- 
duced the concept of the maximum entropy 
estimate of a probability distribution. This 

concept leads to a natural introduction of the 
exponential family. Following Kullback [7], 

we start with a distribution g(y) and try to find 
,f(y) with prescribed expectations of statistics 
T,(y), . , T,(y) and with maximum entropy 
B(f;g). Such a distribution f(y) is given by the 
relation 

where it is assumed that the right-hand side is 
integrable. By varying the parameters z,, , rk 
over the allowable range we get the exponen- 
tial family of distributions. I. J. Good [S] con- 
sidered the Janes procedure as a principle for 

the generation of statistical hypotheses and 
called it the maximum entropy principle. 

(3) Parametric Models of Normal Distribu- 
tions. Of particular interest within the ex- 

ponential family is the family of normal distri- 
butions. This is obtained by assuming the 
knowledge of the first- and second-order mo- 
ments of a distribution and applying the maxi- 
mum entropy principle [9]. Obviously, the 
parametrization of a normal distribution is 
concerned only with the mean vector and the 
variance-covariance matrix. 

Let X =(X1 , , X,)’ be an n-dimensional 
normal random variable with mean EX = 
(m, , , m,,y and variance-covariance matrix 

L’=(gij), where aij=E(Xi-mi)(Xj-mj). (E 
denotes expectation and ’ denotes the trans- 
pose.) A nonrestrictive family of n-dimensional 

normal distributions is characterized by n + 
n(n + 1)/2 parameters, mi (i = 1, . , n), and qj 
(i = 1, , n; j = 1, , n). The prior information 
on the generating mechanism of X introduces 

constraints on these parameters and reduces 
the number of free parameters. 

Reduction of the dimensionality of the 
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parameter vector m = (ml, , m,)’ is realized 

by assuming that m is an element of a k- 
dimensional subspabe of R” spanned by the 
vectors a, =(a1 ,, ,aJ, ,ak=(uklr . . . ,a,,)‘, 

i.e., by assuming the relation 

m=Ac, 

whereA=(a,,...,a,)isannxkmatrixandc= 

(C , , . , cJ’ is a k-dimensional vector with k < 
n. This parametrization is obtained when for 
each Xi the observation (ail, . , uik) is made on 
a set of k factors and the analysis of the linear 
effect of these factors on the mean of Xi is 

required. We have the representation X = AC 
+ W, where W is an n-dimensional normal 
random vector with EW = 0 and variance- 

covariance matrix C (- Section D). 
To complete the model we have to specify 

the variance-covariance matrix C. One of the 
simplest possible specifications is obtained by 
assuming that the Xi are mutually indepen- 
dent and of the same variance 0’. This reduces 
Z to (~~1, where ! denotes an n x n identity 

matrix. With this assumption the number 
of necessary parameters to represent the 
variance-covariance matrix reduces from n(n 
+ 1)/2 to 1. The model obtained with the 

assumptions C = (r21 and m = AC is called the 
general linear model (or regression model) 
with normal error, or simply the normal linear 
model. The model is called a regression model 
also when the ai are random variables (- e.g., 

Cl% 111). 
A typical example of nontrivial parametri- 

zation of the covariance structure of X is ob- 

tained by assuming the representation 

X=m+AF+W, 

where F=(f,, . . ..f.,’ denotes the vector of 

random effects and W the vector of measure- 
ment errors. It is assumed that F and W are 
mutually independent and normally distri- 
buted with EF = 0 and EW = 0. Also the com- 
ponents of W are assumed to be mutually 

independent. The variance-covariance matrix 
C of X is then given by 

C= A’.DA’+A, 

where @ = EFF’ and A = EWW’, which is 
diagonal. 

When A is a design matrix, the parametri- 

zation provides a components-of-variance 
model (or random-effects model) of which the 
main use is the measurement of the variance- 
covariance matrix @ of the random effects 
fi, . ,f, rather than the measurement of F 
itself. If we consider F to be representing the 
effects of some latent factors for which A is not 

uniquely specified, the above representation 

of ,Z gives merely a formal, or noncausal, 
parametrization of 2. In this case the model is 

called the factor analysis model and the dimen- 
sion g of F is called the number of factors. By 

keeping the number of factors sufficiently 
smaller than the dimension of X, we get a 

parametrization of Z with a smaller number of 
free parameters than the unconstrained model. 
Starting with g = 1 and successively increasing 
the number of factors, we can get a hierarchy of 
models with successively increasing numbers 

of parameters. (- [12] for a very general 
modeling of the variance-covariance matrix.) 

(4) Parametrization of Discrete Distribution. 
Consider the situation where the observation 

produces one of the events represented by r = 
0, 1,2, , k with probability p(r), where k 

may be infinite. Represent by X =(X1, . , X,) 
the result of n independent observations. The 
probability p(X) of getting such a result is 
given by the relation 

logp(X)= i &b(X)> 
t-=0 

where O,=logp(r) and n,(X) denoles the num- 
ber of Xi’s which are equal to r. (The term not 

depending on the Q,‘s is omitted in the above 
and subsequent formulas, since it is immaterial 
for problems of inference.) Thus a nonrestric- 

tive model is obtained by assuming only the 
relations O,<O and ~~=,e*,= 1. Obviously the 
model defines an exponential family and vari- 
ous useful parametrizations are realized by 
introducing some constraints on the para- 
meters 0,. 

When the events r are arranged in a 2- 
dimensional array (i,j) (i = 1, , rn; j= 1, , n) 
we have 

logp(X) = f i @,n,(X) 
i=l j=l 

One simple parametrization is given by 

where it is assumed that CF1 c(~ = C,?=, pj = 
C& yij=& yij=O. Obviously this is a pa- 
rametrization of 0, as a linear function of 
the parameters xi, pj, and yij, and the model 
thus obtained is called the log linear model. 
The model shows a formal similarity to the 

analysis-of-variance model (- Section D). By 
introducing successively more restrictive as- 
sumptions on the parameters, we can get a 

hierarchy of models for the analysis of a two- 
way contingency table. Extension to cases 
when more than two factors are involved is 
obvious (- e.g., [ 131). 

Here we consider that Xi is a dichotomous 
variable, i.e., k = 1, and that the probability of 

Xi = 1 may depend on i, i.e., we have 
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where e,, = log Prob(X, = 0) and 0, i = 
logProb(Xi = 1). We assume that a vector of 
observations a, = (air, , a,,)’ is available 

simultaneously with Xi and that we are inter- 
ested in analyzing the relation between a, and 
the probability distribution of Xi. The analysis 
is realized by exploring the functional relation 
between ri = 8, i - f3ei and a,. We can assume a 
linear relation 

7=Ac, 

where7=(7, ,..., 7,,)‘, A=(a, ,..., a,)‘,andc= 
(c, , , c,)‘. The parameter 7i = log{ p(Xi = 
l)/(l -p(Xi= l))} is the log odds ratio or logit 

of the event Xi = 1, and the model is called 
the linear logistic model [ 141. A hierarchy 
of models can be generated by assuming a 

successively more restrictive linear relations 
among the components of C. 

D. General Linear Models 

Another class of models often used in practical 
applications is composed of general linear 
models or linear regression models, where the 
observed value is considered to be the sum of 

the effects of some fixed causes and the error. 

Let X = (Xi, . , X,)’ be an n-dimensional 
trandom variable, and denote the expectation 
of X by E(X)=(p,, . . . . p,)‘. If E(X) is of the 
form A< with an unknown parameter < = 

(5 , , . . . , <,J’, and a given n x k matrix A, then 
we can express X as 

X=A<+W, E(W)=(O, . ,oy, (1) 

with the error term W = ( WI, . . . , IQ’. We 
frequently assume a set of conditions on the 

distribution of X; for example, (i) X,, . . . , X, 
are mutually +independent, (ii) Xi, . , X, 

have a common unknown tvariance rr’, (iii) 
(X,, , X,) is distributed according to an n- 
dimensional tnormal distribution. The equa- 
tions (1) together with conditions on the 
distribution are called a linear model. 

Among the methods of statistical analysis of 
linear models are regression analysis, analysis 
of variance, and analysis of covariance as 
explained below, but these are not clearly 
distinguished from each other. (I) In design-of- 

experiment analysis, i.e., analysis of variance, 
the matrix A and the vector < in (1) are called 
a design matrix and an effect, respectively. In 

this case entries of A are assumed to be either 
1 or 0. (II) In regression analysis, we are first 

given a linear form x = C&r ajtj of a vector 
a = (ai, , ak)’ with coefficient vector < = 

(lr, , &... Let Xi, , X, be the observed 

valuesofxatnpointsa,=(a ,,,..., a,$ ,..., a, 
= (a n,, . . . , a,,J, respectively, where n > k. If the 

observations are unbiased, that is, if E(X,) = 

c;=, aijtj, i= 1, . . . . n, then the model (1) is 
obtained with A = (aij). Usually one of the 

components of the vector a is taken as unity. 
In this framework the form x = Cjajlj is called 
the linear regression function or regression 
hyperplane, and for k = 2, the graph of the 
linear function x = a, 5, + 5, and its coefficient 
t1 are called the regression line and regression 
coefficient, respectively. The components of 
the vector a are called fixed variates or ex- 
planatory variables. Frequently we encounter 

the case where the vector a, and consequently 
the matrix A, are random variables. When this 
is the case, a discussion like that above can be 
carried out for given A by regarding A< in (1) 

as the conditional expectation of the vector X. 

E. The Method of Least Squares 

Consider the subspace L(A) of the tsample 
space R” spanned by the column vectors of A. 
Then the dimension s of L(A) equals the rank 
of A, and L(A) and its torthocomplement 
L’(A) are called the estimation space and the 

error space, respectively. The torthogonal 
projection y of a point x to the space L(A) is 
expressed as y = PAx with a real tprojection 

matrix PA. The variable Y = PAX is called the 
least squares estimator of E(X), and the rou- 
tine of getting such an estimator Y, called the 
method of least squares, minimizes the squared 
error (X - A<)‘(X - A<) for a given X. This 

method consists of two operations solving the 
normal equation A’A< = A’X with respect to 5, 

and setting Y = Ai, where i is a solution of the 
equation. For s = k, we obtain Y = A(A’A)-‘A’X 
directly. Even when s < k, where the solution 

of the normal equation is not unique, Y is 
uniquely determined. The quantity Q = X’(I - 

P,)X, where I is the unit n x n matrix, is the 
squared distance of the point X from the space 
L(A) and is called the error sum of squares 
with n-s degrees of freedom. 

A linear function p’< of the parameter 5 with 
coefficient vector /I= (pi, . . , b,J’ is called a 
linearly estimable parameter (or estimable 
parameter) if there is a linear unbiased esti- 
mator, that is, an unbiased estimator of the 
form b’X, of /I’<. In order that @‘< be estimable 

it is necessary and sufficient that /I’ be a linear 
combination u’A of the row vectors of the 
matrix A. A linear unbiased estimator that has 

minimum variance among all linear unbiased 
estimator uniformly in 6 is called the best 

linear unbiased estimator (b.1.u.e.). If the con- 
ditions (i) and (ii) of Section D are satisfied, 
then for any given n-vector u the b.1.u.e. of a 

parameter y = u’A< is given by y* = u’Y with 

Y = P,X, and its variance equals (u’P,u)d, 
while the expectation of the quantity Q is 
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given by (n-s)o’. This proposition is known 
as the Gauss-Markov theorem. Hence the 
b.1.u.e. f = u’Y is frequently cited as the least 

squares estimator of y. The quantity 8’= 
Q/(n - s) is an unbiased estimator of rs2 and is 

called the mean square error. If in addition the 
condition (iii) of Section D is assumed, then $ 
and’&* are the tuniformly minimum variance 
unbiased estimators of y and g2, respectively. 

When the error term W in (1) has covar- 
iance matrix Z = a’& with an unknown real 
parameter g2 and a known matrix C,, the 

valaue of the parameter < minimizing Q = 
(X - A<)‘Ci’ (X -A<) is called the generalized 
least squares estimator of < if it exists. This 

estimator has properties similar to those of the 
least squares estimator. 

F. Model Selection and the Method of 
Maximum Likelihood 

When a parametric family of distributions 
{ f(. IO); OE 0) is given and an observation x 
is made, logf(x 10) provides an unbiased esti- 

mate of the expected log likelihood of the 
distribution f(. IO) with respect to the true 
distribution of the observation. The value of 0 
which maximizes this estimate is the maximum 
likelihood estimate of the parameter and is 
denoted by O(x) (- 399 Statistical Estimation). 

In a practical application we often have to 
consider a multiple model, defined by a set 
of component models { .fi(. IO,); Oil 0;) (i= 
1, , k). The problem of model selection is 
concerned with the selection of a component 

model from a multiple model. The difference 
of the difftculties of handling a simple model 

defined by a one-component model, and a 
multiple model is quite significant. For a sim- 
ple model { f(. 10); 0~ O}, each member of the 
family is a probability distribution. In the case 
of a multiple model, its member is a model 
which is simply a collection of distributions 
and does not uniquely specify a probabilistic 
structure for the generation of an observation. 

Thus the likelihood of each component model 
with respect to the observation x cannot be 
defined and the direct extension of the method 

of maximum likelihood to the problem of 
model selection is impossible. This constitutes 
a serious difficulty for the handling of multiple 
models. Apparently, Fisher used the proce- 
dure of testing to solve this difficulty. 

(1) Analysis of log Likelihood Ratios. The 
procedure of model selection by testing, which 
is applicable to a wide class of models, is the 
method of analysis of log likelihood ratios 

[lS]. Consider the situation where a model 
is to be determined by using a hierarchy of 

models { ,f( .I&); Oi E Oi} (i = 1, . , k) such that 

o,co, c . c 0,. The comparison of models 
is then realized through the comparison of the 
maximum likelihoods f(x 1 e,(x)), where f&(x) 
denotes the maximum likelihood estimate of 
fli based on the data x. For Oi c @i the log 
likelihood ratio is defined by 

n(“iloj; x)’ -210g{ .fCx I ei(x))/f(x I oj(x))}. 

The analysis of log likelihood ratios is realized 
by the decomposition 

A(O,/O,;x)=A(0,/0,;x)+A(0,/0,;x)+... 

+ A(Ok-,/c&; x). 

The log likelihood ratios A(@,~~,/@,; x), 
A(@,-,/@,-,;x), . . ..A(O./O,;x) are succes- 
sively tested by referring to chi-square distri- 
butions with the degrees of freedom d(k) - 
d(k-l),d(k-l)-d(k-2),...,d(2;i-d(l), 
respectively, where d(i) denotes the dimension 

of the manifold Oi. The assumption of the chi- 
square distributions is only asymptotically 
valid under the usual regularity conditions (- 

400 Statistical Hypothesis Testing). The model 
defined with Oi for which A(OJ@~,; x) first 
becomes significant is selected and f(y 1 OJx)) is 

accepted as the predictive distribution. The 
problem of how to choose the levels of sig- 

nificance to make the test procedure a proce- 
dure for model selection remains <open. 

(2) Model selection by AIC. One way out of 

the difficulty of model selection is to assume 
a prior distribution over Oi for each model 
{ A(. I 0,); 0, E O,}. This leads to Bayesian model- 

ing, which is discussed in Section G. Another 
possibility is to replace each component model 
{ ,fi(. I Oi); O,E@~} by a distribution L(. I &(x)) 
specified by the maximum-likelihood estimate 
&(x). The problem here is how to define the 
likelihood of each distribution A(. ( Oi(x)). An 
information criterion AIC was introduced by 

H. Akaike [16] for this purpose; it is defined 

by 

AIC = (-2)log,(maximum likelihood) 

+ 2 (number of estimated parameters). 

We may consider -0.5 AIC to be the log 
“likelihood” of f(. 10(x)) which is corrected for 
its bias as an estimate of E,E,logf(yl O(x)), 
where E, denotes the expectation with respect 
to the true distribution of x, and where it is 

assumed that x and y are independent and 
identically distributed. The maximum “likeli- 

hood” estimate of the model is then defined by 
the model with minimum AIC. This realizes a 
procedure of model selection that avoids the 
ambiguity of the testing procedure. It is appli- 

cable, at least formally, even to the case of a 
nonhierarchical set of models. 
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G. Bayesian Models 

Consider the situation where an observation x 
is made and it is desired to produce an esti- 

mate p(y 1 x) of the true distribution of a future 
observation y. p( y 1 x) is called a predictive 
distribution. Assume that x and y are sampled 
from one of the distributions within the family 
(s(yl O)f(x] 0); HE@}, i.e., x and y are stochasti- 
tally independent but share common struc- 
tural information represented by 0. As a design 

criterion of p( y 1 x) we assume a probability 
distribution n(0) of 0. The model {.f‘(. IO); 0~0) 
with T-C(O) is called a Bayesian model and n(I)) is 
called the prior distribution. From the relation 

where E,,, denotes the expectation of y con- 
ditional on x and E, the expectation with 

respect to the marginal distribution of x, it 
can be seen that the optimal choice of p(y 1 x) 
which maximizes the expected log likelihood is 
given by the conditional distribution 

Aylx)= dYl~)P(~lx)~~L 
s 

where p(B I x) is the posterior distribution of 0 

defined by 

When a prior distribution n(O) is specified, 
the parametric family of distributions { f(. IO); 
0~0) is converted into a stochastic structure 

which specifies a probability distribution of 
the observations. The likelihood of the struc- 
ture, or the Bayesian model, with respect to 
an observation x is defined by 

s f’(x I U)7c(U)dU. 
When there is uncertainty about the choice of 
the prior distribution we can consider a set of 
possible prior distributions and apply the 

method of maximum likelihood. Such a proce- 
dure is called the method of type II maximum 

likelihood by I. J. Good [ 171. For a multiple 
model { Ji(. I 0,); Oi E Oi} (i = I, , k), if prior 
distributions ~~(0~) are defined, a model selec- 
tion procedure is realized by selecting the 
Bayesian model with maximum likelihood. 

Bayesian modeling has often been consid- 
ered as not quite suitable for scientific appli- 
cations unless the prior distribution is objec- 

tively defined. However, even the construction 
of an ordinary statistical model is always 
heavily dependent on our subjective judgment. 

Once the objective nature of the likelihood of 

a Bayesian model is recognized, the selection 
or determination of a Bayesian model can 

proceed completely analogously to Fisher’s 
scheme of statistical inference (- e.g., [ 181). 
The basic underlying idea of both the mini- 
mum AIC procedure and Bayesian modeling is 

the balancing of the complexity of the model 
against the amount of information available 

from the data. This unifying view of the con- 
struction of statistical models is obtained by 
the introduction of entropy as the criterion for 
judging the goodness of fit of a statistical 

model (- [19] for more details). 

References 

[l] R. A. Fisher, Statistical methods for re- 
search workers, Oliver & Boyd, 1925; Hafner, 

fourteenth edition, 1970. 
[2] L. Boltzmann, Uber die Beziehung zwi- 

schen dem Zweiten Hauptsatze der mechani- 
schen Wlrmetheorie und der Wahrscheinlich- 
keitsrechnung respektive den Satzen iiber das 
Warmegleichgewicht, Wiener Berichte, 76 
(1877) 373-435. 

[3] I. N. Sanov, On the probability of large 
deviations of random variables, IMS and AMS 
Selected Transl. Math. Statist. Prob., 1 (1961) 
213-244. (Original in Russian, 1957.) 
[4] K. Pearson, Contributions to the mathe- 
matical theory of evolution II, Skew vari- 

ation in homogeneous material, Philos. Trans. 
Roy. Sot. London, ser. A, 186 (1895), 3433414. 
Also included in Karl Pearson’s early statis- 
tical papers, Cambridge Univ. Press, 1948,41& 
112. 

[S] E. Wong, The construction of a class of 
stationary Markoff processes, Proc. Amer. 

Math. Sot. Symp. Appl. Math., 16 (1963), 264- 
276. Also included in A. H. Haddad (ed.), 
Nonlinear systems, Dowden, Hutchinson & 
Ross, 1975, 33-45. 
[6] E. T. Janes, Information theory and statis- 

tical mechanics, Phys. Rev., 106 (1957) 620- 
630. 
[7] S. Kullback, Information theory and statis- 
tics, Wiley, 1959 (Dover, 1967). 
[S] I. J. Good, Maximum entropy for hypoth- 

esis formulation, especially for multidimen- 
sional contingency tables, Ann. Math. Statist., 
34 (1963) 91 I-934. 

[9] C. E. Shannon and W. Weaver, The math- 
ematical theory of communication, Univ. of 
Illinois Press, 1949. 

[lo] S. R. Searle, Linear models, Wiley, 1971. 
[ 1 l] F. A. Graybill, Theory and application of 
the linear model, Duxbury Press, 1976. 
[ 121 K. G. Joreskog, A general method for 
analysis of covariance structures, Biometrika, 
57 (1970) 2399251. 

[13] Y. M. M. Bishop, S. E. Feinberg, and P. 
W. Holland, Discrete multivariate analysis: 

Theory and practice, MIT Press, 1975. 



404 A 
Statistical Quality Control 

1526 

[ 141 D. R. Cox, The analysis of binary data, 
Chapman & Hall, 1970. 
[ 151 I. J. Good, Comments on the paper by 
Professor Anscombe, J. Roy. Statist. Sot., ser. 

B, 29 (1967) 39-42. 
[16] H. Akaike, A new look at the statistical 

model identification, IEEE Trans. Automatic 
Control, AC-19 (1974), 7166723. 
[ 171 I. J. Good, The estimation of proba- 

bilities, MIT Press, 1965. 
[lS] G. E. P. Box, Sampling and Bayes’ in- 
ference in scientific modeling and robustness, 
J. Roy. Statist. Sot., ser. A, 143 (1980), 383- 
430. 
[ 191 H. Akaike, A new look at the Bayes pro- 
cedure, Biometrika, 65 (1978), 53-59. 

404 (XVIII.14) 
Statistical Quality Control 

A. General Remarks 

According to the Japanese Industrial Standard 
(JIS) Z 8101, “Quality Control (QC) is a system 
comprising all the methods used in manufac- 

turing products or providing services econom- 
ically that meet the quality requirements of 

consumers.” To emphasize that modern qual- 
ity control makes use of statistical methods, 
it is sometimes referred to as Statistical Qual- 

ity Control (SQC). In order to implement 
effective QC, statistical concepts and methods 
must be applied and the “Plan-Do-Check- 

Action” (PDCA) cycle must be followed in 
research and development, design, procure- 
ment, production, sales, and so on. These QC 
activities are executed on a company- 
wide basis from the top management to the 
production workers. This type of QC is called 

Company-Wide Quality Control (CWQC) or 
Total Quality Control (TQC). 

The quality Q is an abstract notion of the 

conformity of a product or service to con- 
sumers’ requirements; it also refers to the total 

of the characteristics of a product or service as 
perceived by consumers. The quality charac- 

teristics may include both measurable physical 
and/or chemical features, such as strength and 
purity, or features such as color or texture as 
appreciated by individuals. These latter char- 
acteristics could be called “consumer qual- 
ities.” Furthermore, the concept “quality” 
has also been used to describe the social im- 

pact of a product or service. This might be 
called “social quality.” Examples of social- 

quality issues are pollution by solid waste or 
drainage in the production stage; degradation, 

maintainability, and safety of a product in 

daily use; and pollution following ‘disposal. 
For a product or service to conform to this 
sort of quality it has become necessary to 

conduct QC activities not only during produc- 
tion but also at early stages of design and 
development of new products. 

The measured characteristics of quality 
vary from one product to another because of 
natural variability in the material and produc- 

tion process involved, ability of individual 
workers, errors in different sorts of measure- 

ment, etc. If the variations among the mea- 
sured values from a process can be attributed 
to “chance causes” and their distribution ex- 
pressed by a probability or a probability den- 

sity function, the process is said to be in a 
“state of statistical control” according to W. A. 
Shewhart or in a “stable state” by JIS. In this 
case the value of a characteristic is deemed to 
be the realization of a random variable X. 

Sometimes the variations are attributed to 
“assignable causes,” which must be identified 
and eliminated. 

B. Control Charts 

The control chart provides a means of evaluat- 
ing whether a process is in a stable state. 

The control chart is made by plotting points 
illustrating a statistic of the quality charac- 

teristics or manufacturing conditions for an 
ordered series of samples or subgroups. A 

sheet of the control chart is provided with a 
middle line between a pair of lines depicting 
the upper control limit (UCL) and the lower 
control limit (LCL). The stable state is as- 

sumed to be exhibited by points within the 
control limits. Points falling outside the con- 

trol limits suggest some assignable causes, 
which should be eliminated through corrective 

measures. 
The idea underlying control cha.rts as devel- 

oped by Shewhart is to apply the statistical 
principle of significance to the control of pro- 

duction processes. Other types of control 
charts have also been developed, far example, 
acceptance control charts and adaptive control 
charts. These have been successfully applied 
to many quality control problems. 

The foundation of Shewhart’s control chart 
is the division of observations into what are 
called “rational subgroups.” A rational sub- 
group is the one within which variability is 
due only to chance causes. Between different 

subgroups, however, variations due to assign- 
able causes might be detected. In most pro- 

duction processes the rational sub,group com- 
prises the data collected over a short period 
of time during which essentially the same con- 
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dition in material, tool setting, environmental 
factors, etc., prevails. 

The limits on the control charts are placed, 
according to Shewhart, at a 30 distance from 

the middle line, where 0 is the population 
standard deviation (or standard error) of the 
statistic; 3a expresses limits of variability 
within the subgroup. Assuming that the popu- 
lation distribution of an observed character- 

istic is “normal,” the range between the limits 
should include 99.7% of the points plotted so 
long as the process is “in control” at the mid- 
dle value. Accordingly, 0.3% of the plotted 
points from the “in control” process fall out- 
side the limits, and thus give an erroneous 
“out of control” signal. 

To determine that the process is in con- 
trol for a normally distributed characteristic 
N(p, c*), we have to investigate the variability 
between the means p and the standard devi- 
ations 0 of different distributions of X for 

different subgroups. Thus the state of control 
of a process is determined with control charts 
for 

x = i X&l 
i=l 

and s=/F 

which are the appropriate statistics corre- 
sponding to p and c. Despite the theoretical 

drawback of the statistical range R = maxi Xi - 
min,X, against s, use of the range is often pre- 
ferred in QC work because of its simplicity 

in computation. Hence the % R charts are 
obtained from the previously collected k ra- 
tional subgroups each of size it as follows: 

UCL=X=+A,R, UCL=D,R, 

LCL=X-A$. LCL=D& 

where 2 and l? are the averages of the k values 

of X and R, respectively, and 

4=1-3:; 
2 

E[R] =&a, VCR] = E[(R - E[R])‘] 

=d 262. 3 

For n < 7, LCL for R cannot be given because 
D3 becomes negative. 

The other commonly used control charts are 
the p chart (proportion of nonconformity: 

binomial distribution) and the c chart (number 
of defects: Poisson distribution). For those 
charts the above theory of normal distribution 
is also used to approximate the binomial and 
Poisson values. 

It is generally sufficient to use the agreed-on 
decision criterion (3~ limits) and to recognize a 

relatively small risk (tl= 0.003) for practical 

purposes. It should be noted, however, that a 
shift of the process mean p by la would not be 

observed at a ratio of 97.7%, which is the value 

of the risk /j’ for each plotted point, under the 
normal distribution of the plotted statistic. 
One reason why the control chart has been a 
practical tool in many applications is this lack 
of sensitivity to a relatively small shift of the 
level. If greater sensitivity is required, 20 limits, 

“warning limits” are used. This results in a 
greater risk c( of erroneously finding a process 

out of control. 

Other decision criteria based on aspects of 
run theory are also used. Charts using ac- 
cumulated data from several rational sub- 
groups for each plotted value are sometimes 

recommended: Moving average and moving 
range charts and the cusum (“cumulative 
sum”) chart are examples. The statistical 
theory for these charts is more complicated 
than that for the simple charts discussed here. 

C. Sampling Inspection 

Sampling inspection determines whether a lot 
should be accepted or rejected by drawing a 
sample from it, observing a quality character- 
istic of the sample, and comparing the ob- 
served value to a prescribed acceptance crite- 
rion. Sampling may be conducted in several 

stages. Definite criteria are required to decide 
at each stage whether to accept or reject the 
lot or continue sampling on the basis of sam- 

ple values observed so far. There also must 
be some rules to determine the size of the next 
sample if it is to be taken. These criteria and 
rules together are called the sampling inspec- 

tion plan. The number of samples eventually 
drawn and observed and their sizes are gener- 

ally random variables. In single sampling in- 
spection the final decision is always reached 

after one stage of sampling is completed. Dou- 
ble sampling inspection makes the final deci- 
sion after at most two stages of sampling are 

completed. Multiple sampling inspection makes 
the final decision after at most N stages of 
sampling are completed (N < co). Inspection 

without a predetermined limit on the number 
of sampling stages, sequential sampling inspec- 
tion, is usually constructed so that the proba- 
bility of the indefinite continuation of sam- 
pling is 0. 

Once a sampling inspection plan is deter- 
mined, the probability for accepting a lot with 
given composition can be calculated. This 
probability as a function of lot composition is 
called the operating characteristic of the plan. 

In most cases, the quality of a lot is expressed 
by a real parameter fl (e.g., fraction defective, 

i.e., percentage of defective products, or the 
average of some quality characteristic), and we 
use only inspection plans whose operating 
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characteristics are expressed as a function of 0. 
The graph of this function is called an OC- 
curve. We impose certain desirable conditions 

on the OC-curve and design plans to satisfy 
them. Tables for this purpose, sampling inspec- 

tion tables, are prepared for practical use. The 
condition most frequently employed is ex- 
pressed in the following form in terms of four 
constants H,, I),, tl, 8: The probability of rejec- 
tion is required to be at most c( when 0 < 0, (or 
0 > O,), and the probability of acceptance at 
most [j when 0 > 0, (or 0 < 0,). Here do is called 
the producer’s risk, and /3 the consumer’s risk. 

If the rejection of a lot is identified with the 

rejection of a statistical hypothesis 0 < O,, the 
OC-curve is actually the power curve of the 

test upside down (i.e., the graph of 1 minus 
the Tpower function), and the producer’s and 
consumer’s risks are precisely the terrors of the 

first and second kind. The choice of a plan is 
actually the choice of a test under certain con- 
ditions on its power curve. Commonly used 
plans are mostly based on well-established 
tests, some of which have certain optimum 
properties. A few examples, (l))(4), are given 
below. Here sampling inspection by attribute is 
an inspection plan that uses a statistic with a 
discrete distribution, whereas sampling inspec- 
tion by variables uses a statistic with a contin- 
uous distribution (- 400 Statistical Hypoth- 

esis Testing). 
(1) Single sampling inspection by attribute 

concerning the fraction of defective items in a 

lot: Let the defective fraction be denoted by p 
and identified with 0 in the preceding para- 
graph. Assign two values of p, say p. and p1 
(0 < p0 < p, < l), the producer’s risk CI, and the 
consumer’s risk b. Together they give con- 

ditions to be fulfilled by the OC-curve. Draw n 
items from a lot at random, and suppose that 
they contain Z defective items. The decision is 

then made after observing Z, whose distri- 
bution is thypergeometric and approximately 
ibinomial when the size of the lot is large 

enough. There exists a plan that minimizes n 
among all plans satisfying the imposed con- 
ditions under either of the two assumptions 
about the distribution of Z. It rejects the lot 
when Z is greater than a fixed number deter- 
mined by pO, pl, E, and 8. This plan is based 
on the tUMP test of the hypothesis p < PO 
against the alternative p 2 pi. 

(2) Single sampling inspection by variables 

concerning the population mean p in the case 

where the population distribution is N(p, a’) 
with known 0’: Draw a sample (X,, , X,) of 
size n from a lot. Assume that the X are inde- 
pendently distributed with the same distri- 

bution N(n, LT’). Suppose that smaller values of 

the quality characteristic stand for a more 
desirable quality. If two values of p, say p0 and 

p,, CI, and /I are assigned, a plan can be estab- 
lished to minimize n. It rejects the lot when 
the sample mean X =x& Xi/n exceeds a fixed 
number determined by pa, pi, E, and p. This 

too is based on the UMP test of p <p,, against 

PaPI. 
(3) Cases where the samples are drawn in 

more than one stage: As in (2), assign two 
values of H, c(, and /3; there is still liberty to 
choose n,, It*, . , which are the sizes of the 
samples drawn at each stage. Hence there are 
many possible plans fulfilling the imposed 
conditions. Among them a plan is sought 
to minimize the expectation of n = n 1 + n2 + 

. . . (called the average sample number). For 
example, plans based on the sequential proba- 
bility ratio tests are in common use (- 400 

Statistical Hypothesis Testing). 
(4) Among other special plans, sampling 

inspection with screening and sampling inspec- 
tion with adjustment are worthy of mention. In 
the first plan, all the units in the rejected lots 
are inspected and defective units replaced by 
nondefective ones. In this case, fixing p1 (the 
lot tolerance percent defective) and /I, or the 

average fraction defective after the inspection 
(average outgoing quality level), we attempt to 
minimize the expected amount of inspection, 
that is, the expected number of inspected units 
including those in the rejected lots. In the 

second plan, acceptance criteria are tightened 
or loosened according to the qualit!/ of the lots 
just inspected. 

References 

[l] J. M. Juran, Quality control handbook, 
McGraw-Hill, 1974. 

[2] Japanese Standard Association, Termi- 
nology, JIS Z 8101, 1963. 
[3] Japanese Standard Association, Sampling 

inspection, JIS Z 9001-9006, 1957. 
[4] Japanese Standard Association, Control 
charts, JIS Z 9021-9023, 1963. 

405 (XVII.1 6) 
Stochastic Control and 
Stochastic Filtering 

A. General Description of Stochastic Control 

Stochastic control is an optimization method 
for systems subject to random dismrbance. Let 
I be a compact convex subset of Rk, called a 

control region. Let K be an ?n-dimensional 
Brownian motion and c#V) = a( IV,; s < t) (say 
$) be the least +a-field for which IV,, s < t, are 
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measurable. An +8-progressible measurable 
f-valued process is called an admissible con- 
trol. For an admissible control U, the system 

evolves according to an n-dimensional con- 
trolled stochastic differential equation (CSDE) 

dX,=a(X,, U,)dW,+y(X,, UJdt, 

where a symmetric n x n matrix a(x, u) and n- 
vector y(x, U) are continuous in R” x F and 
Lipschitz continuous in XE R”. Hence the 
CSDE has a unique solution, called the re- 
sponse for U,. The problem is to maximize (or 
minimize) the performance J: 

where X, is the response for U, with X,, =x and 
r is a constant time or a thitting time asso- 
ciated with a target set. We put V(r, x, cp) = 
suputadm,contro,J(r, x, cp, U) the value function 
as a function of x. If the supremum value is 
attained at an admissible control o,, then or is 
called an optimal control. 

B. Bellman Principle 

In order to get V(t + s, x, cp), R. Bellman ap- 
plied the following two-stage optimization. 
After using any U up to time t, a controller 
changes U to an optimal one. Then at time t + 
s the performance J(t, x, V(s;, cp), U) is ob- 
tained. Taking the supremum with respect to 
I/, one gets V’(t + s, x, cp). This is called the 
Bellman principle. Let C be the +Banach lattice 
of the totality of bounded and uniformly con- 
tinuous functions on R”. Suppose that a, y, f 

and c( $0) are bounded and smooth; then for 
constant time t, the value function V(t, x, cp) 
belongs to C whenever (PE C. Moreover, the 

family of operators V(t) defined by V(t)cp(x)= 
V(t, x, cp) becomes a tmonotone contraction 
semigroup on C. The semigroup property 
V(t + s, x, q) = V(t, x, V(s, , cp)) is nothing but 
the Bellman principle. The tgenerator G is 
expressed by 

“El- 

for a smooth function cp, where L” is the gen- 
erator of +diffusion of the response for con- 
stant control u(E F), namely, 

+ f Yiix;u)$. 
i=1 

Furthermore. assume that a is uniformlv nosi- 
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tive definite and cp is smooth. Then V(t)cp(x) 
belongs to +Wrri,$ for any p and is the unique 
solution of the Bellman equation (= dynamic 
programming equation) 

aw 
~=SUp.IL”W-c(x,u)W+f(x,u)} 

“El- 

a.e. on (0, co) x R”, W(0, x) = q(x) on R”. 

In addition if inf,,,c(x,u)>O, then W= 

lim,,, V(t)cp exists and is the unique solution 
of the Bellman equation sup.,r{L” W- c(x, u) W 
+f(x, u)} =0 a.e. on R”. When r is the hitting 
time, the value function is related to the Bell- 
man equation with a boundary condition. 

C. Feedback Control 

In practical problems we specify the kind of 
information on which the decision of the con- 
troller can be based at each time. We fre- 
quently assume that the data obtained up to 
that time is available. The following situations 
are possible: (1) The controller knows the com- 
plete state of the system. This is called the case 
of complete observation. (2) The controller has 

partial knowledge of the state of system. This 
is called the case of partial observation. A 
feedback control (= policy) is a function of 

available information, namely, a F-valued 
progressible measurable function defined on 
[O, co) x Cj[O, co), wherej is the dimension of 
data and Cj[O, co) is a metric space of totality 
of j-vector valued continuous functions on 
[O, co). A policy U is called a Markovian policy 
if U(t, 5) is a Bore1 function oft and the tth 
coordinate of 5. When a policy U is applied, 
the system is governed by the +SDE 

dX,=aK, Uk Y))dY+y(X,, u(t, Y))dt 

with data process Y. When the SDE has a 
tweak solution, U is called admissible. For 

example, when X = Y, any Markovian policy is 
admissible if a is uniformly positive definite. 

Let X, be a weak solution for U. Then its 
performance J(z, x, cp, U) < V(t, x, cp). 

(1) The case of complete observation. When 

CI is uniformly positive definite, an optimal 
Markovian policy can be constructed in the 
following way. Since F is compact, there exists 
a Bore1 function 0 on [0, co) x R” which gives 

the supremum, namely, 

sup {L”F@)cp(x)-4% 4 Ur)cp(x)+f(x, 41 
“Cl- 

=LB’t.x)V(t)cp(x)-c(x, O(t,x))V(t)cp(x) 

+fk m 4). 

This relation implies that V(t)q(x) = J(t, x, cp, 
ii(t, X,)) for any weak solution X,. Hence 
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0 is an optimal Markovian policy. Especially 

when a, c, and j are independent of u and 
y(x, u) = R(x). u, where R(x) is an n x k matrix, 
an optimal Markovian policy 0 is obtained 

by a measurable selection of maximum points 
of (grad. V(t)q, R(x). u). Since the supremum 
of a linear form is attained at the boundary’ 
al-, one can suppose that u(t, x) belongs to 
ar. This is called hang-hang control. 

(2) The case of partial observation. One 
useful method is the separation principle. This 

means that the control problem can be split 
into two parts. The first is the mean square 
estimate for the system using a tfiltering. The 

second is a stochastic optimal control with 
complete observation. But generally speaking, 
the problem of deciding under what conditions 
the separation principle is valid is difficult. In 
the case of the following linear regulator the 
separation principle holds. 

Suppose that the system process X, and the 
observation process y obey the following 
SDEs: 

dX,=A(t)dM/;+(B(t)X,+h(t, cl@, Y))dt, 

dx=d@+H(t)X,dt, 

where A(t), B(t), and H(t) are nonrandom 
matrix-valued functions and mc is a j- 
dimensional Brownian motion independent of 

W,. The problem is to search for a feedback 
control which gives the maximum value. Sup- 
pose that a feedback control U(t, 5) is Lip- 
schitz continuous in 5 E C’[O, m). Put 

Qh 4 
T 

1 sup E,, Ut, X,, u(t, VW + ‘W,) > 
U, Lip 1 

where (X,, 7) is the unique solution for U with 
the initial condition X,=x, Y, = 0. By the Lip- 
schitz condition of U, a, = rr( Y,; s < t) is inde- 
pendent of U, and the tconditional expectation 

8, = E(X,/crJ is governed by the following 
SDE, by way of the +Kalman-Bucy filter: 

d&=I’(t)H’(t)dw*+(B(t)g,+h(t, C?J)dt 

with some o,-progressible measurable control 
ot and an n-dimensional Brownian motion 

w* adapted to 0,. Moreover, P(t) is the terror 
matrix satisfying the +Riccati equation, and 
H’ is the transpose of H. Let g(t, x) be the 

probability density of the normal distribution 
N(0, P(t)), and put L”(t,z?,u)=JL(t,x,u) g(t,x 

-2)dx and q(i)=jY(x)g(T,x-2)dx; then 
the problem turns into 

[S 
7 

Q(s, x) = sup E,, L(t, 8,, C?Jdt +‘?(&) 
c .s 1 

Recalling the SDE for X,, we can use the Bell- 
man equation for choosing an optimal one. 

D. Stochastic Maximum Principle 

A stochastic version of +Pontryagin’s maxi- 
mum principle gives a necessary condition for 

optimality. This means that the in:stantaneous 
value of optimal control maximizes the sto- 

chastic analog of Pontryagin’s Hamiltonian. 
Suppose that the system evolves according to 
an n-dimensional CSDE 

dX,=cc(X,)dw+y(X,, UJdt. 

The problem is to seek conditions on admis- 
sible control U, such that E,[jtf(X,, UJdt] is 
maximized, where T is a constant lime. Assume 

that a, y, and f are bounded and smooth. 
Define a Hamiltonian H on R” x I‘ x R” by 
H(x, u, Y) = y(x, u) Y + f (x, u). Let DC be op- 
timal and r?, its response starting at x. Then 
under some conditions there exist .i > 0 and z- 
progressively measurable qt,k = (qt,k,, qt,k,, , 
qt,k,) (k = 1, . , n) and Y, = (Y,, r Y,,,) which 
satisfy the SDE 

+qt,kd&, k=l,.../ n, 

and H(z?,, ~~,Yt)=max,,,H($,u,Y,) a.e. 

E. Optimal Stopping and Impulse Control 

Suppose that X, is an n-dimensional diffusion 
whose generator A is an elliptic differential 
operator. Let z be a tstopping time. The op- 
timal stopping problem is to seek a stop- 
ping time F so that E,[g(X,] is maximized, 

where g is nonnegative and continuous. ? is 
called optimal. The value function V(x) = 

sup,E,[g(X,)] is characterized as the least 
texcessive majorant of g. Moreover, under 
some conditions V belongs to the domain of A 
and is the unique solution of the +free bound- 
ary problem; V>g, AV<O, and (V-g). AV=O. 
Therefore, in the Hilbert space framework, the 
value function is related to the variational 
inequality. An optimal stopping ttme is pro- 

vided by the hitting time for the set {x 1 V(x) = 

g(x)). 
Impulse control is a variant of the optimal 

stopping problem. At some moment (= stop- 
ping time) a controller shifts the current state 

to some other state. But not all shifts are al- 
lowed: State x can be shifted to a state of x + 
[0, m)“. Let 7k, k = 1,2, be a sequence of in- 
creasing stopping times and & be a [0, co)‘- 
valued crJX)-measurable random variable. 
The sequence U = {71, 5,) z2, t2,. } is called an 
impulse control. U transfers the process X, to 
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and the problem is to seek Li so as to maximize 

E,Cjhe m”z,f(r;u)dt-Z.,“=, em”‘~K(&)], where 
3, (> 0) is constant and the function K (20) 
stands for the cost of shifting. The value func- 
tion is related to a quasivariational inequality. 

F. General Description of Stochastic Filtering 

The problem of estimating the original signal 
from data disturbed by noises is called a sto- 

chastic filtering problem. Let X,, TV [0, T], be a 
continuous stochastic process with values in 

R”, called a signal (or system) process. It is 
transformed (or coded) to h(t, X,), where h(t, x) 
is an m-vector-valued continuous function. 
Suppose that it is disturbed by a noise ri: and 
we observe t = h(t, X,) + ri,. Usually I$ is 
assumed to be a twhite noise independent of 
X,. Since the white noise is a generalized func- 
tion, the integral of t, i.e., 

y= 
s 

fh(s,X,)ds+ &:, 
0 

is called an observation process, where K is an 
+m-dimensional Brownian motion independent 
of X,. It is assumed for convenience that IX,12 

and & Ih(s, XJ’LEs are integrable. 
Assume that X, is a l-dimensional signal 

process. The least square estimation of XC by 
nonlinear functions of observed data ys, s < t, 
is called a nonlinear filter of X, and is denoted 
by XC. Let e or g( x; s < t) be the least trr-field 
for which <, s d t, are measurable. Then the 
filter 2, is equal to an +%-measurable random 

variable such that EIX,-2?,12<EIX,-Z12 
holds for any R-measurable L2 random vari- 

able Z. Hence it coincides with the tcon- 
ditional expectation E[X, I9J. Now let H, be 

the closed linear space spanned by l’,, s < t. 
The least square estimation of X1 by elements 

of H,, i.e., the orthogonal projection of X, onto 
H,, is called the linear filter of X, and is de- 

noted by $. Obviously, the mean square error 
of a nonlinear filter is less than or equal to that 
of a linear filter, but a linearfilter is calculated 

more easily. If (XC, x) is a Gaussian process, 
both filters coincide. 

When X, is an n-dimensional process (X,‘, 

“‘> X:), the n-vector process Xt = (8)) ,8:) 
(or z* = (xi, . . , x:)) is called the nonlinear 
(or linear) filter of X,. 

G. Kalman-Bucy Filter 

Suppose that the signal process X, is governed 
by a tlinear stochastic differential equation 

(LSDE) 

where A(s) (or B(s)) is an n x n (or n x r) 
matrix-valued continuous function, q is an Y- 
dimensional Brownian motion independent of 
the noise w;, and the initial data X0 is a Gauss- 
ian random variable independent of & and 

RC. Suppose further that h(t, x) is linear, i.e., 
h(t, x) = H(t)x, where H(t) is an m x n-matrix- 
valued function. Then the joint process (X,, YJ 
is Gaussian. Hence the nonlinear filter r?, 
coincides with the linear filter and satisfies 

J?,=E[X,]+ ‘(A(s)-P(s)H(s)‘H(s))&ds 
s 0 

s t + P(s)H(s)‘dY,, 
0 

where H(s)’ is the transpose of H(s), and P(f) = 
(Pii( is the error matrix defined by Pij(t) = 
E(X; - Xi:‘, (Xi - 2:). It satisfies the matrix 
Riccati equation 

Wt) 
---=A(t)P(t)+P(t)A(t)’ 

dt 

- P(t)H(t)‘H(t)P(t) + B(t)B(t)‘, 

P(0) = covariance of X,. 

Let @(t, s) be the tfundamental solution of the 
linear differential equation dx/dt = (A(t) - 
P(t)H(t)‘H(t))x. Then the solution 8, is repre- 

sented by 

s f T?c=@(t,O)EIXo]+ @(t,s)P(s)H(s)‘dY, 
0 

This algorithm is called the Kalman-Bucy filter 

[ 11. Analogous results for discrete-time models 
have been obtained by Kalman. 

H. Nonlinear Filter 

In the study of nonlinear filters, the tcon- 
ditional distribution n(dx) = P(X, Edx 1 F,) is 
considered besides 8,. Suppose that X, is 
governedbytheSDE 

X,=X,+ jIa(s,X.)ds+ j;(‘(s,X.)dCi.,. 

where a(s, x) (or b(s, x)) is an n-vector (n x r- 
matrix) valued Lipschitz continuous function. 
Then ~~,(,f)=jf(x)n,(dx) satisfies the SDE 

s 

I 

G.f)= W’(KJl+ ~s(Lf)ds 
0 
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where h,(x) = h(s, x) and ties the LSDE 

w 
axiaxj’ 

The density p,(x) (if x exists) satisfies 

rt 

Under additional conditions on a(s, x) and 
b(s, x), n,(dx) has a density function ret(x), and 
it satisfies 

where L* is the formal adjoint of L. 
The process 1, = x - jk rc,(h,) ds is a Brown- 

ian motion such that ~(1,; s < t) c e holds 
for any t. If ~(1,; s < t)= <e holds for all t, It is 
called the innovation of q. The innovation 

property is not valid in general. A sufficient 
condition is that (X,, x) is a Gaussian process 

or h(t, x) be a bounded function. However, in 
any case, +&-adapted martingales are always 
represented as tstochastic integrals of the form 
XT=1 ~~f,‘(w)dl~, where the fsi are Fs-adapted 
processes. 

If h(t, x) is a smooth function, then Qx, y) is 

continuous in y, so that am or p,(f) is a 
continuous functional of the observed data 

(x; s < t). Thus the filter rr, is a +ro bust statistic. 
Remarks. (i) the signal and noise are not 

independent if the signal is controlled based 
on the observed data. In these cas’es, correc- 
tion terms are sometimes needed for the SDE 
of the nonlinear filter. (ii) If the +sa.mple paths 
of the signal process are not continuous, a 

similar SDE for a nonlinear filter IIS valid with 
L being replaced by some integrodifferential 
operator. If it is a +Markov chain with finite 

state, L is the generator of the chain. (iii) Sev- 
eral results are known for the case where 

the noise K is not a Brownian motion but a 
+Poisson process. 
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406 (XVll.14) 
Stochastic Differential 
Equations 

A. Introduction 

Stochastic differential equations were rigor- 
ously formulated by K. ItB [7] in 1942 to 
construct diffusion processes corresponding to 
Kolmogorov’s differential equations. For this 
purpose he introduced the notion of stochastic 
integrals, and thus a differential-integral cal- 

culus for sample paths of stochastic processes 
was established. This theory, often called ItB’s 
stochastic analysis or stochastic calculus, has 
brought an epoch-making method to the theory 
of stochastic processes. It provides us with a 
fundamental tool for describing and analyzing 

diffusion processes that we can apply effec- 
tively to limit theorems and to the probabil- 

istic study of problems in analysis. It also 
plays an important role in the statistical the- 
ory of stochastic processes, such as tstochastic 
control or tstochastic filtering. Stochastic dif- 
ferential equations on manifolds provide a 

probabilistic method for differential geome- 
try, sometimes called stochastic differential 
geometry. Recently, many interesting examples 
of infinite-dimensional stochastic differential 
equations have been introduced to describe 
probabilistic models in physics, biology, etc. 

A unified theory of stochastic calculus has 
been developed in the framework of Doob’s 

martingale theory and this, combined with 
Stroock and Varadhan’s idea of martingale 
problems, provides an important method in 
the theory of stochastic processes (- 262 

Martingales). 

B. Stochastic Integrals 

As is well known, almost all sample paths of a 
Wiener process are continuous but nowhere 
differentiable (- 45 Brownian Motion), and 

hence integrals with respect to these functions 
cannot be defined as the usual Stieltjes inte- 

grals. But these integrals can be defined by 

making use of the stochastic nature of Brown- 
ian motion. Wiener defined them (the Wiener 
integrals) for nonrandom integrands, but It6 

defined them for a large class of random inte- 
grands. Ito’s integrals have been extended in 
the martingale framework by H. Kunita and S. 

Watanabe, and by others [14,19], as shown 
below. 

Let (C&g, P) be a probability space, and 

let F= {Wt,, be an increasing family of CJ- 
subfields of B. Usually we assume that {e} is 
right continuous, i.e., Ft+,,: = na,O~!&+E=& 
for every t > 0. Denote by .,&! = A(F) the total- 
ity of all continuous square-integrable martin- 

gales X=(X,) relative to {e}; to be precise, 
X is an {*}-martingale such that, with proba- 
bility 1, X0 =O, t *X, is continuous and E(Xf) 

-C co for every t 2 0. We introduce the metric 

11X- YII =C& 2-“min(l,IlX,-- KJ2) on J& 
where 11 II 2 stands for the L,(Q P)-norm. We 

always identify two stochastic processes X = 
(X,) and Y=(x) if sample functions t*X, 
and t --) k; coincide with probability 1. Then, by 
virtue of Doob’s inequality II maxO 4sSt 1 X, - 
Y,l ((2G2\\Xr- y1\12 (- 262 Martingales), .Jz’ 

becomes a complete metric vector space. 
Next, by an integrable increasing process we 

mean a process A =(A,) with the following 

properties: (i) A is adapted to {&}, i.e., A, is 
z-measurable for every t > 0; (ii) with proba- 

bility 1, A, = 0, t+A, is continuous and nonde- 
creasing; (iii) A, (20) is integrable for every 
t 20, i.e., E(A,) < cc. We denote by d = d(F) 
the totality of integrable increasing processes. 
We call a process V = (V$ an integrable process 
of bounded variation if 1/ is expressed as y = 
Ai -A: with A’, A’e,d. The totality of inte- 

grable processes of bounded variation is de- 
noted by v = Y(F). It follows from the +Doob- 
Meyer decomposition theorem that, for every 

M, N EM, there exists a unique VE ^tr such that 
M,N,- y is an {g}-martingale. We denote 
this V as (M, N). In particular, (M, M) ES&‘, 
and it is denoted simply by (M). (M, N) is 
called the quadratic variation process because 

~::=l(M,,-M,i-,)(N,i-NN,i~I)~(M,N), in 
probability as lAl+0, whereA:t,=O<t, <... 
<t,=tisapartitionandIAl=maxiGiG.lti- 
timl 1. Brownian motion is the most important 

example of continuous square-integrable mar- 
tingales, and this is characterized in our frame- 
work as follows. Suppose that a d-dimensional 
continuous {*}-adapted process X = (Xt) 
satisfies Mf = Xf - g E JZZ and (M’, M’), = 
6’jt, i, j= 1, 2,. , d. Then X is a d-dimensional 
Brownian motion such that X,-X,, and the 

% are independent for every u > o > t. Such a 
Brownian motion is called an {&}-Brownian 

motion, and a system of martingales M’ E &? 
having this property is often called a system 
of {%}-Wiener martingales. 

Now, we fix ME=&. We denote by yZ(M) 

the totality of real, {e}-adapted, and measur- 
able processes Q=@(t)) such that li@li:,= 
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~l~oW2~<W,1 < cc for every t > 0. Two 
Q1, Q2ey2(M) are identified if iI@, -@211f,M= 

i=l,2,..., 

0 for all t 3 0. Since 11 /It,M is an &-norm 
on [0, t] x sl with respect to the measure 

,u,Jds, do) = d (M),(u)P(dw), it is easy to see 
that yZ(M) is a complete metric vector space 
with the metric llQ-@liM=C,“=, 2-“min(1, II@ 

-Q’IIn,M)r @, WeY2(M). If @=(0(t)) is given, 
for a partition 0 = t, < t, < < t, --, CCI and 
&-measurable bounded functions .f;, i = 0, 
l,..., by 

For @‘gyp, we can choose a s,equence of 

integral. 

{yy}-stopping times {on} such that. a,, < 00, 

obtained by fixing t is also called a stochastic 

G,,T~ as. and M”~E.&‘, @,,.E&?~(M~“), n= 1, 
2, For example, set o,, = min [n, inf{ t 1 (M), 

Some of the basic properties of stochas- 

+ f0 @(s)‘d ( M),5> n}]. Then there exists an 
IMP J?oc such that r”(@p = Ih’““(Q’,,) for 

n = 1, 2, . . , which is unique and indepen- 
dent of a particular choice of {g”}. r”(@) is 

called the stochastic integral of @ E -!Zp(M) 
by ME&““. I”(@)(t) is often denoted by 
~h@(~)dMs, and the random variable I”(@)(t) 

then @~-ip2(M) and the totality 
processes are dense in yl(M). If 

define I”(@)=(IM(@)(t))r3,, by 

t,<t<t,+,. 

Then IMP.&?‘, and it holds also that (Z”(@), 

1”(Y))=Sb@(s)Y(s)d(M,N),for M, NE.,&’ 
and (3, Y’E~~. In particular, III”(@)(t)ll~ = 

EC(I”(@,))J = lIQll~M, and hence llI”(@,)II = 
ll@llM. This implies that @,E~~c~~(M)- 
IMP.& is an isometric linear mapping, and 
hence it can be extended to y2(M) uniquely, 
preserving the isometric property. r”(@)6 

./& is called the stochastic integral of @)E 

P’*(M) by MEA. I”‘(@)(t) is often denoted by 
&@(s)dM,, and the random variable I”(Q)(t) 
obtained by fixing t is also called a stochastic 
integral. 

The definition of stochastic integrals can be 
extended further by the following localization 
method. For an {$}-tprogressively measur- 
able process X =(X,) and {.P,}-stopping time 

0, the stopped process X”=(X:) is defined by 
X:=X,,, (t~a=min(t,c)). It follows from the 
+optional sampling theorem of Doob that 
XO~.&! if XE.&‘. For @=(@(t))~2?~(M) and an 

(.P$stopping time (T, Q,, = (Q,,(t)) defined by 

@‘,(O=~~teJ) Q(t) also belongs to L&(M) and it 
holds that I”(@‘,)=[IM(@)]“. Keeping these 
facts in mind, we give the following definition. 
Let k”” = {M = (M,) 1 there exists a sequence 
of {PI}-stopping times g,, such that o,< “c, 
o,,rcn as n+rx, a.s. and M”~E.&! for every n 

= 1 2 ). ,PZ”’ and Vrloc are defined in a 
simila%r way. For M, NE.,&‘~~~, (M, N)EV”~ is 
defined to be the unique process in V”“’ such 

that (Mu”, N”“) = (M, N)“” for a sequence of 
stopping times {a,} as above, which can be 
chosen common to M and N. (M, M) is de- 

noted by (M) as before. We fix ME JH“” and 
set $‘:“‘(M)= {@=(@(t))la real, {.%)-adapted 

and measurable process such that, with proba- 

bility one, r0 @(s)‘d (M), < 00 for every t 3 0). 

tic integrals are: (i) If ME A?““, @E LP~oc( M), 

and YE yp(I”(@)), then @Y 6yj°C( M) and 
P(W) = f 1h’I’a’(Y). (ii) If ME.&“” and 0, YE 

2$““(M), then for every n, PER we have a@ + 
//Y =(c+D(t) + /?Y(t))E9~°C(M) and ,I”(a@ + PY) 
=c(I~(@)+/JI~(Y). Also if M, NE./z”‘~ and 0 

E&“‘~(M)~~$‘~:“‘(N), then for n, PER we have 
@,E~~(RM+~~N) and l’“‘PN(@)==alM(@)+ 
jr”(@). (iii) If M, NE J?“~~, @E Up(M), and 
YE-~@(N), then@Y~PJ~°C((M,R’))and 

<I”(@,), IN(V), =fo@sy,d<M, W,. Here, 
P~c( V) for VE I r’oc is defined as follows: 
With probability 1, s+ V, is of bounded varia- 
tion on every finite interval [0, t], the total 
variation of which is denoted by 17111. Then 

1 v 1 E &!F, and we define 5?joc( V) (17 > 1) to 
be the totality of real, {5$}-adapted, and 

measurable processes Q, = (Q(t)) such that, 
with probabilityl, &l@(#‘dl Vl,v< cc for 
every t > 0. In particular, P!~oc( M) =: LFp( (M)). 

(iv) If MEA”‘, @EL??(M), and CJ is an {z}- 
stopping time, then I”“(@‘,) = I”“(@) = I”““(@‘,) 
= [I”(@)]o. (v) If O(t) = I;,,,) .f; where cr is 

an {$}-stopping time and f is a bounded 
go-measurable random variable, then @)E 

T?‘(M) for every ME ~J4”” and I”’ (0) (t) = 
f(M,- M,,,). (vi) The definition of stochastic 
integrals is independent of the increasing 

family of cr-subfields in the following sense: If 

(gt} is another family such that M belongs 
to the class &lo’ for both {e} and {gr} and @ 

belongs to the class 14,(M) for both {%e} and 
{$), then I”(@) is the same whether it is de- 
fined with respect to j.Pj} or {$}. 

In particular, N = I”‘(@), ME ~A”“, @E 

9;“‘(M), satisfies (N, L), = & @(s)d( M, L), 

for all L E J4”0c. Conversely, NE ,,z?“~~ having 
this property is unique, and hence it coin- 
cides with I”(@). I”(@)~.M if and only if 

&‘W2d(W.+~. 
The above definition of stochastic integrals 

can be extended with a slight technical modiii- 
cation to the case when M, is not necessarily 
continuous [ 191. Among such general stochas- 

tic integrals, a particularly important role is 
played by stochastic integrals describing point 
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processes, including Poisson point processes as 
an important special case. These stochastic 
integrals are important in the study of discon- 
tinuous processes including +LCvy processes; 
even in the study of continuous processes, such 
as diffusion, they provide an important tool 

for the treatment of excursions [4,6,8]. 
Let (Q 5, P) and i.6) be as above. By a 

continuous semimartingale with respect to 
j/Z), or simply a semimartingale when there is 

no danger of confusion, we mean a process 
X=(X(t)) of the following form: X(t)=X(O)+ 
M(t)+ V(t), where X(0) is an .&-measurable 
random variable, A4 =(M(~))E&“” and V= 
( V(~))E V’“‘. M and V are uniquely deter- 
mined from X, and this decomposition is 
called the semimartingale decomposition of X. 
M is called the martingale part and V the drift 

part of the semimartingale X. A semimartin- 
gale X is often called an It6 process if M(t) = 

~o~(~)dB(.s) and I~‘(t)=~~Y(s)ds, where BE 
./w is an {,$I-Brownian motion, Q)E~F, and 

Y~E~“~.(Wherr I/;=t,9p(d”“(l/)isdenoted 
simply by 2?p.) A d-dimensional process 
whose components are semimartingales is 
called a d-dimensional semimartingale. The 
following formula, originally due to It8 and 
extended by Kunita and Watanabe, is of fun- 

damental importance in stochastic calculus. 
It& formula. Let X(t)=(X’(t), , X”(t)) be 

a d-dimensional semimartingale and X’(t) = 
X’(0) + M’(t) + V’(t) be the semimartingale 
decomposition of components. Let F(x) = 

F(x’, , xd) be a C*-function defined on Rd. 
Then F(X(t)) is also a semimartingale, and we 
have 

FM(t)) = F(X@)) + i 
s 

’ QF(X(s))dM’(s) 
i=, iJ 

+ i 
s 

fDiF(X(s))dv’(s) 
i=l 0 

+;.i 
s 

f 
DiDjF(X(s))d(Mi, M’)(s) 

1.1 1 0 

(where Di = c?/c’x’). 

In others words, if Y(t)= Y(O)+ M(t)+ V(t) is 
the semimartingale decomposition of Y(t) = 

F(X(t)), then M(t)=Cf=, ~oDiF(X(s))dM’(s) 

and V(t)=~fzlfoDiF(X(s))dVi(s)+ 

1/2C~,j=,SbDiDjF(X(s))d(M’,Mj)(s). 

We now discuss other important transfor- 
mations on semimartingales. 

Time change. Let A E &‘c, and assume fur- 
ther that with probability 1, t+A, is strictly 

increasing and lim,,, A,= co. Let u-C, be the 
inverse function of t+ A,, i.e., C,, = min{ t 1 
A, 3 u}. Then for every u > 0, C, is an {~q}- 

stopping time. Set 6 = 9c,, t > 0. For an {@}- 

+progressively measurable process X =(X(t)), 
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we define XA=(XA(f)) by X”(t)=X(C,) and 

call it the time change of X determined by A. 
Then X* is progressively measurable with 
respect to {E}. If X:X(t)=X(O)+ M(t)+ V(t) 

is a semimartingale with respect to {&}, then 
X* is a semimartingale with respect to {.R), 

and its semimartingale decomposition is given 
by X”(t)=X(O)+M*(t)+ V*(t). The map- 
pings M-MA and I/h VA are bijections 
between .,M”’ and ~,p and between V”” 
and F““, respectively, where =k”l”’ and ?7’0c 

are defined relative to {OR}. Furthermore, 
(MA, N*) = (M, N)* for every M, NE J4’Oc. 

Noting that ~)E~~~~(M) can always be chosen 
{.%,)-progressively measurable (in fact {*e}- 

tpredictable), the mapping @+@,A defines a 
bijection between 9;“‘(M) and @‘(MA), and 

we have I@(@“)= [Z”(Q)]“. 

Transformation of drift (Girsanov transfor- 
mation). For m~.&!“Oc, set D,(t)=exp[m,- 

f(m),]. Then D, - 1 E JZ’~~, and if m satisfies 

a certain integrability condition (for example, 
E(exp[$(m)J) < co for every t 20, in partic- 
ular, (m), < ct for all t for some constant c > 
0), then D, is a martingale, i.e., E(D,,,(t)) = I 

for all t 20. If E(D,(t))= 1 for all t, then there 
exists a probability P on (Q, 9) (if (Q 3) is a 
nice measurable space and 9 = V,2 0 e, which 

we can assume without loss of generality) such 
that P(A)=E(D,(t): A) for al’ AE&, ~20. Let 
X be a semimartingale with the decomposition 
X(t)=X(O)+ M(t)+ V(t). On the probability 

space (Q.F”, p) with the same family {.e}, X is 
still a semimartingale but its semimartingale 

decomposition is given by X(t) = X(0) + a(r) + 
P(t), where h?(t)= M(t)-(M,m)(t) and P(t)= 
V(t) + (M, m)(t). Furthermore, it holds that 
(fi,&=(M,N), M, NE.,@‘~. This result is 

known as Girsanov’s theorem. The transfor- 
mation of probability spaces given above is 
called a transformation of drift or a Girsanov 
transformation since it produces a change as 
shown above of the drift part in the semimar- 

tingale decomposition. 
In the discussion above, the increasing 

family {&} was fixed. It is also important to 

study how the semimartingale character 
changes under a changing increasing family 

c121. 

C. Stochastic Differentials 

Tn this section, we introduce stochastic dif- 
ferentials of semimartingales and rewrite the 
results in the previous section in more conve- 

nient form. Let (Q cp, P) and {&} be as above 
and & c4, ^Y‘ M”‘, J&“, Voc be defined as 

in Secti& B. I& 2? we denote the totality of 
continuous semimartingales relative to {e}. 
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For XEZ?, let X(t)=X(O)+M,(t)+ Vx(t) be the 
semimartingale decomposition. We write 

formally X(t)-X(O)=&dX(s) and call dX 

(denoted also by dX, or dX(t)) the stochastic 
differential of X. To be precise, dX can be 
considered as a random interval function 
dX(I)=X(t)- X(s), I=@, t] or the equivalence 
class containing X under the equivalence 
relation X - Y on 2 defined by X - Y if and 
only if X(t) - X(0) = Y(t) - Y(O), t 2 0. For X, 
YES and a, /ER, ctdX+bdY is defined by 
d(otX+/3Y) and dX.dY by d(M,, M,). Let d22 

be the totality of stochastic differentials of 
elements in 5! and dA and dV be that of 
elements in .&PC and Y”‘, respectively. di? is 

a commutative algebra under the operations 
just introduced. Note that dX.dYedV and 
that dX . d Y = 0 if either of dX and d Y is in 
dV. In particular, dX d Y. dZ = 0 for every 
dX, d Y, and dZ. Let g be the totality of {ce}- 
progressively measurable processes @ = (Q(t)) 
‘such that, with probability 1, supoGs,,J@(s)J 
< co for every t > 0. Noting that %? c 5Zp( M) 

for any ME J%“~~, we define @. dX E dS! for 

Q, E g and X E 2 to be the stochastic differ- 
ential of the semimartingale &@(s)dM&s)+ 
f0 m)(s) d VJs). @. dX is uniquely determined 

by @ and dX. ItB’s formula is stated, in this 
context, as follows: For X =(X1, , Xd), Xi E 
9, and F:Rd+R, which is of class C’, F(X)E 

2, and 

dF(X)= 2 D,F(X).dX’ 
i=l 

+;,$ D,D,F(X).dX’.dXj. 
l., I 

We now define another important operation 
on the space dd. Noting that $ c g, we define 

XodYfor X, YE2 by 

XodY:X.dY+;dX.dY. 

This is uniquely determined from X and d x 
and is called the symmetric multiplication of X 
and d Y. It is also called a stochastic differential 
of the Stratonovich type or ItB’s circle operation 
since the notation was introduced by It8 [9]. 

r0 X o d Y is called the stochastic integral of the 
Stratonovich type, whereas r0 X. d Y is that of 
the It6 type. Under this operation, It8’s for- 

mula is rewritten as follows: For X =(X *, . , 
Xd), X’E$, and F:Rd+R, which is ofclass C3, 

F(X), D,F(X)EL~?, and 

dF(X)= i D,F(X)odX’. 
i=l 

This chain rule for stochastic differentials takes 

the same form as in the ordinary calculus. For 

this reason symmetric multiplication plays an 

important role in transferring notions used in 

ordinary calculus into stochastic calculus and 
in defining intrinsic (i.e., coordinate-free) no- 
tions probabilistically. In particular, it is fun- 
damental to the study of stochastic differential 

equations on manifolds (- Section G). 

D. Stochastic Differential Equations 

Here, we give a general formulation of stochas- 
tic differential equations in which the infini- 

tesimal change of the system may depend on 

the past history of the system; however, equa- 
tions of Markovian type, in which the intini- 
tesimal change of the system depends only 

on the present state of the system, are consid- 
ered in most cases. Let Wd be the space of d- 

dimensional continuous paths: Wd = C( [0, CO) 
+Rd):= the totality of all continuous functions 

w: [O, a)+Rd, endowed with the topology of 
the uniform convergence on finite intervals 

and 8( Wd) be the topological c-field. For each 
t 20, define pt: Wd+ Wd by (p(w)(s)= w(tr\s), 
and let ~JWd)=~z~l(&?(Wd)), t>O. Let &d,r 

be the totality of functions a(t, w)= (olj(t, w)): 
[0, co) x Wd+Rd @ R’ (:= the totality of d x 
r real matrices) such that each component 

olj(x,w)(i=1,2 ,..., d;j=1,2 ,..., r)is@[O,x?)) 
x B( Wd)-measurable and Br:( Wd)-measurable 

for each fixed t 2 0. In general, cxj(t, w) is called 
nonanticipative if it satisfies the second property 
above. An important case of c(E&“,~ is when it 
is given as cc(t, w) = o(t, w(t)) by a Bore1 func- 
tion a: [0, co) x Rd-+Rd @ R’. In this case, c1 is 
called independent of the past history or of 

Markovian type. For a given c( E G?“,~ and ,%E 
dd, I, we consider the following stochastic 
differential equation: 

(1) dX’(t)= i $(t,X)dB’(t)+/?‘(t,X)dt, 
j=l 

i=l,2 ,..., d, 

also denoted simply as 

dX(t)=x(t,X)dB(t)+&,X)dt. 

Here X(t)=(X’(t), , Xd(t)) is a d-dimensional 
continuous process. B(t) = (B’(t), , B*(t)) is a 

r-dimensional Brownian motion wlith B(0) = 0. 
A precise formulation of equation (1) is as 

follows. X=(X(t)) is called a solution of equa- 
tion (1) if it satisfies the following conditions: 
(i) X is a d-dimensional, continuous, and {@“I)- 
adapted process defined on a probability space 
(QF-, P) with an increasing family {&}, i.e., 
X : R + Wd which is R/ac,( Wd)-measurable for 
every t>O; (ii) c$(t,X)e6Cp, @(t,X-)EL?p, 

i=l,..., d,j=l,..., r(-SectionBforthe 
definition of spd”“); (iii) there exists an r- 
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dimensional {e}-Brownian motion B(t) with 
B(O)=0 such that the equality 

s f X’(t)-X’(O)= i ccj(s,X)dBj(s) 
j=l 0 

+ s r B’(s, X)ds, i=!,2 ,..., d, 
0 

holds with probability 1. 
Thus a solution X is always accompanied 

by a Brownian motion B. To emphasize this, 
we often call X a solution with the Brownian 
motion B or call the pair (X, B) itself a solution 
of (1). In the above definition, a solution is 
given with reference to an increasing family 

{&}. The essential point is that c-fields a(B(u) 
-B(u); ~>u>t) and 0(X(s), i?(s);OQs< t) are 
independent for every t: If X satisfies the con- 

ditions of solutions stated above, then the 
specified independence is obvious, and con- 
versely, if this independence is satisfied, then by 
setting z = nE,e 0(X(s), B(s); O<s< t +E), the 
conditions of solutions stated above are satis- 
fied. But it is usually convenient to introduce 
some increasing family {e} into the definition 
of solutions as above. When a and B are of the 
Markovian type, sc(t, w)= cr(t, w(t)), fl(t, w)= 

b(t, w(t)), the corresponding equation 

(2) dX(t)=a(t,X(t))dB(t)+b(t,X(t))dt 

is called a stochastic differential equation of 

Markovian type. Furthermore, if o(t, x) and 
b(t, x) are independent of t, i.e., cr(t, x) = G(X) 
and b(t, x) = b(x), the equation 

(3) dX(t)=a(X(t))dB(t)+b(X(t))dt 

is called a stochastic differential equation of 
time homogeneous (or time-independent) Mar- 

kovian type. 
Next, we define the notions of the unique- 

ness of solutions. There are two kinds of 

uniqueness: uniqueness in the sense of law (in 
distribution) and pathwise uniqueness. When 
we consider the stochastic differential equa- 
tions as a means to determine the laws of 
continuous stochastic processes, uniqueness in 

the sense of law is sufficient. If, on the other 
hand, we regard the stochastic differential 
equation as a means to define the sample 
paths of solutions as a functional of the ac- 
companying Brownian motion, i.e., if we re- 

gard the equation as a machine that pro- 
duces a solution as an output when we input a 
Brownian motion, the notion of pathwise 

uniqueness is more natural and more impor- 
tant. As we shall see, this notion is closely 
related to the notion of strong solutions. 

These notions are defined as follows. For a 

solution X=(X(t)) of (I), X(0) is called the 
initial value, its law on Rd is called the initial 

law (distribution), and the law of X on Wd is 

called the law (distribution) of X. We say that 
the uniqueness in the sense of law of solutions 
for (1) holds if the law of any solution X is 

uniquely determined by its initial law, i.e., if 
whenever X and X’ are two solutions whose 
initial laws coincide, then the laws of X and 
X’ coincide. In this definition, we restrict 
ourselves to the solutions whose initial values 

are nonrandom, i.e., the initial laws are 6- 
distributions at some points in Rd. Next, we 
say that the pathwise uniqueness of solutions 
for (1) holds if whenever X and X’ are any 
two solutions defined on the same probabil- 
ity space (Q 9, P) with the same increasing 
family {.e} and the same r-dimensional {&}- 

Brownian motion such that X(0)=X’(O) a.s., 
then X(t) = X’(t) for all t > 0 a.s. In this de!? 
nition also, the solutions can be restricted to 

those having nonrandom initial values. 
We say that equation (1) has a unique strong 

solution if there exists a function F(x, w): Rd x 
H+Wd(M/;;={w~WIIw(0)=O}) such that tb- 
following are true: (i) For any solution (X, ’ r 
of(l), X = F(X(O), B) holds as.; (ii) for any 
Rd-valued random variable X(0) and an r- 
dimensional Brownian motion B =(B(t)) with 
B(0) = 0 which are mutually independent, X = 

F(X(O), B) is a solution of (1) with the Brown- 
ian motion B and the initial value X(0). If 

this is the case, F(x, w) itself is a solution of (1) 
with the initial value x, and with respect to the 
canonical Brownian motion B(t, w) = w(t) on 
the r-dimensional Wiener space ( Wg, 9, P), 9 
is the completion of a( W,l) with respect to the 
r-dimensional Wiener measure P. If equation 

(I) has a unique strong solution, then it is clear 
that pathwise uniqueness holds. Conversely, 
if pathwise uniqueness holds for (1) and if a 
solution exists for any given initial law, then 

equation (1) has a unique strong solution, 

CC 251. 
The existence of solutions was discussed by 

A. V. Skorokhod [20]. If the coefficients c1 and 
/j’ are bounded and continuous on [O, co) x Wd, 
a solution of (1) exists for any given initial law. 
This is shown as follows [6]. We first con- 
struct approximate solutions by Cauchy’s 
polygonal method and then show that their 
probability laws are ttight. A limit process in 
the sense of probability law can be shown to 

be a solution. The assumption of bounded- 

ness above can be weakened, e.g., to the fol- 
lowing condition: For every T> 0, a constant 
KT > 0 exists such that 

(4) ll4t,w)ll + II/m 4 GKTU + IIW~ 

fE[O, 7-1, WE Wd 

Here ll~ll,=maxO~,,, Iw(s)l. In the case of the 
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Markovian equation (2) it is sufficient to 
assume that g(t, x) and h(t, x) are continuous: ’ 

(5) lla(t,x)ll + Ilb(t,x)ll dK,(l +lxl), 

t~[0, T], xeR”. 

If these conditions are violated, a solution X(c) 

does not exist globally in general but exists 
up to a certain time e, called the explosion 
time, such that lim,,, Ix(t)] = m if e < x?. To 
extend the notion of solutions in such cases, 

we have to replace the path space Wd by the 
space tid that consists of all continuous func- 
tions w: [0, m)+Rd (= RdU {A) = the one-point 
compactification) satisfying w(t) = A for every 
t>e(w)(=inf{t]w(t)=A}). 

Now, we list some results on the uniqueness 
of solutions. First consider the equations of 
the Markovian type (2), and assume that the 

coefficients are continuous and satisfy the 
condition (5). (i) If (T, h are Lipschitz continu- 
ous, i.e., for every N > 0 there exists a constant 

K, such that llo(t,x)--a(t,y)ll + llb(t,x)- 

h(t,y)l/ dK,lx-yl, tE[O, Tl, x, yEB,:= 
[ZE Rdl ]z] < N}, then the pathwise uniqueness 
of solutions holds for equation (2). Thus the 
unique strong solution of (2) exists, and this 
is constructed directly by Picard’s succes- 
sive approximation (ItB [7,8]). (ii) If d= 1, a 
is Holder continuous with exponent l/2 and 
h is Lipschitz continuous, i.e., for every N > 0, 

K, exists such that 

then the pathwise uniqueness of solutions 
holds for equation (2) (T. Yamada and 
Watanabe [25]). (iii) If the matrix a(t, x)= 
~~(t,x)a(t,x)* (i.e., u’j(t,~)=J$=~ &(l,x)&(t,x)) 
is strictly positive definite, then the unique- 
ness in the sense of law of the solution for (2) 
holds (D. W. Stroock and S. R. S. Varadhan 

[21]). (iv) An example of stochastic differential 
equations for which the uniqueness in the 
sense of law holds but the pathwise uniqueness 
does not hold was given by H. Tanaka as 

follows: d=r=l, b(t,x)=O and o(t,x)=Zlxao) 
-I Ix<O). Another example in the non- 

Markovian cases was given by B. S. Tsirel’son 
(see below). 

Next, consider non-Markovian equations of 
the following form: 

(6) dX(t)=dB(t)+fi(t,X)dt; 

i.e., the case d = r and cc(t, iv) = I (identity ma- 
trix). Assume further that /{E.& is bounded. 
Then a solution of (6) exists for any given 
initial distribution, unique in the sense of law, 

and it can be constructed by the Girsanov 
transformation of Section B as follows. On a 
suitable probability space (Q,.s, P) with an 

increasing family {.c} such that 9=Vvr,,,& 
we set up an so-,-measurable, d-dimensional 

random variable X(0) with a given law and 
a d-dimensional {,9j}-Brownian motion B 

=(&t)) such that &O)=O. Set X(t)=X(O) 

+@t) and M(t)=exp[fo/3(s,X)d&s)- 
~foI[~(s,X)12ds]. Then M(t) is an {.e}- 
martingale, and the probability P on (Q F) is 
determined by P(A)= E(M,; A), A E 9$ By 

Girsanov’s theorem, i?(t) = X(t) - X(0) - 
j” fi(s, X)ds is a d-dimensional {&I-Brownian 

motion on (Q 9, p), and hence (X.. B) is a 
solution of (6). Any solution is given in this 
way and hence the uniqueness in the sense of 
law holds. But the pathwise uniqueness does 
not hold in general; an example was given 
by Tsirel’son [ 1,6] as follows. Let it,,) be a 

sequence such that 0 < < t, < t,-, < t, = 1 
and lim + t, = 0. Set 

(0, tat, and t=O, 

w(4+1)- wk+2) B(t>w)= O t,+,-ti+* b > ’ 
I tE Ch+, > cl i=O,1,2 ,..., 

where 0(x)=x - [xl, x E R, is the decimal part 
of x. 

Time changes (- Section B) are also used to 
solve some stochastic differential equations 

C61. 

E. Stochastic Differential Equations and 
Diffusion Processes 

In this section we consider equations of time- 
independent Markovian type (3) only. The 
time-dependent case can be reduced to the 
time-independent case by adding one more 
component Xd+‘(t) such that dXdil(t)=dt. 

Further, we assume that coefficients B(X)E 
Rd @ R’ and b(x)c Rd are continuous on Rd 

and the uniqueness in the sense of law of solu- 
tions holds. Let P,, XER~, be the law on Wd, 

or on ed if there is an explosion, of a solution 
with the initial law 6, (= the unit measure at 
x). Then { Px} possesses the +strong Markov 

property with respect to {9*}, where z is a 
suitable completion of .%J Wd) or @( Gd), and 
hence ( Wd, {zl, P,) or ( md, {%}, P,) is a diffu- 

sion process ton Rd (- 115 Diffusion Pro- 
cesses, 261 Markov Processes). 

Let A be the differential operator 

A=;,$ a”(x)DiDj+ i b’(x)Q (Di=c?/axi) 
I., 1 i=l 

I 
with the domain C’i(Rd) (= the tot.*lity of C2- 
functions on Rd with compact supports), where 
u’j(x) = CL=, &x)~&x). By Ito’s formula, 

(7) f(W-f(w(O))- ‘(Aff)MW 
s 0 
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is an {&}-martingale for every f~ Ci(Rd) (we 
set f(A) = 0), and this property characterizes 

the diffusion process. The diffusion is gen- 
erated by the operator A in this sense. Fur- 
thermore, if for some 1>0, (I.-,4)(C,2(Rd)) 
is a dense subset of C,(Rd) (= the totality 
of continuous functions f on Rd such that 
I$,,,, f‘(x) = 0) then the ttransition semi- 

group of the diffusion is a tFeller semigroup 
on C,(Rd), and its infinitesimal generator A is 
the closure of (A, Ci(Rd)). Hence u(t, x) = 
E,[f(w(t))], ,~‘EC~(R~), is the unique solu- 

tion of the evolution equation duldt = Au, 

u 1 1=0 =f: Generally, if the coefficients 0 and 
b are sufficiently smooth, we can show, by 
using the stochastic differential equation (3), 
that u(t,x) is also smooth for a smooth f 
and satisfies the heat equation au/i% = Au. 
Taking the expectations in (7), we have the re- 

lation ~,Cf(wWl =.fW +Sb 4CAfbW)l& 
which implies that the transition probability 
P(t, x, dy) of the diffusion satisfies the equation 
ap/cit = A*p in (t, y) in a weak sense, where A* 

is the adjoint operator of A. If a/&-A* is 
+hypoelliptic, we can conclude that P(t, x, dy) 
possesses a smooth density p(t, x, y) by appeal- 

ing to the theory of partial differential equa- 
tions. Recently, P. Malliavin showed that a 
probabilistic method based on the stochastic 
differential equations can also be applied to 
this problem effectively, [6, 16, 173. 

If c(t, x) is continuous and u(t, x) is s&i- 
ciently smooth in (t, x) on [0, co) x Rd, then the 
following fact, more general than (7), holds: 

(8) u(t, w(t))exp[ I:c(,s, w(s))ds]-r(O,x) 

- Jiev[ J~~(u,-(u~~du] 
x (au/& +(A +c)u)(s, w(s))ds 

is a local martingale (i.e., E&Z’“‘) with respect 
to {me, PI}. By applying the toptional sampling 

theorem to (8) for a class of {&}-stopping 
times, we can obtain the probabilistic repre- 
sentation in terms of the diffusion of solutions 

for initial or boundary value problems related 
to the operator A [3,4]. 

F. Stochastic Differential Equations with 

Boundary Conditions 

As we saw in the previous section, diffusion 
processes generated by differential operators 
can be constructed by stochastic differential 
equations. A diffusion process on a domain 
with boundary is generated by a differential 

operator that describes the behavior of the 

process inside the domain, and a boundary 
condition that describes the behavior of the 
process on the boundary of the domain. For 

example, consider a reflecting +Brownian mo- 
tion on the half-line [0, co). This is a diffusion 

process X=(X,) on [O, GO) obtained by set- 
ting X,=(x,1 from a l-dimensional Brownian 
motion xt. The corresponding differential 
operator is A = id21dx2, and the boundary 
condition is Lu = du/dx lxzO = 0, that is, the 
transition expectation u(t, x) = E,[,f(X,)] is 

determined by du/& = Au, Lu = 0, and u 1 1=0 
=,f: In constructing such diffusion processes 
with boundary conditions, stochastic differen- 
tial equations can be used effectively. In the 
case of reflecting Brownian motion, it was 

formulated by Skorokhod in the form 

(9) dX(t)=dB(t)+dq(t). 

Here B(t) is a 1 -dimensional Brownian mo- 
tion (B(O)=O), X(t) is a continuous process 
such that X(f)>,O, and cp(t) has the following 
property with probability 1: q(O) = 0, t-r 
q(t) is continuous and nondecreasing and 
increases only on such t that X(t) = 0, i.e., 

&Iloj(X(s))dq(s)=cp(t). Given a Brownian 
motion B(t) and a nonnegative random vari- 
able X(0) which are mutually independent, 
X(t) satisfying (9) and with the initial value 

X(0) is unique and given by X(t) = X(0) + B(t), 
t <a,=min{t)X(O)+B(t)=O} and X(t)= B(t) 
-min,,“,,,,B(s), t>a, (P. L&y, Skorokhod; 

- C6,181). 
In the case of multidimensional processes, 

possible boundary conditions were determinea 

by A. D. Venttsel’ [24]. Stochastic differential 
equations describing these diffusions were for- 
mulated by N. Ikeda [S] in the 2-dimensional 
case and by Watanabe [23] in the general 

case as follows. Let D be the upper half-space 
R~,={x=(x~,...,x~)(x~>O),~D={~(X~=O), 

and d = {x 1 xd > 0). The general case can be 
reduced, at least locally, to this case. Suppose 
that the following system of functions is 
given: a(x):D-tRd x R’, b(x):D-rRd, z(x):aD 
+Rdm’ x R‘, B(x):aD-tRd-‘, and p(x):ciD+ 
[0, cc), which are all bounded and con- 
tinuous. Consider the following stochastic 
differential equation: 

dX’(t) = i cr;(X(t))lb(X(t))dB’(t) 
j=l 

I +b’(X(t))Zb(X(t))dt 

+BiWWPW> 
i=l,2 ,..., d-l. 

dXd(t)= i ~f’(X(t))l~(X(t))dBj(t) 
j=l 

I +bd(X(t))l~(X(t))dt+d~(t), 
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By a solution of this equation, we mean a 
system of continuous semimartingales 3E = 
(X(t), i?(t), M(t), q(t)) over a probability space 
(Q9, P) with an increasing family {&} satis- 
fying the following conditions: (i) X(t)=(X’(t), 

,Xd(t)) is D-valued, i.e., Xd(t)>O; (ii) with 
probability 1, ip(O)=O, t-+q(t) is nondecreas- 

ing, and S’olaD(X(~))d~(s)=cp(t); (iii) B(t) and 
M(t) are r-dimensional and s-dimensional 

systems of elements in &PC, respectively, 
such that (B’, Bj),=h”t, (B’,M*),=O, and 
(Mm, M”), = Smnq(t), i, j = 1, , r, m, n = 1, , s; 
and finally (iv) the stochastic differentials of 
these semimartingales satisfy (10). 

The processes B(t), M(t), and q(t) are sub- 
sidiary, and the process X(r) itself is often 
called a solution. We say that the uniqueness 
of solution holds if the law of X=(X(t)) is 

uniquely determined from the law of X(0). As 

before, the existence and the uniqueness of 
solutions imply that solutions define a diffu- 
sion process on D, and these are guaranteed 
if, for example, min,,?,add(x) > 0 and c, b, 
7, fi are Lipschitz continuous, [6,23]. Here, 
we set a”(x) = XL=1 c$(x)a,!(x) and &(x) = 
& T:(x)z{(x). It is a diffusion process gener- 
ated by the differential operator 

A =;. i aij(x)DiDj+ i b’(x)Di, 
I,, I i=l 

and by the Venttsel’ boundary condition, 

Lu(x)=;.~~ a’j(x)D,o,u(~)+~~ /3’(x)Diu(x) 
‘., 1 i=l 

+Ddu(x)-p(x)(Au)(x)=O on 8D. 

G. Stochastic Differential Equations on 

Manifolds 

Let M be a connected a-compact C”-manifold 
of dimension d, and let W’= C( [0, a)+M) be 
the space of all continuous paths in M. If M 
is not compact, let fi = MU {A} be the one- 

point compactilication of M and PM be the 
space of all continuous paths in &! with A as a 
ttrap. These path spaces are endowed with 
the a-fields g( W,) and &?( GM), respectively, 
which are generated by Bore1 cylinder sets. 
By a continuous process on M we mean a 
( W,, .?8( W,))-valued random variable, and by 
a continuous process on M admitting explo- 
sions we mean a ( wM, a( eM))-valued ran- 

dom variable. In this section the probability 
space is taken to be the r-dimensional Wiener 
space (WJ, 9, P) with the increasing family 

{E}, where z is generated by 9&( W,l) and 
P-null sets. Then w  =(w(t)), WE WG, is an r- 

dimensional {Ft}-Brownian motion. 

Suppose that we are given a system of C” - 
vector fields A,, A,, . . . . A, on M. We consider 

the following stochastic differential equation 
on M: 

(11) dX,=A,(X,)odwk(t)+A,(X,)dt. 

(Here, the usual convention for the omission of 

the summation sign is used.) A pre’cise mean- 
ing of equation (11) is as follows: We say that 

X =(X,) satisfies equation (11) if X is an (g}- 
adapted continuous process on M admitting 
explosions such that, for any C”-function f 
on M with compact support (we set f(A) = 
0), f(X,) is a continuous semimartingale 
satisfying 

(12) df(X,)=(A,f)(X,)odwk(t)+(A,f)(X,)dt, 

where o is It6’s circle operation defined in 
Section C. This is equivalent to saying that 
X,=(X,‘, , Xf), in each local coordinate, is 
a d-dimensional semimartingale such that 

(13) dX;=r$(X,)odwk(t)+bi(X,)dt 

= cr;(X,)dwk(t) 

+ ;k$lDjq$j+bi (X,)dt, 1 
where AL(x) = a,!(x)Di, k = 1, 2,. , r, and A,(x) 
= bi(x)Di. By solving the equation in each 
local coordinate and then putting these solu- 
tions together, we can obtain for each XE M 
a unique solution X, of (11) such that X0 = 

x. We can also embed the manifold M in a 
higher-dimensional Euclidean space and solve 
the stochastic differential equation there. We 

denote the solution by X(t, x, w). The law P, 
on fiM of [t-X(t, x, w)] defines a diffusion 
process on M which is generated by the dif- 
ferential operator A =~~;=, AZ + .4,. 

Next, if we consider the mapping x--t 

X(t, x, w); then, except for w  belonging to a 
set of P-measure 0, the following is valid: For 

all (t, w) such that X(t, x0, W)E M, the mapping 
x-+X(t, x, w) is a diffeomorphism between a 

neighborhood of x0 and a neighborhood of 
X(t, x0, w). This is based on the following fact 
for stochastic differential equations on Rd. If 
in equation (3) the coefficients 0; and b’ are 
C”-functions with bounded derivatives of all 
orders a, /al> 1, then, denoting by X(&x, w) 
the solution such that X(0)=x, we have that 
x+X(t, x, w) is, with probability 1, a diffeo- 

morphism of Rd for all t [ 131. 
Example 1: Stochastic moving frame [6,15]. 

Let M be a Riemannian manifold of dimen- 
sion d, O(M) be the orthonormal frame bundle 

over M, and L,, L,, . . . , L, be the basic vector 
fields on O(M), that is, 

1 
(Lif)(x,e)=lim-Cf(x,,e,)-.f(x,e)I1, 

t-0 t 

i= 1, . ..d. 
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where e = (e, , . , ed) is an orthonormal basis in 
T,(M), x, = Exp(tei), i.e., the geodesic such that 
x0 =x and i = ei, and e, is the parallel translate 
of e along x,. Let b be a vector field on M and 
L,, be its horizontal lift on O(M), i.e., L, is a 
vector field on O(M) determined by the follow- 

ing two properties: (i) L, is horizontal and (ii) 
&(L,)=b, where n:O(M)+M is the projec- 
tion. Consider the following stochastic differ- 

ential equation on O(M): 

fir(t)= L,(r(t))odw’(t)+ L,(r(t))dt. 

Solutions determine a family of (local) diffeo- 
morphisms r+r(t, r, w)=(X(t, r, w), e(t, r, w)) 
on O(M). The law of [t-X(t,r, w)] depends 
only on x = n(r), and it defines a diffusion 
process on M that is generated by the dif- 

ferential operator +A,,, + b (AM is the Laplace- 
Beltrami operator). Using this stochastic mov- 
ing frame r(t, r, w), we can realize a stochastic 

parallel translation of tensor fields along the 
paths of Brownian motion on M (a diffusion 
generated by )A,) that was first introduced 
by It8 [lo], and by using it we can treat heat 
equations for tensor fields by means of a prob- 
abilistic method. 

Example 2: Brownian motion on Lie groups. 

Let G be a Lie group. A stochastic process 
{g(t)} on G is called a right-invariant Brownian 

motion if it satisfies the following conditions: 
(i) With probability 1, y(0) = e (the identity), 
and t-g(t) is continuous; (ii) for every t > s, 

g(t)g(s)-’ and o(g(u); u<s) are independent; 
and (iii) for every t > s, g(t)g(s)-’ and g(t - s) 
are equally distributed. 

Let A,, A,, . , A, be a system of right- 
invariant vector fields on G, and consider the 
stochastic differential equation 

(14) dgt=Ai(gt)odwi(t)+A,(g,)dt. 

Then a solution of (14) with go = e exists 
uniquely and globally; we denote this solution 

by g’(t, w). It is a right-invariant Brownian 
motion G, and conversely, every right-invariant 
Brownian motion can be obtained in this way. 

The system of diffeomorphisms g+g(t, g, w) 
defined by the solutions of (14) is given by 

Pv(L 9, 4 = SOk w)g. 
Generally, if M is a compact manifold, the 

system of diffeomorphisms g,:x+X(t, x, w) 
defined by equation (11) can be considered as 
a right-invariant Brownian motion on the 

infinite-dimensional Lie group consisting of all 
diffeomorphisms of M [2]. 
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407 (XVll.4) 
Stochastic Processes 

A. Definitions 

The theory of stochastic processes was origi- 
nally involved with forming mathematical 

models of phenomena whose development in 
time obeys probabilistic laws. Given a basic 
tprobability space (Q, d, P) and a set T of real 

numbers, a family {Xt}ttT of real-valued tran- 
dom variables defined on (0, !B, P) is called a 

stochastic process (or simply process) over 
(Q 93, P), where t is usually called the time 

parameter of the process. For each finite t-set 
{t,, , t,}, the +joint distribution of (Xrl, , 
X,“) is called a finite-dimensional distribution 
of the process {X,),,T. Stochastic processes 
are classified into large groups such as taddi- 
tive processes (or processes with independent 
increments), +Markov processes, +Markov 
chains, tdiffusion processes, +Gaussian pro- 

cesses, +stationary processes, imartingales, and 
+branching processes, according to the prop- 
erties of their finite-dimensional distributions. 

This classification is possible because of the 
following fact, a consequence of Kolmo- 
gorov’s textension theorem (- 341 Proba- 

bility Measures I): Given a system .p of finite- 
dimensional distributions satisfying certain 

tconsistency conditions, we can construct a 
suitable probability measure on the space 
W= R“ of real-valued functions on T so that 

the stochastic process ix,),,,, obtained by 
setting X,(w) = the value of WE W at t, has 
9 as its system of finite-dimensional distri- 

butions. Now, consider two stochastic pro- 
cesses .%“= {X,},,, and 02 = { II;JfE7.. ?q is called 

a modification of .?? if they are defined over a 
common probability space (Q8, P) and P(X, 

= x) = 1 (t E T). Regardless of whe.ther .ot and 
O?/ are defined over a common probability 
space or over different probability spaces, X 
and Y are said to be equivalent or each is said 
to be a version of the other if their iinite- 
dimensional distributions are the same. Ac- 
cording to Kolmogorov’s extension theorem, 
every stochastic process has a version over the 

space W=R“. 
The function X(w) oft obtained by fixing w  

in a stochastic process {X,},,, is called the 

sample function (sample process or path) corre- 
sponding to o. In applying various operations 
to stochastic processes and studying detailed 

properties of stochastic processes, such as 
continuity of sample functions, the notions of 

measurability and separability play important 
roles. We assume that T is an interval in the 

real line, and (if needed) that the probability 
measure P is tcomplete. Denote by 3 the class 
of all +Borel subsets of T. A stochastic process 

ix&T is said to be measurable if the function 
X,(w) of (t, w) is 3 x ‘B-measurable. Continuity 

in probability defined in the next paragraph 

gives a sufficient condition for a stochastic 
process to have a measurable modification. 
A stochastic process {X,},,, is said to be sepa- 
rable if there exists a countable subset S of T 
such that 

< lim sup X,(w) forany tcT =l. 
s-tt,ses 

It was proved by J. L. Doob that every sto- 

chastic process has a separable modification 

C61. 
Various types of continuity are considered 

for stochastic processes. {Xt}ttT is said to be 
continuous in probability at SE T if P( 1 X,-X,1 
>E)+O (t+s, tE T) for each E>O; it is said to 
be continuous in the mean (of order 1) at SE T if 
E(lX,+X,l)-0 (t+s, TV T). Continuity in the 
mean of order p (>l) is defined similarly. Con- 

tinuity in the mean of any order implies con- 
tinuity in probability. Suppose thalt {X,},,T is 
separable. Then 

are measurable events. If P(Q) > 0, then SE T is 
called a fixed point of discontinuity. The con- 

~ dition P(u seT O,s) = 0 means that almost all 

sample functions are continuous. Regularity 
properties of sample functions of processes, 
such as continuity or right continuity, have 
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been studied by many people. The following 

theorem is due to A. N. Kolmogorov: Let T= 
[O, 11. If 

for constants y > 0, E > 0, and c > 0, then 
jXt}tr7. has a modification {s,),,, for which 
almost all sample functions are continuous, 

and 

for any 6(0 < fi <E/Y). Each of the following is a 

sufficient condition for % = jXr}te7. to have a 
modification for which almost all sample paths 
are right continuous functions with left limits. 

(i) 5 is an additive process which is continuous 
in probability (P. LCvy [3,4], K. ItB [S]; - 5 
Additive Processes B). (ii) .%Y is a supermartin- 
gale that is continuous in probability (Doob 
[6]; - 262 Martingales C). 

B. Increasing Families of a-Algebras 

In the investigation of stochastic processes 

(especially Markov processes. martingales, 
and stochastic differential equations), the 

notion of increasing families of cr-algebras 
often plays an important role. Let (Q %, P) 
be a probability space, and let T= [0, m). A 

family P%M of a-subalgebras of !I3 is called 
an increasing family of a-algebras on (Q ‘%, P) 
if 8,X c 8, for s < t. A process { Xt}ttr is said to 
be adapted to {B3,} if X, is !&-measurable for 

each tE T. {X,} is said to be progressively 
measurable (or a progressive process) with 

respect to {S,} if for every t E T the mapping 
(s, W)H X,(w) of [0, t] x Q into R is measurable 
with respect to the o-field 93([0, t]) x 2J. A 

process {X,} with right continuous paths, 
adapted to {&}, is progressively measurable 
with respect to { ‘11,). The same conclusion 
holds for a process with left continuous paths. 
A subset A of [0, co) x R is said to be progres- 
sive if the indicator process a,(w) = lA(t, w) of A 
is a progressive process. A random time 7 on 
R with values in [0, co] is called a stopping 
time (or Markov time) if {T < t} E 8, for all t > 

0. Constants (30) are stopping times. If 0 
and z are stopping times, then min(g, z) and 
max(cr, T) are also stopping times. The limit of 

an increasing sequence of stopping times is a 
stopping time, while the limit of a decreasing 

sequence of stopping times is a stopping time 
with respect to {!&+}, where !B,+ = n,>,%J3,. 
Let 23, be the class of A E% such that A n 
{t<t}d!33,(v’td-); th en it is a a-algebra if z is 

a stopping time. If {X,} is a progressive pro- 
cess and if T is a stopping time, then X,lI,<,-i 
is %,-measurable. An increasing family (‘93,) 

of a-algebras on (R,‘13, P) is said to be com- 
plete if the probability space (0,8, P) is com- 

plete and if all the P-negligible sets belong 
to 8,. Fron now on we assume that {‘%,) is 
complete and right continuous (i.e., 8, = ‘H,, 

for all t 3 0). Let B be a subset of R and {X,} 
be a process. We call zg = inf{ t 3 0 1 X,(o) E B} a 
hitting time for B. Measurability of zg is not 

always guaranteed, that is, zs is not always a 
stopping time. G. A. Hunt showed that for a 

wide class of Markov processes hitting times 
for analytic sets are stopping times. This result 
is based on a theorem of G. Choquet on capa- 
citability and was generalized by P. A. Meyer 
as follows: (i) For every progressively mea- 

surable process, hitting times for analytic sets 
are stopping times; and (ii) for every progres- 
sive set A, D,=inf{t>OI(t,o)EA} is a stop- 

ping time. The following notions on measur- 
ability are also important. The predictable (r- 
algebra on [0, cn) x 0, denoted by Y, is defined 
to be the least o-algebra on [0, co) x R with 
respect to which every process X,(w) that is 
adapted to {!I$} and has left continuous paths 
is measurable in (t, w). The well-measurable or 

optional c-algebra on [0, cc) x R, denoted by 
0, is defined to be the least o-algebra on [0, co) 
x 0 with respect to which every process X,((u) 
that is adapted to {S,} and has right continu- 

ous paths with left limits is measurable in (t, w). 
A process {X,} defined on R is said to be pre- 
dictable (resp. well-measurable or optional) if 
the function (t, W)H X,(o) oti [0, co) x 0 is 

measurable with respect to the predictable cr- 
algebra B (resp. the optional a-algebra 6). For 

further information regarding the nqtions 
given in this section - [lo]. 

Up to this point it was assumed that the 
space in which a process {XtJttT takes values, 
namely, the state space of {X,},,,, is a set of 

real numbers; but in general, topological 
spaces or merely measurable spaces can be 

taken for the state spaces of stochastic pro- 
cesses. The general definitions and results 
already given can be extended to stochastic 

processes whose state spaces are +locally com- 
pact Hausdorff spaces satisfying the second 
tcountability axiom. 

Moreover, the time parameter set T of a 
process {X,},,T need not be a set of real num- 
bers. For example, P. LCvy [ I23 and H. P. 

McKean [ 131 investigated stochastic processes 
with several-dimensional time; such processes 
are sometimes called random fields. The case 
in which T is S,Y, or in general a space of 

functions (which is nuclear) has also been 
investigated (- Section C). A probabilistic 

formulation of equilibrium states given by R. 
L. Dobrushin 1141 initiated recent probabilis- 

tic study of statistical mechanics. For further 
information concerning processes with general 
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time parameter spaces - 136 Ergodic Theory, 
176 Gaussian Processes, 340 Probabilistic 

Methods in Statistical Mechanics. 

C. Random Distributions and Generalized 
Stochastic Processes 

The investigation of random distributions was 

initiated by I. M. Gel’fand [ 153 and ItB [ 173. 
Denote by 9 the space of functions oft (--co 
<t < co) of class C” with compact tsupport, 
and by 9’ the space of tdistributions. At func- 

tion X(cp, w) of OE Q and cp E 9 is called a 
random distribution (or generalized stochastic 
process) if X(cp, w) is a distribution as a func- 
tion of cp for almost all w  and is measurable as 
a function of w  for each fixed cp. Denote by 
23(w) the smallest a-algebra containing sets of 
the form {~~g’ly(cp)~E} ((PEG, E is a Bore1 
set). A random distribution is nothing but a 

s’-valued random variable. For a random 
distribution X(cp, w), a probability measure @x 
on 23(9’) is induced by 

@,(B)=P{wlX(~,w)EB}, BE23(9). 

The functional 

is called the characteristic functional of X(cp, o) 

or Ox. The functional c(q) is continuous posi- 
tive definite, and c(0) = 1. Conversely, given a 
functional c(q) with these properties, a theo- 
rem of R. A. Minlos (- 341 Probability 
Measures J) states that there exists a unique 

probability measure CD on d(g) whose charac- 
teristic functional equals c(q). In other words, 
a random distribution with the character- 
istic functional C(Q) can be constructed over 
(is’, b(LY), 0). 

Typical classes of random distributions that 
have been investigated so far are stationary 
random distributions and random distri- 
butions with independent values at every 

point. (For stationary ones - 395 Stationary 
Processes.) A random distribution X(cp, w) is 
called a random distribution with independent 

values at every point if cpl(t)cp2(t)~0 implies the 
independence of X(cp,, w) and X(cp,, w), that is, 
c(cp, + (p2)=c((p1)c((p2). A sufficient condition 
for the functional of the form 

(S 

m 
4cp) = exp f(cp(t), cp’(t), ” 1 cp’k’(o) dt 

-cc > 

(,f is continuous and f(O, . . , 0) = 0) to be the 

characteristic functional of a stationary ran- 
dom distribution with independent values at 

every point is that the function exp(sf(xO, x i, 
. . . . Xk))Of(XO,X1 )... , xk) E Rk be positive defi- 

nite for each s > 0 [16]. Under this condition, 

a concrete representation off is known [ 161. 
When k = 0, a necessary and sufficient condi- 
tion for c(q) to be the characteristic functional 
of a stationary random distribution with 

independent values at every point 1s that 
expf(x) be the characteristic function of an 
tinfinitely divisible distribution. One such 
random distribution is the so-calle’d Guassian 
white noise, namely, the distribution deriva- 
tive of Brownian motion whose characteristic 
functional is 

ev( -~~la(r)12dt). 
A family { X,},,a of real-valued random 

variables indexed by 9 is called a random 

distribution in the wide sense if X, is linear in 

cp, namely, X0,+,, = ax, + bX, with proba- 
bility 1 for fixed cp, @ES, and real <constants a, 
b, and if X,-O in probability whenever cp+0 
in the topology of 9. (For a typical class of 
random distributions in the wide seense - 395 

Stationary Processes C.) A random distri- 
bution in the wide sense has a mod.itication 
that is a random distribution. 

In the definition of random distributions 
(in the wide sense) one can replace the space 
2 by the space 9 of rapidly decreasing C”- 
functions or in general by some space Q of 
functions that is nuclear. For example, one 

can define random distributions as Y’-valued 
random variables. 

Up to this point random distributions of 
one variable have been considered. Random 
distributions of several variables are called 

generalized random fields and have been in- 
vestigated by ItB [lS], A. M. Yaglom [19], 
Gel’fand and N. Ya. Vilenkin [ 163; and others. 

Moreover, K. Urbanik [20,21] developed a 
theory of generalized stochastic processes 

based on G. Mikusinski’s theory instead of L. 
Schwartz’s theory of distributions. 

D. Random Measure 

Let (S, 5, m) be any a-finite measure space, 
and put ~,={A~~lrn(A)< co}. B:y virtue of 
+Kolmogorov’s extension theorem, there exists 

a family {W4~AEa, of real random variables 
indexed by go such that (i) for any mutually 

disjoint A,, , A,E’&,, { W(A,), . , W(A,)} is 
independent; (ii) for any AE so, W(A) is Gauss- 
ian distributed with mean 0 and variance 
m(A); and (iii) for any A, BE so, E( W(A) W(B)) 
= m(A n B). Similarly, there exists a family 

JW)lwo of real-valued random variables 
indexed by so such that (i) for any mutually 

disjoint A,, . . . . @SO, {W,), . . ..NtA)} is 
independent; (ii) for any AE g,,, N(A) is +Pois- 
son distributed with mean m(A); and (iii) for 



1545 408 A 
Stochastic Programming 

any A, BEAM, E(N(A)N(B))=m(AflB). 

iW(41A,~o and IW)lA,~o are called a 
Gaussian random measure and a Poisson ran- 
dom measure associated with the measure 
space ($3, m), respectively. By using these 
random measures, the theory of multiple inte- 
grals can be developed. 

By a point function p on S we mean a map- 
ping p:D,+S, where the domain D, is a count- 
able subset of (0, co). p defines a counting 
measure N, on (0, co) x S such that N,((O, t] x 

U)= #{s~D,,;s<t,p(s)~U} (t>O, UE&). 
For a point function p and t > 0, the shift point 
function 0,p is defined by DB,P = {s ~(0, co); s + 

teD,} and (O,p)(s)=p(s+t). Let l7, be the 
totality of point functions on S and g(Z7s) be 
the smallest a-field on us with respect to 
which all p+N,((o, t] x U, t>O, UE~J 
are measurable. A point process on S is a 
(Z7,, a(Z7s))-valued random variable. Then 
there exists a point process p on S such that 

(i) for any t >O, p and 0,p have the same prob- 
ability law, and (ii) N, is a Poisson random 
measure associated with ((0, a) x S, @O, co) x 
B(Z7,), dt x m(ds)). The point process p is called 
the stationary Poisson point process with the 

characteristic measure m. 
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408 (X1X.7) 
Stochastic Programming 

A. General Remarks 

Stochastic programming is a method of finding 

optimal solutions in mathematical program- 
ming in its narrow sense (- 264 Mathematical 

Programming), when some or all coefftcients 
are stochastic variables with known probabil- 
ity distributions. There are essentially two dif- 
ferent types of models in stochastic program- 
ming situations: One is chance-constrained pro- 

gramming (CCP), and the other is a two-stage 
stochastic programming (TSSP). The differ- 

ence between them depends mainly on the 
informational structure of the sequence of ob- 

servations and decisions. For simplicity, let us 
here consider stochastic linear programming, 
which is the best-known model at present. 
Let A,, A be m x n-dimensional matrices and 

x, c E R” and b, b. E R”. Suppose further that 
components of A, b, c are random variables, 
while those of A,, b, are constants. Consider 
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the following formally defined linear program- 
ming problem: min,{ c’x 1 Ax < b, x E X0}, X0 = 

{x~A,x<b,,x>O}. Let (n,%,P) be a proba- 
bility space (- 342 Probability Theory) such 
that {A(w), h(w), ~((0)) is a measurable trans- 
formation on 0 into R” xnimtn. 

B. Chance-Constrained Programming (CCP) 

This method is based on the assumption that 
a decision x has to be made in advance of 
the realization of the random variables. Sup- 
pose that A,(w) is the ith row of A(w), and 

b,(w) is the ith component of b(w). We call 
P( {w 1 A,(w)x < h,(w)}) > cli a chance constraint, 
where rxi is a prescribed fractional value deter- 
mined by the decision maker according to his 

attitude toward the constraint A,(w)x < hi(o): 
if he attaches importance to it, he will take 

C(~ as great as possible. Defining feasible sets 
X,(cci) and X by X,(cc,)={xIP({wIA,(w)x< 
b,(w)}) > ai}, X=X,, n {n:, X,(cc,)}, we can 
formulate CCP as follows: min,{ F(x) 1 x~X}, 

where F: X + R, is the certainty equivalent of 
the stochastic objective function c’x. We have 

four models of CCP corresponding to differ- 
ent types of F(x): (i) E-model: F(x)=?x, C= 
E,c(w)‘x. (ii) I/-model: F(x) = Var(c(w)‘x) = 
x’V,x, where V, is a variance-covariance ma- 

trix of c(w). (iii) P, -model: F(x) =A P( {w 1 c(w)‘x 
<f})aaO, 1/2<a,< 1. (iv) P,-model: F(x)= 

P( {w ) c(w)x 3 y}) for a given constant y. In 
particular, if the components of A(w), b(o), 
c(w) have a multidimensional normal distri- 
bution, the certainty equivalent of the ith 

chance constraint is derived in the following 
form: Aix+cD~‘(ai)(x’V,x+2wjx+u~)1i2~~, 
where Ai, I$ wi, vi, hi are expectation vectors 
or a variance-covariance matrix of A,(w) and 
b,(w) and @(t)=S’, exp( - z2/2) dz/&. The 

set Xi(ai) for this constraint can be shown to 
be convex for l/2 < ai < 1, by using the con- 
vexity of the function &% for a positive 

semidefinite matrix V. Under the same assump- 
tion we can obtain the objective functions 
F(x)=~‘x+W’(a,)Jx’l/,x for the P,-model 
and F(x) = (C’x - y)/Jx’v,x for the P,-model. 
These four models have been shown to be 
computable by applying convex programming 
techniques, including the conjugate gradient 

method. Further studies on the convexity of a 
more general chance constraint P( {co 1 A (w)x < 
b(u)}) 2 a, 0 < c( < 1, appear in several articles. 

C. Two-Stage Stochastic Programming (TSSP) 

This method divides the decision process into 
two stages. First stage: Before the realization 

of random variables, one makes a decision x, 

being allowed to compensate for it after the 
specification of those values. Second stage: 
One obtains an optima1 compensation ye 
R’ for the given x and the realized values of 
the random variables. Assuming that q E R’ 
is a random vector in addition to A, b, c, we 

can formulate TSSP as follows. First stage: 
min,E,{(c(w)‘x + Q(x, w) 1 XEX)}; second 

stage: Q(x,~)=min~{q(o)‘yI Wy=A(w)x- 
b(w),y>O}, where X=X,flK, K :={xlQ(x,o) 
< +co with probability 1) and q(tu)‘y is a loss 
function for the deviation A(w)x -- b(o). The 
m x n matrix W is called a compensation ma- 
trix. Several theorems have been proved: (i) K 
is a closed convex set; (ii) Q(x) = E,Q(x, co) is a 
convex function on K if the random variables 
in A(w), b(w), q(w) are square integrable; (iii) 

if P has a density function, then Q(x) has a con- 
tinuous gradient on K; (iv) when P has a finite 

discrete probability distribution, a. TSSP prob- 
lem is reduced to a linear programming prob- 
lem having a dual decomposition structure. 
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409 (11.7) 
Structures 

A. Examples of Structure 

Structure is a unified description of mathe- 

matical objects such as tordered sets, irings, 
+linear spaces, +topological spaces, +prob- 
ability spaces, +manifolds, etc., using only the 

concepts +set and irelation. The following are 
examples. 
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(1) Order. An tordering on a set A is a 
binary relation in A (- 358 Relations) with 
a +graph r such that (i) if a~ A, then (a, a)~cc; 
(ii) if (u,b)~a and (b,a)~m, then a=h; and (iii) 

if(a,h)Ea and (h,c)~x(, then (a,c)~a, where c( is 
an element of the ipower set ‘@(A x A). We say 
that c( determines a structure of ordering on 
the set A. 

(2) Law of composition. A law of compo- 
sition on a set A is a mapping from A x A (or 
a subset) to A. This mapping is considered as 
a ternary relation with a graph s(E~J?(A x A 

x A), satisfying the following two conditions 
(or possibly only (ii)): (i) if (CL, h)~ A x A, then 

(n, h, c) E 1 for some c E A; (ii) if (a, b, c) E a and 
(a, h, c’) E s(, then c = c’. We say that r deter- 

mines the structure of a law of composition 
in A. The +associative law in the law of com- 
position determined by r is given by: (iii) if 
(u,b,x)~cc,(b,c,y)~r,(x,c,z)~cx, and (u,~,z’)Ex, 
then z = z’. A set with conditions (i), (ii), and 

(iii) is called a semigroup. 
(3) Operation. An operation of a set A on a 

set B is a mapping from A x B (or a subset) to 

B. It is considered as a ternary relation with 
the graph yg’j.J(A x B x B), satisfying the fol- 

lowing two conditions (or possibly only (ii)): (i) 
if (a, b)E A x B, then ((I, b, C)E~ for some CE B; 

(ii) if (a, b,c)Ey and (a, b,c’)Ey, then c=c’. We 
say that 11 determines the structure of an oper- 
ation of A on B. Each element r of A is called 

an operator on B; A is called a domain of 
operators on B, and B is called an A-set. When 
B is the main object of consideration, an oper- 

ation of A on B is sometimes called an external 
law of composition of A on B. The law of com- 
position of A as described in (2) is then called 
an internal law of composition of A. When a 
domain of operators A on B determined by 
~E’J~(A x B x B) has an internal law of compo- 
sition determined by a~p(A x A x A), it is 
usually assumed that the following conditions 
on n, y are satisfied: (iii) if (a, b,x)Eg, (b,c,y)E;‘, 

(x,c,z)~y, and (u,y,z’)~y, then z=z’. If we 
denote the law of composition by (a, b)+ah 

and the operation by (u, b)+u. b, then con- 
dition (iii) may be written: (iii’) (ab).c=u.(b.c) 
for a, b6 A and CEB. When an A-set B with an 
external law of composition determined by 
;JE’Q(A x B x B) has an internal law of compo- 
sition determined by ~E’@(B x B x B), it is 
usually assumed that the following condition 

on 8, ;I is satisfied: (iv) if(u,b,l)Ey, (a,c,y)~y, 

(b,c,z)EB, (x,~, w)E/~, and (u,z, w’)~;‘, then w  = 
w’. According to the notation ah and u.b, it 
is described as: (iv’) (~~b)(u~c)=u~(bc) for UE A 
and b,cEB. 

The mapping A x B+B(B x A-B) is called 

a left (right) operation of A on B. To emphasize 
leftness or rightness, “left-” or “right-” is at- 

tached to corresponding concepts. 

(4) Topology. A +topology on a set A is 
determined by a set a~ VW(A), called the +sys- 
tern of open sets, satisfying the following 
conditions: (i) JZIEC( and AGE; (ii) if /jca, then 

u /Jo 2; and (iii) if /I c c( is finite, then fi /Ie c(. 
We say that c( defines the structure of a topol- 
ogy on the set A (- 425 Topological Spaces). 

B. Mathematical Structures 

We now explain the concept of mathematical 
structure for the case of a tlinear space (- 256 
Linear Spaces). A linear space has two basic 
sets, one of which is a set K of elements called 
scalars and the other, a set V of elements called 
+vectors, two laws of compositions in K called 
addition and multiplication, a law of compo- 
sition in Vcalled addition, and an operation of 

K on Vcalled scalar multiplication. The laws 
of composition and the operation are given by 

elements of power sets: cx, , z2 E $$I%( K x K x K ), 
x~E(@(I/x Vx V), and QE$%(K x Vx V); and 
the basic properties of the linear space, such as 
?.(a + b) = iu + i,b (IG K, u, bE V), are described 
as propositions on K, V, x1, , r*4 and denoted 
by P(K, r/; r, , , x4), 

Up to now, we have been considering a 
given linear space. To give a description of a 
linear space in general, we use the symbols 
X,, X,, 5,) . , t4 instead of the symbols K, 

V, s(, , , CQ, replace conditions such as CI, E 
‘P(KxKxK) /... byt,~,1I(X,xX,xX,) ,..., 

and consider the set Z of these symbols and 
formulas: 

r,Eq(X* xx, XX,) ,...) 

L~‘!-YXl x x2 XX,) 

The set Z is called the type of linear space. 
Similarly, we consider the set r of all 
P(X,, X,, [,, , <,), corresponding to the 

basic properties P(K, V, aI,. , n,), of the 
linear space. The set r is called the axiom 

system of the linear space. 
In general, let A,, , A, be the basic sets 

(K and V in the preceding example). The basic 
concepts z,, , r,, (r,, , x4 in the preceding 
example) are given as elements of finitely 
generated sets from A,, , A,,,, i.e., elements 

of sets obtained by a finite number of ap- 
plications of the operations of forming the 
+Cartesian product and the tpower set from 
A,, , A,. Basic properties are given as pro- 
positions on A,, , A,, c(, , , CI,. These basic 

properties and A,, , A,,,, c(, , , cq, determine 

a mathematical system. We consider also a 
type Z of symbols X,, , X, of basic sets and 
symbols cl, . . , <. of basic concepts, and an 
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axiom system I- of basic properties. The pair 
(C, r) determines a mathematical struc- 
ture. When we substitute sets A,, . , A, for 

X ,,..., X,andsc ,,..., x,for< ,,..., &.where 
X,, , X, and 5,). , & satisfy the axiom 
system r, then (A,, . . , A,,a ,,..., cc,)iscalleda 
mathematical system with the mathematical 
structure (C, r), or a model of the structure 

(C, r). Two mathematical systems are called 
similar or of the same kind if they have the 

same mathematical structure. Groups, rings, 
topological spaces, etc., are mathematical 
structures. Mathematical systems are some- 
times called algebraic systems in the wider 

sense, and when we consider mainly their laws 
of composition (and operations), we call them 

algebraic systems. We explain this in further 
detail in Section C. 

C. Algebraic Systems 

Algebraic systems are sets with laws of compo- 

sition and operations satisfying certain axiom 
systems; the laws of composition and oper- 
ations and the axiom systems they satisfy 

determine their type (- 2 Abelian Groups, 29 
Associative Algebras, 42 Boolean Algebra, 67 
Commutative Rings, 149 Fields, 151 Finite 
Groups, 190 Groups, 23 1 Jorden Algebras, 248 
Lie Algebras, 368 Rings). Each algebraic sys- 
tem has its own theory, but general properties 

and related concepts are dealt with from a 
common standpoint. From this common 
ground we often get an insight into concepts 
from which arose a general theory of math- 
ematical systems. We describe here only al- 
gebraic systems, but it is possible to describe 

similar concepts for mathematical systems. 
The following is a description based mainly on 
one law of composition (a, b)-ah; a similar 
description is possible for the case of two or 
more laws of composition. 

The law of composition ub is sometimes 
written a+h, u’h, [a,h], etc. A mappingf:.4i-, 
A’ of similar algebraic systems A and A’ is 
called a homomorphism provided that ,f‘(uh) = 
J’(u)f(b) (a, hi A). A’ is said to be homomor- 

phic to A if there is homomorphism from A 
onto A’. If ,f is one-to-one, onto, andits in- 
verse mapping J’-’ : A’AA is also a homomor- 

phism, then f is called an isomorphism, A’ is 
said to be isomorphic to A, and the relation is 
written A G A’. The composition of homomor- 
phisms is a homomorphism, and the identity 
mapping is an isomorphism. A homomor- 
phism of A to A itself is called an endomor- 

phism, and if it is also an isomorphism, then 
it is an automorphism. The set of all endo- 

morphisms of A forms a tsemigroup under 

composition, and the set of automlorphisms 
forms a group under composition. The con- 
cept of homomorphism is a fundamental 

concept appearing in all algebraic systems. A 
homomorphism is sometimes called a 
representation. 

An element e of an algebraic system A with 
a law of composition ab is called an identity 
element if ae = eu = a (for all a E A). If such an 
element exists, then it is unique. In the case of 
a ring, two laws of composition, addition and 
multiplication, are given. In this case the iden- 

tity element for multiplication (if it exists) is 
called the identity element (or +un-ity element) 
of the ring. In the case of homomorphism 

between groups, the identity element is map- 

ped to the identity element, but this does 
not always hold in general algebraic systems. 
Since the identity element plays an important 
role, it is frequently added to the basic con- 

cepts. Homomorphism between mathematical 
systems is generally defined to induce a map- 

ping between basic concepts. A semigroup and 
a ring with a unity element are called a unitary 
semigroup (monoid) and a unitary ring, respec- 
tively, and homomorphisms betwe:en these 
systems are restricted to mappings that map 

the identity element to the identity element. 

Let A and A’ be similar algebraic systems, 
and let A be a subset of A’. A is called a sub- 
system of A’ if the mapping ,f: A+ A’ defined 
by ,f(u) = u(ue A) is a homomorphllsm. A sub- 
system of a group (ring) is called a tsubgroup 
(tsubring), and similarly for other ialgebraic 
systems. 

An iequivalence relation R in an alge- 
braic system A is called compatible with the 

law of composition if R(u, a’) and R(h, h’) 
imply R(ub, a’h’). Consider the tquotient set 

A/R. Then the law of composition in A/R is 
uniquely determined so that the mapping 
/‘: A --) A/R defined by a of is a homomor- 
‘phism. The algebraic system thus obtained 
is called a quotient system. A quotient sys- 
tem of a group (ring) is a group (ring), called 
a +quotient group (tquotient ring). Other 
cases, including those where operations are 
given, are treated similarly (- 52 Categories 
and Functors). 
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Surfaces 

A. The Notion of a Surface 

The notion of a surface may be roughly ex- 
pressed by saying that by moving a curve we 
get a surface or that the boundary of a solid 
body is a surface. But these propositions can- 
not be considered mathematical definitions of 
a surface. We also make a distinction between 
surfaces and planes in ordinary language, 
where we mean by surfaces only those that are 
not planes. In mathematical language, how- 
ever, planes are usually included among the 
surfaces. 

A surface can be defined as a 2-dimensional 
+continuum, in accordance with the definition 

of a curve as a l-dimensional continuum. 
However, while we have a theory of curves 
based on this definition, we do not have a 
similar theory of surfaces thus defined (- 93 
Curves). 

What is called a surface or a curved surface 

is usually a 2-dimensional ttopological mani- 
fold, that is, a topological space that satisfies 
the tsecond countability axiom and of which 
every point has a neighborhood thomeomor- 

phic to the interior of a circular disk in a 
2-dimensional Euclidean space. In the follow- 
ing sections, we mean by a surface such a 2- 
dimensional topological manifold. 

B. Examples and Classification 

The simplest examples of surfaces are the 2- 

dimensional tsimplex and the 2-dimensional 
isphere. Surfaces are generally +simplicially 
decomposable (or triangulable) and hence 
homeomorphic to 2-dimensional polyhedra (T. 

Rad6, Acta Sci. Math. Szeged. (1925)). A +com- 
pact surface is called a closed surface, and a 
noncompact surface is called an open surface. 
A closed surface is decomposable into a finite 
number of 2-simplexes and so can be inter- 
preted as a tcombinatorial manifold. A 2- 

dimensional topological manifold having a 
boundary is called a surface with boundary. A 
2-simplex is an example of a surface with 
boundary, and a sphere is an example of a 

closed surface without boundary. 
Surfaces are classified as torientable and 

tnonorientable. In the special case when a sur- 
face is +embedded in a 3-dimensional Euclid- 
ean space E3, whether the surface is orien- 
table or not depends on its having two sides 

(the “surface” and “back”) or only one side. 
Therefore, in this special case, an orientable 
surface is called two-sided, and a nonorientable 

surface, one-sided. A nonorientable closed 

surface without boundary cannot be embed- 
ded in the Euclidean space E3 (- 56 Charac- 
teristic Classes, 114 Differential Topology). 

The first example of a nonorientable surface 
(with boundary) is the so-called Miihius strip 
or Miihius hand, constructed as an tidenti- 

fication space from a rectangle by twisting 
through 180” and identifying the opposite 
edges with one another (Fig. 1). 

A1 
B C 

A 4!i!EQ i 

DB 

Fig. 1 

As illustrated in Fig. 2, from a rectangle 
ABCD we can obtain a closed surface homeo- 
morphic to the product space S’ x S’ by 
identifying the opposite edges AB with DC 
and BC with AD. This surface is the so-called 
2-dimensional torus (or anchor ring). In this 

case, the four vertices A, B, C, D of the rec- 
tangle correspond to one point p on the sur- 

face, and the pairs of edges AB, DC and BC, 
AD correspond to closed curves a’ and h’ on 
the surface. We use the notation aba-‘bm’ to 
represent a torus. This refers to the fact that 
the torus is obtained from an oriented four- 
sided polygon by identifying the first side and 
the third (with reversed orientation), the sec- 
ond side and the fourth (with reversed orienta- 
tion). Similarly, aa m1 represents a sphere (Fig. 
3), and a,b,a;lb;‘a,b,a;lb;l represents the 

closed surface shown in Fig. 4. 

B b C 

Fig. 2 

Fig. 3 
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Fig. 4 

All closed surfaces without boundary are 
constructed by identifying suitable pairs of 
sides of a 2n-sided polygon in a Euclidean 
plane E*. Furthermore, a closed orientable 
surface without boundary is homeomorphic to 

the surface represented by au-’ or 

u,h,a;‘b,‘...a,b,a,‘b,‘. (1) 

The 1 -dimensional +Betti number of this 

surface is 2p, the O-dimensional and 2-dimen- 
sional +Betti numbers are 1, the ttorsion coefi- 

cients are all 0, and p is called the genus of the 
surface. Also, a closed orientable surface of 
genus p with boundaries ci , . , ck is repre- 
sented by 

w,c, w;’ w,c,w,‘a,b,a;‘b,’ . ..a.b,a,‘b,’ 

(2) 

(Fig. 5). A closed nonorientable surface with- 
out boundary is represented by 

(3) 

Fig. 5 Fig. 9 

The l-dimensional Betti number of this 

surface is q - 1, the O-dimensional and 2- 
dimensional Betti numbers are 1 and 0, re- 
spectively, the l-dimensional torston coeffi- 
cient is 2, the O-dimensional and 2-dimensional 
torsion coefficients are 0, and q is called the 
genus of the surface. A closed nonorientable 
surface of genus q with boundaries c, , , ck 

is represented by 

-1 w,c,w, . ..WkCkWk -‘alal . ..uquy. (4) 

Each of forms (l))(4) is called the normal form 

of the respective surface, and-the curves q, b,, 

wk are called the normal sections of the surface. 
To explain the notation in (3), we first take the 
simplest case, aa. In this case, the surface is 
obtained from a disk by identifying each pair 
of points on the circumference that are end- 
points of a diameter (Fig. 6). The :surface au is 

then homeomorphic to a iproject-lve plane of 
which a decomposition into a complex of 
triangles is illustrated in Fig. 7. On the other 
hand, aabb represents a surface like that 

shown in Fig. 8, called the Klein bottle. Fig. 9 
shows a handle, and Fig. 10 shows a cross cap. 

Fig. 6 
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Fig. 10 

The last two surfaces have boundaries; a 
handle is orientable, while a cross cap is non- 
orientable and homeomorphic to the Mobius 

strip. If we delete p disks from a sphere and 
replace them with an equal number of handles, 
then we obtain a surface homeomorphic to 
the surface represented in (1) while if we 
replace the disks by cross caps instead of by 
handles, then the surface thus obtained is 
homeomorphic to that represented in (3). 
Now we decompose the surfaces (1) and (3) 

into triangles and denote the number of i- 

dimensional simplexes by si (i = 0, 1,2). Then in 
view of the tEuler-Poincare formula, the sur- 
faces (1) and (3) satisfy the respective formulas 

a,-q+a,=2-q. 

The tRiemann surfaces of talgebraic func- 

tions of one complex variable are always sur- 
faces of type (1) and their genera p coincide 
with those of algebraic functions. 

All closed surfaces are homeomorphic to 

surfaces of types (I), (2), (3), or (4). A necessary 
and sufficient condition for two surfaces to be 

homeomorphic to each other is coincidence of 
the numbers of their boundaries, their orienta- 
bility or nonorientability, and their genera (or 
+Euler characteristic a0 -u’ + 3’). This propo- 
sition is called the fundamental theorem of the 
topology of surfaces. The thomeomorphism 
problem of closed surfaces is completely solved 
by this theorem. The same problem for n 
(n > 3) manifolds, even if they are compact, 

remains open. (For surface area - 246 Length 
and Area. For the differential geometry of 

surfaces - 111 Differential Geometry of 
Curves and Surfaces.) 
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411 (1.4) 
Symbolic Logic 

A. General Remarks 

Symbolic logic (or mathematical logic) is a field 
of logic in which logical inferences commonly 
used in mathematics are investigated by use of 
mathematical symbols. 

The algebra of logic originally set forth by 

G. Boole [l] and A. de Morgan [2] is actually 
an algebra of sets or relations; it did not reach 

the same level as the symbolic logic of today. 
G. Frege, who dealt not only with the logic 

of propositions but also with the first-order 
predicate logic using quantifiers (- Sections 
C and K), should be regarded as the real 
originator of symbolic logic. Frege’s work, 
however, was not recognized for some time. 
Logical studies by C. S. Peirce, E. Schroder, 
and G. Peano appeared soon after Frege, but 
they were limited mostly to propositions and 
did not develop Frege’s work. An essential 
development of Frege’s method was brought 

about by B. Russell, who, with the collabor- 
ation of A. N. Whitehead, summarized his 

results in Principia mathematics [4], which 
seemed to have completed the theory of sym- 
bolic logic at the time of its appearance. 

B. Logical Symbols 

If A and B are propositions, the propositions 
(A and B), (A or B), (A implies B), and (not A) 
are denoted by 

A A B, AvB, A-tB, lA, 

respectively. We call 1 A the negation of A, 

A A B the conjunction (or logical product), 
A v B the disjunction (or logical sum), and 
A + B the implication (or B by A). The propo- 
sition (A+B)r\(B+A) is denoted by AttB 
and is read “A and B are equivalent.” A v B 
means that at least one of A and B holds. The 
propositions (For all x, the proposition F(x) 

holds) and (There exists an x such that F(x) 
holds) are denoted by VxF(x) and 3xF(x), 
respectively. A proposition of the form V.xF(x) 
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is called a universal proposition, and one of the 
form &F(x), an existential proposition. The 

symbols A, v , -+, c--), 1, V, 3 are called log- 
ical symbols. 

There are various other ways to denote 
logical symbols, including: 

AAB: A&B, A.B, 

AvB: A+B, 

A+B: AxB, A-B, 

AttB: APB, A-B, A-B, AIcB, A-B, 

1A: -A, A; 

VxF(x): (x)F(x), rIxF(x), &Jw, 

3xF(x): (Ex)F(x), CxF(x), VxF(x). 

C. Free and Bound Variables 

Any function whose values are propositions is 
called a propositional function. Vx and 3x can 
be regarded as operators that transform any 
propositional function F(x) into the propo- 
sitions VxF(x) and 3xF(x), respectively. Vx and 

3x are called quantifiers; the former is called 
the universal quantifier and the latter the 
existential quantifier. F(x) is transformed 
into VxF(x) or 3xF(x) just as a function f(x) 
is transformed into the definite integral 

Jd f(x)dx; the resultant propositions VxF(x) 
and 3xF(x) are no longer functions of x. The 
variable x in VxF(x) and in 3xF(x) is called a 
bound variable, and the variable x in F(x), 
when it is not bound by Vx or 3x, is called a 
free variable. Some people employ different 
kinds of symbols for free variables and bound 

variables to avoid confusion. 

D. Formal Expressions of Propositions 

A formal expression of a proposition in terms 
of logical symbols is called a formula. More 

precisely, formulas are constructed by the 
following formation rules: (1) If VI is a formula, 
1% is also a formula. If 9I and 8 are for- 

mulas, 9I A %, Cu v 6, % --) b are all formulas. 
(2) If 8(a) is a formula and a is a free variable, 
then Vxg(x) and 3x5(x) are formulas, where x 
is an arbitrary bound variable not contained 
in z(a) and 8(x) is the result of substituting x 

for a throughout s(a). 
We use formulas of various scope accord- 

ing to different purposes. To indicate the scope 

of formulas, we fix a set of formulas, each 
element of which is called a prime formula (or 
atomic formula). The scope of formulas is the 

set of formulas obtained from the prime for- 
mulas by formation rules (1) and (2). 

E. Propositional Logic 

Propositional logic is the field in symbolic 
logic in which we study relations between 
propositions exclusively in connection with the 
four logical symbols A, v , +, and 1, called 

propositional connectives. 
In propositional logic, we deal only with 

operations of logical operators denoted by 

propositional connectives, regarding the vari- 
ables for denoting propositions, called propo- 
sition variables, only as prime formulas. We 
examine problems such as: What kinds of 
formulas are identically true when their propo- 
sition variables are replaced by any propo- 
sitions, and what kinds of formulas can some- 
times be true? 

Consider the two symbols v and A, 
read true and false, respectively, and let A = 
{V, A}. A univalent function frotn A, or 

more generally from a Cartesian product 
A x . x A, into A is called a truth function. 
We can regard A, v, +, 1 as the following 
truth functions: (1) A A B= Y for 4 = B= v, 
and AA B= h otherwise; (2) A vB= h for 
A=B=h,andAvB= Votherwise;(3) 
A-B= h for A= Y and B= h, and 
A+B= v otherwise; (4) lA= h for A= v, 
and lA=Y for A= h. 

If we regard proposition variabmles as vari- 
ables whose domain is A, then each formula 

represents a truth function. Conversely, any 
truth function (of a finite number of indepen- 

dent variables) can be expressed by an appro- 
priate formula, although such a formula is not 
uniquely determined. If a formula is regarded 
as a truth function, the value of thle function 
determined by a combination of values of the 
independent variables involved in the formula 
is called the truth value of the formula. 

A formula corresponding to a truth function 
that takes only v as its value is called a tau- 

tology. For example, %v 12I and ((‘X-B) 
+5X)+ 9I are tautologies. Since a truth func- 

tion with n independent variables takes values 
corresponding to 2” combinations of truth 
values of its variables, we can determine in a 
finite number of steps whether a given formula 
is a tautology. If a-23 is a tautology (that is, 
Cu and !.I3 correspond to the same truth func- 

tion), then the formulas QI and 23 .are said to be 
equivalent. 

F. Propositional Calculus 

It is possible to choose some specific tau- 
tologies, designate them as axioms, and derive 

all tautologies from them by appropriately 
given rules of inference. Such a system is called 

a propositional calculus. There are many ways 
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to stipulate axioms and rules of inference for 

a propositional calculus. 
The abovementioned propositional calculus 

corresponds to the so-called classical propo- 
sitional logic (- Section L). By choosing ap- 
propriate axioms and rules of inference we can 
also formally construct intuitionistic or other 
propositional logics. In intuitionistic logic the 

law of the texcluded middle is not accepted, 
and hence it is impossible to formalize intui- 
tionistic propositional logic by the notion of 

tautology. We therefore usually adopt the 
method of propositional calculus, instead of 
using the notion of tautology, to formalize 
intuitionistic propositional logic. For example, 
V. I. Glivenko’s theorem [S], that if a formula 
‘91 can be proved in classical logic, then 1 1 CL1 
can be proved in intuitionistic logic, was ob- 
tained by such formalistic considerations. A 
method of extending the classical concepts of 

truth value and tautology to intuitionistic 
and other logics has been obtained by S. A. 
Kripke. There are also studies of logics inter- 

mediate between intuitionistic and classical 
logic (T. Umezawa). 

G. Predicate Logic 

Predicate logic is the area of symbolic logic in 
which we take quantifiers in account. Mainly 
propositional functions are discussed in predi- 

cate logic. In the strict sense only single- 
variable propositional functions are called 
predicates, but the phrase predicate of n argu- 

ments (or wary predicate) denoting an n- 
variable propositional function is also em- 

ployed. Single-variable (or unary) predicates 
are also called properties. We say that u has 
the property F if the proposition F(a) formed 
by the property F is true. Predicates of two 
arguments are called binary relations. The 

proposition R(a, b) formed by the binary re- 
lation R is occasionally expressed in the form 
aRb. Generally, predicates of n arguments are 

called n-ary relations. The domain of defini- 
tion of a unary predicate is called the object 
domain, elements of the object domain are 

called objects, and any variable running over 
the object domain is called an object variable. 
We assume here that the object domain is not 
empty. When we deal with a number of predi- 
cates simultaneously (with different numbers of 
variables), it is usual to arrange things so that 
all the independent variables have the same 

object domain by suitably extending their 
object domains. 

Predicate logic in its purest sense deals 

exclusively with the general properties of 

quantifiers in connection with propositional 
connectives. The only objects dealt with in this 

field are predicate variables defined over a 
certain common domain and object variables 
running over the domain. Propositional vari- 
ables are regarded as predicates of no vari- 
ables. Each expression F(a,, . . , a,) for any 
predicate variable F of n variables a,, , a, 

(object variables designated as free) is regarded 
as a prime formula (n = 0, 1,2, ), and we deal 
exclusively with formulas generated by these 
prime formulas, where bound variables are 

also restricted to object variables that have a 
common domain. We give no specification for 
the range of objects except that it be the com- 
mon domain of the object variables. 

By designating an object domain and sub- 
stituting a predicate defined over the domain 
for each predicate variable in a formula, we 
obtain a proposition. By substituting further 

an object (object constant) belonging to the 
object domain for each object variable in a 
proposition, we obtain a proposition having a 

definite truth value. When we designate an 
object domain and further associate with each 
predicate variable as well as with each object 

variable a predicate or an object to be sub- 
stituted for it, we call the pair consisting of the 
object domain and the association a model. 
Any formula that is true for every model is 
called an identically true formula or valid 
formula. The study of identically true formu- 

las is one of the most important problems in 
predicate logic. 

H. Formal Representations of Mathematical 
Propositions 

To obtain a formal representation of a math- 
ematical theory by predicate logic, we must 
first specify its object domain, which is a non- 

empty set whose elements are called individ- 
uals; accordingly the object domain is called 

the individual domain, and object variables are 
called individual variables. Secondly we must 
specify individual symbols, function symbols, 

and predicate symbols, signifying specific indi- 
viduals, functions, and tpredicates, respectively. 

Here a function of n arguments is a univa- 
lent mapping from the Cartesian product 
D x x D of n copies of the given set to D. 
Then we define the notion of term as in the 
next paragraph to represent each individual 
formally. Finally we express propositions for- 
mally by formulas. 

Definition of terms (formation rule for terms): 
(1) Each individual symbol is a term. (2) Each 

free variable is a term. (3) f(tt , , t,) is a term 
if t, , , t, are terms and ,f is a function symbol 

of n arguments. (4) The only terms are those 

given by (l)-(3). 
As a prime formula in this case we use any 
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formula of the form F(t,, , t,), where F is a 
predicate symbol of n arguments and t,, , t, 
are arbitrary terms. To define the notions of 

term and formula, we need logical symbols, 
free and bound individual variables, and also a 

list of individual symbols, function symbols, 
and predicate symbols. 

In pure predicate logic, the individual 
domain is not concrete, and we study only 
general forms of propositions. Hence, in this 
case, predicate or function symbols are not 
representations of concrete predicates or func- 

tions but are predicate variables and function 
variables. We also use free individual variables 
instead of individual symbols. In fact, it is now 
most common that function variables are 
dispensed with, and only free individual vari- 

ables are used as terms. 

I. Formulation of Mathematical Theories 

To formalize a theory we need axioms and 
rules of inference. Axioms constitute a certain 
specific set of formulas, and a rule of inference 
is a rule for deducing a formula from other 
formulas. A formula is said to be provable if it 

can be deduced from the axioms by repeated 
application of rules of inference. Axioms are 
divided into two types: logical axioms, which 
are common to all theories, and mathematical 
axioms, which are peculiar to each individual 
theory. The set of mathematical axioms is 

called the axiom system of the theory. 
(I) Logical axioms: (1) A formula that is the 

result of substituting arbitrary formulas for the 
proposition variables in a tautology is an 
axiom. (2) Any formula of the form 

is an axiom, where 3(t) is the result of sub- 

stituting an arbitrary term t for x in 3(x). 
(II) Rules of inference: (I) We can deduce a 

formula 23 from two formulas (rl and ‘U-8 
(modus ponens). (2) We can deduce C(I+VX~(X) 
from a formula %+3(a) and 3x3(x)+% 

from ~(a)+%, where u is a free individual 
variable contained in neither ‘11 nor s(x) and 
%(a) is the result of substituting u for x in g(x). 

If an axiom system is added to these logical 

axioms and rules of inference, we say that a 
formal system is given. 

A formal system S or its axiom system is 
said to be contradictory or to contain a con- 
tradiction if a formula VI and its negation 1 CLI 
are provable; otherwise it is said to be consis- 
tent. Since 

is a tautology, we can show that any formula 
is provable in a formal system containing a 

contradiction. The validity of a proof by 

reductio ad absurdum lies in the f.act that 

((Il-r(BA liB))-1% 

is a tautology. An affirmative proposition 
(formula) may be obtained by reductio ad 
absurdum since the formula (of flropositional 
logic) representing the discharge of double 
negation 

1 lT!+'U 

is a tautology. 

J. Predicate Calculus 

If a formula has no free individual variable, we 
call it a closed formula. Now we consider a 

formal system S whose mathematical axioms 
are closed. A formula 91 is provable in S if 
and only if there exist suitable m.athematical 
axioms E,, ,E, such that the formula 

is provable without the use of mathematical 
axioms. Since any axiom system can be re- 

placed by an equivalent axiom system contain- 
ing only closed formulas, the study of a formal 
system can be reduced to the study of pure 

logic. 
In the following we take no individual sym- 

bols or function symbols into consideration 
and we use predicate variables as predicate 
symbols in accordance with the commonly 

accepted method of stating properties of the 
pure predicate logic; but only in the case of 
predicate logic with equality will ‘we use predi- 
cate variables and the equality predicate = as 

a predicate symbol. However, we can safely 
state that we use function variables as function 
symbols. 

The formal system with no mathematical 
axioms is called the predicate calculus. The 
formal system whose mathematical axioms are 
the equality axioms 

u=u, u=/J + m4+im)) 

is called the predicate calculus with equality. 
In the following, by being provable we mean 

being provable in the predicate calculus. 
(1) Every provable formula is valid. 
(2) Conversely, any valid formula is prov- 

able (K. Code1 [6]). This fact is called the 
completeness of the predicate calculus. In fact, 
by Godel’s proof, a formula (rI is provable if 
9I is always true in every interpretation whose 
individual domain is of tcountable cardinality. 
In another formulation, if 1 VI is not provable, 

the formula 3 is a true proposition in some 
interpretation (and the individual domain in 

this case is of countable cardinality). We can 



1555 411 K 
Symbolic Logic 

extend this result as follows: If an axiom sys- 
tem generated by countably many closed 

formulas is consistent, then its mathematical 
axioms can be considered true propositions 
by a common interpretation. In this sense, 

Giidel’s completeness theorem gives another 
proof of the %kolem-Lowenheim theorem. 

(3) The predicate calculus is consistent. 
Although this result is obtained from (1) in this 
section, it is not difftcult to show it directly 
(D. Hilbert and W. Ackermann [7]). 

(4) There are many different ways of giving 
logical axioms and rules of inference for the 
predicate calculus. G. Gentzen gave two types 

of systems in [S]; one is a natural deduction 
system in which it is easy to reproduce formal 
proofs directly from practical ones in math- 
ematics, and the other has a logically simpler 

structure. Concerning the latter, Gentzen 
proved Gentzen’s fundamental theorem, which 
shows that a formal proof of a formula may be 
translated into a “direct” proof. The theorem 
itself and its idea were powerful tools for ob- 
taining consistency proofs. 

(5) If the proposition 3x’.(x) is true, we 
choose one of the individuals x satisfying the 

condition ‘LI(x), and denote it by 8x%(x). When 
3x91(x) is false, we let c-:x’lI(x) represent an 
arbitrary individual. Then 

3xQr(x)+‘x(ExcLr(x)) (1) 

is true. We consider EX to be an operator as- 
sociating an individual sxqI(x) with a propo- 
sition 9I(x) containing the variable x. Hilbert 
called it the transfinite logical choice function; 
today we call it Hilbert’s E-operator (or E- 
quantifier), and the logical symbol E used in 
this sense Hilbert’s E-symbol. Using the E- 

symbol, 3xX(x) and Vx’lI(x) are represented by 

Bl(EXPI(X)), \Ll(cx 1 VI(x)), 

respectively, for any N(x). The system of predi- 
cate calculus adding formulas of the form (1) 
as axioms is essentially equivalent to the usual 

predicate calculus. This result, called the c- 
theorem, reads as follows: When a formula 6 is 
provable under the assumption that every 
formula of the form (1) is an axiom, we can 
prove (5 using no axioms of the form (1) if Cr 
contains no logical symbol s (D. Hilbert and 
P. Bernays [9]). Moreover, a similar theorem 

holds when axioms of the form 

vx(‘.x(x)~B(x))~EX%(X)=CX%(X) 

are added (S. Maehara [lo]). 

(2) 

(6) For a given formula ‘U, call 21’ a normal 
form of PI when the formula 

YIttW 

is provable and ‘% satisfies a particular con- 

dition For example, for any formula YI there is 

a normal form 9I’ satisfying the condition: YI’ 
has the form 

Q,-xl . . . Q.x,W,, . . ..x.), 

where Qx means a quantifier Vx or 3x, and 

%(x,, , x,) contains no quantifier and has no 
predicate variables or free individual variables 
not contained in ‘Ll. A normal form of this 

kind is called a prenex normal form. 
(7) We have dealt with the classical first- 

order predicate logic until now. For other 
predicate logics (- Sections K and L) also, we 
can consider a predicate calculus or a formal 
system by first defining suitable axioms or 

rules of inference. Gentzen’s fundamental 
theorem applies to the intuitionistic predicate 
calculus formulated by V. I. Glivenko, A. 
Heyting, and others. Since Gentzen’s funda- 

mental theorem holds not only in classical 
logic and intuitionistic logic but also in several 
systems of frst-order predicate logic or pro- 
positional logic, it is useful for getting results 
in modal and other logics (M. Ohnishi, K. 
Matsumoto). Moreover, Glivenko’s theorem 
in propositional logic [S] is also extended to 
predicate calculus by using a rather weak 

representation (S. Kuroda [12]). G. Takeuti 
expected that a theorem similar to Gentzen’s 

fundamental theorem would hold in higher- 

order predicate logic also, and showed that 
the consistency of analysis would follow if 
that conjecture could be verified [ 131. More- 

over, in many important cases, he showed 
constructively that the conjecture holds par- 

tially. The conjecture was finally proved by 
M. Takahashi [ 141 by a nonconstructive 
method. Concerning this, there are also con- 
tributions by S. Maehara, T. Simauti, M. 
Yasuhara. and W. Tait. 

K. Predicate Logics of Higher Order 

In ordinary predicate logic, the bound vari- 
ables are restricted to individual variables. In 
this sense, ordinary predicate logic is called 
first-order predicate logic, while predicate logic 
dealing with quantifiers VP or 3P for a predi- 
cate variable P is called second-order predicate 
logic. 

Generalizing further, we can introduce the 

so-called third-order predicate logic. First we 
fix the individual domain D,. Then, by intro- 
ducing the whole class 0; of predicates of n 

variables, each running over the object domain 
D,, we can introduce predicates that have 0; 
as their object domain. This kind of predicate 
is called a second-order predicate with respect 

to the individual domain D,. Even when 
we restrict second-order predicates to one- 
variable predicates, they are divided into vari- 
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ous types, and the domains of independent 

variables do not coincide in the case of more 
than two variables. In contrast, predicates 
having D, as their object domain are called 
first-order predicates. The logic having quan- 
tifiers that admit first-order predicate variables 
is second-order predicate logic, and the logic 
having quantifiers that admit up to second- 

order predicate variables is third-order predi- 
cate logic. Similarly, we can define further 
higher-order predicate logics. 

Higher-order predicate logic is occasionally 

called type theory, because variables arise that 
are classified into various types. Type theory is 
divided into simple type theory and ramified 
type theory. 

We confine ourselves to variables for single- 
variable predicates, and denote by P such a 
bound predicate variable. Then for any for- 
mula ;4(a) (with a a free individual variable), 
the formula 

is considered identically true. This is the point 
of view in simple type theory. 

Russell asserted first that this formula can- 
not be used reasonably if quantifiers with 
respect to predicate variables occur in s(x). 
This assertion is based on the point of view 
that the formula in the previous paragraph 

asserts that 5(x) is a first-order predicate, 
whereas any quantifier with respect to first- 

order predicate variables, whose definition 
assumes the totality of the first-order predi- 
cates, should not be used to introduce the first- 
order predicate a(x). For this purpose, Russell 
further classified the class of first-order predi- 

cates by their rank and adopted the axiom 

for the predicate variable Pk of rank k, where 

the rank i of any free predicate variable occur- 
ring in R(x) is dk, and the rank j of any 
bound predicate variable occurring in g(x) is 
<k. This is the point of view in ramified type 

theory, and we still must subdivide the types if 
we deal with higher-order propositions or 

propositions of many variables. Even Russell, 
having started from his ramified type theory, 

had to introduce the axiom of reducibility 
afterwards and reduce his theory to simple 
type theory. 

L. Systems of Logic 

Logic in the ordinary sense, which is based on 

the law of the excluded middle asserting that 
every proposition is in principle either true or 
false, is called classical logic. Usually, propo- 

sitional logic, predicate logic, and type theory 
are developed from the standpoint of classical 

logic. Occasionally the reasoning of intuition- 
istic mathematics is investigated using sym- 
bolic logic, in which the law of the excluded 
middle is not admitted (- 156 Foundations of 
Mathematics). Such logic is called intuitionistic 
logic. Logic is also subdivided into proposi- 

tional logic, predicate logic, etc., according to 
the extent of the propositions (formulas) dealt 
with. 

To express modal propositions stating possi- 
bility, necessity, etc., in symbolic logic, J. tu- 
kaszewicz proposed a propositional logic called 
three-valued logic, having a third truth value, 
neither true nor false. More generally, many- 

valued logics with any number of truth values 
have been introduced; classical logic is one of 
its special cases, two-valued logic with two 
truth values, true and false. Actually, however, 
many-valued logics with more than three truth 
values have not been studied mu’ch, while 
various studies in modal logic based on classi- 

cal logic have been successfully carried out. 
For example, studies of strict implication 
belong to this field. 
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412 (IV.13) 
Symmetric Riemannian 
Spaces and Real Forms 

A. Symmetric Riemannian Spaces 

Let M be a +Riemannian space. For each point 
p of M we can define a mapping gp of a suit- 

able neighborhood U, of p onto U, itself so 
that a,(x,)=x-,, where x, (It/ <E,x~=P) is any 

tgeodesic passing through the point p. We call 
M a locally symmetric Riemannian space if for 

any point p of M we can choose a neighbor- 
hood U,, so that crp is an tisometry of U,,. In 
order that a Riemannian space M be locally 

symmetric it is necessary and sufficient that the 
tcovariant differential (with respect to the 
+Riemannian connection) of the tcurvature 

tensor of A4 be 0. A locally symmetric Riemann- 
ian space is a +real analytic manifold. We say 

that a Riemannian space M is a globally sym- 
metric Riemannian space (or simply symmetric 
Riemannian space) if M is connected and if for 

each point p of M there exists an isometry cp 
of M onto M itself that has p as an isolated 

fixed point (i.e., has no fixed point except p in a 
certain neighborhood of p) and such that 0; is 
the identity transformation on M. In this case 

ap is called the symmetry at p. A (globally) 
symmetric Riemannian space is locally sym- 
metric and is a tcomplete Riemannian space. 
Conversely, a tsimply connected complete 
locally symmetric Riemannian space is a (glob- 
ally) symmetric Riemannian space. 

B. Symmetric Riemannian Homogeneous 

Spaces 

A thomogeneous space GJK of a connected 

+Lie group G is a symmetric homogeneous 

space (with respect to 0) if there exists an in- 

volutive automorphism (i.e., automorphism of 
order 2) 0 of G satisfying the condition Kt c 

Kc K,, where K, is the closed subgroup con- 
sisting of all elements of G left fixed by 0 and 
K,” is the connected component of the iden- 
tity element of K,,. In this case, the mapping 
aK+B(a)K (aEG) is a transformation of 
G/K having the point K as an isolated fixed 
point; more generally, the mapping OoO: aK --) 
a,O(a,)-’ O(a)K is a transformation of G/K 
that has an arbitrary given point a, K of G/K 
as an isolated fixed point. If there exists a G- 
invariant Riemannian metric on G/K, then 

G/K is a symmetric Riemannian space with 
symmetries { QaO 1 a,, E G} and is called a sym- 
metric Riemannian homogeneous space. A 
sufficient condition for a symmetric homoge- 
neous space G/K to be a symmetric Riemann- 
ian homogeneous space is that K be a com- 

pact subgroup. Conversely, given a symmetric 

Riemannian space M, let G be the connected 
component of the identity element of the Lie 
group formed by all the isometries of M; then 
M is represented as the symmetric Riemannian 
homogeneous space M = G/K and K is a com- 

pact group. In particular, a symmetric Rie- 
mannian space can be regarded as a Riemann- 
ian space that is realizable as a symmetric 

Riemannian homogeneous space. 
The Riemannian connection of a symme- 

tric Riemannian homogeneous space G/K is 
uniquely determined (independent of the 
choice of G-invariant Riemannian metric), and 

a geodesic xt( j tI < co, x0 = a, K) passing 
through a point a, K of G/K is of the form 
x, = (exp tX)a, K. Here X is any element of the 
Lie algebra g of G such that O(X)= -X, where 
0 also denotes the automorphism of g induced 

by the automorphism 0 of G and exp tX is the 
tone-parameter subgroup of G defined by the 
element X. The covariant differential of any G- 
invariant tensor field on G/K is 0, and any G- 
invariant idifferential form on G/K is a closed 
differential form. 

C. Classification of Symmetric Riemannian 
Spaces 

The tsimply connected tcovering Riemannian 
space of a symmetric Riemannian space is also 
a symmetric Riemannian space. Therefore the 
problem of classifying symmetric Riemannian 
spaces is reduced to classifying simply con- 
nected symmetric Riemannian spaces M and 
determining tdiscontinuous groups of iso- 
metries of M. When we take the +de Rham 

decomposition of such a space M and repre- 

sent M as the product of a real Euclidean 
space and a number of simply connected irre- 
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ducible Riemannian spaces, all the factors are 
symmetric Riemannian spaces. We say that M 

is an irreducible symmetric Riemannian space if 
it is a symmetric Riemannian space and is 
irreducible as a Riemannian space. 

A simply connected irreducible symmetric 
Riemannian space is isomorphic to one of the 
following four types of symmetric Riemannian 

homogeneous spaces (here Lie groups are 
always assumed to be connected): 

(1) The symmetric Riemannian homoge- 
neous space (G x G)/{ (a, a) 1 a E G) of the direct 

product G x G, where G is a simply connected 
compact isimple Lie group and the involutive 

automorphism of G x G is given by (a, h)d(h, a) 
((a, h)~ G x G). This space is isomorphic, as a 

Riemannian space, to the space G obtained by 
introducing a two-sided invariant Riemannian 

metric on the group G; the isomorphism is 
induced from the mapping G x G ~(a, h)+ 
Ub-‘EG. 

(2) A symmetric homogeneous space G/K, 
of a simply connected compact simple Lie 

group G with respect to an involutive auto- 
morphism 0 of G. In this case, the closed sub- 
group K, = {a E G) 0(u) = u} of G is connected. 

We assume here that 0 is a member of the 
given complete system of representatives of the 
iconjugate classes formed by the elements of 
order 2 in the automorphism group of the 
group G. 

(3) The homogeneous space G”/G, where GC 
is a complex simple Lie group whose tcenter 

reduces to the identity element and G is an 
arbitrary but fixed maximal compact subgroup 
of CC. 

(4) The homogeneous space G,/K, where G, 
is a noncompact simple Lie group whose 
center reduces to the identity element and 

which has no complex Lie group structure, 
and K is a maximal compact subgroup of G. 

In Section D we shall see that (3) and (4) are 
actually symmetric homogeneous spaces. All 

four types of symmetric Riemannian spaces are 
actually irreducible symmetric Riemannian 
spaces, and G-invariant Riemannian metrics 

on each of them are uniquely determined up to 

multiplication by a positive number. On the 
other hand, (1) and (2) are compact, while (3) 
and (4) are homeomorphic to Euclidean spaces 
and not compact. For spaces of types (1) and 

(3) the problem of classifying simply connected 
irreducible symmetric Riemannian spaces is 
reduced to classifying +compact real simple Lie 

algebras and tcomplex simple Lie algebras, 
respectively, while for types (2) and (4) it is 
reduced to the classification of noncompact 
real simple Lie algebras (- Section D) (for the 
result of classification of these types - Ap- 

pendix A, Table 5.11). On the other hand, any 
(not necessarily simply connected) irreducible 

symmetric Riemannian space defines one of 
(l)-(4) as its tuniversal covering manifold; if 
the covering manifold is of type (3) or (4), the 

original symmetric Riemannian space is neces- 
sarily simply connected. 

D. Symmetric Riemannian Homogeneous 
Spaces of Semisimple Lie Groups 

In Section C we saw that any irreducible sym- 
metric Riemannian space is representable as a 
symmetric Riemannian homogeneous space 
G/K on which a connected semisimple Lie 

group G acts +almost effectively (-- 249 Lie 
Groups). Among symmetric Riemannian 

spaces, such a space A4 = G/K is characterized 
as one admitting no nonzero vector field that 
is tparallel with respect to the Riemannian 
connection. Furthermore, if G acis effectively 

on M, G coincides with the connected compo- 
nent I(M)’ of the identity element of the Lie 
group formed by all the isometries of M. 

We let M = G/K be a symmetric Riemann- 
ian homogeneous space on which. a con- 
nected semisimple Lie group G acts almost 

effectively. Then G is a Lie group that is tlocally 
isomorphic to the group 1(M)‘, and therefore 
the Lie algebra of G is determined by M. Let g 
be the Lie algebra of G, f be the subalgebra of 
g corresponding to K, and 0 be the involutive 

automorphism of G defining the symmetric 
homogeneous space G/K. The automorphism 
of g defined by 6’ is also denoted by 0. Then f = 

{XEgIQ(X)=X}. Puttingm={XEg/B(X)= 
-X}, we have g = m + f (direct sum of linear 
spaces), and nr can be identified in a natural 

way with the tangent space at the point K of 
G/K. The tadjoint representation of G gives 
rise to a representation of K in g, which in- 
duces a linear representation Ad,,,(k) of K in m. 
Then {Ad,,,(k) 1 k E K} coincides wl th the +res- 
tricted homogeneous holonomy group at the 
point K of the Riemannian space G/K. 

Now let cp be the +Killing form of g. Then f 
and m are mutually orthogonal with respect to 

cp, and denoting by qt and (P,” the restrictions 
of cp to f and m, respectively, qDt is a negative 
definite quadratic form on f. If v,,~ is also a 
negative definite quadratic form on nt, g is a 
compact real semisimple Lie algebra and G/K 
is a compact symmetric Riemannian space; in 

this case we say that G/K is of compact type. 
In the opposite case, where (pm is a tpositive 

definite quadratic form, G/K is said to be of 
noncompact type. In this latter case, G/K is 
homeomo’rphic to a Euclidean space, and if 

the center of G is finite, K is a maximal com- 

pact subgroup of G. Furthermore, the group 
of isometries I(G/K) of G/K is canonically 
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isomorphic to the automorphism group of 
the Lie algebra 9. When G/K is of compact 
type (noncompact type), there exists one and 
only one G-invariant Riemannian metric on 

G/K, which induces in the tangent space m 
at the point K the positive definite inner 

product -v,,, (vd 
A symmetric Riemannian homogeneous 

space G/K, of compact type defined by a sim- 

ply connected compact semisimple Lie group 
G with respect to an involutive automorphism 
0 is simply connected. Let g = nr + f, be the de- 
composition of the Lie algebra g of G with 
respect to the automorphism 0 of 9, and let gc 
be the +complex form of g. Then the real sub- 
space gs = J-1 m + fs in gC is a real semi- 
simple Lie algebra and a treal form of ~1~. Let 
GB be the Lie group corresponding to the Lie 
algebra ge with center reduced to the identity 
element, and let K be the subgroup of G, cor- 

responding to fe. Then we get a (simply con- 
nected) symmetric Riemannian homogeneous 
space of noncompact type Go/K. 

When we start from a symmetric Riemann- 
ian space of noncompact type G/K instead of 
the symmetric Riemannian space of compact 
type G/K, and apply the same process as in 
the previous paragraphs, taking a simply 
connected G, as the Lie group corresponding 
to gs, we obtain a simply connected symmetric 

Riemannian homogeneous space of compact 
type. Indeed, each of these two processes is the 
reverse of the other, and in this way we get a 

one-to-one correspondence between simply 
connected symmetric Riemannian homoge- 
neous spaces of compact type and those of 
noncompact type. This relationship is called 

duality for symmetric Riemannian spaces; 
when two symmetric Riemannian spaces are 
related by duality, each is said to be the dual 
of the other. 

If one of the two symmetric Riemannian 
spaces related by duality is irreducible, the 

other is also irreducible. The duality holds 
between spaces of types (1) and (3) and be- 

tween those of types (2) and (4) described in 
Section C. This fact is based on the following 
theorem in the theory of Lie algebras, where 
we identify isomorphic Lie algebras. (i) Com- 

plex simple Lie algebras gc and compact real 
simple Lie algebras 9 are in one-to-one corre- 

spondence by the relation that gc is the com- 
plex form of 9. (ii) Form the Lie algebra g, in 

the above way from a compact real simple Lie 

algebra g and an involutive automorphism 0 
of n. We assume that 0 is a member of the 
given complete system of representatives of 

conjugate classes of involutive automorphisms 
in the automorphism group of 9. Then we get 

from the pair (g,O) a noncompact real simple 
Lie algebra gR, and any noncompact real 

simple Lie algebra is obtained by this process 
in one and only one way. 

Consider a Riemannian space given as a 
symmetric Riemannian homogeneous space M 
= G/K with a semisimple Lie group G, and let 
K be the +sectional curvature of M. Then if M 
is of compact type the value of K is > 0, and 
if M is of noncompact type it is GO. On the 
other hand, the rank of M is the (unique) di- 

mension of a commutative subalgebra of g 
that is contained in and maximal in m. (For 
results concerning the group of isometries of 
M, distribution of geodesics on M, etc. - 131.) 

E. Symmetric Hermitian Spaces 

A connected tcomplex manifold M with a 
+Hermitian metric is called a symmetric Her- 

mitian space if for each point p of M there 
exists an isometric and +biholomorphic trans- 

formation of M onto M that is of order 2 and 
has p as an isolated fixed point. As a real ana- 

lytic manifold, such a space M is a symmetric 
Riemannian space of even dimension, and the 
Hermitian metric of M is a +Kihler metric. Let 
I(M) be the (not necessarily connected) Lie 
group formed by all isometries of M, and let 
A(M) be the subgroup consisting of all holo- 

morphic transformations in I(M). Then .4(M) 
is a closed Lie subgroup of 1(M). Let G be the 
connected component ,4(M)' of the ideniity 
element of .4(M). Then G acts transitively on 
M, and M is expressed as a symmetric Rie- 

mannian homogeneous space G/K. 
Under the de Rham decomposition of a 

simply connected symmetric Hermitian space 
(regarded as a Riemannian space), all the 
factors are symmetric Hermitian spaces. The 
factor that is isomorphic to a real Euclidean 
spaces as a Riemannian space is a symmetric 
Hermitian space that is isomorphic to the 

complex Euclidean space c”. A symmetric 
Hermitian space defining an irreducible sym- 
metric Riemannian space is called an irreduc- 

ible symmetric Hermitian space. The problem 
of classifying symmetric Hermitian spaces is 
thus reduced to classifying irreducible sym- 

metric Hermitian spaces. 
In general, if the symmetric Riemannian 

space defined by a symmetric Hermitian space 
M is represented as a symmetric Riemannian 
homogeneous space G/K by a connected semi- 

simple Lie group G acting effectively on M, 
then M is simply connected, G coincides with 

the group A(M)’ introduced in the previous 
paragraph, and the center of K is not a +dis- 
Crete set. In particular, an irreducible sym- 
metric Hermitian space is simply connected. 

Moreover, in order for an irreducible symmetric 

Riemannian homogeneous space G/K to be 
defined by an irreducible symmetric Hermitian 
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space M, it is necessary and sufficient that the 
center of K not be a discrete set. If G acts 
effectively on M, then G is a simple Lie group 

whose center is reduced to the identity ele- 
ment, and the center of K is of dimension 1. 
For a space Gjlv satisfying these conditions, 
there are two kinds of structures of symmetric 
Hermitian spaces defining the Riemannian 

structure of G/K. 
As follows from the classification of irre- 

ducible symmetric Riemannian spaces, an 
irreducible Hermitian space defines one of the 
following symmetric Riemannian homogeneous 
spaces, and conversely, each of these homoge- 
neous spaces is defined by one of the two kinds 
of symmetric Hermitian spaces. 

(I) The symmetric homogeneous space G/k’ 

of a compact simple Lie group G with respect 
to an involutive automorphism 0 such that the 
center of G reduces to the identity element and 
the center of K is not a discrete set. Here 0 

may be assumed to be a representative of a 
conjugate class of involutive automorphisms 
in the automorphism group of G. 

(II) The homogeneous space G,/K of a 
noncompact simple Lie group G, by a maxi- 
mal compact subgroup K such that the center 
of G, reduces to the identity element and the 
center of K is not a discrete set. 

An irreducible symmetric Hermitian space 
of type (I) is compact and is isomorphic to a 

irational algebraic variety. An irreducible 
symmetric Hermitian space of type (II) is 

homeomorphic to a Euclidean space and is 
isomorphic (as a complex manifold) to a 
bounded domain in C” (Section F). 

By the same principle as for irreducible 
symmetric Riemannian spaces, a duality holds 
for irreducible symmetric Hermitian spaces 
which establishes a one-to-one correspondence 

between the spaces of types (I) and (II). Fur- 
thermore, an irreducible symmetric Hermitian 
space M, of type (II) that is dual to a given 
irreducible symmetric Hermitian space A4, 

= G/K of type (I) can be realized as an open 
complex submanifold of M, in the following 
way. Let GC be the connected component of 

the identity element in the Lie group formed 
by all the holomorphic transformations of A4,. 
Then GC is a complex simple Lie group con- 
taining G as a maximal compact subgroup, 

and the complex Lie algebra gc of GC contains 
the Lie algebra g of G as a real form. Let 0 be 
the involutive automorphism of G defining the 
symmetric homogeneous space G/K, and let g 

= m + t be the decomposition of g determined 
by 0. We denote by G, the real subgroup of GC 

corresponding to the real form go = J-1 m + 
t of gC. Then G, (i) is a closed subgroup of 
CC whose center reduces to the identity ele- 
ment and (ii) contains K as a maximal com- 

pact subgroup. By definition the space M,, is 

then given by Go/K. Now the group G, acts on 
A4, as a subgroup of GC, and the orbit of G, 

containing the point K of M, is an open com- 
plex submanifold that is isomorphic to M, (as 
a complex manifold). M, regarded as a com- 
plex manifold can be represented as the homo- 
geneous space GC/U of the comp18ex simple Lie 

group GC. 

F. Symmetric Bounded Domains 

We denote by D a bounded domarin in the 
complex Euclidean space C” of dimension n. 
We call D a symmetric bounded domain if for 
each point of D there exists a holomorphic 
transformation of order 2 of D onto D having 

the point as an isolated fixed point. On the 
other hand, the group of all holomorphic 
transformations of D is a Lie group, and D is 

called a homogeneous bounded domain if this 
group acts transitively on D. A symmetric 
bounded domain is a homogeneous bounded 
domain. The following theorem gives more 
precise results: On a bounded dommain D, 
+Bergman’s kernel function defines a Kghler 
metric that is invariant under all holomorphic 
transformations of D. If D is a symmetric 
bounded domain, D is a symmetric Hermitian 

space with respect to this metric.. and its defin- 
ing Riemannian space is a symmmetric Riemann- 
ian homogeneous space of nonoompact type 

G/K with semisimple Lie group G. Conversely, 

any symmetric Hermitian space of noncom- 
pact type is isomorphic (as a complex mani- 
fold) to a symmetric bounded domain. When 
D is isomorphic to an irreducible symmetric 
Hermitian space, we call D an irreducible 
symmetric bounded domain. A symmetric 
bounded domain is simply connected and can 
be decomposed into the direct product of irre- 
ducible symmetric bounded domains. 

The connected component of the identity 
element of the group of all holomorphic trans- 

formations of a symmetric bounded domain D 
is a semisimple Lie group that acts transitively 
on D. Conversely, D is a symmetric bounded 

domain if a connected semisimple Lie group, 
or more generally, a connected Lie group 
admitting a two-sided invariant tHaar mea- 

sure, acts transitively on D. Homogeneous 
bounded domains in C” are symmetric 
bounded domains if n < 3 but not necessarily 
when n>4. 

G. Examples of Irreducible Symmetric 
Riemannian Spaces 

Here we list irreducible symmetric Riemannian 
spaces of types (2) and (4) (- Section C) that 
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can be represented as homogeneous spaces of 

classical groups, using the notation introduced 
by E. Cartan. We denote by M, = G/K a sim- 
ply connected irreducible symmetric Riemann- 

ian space of type (2) where G is a group that 

acts almost effectively on M, and K is the 
subgroup given by K = K,” for an involutive 
automorphism 0 of G. For such an M,,, the 
space of type (4) that is dual to M, is denoted 
by A40 = Go/K. Clearly dim M, = dim M,. (For 
the dimension and rank of M, and for those 
M, that are represented as homogeneous 
spaces of simply connected texceptional com- 
pact simple Lie groups - Appendix A, Table 

5.111.) In this section (and also in Appendix A, 
Table 5.111), O(n), U(n), Sp(n), SL(n, R), and 

SL(n, C) are the torthogonal group of degree n, 
the +unitary group of degree n, the tsymplectic 
group of degree 2n, and the real and complex 
ispecial linear groups of degree n, respectively. 
Let SO(n)= SL(n, R)n O(n) and SU(n) = 
SL(n, C) n U(n). We put 

where I, is the p x p unit matrix. 

Type AI. M, = SU(n)/SO(n) (n > 1), where 
O(s) = s (with ?; the complex conjugate matrix 
of s). M, = SL(n, R)/SO(n). 

Type AII. M, = SU(2n)/Sp(n) (n > 1), where 
O(s)=J,sJ,‘. M,=SU*(2n)/Sp(n). Here 
SU*(2n) is the subgroup of SL(2n,C) formed 
by the matrices that commute with the trans-. 

formation (zi, ,z,, z,+i, ,z2.)+(Z,+,, , 

Zzn, --z , , , -Z,) in C”; SU*(2n) is called the 

quaternion unimodular group and is isomorphic 
to the commutator group of the group of all 
regular transformations in an n-dimensional 
vector space over the quaternion field H. 

Type AIII. Mu = SU(p + q)/S(U,, x Uq) (p 3 
qb l), where S(U,x U,)=SU(p+q)n(U(p) x 
U(q)), with U(p) x U(q) being canonically 
identified with a subgroup of U(p + q), and 
O(s) = I,,,sl,,,. This space M, is a +complex 
Grassmann manifold. M, = SU(p, q)/S( UP x U,), 
where SU(p, q) is the subgroup of SL(p + q, C) 
consisting of matrices that leave invariant the 

Hermitian form zili + +z,~~-z~+,Z,+, - 

“’ -zp+qzp+q. 
Type AIV. This is the case q = 1 of type AIII. 

M, is the (n - l)-dimensional complex projec- 
tive space, and M, is called a Hermitian hyper- 
bolic space. 

Type BDI. M,=SO(p+q)/SO(p) x SO(q) 

(p>q> l,p> l,p+q #4), where O(s)= I,,$,,,. 
M, is the +real Grassmann manifold formed by 

the oriented p-dimensional subspaces in Rp+“. 

M, = SOdp, q)lSO(p) x SO(q), where SO(p, q) is 
the subgroup of SL(n, R) consisting of matrices 
that leave invariant the quadratic form x: + 

2 2 2 +xP-Xp+,-...-Xp+qr and SO,(p, q) is the 
connected component of the identity element. 

Type BDII. This is the case q = 1 of type 

BDI. M, is the (n - I)-dimensional sphere, and 
MO is called a real hyperbolic space. 

Type DIII. M, = S0(2n)/U(n) (n > 2), where 

U(n) is regarded as a subgroup of SO(2n) by 
identifying SE U(n) with 

and 0(s)= J,,sJ;‘. M,=SO*(2n)/U(n). Here 

SO*(2n) denotes the group of all complex 
orthogonal matrices of determinant 1 leaving 
invariant the skew-Hermitian form z, Z,+, - 

zn+1z1 +zzz.+2 -Z”+2Z2+...+ZnZZn-Z2nZ,; 
this group is isomorphic to the group of all 

linear transformations leaving invariant a 
nondegenerate skew-Hermitian form in an n- 

dimensional vector space over the quaternion 
field H. 

Type CI. M,=Sp(n)/U(n) (n> 1), where U(n) 
is considered as a subgroup of Sp(n) by the 
identification U(n) c SO(2n) explained in type 

DIII and O(s) =S( = J,,sJ,‘). M,= Sp(n, R)/U(n), 
where Sp(n, R) is the real symplectic group of 
degree 2n. 

Type CII. M, = SP(P + q)lSp(p) x Sp(q) (P 3 
q> l), where Sp(p) x Sp(q) is identified with a 
subgroup of Sp(p + q) by the mapping 

and Rs) = K,,,sK,,,. MO = SP(P, q)lSp(p) x 
Sp(q). Here Sp(p, q) is the group of complex 

symplectic matrices of degree 2(p + q) leav- 
ing invariant the Hermitian form (zi , , 

zP+J K,,, ‘(Zi, ,Z,+,); this group is interpreted 
as the group of all linear transformations leav- 

ing invariant a nondegenerate Hermitian form 
of index p in a (p + q)-dimensional vector space 
over the quaternion field H. For q = I, Mu is 
the quaternion projective space, and M, is 
called the quaternion hyperbolic space. 

Among the spaces introduced here, there are 
some with lower p, q, n that coincide (as Rie- 
mannian spaces) (- Appendix A, Table 5.111). 

H. Space Forms 

A Riemannian manifold of +constant curvature 
is called a space form; it is said to be spherical, 



412 I 
Symmetric Riemannian Spaces and Real Forms 

1562 

Euclidean, or hyperbolic according as the con- 
stant curvature K is positive, zero, or negative. 

A space form is a locally symmetric Riemann- 
ian space; a simply connected complete space 
form is a sphere if K > 0, a real Euclidean 

space if K = 0, and a real hyperbolic space if 
K < 0. More generally, a complete spherical 
space form of even dimension is a sphere or 

a projective space, and one of odd dimension 
is an orientable manifold. A complete 2- 
dimensional Euclidean space form is one of 
the following spaces: Euclidean plane, cylinder, 
torus, +Mobius strip, +Klein bottle. Except for 
these five spaces and the 2-dimensional sphere, 

any iclosed surface is a 2-dimensional hyper- 
bolic space form (for details about space forms 

- C61). 

I. Examples of Irreducible Symmetric Bounded 
Domains 

Among the irreducible symmetric Riemannian 
spaces described in Section H, those defined by 
irreducible symmetric Hermitian spaces are of 
types AIII, DIII, BDI (q = 2), and CI. We list 

the irreducible symmetric bounded domains 
that are isomorphic to the irreducible Her- 
mitian spaces defining these spaces. Positive 
definiteness of a matrix will be written >>O. 

Type I,.,. (m’>m~l).Thesetofallmxm’ 
complex matrices Z satisfying the condition 
I,. -‘zZ>>O is a symmetric bounded domain 
in Cm”‘, which is isomorphic (as a complex 
manifold) to the irreducible symmetric Hermi- 
tian space defined by M, of type AI11 (p=m, 

q = m’). 
Type II, (m 3 2). The set of all m x m com- 

plex tskew-symmetric matrices Z satisfying the 
condition I,-‘zZ>>O is a symmetric bounded 

domain in Cm(m-1)i2 corresponding to the type 
DIII (n = m). 

Type III, (m 2 1). The set of all m x m com- 
plex symmetric matrices satisfying the con- 
dition I,-‘zZ>>O is a symmetric bounded 
domain in Cm(m+lXa corresponding to the type 
CI (n = m). This bounded domain is holomor- 
phically isomorphic to the +Siegel upper half- 
space of degree m. 

Type IV, (m > 1, m # 2). This bounded 
domain in C” is formed by the elements 
(z, , . , z,) satisfying the condition Izl 1’ + 

. ..+~z.~*<(l+~z~+...+z~~)/2<1,and 
corresponds to the type BDI (p = m, q = 2). 

Among these four types of bounded 

domains, the following complex analytic iso- 
morphisms hold: I,,, ~II,~III, EIV,, 11,~ 
I ,,3, IV,=III,, IV,gI,,,, IV,gII,. (For 

details about these symmetric bounded 

domains - [2].) There are two more kinds of 

irreducible symmetric bounded domains, 

which are represented as homogeneous spaces 
of exceptional Lie groups. 

J. Weakly Symmetric Riemannian Spaces 

A generalization of symmetric Riemannian 

space is the notion of weakly symmetric Rie- 
mannian space introduced by Selberg. Let M 
be a Riemannian space. M is called a weakly 
symmetric Riemannian space if a Lie sub- 
group G of the group of isometries I(M) acts 
transitively on M and there exists an element 
~EI(M) satisfying the relations (i) ,nGp-’ = G; 
(ii) $6 G; and (iii) for any two points x, y of 
M, there exists an element m of G such that px 
= my, py = mx. A symmetric Riemannian space 

M becomes a weakly symmetric Riemannian 
space if we put G = I(M) and p = the identity 
transformation; as the element m in condition 
(iii) we can take the symmetry op at the mid- 

point p on the geodesic arc joining x and y. 
There are, however, weakly symmetric Rie- 

mannian spaces that do not have the structure 
of a symmetric Riemannian space. An example 

of such a space is given by M = G == SL(2, R) 
with a suitable Riemannian metric, where p 
is the inner automorphism defined by 

1 0 ( > 0 -1 

(Selberg [4]). On a weakly symmetric Rie- 
mannian space, the ring of all G-invariant 
differential-integral operators is commutative; 
this fact is useful in the theory of spherical 
functions (- 437 Unitary Representations). 
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A +Riemannian manifold M is called a sym- 
metric Riemannian space if M is connected and 
if for each pe!v4 there exists an involutive 
tisometry gP of M that has p as an isolated 
fixed point. For the classification and the 

group-theoretic properties of symmetric Rie- 
mannian spaces - 412 Symmetric Riemann- 

ian Spaces and Real Forms. We state here 
the geometrical properties of a symmetric Rie- 

mannian space M. Let M be represented by 
G/K, a tsymmetric Riemannian homogeneous 
space. The +Lie algebras of G and K are de- 
noted by g and f respectively. Let us denote by 
T, the tleft translation of M defined by a E G, 
and by X* the vector field on M generated by 
X E g. We denote by 0 the differential of the 
involutive automorphism of G defining G/K 

and identify the subspace m = {XE~ 10(X) 
= -X} of g with the tangent space T,(M) of 
M at the origin o = K of M. The trepresen- 

tation off on m induced from the tadjoint 
representation of g is denoted by ad,,,. 

A. Riemannian Connections 

M is a complete real analytic thomogeneous 
Riemannian manifold. If M is a isymmetric 

Hermitian space, it is a thomogeneous Kah- 
lerian manifold. The +Riemannian connection 
V of M is the tcanonical connection of the 
homogeneous space G/K and satisfies V,X* = 

[X, Y] (Ysm) for each XEI and VyX*=O 
(Yem) for each X~rn. For each X~rn, the 

curve yx of M defined by yx(t) = (exp tX)o 
(t E R) is a igeodesic of M such that ~~(0) = o 

and yx(0) = X. In particular, the texponen- 
tial mapping Exp, at o is given by Exp, X = 
(exp X)o (X E m). For each X E m, the tparal- 
lel translation along the geodesic arc yx(t) 
(06 t < to) coincides with the differential of 
z,,~~~~. If M is compact, for each PE M there 

exists a smooth simply closed geodesic passing 
through p. Any G-invariant tensor field on M 

is iparallel with respect to V. Any G-invariant 

+differential form on M is closed. The Lie 
algebra h of the +restricted homogeneous 
holonomy group of M at o coincides with 

ad,” [m, m]. If the group I(M) of all isometries 
of M is tsemisimple, one has h = {A E gI(m) 1 

A g, = 0, A R, = 0) = ad,,& Here, g0 and R, 
denote the values at o of the Riemannian 
metric g and the +Riemannian curvature R of 
M, respectively, and A is the natural action 
of A on the tensors over m. If, moreover, M 

is a symmetric Hermitian space, the value 
J,, at o of the ialmost complex structure J 

of M belongs to the center of h. In general, 
h = { 0) if and only if M is +flat, and h has no 
nonzero invariant on m if and only if I(M) 
is semisimple. 

B. Riemannian Curvature Tensors 

The Riemannian curvature tensor R of M is 
parallel and satisfies R,(X, Y) = -ad,, [X, Y] 

(X, Y~nr). Assume that dim M > 2 in the fol- 
lowing. Let P be a 2-dimensional subspace of 
m, and {X, Y} an orthonormal basis of P with 

respect to gO. Then the tsectional curvature 
K(P) of P is given by K(P)=g,([[X, yl, X], Y). 
K = 0 everywhere if and only if M is flat. If M 
is of +compact type (resp. of +noncompact 
type), then K > 0 (resp. K d 0) everywhere. 

K > 0 (resp. K < 0) everywhere if and only if 
the +rank of M is 1 and M is of compact type 

(resp. of noncompact type). For any four 
points p, q, p’, q’ of a manifold M of any of 
these types satisfying d(p, q) =d(p’, q’), d being 

the +Riemannian distance of M, there exists 
a #EI(M) such that &)=p’and #(q)=q’. 
Other than the aforementioned M’s, the only 

Riemannian manifolds having this property 
are circles and Euclidean spaces. If K > 0 
everywhere, any geodesic of M is a smooth 
simply closed curve and all geodesics are of the 
same length. For a symmetric Hermitian space 
M, the tholomorphic sectional curvature H 
satisfies H = 0 (resp. H > 0, H < 0) everywhere 

if and only if M is flat (resp. of compact type, 
of noncompact type). 

C. Ricci Tensors 

The +Ricci tensor S of M is parallel. If q,,, 
denotes the restriction to m x m of’the +Killing 
form cp of g, the value S, of S at o satisfies S, = 

1 -z(p,,,. If M is tirreducible, it is an +Einstein 
space. S = 0 (resp. positive definite, negative 
definite, nondegenerate) everywhere if and 
only if M is flat (resp. M is of compact type, M 

is of noncompact type, I(M) is semisimple). If 

M is a tsymmetric bounded domain and g is 
the +Bergman metric of M, one has S = -9. 
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D. Symmetric Riemannian Spaces of 

Noncompact Type 

Let M be of noncompact type. For each p E M, 
p is the only fixed point of the tsymmetry oP, 
and the exponential mapping at p is a diffeo- 
morphism from 7”(M) to M. In particular, M 
is diffeomorphic to a Euclidean space. For 
each pair p, 4 E M, a geodesic arc joining p 

and q is unique up to parametrization. For 
each PE M there exists neither a tconjugate 
point nor a +cut point of p. If M is a symmetric 
Hermitian space, that is, if it is a symmetric 

bounded domain, then it is a +Stein manifold 
and holomorphically homeomorphic to a 
+Siegel domain. 

E. Groups of Isometries 

The isotropy subgroup at o in I(M) is denoted 
by I,(M). Then the smooth mapping I,(M) x 
m+l(M) defined by the correspondence 4 x 

x H krpX is surjective, and it is a diffeo- 

morphism if M is of noncompact type. If M 
is of noncompact type, I(M) is isomorphic to 
the group A(g) of all automorphisms of g in a 
natural way, and I,(M) is isomorphic to the 

subgroup Ah, f) = {&A(g) INI = f) of A(g), 
provided that G acts almost effectively on M. 
Moreover, in this case the center of the iden- 

tity component I(M)' of I(M) reduces to the 
identity, and the isotropy subgroup at a point 
in I(M)' is a maximal compact subgroup of 
I(M)'. If I(M) is semisimple, any element of 
I(M)' may be represented as a product of an 
even number of symmetries of M. In the fol- 

lowing, let M be a symmetric Hermitian space, 
and denote by A(M) (resp. H(M)) the group of 
all holomorphic isometries (resp. all holomor- 

phic homeomorphisms) of M, and by A(M)' 
and H(M)' their identity components. All 
these groups act transitively on M. If M is 

compact or if I(M) is semisimple, one has 
A(M)' = I(M)‘. If I(M) is semisimple, M is 
simply connected and the center of I(M)' 
reduces to the identity. If M is of compact 
type, M is a +rational iprojective algebraic 

manifold, and H(M)' is a complex semisimple 
Lie group whose center reduces to the identity, 
and it is the tcomplexification of I(M)'. In 

this case, the isotropy subgroup at a point in 

H(M)' is a iparabolic subgroup of H(M)'. If 
M is of noncompact type, one has H(M)' = 
I(M)'. In the following we assume that G is 
compact. 

F. Cartan Subalgebras 

A maximal Abelian +Lie subalgebra in m is 

called a Cartan subalgebra for M. Cartan sub- 

algebras are conjugate to each other under the 
tadjoint action of K. Fix a Cartan subalge- 

bra a and introduce an inner product ( , ) 
on a by the restriction to a x a of gc,. For an 
element c( of the dual space a* of a, we put 
nr,={XEtnI [H,[H,X]]=--cc(H)'X forany 
HEa}. The subset c={a~a*-{0}~m,#{O}} 

of a* is called the root system of M (relative to 
a). We write m, = dim m, for LYE C. The subset 
D={HEaIa(H)E7cZforsomeccsZ} ofais 
called the diagram of M. A connected compo- 
nent of a-D is called a fundamental cell of M. 
The quotient group W of the normalizer of a 
in K modulo the centralizer of a in K is called 

the Weyl group of M. W is identified with a 
finite group of orthogonal transformations of 

a. 

G. Conjugate Points 

For a geodesic arc y with the initial point o, 
any +Jacobi field along y that vankhes at o and 
the end point of y is obtained as the restriction 
to y of the vector field X* generated by an 

element Xgf. For HER- {0}, Exp,,H is a 
conjugate point to o along the geodesic y,, if 
and only if cc(H) E nZ - (0) for some a EC. In 

this case, the multiplicity of the conjugate 

point Exp,H is equal to ~CatL,a~H~tnZ-~O~ M,. 
From this fact and Morse theory (- 279 
Morse Theory), we get a tcellular decompo- 
sition of the tloop space of M. The set of all 
points conjugate to o coincides with K Exp,D 
and is stratified to a disjoint union of a finite 
number of connected regular submanifolds 

with dimension <dim M - 2. 

H. Cut Points 

We define a tlattice group I- of a by I- = 
{AEaIExp,A=o},andput C,={HEal 
Max,,,-(,)2(H, A)/(A, A)= 1). Then, for HE 
a - {0}, Exp, H is a cut point of o arlong the 
geodesic yH if and only if HE C,. The set C, of 

all cut points of o coincides with K Exp, C, 
and is stratified to a disjoint union of a finite 
number of connected regular submanifolds 

with dimension <dim M - 1. The !set of all 
points Virst conjugate to o coincides with C, if 
and only if M is simply connected. 

I. Fundamental Groups 

Let I-, denote the subgroup of a generated by 
{ (2n/(a, ~))a 1 acC}, identifying a* with a by 

means of the inner product ( , ) of a. This is a 

subgroup of I-. We regard r as a subgroup of 

the group I(a) of all motions of a by parallel 
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translations. The subgroup I? = WT of I(a) 
generated by r and the Weyl group W is 
called the affine Weyl group of M. m leaves 
the diagram D invariant and acts transitively 
on the set of all fundamental cells of M. Take a 
fundamental cell D such that its closure c 
contains 0, and put m0 = {w E m 1 w(c) = c}. 

Then the fundamental group n,(M) of M is an 
tAbelian group isomorphic to the groups flc 
and r/r,. nl(M) is a finite group if and only if 

M is of compact type. In this case, the order 
of nl(M) is equal to the cardinality of the set 
r n ?? as well as to the index [I-: r,]. Moreover, 
if we denote by m: the group p0 for the 
symmetric Riemannian space M* = G*/K* de- 
fined by the tadjoint group G* of G and K* = 
{a~ G* 1 a0 = 0u}, then I@c is isomorphic to a 

subgroup of mz. If M is irreducible, @: is 
isomorphic to a subgroup of the group of all 
automorphisms of the textended Dynkin dia- 

gram of the root system C. 

J. Cohomology Rings 

Let P(g) (resp. P(i)) be the igraded linear space 
of all tprimitive elements in the tcohomology 
algebra H(g) of g (resp. H(f) off), and P(g, f) 
the intersection of P(g) with the image of the 
natural homomorphism H(g,f)-,H(g), where 

H(g, f) denotes the relative cohomology alge- 
bra for the pair (g, f). Then one has dim P(g, f) 
+ dim P(f) = dim P(g). Denote by hP(g, t) the 

exterior algebra over P(g, f). The tgraded 
algebra of all G-invariant polynomials on g 
(resp. all K-invariant polynomials on f) is 
denoted by I(G) (resp. I(K)), where the de- 
gree of a homogeneous polynomial with de- 
gree p is defined to be 2p. We denote by I+(G) 
the ideal of I(G) consisting of all f~ I(G) such 

that f(O)=O, and regard I(K) as an r’(G)- 
module through the restriction homomor- 
phism. Then the treal cohomology ring H(M) 

of M is isomorphic to the tensor product 
AP(g,f)@(I(K)/l+(G)I(K)). If K is connected 

and the tPoincar& polynomials of P(g), P(f), 

and P(g, f) are x:=1 t’“‘~‘, Cf=, t2”lm1, and 
CI=,+l t’“‘~-‘, respectively, then the Poincart: 
polynomial of H(M) is given by n&,+, (1 + 
t’“L-‘)n;=,(l -t2”f)n.;=,(l -tZ”,)-‘. 
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414 (XX.1) 
Systems of Units 

A. International System of Units 

Units representing various physical quantities 

can be derived from a certain number of fun- 
damental (base) units. By a system of units we 
mean a system of fundamental units. Various 
systems of units have been used in the course 
of the development of physics. Today, the 
standard is set by the international system of 

units (systitie international d’unitCs; abbre- 
viated SI) [l], which has been developed in 
the spirit of the meter-kilogram system. This 
system consists of the seven fundamental units 
listed in Table 1, units induced from them, and 

unit designations with prefixes representing 
the powers of 10 where necessary. It also con- 
tains two auxiliary units for plane and solid 
angles, and a large number of derived units 

[Il. 

B. Systems of Units in Mechanics 

Units in mechanics are usually derived from 

length, mass, and time, and SI uses the meter, 
kilogram, and second as base units. Neither 
the CGS system, derived from centimeter. 

gram, and second, nor the system of gravita- 

tional units, derived from length, force, and 
time, are recommended for general use by 
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Table 1 

Quantity SI unit Symbol Description 

Length 

Mass 

Time 

Intensity of 
electric current 

Temperature 

Amount of 
substance 

Luminous 
intensity 

meter 

kilogram 

second 

ampere 

kelvin 

mole 

candela 

m 

kg 

S 

A 

K 

mol 

cd 

The meter is the length equal to 1,650,763.73 wave- 

lengths in vacuum of the radiation corresponding 
to the transmission between the levels 2~” and 5d5 

of the krypton-86 atom. 
The kilogram is equal to the mass of the interna- 
tional prototype of the kilogram. 
The second is the duration of 9,192,631..770 periods 
of the radiation corresponding to the transmission 

between the two hyperfine levels of the ground 
state of the cesium-133 atom. 
The ampere is the intensity of the constant current 
maintained in two parallel, rectilinear conductors 
of infinite length and of negligible circular section, 

placed 1 m apart in vacuum, and producing a force 
between them equal to 2 x lo-’ newton (m’kg’s-‘) 

per meter of length. 
The kelvin, the unit of thermodynamical tempera- 
ture, is l/273.16 of the thermodynamical tempera- 
ture of the triple point of water. 
The mole is the amount of substance of a system 

containing as many elementary entities as there are 
atoms in 0.012 kg of carbon- 12. 
The candela is the luminous intensity in a given 
direction of a source emitting monochromatic 
radiation of frequency 540 x 10” hertz. (= s-r), the 
radiant intensity of which in that direction is l/683 
watt per steradian. (This revised definition of 

candela was adopted in 1980.) 

Table 2 

Quantity SI unit 

Frequency 
Force 
Pressure and stress 

Work, energy, quantity of heat 
Power 
Quantity of electricity 

Electromotive force, potential 
difference 

Electric capacitance 
Electric resistance 
Electric conductance 
Flux of magnetic induction 

magnetic flux 
Magnetic induction, magnetic 

flux density 

Inductance 
Luminous flux 
Illuminance 

Activity 

Adsorbed dose 
Radiation dose 

hertz 
newton 

Pascal 
joule 
watt 
coulomb 

volt 

farad 
ohm 
siemens 
weber 

tesla 

henry 
lumen 
lux 

becquerel 

gray 
sievert 

Symbol 

Hz 

N 
Pa 
J 
W 

C 
v 

F 
n 
s 
Wb 

T 

H 
lm 
lx 

Bq 

GY 
SV 

Unit in terms of SI 
base or derived 
units 

1 Hz= 1 ssl 
1 N== 1 kg.m/s’ 
1 Pa= 1 N/m2 
lJ=lN.m 
1 W .= 1 J/s 
1 C== 1 A.s 

1 V==l W/A 

1 F== 1 C/V 
1 R== 1 V/A 
1 SE 1 0-1 

1 Wb=l v.s 

1 T == 1 Wb/m’ 

1 H:= 1 Wb/A 
1 lm=l cd.sr 
1 lx:= 1 lm/m’ 

1 Bq= 1 s-l 

1 Gy= 1 J/kg 
1 Sv=l J/kg 
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the SI Committee. Besides the base units, 
minute, hour, and day, degree, minute, and 
second (angle), liter, and ton have been ap- 
proved by the SI Committee. Units such as the 
electron volt, atomic mass unit, astronomical 

unit, and parsec (not SI) are empirically de- 
fined and have been approved. Several other 
units, such as nautical mile, knot, are (area), 
and bar, have been provisionally approved. 

C. System of Units in Thermodynamics 

The base unit for temperature is the degree 

Kelvin (“K; formerly called the absolute tem- 
perature). Degree Celsius (“C), defined by t = 
T- 273.15, where T is in “K, is also used. 

The unit of heat is the joule J, the same as the 
unit for other forms of energy. Formerly, one 
calorie was defined as the quantity of heat that 
must be supplied to one gram of water to raise 
its temperature from 14.5”C to 15.5”C; now 
one calorie is defined by 1 cal = 4.1855 J. 

D. Systems of Units in Electricity and 
Magnetism 

Three distinct systems of units have been 
developed in the field of electricity and mag- 
netism: the electrostatic system, which origi- 

nates from Coulomb’s law for the force be- 
tween two electric charges and defines mag- 
netic quantities by means of the Biot-Savart 
law; the electromagnetic system, which origi- 

nates from Coulomb’s law for magnetism; and 
the Gaussian system, in which the dielectric 

constant and permeability are taken to be non- 

dimensional. At present, however, the rational- 
ized MKSA system of units is adopted as the 
international standard. It uses the derived units 

listed in Table 2 (taken from [2]), where the 
derived units with proper names in other fields 
are also listed. 

E. Other Units 

In the field of photometry, the following defi- 
nition was adopted in 1948: One candela (cd) 

(kO.98 old candle) is defined as l/(6 x 105) of 
the luminous intensity in the direction normal 

to a plane surface of 1 m2 area of a black body 
at the temperature of the solidifying point of 

platinum. The total luminous flux emanating 
uniformly in all directions from a source of 
luminous intensity I cd is defined as 4n lumen 
(Im). One lux (lx) is defined as the illuminance 
on a surface area of 1 m2 produced by a lumi- 

nous flux of 1 cd uniformly incident on the 
surface. In 1980, the definition was revised as 

shown in Table 1. 

For theoretical purposes, a system of units 
called the absolute system of units is often 
used, in which units of mass, length, and time 
are chosen so that the values of universal 

constants, such as the universal gravitational 
constant, speed of light, Planck’s constant, and 

Boltzmann’s constant, are equal to 1. 
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415 (XXl.41) 
Takagi, Teiji 

Teiji Takagi (April 21, 18755February 28, 
1960) was born in Gifu Prefecture, Japan. 
After graduation from the Imperial University 
of Tokyo in 1897, he continued his studies in 
Germany, first with Frobenius in Berlin and 
then with Hilbert in Gottingen. He returned 
to Japan in 1901 and taught at the Imperial 
University of Tokyo until 1936, when he re- 

tured. He died in Tokyo of cerebral apoplexy. 
Since his student years he had been inter- 

ested in Kronecker’s conjecture on ?Abelian 
extensions of imaginary quadratic number 
fields. He solved it affirmatively for the case of 
Q(g) while still in Gottingen and presented 
this result as his doctoral thesis. During World 
War I, he pursued his research in the theory of 
numbers in isolation from Western countries. 
It developed into tclass field theory, a beautiful 

general theory of Abelian extensions of alge- 
braic number fields. This was published in 
1920, and was complemented by his 1922 

paper on the treciprocity law of power residues 
and then by tArtin’s general law of reciprocity 
published in 1927. Besides these arithmetical 

works, he also published papers on algebraic 
and analytic subjects and on the foundations 

of the theories of natural numbers and of real 
numbers. His book (in Japanese) on the his- 
tory of mathematics in the 19th century and 
his General course ofanulysis (also in Japanese) 
as well as his teaching and research activities 
at the University exercised great influence on 

the development of mathematics in Japan. 
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Teichmiiller Spaces 

Consider the set M, consisting of the con- 

formal equivalence classes of closed Riemann 
surfaces of genus g. In 1859 Riemann stated, 
without rigorous proof, that M, is parame- 
trizedbym(g)(=Oifg=O, =l ifg=l, =3g-3 
if g > 2) complex parameters (- 11 Algebraic 
Functions). Later, the introduction of a topol- 
ogy and m(g)-dimensional complex structure 

on M, were discussed rigorously in various 

ways. The following explanation of these 
methods is due to 0. Teichmiiller [ 1,2], L. V. 
Ahlfors [3,4], and L. Bers [S-7]. For the 

algebraic-geometric approach - 9 .4lgebraic 
Curves. 

The trivial case g = 0 is excluded, since M, 
consists of a single point. Take a closed Rie- 
mann surface 9X0 of genus g > 1, and consider 
the pairs (!R, H) consisting of closed Riemann 
surfaces !I? of the same genus g and the tho- 
motopy classes H of orientation-preserving 
homeomorphisms of !I$, into !R. Two pairs 
(%, H) and (X’, H’) are defined to be con- 
formally equivalent if the homotopy class 

H'H-' contains a conformal mapping. The set 
T, consisting of the conformal equivalence 
classes (%, H) is called the Teichmiiller space 

(with center at ‘%a). Let 9, be the group of 
homotopy classes of orientation-preserving 
homeomorphisms of !I& onto itself. $j, is a 
transformation group acting on T, nn the sense 
that each q E $, induces the transformation 
(!I$ H) -+ (%, Hq). It satisfies Tq/5j3, = M,. The 
set 3, of elements of 5j, fixing every point of T, 
consists only of the unity element if g b 3 and 
is a normal subgroup of order 2 if g = 1,2. For 

the remainder of this article we assume that 
g > 2. The case g = 1 can be discussed similarly, 
and the result coincides with the classical one: 

T, can be identified with the upper half-plane 
and 9 i /3 i is the tmodular group. 

Denote by B(si,) the set of measurable 
invariant forms pdzdz-’ with I/P//~ < 1. For 
every p E B(!R,,) there exists a pair (%, H) for 
which some h E H satisfies h, = pLh, (-- 352 
Quasiconformal Mappings). This correspon- 
dence determines a surjection pc~ B(%a) H 
(X, H)cT,. Next, if Q(%e) denotes the space 

of holomorphic quadratic differentials cpdz’ 
on X0, a mapping ~EB(!I&)H(~EQ(!R~) is 
obtained as follows: Consider /* on lthe uni- 

versal covering space U (= upper half-plane) 
of Y+,. Extend it to U* (=lower half-plane) by 
setting p = 0, and let f be a quasiconformal 
mapping f of the plane onto itself satisfying 
& = pfZ. Take the Y%hwarzian derivative $I = 
{A z} of the holomorphic function f‘ in U*. -~ 
The desired cp is given by q(z) = I,&?) on U. It 
has been verified that two p induce the same 
cp if and only if the same (%, H) corresponds 

to p. Consequently, an injection (‘32, H) E 
T,H~EQ(Y$,) is obtained. Since Q(%a)= 
Cm(g) by the Riemann-Roth theorem, this in- 

jection yields an embedding T, c C”‘@), where 
T, is shown to be a domain. 

As a subdomain of Cm(g), the Teichmiiller 
space is an m(g)-dimensional complex analytic 
manifold. It is topologically equivalent to the 
unit ball in real 2m(g)-dimensional space and 

is a bounded tdomain of holomorphy in C”‘g’. 
Let {ui, . . . . m2,} be a l-dimensional ho- 

mology basis with integral coefficients in 910 
such that the intersection numbers are (ai, aj) 
zz 

(c(g+i,ag+j)=o, (ai,a,+j)=6ij, i,i= 1, ...,,4. 



1571 417 A 
Tensor Calculus 

Given an arbitrary (%, H) ET,, consider the 
iperiod matrix Q of ‘iK with respect to the 
homology basis Her, , , Hcc,, and the basis 
wi, . , wg of +Abelian differentials of the first 

kind with the property that JHa,mj= 6,. Then R 
is a holomorphic function on T,. Furthermore, 
the analytic structure of the Teichmiiller space 
introduced previously is the unique one (with 

respect to the topology defined above) for 
which the period matrix is holomorphic. 

‘j, is a properly discontinuous group of 
analytic transformations, and therefore M, is 
an m(g)-dimensional normal tanalytic space. 
e3, is known to be the whole group of the 
holomorphic automorphisms of T, (Royden 
181); thus T, is not a tsymmetric space. 

To every point r of the Teichmiiller space, 
there corresponds a Jordan domain D(r) in the 

complex plane in such a way that the fiber 

space F, = { (7, z) 1 z E D(z), z E T, c C”@)} has the 
following properties: F, is a bounded domain 
of holomorphy of Cm(g)+l. It carries a properly 
discontinuous group 8, of holomorphic auto- 
morphisms, which preserves every fiber D(r) 
and is such that D(r)/@, is conformally equiva- 
lent to the Riemann surface corresponding to 
r. F, carries holomorphic functions Fj(r, z), 
j = 1, ,5g - 5 such that for every r the func- 

tions FJF,, j = 2, . , Sg - 5 restricted to D(z) 
generate the meromorphic function field of the 
Riemann surface D(r)/@,. 

By means of the textremal quasiconformal 
mappings, it can be verified that T, is a com- 
plete metric space. The metric is called the 
Teichmiiller metric, and is known to be a 
Kobayashi metric. 

The Teichmiiller space also carries a natu- 
rally defined Klhler metric, which for g = 1 

coincides with the +Poincare metric if T, is 
identified with the upper half-plane. The +Ricci 
curvature, tholomorphic sectional cruvature, 
and +scalar curvature are all negative (Ahlfors 

C91). 
By means of the quasiconformal mapping 

i which we considered previously in order 
to construct the correspondence p H cp, it is 
possible to regard the Teichmiiller space as 
a space of quasi-Fuchsian groups (- 234 
Kleinian Groups). To the boundary of T,, it 
being a bounded domain in Cmcs), there corre- 
spond various interesting Kleinian groups, 

which are called tboundary groups (Bers [lo], 
Maskit [ 111). 

The definition of Teichmiiller spaces can be 
extended to open Riemann surfaces %,, and, 
further, to those with signatures. A number of 

propositions stated above are valid to these 
cases as well. In particular, the Teichmiiller 

space for the case where sl, is the unit disk is 
called the universal Teichmiiller space. It is a 
bounded domain of holomorphy in an infinite- 

dimensional Banach space and is a symmetric 
space. Every Teichmiiller space is a subspace 

of the universal Teichmiiller space. 
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A. General Remarks 

In a tdifferentiable manifold with an taffine 
connection (in particular, in a +Riemannian 
manifold), we can define an important opera- 
tor on tensor fields, the operator of covariant 
differentiation. The tensor calculus is a differ- 

ential calculus on a differentiable manifold 
that deals with various geometric objects and 
differential operators in terms of covariant 

differentiation, and it provides an important 
tool for studying geometry and analysis on a 
differentiable manifold. 
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B. Covariant Differential 

Let M be an n-dimensional smooth manifold. 
We denote by s(M) the set of all smooth 
functions on M and by X:(M) the set of all 
smooth tensor fields of type (r., s) on M. X:(M) 

is the set of all smooth vector fields on M, and 
we denote it simply by X(M). 

In the following we assume that an afine 
connection V is given on M. Then we can 
define the covariant differential of tensor fields 

on M with respect to the connection (- 80 
Connections). We denote the covariant deriva- 
tive of a tensor field K in the direction of a 
vector field X by V, K and the covariant dif- 
ferential of K by VK. The operator V;, maps 
X:(M) into itself and has the following 
properties: 

(1) v,+,=v,+v,, V,,=fL 
(2)V,(K+K’)=V,K+V,K’, 
(3)V,(K@K’)=(V,K)@K’+K@(VxKK’), 

(4) Vx.f = XL 
(5) V, commutes with contraction of tensor 

fields, where K and K’ are tensor fields on M, 
X, YE&E(M) andj”ES(M). 

The torsion tensor T and the curvature ten- 
sor R of the afine connection V are defined by 

T(X, Y)=V,Y-v,x-[X, Y], 

RW, Y)Z=V,(V,Z)-V,(V,Z)-VI,.,lZ 

for vector fields X, Y, and Z. The torsion ten- 

sor is of type (1,2), and the curvature tensor is 
of type (1,3). Some authors define -R as the 
curvature tensor. We here follow the conven- 

tion used in [l-6], while in [7, S] the sign of 
the curvature tensor is opposite. The torsion 
tensor and the curvature tensor satisfy the 
identities 

T(X, Y) = - T( Y, X), R(X, Y) = - R( Y, X), 

R(X, Y)Z+R(Y,Z)X+R(Z,X)Y 

=(V,T)(Y,Z)+(V,T)(Z,X)+(V,T)(X, Y) 

+ T(T(X, Y), Z) + WY y, 3, w  

+ VW, w, n 

(V,R)(Y,Z)+(V,R)(Z,X)+(V,R)(X, Y) 

=R(X, T(Y,Z))+R(Y, T(Z,X)) 

+ R(Z, TM, Y)). 

The last two identities are called the Bianchi 
identities. 

The operators V, and V, for two vector 
fields X and Y are not commutative in general, 

and they satisfy the following formula, the 
Ricci formula, for a tensor field K: 

V,(V,K)-V,(V,K)-V,,,,,K=R(X, Y1.K 

where in the right-hand side R(X, Y) is re- 

garded as a derivation of the tensor algebra 

C,,,K(W. 
A moving frame of M on a neighborhood U 

is, by definition, an ordered set (e,, . . , e,) of M 
vector fields on U such that e,(p), , e,(p) are 
linearly independent at each point PE U. For 
a moving frame (eI, , , e,) of M on a neigh- 
borhood U we define n differential l-forms 
8’ , . . , 8” by O’(e,) = Sj, and we call them the 

dual frame of (el, , e,). For a tensor field K 
of type (Y, s) on M, we define rPs functions 
Kj::;:j: on U by 

Kj;:::j:=K(ejl, . ,ej,, Oil, . . . ,@) 

and call these functions the components of K 
with respect to the moving frame (t:, , , e,). 

Since the covariant differentials Vej are 
tensor fields of type (1, l), n2 differential l- 
forms w,! are defined by 

where in the right-hand side (and throughout 

the following) we adopt Einstein’s summation 
convention: If an index appears twice in a term, 
once as a superscript and once as a subscript, 

summation has to be taken on the range of 
the index. (Some authors write the above 
equation as de,=wie, or Dej=wjei.) We call 
these l-forms wj the connection forms of the 

afflne connection with respect to the moving 
frame (el, , e,). The torsion forms 0’ and 
the curvature forms Qi are defined by 

These equations are called the structure equa- 
tion of the affne connection. V. If we denote 

the components of the torsion tensor and the 
curvature tensor with respect to (e, , , e,) by 

Tk and Rj,, (= @(R(e,, e,)eJ), respectively, 
then they satisfy the relations 

Using these forms, the Bianchi identities are 
written as 

Let K be a tensor field of type (r, s) on M 
and Kj::::i be the components of K with re- 
spect to (e,, . , e,). We define the covariant 
differential DK~;:::~ and the covariant deriva- 
tive Kj:::;‘k by 
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Then Kj:;:;k,k are the components of VK with 

respect to the moving frame (e,, . . , e,). Some 
authors write VkKj::::i instead of Kj::::i [S, 61. 

Using components, the Bianchi identities 

are written as 

The Ricci formula is written as 

- ,$, R;,.,&:::o:..tj, 

Let (x’, ,x”) be a local coordinate system 
defined on a neighborhood U of M. Then 
(8/2x’, , ?/5x”) is a moving frame of M on U, 
and we call it the natural moving frame asso- 

ciated with the coordinate system (x’, ,x”). 
Components of a tensor field with respect to 
the natural moving frame (?/ax’, , Z/ax”) are 
often called components with respect to the 

coordinate system (x’, ,x”). We define an n3 
function $ on U by mj = rLjdxk, where w; are 
the connection forms for the natural moving 
frame. l-k; are called the coefficients of the 
aff’ne connection V. The components of the 
torsion tensor and the curvature tensor with 

respect to (x’, ,x”) are given by 

where 8. = d’c’x’. 
With’resdect to the foregoing coordinate 

system, the components Kj;:::‘k of the covar- 
iant differential VK of a tensor field K of type 

(r, s) are given by 

C. Covariant Differential of Tensorial Forms 

A tensorial p-form of type (r, s) on a manifold 
M is an alternating s(M)-multilinear mapping 

of X(M) x x X(M) to X:(M). A tensorial p- 
form of type (0,O) is a differential p-form in the 

usual sense. A tensorial p-form of type (1,O) is 
often called a vectorial p-form. 

lf an affme connection V is provided on M, 
we define the covariant differential of tensorial 

forms. Let a be a tensorial p-form of type (r, s). 

The covariant differential Dee of a is a tensorial 

(p + I)-form of type (r, s) and is defined by 

b+~)DGf,,...,X,,+,) 

P+l = i; (-1)‘-‘V&(X*, . . . . x, . . . . X,,,)) 
+ C ( -l)i+ja( [X,, xj ] ,  

i<j 

x, )..., zi ,...) r?, ,...) X,+1), 

where r?i means that Xi is deleted. If s( is of 
type (O,O), Da coincides with the usual exterior 

differential da. 
The simplest example of a tensorial form is 

the identity mapping of X(M), which will be 

denoted by 0. Some authors write this vec- 
torial form as dp or dx, where p or x expresses 
an arbitrary point of a manifold. We call 0 the 
canonical vectorial form of M. The torsion 
tensor T can be regarded as a vectorial 2-form, 
and we have 200 = T. The curvature tensor R 
can be regarded as a tensorial 2-form of type 

(1, I), i.e., (X, Y)+R(X, Y)E~;(M), and the 
Bianchi identities are written as DT= R A 8, 

DR =O, where the exterior product R A r of R 
and a tensorial p-form c( is defined by 

(P+~)(P+~)(RA~(X,>...,X,,,) 

=2X(-l) i+j-’ R(X,, Xj)a(X,, . . , gi,. . , zl, 
i<, 

. . ..X.,+,). 

In general, 2D’1x = R A M holds for an arbitrary 
tensorial form 1. 

Let (e, , , e,) be a moving frame of M on a 
neighborhood U and O’, . , 0” be its dual 

frames. A tensorial p-form c( of type (r, s) is 
written as 

on U, where the $:::j: are the usual differential 
p-forms on U. We call them the components of 
a with respect to (e’ , , e,). Then the compo- 
nents of Da, which we denote by Dc$:::‘~, are 
given by 

Then we have 

This is an expression of 2D2a = R A E in terms 
of components. The components of the ca- 
nonical vectorial form 0 are the dual forms 

O’,..., O”of(e ,,..., e,),andwehaveDO’=@‘, 

which means that the components of DO are 

the torsion forms 0’. 
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D. Tensor Fields on a Riemannian Manifold 

Let (M, g) be an n-dimensional Riemannian 
manifold (- 364 Riemannian Manifolds). The 
fundamental tensor g defines a one-to-one 
correspondence between vector fields and 

differential l-forms. A differential l-form c1 
which corresponds to a vector field X is de- 
fined by a(Y) = g(X, Y) for any vector field Y. 
This correspondence is naturally extended to a 
one-to-one correspondence between X;(M) and 
Xi:(M), where r + s = r’ + s’. Let (e,, , e,) be a 

moving frame of M on a neighborhood U and 
gij be the components of g with respect to the 
moving frame. Let (9”) be the inverse matrix of 
the matrix (gu). The gij are the components of 
a symmetric contravariant tensor field of order 

2. Let Xi be the components of a vector field X 
and ri be the components of the differential l- 
form c( corresponding to X. Then X’ and q 
satisfy the relations CQ = gijXj and Xi = gijocj. If 
Kf are the components of a tensor field K of 

type (1,2) (here taken for simplicity), then 

K,, = K”,g,,, K;‘= Kf;ig$ 

K*” = K;,g”‘g*‘, . , 

are the components of a tensor field of type 

(0,3), (2, l), (3,0), , respectively, all of which 
correspond to K. We call this process of ob- 
taining the components of the corresponding 

tensor fields from the components of a given 
tensor field raising the subscripts and lowering 
the superscripts by means of the fundamental 
tensor g. 

On a Riemannian manifold, we use the 
+Riemannian connection, unless otherwise 
stated. The covariant derivative with respect to 
the Riemannian connection is given by 

2gwx y,z)=xg(y,m+ yY(x,z)--g(x, Y) 

for vector fields X, Y, and Z. The coefficients 
of the Riemannian connection with respect to 
a local coordinate system (x’, ,x’) are usu- 
ally written as {:}, called the Christoffel sym- 
bols, which are given by {ij} = gi”(4gj0 + iijgka - 
&g,)/2. The curvature tensor R of the Rie- 
mannian connection satisfies the identities 

R(X, Y)Z+R(Y,Z)X+R(Z,X)Y=O, 

(V,R)(Y,Z)+(V,R)(Z,X)+(V,R)(X, Y)=O, 

R(X, Y)= -R(Y,X), 

g(R(X, Y).T W) = dR(Z, W)X, Y) 

= -g(Z NX, Y) WI, 

g(R(X, YE WI + dR(X, Z) W Y) 

+g(R(X, W)Y,Z)=O. 

In terms of the components, these identities 
are 

Rkk + Rjhi + Riij = 0, 

R$ = - Rfkj, Rhijk = Rjkhi = - Rihjkr 

where Rhijk = R$,g,,,. 
The +Ricci tensor S of the Riemannian 

manifold is a tensor field of type (0.2) defined 

by 

S(X, Y) = trace of the mapping Z+R(Z, X) Y 

for vector fields X and Y. The comlponents Sji 
of the Ricci tensor are given by Sji == Ryai. The 
+scalar curvature k of the Riemannian mani- 
fold M is a scalar on M defined by k=gjiSji. 

The Ricci tensor and the scalar curvature 
satisfy the identities 

S(X, Y)=S(Y,X) or Sji=S,, 

&j,k-&,j=RZj,a, 2gjkS,, k = a, k. 

For a moving frame of a Riemannian mani- 
fold, it is convenient to use an orthonormal 
moving frame. A moving frame (e,, . . , e,) is 

orthonormal if e,, , e, satisfy g(ei, ej) = 6,. 
Since the components of the fundamental 
tensor with respect to an orthonormal moving 

frame are 6,, raising or lowering the indices 
does not change the values of the components. 
Some authors write all the indices as sub- 
scripts. Also they write the dual l-forms, the 
connection forms, and the curvature forms as 

tIi, wji, and nji, respectively, instead of f3’, wi, 
and Qj. With respect to an orthonormal mov- 

ing frame, the connection forms CI$ and the 
curvature forms C$ satisfy 

wj+wi=O and C$+C$=O. 

On a Riemannian manifold, the divergence 
of a vector field and the operators d,6, and A 

on differential forms (- 194 Harmonic In- 
tegrals) can be expressed by using the covar- 
iant derivatives with respect to the Riemann- 
ian connection. 

If X’ are the components of a vector field 
X with respect to a local coordinate system 
(x’, ,x”), the divergence divX of X is given 
by div X = Xi,i. 

Let a be a differential p-form on M. CI is 

written locally in the form LY =( l/~!)!x~,...~~dx~l A 
A dx’p, where the coefficients CC,,,..~ are skew- 

symmetric in all the indices. We caliri,,,,i 
the components of CI with respect to the c’o- 
ordinate system. Since CL is regarded as an 

alternating tensor field of type (0, p), we can 
define the covariant differential Va of c(. 
Then the components of da, da, and Aa are 
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given by 

(A~)i,...i,= -gab c(i ,... ip,ob-u~l Si,,czai ,... b...i, 

1 

For a smooth function f and a differential l- 

form fl we have 

Af= -&(g”& irjf), 
A 

(AB)i= -g”b[hi,ob-Siofibblr 

where g =det(g,). 

E. Van der Waerden-Bortolotti Covariant 
Differential 

Let E be a finite dimensional smooth tvector 
bundle over a smooth manifold M and I(E) be 
an g(M)-module of all smooth sections of E. A 

connection V’ in E is a mapping of X(M) x 
I(E) to I(E) such that 

(1) VX5+rl)=V;,5+Vh, 

(4) v;,i =fVX 

for X, YEX(M), 5, ~EI(E), andfEX(M). Vit 
is called the covariant derivative of 5 in the 

direction X. 
An element K of q(M) @ I(E) is called a 

tensor field of type (r, s) with values in E (or 
simply an E-valued tensor field of type (r,s)). K 
can be regarded as an 3(M)-linear mapping of 
X’(M) to r(E) or an s(M)-multilinear map- 

ping of X(M) x x X(M) to X’,(M) 0 r(E). 
For a given 5 E I(E), a mapping X-Vi< de- 
tines a tensor field of type (0,l) with values in 
E which we call the covariant differential of 5, 
denoted by V’[. 

The curvature tensor R’ of V’ is a tensor 
field of type (0,2) with values in E* @ E (E* is 
the dual vector bundle of E), and is defined by 

R’(X> Y)5=V~(V;5)-V;(V;5)-V;x,r15 

for any vector fields X and Y and any tEI(E). 
If an affine connection V is given on M, we 

can define the van der Waerden-Bortolotti 
covariant derivative V,K for V and V’ of a 
tensor field K of type (r, s) with values in E. It 

is defined by 

(~~KK)(S)=V;,(K(S))-K(V*S) 

for any SEX”(M). If we regard <ET(E) as an E- 

valued tensor field of type (0, 0), we have V,< = 
Vi<. The covariant derivative V,R’ of the 

curvature tensor R’ of V’ is a tensor field of 
type (0,2) with values in E* 0 E is defined by 

(%R’)(Y, Z)t =VXR’(Y,Z)& WV, Y, Z)t 

-R’(Y,V,Z)t--R’(Y,Z)V;<. 

The Bianchi identity is written as 

(V,R’)(Y,Z)+(V,R’)(Z,X)+(V,R’)(X, Y) 

= R’(X, T( Y, Z)) + R’( Y, T(Z, X)) 

+ R’V, TN, Y)), 

where T is the torsion tensor of V. The Ricci 
formula is given by 

=R’(X, Y).K(S)-K(R(X, Y).S), 

where R is the curvature tensor of V, KE 
X;(M)@ T(E) and SEX”(M). 

In the following we assume that the fiber of 
E is of finite dimension m. A moving frame of 
E on a neighborhood U of M is an ordered set 

([,, ,&,,) of local sections t,, . . . . 5, on U such 
that c1 (p), . . , t,,,(p) are linearly independent at 
each point p of U. Let (e,, , e,) be a moving 
frame of M on U. Then an E-valued tensor 
field K of type (r, s) is locally written as 

where f3’, , 8” are the dual 1 -forms of (ei, 

“‘> e,). The n r-tsm functions Kj:;:y!: on U are 

called the components of K with respect to 

(e , , . , e,) and (5,) . . , 5,). We define the con- 

nection forms CI$ of the connection V’ by V’g, 
= C$ @ 5,. Then the curvature forms 0; are 
defined by 

where Rzji are the components of the curva- 
ture tensor R’, i.e., R’(ej, ei)& = REji<,. 

For a given tensor field K of type (r, s) 
with values in E, the mapping X+V,K de- 

fines a tensor field VK of (r, s + 1) with values 
in E which we call the van der Waerden 
Bortollotti covariant differential of K. Then if 

Kj::::~ are the components of K with respect 

to (ei, , e,) and ([,, , i;,), the components 
K~:y::~, of VK are given by 

Let f be a smooth mapping of M into a 
smooth manifold M’. The differential f,(or df) 

can be regarded as a tensor field of type (0,l) 

with values in f*T(M’). Assume that M (resp. 
M’) has a Riemannian metric g (resp. g’). We 
denote the Riemannian connection of M by V. 
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From the Riemannian connection of M’ a 
connection V’ in ,f’*T(M’) can be defined. Let 
(y’, , y”) be a local coordinate system of M’ 

on a neighborhood E/ and (x’, ,x”) be a local 
coordinate system on a neighborhood U of M 

such that f(U)c V. Put <,(p)=(S/dy”)(f‘(p)) for 
a point PE U. Then (t,, ,&,,) is a moving 
frame of f*T(M’). The components off, with 
respect to (6/3x’, , (7/axn) and (<i, ,&,,) are 
given by f‘“(p)=(8y”/dx’)(p). The Laplacian 

4f of the mapping f is a tensor field of type 
(0,O) with values in f*T(M’) and is defined 

by (Aj’f)” =gij,Lyj. If 4f = 0, the mapping f is 
called a harmonic mapping (- 195 Harmonic 
Mappings). 

F. Tensor Fields on a Submanifold 

Consider an n-dimensional smooth mani- 
fold M immersed in an (n + m)-dimensional 
Riemannian manifold (M,y). If we denote the 
immersion M+M by ,t then g=f*y is a 
Riemannian metric on M, and we denote its 
Riemannian connection by V. The induced 
bundle f* T(M) splits into the sum of the 

tangent bundle T(M) of M and the normal 
bundle T’(M). The Riemannian connection on 

M induces connections in f*T(M) and in 

T’(M) which are denoted by V and V’, re- 
spectively. The van der WaerdenBortolotti 
covariant derivative for V and V’ is denoted 
by 0. 

For vector fields X and Y on M, the tan- 
gential part of V, Y(here we regard Y as a 
section off*T(M)) is V,Y, and we denote the 
normal part of V, Y by h(X, Y). Then h is a 
symmetric tensor field of type (0,2) with values 

in L@(M), and we call h the second funda- 
mental tensor of the immersion ,1: For 5~ 
I( T’(M)), the tangential part of V,t (here 5 

is also regarded as a section of f*T(M)) is 
denoted by - A,X and the normal part of V,t 
is Vi 5. Thus we have 

VxY=VxY+h(X, Y), v,<= -A,X+V&. 

h and A are related by 

i7vG, Y), 0 =g(A,X, Y). 

We have the following formulas, called the 
equations of Gauss, Codazzi, and Ricci: 

BUW, W, W = g(R( Y, YP, W 

+ah(x,z),h(y, WI) 

-mw, w  4K X)), 

S(fW> YP, ii)=l((%h)(Y, Z), 0 

-aww, -a 0, 

?#W, Y)t> v) =dR’(X> Y)k 11) 

+dCA<> A,lX> Y)> 

for X, Y, Z, WEX(M) and 5, q~r(:r’(M)), 

where R, R, and R’ are the curvature tensors 
of V, V, and VI, respectively. 

For the manifold M immersed in M, we use 

a moving frame (e,, . , e,, <i, , <,,) such that 
(e,, . , e,) is an orthonormal moving frame of 

M on a neighborhood U and (5, , , 5,) is a 
moving frame of T’(M) on U with g(<,, <,J= 

6,,. Then we can define the conneciion forms 
w,! for V and e$ for VL. If we extend (e,, , 
e,, t,, , &,,) to an orthonormal moving frame 
(El, . . ..e.+,) of M such that ~~(p)=e,(p) (i= 1, 

. ..) n) and Zn+,(p)=<,(p) (c(= 1, . . . ,tn) for PE U, 

then the restriction ,f *@ and Fuji of the 
dual 1 -forms and the connection forms of 

M with respect to (e,, ,?“+,) satisfy the 
relations 

where h; are the components of the second 
fundamental tensor h with respect to (e,, . . , e,, 

41, “‘, 5,). 
The components /rG,k of the covariant dif- 

ferential Oh of h are defined by 

In terms of the components, the equations 
of Gauss, Codazzi, and Ricci are given by 

Rhijk = Rhijk + c (h;h& - h,“,hij), 
1 

a 

Let (x’ , . . , x”) be a local coordinate system 
on a neighborhood U of M and (y’, , y”+,) 
be a local coordinate system on a neighbor- 
hood V of M such that f(U)c V. Regarding 
the differential f, of the immersion f as a ten- 

sor field of type (0,l) with values in f *T(M), 

we denote the components off, with re- 
spect to (xi, , x”) and (y’, , y”+“) by Bf 
(i=l,...,n; A=1 , . . ..n+m). Then we have 
Bf = ayA/axi. We denote by V’ the van der 
Waerden-Bortolotti covariant derivative for V 
and V. Then the components Bfj 01‘Vlf, are 
given by 

B~j=ajB~-{;i}B,R+B;B~{&}, 

where a,= a/&?, {f}, and {&} are the Chris- 
toffel symbols of the Riemannian metrics g 
and g, respectively. 

Let (5,) , 5,) be an orthonormal moving 
frame of T’(M) on U and <l be the compo- 

nents of 5, with respect to (y’, , y”+,). Then 
we have 

Bfj=h;i’,A, 

where h, are the components of the second 
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fundamental tensor with respect to (a/ax’, , 
?/2x”) and (t,, , 5,). 

A tensor field K with values in T’(M) can 

be regarded as a tensor field with values in 
J’*T(M), and TK is the normal component of 

V’K. For example, if we regard the second 
fundamental tensor h as a tensor field with 
values in f*T(M), the components of h with 

respect to the coordinates (x1, ,x”) and 
(y’, . , y”+“‘) are equal to i?fj, and we have 
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418 (1X.20) 
Theory of Singularities 

A. Introduction 

Let ,fi, f2,. . . ,,/i be tholomorphic functions 

defined in an open set Cl of the complex space 
C”. Let X be the analytic set fi-’ (0) n n 
,f,-’ (0). Let z,, E X, and let 9, , , gs be a sys- 
tem of generators of the ideal .a(X),0 of the 

germs of the holomorphic functions which 
vanish identically on a neighborhood of z0 in 

X. z,, is called a simple point of X if the matrix 
(?gi/zzj) attains its maximal rank, say k, at z = 

zO. In this case, X is a tcomplex manifold of 

dimension n - k near z,,. Otherwise, z0 is called 
a singular point of X. 

B. Resolution of Singularities 

Let X be a complex analytic space, and let Y 

be its singular locus. A resolution of the sin- 
gularity of X is a pair of a complex manifold r? 
and a proper surjective holomorphic mapping 

n: r?+X such that the restriction x ( R-,, s(r) is 
biholomorphic and r?: - n-l( Y) is dense in 2. 
H. Hironaka proved that there exists a reso- 

lution for any X such that TI~~( Y) is a divisor 
in R with only inormal crossings [16,17]. 

Suppose that a compact connected ana- 
lytic subset B of a complex manifold x has a 

tstrongly pseudoconvex neighborhood in r?. 
Then the contraction 8/P naturally has a 
structure of a inormal complex analytic vari- 
ety such that the projection g+r?/p is a 
resolution of r?/p (H. Grauert [14]). 

C. Two-Dimensional Singularities 

Let X be a normal 2-dimensional analytic 
space. Then the singular points of X are 
discrete. 

Among the resolutions of X, there exists a 

unique resolution rc:$+X with the following 
universal property: For any resolution 7~‘: 8’- 
X, there exists a unique mapping p: r?‘%x 
with rr’= no p. This resolution is called the 

minimal resolution. 
Let rr:r?-tX be a resolution of a singular 

pointxofX,andletA,(i=l,...,m)bethe 
irreducible components of x-‘(x). The matrix 

(Ai. Aj) of the +intersection numbers is known 
to be negative definite (P. Du Val [12]). 

The resolution n: z +X is called good if(i) 
each Ai is nonsingular, (ii) Ai n Aj (i #j) is at 

most one point and the intersection is trans- 
verse and (iii) no three Ais meet at a point. 
For a given good resolution rr:%+X, we 

associate a diagram in which the vertices ui 
(i=l,..., m)correspondtoAi(i=l ,..., m)and 
ri and uj are joined by a segment if and only if 

Ain A,#@. 
The geometric genus p&X,x) of a singular 

point xeX is the dimension of the +stalk at x 
of the first direct image sheaf R’x,0~, where 

rr: 2-X is a resolution of XEX and 0~ is the 
+structure sheaf of 8. The definition is inde- 

pendent of the choice of the resolution, and 
p&X,x) is a finite integer. 

Among the positive cycles of the form Z = 

Cy=l n,A, (i.e., n, > 0) such that Z ’ Ai < 0 for 
each i = 1, , m, there exists a smallest one Z,, 
which is called the fundamental cycle [3]. 

(1) Rational singularities. A singular point x 

of X is called rational if p&X, x) = 0. (The sin- 
gularity (X,x) is also called rational even when 

dim X > 3 if the direct image sheaf R’rc,L”g = 0 
for i>O.) 
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For a rational singularity XEX, the tmulti- 

plicity of X at x equals - Zi and the local 
embedding dimension of X at x is - Zi + 1. 
Hence a rational singularity with multiplicity 

2, which is called a rational double point, is 
a hypersurface singularity. The following 

weighted homogeneous polynomials (- Sec- 
tion D) give the complete list of the defining 

equations up to analytic isomorphism: 

A,: x”+’ + y2 + z2, 

weights (l/(n + l), l/2, l/2), n> 1; 

D,:x”-‘+xy2+z2, 

weights (l/Q-l), (n-2)/2(n-l), l/2), n>4; 

E,:x4+y3+z2, 

weights (l/4, l/3, l/2); 

E,:x3y+y3+z2, 

weights (2/9, l/3, l/2); 

E,:x5+y3+z2, 

weights (l/5, l/3, l/2), 

where the labels appearing at the left are given 
according to the coincidence of the diagram of 
the respective minimal resolutions and the 

+Dynkin diagrams. Rational double points 
have many different characterizations [l 11. 

The generic part of the singular locus of the 
unipotent variety of a tcomplex simple Lie 
group G (= the orbit of the subregular +unipo- 
tent elements in G) is locally expressed as the 
product of a rational double point and a poly- 
disk. The tuniversal deformation of a rational 
double point and its tsimultaneous resolution 

are constructed by restricting the following 
diagram on a transverse slice to the subregular 
unipotent orbit (Brieskorn [7]; [34]): 

Y-G 

I I 
T.TJW 

where T is a +Cartan subgroup of G with the 

action of the Weyl group W, G+ T/ W is the 
quotient mapping by the tadjoint action of G 

and Y= {(x, B) 1 x E G and B is a +Borel sub- 

group of G with XEB}, and other morphisms 
are defined naturally so that the diagram 
commutes. Here, Y-t T is the simultaneous 
resolution of the morphism G + T/W. 

(2) Quotient singularities. A singular point 
x E X is called a quotient singularity if there 
exists a neighborhood of x which is analyti- 

cally isomorphic to an orbit space U/G, where 
U is a neighborhood of 0 in C2 and G is a 

finite group of analytic automorphisms of U 
with the unique fixed point 0. The quotient 

singularities are rational, and their resolutions 

have been well studied [6]. U/G has a rational 

double point at 0 if and only if G is conjugate 
to a nontrivial finite subgroup of SU(2). 

(3) Elliptic singularities. The singularity 
(X, x) is called minimally elliptic if p&X,x) = 1 
and (X,x) is Gorenstein [23]. The following 
are examples of minimally elliptic singularities. 

A singular point x EX is called simply ellip- 
tic if the exceptional set A of the minima1 
resolution is a smooth telliptic curve [33]. 
When A2 = -1, -2, -3, (X,x) is a hyper- 
surface singularity given by the following 
weighted homogeneous polynomials: 

E6:X3+y3+z3+axyz, 

weights (l/3, l/3, l/3), A2= -3; 

E,:x4+y4+z2+axyz, 

weights (l/4, l/4, l/z!), A’= -2; 

E,:x6+y3+z2+axyz, 

weights (l/6, l/3, l/2), A’= -1, 

(4) Cusp singularities. A singular point x E X 
is called a cusp singularity if the exceptional 
set of the minimal resolution is either a sin- 

gle rational curve with a tnode or a cycle of 
smooth rational curves. Cusp singularities 
appear as the boundary of +Hilbert modular 

surfaces [ 1 S]. The hypersurface cusp singular- 
ities are given by the polynomials 

T ,,,,.:xP+y~+Zr+axyz, 

where l/p+l/q+ l/r< 1 and a#O. 

D. The Milnor Fibration for Hypersurface 
Singularities 

Let V be an analytic set in CN, and take a 
point Z~E V. Let S,=S(z,,&) be a (2N- l)- 
dimensional sphere in CN with center z0 and 
radius F, > 0, and let K, = V fl Se. If E is suff- 
ciently small, the topological type of the pair 
(S,, K,) is independent of E [27]. By virtue of 
this fact, the study of singular points consti- 

tutes an important aspect of the application of 
topology to the theory of functions of several 
complex variables. 

A singular point z0 of I/ is said to be isolated 

if, for some open neighborhood MT of z0 in CN, 
Wn V- {zO} is a smooth submanifold of W- 
{z,,}. In that case, K, is a closed stnooth sub- 
manifold of S,, and the diffeomorphism type 
of (S,, K,) is independent of (sufficiently small) 
8 > 0. So far, the topological study of such 

singular points has been primarily focused 
on isolated singularities. When V is a plane 
curve, that is, N = 2 and Y = 1, all l-he singular 

points of V are isolated, and the submanifold 

K, of the 3-sphere S, can be descrtbed as an 
iterated torus link, where type nu:mbers are 
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completely determined by the +Puiseaux ex- 
pansion of the defining equation f of V at the 

point z0 [S]. In 1961, D. Mumford, using a 
resolution argument, showed that if an alge- 
braic surface V is tnormal at z0 and if the 
closed 3-manifold K, is simply connected, then 
K, is diffeomorphic to the 3-sphere and z0 is 
nonsingular [29]. The following theorem in 
the higher-dimensional case is due to E. Bries- 
korn [S] (1966): 

Every thomotopy (2n - 1)-sphere (n f2) 
that is a boundary of a +n-manifold is dif- 

feomorphic to the K, of some complex hyper- 

surface defined by an equation of the form 
f(z)=zTl+ +z2{ =0 at the origin in C”+‘, 
provided that n # 2. The hypersurface of this 
type is called the Brieskorn variety. Inspired by 
Brieskorn’s method, J. W. Milnor developed 

topological techniques for the study of hyper- 
surface singularities and obtained results such 

as the Milnor fibering theorem, which can be 
briefly stated as follows: 

Suppose that V is defined by a single equa- 
tion f(z)=0 in the neighborhood of z,,~C”+i. 

Then there is an associated smooth +fiber 
bundle cp:S,- K,-+S’, where cp(z)=f(z)/(f(z)( 
for ZES,- K,. The fiber F=cp-‘(p) (PCS’) has 
the homotopy type of a finite CW-complex of 

dimension II, and K, is (n - 2))connected. 
Suppose that z0 is an isolated critical point 

of $ Then F has the homotopy type of a +bou- 
quet of spheres of dimension n [27]. The Mil- 

nor number p(f) off is defined by the nth Betti 
number of F, and it is equal to dim,6’,.+1,Z0/ 
(if/C:z,, , af/?z,,+,), where &C”+l,z, is the ring 

of the germs of analytic functions of II + 1 
variables at z = zO. The Milnor monodromy h, 
is the automorphism of H,(F) that is induced 
by the action of the canonical generator of 
the fundamental group of the base space 5’. 
The +Lefschetz number of h, is zero if z” is 
a singular point of V. Let A(t) be the charac- 
teristic polynomial of h,. Then K, is a homol- 
ogy sphere if and only if A( 1) = k 1 [27]. It is 

known that A(t) is a product of +cyclotomic 
polynomials. 

The diffeomorphism class of (S,, K,) is com- 

pletely determined by the congruence class of 
the linking matrix L(ei,ej) (1 <i,j<n(f), where 
e,, . , eacS, is an integral basis of H,(F) and 

L(ei,ej) is the .+linking number 121, lo]. 
The Milnor fibration is also described in the 

following way. Let E(E, 6) be the intersection of 
f-i(@) and B(E), the open disk of radius E 
and center z,,, whereD,* is jn~ClO<(n(<G}. 

The restriction of S to E(E, 6) is a +locally triv- 
ial fibration over D: if fi is sufficiently smaller 

than c [27]. 

Let ,f(z) be an analytic function; suppose 

that j’(O) = 0 and let C ptN”+l apzP be the Taylor 
expansion of f at z = 0. Let F+ (f) be the con- 

vex hull of the union of { p + (R+)n”} for 
/JEN”+~cR”+~ with a,#O, where R+ = {xe 

R 1 x z 0}, and let F(f) be the union of com- 
pact faces of I+(f). We call I(f) the Newton 
boundary of ,f in the coordinates z,, , z,+, 
For a closed face A of F(f) of any dimension, 

let LA(z) = C PE~apzP. We say that f has a non- 
degenerate Newton boundary if ((:Lf,lC;z,, . , 
?&/c?z,+,) is a nonzero vector for any Zen+’ 
and any Air. Suppose that f has a non- 

degenerate Newton boundary and 0 is an 
isolated critical point of $ Then the Milnor 
fibration off is determined by F(f‘) and p(f), 

and the characteristic polynomial can be ex- 
plicitly computed by F(.f) [22,38]. 

f(z) is called weighted homogeneous if there 
exist positive rational numbers r,, , r,,+, , 
which are called weights, such that a,, = 0 if 
cr&’ p,ri # 1. An analytic function f(z) with an 
isolated critical point at 0 is weighted homo- 

geneous in suitable coordinates if and only if 
,f belongs to the ideal (<f/flaz,, , af/dz,+,) (K. 
Saito [32]). Suppose that ,f(z) is a weighted 

homogeneous polynomial with an isolated 
critical point at 0. Then the Milnor iibration of 
,f is uniquely determined by the weights, and 

C:=,r,>l. 

E. Unfolding Theory 

An unfolding of a germ of an analytic func- 
tion ,f(z) at 0 is a germ of an analytic function 

F(z, t), where TV C” (m is finite) such that F(z, 0) 
=f(z). We assume that f has an isolated crit- 
ical point at 0. Among all the unfoldings of ,I; 
there exists a universal one, in a suitable sense, 
that is unique up to a local analytic isomor- 
phism. It is called the universal unfolding of ,f 
[36,37,26] (- 51 Catastrophe Theory). Ex- 
plicitly it can be given by F(z,t)=f(z)+t, q,(z) 
+ . . + t,cp,(z), where q,(z) (i= 1, ,p) are 
holomorphic functions which form a C-basis 
of the Jacobi ring Bc~+~,O/(c?flazl, . , af/i;z,+i) 

(P = Pm). 
In the universal unfolding F(z, t) of ,1; the set 

of points (z,, to) such that F(z, to) has an iso- 
lated critical point at z,, with the Milnor num- 
ber p(S) and F(z,, to) = 0 forms an analytic set 
at (z, t) = 0. The modulus number off is the 
dimension of this set at 0. This set is some- 
times called the p-constant stratum. Let g be a 
germ of an analytic function. g is said to be ad- 
jacent to ,f (denoted by f-g), if there exists a 
sequence of points (z(m), t(m)) in Cn+’ x C@ 

that converges to the origin such that the 

term of F(z, t(m)) at z(m) is equivalent to g. 
Adjacency relations are important for the 
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understanding of the degeneration phenomena 
of functions. The unfolding theory can be 
considered in exactly the same way as that for 
the germ of a real-valued smooth function 
that is finitely determined [36,26]. 

The germs of analytic functions with 
modulus number 0, 1, and 2 are called simple, 

unimodular, and bimodular, respectively. They 
were classified by V. I. Arnold [l] (- Ap- 
pendix A, Table 5.V). Simple germs corre- 

spond to the equations for the rational double 
points, and unimodular germs define simply 
elliptic singularities or cusp singularities. Every 
unimodular or bimodular germ defines a sin- 
gularity with ps = 1. 

F. Picard-Lefschetz Theory 

Let f(z) be a holomorphic function such that 
f(0) = 0 and 0 is an isolated critical point with 
the Milnor number p. Let F(z, t) be a universal 

unfolding off at 0. Let f: E(E, 6)+D,* be the 
Milnor fibration off by the second description 
in Section D. There exists a positive number r 
and a codimension 1 analytic subset A (called 
the bifurcation set) of B’(r), the open disk of 
radius r with the center 0 in the parameter 
space C”, such that for any t, E B’(r) -A, f,, = 

FI B(Ej x f0 has p different nondegenerate crit- 
ical points in B(E). Let pl, , pp be the critical 
points of ,f,,. For each pi, one can choose local 
coordinates (yl, . . . , yn+J ~0 that f;,,(Y)=f;,,(pJ 
+yy:+...+y,2+1. Such an ,f,, is called a Morsi- 
fication of j: 

Let Bi be a small disk with center pi in Cn+‘. 

Then for any qi which is near enough to f,,(pJ, 
the intersection &‘(q,) n Bi is diffeomorphic to 
the tangent disk bundle of the sphere S”. The 

vanishing cycle ei is the corresponding n- 
dimensional homology class of&‘(qi) n Bi. 
(We fix qi.) The self-intersection number of ei is 
given by 

Cei> ei> = 
1 

2( -l)ncnel)‘*, n even, 

0, n odd. 

For a sufficiently small t, E B’(r) -A, one has 

the following: (i) If;,(p,)I ~6; (ii) the restriction 
off;, to E is a fiber bundle over D’, where D’ 
={w~C~~w~<&andw#f,~(pJfori=l,...,~} 
and E =f,,’ (D’) n B(E); (iii) the restriction of 
the above tibration to {w 11 WI = 6) is equivalent 
to the restriction of the Milnor fibration off 
to{wI/wl=6}.Letw,beafixedpointofD’, 
and let F =,ft;‘(w,) n E. Then F is diffeomor- 
phic to the Milnor fiber off: Let Ii be a simple 

path from w,, to qi, and let yi be the loop 1 w  - 

S,,(PJl = Iqi-.fYn(PJl. We wwse that the 
union of the li is contractible to wO. By parallel 
translation of the vanishing cycle ei along Ii, 
we consider e,eH,(F). The collection {eil i= 

1, , p} is an integral basis of HJ F), which is 
called a strongly distinguished basis (Fig. 1). 

Now let hi be the linear transformation of 
H,(F) that is induced by the parallel trans- 
lation along 2iyilim1. The Picard-Lefschetz for- 
mula says that 

h,(e)=e-(-I)“(“-I)/* (e,ei).ei for ecH,(F) 

Here ( , ) is the intersection number in 
H,(F). For n even, hi is a treflection. 

The Milnor monodromy h, of “f is equal 
to the composition h, . . . h, under a suitable 
ordering of the hi. The subgroup of the group 
of linear isomorphisms of H,(F) generated by 
h, , . . , h, is called the total monodromy group. 

When f is a simple germ and n z 2 mod4, 
the total monodromy group is isomorphic to 

the tWeyl group of the corresponding Dynkin 
diagram. Even-dimensional simple singular- 

ities are the only ones for which the mono- 
dromy group is finite. These are also char- 
acterized as the singularities with definite 

intersection forms. 

E 

Fig. 1 

G. Stratification Theory 

The notion of Whitney stratification was first 
introduced by H. Whitney to study the sin- 

gularities of analytic varieties [39] and was 
developed by R. Thorn for the general case 

c371. 
Let X and Y be submanifolds of the space 

R”. We say that the pair (X, Y) satisfies the 

Whitney condition (b) at a point ye Y if the 
following holds: Let xi (i = 1,2, ) and yi 
(i = 1,2, . ) be sequences in X and Y, respec- 
tively, that converge to y. Suppose that the 
tangent space TxtX converges to a plane Tin 

the corresponding Grassmannian space and 

the secant X,Y, converges to a line L. Then L 
c T. We say that (X, Y) satisfies the Whitney 
condition (b) if it satisfies the Whitney con- 



1581 418 Ref. 
Theory of Singularities 

dition (b) at any point ye Y. Let h be a local 

diffeomorphism of a neighborhood of y. One 
can see that (h(X), h(Y)) satisfies the Whitney 

condition (b) at h(y) if (X, Y) satisfies it at y. 
Thus the Whitney condition can be considered 
for a pair of submanifolds X and Y of a mani- 
fold M using a local coordinate system. Let S 
be a subset of a manifold M, and let .4” be a 

family of submanifolds of M. ,Y is called a 
Whitney prestratification of S if Y is a locally 
finite disjoint cover of S satisfying the follow- 

ing: (i) For any X E Y, the frontier X-X is a 
union of YEY; (ii) for any pair (X, Y) (X, YE 
.Y), the Whitney condition (b) is satisfied. A 
submanifold X in Y is called a stratum. There 
exists a canonical partial order in 9’ that 

is defined by X < Y if and only if X c r- Y. 
Let 1/be an analytic variety, and let ,CP be 

an analytic stratification of V that satisfies 
the frontier condition (i). Then there exists a 
Whitney prestratification ,V’ that is finer than 

.Y (Whitney [39]). 
For a given Whitney prestratification Y, 

one can construct the following controlled 
tubular neighborhood system: For each X E .~Y, 
a ttubular neighborhood (T,( of X in M and 
the projection xx:1 7”I+X and a tubular func- 
tion px: 1 T,j-+R+ (= the square of a norm 
under the identification of 1 T,I with the +nor- 
ma1 disk bundle of X) are given such that the 

commutation relations 

for mgM, X< Y. 

are satisfied whenever both sides are defined. 
By virtue of this, the notions of vector fields 

and their integral curves can be defined on a 
Whitney prestratified set so that several im- 

portant results on a differentiable manifold 
can be generalized to the case of stratified sets 
For example, the following is Thorn’s first 
isotopy lemma: Let M and P be differentiable 
manifolds, and let (S, Y) be a Whitney pre- 

stratified subset of M. Let f: S+P be a con- 
tinuous mapping that is the restriction of a 
differentiable mapping from A4 to P. Suppose 
that the restriction off to each stratum X of 
,Y is a proper submersion onto P. Then f: S-t 
P is a fiber bundle [37]. 

H. b-Functions 

Let ,f(z) be a germ of an analytic function in 

Cn+’ with ,f(O) = 0. The h-function of ,f’ at 0 
is the manic polynomial b,(s) of lowest de- 
gree among all polynomials b(s) with the 
following property [4,20]: There exists a 

differential operator P(z, S/Jz, s), which is 
a polynomial in s, such that b(s)f”(z) = 

P(z, c?/fiz, .s),f”~“(z). Since b,(s) is always 

divisible by s + 1, we define &) = b,(s)/(s + 1). 
All the roots of &s) =0 are negative rational 
numbers (M. Kashiwara [20]. When f has an 

isolated critical point at 0, the set jexp(2& I r 
is a root of b,(s) = 0) coincides with the set of 
eigenvalues of the Milnor monodromy [25]. 

The name “b-function” is due to M. Sato. 

He first introduced it in the study of tprehomo- 
geneous vector spaces. Some authors call it the 
Bernstein (Bernshtein) polynomial. 

1. Hyperplane Sections 

Let V be an algebraic variety of complex di- 
mension k in the complex projective space P”. 
Let L be a hyperplane that contains the 
singular points of V. Then the trelative homo- 
topy group ni( V, Vn L) is zero for i < k. Thus 

the same assertion is true for the trelative 
homology groups (S. Lefschetz [24]; [28]). 

Let f be a holomorphic function defined in 
the neighborhood of 0 EC”” and f(0) = 0. Let 
H be the hypersurface f -’ (0). There exists a 
+Zariski open subset U of the space (= P”) of 
hyperplanes such that for each LE U, there 
exists a positive number 8 such that n,(B(r)- 
H,(B(r)-H)fIL)=Ofori<nandO<r<s, 
where B(r) is a disk of radius r (D. T. L& and 
H. Hamm [ 151). This implies the following 

theorem of Zariski: Let V be a hypersurface of 
P”, and let P2 be a general plane in P”. Then 

the fundamental group of P”- V is isomorphic 
to the fundamental group of P2 - C, where C 
= V n P2. The fundamental group of P2 - C is 
an Abelian group if C is a nodal curve [9,13]. 

Suppose that f has an isolated critical point 
at 0. Let p(“+‘) be the Milnor number p(f). 
Take a generic hyperplane L. The Milnor 
number of ,f ) L is well defined, and we let pL(“’ = 
~(fl J. Similarly one can define #) off and 
let p* = (/&“+I), #“‘, . , p(l)). Let f,(z) be a de- 

formation of ,f: Each f, has an isolated critical 
point at 0, and t is a point of a disk D of the 
complex plane. Let W= {(z, t) I f,(z) = 0) and 
D’= {0} x D. W-D’ and D’ satisfy the Whitney 
condition (b) if and only if /c*(,f,) is invariant 
under the deformation [35]. The Whitney 
condition (b) implies topological triviality of 

the deformation. 
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419 (XX.1 8) 
Thermodynamics 

A. Basic Concepts and Postulates’ 

Thermodynamics traditionally focuses its 
attention on a particular class of states of a 
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given system called (thermal) equilibrium 

states, although a more recent extension, 
called the thermodynamics of irreversible 
processes, deals with certain nonequilibrium 

states. In a simple system, an equilibrium state 
is completely specified (up to the shape of the 
volume it occupies) by the volume V (a posi- 
tive real number), the mole numbers N,, . . , N, 
(nonnegative reals) of its chemical compo- 
nents, and the internal energy U (real). (More 
variables might be needed if the system were, 
e.g., inhomogeneous, anisotropic, electrically 

charged, magnetized, chemically not inert, or 
acted on by electric, magnetic, or gravitational 
fields.) This means that any of the quantities 

associated with equilibrium states (called 
thermodynamical quantities) of a simple sys- 
tem under consideration is a function of K 
N,, . . . . N,, and U. 

When n copies of the same state are put next 
to each other and the dividing walls are re- 
moved, V, N,, , N,, and U for the new state 

will be n times the old values of these variables 
under the assumptions that each volume is 
sufficiently large and that the effects of the 
boundary walls can be neglected. Thermo- 
dynamical quantities behaving in this manner 

are called extensive. Those that are invariant 
under the foregoing procedure are called inten- 
sive. More precisely, the thermodynamic vari- 

ables are defined by homogeneity of degree 1 
and 0 as functions of K N,, , N,, and U. 

By a shift of the position of the boundary 
(called an adiabatic wall if energy and chemical 
substances do not move through it) or by 
transport of energy through the boundary 
(called a diathermal wall if this is allowed) or 

by transport of chemical components through 
the boundary (called a permeable membrane) 
(in short, by thermodynamical processes), these 

variables can change their values. If these shifts 
or transports are not permitted (especially 

for a composite system consisting of several 
simple systems, at its boundary with the out- 

side), the system is called closed. Otherwise it is 
called open. 

Those equilibrium states that do not under- 
go any change when brought into contact 
with each other across an immovable and 
impermeable diathermal wall (called a ther- 

mal contact) form an equivalence class. This 
is sometimes called the 0th law of thermo- 
dynamics. The equivalence class, called the 
temperature of states belonging to it, is an 
intensive quantity. 

The force needed to keep a movable wall at 
rest, divided by the area of the wall, is called 
the pressure. It is another intensive quan- 

tity. For a (slow) change of the volume by an 

amount dl/ under a constant pressure P, me- 

chanical work of amount - PdV is done on 

the system. Together with a possible change 
of the internal energy, say of amount dU, the 

amount 

fiQ=dU--PdV (1) 

of energy is somehow gained (if it is positive) 
or lost (if it is negative) by the system. This 
amount of energy is actually transported from 
or to a neighboring system through diathermal 

walls so that the total energy for a bigger 
closed composite system is conserved. This is 

called the first law of thermodynamics, and 6Q 
is called the heat gain or loss by the system. 

If two states of different temperatures T, 

and T2 are brought into thermal contact, 
energy is transferred from one, say T, , to the 
other (called heat transfer). This defines a 

binary class relation denoted by Ti > T2. The 
Clausius formulation of the second law of 

thermodynamics says that it is impossible to 
make a positive heat transfer from a state of 

lower temperature to another state of higher 
temperature without another change else- 
where. By considering a certain composite 
system, one reaches the conclusion that there 
exists a labeling of temperatures by posi- 

tive real numbers T, called the absolute tem- 
perature, for which the following is an exact 
differential: 

aQ/T=(dU-PdV)/T=dS. (2) 

The integral S is an extensive quantity, called 
the entropy. Furthermore, the sum of the en- 
tropies of component simple systems in an 
isolated composite system is nondecreasing 

during any thermodynamic process, and the 
following entropy maximum principle holds: 
An isolated composite system reaches an 
equilibrium at those values of extensive param- 

eters that maximize the sum of the entropies 
of component simple systems (for constant 
total energy and volume and within the set of 
allowed states under a given constraint). 

A relation expressing the entropy of a given 
system as a function of the extensive param- 
eters (specifying equilibrium states) is known 
as the fundamental relation of the system. If it 
is given as a continuous and differentiable 

homogeneous function of y N, , , N,, and U 
and is monotone increasing in U for fixed V, 
N,, . . . , N,, then one can develop the thermo- 

dynamics of the system based on the above en- 
tropy maximum principle. A relation express- 

ing an intensive parameter as a function of 
some other independent variables is called an 

equation of state. 
Another postulate, which is much less fre- 

quently used, is the Nernst postulate or the 

third law of thermodynamics, which says that 

the entropy vanishes at the vanishing abso- 
lute temperature. 
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B. Various Coefficients and Relationships 

The partial derivative c’/c’x of a function 
,f(x, y, ) with respect to the variable x 

with the variables y, fixed is denoted by 
(df//ax), ,,,,. We abbreviate N,, . . . , NV as N in 
the following. 

If the fundamental relation is written as U = 

U( V, N, , , N,, S) (instead of S being repre- 
sented as a function of the other quantities), 
then (2) implies 

(XJ/C~S),,~ = T, @U/a If),,, = - P. 

The other first-order partial derivatives of U 

are 

with 1~~ called the chemical potential (or elec- 
trochemical potential) of the jth component. 

If a system is surrounded by an adiabatic 
wall (i.e., the system is thermally isolated) and 
goes through a gradual reversible change 
(quasistatic adiabatic process), then the entropy 
has to stay constant. If a system is in thermal 

contact through a diathermal wall with a large 
system (called the heat bath) whose tempera- 
ture is assumed to remain unchanged during 
the thermal contact, then the temperature of 
the system itself remains constant (an iso- 

thermal process). The decrease of the volume 
per unit increase of pressure under the latter 
circumstance is called the isothermal compress- 
ibility and is given by 

Under constant pressure, the increase of the 

volume per unit increase of the temperature is 
called the coefficient of thermal expansion and 
is given by 

Under constant pressure, the amount of (quasi- 
static) heat transfer into the system per mole 
required to produce a unit increase of tem- 
perature is called the specific heat at constant 

pressure and is given by 

cp= N-‘T@S/dT),.., 

where N = N, f + N,. The same quantity 
under constant volume is called the specific 
heat at constant volume and is given by 

The positivity of c, is equivalent to the convex- 
ity of energy as a function of entropy for fixed 
values of V and N. 

Because of the first-order homogeneity of an 
extensive quantity as a function of other ex- 
tensive variables, one can derive an Euler 
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relation, such as 

U=TS-PV+p,N,+...+prNr, 

for a simple system. Its differential form im- 

plies the following Gibbs-Duhem relation: 

SdT-VdP+N,dp,+...+N,dp,=O. 

Because of the identity 

there arise relationships among second deriva- 
tives, known as the Maxwell relations: 

(3T/c?V), N= -(ZP/aS),,,, 

(c’V/aS),,,=(dT/~P),,,, 

(c;7S/av),.,,=(aP/;iT)“,N, 

((:‘S/aP),,,= -(~?l’/‘c’T)~,.. 

By computing the Jacobian of transformations 
of variables, further relations can be obtained. 

For example, 

cp = c, + N -’ TVct2/~r. 

C. Legendre Transform and Variational 

Principles 

The Legendre transform of a function f(.x, , . , 

y,, _. ) relative to the variables x is given by 

j 

as a function of the variables ~;‘i = ?Ifii?xj and y. 
The original variables x can be recovered as 

-xj = ay/2pj. 
In terms of Legendre transforms, the en- 

tropy maximum principle can be reformulated 
in various forms: 

Energy minimum principle: For given values 
of the total entropy and volume, the equilib- 
rium is reached at those values of uncon- 
strained parameters that minimize the total 
energy. This principle is applicable in rever- 
sible processes where the tota. entropy stays 

constant. 
Helmholtz free energy minilmum principle: 

For given values of the temperature (equal to 

that of a heat bath in thermal contact with the 
system) and the total volume, the equilibrium 
is reached at those values of the unconstrained 
parameters that minimize thz total Helmholtz 

free energy, where the Helmholtz free energy 
for a simple system is defined as a function of 

T, V, A’,, . > Nr by 

F=U-TS, 

dF= -SdT- PdV+p, dN, +p,dN,. 

Enthalpy minimum principle: For given 

values of the pressure and t’ne total entropy, 



1585 420 C 
Three-Body Problem 

the equilibrium is reached at those values of 
unconstrained parameters that minimize the 

total enthalpy, where the enthalpy for a sim- 
ple system is defined as a function of S, P, 

N,,...,Nrby 

H=UfPV, 

dH=TdS+VdP+p,dN,+...+p,dN,. 

Gibbs free energy minimum principle: For 
constant temperature and pressure, the equi- 
librium is reached at those values of uncon- 
strained parameters that minimize the total 

Gibbs free energy, where the Gibbs free energy 
for a simple system is given as a function of T, 

P,N,,...,Nrby 

G=U-TS+PV, 

dG= -SdT+ VdP+p, dN, +...+p,dN,. 
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420 (Xx.8) 
Three-Body Problem 

A. n-Body Problem and Classical lntegrals 

In the n-body problem, we study the motions of 
n particles Pi(xi, y,, zi) (i = 1,2, , n) with arbi- 
trary masses mi( >O) following +Newton’s law 

of motion, 

d2Wi 2u 
miz=G) i=1,2 ,..., n, 

where wi is any one of xi, yi, or z,, 

CJ = c k2mimi/r,, 
i#j 

with k2 the gravitation constant, and 

rij=J(xi-Xj)2+(yi-yj)*+(zi-zj)2. 

Although the one-body and two-body prob- 
lems have been completely solved, the prob- 

lem has not been solved for n > 2. The three- 

body problem is well known and is important 
both in celestial mechanics and in mathemat- 

ics. For n > 3 the problem is called the many- 
body problem. 

The equations (1) have the so-called ten 
classical integrals, that is, the energy integral 
Ci(mi/2)((ii)2 + (ji)2 + (ii)2)- Cl = constant 
(+ = dw/dt), six integrals of the center of mass 

Cimi*i=constant, &miwi=(CimiLiii)t+con- 

stant, and three integrals of angular momen- 
tum C, mi(uicii, - wini) = constant (u # w). Using 
these integrals and eliminating the time t and 
the ascending node by applying Jacobi’s 

method, the order of the equations (1) can be 
reduced to 6n - 12. H. Bruns proved that alge- 
braic integrals cannot be found except for the 

classical integrals, and H. Poincare showed 
that there is no other single-valued integral 

(Bruns, Acta Math., 11 (1887); Poincare [2, I, 
ch. 51). These results are called Poincare-Bruns 
theorems. Therefore we cannot hope to obtain 
general solutions for the equations (1) by 
tquadrature. General solutions for n > 3 have 

not been discovered except for certain specific 
cases. 

B. Particular Solutions 

Let ri be the position vector of the particle Pi 

with respect to the center of mass of the n- 
body system. A configuration r = {r, , , r”) 

of the system is said to form a central figure 
(or central configuration) if the resultant force 
acting on each particle Pi is proportional to 
m,r,, where each proportionality constant is 
independent of i. The proportionality con- 

stant is uniquely determined as -U/C:=‘=, m,rf 

by the configuration of the system. A con- 
figuration r is a central figure if and only if 

r is a tcritical point of the mapping r H 
U2(r)C%, mirf [S, 61. A rotation of the sys- 
tem, in planar central figure, with appropriate 
angular velocity is a particular solution of 
the planar n-body problem. 

Particular solutions known for the three- 
body problem are the equilateral triangle solu- 

tion of Lagrange and the straight line solu- 
tion of Euler. They are the only solutions 
known for the case of arbitrary masses, and 

their configuration stays in the central figure 
throughout the motion. 

C. Domain of Existence of Solutions 

The solutions for the three-body problem 

are analytic, except for the collison case, i.e., 

the case where min rij = 0, in a strip domain en- 
closing the real axis of the t-plane (Poincare, P. 
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Painlevt). K. F. Sundman proved that when 
two bodies collide at t = t,, the solution is 

expressed as a power series in (t - tO)lp in a 
neighborhood oft,, and the solution which 
is real on the real axis can be uniquely and 
analytically continued across t = t, along the 
real axis. When all three particles collide, the 
total angular momentum f with respect to the 

center of mass must vanish (and the motion is 
planar) (Sundman’s theorem); so under the 
assumption f#O, introducing s=s’(U + 1)dt 
as a new independent variable and taking it 
for granted that any binary collision is analyt- 

ically continued, we see that the solution of 

the three-body problem is analytic on a strip 
domain 1 Im s\ < 6 containing the real axis of 

the s-plane. The conformal mapping 

w  = (exp(ns/26) - l)/(exp(ns/26) + 1) 

maps the strip domain onto the unit disk 
lwI< 1, where the coordinates of the three 
particles w,, their mutual distances rk., and the 

time t are all analytic functions of w  and give a 
complete description of the motion for all real 

time (Sundman, Acta Math., 36 (1913); Siegel 
and Moser [7]). 

When a triple collision occurs at t = t,, G. 

Bisconcini, Sundman, H. Block, and C. L. 
Siegel showed that as t-t,, (i) the configura- 

tion of the three particles approaches asymp- 
totically the Lagrange equilateral triangle 

configuration or the Euler straight line con- 
figuration, (ii) the collision of the three par- 
ticles takes place in definite directions, and 
(iii) in general the triple-collision sohition 
cannot be analytically continued beyond t = t,. 

D. Final Behavior of Solutions 

Suppose that the center of mass of the three- 
body system is at rest. The motion of the 
system was classified by J. Chazy into seven 
types according to the asymptotic behavior 

when t-r +m, provided that the angular mo- 
mentum f of the system is different from zero. 
In terms of the +order of the three mutual dis- 
tances rij (for large t) these types are defined as 

follows: 
(i) H+: Hyperbolic motion. rij- t. 

(ii) HP+: Hyperbolic-parabolic motion. r13, 

r,,--andr,,-t2’3. 
(iii) HE’: Hyperbolic-elliptic motion. r,3, rz3 - t 

and r12<a (a=finite). 
(iv) P+: Parabolic motion. rij- t2’3. 

(v) PE+: Parabolic-elliptic motion. r, 3, rz3 - t2’3 

and r12 <a. 

(vi) L+: Lagrange-stable motion or bounded 

motion. rij < a. 

(vii) OS+: Oscillating motion. lim,,,suprij= co, 
l&,,, suprij< co. 

Define H-, HE-, etc. analogousl;y but with 
t+ --co. There are three classes for each of the 

motions HP, HE, and PE, depending on which 
of the three bodies separates from the other 

two bodies and recedes to infinity, denoted by 
HPi, HE,, PE, (i = 1,2,3), respectively. The 
energy constant h is positive for H- and HP- 
motion, zero for P-motion, and negative for 
PE-, L-, and OS-motion. For HE-motion, h 
may be positive, zero, or negative. 

We say that a partial capture takes place 
when the motion is H- for t+ ---CD and HE: 
for t + + cc (for h > 0), and a complete capture 
when the motion is HE; for t+ --co and L+ 

for t+ +co (for h < 0). We say also that an 
exchange takes place when HE,: for t + --co 
and HEj’ for t + +co (t #j). The probability of 
complete capture in the domain !I < 0 is zero 
(J. Chazy, G. A. Merman). 

E. Perturbation Theories 

The radius of convergence in the s-plane for 
Sundman’s solution is too small and the con- 
vergence is too slow in the w-plane to make it 
possible to compute orbits of celestial bodies, 

and for that purpose a perturbation method is 
usually adopted. When the masses m,, . , m, 

are negligibly small compared with m, for the 
n-body problem, the motion of the nth body is 
derived as the solution of the two-body prob- 
lem for m, and m, by assuming m2 = = 
m,-, = 0 as a first approximation, and then 
the deviations of the true orbit frlom the ellipse 

are derived as tperturbations. In the general 
theory of perturbations the deviations are 
derived theoretically by developing a disturb- 

ing function, whereas in the special theory of 
perturbations they are computed by numerical 
integration. In general perturbation theory, 
problems concerning convergence of the solu- 
tion are important, and it becomes necessary 
to simplify the disturbing function in deal- 
ing with the actual relations among celestial 

bodies. Specific techniques have to be devel- 
oped in order to compute perturlbations for 
lunar motion, motions of characl.eristic aster- 
oids, and motions of satellites (e.g., the system 
of the Sun, Jupiter, and Jovian satellites). 

F. The Restricted Three-Body Problem 

Since the three-body problem is very difficult 
to handle mathematically, mathematical inter- 

est has been concentrated on the restricted 
three-body problem (in particular, the planar 

problem) since Hill studied lunar theory in 

the 19th century. For the restricted three-body 
problem, the third body, of zero mass, cannot 

have any influence on the motion of the other 
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two bodies, which are of finite masses and 
which move uniformly on a circle around 
the center of mass. In the planar case, let us 

choose units so that the total mass, the angu- 
lar velocity of the two bodies about their 
center of mass, and the gravitation constant 
are all equal to 1, and let (ql, q2) be the coordi- 
nates of the third body with respect to a rotat- 
ing coordinate system chosen in such a way 
that the origin is at the center of mass and the 
two bodies of finite masses p and 1 -p are 
always fixed on the q,-axis. Then the equa- 

tions of motion for the third body are given 
by a Hamiltonian system: 

dq, 8H s- c?H 

dt dp, ’ dt aqi ’ 
i= 1,2, (2) 

with 

The equations (2) have the energy integral 

H(p, q) = constant, called Jacobi’s integral. 
Siegel showed that there is no other algebraic 
integral, and it can be proved by applying 
Poincare’s theorem that there is no other 
single-valued integral. Regularization of the 
two singular points for the equations (2) and 
solutions passing through the singular points 
were studied by T. Levi-Civita, and solu- 
tions tending to infinity were studied by B. 0. 

Koopman. 
After reducing the number of variables by 

means of the Jacobi integral, the equations (2) 
give rise to a flow in a 3-dimensional manifold 

of which the topological type was clarified by 
G. D. Birkhoff (Rend. Circ. Mat. Palermo, 39 
(1915)). Since this flow has an tinvariant mea- 
sure, the equations have been studied topo- 
logically, and important results for the re- 
stricted three-body problem, particularly on 

periodic solutions, have been obtained. 

G. Stability of Equilateral Triangular Solutions 

Suppose that the origin qi =pi = 0 is an +equi- 
librium point for an autonomous Hamiltonian 

system with two degrees of freedom: 

dqi 8H dpi aH 
-= -~ 

dt=api’ dt aqi ’ 
i= 1,2, 

with the Hamiltonian H being analytic at the 

origin. When the teigenvalues of the corre- 
sponding linearized system are purely imagi- 

nary and distinct, denoted by *A,, fi,, and 

i.,k,+i,k,#OforO<~k,(+(k,(<4(whereki 
is an integer), we can find suitable coordinates 

ti, 11, so that the Hamiltonian H takes the form 

+ H,+ . . . 

with ii = tiai and real cij. It is necessary that 
g,= J-1 ci for the solutions to be real. In ad- 

dition, if the condition 

is satisfied, then the origin is a tstable equi- 

librium point of the original system (V. I. 
Arnol’d, J. Moser) [7]. 

For Lagrange equilateral triangular solu- 

tions of the planar restricted three-body prob- 
lem, the eigenvalues 2 of the linearized system 
derived from (2) are given as roots of the 
equation A4 + 1,’ + (27/4)~( 1 -p) = 0 and are 
purely imaginary if ,n( I- ,n) < l/27. Applying 
the Arnol’d-Moser result, A.&M. Leontovich 
and A. Deprit and Bartholome showed that 
the Lagrange equilibrium points are stable 
for p such that O</*<p,, where pLo is the 

smaller root of 27~( 1 - /*) = 1, excluding three 
values:~1,/*2atwhichi,k,+/22k,=Olk,l+ 
(k,1<4 and p3 at which D=O. 

Arnol’d proved that if the masses mz, , m, 
are negligibly small in comparison with m,, 
the motion of the n-body system is tquasi- 
periodic for the majority of initial conditions 

for which the eccentricities and inclinations of 
the osculating ellipses are small. 
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A. Time Series 

A time series is a sequence of observations 
ordered in time. Here we assume that mea- 
surements are quantitative and the times of 

measurements are equally spaced. We consider 
this sequence to be a realization of a stochastic 
process X, (- 407 Stochastic Processes). Usu- 
ally time series analysis means a statistical 
analysis based on samples drawn from a sta- 

tionary process (- 395 Stationary Processes) 
or a related process. In what follows we denote 
the sample by X =(X1, X,, , X,)‘. 

B. Statistical Inference of the Autocorrelation 

Let us assume X, (t an integer) to be real- 
valued and weakly stationary (- 395 Station- 

ary Processes) and for simplicity EX, = 0 and 
consider the estimation of the autocorrelation 
ph = RJR, of time lag h, where R,= EX,X,+,. 

We denote the sample autocovariance of time 
lag h as 

&- * rrwt+,k,> T-lhl t=, 
and define the serial correlation coefficient 
of time lag h by p,, = &JR”,. It can be shown 
that the joint distribution of {a(, - P,,) 1 

1 <h <H} tends to an H-dimensional tnor- 
mal (Gaussian) distribution with mean vec- 
tor 0, if one assumes that X, is expressed as 

X,=Cj”-,bj[,-j, where CF-wlbjl< +co, 
xF-co Ijl’l’bi< +m, and the 5, are indepen- 
dently and identically distributed random vari- 

ables with E&=0 and E<;(< fco. 
When X, is an autoregressive process of 

order K (- Section D) and also a iGaussian 
process, it can be shown that the asymptotic 
distribution of {fi(bh--,,)l 1 <h<K} as T-t 
co is equal to the asymptotic distribution of 
{ fi(~?,, -Q,,) 11 <h < K}, where $,, is the +maxi- 

mum likelihood estimator of p,,. In general, 
it is difficult to obtain the maximum likeli- 
hood estimator of ph. The statistical properties 

of other estimators of P,,, e.g., an estimator 

constructed by using sgn(X,) (sgn(y) means 

1 (y>O), 0 (y=O), -1 (y<O)) have also been 
investigated. 

Testing hypotheses concerning autocorre- 
lation can be carried out by using the above 
results. Let us now consider the problem of 
testing the hypothesis that X, is a twhite noise. 
Assume that X, is a Gaussian process and that 
a white noise with EX: = (Y’ exists, and define 

c~=zC:ll(Xr-X)(Xr+h -X) and ;ih = c,,/cO for 

h > 0, where X T+j=Xj and X=CL, X,/T. 
Then the probability density function of 7i can 

be obtained and it can be shown that 

q-7, >y)= f(l.,-Y)'T-3J:2;, i,,, <y<i,, 

j=l , 

where pLj = cos 2?rj/T and 

(T-1)/2 
A,= fl (ibj-ik), T=3, 5 ,..., 

k=l 
(k #A 

*j=T’ff(jl-lk)Jiq, T=4, 6, . . . . 
k=l 
(k #A 

l<m<(T-3)/2 if T is odd, 

l<m$T/2-1 if T is even. 

This can be used to obtain a test of 
significance. 

C. Statistical Inference of the Spectrum 

To find the periodicities of a real-valued 

+weakly stationary process X, with mean 0, the 
statistic, called the periodogram, 

is used. If X, is expressed as 

X,= 5 {m,cos2~1,t+m;sin27-r/(,1’}+ x, 
I=1 

where {m,}, {m;}, and {x} are mutually inde- 
pendent random variables with Em, = Em; = 0 
and V(mJ = V(m;) = $ and { x} i:s independent 
and identically distributed with means 0 and 

finite variances cr’, the distribution of IT(i) 
converges to a distribution with finite mean 
and finite variance at 3. # & 1.! for 1 < 1< L 
when T tends to infinity. On the other hand, 
the magnitude of I,(n) is of the order of Tat 
i = & i,, 1 <I < L. This means th;at we can find 
the periodicities of X, by using I:,(i). When 

X, = x, we find that the distribution of 21,(L)/ 
o2 (when 1#0, &l/2) or r,(n)/a (when i=O 
or k l/2) tends to the +X2 distribution with 
degrees of freedom 2 or 1, respectively, and 
1(pi), I(pJ, . . . . I(p,) are asymptotically in- 

dependent random variables for 0 6 lpi 1 < 

I~21<...<I~LM1~1/2when T+a:.Applying 
this result, we can test for periods in the data. 
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Let f(i) be the spectral density function of a 

real-valued weakly stationary process X,. In 
general, the variance of Ix:, X,e~*“““/@I 
does not tend to 0 as T tends to infinity; hence 
I&) cannot be used as a good estimator for 
the spectral density. To obtain an estimate of 
f(;), several estimators defined by using weight 
functions have been proposed by several 
authors. Let W,(I.) be a weight function de- 
fined on (-co, co), and construct a statistic 

,?(I.) =J?& I,(p) W,(A -p)dp. Let us use y(p) 
for the estimation of f(i). w,(I) is called a 
window. An important class of B’,(I) is as fol- 

lows. Let IV(n) be continuous, IV(I) = W( - I), 
W(O)=l,(W(~)(<l,andS~,W(i)‘dl< 
+co, and let H be a positive integer depend- 
ing on T such that H+co and HIT+0 as T+ 
DJ. Putting wj= W(j/H), we define fVr(n) by 
W,.(i) = C?Il T+, wje-‘“‘j’. Then y(I) can be 

expressed $s f(;l) = C,‘-! T+l R,, w,,e- 24ih’, 
where E, = C,?;h X,+,X,/T for h > 0 and 

R,=cT=,,,+, X,+,X,/T for h < 0. Let X, be 
stationary to the fourth order (- 395 Station- 

ary Processes) and satisfy 

h I $-* IG,hJ.,l< +a, 3 , 
where G,h,l., is the fourth-order joint tcumu- 

iant of X,, X,+,, Xc+,, and X,,,. Then we have 

p2 g Km) = 2m2 s 
a W(Py di, - m 

@llV(~(~l:2))=2f(l/2)’ m 
s 

W()J2 dd, 
-m 

ii& V(&))=f(i)’ 
s 

m W(d)2di, 
-cc 

lim rCov(,J(A), ~(,u))=O, i.#p. 
T-S H (1) 

{wh} or IV,.(I) should have an optimality, e.g., 
to minimize the mean square error of J(I). But. 
generally, it is difficult to obtain such a { wh} or 

wo 
Several authors have proposed specific 

types of windows. The following are some 
examples:(i) (Bartlett) wh=(l --(hi/H) for (hi< 
H and w, = 0 for IhI > H; (ii) (Tukey) w, = 
C,%, a,cos(nlh/H) for Ihl <H and w,=O for 

IhJ > H, where the a, are constants such that 
CL2-mla,l < +m, Cl”4--,a,= 1 and al=um,. 
The Hanning and Hamming windows are a, 
=0.50, a, =u-r =0.25, and a,=0 for )1]>2 and 
a,=0.54, a, =a, =0.23, and a,=0 for (1132, 

respectively [2]. Let X,=x,: - ?i bja, -j, where 

C,Y - 5 I b, I< + a and the a, are independently 

and identically distributed random variables 

with EE~=O and Es:< +co. Let {& 1 <j<M} 
be arbitrary real numbers such that 0 <I,, < i, 
< < i, < l/2, where M is an arbitrary posi- 

tive integer. Then the joint distribution of 
{m(T((i,) - RF(&)) 11 d v < M} tends to the 
normal distribution with means 0 and covar- 

iance matrix Z, which is defined by (1). Let us 
assume, furthermore, that lim,,,(l - w(x))/]x]~ 

=CandC,“=,IhIPIRhI<+co, whereC,q,and 
p are some positive constants satisfying the 
following conditions: (i) when p > q, Hq/T-+O 

(pa 1) and H q*l-P/T+O (p> 1) as T+cc and 

lim,,, T/H2qf’ is finite; (ii) when p < q, HP/T 
+O (p> 1) and H/T-O (p< 1) as T-tco and 
limT,, T/H 2p+’ =O. Then $@?(,T(n,,)- 
.@(I.,)) in the results above can be replaced 

by J’%%.~(+-f(W. 
Estimation of higher-order spectra, partic- 

ularly the bispectrum, has also been discussed. 
Let X, be a weakly stationary process with 
mean 0, and let its spectral decomposition be 

given by X, = l!!Ti2 e 2”i’“dZ(i) (- 395 Station- 

ary Processes). We assume that X, is a weakly 
stationary process of degree 3 and put Rh,,h, 

= EX,Xt+h,X,+h2 for any integers h, and h,. 
Then we have 

l/2 
R h,,h,= 

ss 

112 
e2ni(h,I,+h212)d~(~1, I.~), 

l/2 -I,2 

Symbolically, #(A., , n,) = EdZ(i,)dZ(i,) 
dZ( - I., - 12). If F(,I, , I,) is absolutely contin- 

uous with respect to the Lebesgue measure of 
R* and c”F(i,, , I,)/d1, di, =f(3,, , n,), we call 
f(L,, i2) the bispectral density function. When 
X, is Gaussian, Rh,,h, = 0 and ,f(I, , I,) = 0 for 

any h,, h, and any II, I,. f(I,, &) can be 
considered to give a kind of measure of the 
departure from a Gaussian process or a kind 

of nonlinear relationship among waves of 
different frequencies. We can construct an 
estimator for f(i,, I.,) by using windows as in 
the estimation of a spectral density [3]. 

D. Statistical Analysis of Parametric Models 

When we assume merely that X, is a stationary 

process and nothing further, then X, contains 
infinite-dimensional unknown parameters. In 

this case, it may be difficult to develop a satis- 
factory general theory for statistical inference 
about X,. But in most practical applications of 
time series analysis, we can safely assume at 
least some of the time dependences to be 
known. For this reason, we can often use a 
model with finite-dimensional parameters. 

This means, mainly, that the moments (usually, 
second-order moments) or the spectral density 

are assumed to be expressible in terms of fmite- 

dimensional parameters. As examples of such 
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models, autoregressive models, moving average 
models, and autoregressive moving average 

models are widely used. 
A process X, is called an autoregressive 

process of order K if X, satisfies a difference 

equation C,“=, a,X,-, = [,, where the ak are 
constants, a, = 1, aK #O, and the 5, are mutu- 
ally uncorrelated with Et, = 0 and I’(&) = $ > 

0. We usually assume that X, is a weakly sta- 
tionary process with EX, = 0. We sometimes 
use the notation AR(K) to express a weakly 
stationary and autoregressive process of order 
K. Let (t,} be as above. If X, is expressed as X, 
= Cf=, bitl-r, where the hr are constants, h, = 1 
and bL # 0, X, is called a moving average pro- 

cess of order L (MA(L) process). Furthermore, 
if X, is weakly stationary with EX, = 0 and 

expressed as C,“=, akX,-k = ck, hi&?-, with a, 

= 1, h, = 1, and aK b, # 0, then X, is called an 
autoregressive moving average process of order 

(K, L) (ARMA(K, L) process). Let A(Z) and 
B(Z) be two polynomials of Z such that A(Z) 
= C,“=, a,ZKek and B(Z) = ck, b,ZLm’, and let 
{mkl 1 <k<K} and {/Iii 1<1<L} be the solu- 
tions of the associated polynomial equations 
A(Z) = 0 and B(Z) = 0, respectively, we as- 
sumethatIcckl<lforl<k<Kandl~~l<lfor 

1 < I < L. This condition implies that X, is 
purely nondeterministic. Let the observed 

sample be {X, Il< t < T}. If we assume that X, 

is Gaussian and an ARMA(K, L) process, we 
can show that the tmaximum likelihood es- 
timators {a,} and {gr} of {ak} and {b,} are 

iconsistent and asymptotically efficient when 
T+ cu (“asymptotically efficient” means that 
the covariance matrix of the distribution of 
the estimators is asymptotically equal to the 

inverse of the information matrix) [S] (- 
399 Statistical Estimation D). Furthermore, 
if X, is an AR(K) process, the joint distribu- 
tion of {fi(& - uk) 11 <k d K} tends to a K- 
dimensional normal distribution with means 0, 

and this distribution is the same as the one to 
which the distribution of the tleast-square 
estimators {ik} minimizing Q =CLK+i(Xf+ 

C,“=, akX,-,)’ tends when Tdco. If X, is a 
MA(L) or ARMA(K, L) process (L> l), the 

likelihood equations are complicated and 
cannot be solved directly. Many approxi- 
mation methods have been proposed to ob- 
tain the estimates. 

When X, is an AR(K) process with Ic(~/ < 

I for 1 <k < K, R, satisfies CkK,O uk R,-, = 0 
for h > 1. These are often called the Yule- 
Walker equations. R, can be expressed as 

R, = CjK,, C,LY~” if the elk are distinct and uK # 
0, where { Cj} are constants and determined 
byR,forO<h<K-l.WhenX,isan 
ARMA(K,L) process, ~&a,R,-,=O for 

h 3 L + 1, and the Cj of R, = C:=, CjaJ are 
determined by {R,IO<h<max(K,L)). 

The spectral density is expressed as f(1) = 
~~~B(e~“‘“)~~/~~(e~“‘“)~~. If X, is Gaussian, 

the maximum likelihood estimator of f(n) is 
asymptotically equal to the statistic obtained 
by replacing ui, {b,}, and {uk} in ~‘(1) with @, 

{b;}, and {cik}, respectively, where 8; is the 
maximum likelihood estimator of ~2, when 
T-+C0. 

When we analyze a time series ;and intend 

to fit an ARMA(K, L) model, we have to 
determine the values of K and L. For AR(K) 
models, many methods have been proposed to 

determine the value of K. Some examples are: 
(i) (Quenouille) Let (ZKA( 1/Z))2 = XT& AjZj, 
and G, = Ci!jj,O Aj(Rj/&,), where Aj is obtained 
by replacing {ak} in Aj by {a,}, and we con- 
struct the statistic x: = CL1 GK+i. Then x; has a 

+X2 distribution asymptotically with f degrees 
of freedom under the assumption that K 2 K,, 
where K, is the true order, as T+ co. Using 

this fact, we can determine the order of an AR 
model. (ii) (Akaike) We consider choosing an 
order K satisfying K, < K < K,, where K, and 
K, are minimum order and maximum order, 
respectively, specified a priori. Then we con- 
struct the statistic AIC(K)=(T--.K)log8z(K) 
+ 2K, where 

d;(K)= 5 (X,+$,X,-,+...+&X,-.)‘/T 
f=K+l 

and {a, 11 <k < K} are the least square esti- 
mators of the autoregressive coefficients of an 
AR(K) model fitting X,. Calculate AIC(K) for 

K = K,, K, + 1, , K,. If AIC(K) has the 
minimum value at K = K, we determine the 

order to be i? [6] (- 403 Statistical Models 
F). Parzen proposed another method by using 
the criterion autoregressive transfer function 
(CAT). Here CAT(K)= 1--1?~(m)l6~((K)+ K/T, 
where ci(K)=(T/(T-K))@(K) and ?(co) is 
an estimator of a2(co)=exp(~!!~,,logf(i)di) 

[7]. (iii) We can construct a test statistic for 
the null hypothesis AR(K) against the alterna- 
tive hypothesis AR(K + 1) (Jenkins) or use a 
multiple decision procedure (T. W. Anderson 

CW. 
Not much is known about the statistical 

properties of the above methods, and few 
comparisons have been made among them. 

Another parametric model is an exponential 
model for the spectrum. The spectral density is 
expressed by f(n)= C2exp{2Cf=, Qkcos(27ckl)}, 
where the (3, and C are constants. 

We now discuss some general theories of 

estimation for finite-dimensional-parameter 
models. Let X, be a real-valued Gaussian 
process of mean 0 and of spectral density f(n) 

which is continous and positive in [-l/2,1/2], 
and let the moving average representation of 

X, be X, = C&, b,<,-,, where 5, is a white noise 

and 0: = Et:. We assume that f(,t)/$ = s(1) 
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depends only on M parameters 0 = (0, , 0,) 

..‘> 0,)’ which are independent of 02. Then 
the logarithm of the tlikelihood function can 
be approximated by -(l/2) { Tlog 2no: + 
X’C;‘(@)X/$} by ignoring the lower-order 
terms in T, where r$ &(0) is the covariance 
matrix of X. Usually, it is difficult to find an 
explicit expression for each element of z;‘(0). 
Another approximation for the logarithm of 

the likelihood function is given by 

T l/Z 

-4 L 2 -l/2 

Under mild conditions on the regularity of 
g(i), the estimators 8=(Gl,, &, , t?,,,) and @, 

obtained as the solutions of the likelihood 
equations, are tconsistent and asymptotically 
normal as T tends to infinity. This means that 
the distribution of fi(di -r~j) is asymptoti- 

cally normal and fi( 8: - 0:) and fi(e^- 0) 
are asymptotically independent. The asympto- 

tic distribution of fi(r!-0) is the normal dis- 
tribution N(0, T-l), where the (k, l)-component 
r,, of F is given by u2 I‘,,=! -.- s ( i3logg(i.) dlogg(i) 

2 -112 aok > w @ 

da, 
E. Statistical Analysis of Multiple Time Series 

Let X, =(X,“), Xi’), . . , Xp)), be a complex- 

valued weakly stationary process with EX, = 0 
and EX,x:= R,-,. R,-, is the p x p matrix 
whose (k, I)-component is Rjk,,i)= EX,‘k)xi’). We 
discuss the case when t is an integer. R, has 
the spectral representation 

s l/2 
R,= eznihidF(l), 

-I,2 

where F(1) is a p x p matrix and F(1.J - F(1,), 
i., > &, is Hermitian nonnegative. Let fkv’(,I) 

be the (k, I)-component of the spectral density 
matrix f(I), i.e., F,(E.)=~,,J(p)dp, of the 
absolutely continuous part in the Lebesgue 

decomposition of Q/I). The function fk,‘@) for 
k # 1 is called the cross spectral density function. 

,f”,‘(i) represents a kind of correlation between 
the wave of frequency i included in Xjk’ and 
the one included in X”‘. 

Let X, = (Xl’), Xj’),‘. , Xlp))’ and Y, = 

(x(l), qc2), , x(q))’ be two complex-valued 
weakly stationary processes with EX, = 0, 
EY,=O, EX,X:=RE,, EY,Yi=Ry-,and 

EX,v:= RE:. We assume Y,=C,s-,, A&,, 
where A, is a y x p matrix whose components 
are constants depending on s. Put A(1) = 

C,“=-, Ase-2ziS’. A(a) should exist in the 
sense of mean square convergence with respect 
to the spectral distribution function F for X,. 

The function A(J) is called the matrix fre- 
quency response function. 

As a measure of the strength of association 
between Xjk) and X/l) at frequency i, we intro- 
duce the quantity yk,‘(n) = I,fk,f(~)12iifk.k(~),~‘,i(~~). 

Ibid’ is called the coherence. Let XT)= 

i.:- I) a$‘X~?s+ r),, where 7, is a weakly sta- 

tionary process with mean 0 and uncorrelated 
with Xsr), -a <s< cu. If E(q,l’=O, yk3’(i)= 1. 
If .E]C?, a$‘Xi!!,I’=O, yk3’(i) =O. Generally, 

we have O<y’,‘(l)< 1. 
For the estimation of F(i), A(i), and yk,‘(A), 

the theories have been similar to those for the 
estimation of the spectral density of a scalar 
time series. For example, an estimator of f‘(i) 

is given [ 1 l] in the form 

where 

Eh=‘s’X&T 
1=, 

and the w, are the same as in Section C. 
We can define an autoregressive, moving 

average, or autoregressive moving average 
process in a similar way as for a scalar time 

series. The uk and b[ in Section D should be 
replaced by p x p matrices and the associated 
polynomial equations A(Z) =0 and B(Z) =0 
should be understood in the vector sense [ 111. 
There are problems with determining the coefft- 

cients uniquely or identifying an ARMA(K, L) 

model, and these problems have been dis- 
cussed to some extent. 

F. Statistical Inference of the Mean Function 

Let X, be expressed as X, = m, + k;, where m, is 
a real-valued deterministic function of t and Y, 
is a real-valued weakly stationary process with 

mean 0 and spectral distribution function F(1). 
This means that EX, = m,. We consider the 
case when mt=C$, Cj#, where C=(C,,C,, 

“‘2 C,)’ is a vector of unknown coefficients 
and r,=(d’), cpi2), , @‘I)’ is a set of known t 
(regression) functions. 

Let us construct ilinear unbiased estimators 
{ cj = C:i, yjtX, 11 <j < M} for the coefficients 
C,, where the yjt are known constants. Put 
@ = (pr, v)~, , v)~)‘. Then the tleast squares 
estimator of C is given by t = (@‘@))‘Q’X 
when @‘@ is nonsingular. Let Z be the covar- 
iance matrix of X. Then the +best linear un- 
biased estimator is e* =(@‘~~‘cD))‘@‘Z~‘X. 
We put 1)@//$=CT ((p(jr)2 t1 f and assume that 
lim Tdcc ))@IIc= m, lim T-u: It’p’j’~I~+h/ll(P’j’l12~ 

= 1 for 1 <j< A4 and any fixed h and assume 
the existence of $~‘k’=limT-~ CL, cpp$,cpik’/ 
~~@~~rll$k)llr for I <j, k< M. We also assume 
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that F(A) is absolutely continuous and F’(n)= 
,f(jL) is positive and piecewise continuous. 

Let $h be the M x M matrix whose (j, k)- 
component is $2,“). Then $,, can be repre- 
sented by 

*I?= 
s 

l/2 
e2n1hi. dG(l.), 

-I,2 

where G(n) - G(p) is a nonnegative definite 
matrix for ,? > p. Assume that I!& = G( l/2) 
- G( -l/2) is nonsingular and put H(1) = 
$;“*G(i)t& 1’2, and for any set S, H(S) = 

js ff(dE.). Suppose further that S, , S,, . , S, 
are y sets such that H(S,) > 0, Q, H(Sj) = 

I, H(Sj)H(Sk)=O,j#k, and for any j there is 
no subset Sj’c Sj such that H(S,‘) > 0, H(Sj - Sj’) 
>0 and H(S,‘)H(S,-S,‘)=O. We have 4~ M. 
It can be shown that the spectrum of the re- 
gression can be decomposed into such disjoint 
sets S,, , .S,. Then we can show that c is 
asymptotically efficient in the sense that the 
asymptotic covariance matrix of C is equiva- 

lent to that of c* if and only if f(l.) is constant 
on each of the elements S,. Especially, if $,“I= 
t’e2airzJ, C is asymptotically efficient. 

G. Nonstationary Models 

It is difficult to develop a statistical theory for 

a general class of nonstationary time series, 
but some special types of nonstationary pro- 

cesses have been investigated more or less in 
detail. Let X, (t an integer) be a real-valued sto- 
chastic process and V be the backward dif- 
ference operator defined by VX, = X, ~ X,-, 
and VdX, = V(Vdm’X,) for d 2 2. We assume 
that X, is defined for t > t, (to a finite integer), 
and EXf < +co. For analyzing a nonstation- 

ary time series, Box and Jenkins introduced 
the following model: For a positive integer d, 
x = VdX,, t > t, + d, is stationary and is an 
autoregressive moving average process of 
order (K, L) for t > t, + d + max(K, L). They 
called such an X, an autoregressive integrated 
moving average process of order (K, d, L) and 

denoted it by ARIMA(K,d, L). The word 
“integrated” means a kind of summation; 

in fact, X, can be expressed as a sum of the 
weakly stationary process yl, i.e., 

x,=x,+(VX,)t+(V2Xo) 
( > 

i g f... 
s*=, s,=l 

+wo)Cdi~, ...s ?J 

+,$idY ---,~l xi 
L 

when t0 = -u’+ 1. Using this model, methods 

of forecasting and of model identification and 
estimation can be discussed [ 131. 

Another nonstationary mode1 is based on 

the concept of evolutionary spectra [14]. In 
this approach, spectral distribution functions 

are taken to be time-dependent. Let X, be 
a complex-valued stochastic process (t an 
integer) with EX, = 0 and R,,, = EX,X,. In the 
following, we write simply S for S!!:,2. We now 
restrict our attention to the class of X, for 
which there exist functions {ul(i)} defined on 
[-l/2, l/2] such that R,,, can be expressed as 

R,,,=Su,(3,)u,(~)d~(3,), where ~(2) is a measure. 
u,(n) should satisfy ~l~,(~)1~dp(i)c +co. Then 
X, admits a representation of the form X, = 
Ju,(i)dZ(l), where Z(n) is a process with 

orthogonal increments and EldZ(l)1* =dp(l). 
If u,(n) is expressed as u,(n) = y,(~.)ezniB(“)’ and 
y,(i) is of the form yr(~)=je2”““dT,(w) with 
Idr,(w)l having the absolute maximum at w  = 
0, we call u,(k) an oscillatory func:tion and 
X, an oscillatory process. The evolutionary 
power spectrum dF,(i) is defined by dF,(i) = 

Iv,G)12WJ. 
Other models, such as an autoregressive 

model whose coefficients vary with time or 
whose associated polynomial has, roots outside 

the unit circle, have also been discussed. 
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422 (IV.7) 
Topological Abelian Groups 

A. Introduction 

A commutative topological group is called a 
topological Abelian group. Throughout this 
article, except in Section L, all topological 
groups under consideration are locally com- 
pact Hausdorff topological Abelian groups 

and are simply called groups (- 423 Topolog- 
ical Groups). 

B. Characters 

A character of a group is a continuous func- 
tion x(x) (xEG) that takes on as values com- 
plex numbers of absolute value 1 and satis- 
fies I = x(x)x( y). Equivalently, x is a l- 
dimensional and therefore an irreducible 
‘unitary representation of G. Conversely 
any irreducible unitary representation of G 

is l-dimensional. Indeed, for a topological 
Abelian group, the set of its characters coin- 
cides with the set of its irreducible unitary 
representations. If the product of two char- 
acters 1, x’ is defined by xx’(x) =x(x)x’(x), then 
the set of all characters forms the character 
group C(G) of G. With tcompact-open topo- 
logy, C(G) itself becomes a locally compact 
topological Abelian group. 

C. The Duality Theorem 

For a fixed element x of G, x(x) (xEC(G)) is 

a character of C(G), namely, an element of 
CC(G). Denote this character of C(G) by x(x), 

and consider the correspondence G~x-+x(x). 
That this correspondence is one-to-one follows 

from the fact that any locally compact G has 
+sufftciently many irreducible unitary repre- 
sentations (- 437 Unitary Representations) 
and the fact that if G is an Abelian group, then 

any irreducible unitary representation of G is a 
character of G. Furthermore, any character 

of C(G) is given as one of the x(x); indeed, by 
this correspondence, we have G 2 CC(G) 

(Pontryagin’s duality theorem). 
By the duality theorem, each of G and C(G) 

is isomorphic to the character group of the 

other. In this sense, G and C(G) are said to be 
dual to each other. 

D. Correspondence between Subgroups 

Let G, G’ = C(G) be groups that are dual to 
each other. Given a closed subgroup y of G, 
the set of all x’ such that x’(x) = 1 for all x in g 

forms a closed subgroup of G’, usually denoted 
by (G’, g). The definition of (G, g’) is similar. 
Then g++(G’, g) = g’ gives a one-to-one corre- 

spondence between the closed subgroups of G 
and those of G’. If g, 3 g2, then g, Jgz and 

(G’,g2)/(G’,gI) are dual to each other. If the 
group operations of G, G’ are written in addi- 
tive form, with 0 for the identity, then x(x’) = 1 
is written as x(x’) = 0. In this sense, (G’, g) is 
called the annihilator (or annulator) of g. 

E. The Structure Theorem 

Let ‘U be the set of all groups (more precisely, 
of all locally compact Hausdorff topological 
Abelian groups). If G, , G, E%, then the direct 
product G, x G, E %, and if GE ‘% and H is a 

closed subgroup of G, then HE VI and G/H E!K 
In addition, if H is a closed subgroup of a 

group G such that H ELI and G/H E%, then 
GE%. In other words, %!I is closed under the 
operations of forming direct products, closed 
subgroups, quotient groups, and textensions 
by members of ‘II. Furthermore, the operation 
C that assigns to each element of !!I its dual 

element is a reflexive correspondence of (.?I 
onto 9I, and if G 3 H, the annihilator (C(G), H) 
of H is a closed subgroup of C(G). Also, 

C(GIH)~(C(G)>W> CW)rC(GY(C(G),H). 
Furthermore, C(G, x G,)rC(G,) x C(G,). 
Finally, H=(G,(C(G), H)) (reciprocity of 
annihilators). 

Typical examples of groups in VI are the 
additive group R of real numbers, the additive 
group Z of rational integers, the l-dimensional 
‘torus group T = R/Z, and finite Abelian 

groups F. The torus group T is also isomor- 
phic to the multiplicative group U( 1) of com- 
plex numbers of absolute value 1. The direct 

product R” of n copies of R is the vector group 
of dimension n, and the direct product T” of 
n copies of T is the torus (or torus group) 
of dimension n (or n-torus). Both T” and F 

are compact, while R” and Z” are not. We 
have C(R) = R, C(T) = Z, C(Z) =T. Any finite 

Abelian group F is isomorphic to its character 
group C(F). The direct product of a finite 
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number of copies of R, T, Z, and a finite 
Abelian group F, namely, a group of the form 
R’ x T” x Z” x F, is called an elementary topo- 

logical Abelian group. 
Any group in 91 is isomorphic to the direct 

product of a vector group of some dimension 
and the extension of a compact group by a 
discrete group (the structure theorem). Hence, 
if the effect of the operation C is explicitly 
known, then the problem of finding the struc- 

ture of groups in VI is reduced to the pro- 
blem concerning discrete groups alone. For 
the structure of groups in Si, the following 

theorem is known: If GE% is generated by a 
compact neighborhood of the identity e, then 
G is isomorphic to the direct product of a 
compact subgroup K and a group of the form 
R” x Z” (n, m are nonnegative integers). Then 
any compact subgroup of G is contained in K, 
which is the unique maximal compact sub- 
group of G. A group GE YI generated by a 
compact neighborhood of e is the +projec- 
tive limit of elementary topological Abelian 

groups. L. S. Pontryagin first proved a struc- 
ture theorem of this type and then the duality 
theorem. 

F. Compact Elements 

An element CL of a group GE% is called a com- 

pact element if the cyclic group {u”)n~Z} gen- 
erated by u is contained in a compact subset 
of G. The set C, of all compact elements of G 

is a closed subgroup of G, and the quotient 
group G/C, does not contain any compact 
element other than the identity. In particular, 

if G is generated by a compact neighborhood 
of the identity, then C, coincides with the 
maximal compact subgroup K of G. Let C, 
be the set of all compact elements of a group 
G~‘11. The annihilator (C(G), C,) is a con- 
nected component of the character group 
C(G) of G. If G is a discrete group, then a 

compact element of G is an element of G of 
finite order. 

G. Compact Groups and Discrete Groups 

Suppose that two groups G, X ~91 are dual to 
each other. Then one group is compact if and 
only if the other group is discrete. By the du- 

ality theorem, the properties of a compact 
Abelian group G can be stated, in principle, 

through the properties of the discrete Abelian 
group C(G). The following are a few such 
examples. Let G be a compact Abelian group. 
Then its tdimension is equal to the +rank of the 

discrete Abelian group C(G). A subgroup Y of 
a discrete Abelian group X is called a divisible 

subgroup if the quotient group X/l/contains 
no element of finite order other than the iden- 
tity. A compact Abelian group G is locally 
connected if and only if any finite subset of the 
character group C(G) is contained in some 
divisible subgroup of C(G) generated by a 
finite number of elements. Hence if a compact 

locally connected Abelian group G has an 
+open basis consisting of a countable number 
of open sets, then G is of the form ‘T” x F, 
where F is a finite Abelian group and T” is the 

direct product of an at most countable number 
of l-dimensional torus groups T. 

H. Dual Decomposition into Direct Products 

Let G be a compact or discrete Abelian group, 

and let 9Jl= {H, 1 c( E A} be a family of closed 
subgroups of G. Let A(W)= nztA IY,, and 
denote by C(VJl) the smallest closed sub- 
group of G containing lJxeA H,. Then, with 
R=((C(G), H,)]xE A], the relations A(Q)= 

(C(G),C(%R)) and C(R)=(C(G), A(?Dl)) hold. 
Furthermore, suppose that G is decomposed 
into the direct product G = nzEA E:r,, and for 

eachaeAput K,=Z(YJ-{H,}),X,= 
(C(G), K,). Then X, is the character group of 
Hz, and C(G) can be decomposed Into the 
direct product C(G)= nztA X,. This decompo- 

sition of C(G) into a direct product is called 
the dual direct product decompositiion corre- 
sponding to the decomposition G := nltA H,. 

I. Orthogonal Group Pairs 

Suppose that for two groups G, G’ there exists 
a mapping (x, x’)+xx’ of the Cartesian prod- 
uct G x G’ into the set U(1) of all complex 
numbers of absolute value 1 such l-hat 

(x,x*)x’=(x,x’)(xzx’), 

x(x;x;)=(xx;)(xx;). 

Then G, G’ are said to form a group pair. Sup- 
pose that G, G’ form a group pair, and con- 

sider xx’ to be a function x(x’) in x’. If two 

functions x1(x’) and x2(x’) coincide only when 
x1 =x2 and the same is true when the roles 
of G and G’ are interchanged, then G, G’ are 
said to form an orthogonal group pair. If G is 
a compact Abelian group, G’ is a discrete 
Abelian group, and G, G’ form an orthogonal 
group pair, then G, G’ are dual to leach other. 

J. Commutative Lie Groups 

~ 

An elementary topological Abelian group 

R’ x T” x Z” x F is a commutative +Lie group. 

~ Conversely, any commutative Lie group G 
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generated by a compact neighborhood of the 
identity is isomorphic to an elementary topo- 
logical Abelian group. In particular, any con- 
nected commutative Lie group G is isomor- 
phic to R’ x T” for some I and m. A closed 
subgroup H of the vector group R” of dimen- 
sion n is isomorphic to RP x Z4 (0 <p + q < n). 
More precisely, there exists a basis a,, . . , u, of 

the vector group R” such that H = { Cp=, xiai + 
C!= , p+, n,ujIx,~R,nj~Z). Hence the quo- 
tient groups of R” that are tseparated topolog- 
ical groups are all isomorphic to groups of the 

form R’ x T” (0 d I+ m d n). Any closed sub- 
group of the torus group T” of dimension II is 
isomorphic to a group of the form TP x F 
(0 <p < n), where F is a finite Abelian group. 
Hence the quotient groups of T” that are 
separated topological groups are all isomor- 
phic to T” (0 <m < n). A +regular linear trans- 

formation of the linear space R” is a continu- 
ous automorphism of the vector group R”, 
and in fact, any continuous automorphism of 
R” is given by a regular linear transformation. 
Indeed, the group of all continuous automor- 

phisms of R” is isomorphic to the tgeneral 
linear group GL(n, R) of degree n. Any continu- 
ous automorphism of the torus group T” = 
R”/Z” of dimension n is given by a regular 
linear transformation q of R” such that (p(Z”) 
= Z”. Hence the group of continuous auto- 
morphisms of T” is isomorphic to the multi- 

plicative group of all n x n matrices, with de- 
terminant k 1 and with entries in the set of 
rational integers. 

K. Kronecker’s Approximation Theorem 

Let H be a subgroup of a group GE% (not 
necessarily closed). Then (G,(C(G), H)) coin- 
cides with the closure H of H. In particular, H 
is +dense in G if and only if the annihilator 
(C(G), H) consists of the identity alone. Now 

let G=R” and let H be the subgroup of R” 
generated by 0 = (O,, ,0,,) E R” and the na- 
tural +basis e, = (I, 0, ,O), , K,, = (0, . ,O, I) 

of R”. Then H is dense in R” if and only if 
(R”, H)= (0); that is, Or, , (I”, 1 are linearly 
independent over the rational number field Q 

(Kronecker’s approximation theorem). This 
theorem implies that the torus group T” of 

dimension n has a cyclic subgroup and a l- 
parameter subgroup that are both dense in T”. 

L. Linear Topology 

Consider the discrete topology in a field 0. 

Suppose that an R-module G has a topology 
that satisfies tHausdorff’s separation axiom 

and is such that a base for the neighborhood 

system of the zero element 0 consists of R- 
submodules, and suppose that G together with 

this topology constitutes a topological Abelian 
group. Then this topology is called a linear 

topology. If a linear topology is restricted to a 
R-submodule, then it is also a linear topology. 
If G is of finite rank, then any linear topology 
is the discrete topology. The discrete topology 
on G is a linear topology. Let H be a R- 
submodule. Then the subset V= H + g of G 

obtained by translating H by an element g of 
G is called a linear variety in G. If V is a linear 

variety, then V 1s also a linear variety. If R- 
modules G, G’ have linear topologies, a homo- 
morphism of G into G’ is always assumed to 
be open and continuous with respect to these 
topologies. A linear variety V in G is said to be 
linearly compact if, for any system {V,} of 
linear varieties closed in V with the +finite 
intersection property, we have & V, # @. In 
this case V is closed in G. If linearly compact 
R-submodules can be chosen as a base for the 

neighborhood system of the zero element of 
G, we say that G is locally linearly compact. 

The set C,(G) of homomorphisms of an R- 
module G with linear topology into R is also 
an n-module. For any linearly compact R- 
submodule H ofG,let U(H)={XI&)= 
0, gE H}. Then, with (U(H)} as a base for the 
neighborhood system, a linear topology can 
be introduced in C,(G). According as G is 

discrete, linearly compact, or locally linearly 
compact, C,(G) is linearly compact, discrete, 
or locally linearly compact. Let G, H be 0- 

modules each of which has a linear topology, 
andlet 'P:G3g~(PgEC,(H),~:H3h-t~,E 
C,,(G) be homomorphisms such that q&h) = 
&(g). Then if one of cp, II/ is an isomorphism, 
so is the other. This is an analog of the Pon- 
tryagin duality theorem and is called the 
duality theorem for C&modules. In particular, 
a linearly compact &module is the direct sum 

of l-dimensional spaces (S. Lefschetz [3]). 
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423 (IV.6) 
Topological Groups 

A. Definitions 

If a +group G has the structure of a ttopolog- 

ical space such that the mapping (x, y)+xy 
(product) of the Cartesian product G x G into 
G and the mapping x+x -’ (inverse) of G into 

G are both continuous, then G is called a topo- 
logical group. The group G without a topo- 
logical structure is called the underlying group 
of the topological group G, and the topolog- 

ical space G is called the underlying topological 
space of the topological group G. Let G, G’ be 

topological groups. A mapping f‘ of G into G 
is called an isomorphism of the topological 
group G onto the topological group G’ if ,f 
is an tisomorphism of the underlying group 
G onto the underlying group G’ and also a 

thomeomorphism of the underlying topolog- 
ical space G onto the underlying topological 
space G’. Two topological groups are said to 
be isomorphic if there exists an isomorphism of 
one onto the other. 

B. Neighborhood Systems 

Let 5% be the +neighborhood system of the 

identity e of a topological group G. Namely, ‘3 
consists of all subsets of G each of which con- 
tains an open set containing the element e. 
Then % satisfies the following six conditions: 
(i) If UE‘% and U c c, then VE%. (ii) If U, 
VE%, then U n I/E%. (iii) If U E%, then Ed U. 
(iv) For any U E YR, there exists a WE % such 

that WW={xy~x,y~W}cU.(v)IfU~91, 
then Ue~'e!R. (vi) If UE% and UEG, then 

aUa-’ E%. Conversely, if a nonempty family % 
of subsets of a group G satisfies conditions (i)- 
(vi), then there exists a ttopology 0 of G such 

that % is the neighborhood system of e and 
G is a topological group with this topology. 
Moreover, such a topology is uniquely deter- 
mined by %. +Left translation x-ax and tright 
translation x+xa in a topological group G are 
homeomorphisms of G onto G; thus if ‘3 is the 
neighborhood system of the identity e, then 
a% = ‘%a is the neighborhood system of a, 
wherea%={uUIUE%}. 

If the underlying topological space of a top- 
ological group G is a THausdorff space, G is 

called a T,-topological group (Hausdorff topo- 
logical group or separated topological group). 
If the underlying topological space of a topo- 

logical group G is a +T,-topological space, 
then, as is easily seen, it is a +T,-topological 

space. If it is a T,-topological space, then by 
the fact that the topology may be defined by a 

+uniformity, it is a kompletely regular space, 
hence, in particular, a Hausdorff space (- Sec- 
tion G). Thus a topological group whose un- 
derlying topological space is a TO-topological 
space is a T,-topological group. 

C. Direct Product of Topological Groups 

Consider a family { Ga}aEA of topological 
groups. The Cartesian product G =- napA G, of 

the underlying groups of G, is a topological 
group with the tproduct topology Iof the un- 

derlying topological spaces of G,. This topo- 
logical group G = nasA G, is called the direct 

product of topological groups G, (a E A). 

D. Subgroups 

Let H be a subgroup of the underl:ying group 

of a topological group G. Then H is a topolog- 
ical group with the topology of a +topological 
subspace of G (+relative topology). This topo- 
logical group H is called a subgroup of G. A 
subgroup that is a closed (open) set is called a 
closed (open) subgroup. Any open subgroup is 
also a closed subgroup. For any subgroup H 
of a topological group G, the closure H of H 
is also a subgroup. If H is a normal subgroup, 
so is H. If H is commutative, so is a. In a T,- 

topological group G, the kentralizer C(M) = 
{x~Glxm=mx @EM)} of a subset M of G 

is a closed subgroup of G. In particular, the 
+center C = C(G) of a T,-topological group is a 
closed normal subgroup. 

E. Quotient Spaces 

Given a subgroup H of a topological group G, 

let G/H = { aH 1 a E G} be the set of +left cosets, 
and let p be the canonical surjection p(u) = aH 
of G onto G/H. Consider the tquotient topo- 

logy on G/H, namely, the strongest topology 
such that p is a continuous mapping. Since 
a subset A of G/H is open when p-'(A) is an 
open set of G, p is also an topen m.apping. 
The set G/H with this topology is called the 
left quotient space (or left coset space) of G by 
H. The right quotient space (or right coset 
space) H\G = {Ha 1 a E C} is defined similarly. 
The quotient space G/H is discrete if and only 
if H is an open subgroup of G. The quotient 
space is a Hausdorff space if and only if H is a 
closed subgroup. If G/H and H are both tcon- 
netted, then G itself is connected. If G/H and 

H are both icompact, then G is compact. If H 
is a closed subgroup of G and G/H, H are both 
tlocally compact, then G is locally compact. 

Suppose that H is a normal subgroup of a 
topological group G. Then the quotient group 
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G/H is a topological group with the topology 
of the quotient space G/H. This topological 
group is called the quotient group of the topo- 

logical group G by the normal subgroup H. 

F. Connectivity 

The tconnected component G, containing the 

identity e of a topological group G is a closed 
normal subgroup of G. The connected compo- 
nent that contains an element UE G is the coset 
aG, = G,u. G, is called the identity component 
of G. The quotient group G/G, is itotally dis- 
connected. A connected topological group G 
is generated by any neighborhood U of the 
identity. Namely, any element of G can be 
expressed as the product of a finite number of 
elements in U. Totally disconnected (in partic- 
ular, discrete) normal subgroups of a con- 

nected topological group G are contained in 
the center of G. 

G. Uniformity 

Let ‘X0 be the neighborhood system of the 
identity of a topological group G, and let U, 
={(x,y)~Gx Gly~xU} for UE’JI,. Then a 
tuniformity having { U, 1 U E %,} as a base is 
defined on G. This uniformity is called the left 

uniformity of G. Left translation xhux of G is 
tuniformly continuous with respect to the left 
uniformity. The right uniformity is defined 

similarly by U,= ((x,y)Jy~ Ux}. These two 
uniformities do not necessarily coincide. The 
mapping x*x-’ is a tuniform isomorphism of 
G considered as a uniform space with respect 
to the left uniformity onto the same group G 
considered as a uniform space with respect to 
the right uniformity. A topological group G 
is thus a tuniform space under a uniformity 

tcompatible with its topology, and hence it is 
a completely regular space if the underlying 
topological space is a T,-space. 

H. Completeness 

If a topological group G is +complete with 
respect to the left uniformity, then it is also 
complete with respect to the right uniformity, 
and conversely. In this case the topological 
group G is said to be complete. A locally com- 
pact T,-topological group is complete. If a T,- 
topological group G is isomorphic to a dense 

subgroup of a complete T,-topological group 
6, then 6 is called the completion of G, and G 
is said to be completable. A T,-topological 

group G is not always completable. For a T,- 
topological group G to be completable it is 
necessary and sufftcient that any +Cauchy filter 

of G considered as a uniform space with res- 
pect to the left uniformity is mapped to a 
Cauchy filter of the same uniform space G 
under the mapping X+X-‘. Then the com- 
pletion G of G is uniquely determined up to 
isomorphism. A commutative T,-topological 
group always has a completion G, and G 
is also commutative. If each point of a T,- 

topological group G has a ttotally bounded 
neighborhood, there exists a completion G, 
and i: is locally compact. 

1. Metrization 

If a +metric can be introduced in a T,- 
topological group G so that the metric gives 
the topology of G, then G is said to be metri- 
zable. For a T,-topological group G to be met- 
rizable it is necessary and sufficient that G 

satisfy the +first axiom of countability. Then 
the metric can be chosen so that it is left in- 

variant, i.e., invariant under left translation. 
Similarly, it can be chosen so that it is right 
invariant. In particular, the topology of a 
compact T,-topological group that satisfies 
the first axiom of countability can be given by 
a metric that is both left and right invariant. 

J. Isomorphism Theorems 

Let G and G’ be topological groups. If a homo- 

morphism f of the underlying group of G 
into the underlying group of G’ is a contin- 

uous mapping of the underlying topological 
space of G into that of G’, f is called a con- 
tinuous homomorphism. If ,f is a continuous 
open mapping, f is called a strict morphism (or 
open continuous homomorphism). A continuous 
homomorphism of a tparacompact locally 
compact topological group onto a locally 
compact T,-topological group is an open 
continuous homomorphism. 

A topological group G’ is said to be homo- 
morphic to a topological group G if there 

exists an open continuous homomorphism f of 
G onto G’. Let N denote the kernel f-‘(e) off: 
Then the quotient group G/N is isomorphic to 
G’, with GIN and G’ both considered as topo- 
logical groups (homomorphism theorem). Let 
f be an open continuous homomorphism of a 
topological group G onto a topological group 

G’, and let H' be a subgroup of G’. Then H = 
f-‘(W) is a subgroup of G, and the mapping 
cp defined by cp(gH)=f(g)H' is a homeomor- 
phism of the quotient space G/H onto Cl/H'. 
In particular, if H' is a normal subgroup, then 

H is also a normal subgroup and cp is an iso- 
morphism of the quotient group G/H onto 

G'/H' as topological groups (first isomorphism 
theorem). Let H and N be subgroups of a topo- 
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logical group G such that HN = NH. Then the 
canonical mapping ,f‘: h(H n N)+hN of the 
quotient space HJH n N to HN/N is a con- 
tinuous bijection but not necessarily an open 

mapping. In particular, if N is a normal sub- 
group of the group HN, then .f is a continuous 
homomorphism. In addition, if ,f is an open 
mapping, the quotient groups H/H n N and 

HNjN are isomorphic as topological groups 
(second isomorphism theorem). For example, ,f 

is an open mapping (1) if N is compact or (2) if 
G is locally compact, HN and N are closed 
subgroups of G, and H is the union of a count- 
able number of compact subsets. Let H be a 
subgroup of a topological group G and N be a 

normal subgroup of G such that H 3 N. Then 
the canonical mapping of the quotient space 

(G/N)/(If/N) onto G/H is a homeomorphism. 
In particular, if H is also a normal subgroup, 
the quotient groups (G/N)/(H/N) and G/H are 
isomorphic as topological groups (third iso- 
morphism theorem). 

K. The Projective Limit 

Let { GzjleA be a family of topological groups 
indexed by a +directed set A, and suppose that 
if x <[j, there exists a continuous homomor- 

phism ,fip:Gp-G, such that f~,=~&of& if 
ad/l<;‘. Then the collection jGil,,f$,} of the 
family {GzJrtA of topological groups together 
with the family (,f&} of mappings is called a 
projective system of topological groups. Con- 
sider the direct product nztn G, of topological 
groups {G,), and denote by G the set of all 
elements x = {xzJztn of n G, that satisfy x, = 
,&(x0) for s( d p. Then G is a subgroup of 

n G,. The topological group G obtained in 
this way is called the projective limit of the 
projective system (G&J of topological 

groups and is denoted by G = I@ G,. If each G, 
is a T,-topological (resp. complete) group, then 
G is also a T,-topological (complete) group. 

Now consider another projective system 
{G;,,f$) of topological groups indexed by the 
same A, and consider continuous homomor- 
phisms u,: G,+G: such that u, o,f& = j$ o ug 
for x < 1. Then there exists a unique continu- 
ous homomorphism u of G = I@ G, into G’ = 

l$GG: such that for any atA, u,ofz=j~ou 
holds, where ,f,(f*‘) is the restriction to G(G’) of 
the projection of n G, (n Gj) onto G,(Gk). The 
homomorphism u is called the projective limit 

of the family (uzj of continuous homomor- 
phisms and is denoted by u = I@ u,. Let G be 

a T,-topological group, and let ( HalrreA be a 
decreasing sequence (H, =J If, for SL </r) of 
closed normal subgroups of G. Consider the 

quotient group G/H,, and let .fz,, be the canon- 

ical mapping qH,<+qH, of GO to G, for x</1. 

Then {C,,,f$) is a projective system of topo- 
logical groups. Let .1; be the projecl.ion of G 
onto G, = G/H,, and let ,f= limf;. Now assume 

that any neighborhood of the identity of G 
contains some H, and that some H, is com- 
plete. Then J= 1F.f; is an isomorp hism of G 

onto I$ G/H, as topological groups. (For a 
general discussion of the topological groups 
already discussed - [ 1,4].) 

L. Locally Compact Groups 

For the rest of this article, all topological 
groups under consideration are assumed to 

be T,-topological groups. The identity com- 
ponent G, of a locally compact group G is the 

intersection of all open subgroups 1of G. In 
particular, any neighborhood of the identity of 
a totally disconnected locally compact group 
contains an open subgroup. A totally dis- 
connected compact group is a projective limit 
of finite groups with discrete topology. 

A T,-topological space L is called a local Lie 
group if it satisfies the following six conditions: 
(i) There exist a nonempty subset A4 of L x L 
and a continuous mapping p: M+L, called 

multiplication (~(a, h) is written as &). (ii) If 
((I, h), (ah, (9, (h, c), (a, hc) are all in n4, then (ah)c 
=a(&). (iii) L contains an element e, called the 

identity, such that L x {e} c M and ur = u for 
all a~,!,. (iv) There exists a nonempty open 

subset N of L and a continuous mapping V: N 
+L such that uv(a)=e for all UEN. (v) There 
exist a neighborhood U of e in L and a homeo- 
morphism f’of U into a neighborhood V 
of the origin in the Euclidean space R”. (vi) Let 
D be the open subset of V x V defined by D = 
((X>YNVX vI(.f-'(x),.f-'(Y))~~,.f-l(x), 
j’-‘(~)EU}. Then the function F:D+V defined 
by F(x,y)=,f~(f~‘(x),f’~‘(y)) is of +class C”. 

For any neighborhood U of the identity e of 

a connected locally compact group G, there 
exist a compact normal subgroup K and a 
subset L that is a local Lie group under the 
+induced topology and the group operations of 
G such that the product LK is a neighborhood 
of e contained in U. Furthermore, under (I, k) 
d/k, LK is homeomorphic to the product 
space L x K. Any compact subgroup of a 

connected locally compact group G is con- 
tained in a maximal compact subgroup, and 

maximal compact subgroups of G are +conju- 
gate. For a maximal compact subgroup K of 
G, there exists a finite number of subgroups 
H,, , H, of G, each of which is isomorphic to 

the additive group of real numbers such that G 
= KH, H,, and the mapping (k, ,!I~, , h,) 
+kh, h, is a homeomorphism of the direct 

product K x H, x x H, onto G. Any locally 
compact group has a left-invariant positive 
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measure and a right-invariant positive mea- 
sure, which are uniquely determined up to 

constant multiples (- 225 Invariant Mea- 
sures). Using these measures. the theory of 
harmonic analysis on the additive group R of 
real numbers can be extended to that on G (- 
69 Compact Groups; 192 Harmonic Analysis; 

422 Topological Abelian Groups; 437 Unitary 
Representations). 

M. Locally Euclidean Groups 

Suppose that each point of a topological 
group G has a neighborhood homeomorphic 
to an open set of a given Euclidean space. 

Then G is called a locally Euclidean group. If 
the underlying topological space of a topolog- 
ical group has the structure of a +real analytic 
manifold such that the group operation (x, y) 
-+xy -’ is a real analytic mapping, then G is 
called a +Lie group. A Lie group is a locally 
Euclidean group. 

N. Hilbert’s Fifth Problem 

Hilbert’s fifth problem asks if every locally 
Euclidean group is a Lie group (- 196 Hil- 
bert). This problem was solved affirmatively 

in 1952; it was proved that any +locally con- 
nected finite-dimensional locally compact 

group is a Lie group (D. Montgomery and L. 
Zippin [3]). In connection with this, the rela- 

tion between Lie groups and general locally 
compact groups has been studied, and the 
following results have been obtained: A neces- 
sary and sufficient condition for a locally 

compact group to be a Lie group is that there 
exist a neighborhood of the identity r that 

does not contain any subgroup (or any normal 
subgroup) other than {e). A locally compact 

group has an open subgroup that is the projec- 
tive limit of Lie groups, Hilbert’s fifth problem 

is closely related to the following problem: 
Find the conditions for a ttopological trans- 
formation group operating +effectively on a 
manifold to be a Lie group (- 43 1 Transfor- 
mation Groups). 

0. Covering Groups 

Let (5 be the collection of all +arcwise con- 

nected and tlocally arcwise connected T,- 
topological groups. Suppose that G* E 8 is a 

tcovering space of GE 8 and the ‘covering 
mapping f: G**G is an open continuous 
homomorphism, with G* and G considered as 

topological groups. Then G* (or, more pre- 
cisely, (G*,f)) is called a covering group of G. 
Then the kernel ,f-‘(e) = D of ,f is a discrete 

subgroup contained in the center of G*, and 
G*/D and G, considered as topological groups, 

are isomorphic to each other. Let 71, (G) be the 

+fundamental group of G. The natural homo- 
morphism ,f*:n, (G*)hrtr(G) induced by .f is 
an injective homomorphism, and if we identify 

nr(G*) with the subgroupf*(rr,(G*)) ofn,(G), 
we have D g rr, (G)/n, (G*). Conversely, if D is 
any discrete subgroup contained in the center 
of G* E (5, then G* is a covering group of G 

= G*/D. For any covering space (G*,f) of 
GE 6, a multiplication law can be introduced 
in G* so that G* is a topological group be- 

longing to 8 and (G*,f) is a covering group of 
G. In particular, any GE@I has a +simply con- 
nected covering group (G, cp). Then for any 

covering group (G*,f) of G, there exists a 
homomorphism ,f* :&G*, and (G,f*) is a 
covering group of G*. Furthermore, q=,fo,f*. 
Hence, in particular, any simply connected 
covering group of G is isomorphic to c, with 

G and G considered as topological groups. 
This simply connected covering group (G, cp) is 

called the universal covering group. 
Let G and G’ be topological groups, and let 

e and e’ be their identities. A homeomorphism 
f of a neighborhood U of e onto a neighbor- 

hood U’ of e’ is called a local isomorphism of G 
to G’ if it satisfies the following two conditions: 
(i) If a, h, ah are all contained in U, then /‘(ah) 
= f(a)f(h). (ii) Let f-’ =g, then if a’, h’, a’b’ 

E U’, g(u’h’) = g(a’)g(h’) holds. If there exists 
a local isomorphism of G to G’, we say that G 

and G’ are locally isomorphic. If G* is a cover- 
ing group of G, then G* and G are locally 
isomorphic. For two topological groups G and 
G’ to be locally isomorphic it is necessary and 
sufficient that the universal covering groups of 

G and G’ be isomorphic. For two connected 

Lie groups to be locally isomorphic it is neces- 
sary and sufficient that their +Lie algebras be 
isomorphic. 

Let S be a mapping of a neighborhood LT of 
the identity of a topological group G into a 
group H such that if a, b, ah are all contained 
in u, then ,f(ab)=f(u),f(b). Then .f is called a 
local homomorphism of G into H and U is 
called its domain. A local homomorphism of a 

simply connected group GE Q into a group H 
can be extended to a homomorphism of G into 
H if the domain is connected [2,4]. 

P. Topological Rings and Fields 

If a ring R has the structure of a topological 
group such that (x, y)-x + y (sum) and (x, y) 
-txy (product) are both continuous mappings 
of R x R into R, then R is called a topological 

ring. If a topological ring K is a field (not 

necessarily commutative) such that x*x-’ 
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(inverse element) is a continuous mapping of 
K* = K - {0} into K*, then K is called a topo- 
logical field. Let us assume that K is a topo- 

logical field that is a locally compact Haus- 
dorff space and is not discrete. If K is con- 
nected, then K is a tdivision algebra of finite 
rank over the field R of real numbers; hence 
it is isomorphic to the field R of real numbers, 

the field C of complex numbers, or the +qua- 
ternion field H. If K is not connected, then K 

is totally disconnected and is isomorphic to a 
division algebra of finite rank over the +p-adic 

number tield Q, or a division algebra of finite 
rank over the +formal power series field with 
coefftcients in a finite field [4]. 

For various important classes of topological 
groups - 69 Compact Groups; 249 Lie 
Groups; 422 Topological Abelian Groups; 424 
Topological Linear Spaces. 
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424 (X11.5) 
Topological Linear Spaces 

A. Definition 

A tlinear space E over the real or complex 
number field K is said to be a topological 
linear space, topological vector space, or linear 

topological space if E is a +topological space 
and the basic operations x + y and ax (x, ye E, 
a~ K) in the linear space are continuous as 
mappings of E x E and K x E, respectively, 
into E. The coefftcient field K may be a gen- 
eral ttopological field, although it is usually 
assumed to be the real number field R or the 

complex number field C, and accordingly E is 
called a real topological linear space or a com- 

plex topological linear space. Topological linear 
spaces are generalizations of +normed linear 
spaces and play an important role in the study 

of +function spaces, such as the tspace of dis- 
tributions, that are not +Banach spaces. 

Each topological linear space E is equipped 

with a tuniform topology in which t.ranslations 
of the neighborhoods of zero form a +uniform 
family of neighborhoods, and the addition x 
+ y and the multiplication ax by a scalar c( are 
uniformly continuous relative to this uniform 
topology. In particular, if for each x # 0 there 
is a neighborhood of the origin that does not 

contain x, then E satisfies the iseparation 
axiom T, and hence is a tcompletel:y regular 
space. The tcompletion E of E is also a topo- 

logical linear space. 
We assume in this article that K is the real 

or complex number field and E is a topological 
linear space over K satisfying the axiom of T,- 
spaces. Then E is finite-dimensional if and only 
if E has a ttotally bounded neighborhood of 
zero. The topology of E is tmetrizable if and 
only if it satisfies the Virst countability axiom. 

B. Linear Functional 

A K-valued function f(x) on E is said to be a 
linear functional if it satisfies (i) f(x i-y) =f(x) 

+f(y) and (ii) .f(ax) = af(x). A linear functional 
that is continuous relative to the topologies 
of E and K is said to be a continuous linear 
functional. (Sometimes continuous linear 

functionals are simply called linear functionals, 
while abstract linear functionals are called 

algebraic linear functionals.) The following 
three statements are equivalent for linear 
functionals f(x):(i) J(x) is continuous; (ii) the 

half-space {x E E 1 Ref(x) > 0) is open; (iii) the 
hyperplane {xcElf(x)=O} is closed. 

C. The Hahn-Banacb Theorem 

A linear functional f(x) defined on a linear 
subspace F of E can be extended to a continu- 
ous linear functional on E if and only if there 
exists an open iconvex neighborhood V of the 

origin in E that is disjoint with {XEF I,f(x) = 1). 
Furthermore, if f(x) can be extended, at least 

one extension f(x) never takes the value 1 on 
V (Hahn-Banach theorem). 

D. Dual Spaces 

The set E’ of all continuous linear functionals 
on E is called the dual space of E. It is often 
denoted by E* and is also called the conjugate 

space or adjoint space. It forms a linear space 

whenf+g and rxf(~g~E’,a~K) are defined 

by (f+d(x)=f(x)+dx) and ($)(x)=Nf(x)) 
for XEE. 
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E. Locally Convex Spaces 

A topological linear space is said to be locally 
convex if it has a family of convex sets as a 
+base of the neighborhood system of 0. It 
follows from the Hahn-Banach theorem that 
for each x #O in a locally convex space E there 
is a continuous linear functional ,f such that 
.f’(x)#O. A subset M of E is said to be circled if 

McontainscrM={ctxlxEM}wheneverlzldl. 
A set that is both circled and convex is called 
absolutely convex. In a locally convex space, a 

family of absolutely convex and closed sets can 
be chosen as a base of the neighborhood sys- 
tem of the origin. Let A and B be subsets of E. 
A is said to absorb B if there is an z > 0 such 
that aA=, B. A set V that absorbs every point 
x E E is called absorbing. Neighborhoods of 0 
are absorbing. 

F. Seminorms 

A real-valued function p(x) on E is said to be 
a seminorm (or pseudonorm) if it satisfies (i) 

O<p(x)< +co (xEE); (ii) ~(x+y)<p(x)+ 
p(y); and (iii) p(ax)=lalp(x). The relation V= 
{x 1 p(x) < 1) gives a one-to-one correspon- 
dence between seminorms p(x) and absolutely 
convex absorbing sets V whose intersection 
with any line through the origin is closed. 
In terms of seminorms, the Hahn-Banach 

theorem states: Let E be a linear space on 
which a seminorm p(x) is given. If a linear 
functional f(x) defined on a linear subspace F 
of E satisfies I,f(x)I <p(x) on F, then ,f(x) can 
be extended to the whole space E in such a 

way that the inequality holds on E. 
The topology of a locally convex space is 

determined by the family of continuous semi- 
norms on it. Conversely, if there is a family 
of seminorms {pJx)} (ILEA) on a linear space 
E over K that satisfies (iv) pi(x) = 0 for all 
i implies x = 0, then there exists on E the 

weakest locally convex topology that renders 
the seminorms continuous. This topology is 
called the locally convex topology determined 

by b,.(x)l. 
We assume that E is a locally convex space 

whose topology is determined by the family of 

seminorms (p,(x)) (SEA). Then a +net x, of E 
converges to x if and only if pl(x, -x)-+0 for 
all 1.6/Z. If f is a locally convex space whose 
topology is determined by the family of semi- 

norms {q,(y)}, then a necessary and sufficient 
condition for a linear mapping u: E-F to be 
continuous is that for every q,(y) there exist a 

finite number of i, , , i,,, E A and a constant 

C such that q,(W) 6 C(PJ.,(X) + . . . + P,~(x)) 
(x E E). 

A set is said to be bounded if it is absorbed 

by every neighborhood of zero. When the 
topology of E is determined by the family 

{ pi(x)) of seminorms a set B is bounded if and 
only if every pi is bounded on B. Totally 
bounded sets are bounded. The unit ball in 

a normed space is bounded. Conversely, a 
locally convex space is normable if it has a 
bounded neighborhood of 0. A locally convex 
space is called quasicomplete if every bounded 
closed set is complete. Since Cauchy sequences 
(x”} are totally bounded, all Cauchy sequences 
converge in a quasicomplete space (i.e., the 

space is sequentially complete). 

G. Pairing of Linear Spaces 

Let E and F be linear spaces over the same 

field K. A K-valued function B(x, y) (xGE, 
J’E F) on E x F is called a bilinear functional or 
bilinear form if for each fixed YE F (resp. XE E), 
it is a linear functional of x (resp. y). When a 
bilinear functional (x, y) on E x F is given so 
that (x,y)=O for all ~EF (all XEE) implies 

x = 0 (y = 0), then E and F are said to form a 
(separated) pairing relative to the inner product 

(x, y). A locally convex space E and its dual 
space E’ form a pairing relative to the natural 

inner product (x, x’) =x’(x) (xc E, x’ E E’). 

H. Weak Topologies 

When E and F form a pairing relative to an 
inner product (x, y), the locally convex top- 
ology on E determined by the family of semi- 

norms { 1 (x, y) 11 YE F} is called the weak top- 
ology (relative to the pairing (E, F)) and is 
denoted by rr(E, F). A net x, in E is said to 
converge weakly if it converges in the weak 
topology. When E and E’ are a locally convex 
space and its dual space, a(E, E’) is called the 

weak topology of E, and o(E’, E) the weak* 
topology of E’. The weak topology on a lo- 
cally convex space E is weaker than the orig- 
inal topology on E. Consequently, a weakly 
closed set is closed. If the set is convex, the 
converse holds, and hence a convex closed set 

is weakly closed. Also, boundedness is pre- 
served if we replace the original topology by 

the weak topology. Thus a weakly bounded 
set is bounded. 

Let E and F form a pairing relative to 
(x, y), and let A be a subset of E. Then the set 
A‘ of points ~EF satisfying Re(x,y)> -1 for 
all XE A is called the polar of A (relative to the 
pairing). If A is absolutely convex, A” is also 
absolutely convex and is the set of points y 

such that )(x,y)Jdl for all xcA. If A is a 
convex set containing zero, its (weak) closure 

is equal to the bipolar A”” =(A”)” (bipolar 
theorem). In general, let A be a subset of a 
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topological linear space E. We call the smallest 
closed convex set containing A the closed 
convex hull of A. If E is locally convex, the 
bipolar A”” relative to E’ coincides with the 
closed convex hull of A U (O}. 

A subset B of the dual space E’ is +equi- 
continuous on E if and only if it is contained 
in the polar V’ of a neighborhood V of 0 in E. 

Also, I/” is weak*- compact in E’ (Banach- 
Alaoglu theorem). 

I. Barreled Spaces and Bornological Spaces 

An absorbing absolutely convex closed set in a 
locally convex space E is called a barrel. In a 
sequentially complete space (hence in a quasi- 
complete space also), a barrel absorbs every 
bounded set. A locally convex space is said to 

be barreled if each barrel is a neighborhood of 
0. A locally convex space is said to be quasi- 
barreled (or evaluahle) if each barrel that ab- 

sorbs every bounded set is a neighborhood of 
0. Furthermore, a locally convex space is said 
to be bornological if each absolutely convex set 
that absorbs every bounded set is a neighbor- 
hood of 0. Bornological spaces are quasi- 
barreled. However, they are not necessarily 
barreled. Furthermore, barreled spaces are not 

necessarily bornological. A metrizable locally 
convex space, i.e., a space whose topology is 
determined by a countable number of semi- 
norms, is bornological. A complete metrizable 
locally convex space is called a locally convex 

Frechet space ((F)-space or simply Frechet 
space). To distinguish it from Frkchet space as 
in 37 Banach Spaces, it is sometimes called a 
FrCchet space in the sense of Bourbaki. (F)- 
spaces are bornological and barreled. 

A continuous linear mapping u: E-1F of one 
locally convex space into another maps each 
bounded set of E to a bounded set in F. Con- 
versely, if E is bornological, then each linear 

mapping that maps every bounded sequence 
to a bounded set is continuous. 

J. The Banach-Steinhaus Theorem 

In the dual space of a barreled space E, each 
(weak*-)bounded set is equicontinuous. Thus 
if a sequence of continuous linear mappings 
u, of E into a locally convex space F con- 

verges at each point of E, then u, converges 
uniformly on each totally bounded set of E, 
and the limit linear mapping is continuous 

(Banach-Steinhaus theorem). 

K. The S-Topology 

Let E and F be paired linear spaces relative 
to the inner product (x,4’). When a family S 

of (weakly) bounded sets of F generates a 
dense subspace of F, the family of seminorms 

(suP~.~ 1 (x, y) 11 BE S} determines a locally 
convex topology on E. This is calle’d the 9 
topology or topology of uniform convergence on 

members of S, because x,*x in the S-topology 
is equivalent to the uniform convergence of 

(x,,y)-(x,y) on each BES. The space E 
with the S-topology is denoted by E,. The 

weak topology is the same as the topology 
of pointwise convergence. The S-topology in 
which S is the family of all bounded sets in F 
is called the strong topology and is ‘denoted by 
/j(E, F). The dual space E’ of a locally convex 
space E is usually regarded as a locally convex 
space with the strong topology [((E’, E). It is 
called the strong dual space. The topology of a 

locally convex space E is that of uniform con- 
vergence on equicontinuous sets of E’. The 
topology of a barreled space E coincides with 

the strong topology /I(& E’). 

L. Grothendieck’s Criterion of Completeness 

Let E and F be paired spaces, and let S be a 

family of absolutely convex bounded sets of F 
such that: (i) the sets of S generate I~; (ii) if B,, 
B, E S, then there is a B, ES such that B, I B, 
and B, 2 B,. Then E, is complete if and only 
if each algebraic linear functional ,~(JJ) on F 

that is weakly continuous on every BES is ex- 
pressed as ,f(y) = (x, y) for some x ET E. When 

E, is not complete, the space of all linear func- 
tionals satisfying this condition gives the com- 
pletion &. of E,. 

M. Mackey’s Theorem 

Let E, F, and S satisfy the same conditions 
as in Section L. Then the dual space of E, is 
equal to the union of the weak completions of 

E.B, where 1” > 0 and BE S (Mackey’s theorem). 

N. The Mackey Topology 

When E and F form a pairing, the topology on 
E of uniform convergence on convex weakly 

compact sets of F is called the Mackey topol- 
ogy and is denoted by z(E, F). The (dual space 

of E endowed with a locally convex topology 
T coincides with F if and only if 7’ is stronger 
than the weak topology rr(E, F) and weaker 

than the Mackey topology t(E, F) (Mackey- 

’ 

Arens theorem). A locally convex space is said 

to be a Mackey space if the topology is equal 
to the Mackey topology z(E, E’). Every quasi- 
barreled space is a Mackey space. 
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0. Reflexivity 

Let E be a locally convex space. The dual 

space E” of the dual space E’ equipped with 
the strong topology contains the original space 

E. We call E semireflexive if E” = E, and reflex- 
ive if in addition the topology of E coincides 
with the strong topology B(E, E’). E is semi- 
reflexive if and only if every bounded weakly 
closed set of E is weakly compact. E is re- 

flexive if and only if E is semireflexive and 
(quasi)barreled. 

A barreled space in which every bounded 

closed set is compact is called a Monte1 space 
or (M)-space. (M)-spaces are reflexive, and 

their strong dual spaces are also (M)-spaces. 
Many of the function spaces that appear 

in applications are (F)-spaces or their dual 
spaces. For these spaces detailed consequences 
of the countability axiom are known [7, S]. A 
convex set C in the dual space E’ of an (F)- 

space E is weak*-closed if and only if for every 
neighborhood V of 0 in E, C n V” is weak*- 
closed (Krein-Shmul’yan theorem). The 

strong dual space E’ of an (F)-space E is 
(quasi)barreled if and only if it is bornological. 
In particular, the dual space of a reflexive (F)- 

space is bornological. 

P. (DF)-Spaces 

A locally convex space is called a (DF)-space 
if it satisfies: (i) There is a countable base of 
bounded sets (i.e., every bounded set is in- 

cluded in one of them); (ii) if the intersection 
V of a countable number of absolutely con- 
vex closed neighborhoods of 0 absorbs every 
bounded set, then V is also a neighborhood of 
0. The dual space of an (F)-space is a (DF)- 
space, and the dual space of a (DF)-space is an 
(F)-space. A linear mapping of a (DF)-space E 

into a locally convex space F is continuous if 
and only if its restriction to every bounded set 
of E is continuous. A quasicomplete (DF)- 
space is complete. 

Q. Bilinear Mappings 

A bilinear mapping h(x, y) on locally convex 

spaces E and F (x E E, y E F) to a locally convex 
space G is said to be separately continuous if 
for each fixed ~EF (x~E) it is continuous as a 
function of x (y). The linear mappings obtained 
from b(x, y) by fixing x (y) are denoted by 

b,(y) (h,(x)). We call b(x, y) hypocontinuous 
if for each bounded set B of E and B’ of F, 

{b,(y)JxEB} and jb,(x)JyEB’} are equicon- 
tinuous. A continuous bilinear mapping is 

hypocontinuous. However, the converse is 

not always true. A separately continuous bi- 
linear mapping is not necessarily hypocontinu- 

ous. If both E and F are barreled, however, 
then every separately continuous mapping 
is hypocontinuous. If E is an (F)-space and 
F is metrizable, then every separately continu- 
ous bilinear mapping is continuous. Simi- 
larly, if both E and F are (DF)-spaces, then 

every hypocontinuous bilinear mapping is 
continuous. 

R. Tensor Products 

It is possible to introduce many topologies in 
the ttensor product E @ F of locally convex 

spaces E and F. The projective topology (or 
topology n) is defined to be the strongest topol- 
ogy such that the natural bilinear mapping 
E x F-, E @ F is continuous. The dual space 
of E @,F is identified with the space B(E, F) 

of all continuous bilinear functionals on E x 
F. The completion of E @,F is denoted by 

E @ F. The topology of hiequicontinuous con- 
vergence (or topology E) is defined to be the 
topology of uniform convergence on sets V x 
I/“, where V and I/ are neighborhoods of 0 
in E and F, respectively, considering the ele- 
ments of E @ F as linear functionals on E’ @ F’ 
by the natural pairing of E @ F and E’ @ F’. 
The completion of E 0, F is denoted by E 6 

F. The dual space of E @,F coincides with 
the subspace J(E, F) of B(E, F) composed of 
the union of the absolute convex hulls of the 

products V” @ U” of equicontinuous sets. The 
elements of J(E, F) are called integral bilinear 
functionals. 

Closely related to E 6 F is L. Schwartz’s 
c tensor product E c F [ 121. (They coincide if E 
and F are complete and if E or F has the tap- 
proximation property.) E E F can be regarded 

as (i) a space of vector-valued functions if E is 
a space of functions and F is an abstract lo- 

cally convex space, especially a space of func- 
tions of two variables if E and F are, respec- 
tively, spaces of functions of one variable, and 

(ii) a space of operators G+F if E is the dual 
space G’ of a locally convex space G. 

S. Nuclear Spaces 

Let E be a locally convex space, V be an ab- 
solutely convex closed neighborhood of the 
origin, and p(x) be the seminorm correspond- 
ing to V. Then we denote by E, the normed 

space with norm p(x) obtained from E by 
identifying the two elements x and y with 

p(x - y) = 0. If U c V, then a natural linear 

mapping ‘po, V : E, + E, is defined. 
A locally convex space E is said to be a 



424 T 
Topological Linear Spaces 

1604 

nuclear space (resp. Schwartz space or simply 
@)-space) if for each absolutely convex closed 
neighborhood V of 0 there is another U such 

that q,,, is a tnuclear operator (resp. tcom- 
pact operator) as an operator of E, into the 

completion of E,. A nuclear space or @)-space 
is an (M)-space if it is quasicomplete and 
quasibarreled. A locally convex space E is a 

nuclear space if and only if the topologies n 
and E coincide on the tensor product E @ F 
with any locally convex space F. Accordingly, 
it follows that B(E, F)=J(E, F). This can be 

regarded as a generalization of Schwartz’s 
kernel theorem, which says that every sepa- 
rately continuous bilinear functional on f%* x 
% is represented by an integral with kernel 

in &@iy. The theory of topological tensor prod- 
ucts and nuclear spaces is due to Grothen- 

dieck [9]. 
A locally convex space E is a nuclear(F)- 

space if and only if E is isomorphic to a closed 
subspace of P( -co, m) (T. Komura and Y. 
Komura, 1966). An example of a nuclear(F)- 
space without basis is known (B. S. Mityagin 
and N. M. Zobin, 1974). 

T. Gel’fand Triplet 

Let H and L be Hilbert spaces. If L is a dense 

subspace of H and the injection L-t H is a 
tHilbert-Schmidt operator, then H = H’ is 
regarded as a dense subspace of L’ and the 
injection H’%L’ is a Hilbert-Schmidt operator. 
In this case, (L, H, L’) is called a Gel’fand trip- 
let (or a rigged Hilbert space). 

A subset of H is called a cylindrical set if it 
is expressed in the form P;i(B) by the ortho- 
gonal projection PF onto a finite-dimensional 

subspace F and a Bore1 subset B of F. If a 
finitely additive positive measure p with //pII i 
= 1 defined on the cylindrical sets of H satisfies 

(i) p is countably additive on cylindrical sets 
for a fixed F and (ii) for any E > 0 there exists 
a 6>0 such that 11x// <6 implies p{yEHI 
1 (x, y) I> l} <E, then p is the restriction of a 

countably additive measure p defined on the 
Bore1 subsets of L’ (Minlos’s theorem, 1959). 

Let T be a self-adjoint operator in H. Then 
T has a natural extension ? in L’ and almost 
every continuous spectrum i of T has an asso- 

ciated eigenvector xi in L’: TX, = 3,x,, .xI E L’. 

U. The Extreme Point Theorem 

Let A be a subset of a linear space E. A point 
x E A is said to be an extreme point if x is an 
extreme point of any real segment containing 

x and contained in A. If A is a compact convex 
subset of a locally convex space E, A is the 

convex closed hull of (i.e., smallest convex 

closed set containing) the set of its extreme 
points (Krein-Milman theorem). In applica- 
tions it is important to know whether every 
point of A is represented uniquely as an inte- 
gral of extreme points. For a metrizable con- 

vex compact subset A of a locally convex 
space E, the following two conditions are 
equivalent (Choquet’s theorem): (i) 11 is a sim- 
plex, i.e., if we put a = {(ix, A) 1 x E A, i > 0} 
c E x R’, the vector space A-a becomes a 
tlattice with positive cone 2; (ii) for any XE A 
there exists a unique positive measure p on 

A with ((pL((i= 1 such that l(x)={,/(y)&(y) 
(IEE’) and the support of p is contained in the 

set of extreme points of A. 

V. Weakly Compact Set 

A subset of a quasicomplete locally convex 
space is relatively weakly compact If and only 
if every sequence in the set has a weak ac- 
cumulation point (Eberlein’s theorem). If E is a 
metrizable locally convex space, every weakly 
compact set of E is weakly sequentially com- 
pact (Shmul’yan’s theorem). If E is a quasi- 
complete locally convex space, the convex 

closed hull of any weakly compact subset is 
weakly compact (Krein’s theorem). If E is not 

quasicomplete, this is not necessarily true. 

W. Permanence 

Each subspace, quotient space, direct product, 
direct sum, projective limit, and inductive limit 
(of a family) of locally convex spaces has a 
unique natural locally convex topology. These 
spaces, except for quotient spaces and induc- 

tive limits, are separated, and a quotient space 
E/A is separated if and only if the subspace A 
is closed. The limit of a sequence E, c E, c 

is said to be a strictly inductive limit if E, has 
the induced topology as a subspace of E,+i. If 
E is a strictly inductive limit of a sequence E, 
such that E, is closed in E,,, or if J: is the 
inductive limit of a sequence E 1 c E, t . such 
that the mapping E,+E,+, maps a neigh- 
borhood of 0 to a relatively weakly compact 
set, then E is separated and each bounded set 
of E is the image of a bounded set in some E,. 
If E = u E, is the strictly inductive limit of the 

sequence {E,}, then the topology of E, coin- 
cides with the relative topology of E, c E. The 
strictly inductive limit of a sequence of(F)- 

spaces is called an (LF)-space. 
Any complete locally convex space (resp. 

any locally convex space) is (resp. a dense 
linear subspace of) the projective limit of 

Banach spaces. Every (F)-space E is the projec- 
tive limit of a sequence of Banach spaces E, + 
E, +. . In particular, E is said to be a count- 
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ably normed space if the mappings E+ E, are 

one-to-one and ~~x~~,,< IIx/I,+r for all XEE with 
E considered as a subspace E,. We call E a 

countably Hilbertian space if, in particular, the 
E, are +Hilbert spaces. An (F)-space with at 
least one continuous norm is a nuclear space if 

and only if it is a countably Hilbertian space 
such that the mappings E,,, +E,, are Hilbert- 
Schmidt operators or nuclear operators. 

A locally convex space is bornological if 
and only if it is the inductive limit of normed 
spaces. A locally convex space is said to be 
ultrabornological if it is the inductive limit of 
Banach spaces, or in particular, if it is quasi- 
complete and bornological. 

Properties of spaces, such as being complete, 
quasicomplete, semireflexive, or having every 
bounded closed set compact, are inherited 

by closed subspaces, direct products, projec- 
tive limits, direct sums, and strictly inductive 
limits formed from the original spaces, and 
properties of spaces, such as being Mackey, 
quasibarreled, barreled, and bornological, are 

inherited by quotient spaces, direct sums, in- 
ductive limits, and direct products formed 

from the spaces. (For direct products of high 
power of bornological spaces, unsolved prob- 
lems still exist concerning the inheritance of 
properties.) Quotient spaces of (F)-spaces are 

(F)-spaces, but quotient spaces of general 
complete spaces are not necessarily complete. 
There are examples of a Monte1 (F)-space 
whose quotient space is not reflexive and a 
Monte1 (DF)-space whose closed subspace is 
neither a Mackey space nor a (DF)-space. The 

property of being a Schwartz space or a nu- 
clear space is inherited by the completions, 

subspaces, quotient spaces of closed subspaces, 
direct products, projective limits, direct sums 
of countable families, and inductive limits of 

countable families formed from such spaces. 
Tensor products of nuclear spaces are nuclear 
spaces. Y. Komura gave an example of a non- 

complete space that is quasicomplete, borno- 
logical, and nuclear (and hence a Monte1 

space). 

X. The Open Mapping Theorem and the 
Closed Graph Theorem 

Let E and F be topological linear spaces. The 
statement that every continuous linear map- 
ping of E onto F is open is called the open 

mapping theorem (or homomorphism theorem), 
and the statement that every linear mapping of 
F into E is continuous if its graph is closed in 
F x E is called the closed graph theorem. These 
theorems hold if both E and F are complete 

and metrizable (S. Banach). 
A locally convex space is said to be B- 

complete (or fully complete) if a subspace C of 
E’ is weak*-closed whenever C n 1/” is weak*- 
closed for every neighborhood 1/ of 0 in E. (F)- 
spaces and the dual spaces of reflexive (F)- 

spaces are B-complete. B-complete spaces are 
complete, and closed subspaces and quotient 

spaces by closed subspaces of B-complete 
spaces are B-complete. If E is B-complete and 
F is barreled, then the open mapping theorem 
and the closed graph theorem hold (V. Ptak). 

Both theorems hold also if F is ultraborno- 
logical and E is a locally convex space ob- 
tained from a family of (F)-spaces after a finite 
number of operations of taking closed sub- 
spaces, quotient spaces by closed spaces, direct 
products of countable families, projective 

limits of countable families, direct sums of 
countable families, and inductive limits of 

countable families. This was conjectured by 
Grothendieck and proved by W. Slowikowski 
(1961) and D. A. Raikov. Later, L. Schwartz, 
A. Martineau, M. De Wilde, W. Robertson, 
and M. Nakamura simplified the proof and 

enlarged the class of spaces E [ 151. 
(LF)-spaces, the dual spaces of Schwartz (F)- 

spaces, and the space 9’ of distributions are 
examples of spaces E described in the previous 
paragraph. 

Y. Nonlocally Convex Spaces 

The space L, for 0 < p < I shows that non- 

locally convex spaces are meaningful in func- 
tional analysis. Recently, the Banach-Steinhaus 
theorem, closed graph theorems, etc. have 
been investigated for nonlocally convex topo- 
logical linear spaces [ 131. 

Z. Diagram of Topological Linear Spaces 

The spaces in Fig. 1 are all locally convex 
spaces over the real number field or the com- 

plex number field and satisfy the separation 
axiom T,. The notation A +B means that 
spaces with property A have property B. Main 

properties of dual spaces are listed in Table I. 

References 

[1] N. Bourbaki, Elements de mathematique, 
Espaces vectoriels topologiques, Actualites Sci. 
Ind., Hermann, 1189a, 1966; 1229b, 1967; 
1230a, 1955. 

[2] A. Grothendieck, Espaces vectoriels topo- 
logiques, Lecture notes, SBo Paulo, 1954. 
[3] G. Kothe, Topologische lineare Raume I, 
Springer, second edition, 1966; English transla- 

tion, Topological vector spaces I, II, Springer, 
1969, 1979. 



425 A 
Topological Spaces 

1606 

Fig. 1 
Topological linear spaces. 
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425 (11.16) 
Topological Spaces 

A. Introduction 

Convergence and continuity, as well as the 

algebraic operations on real numbers, are 
fundamental notions in analysis. In an abstract 

space too, it is possible to provide an ad- 
ditional structure so that convergence and 
continuity can be defined and a theory analo- 
gous to classical analysis can be developed. 

Such a structure is called a topological struc- 
ture (for a precise definition, - Sect.ion B). 
There are several ways of giving a topology to 

a space. One method is to axiomatize the 
notion of convergence (M. Frechet [l], 1906; 

- 87 Convergence). However, defining a 
topology in terms of either a neighborhood 
system (due to F. Hausdorff [3], 19 14), a clo- 

sure operation (due to C. Kuratowski, Fund. 
Math., 3 (1922)) or a family of open sets is 

more common. 

B. Definition of a Topology 

Let X be a set. A neighborhood system for X is 
a function 11 that assigns to each point x of X, 

a family U(x) of subsets of X subject to the 
following axioms (U): 
(1) XE U for each U in U(x). 
(2) If U, , U, E U(x), then U, n U, E II(x). 
(3) If u/~1I(x) and UC I’, then k’~U(x). 

(4) For each U in U(x), there is a member W of 
IL(x) such that UcU(y) for each y in W. 

A system of open sets for a set X 1s a family 

C of subsets of X satisfying the following 

axioms (0): 
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(1) x, 0ED. 
(2) If O,,O,EO, then 0, nO,Efk 
(3) If O,EO (SEA), then UI,,O,~C. 

A system of closed sets for a space X is a 
family 3 of subsets of X satisfying the follow- 
ing axioms (F): 

(1) x, 0E3. 
(2)IfF,,F,E~,thenF,UF,E~. 
(3)IfFA~g((jL~A), then nA-,,,F,~z. 

A closure operator for a space X is a func- 
tion that assigns to each subset A of X, a 
subset A” of X satisfying the following axioms 

((2: 
(1) 0”=0. 
(2)(AUB)“=A”UB”. 
(3) AcA”. 
(4) A”=A”“. 

An interior operator for a space X is a func- 
tion that assigns to each subset A of X a 
subset A’ of X satisfying the following axioms 

(1): 
(1) x’=x. 
(2)(A nB)i=.4in~'. 
(3) A’c A. 
(4) Aii=Ai. 

Any one of these five structures for a set X, 
i.e., a structure satisfying any one of(U), (0) 
(F), (C), or (I), determines the four other struc- 
tures in a natural way. For instance, assume 
that a system of open sets 0 satisfying (0) is 
given. In this case, each member of 0 is called 

an open set. A subset Li of X is called a neigh- 
borhood of a point x in X provided that there 

is an open set 0 such that XE 0 c U. If U(x) is 
the family of all neighborhoods of x, the func- 
tion x+U(x) satisfies (U). The complement of 
an open set in X is called a closed set. The 

family 3 of all closed sets satisfies (F). Given a 
subset A of X, the intersection A” of the family 
of all closed sets containing A is called the 
closure of A, and each point of A” is called an 
adherent point of A. The closure A” is the 
smallest closed set containing A, and the func- 
tion A+ A” satisfies (A). The closure A“ is 
also denoted by A or Cl A. Dually, there is a 

largest open subset A’ of A. The set A’ (also 
denoted by A0 or Int A) is called the interior of 
A, and each point of A” is called an interior 
point of A. The closure and interior are related 

by A”=X-(X-A)and A=X-(X-AA)O. 
The correspondence A-t A0 satisfies (I). Con- 

versely, open sets can be characterized vari- 
ously as follows: 

A is open* A E U(x) for each x in A 
~X-AE~ 
e(X-A)=X-A 
oA”=A. 

When a structure satisfying(U), (F), (C), or 

(I) is given, one of the four characterizations of 
open sets can be used to define a system of 

open sets satisfying (0) and hence the other 

structure. 
A topological structure or simply a topology 

for a space X is any of these five structures for 
X. If two topologies ~r and z2 for X give rise 
to identical systems of open sets, then or and Q 
are considered to be identical. For this reason 
“topology” frequently means simply “system of 
open sets” in the literature. A topological space 
is a set X provided with a topology T and is 
denoted by (X, z) or simply X when there is no 
ambiguity. 

C. Examples 

(1) Discrete Topology. Let X be a set, and let 
the system U of open sets be the family of all 
subsets of X. The resulting topology is called 
the discrete topology, and X with the discrete 
topology is a discrete topological space. In this 
space, A= A0 = A for each subset A, and A is a 

neighborhood of each of its points. 

(2) Trivial Topology. The trivial (or indiscrete) 

topology for a set X is defined by the system of 
open sets which consists of X and 0 only. If 
A$X, then A”=O, and if A#@, then A=X. 
Each point of X has only one neighborhood, 
X itself. 

(3) Metric Topology. Let (X, p) be a tmetric 
space, i.e., a set X provided with a tmetric p. 
For a positive number 8, the s-neighborhood 
of a point x is defined to be the set U,(x) = 
{yl):~X,~(x,y)<~}. Let U(x) be the family 

of all sets V’ such that u,(x) c V for some E; 

then the assignment x+U(x) satisfies (U) and 
hence defines a topology. This topology is the 
metric topology for the metric space (X, p). 

(4) Order Topology. Let X be a set tlinearly 

ordered by <. For each point x in X, let U(x) 
be the family of all subsets li such that XE 
( y 1 a < y < bJ c U for some a, b. The function 

x+Lt(x) satisfies (U) and defines the order 
topology for the linearly ordered set X. 

(5) Convergence and Topology. We can define 

the notion of convergence in a topological 
space, and conversely we can define a topology 
using convergence as a primitive notion (- 87 

Convergence). In particular, for a metric space, 
the metric topology can be defined in terms of 

convergent sequences (- 273 Metric Spaces). 

D. Generalized Topological Spaces 

When a space X is equipped with a closure 
operator that does not satisfy all of(C), the 
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space is called a generalized topological space 

by some authors. Topological implications of 
each axiom in (C) have been investigated for 
such spaces. 

E. Local Bases 

Let X be a topological space, and let x be a 
point of X. A collection U,(x) of neighbor- 
hoods of x is called a base for the neighborhood 

system (fundamental system of neighborhoods 
of a point x or local base at x) if each neigh- 
borhood of x contains a member of U,(x). Let 
{U,(x) 1 x E X} be a system of local bases; then 
the system has the following properties (U,): 
(1) For each V in II,(x), XE V c X. 
(2) If V,, V2~UO(x), then there is a V, in U,(x) 

such that V, c VI f7 V,. 
(3) For each V in U,(x), there exists a W c V 
in U,(x) such that for each y in W, V contains 
some member of U,(y). 

Conversely, suppose that {U,(x) 1 x E X} is 
a system satisfying (U,). For each x in X, 
let U(x) consist of all subsets V of X such 
that V 3 U for some U in U,(x). Then the sys- 
tem {U(x) 1 x E X} satisfies (U) and therefore 
defines a topology for X. This topology is 
called the topology determined by the system 
{U,(X)(XEX). 

For instance, in a metric space X, the set of 
s-neighborhoods of X(E > 0) is a local base at x 
with respect to the metric topology. In an 
arbitrary topological space, the collection of 

all open sets containing x, i.e., the open neigb- 
borboods of x, is a local base at x. 

Two systems satisfying (U,) are called 

equivalent if they determine the same topology. 
For systems {U,(x)lx~X} and {%,Jx)lx~X} 
to be equivalent it is necessary and sufficient 
that for each x in X each member of U,(x) 
contain a member of B,(x) and each member 
of&,(x) contain a member of U,(x). 

Sometimes the word “neighborhood” stands 

for a member of a local base or for an open 
neighborhood. However, this convention is 
not used here. 

F. Bases and Subbases 

A family 0, of open sets of a topological space 
X is called a base for the topology (base for the 
space, or open base) if each open set is the 
union of a subfamily of 0,. A base D, for the 
topology of a topological space X has the 

following properties (0,): 
(1) uo,=x. 

(2) If W,, W,E~), and XE W, n W,, then there is 
a W,inD,suchthatxEW,cW,flW,. 

Conversely, if a family 0, of subsets of a set 

X satisfies (0,) then D0 is a base fear a unique 

topology. A member of 0, is called a basic 
open set. 

A family O,, of open sets of a topological 
space X is a subbase for the topology (or sub- 
base for the space) if the family of all finite 
intersections of members of De, is a base for 
the topology. If Do0 a subbase for the topol- 

ogy of a topological space X, then U O,, =X. 
Conversely, if De, is a family of subsets of a 

set X such that U De, =X, then the family of 
all finite intersections of members of D,, is a 
base for a unique topology r. A subset of X is 

open for z if and only if it is the umon of a 
family of finite intersections of members of 
De,. The system of open sets relative to r is 
said to be generated by the family De,. Thus 
any family of sets defines a topology for its 
union. 

A set 3 of subsets of a topological space is 
called a network if for each point x and its 
neighborhood U there is a member FE 5 such 

that x~Fc U (A. V. Arkhangel’skiT, 1959). If 
all FE 5 are required to be open, the network 
5 is exactly an open base. 

G. Continuous Mappings 

A mapping f on a topological space X into a 
topological space Y is called continuous at a 
point a of X if it satisfies one of the following 
equivalent conditions: 

(1) For each neighborhood 1/ of f(Li), there is a 
neighborhood U of a such that f( C’) c T/. (1’) 

For each neighborhood I’ of f(a), the inverse 
image f-‘(V) is a neighborhood of a. 
(2) For an arbitrary subset A of X such that 

a E A, .f(a) E.04. 
Continuity can also be defined in terms of 

convergence (- 87 Convergence). 
If f is continuous at each point of X, f is 

said to be continuous. Continuity off is equiv- 
alent to each of the following conditions: 

(1) For each open subset 0 of Y, the inverse 
image f-‘(O) is open in X. 
(1’) The inverse image under f of ea.ch member 

of a subbase for the topology of Y is open in 
X. 
(2) For each closed subset F of Y, the inverse 

image f-‘(F) is closed. 
(3) For each subset A of X, f(x)cf’(A). 

The image f(X) of X under a continuous 
mapping f is called a continuous image of X. 

Let X, Y, and Z be topological spaces, and let 
f: X -+ Y and g : Y-Z be mappings. If ,f is con- 

tinuous at a point a of X and g is continuous 
at f(a), then the composite mapping g o,f: X 

+Z is continuous at the point a. Hence iff 
and g are continuous, so is g of: 

When a continuous mapping ,f: X + Y is 
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tbijective and f-’ is continuous, the mapping 
,f is called a homeomorphism (named by H. 
Poincart, 1895) or topological mapping. Two 
topological spaces X and Yare homeomorphic, 
X zz Y, if there is a homeomorphism .f: X+ Y. 

The relation of being homeomorphic is an 
tequivalence relation. A property which, when 

held by a topological space, is also held by 
each space homeomorphic to it is a topological 
property or topological invariant. The problem 
of deciding whether or not given spaces are 

homeomorphic is called the homeomorphism 
problem. 

A mapping S: X-t Y is called open (resp. 
closed) if the image under ,f of each open (resp. 
closed) subset of X is open (closed) in Y. A 
continuous bijection that is either open or 
closed is a homeomorphism. 

A continuous surjection f: X --t Y is called a 
quotient mapping if U c Y is open whenever 

f -’ (U) is open (- Section L). If moreover 
f’l ,f -l(S) is quotient for each S c Y as a map- 
ping from the subspace (- Section J) f-‘(S) 

onto the subspace S, then f is called a hered- 
itarily quotient mapping. Open or closed con- 
tinuous mappings are hereditarily quotient 
mappings. 

H. Comparison of Topologies 

When a set X is provided with two topologies 

TV and Q and the identity mapping: (X, T,) 

+(X, r2) is continuous, the topology 7l is said 
to be stronger (larger or finer) than the topol- 
ogy r2, r2 is said to be weaker (smaller or 
coarser) than z,, and the notation TV > Q or 
7z < z1 is used. Let Di, si, I&, and a, be the 
system of open sets, system of closed sets, 
neighborhood system, and closure opera- 
tion for X relative to the topology 5i (i = 1,2), 
respectively. Then each of the following is 
equivalent to the statement r1 > z2: 

(1) Dl I&. 
wz,=152. 
(3) For each x in X, ll,(x)~Uuz(x). 
(4) A”1 c A‘Q for each subset A of X. 

Let S be the family of all topologies for X. 
Then S is ordered by the relation 2. The 
discrete topology is the strongest topology for 
X. If {T,(IEA] is a subfamily of S, then among 
the topologies stronger than each 7>,, there is a 
weakest one 7, =sup{r,l ~.EA). Similarly, 
among the topologies weaker than each T?,, 

there is a strongest one z2 = infjr, (SEA}. In 
fact, let L3, be the family of all open sets rela- 

tive to r,; then the system of open sets for 71 is 

generated by u2,,,,Di, and the system of open 
sets for z2 is precisely nA-El\Di,. The family S is 
therefore a tcomplete lattice. 

I. Induced Topology 

Let f be a mapping from a set X into a topo- 
logical space Y. Then the family {f-‘(O) ( 0 is 
open in Y) satisfies axioms (0) and defines a 
topology for X. This topology is called the 

topology induced by ,f (or simply induced topol- 
ogy), and it is characterized as the weakest 

one among the topologies for X relative to 
which the mapping f is continuous. 

J. Subspaces 

Let (X, Z) be a topological space and A4 be a 
subset of X. The topology for A4 induced by 

the inclusion mapping ,f: M+X, i.e., the 
mapping f defined by f(x) = x for each x in M, 

is called the relativization of z to M or the 
relative topology. The set M provided with the 
relative topology is called a subspace of the 

topological space (X, 7). Topological terms, 
when applied to a subspace, are frequently 
preceded by the adjective “relative” to avoid 
ambiguity. Thus a relative neighborhood of a 
point x in M is a set of the form M n U, where 
lJ is a neighborhood of x in X. A relatively 
open (relatively closed) set in M is a set of the 
form A4 n A, where A is open (closed) in X. For 
a subset A of M, the relative closure of A in M 
is M n A, where A ts the closure of A in X. A 
mapping f : X + Y is called an embedding if ,f’ is 

a homeomorphism from X to the subspace 
f(X), and in this case X is said to be embedded 
into Y. A property P is said to hold locally on 

a topological space X if each point x of X has 
a neighborhood U such that the property P 
holds on the subspace U. A subset A of X is 
locally closed if for each point x of X, there 
exists a neighborhood V’ of x such that Vn A is 
relatively closed in V. A subset of X is locally 
closed if and only if it can be represented as 
0 n F, where 0 is open and F is closed in X. 

K. Product Spaces 

Let X be a set, and for each member 1, of an 
index set A, let fi. be a mapping of X into a 
topological space X,. Then there is a weakest 
topology for X that makes each fi. continuous. 
In fact, this topology is sup{z,,), where zh is the 
topology for X induced by ,fi.. In particular, let 
{X,1 SEA} be a family of topological spaces, 
and let X be the Cartesian product nit,, X,. 
Then the weakest topology for X such that 
each projection pr,:X*X, is continuous is 

called the product topology or weak topology. 

The Cartesian product ndt,, X, equipped with 
the product topology is called the product 
topological space or simply the product space 
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or direct product of the family {X,) 1.~ A} of 
topological spaces. If C is the family of all 
open subsets of X,, the union urpr;‘(C,) 
is a subbase for the product topology. If 
x= (.x;,i is a point of X, then sets of the type 

fly=, pr; ‘cq)=nkL,, r,x, x u, x .” x u, 
form a local base at x for the product to- 
pology, where A,, ,&E/Z and U, is a neigh- 
borhood of .x’.~. Each projection prj,: X+X?, is 

continuous and open, and a mapping ,f from a 
topological space Y into the product space 

n, X, is continuous if and only if pri of: Y 
+X, is continuous for each i. Given a family 

( fi,) of continuous mappings ,f,: X,+ YA, the 

product mapping l&J,: n,X,-n, Y, is con- 
tinuous with respect to the product topologies. 

For the Cartesian product n, X, of a family 
(X, 1 i6A) of topological spaces, there is an- 

other topology called the box topology (or 
strong topology). A base for the box topology 

is the family of all sets n,O,, where 0, is open 
in X, for each i. For a point x = {x1], the 
family of all sets of the form n, U, is a local 
base at x relative to the box topology, where 
U, is a neighborhood of xi, for each i”. With 
respect to the box topology, each projection 
pri,:n,X,-X, is continuous and open, and 
the product mapping n,f;:n,X,-n, Y, of a 
family {,/j,i of continuous mappings fI:Xn-+ q, 
is continuous. For a finite product of topolog- 

ical spaces, the product topology agrees with 
the box topology, but for an arbitrary product 
the product topology is weaker than the box 
topology. For the Cartesian product of topo- 
logical spaces the usual topology considered is 
the product topology rather than the box 
topology. 

L. Quotient Spaces 

Let ,f be a mapping of a topological space 
X onto a set Y. The quotient topology for Y 

(relative to the mapping ,f) is the strongest 
topology for Y such that fis continuous. A 
subset 0 of Y is open relative to the quotient 
topology if and only if ,f’-‘(0) is open. Given 
an equivalence relation - on a topological 
space X, the ‘quotient set Y = X/ - provided 
with the quotient topology relative to the 
projection 4”: X + Y is called the quotient topo- 

logical space (or simply quotient space). A 
mapping .f’ from the quotient space Y= Xl- 
into a topological space is continuous if and 
only if J’o cp is continuous. 

A partition of a space X is a family {A j, 1 i, E 
A) of pairwise disjoint subsets of X such that 

ui Ai. = X. A partition {A,] of a topological 
space X determines an equivalence relation - 
on X such that the family {A,] is precisely 

the family of all equivalence classes under -, 
and therefore the partition determines the 
quotient space Y = X/ - This space is called 
the identification space of X by the given par- 

tition. Each member A, of the partition can 
be regarded as a point of Y, and the projec- 
tion cp:X-+Y satisfies p(x)= A, whenever XE 

A,. A partition {A, 11~12) of a topological 
space is called upper semicontinuous if for 
each A, and each open set U containing A,, 

there is an open set V such that A,, c V c U, 
and I/ is the union of members of (A, 12 E A}. 

A partition {A, 1 ~.EA} is upper semicontinu- 
ous if and only if the projection cp X+ Y= 

(A, I i E A} is a closed mapping. 

M. Topological Sums 

Let X be a set, and for each member i of an 
index set A, let ,f’ be a mapping of a topo- 
logical space X, to X. Then the family { 0 c 
X ( .fA-’ (0) is open for any 3.) satisfies the 

axioms of the open sets. This topology 5 is 
characterized as the strongest one for X that 

makes each ,& continuous. A mapping g on X 
with T to a topological space Y is continuous if 
and only if gof,:X,+ Y is continuous for each 
de A. The simplest is the case where X is the 
disjoint union of X, and fI is the Inclusion 

mapping. Then we call the topological space X 
the direct sum or the topological sum of {X,} 
and denote it by OX, or UX,. More gener- 
ally let the set X be the union of topological 

spaces {Xj.l,,, such that for each i, and p E A 
the relative topologies of X, fl X, from X, and 
X, coincide. Then we call the top’ology 7 the 

weak topology with respect to {X,l}. If X,n X, 
is closed (resp. open) in X, for an:y p, then X, 
is closed (resp. open) in X and the original 
topology of X, coincides with the relative 
topology. If, moreover, for each subset r of A, 

F’U ierX, is closed and the weak topology 
of F with respect to {X,},,, coincides with the 
relative topology induced by 7, then X with 7 

is said to have the hereditarily weak topology 
with respect to {X,} (or to be dorninated by 
IX,}). A topological space has the hereditarily 
weak topology with respect to any locally 

finite closed covering, and every CW-complex 
(- 70 Complexes) has the hereditarily weak 

topology with respect to the covering of all 
finite subcomplexes. 

When {X,} is an increasing sequence of 

topological spaces such that each X, is a sub- 
space of X,,, , then the union X := u X, with 

the weak topology is called the inductive limit 
of {X,) and is denoted by I$ X,. Each X, may 
again be regarded as a subspace of X. 
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N. Baire Spaces 

For a subset A of a topological space X, the 

set X -A 1s called the exterior of A, and the set 
A 0 X - A is called the boundary of A, de- 
noted by Bd A, Fr A, or ZA. A point belonging 
to the exterior (boundary) of A is an exterior 

point (boundary point or frontier point) of A. If 
the closure of A is X, then A is said to be dense 
in X. When X-A is dense in X, i.e., when the 
interior of A is empty, A is called a boundary 
set (or border set), and if the closure A IS a 
boundary set, A is said to be nowhere dense. 
The union of a countable family of nowhere 
dense sets is called a set of the first category 

(or meager set). A set that is not of the first 
category is called a set of the second category 
(or nonmeager set). The complement of a set of 
the first category is called a residual set. In the 

space R of real numbers, the set Q of all ra- 
tional numbers is of the first category, and the 
set R-Q of all irrational numbers is of the 
second category. Both Q and R -Q are dense 
in X and hence are boundary sets. The union 
of a finite family of nowhere dense sets is no- 
where dense, and the union of a countable 
family of sets of the first category is also of the 
first category. A subset A of X is nowhere 
dense in X if and only if for each open set 0, 

0 n A is not dense in 0. 
A topological space X is called a Baire space 

(Baire, 1899) if each subset of X of the first 
category has an empty interior. Each of the 
following conditions is necessary and sufficient 
for a space X to be a Baire space: 
(1) Each nonempty open subset of X is of the 
second category. 
(2) If F, , F,, is a sequence of closed subsets 
of X such that the union IJz, F, has an inte- 
rior point, then at least one F, has an interior 

point. 
(3) If 0, , 0,) . . . is a sequence of dense open 
subsets of X, then the intersection n,:& 0, is 

dense in X. 
An open subset of a Baire space is a Baire 

space for the relative topology. A topological 
space that is homeomorphic to a complete 

metric space (- 436 Uniform Spaces I) is a 
Baire space (Baire-Hausdorff theorem). A 
locally compact Hausdorff space (- Section 
V) is also a Baire space. The class of Tech- 
complete completely regular spaces (- Section 

T) includes both of these spaces, but there are 
also Baire spaces that are not in the class. A 
subset A of a topological space is said to sat- 

isfy Baire’s condition or to have the Baire 
property if there exist an open set 0 and sets 
P,, P2 of the first category such that A = 

(0 U PI)- Pz. A +Borel set satisfies Baire’s 
condition. 

0. Accumulation Points 

A point x is called an accumulation point, or a 
cluster point of a subset A of a topological 
space X if x E A - {x} The set of all accumula- 

tion points of a set A is called the derived set 

of A and is denoted by A’ or Ad. A point x 
belongs to A’ if and only if each neighborhood 
of x contains a point of A other than x itself. A 
point belonging to the set A” = A -A’ is called 
an isolated point of A, and a set A consisting of 
isolated points only, i.e., A = A”, is said to be 
discrete. If each nonempty subset of A contains 

an isolated point, then A is said to be scat- 
tered; and if A does not possess an isolated 

point, i.e., A c A’, then A is said to be dense in 
itself. The largest subset of A which is dense in 
itself is called the kernel of A. If A = A’, then A 

is called a perfect set. 
If x is an accumulation point of A, then for 

each neighborhood U of x, U n (A - {x}) # 0. 
Furthermore, it is possible to classify an ac- 
cumulation point of A according to the +car- 
dinality of U n (A - {.x}). A point x is called a 
condensation point of a set A if for each neigh- 

borhood U of x, the set U fl A is uncountable. 
A point x is a complete accumulation point of 
A if for each neighborhood U of x, the set 
U n A has the same cardinality as A. 

P. Countability Axioms 

A topological space X satisfies the first count- 
ability axiom if each point x of X has a coun- 
table local base (F. Hausdorff [3]). Metric 
spaces satisfy the first countability axiom. In 
fact, the family of (l/n)-neighborhoods (n = 

1,2, ) of a point is a local base of the point. 
The topology of a topological space that 
satisfies the first countability axiom is com- 

pletely determined by convergent sequences. 
For instance, the closure of a subset A of such 
a space consists of all limits of sequences in A 
(- 87 Convergence). A topological space X is 
said to satisfy the second countability axiom or 
to be perfectly separable if there is a countable 
base for the topology. iEuclidean spaces satisfy 
the second countability axiom. If X contains a 
countable dense subset, X is said to be sepa- 

rable. A space that satisfies the second count- 
ability axiom satisfies the first and is also a 
separable Lindeliif space (- Section S). How- 

ever, the converse is not true. Each of the 
following properties is independent of the 
others: separability, the first countability 
axiom, and the Lindeliif property. If a metric 
space is separable, then it satisfies the second 

countability axiom. There are metric spaces 
that are not separable. 
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Q. Separation Axioms 

Topological spaces that are commonly en- 
countered usually satisfy some of the following 
separation axioms. 

(T,) Kolmogorov’s axiom. For each pair of 

distinct points, there is a neighborhood of one 
point of the pair that does not contain the 
other. 

(T,) The first separation axiom or Frechet’s 
axiom. For each pair x, y of distinct points, 
there are neighborhoods Cl of x and V of y 
such that x $ V and y $ U. 

Axiom (T,) can be restated as follows: 

(T’,) For each point x of the space, the sin- 
gleton {x} is closed. 

(T2) The second separation axiom or Haus- 
dorff’s axiom [3]. For each pair x, y of dis- 

tinct points of the space X, there exist disjoint 
neighborhoods of x and y. 

Axiom (T,) is equivalent to the following: 
(T;) In the product space X xX the diago- 

nal set A is closed. 
(TX) The third separation axiom or Vietoris’s 

axiom (Monatsh. Math. Pkys., 3 1 (1921)). 
Given a point x and a subset A such that x # .& 

there exist disjoint open sets 0, and 0, such 
that x E 0, and A c 0,. (In this case, the sets 
{x) and A are said to be separated by open 
sets.) 

Axiom (T3) can be restated as (Tj) or (T’;): 
(T;) For each point x of the space, there is a 

local base at x consisting of closed neighbor- 
hoods of x. 

(T”) An arbitrary closed set and a point not 
belonging to it can be separated by open sets. 

(T4) The fourth separation axiom or Tietze’s 
first axiom (Math. Ann., 88 (1923)). Two dis- 

joint closed sets F, and F, can be separated by 
open sets, i.e., there exist disjoint open sets 0, 
and 0, such that F, c 0, and F2 c 0,. 

(T5) Tietze’s second axiom. Whenever two 
subsets A, and A, satisfy A, n A, = A, n A, = 
@, A, and A, can be separated by open sets. 

It is easily seen that (T5) =z= (TJ, (T,,) and 

(T3) 3 (TJ, (TJ and (T,) 3 (TJ. Axiom (T4) is 
equivalent to each of (Tk) and (TI;): 

(Tk) Whenever F, and Fz are disjoint closed 
subsets, there exists a continuous function f on 
the space into the interval [0, l] such that f is 
identically 0 on F, and 1 on F2. 

(TI;) Each real-valued continuous function 
defined on a closed subspace can be extended 

to a real-valued continuous function on the 
entire space. 

The implications (T4) 3 (Tk) and (T4) - (TI;) 
are known as Uryson’s lemma (Math. Ann., 

94 (1925)) and the Tietze extension theorem’ 

(J. Reine Angew. Math., 145 (1915)), respec- 
tively. In addition, there are two more related 
axioms: 

(T3;) Tikhonov’s separation axiom. For each 
closed subset F and each point x not in F, 

there is a real-valued continuous function f on 
the space such that ,f(x) = 0 and f is identically 
1 on F. 

(Tb) (N. Vedenisov). For each closed subset 
F, there is a real-valued continuous function f 
on the space such that F = {x 1 f(x) = 0). 

Axioms (T5) and (T6) are equivalent to the 
following (TLJ and (T6), respectively: 

(T;) Each subspace satisfies (TJ 
(TJ X satisfies (TJ and each closed set is a 

+G,-set. 
The following implications are valid: (T3;) + 

(TJ, (Td * (TJ, (‘h) and (T,) * (T3$ 
Table 1 gives a classification of topological 

spaces by the separation axioms. Each line 

represents a special case of the preceding line. 

A tmetrizable space is perfectly normal, but 
the converse is false (for metrization theorems 
- 273 Metric Spaces). Among the spaces 
satisfying the second countability axiom, 

regular spaces are normal (Tikhonov’s theo- 
rem, Math. Ann., 95 (1925)) and metrizable 
(Tikhonov-Uryson theorem; P. Uryson, Mutk. 
Ann., 94 (1925)). 

Table 2 shows whether various topological 
properties are preserved in subspaces, product 
spaces, and quotient spaces. The topological 

properties considered are T,, T, = Hausdorff, 
T, = regular, CR = completely regular, T4 = 
normal, T, = completely normal, M = metriz- 
able, C, = first axiom of countability, C,, = 
second axiom of countability, C = compact, 
S = separable, and L = Lindelof. Each position 
is filled with 0 or x according as the prop- 
erty (say, P) listed at the head of the column 
is preserved or not in the sort of space listed 

on the left obtained from space(s) all having 
property P. 

R. Coverings 

A family cJJ1= {M,},,, of subsets of a set X is 
called a covering of a subset A of X if A c 

U,Mj,. If (331 f ‘t ( is mt e countable), it is called 
a finite covering (countable covering). An open 

(closed) covering is a covering consisting of 
open (closed) sets. 

A family 9.R of subsets of a topological space 
X is said to be locally finite if for each point x 
of X, there is a neighborhood of x which inter- 

sects only a finite number of members of 9.R. If 
moreover {M,),,, is disjoint, then YJI is called 
discrete. %)I is called star-finite if each mem- 
ber of ‘JJ1 intersects only a finite number of 
members of YII. A cr-locally finite or u-discrete 

family of subsets of X is respectively the union 
of a countable number of locally finite or dis- 
crete families of subsets of X. A covering %II 
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Table 1. Separation Axioms 

Axioms Spaces Satisfying the Axioms 

(To) T,,-space (Kolmogorov space) 

(J-1) T,-space (Kuratowski space) 

(Tz) T,-space (Hausdorff space, separated space) 

CT,) and (TJ T,-space (regular space) 

VI 1 and CT,;) Completely regular space (Tikbonov space) 

VJ and CL) T,-space (normal space) 

VI 1 and CT,) T,-space (completely normal space, hereditarily normal space) 

CT,) and (T,) T,-space (perfectly normal space) 
- 

Table 2. Topological Properties and Spaces 

Space T, T, T, CR T, T, M C, C,, C S L 

Subspace ooooxooooxxx 
Closed subspace 0 0 0 0 0 0 0 0 0 0 X 0 

Open subspace 0 0 0 0 x 0 0 0 0 x 0 x 
Product 0 0 0 0 x x x x x 0 x x 
Countable product 0 0 0 0 X X 0 0 0 0 0 X 
Quotient space xxxxxxxxxooo 

is called point-finite if each infinite number 
of members of VJI has an empty intersection. A 
covering ‘33l is a refinement of a covering VI 

(written W<VI) if each member of W is con- 
tained in a member of 9L. The order of the 
covering VJ1 is the least integer r such that any 
subfamily of VJI consisting of Y + 1 members 
has an empty intersection. 

Let VJi be a covering of X, and let A be a 
subset of X. The star of A relative to $V.JI, de- 
noted by S(A, m), is the union of all members 
of W whose intersection with A is nonempty. 

Let ‘VJI’ denote the family {S( {x), VJI)},,, and 
VJl* the family (S(M,VJI)),,,. Then ‘VJtA and 
VJZ* are coverings of X, and VJI-=$JIA<VJ~*< 

‘WA”. A covering tJ31 is a star refinement of a 
covering V> if ‘VJi*<V>, and %7l is a barycentric 
refinement (or A-refinement) of V1 if VJl’<VI. 

A sequence VJ1,, %II,, _. of open coverings of 
a topological space is called a normal sequence 
if VJii+, <VJ$,forn=1,2,...,andanopen 
covering VJu1 is said to be a normal covering if 
there is a normal sequence VJJJ1 r, VJl,, such 
that WI -0JI. The support (or carrier) of a 

real-valued function ,f on a topological 
space X is defined to be the closure of the set 

{xl,f(x)#O}. Let {f,iaEa be a family of con- 
tinuous nonnegative real-valued functions on 
a topological space X, and for each s( in A, let 
C, be the support of .f%. The family {,f,}z.n is 
called a partition of unity if the family {Cs}GCA 
is locally finite and C,f,(x) = 1 for each x in X. 
If the covering { CziaoA is a refinement of a 
covering V& the family { ,fh},,a is called a par- 
tition of unity subordinate to the covering 9X. A 
partition of unity subordinate to a covering VJ1 

exists only if VJ1 is a normal covering (- Sec- 
tion X). If p is a continuous tpseudometric on 
a T,-space X, then define a covering M, for 

each natural number n by M,, = { U(x; 2-‘“)},,x, 

where Li(x;s)={y(p(x,y)<sj. Then the se- 
quence VJIr, VJJJ1,, . is a normal sequence of 
open coverings. Conversely, given a normal 
sequence VJl, ,VJI,, of open coverings of X, 
there exists a continuous pseudometric p such 
that p(x,y)<2-” whenever ~ES(~,‘VJL,), and 
p(x,y)>2-‘-’ whenever x$S(y,VJL,,). If in 
addition for each x the family {S(x, VJ&) ( II = 
1,2, } is a local base at .Y, then the metric 

topology of p agrees with the topology of X. 

S. Compactness 

If each open covering of a topological space X 
admits a finite open covering as its refinement, 
the space X is called compact; if each open 
covering of X admits a countable open refine- 
ment, X i.s said to be a Lindeliif space (P. Alek- 
sandrov and P. Uryson, Verh. Akad. Wetensch., 
Amsterdam, 19 (1929)); if each open covering 

of X admits a locally finite open refinement, X 
is called paracompact (J. Dieudonne, J. Math. 

Pures Appl., 23 (1944)); and if each open cover- 
ing of X admits a star-finite open refinement, 
X is said to be strongly paracompact (C. H. 

Dowker, Amer. J. Math., 69 (1947)) or to have 
the star-finite property (K. Morita, Math. 
Japonicae, 1 (1948)). The space X is compact 
(Lindelof) if for each open covering VJL of X, 
there is a finite (countable) subfamily of VJI 
whose union is X. 

The following properties for a topological 

space X are equivalent: (1) The space X is 
compact. (2) If a family {F,),,, of closed sub- 

sets of X has the finite intersection property, 
i.e., each finite subfamily of jFj.JLE,, has non- 

empty intersection, then nz F?. # a. (3) Each 
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infinite subset of X has a complete accumu- 
lation point. (4) Each +net has a convergent 

+subnet. (5) Each tuniversal net and each 
+ultrafilter converge. 

If a subset A of X is compact for the relative 
topology, A is called a compact subset. A 
subset A of X is said to be relatively compact if 
the closure of A in X is a compact subset. A 
closed subset of a compact topological space is 

compact, and a compact subset of a Hausdorff 
space is closed. A continuous image of a com- 
pact space is compact, each continuous map- 
ping of a compact space into a Hausdorff space 
is a closed mapping, and a continuous bijec- 

tion of a compact space onto a Hausdorff 
space is a homeomorphism. The product space 
of a family {X,},,, of topological spaces is 
compact if and only if each factor space is 
compact (Tikhonov’s product theorem, Math. 
Ann., 102 (1930)). A compact Hausdorff space 
is normal. A compact Hausdorff space is 

metrizable if and only if it satisfies the second 
countability axiom. A metric space or a +uni- 
form space is compact if and only if it is 
+totally bounded and +complete. A subset of a 
Euclidean space is compact if and only if it is 

closed and bounded. In a discrete space only 
finite subsets are compact. The cardinality of a 
compact Hausdorff space with the first count- 
ability axiom cannot exceed the power of the 
continuum (Arkhangel’skii). 

There are a number of conditions related to 
compactness. A topological space is sequenti- 
ally compact if each sequence in X has a con- 
vergent subsequence. A space X is countably 

compact (M. Frechet Cl]) if each countable 
open covering of X contains a finite subfamily 
that covers X. A space X is pseudocompact (E. 

Hewitt, 1948) if each continuous real-valued 
function on X is bounded. Some authors use 
compuct and hicompuct for what we call coun- 
tably compact and compact, respectively. N. 
Bourbaki [9] uses compact and quasicompact 

instead of compact Hausdorff and compact, 
respectively. A T,-space is countably compact 

if and only if each infinite set possesses an 
accumulation point. If X is countably com- 
pact, then X is pseudocompact, and if X is 
normal, the converse also holds. If a tcomplete 

uniform space is pseudocompact, then it is 
compact. A space satisfying the second counta- 
bility axiom is compact if and only if it is 
sequentially compact. If X is sequentially 
compact, then X is countably compact, and if 
X satisfies the first countability axiom, the 

converse is true. 

T. Compactification 

A compactification of a topological space X 
consists of a compact space Y and a homeo- 

morphism of X onto a dense subspace Xi of Y. 
We can always regard X as a dense subspace 
of a compactification Y. If X is completely 

regular, then there is a Hausdorff compac- 
tification Y such that each bounded real- 
valued continuous function on X can be 
extended continuously to Y. Such a compacti- 

fication is unique up to homeomorphism; it is 
called the Stone-Tech compactification of X 
(E. tech, Ann. Math., 38 (1937); hl. H. Stone, 
Trans. Amer. Math. Sot., 41 (1937)) and is 
denoted by b(X). Let {fh}i,Eh be the set of all 
continuous functions on a completely regular 

space X into the closed interval I = [0, 11. 
Then a continuous mapping cp of X into a 
parallelotope IA = n, I, (I, = I) is defined by 

&4= {fn(-u))i,A> and the mapping cp is a 
homeomorphism of X onto the subspace q(X) 
of I“ (Tikhonov’s embedding theorem, Math. 
Ann., 102 (1930)). The closure q(X) of q(X) in 
I” is the Stone-Tech compactihcation of X. 
The natural mapping fi(X, x X,)-+fl(X,) x 
p(X,) is a homeomorphism if ant! only if X, x 
X, is pseudocompact (I. Glicksberg, 1959). 

For a topological space X, let lx, be a point 
not in X, and define a topology on the union 
XU{~}asfollows:AsubsetUofXU{co}is 

open if and only if either x # U amd U is open 
in X, or m E U and X - U is a compact closed 
subset of X. The topological space X U {a) 
thus obtained is compact, and if X is not 
already compact, the space X U {‘m} is a com- 
pactihcation of X called the one-point com- 
pactification of X (P. S. Aleksandrov, C. R. 

Acud. Sci. Paris, 178 (1924)). The one-point 
compactification of a Hausdorff s,pace is not 
necessarily Hausdorff. The one-point compac- 
tification of the n-dimensional Euclidean space 
R” is homeomorphic to the n-dimensional 

sphere S”. 
A completely regular space X is a +G,-set in 

the Stone-Tech compactification p(X) if and 
only if it is a G&-set in any Hausdorff space Y 
which contains X as a dense subspace. Then X 
is said to be Tech-complete. 

U. Absolutely Closed Spaces 

A Hausdorff space X is said to be absolutely 
closed (or H-closed; P. Aleksandrov and P. 

Uryson, 1929) if X is closed in each Hausdorff 
space containing it. A compact HLausdorff 
space is absolutely closed. A Hausdorff space 
is absolutely closed if and only if for each open 

covering {N,},,, of X, there is a finite sub- 
family of {N,},,, that covers X. ‘The product 
space of a family of absolutely closed spaces is 

absolutely closed. Each Hausdorff space is a 

dense subset of an absolutely closed space. 
Similarly, a regular space X is said to be r- 
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closed if X is closed in each regular space 
containing it (N. Weinberg, 1941). 

V. Locally Compact Spaces 

A topological space X is said to be locally 
compact if each point of X has a compact 
neighborhood (P. Aleksandrov and P. Uryson, 
1929). A +uniform space X is said to be uni- 

.formly locally compact if there is a member Cl 

of the ‘uniformity such that U(x) is compact 
for each x in X (- 436 Uniform Spaces). A 

noncompact space X is locally compact and 
Hausdorff if and only if the one-point com- 

pactihcation of X is Hausdorff, and this is the 
case if and only if X is homeomorphic to an 
open subset of a compact Hausdorff space. A 
locally compact Hausdorff space is completely 
regular, and for each point of the space, the 

family of all of its compact neighborhoqds 
forms a local base at the point. A locally 
closed, hence open or closed, subset of a lo- 

cally compact Hausdorff space is also locally 
compact for the relative topology. If a sub- 
space A of a Hausdorff space X is locally 
compact, then A is a locally closed subset of X. 
The Euclidean space R” is locally compact, 
and hence each locally Euclidean space, i.e., a 
space such that each point admits a neighbor- 

hood homeomorphic to a Euclidean space, is 
locally compact. A topological space is called 
g-compact if it can be expressed as the union 

of at most countably many compact subsets. 

W. Proper (Perfect) Mappings 

A mapping ,f of a topological space X into a 
topological space Y is said to be proper (N. 
Bourbaki [9]) (or perfect [ 143) if it is con- 
tinuous and for each topological space Z, the 

mapping ,f x I :X x Z-t Y x Z is closed, where 
(,f x 1)(x, z) = (,f’(x), z). A continuous mapping 

1‘: X-r Y is proper if and only if it is closed and 
f‘-‘( { y}) is compact for each y in Y. Another 

necessary and sufficient condition is that if 
(~~}~t is a +net in X such that its image (f(x,)J 
converges to ye Y, then a subnet of (x,) con- 
verges to an x~,f~‘(y) in X. A continuous 
mapping of a compact space into a Hausdorff 
space is always proper. For a compact Haus- 

dorff space X, a quotient space Y is Hausdorff 
if and only if the canonical projection cp: X--f 

Y is proper. 
For a continuous mapping J’ of a locally 

compact Hausdorff space X into a locally 
compact Hausdorff space Y, the following 

three conditions are equivalent: (1) f is proper. 
(2) For each compact subset K of Y, the in- 
verse image f-‘(K) is compact. (3) If XU [Y * 1 

and YU(y.1 are the one-point compactifi- 
cations of X and Y, then the extension ,f, of 

,f’ such that ,1; (x,) = y 1 is continuous. 
The composition of two proper mappings is 

proper and the direct product of an arbitrary 
number of proper mappings is proper. 

X. Paracompact Hausdorff Spaces 

A paracompact Hausdorff space (often called 
simply a paracompact space) is normal. For a 

Hausdorff space X, the following five con- 
ditions are equivalent: (1) X is paracompact. 

(2) X is fully normal (J. W. Tukey [S]), i.e., 
each open covering of X admits an open 
barycentric refinement. (3) Each open covering 
has a partition of unity subordinate to it. (4) 
Each open covering is refined by a closed 
covering {F,) a E A} that is closure-preserving, 

i.e., U{F,J/IEB) is closed for each Bc A. (5) 
Each open covering { rl, 1 x E A) has a cushioned 

refinement (V,[~EA\, i.e., CI(U { V,,[fl~B))c 

U ( ufl 1 [I E B) for each B c A. The implication 
(l))(2) is Dieudonne’s theorem. The implication 
(2)+( 1) is A. H. Stone’s theorem (1948) from 
which it follows that each metric space is para- 
compact. The implications (5)+(4)+(l) is 
Michael’s theorem (1959, 1957). 

For normal spaces, the following weaker 
versions of (2) and (3) hold: A T,-space X is 
normal if and only if each finite open covering 

of X admits a finite open star refinement (or 
finite open barycentric refinement). For each 
locally finite open covering of a normal space, 

there is a partition of unity subordinate to it. 
For a regular space X the following three 

conditions are equivalent: (1) X is paracom- 
pact. (2) Each open covering of X is refined by 
a a-discrete open covering. (3) Each open 
covering of X is refined by a a-locally finite 
open covering. Tamano’s product theorem: For 

a completely regular space X to be paracom- 
pact it is necessary and sufficient that X x /I(X) 

be normal (1960). 

For a ‘connected locally compact space X, 
the following conditions are equivalent: (1) X 
is paracompact. (2) X is a-compact. (3) In the 
one-point compactification X U {“c}, the point 
a admits a countable local base. (4) There is a 

locally finite open covering {r/i; Ith of X such 
that ii, is compact for each 1.. (5) X is the 

union of a sequence (U,,} of open sets such 
that U,iscompactand&?ncLi,+,(n=1,2,...). 
(6) X is strongly paracompact. 

Every +F,-set of a paracompact Hausdorff 
space is paracompact (Michael, 1953). When a 

T,-space X has the hereditarily weak topology 

with respect to a closed covering {F,), then X 
is paracompact Hausdorff (normal, completely 
normal or perfectly normal) if and only if each 
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FL is (Morita, 1954; Michael, 1956). In par- 
ticular, every CW-complex is paracompact 
and perfectly normal (Morita, 1953). 

Y. Normality and Paracompactness of Direct 
Products 

A topological space X is discrete if X x Y is 

normal for any normal space Y (M. Atsuji and 
M. Rudin, 1978). There are a paracompact 
Lindelsf space X and a separable metric space 

Y such that the product X x Y is not normal 
(Michael, 1963). The following are conditions 

under which the products are normal or 
paracompact. Let m be an infinite icardinal 

number. A topological space X is called m- 
paracompact if every open covering consisting 
of at most m open sets admits a locally finite 
open covering as its refinement. When III is 
countable, it is called countably paracompact. 

If X has an open base of at most m members, 
m-paracompact means paracompact. The 
following conditions are equivalent for a topo- 

logical space X: (1) X is normal and count- 
ably paracompact; (2) The product X x Y is 

normal and countably paracompact for any 
compact metric space Y; (3) X x I is normal, 
where I= [0, l] (C. H. Dowker, 1951). Rudin 
(1971) constructed an example of a collection- 
wise normal space (- Section AA) that is not 

countably paracompact. When m is general 
the following conditions are equivalent: (1) X 

is normal and m-paracompact; (2) If Y is a 

compact Hausdorff space with an open base 
consisting of at most m sets, then X x Y is 
normal and m-paracompact; (3) X x I’” is 
normal; (4) X x { 0, 1 )“’ is normal (Morita, 
1961). In particular, the product X x Y of 
a paracompact Hausdorff space X and a 
compact Hausdorff space Y is paracompact 
(DieudonnC, 1944). 

A topological space X is called a P-space if 
it satisfies the following conditions: Let 0 be 

an arbitrary set and {G(E,, . . . . ala,, . . . cci~R, 
i=l 2 , , } be a family of open sets such that 
G(cc,, . . . . cc,)cG(cx,, . . . . z~,c(~+,). Then there is a 

family of closed sets (F(a,, . , xi)1 rl, ,cci~Q, 
i=1,2,...) such that F(x ,,..., ~~)cG(x, ,..., ai) 
and that if U,E~ G(a, , , C(~) = X for a se- 
quence {Ed), then lJ& F(cc,, , mi)=X. Per- 
fectly normal spaces, countably compact 
spaces, Tech-complete paracompact spaces 
and a-compact regular spaces are P-spaces. 
Normal P-spaces are countably paracom- 

pact. A Hausdorff space X is a normal (resp. 
paracompact) P-space if and only if the prod- 
uct X x Y is normal (resp. paracompact) for 

any metric space Y (Morita, Math. Ann., 154 

1964). 

The product X x Y of locally compact Haus- 
dorff spaces X and Y is a locally compact 
Hausdorff space. If, in this case, X and Y are 
paracompact, then so is the product. If the 
direct product space n,X, of metric spaces is 

normal, then X, are compact excl:pt for at 
most countably many i, and hence the prod- 

uct space is paracompact (A. H. Stone, 1948). 
A class V of topological spaces is called 

countably productive if for a sequence Xi of 

members of V their product n X, is again a 
member of %. The classes of (complete) (sepa- 
rable) metric spaces form such examples. The 
class of paracompact and Tech-complete 
spaces is countably productive (2. Frolik, 
1960). A topological space X is called a p- 
space if it is completely regular and there 
is a sequence 9J& of families of open sets in 
the Stone-Tech compactification b(X) such 
that, for each point XE X, x E n SI(X, Wi) c X 

(Arkhangel’skii, 1963). X is called an M-space 
if there is a normal sequence !IJii of open 

coverings of X such that if K 1 3 K, I.. is a 
sequence of nonempty closed sets and Ki c 
S(x,~.Ri),i=1,2 ,..., foranx~X,thennK,# 
@ (Morita, 1963). The class of paracompact 
p-spaces and that of paracompac-t Hausdorff 
M-spaces are the same and are countably pro- 
ductive. For a covering 3 of X and an x E X 

we set C(X, 5) = n {F 1 XEFE~}. X is called a 
E-space if X admits a sequence zi of locally 

finite closed coverings such that if K 1 3 K, 3 
is a sequence of nonempty closed sets and 

K,cC(x,3,),i=1,2 ,..., foranx~:X,then 
n Ki#@ (K. Nagami, 1969). C-spaces are 

P-spaces. The class of all paracompact Z- 
spaces is also countably productive. Among 
the above classes each one is always wider 
than its predecessors. Yet the product X x Y of 
a paracompact Hausdorff P-space X and a 
paracompact Hausdorff C-space Y is paracom- 
pact. Other examples of countably productive 
classes are the Suslin spaces and the Luzin 
spaces (- Section CC) introduced by Bour- 

baki (1958), the stratifiable spaces by J. G. 
Ceder (1961) and C. J. R. Borges (1966), the h’,- 
spaces by Michael (1966) and the o-spaces by 

A. Okuyama (1967). 

Z. Strongly Paracompact Spaces 

Regular Lindelijf spaces are strongly paracom- 
pact. Conversely, if a connected regular space 
is strongly paracompact, then it is a LindelGf 

space (Morita, 1948). Hence a connected non- 
separable metric space is not strongly para- 
compact. Paracompact locally compact Haus- 

dorff spaces and uniformly locally compact 

Hausdorff spaces are strongly paracompact. 
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These classes of spaces coincide under suitable 
tuniform structures. 

AA. Collectionwise Normal Spaces 

A Hausdorff space X is called a collectionwise 

normal space if for each discrete collection 
{F, Ias.4) of closed sets of X there exists a 
disjoint collection { LJ% ( CIE A} of open sets with 
F,c U, (a~.4) (R. H. Bing, 1951). If X satisfies 
an analogous condition for the case where 
each F, is a singleton, X is called a collection- 
wise Hausdorff space. Paracompact Hausdorff 
spaces are collectionwise normal (Bing). Every 
point-finite open covering of a collectionwise 

normal space has a locally finite open refine- 
ment (Michael, Nagami). 

A topological space X is called a developable 
space if it admits a sequence IL,, i = 1,2, , of 

open coverings such that, for each point x6X, 
{S(x,U,)li= 1,2, . ..} forms a base for the 
neighborhood system of x (R. L. Moore, 1916). 
A regular developable space is called a Moore 

space. The question of whether or not every 
normal Moore space is metrizable is known 
as the normal Moore space problem (- 273 
Metric Spaces K). Collectionwise normal 
Moore spaces are metrizable (Bing). 

BB. Real-Compact Spaces 

A completely regular space X is called real- 
compact if X is complete under the smallest 
+uniformity such that each continuous real- 
valued function on X is uniformly continuous 
(- 422 Uniform Spaces). This notion was 
introduced by E. Hewitt (Trans. Amer. Math. 

Sot., 64 (1948)) under the name of Q-space, 
and independently by L. Nachbin (Proc. Inter- 

nutional Congress of Mathematicians, Cam- 
bridge, Mass., 1950). 

A Lindeliif space is real-compact. If X, and 
X, are real-compact spaces such that the rings 
C(X,) and C(X,) of continuous real-valued 
functions on X, and X, are isomorphic, then 
X, and X, are homeomorphic (Hewitt). If X is 
real-compact, then X is homeomorphic to a 

closed subspace of the product space of copies 
of the space of real numbers, and conversely. 

CC. Images and Inverse Images of Topological 
Spaces 

Each continuous mapping f: X + Y is decom- 
posed into the product i o ho p of continuous 
mappings p:XjX/-, h:X/- -f(X) and i: 

f(X)* Y, where - is the equivalence relation 
such that x1 -x2 if and only if f(xI)=f(x2). 

The mapping J is open (resp. closed) if and 
only if these mappings are all open (resp. 
closed). Then h is a homeomorphism. The 
image of a paracompact Hausdorff space 

under a closed continuous mapping is para- 
compact (Michael, 1957). 

Let f: X+ Y be a perfect surjection. Then Y 

is called a perfect image of X and X a perfect 
inverse image of Y. If, in this case, one of X 
and Y satisfies a property such as being com- 
pact, locally compact, o-compact, Lindelof, or 
countably compact, then the other also satis- 
fies the property. When X and Y are com- 
pletely regular, the same is true with regard 
to Tech completeness. Properties such as 
regularity, normality, complete normality, 

perfect normality, and the second countability 
axiom are preserved in perfect images; but 

complete regularity and strong paracompact- 
ness are not. Perfect images of metric spaces 
are also metrizable (S. Hanai and Morita, A. 
H. Stone, 1956). Conversely, perfect inverse 
images of paracompact spaces are paracom- 
pact. If a Hausdorff space is a perfect inverse 
image of a regular space (resp. k-space; - 
below), then it is a regular space (resp. k- 

space). Every paracompact Tech-complete 
space is a perfect inverse image of a tcomplete 

metric space (Z. Frolik, 1961). A completely 
regular space is a paracompact p-space if and 

only if it is a perfect inverse image of a metric 
space (Arkhangel’skii, 1963). A mapping f: X --t 
Y is called quasi-perfect if it is closed and 
continuous and the inverse image ,f-r(y) of 
each point ye Y is countably compact. A topo- 
logical space X is an M-space if and only if 

there is a quasi-perfect mapping from X onto 
a metric space Y (Morita, 1964). Let ,f: X + Y 

be a quasi-perfect surjection. If one of X and 
Y is a C-space, then the other is also a C-space 

(Nagami, 1969). 
A topological space X is called a F&bet- 

Uryson space (or a FrCcbet space) if the closure 
of an arbitrary set A c X is the set of all limits 
of sequences in A (Arkhangel’skii, 1963). X is 
called a sequential space if A c X is closed when- 
ever A contains all the limits of sequences in 
A (S. P. Franklin, 1965). X is called a k’-space 
if the closure of an arbitrary set A is the set of 
all points adherent to the intersection An K 

for a compact set K in X (Arkhangel’skii, 
1963). X is called a k-space if A c X is closed 
whenever A n K is closed in K for any compact 
set K (- Arkhangel’skii, Trudy Moskou. Mat. 
Ohshch., 13 (1965)). Spaces satisfying the first 

countability axiom are Frechet-Uryson spaces. 
The Frechet-Uryson spaces (resp. sequential 
spaces) are characterized as the images under 

hereditarily quotient (resp. quotient) mappings 
of metric spaces or locally compact metric 
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spaces. Similarly the k’-spaces (resp. k-spaces) 
coincide with the images under hereditarily 
quotient (resp. quotient) mappings of locally 

compact spaces. The image of a metric space 
under a closed continuous mapping is called a 
Lashnev space. Any subspace of a Frechet- 

Uryson space is a Frechet-Uryson space. Con- 
versely, a Hausdorff space is a Frechet-Uryson 
space if any of its subspaces is a k-space. Cech- 
complete spaces are k-spaces. A Hausdorff 
space is called a Suslin space (resp. Luzin space) 
if it is the image under a continuous surjection 
(resp. continuous bijection) of a complete 
separable metric space (Bourbaki [9]; also - 

22 Analytic Sets). 
In Figs. 1, 2, and 3, the relationships be- 

Fig. 1 

Fig. 2 

:ween the various properties are indicated 
my the arrows. 

Fig. 3 
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426 (1X.1) 
Topology 

The term topology means a branch of mathe- 
matics that deals with topological properties 

of geometric figures or point sets. A classical 
result in topology is the Euler relation on 
polyhedra: Let Q, x,, and x2 be the numbers 

of vertices, edges, and faces of a polyhedron 
homeomorphic to the 2-dimensional sphere; 
then g,, - x1 + a2 = 2 (+Euler-Poincark formula 
for the 2-dimensional case; actually, the for- 
mula was known to Descartes). It is one of the 

earliest results in topology. In 1833, C. F. 
Gauss used integrals to define the notion df 

ilinking numbers of two closed curves in a 
space (- 99 Degree of Mapping). It was in 
J. B. Listing’s classical work I/i,rstudien zur 
Topologie (1847) that the term topology first 

appeared in print. 
In the 19th century, B. Riemann published 

many works on function theory in which topo- 
logical methods played an essential role. He 
solved the homeomorphism problem for com- 
pact surfaces (- 410 Surfaces); his result is 

basic in the theory of algebraic functions. In 
the same period, mathematicians began to 

study topological properties of n-dimensional 
polyhedra. E. Betti considered the notion of 

+homology. H. PoincarC, however, was the first 

to recognize the importance of a topological 

approach to analysis in general; he defined the 

+homology groups of a complex Cl]. He ob- 
tained the famous +PoincarC duality theorem 

and defined the tfundamental group. He con- 
sidered tpolyhedra as the basic objects in top- 
ology, and deduced topological properties 
utilizing rcomplexes obtained from polyhedra 

by +simplicial decompositions. He thus con- 
structed a branch of topology known as com- 

binatorial topology. 
In its beginning stages combinatorial top- 

ology dealt only with polyhedra. In the late 
192Os, however, it became possible to apply 

combinatorial methods to genera1 tcompact 
spaces. P. S. Alexandrov introduced the con- 
cept of approximation of a +compact metric 
space by an inverse sequence of complexes and 
the definition of homology groups for these 
spaces. His idea had a precursor in the notion 
of ‘simplicial approximations of conlinuous 
mappings, which was introduced by L. E. J. 

Brouwer in 1911. In 1932, E. i‘lech defined 
homology groups for arbitrary spaces utilizing 
the tinductive limit of the homology groups of 
polyhedra; and tcech cohomology groups for 
arbitrary spaces were also defined. S. Eilenberg 

established tsingular (co)homology theory 
using +singular chain complexes (1944). The 
axiomatic approach to (co)homology theory is 
due to Eilenberg and Steenrod, who gave 
axioms for (co)homology theory in a most 
comprehensive way and unified various (co)- 

homology theories (1945) (- 201 Homology 
Theory. 

The approach using algebraic methods has 
progressed extensively in connection with the 

development of homology theory. This branch 
is called algebraic topology. In the 1920s and 

193Os, a number of remarkable results in alge- 
braic topology, such as the TAlexander duality 
theorem, the TLefschetz fixed-point theorem, 
and the +Hopf invariant, were obtained. In the 
late 193Os, W. Hurewicz developed the theory 
of higher-dimensional thomotopy groups (- 
153 Fixed-Point Theorems, 201 Homology 
Theory, 202 Homotopy Theory). J. H. C. 
Whitehead introduced the concept of +CW 
complexes and proved an algebraic charac- 

terization of the homotopy equivalence of CW 
complexes. N. Steenrod developed tobstruc- 
tion theory utilizing tsquaring operations in 

the cohomology ring (1947). Subsequently, 
the theory of tcohomology operations was 
introduced (- 64 Cohomology Operations, 
305 Obstructions). The theory of +spectral 
sequences for +fiber spaces was originated by 
J. Leray (1945) and J.-P. Serre (1951) and was 
successfully applied to cohomology operations 

and homotopy theory by H. Cartan and Serre 
(1954) (- 148 Fiber Spaces, 200 Homological 
Algebra). The study of the combinatorial 
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structures of polyhedra and tpiecewise linear 
mappings has flourished since 1940 in the 

works of Whitehead, S. S. Cairns, and others. 
S. Smale and, independently, J. Stallings 

solved the tgeneralized Poincarir conjecture in 
1960. The +Hauptvermutung in combinatorial 
topology was solved negatively in 1961 by B. 
Mazur and J. Milnor. E. C. Zeeman proved 
the unknottedness of codimension 3 (1962). 
The recent development of the theory in con- 
junction with progress in tdifferential topol- 
ogy is notable. The Hauptvermutung for com- 
binatorial manifolds was solved in 1969 by 

Kirby, Siebenmann, and Wall. In particular, 
there exist different combinatorial structures 
on tori of dimension > 5, and there are topo- 

logical manifolds that do not admit any com- 
binatorial structure (- 65 Combinatorial 

Manifolds, I14 Differential Topology, 235 
Knot Theory). 

The global theory of differentiable manifolds 
started from the algebraic-topological study of 
‘fiber bundles and tcharacteristic classes in the 

1940s. R. Thorn’s fundamental theorem of 
tcobordism (1954) was obtained through ex- 

tensive use of cohomology operations and 
homotopy groups. Milnor (1956) showed that 
the sphere S’ may have differentiable struc- 

tures that are essentially distinct from each 
other by using +Morse theory and the iindex 
theorem of Thorn and Hirzebruch. These 
results led to the creation of a new field, +dif- 
ferential topology (- 56 Characteristic Classes, 
1 I4 Differential Topology). 

Since 1959, A. Grothendieck, M. F. Atiyah, 
F. Hirzebruch, and J. F. Adams have devel- 
oped +K-theory, which is a generalized coho- 

mology theory constructed using stable classes 
of tvector bundles (- 237 K-Theory). 

+Knot theory, an interesting branch of top- 

ology, was one of the classical branches of 
topology and is now studied in connection 
with the theory of low-dimensional manifolds 
(- 235 Knot Theory). 

On the other hand, G. Cantor established 
general set theory in the 1870s and introduced 
such notions as taccumulation points, topen 
sets, and iclosed sets in Euclidean space. The 
first important generalization of this theory 

was the concept of ttopological space, which 
was proposed by M. FrCchet and developed by 

F. Hausdorff at the beginning of the 20th 
century. The theory subsequently became a 
new field of study, called general topology or 
set-theoretic topology. It deals with the topo- 
logical properties of point sets in a Euclidean 

or topological space without reference to 
polyhedra. There has been a remarkable devel- 

opment of the theory since abount 1920, nota- 

bly by Polish mathematicians S. Janiszewski, 
W. Sierpifiski, S. Mazurkiewicz, C. Kuratow- 

ski, and others. The contributions of R. L. 

Moore, G. T. Whyburn, and K. Menger are 
also important (- 382 Shape Theory, 425 
Topological Spaces). 

Topology is not only a foundation of vari- 
ous theories, but is also itself one of the most 
important branches of mathematics. It consists 
of +homology theory, thomotopy theory, idif- 
ferential topology, tcombinatorial manifolds, 
tK-theory, ttransformation groups, ttheory of 
singularities, tfoliations, tdynamical systems, 
icatastrophe theory, etc. It continues to de- 
velop in ,interaction with other branches of 

mathematics (- 51 Catastrophe Theory, 126 
Dynamical Systems, 154 Foliations, 418 Theory 
of Singularities, 431 Transformation Groups). 
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427 (IX.1 2) 
Topology of Lie Groups and 
Homogeneous Spaces 

A. General Remarks 

Among various topological structures of tLie 
groups and thomogeneous spaces, the struc- 
tures of their +(co)homology groups and 
thomotopy groups are of special interest. Let 
G/H be a homogeneous space, where G is a 
Lie group and H is its closed subgroup. Then 
(G, G/H, H) is a +fiber bundle, where G/H is 
the base space and H is the fiber Thus homol- 
ogy and homotopy theory of fiber bundles 

(ispectral sequences and thomotopy exact 
sequences) can be applied. The +cellular de- 

composition of +Stiefel manifolds, +Grassmann 
manifolds, and +K%hler homogeneous spaces 
are known. Concerning tsymmetric Riemann- 
ian spaces, we have various interesting meth- 
ods, such as the use of invariant differential 
forms in connection with real cohomology 
rings and the use of +Morse theory in order to 
establish relations between the diagrams of 

symmetric Riemannian spaces G/H and homo- 

logical properties of their +loop spaces and 
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some related homogeneous spaces [4,5]. Lie 
groups can be regarded as special cases of 
homogeneous spaces or symmetric spaces, 
although their group structures are of partic- 

ular importance. A connected Lie group is 
homeomorphic to the product of one of its 
compact subgroups and a Euclidean space 
(+Cartan-Mal’tsev-lwasawa theorem). Hence 
the topological structure of a connected Lie 

group is essentially determined by the topolog- 
ical structures of its compact subgroups. 

B. Homology of Compact Lie Groups 

Let G be a connected compact Lie group. 
Since G is an +H-space whose multiplication is 
given by its group multiplication h, H*(G; k) 
and H,(G; k) are dual +Hopf algebras for any 

coefficient field k. Also, H*(G; k) is isomorphic 
as a igraded algebra to the tensor product of 

telementary Hopf algebras (- 203 Hopf Alge- 

bras), but no factor of the tensor product is 
isomorphic to a polynomial ring because G is 
a finite tpolyhedron. In particular, if k = R 
(the field of real numbers), then H*(G; R)g 
Aa(xr, . ,x,) (the exterior (Grassmann) alge- 
bra over R with generators x1,. , xr of odd 

degrees). Here we can choose generators xi 
such that h*(xJ = 1 0 xi + xi 0 1. 1 <i < 1. The 
xi that satisfy this property are said to be 
primitive. Since in this case the tcomultiplica- 
tion h* is commutative, the multiplication h, 

is also commutative and the Hopf algebra 
HJG; R) is an exterior algebra generated 
by elements yi having the same degree as 

xi (i = 1, . , I). When the characteristic of the 
coefficient field k is nonzero, h, need not be 
commutative. 

The dimension of a tmaximal torus of a 
connected compact Lie group G is indepen- 
dent of the choice of the maximal torus and is 

called the rank of G. The rank of G coincides 
with the number 1 of generators of H*(G; R). E. 

Cartan studied H*(G; R) by utilizing invariant 
differential forms. The cohomology theory of 
Lie algebras originated from the method he 

used in his study. H*(G; R) is invariant under 
+local isomorphisms of groups G. For +class- 
ical compact simple Lie groups G, R. Brauer 
calculated H*(G; R), while C.-T. Yen and C. 
Chevalley calculated H*(G; R) for +exceptional 
compact simple Lie groups (- Appendix A, 
Table 6.N). The degrees of the generators 
have group-theoretic meaning. Suppose that 
the degree of the ith generator is 2m, - 1, 1 < 

i,<l,andthatm,gm,<...gm,.WhenGis 
simple, there is a relation m, + m,-,+l = const- 

ant (Chevalley’s duality). We have a proof for 

this property that does not use classification. 
The cohomology groups N*(G; Z,) (where p 

is a prime and Z, = Z/pZ) have been deter- 
mined as graded algebras for all compact 
simple Lie groups by A. Borel, S. Araki, and P. 
Baum and W. Browder (- Appendix A, Table 
6.N). 

C. Cohomology of Classifying Spaces 

Let (E,, B,, G) be a tuniversal bundle of a 

connected compact Lie group G and p a prime 
or zero. Suppose that the integral cohomology 
of G has no p-torsion (no torsion when p = 0). 

Then H*(G; ZJ= Az,(x’, , . . . ,x;) (H*(G; Z)= 
Az(x; , , xi) when p = 0), an exterior alge- 

bra with degxj=2m,- 1, 1 <i<l, and the 
generators xi can be chosen to be ttransgres- 
sive in the spectral sequence of the universal 
bundle. Let y, , . , y, be their transgression 
images. Then deg yi = 2m,, 1 d i < 1, and the 

cohomology of the tclassifying space B, over 
Z, (resp. Z) is the polynomial algebra with 
generators y,, . . , y,. Let T be a maximal torus 

of G. Then B,= E,/T is a classifying space of 
T, the +Weyl group W= N(T)/T of G with 
respect to T operates on BT by +right transla- 
tions, and H*( T; Z) has no torsion and is an 

exterior algebra with 1 generators of degree 1. 
Thus H*(B,; Z) = Z [u 1, . , u,], deg ui = 2. Let 
I, be the subalgebra of H*(B,; Z) consisting 
of W-invariant polynomials, and let p be the 
projection of the bundle (Br, B,, G/T). Then 

under the assumption that G has no p-torsion 
(no torsion), the cohomology mapping p* over 
Z,,(Z) is monomorphic, and p* : H*(B,; Z,) g 

I, @ Z, (H*(B,;Z)rI,) [l]. In the case of 
real coefficients, we have H*(BG; R)z I, @ 
R for all G, and m,, . , m, are the degrees 
of generators of the ring I, of W-invariant 
polynomials. 

Example (1) G= U(n): I=n and G has no 
torsion. W operates on H*(B,; Z) as the group 

of all permutations of generators ur, . . . , u,. 
Thus generators of I, are the telementary 
symmetric polynomials or, , a, of u,, , u,. 

Let c, , , c, be the iuniversal Chern classes; 
then p*(ci)=ci and H*(B,(,,;Z)=Z[c,, . . . ,c,,]. 

Example (2) G = SO(n): I= [n/2] and G 

1 has no p-torsion for p # 2. W operates on 
H*(By;Z) as the group generated by the per- 

mutations of generators u,, . , ur and by the 
transformations g(ui) = eiuj, ei = k 1, where the 

number of ui for which e, = -1 is arbitrary for 
odd n and even for even n. Thus the generators 

of I, are the elementary symmetric poly- 
nomialso; ,..., oiofuf ,..., $foroddnand 
U; ,.,., ai-, andu,...u,forevenn.Letp ,,..., p, 
be the iuniversal Pontryagin classes and x be 
the iuniversal Euler-Poincarc class in the case 

of even n. Then p*(pi) = a: and p*(x) = u1 u, 
for integral cohomology. Denote the mod p 
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reduction of pi and ): by pi and 2, respectively. 

Then ~~*(~soc21+l,; Z,)=Z,[p,, ,jTJ and 

H*(Kso(*l,~ Z,)=Z,CY,,...,p,~,,~l (p=Oor 
> 2). 

Example (3) G = O(n): If we use the subgroup 
Q consisting of all diagonal matrices instead of 

r, then we can make a similar argument for 
Z,-cohomology. Since Q=(Z,y, H*(Bg; 

Zz)=~2[~:,,...,v,](22[~~,,...,~~,] is a 
polynomial ring with deg ri = I), and W, = 
N(Q)/Q operates on B, by right translations 

and on H*(Bg; Z,) as the group of all permuta- 
tions of L’, , , r:,. Let 1,1 be the subalgebra 
of H*( B,; Z,) consisting of all W,-invariant 
polynomials. Then I,2 is a polynomial ring 
generated by the elementary symmetric poly- 
nomials o;, ,D: of ui, , u,,. The projec- 

tion p2 : B,+ b(,, induces a monomorphic 
cohomology mapping pz over Z,, and p; : 

H*(4,,,,; Z,)E lwl. Let w,, , ~1” be the +uni- 
versa1 Stiefel-Whitney classes. Then &(wi) = 
c:’ and H*(B,,,~,;Z,)=Z,[w,,...,w,J [2]. 

D. Grassmann Manifolds 

The following manifolds are called Grass- 
mann manifolds: The manifold M,+,,,(R) con- 
sisting of all n-subspaces of R”+m; the mani- 
fold iii ,+,,,(R) consisting of all oriented n- 
subspaces of R”+“‘; and the manifold M,+,,,(C) 
consisting of all complex n-subspaces of C”‘“. 

These are expressed as quotient spaces as 
follows: M,+,,“(R)=O(n+m)/O(n) x O(m), 
Ii2 ,+,,.(R)=SO(n+m)/SO(n) xSO(m), and 
M ,,+,,,(C)= U(n+m)/U(n) x u(m). They admit 

cellular decompositions by +Schubert varieties 
from which their cohomologies can be com- 
puted (- 56 Characteristic Classes). M,+,,,(R) 
and iii .+,,,(R) have no p-torsion for p # 2, and 
M .+,,,(C) has no torsion. These spaces are m-, 
m-, and (2m-t 1)-classifying spaces of O(n), 

SO(n), and V(n), respectively. Hence their 
cohomologies are isomorphic to those of B, 
(G = O(n), SO(n), Li(n)) in dimensions cm, 
cm, and < 2m, respectively; and they are poly- 
nomial rings generated by suitable univer- 

sal characteristic classes in low dimensions. 

E. Cohomologies of Homogeneous Spaces G/U 
(Rank G=Rank U) 

Let G be a compact connected Lie group and 
U a closed subgroup of G with the same rank 

as G. Denote the degrees of generators of 
H*(G; R) and H*( U; R) by 2m, - 1, ,2m, - 1, 
and 2n, - 1, ,2n, - 1, respectively. Then the 
real-coefficient +Poincare polynomial PO of the 

homogeneous space G/U is given by P,,(G/U, t) 

= ni( 1 - t2”g)/( 1 - r2”r) (G. Hirsch). When G, U, 
and G/U have no p-torsion, the same formula 

is valid for the Z,-coefhcient Poincare poly- 

nomial [I]. When U is the +centralizer of a 
torus, G/U has a complex analytic cellular 
decomposition [3]. Hence G/U has no torsion 
in this case. This was proved by R. Bott and 
H. Samelson by utilizing Morse theory [5] 

(- 279 Morse Theory). The case li = T has 
also been studied. 

F. Homotopy Groups of Compact Lie Groups 

The ifundamental group 7~~ (G) of a compact 
Lie group G is Abelian. Furthermore, n,(G) = 

0. If we apply Morse theory to G, the varia- 
tional completeness of G can be utilized to 

show that the loop space RG has no torsion 
and that its odd-dimensional cohomologies 
vanish [4]. Consequently, when G is non- 
Abelian and simple, we have rccj(G) s Z. A 
+periodicity theorem on +stable homotopy 
groups of classical groups proved by Bott is 

used in K-theory (- 202 Homotopy Theory; 
237 K-Theory). (For explicit forms of homo- 
topy groups - Appendix A, Table 6.VI). 

Homotopy groups of Stiefel manifolds are 
used to define characteristic classes by +ob- 
struction cocycles (- 147 Fiber Bundles; Ap- 
pendix A, Table 6.VI). 
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428 (XIII.1 7) 
Total Differential Equations 

A. Pfaff’s Problem 

A total differential equation is an equation of 

the form 

0) = 0, (1) 
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where (11 is a tdifferential l-form x1=, a,(x)dx; 
on a manifold X. A submanifold M of X is 
called an integral manifold of (1) if each vector 
< of the itangent vector space T,(M) of M at 

every point x on M satisfies (u(c) = 0. We de- 
note the maximal dimension of integral mani- 

folds of (1) by m(m). J. F. Pfaff showed that 

m(co) 3(n- 1)/2 for any w. The problem of 
determining m(m) for a given form m is called 

Pfaff’s problem. This problem was solved by 
G. Frobenius, J. G. Darboux, and others as 
follows: Form an ialternating matrix 

('ij)l <i,j<n (2) 

from the coefficients of the texterior derivative 

of w, 

where aii = &lj/(:xi -&,/fix,. Suppose that the 
rank of (2) is-2t. Then the rank of the matrix 

is 2t or 2t + 2. In the former case m(to) = n - t, 

and w  can be expressed in the form 

by choosing a suitable coordinate system 

(u,. , u,). In the latter case m(w) = n - t - 1, 
and o can be expressed in the form 

by choosing a suitable coordinate system 
(u, , , u,). This theorem is called Darboux’s 
theorem. 

A 1 -form w  is called a Pfaffian form, and 
equation (1) is called a Pfaffan equation. A 
system of equations cui=O (1 <i,<s) for l-form 

(0, is called a system of Pfaffian equations or a 
system of total differential equations [6,12,26]. 

B. Systems of Differential Forms and Systems 
of Partial Differential Equations 

Let n be a system of differential forms (I$‘, 

O<p<n, 1 di<v,,, on X, where CI$’ is a p-form 
on X. A submanifold M of X is called an 
integral manifold of R = 0 if for each p (0 d p < 

dim M), any p-dimensional subspace E, of 
T,(M) satisfies c$(EO) = 0 (1 d i < v,) at every 
point x on M. Denote the maximal dimension 
of integral manifolds of R = 0 by m(Q). The 
problem of determining m(Q) for a given sys- 
tem R is called the generalized Pfaff problem, 

and will be explained in later sections. By 
fixing a local coordinate system of X and 

dividing it into two systems (x,, ,x,) and 
( )I~, , p,) (m = n-r), we can consider the 
problem of finding an integral manifold of R 
= 0 delined by 

y, = Y&X 1, 3 XI), l,<E<nl 

This problem can be reduced to solving a 

system of partial differential equations of the 
first order on the submanifold N with the local 

coordinate system (x1, , x,). 
Consider a system of partial differential 

equations @ = 0 of order I: 

qTI,(Xi, ya, &“) = 0, 1 Gi,ds, (3) 

with l<i<r, ldcr,~~~m,,jl+...+jl~I,where 

(4) 

A submanifold defined by yz = y,(x 1 , , x,), 
1 <c( < m, is called a solution of 0 = 0 if it satis- 

fies (3) identically. The problem of determining 
whether a given system @ = 0 has a solution 

was solved by C. Riquier, who showed that 
any system can be prolonged either to a pas- 
sive orthonomic system or to an incompatible 
system by a finite number of steps. A system 
of partial differential equations is called a 
prolongation of another system if the former 
contains the latter and they have the same 
solution. A passive orthonomic system is one 

whose general solution can be parametrized by 
an infinite number of arbitrary constants. A 
solution containing parameters is called a 
general solution if by specifying the parameters 
we can obtain a solution of the +Cauchy prob- 
lem for any initial data. A system (3) is said to 
be incompatible if it implies a nontrivial rela- 
tion f(x 1, ,x,) = 0 among the xi. 

The problem of solving a system @ = 0 of 
partial differential equations can be reduced to 

that of finding integral manifolds of a system 
of differential forms Z as follows: Let J’ be a 

manifold with the local coordinate system 

(q,y,,pi’+ 1 di<r, 1 <cc, fi<m, 

j, +...+j,<l), 

and C be a system of O-forms ~~ (I ,< i. < s) and 
1 -forms 

dy, - i Pj dx,, 
i=l 

dp; 1.” i,- i P;l...j’+l...‘rdx, 

k=1 

(1 < z, fl< m, j, + + j, < 1). Then an integral 
manifold of C = 0 of the form 
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gives a solution y, = ycl(x,, , x,), 1 < c( <m, of 
@ = 0, and y, and pil...‘r satisfy (4). 

Conversely, a solution y, = y,(x,, ,x,), 
I d x d m, of 0 = 0 gives an integral manifold 
of C = 0 if we define pjl...“(x i, , x,) by (4) 

[23,24,26]. 

C. Systems of Partial Differential Equations of 

First Order with One Unknown Function 

Consider a system of independent +vector 
fields on N: 

We solve a system of inhomogeneous 
equations 

L,Y-f,(X)Y-gy,(x)=O, 163,<s, (5) 

for a given system of ,fi.(x) and g,(x). The sys- 
tem (5) is called a complete system if each of 
the expressions 

is a linear combination of the left-hand sides of 
(5), where [L,L,] means the +commutator of 
L, and L,. This condition is called the com- 

plete integrability condition for (5). Suppose 
that the homogeneous system 

L,y=O, 1 <ids, (7) 

is complete. Then it has a system of tfunction- 
ally independent solutions y,, . . , Y,~,~, and any 
solution y of (8) is a function of them: y= 

$(yi , , y,-,). If the inhomogeneous system 
(5) is complete, then the homogeneous system 
(7) is complete. This notion of a complete 

system is due to Lagrange and was extended 
to a system of nonlinear equations by Jacobi 
as follows (- 324 Partial Differential Equa- 
tions of First Order C). 

Consider a system of nonlinear equations 

F,(x,,...,x,,Y,P,,...,P,)=o, 1 dl,<s, (8) 

where pi = ?y/Zx,. The system (8) is called an 
involutory system if each of [F>,, F,], 1 <i < 
p d s, is a linear combination of F, , , F,. 
Here ilagrange’s bracket [F, G] is defined by 

Suppose that the system (8) is involutory and 
F,, , F, are functionally independent. Then, 

in general, we can solve the following Kauchy 

problem for an (r -s)-dimensional submani- 

fold N,-, of N: Given a function j on N,-,, find 
a solution y of (8) satisfying y=f on N,-,. We 
can construct a solution by integrating a sys- 
tem of ordinary differential equations called a 
‘characteristic system of differential equations. 
Hence the solution of these problems may be 
carried out in the C”-category (-- 322 Partial 
Differential Equations (Methods Iof Integra- 

tion) B) [7,11]. 

D. Frobenius’s Theorem 

Let X be a tdifferentiable manifold of class C” 
and R be a system of independem l-forms cuir 
1 < i < s, on X. Then the system of PfalIian 
equations R = 0 is called a completely inte- 
grable system if at every point x of X, 

.5 
dw; = c 0, A wj, 1 <i<S, 

j=l 

for 1 -forms 0, on a neighborhood of x. Sup- 
pose that R=O is completely integrable. Then 

at every point x of X, there exists a local co- 
ordinate system (.f,, ,,fi,x,+, , , x,,) in a 
neighborhood U of x for which a tangent vec- 
tor 5 of X at ZE U satisfies wi(<) = 0, 1 < i < s, 
if and only if {f; = 0, 1 < i < s. In this case, each 
of the dfi is a linear combination of wi , . , u,, 

and conversely, each of the wi is a linear com- 
bination of &, . , &. In general, a function ,f 
for which !f is a linear combination of 

wi, , w, is called a first integral of Q = 0. 
The theorem of the previous paragraph 

is called Frobenius’s theorem, which can be 
stated in the dual form as follows: Let D(X) be 
a +subbundle of the itangent bundle T(X) over 
X. The mapping X sx+D,(X) is called a dis- 
tribution on X. It is said to be an involutive 
distribution if at every point x of X we can 

find a system of independent vector fields Li 
(1 < i < s) on a neighborhood U 01‘ x such that 
the L,(z) (1 d i < s) form a basis of D,(X) at 
every z E U and satisfy [ Li, Lj] = 0 (L, , , L,), 
1 < i < j < s, on U. A connected su bmanifold M 

of X is called an integral manifold of D(X) if 
T,(M) = D,(X) at every point x of M. Suppose 
that D(X) gives an involutive distribution on 
X. Then every point x of X is in a maximal 
integral manifold M that contains any integral 
manifold including x as a submanifold. 

E. Cartan-Kffhler Existence Theorems 

Let X be a +real analytic manifold. Denote the 
+sheaf of rings of differential forms on X by 
A(X) and its subsheaf of G(X)-modules of p- 

forms on X by A,,(X), 1 < p < M, where O(X) is 
the sheaf of rings of O-forms on X. A subsheaf 

of ideals C is called a differential iideal if it is 
generated by C,, 0 <p < II, and contains dC, 
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where C,, = C n A,(X). Consider a differential 

ideal C on X. Denote the +Grassmann mani- 
fold of p-dimensional subspaces of T,(X) with 
origin xsX by G,(x), and the Grassmann 

manifold UxeX G(x) over X by G,(X). An 
element E, of G,(x) is called a p-dimensional 
contact element with origin x. An element E, 
of G,(x) is called an integral element of ZP if 
a,(E,) = 0 at x for any p-form (0 in C; further- 
more, E, is called an integral element of C 
if any element E, contained in E,, 0 d q d p, is 
an integral element of 2,. In particular, O- 

dimensional and l-dimensional integral ele- 
ments are called integral points and integral 

vectors, respectively. It can be proved that an 
element E, is an integral element of Z if and 
only if it is an integral element of 2,. The polar 
element H(E,) of an integral element E, with 
origin x is defined as the subspace of T,(X) 
consisting of all vectors that generate with E, 
an integral element of Z. Let (C,)‘, 0 d p < n, be 
the subsheaf of (i(X)-modules in @(G,(X)) 
consisting of all O-forms 

1 
l<i,<...cip<n 

'i ,... ipzif...il 

on G,,(X) derived from a p-form 

C *i,...i, 
,<i,<...<i,4n 

dxi,/\...r\dx,,+,, 

where zi,...i, is the +Grassmann coordinate of 
E,. An integral element Ei is called a regular 
integral element if the following two conditions 
are satisfied: (i) (Z,,)” is a regular local equation 
of ICP at Ei, where lCP is the set of all integral 
elements of Z,,; (ii) dim H(E,) = constant around 
EE on III,. This definition, due to E. Kahler, is 
different from that given by E. Cartan [4]. 

Here, in general, a subsheaf Q of O(X) is 
called a regular local equation of I@ at an 
integral point x0 if there exists a neighborhood 
U of x,, and +cross sections cp r, , cp, of @ on 
U that satisfy the following two conditions: (i) 
dq r , , dq, are linearly independent at every x 
on U; (ii) a point x of U is an integral point of 
0 if and only if cp r (x) = = v,(x) = 0. 

First existence theorem. Suppose that we are 
given a p-dimensional integral manifold M 

with a regular integral element T,(M) at a 
point x on M. Suppose further that there exists 

a submanifold F of X containing M such that 
dimF=n-t,,,, dim(T,(F)flH(E,))=p+ 1, 
where E,= T,(M) and t,,, =dimH(E,)-p- 1. 
Then around x there exists a unique integral 
manifold N such that dim N = p + 1 and F 3 
NIM. 

This theorem is proved by integrating a 
system of partial differential equations of 

Cauchy-Kovalevskaya type. E. Cartan [2%4] 
also tried to obtain an existence theorem by 

integrating a system of ordinary differential 
equations. 

A chain of integral elements E, c E, c 

c E, is called a regular chain if each of E, ! 
(0 <p < r) is a regular integral element. For a 
regular chain E, c E, c c E,, define t,,, by 

t P+l =dimH(E,)-p- I, Odp<r, and defines,, 
bys,,=t,-t,+- 1 (O<p<r), s,= t,, where to 
= dim Ix,. Then we have s,, 3 0 (0 < p d r), so 
+ + s, = to-r, and we can take a local co- 

ordinatesystem@, ,..., x,,y, ,..., y,,,),m=n-r, 
around E, that satisfies the following four 
conditions: 
(i) ICoisdefinedbyy,O-,+l=...=y,=O; 

(ii) H(E,)= 
a a 

-, . ...-, 
ax, ax, 

a a 

-1 aY.yo+...+sp ,+l '""a~~,-~ ' 

O<p<r; 

(iii) E, ={&,...,&}, ldp<r; 

(iv) E,=(O ,..., 0,O ,..., 0). 
The integers s,,, , s, are called the characters 
of the regular chain E, c . c E,. 

Second existence theorem. Suppose that a 
chain of integral elements E, c c E, is regu- 
lar, and take a local coordinate system satisfy- 

ing (i)-(iv). Consider a system of initial data 

fi?...>f,“. 

&+,(x,), r,f;,+s,(Xl)r 

s”+s,+L(X1,XZ),“‘,.~,,+s,+.s,(X1rX*), f 

Then if their values and derivatives of the 
first order are sufhciently small, there exists 
a unique integral manifold defined by y, = 

y,(x,, . . ..x.), y,=O, I BaGto-r</ldm, 
such that 

Y&1 > ., Xpr 0, > 0) =.I&-, 1 ., Xp), 

SO+...+Sp~l <c(~so+...+s~, O<p<r. 

This theorem is proved by successive appli- 

cation of the first existence theorem. These 
two theorems are called the Cartan-Kiihler 
existence theorems. Z is said to be involutive at 

an integral element E, if there exists a regular 
chain E. c . . c E,. An integral manifold pos- 
sessing a tangent space at which C is involutive 

is called an ordinary integral manifold or ordi- 
nary solution of C. An integral manifold that 

does not possess such a tangent space is called 
a singular integral manifold or singular solution 

of G. 
Cartan’s definition of ordinary and regular 

integral elements is as follows: An integral 

point Ei is an ordinary integral point if Lo is a 

regular local equation of III0 at Ei. An ordi- 
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nary integral point Ei is a regular integral 
point if dimH(E,) is constant on I& around 
I$. Inductively, an integral element EE is 
called an ordinary integral element if (C,)” 

is a regular local equation of IZ,, at Ej and 
E,” contains a regular integral element EE-, 

An ordinary integral element Ei is a regular 
integral element (in the sense of Cartan) if 
dimH(E,) is constant on IZ,, around Ej. It can 
be proved that C is involutive at an integral 
element E, if and only if E, is an ordinary 
integral element of Z. An integral manifold 
possessing a tangent space that is a regular 

integral element of C is called a regular in- 
tegral manifold or regular solution of Z. Let 

mP+r be the minimal dimension of H(E,), 

where E, varies over the set of p-dimensional 
ordinary integral elements, and g be an integer 

such that m,,>p (1 <p<g) and mg+l =p. Then 
this integer g is called the genus of ,,!I. It is the 
maximal dimension of ordinary integral mani- 
folds of C. However, in general, it is not the 
maximal dimension of integral manifolds of Z. 

D. C. Spencer and others have been trying 
to obtain an existence theorem in the C”- 
category analogous to that of Cartan and 
Kahler. (For a system of linear partial dif- 

ferential equations - [2,4,11,13,25,27].) 

F. Involutive Systems of Partial Differential 
Equations 

To give a definition of an involutive system of 

partial differential equations, we define an 
involutive subspace of Hom( V, W), where I/ 

and W are hnite-dimensional vector spaces 
over the real number field R. Let A be a sub- 
space of Hom( V, W). For a system of vectors 
~‘r, , cP in V, A(u,, , Q) denotes the sub- 
space of A that annihilates u,, , u,,. Let gP 

be the minimal dimension of A(u,, _. , u,) as 
(v,, , I+) varies, where O<p<r=dim V. A 
basis (u,, , II,) of V is called a generic basis if 
it satisfies gP = dim A(v,, , up) for each p. 

There exists a generic basis for any A. Let W@ 
S2( V*) be the subspace of Hom( V, Hom( k’, W)) 
consisting of all elements 5 satisfying t(u)0 = 

<(u)u for any u and u in V. Then the prolonga- 
tion pA of A is defined by pA = Hom( V, A) n 

W 0 S2( V*). For any basis (II,, , v,) of V, we 

have the inequality 

dimpA< i dimA(u,, . . . . 0,). 
g=o 

The subspace A is called an involutive subspace 
of Hom( V, W) if dim pA = CL=, g,,. This notion 
of an involutive subspace was obtained by V. 
W. Guillemin and S. Sternberg [ 131. 

A triple (X, N; z) consisting of two mani- 

folds X, N and a projection 71 from Xonto N is 

called a fibered manifold if the tdifferential TZ* 

is surjective at every point of X. Take the set 
of all mappings f from a domain in N to X 
satisfying n o,f= identity for a fibered manifold 
(X, N; 7~). Then an tl-jet j:(f) is an equivalence 

class under the equivalence relation defined as 
follows: j:(f) = j:(g) if and only if x = u, f(x) = 

duX and 

i,+...+i,<I,where(x ,,..., x,)isalocalco- 
ordinate system of N around x = u (- 105 
Differentiable Manifolds X). 

Denote the space of all /-jets of a fibered 
manifold (X, N; n) by J’(X, N; n) or simply J’. 
Then a subsheaf of ideals @ in Co(P) is called a 
system of partial differential equations of order 

1 on N. A point z of J’ is called an integral 
point of @ if v(z)=0 for all cp~@,. The set of all 
integral points of @ is denoted by IQ. Let 7~’ be 
the natural projection of J’ onto J”. Then at 
a point z of Jr, we can identify Ker 71: with 
Hom(T,(N), Ker rrk), where x = 7cn ’ &z. The 
principal part C,(a) of @ is defined as the sub- 
space of Kern; that annihilates @. The pro- 
longation p@ of CD is defined as the system 
of order 1+ 1 on N generated by @b and a,@,, 

1 <k <dim N, where d, is the formal derivative 
with respect to a coordinate xk of .N: 

((iiio7)(j:~‘(f)l=a~(i:(.li), CPEW’). 
k 

Let w  be an integral point of p@ and z be 
&+l w. Then we have the identity 

PC,(@) = C,(P@). 

The following definition of an involutive 
system is due to M. Kuranishi [ 191: @ is invo- 
lutive at an integral point z if the following two 

conditions are satisfied: (i) Q, is a regular local 
equation of I@ at z; (ii) there exists a neighbor- 

hood U of z in J’ such that (&+r))’ U n I(p@) 
forms a fibered manifold with base U fl I@ and 

projection 7-c’+‘. 
A system of partial differential equations is 

said to be involutive (or involutory) if it has an 
integral point at which it is involutive. Fix a 
system of independent variables (or, . , yN) in 
X. Then a system of differential forms is said 

to be involutive (or involutory) if it has an in- 
tegral element at which it is involutive and 
dy, A.. A dy, # 0. It can be proved that these 

two definitions of involutive system are equiva- 
lent [19,25]. 

G. Prolongation Theorems 

Cartan gave a method of prolongation by 

which we can obtain an involutive system 

from a given system with two independent 
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variables, if it has a solution. He proposed the 
following problem: For any r > 2, construct a 
method of prolongation by which we can 
obtain an involutive system from a given sys- 
tem with r independent variables, if it has a 
solution. To solve this problem, Kuranishi 
prolonged a given system CD successively to 
p’@, t = 1, 2, 3, , and proved the following 
theorem: Suppose that there exists a sequence 
of integral points z’ of p’@ with n’+‘z’=z’-‘, 

t = 1,2, 3, , that satisfies the following two 
conditions for each t: (i) p’@ is a regular local 
equation of I(p’@) at z’; (ii) there exists a 
neighborhood V’ of z’ in I(p’@) such that 
z’+’ V’ contains a neighborhood of zfml in 
I@-‘@) and forms a fibered manifold 
(V’, 7?+ V’; z*“). Then p’@ is involutive at zf 
for a sufficiently large integer t. 

This prolongation theorem gives a powerful 
tool to the theory of tinfinite Lie groups. How- 

ever, if we consider a system of partial dif- 
ferential equations of general type, there exist 
examples of systems that cannot be prolonged 

to an involutive system by this prolongation, 
although they have a solution. To improve 
Kuranishi’s prolongation theorem, M. Mat- 
suda [22] defined the prolongation of the 
same order by po@ = p@ fl Lo(J’) for a system @ 
of order 1. This is a generalization of the classi- 
cal method of completion given by Lagrange 
and Jacobi. Applying this prolongation suc- 
cessively to a given system @, we have Y = 

UZl PO” @. Define the p,-operation by p* = 
lJ2ZI pzp. Then applying this prolongation 

successively to Y, we have the following theo- 
rem: suppose that there exists a sequence of 
integral points zf of pi’%’ with z’+‘z’=z~~~, 
t = 1,2, 3, . , that satisfies the following two 
conditions for each t: (i) p:Y is a regular local 
equation of I(p:Y) at z’; (ii) dimpC(p:Y) is 
constant around zf on 1(&Y). Then p:Y is 
involutive at 2’ for a sufficiently large integer t. 

To prove this theorem Matsuda applied the 
following theorem obtained by V. W. Guil- 

lemin, S. Sternberg, and J.-P. Serre [25, ap- 
pendix]: suppose that we are given a sub- 

space A, of Hom( V, W) and subspaces A, of 
Hom(V,A,-,) satisfying A,c~A,-~, t= 1, 2, 
3, . Then A, is an involutive subspace of 
Hom( V, A,-1) for a sufficiently large integer t. 
Thus Cartan’s problem was solved aflirma- 
tively. To the generalized Pfaff problem these 
prolongation theorems give another solution, 
which differs from that obtained by Riquier. 

H. Pfaffian Systems in the Complex Domain 

Consider a linear system of Pfaffian equations 

du,= i f a:(x)ujdx,, i=l, . . ..m. 
k=l j=l 

where x=(x,, . . . . x,) is a local coordinate of a 
complex manifold X and ai are meromor- 
phic functions on X. If we put u = ‘(u, , , u,,,) 
and A“(X) = (a:(x)), k = 1, , n, the system is 
written as 

du=($A*(x)dx,)u. 

System (9) is completely integrable if and only 
if 

$-$=[A’,Aj], j,l=l,..., n. 

Suppose that (9) is completely integrable. If the 
Ak(x) are holomorphic at x”=(x~, . . ..xji)~X. 
there exists for any u” E C” one and only one 
solution of (9) that is holomorphic at x0 and 
satisfies u(x”) = u”. This implies that the solu- 

tion space of (9) is an m-dimensional vector 
space; the basis of this space is called a funda- 
mental system of solutions. Therefore any 

solution is expressible as a linear combination 
of a fundamental system of solutions and can 
be continued analytically in a domain where 
the Ak(x) are holomorphic. A subvariety of X 
that is the pole set of at least one of the Ak(x) 

is called a singular locus of (9), and a point on 
a singular locus is called a singular point. 

R. Gkard has given a definition of regular 

singular points and an analytic expression of a 
fundamental system of solutions around a 
regular singular point, and he studied systems 
of Fuchsian type [S; also 9, 301. 

Let Q= Xi=1 Ak(x)dxk. Then the system (9) 
can be rewritten as 

(d-Q)u=O. 

If we consider a local coordinate (x, u) of a 
fiber bundle over X, the operator d-Q in- 
duces a meromorphic linear connection V over 
X. Starting from this point of view, P. Deligne 
[S] introduced several important concepts and 
obtained many results. 

The first results for irregular singular points 
were obtained by GCrard and Y. Sibuya [lo], 

and H. Majima [20] studied irregular singular 
points of mixed type. 

The systems of partial differential equations 
that are satisfied by the hypergeometric func- 
tions of several variables are equivalent to 
linear systems of Pfafian equations [ 11. This 
means that such systems of partial differential 
equations are tholonomic systems. M. Kashi- 

wara and T. Kawai [ 151 studied holonomic 
systems with regular singularities from the 

standpoint of microlocal analysis. Special 
types of holonomic systems were investigated 
by T. Terada [28] and M. Yoshida [29]. 

Consider a system of Pfaffian equations 

uJ,=o, j=l , . . ..I. (10) 
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where (,,,=C;I-, u,,(x)dx, and x=(x1, ,xn). 

Suppose that (lik are holomorphic in a domain 
DofC”andthatrloJ,r\cu,r\...r\m,=OinD. 
Denote by’ S the zero set of (0, A A (tic), = 0. A 
point of S is called a singular point of (10). If 
the codimension of S is > I, then system (10) is 
completely integrable in D-S. The following 
theorem was proved by B. Malgrange [21]: 

Let x0 ES, and suppose that the codimen- 
sion of S is > 3 around x0; then there exist 
functionsfi,,j=l,..., r,andgjy,j,k=l ,.__, r, 

that are holomorphic at x0 and satisfy (ui = 

C;=l gjk& and det(.y&‘))#O. 
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429 (X1.6) 
Transcendental Entire 
Functions 

A. General Remarks 

An entire function (or integral function) f(z) is a 

complex-valued function of a complex variable 
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z that is holomorphic in the finite z-plane, 
z # n;. If f(z) has a pole at m, then ,172) is a 
polynomial in z. A polynomial is called a 

rational entire function. If an entire function is 
bounded, it is constant (+Liouville’s theorem). 
A transcendental entire function is an entire 

function that is not a polynomial, for example, 
expz, sin z, cos z. An entire function can be 

developed in a power series C;%Ou,~n with 
infinite radius of convergence. If j’(z) is a tran- 
scendental entire function, this is actually an 
infinite series. 

B. The Order of an Entire Function 

If a transcendental entire function j’(z) has a 
zero of order m (m > 0) at z = 0 and other zeros 
at xl, x2 ,..., ~1, ,... (O<Ia,IdIcc,l~<)131~...~ 

x), multiple zeros being repeated, then ,j’(z) 
can be written in the form 

where g(z) is an entire function, .yk(z) = (z/x~) + 

(1/2)(zl~k)Z + (1/3)(&Y + “. + (~lP,)w,)P’, 
and pl, pr, are integers with the property 

that C,‘=, /z/x,1 pk+’ converges for all z (Weier- 
strass’s canonical product). 

E. N. Laguerre introduced the concept of 
the genus of a transcendental entire function 

,f(z). Assume that there exists an integer p for 
which C& Ic(~I -WI) converges, and take the 
smallest such p. Assume further that in the 

representation for ,f(z) in the previous para- 
graph, when p1 = p2 = = p, the function g(z) 
reduces to a polynomial of degree q; then 
max(p, 4) is called the genus of f(z). For tran- 
scendental entire functions, however, the order 
is more essential than the genus. The order p 
of a transcendental entire function f(z) is de- 

fined by 

p = lim sup log log M(r)/log r, 

where M(r) is the maximum value of l,j’(z)I on 

IzI =r. By using the coefficients ofj’(z)=Cu,,z”, 
we can write 

The entire functions of order 0, which were 

studied by Valiron and others, have prop- 
erties similar to polynomials, and the en- 
tire functions of order less than l/2 satisfy 
lim ,,,-~ min,z,Z,m l,jjz)I = m for some increasing 
sequence r,Tx (Wiman’s theorem). Hence 
entire functions of order less than l/2 cannot 
be bounded in any domain extending to intin- 
ity. Among the functions of order greater than 

112 there exist functions bounded in a given 
angular domain D: x <argz < a+ x/p. If I,f(z)I 

< exp r* (p < p) and ,f(z) is bounded on the 
boundary of D, then f’(z) is bounded in the 
angular domain (- 272 Meromorphic Func- 

tions). In particular, if the order p of j’(z) is an 
integer p, then it is equal to the genus, and 
g(z) reduces to a polynomial of degree <p (J. 

Hadamard). These theorems originated in the 
study of the zeros of the tRiemann zeta func- 
tion and constitute the beginning of the theory 
of entire functions. 

There is some difference between the prop- 
erties of functions of integral order and those 
of others. Generally, the point z at which ,f(z) 
= w  is called a w-point of f(z). If {z,,} consists 

of w-points different from the origin, the in- 
limum pi(w) of k for which C l/lz,lk converges 
is called the exponent of convergence off‘- w. 
If the order p of an entire function is integral, 

then pI (w) = p for each value w  with one pos- 
sible exception, and if p is not integral, then 
p1 (w) = p for all w  (E. Borel). Therefore any 
transcendental entire function has an infinite 
number of w-points for each value w  except for 
at most one value, called an exceptional value 
of j’(z) (Picard’s theorem). In particular, ,f(z) 
has no exceptional values if p is not integral. 
For instance, sin z and cos z have no excep- 
tional values, while e* has 0 as an exceptional 

value. Since transcendental entire functions 
have no poles, a can be counted as an excep- 

tional value. Then we must change the state- 
ment in Picard’s theorem to “except for at 
most two values.” Since the theorem was ob- 
tained by E. Picard in 1879, problems of this 
type have been studied intensively (- 62 
Cluster Sets, 272 Meromorphic Functions). 

After Picard proved the theorem by using 
the inverse of a +modular function, several 

alternative proofs were given. For instance, 
there is a proof using the Landau-Schottky 

theorem and +Bloch’s theorem and one using 

+normal families. Picard’s theorem was ex- 
tended to meromorphic functions and has also 
been studied for analytic functions defined in 
more general domains. There are many fully 
quantitative results, too. For instance, Valiron 
[3] gave such results by performing some 
calculations on neighborhoods of points where 
entire functions attain their maximum ab- 
solute values. 

Thereafter, the distribution of w-points in a 
neighborhood of an essential singularity was 
studied by many people, and in 1925 the Ne- 

vanlinna theory of meromorphic functions was 
established. The core of the theory consists of 
two fundamental theorems, +Nevanlinna’s first 
and second fundamental theorems (- 272 
Meromorphic Functions). Concerning com- 
posite entire functions F(z)=f(g(z)), P6lya 

proved the following fact: The finiteness of the 

order of F implies that the order of ,f should 
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be zero unless g is a polynomial. This gives 
the starting point of the factorization theory, 
on which several people have been working 
recently. Several theorems in the theory of 
meromorphic functions can be applied to 

the theory. One of the fundamental theorems 
is the following: Let F(z) be an entire func- 
tion, which admits the factorizations F(z) = 
P,(f,(z)) with a polynomial P, of degree m 

and an entire function f, for all integers m. 
Then F(z) = A cos JH(z) + B unless F(z) = 
A exp H(z) + B. Here, H is a nonconstant entire 
function and A, B are constant, A #O. 

C. Julia Directions 

Applying the theory of +normal families of 
holomorphic functions, G. Julia proved the 

existence of Julia directions as a precise form 
of Picard’s theorem [5]. A transcendental 
entire function f(z) has at least one direction 

arg z = f3 such that for any E > 0, f(z) takes on 
every (finite) value with one possible exception 
infinitely often in the angular domain 0 -E < 
arg z < 0 + E. This direction arg z = e is called 
a Julia direction of f(z). 

D. Asymptotic Values 

tAsymptotic values, tasymptotic paths, etc., 
are defined for entire functions as for mero- 
morphic functions. In relation to +Iversen’s 

theorem and +Gross’s theorem for inverse 
functions and results on tcluster sets, tordinary 
singularities of inverse functions hold for entire 
functions in the same way as for meromorphic 
functions. Also, as for meromorphic functions, 
ttranscendental singularities of inverse func- 
tions are divided into two classes, the tdirect 

and the tindirect transcendental singularities. 
The exceptional values in Picard’s theorem 

are asymptotic values of the functions, and 
cz is an asymptotic value of any transcenden- 
tal entire function. Therefore f(z)- co along 
some curve extending to infinity. Between 

the asymptotic paths corresponding to two 
distinct asymptotic values, there is always an 
asymptotic path with asymptotic value 03. By 
+Bloch’s theorem, A. Bloch showed that the 
+Riemann surface of the inverse function of a 
transcendental entire function contains a disk 

with arbitrarily large radius. Denjoy conjec- 
tured in 1907 that p < 2p, where p is the order 
of an entire function and p is the number of 
distinct finite asymptotic values of the func- 

tion, and L. V. Ahlfors gave the first proof 
(1929). This result contains Wiman’s theorem. 
There are transcendental entire functions with 

p = 2~. It was shown by W. Gross that among 
entire functions of infinite order there exists 

an entire function having every value as its 

asymptotic value. 
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430 (v.11) 
Transcendental Numbers 

A. History 

A complex number (x is called a transcendental 

number if c( is not talgebraic over the field of 
rational numbers Q. C. Hermite showed in 
1873 that e is a transcendental number. Fol- 

lowing a similar line of thought as that taken 
by Hermite, C. L. F. Lindemann showed that 
n is also transcendental (1882). Among the 23 
problems posed by D. Hilbert in 1900 (- 196 
Hilbert), the seventh was the problem of estab- 
lishing the transcendence of certain numbers 
(e.g., 2*). This stimulated fruitful investiga- 

tions by A. 0. Gel’fond, T. Schneider, C. L. 
Siegel, and others. The theory of transcen- 
dental numbers is, however, far from complete. 
There is no general criterion that can be uti- 
lized to characterize transcendental numbers. 

For example, neither the transcend.ence nor 
even the irrationality of the +Euler constant 
C=lim .,,(l -t- l/2+ . . . + l/n-log,l) has been 
established. A survey of the development of 
the theory of transcendental numbers can be 
found in [18], in which an extensive list of 
relevant publications up to 1966 is given. 

B. Construction of Transcendental Numbers 

Let a be the field of talgebraic numbers. Sup- 
pose that CI is an element of 0 that satisfies the 

irreducible equation f(x)= a,~“+ a1 xX-l+ 

+ a,, =O, where the ai are rational integers, 
a,, # 0, and a,, a,, . , a, have no common 
factors. Then we define H(Z) to be rhe maxi- 
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mum of lail (i=O, . . ..n) and call it the height 
of X. J. Liouville proved the following theorem 

(1844): Let 5 be a real number (<$Q). If 

inf{q”l<-p/qIIp/qEQ}=Ofor any positive 
integer n, then 5 is transcendental. 

Transcendental numbers having this prop- 
erty are called Liouville numbers. Examples 
are: (i) < = C,“=, g -“, where g is an integer not 
smaller than 2. (ii) Suppose that we are given 
a sequence Ink} of positive integers such that 
nk+a (k*co). Let 5 be the real number 

expressed as an tinfinite simple continued frac- 
tion h, + l/h, i l/h, i Let B, be the denomi- 
nator of the Ith iconvergent of the continued 

fraction. If b,,k+, > B,“:- ’ for k > 1, then < is a 
Liouville number. 

On the other hand, K. Mahler [S, 91 proved 
the existence of transcendental numbers that 
are not Liouville numbers. For example, he 
showed that if f(x) is a nonconstant inte- 
gral polynomial function mapping the set 
of positive integers into itself, then a number 
< expressed, e.g., in the decimal system as 

Oy,y,y, is such a number if we put y,=f(n), 
n= 1, 2, 3, . . . (In particular, from f(x) = x we 
get the non-Liouville transcendental number 5 

=0.123456789101112.. .) Mahler proved this 
result by using +Roth’s theorem (1955) (- 182 
Geometry of Numbers). Both Liouville and 
Mahler utilized the theory of +Diophantine 
approximation to construct transcendental 
numbers. 

On the other hand, Schneider [lo- 121 and 
Siegel [3] constructed transcendental num- 
bers using certain functions. Examples are: 

expa (~EQ, cc#O); xp (~EQ, a#O, I; fi~Q-Q); 
J(r), where J is the +modular function and z 
is an algebraic number that is not contained 

in any imaginary quadratic number field; 
y(27ci/~), where 5” is the Weierstrass w- 
function, n E Q, and CI # 0; and B(p, q), where B 
is the iBeta function and p, q E Q - Z. 

Since e = exp I and I = exp 2zi, the tran- 
scendence of e and 71 is directly implied by the 
transcendence of exp a (a E Q, x # 0). 

C. Classification of Transcendental Numbers 

(I) Mahler’s classification: Given a complex 
number 5 and positive integers n and H, we 
consider the following: 

w,(t) = w, =li; yp( - log w,W, O/logH), 

w(t)=w=limsupw,([)/n, 
n--r 

and let p = the first number n for which w,, is 
x. Then we have the following four cases: 
(i)w=O,p=~;(ii)O<w<nc,p=co;(iii)w= 

p = m; (iv) w  = “o, p < w, corresponding to 
which we call 5 an A-number, S-number, T- 
number, or U-number. The set of A-numbers 
is denoted by A, and similarly we have the 
classes S, T, and U. It is known that A = a. 
If two numbers 5 and q are talgebraically 
dependent over Q, then they belong to the 

same class. If r belongs to S, the quantity a(<) 
=sup{w,(5)/nIn= 1,2, . ..} is called the type of 

4 (in the sense of Mahler). Mahler conjectured 
that almost all transcendental numbers (except 

a set of Lebesgue measure zero) are S-numbers 
of the type 1 or l/2 according as they belong 
to R or not. Various results were obtained 

concerning this conjecture (W. J. LeVeque, J. 
F. Koksma, B. Volkmann) until it was proved 
by V. G. Sprindzhuk in 1965 [ 14,151. The 
existence of T-numbers was proved by W. M. 
Schmidt (1968) [ 161. All Liouville numbers are 

U-numbers [7]. On the other hand, logcl (xEQ, 
a > 0, 2 # 1) and n are transcendental numbers 
that do not belong to U. 

(2) Koksma’s classification: For a given 

transcendental number 5 and positive numbers 
n and H, we consider the following: 

w,*(H,5)=min{l5-cxIIaEQ, 

H(4 G H, CQ(4: Ql d n), 

w,*(5) = ti = Iif s;p( - log(Hw,*W, 5)Ylog HI, 

w*(<)=w*=limsupw,*(<)/n, 

and let p* = the first number n for which w,* is 

co. Then we have the following three cases: (i) 
w*<m,p*= x; (ii) w* =p* = co; (iii) w* = m, 
p* < co. We call 5 an S*-number, T*-number, 

or U*-number according as (i), (ii), or (iii) holds 
and denote the set of S*-numbers by S*, etc. If 

i; belongs to S*, we call 0*(<)=sup{w:(t)/nIn 
= 1,2, . } the type of 5 (in the sense of Kok- 
sma). It can be shown that S = S*, T = T*, and 
U=U*, and that if <ES, then O*(t)<O(<)< 

e*(t)+ 1. 

D. Algebraic Independence 

Concerning the algebraic relations of tran- 

scen.dental numbers, we have the following 
three principal theorems: 

(I) Let sl, . . . . x,,, be elements of Q that 

are linearly independent over Q. Then 
exp z(1) , exp urn are transcendental and alge- 
braically independent over Q (Lindemann- 
Weierstrass theorem). 

(2) Let J,(x) be the tBessel function and CI a 

nonzero algebraic number. Then Jo(a) and 

J;(Z) are transcendental and algebraically 
independent over Q (Siegel). 
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(3) Let x1, , r*,, be nonzero elements of 0 
such that log z 1, , log x, are linearly inde- 
pendent over Q. Then 1, log cc,, , logx, are 
linearly independent over 0 (A. Baker). 

Besides these theorems, various related 
results have been obtained by A. B. Shidlovskii, 

Gel’fond, N. I. Fel’dman, and others. A quanti- 
tative extension of theorem (3), also by Baker, 
will be discussed later. 

First we give more detailed descriptions 
of theorems (1) and (2). Let a,, , E, be 
as in theorem(l), s=[Q(cc,, . . . . a,):Q], 

P(X,, ,X,) be an arbitrary polynomial in 
Q[X,, ..,,X,] ofdegree II, and H(P) be the 
maximum of the absolute values of the coeffi- 
cients of the polynomial P. Then there exists a 
positive number C determined only by the 

numbers c(, , , a, and n( = deg P) such that 

1 P(e”l , . . ..e’m)I>CH(P) 
-2~(2(2~~y*+~)-l) 

In particular, if CI is a nonzero algebraic 
number, then exp a belongs to S and Il(exp a) 

< 8s2 + 6s. 
(2’) Let a be a nonzero algebraic number, 

s=[Q(n):Q], PEQ[X~,XJ, degP=n. Then 
there exists a positive number C determined 
only by a and II such that )P(J,(a), &(a))\ z 
CH(P) -SZs’n”, 

Theorems (1) and (2) are actually special 
cases of a theorem obtained by Siegel. To state 
this theorem, the following terminology is 
used: An entire function ,f(z) = C40 C; z”/n! 

is called an E-function defined over an +alge- 
braic number field K of finite degree if the fol- 

lowing three conditions are satisfied: (i) Cn6 K 
(n = 0, 1,2, ). (ii) For any positive number F, 
C,, = O(n’“). (iii) Let 4, be the least positive 

integer such that C,q, belongs to the ring Q of 
algebraic integers in K (0 <n, 0 <k d n). Then 
for an arbitrary positive number E, q, = O(n’“). 

A system { fi(z), &,(z)} of E-functions 
defined over K is said to be normal if it satis- 
fies the following two conditions: (i) None of 
the functions j;(z) is identically zero. (ii) If the 
functions w, =,fk(z) (k = 1, , m) satisfy a sys- 
tem of thomogeneous linear differential equa- 

tions of the first order, then w;= C:, Qk,(z)w,, 
where the Qkl(z) are rational functions of z, 
with coefficients in the ring 0. The matrix (Qkl) 
can be decomposed by rearranging the order 

of the indices k, I if necessary into the form 

(7 ;), 

where 

The decomposition is unique if we choose r 
as large as possible, in which case we call 
W,, , W, the primitive parts of (QJ. The 

requirement is that the primitive parts q are 
independent in the following sense: If there are 
numbers C,,E K and polynomial functions 

PJz)E K[z] such that 

&C,,...Cmt,)M: plliz) =o, 

I I Pn&) 

then C,, = 0, Pkl(z) = 0. 
Let N be a positive integer. A normal sys- 

tem {,1;(z), &(z)} of E-functions is said to 

be of degree N if the system {Fn,,,,,,,,(z)= 
,f, (z)“l i,(z)nm 1 ni > 0, CE”=, n, < N} is also 
a normal system of E-functions. Then the 
theorem obtained by Siegel [4] is: Let N be an 

arbitrary positive integer and { ,fl(z), J,,,(z)) 
be a normal system of E-functions of degree 
N defined over an algebraic number field of 

finite degree K satisfying the system of differen- 
tial equations f;(z) = C$, Qk,(z),fr(~), where 
QkI(z)~D(z), 1 Sk < m. If CI is a nonzero alge- 
braic number that is not a tpole of any one 
of the functions Qk,(z), then f;(a), ,,f,(a) are 
transcendental numbers that are arlgebraically 
independent over the field Q. 

Theorem (3) at the beginning of this sec- 
tion implies, for example, the following: (i) If 

c(~, . , CX,, and /jl, , /?” all belong to Q and 
g=~,log~,+...+a,log/3,#O,then~istran- 
scendental. (ii) If x,, . . , CI,,, &, &, , li; are 
nonzero algebraic numbers, then e%x{l x/n 
is transcendental. (iii) If al, , rn are alge- 
braic numbers other than 0 and 1. and /il, 
. ..) & also belong to 0, with 1, fl,. , /I” 
linearly independent oyer Q, then a{~ z,$ 
is transcendental. 

Baker [17] also obtained a quantitative 
extension of theorem (3): Suppose that we 

are given integers A 3 4, d > 4 and nonzero 
algebraic numbers x1, , a, (n > 2 I whose 
heights and degrees do not exceed A and rl, 
respectively. Suppose further that 0 < 6 < 1, 
andletloga,,..., logsc, be the principal values 

of the logarithms. If there exist rational in- 
tegers b,, , b, with absolute value at most H 

such that 

then 

This theorem has extensive applications in 
various problems of number theory, including 
a wide class of +Diophantine problems [19]. 

A number of new, interesting results on the 

algebraic independence of values of exponen- 
tial functions, elliptic functions, and some 

other special functions have been obtained 
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recently by D. Masser, G. V. Chudnovskii, M. 
Waldschmidt, and other writers. In particular, 
ChudnovskiI (1975) obtained the remarkable 
result that I( l/3) and F( l/4) are transcenden- 
tal numbers. See [20&24]. 
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431 (IX.1 9) 
Transformation Groups 

A. Topological Transformation Groups 

Let G be a group, A4 a set, and ,f a mapping 

from G x M into M. Put f(g,x)=g(x) (gcG, 
x E M). Then the group G is said to be a trans- 
formation group of the set M if the following 
two conditions are satisfied: (i) e(x) = x (x6 n/l), 
where e is the identity element of G; and (ii) 

(gh)(x)=g(h(x)) (xEM) for any g, hcG. In 
this case the mapping x-g(x) is a one-to-one 

mapping of M onto itself. 
Let G be a transformation group of M. If G 

is a topological group, M a topological space, 

and the mapping (g,x)+g(x) a continuous 
mapping from G x M into M, then G is called 

a topological transformation group of M. In 

this case x-g(x) is a homeomorphism of M 
onto itself. The mapping (g,x)+g(x) is called 

an action of G on M. The space M, together 
with a given action of G, is called a G-space. 

For a point x of M, the set G(x) = {g(x) 1 
9 E G} is called the orbit of G passing through 
the point x. Defining as equivalent two points 
x and y of M belonging to the same orbit, we 
get an equivalence relation in M. The quotient 

space of M by this equivalence relation, de- 
noted by M/G, is called the orbit space of 
G-space M. 

If G(x) = {x}, then x is called a fixed point. 
The set of all fixed points is denoted by M". 
For a point x of M, the set G,={gEGlg(x)= 
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x\ is a subgroup of G called the isotropy 
subgroup (stabilizer, stability subgroup) of G at 
the point x. A conjugacy class of the subgroup 
G, is called an isotropy type of the transforma- 
tion group G on M. 

The group G is said to act nontrivially (resp. 
trivially) on M if M #MC (resp. M = M”). The 
group G is said to act freely on M if the iso- 

tropy subgroup G, consists only of the identity 
element for any point x of M. 

The group G is said to act transitively on M 
if for any two points x and y of M, there exists 

an element g E G such that g(x) = 4’. 
Let N be the set of all elements gE G such 

that g(x) = x for all points x of M. Then N is a 
normal subgroup of G. If N consists only of 

the identity element e, we say that G acts effec- 
tively on M, and if N is a discrete subgroup of 

G, we say that G acts almost effectively on M. 
When N # {e), the quotient topological group 
G/N acts effectively on M in a natural fashion. 

An equivariant mapping (equivariant map) 

(or a G-mapping, G-map) h: X + Y between G- 
spaces is a continuous mapping which com- 
mutes with the group actions, that is, &J(X) = 
g(h(x)) for all gsG and x6X. An equivariant 

mapping which is also a homeomorphism is 
called an equivalence of G-spaces. 

For a G-space M, an equivalence class of the 

G-spaces G(x), XE M, is called an orbit type of 
the G-space M. 

B. Cohomological Properties 

We consider only tparacompact G-spaces and 
+Cech cohomology theory in this section. We 
shall say that a topological space X is finitistic 
if every open covering has a finite-dimensional 

refinement. The following theorems are useful 
[l-3]. 

(1) If G is finite, X a finitistic paracompact 

G-space, and K a field of characteristic zero or 
prime to the order of G, then the induced 
homomorphism rt*: H*(X/G; K)+H*(X; K)G 
is an isomorphism. Here, n is a natural projec- 

tion of X onto X/G. The group G acts natu- 
rally on H*(X; K), and H*(X; K)G denotes the 

fixed-point set of this G-action. 
(2) Let X be a finitistic G-space and G cyclic 

of prime ordor p. Then, with coefftcients in 
ZjpZ, we have 

(a) for each II f rank Hi(XG)< f rank H’(X), 
i=fl i=n 

W x(X)+(P-~)X(X’)=PX(XIG). 

Here the +Euler-Poincare characteristics x( ) 

are defined in terms of modp cohomology. 

(3) Smith’s theorem: If G is a p-group (p 
prime) and if x is a finitistic G-space whose 

modp cohomology is isomorphic to the n- 

sphere, then the mod p cohomology of the 
fixed-point set XG is isomorphic to that of the 
r-sphere for some - 1 d r ,< n, where (-l)- 
sphere means the empty set. 

(4) Let Tk denote the k-dimensional toral 
group. Let X be a Tk-space whose rational 

cohomology is isomorphic to the n-sphere, and 
assume that there are only a finite number of 

orbit types and that the orbit spaces of all 
subtori are finitistic. Let H be a subtorus of Tk. 
Then by the above theorem the rational coho- 

mology of XH is isomorphic to that of the 
r(H)-sphere for some - 1 <r(H) < 11. Assume 
further that there is no fixed point of the Tk- 
action. Then, with H ranging over all subtori 
of dimension k - 1, we have 

nt 1 =z(r(H)+ 1). 
H 

C. Differentiable Transformation Groups 

Suppose that the group G is a transformation 

group of a tdifferentiable manifold M, G is a 
+Lie group, and the mapping (y, x)-g(x) of 
G x M into M is a differentiable mapping. 

Then G is called a differentiable transformation 
group (or Lie transformation group) of M, and 

M is called a differentiable G-manifold. 
The following are basic facts about compact 

differentiable transformation groups [3,4]: 
(5) Differentiable slice theorem: Let G be a 

compact Lie group acting differentiably on a 
manifold M. Then, by averaging an arbitrary 
+Riemannian metric on M, we may have a G- 

invariant Riemannian metric on M. That is, 
the mapping x+g(x) is an tisometry of this 
Riemannian manifold M for each g E G. For 
each point XE M, the orbit G(x) through x is a 
compact submanifold of M and the mapping 
gHg(x) defines a G-equivariant diffeomor- 
phism G/G,gG(x), where G/G, is the left quo- 

tient space by the isotropy subgroup G,. G, 
acts orthogonally on the ttangent space T, M 
at x (resp. the tnormal vector space N, of the 
orbit C(x)); we call it the isotropy representa- 
tion (resp. slice representation) of G, at x. Let E 

be the tnormal vector bundle of the orbit G(x). 
Since G acts naturally on E as a bundle map- 
ping, the bundle E is equivalent to the bundle 

(C x NJ/G, over G/G, as a +G-vector bundle, 
where G, acts on N, by means of the slice 

representation and G, acts on G by the right 
translation. We can choose a small positive 
real number E such that the texponential 
mapping gives an equivariant tdiffeomorphism 
of the s-disk bundle of E onto an invariant 

itubular neighborhood of G(x). 

(6) Assume that a compact Lie group G acts 
differentiably on M with the orbit :space M* = 
M/G connected. Then there exists a maximum 
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orbit type G/H for G on A4 (i.e., H is an iso- 
tropy subgroup and H is conjugate to a sub- 
group of each isotropy group). The union Mo, 

of the orbits of type G/H is open and dense in 
M, and its image M&, in M* is connected. 

The maximum orbit type for orbits in M 
guaranteed by the above theorem is called the 
principal orbit type, and orbits of this type are 

called principal orbits. The corresponding 
isotropy groups are called principal isotropy 

groups. Let P be a principal orbit and Q any 
orbit. If dim P > dim Q, then Q is called a sin- 

gular orbit. If dim P = dim Q but P and Q are 
not equivalent, then Q is called an exceptional 
orbit. 

(7) Let G be a compact Lie group and M a 

compact G-manifold. Then the orbit types are 
finite in number. 

By applying (5) and (6) we have that an iso- 
tropy group is principal if and only if its slice 
representation is trivial. 

The situation is quite different in the case 
of noncompact transformation groups. For 
example, there exists an analytic action of 

G = SL(4, R) on an analytic manifold M such 
that each orbit of G on M is closed and of 

codimension one and such that, for x, J’E M, 
G, is not isomorphic to G, unless x and 4’ lie 
on the same G-orbit [S]. 

D. Compact Differentiable Transformation 

Groups 

Many powerful techniques in idifferential 
topology have been applied to the study of 
differentiable transformation groups. For 
example, using the techniques of isurgery, we 
can show that there are infinitely many free 

differentiable circle actions on thomotopy 
(2n + I)-spheres (n > 3) that are differentiably 
inequivalent and distinguished by the rational 
+Pontryagin classes of the orbit manifolds 
(W. C. Hsiang [6]). Also, using +Brieskorn 
varieties, we can construct many examples of 
differentiable transformation groups on homo- 

topy spheres [3,4,7]. Differentiable actions 
of compact connected Lie groups on homol- 
ogy spheres have been studied systematically 
(Hsiang and W. Y. Hsiang [4]). 

The Atiyah-Singer +index theorem has 

many applications in the study of transfor- 
mation groups. The following are notable 
applications: 

(8) Let M be a compact connected ioriented 
differentiable manifold of dimension 4k with 
a tspin-structure. If a compact connected 

Lie group G acts differentiably and nontriv- 

ially on M, then the A-genus (<d(M), [M]) 
of M vanishes (where d(M) denotes the +A^- 

characteristic class of M) (M. F. Atiyah and F. 

Hirzebruch [S], K. Kawakubo [9]). For fur- 
ther developments, see A. Hattori [IO]. 

(9) Let M be a closed oriented manifold with 
a differentiable circle action. Then each con- 

nected component Fk of the fixed point set 
can be oriented canonically, and we have 

k 

where I( ) denotes the +Thom-Hirzebruch 
index [S, 93. 

Let G be a compact Lie group and G- 
EG-BG the tuniversal G-bundle. Then the 
+singular cohomology H*(EG x cX) is called 
equivariant cohomology for a G-space X and is 
an H*(BG)-module. Let G= U(l), M a dif- 

ferentiable U( 1)-manifold, F = MC, and i: F-1 

M the inclusion mapping. Then the tlocaliza- 
tion of the induced homomorphism 

S-‘i*:S-‘H*(EG x &+S~‘H*(BGx F) 

is an isomorphism, where S-’ denotes the 
localization with respect to the multiplicative 
set S = {atk} with a, k ranging over all posi- 
tive integers and t the generator of H’(BG). 
Theorems (8) and (9) can be proved by the 
above localization isomorphism. 

Let M be a differentiable manifold. The 
upper bound N(M) of the dimension of all the 
compact Lie groups that acts effectively and 

differentiably on M is called the degree of 
symmetry of M. It measures, in some crude 
sense, the symmetry of the differentiable mani- 
fold M. The number N(M) depends heavily on 
the differentiable structure. For example, 
N(S”‘) = m(m + 1)/2 for the standard m-sphere, 
but N(C”‘) <(m+ 1)2/16 + 5 for a thomotopy 

m-sphere (m B 300) that does not bound a 
+n-manifold [ 111. Also, N(P,(C)) = n(n + 2) 
for the complex projective n-space P.(C), but 

N(hP,(C))<(n+ l)(n+2)/2 for any homotopy 
complex projective n-space hP,(C) (n > 13) 
other than P.(C) (T. Watabe [12]). 

Let X be a differentiable closed manifold 
and h : X + P,(C) be an orientation-preserving 
thomotopy equivalence. There is a conjec- 
ture about the total A-classes that states: If X 
admits a nontrivial differentiable circle action, 
then d(X)= h*.d(P,,(C)) (T. Petrie [13]). It is 

known that if the action is free outside the 
fixed-point set, then the conjecture is true 
(T. Yoshida [ 141). 

1 E. Equivariant Bordism 

Fix a compact Lie group G; a compact ori- 
ented G-manifold ($, M) consists of a compact 
toriented differentiable manifold M and an 
orientation-preserving differentiable G-action 

$:GxM+Mon M. 
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Given families F 2 F’ of subgroups of G, a 
compact oriented G-manifold ($, M) is (F, F’)- 
free if the following conditions are satisfied: (i) 

if XE M, then the isotropy group G, is conju- 
gate to a member of F; (ii) if x~aM, then G, is 

conjugate to a member of F’. 
If F’ is the empty family, then necessarily 

dM is empty and M is closed. In this case we 
say that ($, M) is F-free. 

Given ($,M), define -($,M)=($, -M) 
with the structure precisely the same as (II/, M) 

except for torientation. Also define a($, M) = 
($, i;M). Note that if (I/J, M) is (F, F’)-free, then 

(r/j, c?M) is F-free. Define ($, M) and (I/?, M’) to 
be isomorphic if there exists an equivariant 
orientation-preserving diffeomorphism of M 
onto M’. 

An (F, F’)-free compact oriented n- 
dimensional G-manifold ($, M) is said to bord 
if there exists an (F, F)-free compact oriented 

(n + 1)-dimensional G-manifold (Q, W) to- 
gether with a regularly embedded compact n- 

dimensional manifold M, in aIVwith M, 
invariant under the G-action @ such that 
(0, M,) is isomorphic to ($, M) and G, is con- 

jugate to a member of F’ for x E i’ W - M, 
Also, M, is required to have its orientation in- 
duced by that of W. 

We say that ($,, M,) is bordant to ($2, M2) if 
the disjoint union ($,, M,)+($,, - M2) bords. 
Bordism is an equivalence relation on the class 
of (F, F’)-free compact oriented n-dimensional 
G-manifolds. The bordism classes constitute 
an Abelian group Oz(F, F’) under the oper- 

ation of disjoint union. If F’ is empty, denote 
the above group by Of(F). The direct sum 

O;(F,F’)=@O,G(F,F’) 
n 

is naturally an R-module, where Q is the 
ioriented cobordism ring. If F consists of all 
subgroups of G, then O:(F) is denoted by 0:. 

Suppose now that F =) F’ are fixed families 

of subgroups of G. Every F’-free G-manifold 
is also F-free, and so this inclusion induces 
a homomorphism z:Oz(F’)+Of(F). Simi- 
larly every F-free G-manifold is also (F, F’)- 
free, inducing a homomorphism /J’:O~(F)+ 

Of(F, F’). Finally, there is a homomorphism 
?:O:(F, F’)+O:-,(F’) given by a($, M)= 
(I/?, ciM). Then the following sequence is exact 
[15]: 

. ..~O~(Fr)~O.G(F)~O~(F,F’)~O~~,(F’)%,.... 

A weakly almost complex compact G- 
manifold (+, M) consists of a r-weakly almost 

complex compact manifold M and a differ- 
entiable G-action II, : G x M + M that preserves 

the weakly almost complex structure on M. 

U$(F, F’), Uz are defined similarly, and they 
are U,-modules, where U, is the tcomplex 

cobordism ring of compact weakly almost 

complex manifolds. 
To study 0: and U,“, (co)bordism theory is 

introduced (P. E. Conner and E. E. Floyd 
[16]), which is one of the +generalized (co)- 
homology theories. Miscellaneous results are 
known, in particular, for G a cyclic group of 
prime period. By means of the eqmvariant 
+Thom spectrum, equivariant cobordism 
theory can be developed (T. tom Dieck [ 171); 

this is a multiplicative generalized ecohomology 
theory with Thorn classes (- 114 Differential 
Topology; also - 201 Homology -Theory, 56 
Characteristic Classes). 

F. Equivariant Homotopy 

Let G be a compact Lie group. On the category 
of closed G-manifolds, we say that two objects 
M, N are X-equivalent if I( MH) = x( N”) for all 
closed subgroups H of G, where x( ) is the 

+Euler-Poincare characteristic. On the set of 
equivalence classes A(G), a ring structure is 

imposed by disjoint union and the Cartesian 
product. We call A(G) the Burnside ring of G. 
If G is finite, A(G) is naturally isomorphic to 
the classical Burnside ring of G [ 181. 

Denote by S( I’) the unit sphere of an or- 
thogonal G-representation space I: Let I’, 
W be orthogonal G-representation spaces. 
The equivariant stable homotopy group 

[[S(V), S(W)]], which is defined as the direct 
limit of the equivariant homotopy sets [S( I/+ 

U), S( W+ U)], taken over orthogonal G- 
representation spaces U and suspensions, is 
denoted by cu, for CI= V- WERO(G). The 

+smash product of representatives induces a 
bilinear pairing w, x LC)P~W,+~. Then w, is a 
ring, and w, is an w,-module. The ring w0 is 
isomorphic to the Burnside ring of G, and w, is 
a +projective w,-module of rank one. The a,,- 
module w, is free if and only if S( I’) and S(W) 
are stably G-homotopy equivalent [lS]. 

Let E be an orthogonal G-vector bundle 
over a compact G-space X. Denote by S(E) the 

sphere bundle associated with E. Let E, F be 
orthogonal G-vector bundles over X. Then E 
and F have the same spherical G-fiber bomo- 

topy type if there exist fiber-preserving G- 
mappings ,f:S(E)-tS(F), .f’:S(F)-tS(E) and 
fiber-preserving G-homotopies h,: S(E)+S(E), 
k;:S(F)+S(F) such that h,=.f’of; h, =identity, 
&=,fo,f’, h’i =identity. Let KO,(X) be the 
+equivariant K-group of real G-vector bundles 
over X. Let T,(X) be the additive subgroup of 

KO,(X) generated by elements of the form [E] 
-[F], where E and F are orthogonal G-vector 

bundles having the same spherical G-fiber 
homotopy type. The factor group Jc(X)= 
KO,(X)/T,(X) and the natural projection 



1637 431 H 
Transformation Groups 

J,: KO,(X)+J,(X) are called an equivariant 
J-group and an equivariant J-homomorphism, 
respectively (- 237 K-Theory). 

In particular, J,( (x0}) is a factor group of 
the real representation ring RO(G). +Adams 
operations on representation rings are the 
main tools for studying the group JG( {x0}) 

1181. 

G. Infinitesimal Transformations 

Let j’: G x M-tM be a differentiable action of 
a Lie group G on a differentiable manifold M. 
Let X be a ileft invariant vector field on G. 
Then we can define a differentiable vector field 

.f’(X) on M as 

for each q~ M and any differentiable function 

h defined on a neighborhood of 4. It is easy 
to see that ,j”(X), = 0 if and only if q is a 
fixed point of the one-parameter subgroup 

(exp(tX)}. A vector field ,f’(X) is called an 
infinitesimal transformation of the differenti- 
able transformation group G. 

The set R of all infinitesimal transformations 

of G forms a finite-dimensional tLie algebra 
(the laws of addition and tbracket product are 
defined from those for the vector fields on M). 
If G acts effectively on M, 9 is isomorphic to 
the Lie algebra of the Lie group G (- 249 Lie 

Groups). In fact, the correspondence X4 
,f”(X) defines a Lie algebra homomorphism 
,f’ from the Lie algebra of all left invariant 
vector fields on G into the Lie algebra of all 
differentiable vector fields on M [19]. 

The following fact [20] is useful for the 
study of noncompact real analytic transfor- 

mation groups. Let 9 be a real tsemisimple 
Lie algebra and p:g+L(M) be a Lie algebra 
homomorphism of g into a Lie algebra of real 
analytic vector fields on a +real analytic mani- 
fold M. Let p be a point at which the vector 

fields in the image p(g) have common zero. 
Then there exists an analytic system of coordi- 
nates (U; u, , , u,) with origin at p in which 

all the vector fields in p(g) are linear. Namely, 
there exists aijcg* = Hom,(g, R) such that 

The correspondence X+(u,(X)) defines a Lie 

algebra homomorphism of g into sl(m, R). 
For example, we can show that a real ana- 

lytic SL(n, R) action on the m-sphere is charac- 
terized by a certain real analytic vector field on 

(m-n+ l)-sphere (5<n<m<2n-2) [21]. In 

particular, there are infinitely many (at least the 
cardinality of the real numbers) inequivalent 

real analytic SL(n, R) actions on the m-sphere 
(3,<n<m). 

Conversely, let g be a finite-dimensional Lie 
algebra of vector fields on M. Although there 
is not always a differentiable transformation 
group G that admits g as its Lie algebra of 

infinitesimal transformations, the following 
local result holds. Let G be the tsimply con- 
nected Lie group corresponding to the Lie alge- 
bra g. Then for each point x of M, there exist 
a neighborhood 0 of the identity element e 

of G, neighborhoods V, W (V c W) of x, and a 
differentiable mapping ,j” of 0 x V into W with 
the following properties. Putting .f‘(s, y) = y(y) 

(g~o,y~ V), we have: (i) For all J’E V, e(y)=y. 
(ii) If 9, h E 0, Y E V, then (d4~) = dh(y)), pro- 
vided that gh~ 0, hi I/. (iii) Let X be an 
arbitrary element of g. Put g, = exp( - tX), the 
corresponding one-parameter subgroup of G. 
If e > 0 is taken small enough, then we have 
~,/,~~forItl<~sothat&(y)(ltl<~,y~1/)iswell 

defined. Therefore g1 determines a vector field 
x on V by the formula 

The vector field 8 coincides with the restric- 
tion of X to V. This local proposition is often 
expressed by the statement that g generates a 

local Lie group of local transformations, which 
is called Lie’s fundamental theorem on local 
Lie groups of local transformations. 

H. Criteria 

It is important to know whether a given trans- 
formation group is a topological or a Lie 

transformation group. The following theorems 
are useful for this purpose [22,23]: 

(IO) Let G be a transformation group of a 
+locally compact Hausdorff space M. If we 
introduce the tcompact-open topology in 
G, then G is a topological transformation 
group of M when M is locally connected or M 
is a tuniform topological space and G acts 
+equicontinuously on M. 

(1 I) Suppose that M is a +C’-manifold and 
G is a topological transformation group of M 
acting effectively on M. If G is locally compact 
and the mapping x-g(x) of M is of class C’ 
for each element 9 of G, then G is a Lie trans- 
formation group of M. 

(I 2) Assume that G is a transformation 

group of a differentiable manifold M and G 
acts effectively on M. Let g be the set of all 
vector fields on M defined by one-parameter 
groups of transformations of M contained in G 
as subgroups. If g is a fmite-dimensional Lie 

algebra, then G has a Lie group structure with 

respect to which G is a Lie transformation 
group of M, and then g coincides with the Lie 
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algebra formed by the infinitesimal transfor- 
mations of G. 

By applying theorems (lo), (1 I), and (12) we 
can show that the following groups are Lie 

transformation groups: the group of all +iso- 
metries of a +Riemannian manifold; the group 
of all aftine transformations of a differentiable 
manifold with a tlinear connection (generally, 
the group of all transformations of a differenti- 

able manifold that leave invariant a given 
+Cartan connection); the group of all analytic 
transformations of a compact complex mani- 
fold (this group is actually a complex Lie 
group); and the group of all analytic (holomor- 
phic) transformations of a bounded domain 
in C”. 

For related topics - 105 Differentiable 
Manifolds, 114 Differential Topology, 122 
Discontinuous Groups, 153 Fixed-Point 
Theorems, 427 Topology of Lie Groups and 

Homogeneous Spaces, etc. 
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432 (Vl.8) 
Trigonometry 

A. Plane Trigonometry 

Fix an orthogonal frame O-X Y in a plane, and 
take a point P on the plane such that the angle 
POX is c(. Denote by (x, y) the coordinates of 
P, and put OP = r (Fig. 1). We call the six ratios 

sin cI = y/r, cos a = x/r, tan a = y/x, cot a =x/y, 
set a = r/x, cosec a = r/y the sine, cosine, tan- 
gent, cotangent, secant, and cosecant of a, re- 

spectively. These functions of the angle a are 
called trigonometric functions or circular func- 
tions (- 131 Elementary Functions). They 
are periodic functions with the fundamental 

period rc for the tangent and cotangent, and 27r 
for the others. The relation sin’s + cos* a = 1 

and the addition formulas sin(a + /3) = sin a cos /I 
* cos a sin p, cos(a * p) = cos a cos /I F sin a sin p 
follow from the definitions (- Appfendix A, 
Table 2). Given a plane triangle ABC (Fig. 2) 

we have the following three propert.ies: (i) a = 
h cos C + c cos B (the first law of cosines); 

(ii) a2 = h* + c* - 2bccos A (the second law of 
cosines); (iii) u/sin A = b/sin B = c/sin C = 2R, 
where R is the radius of the circle circum- 



1639 433 
Turbulence and Chaos 

scribed about &4BC (laws of sines) (- Ap- 
pendix A, Table 2). Thus we obtain relations 
among the six quantities a, b, c, L A, L B, and 

L C associated with the triangle ABC. The 
study of plane figures by means of trigono- 
metric functions is called plane trigonometry. 

For example, if a suitable combination of 
three of these six quantities (including a side) 
associated with a triangle is given, then the 
other three quantities are uniquely determined. 
The determination of unknown quantities 
associated with a triangle by means of these 
laws is called solving a triangle. 

Fig. 1 

Fig. 2 

B. Spherical Trigonometry 

The part ABC of a spherical surface bounded 
by three arcs of great circles is called a spber- 

ical triangle. Points A, B, C are called the 
vertices; the three arcs a, b, c are called the 

sides; and the angles formed by lines tangent 
to the sides and intersecting at the vertices are 
called the angles of the spherical triangle (Fig. 
3). If we denote the angles by A, B, C, we have 
the relation A+B+C-n=E>O, and E is 

called the spherical excess. Spherical triangles 
have properties similar to those of plane trian- 
gles: sin u/sin A = sin b/sin B = sin c/sin C (laws 

of sines), and cos a = cos b cos c + sin b sin c cos A 
(law of cosines). The study of spherical figures 
by means of trigonometric functions, called 
spherical trigonometry, is widely used in astron- 
omy, geodesy, and navigation (- Appendix 
A, Table 2). 
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C. History 

Trigonometry originated from practical prob- 
lems of determining a triangle from three of 
its elements. The development of spherical 

trigonometry, which was spurred on by its 
applications to astronomy, preceded the devel- 
opment of plane trigonometry. In Egypt, 

Babylon, and China, people had some knowl- 
edge of trigonometry, and the founder of 
trigonometry is believed to have been Hippar- 
thus of Greece (fl. 150 B.C.). In the Almagest 
of Ptolemy (c. 150 A.D.) we find a table for 
2sincc for c(=O, 30’, I”, 1”30’, that is exact 
to five decimal places, and the addition for- 
mulas. The Greeks calculated 2 sin CI, which is 
the length of the chord corresponding to the 

double arc. Indian mathematicians, on the 
other hand, calculated half of the above quan- 

tities, that is, sin CI and 1 - cos CI for the arc CI. 
In the book by Aryabhatta (c. 500 A.D.) we 

find laws of cosines. The Arabs, influenced by 
Indian mathematicians, expressed geometric 

computations algebraically, a technique also 
known to the Greeks. AbtiI Wafa (in the latter 

half of the 10th century A.D.) gave the correct 
sines of angles for every 30’ to 9 decimal places 
and studied with Al Battani the projection 
triangle of the sundial, thereby obtaining the 
concepts of sine, cosine, secant, and cosecant. 

Later, a table of sines and cosines for every 

minute was established by the Arabs. Regio- 
montanus (d. 1476), a German, elaborated on 
this table. The form he gave to trigonometry 
has been maintained nearly intact to the pre- 
sent day. Various theorems in trigonometry 
were established by G. J. Rhaeticus, J. Napier, 
J. Kepler, and L. Euler (1748). Euler treated 

trigonometry as a branch of analysis, gen- 
eralized it to functions of complex variables, 
and introduced the abbreviated notations that 
are still in use (- 13 1 Elementary Functions). 
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433 (XX.1 2) 
Turbulence and Chaos 

Turbulent flow is the irregular motion of fluids, 

whereas relatively simple types of flows that 
are either stationary, slowly varying, or peri- 

odic in time are called laminar flow. When 
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a laminar flow is stable against external dis- 
turbances, it remains laminar, but if the flow is 
unstable, it usually changes into either another 

type of laminar flow or a turbulent flow. 

A. Stability and Bifurcation of Flows 

The velocity field u(x, t), x being the space 
coordinates and t the time, of a flow of an 
incompressible viscous fluid in a bounded 
domain G is determined by the +Navier-Stokes 
equation of motion, 

&I 
Z+(u.grad)u-vAu+IgradpO, 

P 

and the equation of continuity, 

divu=O, (2) 

with the prescribed initial and boundary con- 
ditions, where A denotes the Laplacian, p the 
pressure, p the density, and v the kinematic 
viscosity of the fluid. Suitable extensions must 
be made in the foregoing system of equations if 
other field variables, such as the temperature 
in thermal-convection problems, are to be 

considered. 
The stability of a fluid flow is studied by 

examining the behavior of the solution of 

equations (1) and (2) against external distur- 
bances, and, in particular, stability against 
infinitesimal disturbances constitutes the linear 
stability problem. The stability characteristics 
of the solution of equations (1) and (2) depend 
largely upon the value of the +Reynolds num- 
ber R = ULJv, U and L being the representa- 
tive velocity and length of the flow, respec- 

tively. Let a stationary solution of equations 
(1) and (2) be uO(x, R). If the perturbed flow 
is given by uO(x, R)+v(x, R)exp(crt), v being 

the perturbation velocity, and equation (1) is 
linearized with respect to v, we obtain a +linear 
eigenvalue problem for g. The flow is called 
linearly stable if max(Rerr) is negative, and 
linearly unstable if it is positive. For small 
values of R, a flow is generally stable, but it 
becomes unstable if R exceeds a critical value 

R,, which is called the critical Reynolds num- 
ber [I]. 

The instability of a stationary solution gives 
rise to the ibifurcation to another solution 
at a tbifurcation point X, of the parameter R. 

If Im g = 0 for an eigenvaiue (T at R = R,, a 
stationary solution bifurcates from the solu- 
tion u0 at R,, and if Im D # 0, a time-periodic 
solution bifurcates at R,. The latter bifurca- 
tion is called the Hopf bifurcation. A typical 
example of stationary bifurcation is the gener- 

ation of an axially periodic row of Taylor 

vortices in Couette flow between two rotating 
coaxial cylinders, which was studied by G. I. 

Taylor (1923), with excellent agreement be- 
tween theory and experiment [2]. Hopf bifur- 

cation is exemplified by the generation of 
Tollmien-Schlichting waves in the laminar 

+boundary layer along a flat plate, which was 
predicted theoretically by W. Tollmien (1929) 
and H. Schlichting (1933) and later confirmed 
experimentally by G. B. Schubauer and H. K. 
Skramstad (1947) [3]. 

In either type of bifurcation (Imu= or #O) 

the bifurcation is called supercritica.l if the 
bifurcating solution exists only for R > R,, 

subcritical if it exists only for R < R,, and 
transcritical if it happens to exist on both sides 
of R,. The amplitude of the departure of the 

bifurcating solution from the unperturbed 
solution u0 tends to zero as R+ R,. The be- 
havior of the bifurcating solution around the 
bifurcation point R, is dealt with systemat- 
ically by means of bifurcation analysis. In 
supercritical bifurcation, the bifurca.ting solu- 
tion is stable and represents an equtlibrium 

state to which the perturbed flow approaches 
just as in the cases of Taylor vortices and 
Tollmien-Schlichting waves. On the other 
hand, for subcritical bifurcation the bifurcat- 
ing solution is unstable and gives a critical am- 

plitude of the disturbance above which the 
linearly stable basic flow (R < R,) becomes 
unstable. In this case, the instability of the 

basic flow gives rise to a sudden change of the 
flow pattern resulting in either a stationary 

(or time-periodic) or even turbulent flow. The 
transition to turbulent flow that takes place 
in Hagen-Poiseuille flow through a circular 
tube and is linearly stable at all values of R 
(R, = a) may be attributed to this type of 
bifurcation. 

The concept of bifurcation can be extended 

to the case where the flow u0 is nonstationary, 
but the bifurcation analysis then becomes 
much more difficult. 

B. Onset of Turbulence 

The fluctuating flow resulting from an insta- 
bility does not itself necessarily constitute a 
turbulent flow. In order that a flow be turbu- 
lent, the fluctuations must take on some irreg- 

ularity. The turbulent flow is usually defined 
in terms of the long-time behavior of the flow 
velocity u(x, t) at a fixed point x in space. The 
flow is expected to be turbulent if the fluctuat- 

ing velocity 6u(x,t)=u(x,t)-pll - s 7 u(x, t)dt (3) 
0 

satisfies the condition 

lim lim L 
s 

T 

r-r T-cc T 
&$(x, t)6ui(x, t + T)& = 0, 

o 
(4) 
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where the subscripts label the components. 
Condition (4) implies that the idynamical 

system of a fluid has the mixing property. This 
condition also states that the velocity fluctu- 
ation Csu, has a continuous frequency spectrum. 
In practical situations the frequency spectrum 
of a turbulent flow may contain both the line 
and continuous spectra, in which case the flow 
is said to be partially turbulent. 

L. D. Landau (1959) and E. Hopf (1948) 
proposed a picture of turbulent flow as one 
composed of a tquasiperiodic motion, u(t) = 

f(w, t,w,t, . . ,o,t), with a large number of 
rationally independent frequencies w, , , w, 

produced by successive supercritical bifurca- 

tions of Hopf type. This picture of turbulence 
is not compatible with the foregoing definition 

of turbulence, since it does not satisfy the 
mixing property (4). The fact that the gener- 
ation of real turbulence is not necessarily 
preceded by successive supercritical bifurca- 

tions casts another limitation on the validity 
of this picture. 

The concept of turbulence is more clearly 
exhibited with respect to a dynamical system 
of finite dimension. Although we are without 

a general proof, it is expected that the Navier- 
Stokes equation with nonzero viscosity v can 
be approximated within any degree of ac- 

curacy by a system of finite-dimensional Virst- 
order ordinary differential equations 

dX 
x= F(X). 

Thus the onset and some general properties of 
turbulence are understood in the context of 

the theory of tdynamical systems. Turbulence 
is related to those solutions of equation (5) 
that tend to a +set in the +phase space that 
is neither a ttixed point, a iclosed orbit, nor a 
itorus. A set of such complicated structure is 
called a nonperiodic tattractor or a strange 
attractor. Historically, the strange attractor 
originates from the strange Axiom A attrac- 
tor that was found in a certain class of dy- 

namical systems called the Axiom A systems. 
However, this term has come to be used in a 
broader sense, and it now represents a variety 
of nonperiodic motions exhibited by a system 

that is not necessarily of Axiom A type. The 
above-mentioned Landau-Hopf picture of 

turbulence was criticized by D. Ruelle and F. 
Takens (1971) who proved for the dynamical 
system (5) that an arbitrary small perturbation 
on a quasiperiodic +flow on a k-dimensional 
torus (k >, 4) generically (in the sense of residual 
sets) produces a flow with a strange Axiom A 

attractor [4]. 
There exist a number of examples of first- 

order ordinary differential equations of rela- 
tively low dimension whose solutions exhibit 

nonperiodic behavior. An important model 

system related to turbulence is the Lorenz 
model (1963) of thermal convection in a hori- 

zontal fluid layer. This model is obtained by 
taking only three components out of an in- 
finite number of spatial +Fourier components 
of the velocity and temperature fields. The 
model is written as 

dX 
- -aX+aY, 

t- 

dY 
-=-XZ+rX-Y, 
dt 

dZ 
-= XY-bZ, 
dt 

(6) 

where g (> b + 1) and b are positive constants 
and r is a parameter proportional to the Ray- 
leigh number. Obviously, equations (6) have 
a fixed point X = Y= Z = 0 representing the 
state of thermal convection without !luid flow. 
For r < 1, this fixed point is stable, but it be- 

comes unstable for r > 1, and a pair of new 
fixedpointsX=Y=+Jbo,Z=r-1 
emerges supercritically. This corresponds to 

the onset of stationary convection at r = 1. At a 
still higher value of r = o(r~ + b + 3)/(0-b - l), a 

subcritical Hopf bifurcation occurs with re- 
spect to this pair of fixed points, and for a 
certain range of r above this threshold the 
solutions with almost any initial conditions 
exhibit nonperiodic behavior. This corre- 
sponds to the generation of turbulence. The 
property 

g+$+g= -(o+b+ l&O, 

where the dots denote time derivatives, shows 
that each volume element of the phase space 

shrinks asymptotically to zero as the time 
increases indefinitely. This property is char- 
acteristic of dynamical systems with energy 
dissipation, in sharp contrast to the imeasure- 
preserving character of THamiltonian systems 

CSI- 
For a certain class of ordinary differen- 

tial equations, the bifurcation to nonperiodic 
motion corresponds neither to the bifurcation 

of tori, just as in the Ruelle-Takens theory, nor 
to subcritical bifurcation, as in the Lorenz 
model. Such a bifurcation takes place when 
nonperiodic motion emerges as the conse- 
quence of an infinite sequence of supercritical 

bifurcations at each of which a periodic orbit 
of period T bifurcates into one of period 2T. 

If we denote the nth bifurcation point by r,, 
the distance r,,, - r,, between two successive 
bifurcation points decreases exponentially with 

increasing n, and eventually the bifurcation 
points accumulate at a point r,, beyond which 

nonperiodic motion is expected to emerge. It is 
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not yet clear if any of the above three types of 

bifurcation leading to nonperiodic behavior is 
actually responsible for the generation of real 

turbulence. 
Some important properties of a dynamical 

system with a nonperiodic attractor, which 
may be either a flow or a tdiffeomorphism, can 
be stated as follows: 
(i) The distance between two points in the 
phase space that are initially close to each 
other grows exponentially in time, so that the 
solutions exhibit a sensitive dependence on the 

initial conditions. 
(ii) The nonperiodic attractor has +Lebesgue 

measure zero, and such a system is expected to 
have many other tergodic tinvariant measures. 

The irregular behavior of a deterministic 
dynamical system is also called chaos, but this 

concept is more abstract and general than 
that of turbulence, and covers phenomena ex- 
hibited by systems such as nonlinear electric 
circuits, chemical reactions, and ecological 
systems. 

C. Statistical Theory of Turbulence 

The statistical theory of turbulence deals with 
the statistical behavior of fully developed 
turbulence. The turbulent field is sometimes 

idealized for mathematical simplicity to be 
homogeneous or isotropic. In homogeneous 
turbulence the statistical laws are invariant 

under all parallel displacements of the coordi- 
nates, whereas in isotropic turbulence invar- 

iance under rotations and reflections of the 
coordinates is required in addition. 

where E(k) is the energy spectrum function, 

representing the amount of energy included in 
a spherical shell of radius k in the wave num- 
ber space. The energy of turbulence d per unit 

mass is expressed as 

‘=~(lul’)=~rlii(O)=~ @ii(k)dk 
s 

s 
m = E(k)dk. (11) 

0 

The instantaneous state of the fluid motion 

is completely determined by specifying the 
fluid velocity u at all space points x and can 
be expressed as a phase point in the inlinite- 
dimensional tphase space spanned by these 
velocities. The phase point moves with time 
along a path uniquely determined by the solu- 
tion of the Navier-Stokes equation. In the 

turbulent state the path is unstable to the 
initial disturbance and describes an irregular 
line in the phase space. In this situation the 

deterministic description is no longer useful 
and should be replaced by a statistical treat- 
ment. Abstractly speaking, turbulence is just a 
view of fluid motion as the random motion of 
the phase point u(x) (- 407 Stochastic Pro- 
cesses). The equation for the tcharacteristic 
functional of the random velocity u(x) was first 
given by E. Hopf (1952). An exact solution 
obtained by Hopf represents a tnormal distri- 

bution associated with a white energy spec- 

trum, but so far no general solution has been 
obtained [6]. 

The state of turbulence is characterized by 
the Reynolds number R = E$2/(vkh’2), where E, 

and k, are representative values of E(k) and k, 

respectively. For weak turbulence of small R, 
E(k) is governed by a linear equation with the 
general solution 

E(k, t)= E(k,O)exp( -2vk2t), (12) 

E(k, 0) being an arbitrary function. Thus E(k) 
decays in time due to the viscous dissipation. 
For strong turbulence of large R, it is difficult 
to obtain the precise form of E(k), and this is 
usually done by way of some assumption that 

allows us to approximate the nonl-inear effects 

c71. 
Some of the similarity laws governing the 

energy spectrum and other statistical functions 
can be determined rigorously but not neces- 
sarily uniquely. For 3-dimensional incompress- 

ible turbulence, the energy spectrum satisfies 
an inviscid similarity law 

E(k)/&, = ~e(klk,) (13) 

in the energy-containing region k == O(k,) char- 
acterized by a wave number k,, and a viscous 

similarity law 

Besides the formulation in terms of the E(k)/E,= R-5’4F,(k/(R3’4k,)), 

tprobability distribution or the characteristic 

functional, there is another way of ‘describing 
turbulence by tmoments of lower orders. This 
is the conventional statistical theory originated 

by G. I. Taylor (1935) and T. von E&man 
(1938), which made remarkable progress after 

World War II. The principal moments in this 
theory are the correlation tensor, whose (i, j)- 
component is the mean of the product of two 
velocity components ui at a point x. and uj at 
another point x + r, 

B,(r) = <“i(x)uj(x + r)), (8) 

and its +Fourier transform, or the energy spec- 

trum tensor, 

1 
@$1=-S Bij(r)exp( -J-l k r) dr. (9) 

In isotropic turbulence Qij is expre:ssed as 

k=:lkl, (10) 

(14) 
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in the energy dissipation region k = O(R314k,), 
where F, and Fd denote dimensionless func- 
tions generally dependent on the initial con- 
dition and the time [6]. 

If an assumption is made to the effect that 

the statistical state in the energy-dissipation re- 
gion depends only upon the energy-dissipation 
rate E = - dd/dt besides the viscosity v (or R), 

then (14) becomes Kolmogorov’s equilibrium 
similarity law (1941): 

E(k)=e”4v5’4F(k/(2’4v-3’4)), (15) 

where F is a dimensionless function. For 

extremely large R (or small v) there exists 
an inertial subregion between the energy- 
containing and energy-dissipation regions such 
that the viscous effect vanishes and (15) takes 
the form 

E(k) = Kiz2’3km5’3, (16) 

where K is an absolute constant. Kolmogorov’s 
spectrum (16) has been observed experimen- 
tally several times, and now its consistency 
with experimental results at large Reynolds 
numbers is well established [S]. 

Kolmogorov (1962) and others modified (16) 
by taking account of the fluctuation of E due 
to the intermittent structure of the energy- 
dissipation region as 

E(k)=K’c2’3k-5’3(Lk)-“‘9, (17) 

where E is now the average of the fluctuating E, 
fi is the covariance of the log-normal distribu- 
tion of E, and L is the length scale of the spatial 

domain in which the average of E is taken [S]. 
A similar modification, with the exponent 
--p/3 in place of -p/9, is obtained using a 
fractal model of the energy-cascade process. 
These corrections to E(k), based upon the 
experimentally estimated p of 0.3-0.5, are 
too small to be detected experimentally, 

but the deviation is expected to appear more 
clearly in the higher-order moments [S-lo]. 
It should be noted that Kolmogorov’s spec- 

trum (16) itself does not contradict the notion 
of intermittent turbulence and gives one 
of the possible asymptotic forms in the limit 
R+CD. 

The l-dimensional Burgers model of tur- 
bulence satisfies the same similarity laws as 
(13) and (14), but it has an inviscid spectrum 

E(k)= k m2 instead of (16). Two-dimensional 
incompressible turbulence has no energy- 
dissipation region, and hence Kolmogorov’s 

theory is not valid for this turbulence. It has 
an inviscid spectrum E(k)cckm3, first derived 

by R. H. Kraichnan (1967), C. E. Leith (1968), 
and G. K. Batchelor (1969). These inviscid 

spectra for l- and 2-dimensional turbulence 
have been confirmed by numerical simulation 

Llll. 
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434 (XX.22) 
Unified Field Theory 

A. History 

Unified field theory is a branch of theoretical 

physics that arose from the success of tgen- 
era1 relativity theory. Its purpose is to dis- 
cuss in a unified way the fields of gravitation, 

electromagnetism, and nuclear force from the 
standpoint of the geometric structure of space 

and time. Studies have continued since 1918, 
and many theories of mathematical interest 

have been published without attaining, how- 
ever, any conclusive physical theory. 

A characteristic feature of relativity theory is 
that it is based on a completely new concept of 

space and time. That is, in general relativity 
theory it is considered that when a gravita- 

tional field is generated by matter, the struc- 
ture of space and time changes, and the flat 
TMinkowski world becomes a 4-dimensional 
TRiemannian manifold (with signature (1,3)) 
having nonvanishing curvature. The tfunda- 
mental tensor gij of the manifold is interpreted 
as the gravitational potential, and the basic 
gravitational equation can be described as a 
geometric law of the manifold. It is character- 

istic of general relativity theory that gravita- 
tional phenomena are reduced to space-time 
structure (- 359 Relativity). The introduction 

of the Minkowski world in tspecial relativity 
theory was a revolutionary advance over the 
3-dimensional space of Newtonian mechanics. 
But the inner structure of the Minkowski 
world does not reflect gravitational phenom- 
ena. The latter shortcoming is overcome by 
introducing the concept of space-time repre- 
sented by a Riemannian manifold into general 
relativity theory. 

When a coexisting system of gravitational 
and electromagnetic fields is discussed in gen- 
eral relativity theory, simultaneous equations 

(Einstein-Maxwell equations) must be solved 
for the gravitational potential gij and the 
electromagnetic field tensor Fij. Thus the 
gravitational potential gij is affected by the 
existence of an electromagnetic field. As the 
validity of general relativity began to be ac- 

cepted, it came to be expected that all physical 
actions might be attributed to the gravita- 
tional and electromagnetic fields. Thus various 
extensions of general relativity theory have 

been proposed in order to devise a geometry 
in which the electromagnetic as well as the 
gravitational field directly contributes to the 
space-time structure, and to establish a uni- 

tied theory of both fields on the basis of the 
geometry thus obtained. These attempts are 
illustrated in Fig. 1. 

Fig. 1 

B. Weyl’s Theory 

The first unified field theory was proposed by 
H. Weyl in 1918. In Riemannian geometry, 

which is the mathematical framework of gen- 
eral relativity theory, the tcovariant derivative 
of the tfundamental tensor gij vanishes, i.e., 

vigjk = ag,,/ax i - gj, l-i - gak l-G = 0, (1) 

where rjik is the +Christoffel symbol derived 
from gij. Conversely, if r;ik is considered as the 

coefficient of a general taffine connection and 
(1) is solved with respect to r/k under the con- 
dition qk = rkj, then the Christoffel symbol 
derived from gij coincides with I$. In this 

sense, (1) means that the space-time manifold 
has Riemannian structure. On the other hand, 
Weyl considered a space whose structure is 
given by an extension of(l), 

Vitljk=zAigj,, (2) 

and developed a unified field theory by regard- 
ing Ai as the electromagnetic potential. This 
theory has mathematical significance in that it 
motivated the discovery of Cartan’s geometry 
of connection, but it has some unsatisfactory 
points concerning the derivation of the field 
equation and the equation of motion for a 
charged particle. 

The scale transformation given by gij= p2gij 
is important in Weyl’s theory. If in addition to 
this transformation, Ai is changed to 

Ai = Ai - i; log p/ax’, (3) 

then (2) is left invariant and the space-time 
structure in Weyl’s theory remains unchanged. 

We call (3) the gauge transformation, cor- 
responding to the fact that the electromagnetic 
potential Ai is determined by the electro- 
magnetic field tensor Fij up to a gradient vec- 
tor. In the +field theories known at present, the 

i gauge transformation is generalized to various 
~ fields, and the law of charge conservation is 
i derived from the invariance of field equations 

under generalized gauge transformation. 

1 C. Further Developments 

A unified field theory that appeared after 
Weyl’s is Kaluza’s Sdimensional theory (Th. 
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Kaluza, 1921). This theory has been criticized 
as being artificial, but it is logically consistent, 
and therefore many of the later unified field 
theories are improved or generalized versions 

of it. The underlying space of Kaluza’s theory 
is a 5-dimensional Riemannian manifold with 
the fundamental form 

ds2 =(dx4+ A,dxa)’ +~~,,ds”d~“, 

where Ai and gi, are functions of xi alone (u, h, 
. , i, j=O, I, 2,3). The field equation and the 

equation of motion of a particle are derived 
from the variational principle in general re- 
lativity theory. The field equation is equivalent 
to the Einstein-Maxwell equations, The trajec- 
tory of a charged particle is given by a geo- 

desic in the manifold, and its equation is re- 
ducible to the Lorentz equation in general 
relativity. 

After the introduction of Kaluza’s theory, 
various unilield field theories were proposed, 

and we give here the underlying manifolds or 
geometries of some mathematically interesting 
theories: a manifold with +aftine connection 
admitting absolute parallelism (A. Einstein, 
1928); a manifold with +projective connec- 
tion (0. Veblen, B. Hoffman. 1930 [4]; J. A. 
Schouten, D. van Dantzig, 1932); wave geome- 
try (a theory based on the linearization of the 
fundamental form; Y. Mimura, 1934 [3]); a 

nonholonomic geometry (G. Vranceanu, 1936); 
a manifold with tconformal connection (Hoff- 
man, 1948). 

The investigations since 1945 have been 
motivated by the problem of the representa- 

tion of matter in general relativity theory. 
Einstein first represented matter by an energy- 
momentum tensor 7;, of class Co, which must 
be determined by information obtained from 
outside relativity. Afterward he felt that this 

point was unsatisfactory and tried to develop 
a theory on the basis of field variables alone, 
without introducing such a quantity as 7$. 

This theory is the so-called unitary field theory, 
and a solution without singularities is required 
from a physical point of view. His first attempt 
was to remove singularities from an exterior 
solution in general relativity by changing the 
topological structure of the space-time mani- 
fold. This idea was then extended to a unified 

field theory by J. A. Wheeler, and an interpre- 
tation was given to mass and charge by apply- 
ing the theory of iharmonic integrals (1957) 

lx. 
Einstein’s second attempt was to propose 

a nonsymmetric unified field theory (1945) 

[l, Appendix II; 61. The fundamental quantities 
in this theory are a nonsymmetric tensor gij 
and a nonsymmetric affine connection I$. 
The underlying space of the theory can be con- 
sidered a direct extension of the Riemannian 

manifold, since (1) is contained in the field 
equations (notice the order of indices in this 
equation). E. Schrodinger obtained field equa- 
tions of almost the same form by taking only 

F;k as a fundamental quantity (1947) [S]. 

References 

[l] A. Einstein, The meaning of relativity, 
Princeton Univ. Press, Fifth edition, 1956. 
[Z] J. A. Wheeler, Geometrodynamics, Aca- 
demic Press, 1962. 
[3] Y. Mimura and H. Takeno, Wave geome- 
try, Sci. Rep. Res. Inst. Theoret. Phys. Hiro- 
shima Univ., no. 2 (1962). 
[4] 0. Veblen, Projektive Relativitatstheorie, 
Springer, 1933. 

[S] E. Schriidinger, Space-time structure, 
Cambridge Univ. Press, 1950. 
[6] A. Einstein, A generalization of the relativ- 

istic theory of gravitation, Ann. Math., (2) 46 
(1945), 578-584. 
[7] V. Hlavaty, Geometry of Einstein’s unified 
field theory, Noordhoff, 1957. 
[S] M. A. Tonnelat, Einstein’s unified field 
theory, Gordon & Breach, 1966. (Original in 
French, 1955.) 

435 (11.23) 
Uniform Convergence 

A. Uniform Convergence of a Sequence of 
Real-Valued Functions 

A sequence of real-valued functions {,/A(x)} 
defined on a set B is said to be uniformly con- 

vergent (or to converge uniformly) to a function 
,f(x) on the set B if it converges with respect 
tothetnorm IIcp/(=sup{1~(~)1Ix~B},i.e., 

lirn,-~~~fn-fii =0 (- 87 Convergence). In 

other words, {f.(x)} converges uniformly to 
,f‘(x) on B if for every positive constant c we 

can select a number N independent of the 
point x such that If,(x) -f(x)1 <E holds for all 

II > N and x E B. By the tcompleteness of the 
real numbers, a sequence of functions {,f,(r)) 
converges uniformly on B if and only if we can 
select for every positive constant E a number N 
independent of the point x such that I,fm(x)- 
,f”(x)\ <E holds for all m, n > N and x E B. 

The uniform convergence of a series C&x) or 
of an infinite product n,&(x) is defined by the 

uniform convergence of the sequence of its 
partial sums or products. If the series of the 

absolute values C, 1 ,f,(x)l converges uniformly, 
then the series C,&(x) also converges uni- 
formly. In this case the series 2, fn(x) is said to 



435 B 
Uniform Convergence 

be uniformly absolutely convergent. A sequence 
of (nonnegative) constants M, satisfying 
[ ,fJx)I < M, is called a dominant (or majorant) 

of the sequence of functions (Jti(x)). A series of 
functions C,,fJx) with converging majorant 
series 2, M, is uniformly absolutely conver- 
gent (Weierstrass’s criterion for uniform 
convergence). 

Let {j..(x)) be another sequence of functions 
on B. The series C,, j.,(x) f,(x) is uniformly 
convergent if either of the following conditions 
holds: (i) The series C,f,(x) converges uni- 

formly and the partial sums of the series 
C,(i.,(x) - i.,,,, (x)[ are uniformly bounded, i.e., 
bounded by a constant independent of x E B 

and of the number of terms; or (ii) the series 

Cnl&b-jbntl (x)1 converges uniformly, the 
sequence {i.,(x)) converges uniformly to 
0, and the partial sums of x”lfJx)I are 
uniformly bounded. 

B. Uniform Convergence and Pointwise 
Convergence 

Let { .jJx)l be a sequence of real-valued func- 
tions on B, and let .f’(x) be a real-valued func- 

tion also defined on B. If the sequence of 
numbers (,f;,(x,)j converges tof‘(x,) for every 
point X~E B, we say that {,f.(x)} is pointwise 
convergent (or simply convergent) to the func- 
tion,f(x). Pointwise convergence is, of course, 
weaker than uniform convergence. If we repre- 

sent the functionf’(x) by the point &&x)= 
[j’] of the icartesian product RB = nxtRR, 
then the pointwise convergence of (,f,(x)) to 
,j’(x) is equivalent to the convergence of the 

sequence of points { [,f,] 1 to [,j”] in the iprod- 
uct topology of RB. 

When B is a +topological space and every 
,f,(x) is continuous, the pointwise limitf’(x) of 

the sequence {,/j,(x)) is not necessarily con- 
tinuous. However, if the sequence of continuous 

functions {.fJx)) converges uniformly tof(x), 
then the limit functionf’(x) is continuous. On 
the other hand, the continuity of the limit does 

not imply that the convergence is uniform, If 
the set B is ‘compact and the sequence of 
continuous functions (,fJx)) is monotone (i.e., 

.fn(x)S.fn+,(x) for all n orS,(x)>.Jn+,(x) for all n) 
and pointwise convergent to a continuous 

function,f(x), then the convergence is uniform 
(Dini’s theorem). 

C. Uniform Convergence on a Family of Sets 

Let 3 be a topological space. We say that a 
sequence of functions {,fJx)) is uniformly 

convergent in the wider sense to the function 
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J‘(x), depending on circumstances, in either of 
the following two cases: (i) Every point x,, E B 

has a neighborhood U on which the sequence 

{f.(x)} converges uniformly to,f(x); or (ii) 
{ ,fJx)j converges uniformly tof’(x) on every 
compact subset K in B. If B is tlocally com- 

pact, the two definitions coincide. The term 
uniform convergence on compact sets is also 
used for (ii). 

In general, given a family 9 of subsets in B, 

we may introduce in the space .F of real- 
valued functions on B a family of tseminorms 
~l~IIK=sup{I,f(x)(Ix~K) foreveryset KEY. 
Let T be the topology of .9 defined by this 

family of seminorms (- 424 Topological 
Linear Spaces). A sequence { f,(xl i is called 
uniformly convergent on 9 if it is convergent 

with respect to 7: In particular, when 9 coin- 
cides with {B}, {{x) ( XE: B}, or the family of all 
compact sets in B, then uniform convergence 
on .Jp coincides with the usual uniform conver- 

gence, pointwise convergence, or uniform 
convergence on compact sets, respectively. If .Jp 
is a countable set, the topology ‘r is tmetri- 
zable. Most of these definitions and results 

may be extended to the case of functions 
whose values are in the complex number field, 

in a +normed space, or in any +uniform space. 

D. Topology of the Space of Mappings 

Let X, Y be two topological spaces. Denote by 
C(X, Y) the space of all continuous mappings 
,f: X --f Y This space C(X, Y), or a subspace S 
of C(X, Y), is called a mapping space (or func- 
tion space or space of continuous mappings) 
from X to Y A natural mapping @: 9 x X-t Y 

is defined by ~(,f;x)=f(x)(,f~~~,x~X). We 
define a topology in .F as follows: for a com- 

pact set K in X and an open set U in Y, put 
W(K,U)=(J~p\,f(K)~Uj,andintroducea 
topology in 9 such that the base for the to- 
pology consists of intersections of finite num- 
bers of W(K,, r/,). This topology is called the 
compact-open topology (R. H. Fox, Bull. Amer. 

Math. Sot., 5 I (1945)). When X is a tlocally 
compact Hausdorff space and Yis a +Haus- 
dorff space, the compact-open topology is the 
iweakest topology on p for which the func- 
tion @ is continuous. If, in this case, 9 is 

compact with respect to the compact-open 
topology, then the compact-open topology 
coincides with the topology of pointwise 
convergence. 

In particular, when Y is a imetric space (or, 

in general, a tuniform space with the uniform- 
ity LO, the compact-open topology in .p coin- 
cides with the topology of uniform conver- 

gence on compact sets. A family .S is called 
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equicontinuous at a point XE X if for every 
positive number I: (in the case of uniform 

space, for every II&) there exists a neighbor- 

hood U of x such that p(j’(x),,f( p)) < E (f(x), 
,f( p))~ I’) for every point PE t/ and for every 
functionf‘E~9 (G. Ascoli. 188331884). If X is a 

+locally compact Hausdorff space, a necessary 
and sufficient condition for .p to be relatively 

compact (i.e., for the closure of 9 to be com- 
pact) with respect to the compact-open top- 
ology (i.e., to the topology of uniform conver- 
gence on compact sets) is that 9 be equicon- 
tinuous at every point XEX and that the set 

{ ,f(x) l,fe~F} be relatively compact in Y for 
every point XE X (Ascoli’s theorem). In partic- 

ular, when X is a a-compact locally compact 
Hausdorff space and Y is the space of real 
numbers, a family of functions .f that are 
equicontinuous (at every point XEX) and 
uniformly bounded is relatively compact. 
Hence, for any sequence of functions { ,jj,} 

in .f, we can select a subsequence (,f,(,,) 
which converges uniformly on compact sets 
(Ascoli-Arzeld theorem). 

E. Normal Families 

P. Monte1 (1912) gave the name normal family 
to the family of functions that is relatively com- 
pact with respect to the topology of uniform 
convergence on compact sets. This terminol- 
ogy is used mainly for the family of complex 
analytic functions. In that case, it is customary 
to compactify the range space and consider Y 

to be the +Riemann sphere. Using this notion, 
Monte] succeeded ‘in giving a unified treatment 
of various results in the theory of complex 

functions. 
A family of analytic functions .B on a hnite- 

dimensional +compIex manifold X is a normal 
family if it is uniformly bounded on each com- 
pact set (Monte13 theorem). Another criterion 
is that there are three values on the Riemann 
sphere which no function ,fe,p takes. More 

generally, three exceptional values not taken 
by f E,F may depend on,f; if there is a positive 
lower bound for the distances between these 
three values on the Riemann sphere. This gives 

an easy proof of the +Picard theorem stating 
that every ttranscendental meromorphic func- 

tionf(z) in lzl< io must take all values except 
possibly two values. In fact the family of func- 

tions,l;l(z) =,f(z/2”), n = 1,2,3, , in { 1 < Izl 
<2j cannot be normal. Using a similar proce- 

dure, G. Julia obtained the results on ‘Julia’s 
direction. 

F. Marty introduced the notion of spherical 

derivative \,f’(z)]/(l +\.1’(z)\‘) for the analytic 
or meromorphic function,f(z) and proved that 

for a family J = { ,f(z)} of analytic functions to 

be normal, it is necessary and sufficient that 
the spherical derivatives offE9 be uniformly 

bounded. This theorem implies Montel’s 
theorem and its various extensions, including, 
for example, quantitative results concerning 
+Borel’s direction. 

A family 9 of analytic functions of one 
variable defined on X is said to form a quasi- 
normal family if there exists a subset P of X 

consisting only of isolated points such that 
from any sequence ( ,fj} (f, E p) we can select a 
subsequence { j&,} converging uniformly on 
X-P. If P is finite and consists of p points, 

the family .F is called a quasinormal family of 
order p. For example, the family of at most +p- 

valent functions is quasinormal of order p. 
The theory of normal families of complex 

analytic functions is not only applied to +value 
distribution theory, as above, but also used to 
show the existence of a function that gives the 
extremal of functionals. The extremal function 
is usually obtained as a limit of a subsequence 

of a sequence in a normal family. A typical 
example of this method is seen in the proof of 
the +Riemann mapping theorem. This is per- 

haps the only general method known today in 
the study of the iteration of +holomorphic 
functions. By this method, Julia (1919) made 
an exhaustive study of the iteration of mero- 
morphic functions; there are several other in- 
vestigations on the iteration of elementary 
transcendental functions. On the other hand, 

A. Wintner (Comm. Math. Heln., 23 (1949)) 
gave the implicit function theorem for analytic 
functions in a precise form using the theory of 
normal families of analytic functions of several 
variables. 
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Uniform Spaces 

A. Introduction 

There are certain properties defined on +metric 
spaces but not on general ttopological spaces, 
for example, tcompleteness or +uniform con- 
tinuity of functions. Generalizing metric spaces, 
A. Weil introduced the notion of uniform 
spaces. This notion can be defined in several 

ways [3,4]. The definition in Section B is that 
of Weil [l] without the +separation axiom for 
topology. 

We denote by Ax the diagonal ((x, x) 1 x E X ) 
of the Cartesian product X x X of a set X with 
itself. If U and I/are subsets of X x X, then the 
composite Vo U is defined to be the set of all 
pairs (x, y) such that for some element z of X, 
the pair (x, z) is in U and the pair (z, y) is in V 

The inverse U ml of Cl is defined to be the set of 
all pairs (x, y) such that (y, X)E U. 

B. Definitions 

Let %I be a nonempty family of subsets of 
X x X such that (i) if U E?/ and U c V, then 
VE+?(; (ii) if U, VE ‘&, then U f’ VE J&; (iii) if 
U E &, then Ax c U; (iv) if U E V, then U -’ E 

“I/; and (v) if U E@, then Vo Vc U for some 
l/e&. Then we say that a uniform structure 
(or simply a uniformity) is defined on X by 

J#. If a uniformity is defined on X by ‘%/, then 
the pair (X,J%) or simply the set X itself is 
called a uniform space, and @ is usually called 

a uniformity for X. 
A subfamily .8 of the uniformity %I is called 

a base for the uniformity ‘ti if every member of 
‘2 contains a member of 2. If a family .% of 
subsets of X x X is a base for a uniformity ///, 
then the following propositions hold: (ii’) if 
U, VE%, then there exists a I&g such that 
WC U n V; (iii’) if U E.%, then Ax c U; (iv’) if 
U ~98, then there exists a Ve.iA such that 

Vc U-I; (v’) if U ~9, then there exists a I/~28 

such that Vo Vc U. Conversely, if a family 9 
of subsets of a Cartesian product X x X satis- 

fies (ii’)-( then the family 02 = { U 1 U c X x X, 
Vc U for some VE.%} defines a uniformity on 
X and 98 is a base for 12. Given a uniform 
space (X, %), a member Vof % is said to be 
symmetric if V= V -‘. The family of all sym- 
metric members of %Y is a base for J&. 

C. Topology of Uniform Spaces 

Given a uniform space (X, J?/), an element 
xEX,and U~‘ti,weput U(x)=(yly~X,(x,y) 

E U ). Then the family &(x) = {U(x) 1 U E ‘M} 

forms a neighborhood system of x E X, which 

gives rise to a topology of X (- 4.25 Topo- 
logical Spaces). This topology is called the 
uniform topology (or topology of the uni- 
formity). When we refer to a topology of a uni- 
form space (X, ‘I,), it is understood to be the 
uniform topology; thus a uniform space is 
also called a uniform topological space. If J is 
a base for the uniformity of a uniform space 
(X,/k), then S#(x)={U(x)\ U~23} is a base for 
the neighborhood system at each point x E X. 
Each member of ‘2 is a subset of the topolog- 

ical space X x X, which is supplied with the 
product topology. The family of all open 
(closed) symmetric members of %G forms a 
base for /?/. A uniform space (X, %) is a +T, - 
topological space if and only if the intersection 

of all members of “I/ is the diagonal Ax. In this 
case, the uniformity of (X, %2) is called a T, - 
uniformity, and (X, %V) is called a T, -uniform 

space. A T, -uniform space is always tregular; a 
fortiori, it is a T,-topological space. Hence a 
T, -uniform space is also said to be a Haus- 
dorff uniform space (or separated uniform 

space). Moreover, a uniform topology satisfies 
+Tikhonov’s separation axiom; in particular, a 
T, -uniform space is tcompletely regular. 

D. Examples 

(1) Discrete Uniformity. Let X be a nonempty 
set,andlet%Y={UIA,cUcXxX}.Then 
(X, #) is a T, -uniform space and ,I = {Ax} is a 

base for @. This uniformity is called the dis- 
crete uniformity for X. 

(2) Uniform Family of Neighborhood System. 
A family { U,(x)},,,(xeX) of subsets of a set X 
is called a uniform neighborhood system in X if 
it satisfies the following four requirements: (i) 
x E U,(x) for each a E A and each x E X; (ii) if x 
and y are distinct elements of X, then y# Un(.u) 

for some EEA; (iii) if x and p are two elements 
of A, then there is another element YE A such 
that U?(x) c U=(x) n U,(x) for all x E X; (iv) if 3 
is an arbitrary element in A, then there is an 

element fl in A such that ye U,(x) whenever x, 
ye U&z) for some z in X. If we denote by 
U,(S(E A) the subset of X x X consisting of all 

elements (x, y) such that xcX and y6 U,(x), 

then the family { U,) C(E A} satisfies all the 
conditions for a base for a uniformity. In par- 

ticular, it follows from (ii) that nnpA r/, = Ax, 
which is a stronger condition than (iii’) in 
Section B. For instance, if {U, I x(~ A} is a base 
for the neighborhood system at the identity 

element of a T,-topological group G, then we 
have two uniform neighborhood systems 

(U!Jx)) and {U/,‘(x)), where U~(X)=~~U, and 
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U:(x) = U,x. Two uniformities derived from 
these uniform neighborhood systems are called 
a +left uniformity and a +right uniformity, 
respectively. Generally, these two uniformities 
do not coincide (- 423 Topological Groups). 

(3) Uniform Covering System [4]. A family 

PaL of tcoverings of a set X is called a 
uniform covering,system if the following three 

conditions are satisfied: (i) if U is a covering 
of X such that U<U, for all LYE A, then U 
coincides with the covering A = { {x} }x.x; 

(ii) if cz, BE A, then there is a YE A such that 
U,<U, and U,<U,; (iii) if UEA, then there 
is a IJEA such that U, is a +A-refinement of 
U, ((I$JA<U,). For an example of a uni- 
form covering system of X, suppose that we 
are given a uniform neighborhood system 

CW4},,A (=W. Let %={W)L (=A). 
Then PUsA is a uniform covering system. 
On the other hand, for a covering U = {U,),,,, 

let S(x, U) be the union of all members of 
U that contain x. If {Ua)asA is a uniform 

covering system and UU(x) = S(x, U,), then 
{ U,(x)jaaA (xEX) is a uniform neighborhood 
system. Hence defining a uniform covering 
system of X is equivalent to defining a T, - 
uniformity on X. 

(4). In a metric space (x, d) the subsets U, = 
{(x, y) 1 d(x, Y) < T}, r > 0, form a base of uni- 

formity. The uniform topology defined by this 
coincides with the topology defined by the 
metric. 

E. Some Notions on Uniform Spaces 

Some of the terminology concerning topolog- 
ical spaces can be restated in the language of 
uniform structures. A mappingffrom a uni- 
form space (X, a) into another (X’, W) is said 
to be uniformly continuous if for each member 

U’ in W there is a member U in u2! such that 
(,f(x),f(y))~ U’ for every (x,~)E U. This con- 
dition implies thatfis continuous with respect 
to the uniform topologies of the uniform 
spaces. Equivalently, the mapping is uniformly 

continuous with respect to the uniform neigh- 
borhood system { Ub((x)JLIEA if for any index [I 
there is an index tl such that YE U,(x) implies 
flu&“). Iff:X+X’andg:X’+X” are 
uniformly continuous, then the composite 
gof:X-tX” is also uniformly continuous. A 
bijectionfof a uniform space (X,@) to another 

(X’, W) is said to be a uniform isomorphism if 
bothfandf-’ are uniformly continuous; in 
this case (X, 0s) and (X’, W) are said to be 

uniformly equivalent. A uniform isomorphism 

is a homeomorphism with respect to the uni- 
form topologies, and a uniform equivalence 

defines an equivalence relation between uni- 
form spaces. 

If 02, and 0&Z are uniformities for a set X, we 
say that the uniformity Q, is stronger than the 
uniformity 4, and uZ2 is weaker than %, if the 
identity mapping of (X,oaI) to (X,“u,) is uni- 
formly continuous. The discrete uniformity is 

the strongest among the uniformities for a set 
X. The weakest uniformity for X is defined by 

the single member X x X; this uniformity is 
not a T,-uniformity unless X is a singleton. 

Generally, there is no weakest T,-uniformity. 
A uniformity Q, for X is stronger than an- 
other 021, if and only if every member of ez is 
also a member of @, 

Iffis a mapping from a set X into a uniform 
space (x Y) and g is the mapping of X x X into 
Y x Y defined by g(x, y) = (f(x),f( y)), then 
?8 = {g-‘(V) ( V’E V} satisfies conditions (ii’)- 
(v’) in Section B for a base for a uniformity. 
The uniformity % for X determined by 99 is 

called the inverse image of the uniformity V- 

for Y by f; % is the weakest uniformity for X 
such thatfis uniformly continuous. Hence a 
mappingffrom a uniform space (X, q) into 
another (x Y) is uniformly continuous if and 
only if the inverse image of the uniformity V 
underfis weaker than the uniformity a. If A is 
a subset of a uniform space (X, a), then there 

is a uniformity ^Y- for A determined as the 
inverse image of % by the inclusion mapping 

of A into X. This uniformity V for A is called 
the relative uniformity for A induced by %, or 
the relativization of % to A, and the uniform 

space (A, Y) is called a uniform subspace of 
(X,@). The uniform topology for (A, V) is the 
relative topology for A induced by the uniform 
topology for (X, a). 

If {(&>“~A)~AsA is a family of uniform 

spaces, then the product uniformity for X = 
II,,,X, is defined to be the weakest uni- 
formity @ such that the projection of X 
onto each X, is uniformly continuous, and 

(X, 0%~) is called the product uniform space of 
{(XJ,,%!J}le,,. The topology for (X,%) is the 
product of the topologies for (X,, aA) @ELI). 

F. Metrization 

Each tpseudometric d for a set X generates a 
uniformity in the following way. For each 
positive number Y, let &,,={(x,y)~X x 
X 1 d(x, y) cr.). Then the family {V,,, 1 r > 0} 
satisfies conditions (ii’)- in Section B for a 

base for a uniformity 02. This uniformity is 
called the pseudometric uniformity or uniform- 
ity generated by d. The uniform topology for 

(X, q) is the pseudometric topology. A uni- 

form space (X, “u) is said to be pseudometrizable 
(metrizable) if there is a pseudometric (metric) 
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d such that the uniformity ‘1/ is identical with 

the uniformity generated by d. A uniform 
space is pseudometrizable if and only if its 
uniformity has a countable base. Conse- 
quently, a uniform space is metrizable if and 

only if its uniformity is a T, -uniformity and 
has a countable base. For a family P of 
pseudometrics on a set X, let G,, = [(x, y)~ 
X x X 1 d(x, y) < Y) for d E P and positive r. 
The weakest uniformity containing every 

V,,, (d E P, r > 0) is called the uniformity gen- 
erated by P. This uniformity may also be de- 
scribed as the weakest one such that each 

pseudometric in P is uniformly continuous on 
X x X with respect to the product uniformity. 

Each uniformity ‘I/ on a set X coincides 
with the uniformity generated by the family P, 

of all pseudometrics that are uniformly con- 
tinuous on X x X with respect to the product 

uniformity of JL/ with itself. It follows that each 
uniform space is uniformly isomorphic to a 
subspace of a product of pseudometric spaces 

(in which the number of components is equal 
to the cardinal number of Px) and that each 
T,-uniform space is uniformly isomorphic to a 
subspace of a product of metric spaces. A 
topology 7 for a set X is the uniform topology 
for some uniformity for X if and only if the 
topological space (X, z) satisfies +Tikhonov’s 
separation axiom; in particular, the uniformity 
is a T,-uniformity if and only if (X, z) is tcom- 
pletely regular. 

G. Completeness 

If (X, “II) is a uniform space, a subset A of X is 
called a small set of order U( U E &) if A x A c 
U. A ifilter on X is called a Caucby filter 
(with respect to the uniformity u#) if it contains 
a small set of order U for each U in J&. If a 
filter on X converges to some point in X, then 
it is a Cauchy filter. If,f‘is a uniformly con- 

tinuous mapping from a uniform space X into 
another X’, then the image of a base for a 
Cauchy filter on X under,fis a base for a 
Cauchy filter on X’. A point contained in the 
closure of every set in a Cauchy filter 3 is the 

limit point of 3. Hence if a filter converges to 
x, a Cauchy filter contained in the filter also 
converges to x. 

A +net x(91) = {x,},,~>~ (where QI is a directed 
set with a preordering <) in a uniform space 
(X, ‘II) is called a Caucby net if for each U in W 
there is a y in 91 such that (x,, X~)E U for every 
z and b such that y < x(, y < [j. If % is the set N 
of all natural numbers, a Cauchy net {x,},,~ 

is called a Caucby sequence (or fundamental 

sequence). Given a Cauchy net {x,},,~~,, let A, 
={~~~/~>~).Then~B={A,~~~YI}isabasefor 

a filter, and the filter is a Cauchy filter. On the 

other hand, let B be a base for a Cauchy filter 
3. For U, VE%, we put U d I/if and only if 
U 3 I/: Then ‘B is a directed set with respect to 
6. The net {xUjCtB, where xL, is an arbitrary 
point in U, is a Cauchy net. A proposition 

concerning convergence of a Cauchy filter is 
always equivalent to a proposition concerning 

convergence of the corresponding Cauchy net. 
A Cauchy filter (or Cauchy net) in a uni- 

form space X does not always converge to a 
point of X. A uniform space is said to be com- 
plete (with respect to the uniformity) if every 

Cauchy filter (or Cauchy net) converges to a 
point of that space. A complete uniform space 
is called for brevity a complete space. A closed 
subspace of a complete space is complete with 
respect to the relative uniformity. A pseudo- 
metrizable uniform space is complete if and 
only if every Cauchy sequence in the space 

converges to a point. Hence in the case of a 
metric space, our definition of completeness 

coincides with the usual one (- 2’73 Metric 
Spaces). 

A mapping j’ from a uniform space X to an- 
other X’ is said to be uniformly continuous on 
a subset A of X if the restriction off’to A is 
uniformly continuous with respect to the rela- 
tive uniformity for A. Iffis a uniformly con- 
tinuous mapping from a subset A of a uniform 
space into a complete T,-uniform space, then 
there is a unique uniformly continuous exten- 

sion ,f of ,f on the closure A. 
Each T,-uniform space is uniformly equiva- 

lent to a dense subspace of a complete T,- 
uniform space; this property is a generaliza- 
tion of the fact that each metric space can be 

mapped by an isometry onto a dense subset of 
a complete metric space. A completion of a 
uniform space (X, &) is a pair (,I; (X*, I&*)), 
where (X*,&*) is a complete space and ,f is 
a uniform isomorphism of X onto a dense 
subspace of X*. The T,-completion of a 
T,-uniform space is unique up to uniform 

equivalence. 

H. Compact Spaces 

A uniformity O/L for a topological space (X, z) is 
said to be compatible with the topology z if the 
uniform topology for (X,0&) coincides with T. 
A topological space (X, z) is said to be unifor- 

mizable if there is a uniformity compatible 
with r. If (X, z) is a compact Hausdorff space, 
then there is a unique uniformity V/ compa- 
tible with z; in fact, ‘Id consists of all neighbor- 
hoods of the diagonal Ax in X x X; and the 
compact Hausdorff space is complete with this 

uniformity. Hence every subspace of a com- 
pact Hausdorff space is uniformizable, and 
every tlocally compact Hausdorff space is 
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uniformizable. Any continuous mapping from 
a compact Hausdorff space to a uniform space 
is uniformly continuous. A uniform space 

(X, @) is said to be totally bounded (or precom- 
pact) if for each U E % there is a finite covering 
consisting of small sets of order U; a subset of 

a uniform space is called totally bounded if it is 
totally bounded with respect to the relative 
uniformity. A uniform space X is said to be 
locally totally bounded if for each point of X 
there is a base for a neighborhood system 
consisting of totally bounded open subsets. A 

uniform space is compact if and only if it is 
totally bounded and complete. Iffis a uni- 
formly continuous mapping from a uniform 

space X to another, then the imagef(A) of 
a totally bounded subset A of X is totally 
bounded. 

I. Topologically Complete Spaces 

A topological space (X, z) is said to be topo- 

logically complete (or Dieudonnk complete) if it 
admits a uniformity compatible with 7 with 
respect to which X is complete. Each +para- 
compact Hausdorff space is topologically 
complete. Actually such a space is complete 
with respect to its strongest uniformity. A 

Hausdorff space which is homeomorphic to 
a +G,-set in a compact Hausdorff space is 

said to be tech-complete; A metric space is 
homeomorphic to a complete metric space if 
and only if it is Tech-complete. A Hausdorff 
space X is paracompact and Tech-complete if 
and only if there is a tperfect mapping from X 
onto a complete metric space. 
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A. Definitions 

A homomorphism U of a ttopological group G 
into the group of tunitary operators on a 
+Hilbert space sj ( # {0}) is called a unitary 
representation of G if Li is strongly continuous 

in the following sense: For any element x E $, 
the mapping g+ Ugx is a continuous mapping 

from G into sj. The Hilbert space $j is called 
the representation space of U and is denoted 
by B(U). Two unitary representations U and 
U’ are said to be equivalent (similar or isomor- 
phic), denoted by U r U', if there exists an 
tisometry T from s(U) onto 5( U’) that satis- 
fies the equality To U, = Ub o T for every g in 

G. If the representation space sj( U) contains 
no closed subspace other than sj and (0) that 

is invariant under every U,, the unitary repre- 
sentation U is said to be irreducible. An element 
x in $j( U) is called a cyclic vector if the set of 

all finite linear combinations of the elements 
U,x( g E C) is dense in b(U). A representation 
U having a cyclic vector is called a cyclic 
representation. Every nonzero element of the 
representation space of an irreducible repre- 
sentation is a cyclic vector. 

Examples. Let G be a ttopological transfor- 
mation group acting on a +locally compact 
Hausdorff space X from the right. Suppose 

that there exists a tRadon measure p that is 
invariant under the group G. Then a unitary 
representation Rp is defined on the Hilbert 
space $ = L’(X, p) by the formula (Rif)(x) 
=f(xg) (f~.$x~x, LEG). The representation 
Rp is called the regular representation of G 
on (X, p). If G acts on X from the left, then 
the regular representation L" is defined by 
(L;f)(x)=f(g-‘x). In particular, when X is 

the +quotient space H\G of a tlocally compact 
group G by a closed subgroup H, any two 
invariant measures p, p’ (if they exist) coincide 
up to a constant factor. Hence the regular 
representation Rp on (X, p) and the regular 

representation R"' on (X, p’) are equivalent. In 
this case, the representation Rv is called the 
regular representation on X. When H = {e}, a 
locally compact group G has a Radon measure 
p # 0 that is invariant under every right (left) 

translation h+hg (/I*@) and is called a right 
(left) +Haar measure on G. So G has the regu- 



437 B 
Unitary Representations 

1654 

lar representation R (L) on G. R (L) is called 
the right (left) regular representation of G. 

B. Positive Definite Functions and Existence 
of Representations 

A complex-valued continuous function cp on a 
topological group G is called positive definite 
if the matrix having (p(gzT1gj) as the (i,j)- 

component is a tpositive semidefinite Her- 
mitian matrix for any finite number of ele- 
ments gi, . , gn in G. If U is a unitary repre- 
sentation of G, then the function rp(g) = (U,x, x) 
is positive definite for every element x in b(U). 
Conversely, any positive definite function cp(g) 
on a topological group G can be expressed as 
q(g) = ( Usx, x) for some unitary representation 

U and x in sj( U). Using this fact and the 
+Krein-Milman theorem, it can be proved that 
every locally compact group G has sufficiently 

many irreducible unitary representations in the 
following sense: For every element g in G other 
than the identity element e, there exists an 

irreducible unitary representation U, generally 
depending on g, that satisfies the inequality 
U, # 1. The groups having sufficiently many 
finite-dimensional (irreducible) unitary repre- 

sentations are called tmaximally almost 
periodic. If a connected locally compact group 

G is maximally almost periodic, then G is the 
direct product of a compact group and a vec- 
tor group R”. On the other hand, any non- 

compact connected isimple Lie group has no 
finite-dimensional irreducible unitary repre- 
sentation other than the unit representation 

cl-+1 (- 18 Almost Periodic Functions). 

C. Subrepresentations 

Let U be a unitary representation of a topo- 
logical group G. A closed subspace % of sj(U) 
is called U-invariant if % is invariant under 
every U, (gE G). Let VI # {0} be a closed invar- 
iant subspace of $3(U) and V, be the restric- 

tion of U, on ‘R Then V is a unitary represen- 
tation of G on the representation space % and 
is called a subrepresentation of U. Two unitary 
representations L and A4 are called disjoint if 
no subrepresentation of L is equivalent to a 
subrepresentation of M; they are called quasi- 
equivalent if no subrepresentation of L is dis- 
joint from M and no subrepresentation of M is 
disjoint from L. 

D. Irreducible Representations 

Let U be a unitary representation of G, M 

be the +von Neumann algebra generated by 
{U, 1 g E G}, and M’ be the tcommutant of M. 

Then a closed subspace % of $j( U) is invariant 
under U if and only if the tprojection operator 
P corresponding to ‘$I belongs to M’. There- 
fore U is irreducible if and only if M’ consists 

of scalar operators {al 1 cr~C} (Scbur’s lemma). 
A representation space of a cyclic or irreduc- 
ible representation of a tseparable topological 
group is tseparable. 

E. Factor Representations 

A unitary representation U of G is called a 
factor representation if the von Neumann 
algebra M = {U, 1 gE G} is a tfactor, that is, 
MflM’={al Ic(EC}. Two factor representa- 
tions are quasi-equivalent if and only if they 
are not disjoint. U is called a factor represen- 
tation of type I, II, or III if the von Neumann 

algebra M is a factor of ttype I, II, or III, 
respectively (- 308 Operator Algebras). A 

topological group G is called a group of type I 
(or type I group) if every factor representation 
of G is of type I. Compact groups, locally 
compact Abelian groups, connected tnilpotent 
Lie groups, connected tsemisimple Lie groups, 
and real or complex tlinear algebraic groups 
are examples of groups of type I. There exists a 
connected solvable Lie group that is not of 

type I (- Section U), but a connected solvable 
Lie group is of type I if the exponential map- 
ping is surjective (0. Takenouchi). A discrete 
group G with countably many elements is a 
type I group if and only if G has an Abelian 

normal subgroup with finite index (E. Thoma). 

F. Representation of Direct Products 

Let G, and G, be topological groups, G the 
tdirect product of G, and G, (G = G, x G,), and 
Ui an irreducible unitary representation of Gi 

(i = 1,2). Then the ttensor product representa- 
tion U, 0 U, : (gi, gJ-* U,, @ Ua2 is an irreduc- 
ible unitary representation of G. Conversely, 

if one of the groups G, and G, is of type I, then 
every irreducible unitary representation of G 
is equivalent to the tensor product U, @ U, 
of some irreducible representations Vi of Gi 
(i= 1,2). 

G. Direct Sums 

If the representation space !+j of a unitary 
representation U is the tdirect sum &, $(c() 
of mutually orthogonal closed invariant sub- 

spaces {B(cOl.,I, then U is called the direct 
sum of the subrepresentations U(E) induced on 

5j(tx) by U, and is denoted by U = (& U(a). 
Any unitary representation is the direct sum of 
cyclic representations. A unitary representa- 
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tion U is called a representation without multi- 
plicity if U cannot be decomposed as a direct 
sum U, @ U2 unless U, and U, are disjoint. If 

U is the direct sum of { U(cc)},,, and every U(a) 
is irreducible, then U is said to be decomposed 
into the direct sum of irreducible representa- 
tions. Decomposition into direct sums of 
irreducible representations is essentially 
unique if it exists; that is, if U = &, U(a) 
= eflEJ V(p) are two decompositions of U 
into direct sums of irreducible representations, 
then there exists a bijection cp from I onto J 

such that U(x) is equivalent to V(cp(cc)) for 
every a in I. A factor representation U of type 
I can be decomposed as the direct sum U = 

&, U(a) of equivalent irreducible represen- 
tations U(a). In general, a unitary representa- 
tion U cannot be decomposed as the direct 
sum of irreducible representations even if U is 
not irreducible. Thus it becomes necessary to 
use direct integrals to obtain an irreducible 
decomposition. 

H. Direct Integrals 

Let U be a unitary representation of a group G 
and (X, p) be a tmeasure space. Assume that 
the following two conditions are satisfied by 

U: (i) There exists a unitary representation 
U(x) of G corresponding to every element x 
of X, and sj( U) is a ‘direct integral (- 308 
Operator Algebras) of @(U(x)) (x6X) (written 
!&U) = Sx sj( U(x))&(x)); (ii) for every g in G, 
the operator U, is a decomposable operator 
and can be written as CJg=ix U,(x)dp(x). Then 

the unitary representation U is called the 
direct integral of the family {U(x)},,, of uni- 
tary representations and is denoted by U = 
lx U(x)&(x). If every point of X has mea- 
sure 1, then a direct integral is reduced to a 
direct sum. 

I. Decomposition into Factor Representations 

We assume that G is a locally compact group 
satisfying the kecond countability axiom, and 

also that a Hilbert space is separable. Every 
unitary representation U of G can be decom- 
posed as a direct integral U =sx U(x)&(x) 

in such a way that the center A of the von 
Neumann algebra M” = {V, 19 E G}” is the set 
of all tdiagonalizable operators. In this case 

almost all the U(x) are factor representations. 
Such a decomposition of U is essentially 
unique. There exists a +null set N in X such 
that for every x and x’ in X - N (x # x'), U(x) 
and U(x') are mutually disjoint factor repre- 

sentations. Hence the space X can be identified 
with the set G* of all quasi-equivalence classes 

of factor representations of G endowed with a 
suitable structure of a measure space. The 

space G* is called the quasidual of G. The 
measure p is determined by U up to tequiva- 

lence of measures. 

J. Duals 

A topology is introduced on the set G of all 
equivalence classes of irreducible unitary rep- 
resentations of a locally compact group G in 
the following way. Let H, be the n-dimensional 
Hilbert space l,(n) and 1, the set of all irreduc- 

ible unitary representations of G realized on 
H, (1 <II < co). We topologize I, in such a way 

that a +net { U"}l,, in I, converges to U if and 

only if (Uix, y) converges uniformly to (U,x, y) 
on every compact subset of G for any x and y 
in H,,. Equivalence between representations in 
I, is an open relation. Let G” be the set of all 
equivalence classes of n-dimensional irreduc- 
ible unitary representations of G with the 
topology of a quotient space of I, and G = 
u. G” be the direct sum of topological spaces 
G”. Then the topological space G is called the 

dual of G. G is a locally compact +Baire space 
with countable open base, but it does not 
satisfy the +Hausdorff separation axiom in 

general. If G is a compact Hausdorff topolog- 
ical group, then G is discrete. If G is a locally 
compact Abelian group, then G coincides with 
the +character group of G in the sense of 
Pontryagin. If G is a type I group, then there 
exists a dense open subset of G that is a locally 
compact Hausdorff space. The to-additive 

family generated by closed sets in G is denoted 
by 9. In the following sections, a measure on 
G means a measure defined on d. 

K. Irreducible Decompositions 

In this section G is assumed to be a locally 
compact group of type I with countable open 
base. For any equivalence class x in G, we 
choose a representative U(X)EX with the rep- 
resentation space H( U(x)) = j2(n) if x is n- 

dimensional. For any measure p on G, the 
representation Ue=Se U(x)&(x) is a unitary 
representation without multiplicity. Con- 

versely, any unitary representation of G with- 
out multiplicity is equivalent to a Up for some 
measure p on G. Moreover, U@ is equivalent to 
U" if and only if the two measures p and v are 
equivalent (that is, p is absolutely continuous 
with respect to v, and vice versa). A unitary 
representation U with multiplicity on a sepa- 

rable Hilbert space $ can be decomposed as 
follows: There exists a countable set of mea- 

sures p,, p2,. , p, whose supports are mutu- 
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ally disjoint such that U r Ji: U(x)@,(x) 0 

$7 U(x)d~c,(x) 0 0 ~0s~ U(xhh,(x). 
The measures p,, pZ, , & are uniquely 
determined by U up to equivalence of mea- 
sures. Any unitary representation U on a 

separable Hilbert space Sj of an arbitrary 
locally compact group with countable open 
base (even if not of type I) can be decomposed 
as a direct integral of irreducible representa- 
tions. In order to obtain such a decompo- 
sition, it is sufficient to decompose Q as a 

direct integral in such a way that a maximal 
Abelian von Neumann subalgebra A of M 
= { CJq 1 g E GJ ’ is the set of all diagonalizable 

operators. In this case, however, a different 
choice of A induces in general an essentially 

different decomposition, and uniqueness of the 
decomposition does not hold. For a group of 
type I, the irreducible representations are the 
“atoms” of representations, as in the case of 

compact groups. For a group not of type I, it 
is more natural to take the factor represen- 
tations for the irreducible representations, 
quasi-equivalence for the equivalence, and the 
quasidual for the dual of G. Therefore the 
theory of unitary representations for a group 
not of type I has different features from the 
one for a type 1 group. The theory of unitary 

representation for groups not of type I has not 
yet been successfully developed, but some 

important results have been obtained (e.g., L. 
Pukanszky, Ann. Sci. Ecole Norm. Sup., 4 
(1971)). 

Tatsuuma [l] proved a duality theorem for 
general locally compact groups which is an 
extension of both Pontryagin’s and Tannaka’s 
duality theorems considering the direct in- 
tegral decomposition of tensor product 
representations. 

L. The Plancherel Formula 

Let G be a unimodular locally compact group 
with countable open base, R(L) be the right 
(left) regular representation of G, and M, N, 
and P be the von Neumann algebras generated 
by {R,}, {L,}, and {R,, Lg}, respectively. Then 
M’=N,N’=M,andP’=MflN.Ifwedecom- 

pose 9 into a direct integral in such a way 
that P’ is the algebra of all diagonalizable 
operators, then M(x) and N(x) are factors for 
almost all x. This decomposition of sj pro- 
duces a decomposition of the two-sided regu- 

lar representation {R,, L,} into irreducible 
representations and a decomposition of the 
regular representation R(L) into factor repre- 
sentations. Hence the decomposition is realized 
as the direct integral over the quasidual G* of 

G. Moreover, the factors M(x) and N(x) are of 
type I or II for almost all x in G*, and there 

exists a +trace t in the factor M(x). For any f 
and y in L 1 (G) n L,(G), the Plancherel formula 

j-Gfbkl(sjds=jG* wg*(x)~f~4M4 (1) 

holds, where L$(x) = Jcf(s) U,(x)ds and U* is 
the tadjoint of U. The inversion formula 

h(s)= 
s 

t(W-~)Wx))44x) (2) 
G* 

is derived from (1) for a function i? =.f* g 

(,f;g~Li(G)flL,(G)). In (1) and (2) because of 
the impossibility of normalization of the trace 

t in a factor of type II,, the measure p cannot 
in general be determined uniquely. However, if 
G is a type I group, then (1) and (2) can be 

rewritten as similar formulas, where the repre- 
sentation U(x) in (1) and (2) is irreducible, the 
trace t is the usual trace, and the domain of 

integration is not the quasidual G* but the 
dual G of G. The revised formula (1) is also 

called the Plancherel formula. In this case the 
measure p on G in formulas (1) and (2) is 
uniquely determined by the given Haar mea- 
sure on G. The measure g is called the Plan- 
cherel measure of G. The support Gr of the 
Plancherel measure p is called the reduced dual 
of G. The Plancherel formula gives the direct 

integral decomposition of the regular repre- 
sentation into the irreducible representations 
belonging to Gr. Each U in 6, is contained in 
this decomposition, with the multiplicity equal 
to dim $(U). 

M. Square Integrable Representations 

An irreducible unitary representation U of a 

unimodular locally compact group G is said to 
be square integrable when for some element 
x # 0, in 5j( U), the function cp(g) =: ( Usx, x) 

belongs to L’(G, dg), where dg is t-he Haar 
measure of G. If U is square integrable, then 
cp,,,(g)=(U,x,y) belongs to L’(G,dg) for any x 
and y in b(U). Let U and U’ be the two square 
integrable representations of G. Then the 
following orthogonality relations hold: 

(Ugx,y)Wbu,4dg 
G 

0 if U is not 
zz equivalent to U’, (3) 

d;‘(x,u)(v,y) if U= U’. 

When G is compact, every irreducible unitary 
representation U is square integrable and 

finite-dimensional. Moreover, the scalar d, in 
(3) is the degree of U if the total measure of G 

is normalized to 1. In the general case, the 
scalar d, in (3) is called the formal degree of U 

and is determined uniquely by the given Haar 
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measure dg. Let y be an element in e(U) with 

norm 1 and I/ be the subspace { (PX,~ 1 x E $( U)} 
of L’(G). Then the linear mapping T:x+Jd, 
v~,~ is an isometry of sj(U) onto V. Hence U is 
equivalent to a subrepresentation of the right 
regular representation R of G. Conversely, 
every irreducible subrepresentation of R is 

square integrable. Thus a square integrable 
representation is an irreducible subrepresen- 
tation of R (g L). Therefore, in the irreducible 
decomposition of R, the square integrable 

representations appear as discrete direct sum- 
mands. Hence every square integrable repre- 
sentation U has a positive Plancherel measure 
v(U) that is equal to the formal degree d,. 
There exist noncompact groups that have 
square integrable representations. An example 
of such a group is SL(2, R) (- Section X). 

N. Representations of L, (G) 

Let G be a locally compact group and L,(G) 
be the space of all complex-valued integrable 
functions on G. Then L,(G) is an algebra over 
C, where the convolution 

(.f‘*g)(s)= .fW’MW s G 
is defined to be the product of ,f and g. Let A 
be the tmodular function of G. Then the map- 
pingf(s)*f*(s)=A(s-‘)S(s-‘)is an tinvol- 
ution of the algebra L,(G). Let U be a unitary 
representation of G, and put U; = lG U,f(s) ds. 

Then the mapping f-U> gives a nondegen- 
crate representation of the 3anach algebra 
L,(G) with an involution, where nondegenerate 

means that { U;XI~EL,(G), x~5j(U)}’ reduces 
to {O}. The mapping U + U’ gives a bijection 
between the set of equivalence classes of uni- 
tary representations of G and the set of equiv- 
alence classes of nondegenerate representa- 
tions of the Banach algebra L,(G) with an 
involution on Hilbert spaces. U is an irreduc- 
ible (factor) representation if and only if U’ is 

an irreducible (factor) representation. There- 
fore the study of unitary representations of G 

reduces to that of representations of L,(G). If 
Vi is a tcompact operator for every f in L,(G), 

then U is the discrete direct sum of irreducible 
representations, and the multiplicity of every 

irreducible component is finite. (See [2] for 
Sections A-N.) 

0. Induced Representations 

Induced representation is the method of con- 

structing a representation of a group G in a 

canonical way from a representation of a 
subgroup H of G. It is a fundamental method 

of obtaining a unitary representation of G. Let 
G be a locally compact group satisfying the 

second countability axiom, L be a unitary 
representation on a separable Hilbert space 
b(L) of a closed subgroup H of G, and m, n, 
A, and 6 be the right Haar measures and the 
modular functions of the groups G and H, 
respectively. Then there exists a continuous 

positive function p on G satisfying p(hg) = 
a(h’p(g) for every h in H and g in G. 

The +quotient measure p=(prn)/n is a quasi- 
invariant measure on the coset space H\G (- 

225 Invariant Measures). Let sj be the vector 
space of weakly measurable functions f on G 
with values in b(L) satisfying the following 
two conditions: (i) f(hg) = &f(g) for every h in 

H and g in G; and (ii) llfl12=~H~,~ Ilf(sH’ 4-G) 
< + co, where 4 represents the coset Hg. By 
condition (i), the norm IIf 11 is constant on a 
coset Hg = 4 and is a function on H\G, so the 

integral in condition (ii) is well defined. Then sj 
is a Hilbert space with the norm defined in (ii). 
A unitary representation U of G on the Hilbert 

space 5 is defined by the formula 

U is called the unitary representation induced 
by the representation L of a subgroup H and is 
denoted by U = UL or Indg L. Induced repre- 
sentations have the following properties. 

(1) UL,@L 2g ULl @ UL2 or more generally, 

U~“(x)du(x) 2 j UL(“)dp(x). Therefore if UL is 
irreducible, L is also irreducible (the converse 
does not hold in general). 

(2) Let H, K be two subgroups of G such 
that H c K, L be a unitary representation of H, 
and A4 be the representation of K induced by 

L. Then two unitary representations UM and 
UL of G are equivalent. 

An induced representation UL is the repre- 
sentation on the space of square integrable 
sections of the tvector bundle with fiber H(L) 
tassociated with the principal bundle (G, H\ 
G, H) (- G. W. Mackey [3], F. Bruhat [4]). 

P. Unitary Representations of Special Groups 

In the following sections we describe the fun- 

damental results on the unitary representa- 
tions of certain special groups. 

Q. Compact Groups 

Irreducible unitary representations of a com- 
pact group are always finite-dimensional. 
Every unitary representation of a compact 

group is decomposed into the direct sum of 
irreducible representations. Irreducible unitary 

representations of a compact connected Lie 
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group are completely classified. The characters 
of irreducible representations are calculated in 

an explicit form (- 69 Compact Groups; 249 
Lie Groups). Every irreducible unitary repre- 

sentation U of a connected compact Lie group 
G can be extended uniquely to an irreducible 
holomorphic representation UC of the com- 
plexification G“ of G. U’ is holomorphically 
induced from a l-dimensional representation 
of a Bore1 subgroup B of G’ (Borel-Weil 
theorem; - R. Bott [S]). 

R. Abelian Groups 

Every irreducible unitary representation of 

an Abelian group G is 1 -dimensiona!. Stone’s 
theorem concerning one-parameter groups 
of unitary operators, U, = JTx eiL’dE,, gives 
irreducible decompositions of unitary repre- 
sentations of the additive group R of real 

numbers. +Bochner’s theorem on tpositive 
definite functions on R is a restatement of 
Stone’s theorem in terms of positive definite 
functions. The theory of the +Fourier trans- 
form on R, in particular +Plancherel’s theorem, 

gives the irreducible decomposition of the 
regular representation of R. The theorems of 
Stone, Bochner, and Plancherel have been 

extended to an arbitrary locally compact 
Abelian group (- 192 Harmonic Analysis). 

S. Representations of Lie Groups and Lie 
Algebras 

Let U be a unitary representation of a Lie 

group G with the Lie algebra r~. An element x 
in $j( U) is called an analytic vector with respect 
to U if the mapping g--$ U,x is a real analytic 
function on G with values in b(U). The set of 

all analytic vectors with respect to U forms a 
dense subspace % = 2L( U) of .$( U). For any 
elements X in q and x in ‘U(U), the derivative 
at t = 0 of a real analytic function UelptXx is 
denoted by V(X)x. Then V(X) is a linear 
transformation on %, and the mapping k’: X 

j V(X) is a representation of 9 on %. We call 
V the differential representation of U. The rep- 

resentation I/ of R can be extended uniquely 
to a representation of the tuniversal en- 
veloping algebra B of 9. Two unitary repre- 

sentations U”’ and U”’ of a connected Lie 
group G are equivalent if and only if there 
exists a bijective bounded linear mapping T 

from $j( I/(‘)) onto $(Uc21) such that T maps 
%(I/"') onto Vl(U(2)) and satisfies the equality 

(To V”‘(X))X =( V2’(X)o T)x 

forallXingandxin~U(U”‘).LetX,,...,X, 

be a basis of q and U be a unitary representa- 
tion of G. Then the element A = Xf + +X,’ 

in the universal enveloping algebra B of B is 

represented in the differential representation V 
of U by an tessentially self-adjoint operator 
V(A). Conversely, if to each element X in q 

there corresponds a (not necessarily bounded) 
+skew-Hermitian operator p(x) that satisfies 
the following three conditions, then there 
exists a unique unitary representation U of the 
simply connected Lie group G with the Lie 

algebra g such that the +closure of V(X) coin- 
cides with the closure of p(X) for every X in g: 
(i) There exists a dense subspace C contained 
in the domain of p(X)p( Y) for every X and Y 
in g; (ii) for each X and Yin g, u and h in R, 

andxinO, p(aX+hY)x=ap(X)x+bp(Y)x, 
p([X, Y])x=(p(X)p(Y)--p(Y)p(X))x; (iii) the 
restriction of p(X,)’ + + p(XJ2 to B is an 
essentially self-adjoint operator if X, , , X, is 
a basis of 9 (E. Nelson [6]). 

T. Nilpotent Lie Groups 

For every irreducible unitary representation of 
a connected nilpotent Lie group G, there is 

some l-dimensional unitary representation of 
some subgroup of G that induces it. Let G be a 
simply connected nilpotent Lie group, B be the 

Lie algebra of G, and p be the contragredient 
representation of the adjoint representation of 
G. The representation space of p is the dual 
space CJ* of g. A subalgebra h of 9 is called 
subordinate to an element fin g* iff annihi- 
lates each bracket [X, Y] for every X and Yin 
h: (,h [X, Y])=O. When 1) is subordinate to ,J, a 

l-dimensional unitary representation L of the 
analytic subgroup H of G with the Lie algebra 

h is defined by the formula I.Jexp X) = e2nr(f,X) 
(X E h). Every l-dimensional unitary represen- 
tation iLf of H is defined as in this formula by 

an element f in g* to which h is subordinate. 
The unitary representation of G induced by 
such a S is denoted by U(J h). The represen- 
tation U(,L b) is irreducible if and only if h has 
maximal dimension among the subalgebras 
subordinate to ,f: Two irreducible represent- 
ations U(L h) and U(J 6’) are equivalent if and 
only if ,/ and f’ are conjugate under the group 
p(G). Therefore there exists a bijection be- 
tween the set of equivalence classes of the 
irreducible unitary representations of a simply 

connected nilpotent Lie group G and the set of 
orbits of p(G) on r~* (A. A. Kirillov [7]). 

U. Solvable Lie Groups 

Let G be a simply connected solvable Lie 
group. If the exponential mapping is bijective, 

G is called an exponential group. All results 
stated above for nilpotent Lie groups hold for 

exponential groups except the irreducibility 
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criterion. In this case the representation U(,J h) 
is irreducible if and only if h is of maximal 
dimension among subordinate subalgebras 
and the orbit 0 = p(G),f contains the affme 

subspace~+h’=f+{gIg(h)=O} (Pukanszky 
condition). 

The situation is more complicated for gen- 
eral solvable Lie groups. The isotropy sub- 

group Gf={~~GlpMf=,f) at,fEg* kin 
general, not connected. A linear form f is 
called integral if there exists a unitary charac- 
ter qr of G, whose differential is the restriction 

of 27rlf to gf (the Lie algebra of G,). Using the 
notion of “polarization,” an irreducible unitary 

representation of G is constructed from a pair 
(J; ns) of an integral form fgg* and a character 
nr. If G is of type I, then every irreducible 
unitary representation of G is obtained in this 
way. A simply connected solvable Lie group G 

is of type I if and only if(i) every ,fe CJ* is in- 
tegral and (ii) every G-orbit p(G),f in g* is 
locally closed (Auslander and Kostant [S]). 

As an example, let n be an irrational real 
number. Then the following Lie group G is not 

oftype I:G= {[r !iat Fj it~R,z,w~C}. 

V. Semisimple Lie Groups 

A connected semisimple Lie group is of type I. 
The character x = xc7 of an irreducible unitary 

representation U of G is defined as follows: Let 
C;(G) be the set of all complex-valued C”- 
functions with compact support on G. Then 

for any function f in C;(G), the operator U, 
=jG UJ(g)dg belongs to the ttrace class, and 
the linear form x : f- T, Uf is a idistribution in 
the sense of Schwartz. The distribution x is 
called the character of an irreducible unitary 
representation U. A character x is invariant 
under any inner automorphism of G and is a 

simultaneous eigendistribution of the algebra 
of all two-sided invariant linear differential 

operators on G. Two irreducible unitary repre- 
sentations of G are equivalent if and only if 
their characters coincide. The distribution ): is 
a tlocally summable function on G and coin- 
cides with a real analytic function on each 
connected component of the dense open sub- 
manifold G’ consisting of regular elements in 

G. In general, x is not real analytic on all of G 
(Harish-Chandra [9, III; lo]. 

W. Complex Semisimple Lie Groups 

There are four series of irreducible represen- 
tations of a complex semisimple Lie group G. 

(1) A principal series consists of unitary 

representations of G induced from l- 

dimensional unitary representations L of a 
+Borel subgroup B of G. L is uniquely deter- 
mined by a unitary character VE Hom(A, U(1)) 
= A* of the +Cartan subgroup A of G con- 
tained in B. Hence the representations in the 
principal series are parametrized by the ele- 

ments in the character group A* of the Cartan 
subgroup A. If we denote lJL by U’, two repre- 
sentations U” and U”‘(v, V’E A*) are equivalent 

if and only if v and v’ are conjugate under the 
+Weyl group W of G with respect to A. 

(2) A degenerate series consists of unitary 
representations induced by l-dimensional 
unitary representations of a tparabolic sub- 

group P of G other than B. (A parabolic sub- 
group P is any subgroup of G containing a 
Bore1 subgroup B.) 

(3) A complementary series consists of irre- 
ducible unitary representations UL induced by 
nonunitary l-dimensional representations 
L of a Bore1 subgroup B. In this case, con- 

dition (ii) in the definition of UL (- Section 0) 
must be changed. When L is a nonunitary 

representation, then the operator ‘/k is not a 
unitary operator with respect to the usual L,- 
inner product (ii). However, if L satisfies a 
certain condition, then Uk leaves invariant 
some positive definite Hermitian form on the 
space of sufficiently nice functions. Completing 
this space, we get a unitary representation UL. 
The representations thus obtained form the 
complementary series. 

(4) A complementary degenerate series con- 
sists of irreducible unitary representations 
induced by nonunitary l-dimensional repre- 

sentations of a parabolic subgroup P # B. 
Representations belonging to different series 

are never equivalent. It seems certain that any 
irreducible unitary representation of a con- 
nected complex semisimple Lie group is equiv- 
alent to a representation belonging to one of 
the above four series, but this conjecture has 

not yet been proved. Moreover, E. M. Stein 
[ 1 l] constructed irreducible unitary repre- 
sentations different from any in the list ob- 

tained by I. M. Gel’fand and M. A. Naimark 
(Neumark) [12]. These representations belong 
to the complementary degenerate series. The 
characters of the representations in these four 
series are computed in explicit form. For ex- 
ample, the character xy of the representation 
U” in the principal series can be calculated as 
follows: Let 1 be a linear form on a Cartan 

subalgebra a such that v(exp H) = e*(‘) for 
every H in a, let D be the function on A de- 
fined by D(exp H) = &]er(“ri2 -e-a(H)i2)2, 
where LY runs over all positive roots. Then the 

character xy of a representation U” in the 
principal series is given by the formula 

%,,(exp H) = D(exp H)-’ 1 .c?~(~). 
SEW 
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In the irreducible decomposition of the regular 
representation of G, only irreducible represen- 
tations belonging to the principal series arise. 

Hence the right-hand side in the Plancherel 
formula is an integral over the character group 
A* of a Cartan subgroup A. Under a suitable 
normalization of the Haar measures in G and 
A*, the Plancherel measure p of G can be 
expressed by using the Haar measure dv of A*: 

d~L(v)=w-1~l(~,a)/(~,a)12dv, 
a 

where w  is the order of the Weyl group, p is 

the half-sum of all tpositive roots, and 51 runs 
over all positive roots (Gel’fand and Naimark 

c1211. 

X. Real Semisimple Lie Groups 

As in the case of a complex semisimple Lie 
group, a connected real semisimple Lie group 
G has four series of irreducible unitary repre- 

sentations. However, if G has no parabolic 
subgroup other than a minimal parabolic 

subgroup B and G itself, then G has no repre- 
sentation in the degenerate or complementary 

degenerate series. Examples of such groups are 
SL(2, R) and higher-dimensional +Lorentz 

groups. In general, the classification of irreduc- 
ible unitary representations in the real semi- 
simple case is more complicated than in the 
complex semisimple case. Irreducible unitary 
representations arising from the irreducible 
decomposition of the regular representation 

are called representations in the principal 
series. The principal series of G are divided 

into a finite number of subseries corresponding 
bijectively to the conjugate classes of the +Car- 
tan subgroups of G. 

A connected semisimple Lie group G has a 
square integrable representation if and only if 
G has a compact Cartan subgroup H. The set 
of all square integrable representations of G is 
called the discrete series of irreducible unitary 
representations. The discrete series is the sub- 

series in the principal series corresponding to a 
compact Cartan subgroup H. The representa- 
tions in the discrete series were classified by 

Harish-Chandra. Let f~ be the Lie algebra of 
H, P the set of all positive roots in b for a fixed 
linear order, 7~ the polynomial lJllEP H,, and 
F the set of all real-valued linear forms on 

J--b. 1 Moreover, let L be the set of all linear 
forms i, in F such that a single-valued char- 
acter {A of the group H is defined by the for- 

mula tl(exp X) = eAcX), and let L’ be the set 
of all 1 in L such that ~(1) # 0. Then for each 

1 in L’, there exists a representation w(I) of 
G in the discrete series, and conversely, every 

representation in the discrete series is equivalent 
to w(n) for some 3, in 15’. Two representations 

~(2,) and w(&) (&, I, EL’) are equivalent if 
and only if there exists an element s in W, = 
N(H)/H such that & = si,, where N(H) is the 

normalizer of H in G ( W, can act on 9 as a 
linear transformation group in the natural 

way). The value of the character x,!.on the 
subgroup H of the representation #w(I) (MEL’) 
is given as follows: Let c(i) be the signature of 

744 = rIa.P ,l(H,), and define q and A by 4 = 
(dim G/K)/2 and A(exp H) = IIapp(ea(H)i2 - 
e-a(H)/2). Then the character xi of the repre- 

sentation o(i) has the value ( -l)q~:(I)~l(h) = 

A(h)-’ C,,, &det s)&,(h) on a regular element 
h in H. The formal degree d(w(i)) of the 
representation w(n) is given by the formula 
d(w(l))=Cm’[W,]In(I)I, where C is a positive 
constant (not depending on A) and [W,] is the 
order of the finite group W, (Harish-Chandra 
[ 131). A formula expressing the character xi on 
the whole set of regular elements in G has been 
given by T. Hirai [14]. The representations in 

discrete series are realized on L2-cohomology 
spaces of homogeneous holomorphic line 
bundles over G/H (W. Schmid [ 151). They are 

also realized on the spaces of harmonic spinors 
on the +Riemannian symmetric space G/K 
(M. Atiyah and Schmid [16]). They are also 
realized on the eigenspaces of a Casimir opera- 
tor acting on the sections of vector bundles 
on G/K (R. Hotta, J. A4ath. Sot. Japan, 23; 
N. Wallach [ 171). An irreducible unitary rep- 
resentation is called integrable if al least one 

of its matrix coefficients belongs to L’(G). 
Integrable representations belong to the dis- 
crete series. They have been characterized by 

H. Hecht and Schmid (Math. Ann.. 220 (1976)). 
The theory of the discrete series is easily ex- 

tended to reductive Lie groups. 
The general principal series representations 

of a connected semisimple Lie group G with 
finite center are constructed as follows. Let K 
be a maximal compact subgroup of G. Then 
there exists a unique involutive automorphism 
Q of G whose fixed point set coincides with K. 

H is called a Cartan involution of G. Let H be a 
o-stable Cartan subgroup of G. Then H is the 
direct product of a compact group T= H n K 

and a vector group A. The centralizer Z(A) of 
A in G is the direct product of a reductive Lie 
group M = 6(M) and A. M has a compact 
Cartan subgroup T. Hence the set A, of the 
discrete series representations of ?vf is not 
empty. Let a be an element of the dual space 
a* of the Lie algebra a of A and put 9, = 

{XEgI[H,X]=a(H)X(VHca)} and A= 
{rEa*)g,#{Of}.LetA+bethesetofposi- 
tive elements of A in a certain order of a* and 
put n = J&+ 9, and N = expn. Then P = MAN 

is a closed subgroup of G. P is called a cuspidal 

parabolic subgroup of G. Let D E A, and v E a*. 
Then a unitary representation D @ ei” of P 
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is defined by (D @ e’“) (man) = D(rn)eiv(“‘gO) 
(m E M, a E A, n E N). The unitary representation 

n,,, of G induced by D 0 eiy is independent of 
the choice of A+ up to equivalence. Thus 7-rD,+ 
depends only on (H, D, v). The se; of represen- 

tations {Q, y ) D E fi,,, v E a*} is called the prin- 
cipal H-series. If v is regular in a* (i.e., (v, c() #O 
for all LYS A), then I-Q,, y is irreducible. Every Q, y 

is a finite sum of irreducible representations. 
The character 0,. y of or,, y is a locally sum- 
mable function which is supported in the 
closure of Uqccg(MA)g-‘. If two Cartan 
subgroups H, and H, are not conjugate in G, 
then every HI-series representation is disjoint 
from every HZ-series representation. Choose 

a complete system {H,, . , H,} of conjugacy 
classes of Cartan subgroups of G. Then every 
H, can be chosen as O-stable, The union of the 
principal Hi-series (1 < i < r) is the principal 

series of G. The right (or left) regular represen- 
tation of G is decomposed as the direct integral 
of the principal series representations. Every 
complex-valued (Y-function on G with com- 
pact support has an expansion in terms of the 

matrix coefficients of the principal series repre- 
sentations. Harish-Chandra [ 181 proved these 
theorems and determined explicitly the Plan- 

cherel measure by studying the asymptotic 
behavior of the Eisenstein integral [ 19,201. 

Y. Spherical Functions 

Let G be a locally compact tunimodular group 

and K a compact subgroup of G. The set of all 
complex-valued continuous functions on G 

that are invariant under every left translation 
L, by elements k in K is denoted by C(K\G). 
The subset of C(K\G) that consists of all two- 
sided K-invariant functions is denoted by 
C(G, K). The subset of C(G, K) consisting of all 

functions with compact support is denoted by 
L =L(G, K). L is an algebra over C if the prod- 
uct of two elements f and g in L is defined by 
the convolution. 

Let i be an algebra homomorphism from L 
into C. Then an element of the eigenspace F(I) 

={$~C(K,G)(f*Il/=A(f)ll,(VfeL)}iscalled 
a spherical function on K\G. If F(I) contains a 
nonzero element, then F(l) contains a unique 
two-sided K-invariant element o normalized 
by w(e) = 1, where e is the identity element 
in G. This function w  is called the zonal spher- 

ical function associated with i. In this case, 
the homomorphism ;1 is defined by n(f) = 

lGf(g)co(g-‘)dg. Hence the eigenspace F(I) 
is uniquely determined by the zonal spherical 
function o. A function w  # 0 in C(G, K) is a 
zonal spherical function on K\G if and only 

if w  satisfies either of the following two con- 
ditions: (i) The mappingft-+ [f(g)w(g-‘)dg is 
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an algebra homomorphism of L into C; (ii) o 
satisfies the functional equation 

s w(gkh)dk=w(g)w(h). 
K 

When G is a Lie group, every spherical func- 
tion is a real analytic function on K\G. 

Z. Expansion by Spherical Functions 

In this section, we assume that the algebra L 
of two-sided K-invariant functions is com- 
mutative. In this case there are sufliciently 
many spherical functions of K\G, and two- 
sided K-invariant functions are expanded by 

spherical functions. An irreducible unitary 
representation V of G is called a spherical 
representation with respect to K if the represen- 

tation space $j(U) contains a nonzero vector 
invariant under every Q., where k runs over K. 
By the commutativity of L, the K-invariant 

vectors in !+j(U) form a l-dimensional sub- 
space. Let x be a K-invariant vector in Sj( U) 
with the norm //x/J = 1. Then w(g)=(U,x,x) is 
a zonal spherical function on K\G, and for 
every y in $j( U), the function q,,(g) = (U,x, y) 
is a spherical function associated with w. 
Moreover, in this case the zonal spherical 

function o is a positive definite function on G. 
Conversely, every positive definite zonal spher- 

ical function w  can be expressed as w(g) = 
(U,x, x) for some spherical representation U 
and some K-invariant vector x in sj(U). 

The set of all positive definite zonal spher- 
ical functions becomes a locally compact space 

Q by the topology of compact convergence. 
The spherical Fourier transform f^of a function 
fin L,(K\G) is defined by 

fW= f(gMg-‘)dg. s G 

There exists a unique +Radon measure p on 
Q such that for every fin L, fbelongs to 
L,(Q, p). Also, the Plancherel formula 

holds for every f and g in L, and an inversion 
formula f(s) = In f(co)co(s)dp(co) holds for a 
sufficiently nice two-sided K-invariant func- 
tion f [21]. Identifying a positive definite zonal 
spherical function with the corresponding 
spherical representation, we can regard 0 as 

a subset of the dual (? of G. The Plancherel 
formula for two-sided K-invariant functions is 
obtained from the general Plancherel formula 

on G by restricting the domain of the integral 
from G to Q When G is a Lie group and L is 

commutative, a spherical function on K\G can 

be characterized as a simultaneous eigenfunc- 
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tion of G-invariant linear differential operators 

on K\G. 

AA. Spherical Function on Symmetric Spaces 

The most important case where the algebra 

L=L(G, K) is commutative is when K\G is a 
tweakly symmetric Riemannian space or, in 
particular, a tsymmetric Riemannian space 
When K\G is a compact symmetric Riemann- 
ian space, a spherical representation with 
respect to K is the irreducible component of 
the regular representation Ton K\G, and 
a spherical function on K \G is a function 

that belongs to the irreducible subspaces in 
L,(K\G). In particular, if G is a compact con- 

nected semisimple Lie group, the highest 
weights of spherical representations of G with 
respect to K are explicitly given by using the 
Satake diagram of K\G. The Satake diagram 

of K\G is the +Satake diagram of the noncom- 
pact symmetric Riemannian space K\G, dual 
to K\G or the Satake diagram of the Lie alge- 
bra of G,. If a symmetric space is the under- 
lying manifold of a compact Lie group G, then 
G can be expressed as G = K\(G x G), where K 
is the diagonal subgroup of G x G. In this case, 
a zonal spherical function w  on G = K\(G x G) 
is the normalized character of an irreducible 
unitary representation U of G: w(g) = 

(deg U)-’ T,U,. The explicit form of w  is 
given by tWeyl’s character formula (- 249 
Lie Groups). 

The zonal spherical functions on a sym- 
metric Riemannian space K\G of noncompact 

type are obtained in the following way: Let G 
be a connected semisimple Lie group with 

finite center, K be a maximal compact sub- 
group of G, and G= NA, K be an TIwasawa 
decomposition. Then for any g in G there 
exists a unique element H(g) in the Lie algebra 
a+ of A+ such that g belongs to N expff(g)K. 

Let a be a Cartan subalgebra containing a,, P 
be the set of all positive roots in a, and p = 
(C,,,, ~)/2. Then for any complex-valued linear 

form v on a + , the function 

is a zonal spherical function on the symmetric 
Riemannian space K\G. Conversely, every 
zonal spherical function w  on K\G is equal to 
w, for some v. Two zonal spherical functions 

w, and w,, coincide if and only if v and v’ are 
conjugate under the operation of the Weyl 
group W, = N,(A)/Z,(A) of K\G (Harish- 
Chandra [22], S. Helgason [23]). If v is real- 
valued, then w, is positive definite. Such a 

zonal spherical function w, is obtained from 
a spherical representation belonging to the 

principal A-series. Let R, be the set of all 
zonal spherical functions w, associated with 
the real-valued linear form v. The-n the support 

of the Plancherel measure p on K\G is con- 
tained in R,. We can choose v as a parameter 
on the space R,. Then the right-hand side of 
the Plancherel formula can be expressed as an 
integral over the dual space L of a+. More- 

over, the Plancherel measure p is absolutely 
continuous with respect to the Lebesgue mea- 
sure dv on the Euclidean space L .and can be 
expressed as 

under suitable normalization of p and dv. The 
problem of calculating the function c(v) can be 
reduced to the case of symmetric spaces of 
rank 1 and can be solved explicitl:y. Let p, be 

the multiplicity of a restricted root c( and I(v) 
be the product 

1 

where x runs over all positive restricted roots 
and B is the +beta function. Then I:(V) = I(&)/ 

I(p) [20,24]. Every spherical function .I’ on 
K\G is expressed as the Poisson integral of 
its “boundary values” on the Martin boundary 
P\G of K\G, where P= MA+ N is a minimal 
parabolic subgroup of G. The boundary values 
of ,f form a hyperfunction with values in a line 

bundle over P\G (K. Okamoto et al. [25]). 

BB. Spherical Functions and Special Functions 

Some important special functions are obtained 

as the zonal spherical functions on a certain 
symmetric Riemannian space M =: K\G (G is 
the motion group of M). In particular when 
M is of rank 1, then the zonal spherical func- 
tions are essentially the functions of a single 

variable. For example, the zonal spherical 
functions on an n-dimensional Euclidean space 
can be expressed as 

where 2m = n - 2 and J, is the +Bessel function 

of the mth order. The zonal spherical function 
on an (n - 1)-dimensional sphere Y-’ = 
SO(n- l)\SO(n) is given by 

co,(O)=ryv+ l)r(n-2)I-(v+n-2)~~‘C,“(cosO) 

(v=O, 1,2, .‘.,, 

where C:(z) is the +Gegenbauer polynomial. 
The zonal spherical functions on an (n - l)- 
dimensional Lobachevskii space can be ex- 

pressed as 

~IJ,,(~)=~~-“~I-(vI+ 1/2)sinh-mf”21 

x ‘pl/f,;!!‘m+v (cash t) 
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using a generalized ‘associated Legendre func- 
tion ‘$3,“. Many properties of special functions 

can be proved from a group-theoretic point of 
view. For example, the addition theorem is 

merely the homomorphism property U,, = 
Ug V, expressed in terms of the matrix com- 
ponents of U. The differential equation satis- 
fied by these special functions is derived from 

the fact that a zonal spherical function w  is an 
eigenfunction of an invariant differential oper- 

ator. The integral expression of such a special 
function can be obtained by constructing a 
spherical representation U in a certain func- 
tion space and calculating explicitly the inner 

product in the expression o(~)=(U~x,x) (N. 
Ya. Vilenkin [26]). 

CC. Generalization of the Theory of Spherical 
Functions 

The theory of spherical functions described in 
Sections Y-BB can be generalized in several 

ways. First, spherical functions are related to 
the trivial representation of K. A generaliza- 
tion is obtained if the trivial representation of 

K is replaced by an irreducible representation 
of K. The theory of such zonal spherical func- 
tions is useful for representation theory [20]. 
For example, the Plancherel formula for 
SL(2, R) can be obtained using such spherical 

functions (R. Takahashi, Japan. J. Math., 31 
(1961)). Harish-Chandra’s Eisenstein integral 
is such a spherical function on a general semi- 
simple Lie group G. He used it successfully to 

obtain the Plancherel measure of G. Another 
generalization can be obtained by removing 
the condition that K is compact. In particu- 
lar, when K\,G is a symmetric homogeneous 

space of a Lie group G, the algebra 9 of all G- 
invariant linear differential operators is com- 
mutative if the space K\G has an invariant 
volume element. In this case, a spherical func- 
tion on K\G can be defined as a simultaneous 
elkenfunction of 9. The character of a semi- 
simple Lie group is a zonal spherical func- 
tion (distribution) in this sense. The spherical 

functions and harmonic analysis on sym- 
metric homogeneous space have been studied 
by T. Oshima and others. T. Oshima and J. 
Sekiguchi [27] proved the Poisson integral 

theorem (- Section AA) for a certain kind of 
symmetric homogeneous spaces. 

The spherical functions and unitary repre- 
sentations of topological groups that are not 
locally compact are studied in connection with 

probability theory and physics. For example, 

the zonal spherical functions of the rotation 
group of a real Hilbert space are expressed by 

Hermite polynomials. 

DD. Discontinuous Subgroups and 
Representations 

Let G be a connected semisimple Lie group 
and r be a discrete subgroup of G. Then the 

regular representation T of G on T\G is de- 
fined by (T,f)(x)=f(xg) (feL’(r\G)). The 
problem of decomposing the representation T 
into irreducible components is important in 
connection with the theory of tautomorphic 
forms and number theory. First assume that 
the quotient space T\G is compact. Then for 
every function fin L,(G), the operator T(f) is 
a compact operator. Hence the regular repre- 

sentation T on r\G can be decomposed into 
the discrete sum T=z,“=, Tck) of irreducible 
unitary representations T@), and the multiplic- 

ity of every irreducible component is finite. 
The irreducible unitary representation U of G 
is related to the automorphic forms of r in the 
following way: Let x be a nonzero element in 
the representation space .!j = sj( U) of U. $ is 

topologized into a tlocally convex topological 
vector space 6, by the set N, of tseminorms: 

N,= {PC(~) = maxgEc I(q,x,y)l}, where C runs 
over all compact subsets in G. The topology 

,KX of sj, is independent of the choice of x 
provided that dim{ Tx) kc K} < m, where K is 

a maximal compact subgroup of G. Let sj* be 

the completion of sj, with respect to the topo- 
logy TX (the completion is independent of 

the choice of x). $* contains the original Hil- 
bert space $j as a subspace. Then the repre- 
sentation U of G on 5.j can be extended to a 
representation I/* of G on the space .Q*. An 
element fin $* invariant under UF for every ;J 

in r is called an automorphic form of r of type 
U. Then the multiplicity of an irreducible 
representation U in the regular representation 

T on T\G is equal to the dimension of the 
vector space consisting of all automorphic 
forms of type U. This theorem is called the 

Gel’fand-Pyatetskii-Shapiro reciprocity law 
[28]. Let T=C,“=, T@) be the irreducible de- 

composition of T and xk be the character of 
the irreducible unitary representation T@). 
Then for a suitable function f on G, the in- 
tegral operator K, on sj( T) = Z,‘( T\G) with 
kernel k/(x, y) = CYerf(xml yy) belongs to the 

trace class. By calculating the trace of K, in 
two ways, the following trace formula is 
obtained: 

where {v} is the conjugate class of y in r and 

D, is the quotient space of the centralizer G, of 
1~ in G by the centralizer Q of y in r. 

When the groups G and r are given ex- 
plicitly, the right-hand side of the trace for- 

mula can be expressed in a more explicit form, 
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and the trace formula leads to useful conse- 
quences. A similar trace formula holds for the 

unitary representation UL induced by a fmite- 

dimensional unitary representation L of r 
instead of the regular representation Ton 
T\G. When the quotient space T\G is not 
compact, the irreducible decomposition of the 
regular representation Ton IY\G contains not 

only the discrete direct sum but also the direct 
integral (continuous spectrum). A. Selberg 
showed that even in this case, there are explicit 
examples for which the trace formula holds for 
the part with discrete spectrum. Also, the part 

with continuous spectrum can be described by 
the tgeneralized Eisenstein series. Analytic 
properties and the functional equation of the 

generalized Eisenstein series have been studied 
by R. Langlands [30]. Recent developments 
are surveyed in [3 11. 

EE. History 

Finite-dimensional unitary representations of 
a finite group were studied by Frobenius and 
Schur (1896-1905). In 1925, +Weyl studied the 

finite-dimensional unitary representation of 
compact Lie groups. The theory of infinite- 
dimensional unitary representation was init- 
iated in 1939 by E. P. Wigner in his work on 
the inhomogeneous Lorentz group, motivated 
by problems of quantum mechanics. 

In 1943, Gel’fand and D. A. Raikov proved 

the existence of suficiently many irreducible 
unitary representations for an arbitrary locally 

compact group. The first systematic studies of 
unitary representations appeared in 1947 in 
the work of V. Bargmann on SL(2, R) [31] 

and the work of Gel’fand and Neumark on 
SL(2, C). Gel’fand and Naimark established 
the theory of unitary representation for com- 
plex semisimple Lie groups [ 121. 

Harish-Chandra proved theorems concern- 
ing the unitary representations of a general 
semisimple Lie group; for instance, he proved 
that a semisimple Lie group G is of type I [7] 
and defined the character of a unitary repre- 

sentation of G and proved its basic properties 
[9, III; lo]. Harish-Chandra also determined 
the discrete series of G and their characters. 

Harish-Chandra [ 181 proved the Plancherel 
formula for an arbitrary connected semisimple 
Lie group G with finite center. Hence har- 
monic analysis of square integrable functions 
on G is established. 

Further studies on harmonic analysis on 
semisimple Lie groups have been carried out. 

In particular, Paley-Wiener-type theorems, 

which determine the Fourier transform image 

of the space C?(G) of ?-functions with com- 
pact support, have been proved for the group 
PSL(2, R) (L. Ehrenpreis and F. Mautner 

[33]), complex semisimple Lie groups (Zhelo- 
benko [34]), and two-sided K-invariant func- 
tions on general semisimple Lie groups (R. 

Gangolli [35]). A. W. Knapp and E. M. Stein 
[36] studied the intertwining operators. 

Concerning the construction of irreducible 
representations, G. W. Mackey [3:] and Bruhat 
[4] developed the theory of induced represen- 
tations of locally compact groups and Lie 
groups, respectively. B. Kostant [37] (see 

Blattner’s article in [38]) noticed a relation 
between homogeneous tsymplectic manifolds 
and unitary representations and proposed a 

method of constructing irreducible unitary 
representations of a Lie group. Selberg’s re- 
search [29] revealed a connection between 
unitary representations (or spherical functions) 
and the theory of automorphic forms and 
number theory. A number of pape-rs along 
these lines have since appeared [31]. In con- 
nection with number-theoretic investigations 
of an ialgebraic group defined over an alge- 
braic number field, unitary representations of 

the tadele group of G or an algebraic group 
over a +p-adic number field have been studied 

(- [31,38], Gel’fand, M. I. Grayev, and I. I. 
Pyatetskii-Shapiro [39], and H. M. Jacquet 
and R. P. Langlands [40]). 

For the algebraic approach to the iniinite- 
dimensional representations of semisimple Lie 
groups and Lie algebras - [41]. 

For surveys of the theory of unitary repre- 
sentations - [2,19,20,31,38]. 
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Univalent and Multivalent 
Functions 

A. General Remarks 

A single-valued tanalytic function f(z) defined 
in a domain D of the complex plane is said to 

be univalent (or simple or schlicht) if it is injec- 
tive, i.e., if ,f(zI) #,f(zZ) for all distinct points z,, 

52 in D. A multiple-valued function ,f(z) is also 

said to be univalent if its distinct function 
elements always attain distinct values at their 
centers. The derivative of a univalent function 
is never zero. The limit function of a tuni- 
formly convergent sequence of univalent func- 
tions is univalent unless it reduces to a con- 
stant. When f(z) is single-valued, the univalent 

function MI= f(z) gives rise to a one-to-one 
+conformal mapping between D and its image 

S(D). 

B. Univalent Functions in the Unit Disk 

A systematic theory of the family of functions 

+holomorphic and univalent in the unit disk 
originates from a distortion theorem obtained 

by P. Koebe (1909) in connection with the 
uniformization of analytic functions. In gen- 
eral, distortion theorems are theorems for 
determining bounds of functionals, such as 
If(z)/, If’(z)I, argf”(z), within the family under 

consideration. In particular, distortion theo- 
rems concerning the bounds of the arguments 
of f(z) and j”(z) are also called rotation theo- 
rems. Though results were at first qualitative, 
they were made quantitative subsequently by 

L. Bieberbach (1916), G. Faber (1916), and 
others. Any univalent function f(z) holo- 

morphic in the unit disk and normalized by 
,f(O) = 0 and ,f’(O) = 1 satisfies the distortion 
inequalities 

IZI IZI 
(1 + lzl) 

2~lfw(,+)2~ 

1-h l+lzl 
(1 +lzO 

~~lf’w(l~,z,)“. 

Here the equality holds only if f(z) is of the 
form z/( 1 - EZ)‘() cl= 1). In deriving these in- 
equalities, Bieberbach centered his attention 
on the family of +meromorphic functions g(c) 

=[+C,20h,[m” univalent in Iii> 1. He es- 
tablished the area theorem C,“=, vlb,12 d 1, 
which illustrates the fact that the area of the 

complementary set of the image domain is 
nonnegative. Bieberbach, R. Nevanlinna 

(1919-1920), and others constructed a sys- 

tematic theory of univalent functions in the 
unit disk based on this theorem. 

After the area theorem, the chief tools in 

the theory of univalent functions have been 
LGwner’s method, the method of contour 
integration, the variational method, and the 
method of the extremal metric. In contrast to 
the theory of univalent functions based on 
Bieberbach’s area theorem, K. LGwner (1923) 
introduced a new method. In view of a theo- 

rem on the domain kernel (C. Carathkodory, 
1912), it suffices to consider an everywhere 
dense subfamily in order to estima.te a con- 

tinuous functional within the family of univa- 
lent functions holomorphic in the unit disk. 
LGwner used the subfamily of functions map- 
ping the unit disk onto the so-called bounded 
slit domains. Namely, the range of a member 
of this subfamily consists of the unit disk slit 
along a Jordan arc that starts at a periphery 

point and does not pass through the origin. 
A mapping function of this nature is deter- 
mined as the integral f(z, to) of LSwner’s dif- 
ferential equation 

with the initial condition S(z, 0) = z, where ti(t) 
is a continuous function with absolute value 

equal to 1. Any univalent function f(z) holo- 
morphic in the unit disk and satisfying ,f(O) = 

0, S’(O) = 1 has an arbitrarily close approxi- 
mation by functions of the form e’:f‘(z, to). By 
means of this differential equation LGwner 

proved that la,1 < 3 for any univalent function 
,~(z)=z+CP~U~Z” ([zl<l) and also derived 
a decisive estimate concerning a coefficient 
problem for the inverse function [2]. 

G. M. Golusin (1935) and 1. E. Nazilevich 

(1936) first noticed that Lijwner’s method is 
also a powerful tool for deriving several distor- 
tion theorems. They showed that classical 
distortion theorems can be derived in more 
detailed form (Golusin, Mat. Sb., 2 (1937), 685); 
in particular, Golusin (1938) obtained a precise 
estimate concerning the rotation theorem, i.e., 

I argf’(z)l 

LGwner’s method was also investigated by A. 
C. Schaeffer and D. C. Spencer (19,15) [S]. 

The method of contour integration was 
introduced by H. Grunsky. It starts with some 
2-dimensional integral which can be shown to 

be positive. Transforming it into a boundary 
integral and using the iresidue theorem, we 

obtain an appropriate inequality by means of 
this integral. By this method Grunsky estab- 

lished the following useful inequality (Math. 
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Z.,45 (1939)). For g([)=<+C,“=,b,[-“, which 

is univalent in ICI> I, let 

The coefficients c,, are polynomials in the 
coefficients b,, of g. Then Grunsky’s inequality 
is: For each integer N and for all complex 

numbers /?, , , E.,, 

It is known that if this inequality holds for 
an arbitrary integer N and for all complex 
numbers i Ir , &,, then g(c) is univalent in 
Ill > 1. There are several generalizations of 
Grunsky’s inequality [ 131. 

The variational method was first developed 

by M. Schiffer for application to the theory of 
univalent functions. He first used boundary 
variations (hoc. London Math. Sot., 44 (1938)) 

and later interior variations (Amer. J. Muth., 
65 (1943)). The problem of maximizing a given 
real-valued functional on a family of univalent 
functions is called an extremal problem, and a 
function for which the functional attains its 
maximum is called an extremal function. The 
variational method is used to uncover charac- 

teristic properties of an extremal function by 
comparing it with nearby functions. Typical 
results are the qualitative information that the 

extremal function maps the disk Iz( < 1 onto 
the complement of a system of analytic arcs 
satisfying a differential equation and that the 
extremal function satisfies a differential equa- 
tion. Following Schiffer, Schaeffer and Spen- 
cer [S] and Golusin (Math. Sb., 19 (1946)) gave 
variants of the method of interior variations. 

H. Griitzsch (1928-1934) treated the theory 
of univalent functions in a unified manner 

by the method of the textremal metric. The 
idea of this method is to estimate the length 
of curves and the area of some region swept 

out by them together with an application 

of +Schwarz’s inequality (- 143 Extremal 
Length). After Griitzsch, the method of the ex- 
tremal metric has been used by many authors. 
In particular, 0. Teichmiiller, in connection 
with this method, formulated the principle 
that the solution of a certain type of extremal 
problem is in general associated with a tqua- 
dratic differential, although he did not prove 

any general result realizing this principle in 
concrete form. J. A. Jenkins gave a concrete ex- 
pression of the Teichmiiller principle; namely, 

he established the genera1 coefficient theo- 
rem and showed that this theorem contains 

as special cases a great many of the known 
results on univalent functions [I I]. 

Univalence criteria have been given by 

various authors. In particular, Z. Nehari (Bull. 
Amer. Math. Sot., 55 (1949)) proved that if 
~(f(z),z}~~2(1-~z~2)~2in~z~<l,thenf(z)is 
univalent in IzI < 1, and E. Hille (Bull. Amer. 

Math. Sot., 55 (1949)) proved that 2 is the best 
possible constant in the above inequality. 
Here, {f(z), z} denotes the tschwarzian deriva- 
tive of f(z) with respect to z: 

C. Coefficient Problems 

In several distortion theorems Koebe’s ex- 
tremal function z/( 1 - EZ)~ = C,“=, n&“-l z’( 1~1 = 

1) is extensively utilized. Concerning this, 
Bieberbach stated the following conjecture. If 
,f(z) = z + Cz2 a,,~” is holomorphic and univa- 

lentinlzl<l,thenla,l<n(n=2,3,...),with 
equality holding only for Koebe’s extremal 
function z/(1 -EZ)’ (l&l = 1). This conjecture 
was solved affirmatively by L. de Branges in 
1985 after enormous effort by many mathema- 
ticians, as described below. 

Bieberbach(1916,[l])provedlazl<2asa 
corollary to the area theorem. This result can 
be proved easily by most of the methods. In 

1923 LGwner [2] proved la,/ 63, introducing 
his own method. Schaeffer and Spencer gave a 

proof of la,) < 3 by the variational method 
(Duke Math. J., 10 (1943)). Furthermore, Jen- 
kins used the method of the extremal metric to 

prove a coefficient inequality that implies 
/a,[ < 3 (Analytic Functions, Princeton Univ. 
Press, 1960). The problem of the fourth coefi- 
cient remained open until 1955, when P. R. 
Garabedian and Schiffer [3] proved Ia,1 ~4 by 
the variational method. Their proof was ex- 
tremely complicated. Subsequently, Z. Char- 
zynski and Schiffer gave an alternative brief 

proof of la,1 <4 by using the Grunsky inequal- 
ity (Arch. Rational Me& Anal., 5 (1960)). M. 
Ozawa (1969, [4]) and R. N. Pederson (1968, 

[S]) also used the Grunsky inequality to prove 
la,1 Q 6. In 1972, Pederson and Schiffer [6] 
proved la, I < 5. They applied the Garabedian- 
Schiffer inequality, a generalization of the 
Grunsky inequality which Garabedian and 
Schiffer had derived by the variational method. 

On the other hand, W. K. Hayman [7] 

showed that for each fixed f(z) = z + x:2 a,~“, 

with the equality holding only for Koebe’s 

extremal function z/(1 -EZ)’ (IsI = 1). Further, 

it was shown that Koebe’s extremal function 
z/( 1 - z)~ gives a local maximum for the nth 
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coefficient in the sense that Re{a,} <n when- 
ever Ju2 - 21~ 6, for some S, > 0 (Garabedian, 

G. G. Ross, and Schiffer, J. Math. Mech., 14 
(1964); E. Bombieri, Znuentiones Math., 4 
(1967); Garabedian and Schiffer, Arch. Ra- 
tional Math. Anal., 26 (1967)). 

In the most general form, the coefficient 

problem is to determine the region occupied 
by the points (a,, . . , a,) for all functions f(z) = 
z+Cz,a,z” univalent in Iz] < 1. Schaeffer 

and Spencer [S] found explicitly the region for 

(a2, 4. 
For the coefficients of functions g(c) = [ + 

X:0 b,<-’ univalent in Ill > 1, the following 

results are known: lb, I< 1 (Bieberbach Cl]), 
1 b2 I< 2/3 (Schiffer, Bull. Sot. Math. France, 66 
(1938); Golusin, Mat. Sb., 3 (1938)), Jb,l< l/2+ 
eF6 (Garabedian and Schiffer, Ann. Math., 

(2) 61 (1955)). 

D. Other Classes of Univalent Functions 

We have discussed the general family of func- 
tions univalent in the unit disk. There are also 
several results on distortion theorems and 
coefficient problems for subfamilies deter- 
mined by conditions such as that the images 

are bounded, tstarlike with respect to the 
origin, or tconvex. For instance, if f(z) = z + 
Cz2 a,z” is holomorphic and univalent in 
]zI < 1 and its image is starlike with respect to 
the origin, then 1 a, I <n (n = 2,3, . . ). If the im- 

age of f(z) is convex, then f(z) satisfies (a,( < 
1 (n = 2,3, . ) and the distortion inequalities 

I4 IZI 
---<If( G-- 
l+lzl 1 -lzI’ 

1 1 

(1 +bV 
My1 -lzl)* 

Here the equality sign appears at z0 (0 < IzO( < 
1) if and only if f(z) is of the form z/( 1 + EZ) 
with a= f lz,l/zO. 

On the other hand, problems on conformal 
mappings of multiply connected domains 
involve essential difficulties in comparison 
with the simply connected case. Although 
Bieberbach’s method is unsuitable for multi- 
ply connected domains, Liiwner’s method, 
the method of contour integration, the varia- 

tional method, and the method of the ex- 
tremal metric remain useful (- 77 Con- 
formal Mappings). 

E. Multivalent Functions 

Multivalent functions are a natural generaliza- 

tion of univalent functions. There are several 
results that generalize classical results on 
univalent functions. 

A function f(z) that attains every value at 
most p times and some values exactly p times 
in a domain D is said to be p-valent in D and is 
called a multivalent function provided that p > 
1. In order for ,f(z) = CE,, a,,~“, holomorphic 
in IzI < 1, to be p-valent there, it is sufficient 
that it satisfies 

p-1 <W~f’(W(~))<p+ 1 

on Iz]= 1. Hence it suffices to have 

If,f(z)=(l +a,z+a,z2+ . ..)/z” is holomorphic 
and p-valent in 0 < I z I < 1, then 

I F(lf(re’ )l)dB<O 

for any increasing function F(p) in p > 0. In 
particular, if F(p)=p’, this becomes an area 

theorem from which follow coefficient esti- 
mates, etc., for p-valent functions. 

Various subfamilies and generahzed families 
of multivalent functions have been considered. 
Let f(z) be p-valent in I), and co + c r z + + 
cP-i zP-’ + c,f(z) be at most p-valent in D 
for any constants co, cl, . . . , cP. Then f(z) is 
said to be absolutely p-valent in D. If a function 

f(z) holomorphic in a convex domain K satis- 
ties Re(e’“f@)(z)) > 0 for a real constant a, then 
f’(z) is absolutely p-valent in K. If f(z) is ab- 
solutely p-valent in D, then 

p-1 
z k + bpf(4 1 CkZk + c,f(::) 

k=O > 

is at most p-value in D for any constants bk 
and ck. 

If f(z) is p-valent in the common part of a 
domain D and the disk centered at each point 
of D with a fixed radius p, then f(z) is said to 
be locally p-valent in D, and p is cahed its 
modulus. A necessary and sufficient condi- 

tion for f(z), holomorphic in D, to be at most 
locally p-valent is that f’(z), ,f@)(z) not 

vanish simultaneously. In order for f(z), holo- 
morphic in D, to be locally absolutely p-valent 
it is necessary and sufficient that fcP’(z) #O. 
Let the number of Re”-points of f(z) in D be 
n(D, Re’O”). If f(z) satisfies 

n(D, Re”+‘)dv <p, 

for any R > 0, it is said to be circumferentially 
mean p-valent in D. If f(z) satisfies 

n(D,Re”+‘)RdRdrpdpzR’, 

it is said to be areally mean p-valent in D. If 
f(z)” with q > 1 is areally mean p-valent in D, 
then f(z) is areally mean p/q-valent in D. For 
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f(z)=(l +a,z+a,z2+ . ..)/z” holomorphic and 
areally mean A-valent in O< Iz] < 1, the follow- 
ing area theorem holds: 

Let E be a set containing at least three 
points. If f(z) in D attains every value of E at 
most p times and a certain value of E exactly p 
times (it may attain values outside E more 
than p times), then f(z) is said to be quasi-p- 
valent in D. If w  =f(z) is p-valent in D and g(w) 
is quasi-q-valent in f(D), then g(f(z)) is at 

most quasi-pq-valent in D. 

The first success in obtaining sharp inequal- 
ities for multivalent functions was attained 
by Hayman. In his work, an essential role was 

played by the method of tsymmetrization. For 
instance, he obtained the following result. If 
f(z) = zp + up+, zp+’ + . . is holomorphic and 
circumferentially mean p-valent in IzI < 1, then 

la,+,]<2p,andforlzl=r,O<r<l, 

rp rp 

(1+r)2p 
ww(,+’ 

If ‘(4~ 
PU +r) 
r(l--T)l.f(Z)I ~~;“~)~p::‘. 
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ties the following three conditions, where I- is 
the multiplicative group of positivl: real num- 
bers: (i) w(a) = 0 if and only if a = 0; (ii) w(ab) 

= w(a)w(b);‘and (iii) w(a +b) <C(M)(~)+ w(b)), 
where C is a constant (independent of the 
choice of a and b, but dependent on the choice 

of w). 
The value group of w  is defined to be 

{w(a)/ UE K - {O}}. Extensions of a valuation 
and equivalence of valuations are defined as in 

the case of additive valuations. Thus w’ is 

A. Introduction 

There are two related kinds of valuations, 
additive (- Section B) and multiplicative (- 

Section C). The notion of valuations, originally 
defined on (commutative) +fields, has been 
extended to more general cases (- Section K); 
however, we first consider the case of fields. equivalent to w  if and only if there is a positive 

r such that for all UE K, w(a) = w’(a)l. In each 

B. Additive Valuations 

In this article, we mean by an ordered additive 
group a totally ordered additive group, namely, 
a commutative group whose operation is 
addition, which is a +totally ordered set satisfy- 
ing the condition that a 2 b and c > d imply a 
+c>b+dand --ad-b.Supposethatweare 
given a field K, an ordered additive group G, 

and an element co defined to be greater than 
any element of G. Then a mapping v: K --t 

G U {co} is called an additive valuation (or 
simply a valuation) of the field K if u satisfies 
the following three conditions: (i) u(a) = 00 if 

and only if n = 0; (ii) v(ab) = u(a) + v(b) for all a, 
b#O; and (iii) u(u+b)~min{u(u),u(b)}. 

The set {u(a) 1 UE K - (0) } is a submodule of 
G and is called the value group of v, while the 
set R,= {a~ K ) v(a)>,O} is a subring of K and 
is called the valuation ring of v. The ring R, has 
only one tmaximal ideal {u (u(u) > 0), called the 

valuation ideal of v (or of R,), and the tresidue 
class field of R, modulo the maximal ideal is 
called the residue class field of the valuation v. 
We have v(a) < u(b) if and only if uR, 3 bR,. 
Two valuations u and u’ of the field K are said 

to be equivalent when u(u) < u(b) if and only if 
V’(U) < v’(b); hence v and v’ are equivalent if and 
only if R, = R,. The rank of v is defined to be 
the +Krull dimension of the valuation ring R,, 
and the rational rank of u to be the maximum 
(or supremum) of the numbers of linearly 
independent elements in the value group. An 
extension (or prolongation) of v in a field K’ 
containing K is a valuation u’ of K’ whose 

restriction on K is v; such an extension exists 
for any given u and K’. Sometimes a valuation 
of rank 1 is called a special valuation (or ex- 

ponential valuation), and a valuation of a gen- 
era1 rank is called a generalized valuation. On 
the other hand, if k is a subfield of K such that 
v(u) = 0 for every nonzero element a of k, then 
u is called a valuation over the subfield k. 

C. Multiplicative Valuations 

A multiplicative valuation (or valuation) of a 
field K is a mapping w  : K -tT U {0} that satis- 

condition (iii) can be taken to be 1. A valu- 
ation w  is said to be a valuation over a subfield 
k if w(a) = 1 for any nonzero element a of k. 

We call w  an Archimedean valuation if for 
any elements a, b E K, a # 0, there exists a 
natural number n such that w(m) :s w(b); 
otherwise, w  is said to be a non-Arcbimedean 

valuation. If w  is an Archimedean valuation of 
a field K, then there is an injection (r from K 

into the complex number field C such that w  is 
equivalent to the valuation w’ defined by w’(a) 

=la(a)l. If w  is a non-Archimedean valuation 
of a field K, then w(a+ b)<max{wl(u), w(b)}. 
Hence in this case we get an additive valuation 
u of K when we define t)(a)= -logw(u) (a~ K), 

and either v is of rank 1 or v(K) = { 1,O) (in the 
latter case, v is called trivial). Conversely, every 

additive valuation of rank 1 of K ia equivalent 

equivalence class of valuations of al field, there 

to an additive valuation obtained in this way 

exists a valuation for which the constant C in 

from a non-Archimedean valuation. (This is 
why an additive valuation of rank 1 is called 
an exponential valuation.) Therefore a non- 

Archimedean valuation determines a valuation 
ring and valuation ideal in a natural manner. 
Thus we can identify a non-Archimledean 

valuation with an additive valuation of rank 1. 

D. Topology Defined by a Valuation 

Let w  be a multiplicative valuation of a field 

K. When the tdistance between two elements 
a, b of K is defined by w(a - b), K becomes a 
ttopological field. (Although this distance may 
not make K into a tmetric space, there exists a 
valuation w’ equivalent to the valuation w  

such that K becomes a metric space with 
respect to the distance ~‘(a - b) between a and 
b (a, be K).) If K is tcomplete under the topol- 
ogy, then we say that K is complete with 
respect to w  and w  is complete on h:. On the 
other hand, suppose that w’ is an extension of 
w  in a field K’ containing K. If w’ is complete 

and K is tdense in K’ under the topology de- 
fined by w’, then we say that the valuatiori w’ 

is a completion of w  and that the field K’ is a 



1673 439 G 
Valuations 

completion of K with respect to w. For any w, 
a completion exists and is unique up to iso- 
morphism. When w  is a non-Archimedean 

valuation, the valuation ring of the completion 
of w  is called the completion of the valuation 
ring of w. 

When v is an additive valuation of a field K, 

we can introduce a topology on K by taking 
the set of all nonzero ideals of the valuation 
ring R, of v as a tbase for the neighborhood 

system of zero. Important cases are given by 
valuations of rank 1, which are the same as 
those given by non-Archimedean valuations. 

If w  is a complete non-Archimedean valu- 
ation of a field K, then the valuation ring R, 
of w  is a +Hensel ring, which implies that if K’ 
is a finite algebraic extension of K such that 
[K’: K] = n, then w  is uniquely extendable to a 

valuation w’ of K’ and w’(a)” = w(N(a)), where 
N is the +norm NKPIK. 

E. Discrete Valuations 

For a non-Archimedean valuation (or an 
additive valuation of rank 1) w, if the valuation 
ideal of w  is a nonzero tprincipal ideal gen- 
erated by an element p, then we say that p is a 
prime element for w, w  is a discrete valuation, 
and the valuation ring for w  is a discrete valu- 
ation ring. The condition on the valuation 

ideal of w  holds if and only if the value group 
of w  is a discrete subgroup of the (multiplica- 
tive) group I of positive real numbers: In the 

terminology of additive valuations, a valuation 
w  is discrete if and only if it is equivalent to a 
valuation w’ whose value group is the additive 
group of integers. Such a valuation w’ is called 
a normalized valuation (or normal valuation). 
However, we usually mean normalization of a 
discrete non-Archimedean valuation as in 

Section H. Sometimes an additive valuation 
whose value group is isomorphic to the direct 
sum of a finite number of copies of Z (the 
additive group of integers) with a natural 
tlexicographic order is called a discrete valu- 

ation. Concerning a complete discrete valu- 
ation w, it is known that if the valuation ring 
of w  contains a field, then it is isomorphic to 
the ring of tformal power series in one variable 
over a field (for other cases - 449 Witt Vec- 

tors A). 

F. Examples 

(1) Trivial valuations of a field K are the addi- 

tive valuation u of K such that v(a) = 0 for all 
UE K - (0) and the multiplicative valuation w  

of K such that w(a)= I for all aEK - {O}. 
(2) If K is isomorphic to a subfield of the 

complex number field, then we get an Archi- 

medean valuation using the absolute value, 
and as stated in Section C, every Archimedean 
valuation of K is equivalent to a valuation 
obtained in this way. 

(3) Let p be a tprime ideal of a +Dedekind 

domain R, ~LEP be such that n$p2, and K be 
the field of quotients of R. Then each nonzero 
element c( of K can be expressed in the form 
arob-’ (r~Z;a,h~R;a,b$p), where r, the degree 
of a with respect to p, is uniquely determined 

by a. Hence, letting c be a constant greater 
than 1, we obtain a non-Archimedean valu- 
ation w  defined by w(c()=c?. This valuation w  
is called a p-adic valuation. We also get an 
additive valuation u defined by V(X) = r, called 

a p-adic exponential valuation. The completion 
K, of K with respect to v is called the p-adic 
extension of K. If K is a finite talgebraic num- 
ber field, the K, is called a p-adic number field. 
If p is generated by an element p, then “p-adic” 

is replaced by “p-adic.” For instance, given a 

rational prime number p, we have a p-adic 

valuation of the rational number field Q, and 
we obtain the p-adic extension Q, of Q, which 

is called the p-adic number field. Every non- 
zero element tl of Q, can be written as a 
uniquely determined expansion Czr anpn 
(a,#O,r~Z,a,EZ,O~aa,<p). Then we obtain a 
valuation v of Q, defined by v(a) = r. This 
valuation u is a discrete additive valuation, 

and Q, is complete with respect to u. The 
valuation ring of u is usually denoted by Z,, 

which is called the ring of p-adic integers. Each 

element of Q, (Z,) is called a p-adic number (p- 
adic integer). 

(4) Consider the field of +power series k((t)) 
in one variable t over a field k. For 0 #a E 
k((t)), we define u(tl)=r if ~(=X$,a,t” (a,~k, 
a,#O). Then v is a discrete valuation of k((t)), 
and k((t)) is complete with respect to this 
valuation. 

(5) Let v be an additive valuation of a field 
K with the valuation ring R,, and the valuation 
ideal M,. Let v’ be an additive valuation of the 

field R&n, with the valuation ring R,,. Then 
R” = {a E R, 1 (a mod m,) E R,.} is a valuation 

ring of K. A valuation v” whose valuation ring 
coincides with R” is called the composite of u 

and VI. 

G. The Approximation Theorem and the 
Independence Theorem 

The approximation theorem states: Let 

wi , , w,, be mutually nonequivalent and 
nontrivial multiplicative valuations of a field 

K. Then for any given II elements a,, , a, of 
K and a positive number E, there exists an 

element a of K such that wi(a - ai) < a (i = 
1,2 )..., n). 
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From this follows the independence theorem: 
Let e , , . . . , e, be real numbers, and let wi and 
K be as in the approximation theorem. If 
niwi(a)‘i=l forallaEK-{O},thene,=... 
=e,=O. 

Similar theorems hold for additive valu- 

ations. The following independence theorem is 
basic: Let u,, , v, be additive valuations of a 
field K, R,, , R, their valuation rings, and 
111 1, . , m, their maximal ideals. Let D = ni Ri, 
pi = m, n D, and consider the rings of quotients 
Doi. Then D,i = Ri. If Ri $ R, (for i Zj), then D 
has exactly n maximal ideals p,, . , p,. 

H. Prime Divisors 

Let K be an talgebraic number field (algebraic 
function field of one variable over a field k). An 

equivalence class of nontrivial multiplicative 
valuations (over k) is called a prime divisor 
(prime spot) of K. 

If K is an algebraic number field of degree n, 
there are exactly n mutually distinct injections 
0, , , o, of K into the complex number field 
C. We may assume that pi(K) is contained in 

the real number field if and only if i < rl and 
racy+, and or, +,(a) are conjugate com- 

plex numbers (n - r1 > i > 0, a E K). For i < rl, 
let v,(a)=I~~(u)I, and for 1 <i<(n-r,)/2, let 

vrl+~(u)=l~rl+i (u)l’. Then L’, , . . , u,,+,~ (r2 = 
(n - r,)/2) is a maximal set of mutually non- 
equivalent Archimedean valuations of K. 

Equivalence classes of v, , , v,, are called real 
(infinite) prime divisors, and those of upI +1, , 

c,> +li are called imaginary (infinite) prime 
divisors; all of them are called infinite prime 
divisors. An equivalence class of non- 
Archimedean valuations of K is called a finite 
prime divisor. 

An Archimedean valuation of K is said to 
be normal if it is one of the valuations v,. If v is 
non-Archimedean, then v is a p-adic valuation, 
where p is a prime ideal of the principal order 

o of K (- Section F, example (3)). Hence if a is 
an element of K, there exists a constant c (c > 
1) such that v(u) = c -I, where r is the degree 
of a with respect to p. In particular, if c is the 

norm of p (i.e., c is the cardinality of the set 
o/p), then the valuation u is called normal. Any 
finite prime divisor is represented by a normal 
valuation. Then we have the product formula 
n, w(u)= 1 for all UE K - {0}, where w  ranges 
over all normal valuations of K. 

For a function field, a normal valuation is 

defined similarly, using er instead of the norm 
of p, where e is a fixed real number greater 
than 1 and ,f is the degree of the residue class 

field of the valuation over k. In this case we 
also have the product formula. 

I. Extending Valuations to an Algebraic 
Extension of Finite Degree 

Assume that a field K’ is a finite algebraic 
extension of a field K. Let u be an additive 

valuation of K and v’ be an extension of L’ to 
K’. We denote the valuation rings, valuation 
ideals, and value groups of v and v’ by R,, R,., 
m,, m,., and G, G’, respectively. Then the 

degree of the extension f,, = [R,./m,. : RJm,] is 
called the degree of v’ over v. The group index 
eV. = [G’: G] is called the ramification index of 

t” over u. If u’ ranges over all extensions of v in 
K’, then the sum C&e”. is not greater than 
[K’: K] and the equality holds when v is a 
discrete valuation and either K’ is iseparable 
over K or v is complete. 

J. Places 

Let k, K, and L be fields, and suppose that k 
cK.LetfbeamappingofKontoLU{m} 

such that f(ab) =f(u)f(b) and f(a + b) =f(u) 
+,f(b), whenever the right member is meaning- 
ful, and such that the restriction off to k is an 
injection. Here co is an element adjoined to L 
and satisfying cw +a=u+ cu = m, cou=aa 
= co (for any nonzero element a tof K), l/a 
= 0, and l/O = co. Then f is called a place of K 
over k. In this case R={xeK If(:c)#oo} is a 
valuation ring of K containing k. Let nr be the 
maximal ideal of R. Then f can b’e identified 

with the mapping g: K *R/m U { (x)} defined as 

follows: If UER, then g(a)=(umodm); other- 
wise, g(a) = co. Places of K over /i can be 
classified in a natural way, and there exists a 

one-to-one correspondence between the set 
of classes of places of K over k and the set 

of equivalence classes of additive valuations 
over k. When K is an ialgebraic function field, 

we usually consider the case where k is the 
tground field. Then if a,, , a,,~ 17, (a,, . , a,) 

-(g(ul), . , g(u,)) gives a +specialization of 
points over k. Conversely, if ui, hj~ K are 
such that (ulr , u,)+(b,, , b,) is a speciali- 

zation over k, then there is a place f of K 

over k such that (b, , , b,) is isomorphic to 
(,f(ul), . . ,,f(a,)) (usually there are infinitely 
many such f’s). 

K. Pseudovaluations 

A pseudovaluation cp of a ring A (not neces- 

sarily commutative) is a mapping of A into the 
set of nonnegative real numbers satisfying the 
following four conditions: (i) q(a) = 0 if and 
only if a = 0; (ii) q(ub) < cp(u)cp(b); (iii) cp(a + b) < 

q~(a)+cp(b); and (iv) cp(--a)=&~). These con- 
ditions are weaker than those for multipli- 

cative valuations, but with them a topology 
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can be introduced into A as in Section D, with 
respect to which A becomes a topological ring. 

L. History 

The theory of valuations was originated by K. 

Hensel when he introduced p-adic numbers 
and applied them to number theory [ 11. J. 
Kiirschak (J. Reine Angew. Muth., 142 (1913)) 
first treated the theory of multiplicative valu- 
ations axiomatically; it was then developed 
remarkably by A. Ostrowski (Acta Math., 41 

(1918)). However, in their theory condition (iii) 

(- Section C) was given only in the case C = 1, 
thus excluding the normal valuation of an 
imaginary prime divisor in an algebraic num- 

ber field. A valuation with general C was 
introduced by E. Artin [3]. The theory of ad- 
ditive valuations was originated by W. Krull 

(J. Reine Angew. Math., 167 (1932)), although 
the concept of exponential valuations existed 
before. The theory of valuations is used to 
simplify +class field theory and the theory of 
algebraic function fields in one variable. For 
these purposes, the notion of multiplicative 
valuations is sufficient (- 9 Algebraic Curves; 

59 Class Field Theory). The idea is also used 
in the theory of normal rings and in alge- 
braic geometry, for both of which the con- 

cept of additive valuations is also necessary. 
Pseudovaluations were used by M. Deuring 
(Erg. Math., Springer, 1935) in the arithmetic 
of algebras. 
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440 (X.35) 
Variational Inequalities 

A. Introduction 

Variational inequalities arise when we con- 
sider extremal problems of functionals under 
unilateral constraints. Some problems in 

physics and engineering are studied by for- 
mulating them as elliptic, parabolic, and 

hyperbolic variational inequalities [l-8]. 

B. Stationary Variational Inequality 

Let D be a bounded domain in m-dimensional 

Euclidean space and ,feL,(D) be a given real- 
valued function. Consider the variational 

problem of minimizing the following func- 
tional J with the argument function D: 

J[u]= 
j 

lgradvl’dx-2 .f~dx. 
” i D 

Here, we suppose the set of admissible func- 
tions to be the closed convex subset 

K={usH,‘(D)) u<O a.e. in D) 

of the Hilbert space H,‘(D) (- 168 Function 
Spaces). It can be shown by choosing a mini- 
mizing sequence that there exists a minimum 

value of J which is realized by a unique UE K. 

Since the stationary function u belongs to 
Hd (D), it can be shown that the boundary 

condition u 1 FD = 0 is satisfied in the sense that 

the +trace y,u~H”*(i;D) (- 224 Interpolation 
of Operators) of u on t3D vanishes a.e. on SD. 

In view of the fact that J[u] <J[u] is valid for 
any UE K, it can be verified that the stationary 
variational inequality 

-Au-f<0 

Ll<O 

I 

(1) 

(-Au-j).u=O 

is satisfied in D in the sense of differentiation 
of distributions (- 125 Distributions and 

Hyperfunctions). The problem (1) is a Dirichlet 
problem with obstacle. Moreover, we can prove 
the regularity of UEH*(D) under an assump- 
tion of suitable smoothness for c3D by estab- 
lishing the boundedness of the solutions U, in 
H’(D) of the penalized problems associated 
with (1): 

-Au,+;u; =f (s>O), 

u,(;,=O. 

Here we note that the u, are the stationary 
functions of the ordinary variational problems 
of minimization in H;(D) of the functionals 

J,[v]= 
s 

lgradol’dx-2 
ID Fs 

fudx+! Iu+l*dx 
D 

with the penalty term (the third term of the 
right-hand side of the equality above). We 

have thus found that the stationary variational 
inequality (1) is the Euler equation of a con- 
ditional problem of variation (- 46 Calculus 

of Variations). 

C. Variational Inequality of Evolution 

Let $E H’(D) be a given function on D such 

that I/J 1 CD 3 0 and A$ E L,(D). The variational 
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inequality of evolution 

.(I.-$)=O (t>O,xED), 

u(0, x) = a(x) (x E D), 

4Lx)I,w=O (t>O) 

can be formulated as an abstract Cauchy 
problem (- 286 Nonlinear Functional Analy- 

sis X) 

du 
-E Au 
dt 

(t >O), 

u(+O)=a 

in a Hilbert space with a multivalued operator 
A = - C;cp, where &p is the subdifferential of the 

following lower semicontinuous proper convex 
function on the Hilbert space L,(D): 

ifaEHt(D) and v,<$, 

otherwise. 

Thus the solution u is given by the vector- 
valued function 

Here etA is the inonlinear semigroup generated 

by A (- 88 Convex Analysis, 378 Semigroups 
of Operators and Evolution Equations). 

D. Optimal Stopping Time Problem and 
Variational Inequalities 

Let iXJtao be an m-dimensional Brownian 

motion (- 45 Brownian Motion) and consider 
the problem of finding a tstopping time 0 that 

minimizes 

under the restriction that 0 <D 8 oiD, where 
oiD is the +hitting time for the boundary aD. 
Let us define 

u(x) = min J,[a]. 
CT 

Then the tprinciple of optimality in dynamic 

programming gives the stationary varia- 
tional inequality (1) with A replaced by )A, 

and we can show by the tDynkin formula that 
an optimal stopping time 8 is the hitting time 

for the set {x~Q\u(x)=O} (- 127 Dynamic 
Programming). We can systematically discuss 

problems in mathematical programming and 

operations research by introducing quasivaria- 
tional inequalities, which are sligh,t generaliza- 
tions of variational inequalities (-A 227 Inven- 

tory Control, 408 Stochastic Prog,ramming). 
The above-mentioned facts are applicable to 
general tdiffusion processes described by +sto- 
chastic differential equations (- 115 Diffusion 

Processes, 406 Stochastic Differential Equa- 
tions). We have thus found the relation 

free boundary problem-variational inequality 

‘I 
optlmal stopping time problem $ 

(- 405 Stochastic Control and Stochastic 
Filtering). 

E. Numerical Solution of Variational 

Inequalities 

Since the solution u of the variational inequal- 
ity (1) is the stationary function for the vari- 
ational problem, we can apply to the evalu- 
ation of the function u numerical methods 
based on the direct method of the calculus of 
variations (- 300 Numerical Methods). The 
+finite element method, which can be regarded 
as a type of Ritz-Galerkin method, is exten- 
sively employed to calculate numerical solu- 

tions. In view of the unilateral constraint 
u ~0, iteration methods, such as tlhe Gauss- 
Seidel iteration method, are used ,with modili- 

cations. An algorithm of relaxation with pro- 
jection is proposed in [3] (- 304 Numerical 
Solution of Partial Differential Equations). 
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441 (XX.3) 
Variational Principles 

A. General Remarks 

Among the principles that appear in physics 
are those expressed not in terms of differen- 
tial forms but in terms of variational forms. 
These principles, describing the conditions 

under which certain quantities attain ex- 
tremal values, are generally called variational 
principles. Besides Hamilton’s principle in 

classical mechanics (- Section B) and Fermat’s 
principle in geometric optics (- Section C), 
examples are found in telectromagnetism, 
irelativity theory, tquantum mechanics, +field 
theory, etc. Independence of the choice of 
coordinate system is an important character- 
istic of variational principles. Originally these 
principles had theological and metaphysical 
connotations, but a variational principle is 
now regarded simply as a postulate that pre- 
cedes a theory and furnishes its foundation. 

Thus a variational principle is considered to 
be the supreme form of a law of physics. 

B. Mechanics 

In 1744 P. L. Maupertuis published an almost 

theological thesis, dealing with the principle 
of least action. This was the beginning of the 
search for a single, universal principle of me- 
chanics, contributions to which were made 
successively by L. Euler, C. F. Gauss, W. R. 

Hamilton, H. R. Hertz, and others. 
Let {qr} be the igeneralized coordinates of a 

system of particles, and consider the integral of 
a function L(y,, Q,, t) taken from time t, to t, 
If we compare the values of the integral taken 
along any arbitrary path starting from a lixed 

point PO in the coordinate space at time t, and 
arriving at another fixed point P, at time t,, 

then the actual motion q,(t) (which obeys the 
laws of mechanics) is given by the condition 
that the integral is an textremum (tstationary 
value), that is, 6s:; Ldt =O, provided that the 

function L is properly chosen. This is Hamil- 
ton’s principle, and L is the +Lagrangian func- 

tion. In TNewtonian mechanics, the tkinetic 
energy T of a system of particles is expressed 
as a tquadratic form in 4,. Furthermore, if the 
forces acting on the particles can be given by 

-grad V, where the potential V does not de- 
pend explicitly on 4,, we can choose L = T- 

V. Also, for a charged particle in tspecial rela- 
tivity, we can take L = -m,c’(l - u2/c2)l12 - 

etp + e(v . A), where m, is the rest mass of the 

particle, e is the charge, v is the velocity (with 
~1 its magnitude), c is the speed of light in 

vacuum, and cp and A are the scalar and 

vector potentials of the electromagnetic field, 
respectively. 

In general relativity theory, the motion of a 
particle can be derived from the variational 
principle 6 jds = 0 (ds is the Riemannian line 
element). Hence, geometrically, the particle 
moves along a tgeodesic curve in 4-dimen- 
sional space-time. 

C. Geometric Optics 

The path of a light ray between two points PO 
and P, (subject to reflection and refraction) is 

such that the time of transit along the path 
among all neighboring virtual paths is an 

extremum (stationary value). This is called 
Fermat’s principle. If the index of refraction 
is n, Fermat’s principle can be expressed as 
6 s;(; n ds = 0 (ds is the Euclidean line element). 

The laws of reflection and refraction of light, 
as well as the law of rectilinear propagation of 
light in homogeneous media, can be derived 

from this principle. 

D. Field Theory 

Not only the equations of motion of a system 
of particles, but also various field equations 
(+Maxwell’s equations of the electromagnetic 
field, +Dirac’s equation of the electron field, the 

meson field equation, the gravitational field 
equation, etc.) can be derived from variational 
principles in terms of appropriate Lagrangian 
functions. In +field theory the essential virtue 

of the variational principle appears in the fact 
that the properties of various possible fields as 

well as conservation laws can be systematically 
discussed by assuming relativistic invariance 

and gauge invariance of the Lagrangian func- 
tions adopted. In particular, for an electro- 
magnetic field in vacuum, the Lagrangian 
function density is L = (Hz -E2)/2, and the 
integration is carried out over a certain 4- 
dimensional domain. 

E. Quantum Mechanics 

If H is the tHamiltonian operator for any 
quantum-mechanical system, the eigenfunc- 
tion Ic, can be determined by the variational 
principle 

6 $Hijdz=O, 
s 

with 
s 

$$dz= 1, 

where $ is the complex conjugate of $ and dz 

is the volume element. Based on this varia- 
tional principle, the +direct method of the 
calculus of variations is often employed for 
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an approximate numerical calculation of the 

energy eigenvalues and eigenfunctions. In par- 
ticular, by restricting the functional form of 

$ to the product of one-body wave functions, 
we can obtain Hartree’s equation. A further 
suitable symmetrization of $ leads to Fock’s 
equation. 

F. Statistical Mechanics 

Let cp be a statistical-mechanical state of a 
system, and let S(q) and E(v) be the state’s 
entropy and energy (mean entropy and mean 
energy for an infinitely extended system); T 

is the thermodynamical temperature, and 
f(cp) = E(q) - 7X((p) is the free energy. Then the 
equilibrium state for T> 0 is determined as the 
state cp that gives the minimum value of f(cp) 
(maximum for T< 0). 
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442 (VI.1 2) 
Vectors 

A. Definitions 

The vector concept originated in physics from 
such well-known notions as velocity, acceler- 

ation, and force. These physical quantities are 
supplied with length and direction; they can be 
added or multiplied by scalars. In the Euclid- 

ean space E” (or, in general, an taffine space), 
a vector a is represented by an oriented seg- 
ment ~3. Two oriented segments p14; and 

Prq; are considered to represent the same 
vector a if and only if the following two con- 

ditions are satisfied: (1) The four points pl, q,, 

p2, q2 lie in the same plane n. (2) plql/ /p2q2 

and p,q2/lq,q,. Hence a vector in E” is an 
equivalence class of oriented segments ~3, 

where the equivalence relation plq; -px2 

is defined by the two conditions just given. 

Hereafter, we denote the vector by [g], or 
simply p<. The points p and q are called the 

initial point and terminal point of the vector fi. 

Given a vector a =pJ and a real number /1., 

we define the scalar multiple la as the vector 

~7, where r is the point on the straright line 
containing both p and q such that the ratio 
[jZ:p3] is equal to 1 (if p = q, then we put Y = 

p). The operation (I,a)+ia is called scalar 
multiplication. Given two vectors a = pJ and 
h = @, the vector c = $ is called the sum of a 
and h and is denoted by c = a + h. The vector 

m = 0 is called the zero vector. If a = pq, we put 
-a=qT. 

Scalar multiplication and addition of vec- 
tors satisfy the following seven conditions: (1) 
a+ h= h+a (commutative law); (2) a+(h+c)= 

(a + b) + c (associative law); (3) a + 0 = a; (4) 
for each a there is -a such that a +(-a) = 0; 
(5) i(a + b) = Ia + 2b, (I. + p)a = ia + pa (dis- 

tributive laws); (6) 3,(pa)=(,l+)a (associative 
law for scalar multiplication); and (7) la=a. 

Hence the set V of all vectors in K’ forms a 
+real linear space. Sometimes, a set satisfying 

(l)-(T), that is, by definition, a linear space, is 
called a vector space, and its elements are 
called vectors. 

The pair consisting of a vector @ and a 
specific initial point p of p? is sometimes called 

a fixed vector. An illustration of this is given 
by the force vector with its initial point being 
where the force is applied. By contrast, a vec- 

tor py is sometimes called a free tector. If we 
fix the origin o in E”, then for any point p in 

E”, the vector ?$ is called the position vector of 

P. 
If two vectors a = ?$J and b = 04’ are tlinearly 

dependent, they are sometimes said to be 
collinear. If there vectors a = 07, b = @, and 

c = Z are linearly dependent, they are some- 
times said to be coplanar. 

If a set of vectors e,, . . . , e, forms a +basis of 

a vector space V, then the vectors e, are called 
fundamental vectors in V. Each vector a6 V is 
uniquely expressed as a = C cliei (PER). We 
call (n, , , a,) the components of rhe vector 
a with respect to the fundamental vectors 
e ,,..., e,. 

B. Inner Product 

In the Euclidean space E”, the len,gth of the 
line segment p? is called the absolute value (or 

magnitude) of the vector a = p? an#d is denoted 
by [al. A vector of length one is called a unit 
vector. For two vectors a = 03 and b = 03, the 
value(a,b)=~a~~h~cosHiscdlled theinner 
product (or scalar product) of a and b, where (I 
is the angle ~poq. Instead of (a, bj, the nota- 
tions a * b, or ab are also used. If neither vec- 

tor a nor vector b is equal to 0, then (a, b) = 0 

implies L poq = n/2, that is, the orthogonality 
of the two vectors Z$ and ?x$ If W~Z take an 
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+orthonormal basis (e,, , e,) in E” (i.e., a set 
of fundamental vectors with (eil = 1, (e,, ej) = 0 
(i #,j)), the inner product of vectors a = C a,e,, 
b= C /3,e, is equal to Cr=, r*,&. The inner 
product has the following three properties (i) 

(x, x) > 0 and is zero if and only if x = 0; (ii) 

(x,y)=(y,x);(iii)(x,+x2,y)=(xl,y)+(x2,y), 
(ax, y) = x(x, y) (a E R). Similar linearity holds 

for y. 
Generally, an R-valued tbilinear form (x, y) 

on a linear space 1/ satisfying the previous 
three conditions is also called an inner prod- 
uct. If a linear space T/ is equipped with an 
inner product, the space is called an inner 
product space (- 256 Linear Spaces H; 197 
Hilbert Spaces). If V is an inner product space, 
the absolute value 1x1 of XE V is defined to be 

JtGi 

C. Vector Product 

In the 3-dimensional Euclidean space E3, we 
take an orthonormal basis e,, e,, e3. Let a and 
b be vectors in E” whose components with 

respect to e,, ez, e, are (xl, x2. cd, (B13 B2, &I. 
The vector 

which is symbolically written as 

is called the exterior product or vector product 

of a and b and is denoted by [a, b] or a x b. 
The vector [a, b] is determined uniquely up to 

its sign by a and b and is independent of the 
choice of the orthonormal basis. 

Suppose that we have a = 07, b = 07. Then 

/[a,b]I=la[.Iblsin0, whereO= Lpoq. Also 
I [a, b] I is equal to the area of the parallel- 
ogram determined by a and b. To illustrate the 

orientation of [a, b], we sometimes use the idea 
of a turning screw. That is, the direction of a 
right-handed screw advancing while turning at 
o from p to q (within the angle less than 180”) 
coincides with the direction of [a, b] (Fig. 1). 
The exterior product has the following three 
properties: (1) [a, b] = -[b, a] (antisymmetric 
law); (2) [Aa, b] = ;.[a, b] (associative law for 

Fig. 1 

scalar multiplication); (3) [a, b + c] = [a, b] + 

[a, c] (distributive law). The vector product 
does not satisfy the associative law, but it does 
satisfy the +Jacobi identity [a, [b, c]] + [b, 
[c, a]] + [c, [a, b]] = 0. The vector [a, [b, c]] is 

sometimes called the vector triple product, 
and for this we have Lagrange’s formula [a, 
[b, c]] = (a, c)b - (a, b)c. 

Let a, b, c be vectors in E3 whose compo- 
nents with respect to an orthonormal funda- 
mental basis are (a,, c(~, c(~), (/c$, b2, b3), and 

(r, , y2, y3). Then (a, Cb, cl) = (b, Cc, al I= k [a, bl) 
= [a. b, c], and the common value is equal to 
the determinant of the 3 x 3 matrix 

The value denoted by [a, b, c] is called the 

scalar triple product of a, b, c and is equal to 
the volume of the parallelotope whose three 
edges are a = 03, b = oq, and c = o? with com- 

mon initial point o. The triple a, b, c is called a 
right-hand system or a left-hand system ac- 
cording as [a, b, c] is positive or negative. We 
have [a, b, c] = 0 if and only if a, b and c are 
coplanar. (For the texterior product of vectors 
in E” and the concept of Tp-vectors - 256 
Linear Spaces 0.) 

D. Vector Fields 

In this section we consider the case of a 3- 
dimensional Euclidean space E3 (for the gen- 
eral case - 105 Differentiable Manifolds). A 
scalar-valued or a vector-valued function 
defined on a set D in E3 is called a scalar field 
or a vector field, respectively. The continuity 

or the differentiability of a vector field is de- 
fined by the continuity or the differentiability 
of its components. 

For a differentiable scalar field f(x, y, z), 
the vector field with the components (af/Zx, 

c7flc3y, &/flaz) is called the gradient of ,f and 
is denoted by grad5 For a differentiable vec- 
tor field V(x, y, z) whose components are 
(u(x, y, z), u(x, y, z), w(x, y,z)), the vector field 
with components 

( 

aw au au aw a~ au 
ay aZ' az ax' ax ay > 

is called the rotation (or curl) of V and is de- 

noted by rot V (or curl V). Also, for a differenti- 
able vector field V, the scalar field defined by 
&~/ax +&lay + 3wJdz is called the divergence 

of V and is denoted by divV. Utilizing the 

vector operator V having differential operators 
(2/2x, ajay, (;:/a~) as its components, we may 
write simply gradf=P’L divV=(V,V), rotV= 
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[V, V]. The symbol V is called nabla, atled 
(inverse of delta), or Hamiltonian. 

A vector field V with rot V =0 is said to be 
irrotational, (lamellar, or without vortex). A 

vector field V with div V = 0 is said to be sole- 
noidal (or without source). Thus gradfis irro- 
tational and rot V is solenoidal. In a small 

neighborhood or in a +simply-connected do- 
main, an irrotational field is a gradient, a 
solenoidal field is a rotation, and an arbitrary 

vector field V is the sum of these two kinds of 
vector fields: V = grad q + rot u (Helmholtz 

theorem); the function cp is called the scalar 
potential of V, and the vector field u is called 
the vector potential of V. Furthermore, the 
operator V2 = VV = div grad = a2/Bx2 + a2/(iy2 
+ (?2/&z is called the Laplace operator (or 

Laplacian) and is denoted by A. A function 
that satisfies Acp = 0 is called a tharmonic 
function. Locally, an irrotational and solenoi- 
dal vector field is the gradient of a harmonic 
function. If A is a vector field whose compo- 

nents are (vl, v2, e) (i.e., A(v) =(cplW, (Pi, 
opt)), we can let A operate on A by setting 
AA = (A(p, , A(p2, A(p3). We then have AA = 

V2A = graddiv A -rot rot A. 
Suppose that we are given a vector field V 

and a curve C such that the vector V(p) is 
tangent to the curve at each point p E C. The 
curve C is the tintegral curve of the vector field 
V and is called the vector line of the vector 
field V. The set of all vector lines intersecting 

with a given closed curve C is called a vector 
tube. Given a closed curve C and a vector field 
V, the tcurvilinear integral s(V, ds) (where ds is 

the line element of C) is called the circulation 
(of V) along the closed curve C. A vector field 
is irrotational if its circulation along every 
closed curve vanishes; the converse is true in a 
simply connected domain. Further, let u, be 
the tnormal component of a vector field V 
with respect to a surace S, and let dS be the 
volume element of the surface. We put ndS = 
dS, where n is the unit normal vector in the 
positive direction of the surface S. Then the 
tsurface integral j u,dS = s(V, dS) is called the 

vector flux through the surface S. A vector 
field whose vector flux vanishes for every 

closed surface is solenoidal. (For the corre- 
sponding formulas - 94 Curvilinear Integrals 
and Surface Integrals. For generalizations to 
higher-dimensional manifolds - 105 Dif- 
ferentiable Manifolds; 194 Harmonic Integrals; 
Appendix A, Table 3.) 
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Vector-Valued Integrals 

A. General Remarks 

Integrals whose values are elements (or sub- 
sets) of +topological linear spaces are gen- 
erally called vector-valued integrals or vec- 
tor integrals. As in the scalar case, there are 
vector-valued integrals of Riemann type (- 37 
Banach Spaces K) and of Lebesgue type. In 

this article we consider only the latter. There 
are cases where integrands are vector-valued, 
where measures are vector-valued, and where 

both are vector-valued. The methods of inte- 
gration are also divided into the strong type, 

in which the integrals are defined by means of 
the original topology of the topological linear 
space X, and the weak type, in which they 
are reduced to numerical integrals by apply- 
ing continuous linear functionals on X. Com- 
bining these we can define many kinds of 

integrals. 
Historically, D. Hilbert’s ispectral resolution 

is the first example of vector-valued integrals, 

but the general theory of vector-valued inte- 
grals started only after S. Bochner [I] defined 
in 1933 an integral of strong type for functions 
with values in a Banach space wit-h respect to 
numerical measures. Then G. Birlkhoff [2] 
defined a more general integral by replacing 
absolutely convergent sums with uncondi- 
tionally convergent sums. At approximately 
the same time, N. Dunford introduced inte- 

grals equivalent to these. Later, R. S. Phillips 
(Trans. Amer. Math. Sot., 47 (1940)) general- 
ized the definition to the case where values 

of functions are in a +locally convex topolog- 
ical linear space, and C. E. Rickart (Trans. 
Amer. Math. Sot., 52 (1942)) to the case where 
functions take subsets of a locally convex 
topological linear space as their values. The 
theory of integrals of weak type for functions 

with values in a Banach space and numerical 
measures was constructed by I. M. Gel’fand 

[3], Dunford [4], B. J. Pettis [S], and others 
(193661938). N. Bourbaki [6] dealt with the 

case where integrands take values in a locally 
convex topological linear space. As for inte- 

grals of numerical functions by vector-valued 
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measures, a representative of strong type inte- 
grals is the integral of R. G. Bartle, Dunford, 

and J. T. Schwartz [7] (1955). Weak type 
integrals have been discussed by Bourbaki [6], 
D. R. Lewis (Pacific J. Math., 33 (1970)) and 

I. Kluvanek (Studia Math., 37 (1970)). The 
bilinear integral of Bartle (Studia Math., 15 

(1956)) is typical of integrals in the case where 
both integrands and measures are vector- 

valued. For interrelations of these integrals - 
the papers by Pettis and Bartle cited above 
and T. H. Hildebrandt’s report in the Bulletin 
ofthe American Mathematical Society, 59 

(1953). 

Since the earliest investigations [l-3] the 
main aim of the theory of vector-valued inte- 
grals has been to obtain integral representa- 

tions of vector-valued (set) functions and 
various linear operators [S]. However, there is 
the fundamental difficulty of the nonvalidity of 
the Radon-Nikodym theorem. Whatever de- 

finition of integrals we take, the theorem does 
not hold for vector-valued set functions un- 

conditionally. Many works sought conditions 
for functions, operators, or spaces such that 
the conclusion of the theorem would be re- 
stored; the works of Dunford and Pettis [9] 

and Phillips (Amer. J. Math., 65 (1943)) marked 
a summit of these attempts. Later, after A. 
Grothendieck’s investigations (1953-1956), 
this problem began to be studied again, begin- 
ning in the late 1960s by many mathemati- 
cians (- J. Diestel and J. J. Uhl, Jr., Rocky 
Mountain J. Math., 6 (1976); [lo]). 

Recently, integrals of multivalued vector- 
valued functions have also been employed in 
mathematical statistics, economics, control 

theory, and many other fields. Some contri- 
butions are, besides Rickart cited above, G. B. 

Price (Trans. Amer. Math. Sot., 47 (1940), H. 
Kudo (Sci. Rep. Ochanomizu Univ., 4 (1953)) 
H. Richter (Math. Ann., 150 (1963)), R. J. Au- 
mann [ 111, G. Debreu [ 123, and M. Huku- 
hara (Funkcial. Ekvac., 10 (1967)). Further- 
more, C. Castaing and M. Varadier [13] have 
defined weak type integrals of multivalued 
functions and introduced many results con- 

cerning them. In the following we shall give 
explanations of typical vector-valued integrals 
with values in a Banach space only. 

B. Measurable Vector-Valued Functions 

Let x(s) be a function defined on a +rr-finite 
measure space (S, s,p) with values in a 
Banach space X. This is called a simple func- 
tion or finite-valued function if there exists a 
partition of S into a finite number of mutually 

disjoint measurable sets A,, A,, , A, in each 
of which x(s) takes a contant value cj. Then 
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x(s) can be written as Cj”=, cjxAj(s), where I,.#) 
is the tcharacteristic function of Aj. A func- 

tion x(s) is said to be measurable or strongly 
measurable if it is the strong limit of a se- 

quence of simple functions almost everywhere, 
that is, lim,,, 11x,,(s)-x(s)(( =0 a.e. Then the 
numerical function IIx(s)II is measurable. If p is 
a +Radon measure on a compact Hausdorff 
space S, then the measurable functions can be 
characterized by +Luzin’s property (- 270 
Measure Theory I). 

A function x(s) is said to be scalarly measur- 

able or weakly measurable if the numerical 
function (x(s), x’) is measurable for any +con- 
tinuous linear functional x’EX’. A function x(s) 

is measurable if and only if it is scalarly mea- 
surable and there are a +null set E, c S and a 
tseparable closed subspace Yc X such that 

X(S)E Y whenever s$ E, (Pettis measurability 
theorem). 

C. Bocbner Integrals 

A measurable vector-valued function x(s) is 

said to be Bocbner integrable if the norm 
~~x(s)~~ is tintegrable. If x(s) is a Bochner inte- 
grable simple function 2 cjxA,(s), then its Boch- 

ner integral is defined by 

s X(S)dP =I P(AJCj, s 
For a general Bochner integrable func- 
tion x(s) there exists a sequence of simple 
functions satisfying the following condi- 
tions: (i) lim,,, 11x,(s) - x(s) I( = 0 a.e. (ii) 

lim,,, is II x,(s) -x(s) II dp = 0. Then is x,(s) dp 
converges strongly and its limit does not de- 

pend on the choice of the sequence {x”(s)}. We 
call the limit the Bochner integral of x(s) and 
denote it by jsx(s)dp or by (Bn)j,x(s)dp to 
distinguish it from other kinds of integrals. 
A Bochner integrable function on S is Boch- 

ner integrable on every measurable subset 
of S. The Bochner integral has the basic prop- 

erties of Lebesgue integrals, such as linear- 
ity, tcomplete additivity, and tabsolute con- 
tinuity, with absolute values replaced by 
norms. +Lebesgue’s convergence theorem and 
+Fubini’s theorem also hold. However, the 

Radon-Nikodym theorem does not hold in 
general (- Section H). Let T be a +closed 

linear operator from X to another Banach 
space Y. If both x(s) and TX(S) are Bochner 
integrable, then the integral of x(s) belongs 
to the domain of T and 

T(~sx(s)dll)=~sTx(s)d/l. 

If, in particular, T is bounded, then the as- 
sumption is always satisfied. If p is the +Le- 
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besgue measure on the Euclidean space R”, 

then Lebesgue’s differentiability theorem 
holds for the Bochner integrals regarded as 

a set function on the regular closed sets (- 
380 Set Functions D). 

D. Unconditionally Convergent Series 

Let CJE, xi be a series of elements xj of a 
Banach space X. It is said to be absolutely 
convergent if C ~~xj~~ < cci. It is called uncon- 
ditionally convergent if for any rearrangement 

r the resulting series C x,(~) converges strongly. 
Then the sum does not depend on ~1. Clearly, 
an absolutely convergent series is uncondition- 
ally convergent. If X is the number space or is 
finite-dimensional, then the converse holds. 

However, if X is infinite-dimensional, there 
is always an unconditionally convergent 
series which is not absolutely convergent 

(Dvoretzky-Rogers theorem). 
A series C xj is unconditionally convergent 

if and only if each subseries converges weakly 
(Or&-Pettis theorem). If C xj is an uncon- 
ditionally convergent series, then C.(xj, x’) 
converges absolutely for any continuous linear 

functional X’E X’. If X is a Banach space con- 
taining no closed linear subspace isomorphic 
to the +sequence space cO, then conversely a 

series C xj converges unconditionally when- 
ever C I( xj, x’) I< a for any x’ E X’ (Bessaga- 
Pelczyhski theorem). A Banach space that is 
tsequentially complete relative to the weak 
topology, such as a treflexive Banach space, 
and a separable Banach space that is the dual 

of another Banach space, such as I, and the 
+Hardy space H, (R”), satisfy the assump- 
tion, while cO, I,, and L,(R) for an infinitely 

divisible R do not. The totality of absolutely 

convergent series (resp. unconditionally con- 
vergent series) in X is identified with the ttopo- 
logical tensor product I, @ X (resp. I, 6 X) 
(Grothendieck). 

E. Birkhoff Integrals 

We say that a series C Bj of subsets of X con- 
verges unconditionally if for any xj~ Bj the 
series C xj converges unconditionally. Then 
C B, denotes the set of such sums. A vector- 
valued function x(s) is said to be Birkhoff 

integrable if there is a countable partition A: 
S=U,Z,Aj(Aj~6,AjflA,=0(j#k),p(Aj)< 
ic) such that the set x(Aj) of values on Aj are 

bounded and Cp(Aj)x(Aj) converges uncon- 
ditionally and if the sum converges to an ele- 
ment of X as the partition is subdivided. The 

limit is called the Birkhoff integral of x(s) 
and is denoted by (Bk){,x(s)& or simply by 

Jsx(s)dp. A Birkhoff integrable function is 

Birkhoff integrable on any measurable set. The 
Birkhoff integral has, as a set function, com- 
plete additivity and absolute continuity in p. 
It is linear in the integrand but Fubini’s theo- 
rem and the Radon-Nikodim theorem do not 

hold. A Bochn’er integrable function is Birk- 
hoff integrable, and the integrals coincide. The 
converse does not hold. 

F. Gel’fand-Pettis Integrals 

A scalarly measurable function x(s) is said to 

be scalarly integrable or weakly integrable if 
for each x’EX’, (x(s),x’) is integrable. Then 
the linear functional x* on X’ defined by 

s s(x(s),x’)dp=(x’,x*) 
is called the scalar integral of x(s). Gel’fand [3] 
and Dunford [4] proved that x* belongs to 
the bidual X”. Hence scalarly integrable func- 
tions are often called Dunford integrable and 
the integrals x* the Dunford integrals. More 
generally, Gel’fand [3] showed that if x’(s) 
is a function with values in the dual X’ of a 
Banach space X such that (x,x’(s)) is inte- 

grable for any x E X, then there is an X’E X’ 
satisfying 

s (x3 x’(s)) dP = (x,x’>. s 
This element is sometimes called t.he Gel’fand 
integral of x’(s). A scalarly integrable func- 

tion x(s) is scalarly integrable on any measur- 
able subset A. If the scalar integral is always in 

X, i.e., for each A there is an xA E X such that 

s A(X,x’(s))d~=(XA,X’),x’EX’, 
then x(s) is said to be Pettis integrable or 
Gel’fand-Pettis integrable and xA is called the 

Pettis integral or Gel’fand-Pettis integral on A 

and is denoted by (P)lAx(s)dp or simply by 
sA x(s) dp. The Pettis integral has complete 

additivity and absolute continuity as a set 
function, similarly to the Birkhoff integral. 

Again, Fubini’s theorem and the Radon- 
Nikod$m theorem do not hold. The scalar 
integral on measurable sets of a scalarly inte- 
grable function x(s) is completely additive and 
absolutely continuous with respect to the 
tweak* topology of X” as the dual to X’. It is 
completely additive or absolutely continuous 

in the norm topology if and only if x(s) is 
Pettis integrable (Pettis [S]; [lo]). If x(s) is 
Pettis integrable and f’(s) is a numerical func- 

tion in L,(S), then the product ,f(,~)x(s) is 
Pettis integrable. Birkhoff integrable functions 
are Pettis integrable, and the integrals coin- 
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tide. Conversely, if a measurable function is 
Pettis integrable, then it is Birkhoff integrable 
When X satisfies the Bessaga-Pelczynski con- 
dition (- Section D), a measurable scalarly 
integrable function is Pettis integrable. 

G. Vector Measures 

Let @ be a set function defined on a com- 
pletely additive class S of subsets of the space 
S and with values in a Banach space X. It is 

called a finitely additive vector measure (resp. a 
completely additive vector measure or simply a 
vector measure) if @(A, UA,)=@(A,)+@(A,) 
whenever A, and A, E S are disjoint (resp. 
@(u,2i Aj)=&Cl @(Aj) in the norm topology 
for all Ajtz a such that AjfY A, = 0 (,j # k)). We 
remark that the latter sum always converges 

unconditionally. A set function @ is completely 
additive if and only if (@(A), x’) is completely 
additive for all X’E X’ (Pettis complete additiv- 
ity theorem). 

Let @ be a finitely additive vector measure 

and E be a measurable set. The total variation 
of 0 on E and the semivariation of @ on E are 
defined by 

v(@)(E)=suP i ll@(Aj)ll 
j=l 

and 

(1) 

(2) 

respectively, where the suprema are taken over 
all finite partitions of E: E = U A, (Aj~ 6, Aj f’ 

A,=@(j#k)) and all numbers xj with 1~,1< 1. 
If V(@)(S)< s, then @ is called a measure of 

bounded variation. ll@,ii(S) < cx if and only if 
sup{ II@(A)11 1 AEG] < m. Then Q, is said to 
be bounded. The function V(@)(E) of E is 
finitely additive but ll@ll(E) is only subaddi- 
tive: ll@ll(AUB)< ll@ll(A)+ ll@ll(L?). If@ is a 

vector measure of bounded variation, then 
V(O) is a positive measure. Every vector mea- 
sure is bounded. A completely additive vector 
measure on a ifinitely additive class 52 can 

uniquely be extended to a vector measure on 
the completely additive class G generated by 
L! (Kluvanek). 

Let /J be a positive measure and @ be a 

vector measure. Then we have @(A)+0 as 
p(A)+0 if and only if 0 vanishes on every A 
with p(A)=O. Then @ is said to be absolutely 
continuous with respect to p. For every vector 
measure @ there is a measure p such that 
lI@,ll(A)+O as p(A)+0 and that O<p(A),< 
li@,ll(A) (Bartle, Dunford, and Schwartz). As a 

set function, the Bochner integral is a vector 

measure of bounded variation and the Pettis 
integral is a bounded vector measure. Both 

are absolutely continuous with respect to the 
integrating measure. Let X be L&O, 1) for 

1 <cp< x, and define @(E) for a Lebesgue 
measurable set E to be the characteristic func- 

tion of E. If p = 1,O is a vector measure of 
bounded variation. If 1 cp < x, Q is a bounded 
vector measure, but it is not of bounded varia- 
tion on any set E with p(E) > 0. If p = co, then 
@ is no longer completely additive. These vec- 

tor measures are absolutely continuous with 
respect to the Lebesgue measure, but they 
cannot be represented as the Bochner integral 

or the Pettis integral. 
Let @ be a vector measure on 5. An G- 

measurable numerical function ,f(s) is said to 
be @-integrable if there exists a sequence of 
simple functions ,f,(s) such that f”(s)-tf(s) a.e. 
and that for each E E 8, J,&(S) d@ converges 
in the norm of X. Then the limit is indepen- 
dent of the choice of J,. It is called the Bartle- 
Dunford-Schwartz integral and is denoted 

by lJ(s)d@,. Lebesgue’s convergence theo- 
rem holds for this integral. If @ is absolutely 

continuous with respect to the measure p, 
then every ,f~ L,(p) is @integrable, and the 
operator that maps 1‘ to J,fd@ is continuous 
with respect to the weak* topology in L,(/c) 
and the weak topology of X. Hence it is a 
tweakly compact operator. In particular, the 
range of a vector measure is relatively compact 
in the weak topology [7]. If @ is the vector 

measure of the Pettis integral of a vector- 
valued function x(s), then the above integral is 
equal to the Pettis integral of f(s)x(s). 

A vector measure @ is said to be nonatomic 

if for each set A with @(A) #O there is a subset 
B of A such that @(B)#O and @(A\B)#O. If X 
is finite-dimensional, then the range of a non- 
atomic vector measure is a compact convex set 

(Lyapunov convexity theorem). This has been 
generalized to the infinite-dimensional case in 
many ways, but the conclusion does not hold 
in the original form (- Kluvanek and G. 
Knowles [ 151; [lo]). 

H. The Radon-Nikodjm Theorem 

As the above examples show, the tRadon- 
Nikodym theorem does not hold for vector 
measures in the original form. From 1967’ 
to 1971, M. Metivier, M. A. Rieffel, and S. 
Moedomo and Uhl improved the classical 
result of Phillips (1943) and proved the follow- 

ing theorem. 
Radon-Nikodym theorem for vector mea- 

sures. The following conditions are equivalent 
for ,u-absolutely continuous vector measures @ 

defined on a finite measure space (S, 5, p): (i) 
There is a Pettis integrable measurable func- 
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tion x(s) such that 

@(A)=(P) x(s)&. 
s A 

(ii) For each E > 0 there is an E E 6 such that 
i~(S\E)cc: and such that {Q(A)/~(A)IAE~, 
A c E} is relatively compact. (iii) For each EE 

6 with p(E) > 0 there is a subset F of E with 
p(F)>0 such that {@(,4)/p(A)] AEG, AcF} 

is relatively weakly compact. Then @ is of 
bounded variation if and only if x(s) is Boch- 
ner integrable. 

On the other hand, since Birkhoff and 

Gel’fand it has been known that for special 
Banach spaces X every p-absolutely continu- 
ous vector measure of bounded variation 
with values in X can be represented as a Boch- 

ner integral with respect to p. Such spaces are 
said to have the Radon-Nikodfm property. 
Separable dual spaces (Gel’fand, Pettis; Dun- 
ford and Pettis), reflexive spaces (Gel’fand, 
Pettis, Phillips), and 1, (a), R arbitrary, etc., 
have the Radon-Nikodym property, while 
L,(O, 1) (Bochner), c,, (J. A. Clarkson), .!,,(n) 
on a nonatomic Q (Clarkson, Gel’fand), and 

C(Q) on an infinite compact Hausdorff space 
0, etc., do not. Gel’fand proved that L,(O, 1) 
(and cO) is not a dual by means of this fact. 
From 1967 to 1974, Riefell, H. B. Maynard, 
R. E. Huff, and W. J. Davis and R. P. Phelps 

succeeded in characterizing geometrically the 
Banach spaces with the Radon-Nikodym 

property. We know today that the following 
conditions for Banach spaces X are equivalent 
[lo]: (i) X has the Radon-Nikodym property. 
(ii) Every separable closed linear subspace of 
X has the Radon-Nikodym property. (iii) 
Every function f: [0, l] +X of bounded 
variation is (strongly or weakly) differentiable 

a.e. (iv) For any finite measure space (S, 6, p) 

and bounded linear operator T: L, (S)-+X, 
there is an essentially bounded measurable 
function x(s) with values in X such that 

(v) Each nonvoid bounded closed convex set K 
in X is the tclosed convex hull of the set of its 
strongly exposed points, where a point x0 E K 

is called a strongly exposed point of K if there 
is an X’E X’ such that (x,, x’) > (x,x’) for all 
XE K \{x,,} and that any sequence X,E K with 

lim(x,, x’) = (x0, x’) converges to x0 strongly. 
A Banach space X is said to have the Krein- 

Mil’man property if each bounded closed 
convex set in X is the closed convex hull of its 
textreme points. A Banach space X with the 
Radon-Nikodym property has the Krein- 
Mil’man property (J. Lindenstrauss). If X is a 

dual space, then the converse holds (Huff and 

P. D. Morris). A Banach space with the Krein- 

Mil’man property clearly has no closed linear 
space isomorphic to cO, but there are Banach 

spaces that do not contain c0 and do not have 
the Krein-Mil’man property. The: dual X of 

a Banach space Y has the Radon-Nikodym 
property if and only if the dual of every sepa- 
rable closed linear subspace of Y is separable 
(Uhl, C. Stegall). 

I. Integrals of Multivalued Vector Functions 

Let F(s) be a multivalued function defined on 
a a-finite complete measure space (S, 6, p) with 
values that are nonempty closed subsets of a 
separable Banach space X. The inverse image 
of a subset E of X under F(s) is, by definition, 

the set of all s such that F(s) n E 7~ 0. F(s) is 
said to be measurable or strongly measurable if 
the inverse image of each open set in X under 
F(s) belongs to G. Let S(X) be the +Borel field 
of X, and 6 x 23(X) be the product completely 
additive class, that is, the smallest completely 
additive class containing all direct products 
AxBofAE5andBE%(X).Thenthemea- 

surability of F(s) is equivalent to each of the 
following: (i) The graph {(s, x) 1 XE I(s), SE G} 
of F(s) belongs to 6 x b(X). (ii) The inverse 
image of every Bore1 set in X under F(s) be- 

longs to 6. (iii) For each XEX, the distance 
d(x,F(s))=inf{ Ilx-yli [y~F(s)} b’etween x 
and I(s) is measurable as a function on S. 

A measurable function x(s) on S with values 
in X is called a measurable selection of I(s) if 
x(s) is in I(s) for all s. (X being separable, we 
need not discriminate between strong and 
weak measurability.) The measur.ability of 
F(s) is also equivalent to the following impor- 
tant statement on the existence of measurable 

selections of F(s): (iv) There are a countable 
number of measurable selections {x.(s)} of I(s) 

such that the closure of the set {x.(s) 1 n = 
1,2,. . . } coincides with F(s) for all SE S. F(s) 
is said to be scalarly measurable or weakly 
measurable if the support function 8(x’, I(s)) = 
sup { (x, x’) 1 XE F(s)} is measurable on S for 

all x’EX’. The strong measurability of F(s) 
clearly implies the weak one. If the values of 

F(s) are nonempty weakly compact convex 
sets, then the measurabilities are Iequivalent. 
Hereafter we shall assume that Fts) takes the 
values in the weakly compact convex sets. If 
the support function 8(x’, F(s)) is integrable on 

S for all x’EX’, then F(s) is said to be scalarly 
integrable. Then the scalar integral of F(s) is 
defined to be the set in X” of all scalar inte- 
grals of its measurable selections, i.e., 

~sF(s)&={~sx(s)dalx(s)isameasurable 

selection of rts) 
i 
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If IjI(s)J1 =sup{jjx~~ (x~I(s)} is integrable, 
then every measurable selection is Bochner 
integrable and the integral ss r(s)dp becomes 
a nonempty weakly compact convex set in 

X. When the values of I(s) are nonempty 
compact convex sets, there is another method, 
by G. Debreu, of defining the integral. Let 

L! be the class of all nonempty compact con- 
vex sets in X and 6 be the Hausdorff met- 
ric, i.e., for K, and K2~e define S(K,, K2)= 

maxCsup{d(x,K,)l~EK~},supjd(x,K,)lx~ 
K,}]. Further, for K,, KZ~p and a>0 define 
the sum and the nonnegative scalar multiple 
by K,+K,={x,+x,Ix,EK~,x~EK~} and 
a.K, = (axJx6K,}, respectively. Then Q en- 
dowed with the Hausdorff metric and the 

above addition and scalar multiplication is 
isometrically embedded in a closed convex 
cone in a separable Banach space Y by the 

Radsrom embedding theorem (Proc. Amer. 
Math. Sot., 3 (1952)). Let cp be this isometry. 
Then the (strong) measurability and the (strong) 
integrability of F(s) are defined by the measur- 
ability and the Bochner integrability of the Y- 
valued function cp(I(s)), respectively, and its 

(strong) integral as the inverse image of the 
Bochner integral of &F(s)) under cp: 

This definition of integral for strongly measur- 
able I(s) is shown to be compatible with that 
mentioned before. It is clear by the definition 
that the integral value in this case is a non- 
empty compact convex set and that most prop- 
erties of Bochner integrals also hold for this 
integral. 
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444 (Xx1.42) 
Viete, Francois 

Francois Viete (1540-December 13, 1603) was 

born in Fontenay-le-Comte, Poitou, in western 
France. He served under Henri IV, first as a 

lawyer and later as a political advisor. His 
mathematics was done in his leisure time. He 
used symbols for known variables for the first 
time and established the methodology and 
principles of symbolic algebra. He also sys- 
tematized the algebra of the time and used it 
as a method of discovery. He is often called the 
father of algebra. He improved the methods of 
solving equations of the third and fourth de- 

grees obtained by G. Cardano and L. Ferrari. 
Realizing that solving the algebraic equation 

of the 45th degree proposed by the Belgian 
mathematician A. van Roomen can be reduced 

to searching for sin(a/45) knowing sin x, he 
was able to solve it almost immediately. How- 
ever, he would not acknowledge negative roots 
and refused to add terms of different degrees 
because of his belief in the Greek principle of 
homogeneity of magnitudes. He also contri- 
buted to trigonometry and represented the 
number n as an infinite product. 

References 

[ 11 Francisci Vietae, Opera mathematics, F. 
van Schooten (ed.), Leyden, 1646 (Georg Olms, 
1970). 

[2] Jacob Klain, Die griechische Logistik und 
die Entstehung der Algebra I, II, Quellen und 



445 Ref. 
Von Neumann, John 

1686 

Studien zur Gesch. Math., (B) 3 (1934) 18 
105; (B) 3 (1936), 1222235. 

445 (XXl.43) 
Von Neumann, John 

John von Neumann (December 28, 19033 
February 8, 1957) was born in Budapest, 

Hungary, the son of a banker. By the time he 
graduated from the university there in 1921, he 
had already published a paper with M. Fekete. 

He was later influenced by H. Weyl and E. 
Schmidt at the universities of Zurich and 
Berlin, respectively, and he became a lecturer at 
the universities of Berlin and Hamburg. He 

moved to the United States in 1930 and in 
I933 became professor at the Institute for 
Advanced Study at Princeton. In 19.54 he was 
appointed a member of the US Atomic Energy 
Commission. The fields in which he was first 

interested were tset theory, theory of +func- 
tions of real variables, and tfoundations of 
mathematics. He made important contribu- 
tions to the axiomatization of set theory. At 
the same time, however, he was deeply inter- 
ested in theoretical physics, especially in the 
mathematical foundations of quantum me- 
chanics. From this field, he was led into re- 
search on the theory of +Hilbert spaces, and 

he obtained basic results in the theory of +oper- 
ator rings of Hilbert spaces. To extend the the- 
ory of operator rings, he introduced tcontinu- 
ous geometry. Among his many famous works 
are the theory of talmost periodic functions 

on a group and the solving of THilbert’s fifth 
problem for compact groups. In his later years, 
he contributed to +game theory and to the 
design of computers, thus playing a major role 
in all fields of applied mathematics. 
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446 (XX.1 3) 
Wave Propagation 

A disturbance originating at a point in a 
medium and propagating at a finite speed in 
the medium is called a wave. For example, a 

sound wave propagates a change of density or 
stress in a gas, liquid, or solid. A wave in an 
elastic solid body is called an elastic wave. 
Surface waves appear near the surface of a 
medium, such as water or the earth. When 
electromagnetic disturbances are propagated 

in a gas, liquid, or solid or in a vacuum, they 
are called electromagnetic waves. Light is a 
kind of electromagnetic wave. According to 
+general relativity theory, gravitational action 
can also be propagated as a wave. 

It many cases waves can be described by the 
wave equation: 

Here t is time, x, y, z are the Cartesian coordi- 
nates of points in the space, c is the propaga- 
tion velocity, and $ represents the state of the 
medium. 

If we take a closed surface surrounding the 
origin of the coordinate system, the state 

11/(0, t) at the origin at time f can be determined 
by the state at the points on the closed surface 
at time t-r/c, with r the distance of the point 
from the origin. More precisely, we have 

Here n is the inward normal at any point of 
the closed surface, and the integral is taken 
over the surface, while the value of the inte- 

grand is taken at time t -r/c. This relation is 
a mathematical representation of Huygens’s 
principle, which is valid for the 3-dimensional 

case but does not hold for the 2-dimensional 
case (- 325 Partial Differential Equations of 

Hyperbolic Type). 
A plane wave propagating in the direction 

of a unit vector n can be represented by tj = 

F(t -n * r/c), where F is an arbitrary function 
and r(x, y, z) is the position vector. The sim- 
plest case is given by a sine wave (sinusoidal 
wave): Ic, = A sin(wt - k*r +6). Here A(ampli- 
tude) and 6 (phase constant) are arbitrary con- 

stants, k is in the direction of wave propaga- 
tion and satisfies the relation ) kJc = Q. w  is the 
angular frequency, 0427~ the frequency, k the 

wave number vector, IkJ the wave number, 27c/o~ 

the period, and 27r/lkj the wavelength. The 
velocity with which the crest of tlhe wave ad- 
vances is equal to w/l kl = c and is called the 
phase velocity. 

A spherical wave radiating from the origin 
can generally be represented by 

where cp, is the +solid harmonic of order n. 
Waves are not restricted to those governed 

by the wave equation. In general. t/j is not a 
scalar, but has several components (e.g., $ may 
be a vector), which satisfy a set of simulta- 

neous differential equations of various kinds. 
Usually they have solutions in the form of 

sinusoidal waves, but the phase velocity c = 
0)/I kl is generally a function of the wa?elength 

j.. Such a wave, called a dispersive wave, has a 
propagation velocity (velocity of propagation 
of the disturbance through the medium) that 

is not equal to the phase velocity. A distur- 
bance of finite extent that can be approxi- 
mately represented by a plane wave is propa- 
gated with a velocity c-1&/&., (called the 
group velocity. Often there exists a definite 
relationship between the amplitude vector 
A (and the corresponding phase constant 6) 
and wave number vector k, in which case the 
wave is said to be polarized. In particular, 

when A and k are parallel (perpendicular), 
the wave is called a longitudinal (transverse) 
wave. Usually equations governing the wave 

are linear, and therefore superposition of two 
solutions gives a new solution (tprinciple of 
superposition). Superposition of 1 wo sinusoi- 
dal waves traveling in opposite directions gives 
rise to a wave whose crests do not move (e.g., 

$ = A sin wt sin k * r). Such a wave is called a 
stationary wave. Since the energy of a wave is 
proportional to the square of $, the energy of 
the resultant wave formed by superposition 
of two waves is not equal to the sum of the 

energies of the component waves. This phe- 
nomenon is called interference. When a wave 
reaches an obstacle it propagates into the 
shadow region of the obstacle, where there is 
formed a special distribution of energy de- 
pendent on the shape and size of the obtacle. 
This phenomenon is called diffraction. 

For aerial sound waves and water waves, 
if the amplitude is so large that the wave 
equation is no longer valid, we are faced with 
tnonlinear problems. For instance, shock 
waves appear in the air when surfaces of dis- 

continuity of density and pressure exist. They 
appear in explosions and for bodies traveling 
at high speeds. Concerning wave mechanics 

dealing with atomic phenomena -- 351 Quan- 
tum Mechanics. 
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Weierstrass, Karl 

Karl Weierstrass (October 31, 181%February 
19, 1897) was born into a Catholic family in 
Ostenfelde, in Westfalen, Germany. From 1834 

to 1838 he studied law at the University of 
Bonn. In 1839 he moved to Miinster, where he 

came under the influence of C. Gudermann, 
who was then studying the theory of elliptic 

functions. From this time until 1855, he taught 
in a parochial junior high school; during this 
period he published an important paper on 
the theory of analytic functions. Invited to the 
University of Berlin in 1856, he worked there 

with L. Kronecker and E. E. Kummer. In 

1864, he was appointed to a full professorship, 
which he held until his death. 

His foundation of the theory of analytic 
functions of a complex variable at about the 
same time as Riemann is his most fundamental 
work. In contrast to Riemann, who utilized 
geometric and physical intuition, Weierstrass 

stressed the importance of rigorous analytic 
formulation. Aside from the theory of analytic 
functions, he contributed to the theory of 
functions of real variables by giving examples 
of continuous functions that were nowhere 

differentiable. With his theory of tminimal 
surfaces, he also contributed to geometry. His 

lectures at the University of Berlin drew many 

listeners, and in his later years he was a re- 
spected authority in the mathematical world. 
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Weyl, Hermann 

Hermann Weyl (November 9,1885-December 

8, 1955) was born in Elmshorn in the state of 
Schleswig-Holstein in Germany. Entering the 
University of Gottingen in 1904, he also au- 

dited courses for a time at the University of 
Munich. In 1908, he obtained his doctorate 
from the University of Gottingen with a paper 
on the theory of integral equations, and by 
1910 he was a lecturer at the same university. 
In 1913, he became a professor at the Federal 
Technological Institute at Zurich; in 1928- 
1929, a visiting professor at Princeton Univer- 
sity; in 1930, a professor at the University of 

Gottingen; and in 1933, a professor at the 
Institute for Advanced Study at Princeton. He 

retired from his professorship there in 1951, 
when he became professor emeritus. He died in 
Zurich in 1955. 

Weyl contributed fresh and fundamental 
works covering all aspects of mathematics and 
theoretical physics. Among the most notable 
are results on problems in tintegral equations, 
tRiemann surfaces, the theory of tDiophantine 

approximation, the representation of groups, 
in particular compact groups and tsemisimple 
Lie groups (whose structure he elucidated), the 
space-time problem, the introduction of taffine 

connections in differential geometry, tquantum 
mechanics, and the foundations of mathemat- 
ics. In his later years, with his son Joachim he 
studied meromorphic functions. In addition to 
his many mathematical works he left works in 
philosophy, history, and criticism. 
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Witt Vectors 

A. General Remarks 

Let I be an iintegral domain of character- 
istic 0, and p a fixed prime number. For each 
infinite-dimensional vector x =(x0, xi , ) 
with components in I, we define its ghost com- 
ponents x”‘), x(’ ‘, by .x’“) =x0, .x(n) =x{” + 
px;“-’ + + pnx,. We define the sum of the 
vectors x and y=(y”,y,,...) to be the vector 
with ghost components ~‘~)+y(~‘, .x(“+y(‘), 
. ..) and their product to be the vector with 
ghost components x(“y”), x”)y(“, The sum 

and product are uniquely determined vectors 
with components in I. Writing their first two 
terms explicitly, we have 

x + y 

[ 
p-1 1 

= xo+Y,,x, +y, - 
P 

4) 
P-v .x;y, ,... , 

,m=, p v 1 
In general, it can be proved that the nth 

components o,,(x, y) and rt[,(x, y) of the sum and 
product are polynomials in xo,yo,x,, y,, , 
x,,, y,, whose coefficients are rational integers. 

With these operations of addition and multi- 
plication, the set of these vectors forms a +com- 
mutative ring, of which the zero element is 

(O,O, _. ) and the unity element is (l,O, ). 
Let k be a field of characteristic p. For vectors 

(to, t,, .), and (qo, vi,. ) with components 
in k, we define their sum and product by 

(50,~l,...)+(rlo,~l,...)=(...,~,(5,s),...) and 

(to, t, , )(rlo, fh, ) = ( 1~,(53 4, ‘1. Since 
the coefficients of rr, and rc, are rational in- 

tegers, these operations are well defined. With 
these operations, the set of such vectors be- 

comes an integral domain W(k) of character- 
istic 0. Elements of W(k) are called Witt vec- 
tors over k. 

Ifweput V(to,< ,,... )=(O,to,tl ,... )and 

(to,<,,... )“=(<i,<f, . ..). we get the formula 
p{ = If<“. (Note that this 5” is not the pth 
power of < in W(k) in the usual sense.) There- 
fore, if we put ((I= pm” for a vector l whose 
first nonzero component is &,, then this abso- 
lute value 1 1 gives a tvaluation of W(k). In par- 

ticular, when k is a iperfect field, deenoting the 

vector (tq, 0, ) by (to} we get (5,,, i;, , ) = 
Cp’{&c), and W(k) is a +complete valu- 
ation ring with respect to this valuation. 
Therefore the +field of quotients of W(k) is a 

complete valuation field of which p is a prime 
element and k is the iresidue class field. Con- 
versely, let K be a field of characteristic 0 that 
is complete under a idiscrete valuation o, o be 
the valuation ring oft’, and k be the residue 
class field of c. Assume that k is a perfect field 
of characteristic p. If p is a prime element of o, 

then D= W(k). If c(p)=u(n’) (e> 1) with a 
prime element 71 of c), we have II = W(k) [TC], 

and n is a root of an +Eisenstein polynomial 
X”+u,X’~‘+...+a,(u,~pW(k),n,~p~W(k)). 

In this way we can determine explicitly the 

structure of a +p-adic number field (- 257 
Local Fields). 

B. Applications to Ahelian p-Extensions and 
Cyclic Algebras of Characteristic ,n 

Next we consider v,(k)= W(k)/V”W(k). The 
elements of W,(k) can be viewed as the n- 

dimensional vectors (to, , &i), but their 
laws of composition are defined as in the pre- 
vious section. They are called Witt vectors of 

length n. We define an operator p; by $15 = 
<“- 5. Using it, we can generalize the theory 
of +Artin-Schreier extensions (- 172 Galois 
Theory) to the case of Abelian extensions of 
exponent p” over a field of characteristic p, 

Indeed, let k be a field of characteristic p and 

< =(to, , &,) an element of W(k). If q= 
(‘lo, , r,-,) is a root of the vect0.r equation 
@X - 5 = 0, then the other roots a.re of the 
form q + a(~ =(x0,. , zn-i), a+F,J. In partic- 

ular, if ~o$~c~k=jaP-zlx~k), the field K= 
k(qo, , r,-,) is a cyclic extension of degree 
p” over k, and conversely, every cyclic extension 
of k of degree p” is obtained in this way. Let 
(l/(.7)( denote the set of all roots of ~JX ~ 
5 =O. Then more generally, any finite Abelian 
extension of exponent p” of k can be obtained 

as K = k(( l/r,,)< 1 ~EH) with a suitable finite 

subgroup H/q,) W,(k) of W,(k)/+) M/,(k), and 
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the Galois group of K/k is isomorphic to 

Hi@ W,(k). 
Moreover, for a tcyclic extension K = 

k((l/(J)fl) of exponent p” over k and for 
XE k(sc #O), we can define a +cyclic algebra 

(a. /j] generated by an element u over K by the 
fundamental relations up” = z, (JO= 8, I.&-’ 
=O+(l,O ,..., O)(wherefI=(O,, ,..., (I,~,),u(Iu-’ 
=(uO,u -’ , , uO,-,a-‘)), and (a,fi] is a central 
simple algebra over k. 

Using these results, we can develop the 
structure theory of the +Brauer group of expo- 
nent p” of a +tield of power series in one vari- 
able with coefficients in a finite field F, (of a 

+field of algebraic functions in one variable 
over F,) exactly as in the case of a p-adic field 

(of an algebraic number field) (E. Witt [l]; 
- 29 Associative Algebras G). 

On the other hand, W,(k) is a commutative 

+algebraic group over k and is important in the 
theories of algebraic groups and tformal 
groups (- 13 Algebraic Groups). 
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450 (V.19) 
Zeta Functions 

A. Introduction 

Since the 19th century, many special functions 
called [-functions (zeta functions) have been 
defined and investigated. The four main prob- 

lems concerning [-functions are: (1) Methods 
of defining i-functions. (2) Investigation of 
the properties of i-functions. Generally, <- 
functions have the following four properties 
in common: (i) They are meromorphic on the 
whole complex plane; (ii) they have +Dirichlet 
series expansions; (iii) they have Euler product 
expansions; and (iv) they satisfy certain func- 
tional equations. Also, it is an important prob- 

lem to find the poles, residues, and zeros of ;- 
functions. (3) Application to number theory, in 
particular to the theory of decomposition of 

prime ideals in finite extensions of algebraic 
number fields (- 59 Class Field Theory). (4) 
Study of the relations between different [- 
functions. 

Most of the functions called [-functions or 
L-functions have the four properties of prob- 
lem (2). The following is a classification of the 
important types of {-functions that are already 
known, which will be discussed later in this 
article: 

(I) The c- and L-functions of algebraic num- 

ber fields: the Riemann [-function, Dirichlet L- 
functions (study of these functions gave im- 
petus to the theory of i-functions), Dedekind 

i-functions, Hecke L-functions, Hecke L- 
functions with +Gr&sencharakters, .4rtin L- 
functions, and Weil L-functions. (2) The p-adic 
L-functions related to the works of H. W. 
Leopold& T. Kubota, K. Iwasawa, etc. (3) The 
i-functions of quadratic forms: Epstein <- 
functions, i-functions of indefinite quadratic 
forms (C. L. Siegel), etc. (4) The <- and L- 
functions of algebras: Hey i-functions and 

the i-functions given by R. Godement, T. 
Tamagawa, etc. (5) The i-functions associated 
with Hecke operators, related to the work of 

E. Hecke, M. Eichler, G. Shimura, H. Jacquet, 
R. P. Langlands, etc. (6) The congruence <- 
and L-functions attached to algebraic varieties 
defined over finite fields (E. Artin, A. Weil, A. 

Grothendieck, P. Deligne), [- and L-functions 
of schemes. (7) Hasse i-functions attached to 
the algebraic varieties defined over algebraic 
number fields. (8) The i-functions attached to 
discontinuous groups: Selberg [-functions, the 

Eisenstein series defined by A. Selberg, Gode- 
ment, and 1. M. Gel’fand, etc. (9) Y. Ihara’s [- 
function related to non-Abelian class field 

theory over a function field over a finite field. 

(10) i-functions associated with prehomoge- 
neous vector spaces (M. Sato, T. Shintani). 

B. The Riemann (-Function 

Consider the series 

i(s)= I+;+;+ . ..+.+ . . . . 

which converges for all real numbers s> 1. It 
was already recognized by L. Euler that i(s) 
can also be expressed by a convergent infinite 
product n,,(l -pm’)-‘, where p runs over all 
prime numbers (W?rke, ser. I, vol VII, ch. XV, 

4 274). This expansion is called Euler’s infinite 
product expansion or simply the Euler product. 
However, Riemann was the first to treat c(s) 
successfully as a function of a complex variable 
s (1859) [R 11; for this reason, it is called the 

Riemann [-function. As can be seen from its 
Euler product expansion, i(s) is holomorphic 
and has no zeros in the domain Res > 1. 
Riemann proved, moreover, that it has an 
analytic continuation to the whole complex 
plane, is meromorphic everywhere, and has 
a unique pole s = 1. The functions (s - 1)((s) 

and l(s) - l/(s - 1) are iintegral functions of 
s. This can be seen by considering the integral 
expression 

From this last formula, we also obtain an 
equality 

i’(s)=<(l -s), 

where 

This equality is called the functional equation 
for the c-function. The residue of i(s) at s= 1 is 
1, and around s= 1, 

i(s)=;~;+c+o(,s- 1 I), 

where C is +Euler’s constant. This is called the 
Kronecker limit formula for i(s). 

The function i(s) has no zeros m Res> 1, 
and its only zeros in Re s < 0 are simple zeros 

at s= -2, -4, . . . . -2n, But i(s) has i,n- 
finitely many zeros in O< Res< 1, which are 

called the nontrivial zeros. B. Riemann conjec- 
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tured that all nontrivial zeros lie on the line 
Res= l/2 (1859). This is called the Riemann 
hypothesis, which has been neither proved nor 

disproved (- Section I). 
If N(T) denotes the number of zeros of i(s) 

in the rectangle O<Res< l,O<Ims< T, we 
have an asymptotic formula 

M(T)=;TlogT- 1 tlog27t 
____ T+ O(log T) 

2n 

(H. von Mangoldt, 1905). Also, i(s) has the 
following infinite product expansion: 

(s-l);(s)=;e”s~ 
r;+1 p 

( > 

rI( -1) 1 ; es/p, 

where h is a constant and p runs over all non- 
trivial zeros of l(s) (J. Hadamard, 1893). 
Hadamard and C. de La Vallke-Poussin 

proved the tprime number theorem, almost 
simultaneously, by using some properties of 

i(s) (- 123 Distribution of Prime Numbers B). 
The following approximate functional equa- 

tion is important in investigating the values of 
i(s): 

where cp is +Euler’s function, and c(s) = 
q(s)[(l -s), s=o+it, 27rxy=Itl, and the 
approximation is uniform for -h < 0 < h, 

x > k, y > k with h and k positive constants 
(G. H. Hardy and J. E. Littlewood, 1921). 

Euler obtained the values of c(s) for positive 
even integers s: 

<(2m) = 
22m-1 +HB 

Zm 

(2m)! 

(m = 1,2,3, , and the B,, are +Bernoulli 

numbers). The values of c(s) for positive odd 
integers s, however, have not been expressed 
in such a simple form. The values of c(s) for 

negative integers s are given by <(O)=B,(O) 

=-f,[(l-n)=- B”(O) 
-, n=2, 3 ,..., where 

n 
the B,(x) are +Bernoulli polynomials. 

As a slight generalization of i(s), A. Hurwitz 
(1862) considered 

1 
((s,a)= f ~ 

n=o(n+a)“’ 
O<adl 

This is called the Hurwitz [-function. Thus 

[(s, l)=[(s), and [(s, l/2)=(2”- l)[(s). This 
function [(s, a) can also be continued analyti- 
cally to the whole complex plane and satisfies 

a certain functional equation. But in general it 
has no Euler product expansion. 

C. Dirichlet L-Functions 

Let m be a positive integer, and classify all 
rational integers modulo m. The set of all 
classes coprime to m forms a multiplicative 
Abelian group of order h = q(m). Let x be a 
+character of this group. Call (n) the residue 

class of n mod m, and put x(n) = x((n)) when 
(n, m) = 1 and x(n) = 0 when (n, m) # 1. Now, the 

function of a complex variable s defined by 

L(s) = L(s, x) = “E, Jp 

is called a Dirichlet L-function. This function 
converges absolutely for Res > 1 and has an 
Euler product expansion 

us>X)=n, plI;p)p-s. 
P 1 

If there exist a divisor f of m (f#m) and a 
character x0 module ,f such that x(n) = x0(n) 
for all n with (n, m) = 1, we call x a nonprimitive 

character. Otherwise, x is called a primitive 
character. If x is nonprimitive, there exists such 
a unique primitive x0. In this situation, the 
divisor f of m associated with x0 is called the 

conductor of x (and of 1’). We have 

us, xl = us, x0) n (1 - x0(&J -1. 

Let 1 be primitive. If the conductor ,f= 1, 

then ): is a trivial character (I= l), and L(s) is 
equal to the Riemann i-function i(s). On the 
other hand, if f> 1, then L(s) is an entire func- 

tion of s. In particular, if x is a nontrivial 
primitive character, L( 1) = L( 1, x) is finite and 
nonzero. P. G. L. Dirichlet proved the theorem 
of existence of prime numbers in arithmetic 
progressions using this fact (- 123 Distri- 
bution of Prime Numbers D). 

L(s, x) has a functional equation similar to 
that of i(s); namely, if x is a primitive character 

with conductor f and we put 

ish x) = w4@w + 4/2)L(s, x), 

wherea=OforX(-l)=l anda= 

-1, then we have 

a% x) = W%)5( 1 ~ s, XL 

where 

1 for x(-l)= 

W(X)=(--i)4f-“‘7(X), 7(x)= C x(n)&! 
nmodf 

(cs=exp(2ni/f)). The latter sum is called the 
Gaussian sum. Note that 1 W(x)) = 1. 

The values of L(s) for negative integers 
s are given by L( 1 -m, x) = -B,,,/m (m = 

1,2,3, ), where the B,,, are defined by 

c s zcr,““=$o B&rn. 
@=, efr-1 
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Moreover, if x( -1) = -1, we have 

L(l,,)=;F i (-x(x).x) 
X=1 

= Wx)Bw. 1, 

andifX(-l)=l,X#l,wehave 

In certain cases, the functional equation can be 
utilized to obtain the values of L(m, 1) from 
those of L( 1 - m, x). Actually, if x( - 1) = 1, m = 
2n = 2,4,6, . . , we have 

andifX(-l)=-l,m=2n+l=3,5,7 ,..., we 
have 

Wn + 1, xl 

=(-QxjY _r 
t-1)” 27c 2n+‘~(x)(-B 

0 
) ,z,*n+1 

Dirichlet L-functions are important not only 
in the arithmetic of rational number fields but 
also in the arithmetic of quadratic or cyclo- 

tomic fields. 

D. [-Functions of Algebraic Number Fields 
(Dedekind [-Functions) 

The Riemann [-function can be generalized to 
c-functions of algebraic number fields (- 14 
Algebraic Number Fields). Let k be an alge- 
braic number field of degree n, and let a run 

over all integral ideals of k. Consider the se- 
quence ik(s) = C, N(a) -‘. This sequence con- 
verges for Re s > 1 and has an Euler product 

expansion &)=&(l -N(p))“))‘, where p 
runs over all prime ideals of k. This function, 
which is continued analytically to the whole 

complex plane as a meromorphic function, is 
called a Dedekind c-function. Its only pole is 
a simple pole at s= 1, with the residue hkKk. 

Here h, is the +class number of k, and K~ = 
2’1”2~‘2R/(wld11’*), where r, (2r2) is the number 
of isomorphisms of k into the real (complex) 
number field, w  is the number of roots of unity 
in k, d is the tdiscriminant of k, and R is the 
tregulator of k (R. Dedekind, 1877) [Dl]. 

The function &(s) has no zeros in Re s > 1, 
while in Re s < 0 it has zeros of order r2 at -1, 

-3, -5, . . . . zeros of order rl +r, at -2, -4, 
-6,...,andazerooforderr,+r,-lats=O. 
All other zeros lie in the open strip O< Res< 1, 
which actually contains infinitely many zeros. 
It is conjectured that all these zeros lie on the 
line Re s = l/2 (the Riemann hypothesis for 

Dedekind [-functions). To obtain a generali- 

zation of the functional equation for the 
Riemann c(s) to the case of &Js), we put 

ThenE.,(s)=&(l-s)(Hecke, 1917)IfKisa 

Galois extension of k, then [K(s)/(:L(s) is an 
integral function (H. Aramata, 1933; R. Brauer, 
1947). 

E. Hecke L-Functions 

As a generalization of Dirichlet l,-functions to 
algebraic number fields, Hecke (19 17) defined 
the following L-function L,(s, x): Let k be an 

algebraic number field of finite degree, and let 
tii =mnp, be an tintegral divisosr (m the finite 
part, np, the +inlinite part). Consider the 
tideal class group of k modulo tIi and its char- 
acter x (here we put x(a)= 0 for (a, m) # 1). 
Then the L-functions are defined by 

L(s, xl =c x(4/N(a) 
a 

[H2], where a runs over all integral ideals of k. 
L,(s, x) is called a Hecke L-function. It con- 

verges for Re s > 1 and has an Euler product 
expansion 

Here p runs over all prime ideals of k. If there 
is a divisor 71 rit (7~ TI?) and a character x0 
modulo ? such that x0(a) = x(a) for all a with 
(a, m) = 1, then x is called nonprimitive: other- 

wise, x is called a primitive character. In gen- 
eral, there exist unique such i and x0. In this 
situation, i is called the conductor of x. If x is 
primitive and the conductor? is (l), then x is 
a trivial character and L,(s, 1) coincides with 

ck(s). If x is primitive and x # 1, then L,(s, x) 
is an integral function of s, and Lk( 1, x) #O. 
Utilizing this fact, it can be proved that there 
exist infinitely many prime ideals in each class 
of the ideal class group module an integral 
divisor 1st of k. 

Let x be a primitive character with the con- 

ductor 7, d be the discriminant of k, cl, . , or, 
be all distinct isomorphisms of k into the real 

number field R, and f be the finite part of y. 
Then if 5 is an integer of k such that 5 = 1 
(mod f), we have 

x((~))=(sgn<“1)“~..:(sgn~“~~)“~, 

where a, (m = 1, , rJ is either 0 or 1, depend- 
ing on x. By putting 

Sk(.% xl = 
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we have the following functional equation for 
the Hecke L-function: 

where W(x) is a complex number with ab- 

solute value 1 and the exact value of W(x) is 
given as a Gaussian sum. Just as some prop- 
erties concerning the distribution of prime 
numbers can be proved using the Riemann [- 
function and Dirichlet L-functions, some prop- 
erties concerning the distribution of prime 
ideals can be proved using the Hecke L- 
functions (-- 123 Distribution of Prime Num- 

bers F). 
T. Takagi used Hecke L-functions in found- 

ing his tclass field theory. In the other direc- 

tion, this theory implies L( 1, x) #O (x # 1). 
Let K be a +class field over k that corre- 

sponds to an ideal class group H of k with 
index h. By using class field theory, we obtain 
[&) = n, L,(s, x), where the product is over all 
characters x of ideal class groups of k, such 
that x(H) = 1. This formula can be regarded as 
an alternative formulation of the decompo- 

sition theorem of class field theory (- 59 Class 
Field Theory). By taking the residues of both 
sides of the formula at s = 1, we obtain hKtiK 

= h,x,II /fl Ml> x). 
In particular, if k = Q (the rational number 

field) and K is a quadratic number field Q(d) 
(d is the discriminant of K), then we have 

where (d/n) is the +Kronecker symbol, and we 
put (d/n) = 0 when (n, d) # 1. From this, we 
obtain the class number formula for quadratic 
number fields (- 347 Quadratic Fields). A 

similar method is used for computation of 
class numbers of cyclotomic fields K (- 14 

Algebraic Number Fields L). 
In general, the computation of the relative 

class number h,/h, when K/k is an Abelian 
extension is reduced to the evaluation of 
L( 1, x). This computation has been made suc- 
cessfully for the following cases (besides for the 
examples in the previous paragraph): k is 

imaginary quadratic and K is the absolute 
class field of k or the class field corresponding 

to tray S(m); k is totally real and K is a totally 
imaginary quadratic extension of k. H. M. 

Stark and 1‘. Shintani made conjectures about 
the values of L(l,x) [S25,Sl9]. 

Let L(s, x) be a Hecke L-function for the 
character x. Then it follows from the func- 
tional equation that the values of L(s, x) at s 
=O, -1, -2, -3,... are zero if k is not totally 
real. Furthermore, if k is a totally real finite 

algebraic number field, then these values of 
L(s, x) are algebraic numbers (C. L. Siegel, H. 

Klingen, T. Shintani). 

F. Hecke L-Functions with Griissencharakters 

E. Hecke (19 18, 1920) extended the notion 

of characters by introducing the +Grdssen- 
charakter x and defined L-functions with 

such characters: 

L,(s,x)=C~. ” 

He also proved the existence of their Euler 
product expansions and showed that they 
satisfy certain functional equations [H3]. 

Moreover, by estimating the sum CN(p,)<Y x(p), 
he obtained some results on the distribution of 

prime ideals. 
Later, Iwasawa and J. Tate independently 

gave clearer definitions of the Grossencharak- 
ter 1 and L,(s, x) by using harmonic analysis 
on the adele and idele groups of k (- 6 Adeles 

and Ideles) [L3]. 
Let J, be the idele group of k, Pk be the 

group of tprincipal ideles, and C, = Jk/Pk be 
the idele class group. Then a Griissencharakter 

is a continuous character x of C,, and x in- 
duces a character of J,, which is also denoted 
by x. Let J, = J, x J, be the decomposition 
of J, into the infinite part J, and the finite 
part J,. Let U, be the unit group of JO, and 

for each integral ideal m of k, put Uln,O = 
{u~UaIu= 1 (modm)}, so that {U,t,,O} forms 
a base for the neighborhood system of 1 in JO. 

Put Jr,,,, ={a~JaIa~=l forallplm},andwith 
each a E J,n,O, associate an ideal 5 = I& p’p’“), 
where a =(a,) and the ideal in k, generated 
by ap is equal to p”y’“‘. Then the mapping 
a-+; gives a homomorphism of J,,,, into the 
group G(m)={cl(a,m)= 1}, and its kernel is 

contained in U,n,O. Since x is continuous, 
x(U,,,,) = 1 for some m. The greatest common 
divisor f of all such ideals nt is called the con- 

ductor of x. For each aE Ji,O, x(a) depends 

only on the ideal 5 (E G(f)); hence by putting 
x(a) = i(a), we obtain a character i of G(f). 

Now put L,(s, x) = C i(?i)/N(s)“, where the sum 
is over all integral ideals 6 E G(f). This is called 

a Hecke L-function with Griissencharakter x. 
For x# 1, it is an entire function. On the other 
hand, if we restrict x to J, = R*‘l x C*‘2, then 
foru=(a, ,..., a,,,n,,+, ,..., ~,~+,~)EJ,,wehave 

r1+12 
X(U)= n lujl”~Jm’. fi (sgnaj)‘j. ,yfi:, z ‘I, 

j=l j=l ,( > 

where ej = 0 or 1, e,E Z, ijs R. The numbers ej, 

e,, j.j are determined uniquely by x. Putting 

x  ‘ff r(s+l’.,l+:~\-l),(s.r); 

,=*,+I 
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we have a functional equation 

where W(x) is a complex number with ab- 
solute value I. 

We can express <,(s, 1) by an integral form 
on J, as 

where V(r) is the +total volume of the idele r, ( 

is a constant that depends on the +Haar mea- 
sure d*r of J,, and (p(r) is defined by 

q,(~)=r”“‘“‘~‘, x~(bf)y’, 

=o, x 4(bf),l P finite. 

Hence (bf),;’ is the n-component (- 6 Adeles 

and Ideles B) of the ideal (bf)-’ (b is the +dif- 
ferent of k/Q) and i(x) is an additive character 

of k,, defined as follows. Q, is the +p-adic 
field, Z, is the ring of p-adic integers, i., is the 

mapping Q,,-Q,/Z, c Q/Z c R/Z, and i. = 
i, 0 Pi\,, u BY putting x(r) = II, 11&y,), r = 
( xp ),“we have 

where p runs over all prime divisors of k, finite 

or infinite. Moreover, with a constant C,, we 
have 

s 
‘Pp, ~(x)%,,,,,(,~)1/;,,,,(x)~“d*x 

%, ,I 
=c, ,,; n o+\ l/,+c,Jz 

xT((s+&l ii+e,)/2), k, ,,., =R, 

=Cp,,;P7) ,5 t (\& I /.,+lr,l)b2) 

xT(.s+(~~.,+Ieil)/2), k,,<,,=C, 

=c,N((L~f),)‘T,(%,)~~L(ui.p)~ PI f, 

Here T,,(x&,) is a constant called the local 
Gaussian sum, and p( Ui,J is the volume of 

ju~k,(u= 1 (modf)j. These integrals over k,, 
are the r-factors and Euler factors of &(s, z), 

according as p is infinite or finite. The func- 

tional equation is obtained by applying the 
‘Poisson summation formula for q(x) and its 
.+Fourier transform on the adele group A, (- 6. 

Adeles and Ideles). 
Let D, be the connected component of I in 

C,. If x(Dk) = I, the corresponding i is a char- 
acter of an ideal class group of k with a con- 
ductor f. Conversely, all such characters can 
be obtained in this manner. 

As stated in Section E, the Hecke L- 

functions with characters (of ideal class 
groups) can be used to describe the decom- 

position law of prime divisors in class field 
theory. However. for L-functions with G&s- 
sencharakter, such arithmetic implications 

have not been found yet, except that in the 
case of Griissencharakters of A, type, Y. 

Taniyama discovered, following the suggestion 
of A. Weil, that the L-function has a deep 
connection with the arithmetic of a certain 
infinite Abelian extension of k [T2, W7]. In 

particular, when L(s, 1) is a factor of the 
+Hasse i-function of an Abelian variety A with 
+complex multiplication, it describes the arith- 

metic of the field generated by the coordinates 
of the division points of A. 

G. Artin L-Functions 

Let K be a finite Galois extension of an alge- 
braic number field k (of degree n), G = G(K/k) 

be its Galois group, o-+A(o) be a matrix 

representation (characteristic 0) of G, and x 
be its character. Let p be a prime ideal of k, 

and define L&s, 1) by 

logqs,%)=m~l $g> Res> 1, 

with ~(p”)=(l/r)~,,~~(a”~), where T is the 
‘inertia group of p, 1 TI = e, and CT is a +Frobe- 
nius automorphism of p. Then we have 

In particular, if T= { 1 i (i.e., p is +unramified in 
K/k), then 

L,(s,~)=det(E-A(a).N(p))“))‘. 

Now put 

L(s,%,K/k)=nL,(.s,%), Res>l, 
P 

and call L(s, x, K/k) an Artin L-fuuction [A2]. 
(1) The most important property of L(s, 1, 

K/k) is that if K/k is an Abelian extension 
and 1 is a linear character, it follows from class 

field theory that x(p) is the character of the 

ideal class group of k (modulo the tconductor 
1 of K/k) and that the Artin L-function equals 
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a Hecke L-function. This equality is equivalent 
to Artin’s treciprocity law, and in fact Artin 
obtained his reciprocity law after he conjec- 
tured the equality. 

(2) If K’= K = k and K’,‘k is a Galois exten- 
sion, then L(s, 1, K/k) = L(s, z, K’lk). 

(3) If K ZJQ 3 k and $ is a character of 

G(K/Cl), then L(s, $, K/Q) = L(s, xv, K/k), where 
xu is the character of G(K/k) +induced from $. 

(4) If;li = I, then L(s,x,, K/k)=[,(s). 

(5) Lb,x1 +xz,Klk)=L(s,~,,Klk)~ 

Lb, xz, K/k). 
Conversely, the Artin L-function L(s, x, K/k) 

is characterized by properties (l)-(5). 
(6) If xx is the +regular representation of G. 

then L(s, xR, K/k) = I&); hence 

;tAs) = ids) ,Q, Us, i[, WY”‘, 

where 1 runs over all irreducible characters 
# 1 of G. 

(7) Every character of a finite group G can 

be expressed as x = C mixu, (at, E Z), where each 
x,,, is an iinduced character from a certain 
linear character ii of an elementary subgroup 
of G (Brauer’s theorem). (Here an elementary 
subgroup is a subgroup that is the direct 

product of a cyclic group and a p-group for 
some prime p.) Hence (3) and (5) imply that an 
Artin L-function is the product of integral 
powers (positive or negative) of Hecke L- 
functions L,,(s, $,): 

L(.s,%, K/k)=n L,,(s, I/J;)“‘. 

Hence an Artin L-function is a univalent 
meromorphic function defined over the whole 
complex plane. Artin made the still open con- 
jecture that if x is irreducible and x # 1, then 

L(s, %, K/k) is an entire function (Artin’s 
conjecture). 

This conjecture holds obviously if all m, are 
nonnegative. Except for such a case, Artin’s 
conjecture had no affirmative examples until 
1974, when Deligne and Serre [D9] proved 
that each “new cusp form” of weight 1 gives 

rise to an entire Artin L-function L(s, 1, K/k) 
with x(1)=2 and x(p)=O(p is the complex 
conjugation); by this method, some nontrivial 

examples were computed by J. Tate and J. 
Buhler (Lecture notes in muth. 654 (1978)). 
Then R. P. Langlands [LS] constructed non- 
trivial examples of Artin’s conjecture for cer- 
tain 2-dimensional representations 

by using ideas of H. Saito and T. Shintani 
[Sl, S203. This method works for all represen- 
tations for which the image of the A(a) in 

PGL(2,C) is the +tetrahedral group. It also 
works for some +octahedral cases, but a new 

idea is needed in the ticosahedral case. 

(8)Letp.,i(i=l,...,r,+r2)betheinlinite 
primes of k. Put 

=(r(s/2)r((.s+ 1)/2))“(l) 

for complex p x ,i, 

= ~(,/2)‘X’l )+x(a))/2 l-((s + 1)/2)‘X’l )k.Y(~))P 

for real p,,,, 

where rr~ G is the complex conjugation deter- 
mined by a prime factor of p, ,i in K. Next we 

introduce the notion of the conductor f, with 
the group character x defined by Artin (J. 
Reirw Angew. Math., 164 (1931)). First, for any 
subset m c G, we put z(m) = C,,,,,, x(m); then 
f, is given by 

f, = f(x, K/k) = n p”“‘, 
I’ 

where 

and where V, , VZ, , are the higher +ramifi- 
cation groups of prime factors of p in K (in 
lower numbering) and p’l= 1 Fl (- 14 Alge- 
braic Number Fields I). 

Now put 

’ n Yts3%,f7x,,i, KJk) L(s, x, K/k). 
I-‘,., 

Then the functional equation is written 

((1 --s> Z K/k)= Wx)t(s, )I> K/k), I Wxh = 1 

The known proof of this functional equation 
depends on (7) and the functional equations of 

Hecke L-functions discussed in Section E. As 
for the constants W(x), there are significant 

results by B. Dwork, Langlands, and Deligne 

ml. 
(9) There are some applications to the 

theory of the distribution of prime ideals. 

H. Weil L-Functions 

Weil dehned a new L-function that is a gen- 
eralization of both Artin L-functions and 
Hecke L-functions with Grossencharakter 
[WS]. Let K be a finite Galois extension of an 
algebraic number field k, let C, be the idele 

class group K;/K ’ of K, and let xRlke 
If ‘(Gal( K/k), C,) be the icanonical coho- 

mology class of +class field theory. Then this 

xh. k determines an extension W, k of Gal(K/k) 
by C,: I dC,+ IV, ,-tGal(K/k)+l (exact), and 
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the transfer induces an isomorphism W$ 

7 C,, where a6 denotes the topological com- 
mutator quotient. If L is a Galois extension 
of k containing K, then there is a canonical 
homomorphism WLjk+ W,,,. Hence we define 
the Weil group W, for E/k as the tprojective 
limit group proj,lim W,,, of the WKIL. It is 

obvious that we have a surjective homomor- 
phism cp: W,-*Gal(E/k) and an isomorphism 

r,: C,-t Wf”, where Wib is the maximal Abelian 
Hausdorff quotient of W,. For WE W,, let // w  11 
be the adelic norm of r;‘(w). 

If k, is a tlocal field, then we define the Weil 

group W,,, for &/k, by replacing the idele class 
group CK with the multiplicative group Kz 
in the above definition, where K, denotes a 
Galois extension of k,. If k, is the completion 
of a finite algebraic number field k at a place u, 
then we have natural homomorphisms k,” -C, 

and Gal(&./k,,)~Gal(k/k). Accordingly, we 
have a homomorphism W,, --, W, that com- 
mutes with these homomorphisms. 

Let W, be the Weil group of an algebraic 
number field k, and let p: W,+GL(V) be a 
continuous representation of W, on a complex 
vector space I/. Let u = p be a finite prime of k, 
and let pt, be the representation of W,,, induced 
from p. Let @be an element of W,,, such that 

c?(Q) is the inverse Frobenius element of p in 
Gal(k,/k,), and let I be the subgroup of W,, 
consisting of elements w  such that q(w) be- 
longs to the tinertia group of p in Gal(k,/k,). 
Let 1/’ be the subspace of elements in V fixed 
by p,(Z), let Np be the norm of p, and let 

L,(V;s)=det(l -(Np)-“p,(Q)1 V’)-l. 

We can define L,( V, s) for each Archimedean 
prime u also, and let 

L( 

Then this product converges for s in some 
right half-plane and defines a function L( V, s). 
We call L( V, s) the Weil L-function for the 

representation p : W, + GL( V). This function 
L( V, s) can be extended to a meromorphic 
function on the complex plane and satisfies the 
functional equation 

L(v,s)=E(v,s)L(v*, 1 -s) 

(T. Tamagawa), where V* is the dual of V, and 
E( V, s) is an exponential function of s of the 
form ah” [T6]. 

P. Deligne generalized these results in the 
following manner: Let WL be a +group scheme 

over Q which is the tsemidirect product of W, 
by the additive group G,, on which W, acts by 

the rule wxu’ ml = 11 w  11 x. We can define the 
notion of representations of W; and the L- 
functions of them in the natural manner [T6]. 

1. The Riemann Hypothesis 

As mentioned in Section B, the Riemann 
hypothesis asserts that all zeros of the Rie- 

mann i-function in 0 < Re s < 1 lile on the line 
Res= l/2. In his celebrated paper [RI], Rie- 
mann gave six conjectures (including this), 

and assuming these conjectures, proved the 
+prime number theorem: 

s 
x dx 

rr(x)-x-Li(x)= ~ 
logx * logx’ 

x-00. 

Here n(x) denotes the number of prime num- 
bers smaller than x. Among his six conjectures, 
all except the Riemann hypothesis have been 
proved (a detailed discussion is given in [Ll]). 

The prime number theorem was proved inde- 
pendently by Hadamard and de La Valltte- 
Poussin without using the Riema.nn hypothesis 

(- Section B; 123 Distribution of Prime Num- 
bers B). 

R. S. Lehman showed that there are exactly 
2,500,OOO zeros of [(cr + it) for which 0 < t < 
170,571.35, all of which lie on the critical 
line r~ = l/2 and are simple (Math. Comp., 20 
(1966)). Later R. P. Brent extended this com- 
putation up to 75,000,OOO first zeros (1979). 

Hardy proved that there are infinitely many 
zeros of c(s) on the line Res= l/2 (1914). Fur- 
thermore, A. Selberg [S6] proved that if N,(T) 

is the number of zeros of c(s) on the line with 0 
<Ims<T,thenN,(T)>ATlogJ”(Aisaposi- 
tive constant) (1942). Thus if N( 7’) is the num- 

ber of zeros of i(s) in the rectangle 0 < Re s < I, 
0 < Im s < T, then lim inf,,, N,,( 7’)/N(T) > 0. 
N. Levinson proved lim inf,,, N,,( T)/N( T) 
> l/3 (Advances in Math., 13 (1974)). If N,(T) 
is the number of zeros of c(s) in 112 -E < Re s 
<l/2+&, O<Ims< T, then lim,,,N,(T)/N(T) 
= 1 for any positive number E (H. Bohr and E. 
Landau, 1914). Bohr studied the distribution 
of the values of i(s) in detail and mitiated the 

theory of +almost periodic functions (I 925). 
D. Hilbert remarked in his lecture at the 

Paris Congress that the Riemann hypothesis 
is equivalent to 

~(x)=Li(x)+O(~logx), x+c0 

(H. von Koch, 1901). It is also equivalent to 

$ &I)=O(N”*+~), N+m, 

for any E > 0, where p(n) is the Mijbius func- 

tion. Assuming the Riemann hypothesis, we 

get 

1 +log2n 
N(T)=;rlugT-T T-t o(log T) 

(Littlewood, 1924). 
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The computation of the zeros of the [- 
functions and the L-functions of general alge- 
braic number fields is more difficult, but con- 
jectures similar to the Riemann hypothesis 
have been proposed. 

Weil showed that a necessary and sufficient 
condition for the validity of the Riemann hypo- 

thesis for all Hecke L-functions L(s, 1) is that 
a certain ‘tdistribution on the idele group J, be 
positive definite [Wl (1952b)]. 

It is not known whether the general [- and 
L-functions of algebraic number fields have 
any zeros in the interval (0,l) on the real axis 
(see the works of A. Selberg and S. Chowla). 
Similar problems are considered for the vari- 
ous [-functions given in Sections P, Q, and T. 

J. p-Adic L-Functions 

Let x be a tprimitive Dirichlet character with 
conductor L and let L(s, x) be the +Dirichlet L- 
function for x. Then the values L( 1 -n, x) of 
L(s,x) at nonpositive integers 1 --n (n= 1,2,...) 
are algebraic numbers (- Section E). Let p 
be a prime number, let Q, be the +p-adic num- 
ber field, and let C, be the completion of the 

algebraic closure a, of Q,. It is known that 
C, is also algebraically closed. Since Q c Qp, 
we fix an embedding Q c 0, and consider 
jL( 1 -n, x)},“=, as a sequence in C,. 

Let 1 I,, be the extension to C, of the stan- 
dard p-adic valuation of Q,. Let q be p or 4 
according as p # 2 or p = 2, and let w  be the 
primitive Dirichlet character with conductor q 
satisfying w(n) = n (mod q) for any integer n 

prime to p. Then T. Kubota and H. W. Leo- 
poldt proved that there exists a unique func- 
tion L,(s, x) satisfying the conditions [KS]: 

(1) L,(s,%)=~+ : a,(s-1)” (a,EC,); 
It=0 

(2) a-, =0 if x# 1 and the series Cz&a,(s 
- 1)” converges for Is- 1 Ip< Iq-lpl’cp-l’l,; 

(3) L&i --?&x)=(1 -xw-“p’-“)L(l -i&XU”) 
holds for II = 1,2,3, 

The function L,(s, x) satisfying these three 
conditions is called the p-adic L-function for 
the character x. It is easy to see that L,(s, x) is 
identically zero if x( -1) = -1, but L,(s, x) is 
nontrivial if x(-l)= 1. 

Let B, be the Bernoulli number. Then B, 

satisfies the conditions: (I) B,/n is p-integral if 
(p- l)ln (von Staudt) and (2) (l/n)B,-(l/(n+p 
- l))B,+,.., (modp) holds in this case (Kum- 

mer). The generalization of these results for 
the generalized Bermoulli number B,., was 
obtained by Leopoldt. Since L( 1 -n, x) = 

-w4~,,“~ such p-integrabilities and con- 
gruences can be naturally interpreted and 

generalized in terms of the p-adic L-functions 

Lh xl. 
We assume x(-l)= 1. Then L,(O,x)=(l - 

xw-‘(p))L(O,xw-‘) and xw-‘( -l)= -1. 
Hence we can express the first factor hi 

of the class number of a cyclotomic field 

Q(exp(2nilN)) as a product of some L,(O, 1)‘s. 
By using this fact, K. Iwasawa proved [I73 
that the p-part pe” of the thirst factor hNp” 
(NE N) satisfies 

for any suficiently large n. Here Iwasawa 
conjectured p = 0, which was proved by B. 
Ferrer0 and L. Washington [Fl]. Also, we can 
obtain some congruences involving the first 

factor hi of Q(exp(2nilN)) from this formula. 
Let x be a nontrivial primitive Dirichlet 

character with conductor ,L let 

z(x)= f: ~(a)e2”i”‘S 
‘7=1 

be the +Gaussian sum for x, and let log,, be the 
p-adic logarithmic function. Then Leopoldt 
[L6] calculated the value L( 1, x) and obtained 

L,(l, xl 

X(P) z(x) f 
= - 1-p f C X(a)log,(l -e-2nini/) 

( > a 1 

As an application of this formula, Leopoldt 

obtained a p-adic +class number formula for 
the maximal real subfield F = Q(cos(27c/N)) of 

Q(exp(2nilN)): Let [,(s, F) be the product of 
the L&s, x) for all primitive Dirichlet characters 
x such that (1) x( -1) = 1 and (2) the conductor 
of x is a divisor of N. We define the p-adic 
regulator R, by replacing the usual log by the 
p-adic logarithmic function log,. Let h be the 
class number of F, m = [F: Q], and let d be the 
discriminant of F. Then the residue of i,(s, F) 
ats=l is 

Hence [,(s, F) has a simple pole at s = 1 if and 
only if R, # 0. In general, for any totally real 
finite algebraic number field F, Leopoldt con- 
jectured that the p-adic regulator R, of F is 

not zero (Leopoldt’s conjecture). This conjec- 
ture was proved by J. Ax and A. Brumer for 

the case when F is an Abelian extension of Q 
[A4, B7]. 

By making use of the Stickelberger element, 

Iwasawa gave another proof of the existence 
of the p-adic L-function [17]. In particular, he 
obtained the following result: Let x be a primi- 
tive Dirichlet character with conductor ,f: Then 

there exists a primitive Dirichlet character 0 
such that the p-part of the conductor of 0 is 
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either 1 or q and such that the conductor and 
the order of 10~ ’ are both powers of p. Let o0 
be the ring generated over the ring Z, of p- 
adic integers by the values of 0. Then there 
exists a unique element ,f‘(x, 0) of the quotient 

field of o(,[ [xl] depending only on 0 and 
satisfying 

L,(s, x) = 2.f(i(l + 4”)” - I, 0). 

where q, is the least common multiple of q and 
the conductor of II, and 5 =x( 1 + yo)-‘. Fur- 
thermore, IwaSawa proved that ,f(x, 0) belongs 
to oH[[x]] if 0 is not trivial. 

Let P = Q(exp(2nilq)) and, for any n > 1, let 
P,, = Q(exp(2nilyp”)). Let P, = u,,>, Pfi. Then 
I’, is a Galois extension of Q satisfying 
Gal(P, /Q): Z; (the multiplicative group of p- 
adic units), and P is the subfield of PT/Q cor- 

responding to the subgroup I +qZ, of Zi 
Let $ be a C,-valued primitive Dirichlet 

character such that (1) $(-I)= -1 and (2) the 

p-part of the conductor ,f8, of $ is either 1 or 
q. Let K,, be the cyclic extension of Q corre- 

sponding to $ by class field theory. Let K = 
K,!;P, K,=K.P,,and K,=K.P,.Let A, 

be the p-primary part of the ideal class group 
of K,, let A,!+A,, (n>m) be the mapping in- 
duced by the irelative norm NkmIK,,,, and let X, 
= I@ A,. Since each A, is a finite p-group, X, 
is a Z,-module. Let VK = X, @z, C,,, and let 

Let q. be the least common multiple off;, and 
q, and let y. be the element of Gal( K ,,JK) 
that corresponds to 

1 +qOE 1 +qZ,=Gal(P,x/P) 

by the restriction mapping Gal(K,/K) 
c*Gal(P,/P). Let,&.(x) be the characteristic 
polynomial of y. - 1 acting on V,,. Hence &(x) 
is an element of o,,,[x]. 

We assume that rni ’ is not trivial. Let 
f(x, w$ -‘) be as before. Then .f‘(x, o$ -‘) is an 

element of ov;. [xl]. Iwasawa conjectured that 
,&(x) and f’(x, w$ -‘) coincide up to a unit of 
o,.[[x]] (Iwasawa’s main conjecture). This con- 

jecture was proved recently by B. Mazur and 
A. Wiles in the case where $ is a power of w. 

Let F be a totally real finite algebraic num- 
ber field, let K be a totally real Abelian exten- 

sion of F, and let i: be a character of Gal(K/F). 
Let L(s, x) be the +Artin L-function for x. Then 
we can construct the p-adic analog L&s, x) of 
L(s, 1) (J.-P. Serre, J. Coates, W. Sinnott, P. 
Deligne, K. Ribet, P. Cassou-Nogues). But, 

at present, we have no formula for Lp( 1, x). 
Coates generalized Iwasawa’s main conjecture 
to this case, but it has not yet been proven. 

P-adic L-functions have been defined in 
some other cases (e.g. - [K3, M 1, M3]). 

K. ;-Functions of Quadratic Forms 

Dirichlet defined a Dirichlet series associated 
with a binary quadratic form and also consid- 
ered a sum of such Dirichlet series extended 
over all classes of binary quadratic forms with 
a given discriminant D, which is actually 

equivalent to the Dedekind i-function of a 
quadratic field. Dirichlet obtained a formula 
for the class numbers of binary quadratic 

forms. The formula is interpreted nowadays as 
a formula for the class numbers of quadratic 
fields in the narrow sense. 

According as the binary quadratic form 

is definite or indefinite, we apply different 
methods to obtain its class number. 

Epstein c-functions: P. Epstein generalized 
the definition of the c-function of a positive 
definite binary quadratic form to the case of n 

variables (Math. Ann., 56 (1903), 63 (1907)). Let 
V be a real vector space of dimension m with a 
positive definite quadratic form Q. Let M be a 

+lattice in V, and put 

&&,M)= c -L 
?;;?;: Q(xy ' Res+ 

This series is absolutely convergent in Res > 
m/2, and 

( > 0 
-I 

lim s-z 5a(~,M)=D(M)~“27im’Zr T , 
\-!?I,2 

D(W=detlQ(xi,xJ, 

where x ,,..., x,isabasisofMandQ(x,y) 

=(Q(x+Y)-Q(x)-QQ(~‘))/~. If the Q(x) 
(xc M, x #O) are all positive integer<, we can 
write 

where u(n) is the number of distinct x E M with 
Q(x) = n. In general, let x,, ,.x, be a basis of 
the lattice M and XT, , x:~ be its dual basis 
(Q(xi, xi*)= 6,). Call M* = J$xTZ the dual 
lattice of M. If we consider the s-series (+theta 

series) 

$Ju,M)= 1 exp(-lruQ(x)) (Ren>O), 

then 

xs.w 

:J,(u,M)=(U~“‘2D(M)-“2),~~(u-‘,hl*). 

With &(s, M)= n-‘r(s)[,(s, M), the displayed 
equality leads to the functional equation 

i”Q(s,M)=D(M)-“2.<, ;-s,M*). ( 
In general, &(s, M) has no Euler product 

expansion. 

I 

Consider the case where M = C Zxi (.yi = 
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(0 ,..., O,l,O ,..., O)),Q(x)=C:,uf,forx= 
(u, , , u,). If we put l,(s) = iu(s, M), L(s)= 
C,“=, (-4/n)n-“, then we have 

C,(s) = 2((2s), 

~z(s)=4~(,s)~L(s)=4 

x (the Dedekind i-function of Q(G)), 

;4(s)=8(1-22~2~)~(s)~(s- I). 

&(s)= -4(<(.s)L(s-2)-4c(s-2)L(s)). 

&Js)= 16(1 -2’ ~’ + 24- 2”)~(s)~(s- 3), 

il&)=(4/5)(~(s)L(.~-4)+4~~(.s-4)L(s)) 

i”~2(S)=c,2~“~(S);(S-5)(2b~2b ‘) 

+c2ollJm), 

where cp{ m ) is the Dirichlet series corre- 

sponding lo m by the ‘Mellin transform 
and A(z)=zjn,$,(l -z’)j’” with z=e2nir. 
i,(s) has zeros on the line Re s = (r = m/4, given 
explicitly for m=4, 8 as follows: 

m=4: s=- 1 +17ri/log2, I= 1,2, .,., 

m=8: s=:2+(i/log2)(2/71f_arctan vR 

l=O, &1, 

Regarding the Epstein i-function of binary 

quadratic forms 

;Q(“) = 1’ Q(m, M) -\, 
m.n 

with 

Q(x, y) = ux2 + hx); + c4.2, 

a,h,c~R,a~O,~~0,A=41~~-h~>0, 

we have the Chowla-Selberg formula (1949): 

where crJn~ = Cd,,,@ and i(s) is the Riemann <- 
function. By using this formula, we can give 

another proof of the following result of H. 
Heilbronn: Let h( - A) be the class number of 

the imaginary quadratic field with discrimi- 
nant -A. Then /I( - A)+ x (A- r;). 

The following generalization of this result 
was obtained by C. L. Siegel [S22]: Let k be a 

fixed finite algebraic number field. Let K be a 
finite Galois extension of k, and let d = d(K), 
II = h(K), and R = R(K) be the discriminant of 

K, the class number of K, and the regulator of 
K, respectively. We assume that K runs over 
extensions of k such that [K: k]/logd-0; then 
we have 

log(hR) - logVm. 

Siegel i-functions of indefinite quadratic 
forms: Siegel defined and investigated some <- 
functions attached to nondegenerate indefinite 

quadratic forms, which are also meromorphic 
on the whole complex plane and satisfy certain 
functional equations [S24]. 

The case of quadratic forms with irrational 
algebraic coefficients was treated by Tama- 

gawa and K. G. Ramanathan. 

L. (-Functions of Algebras 

K. Hey detined the [-function of a %imple 

algebra A over the rational number field Q 
(M. Deuring [DlO]) (- 27 Arithmetic of As- 
sociative Algebras). Consider an arbitrary 
+maximal order II of A, and let 

‘;‘(s’=Z,I,,;, Re.s> 1, 
0 

with the summation taken over all left integral 
ideals a of D. Then in is independent of the 

choice of a maximal order o. Let k be the 
+center of A, and put [A : k] = n2. First, 5, is 
decomposed into Euler’s infinite product 

expansion i,,(s) = n,, Z,(s) (t, runs over the 
prime ideals of k). For p not dividing the dis- 

criminant b of A, Z,(s) coincides with the p- 
component of nyl; &(ns - j). Hence i,(s) 
coincides with n;:h ik(ns -j) up to a product 
of p-factors for p 1 D which are explicit rational 
functions of N(p)- “‘, 

Moreover, if A is the total matrix algebra of 
degree r over the division algebra 5, then we 
have i,(s) = n;ib ir(rs-j), and i&s) satisfies a 
functional equation similar to that of i,(s) 

(Hey). Also, ia is meromorphic over the 
whole complex plane, and at s = 1, (n - I)/ 
n, , l/n, it has poles of order 1. Using analy- 

tic methods, M. Zorn (1931) showed that the 
simple algebra A with center k such that A, is 
a matrix algebra over k, for every finite or in- 
finite prime divisor p of k is itself a matrix 
algebra over k (- 27 Arithmetic of Associative 
Algebras D). A purely algebraic proof of this 
was given by Brauer, H. Hasse, and E. 

Noether. G. Fujisaki (1958) gave another proof 
using the Iwasawa-Tate method. As a direct 
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application of the [-function, the computation 
of the residue at s = 1 of [,,, leads to the formula 
containing the class number of maximal order 

a. 
Godement defined the <-function of fairly 

general algebras [Gl], and Tamagawa inves- 

tigated in detail the explicit [-functions of 
division algebras, deriving their functional 
equations [Tl]. 

Let 2 = I-& A, be the adele ring of A, and let 
G = n; G,, be the idele group (of A). We take a 
maximal order 3, of A,, and a maxima1 com- 
pact subgroup UP of G,. Let wP be a tzonal 
spherical function of G, with respect to U,,; 
that is, wp is a function in G, and satisfies 

~pbw)=~pM (4 UE up,, w,(l)= 1, 

In addition, we define the weight function ‘pp 
on A, by 

the 

1 

characteristic function of C& 
when p is finite, 

cpp(x) = 
exp( - nT,(xx*)) 
when p is infinite, 

where 5 is the treduced trace of AJR and * is 

a positive tinvolution. Tamagawa gave an 
explicit form of the local [-function with the 
character wP defined by 

iph wp) = s cpp(g)wp(g~‘)INp(g)ls,dg, 
CP 

where NP is the treduced norm of A,/k,, and 
1 Ip is the valuation of k,. Then o = npwp is 
the zonal spherical function of G with respect 
to n Up = U. In particular, if w  is a positive 

definite zonal spherical function belonging to 
the spectrum of the discrete subgroup I = A* 
= {all the invertible elements of A} of G, then 

the Tamagawa (‘-function with character o is 
given by 

P s G 

where cp(g)= I-l cp,(g,) and 11 II is the volume 

of the element g of G. When A is a division 
algebra, [(s, w) is analytically continued to a 
meromorphic function over the whole complex 
plane and satisfies the functional equation. 

The Tamagawa c-function may also be consid- 
ered as one type of [-function of the Hecke 
operator. When A is an indefinite quaternion 
algebra over a totally real algebraic number 
field a’, the groups of units of various orders of 
A operate discontinuously on the product of 

complex upper half-planes. Thus the spaces of 

holomorphic forms are naturally associated 
with A. The investigation of c-functions asso- 

ciated with these holomorphic automorphic 
forms was initiated by M. Eichler and ex- 
tended by G. Shimura, H. Shimizu, and others. 

Eichler investigated the case cf, = Q, and 
Shimura and Shimizu investigated the case for 
an arbitrary totally real field @ by d!etining 

genera1 holomorphic automorphic forms, 
Hecke operators, and corresponding [- 
functions. The functional equations of these [- 
functions were proved by Shimizu. :Shimizu 
generalized Eichler’s work and found relations 
among <-functions of orders of various quater- 

nion algebras belonging to different discrimi- 
nants and levels [SlO]. For the related results, 
see, e.g., the work of K. Doi and H. Naganuma 
[D12]. 

M. [-Functions Defined by Hecke (Operators 

The [-functions of algebraic number fields, 
algebras, or quadratic forms, and the L- 
functions are all defined by Dirichlet series, are 
analytically continued to univalent functions 
on the complex plane, and satisfy functional 
equations. One problem is to characterize the 
functions having such properties. 

(1) H. Hamburger (1921- 1922) characterized 
the Riemann c-function (up to constant multi- 
ples) by the following three properties: (i) It 

can be expanded as [(s)=C~la,/nF (Res>>O); 
(ii) it is holomorphic on the complex plane 
except as s = 1, and (s - l)[(s) is an entire func- 
tion of finite tgenus; (iii) C(s) = G( 1 --s), where 

G(s) = 71 -“‘2r(s/2)~(s). 
(2) E. Hecke’s theory [H4]: Fixing 1. > 0, k > 

0, y = +l, and putting 

for an analytic function q(s), we ma.ke the 

following three assumptions: (i) (s - k)cp(s) is 
an entire function of finite genus; (ii) R(s) = 
yR(k - s); (iii) v(s) can be expanded as q(s) = 
x,“r an/n’ (Res>cr,). Then we call (p(s) a 
function belonging to the sign (A, k, y). 

The functions ((2s) L(2s), and L(2s- 1) 
satisfy assumptions (i)-(iii), where I, may be 
either a Dirichlet L-function, an L-function 
with Grossencharakter of an imaginary qua- 
dratic field, or an L-function with class charac- 
ter of a real quadratic form whose l--factors 

are of the form I(s/2)I((s + 1)/2)-l?(s). If q(s) 
belongs to the sign (A, k, y), then nPcp(s) be- 
longs to the sign (nn, k, y). To each Dirichlet 

series p(s) = C,“r an/n’ with the sign (A, k, y), 
we attach the series f(r) = a, + C.“=i a,,ezZinriA, 
where 

ao=y(27c/i)-k~(k)Res,,k(cp(s)) 

= y Res,,,(R(s)). 

This correspondence cp(s)+f(t) may also be 
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realized by the tMellin transform 

K(s)‘~~(~~U”e-2T.Yi*)y~-~~y 

s 
m = WY) -GJY"-' &4 0 f(iy)-a& 

27ci s R(s)y-"ds. 
kS=Oo 

In this case, (i) f(7) is holomorphic in the 
upper half-plane and f(r + 1) =f(z), (ii) 

f( -l/z)/( - i~)~ = yf(r), and (iii) f(x + iy) = 
O(y’“““‘) (y-+ +O) uniformly for all x. 

Conversely, the Dirichlet series p(s)= 
C,“=r a,nP formed by the transformation in 

the previous paragraph from f(z) satisfying (i)) 
(iii) belongs to the sign (1, k, y). We also say 
that the function f(z) belongs to the sign 

(1, k, Y). 
If k is an even integer, then the functions f(z) 

belonging to (1, k, ( - l)k’Z) are the tmodular 

forms of level 1 and weight k. A necessary and 
sufficient condition for a function rp(s) belong- 
ing to (1, k, ( -l)k’2) to have an Euler product is 
that the corresponding modular form f(z) be a 
simultaneous eigenfunction of the ring formed 
by the tHecke operators T, (n = 1,2,. . . ). In this 
case, the coefficient a, of cp(s) = C a&” coin- 
cides with the eigenvalue of T,. Namely, if fl T, 

= t,f; we have cp(s)=a,(C,“=, t,,n-‘), and this 
is decomposed into the Euler product q(s) = 

a,l-I,(l --t,pms+p k-1-2s)-1. We call cp(s)/ai a 
(-function defined by Hecke operators (Hecke 

[H5]). For example, c(s). c(s - k + 1) and the 
Ramanujan function 

$, z(n)n~“=n(l--(p)p~“+p”-2”)-’ 
P 

are c-functions defined by Hecke operators. 
Hecke applied the theory of Hecke operators 
to study the group I(N) [H5]; the situation 
is more complicated than the case of I(1) = 

SL(2, Z). The space of automorphic forms of 
weight k belonging to the tcongruence 
subgroup 

is denoted by ‘%tk(T,(N)). The essential part of 

%n,(I,(N)) is spanned by the functions f(r)= 
C aneZninr satisfying the conditions: (1) q(s) = 

C u,nP has the Euler product expansion 

cp(s)=n(l-“,p~s)-i 
PIN 

x n (1 -a,pm”+pk-‘-2s)-‘. 
P+N 

(2) The functional equation R(s) = yR(k - s) 

holds, where R(s)=(2~/JN)-“T(s)cp(s). (3) 
When x is an arbitrary primitive character of 

Z such that the conductor f is coprime to N, 

then 

extends to an entire function satisfying the 
functional equation R(s,~)=wR(k-s,x) (/WI= 

1) (Shimura). Conversely, (2) and (3) charac- 
terize the Dirichlet series q(s) corresponding to 
f(r)~%n~(I,#V)) (Weil [Wl (1967a)l). 

Considering the correspondence f(r) = 
Ca,q”-+cp(s)=Cu,n -’ not as a Mellin trans- 
formation but rather as a correspondence 
effected through Hecke operators, we can 
derive the c-function defined by Hecke op- 
erators. When the Hecke operator T, is de- 
fined with respect to a discontinuous group 

I and we have a representation space 9-R of the 
Hecke operator ring X, we denote the matrix 

of the operation of T. E X on YJI by (T,) = 
(T,), and call the matrix-valued function 

C,G9d-s the c-function defined by Hecke 
operators. The equation q(s) = C u,,n-’ is a 

specific instance of the correspondence in the 
first sentence, where I = I(N), YJI c!I.Rk(I,,(N)), 
dim 9JI = 1. One advantage of this definition is 
that it may be applied whenever the concept of 
Hecke operators can be defined with respect to 
the group I (for instance, even for the Fuchs- 

ian group without a tcusp). Thus when I is a 
Fuchsian group given by the unit group of a 

quaternion algebra @ over the rational num- 
ber field Q and YJI is the space of automor- 
phic forms with respect to I, the c-function 
C(T,)C is defined (Eichler). Moreover, by 

using its integral expression over the idele 
group J, of a’, we can obtain its functional 

equation following the Iwasawa-Tate method 
(Shimura). Furthermore, by algebrogeometric 
consideration of T., it can be shown that 

~ i(s)i(s- lWt(C(K)~2nmS) 

=&)i(s- INet n(l -(Tp)G2~-s 
P 

+(&JGZP1m2”)-1 
> 

coincides (up to a trivial factor) with the Hasse 

c-function of some model of the Riemann 

surface defined by I when 9.X is the space G, 
of all tcusp forms of weight 2 (Eichler [El], 
Shimura [S12]). 

The algebrogeometric meaning of 

det(C(T,)eln-“), when %R is the space (Zk of all 
cusp forms of weight k, has been made clear for 

the case where I is obtained from I,(N), I(N), 
and the quaternion algebra (M. Kuga, M. 
Sato, Shimura, Y. Ihara). From these facts, it 
becomes possible to express (T&,, the decom- 
position of the prime number p in some type of 

Galois extension (Shimura [S14], Kuga), in 

terms of Hecke operators. These works gave 
the first examples of non-Abelian class field 
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theory. Note that this type of i-function may 

be regarded as the analog (or generalization) 
of L-functions of algebraic number fields, as 
can be seen from the comparison in Table I. 

Table 1 

Algebraic 
Ideal 

number k Character y. C,y(n)n -8 

fxld 
group 

I I I I 
Algebraic Hecke Representation 

G 
group ring space ‘ut C(T,)@ -s 

As for special values of i-functions defined 

by Hecke operators, the following fact is 
known: Let ,f(s) = C LI,~“E\JJ~~(SL(~, Z)) be a 

common eigenfunction of the Hecke operators, 
and let cp(.s) = 2 a,rl-’ be the corresponding 

Dirichlet series. Let Kf be the field generated 
over the rational number field Q by the coeffi- 
cients u,, of ,f: Then, for any two integers m and 
111’ satisfying 0 <in, m’ < k and m = m’ (mod 2), 
the ratio (K(m): R(d)) of the special values of 

at m and 111’ belongs to the field K,. 
G. Shimura discovered this fact for Rama- 

nujan’s function A(T) (J. Math. Sot. Jupun, 11 
(1959)), and then Yu. I. Manin generalized it 
to the above case and, by constructing a p-adic 

analog of (p(s) from it, pointed out the impor- 
tance of such results [Ml]. R. M. Damerell 
also used such results to study special values 

of Hecke’s L-function with Griissencharakter 
of an imaginary quadratic field (Acta Arith., 

17 (1970), 19 (1971)). Furthermore, Shimura 
generalized these results to congruence sub- 
groups of SL(2, Z) (Comm. Pure Appl. M&h., 

29 (1976)), and to Hilbert modular groups 
(Ann. Math., 102 (1975)). The connection 
between special values of i-functions and the 

periods of integrals has been studied further by 
Shimura, Deligne. and others. 

In addition, in connection with nonholo- 
morphic automorphic forms H. Maass consid- 
cred L-functions of real quadratic fields (with 

class characters) having r(.~/2)~ or I-((s + 1)/2)2 
as r-factors. Furthermore, T. Kubota studied 
the relation of i-functions ik(s) of an arbitrary 

algebraic field k or i-functions of simple rings 
to (nonanalytic) automorphic forms of several 
variables and considered the reciprocity law 
for the Gaussian sum from a new viewpoint. 

N. L-Functions of Automorphic 

Representations (I) 

R. P. Langlands reconstructed the theory of 
+Hecke operators from the viewpoint of repre- 

sentation theory.and defined very general L- 

functions. He proposed many con.jectures 
about them in [L4], and he and Hi. Jacquet 
proved most of them in [Jl] for the case G 
=GL,. 

First Langlands defined the L-group LG for 
any connected reductive algebraic group G 

defined over a field k in the following manner 

WI. 
There is a canonical bijection between iso- 

morphism classes of connected ‘reductive alge- 
braic groups defined over a fixed algebraically 

closed field i; and isomorphism classes of troot 
systems. It is defined by associating to G the 
root data ‘P(G) = (X*( T), @,, X,( T), @I‘), where 
T is a +maximal torus of G, X*(T) (X,(T)) the 
group of characters (+l-parameter subgroups) 
of T, Q, (a”) the set of roots (coroots) of G with 
respect to T. 

Since the choice of a +Borel sub:group B of 
G containing T is equivalent to that of a basis 

A of CD, the aforementioned bijection yields 
one between isomorphism classes of triples 
(G, B, T) and isomorphism classes of based 

root data ‘u,(C) =(X*(T), A, X,(T), A“). There 
is a split exact sequence 

1 +Int G-Aut G+AutY’,(G)+ 1. 

and this mapping induces a canonical bijection 
AutY’,(G)z;Aut(G,B, T, {x,),,~) if .Y,EG, (EEA) 
are fixed. 

Let G be a connected reductive algebraic 
group defined over k. Let T be a maximal 
torus of G, and let B be a Bore] subgroup of G 
containing T. Let yl,(G)=(X*(T),A,X,(T), A“) 

be as before. Then there is a connected reduc- 
tive algebraic group ‘Go over C such that 
‘r,(G)” =(X,(T), A”, X*(T), A) corresponds to 

the triple (LG”, ‘,B”, LT”), where LBo and LT” 
are a Bore] subgroup of LG” and the maxi- 

mal torus of LBo. For example, (1) if G = CL,,, 
then ‘,G” = GL,,(C); (2) if G = Sp,,, then LG” = 

so 2.+,(C). 
We assume that x is the algebraic closure of 

k and G is defined over k. Then y~:Gal(k/k) 
induces an automorphism of the h-group 
G x kk. Hence ;I defines an elemem of 
Aut(LGo, LBo, LT”) because it is a holomorphic 

image of Aut\Y,(G x,k)=AutY’,(G xkk)“. 

Hence we can define the tsemidirect product 
LG = LG” xiGal(k/k), and call it the L-group 
of G. 

Let k be a +local field, and let G be a connec- 
ted reductive algebraic group defined over k. 

We identify G with the group of its k-rational 
points. Let WL be the Weil-Deligne group of 
k (- Section H), and let a(G) be the set of 
homomorphisms cp: WL+LG over Gal(k/k). Let 
U(G) be the set of infinitesimal equivalence 
classes of irreducible admissible representations 

of G. If k is a non-Archimedean field, then 



1707 450 0 
Zeta Functions 

77(G) is the set consisting of equivalence classes 
of irreducible representations 71: G- Aut V on 
complex vector spaces V such that the space 
VK of vectors invariant by K is finite dimen- 

sional for every compact open subgroup K of 
G and such that V= U V’, where K runs over 
the compact open subgroups of G. If k is an 

Archimedean field, then 77(G) is the set consist- 
ing of equivalence classes of representations T[ 
of the pair (g, K) of the Lie algebra g of G and 
a maximal compact subgroup K satisfying 
similar conditions [B6]. Then Langlands 
conjectured that we can parametrize 77(G) 
by Q(G) as 77(G)= U,,,n(G),. Let n~77(G), 

(LEO), and let r be a representation of I-G. 
Then we can define the L-function L(s, TC, r) and 

the c-factor c(s, n, r) of K by 

L(s,7c,r)=L(s,rocp), B(.s,7[,r)=E(S,ro~,~), 

where the right-hand sides are those of the 
Weil-Deligne group (- Section H) and II, is a 
nontrivial character of k. 

Let G be a connected reductive group over a 
global field k (i.e., an algebraic number field of 
finite degree or an algebraic function field of 
one variable over a finite field), let 7~ be an 
irreducible admissible representation of G,, 

where G, is the group of rational points of G 
over the +adele ring k, of k, and let r be a 
finite-dimensional representation of LG. Let $ 
be a nontrivial character of k, which is trivial 

on k. For any place L’ of k, let r,. be the rcpre- 
scntation of the L-group of G,. = G x k k,, in- 

duced by r, and let th,, be the additive character 
of k, associated with I). It is known that 7~ is 

decomposed into the tensor product 0~~ of 
x,.~I7(G(k,.)) [B6]. Hence we put 

L(s, 7r, r) = n L(s, n,., r,.), 
I 

c(s, 71, r) = 11 c(s, 7c,, rJ 

The local factor L(s, z,,, r,.) is in fact defined 
if c is Archimedean, or G is a ‘torus, or cp is 
unramified (i.e., G,. is quasisplit and splits over 
an unramified extension of k, , and G(o,.) is a 
special maximal compact subgroup of G(k,,), 
and n,, is of class one with respect to G(o,;), 
where 0,. is the integer ring of k,,). It follows 
that the right-hand side n L(s, n,., r,,) is defined 

up to a finite number of non-Archimedean 
places r. Furthermore, Langlands proved that 
n ~(s, T[,>, r,.) is in fact a finite product, and the 

infinite product n L(s, 7-c,., r,,) converges in some 
right half-plane if 71 is automorphic (i.e., if z is 
a subquotient of the right regular representa- 

tion of G, in Gk\GA). It is conjectured that 
L(s, 7t, r) admits a meromorphic continuation 

to the whole complex plane and satisfies a 

functional equation 

L(s, T(,Y)=c(.s, n,r)L( I -s, 7?,r) 

if 71 is automorphic, where il is the tcontragre- 
dient representation of n. Furthermore, if G = 
CL, and r is the standard representation of 

GL,, then we can construct L(s, n, r) and 
c(s, n, r) by generalizing the Iwasawa-Tate 
method. We can also show in this case that 

L(.s, 71, r) is entire if K is cuspidal. The conjec- 
tures are studied in some other cases [B6]. 

0. L-Functions of Automorphic 
Representations (II) 

A. Weil generalized the theory of +Hecke 
operators and the corresponding L-functions to 
the case of tautomorphic forms (for holomor- 

phic and nonholomorphic cases together) of 
CL, over a global field [WS]. Then H. Jacquet 
and Langlands developed a theory from the 
viewpoint of +representation theory [Jl, 521). 
They attached L-functions not to automorphic 
forms but to tautomorphic representations of 

CL:(k). 
Let k be a non-Archimedean local field, and 

let ok be the maximal order of k. Let 3, be 
the space of functions on G,=GL,(k) that are 
locally constant and compactly supported. 
Then X, becomes an algebra with the convol- 

ution product 

where dg is the +Haar measure of G, that 

assigns I to the maximal compact subgroup 
K, = G&(c)~). Let rc be a representation of X, 
on a complex vector space V. Then we say that 

TC is admissible if and only if 7~ satisfies the 
following two conditions: (I) For every c in V, 

there is an ,f in Yk so that rr( f‘)u = c’; (2) Let (T, 
(i = 1, . r) be a family of inequivalent irreduc- 

ible finite-dimensional representations of K,, 
and let 

c(g)= i dim(rr,)~ltr~i(~~‘) 
i=, 

Then 5 is an idempotent of X,. We call such a 

< an elementary idempotent of-W,. Then for 
every elementary idempotent 5 of -;Y,, the 

operator ~(5) has a finite-dimensional range. If 
7~ is an admissible representation of GL2(k) (- 

Section N), then 

JCL 

gives an admissible representation of .Yi’k in 
this sense. Furthermore, any admissible repre- 

sentation of .)lf, can be obtained from an ad- 
missible representation of GL2(k). 

Let k be the real number field. Let .Y, be the 
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space of infinitely differentiable compactly 
supported functions on Gk( = CL,(k)) that are 
Kk( = O(2, k)) finite on both sides, let J?~ be the 
space of functions on K, that are finite sums 

of matrix elements of irreducible represen- 
tations of K,, and let -y/” = Z1 @ #Z. Then 
X1, ,X’,, and J?~ become algebras with the 
convolution product. Let 7t be a representation 

of Xk on a complex vector space V. Then n is 
admissible if and only if the following three 

conditions are satisfied: (1) Every vector u in V 
is of the form u=~~=, n(,fi)ui with ,fie&?, and 

QE V; (2) for every elementary idempotent 
~(s)=~~=, dim(r$’ troi(g-‘), where the gi 

are a family of inequivalent irreducible repre- 
sentations of K,, the range of n(t) is finite- 
dimensional; (3) for every elementary idempo- 
tent 5 of ~Fk and for every vector u in ~(5) V, 

the mapping f~n(f)u oft&‘, 5 into the finite- 

dimensional space n(t) V is continuous. We 
can define the Hecke algebra Xk and the no- 
tion of admissible representations also in the 

case k = C. In these cases, an admissible repre- 
sentation of ,XZ comes from a representation 
of the iuniversal enveloping algebra of CL,(k) 

but may not come from a representation of 
CL,(k). It is known that for any local field k, 

the tcharacter of each irreducible representa- 
tion is a locally integrable function. 

Let k be a global field, Gk = CL,(k), and let 
G, = GL,(k,) be the group of rational points 

of G, over the adele ring k, of k. For any place 
u of k, let k,. be the completion of k at u, let G, 
= GL,(k,), and let k, be the standard maximal 

compact subgroup of G,.. Let & be the Hecke 
algebra yl”k,, of G,, and let E, be the normalized 
Haar measure of K,. Then E, is an elementary 
idempotent of yi”. Let ,Y? = BEr XV be the 

restricted tensor product of the local Hecke 
algebra X,, with respect to the family {e,}. We 
call .%f the global Hecke algebra of G,. 

Let 71 be a representation of X on a com- 
plex vector space K We define the notion of 

admissibility of n as before. Then we can show 
that, for any irreducible admissible represen- 
tation rt of X and for any .place u of k, there 

exists an irreducible admissible representation 
nt, of 2” on a complex vector space V, such 
that (1) for almost all u, dim r/;,? = 1 and (2) x is 
equivalent to the restricted tensor product 
@ n,. of the 7~, with respect to a family of 
nonzero X,E VoKp. Furthermore, the factors {n,} 
are unique up to equivalence. 

Let k be a local field, let $ be a nontriv- 
ial character of k, and let yl”k be the Hecke 

algebra of G, = CL,(k). Let 7~ be an infinite- 
dimensional admissible irreducible represen- 

tation of &. Then there is exactly one space 
lV(n, $) of continuous functions on C;, with 

the following three properties: (1) If W is in 

lV(n, $), then for all g in G, and for all x in k, 

(2) W(n, I/J) is invariant under the right trans- 
lations of Sk,, and the representation on 

W(n, $) is equivalent to 7~; (3) if k IS Archi- 
medean and if W is in W(x, $), then there is 
a positive number N such that 

w:, y ( > )=WIN) 
as ItI + co. We call W(rr, $) the Whittaker 
model of 7~. The Whittaker model exists in the 

global case if and only if each factor 7-c” of 7t = 
@ 7~” is infinite-dimensional. 

Let k be a local field, and let z be as before. 
Then the L-function L(s, 7~) and thle E-factor 
E(S, Z, $) are defined in the following manner: 

Let w  be the quasicharacter of kx (i.e., the 
continuous homomorphism kx ---) C “) defined 

by 

Then the tcontragredient representation 7? of 7-c 
is equivalent to 0-I @n. For any g in Gk and 

W in W(7c, $), let 

‘W,s, W)=j-x w((; ~)gW1~zdxu, 

Q(g,s, W)=Ikx W((; ~)g),ill”-“‘wl(a)d”a. 

Then there is a real number sO such that these 
integrals converge for Re(s) > sO for any g E Gk 
and WE W(n, $). If k is a non-Archimedean 
local field with F, as its residue field, then 
there is a unique factor L(s, n) suc.h that 

L(s, 7-c-l is a polynomial of q-” with constant 
term 1, 

WY, s, w  = wg, s, W-Q, 4 

is a holomorphic function of s for all g and W, 

and there is at least one W in W(n, $) so that 
@(e, s, W) = as with a positive constant a. If k is 
an Archimedean local field, then we can define 
the gamma factor L(s, Z) in the same manner. 
Furthermore, for any local field k, if 

ws, s, WI = N7, s,‘W~(s, 4, 

then there is a unique factor E(S, $, 7~) which, as 
a function of s, is an exponential such that 

for all gE Gk and WE W(n, tj). 

Let 71 and 7~’ be two infinite-dimensional 

irreducible admissible representations of Gk. 
Then 71 and 7-c’ are equivalent if and only if the 
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quasicharacters w  and w’ are equal and 

L(l-s,X-‘Ojt)E(S,XO~,~) 

UC x 0 4 

L(l-S,X-‘Ojil)E(S,XO~‘,~) 
= 

us, ,y 0 n’) 

holds for any quasicharacter il. In particular, 
the set {L(s, x 0 rc) and E(S, x 0 n, $) for all x} 
characterizes the representation rr. 

Let k be a global field, G, = G&(k), G, = 

GL,(k*), and let K, = n K, be the standard 
maximal compact subgroup of G,. Then the 

iglobal Hecke algebra X acts on the space of 
continuous functions on G,\G* by the right 
translations. Let cp be a continuous function 
on G,\G,. Then cp is an automorphic form if 
and only if (1) cp is K,-finite on the right, (2) 
for every ielementary idempotent 5 in 2, the 
space (~.J?)u, is finite-dimensional, and (3) cp is 
slowly increasing if k is an algebraic number 

field. An automorphic form cp is a cusp form if 
and only if 

for all g in G,. Let .d be the space of automor- 
phic forms on G,\G,, and let -dO be the space 

of cusp forms on G,\G,. They are 3Cu-modules. 
Let $ =n $, be a nontrivial character’of k\k,, 

and let T[ be an irreducible admissible repre- 
sentation n = 0” rr, of the global Hecke al- 
gebra X = BE,, XV. If n is a iconstituent of the 
X-module .d, then we can define the local 
factors L(s, n,) and E(S, n,,, $,) for all u, al- 
though rr,, may not be infinite-dimensional. 

Further, the infinite products 

L(s, rr)= J-J L(s, n,) and L(s, rt) = n L(s, it,) 

converge absolutely in a right half-plane, and 
the functions L(s, n) and L(s, 5) can be analyti- 

cally continued to the whole complex plane as 
meromorphic functions of s. If n is a constitu- 
ent of&0, then all n, are infinite-dimensional, 
L(s, rr) and L(s, 5) are entire functions, and rc is 
contained in &‘,, with multiplicity one. If k is 

an algebraic number field, then they have only 
a finite number of poles and are bounded at 
infinity in any vertical strip of finite width. If k 

is an algebraic function field of one variable 
with field of constant F,, then they are rational 
functions of 4 -‘. In either case, E(S, 71,, $,) = 1 
for almost all u, and hence 

E(S, n) = n &, n,, $,) 

is well defined. Furthermore, the functional 
equation 

L(s, n) = E(S, n) L( 1 -s, 77) 

is satisfied. 

As for the condition for n being a constitu- 

ent of %dr,, we have the following: Let I[ = @ n, 
be an irreducible admissible representation of 
X. Then r-r is a constituent of S&0 if and only if 
(1) for every u, rr, is infinite-dimensional; (2) the 
quasicharacter ‘1 defined by 

is trivial on k”; (3) 7-c satisfies a certain con- 
dition so that, for any quasicharacter w  of 

k x \ki, L(s, w  0 n) = n L(s, w, 0 rr,) and 

L(s, urn1 0 it,) = n L(s, co;’ 0 7?,) converge on a 
right half-plane; and (4) for any quasicharacter 
w  of k x \ki, L(s, w  @ 7-c) and L(s, w-i 0 ii) are 
entire functions of s which are bounded in 
vertical strips and satisfy the functional 
equation 

P. Congruence [-Functions of Algebraic 
Function Fields of One Variable or of 

Algebraic Curves 

Let K be an talgebraic function field of one 

variable over k = F, (finite field with 4 ele- 
ments). The i-function of the algebraic function 
field K/k, denoted by cK(s), is defined by the 
infinite sum &i/V(%)-“, where the summation 
is over all integral divisors ‘LI of K/k and where 
the norm N(‘%) equals qdeg(“‘). Equivalently, 
iK(s) is defined by the infinite product n,( I - 

N(P)-~))‘, where p runs over all prime divi- 
sors of K/k. By the change of variable u = q-9 

iK(s) = Z,(u) becomes a formal power series in 
IA. cK(s) and Z,(u) are sometimes called the 
congruence c-functions of K/k. 

The fundamental theorem states that (i) 
(Rationality) Z,(u) is a rational function of u 
of the form Z,(u) = P(u)/( 1 - u)( 1 - qu), where 
P(u)eZ[u] is a polynomial of degree 29, g 
being the genus of K; (ii) (Functional equation) 

Z,(u) satisfies the functional equation 

and (iii) if P(u) is decomposed into linear fac- 

tors in C [u]: P(u) = n:!, (1 - xiu), then all the 
reciprocal roots c(r are complex numbers of 
absolute value A. Statement (iii) is the analog 
of the Riemann hypothesis because it is equiva- 

lent to saying that all the zeros of i,(s) = 
Z,(q-‘) lie on the line Res= l/2. 

The congruence i-function was introduced 
by E. Artin [Al (1924)] as an analog of the 
Riemann or Dedekind c-functions. Of its fun- 

damental properties, the rationality (i) and 
the functional equation (ii) were proven by 
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F. K. Schmidt (193 l), using the +Riemann- 
Roth theorem for the function field K/k. The 
Riemann hypothesis (iii) was verified first in 
the elliptic case (9 = 1) by H. Hasse [H 1] and 

then in the general case by A. Weil [W2 
(1948)]. For the proof of (iii), it was essential 

to consider the geometry of algebraic curves 
that correspond to given function fields. 

Let C be a nonsingular complete curve over 
k with function field K. Then Z,(u) coincides 
with the i-function of C/k, denoted by Z(u, C), 
which is defined by the formal power series 
exp(C$, N,um/m). Here N,,, is the number of 
rational points of C over the extension k, of k 

of degree m. The rationality of Z,(u) is then 
equivalent to the formula 

2cl 
N,,,=l+q”--ccc; @EN), 

i=, 

and the Riemann hypothesis for Z,(u) is 
equivalent to the estimate 

(*I IN,- 1 --q”1<2g p (m E N). 

Now if F is the 4th power morphism of C to 
itself (the Frobenius morphism of C relative to 
k), then an important observation is that N, is 

the number of fixed points of the mth iterate 
F” of F. In other words, N, is equal to the 
intersection number of the graph of F” with 

the diagonal on the surface C x C, and is re- 
lated to the “trace” of the Frobenius corre- 
spondence. Then (*) follows from +Castel- 
nuovo’s lemma in the theory of correspon- 
dences on a curve. This is Weil’s proof of the 
Riemann hypothesis in [W2]; compare the 
proof by A. Mattuck and J. Tate (Ahh. Math. 

Sem. Humhurg 22 (1958)) and A. Grothendieck 
(J. Reine Angew. Math., 200 (1958)) using the 
Riemann-Roth theorem for an algebraic 
surface. 

On the other hand, let J be the +Jacobian 
variety of C over k. For each prime number I 
different from the characteristic of k, let M,(r) 

denote the tl-adic representation of an endo- 
morphism x of J obtained from its action on 
points of J of order 1” (n = 1,2, ). Letting 71 
be the endomorphism of J induced from F 
(which is the same as the Frobenius morphism 
of J), we have P(u) = det( 1 - M,(n)u), i.e., the 
numerator of the <-function coincides with the 
characteristic polynomial of Ml(~). In this 
setting, the Riemann hypothesis is a conse- 

quence of the positivity of the Rosati antiauto- 
morphism [El]. This is the second proof given 
by Weil [WZ], and applies to arbitary Abelian 

varieties. 
Recently E. Bombieri, inspired by Stepa- 

nov’s idea, gave an elementary proof of (*) 
using only the Riemann-Roth theorem for a 
curve (S&n. Bourhaki, no. 430 (1973)). 

Q. <-Functions of Algebraic Varieties over 

Finite Fields 

Let I/ be an algebraic variety over the finite 
field with 4 elements F,, and let N,,, be the 
number of Fqm-rational points of 1’. Then the 

(-function of V over F, is the formal power 
series in Z[ [u]] defined by 

.W, V)=ev(l$, N,,~“‘h); 
alternatively it can be defined by the infinite 

product &( 1 - udeg P, -I, where P runs over 
the set of prime divisors of I/ and deg P is the 
degree of the residue field of P over F, (in 
other words, P runs over prime ralional O- 
cycles of V over F,). 

Weil Conjecture. In 1949, the following prop- 
erties of the i-function were conjectured by 
Weil [W3]. Let V be an n-dimensional com- 
plete nonsingular (absolutely irreducible) 
variety over F,. Then (1) Z(u, V) is a rational 
function of u. (2) Z(u, V) satisfies the functional 
equation 

z((q”u)--1, V)= ~p2uxz(u, V), 

where the integer x is the intersectjon number 
(the degree of A,, A,,) of the diagonal sub- 
variety A,, with itself in the product V x V, 

which is called the Euler-Poincarb character- 
istic of V. (3) Moreover, we have 

Z(u, V) = 
Pl(U).P,(U). .P2n-l(u) 

P”(U).P,(U)~...‘P,,(U) ’ 

where P,,(u) = n,“=h, (1 - $)u) is a polynomial 
with Z-coefficients such that UP’ are algebraic 

integers of absolute value qhj2 (O< h d 2n); the 
latter statement is the Riemann hypothesis for 
V/F,. (4) When V is the reduction mod p of a 
complete nonsingular variety V* of character- 
istic 0, then the degree B, of P,,(u) is the hth 

Betti number of V* considered as a complex 
manifold. 

This conjecture, called the Weil conjecture, 
has been completely proven. To give a brief 

history, first B. Dwork [Dl3] proved the 
rationality of the c-function for any (not neces- 
sarily complete or nonsingular) variety over 
F,. Then A. Grothendieck [A3, G:!, G3] devel- 
oped the I-adic t-tale cohomology theory with 
M. Artin and others, and proved the above 
statements (l)-(4) (except for the Riemann 

hypothesis) with Ph(u) replaced by some 
Ph,l(~)~QI[~]; and S. Lubkin [L7] obtained 
similar results for liftable varieties Finally 
Deligne [D4] proved the Riemann hypothesis 
and the independence of I of Ph,Ju). More 
details will be given below. Before the final 

solution for the general case was obtained, the 
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conjecture had been verified for some special 

types of varieties. For curves and Abelian 
varieties, its truth was previously shown by 
Weil (- Section P). In the paper [W3] in 
which he proposed the above conjecture, Weil 
verified it for Fermat hypersurfaces, i.e., those 
defined by the equation u,,xt + + a,,, x,“+, 
= 0 (ai F,“); in this case, the i-function is of 
the form Pan’)“” /n&,(1 -qju) with a poly- 
nomial P(u) that can be explicitly described 

in terms of Jacobi sums. Dwork [D14] studied 
by p-adic analysis the case of hypersurfaces in 
a projective space, verifying the conjecture for 

them except for the Riemann hypothesis. Fur- 
ther nontrivial examples were provided by +K3 
surfaces (Deligne [D2], Pyatetskii-Shapiro, 
Shafarevich [Pl]) and cubic 3-folds (E. Bom- 
bieri, H. Swinnerton-Dyer CBS]); in these 

cases the proof of the Riemann hypothesis was 
reduced to that of certain Abelian varieties 
naturally attached to these varieties. It can be 
said that the Weil conjecture has greatly in- 
fluenced the development of algebraic geome- 

try, as regards both the foundations and the 
methods of proof of the conjecture itself; see 
the expositions by N. Katz [K2] or B. Mazur 

CW. 

Weil Cohomology, I-Adic Cohomology. The 
Weil conjecture suggested the possibility of 
a good cohomology theory for algebraic 
varieties over a field of arbitrary characteristic. 
We first formulate the desired properties of a 
good cohomology (S. Kleiman [K4]). Let z be 
an algebraically closed field and K a field of 

characteristic 0, which is called the coefficient 
field. A contravariant functor V+H*(V) from 

the category of complete connected smooth 
varieties over k to the category of augmented 
Z+-graded finite-dimensional anticommuta- 
tive K-algebras (cup product as multiplication) 
is called a Weil cohomology with coefficients in 
K if it has the following three properties. (1) 
Poincark duality: If n = dim V, then a canonical 
isomorphism H2”( V)? K exists and the cup 
product Hj( V) x Hznmj( V)+H2”( V) 2 K in- 

duces a perfect pairing. (2) Kiinneth formula: 
For any VI and V2 the mapping H*( V,) 0 
H*(V,)+H*( Vi x V2) defined by a 0 b+ 

ProjT(a). Projz(b) is an isomorphism. (3) Good 
relation with algebraic cycles: Let Cj( V) be the 
group of algebraic cycles of codimension j on 
V. There exists a fundamental-class homomor- 
phism FUND: Ci( V)-+H2j( V) for all j, which 
is functorial in V, compatible with products 
via Kiinneth’s formula, has compatibility of 

the intersection with the cup product, and 
maps 0-cyclec C”( V) to its degree as an ele- 

ment of K z Hzn( V). If a Weil cohomology 
theory H exists for the V’s over k, we can 

prove the Lefschetz fixed-point formula: 

((graph of F) (diagonal)), x v 

for a morphism F: I/+ V. 

If k= C (the field of complex numbers), the 
classical cohomology V+H*( V”“, Q), where 
V’” denotes the complex manifold associated 
with U: gives a Weil cohomology. If k is an 
arbitrary algebraically closed field and if I is a 

prime number different from the characteristic 
of k, then the principal results in the theory of 

the &tale cohomology state that the I-adic 
cohomology V+H&( V, Q,) is a Weil coho- 
mology with coefficient field Ql (the field of I- 
adic numbers) [A3, D5, G3, M4]. In defining 
this, Grothendieck introduced a new concept 
of topology, which is now called Grothendieck 
topology. In the &tale topology of a variety V, 
for example, any Ctale covering of a Zariski 

open subset is regarded as an “open set.” With 
respect to the &tale topology, the cohomology 
group H*( V, Z/n) of V with coefficients in Z/n 

is defined in the usual manner and is a finite 
Z/n-module. If 1 is a prime number as above, 
l@“H*( V, Z/l”) is a module over Z, =l$,Z/1” 
of finite rank, and 

H~(V,Q~)=(l~_m,H*(V,ZZ/1')) 0 z,Qi 

defines the 2-adic cohomology group, giving 
rise to a Weil cohomology. 

For the characteristic p of k, p-adic Ctale 
cohomology does not give Weil cohomology; 
but the crystalline cohomology (Grothendieck 

and P. Berthelot [B2, B3]) takes the place of p- 
adic cohomology and is almost a Weil coho- 
mology: in this theory the fundamental class is 
defined only for smooth subvarieties. 

Now fix a Weil cohomology for k = F,, an 
algebraic closure of a finite field F,. Given an 
algebraic variety V over F,, let V = V 0 k 
denote the base extension of V to k; then F,m- 
rational points of V can be identified with the 
fixed points of the mth iterate of the Frobenius 
morphism F of V relative to F,. Then the 
Lefschetz fixed-point formula implies the 

rationality of Z(u, V); more precisely, letting 
e(u) = det( 1 - uF* 1 Hj( V)) be the characteristic 

polynomial of the automorphism F* of Hj( v) 
induced by F, we have 

Z(u, V) = fi quy -‘)‘+‘. 
j=O 

The functional equation of the c-function then 
follows from the Poincare duality. This proves 
(l), (2), and a part of (3) in the statement of 

the Weil conjecture. Further, in the case of 
I-adic cohomology, (4) means that deg e(u) = 
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dim&( v, Q,) is equal to thejth Betti num- 

ber of a lifting of V to characteristic 0; this 
follows from the comparison theorem of M. 

Artin for the l-adic cohomology and the class- 
ical cohomology, combined with the invariance 
of I-adic cohomology under specialization. 

Proof of the Riemann Hypothesis. In 1974, 
Deligne [D4, I] completed the proof of the 
Weil conjecture for projective nonsingular 
varieties by proving that, given such a V over 
F,, any eigenvalue of F* on Hk,( v, Qi) is an 

algebraic integer, all the conjugates of which 
are of absolute value qj/‘. (This implies that 
4(u) =det( 1 - uF* 1 Hi, (v, Qr)) is in Z[u] and 

is independent of 1.) The proof is done by 
induction on n = dim V; by the general results 
in I-adic cohomology (the weak Lefschetz 
theorem on a hyperplane section, the Poin- 

care duality, and the Kiinneth formula), the 
proof is reduced to the assertion that (*) any 

eigenvalue u of F* on HZ,( v, Q3 is an alge- 
braic integer such that Iu’~ < q(n-t1)12 for all 

conjugates a’ of a. The main ingredients in 
proving (*) are (1) Grothendieck’s theory of L- 
functions, based on the etale cohomology with 
compact support and with coefficients in a Q,- 

sheaf [G2, G33; (2) the theory of Lefschetz 
pencils (Deligne and Katz [DD]), and the 
Kajdan-Margulis theorem on the monodromy 

of a Lefschetz pencil (J. L. Verdier, S&r. Bour- 
b&i, no. 423 (1972)); and (3) Rankin’s methods 

to estimate the coefficients of modular forms, 
as adapted to the Grothendieck’s L-series. By 
means of these geometric and arithmetic tech- 
niques, Deligne achieved the proof of the 
Riemann hypothesis for projective nonsingular 
varieties. For the generalization to complete 

varieties, see Deligne [D4, II]. 

Applications of the (Verified) Weil Conjecture. 
(1) The Ramanujan conjecture (- 32 Auto- 
morphic Functions D): The connection of this 
conjecture and the Weil conjecture for certain 
fiber varieties over a modular curve was ob- 
served by M. Sato and partially verified by Y. 
Ihara [Ill and then established by Deligne 
[D3]. The Weil conjecture as proven above 

implies the truth of the Ramanujan conjecture 
and its generalization by H. Petersson. 

(2) Estimation of trigonometric sums: Let q 

be the power of a prime number p. Then 

c 27-G 

(I,,...,xJEF~ 
evg trFq:Fp(F(xl, . ,x,)) 

<(d- l)“q@, 

where F(X,, . . . , X,)eF,[X,, . . ..X.] is a poly- 

nomial of degree d that is not divisible by p, 
and the homogeneous part of the highest 

degree of F defines a smooth irreducible 

hypersurface in Pnmr. This is a generalization 

of the Weil estimation of the Kloosterman sum 
([D4, Wl (1948c)]; - 4 Additive Number 
Theory D). 

(3) The hard Lefschetz theorem: Let L E 

H*(V) be the class of a hyperplane section 
of an n-dimensional projective nonsingular 
variety V over an algebraically closed field. 
Then the cup product by L’:H”-‘( V)+H”+i( V) 

is an isomorphism for all i < n. Deligne 
[D4, II] proved this for I-adic cohomology, 
from which N. Katz and W. Messing [Kl] 
deduced its validity in any Weil cohomology 
or in the crystalline cohomology. 

Also some geometric properties of an alge- 
braic variety V are reflected in the properties 
of Z(u, V). The c-function Z(u, A) of an Abelian 

variety A determines the isogeny class of A 
[T4]. For any algebraic integer a, Ievery conju- 
gate of which has absolute value q”‘, there 
exists an Abelian variety A/F, such that a is a 
root of det(1 -uF* 1 H’(A))=0 [Htj]. J. Tate 
[T3] conjectured that the rank of t-he space 

cohomology classes of algebraic cycles of 
codimension r is equal to the order of the pole 
at u = l/q’ of Z(u, V). This conjecture is still 

open but has been verified in certain nontrivial 
cases, e.g., (1) products of curves and Abelian 
varieties, r = 1 (Tate [T4]), (2) Ferrnat hyper- 
surfaces of dimension 2r with some condition 
on the degree and the characteristic (Tate 
[T3], T. Shioda, Proc. Japan Acad. 55 (1979)), 
and (3) elliptic K3 surfaces, r = 1 (R/I. Artin and 
Swinnerton-Dyer, lnventiones Mar/r. 20 (1973)). 

R. [- and L-Functions of Schemes 

Let X be a tscheme of finite type over Z, and 
let 1x1 denote the set of closed points of X; for 

each XE IX 1, the residue field k(x) is finite, and 
its cardinality is called the norm R’(x) of x. The 

c-function of a scheme X is defined by the 
product [(s,X)=n,,,,,(l -N(x))“))‘. This 

converges absolutely for Re s > dim X, and it is 
conjectured to have an analytic continuation 
in the entire s-plane (Serre [S7]). It reduces to 
the Riemann (resp. Dedekind) c-function if X 
= Spec(Z) (resp. Spec(o), o being the ring of 

integers of an algebraic number field), and to 
the c-function Z(q -‘, X) (- Section Q) if X 
is a variety over a finite field F4. The case of 
varieties defined over an algebraic number 
field is discussed in Section S. 

Let G be a finite group of automorphisms of 
a scheme X, and assume that the quotient Y 
=X/G exists (e.g., X is quasiprojective). For 

an element x in [XI, let y be its image in 1 YI, 
and let D(x)={g~Glg(x)=x}, the decompo- 

sition group of x over y. The natural mapping 
D(x)+Gal(k(x)/k(y)) is surjective, and its 
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kernel I(x) is called the inertia group at x. An 
element of D(x) is called a Frobenius element 
at x if its image in Gal(k(x)/k(y)) corresponds 

to the N(y)th-power automorphism of k(x). 
Now let R be a representation of G with char- 
acter 1. The Artin L-function L(s, X,x) is de- 
tined by 

Us, X3 xl = ev 
> 

=igy,det(l -W,)N(Y)Y-‘, 

where I denotes the mean value of x on the 
nth power of Frobenius elements F, at x (x 
any point of 1x1 over y), and similarly R(F,) 
denotes the mean value of R(F,); it converges 
absolutely for Res > dim X. Again this is re- 
duced to the usual Artin L-function (- Sec- 
tion G) if X is the spectrum of the ring of 
integers of an algebraic number field. The 

Artin L-functions of a scheme have many 
formal properties analogous to those of Artin 
L-functions of a number field (Serre [S7]). 

Let us consider the case where X is an alge- 
braic variety over a finite field F, and ele- 
ments of G are automorphisms of X over F2; 
in this case, L(s, X, x) is a formal power series 
in u=q-“, which is called a congruence Artin 
L-function. For the case where X is a complete 
nonsingular algebraic curve and x is an irre- 
ducible character of G different from the trivial 

one, Weil [W2] proved that L(s, X, 1) is a 
polynomial in u = q -“; thus the analog of 
tArtin’s conjecture holds here. More generally, 

for any algebraic variety X over F,, Grothen- 
dieck [G2, G3] proved the rationality of 
L-functions together with the alternating 

product expression by polynomials in u, as in 
the case of c-functions, by the methods of l- 
adic cohomology. Actually, Grothendieck 
treated a more general type of L-function 
associated with l-adic sheaves on X, which 
also play an important role in Deligne’s proof 
of the Riemann hypothesis (- Section Q). 

S. Hasse C-Functions 

For a nonsingular complete algebraic variety 
V defined over a finite algebraic number field 
K, let VP be the reduction of V modulo a prime 
ideal p of K, K, be the residue field of p, and 
Z(u, VP) be the c-function of VP over K,. The 
i-function [(s, V) of the complex variable s, 
determined by the infinite product (exclud- 
ing the finite number of p’s where VP is not 

defined), 

its, VI = n’ z(N(P)-“> v,)? 
P 

is called the Hasse c-function of V over the 
algebraic number field K. For this function, 

we have Hasse’s conjecture [W4]: [(s, V) is a 
meromorphic function over the whole complex 

plane of s and satisfies the functional equation 
of ordinary type. Sometimes it is more natural 
to consider 

cj(s, V)=n’q(N(p)-“, VP)-’ (O<j<2dimV), 
D 

where Pj(u, VP) is the jth factor of Z(u, VP), and 
we have a similar conjecture for them. For the 

definition of cj(s, V) taking into account the 
factors for bad primes and the precise form of 
the conjectural functional equation, see Serre 

[SS]. Note that [Js, V) converges absolutely 
for Re s > j/2 + 1 as a consequence of the Weil 
conjecture. 

Hasse’s conjecture remains unsolved for the 
general case, but has been verified when V is 
one of the following varieties: 

(I,) Algebraic curves defined by the equation 

ye= yxs + 6 and Fermat hypersurfaces (Weil 

CW61). 
(I,) Elliptic curves with complex multiplica- 

tion (Deuring [Dll]). 
(I,) Abelian varieties with complex multiplica- 

tion (Taniyama [T2], Shimura and Taniyama 
[Sll], Shimura, H. Yoshida). 

(Id) Singular K3 surfaces, i.e., K3 surfaces 
with 20 Picard numbers (Shafarevich and 
Pyatetskii-Shapiro [Pl], Deligne [D2], T. 
Shioda and H. Inose [S21]). 

(II,) Algebraic curves that are suitable 
models of the elliptic modular function fields 

(Eichler [El], Shimura [S12]). 
(II,) Algebraic curves that are suitable 

models of the automorphic function fields 

obtained from a quaternion algebra (Shimura 
[S13,S15]). 

(II,) Certain fiber varieties of which the base 
is a curve of type (II,) or (II,) and the fibers are 
Abelian varieties (Kuga and Shimura [K6], 
Ihara [Ill, Deligne [D3]). 

(II,) Certain Shimura varieties of higher 
dimension (Langlands and others; - [B6]). 

In these cases, [(s, V) can be expressed by 
known functions, i.e., by Hecke L-functions 

with GrGssencharakters of algebraic number 
fields in cases (I) or by Dirichlet series corre- 

sponding to modular forms in cases (II). This 
fact has an essential meaning for the arithme- 
tic properties of these functions. For example, 
the extended +Ramanujan conjecture concern- 
ing the Hecke operator of the automorphic 
form reduces to Weil’s conjecture on varieties 
related to those in cases II. Moreover, for 
(II,)-(II,) the essential point is the congruence 
relation F0=Z7+17* (Kronecker, Eichler [El], 
Shimura). In particular, for (II,) this formula is 

related to the problem of constructing class 

fields over totally imaginary quadratic exten- 
sions of a totally real field F utilizing special 
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values of automorphic functions and class 
fields over F. Actually, the formula is equiva- 

lent to the reciprocity law for class fields 
(Shimura). 

One of the facts that makes the Hasse [- 
function important is that it describes the 

decomposition law of prime ideals of algebraic 
number fields when V is an algebraic curve or 
an Abelian variety (Weil, Shimura [Sl4], 
Taniyama [T2], T. Honda [H6]). In that case, 
its Hasse [-function has the following arithme- 

tic meaning. 
Let C be a complete, nonsingular algebraic 

curve defined over an algebraic number field 
K, and let J be the Jacobian variety of C de- 
fined over K. For a prime number 1, fix an 
I-adic coordinate system C, on J, and let 
K(J, I”) be the extension field of K obtained 
by adjoining to K all the coordinates of the 
l’th division points (v = 1,2, ) of J. Then 

K(J, l”)/K is an infinite Galois extension of K. 
The corresponding Galois group E(J, rm) has 
the I-adic representation rr+M,*(a) by the l- 

adic coordinates ,&. Almost all prime ideals p 
of K are unramified in K(J, I”)/K. Thus when 
we take an arbitrary prime factor ‘$3 of p in 
K(J, I”), the Frobenius substitution of G$, 

‘T‘~= [yq 

is uniquely determined. Furthermore, the 
characteristic polynomial det( 1 - M:(os)u) is 
determined only by p and does not depend on 
the choice of the prime factor 5I3; we denote 
this polynomial by P&u, C). In this case, for 
almost all p, P&u, C) is a polynomial with 

rational integral coefficients independent of I; 
namely, the numerator of the i-function of the 
reduction of C mod p. Thus 

~l(s,c)=~‘Pp(N(p)~“,c)-’ 
P 

-n’det(l --M:(cr,)N(p)-“))I. 

Here the iroduct n’det(1 -MT(cT,)N(~)-“)-I 
has the same expression as the Artin L- 

function if we ignore the fact that MT is the I- 
adic representation and K(J, I”) is the infinite 
extension. Thus if we can describe ((s, C) ex- 

plicitly, then the decomposition process of the 
prime ideal for intermediate fields between 
K(J, l”) and K can be made fairly clear. In 
fact, this is the case for examples (&,-(I,) and 
(II,))(II,), from which the relations between 
the arithmetic of the field of division points 
K(J, I”)/K and the eigenvalues of the Hecke 

operator have been obtained. Thus for curves 
and Abelian varieties, ((s, V) is related to the 
arithmetic of some number fields; but it is not 

known whether similar arithmetical relations 
exist for other kinds of varieties except in a few 
cases. 

Tate’s Conjecture. For a projective nonsin- 

gular variety V over a finite algebraic number 
field K, let 91r( V) denote the group of algebraic 

cycles of codimension r on V= VQDKC modulo 
homological equivalence and let Xr( V) be the 
subgroup of ‘rI*( v) generated by algebraic 
cycles rational over K. Then Tate [T3] conjec- 
tured that the rank of 9I’( V) is equal to the 
order of the pole of &(s, V) at s = r + 1. This 
conjecture is closely connected with Hodge’s 

conjecture that the space of rational coho- 
mology classes of type (r, r) on V IS spanned by 
91”(v); in fact, the equivalence of these conjec- 
tures is known for Abelian varieties of tCM 
type (H. Pohlmann, Ann. Math., 88 (1968)) and 
for Fermat hypersurfaces of dimension 2r 
(Tate [T3], Weil [W6]). Thus, when r = 1, 
Tate’s conjecture for these varieties holds by 
Lefschetz’s theorem, and when r > 1, it holds in 

certain cases where the Hodge conjecture is 
verified (Shioda, Math. Ann., 245 (1979); Z. 
Ran, Compositio Math., 42 (198 1)). Further 
examples are given by K3 surfaces with large 

Picard numbers (Shioda and Inose [S21]; T. 
Oda, hoc. Japan Acad., 56 (1980) I. 

L-Functions of Elliptic Curves. Let E be an 

elliptic curve (with a rational poim) over the 
rational number field Q, and let N be its con- 
ductor; a prime number p divides ,V if and 
only if E has bad reduction modp (Tate ITS]). 
The L-function of E over Q is defined as 
follows: 

Us, 4 

=B’l -“/-I n (1 -a,p-“+p’-z”)-‘, 
PlN 

where s,,=O or fl and 1 --a,u+pu’= 

PI (u, E mod p). There are many interesting 
results and conjectures concerning L(s, E) 

[T5]: 
(1) Functional equation. Let 

((s, E) = NS’2(2n)-“I-(s)L(s, E). 

Then it is conjectured that ((s, E) is holo- 
morphic in the entire s-plane and satisfies the 

functional equation ((s, E) = k ((2 -s, E). This 
is true if E has complex multiplication (Deur- 

ing) or E is a certain modular curve (Eichler, 
Shimura). 

(2) Taniyama-Weil conjecture. Weil [WI 
(1967a)] conjectured that, if L(s, E) 
=c;L1 u,nP, then f(r) = 29, une2nini is a cusp 
form of weight 2 for the congruence subgroup 
I,,(N) which is an eigenfunction for Hecke 
operators; moreover E is isogenous to a factor 
of the Jacobian variety of the modular curve 

for I,(N) in such a way that f(~)d:: corre- 

sponds to the differential of the first kind on E. 
If this conjecture is true, then the statements in 
(1) follow. 
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(3) Birch-Swinnerton-Dyer conjecture. As- 

suming analytic continuation of L(s, E), B. 
Birch and H. Swinnerton-Dyer [B4] conjec- 
tured that the order of the zero of L(s, E) at s 
= 1 is equal to the rank r of the group E(Q) of 
rational points of E which is finitely generated 
by the Mordell-Weil theorem. They verified 
this for many examples, especially for curves of 

the type 4” =x3 --ax. J. Coates and A. Wiles 
(Inuentiones Math., 39 (1977)) proved that if E 

has complex multiplication and if r > 0 then 

L(s, E) vanishes at s = I. This conjecture has a 
refinement which extends also to Abelian 
varieties over a global field (Tate, SPm. Bour- 

haki, no. 306 (1966)). 
(4) Sato’s conjecture. Let 

1 -uu,u+pu2=(l -7r&(l -E/$), 

with rrp = & e”‘p (0 < Or, < n). When E has 
complex multiplication, the distribution of 0, 
for half of I> is uniform in the interval [0, n], 

and 0, is n/2 for the remaining half of p. Sup- 
pose that E does not have complex multipli- 
cation. Then Sato conjectured that 

(the number of prime numbers p 
lim less than x such that (&E[x, b]) 

x-1 (the number of prime 

numbers less than x) 2 fl = ~ s sin2(Id0 (O<c1<B<71) 
n 31 

(Tate [T3]). 

H. Yoshida [Y 11 posed an analog of Sato’s 

conjecture for elliptic curves defined over 
function fields with finite constant fields and 
proved it in certain cases. 

(5) Formal groups. Letting L(s, E)= Ca,n-’ 

as before, set ,f(x)= C,“=, u,~“/n. Honda [H6] 
showed that .I’-‘(,f’(x)+,J‘(y)) is a +formal (Lie) 
group with coefficients in Z and that this 
group is isomorphic over Z to a formal group 

obtained by power series expansion of the 
group law of E with respect to suitable tlocal 

uniformizing coordinates at the origin. Such 
an interpretation of the i-function also applies 
to other cases in which [-functions of tgroup 

varieties may be characterized as Dirichlet 
series whose coefficients give a normal form of 

the group law; e.g., the case of algebraic tori 
(T. Ibukiyama, J. Fuc. Sci. Univ. Tokyo, (IA) 21 
(1974)). 

T. Selberg [-Functions and [-Functions 
Associated with Discontinuous Groups 

Let I c SL(2, R) be a ‘Fuchsian group operat- 
ing on the complex upper half-plane H = {z = 

x + iy ] y > 0). When the two eigenvalues of 
an element YE I are distinct real numbers 5,) 

t2 (5, r2 = 1, <, < t2), we call 7 thyperbolic. Then 
the number <i is denoted by N(j) and is called 
the norm of y. When 7 is hyperbolic, 7” (n = 
1,2,3,. ) is also hyperbolic. When +- y is not a 
positive power of other hyperbolic elements, 1’ 
is called a primitive hyperbolic element. The 

elements conjugate to primitive hyperbolic 
elements are also primitive hyperbolic ele- 
ments and have the same norm as y. Let P,, 
P2, be the conjugacy classes of primitive 

hyperbolic elements of I, and let “J,E Pi be their 
representatives. Suppose that a matrix repres- 
entation ;t*M(y) of I is given. Then the analy- 
tic function given by 

Z,(s, M)= n fi det(l- M(y,)N(:,,))-“) 
i n=o 

is called the Selberg [-function (Selberg [SS]). 
When I\H is compact and I is torsion-free, 
then Zr(s, M) has the following properties. 

(1) It can be analytically continued to the 

whole complex plane of s and gives an tin- 
tegral function of genus at most 2. 

(2) It has zeros of order (2n + 1)(29 - 2)~ at 

-n (n = 0, 1,2,3, ). Here 9 is the genus of the 
Riemann surface I’\,H and v is the degree of 
the representation M. All other zeros lie on the 
line Res= l/2, except for a finite number that 
lie on the interval (0,l) of the real axis. 

(3) It satisfies the functional equation 

Zr(1 -s, M)=Z&, M) exp -vA(I\H) 

s s-1,2 

X utan(7m)du , 
0 > 

where 

A(I-\H)= -=271(29-2), x+iyEH. 

Property (2) shows that the Riemann hy- 
pothesis is almost valid for Z,(s, M). The proof 
is based on the following fact concerning the 
eigenvalue problem for the variety T\H: The 

eigenvalue i of the equation 

cannot be a negative number. 
Using this function, T. Yamada (1965) inves- 

tigated the unit distribution of real quadratic 
fields. 

Selberg c-functions are defined similarly 
when I\G has finite volume but is noncom- 
pact. In this case, however, the decomposition 
of L,(I\G) into irreducible representation 
spaces has a continuous spectrum; hence the 
properties of the Selberg c-function of I are 
quite different from the case when T\G is 

compact. Selberg defined the generalized 

Eisenstein series to give the eigenfunctions of 
this continuous spectrum explicitly. When I = 
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SL(2, Z), the series is given by 

This type of generalized Eisenstein series is 

also defined for the general semisimple alge- 
braic group G and its arithmetic subgroup. 
It has been studied by Selberg, Godement, 
Gel’fand, Harish-Chandra, Langlands, D. 

Zagier, and others. 

U. Ihara [-Functions 

Let k, be a p-adic field, oD the ring of integers 
in k,, and G= I’S&(R) x PSL,(k,). Suppose 

that I is a subgroup of G such that (1) I is dis- 
crete, (2) F\G is compact, (3) F has no torsion 
element except the identity, (4) Fa (the projec- 
tion of I in PSL,(R)) is dense in l?%,(R), and 
(5) I-r (the projection of I in PSL,(k,)) is dense 

in PSL,(k,). Then FrF,gr,. Let X=(x+ 
iy 1 y > 0) be the upper half-plane, and let F 
act on X via Ia. The action of I on X is 
not discontinuous, but the subgroup I0 = 
{y~rlprojection of y to r,EPsL2(op)} oper- 
ates on X properly discontinuously. For 
each ZEX, define FI={l/EIIY(z)=z}. Then 
I: is isomorphic to Z or { 1). Let P(r) = 
{z~XIr,zZ}. The group r acts on P(F), 
since I, and F?= are conjugate in I’. Let P(r) 

=P(I)/I. Suppose that PEP(F) is represented 
by z6X. Choose a generator 7 of I, and pro- 
ject y to Fp. Then y is equivalent to a diagonal 

1 0 
matrix 

( > 0 I”-’ 
with 1.~ k,. We denote the 

valuation of k, by ord, and consider lord,(l)]. 
This value depends only on P and we denote it 
by deg(P). The Ihara i-function of I is defined 

by 

Z,(u)= n (1 -udeg(p))-‘. 
PtP(r) 

Ihara proved that 

fi(l-rr$)(l -xiu) 
Z,(u) Ei=l 

(I -u)(l -q2u) 
(1 -U)“, 

where q is the number of elements in the re- 
sidue class field of p, and g is the genus of the 
Riemann surface 10\X and H = (g - l)q(q - 1). 
Similar results hold even if I has torsion ele- 
ments and the quotient I\G is only assumed 
to have finite volume. 

Aside from the factor (1 -u)“, this looks like 
Weil’s formula for the congruence c-function 

of an algebraic curve defined over F,,. Ihara 
conjectured that the first factor of Z,(u) is 
always the congruence <-function of some 

algebraic curve over Fq2, and furthermore that 
I could be regarded as the fundamental group 
of a certain Galois covering of this curve 

which describes the decomposition law of 

prime divisors in this covering [12.13,14]. 
He verified the conjecture in the case I = 

PGL,(Z[l/p]) by using the tmoduli of elliptic 
curves. Related results have been obtained by 
Shimura, Ihara, Y. Morita, and others. 

V. [-Functions Associated with 

, Prehomogeneous Vector Spaces 

M. Sato posed a notion of prehomogeneous 
vector spaces and defined [-functions as- 
sociated with them. Sato’s program has been 
carried on by himself and T. Shintani [S2, S3, 
Sl7, SlS]. Let G be a linear algebraic group, V 
a finite-dimensional linear space of dimension 

, n, and p a rational representation mG+GL( V), 
where G, V. and p are defined over Q. The 

triple (G, p, V) is called a prehomogeneous 
vector space if there exists a proper algebraic 

subset S of V, such that V, - S is a single Gc- 
orbit. The algebraic set S is called the set of 
singular points of V. We also assume that G is 
reductive and S is an irreducible hypersurface 
of V. Let V* be the dual vector space of V, 
and p* the dual (contragredient) representa- 
tion of G. Then (G,p*, V*) is again a pre- 
homogeneous vector space, and we denote 
its set of singular points by S*. There are 
homogeneous polynomials P and Q of the 

same degree d on V and V*, respectively, 

such that S={XEX)P(X)=O’, and S*={X*E 
V* 1 Q(x*) =O}. P and Q are relative invariants 

of G, i.e., p(p(g)x) = xW’(x) and C!(p*(dx*) 
=~(g))‘Q(x*)(forgeG,x~V,and x*eV*) 
hold with a rational character x of G. Put 
G’=ker~={g~G\~(g)= 1). Denote by Gi 
the connected component of 1 of t!he Lie 
groupG,.Let Va-S=V,U,..Ur/;, Q-S*= 
Vc U . . U &* be the decompositions of V, -S 

and Vi-S* into their topologically con- 
nected components. Then < and Vi* are Gi- 
orbits. We further assume that VR I1 S decom- 
poses into the union of a finite number of GA- 
orbits. Set F = Gin G$, and take I-invariant 

lattices L and L* in V, and V& respectively. 
Consider the following functions in s: @i(.Ls)= f(x)lWl”dx, s K 
@,T(Js)= f*(x*)IQ(x*)l”dx*, 

s “7 

and 
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where f and f* are trapidly decreasing func- 
tions on V, and Vi, respectively, dx and dx* 

are Haar measures of V, and Vi, respectively. 
and dg is a Haar measure of G. Then the 
ratios 

ziut L, 4 -= tits> L), Wf;s-n/d) 
zy(f*, L*, s) 

-= (i*(,s, L*) 
‘I’tj*(f*,s-n/d) 

are independent of the choice of ,p and f* and 
are Dirichlet series in s. These Dirichlet series 
ti(s, L) and <T(s, L*) are called <-functions 
associated with the prehomogeneous space. 

Considering Fourier transforms of IP(x and 
IQ(x*)l‘, we obtain functional equations for ti 
and (7 under some additional (but mild) con- 
ditions on (G, p, V) as follows. The Dirichlet 

series ti and <f are analytically continuable to 
meromorphic functions on the whole s-plane, 

and they satisfy 

u(L*)tT(n/d -s, L*) 

=y(s--/d)(2n)-d”lho!“exp(ndfls/2) 

with a r-factor y(s) = n$, I-(s - ci + 1). 
Here uu(s) (1 < i, j < I) are polynomials in 
exp( - 7cJ-r s) with degree <d, and h, and ci 
are constants depending only on (G, p, V). 

Epstein’s [-functions and Siegel’s Dirichlet 
series associated with indefinite quadratic 
forms are examples of the above-defined I- 
functions. Shintani defined such [-functions 
related to integral binary cubic forms and 
obtained asymptotic formulas concerning the 

class numbers of irreducible integral binary 
cubic forms with discriminant n, which are 

improvements on the results of Davenport 
[S17]. 

Recently M. Sato studied c-functions of pre- 
homogeneous vector spaces without assuming 
the conditions that G is reductive and S is 

irreducible. In this case, [-functions of several 
complex variables are obtained. For examples 
and classification of prehomogeneous vector 
spaces - [S4]. 
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1. Algebraic Equations (- lo Algebraic Equations) 

(I) Quadratic Equation ax2 + bx + c = 0 (a+01 

The roots are 

x= 
-bzj/b=-&c = -b’kvi=i 

2a a 
(bE2b’). 

The discriminant is b2 - 4ac. 

(II) Cubic Equation ax3 + bx2 + cx + d= 0 (a+O) 

By the translation 5=x + b/3a, the equation is transformed into t3+3pt+ q=O, where 

p = (3ac - b2)/9a2, q = (2b3 - 9abc + 27a2d)/27a3. 

Its discriminant is - 27(q2 + 4~~). The roots of the latter equation are 

[=+i+fi, wz/Y+o=fi, w=&+l&, 

where 

w  = e2ni/3 = -1+tii - qk j/q=+4p3 

2 , ;= 
I 2 

(Cardano’s formula). 

Casus irreducibilis (the case when q2 + 4p3 < 0). Putting a = reie ( /? = ?i), the roots are 

E=2% cos(0/3), 2% cos[(0+2m)/3], 2% cos[(@+4a)/31. 

(III) Quartic Equation (Biquadratic Equation) ax4 + bx3 + cx2 + dx + e = 0 (a+O) 

By the translation [= x + b/4a, the equation is transformed into 

[4+p[2+q[+r=0. 

The cubic resolvent of the latter is t3 -pt2- 4rt + (4pr - q2) = 0. If te is one of the roots of the 
cubic resolvent, the roots 5 of the above equation are the solutions of two quadratic equations 

5=” viz [5-4/m,-p)]+@=O (Ferrari’s formula). 

2. Trigonometry 

(I) Trigonometric Functions (- 432 Trigonometry) 

(1) In Fig. 1, OA= OB= OP= 1, and 

MP=sin8, OM = cost), AT= tan0, 

BL = cot 8, OT=secl3, OL = cosecll. 

(2) sin28 + cos2Q = 1, 

tan0= sin0/cos8, cot@= l/tan0, set 8 = 1 /cos 0, 

cosecO= l/sin8, 1 + tan2 B = sec2 8, 1 +cot28=cosec28. 
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18” 22.5” 30” 36” 45” 
V/10 r/8 n/6 n/5 a/4 

VT-1 V/2-fi ; Gy 1 cosa 

,,,:, V2:\/i fi 

VT 

ti+1 1 
2 2 4 

- sina 
v9 

2?r/5 3n/8 n/3 3?r/lO n/4 J 
72” 67.5” 60” 54” 45” a 

(5) Addition Formulas 

sin(a~/3)=sinacos~~cosasin/3, cos(akP)=cosacosP7sinasin/3, 

tan(a~+)=(tana~tan~)/(l7tanatan/3). 

(6) sinfa=2sinacosa, cos 2a = C0S2a - sin’s = 2 cos2a - 1 = 1 - 2 sin2a, 

tan 20 = 2 tan a/( 1 - tan2a). 

sin3a=3sina-4sin3a, cos3a=4c0s3a-3cosa, 

tan3a ‘(3 tana - tan3a)/(1 -3 tan2a). 

sinna=““~1(2~~1)(-l)isinzi+1~cosn-(zi+1)~, 

WI * 
cosna= 1 i=. 2i ( -1)‘sin2iacos”-2ia. 

0 

(7) sin2(a/2)=(1 -cosa)/2, c0s2(a/2)=(1+cosa)/2, 

tan2(a/2)=(1-cosa)/(l+cosa). 

(8) 2sinacosp=sin(a+P)+sin(a-/3), 2cosasinfi=sin(a+p)-sin(a-p), 

2cosacos~=cos(a+~)+cos(a-pp), -2sinasinp=cos(a+fi)-cos(a-P). 

sina+sinfi=2sin[(a+/3)/2]cos[(a-/3)/2], 

sina-sin~=2cos[(a+P)/2]sin[(a-/?)/2], 

cosa+cos/3=2cos[(a+&/2]cos[(a-P)/2], 

cosa-cos/3= -2sin[(a+j3)/2]sin[(a-/3)/2]. 

(II) Plane Triangles 

As shown in Fig. 2, we denote the interior angles of a triangle ABC by a, p, y; the corresponding 
side lengths by a, b, c; the area by S; the radii of inscribed, circumscribed, and escribed circles 
by r, R, r,, respectively; the perpendicular line from the vertex A to the side BC by AH; the 
midpoint of the side BC by M; bisector of the angle A by AD; and the lengths of AH, AM, AD 
by hA, WI,, fA, respectively. Similar notations are used for B and C. Put s z (a + b + c)/2. The 
symbol . . . means similar formulas by the cyclic permutation of the letters A, B, C, and corre- 
sponding quantities. 

a b c ?cT=2R 
7-- = sinp sma siny 

(law of sines). 

a=bcosy+ccos& . . . (the first law of cosines). 

a2=b2+c2-2bccosa, . . . (the second law of cosines). 

sin2(a/2)=(s-b)(s-c)/bc, . . . . cos2(a/2)=s(s-a)/bc, . . . . 

(b+c)sin(a/2)=acos[(p-u)/2], . . . . (b-c)cos(a/2)=asin[(p-y)/2], . . . 

a+b tan[(a+P)/21 -= 
a-b tant(a-P)/21’ “’ 

(Napier’s rule). 
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= rs=rA(s-a)=* 

= j//s(s-- a)(.~- b)(s- c) (Heron’s formula). 

r=(s- a)tan(a/2)=4Rsin(a/2)sin( P/2)sin(y/2). 

r,=stan(a/2)=(s-b)cot(y/2)=4Rsin(a/2)cos(P/2)cos(y/2). 

llr=(l/h,)+(l/h,)+(llh,). 

rnj =(2b2+2c2-a2)/4=(b2+c2+2bccosa)/4. 

f- =2bccos(a/2)/(b+c)=2j&&j /(b+c). 

fafB&=8abcrs2/(b+c)(c+a)(a+b). 

Fig. 2 

(III) Spherical Triangles 

We denote the interior angles of a spherical triangle by a, /3, y; the corresponding sid’es by a, b, 

c; the area by S; and the radius of the supporting sphere by p. We have 

sina:sinb:sinc=sina:sinp:siny (law of sines). 

cosa=cosbcosc+sinbsinccosa, . . . . costs= -cos/3cosy+sinj?sinycosa, . . . 

(law of cosines). 

sinacosR=cosbsinc-sinbcosccosa, . . . (law of sines and cosines). 

cotasinb=cosbcosy+cotasiny, . . . (law of cotangents). 

tan[(a+ b)/2]/tan[(a- b)/2]= tan[(a+p)/2]/tan[(a-/3)/2], . . . (law of tangents). 

tan[(a + R)/2]tan(y/2)=cos[(a- b)/2]/cos[(a+ b)/2], . . . ; 

tan[(a-/3)/2]tan(y/2)=sin[(a- b)/2]/sin[(a+ b)/2], . . . ; 

tan[(a + b)/2]cot(c/2) = cos[(a - /3)/2]/cos[(a + /3)/2], . . . ; 

tan[(a- b)/2]cot(c/2)=sin[(a-P)/2]/sin[(a+/I)/2], . . . (Napier’s anal,ogies). 

S=(cc+/?+Y-7r)p2=2P2arccos 
cos2(a/2R)+cos2(b/2R)+cos2(c/2R) 

2cos(a/2R)cos(b/2R)cos(c/2R) 
(Heron’s formula). 

For a right triangle (y = 7r/2), we have Napier’s rule of circular parts: taking the subscripts 
module 5 in Fig. 3, 
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For example, we have 

cosc=cosacosb=cotcucot/3, 

cosfl=tanacotc=cosbsina, 

sina=tanbcot/3=sincsina. 

3. Vector Analysis and Coordinate Systems 

We denote a 3-dimensional vector by As(A,,A,,,A,)= A,i+ Ayj+ A,k, 1-41 ={A=. 

(I) Vector Algebra (- 442 Vectors) 

Scalar product A*BrAB~(A,B)=A,B,+A,B,+A,B,=~A(~B~cos8 
(where 0 is the angle between A and B). 

Vector product 

i j k 
AXBf[A,B]=(A,B,-A,B,)i+(A,B,-A,B,)j+(A,B,-A,B,)k= Ax AY AZ . 

Bx By 4 

(A x B( = [A( IBlsinB. 

A*B=B*A. A*A=A2=IAJ2. AxA=O. A*(AxB)=O. (AxB)2=IA)21B)2-(A.B)2. 

Ax(BxC)=(A*C)B-(A*B)C. Ax(BxC)+Bx(CxA)+Cx(AxB)=O. 

(AxB)*(CxD)=A.(Bx(CxD)}=(A*C)(B*D)-(B*C)(A*D). 

Scalar triple product [ABC]=A*(BxC)=B*(CxA 

[BCD]A+[ACD]B+[ABD]C=[ABC]D. [ABC][EFG]= 

A, Ay 4 
=C*(AxB)= B, By B, . 

cx cy cz 

A*E A*F A*G 
B-E B-F B-G . 
C-E C-F C-G 

(II) Differentiation of a Vector Field (- 442 Vectors) 

a a a V=iz +jav +kz (Nabla), 

gradq-VT= k k acp 
Q+ $3 + zk (gradient of cp), 

rotAEVxA=(2-%)i+(%-$)j+(%-$)k (rotationofA), 

divA_DA=!$+~+~ (divergence of A), 

Acp-V2q-divgradq= $ + $ + 3 (Laplacian of cp). 

grad (v#> = 9 grad4 + $ gradv, 

grad (A l B) = (B * grad)A + (A l grad)B + A X rot B + B X rot A, 

rot(cpA)=cprotA-AXgradq, rot(Ax B) = (Be grad)A - (A l grad)B+ AdivB- Bdiv A, 

div(cpA)=cpdivA+A*gradcp, div(AxB)=B.rotA-A*rotB. 

rotgradcp=O, divrotA=O. AA=graddivA-rotrotA. 

A(foc~)=(dfld~)Arp+(d2fld~~)(gradcp)*, A(qn/)=qArC,+#Aq1+2(gradcp*gradJ/). 
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(III) Integration of a Vector Field (- 94 Curvilinear Integrals and Surface Integrals, 
442 Vectors) 

Let D be a 3-dimensional domain, B its boundary, dV the volume element of D, dS the surface 
element of B, and dS=n dS, where n is the outer normal vector of the surface B. We have 

Gauss’s formula 
sss D 

divAdV=jkS.A= jL(n*A)dS, 

o-1 
rotAdV= dSxA= 

D JJ J-1 
(n x A) dS, 

B B 

J./l 
gradcpdV= 

D 1.i 
cpds; 

B 

Green’s formula 

‘%(xo)=- jjL%+ jL( f;-rp;(f))dS, 
where r is the distance from the point x0. 

Let B be a bordered surface with a boundary curve I-, ds the line element of r, dS the surface 
element of B, and ds = tds, dS = n dS, for t the unit tangent vector of r and under the proper 
choice of the positive direction for the surface normal n. We have 

Stokes’s formula JjBdS*rotA= +rA.ds= $2. A)ds, jjBdS xgradcp= $rqds. 

If the domain D is simply connected, and the vector field V tends sufficiently rapidly to 
0 near the boundary of D and at infinity, we have 

Helmholtz’s theorem V=gradcp+rotA, cp= - A= jjjDysdV. 

(IV) Moving Coordinate System 

Denote differentiation with respect to the rest and the moving systems by d/dt, d*/dt, respec- 
tively. Let the relative velocity of the systems be v. Then we have 

dP, d*v 
--J = 7 -v-gradcp, dA d*A -- dt = dt [v*gradA-(A*grad)vl. 

With respect to rotating coordinates we have 

v=wXr. 

$ = $$ + [w+A-((wXr)*grad)A] 

When the domain of integration is also a function of t, 

%JA.ds=j[!$ +grad(v*A)-vXrotA ads, 
I 

-$jjA*dS= jj( $ +rot(AXv)+vdivA 
1 

l dS, 

+(v*gradq)+rpdivv)dV= jjj$dY+jjrpv.dS. 

(V) Curvilinear Coordinates (- 90 Coordinates) 

Let (x1 , . . .,x,J be rectangular coordinates in an n-dimensional Euclidean space. If 

xj=cpi(u*, . ..) 24,) (j= 1, . ..) n), J=det(a~j/&+)#O, 

the system (q, . . . , u,,) may be taken as a coordinate system of an n-dimensional space, and the 
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original space is a Riemannian manifold with the first fundamental form 

* 3% aTi 

gjk= c -- auj auk (j,k= 1, . ..) n), 
i=l 

When the metric is of the diagonal form gjk = g,zli# the coordinate system (u,, . . . , u,,) is called 
an orthogonal curvilinear coordinate system or an isothermal curvilinear coordinate system. In 
such a case we have J = g, . .g,,, and the line element is given by ds* = Z:, , g,?du,F. 

For a scalar f and a vector [= ([i, . . . ,&,), we have 

When n = 2, the rot may be considered a scalar, rot t= (rot&2, and when n = 3, the rot may be 
considered a vector, with components 

The following are examples of orthogonal coordinates. 
(1) Planar Curvilinear Coordinates. In the present Section (1) we put 

x,=x, xz=y, u, = u, u*=v, g, =P> g2=9* 

ds*=p*dx*+ q*dy*, 
- 

.ka(x,y)/a(U,u)=Vlpq. 
Planar orthogonal curvilinear coordinates may be represented in the form x + iy =.F( U + iv), 
F being a complex analytic function, by suitable choice of the functions U = U(u), V= V(v). 
(i) Polar Coordinates (r,e) (Fig. 4). 

x=rcosO, y=rsin0; x+iy=exp(logr+iB). 

r- v 
2 
x +Y 9 B=arctan(y/x). 

p=l, q=r, J=r, ds*=dr’+r*dO*. 

atf 1 af I a7 
Af=a,z+;z+7,eZ. 

Y 

P 

r 
Y 

IA- 0 
0 z z 

Fig. 4 

(ii) Elliptic Coordinates ( ,u, V) (Fig. 5). Among the family of confocal tonics 

x2 ; Y2 
-=1 (a>b), 

a*+p b*+p 

there are two values of p for which the curve passes through a given point P (x,y). Denote the 
two values of p by p and v, where p > - b* > v > - a*. The curve corresponding to p = p or p = v 

is an ellipse or a hyperbola, respectively. Then we have the relations 

~*=((1.+a*)(v+a*)/(a*-b*), y*=(p+b*)(v+b*)/(b*-u*). 

Let the common foci be (+ c,O) (c* = a* - b*). Then we have 

where r,, r2 are the distances from the two foci as in Fig. 5, and 

4(~*+~)=(r,+r~)~, 4(u*+v)=(r,-r,)*. 

p=+jlx> q=Qlx 

(iii) Parabolic Coordinates ((u, p) (Fig. 6). Among the family of parabolas y* = 4p(x + p) with the 
focus at the origin and having the x-axis as the principal axis, there are two values of p for which 
the curve passes through a given point P (xJ). Denote the two values of p by (Y, /3 (a > 0 > p). 
We have x = -(a+/q,y=~. 
(iv) Equilateral (or Rectangular) Hyperbolic Coordinates (u,v) (Fig. 7). This is a system that 
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replaces x/2, y/2 in (iii) by - y and x, respectively, with & = u, fl= v. The relations are 

x=uv, y=(uZ-v2)/2; x+iy=i(u-iv)‘/2, u2, v’=Jw&y, p=q=fl+v2. 

The curves x = constant or y = constant are equilateral hyperbolas. 
(v) Bipolar Coordinates (5, n) (Fig. 8). These coordinates represent a point P (x,y) on a plane as 
the intersection of the family of circles passing through two fixed points (+ a,O) and t.he family 

of loci on which the ratio of distances from the same two fixed points (k a,O) is constant. The 
latter is the set of Apollonius’ circles. The relations are 

a sinht 
x= cosh[+cosn ’ Y= 

a sinq 

cosh[+cosn (-co<~<co,O~Tj<2a). 

a 
p=q= cosh[+cosq ’ 

(2) Curvilinear Coordinates in 3-Dimensional Space. In the present Section (2), we put x1 =x, 
x*=y, x3=2. 
(i) Circular Cylindrical Coordinates (Cylindrical Coordinates) (p,cp,z) (Fig. 9). 

x=pcosq, y=psinq, z=z. 

ds2=dp2+p2dq2+dz2, J=p. 

(ii) Polar Coordinates (Spherical Coordinates) (Fig. 9). 

x=rsinBcosq, y=rsinesincp, t=rcose. 

r= j/x=+y2+z2 ) 91=arctan(y/x), e=arctan(Vm /z), 

Fig. 5 

Fig. 7 

Jx 
Fig. 9 

Fig. 6 

Fig. 8 

Fig. 10 
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The angles 9, and 19 are called azimuth and zenith angle, respectively. We further have 

ds2=dr2+r2dt12+r2sin20dty2, J= r2sin0. 

(iii) Euler’s Angles (Fig. IO). Let (x,y,z) and ([,n,[) be two linear orthogonal coordinate systems 
with common origin 0. Denote the angle between the z-axis and the l-axis by 0; the angle 
between the zx-plane and the z[-plane by cp; and the angle between the q-axis and the intersec- 
tion OK of the xy-plane and the &-plane (or the angle between the &axis and the intersection 
OL of the z[-plane and the [n-plane) by #. The angles 13, cp, and + are called Euler’s angles. The 
direction cosines of one coordinate axis with respect to the other coordinate system are as 
follows: 

x Y Z 

5 coscpcos0cosJ,-sinp,sinrC, sincpcos0cos#+coscpsin# -sintIcos+ 
P -coscpcosfIsin#-sincpcosq -sincpcos0sinrl,+coscpcoslC, sin 0 sin I/I 
5 cos cp sin tr sincpsin0 cos e 

(iv) Rotational (or Revolutional) Coordinates (u, o, p). Let (u, u) be curvilinear coordinates (Sec- 
tion (1)) on the zp-plane. The rotational coordinates (u, u,p) are given by the combination of 
x = p coscp, y = p sincp with the coordinates on the zp-plane. We have 

ds2=p2du2+q2du2+p2d~2, 

where p, q are the corresponding values for the coordinates (u,u). 
(v) Generalized Cylindrical Coordinates (u,u,z). These are a combination of curvilinear coordi- 
nates (u,u) on the xy-plane with z. We have 

ds2=p2du2+q2du2+dz2. 

For various selections of (u,u) we have coordinates as follows: 

(U>U) 
Rotational 

Coordinate System 

Generalized 
Cylindrical 

Coordinate Svstem 

Linear rectangular 
coordinates 

Circular cylindrical 
coordinates 

Linear rectangular 
coordinates 

Polar coordinates 
((l)(i)) 

Elliptic coordinates 
((WN 

Spherical coordinates 

Spheroidal coordinates(‘) 

Circular cylindrical 
coordinates 

Elliptic cylindrical 
coordinates 

Parabolic coordinates Rotational parabolic Parabolic cylindrical 

(( l)W) coordinatesc2) coordinates 

Equilateral hyperbolic Rotational hyperbolic Hyperbolic cylindrical 
coordinates (( l)(iv)) coordinates coordinates 

Bipolar coordinates Toroidal coordinates(3) Bipolar cylindrical 

((l)(v)) Bipolar coordinatesQ coordinates 

Notes 
(1) When the p-axis is a minor or major axis, we have prolate or oblate spheroidal coordi- 

nates, respectively. 
(2) We take the z-axis as the common principal axis of the parabolas. 
(3) Where the line passing through two fixed points is the p-axis. 
(4) Where the line passing through two fixed points is the z-axis. 

(vi) Ellipsoidal Coordinates (h, p, V) (Fig. 11). Among the family of confocal quadrics 

-1 (a>b>c>O), 
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there are three values of p for which the surface passes through a given point P(x,y,z). Denote 
the three values of p by X, p, v, where X > - c2 > p > - b2 > v > - a*. The surfaces corresponding 
to p = X, p = p, and p = v are an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two 
sheets, respectively. We have 

* h(a) 

g3= j/(v--hp- 1,’ 
2P( I 

\” P, 
-; 
V) 

p(t)-j/(t+a2)(t+b2)(t+c2) . 

Fig. 11 

4. Differential Geometry 

(I) Classical Differential Geometry (- 111 Differential Geometry of Curves and Surfaces) 

(1) Plane Curves (Fig. 12). At a point P(x,,ye) on a curvey =f(x), the equation of the: tangent 
line is y -~c=f’(xe)(x - x0), 

and the tangential shadow TM=yo/yb. The equation of the normal line isy(x,-,)(y -ye)+(x- 
x0) = 0, 

PN=ly,q/+yb2 1, 

and the normal shadow MN =y,&. The slope of the tangent is tana =f’(xe) =J$,. The curvature 
at P is 

K= l/pQ=f”(X,,)/[ 1 +y(X,$]3’2 

The coordinates of the center of curvature Q are 

(xcf’M[ 1 +f’(xo)2]lS”hJ. f(xo)+ 11 +I’hJ21/f”(xo)). 

Fig. 12 

(2) Space Curves xi = xi(t) (i = 1,2,3), or x = x(t). The line element of a curve x=x(t) is 

dx,)2+(dx2)2+(dx3)2 = 

The curvature is 

For t = s (arc length), the curvature is K = and the torsion is r = [det (x;, xl, 

~:‘?,-~,2,d/~*, where ‘= d/ds. When we denote Frenet’s frame by (&q,{), we have 5=x’, 
9 ‘Q/K, {=[x g (vector product). 
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The Frenet-Serret formulas are 

f=q, lJ’= -K(+$, l’= -79. 

(3) Surface in 3-Dimensional Space X, = x,(u,, UJ (a = 1,2,3). The first fundamental form of the 
surface is 

3 ax ax 
gjk= c “> (j,k=1,2). g=det(gjk)>O. 

IX=1 
auj auk 

Let (gj”) be the inverse matrix of ( qk). The tangent plane at the point x(z) is given by 

det ( x, - xp), (axm/auJo), (ax,/au2)(0)) =o. 

The normal line at the point xi’) is given by x, - x(O)= tv:‘), where t is a parameter, and V~ is the LI 
unit normal vector, given by 

The second fundamental form is 

3 

hjk Z 2 Va $f& = - 
3 aV, ax, 

c 
a=1 LX=1 

au,au,. h=det(hjk). 

The principal radii of curvature R,, R, are the roots of the quadratic equation 

-- 112 jk lx g”hjk; + t =o. 

The mean curvature (or Germain’s curvature) is 

and H = 0 is the condition for the given surface to be a minimal surface. The Gaussian curvature 

(or total curvature) is 

K-L=& 
R,R, g’ 

and K=O is the condition for the surface to be developable. 
We use the notations of Riemannian geometry, with gik the fundamental tensor: 

s = i ( >] 2 + hjkva (Gauss’s formula). 

0-l 

Rijk, = hj,hjk - hjkhil (Gauss’s equation). hjk;, = hjl; k (Codazzi-Mainardi equation). 

av, c ax, -=- 
auj hjkg “q (Weingarten’s formula). 

k,l 

The third fundamental form is given by 

3 av av 
Gk=z e<= 2 gS’hl,hkr=2Hhjk-KGk. det(Gk)=K2g=Kh. 

a=1 J k s,, 

(4) Geodesic Curvature. Let C : ui = u,(s) be a curve on a surface S and p be the curvature 
of C at a point P. Let B be the angle between the osculating plane of C and the plane tangent 
to S. The geodesic curvature ps of C at P is given by 

p,=pcosB=~ det 
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4 = 0 is the condition for C to be a geodesic. Let D be a simply connected domain on the 

surface S, whose boundary r consists of n smooth curves. Let 0, be the outer angle at the 
intersection of two consecutive curves ((Y = 1, . . . , n).Then we have the Gauss-Bonnet formula: 

KdS=2n- i 0,. 
a=1 

(II) Riemannian Geometry, Tensor Calculus (- 417 Tensor Calculus) 

In the present section, we use Einstein’s convention (omission of the summation symbol). 

(1) Numerical Tensor. 

Kronecker’s 8 ajkr SJk, 8:= 
1 (j=k) 

0 (j#k). 

0 ({j,Il+{k,l)l 
SL;::t =det(6$) 

p,Y=l,...,p 
+l ({jP}={kVJ and( ;)’ J is an even permutation of (k,)), 

- 1 ({ j,} = {k,}) and (j,,) is an odd permutation of (k,). 

Eddington’s E ~j,,,,~, = S.‘...V 
J,...J,,’ 

cjl...jn=S{;::?. 

i$:l:::jpip+l..dn =(n-P)!gjl...& 

’ kpJp+-l...jn 
k,...kp’ 

det (a,“) p,“‘I, . ...” 
=,j~...&!~? J, ,,...ai=Ej ,,,, jna{laQ...a:. 

(2) Fundamental Objects in Riemannian Geometry. Let gik be the fundamental tensor, and ( gJk) 

be the inverse matrix of (&). We put g-det( gk). 
The Christoffel symbol is 

which has the transformation rule 

under a coordinate transformation. 
A geometrical object Tj, with a similar transformation rule is called the coefficient of the 

affine connection. The torsion tensor is 

Sjk s rj, - rg. 

The equation of a geodesic is 

The covariant derivative of a tensor of weight W with respect to a coefficient of affine connec- 
tion T’jk is given by 

For the Christoffel symbol, we denote the covariant derivative by ; 1. Then we have the following 
formulas: 

gjk;$=O, gjk,,=O, s/;,=o, JggEjl,..j”;l=o, (l/&‘-+0. 

For a scalar f gradf = (&I> 
for a covariant vector vi rot v=(v~;~-v~;~)= (avjjaxk-avk/axj), 

and for a contravariant vector vj divvcvj. .=/i a(‘hvi 
2' & ad . 

Beltrami’s differential operator of the first kind is 

A,fSgjkf.. f. 
.I ,k’ 
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Beltrami’s differential operator of the second kind is 

1 a(~% gwf/w) 
A2 j=divgradj= ~ 

6 axj 
For a domain D with sufficiently smooth boundary l?, we denote the directional derivative 

along the inner normal by a/ an, the volume element by dk’, and the surface element on I by dS. 
Then we have Green’s formulas, 

We denote the curvature tensor with respect to the coefficients of a general affine connection 

l$ by K$, and by Rj’, when I’$ = We have the following formulas: 

a'&, ~ - ~ _ - 
axax k I 

Bianchi’s first identity R;;, + Rkcj i- R,j, = 0, 

- (Bji, + Bj$ + B;.k ) = 2( ,$i,, + S;,,j +s~,,)+4(s$$,4+s~~s;+s~s,“,); 

Bianchi’s second identity Riik[;,+Rj;,;k+R~~k;,=o, 

Bj$, + Bjmlk + B& = - 2(BjmS,4+ BjikaS&+ B;&,); 

Ricci’s tensor Rjk E - R& = Rkj; 

scalar curvature R G gjkRjk ; 

Ricci’s formula TJ I .jp - Tjl .lp 

k,...k,lslr k, . ..k.lrls 

where S and B are the torsion and curvature tensors given above, respectively, and W is the 
weight of the tensor T. 

(3) Special Riemannian Spaces (- 364 Riemannian Manifolds). In the present Section (3) n 
means the dimension of the space. 

(i) Space of Constant Curvature Rj,, = p(gj,& -gj,6(); p = R/n@ - l), 
(ii) Einstein Space Rjk = pgj,, p = R/n, for n > 3, where R is a constant. 

(iii) Locally Symmetric Riemannian Space R&!,,,, = 0. 
(iv) Projectively Flat Space. Weyl’s projective curvature tensor is defined by 

The condition for the space to be projectively flat is given by B$ = 0, Rjkfl = Rjlfk. 
If n 2 3, the latter condition follows from the former condition, and the space reduces to a 

space of constant curvature. If n = 2, the former condition W = 0 always holds. 

(v) Concircularly Flat Space Zj,, = Rj,, + 

space of constant curvature. 

&(gjl 8; - gj,Sh) = 0. This space reduces to a 

(vi) Conformally Flat Space. Weyl’s conformal curvature tensor is defined by 

~~~,_R;,,+i(Rj~a:-Rj~~~+gj~R~-gj~R~)- 
R(gjk6,‘-gj,$) 

(n-l)(n-2) ’ 

Rjk Rgjk 
“, -(n-2)+2(n-l)(n-2). 

The condition for the space to be conformally flat is given by Cikl = 0, D,,,, = Z$,. 

If n > 4, the latter condition follows from the former condition, and if n = 3, the former condi- 
tion C = 0 always holds. 
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5. Lie Algebras, Symmetric Riemannian Spaces, and 
Singularities 

(I) The Classification of Complex Simple Lie Algebras and Compact Real Simple Lie Algebras 
(- 248 Lie Algebras) 

(1) Lie Algebra. The unitary restriction of a noncommutative finite-dimensional comple:lc simple 
Lie algebra g is a compact real simple Lie algebra gu, and g is given by the complexification 9.’ 
of g”. There exists a bijective correspondence between the classifications of these two kinds of 
Lie algebras. Using Dynkin diagrams, the classification is done as in Fig. 14 (- 248 Lie Algebras). 
The system of fundamental roots (cI~, . . , o+} of a simple Lie algebra g is in one-to-one corre- 
spondence with the vertices of a Dynkin diagram shown by simple circles in Fig. 14. The number 
of simple circles coincides with the rank 1 of g. The double circle in Fig. 14 means -1 times the 
highest root 8. Sometimes we mean by the term “Dynkin diagram” the diagram without the 
double circle and the lines issuing from it. Here we call the diagram with double circle representing 
- 8 the extended Dynkin diagram. Corresponding to the value of the inner product with respect 
to the Killing form - 2(ai, o~~)/(oL~, 01~) (i #j) (which must be 0, 1, 2, or 3), we connect two vertices 
representing a, and aj as in Fig. 13. When the value is 0, we do not connect cci and aj. In .Fig. 13, 
the left circle corresponds to tli and the right circle to ozj. 

Fig. 13 

$) & 
1 1 1 1 1 1 1 

c/ 2 2 2 2 2 1 
(123) -y " O------ 

1 1 2 3 2 
& 

--I- 2 

-"B 

2345642 
ER 0 = = = = 

-9 

Fig. 14 We have relations B, = C, = A,, C, =B,, and D, =A,. (D2 =Al + A,, which is not simple.) In this ligure, 
the number at each vertex means the coefficient mi in 0 =x miai. 

From Fig. 14, we have the following information. 
(i) The quotient group of the automorphism group A(g) of g with respect to the inner automor- 
phism group I(g) is isomorphic to the automorphism group of the corresponding Dynkin dia- 
gram. The order of the latter group is 2 for A, (I > 2) since the diagram is symmetric. It is also 
2 for D, (I > 5) and for E6, and it is 6 (= 3!) for D,. For all other cases, the order is 1. 
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(ii) The order of the center of the simply connected Lie group associated with g is equal to the 
index of the subgroup consisting of elements stabilizing - 0 in the group of automorphisms of 
the extended Dynkin diagram of g (S. Murakami). This index is equal to the order of the 
fundamental group of the adjoint group of g and the number of connected Lie groups, whose 
Lie algebra is 8. 
(iii) Any parabolic Lie subalgebra of g is isomorphic to a subalgebra generated by the root vector 
X, (and elements of the Cartan subalgebra) such that (Y = Eniai, where {a,, . . . ,a,) is a system 
of fundamental roots, ni > 0 (i = 1, . . . , I) or n, < 0 (i = 1 , . . . , I), and nj = 0 for aj belonging to a 
fixed subset S of ( aI, . . .,a,}. 

Hence, isomorphism classes of parabolic Lie subalgebras are in one-to-one correspondence 
with the set of subsets S of {a,, . . . . a/}. 
(iv) Maximal Lie subalgebra f of g with the same rank I as a. The Lie subalgebra f is classified 
by the following rule. First we remove a vertex ai from the Dynkin diagram. If the number mi 
attached to the vertex is 1, f is given by the product of the simple Lie algebra corresponding to 
the Dynkin diagram after removing the vertex a, and a one-dimensional Lie subalgebra. If mi > 1, 
f is given by the diagram after removing a, from the extended Dynkin diagram. 

(2) Lie Groups. The classical complex simple Lie groups of rank n represented by A, B, C, D (in 
Cartan’s symbolism) are the complex special linear group SL(n + 1, C), the complex special 
orthogonal group SO(2n + 1, C), the complex symplectic group Sp(n, C), and the complex special 
orthogonal group S0(2n, C), respectively. The classical compact simple Lie groups of rank n 
represented by A, B, C, D are the special unitary group SU(n+ l), the special orthogonal group 
SO(2n + l), the unitary-symplectic group Sp(n), and the special orthogonal group S0(2n), respec- 
tively (- 60 Classical Groups). 

Cartan’s 
Symbol 

All 
B, 

C” 

D, 
G2 

F‘l 
E6 

E7 

E8 

Complex 
Form 

SL(n + 1,C) 
SO(2n+ l,C) 

SP(% C) 
S0(2n,C) 

Aut 0’ 
Autz 

Compact 
Form 

SU(n + 1) 
SO(2n + 1) 

Sp(n) 
SO(2n) 
Aut 0 
Autz 

Dimension 

(n+l)*-1 
2n2+n 

2n2+n 

2n2-n 

14 
52 
78 
133 
248 

Rank 

n 

n 

n 

; 
4 
6 
7 
8 

Here Q is the Cayley algebra over R, &’ is the complexification of B, $ is the Jordan algebra 
of Hermitian matrices of order 3 over &, y is the complexification of 3, and AutA is the 
automorphism group of A. 

(II) Classification of Noncompact Real Simple Lie Algebras 

Classical Cases 

Cartan’s Symbol Noncompact Real Maximal Compact 
Simple Lie Algebra g Lie Algebra of g 

AI Il(p+l;R) MP + 1) 
AI1 bI(n; H) %O) 
AI11 WP,% C) WP) + Wq) 
BI Wp,q; R) B0(p)+So(q) (p+q=2m+l) 

BII lo(l,n- l;R) r;o(n-1) (n=2m+l) 
CI 3.4~; R) U(P) 
CII u(p,q; H) f%(P) + @J(q) 
Dl Wp,q; R> wP)+Mq) (p+q=Zm) 
DII Bo(l,n- l;R) $o(n-1) (n=2m) 

DIII $4~; H) U(2P) 
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Here the field F is the real field R, the complex field C, or the quaternion field H (R c C c H). 
H is an algebra over R. For a quaternion x=xo+xli+x2j+xjk(~o,x,,~2,~3ER), we put 

2=x0--x,i-x,j-x,k, 
x*=x,,+x,i-x,j+xjk. 

Then al (n; F) = {set of all square matrices over F of order n), 

5o(p,q;F)={AEal(p+q;F)('A*Z,,,+Z,,,A=O}, 

where IJ,~ is the symmetric transformation of the Euclidean space RJ’+q with respect to RP, i.e., 

Al11 
we..- 

El11 09 

EN --I-- 

FII - 

Fig. 15 
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ZP,q is the diagonal sum of the unit matrix ZP of order p and - 19. We have 

ijo(n;F)=50(n,O;F), 

u(p,q;F)= {A W(p+q;~)( ‘x&q+$,qA =o}, 

u(n;F)=u(n,O;F), 

~~(n;F)={AEg1(2n;F)pz+.L4=0}, 

where J is the matrix of an alternating form ZZy= ,(xi yi+n - xi+,, yi) of order 2n. 
A noncompact real simple Lie algebra g is classified by the relation of the complex 

conjugation operator u with respect to the complexification gc of g. The results are given by 
Satake’s diagram (Fig. 15). 

In the diagram, the fundamental root corresponding to a black circle is multiplied by - 1 
under u for a suitable choice of Cartan subalgebra, and the arc with an arrow means that two 
elements corresponding to both ends of the arc are mutually transformed by a specia! transfor- 
mation p such that u =pw (w E W). 

(III) Classification of Irreducible Symmetric Riemannian Spaces (- 412 Symmetric Riemannian 
Spaces and Real Forms) 

A simply connected irreducible symmetric Riemannian space M = G/K is either a space in the 
following table or a simply connected compact simple Lie group mentioned in (I). The noncom- 
pact forms uniquely corresponding to the compact symmetric Riemannian space are in one-to- 
one correspondence with the noncompact real simple Lie algebras mentioned in (II). 

Cartan’s 
Symbol 

AI 
AI1 
AI11 
BDI 
BDII 
DIII 
CI 
CII 
EI 
EII 
EIII 
EIV 
EV 
EVI 
EVII 
EVIII 
EIX 
FI 
FII 
G 

Notes 

G/K=M Dimension Rank 

SU(n)/SO(n> (n>2) 

W2n)I5m) (n > 1) 
U(p+q)/U(p)xU(q) (P>421) 

So(P+q)lSo(P)xSo(q) (p>q>2,p+q+4) 
SO(n+l)/SO(n) (n>2) 

SO(21)/ U(1) (1 > 4) 
Sp(n)l U(n) (n > 3) 

SP(P + 4)/SP(P)X Sp(q) (P 2 4 2 1) 
Ed SP (4) 

E,/SU(2).SU(6) 
E,/Spin(lO).S0(2) 

ES/F4 
&/SU@) 

E,/Spin(l2).SU(2) 
-%I-%. SW) 
EJSpin(l6) 

E,IE,.SU(2) 
FdSP(3). SU(2) 

F41WnP) 
&P(4) 

(n- l)(n+2)/2 
(n - 1)(2n + 1) 

2Pq 
P4 

l(ln_ 1) 
n(n+ 1) 

4Pq 
42 
40 
32 
26 
70 
64 
54 
128 
112 
28 
16 
8 

n-l 
n-1 

4 
4 

hl 
n 

: 
4 
2 
2 
7 
4 
3 
8 
4 
4 
1 
2 

The group G = U(p + q) in AI11 is not effective, unless it is replaced by SU(p + q). To be 
precise, K = Sp(4) in El should be replaced by its quotient group factored by a subgroup of order 
2 of its center. K in EII is not a direct product of simple groups; the order of its fundamental 
group zi(K) is 2. To be precise, K in EV or EVIII should be replaced by its quotient group 
factored by a subgroup of order 2 of its center. The K’s in EII, EIII, EVI, EVIL EIX, and FI are 
not direct products. The fundamental group rt i (K) of K is the infinite cyclic group Z for EIII, 
EVII; for all other cases, the order of n,(K) is 2. 

In EIII, EVII, the groups E,, E, are adjoint groups of compact simple Lie algebras. In other 
cases, E6 and E, (Es, F4 and Gz also) are simply connected Lie groups. 

The compact symmetric Riemannian space M is a complex Grassmann manifold for AIII, 
a real Grassmann manifold for BDI, a sphere for BDII, a quaternion Grassmann manifold for 
CII, and a Cayley projective plane for FII. 
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(IV) Isomorphic Relations among Classical Lie Algebras 

The isomorphic relations among the classical Lie algebras over R or C are all given in the 
following table. In the table, we denote, for example, the real form of type AI of the complex Lie 
algebra with rank 3 by As1 in Cartan’s symbolism. When there are nonisomorphic real forms of 
the same type and same rank (e.g., in the case of DJ) we distinguish them by the rank of the 
corresponding symmetric Riemannian space and denote them by, e.g., DJ,, where p is the index 
of total isotropy of the sesquilinear form which is invariant under the corresponding Lie algebra. 

Cartan’s Symbol 

A,=B,=C, 
Bz=G 

A,=Ds 
A,I=A,III=B,I=C,I 

B212 = C21 
B21, = C,II 
A,1 = D,I, 
As11 = DsI, 

A,III, = DJ2 
A,III, = DsIII 
D.J, = D,III 

D2=AixAl* 
D,I,=A,IxA,I 

D,III=A, xA,I* 
D21, =A,* 

Isomorphisms among Classical Lie Algebras 

~i1(2,C)-cso(3,C)--sP(l,C); h(2)--o(3)-~(1) 

80 (5, C) = sp (2, C); 50 (5) = bP (2) 
sI(4, C) = go (6, C); Bu (4) = 50 (6) 

51(2,R)-su(l,l;C)-80(2,1;R)-@(l;R) 
r;o(3,2;R)=so(2,R) 

50(4,1;R)-u(l,l;H) 
sl(4,R)--0(3,3;R) 
%(2,H)-Go(5,l;R) 

%(2,2;C)=50(4,2;R) 
~w(3,1;C)-~o(3;H) 
1;o(6,2;R)--lo(4,H) 

lo (4, C) = OI(2, C) x 51(2, C); 50 (4) = ial (2) x al (2) 
~0(2,2;R)-81(2,R)xs1(2;R) 

i?o(2;H)-~u(2)x~1(2;R) 
so(3,l;R)s51(2,C) 

Note 
(*) In these 3 cases, there are isomorphisms given by the replacement of Sl(2., C) 

or mu by isomorphic Lie algebras of type B, or type C, due to the isomorphism 
A,=Bi=Ci. 

(V) Lists of Normal Forms of Singularities with Modulus Number m = 0, 1, and 2 (- 4!18 Theory 
of Singularities) 

Letters A , . . . , Z stand here for stable equivalence classes of function germs (or families o’f function 
germs). 

(1) Simple Singularities (m = 0). There are 2 infinite series A, D, and 3 “exceptional” singularities E,, 

4, Es: 

Notation Normal form 

A, x”+l+y2+z2 
D” x”-‘+xy2+z2 
45 x4+y3+z2 
E, x3y+y3+z2 
47 x5+y3+z2 

Restrictions 

n>l 
n>4 

(2) Unimodular Singularities (m = 1). There are 3 families of parabolic singularities, one iseries of 
hyperbolic singularities (with 3 subscripts), and 14 families of exceptional singularities. 

The parabolic singularities 
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The hyperbolic singularities 

Notation 1 Normal form 1 Restrictions 

1 1 1 
T P4’ xp+y*+z’+axyz a#O,p+q+;<l 

The 14 exceptional families 

Gabrielov Dolgach8v 

Normal form numbers numbers Notation Normal form 

~~ 

x3+y’+z2+axy5 237 237 43 I x4+xy4+r2+ay6 

x3+xy5+r2+ay8 238 245 Q 10 x3+y4+yz2+nxy3 

x”+y8+z2+axy6 239 334 Q11 X3+y2Z+XZ3+aZ= 

x3y+ys+z2+axy4 245 238 QL2 x3+y’+yz2+czxy4 
x3y+xy4+z2+ax*y3 246 246 s,, X4+y*r+Xz’+aX3Z 

X”y+y6+r2+(IXy5 241 335 s,, x”y+y2r+xz3+ar” 

x4+y5+z2+(Ix2y3 255 255 4, x3+y3+r4+axyr’ 

(3) Bimodular Singularities (m = 2). There are 8 infinite series and 14 exceptional families. In all the 
formulas, a = a0 + al y. 

The 8 infinite series of bimodular singularities 

Notation Normal form 

J 3,O 

J 3.P 

z 1.0 

Z 1.P 

W 1.0 

W 

+:,-1 

K% 

:::; 
s 1.0 

S 

s?:q-l 

sl?, 

u 

eq-1 

u 1.a 

x3+bx2y3+yg+z2+cxy7 
x3+x~yJ+z~+uyg+p 

y(x3+dx*y2+cxy5+y6)+z2 
y(X3+2y*+uy6+p)+zZ 

x4+ux*y3+y6+z2 
x4+x2y3+uy6+p+z2 
(x2 + yJ)Z + uxy4+q + z2 
(x2 + yy + ux2y3+q + z2 
x3+yz2+ux2y2+xy4 

x3+yz2+x~y~+uz6+p 
x2z+yz2+y5+uzy3 
XZz+yz2+XZy*+uy5+p 
xZz+yz~+Zy3+uxy~+q 
x2z+yz2+zy3+ux2y2+q 
x3+xz2+xy3+uy3z 
X3+xZ2+xy3+uy’+qz2 

x3+xz2+Xy3+uyJ+qz 

The 14 exceptional families 

Restriction 

4b3+27#0 

p>o, a,#0 
4d3+27#0 

p>o, a,#0 
a;#4 
p>o, a,#0 
q>o, a,#0 
q>o, U,#O 
a;#4 
p>o, a,#0 
a;#4 
p>o, a,#0 
q>o, a,#0 
q>o, a,#0 
a,(a~+l)#O 
q>o, a,#0 
q>o, a,#0 

Notation 

E 18 
E 19 

E 20 

Z 17 

Z 18 

Z 

4: 

x3+yi1+z2+uxy8 
x3y+y8+z2+uxy6 

) Normal form 

x4+y7+z2+ux*y4 
x3+yz*+y7+z2+uxy5 

x3+yz2+xy5+z2+uy8 
x3+yz*+y8+z2+uxy6 

x*z + yz2 + xy4 + z2 + uy6 
x2z+yz2+y6+Z*+uzy4 
x3+xz2+y5+z2+ux2y2 

Milnor number 

16 
16+p 
15 
15+p 
15 
15+p 
15+2q-1 
15+2q 
14 
14+p 
14 
14+p 
14+2q-1 
14+2q 
14 
14+2q- 1 
14+2q 
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Adjacency relations between simple and simply elliptic singularities 

Adjacency relations among unimodular singularities 

References 

[l] V. I. Arnol’d, Singularity theory, Lecture note ser. 53, London Math. Sot., 1981. 
[Z] E. Breiskorn, Die Hierarchic der 1-modularen Singularitaten, Manuscripta Math., 27 (1979), 
183-219. 

[3] K. Saito, Einfach elliptische Singularitlten, Inventiones Math., 23 (1974), 289-325. 

6. Topology 

(I) h-Cobordism Groups of Homotopy Spheres and Groups of Differentiable Structures on 
Combinatorial Spheres 

(1) The Structure of the h-Cobordism Group 19, of n-Dimensional Homotopy Spheres. In the 

following table, values of 0, have the following meanings: 0 means that the group consists only 
of the identity element, an integer.1 means that the group is isomorphic to the cyclic group of 

order I, 2’ means that the group is the direct sum of I groups of order 2, + means the <direct sum, 
and ? means that the structure of the group is unknown. 

n 12345678 9 10 11 12 13 14 15 16 17 18 

23 or 2” or 

O,,- 0 0 ? 0 0 0 28 2 4+2 6 992 0 3 2 8128+2 2 4+22 8+2 

(2) The Group I, of Differentiable Structures on the n-Dimensional Combinatorial Sphere. 

r,-0, (n#3), r,=o. 

(II) Adem’s Formula Concerning Steenrod Operators Sq and B (- 64 Cohomology Operations) 

For the cohomology operators Sq and 8, we have 

Sq”+b-‘Sqc (a<2b). 
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Y”Bb= c (-l).+c 
(b-c)(p-1)-l 

P+b-cP (a<pb), 
t=O a-pc 

Y&Yb= X(-l) ;t a+((-;!;; l)>&pa+b-cg,c 

(a<pb). 

Several simple cases of the formula above are as follows. 

Sq’Sq2” = sqZ”+‘, Sq’ sq2”+’ = 0, 

sqzsq4”=sq4”+2 +sqb”+‘sq’, sqZsq4”+‘=Sq4”+2Sq’, 

SqZsq4”+2=Sq4”+3Sql, Sq2~q4”+3=~q4n+S+~q4n+4~qI, 

Sq4Sq8”=Sq~“+4+Sqs”+3Sq1+Sq~“+2SqZ, sq4sq*“+’ = sq*“+4sq’ + sq*“+3sq2, 

sq4sq 8nC2 = s 8n+4sq2 
9 1 sq4sq 

8n+3=sq8n+5sq2, 

sq4sq 
8”+4=~~8n+7~~1+~~8n+6~~2, 

sq4sq 
8n+5=~~8n+9+~~8n+8~~1+~~8”+7~~2, 

sq4sq 
En+6 = sq8n+10 + sq8n+8sq2, sq4sq8”+7 = sq8n+l 1 + sq8n+9sq2, 

8’8” =(n + l)P”+l, 

~‘6~“=?2~68”+‘+B”+‘6. 

(III) Cohomology Ring H*( r, n ; Z,) of Eilenberg-Mac Lane Complex (- 70 Complexes) 

Z means the set of integers, and ZP = Z/pZ, where p is a prime number. 
(1) The case p = 2, r = Z or Z,I (f > 1). The degree of a finite sequence I = (i,, i,- ,, . . , il) of 

positive integers is defined by d(1) = i, + i, + . + i,. If such a sequence satisfies ik+, > 2ik (k = 
1 , . . . , r - l), it is called admissible, and we define its excess by 

e(l)=(i,-2i,-,)+ .,. +(i,-2r,)+i,=2i,-d(Z). 

Further, we put Sqr = SqirSqir-l . Sq’l. Then we have H*(Z,f, n; Z,) = Z,[Sq’u, ( 1 is admissible, 

e(I)<n], H*(Z,n;Z,)=Z,[Sq’u,)I is admissible, e(l)<n, i, > 11. 
Here, u,~H”(n, n; Z,) is the fundamental cohomology class. I = @ (empty) is also admissible, 

and for this case we put n(I) = e(1) = 0, Sq’ = 1. Due to the Kenneth theorem, we have 

H*(a+n’,n;Z,)=H*(~,n;Z,)~~*(~‘,n;Z,) 

if n is finitely generated. In particular, we have 

H*(Z,,2; Z,) =z*[ u~,sq1u~,.sq2sq’u2, . .,sq2xq2’-1 . . .Sq’u, ,... 1, 

H*(Z~,3;Z2)=z2[U~,Sq~~q~‘--...Sq’U~,Sq~~’+’~~’Sq~~‘+‘~~‘-’... 

% 2’+ ‘sq*‘- ’ . ..Sq’u.lr>O, s>O]. 

(2) The case p # 2, Q = Z or Zp/ (f > 1). We define the degree of a finite sequence I = (i,, i,- ,, 
. . , i,, io) of nonnegative integers by d(Z) = i, + . . . + i, + i,. The sequence I is called admissible 
if it satisfies the following conditions: 

ik = 2Ak (p - 1) + .ek (A, is a nonnegative integer, Ed = 0 or 1 (0 < k $ r)), and 

i,=Oor 1, i,>2p-2, ik+l>pik (l<k<r-1). 

We define its excess by e(I)=pi, -(p - 1)d (I). Further, we put 9’ = 6E*??x+. .6’1~?“16’“, and 
assume that u, E H”(vr,n; Z) is the fundamental cohomology class. Then we have 

H*(Z,,,n; Z,)=Z,[@u,( I is admissible, e(I)<n(p- l), n+d(Z) is even] 

@ ~z,(9”u, ( I is admissible, e(1) < n(p - l), n + d(I) is odd). 

H*(Z,n; Z) is given by the above formula when the admissible sequence is I with i,=O. 
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(IV) Cohomology Ring of Compact Connected Lie Groups (- 427 Topology of Lie Groups and 

Homogeneous Spaces) 

(1) General Remarks. Let G be a compact connected Lie group with rank 1 and dimer,sion n. 

We have H*(G; R) z r\a(x,, . . ,x,), where AK(x,, . . . , x,) means the exterior algebra over K of a 

linear space I/= Kx, + . . + Kx, with the basis {x,, . . . , x,} over K. We define a new degree in 

A&, . ..t x,) by putting degxi = mi (mi is odd) (1 < i < I), where m, + . . . + m, = n. The z means 

isomorphism as graded rings. 
(2) Classical Compact Simple Lie Groups. We set degxi = i. 

H*(U(~);R)-A\R(X+~, . . ..+n-.h 

H*(SU(~);R)--/~\II(X~,X~, . . ..x~n-.), 

H*(SP(~);R)--~(X~,X,, . . ..xq.-,)a 

H*(SO(r~);Z~)=(Havingx,,x,, . . . . x, _ , as a simple system of generators) 

=z2Lx,,x3, . ..) X*“‘-,l/(Xi2”“~i=l, . . ..n’) 

(n’=[n/21, s(i) is th e 1 east integer satisfying 2”(‘)(2i - 1) > n ) 

H*(SO(2n);K)-A,(x,,x,, . . ..~4n-+2n-.), 

H*(SO(2n- l);K)zA,(xs,x,, . . . . x+s), where K is a commutative field whose 

characteristic is not 2. 

For SO(n), Sq”(.q)=(~)x,+~. For Su(n), p”(x2i-,)=( i11)x2i-1+zo(p-l). 

For Sp(n), P(xdi-,)=(-- I)0’p-“‘2( 2’; 1)xq,-,+2.0,-,,. 

(3) Exceptional Compact Simple Lie Groups. n and mi (1 < i < I) given in (1) are as follows. 

G2: n=14, m,=3, 11. 

F4: n=52, mi=3, 11, 15, 23. 

E,: n=78, m,=3, 9, 11, 15, 17, 23. 

E,: n= 133, m,=3, 11, 15, 19, 23, 27, 35. 

E,: n=248, m,=3, 15, 23, 27, 35, 39, 47, 59. 

(4) p-Torsion Groups of Exceptional Groups. Thep-torsion groups of exceptional Lie groups 

are unit groups except when p = 2 for G,; p = 2, 3 for F4, E,, E,; and p = 2, 3, 5 for E,. The 
cohomology ring of Zp as a coefficient group in these exceptional cases is given as follows. Here 
we put degx, = i. 
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(V) Cobomology Rings of Classifying Spaces (- 56 Characteristic Classes, 427 Topology of Lie 

Groups and Homogeneous Spaces C) 

(1) Let H*(G;K)=A,(x,,x,, . . . . xn). Then the degxi are odd and the xi may be assumed to be 
transgressive. yi being its image, the following formula holds: 

H*W;K)=KCY,,Y~, . . ..y.l (Borel’s theorem). 

(2) H*(BU(n))=H*(BGL(n,C))=Z[c,,c,,...,cn], 

H*(BSU(n))=H*(BSL(n, C))=Z[c2, . . . ,C”], 

ff*wPb)) = zcq,, q2, .‘. 9 4.1, 

H*(BO(n); K,) =H*(BGL(n, R); Z,) = K,[w,, w2, . . . , w.], 

H*(BSO(n); K,) = H*(BSL(n, R); Z,)= K,[w,, . . , w,], 

H*(BSO(2m+l);K)=KCp,,p,,...,p,l, 

Here, K denotes a field of characteristic # 2, and K, is the field of characteristic 2. The ci denote 
the ith Chern classes and the qi the ith symplectic Pontryagin classes, the wi the ith Stiefel-Whitney 
classes. Moreover, the pi denote the ifh Pontryagin classes, and x the Euler class. Their degrees are 
given as follows: deg ci = 2i, deg qi = degpi = 4i, deg wi = i, and deg 2 = 2m. 

(3) Wu’s Formula. Let H’(BSO(n); Z,) = Z, [w,, . . . , w,] and H*(BU(n), Z,) = Z, [c,, c2, . . , c.]. 
We have 

Here the symbol (g) denotes the binomial coefficient for a > b; (@ = 1, and (g) = 0 otherwise. 

(VI) Homotopy Groups of Spheres (- 202 Homotopy Theory) 

Table of the (n + k)th Homotopy Group z”+~ (S”) of the n-Dimensional Sphere S”. The table 
represents Abelian groups. 0 stands for the unit group; integer 1 the cyclic group of order 1; cc the 

infinite cyclic group; 2’ the direct sum of I groups of order 2; and + means the direct sum. 

- 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

I2 

13 

I4 

>I5 

L- 

<o 0 12 3 4 5 6 7 8 9 IO II 12 13 

0 ’ ,m 0 0 0 0 0 0 0 0 0 0 0 0 0 
L-- 

0 m 
P-, 

2 2 12 2 2 

0 m 2,2 I2 2 2 3 
-- 

0 00 2 2,m+l2 22 22 24+3 

----I 
0 m 2 2 24 2 2 

L-- 
2 

0 m 2 2 24 0,~ 2 

I 

0 00 2 2 24 0 0 L2--, 

0 cc 2 2 24 0 0 2 

0 cc 2 2 24 0 0 2 

3 15 2 

I5 2 22 

15 2 23 

30 2 23 

60 24+2 2’ 

120 23 24 

co+120 24 25 

---1 
240 , 23 24 

---, 

22 12+2 84+2= 22 

12+2 84+22 2= 6 

120+12+2 84+25 2” 24+6+ 

72+2 504+22 2’ 6+2 

72+2 504+4 240 6 

24+2 504+2 0 6 

24+24+2 504+2 0 6+2 

24+2 504+2 ,o 6 

0 cc 2 2 24 0 0 2 240 2= ;m+23 12+2 504 I2 6 
__- 

’ 0 cc 2 2 24 0 0 2 240 22 2’ 
I- 

-v2- 504 2 6+2 
-, 

0 cc 2 2 24 0 0 2 240 22 2’ 6 lLW_+ “, 2= 6+2 

0 cc 2 2 24 0 0 2 240 2= 23 6 504 
I 

2 6 

----I 
0 m 2 2 24 0 0 2 240 22 23 6 504 0 

I 
co+3 

---- 

0 m 2 2 24 0 0 2 240 22 2’ 6 504 0 3 
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Table of the (n + k)th Homotopy Group rr” + k (S”) of the n-Dimensional Sphere S” (Continued) 

,- 
k 5 n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

> 24 

14 15 16 17 18 19 20 21 22 

0 0 0 0 0 0 0 0 0 

6 30 30 6+2 12+22 12+2* 132+2 22 2 

30 30 6+2 12+22 12+22 132+2 22 2 210 

2520+6+2 30 6+6+2 24-b 12+4+2l 120+ 12+25 132+25 26 24+22 9240+6+2 

6+2 30+2 22 4+22 24+2= 264+2 6+2= 6-b2 90+22 

12+2 60+2 504+22 24 24+6+2 1056+8 480+ 12 6 l8O+22 

24+4 120+23 24 24 24+2 264+2 24 6+2 72+23 

240+24+4 120+25 27 6+24 504+24+2 264+2 24+3 12+23 1440+24+24 

16+4 240 + 2’ 24 24 24+2 264+2 24 6+2= 144+23 

16+2 240+ 2* 240+2 23 24+2= 264+6 504+24 6+2= 144+6+2 

16+2 240+2 2 23 8+4+2 264+23 24+22 24 48+2* 

48+4+2 240+2 2 24 480+4+4+2 264+25 24+25 6+24 2016+12+22 

16+2 480+2 2 24 8+8+2 264+23 24+23 4+2’ 16+22 

8+2 480~2 24+2 24 8+8+2 264+4+2 240+24 4+2= 16+22 

4+2 480+2 23 25 8+8+2 264+2= 24 23 16+2’ 

---1 2+2 ,m+480+2 24 26 24+8+8+2 264+2= 24 24 240+ 16+23 

---1 
2+2 480+2 23 25 8+8+2 264+2= 24 23 16+2’ 

L--l 
2+2 480+2 22 co+24 8+4+2 264+2 24+ 12 23 16+2l 

L----- 
2+2 480+2 22 24 8+22 264+2 24+2 24 16+2l 

- - -1 
2+2 480+2 22 24 8+2 , m+264+2 24+2= 24 16+22 

----1 
2+2 480+2 22 24 8+2 26‘+2 , 24+2 23 8+22 

1 
2+2 480+2 22 24 8+2 261+2 24 m+2= 

L-- 
4+22 

-1 2+2 480+2 22 24 8+2 264+2 24 22 23 
L------ 

2+2 480+2 22 24 8+2 264+2 24 22 22 

Remarks 
(1) When n > k + 1 (below the broken line in the table), T,,+~ (S”) is independent of IZ and is 
isomorphic with the kth stable homotopy group G,. 

(2) Let hnE?r,,(S”) be the identity on S”; q2~7r3(S2), v4~n7(S4), a8~mls(S8) be the Hopf 
mapping S 3* S 2, S ‘j S 4, S 15_t S 8 (induced mapping in the homotopy class), respectively; and 

[12m, ~2ml E 774m - 1 (S2m) (m # 1,2,4) be the Whitehead product of tZrn. These objects g,enerate 
infinite cyclic groups which are direct factors of 7, + k( S”) corresponding to the original map- 
pings. 

(3) V1n+2=E”172, v,,+~= E”v,, u,,+~= Ena (n > 1) (E is the suspension) are the generator 
for rn+k(Sn), which contains the mappings. 
(4) The orders of the following compositions are 2:gs,+7 

(VII) The Homotopy Groups a,(G) of Compact Connected Lie Groups G 

Here the group G is one of the following: 

SO(n) (n > 2), Spin(n) (n > 3), u(n) (n > I), su(n) (n ~ 2), 

8’(n) (n 2 11, G2, F4, E,, E,, E,. 

(1) The Fundamental Group r,(G). 

r,(G)- 2 (G=SO(n) (n>3)), 

1 

w  (G= U(n) (n> l), s0(2)), 

0 (for all other groups G). 

(2) Isomorphic Relations (k > 2). 

Tk(“(n))-~k(su(n)) (n>2), 
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‘W&w 

?r~(U(l))^I71k(S0(2))~0. 

~~((Spin(n))--nk(SO(n)) (n>3), 

~~(Spin(3))--Ilk(SP(l))~--=~(SU(2))-~~(S3), 

71k(Spin(4))r?rk(Spin(3))+71k(S3), 

~Wfl(5))--dS~(2)), 

7+(Spin(6))--?rk(SU(4)). 

(3) The Homotopy Group rk(G) (k > 2). 

n,(G)gO. 

a,(G)r ~0 (G#SO(Z), U(l), SO(4), S@(4)), 7c3(~O(4))g co + co. 

I 

2+2 (G=SO(4), S@(4)), 

a4(G)- 2 (GE Q(n), SU(2), SO (3), SO (5), Spin(3), Spin(5)), 

0 (G=SU(n)(n>3), SO(n>(n>6>, G,, F4, E6, E,, Es). 

1 

2+2 (G=SO(4), @h(4)), 
2 

r5(G)z 
(G= G(n), SU(2), S0(3), SO(~) spin(3), spin(s)), 

co (G= SU(n> (n > 3), SO (6), Spin(6)), 
0 (G=SO(n>, Spin(n) (n>7), G,, F4, E6, E,, Es). 

Q(G), k>6. 

Gk 6 7 8 9 10 11 12 13 14 15 

@(I) 12 2 2 3 15 2 22 12+2 84+22 22 
- 

0 To- -o- 
- - 

Sp(2) 
--l 

0 120 2 22 4+2 1680 2 
Sp(3) 0 co 0 0 L-------------T 0 co 2 2 L-------2-- 10080 
Sp(4) 0 cc 0 0 0 cc 2 2 0 00 

W(2) 12 2 2 3 15 2 22 12+3 84+2’ 22 
W(3) 6 0 12 3 30 4 60 6 84+2 36 
W(4) 

----1 
0 * I -24 - 2 120+2 4 60 4 1680+2 72+2 

SU(5) 0 cc 0 
W(6) 0 co 0 

co l L--- 120 : 3;; f 1680 6 --- 
co 0 lL 5O40+2 6 _ - _ 

W(7) 0 cc 0 co 0 03 0 03 7 5040 0 L--------- 
W(8) 0 co 0 cc 0 co 0 co 0 co 

SO(5) 0 cc 0 0 120 2 22 4+2 1680 2 
SO(6) 0 co 24 2 120+2 4 60 4 1680+2 72+2 
SO(7) 0 22 
SO (8) -0-l CA 23 I--- 

22 8 00+2 0 2i 2520+8+2 24 
23 24+8 co+2 0 2520+120+8+2 27 

SO(9) 0 co:22 22 8 co+2 0 2 8+2 ca+23 
SO(10) 0 cc -2: co+2 4 co 12 2’2 8 00+22 --- 
SO(11) 0 w  2 2 -iLl- * 8 co+2 
SO(12) 0 co 2 
SO(13) 0 00 2 

2 0 lLE+yc 2"2 "2' 24+4 co+2 
2 0 co ', -2- 8 co+2 

SO(14) 0 co 2 2 0 co 0 :-EL 4 co 
SO(15) 0 co 2 2 0 cc 0 0 l-2- co 
SO(16) 0 cc 2 2 0 co 0 0 O I -00_+_00- 
SO(17) 0 co 2 2 0 co 0 0 0 cc 

G2 3 0 2 6 0 co+2 0 0 168+2 2 

F4 0 0 2 2 0 co+2 0 0 2 co 
E6 0 0 0 co 0 co 12 0 0 cc 

4 0 0 0 0 0 co 2 2 0 co 

Es 0 0 0 0 0 0 0 0 0 co 
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(4) Stable Homotopy Groups. For sufficiently large n for fixed k, the homotopy groups for 
classical compact simple Lie groups G = @(n), SU(n), SO(n) become stable. We denote them 
by the following notations. Here we assume k > 2. 

?Tk(SP) = dSp(n)) (n >(k- 1)/4), 

71k(U)=~~((U(n))--~(SU(n)) (n>(k+1)/2), 

~k(o)=~kw(~)) (n>k+2). 

Bott periodicity theorem 

00 (k-3,7 (mod8)), 

2 (k=4,5 (mod8)), 

0 (k=O,1,2,6 (mod8)). 

co (k-3,7 (mod8)), 

2 (kzO,l (mod8)), 

6 (k=2,4,5,6 (mod8)). 

q,(U)= 
co (kz 1 (mod2)), 

0 (k-0 (mod2)). 

(5) Metastable Homotopy Groups. 

(a,b) means the greatest common divisor of two integers a and b. 

?r2,(SU(n))- n!. 

(n+1)!+2 (n even, 24) 
(n+ 1)!/2 (n odd). 

%+‘l(SU(n))- 
(n + 2)!(24, n)/48 (n even, > 4) 
(n+2)!(24, n+3)/24 (n odd). 

~2,+5(SU(n))--azn+s(U(n+ 1)). 

77Zn+6(SU(n))- 
“2n+6(Ub+ 1)) (n=2,3 (mod4), n > 3), 

~r~~+~(U(n+ 1))+2 (n=O,l (mod4)). 

Ql+s(G(n))- (24, n+2) 

i 

(24, n+2)+2 (n even), 
(n odd). 

%+6(%(~))= 
(2n+3)!(24, n+2)/12 (n even), 
(2n+3)!(24, n+2)/24 (n odd). 
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TW~O~Y 

The homotopy groups v,, + i (SO (n)) f or n > 16, 3 > i > - 1 are determined by the isomorphism 

n,+i(SO(n))=~“+i(0)+n,+i+I(l/i+,+n,i+~(R)) 

and the homotopy groups of I/,+,,(R) given below. 

(6) Homotopy Groups of Real Stiefel Manifolds V,,,+.,,(R) = 0 (m + n)/Z,,, x 0 (n). 

%+!A ~n+l,l I= %+!f(S” 1. 

%-k(~m+n,m)=o (ka 1). 

%wm+,,,>= l 2 (n=2s-1, m>2), 

CQ (n=2s). 

%+!f(l/m+n,m ) (k = 1,2,3,4,5) are given in the following table. 

m 
n 12 3 4 5 6 Ss-1 8s 8s+l 8s+2 8s+3 8s+4 8s+5 8sc6 

2 0 a* 2 2+cc 2 2+m 2 2+m 2 2+0, 2 2+m 2 2+m 

n.,, >3 0 m 0 22 2 4 0 2= 2 4 0 2’ 2 4 

2 co 22 4 22 4 22 4 22 4 22 4 22 4 22 

IT”,2 3 co= 2 2+m 22 4+m 2 2+m 2= 4+cu 2 2+m 22 4+m 2 

>4m 0 2 22 8 0 2 22 8 0 2 22 8 0 

2 2 22 2 m+12+2 22 24+2 2= 24+2 22 24+4 2= 24+2 2= 24+2 

3 22 2 2 m+12+4 2’ 12+2 22 24+4 23 12+2 22 24+4 2’ 12+2 

n,+3 42m 2 m=+12+4 2= 12+m 22 24+4+m 2= 12+00 22 24+4+m 2= 12+co 

z-50 0 2 12+4+m 2 12 2 24+8 2 I2 22 4+48 2 12 

2 2 122 m-+2 2=+24 2= 24 2 24 2 24 2 24 2 24 

3 22 0 co+4 24 2’ 2 4 2= 22 2 4 2= 22 2 

nn+4 4 2 0 4+m 25 2= 2 8 23 2 2 8 23 2 2 

5 Co 0 4+m= 24 2+m 2 8+m 2= m 2 8+00 2= m 2 

>6 0 0 4+m 23 2 0 8 2 0 2 16 2 0 0 

2 12 22 2 2’ 0 cc 0 0 0 0 0 0 0 0 

II.+5 3 122 co 2+24 24 24 co+2 24 2 24 2 24 2 24 2 

4 0 m 2’ 25 2 co+4 22 2= 2 4 22 22 2 4 

(VIII) Immersion and Embedding of Projective Spaces (- 114 Differential Topology) 

We denote immersion by c , and embedding by E . P”(A) is an n-dimensional real or complex 
projective space where A = R or C, k{P”(A)} is the integer k such that P”(A) c Rk and P”(A)+ 
R’-‘, and k{P”(A)} is the integer k such that P”(A)&Rk and P”(A)$Rk-‘. 

In the table, for example, numbers 9- 11 in the row k{P”(R)} for n = 6 mean P6(R) (f Rs, 
P6(R)cR”. 

n 1234 5 6 7 8 9 10 11 12 

k{P”(R)} 2 4 5 8 9 9-11 9-12 16 17 17-19 . . . . . . 
k{P”(W} 2 3 4 7 7 7 8 15 15 16 16 17-19 
k(P”(C)} 3 7 9 15 17 22 22-25 31 33 38 38-41 . . . 
k{P”(C)} 3 7 8-9 15 16-17 22 22-25 31 32-33 38 38-41 . . . 

2’ 2’+1 2’+2 2’+3 2’+2” (r>s>O) 

&V’“(R)) 2n 2n-1 2n-3-2n-1 . . . . . . 
k P’“Wl 2n-1 2n-3 2n-4 2n-6 . . . 
k P”(C)) 4n-1 4n-3 4n-2 .., 4n-2 
k F’“(C)) 4n-1 4n-4-4n-3 4n-2 . . . 4n-2 
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7. Knot Theory (- 235 Knot Theory) 

Let k be a projection on a plane of a knot K. We color the domains separated by k, white and 

black alternatively. The outermost (unbounded) domain determined by k is colored white. In 
Fig. 16, hatching means black. Take a point (a black point in Fig. 16) in each black domain. The 
self-intersections of k are represented by white points (Fig. 16). Through each white point we 
draw a line segment connecting the black points in the black regions meeting at the white point. 

In Fig. 16, we show this as a broken line. We assign the signature + if the torsion of IY at the 
intersection of k has the orientation of a right-hand screw (as in Fig. 17, left), and the signature - 
if the orientation is opposite (as in Fig. 17, right). The picture of the line segments with signatures 
is called the graph corresponding to the projection k of the knot K. Given such a graph, we can 
reconstruct the original knot K. 

Fig. 18 shows the classification table of knots for which the numbers of intersections of k are 
3 to 8 when we minimize the intersections. The projection of k is described by a solid line, and 
the graph by broken lines. We omit the signatures since for each graph from 3, to 8,s they are 
all + or all - . Such knots are called alternating knots. 

8. lneqUditkS (- 88 Convex Analysis, 211 Inequalities) 

(1) (a+ bl G (a(+ PI, 

l~-~lw4+ll. 
For real a,, we have Zaz > 0, and the equality holds only if all a, = 0. 
(2) n! < n”<(n!)2 (n > 3). 

e” > n”/n!. 

n’/n<31’3 (nf3). 

(3) 2/7r < (sinx)/x < 1 (0< x < m/2) (Jordan’s inequality). 
(4) Denote the elementary symmetric polynomials of positive numbers a,, . . . ,a, > 0 by S, 
(r=l, . . ..n). Then 

s,/(;)>[ S2/(f> . . . )[$/(:)]“r> . . . >[Sn/($ 
If at least one equality holds, then a, = . . . = a,. In particular, from the two external terms, we 

have the following inequalities concerning mean values: 

+il%2( g%)“‘>./ i: 1. “Cl 4 
For weighted means, we have 

i: X,a,> fi a;p (cI)(y=l, &,>O). 
V=l V=l 

(5) When u”>O, b,>O,p> 1, q> 1, (l/p)+(l/q)= 1, 

[ z, (cz”)~~[ z, (b.)‘r* > j, a& (Holder’s inequality). 

The equality holds only if (a,)p = c(b,)q (c is a constant). 
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8, 

Fig. 18 
Classification table of knots. The signatures from 3, to 8,s are all + or all - . 

When p = 4 = 2, the inequality is called Cauchy’s inequality, the Cauchy-Schwarz inequality, 
or Bunyakovskii’s inequality. As special cases, we have 

When 0 <p < 1, we have an inequality by reversing the inequality sign in HGlder’s inequality. 
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(6) When a, > 0, b, > 0, p > 0, and {a,} and {b,} are not proportional, we have 

[ p”+bY]‘y ~~wj”+[ ;,(b”Y]“p (p 2 1) (Minkowski’s inetquality). 

The integral inequality corresponding to (5) or (6) has the same name. 

(7) Ifa,,>O, i: aPy= i: apy=l, b,>O, 
p=l v=l 

In particular, for the determinant A = det(u,), 

The equality in this holds only if all rows are mutually orthogonal. If all ~u,,~I < M, we have 

IA\ < n”‘*M” (Hadamard’s estimation). 

(8) Suppose that a function j(x) is continuous, strictly monotone increasing in x IP 0, and 
f(O)=O. Denote the inverse function off by f-‘. For u,b >O, we have 

ub<lo”f(~)dx+J~/-‘(x)dx (Young’s inequality), 

and the equality holds only if b=f(u). 
In particular, for f(x) = XJ’-’ (p > l), we have 

up bq 

7 +gXub, 

where (l/p)+(l/q)= 1. 

(9) Ifp,q>l, (l/p)+(l/q)=l, a,>& b,>O, 

(Hilbert’s inequality), 

and the equality holds only when the right-hand side vanishes. 

(10) For a continuous function f(x) > 0 (0 < x < cc), we put 

and assume that p > 1. Then 

Jc”[ F]‘dx <( +)p~m[f(x)~p~x (Hardy’s inequality), 

and the equality holds only if f(x) is identically 0. 
Further, if f(x) > 0, 

“logf(t)dt dx<e ] (Carleman’s inequality). 

(ll)Letu<x<5<b,p>l,and 

‘f(t)dt=@(x). 

Then 

j-bk+)lpdx < 2( ~)p~b\f(x)lpdx (Hardy-Littlewood supremum theorem). 
a (I 

(12) If f(x) is piecewise smooth in 0 < x < ?r and f(0) =f(n) =0, 

clf’(x)f dx > [[ f (x)f dx (Wirtinger’s inequality), 

and the equality holds only if f(x) is a constant multiple of sinx. 
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9. Differential and Integral Calculus 

(I) Derivatives and Primitive Functions (- 106 Differential Calculus, 216 Integral Calculus) 

- 
cup, + /3Ic, (cy,j3 constants) 

v.4 

v/J, (#ZO) 

1WlPl (CpfO) 
Q(q) (composite) 

c (constant) 

X” 

x”+‘/(n + 1) 

logI- 

bhl 

x(logx - 1) 

expx=eX 

ax (a>O) 

XX 

(x - l)e’ 

sinx 

cosx 

tan x 

cotx 

secx 

cosec x 

sinhx=(e”- e-“)/2 

coshx=(e”+e-“)/2 

tanhx = sinhxlcoshx 

cothx =coshx/sinhx 

sechx= l/coshx 

cosech x = 1 /sinh x 

arcsinx (IFI < a/2) 

arccosx (O< F< a) 

arctanx (IFI < r/2) 

arccotx (IFI <a/2) 

arcsecx (O< F< 7r) 

arccosecx (IFI <a/2) 

arc sinhx = log(x + vx* + 1 ) 

arc coshx = log(x + m ) 

arc tanhx (I4 < 1) 
arc coth x (I-4 > 1) 

arc sech x 

arc cosech x 

f(x)= F’(x) 

4 + lw 
v’J/ + Pt’ 

(cp’# - (Pu/4* 
cp’/cp (logarithmic differentiation) 

(d@lWTJ 
0 

tlX”--’ 

x” (n#-1) 

l/X 

OwA/x 

logx 

expx=e” 

axloga 

x”(l+logx) 

xex 

cosx 

-sinx 

sec*x 

- cosec*x 

secx tanx 

- cosecx cot x 

coshx 

sinhx 

sech*x 

- cosech’x 

- sech x tanh x 

- cosech x coth x 

l/vi7 

-l/Vi? 

1/(1+x2) 

-1/(1+x2) 

l/jxjLGT 

- l/lxl~x*- 1 

1/m 

l/G=T 

1 
1-x* 

-l/x41-x* 

- l/jxjW 
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(l/a)arctan(x/a) 

(xd 1 - x2 + arcsinx)/2 

[xl/x*-t 1 2 log(x + Vx2t 1 )]/2 

-log~cosx~ 

log 1 sinxl 

log 1 tanxj 

log I W(n/4)+ (x/2)11 
log I Wx/2)1 

(x/2)-(1/4)sin2x 

sinx-xcosx 

cosx+xsinx 

n sin mx sin nx + m cos mx cos nx 

n2-m* 
(n*# m2) 

ebXbsinax-acosax 

a*+ b2 

ebXbcosax+asinax 

a*+ b* 

xarcsinx+ VIQ? 

xarctanx-(1/2)log(l+x2) 

det(cpjdj,k=I,...,, 

(II) Recurrence Formulas for Indefinite Integrals 

(m is a positive integer). 

1 
‘,= 2m-2 (1+t2)m-1 + g&l (m > 2); 

f(x)= F’(x) 

1 

x*--a* 

1 /(x2 + a*) 

d/1- 

VFZT 

tan x 

cotx 

l/sinxcosx 

secx 

cosec x 

sin’x 

xsinx 

xcosx 

sin mx cos nx 

e’“sinax 

e bx cos ax 

arc sin x 

arc tan x 

~det(cpjl...~j,-~~J,~“.+-y.,, 

. ..(Pjn)j=l....,n 

I, =arctanx. 

dx (m is an integer, a # 0). 

The case m < 0 is reduced to the case m > 0 by the change of variable 1 /x = t. 

dlax*+bx+c -~ 
~ (2m-1)b Z (m- 1)c 

2ma m-l - -----Z,-, (m > 1); 
ma 

z = (I/fi)log12ax+b+2& vax*+bx+c 1 (a>O), 

0 
-& arcsin 2ax + b 

vF=G 
(a<O); 

In this case, for the integrand to be a real function it is necessary that b*-4ac >O. 

(3) I,=( x”‘e”dx (m is an integer). 

1 =x”e”-ml m ,,-,; zo=ex, I-,=Eix, 
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where Ei is the exponential integral function (- Table 19X.3, this Appendix). 

(4) Z,,,=/x”(logx)“dx (m,n are integers, n>O). 

I*,, = $logx)“-*z~,“-l: z/s (m#-1),z~,,“=(logx)“+‘/(n+1). 

(5) I*=/ xm sinxdx, J,,, = 
s 

xm cosxdx (m is a nonnegative integer). 

Z,= -xmcosx+mJ~-,=xm-‘(msinx-xcosx)-m(m-1)1,-a, 

Jm=xmsinx-ml,-,=xm-t (xsinx+mcosx)-m(m-l)J,,,-z; 

z,= -cosx, 

J,,=sinx, 

(6) I,,, = s sin”‘x~cos”xdx (m,n are integers). 

L,, = 
sinm + lx cos* - ix 

m+n +szm,.-a 1 

i 

(m+nfO), 

Zrn,” = 
-sinme’xcos”+‘x + m- 1 

m+n m+nzm-2,n 

zm,, = 
-sinm+‘xcosn+‘x + m+n+2z 

n+l n+l m,n+2 (n+ - l), 

Z m,n= 
sinm+‘xcos”+‘x + m+n+2 z 

m+l m+l m+2,n Cm+ - 1); 

Z,,,=(sin2x)/2, I,,,= -cosx, I,,-,= -loglcosxl, Za,,=sinx, Za,, =x, 

Z,,...,=logl tan[(x/2)+(a/4)11, Z-i,i=loglsinxl, 

I-,,,=logltan(x/2)1, I-,,-,=logltanxl. 

(III) Derivatives of Higher Order 

f(x) 

Xk 

(x+a) 

exp x 

aX(a>O) 

logx 

sinx 

cosx 

e ax cos bx 

arc sin x 

arc tanx 

T 

f ‘“‘(4 

(Leibniz’s formula) 

n-1 

n (k- v)xk--n 

v=o 

n! 

exp x 

a”(loga) 

(- l)n-‘(n - l)!/x” 

sin[x + (na/2)] 

cos[x+(na/2)] 

r”e”cos(bx + n0) (wherea=rcosB, b=rsin@) 
n-l 

-J-- &-l)‘(y) 
2”--’ v=o 

(2v-1)!!(2n-2v-3)!!(1+x)-(1~2~-‘(l-~)(’~Z)-”+’ 

(where(2v-1)!!=1.3.5...:(2v-l),(-l)!!=l) 

(- l)n-‘(n - l)!sinY?sinnZl (where x = cot Z3) 

= fjff’f” - fjj’3 -f zf’t’ 

f4 . 
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Higher-order derivatives of a composite function g(t) Ef(X,(t), . . . ,x,,(t)) 

$g$$ s=,ig$Q&gg 

i j k=, axiaxjaxk dt dt dt . 1 

For a function z = z (x, , . . .,x,,) determined implicitly by F(z; x1, . . . ,x,,)= 0, we have 

aZ For a zz F F&,z + F,F,z F,F F x. x. zz 
-=-- -=- 

-F+ axi F, 3 axiaxj I F,’ 
-I. 

F: 

Schwarzian derivative: 

‘vlx)-( $)/( g)-;[ ($)/( $)]‘a {~;X)=o~~=(ux+b)/(cx+d), 

(IV) The Taylor Expansion and Remainder 

If f(x) is n times continuously differentiable in the interval [a,!~] (i.e., of class Cn), 

f(b)= y Qy&(u)+Rn (Taylor’s formula), 
v=o 

R, is called the remainder, and is represented as follows: 

=~(l-Ed-Rf’“‘(a+B(h-a)) (n>p>O, O<fI<l, a<t<b, t=a+B(b--a)) 

(Roche-Schlomilch remainder); 

= ; (b - a)“f(“)(~) (Lagrange’s remainder); 

=- 
(A)! 

(b - a)(b - t)“-’ f’“‘([) (Cauchy’s remainder). 

If f(x,y) is m times continuously differentiable in a neighborhood of a point (.x+,,J~), 

= 
c ’ hpk” 

o< p+“<m--l;p,“>o m 

a~+yf(x,~~,) + R 

axway” mr 

mj(xo+Oh,yo+Bk) (O<e<l). 

If all partial derivatives up to order m - 1 are totally differentiable, 

wherethe~meansthesumforv,,...,v,inthedomainO~~,+...+v,~m-l;u,,...,v,>O. 
The remainder R, is expressed as 
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(V) Definite Integrals [4] 

In the following formulas, we assume that m, n are positive integers. a,,,, is Kronecker’s delta 

(6,,,, = 0 or 1 for m # n or m = n), I is the gamma function, B is the beta function, and C is the 
Euler constant. 

For simplicity, we put 

1 

1.3.5.... *(m-2)~m=2(“+‘w[(m/2)+ l]/fi =m!/2(m-‘)‘*[(m- 1)/2]! 

ml!!- 
(m is odd), 

2.4.6. . . . ~(m-2)~m=2”~2~[(m/2)+1]=2m~2(m/2)! 

(m is even). 

In an n-dimensional real space, the volume of the domain 

Ix,lP+ . ..+Ix.lp< 1 (p>O) is 
2"bxl/P)l" 

P ~-SZ~(PZ/~) ’ 

For p = 2, this is the volume of the unit hypersphere, which is 

r”/2 1 (27r)“‘*/n!! (n is even), 

r[(n/2)+ 11 = ~Q~)(“-L)/*/~!! (n is odd). 

The surface area of the (n - I)-dimensional unit hypersphere 

1x,1*+ . . . 
2742 

+lx,12= 1 is - = 
(25Y/(n -2)!! (n is even), 

w/2) 2077) @-“‘*/(n-2)!! (n is odd). 

(Rep,Req> -1). 

I 
‘xP-‘(l-x)q-‘dx= O” x 

0 J 
p-1 

0 (l+x)p+q 
dxs B(p,q)= ;;;b4’. 

s 

00 Xa dx,l r[(~+l)/clr[b-{(a-c+l)/c}] 
0 (l+Xc)‘+b c r(1 + 6) 

a-c+1 
Rec>O;Rea,Reb> -l;Reb>Re---- 

C > 

s 

.(a-~)‘-‘(x-b)~-‘~~~ (a-b)p+q-’ 

0 (x- cp+q la-C\4)b-C\P B(p’q) 

(O<c<b<a or O<b<a<c;Rep,Req>O). 

s 

m 1 
dx= 

77(2n)! (2n - l)!! 

-cc (1+x2)“+’ -== (2n)!! . 22”(n!)* 

s 

M XZm 
___ dx = 

P 

cc 1+x2” 
(2m+ 1<2n). - n sinL(2m + l)n/2n] 

m @X2dx _ vii 
2lal . s (2n- l)!!G /2”+’ (p=2n), 

0 n!/2 (p=2n+ 1). 

~“(~-““x’-e-b’/xi)dx=(b-~)~ (a,b >O). ~m+(l/X)l’dx- v; . 

I 

m 
e 

-X2-(a2/X’)dx = e 

0 
T (~20). s,“eaX+le-aXdx=& 

s 

cc X 

0 eax- eeax 
dx= $ (u>O). 

s 

m dx= 

0 
ex-xe-x 
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11%(1/X) 
rdx=;. 

dx=j- “‘*logsinxdx= - 5 log2. 
0 

s 1 log(l+x) 

0 1+x* 

dx= ; log2. / 1 -dx=- logx 

0 1+x* 

s 
m (lo&TX)* 

0 1+x+x* 
dx= -$. J,‘$$$dx=logs (p,q> - 1). 

L’logl]ogxidx= ime -‘logtdt= -C= -0.57721... . 

s 

97 
sin mx sin nx dx = 

I 
ncosmxcosnxdx=6 B 

0 0 
lPl?lT’ 

s 
57 . 

sin mx cos nx dx = 
[l-C-l)“+“]* (m#n>; 

0 0 (m=n). 

s 
n/* sinPxcosqxdx=!jB 

p+1 q+l 
- - 

0 2 ’ 2 Rep,Req> -i); 

(a/2)(p- l)!!(q- l)!!/(p+q)!! (p,q are even positive integers), 
(p-l)!!(q-l)!!/(p+q)!! 

(p, q are positive integers not both even). 

s 
n/2 

smpx dx = 
s 

77/* cosPxdx= fi r[(p+1)‘21 

2 Jl(P/2) + 11 
(Rep> -1); 

0 0 

(m/2)(2n- 1)!!/(2n)!! (p=2n), 
(2n)!!/(2n+ l)!! (p=2n+ 1). 

s 
O” sin(x*)dx= co cos(x*) dx = (Fresnel integral). 

-co s --m 

s 0 
m?!!f?&dxc; (a>()), ~“+dx=; 

take Cauchy’s principal value at x == 
( 2)). 

n + 1 7~ 

s 
m sinZn + ‘x T (2n- l)!! 

0 X dx=z (2n)!! . s 0 
““;“z”“=;. j- m sin(x*) 

x* 0 

-dx=;. 
X 

s 
*f!!!$?dxc nqp-’ 

2rh)sinbP) 
(O<p<2). 

0 

s 
m?!.?dX= ;e-‘P’s irn$ 

0 1+x* 
dx= t(l+e-2u) (a>O). 

s 
owx~~~2, dx=;(l-e-‘) (a>O). i”zdx=;e-O (a>O). 

* sinZm + Ix cos**x 
dx= 

m sin2m+1XC0S2n-1X dx= 17 (2m- 1)!!(2n- l)!! 
X X 2 (2m+2n)!! ’ 

s 
m sin ax cos bx 

n/2 (a>b>O), 

0 X 
dx= 77/4 

i 

(a=b>O), (Dirichlet’s discontinuous factor) 

0 (b>a>O) 

s 277 1 
0 1+acosx 

dx= (14 < 1). ~g’2 a2pos2x~ b2sin2x dx= & (ab+O)* d 
n xsinx dx=$. 

1 +cos*x 
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s 
* cos nx dx = 

1 

ran/c1 - 4 (Ial < l), 
0 l-22acosx+a~ ~/U”(U2- 1) ([al > 1). 

References 

[l] B. 0. Peirce, A short table of integrals, Ginn, Boston, second revised edition, 1910. 
[2] D. Bierens de Haan, Nouvelles tables d’inttgrales dtfinies, Leiden, 1867. 
There are several mistakes in this table. For the errata, see 
[3] C. F. Lindmann, Examen des nouvelles tables de M. Bierens de Haan, Handlingar Svenska 
Vetenskaps-Akad., 1891. 
[4] E. W. Sheldon, Critical revision of de Haan’s tables of definite integrals, Amer. J. Math., 34 
(1912), 39-114. 

10. Series (- 379 Sefies) 

(I) Finite Series 

(1) q=lk+2k+ . . . +nk (k is an integer). For k > 0, we have 

S,= 
&+,(n+l)-&+1(l) 

k+l 
= $ (-l~i(k:l)~zi(nk+:ilf’-‘, 

i=o 

where BI is a Bernoulli number and B,(x) is a Bernoulli polynomial. In particular, 

S,=n, S,=n(n+1)/2, S2=n(n+1)(2n+1)/6, &=n2(n+1)2/4, 

S,=n(n+1)(2n+1)(3n*+3n-1)/30. 

Fork<Oandk=-I, 

s-,=c,- [<- 1)‘/(1- l)!][d’logr(x)/dx’]X_n+, 

1 --+ 2 (-l)i- 1 Bz(i+,j (l+i- l)! 
= c, - 

1 

(I-l)(n+l)‘-’ 2(n+1)’ ;=I (i+ l)! (I- l)! (n+ l)‘+i’ 

For I= 1, the second term in the latter formula is replaced by log[ l/(n + l)]. Here F is the gamma 
function, and the constants c, are 

c, = 
C (Euler constant) (I= l), 

{(I) (5 is the Riemann zeta function) (I > 2). 

(2) i i(i+l)...(i+m-l)E i 
(i+m- l)! 1 (n+m)! 

i=l icl (i-l)! =- m+l (n-i)! ’ 

i !-l)! l 
1 TZ! 

i=l (z+m-l)! =- [ 
___- 

m-1 (m-l)! (n+m-l)! 1 (m > 2h 

i: i!i=(n+ l)!- 1, 
i-l 

i i(y)=n2”-‘, 
i=l 

i ui, u(““-l)l(u-l) Ca fl) (geometric progression) 
i=l ( 

n (a= 1) 

n 

2 (u+jd)=(n+l)u+ 
n(n+ 1) 
-d= 

2 
q(u+u+nd) (arithmetic progression) 

j-0 
n 

x sin(a+jb)=sin(a+ 5 p)sin(“cIIp/sin;, 
j=O 
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i COS(a+j@)=coS(a-t 5 /3)sinv /sin:, 
j-0 

2 cosec24x=cot(ol/2)-cot2%. 
j=O 

(II) Convergence Criteria for Positive Series X a, 

In the present Section II, we assume that a, 2 0. 
Cauchy’s criterion: The series converges when lim sup fi < 1 and it diverges when 

limsup*> 1. 
d’Alembert’s criterion: The series converges when lim supa,+,/a, < 1 and diverges when 
liminfa,+,/a,> 1. 

Raabe’s criterion: The series converges when lim inf n [ @,/a,+,) - l] > 1 and diverges when 
limsupn[(a,/a,+,)- l] < 1. 
Kummer’s criterion: For a positive divergent series C( l/b,), the series Z a, converges when 
liminf[(bnan/un+,)-b,,,] >O and diverges when limsup[(b,a,/a,+,)-b,,,] <O diverges. 

Gauss’s criterion: Suppose a,/a,+l = 1 + (k/n) + (on/n”), where i > 1 and { 0,) is bounded. 
Then the series C a, converges when k > 1; and diverges when k < 1. 

Schliimilch’s criterion: For a decreasing positive sequence aJ0, let n, be an increasing sequence 
of positive integers and suppose that (n,,, - n,+,)/(n,+, -n,) is bounded. Then the two series 
Z n, and C(n,+l -n,)~,~ converge or diverge simultaneously. 
Logarithmic criterion: For a positive integer k, we put 

log,x~log(log,~, x), log, x=logx. 

Then for sufficiently large n we have 
The first logarithmic criterion: If 

a,- l/(nlog, n...log,-, n(log,n)P) 
< 0, p > 1 then I: a, converges, 

2 0, p < 1 then X a, diverges. 

The second logarithmic criterion: If 

-%+I 
--- .: 

low 
a, 1 log,(n+ 1) ... logl::::;: 1) ( lo$,:;Z 1)) 

GO, p>l then Za, converges, 

>o, p<l then Za, diverges. 

(III) Infinite Series 

iz, g = s (Leibniz’s formula), 

g (29! 1 r 
-=- $-log(l+f)) 

i;-o 22’(i9* 2i+ 1 2 ’ 
= C (C is Euler’s constant). 

Putting 

S(n)= $ $, a(n)= f ___ 
m (-,)(-I m (-I)‘-’ 

i=l i=l &n3 B(n’=;z, i” ’ E(n)=i?, (2r-1)“’ 
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we have 

s (2n) = gB2n, a(2n) = (2;(; ‘;“n B2,, 
n ! 

P(2n)= w1-1h2”B r2n+l 

(2n)! 2n7 eon+ l)= 22”+2(2n)! E 2n. 

where B, is a Bernoulli number, and En is an Euler number. 

{(2)=a2/6, {(4)=~~/90, {(6)=~+/945. 

(Y (2) = r2/8, (Y (4) = r4/96, a(6) = &/960. 

P(2)=n2/12, p(4)=7r4/720, ,8(6)=31n6/30240. 

~(1)=71/4, ~(2)=0.915965594177219 015054603514932... (Catalan’s constant), 

e(3)=7r3/32, e(5)=5$/1536, e(7)=611r7/92160. 

(IV) Power Series (- 339 Power Series) 

(1) Binomial Series (1 + xy = ~~=e g 
( > 

xi. This converges always in Ix/< 1. If (Y > 0, it converges 

in - 1 < x $ 1, and if - 1 < (Y < 0, it converges in - 1 < x < 1. When (Y is 0 or a positive integer, 
it reduces to a polynomial and converges in 1x1~ cc. 

c = 2 (- lY(2i)! x; (IX,< 1), 
i=O (2i- l)22i(i!)2 

* = i!. ‘;2;;i,:;;Ji xi (I-4 < 1). 
I. 

(2) Elementary Transcendental Functions (- 13 1 Elementary Functions). 

eX=expx= 2 $= lim (I+:)‘, 
i=. I. fl+m 

a”=exp(xloga) (1x1 <co). 

m (-$1 
log(l+x)= x 7x1 (-l<x<l), logx=25 -‘(“-‘)‘i+r 

i=. 2z+l x+1 (O<x<w). 
i=l 

2i (Ix, < 1 
co. 

m 22’(22’- 

tanx= 2 
lM2, 

i=l (2i)! 
x2’-’ (InI<;) (Bi is a Bernoulli number), 

(E, is an Euler number), 

cosecx=l+ 1 K. 
X 

m (2”-2)B2ixzi-l (o<lxl< ) 
i=l (2i)! 

m (2i)! x2i+l 

arcsinx= x -~ 
m (WY zi+, 

i=o 22’(i!)2 2i+l (Ix’ ’ ‘)’ 
arctanx= ;?. 2i+lx (I-4 6 ‘1. 
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(V) Partial Fractions for Elementary Functions 

tanx= 
$ 8x 

n=o (2n+ l)*?i’-4x2’ 

OY (-1)“(2n-1)n 
secx-4 2 

n=, (2~1)?+4x*’ 

cotx=$+2x 2 +, 
n=l x*-n 

* (-1)” 
cosec x = ++2x 2 ___ 

n=, x 2 $2’ -n 

cc 

sec*x= 2 
1 

n=--m [x+((2n:‘)n,2)]2~ cosec2x=n=~ca (x+n?iq2 

(VI) Infinite Products (- 379 Series F) 

$,A=- 1 (Wallis formula), 

(C is Euler’s constant). 

j,(l-&)(1+&)=VG /r(1+$($-;). 

fll/(l--p-‘)={(s) (prangesoverallprimenumbers,s>l), 
P 

I” (I--&)=%. 5 cos$=s$+ 5 (1- (2n~;)b’)=cosx. 
PI-1 n-1 ?I==1 

For )q\<l, putting q,= fi (l+q’“), q2- E (l+q*“-‘), qs- z (l-.q2nr1), 
n=l ?I==1 n=l 

m 

q4= n (1-q’“) we have q,q2q3= 1. 
n=l 

Further, putting q = eim, we have the following formulas concerning a-functions (-- 134 Elliptic 
Functions): 

Q4 (0, T) = q4q:, 9, co,71 = 2q”4q,q:, 93 (0,7) = 444:, 8; co,71 = 2nq”4q:. 

11. Fourier Analysis 

(I) Fourier Series (- 159 Fourier Series) 

(1) Fourier coefficients a0 = k i’j(x) dx, a, = i ~uf(x)cos y dx 

2 
b,, = - 

I a 0 

‘j(x)sinE dx. 
a 

m 
Fourier cosine series a,+ 2 a,cosy = 

( 

f(x) (O<x<ah 

n=l d-x) (-a<x<O). 

Fourier sine series -ipx) ~-~~~~b) 

The next table shows the Fourier coefficients of the functions F(x) directly in the following 
manner from a given function f(x) on the interval [0, a]. For x in [ - a, 0] and when the cosine 
series {a,) is in question, we setf(x) =f( - x ) , and when the sine series {b,} is in question we 
setf(x) = -f( - x). Thusf(x) is extended in two ways to functions on [ - a,a]. The functions 
F(x) are the periodic continuations of such functions. We remark that the sum of the Fourier 
series given by the Fourier coefficients in the right hand side has, in general, some singularities 
(discontinuity of the function or its higher derivatives, for example) at the points given by the 
integral multiples of a. We assume that p is not an integer. 
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f(x) a0 a, (n=1,2, . ..) b,, (n=l,2,...) 

1 1 

; 

a2 
3- 

eka-1 
ka 

sin pl.n 
P” 

1 -cosp 
w 

1 

0 

[l+(- 1)“+qs 

[I+(-1)“+‘]2a/nn 

X (- l)“+lg 

X2 

ekx 

(- lY$ 
2ka[(-l)neka-l] 

k2a2+ n’~= 

(-l)+-[I+(-l)“t’]$ 

2na[l-(-l)“]ek” 

k2a2+n2n2 

case 

2 [<- l)“COS/LV l] 
- 

a n p2-n2 

sin5 
2 ~[l-(-l)nCOS~n] 
- 
71 jL2- n2 

(-1)2E+ 

l-h2 
1-2Acos(sx/a)+h= 

2h” (IAl < 1) 

hsin(7rx/a) 
l-2Acos(ax/a)+X= A” (IAl < 1) 

B2m(x/2a) 0 (- l)m+‘2(2m)!/(2n?r)2 

B 2m+ L(x/u) (- l)m+‘2(2m + 1)!/(2n#m+’ 

logsin(ax/2a) - log2 -l/n 

(1/2)cot(5Tx/2a) l(1) 

Note 
(l)The Fourier series does not converge in the sense of Cauchy, but it is summable, for example, 
by the Cesko summation of the first order. 

(2) 5 (-1)“-lEy m sinnx 1 

n=l 
=log(2cos~) (-a<x<?r), nz, yy-= #r-x) (O<x<277). 

m cos(2n - 1)x 
2 2n-1 = $oglcot$I (O<X<2T, XfTf), 

n-l 

m sin(2n - 1)x x (O<x<n), 

n=l 
2n-1 = 

i 

n/4 
- a/4 (%< x < 27r). 

O” cosnx 
2 

n-1 
--=$(x-*)2-~ (O<x<2a), 

n2 

m sinnx 
22 

n-1 
p= -xlog2-~xlog(sin~)dt (O<x<2a). 

n2 

5 $cosnx=eYcosXcos(usinx)-1, a!, $sinnx=e’coSXsin(asinx). 
n-1 

$-l~-~~=w-I (--D<x,<m), 
2a sman 2a2 

gl(- lp?$P$ = s (-s<x<s). 

In the final two formulas, we assume that a is not an integer. 

(II) Fourier Transforms (- 160 Fourier Transform) 

The Fourier transform P[f] and the inverse Fourier transform F[g] for integrable functions f 
and g are defined as 
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2q-f(x)]=sqfJ(~)=(27c-“‘* 
s 

Rnf(x)e-iX~dx, 

F[g(cg]=qg](x)=(2n)-“‘2 
s 

s(5kix’d5> x5=x,5,+x,5,+...+x,5.. 
R” 

In some textbooks the factor (27~)“/’ is deleted or the symbols i and -i are switched when 
defining 5 and @. However, conversion of the formulas above to ones due to other definitions 
is straightforward. These transforms are also defined for some nonintegrable functions, or even 
more generally for ttempered distributions. The Fourier transform 5 and the inverse Fourier 
transform @ defined on the space of tempered distributions Y’= Y’(R”) are linear homeomorphic 
mappings from Y’ to itself. Useful formulas of these transforms are given in the table below, 
wherecc=(ol,,a, ,..., a,)(ccj=0,1,2 ,... ),laJ=cc,+a,+...+cr,,CistEuler’sconstant,I~~C,and 
z, ={mEZ(m~0}. 
Case 1. n = 1. First we explain the meaning of the symbols appearing in the table: 

x+ = max(x, 0) (the positive part of x), 

x- = max( - x, 0) (the negative part of x), 

x: and x! are understood in the sense of finite parts (- 125 Distributions and Hyperfunctions), 

(x + it+ = exp[1 Log(x + k)] (E # 0; Log is the principal value of log) 

=(~~+~~)‘/~exp[iiArg(x+ie)] (-x<Argz<n), 

(x + i0)” = lim (x * ie)” (limit in the sense of distributions). 
EL0 

Then the following formula holds: 

(x*iO)‘=x$ +eki”“xl 

Pfx”=x,“+(-l)“x”(moZ) (Pf is the finite part). 

In the special case m= -1, Pfx-’ coincides with Cauchy’s principal value p.v.x-i. 

T(E~“) 

w 
P(x) (polynomial) 

p.v. l/x 

Pfx-” 

4 

x: 
-In x+ 

Xl 

X!! 

(x + iO)l 

(x - i0)” 

(x f qrn = x” 

x-‘loglxl 

e@/u 

i 

eCax (x>O) 

0 (XGO) 

PCTI (E V 

&” 
~Wi~W) 

I[ 2 isgn 

~[(-i)“/(m-l)!]r”-‘sgn~ (m~N,2) 

w+ l)Ce-‘“‘“+l”25-“-l ~ + +ei~(~+lv2~~A-l] 

[ 

w+ 1) -in(l+l,,*(( +io)-“-l 
=yzTe 1 @c+Z) 

(im/~)[n~c”‘-i(-l)mm! Pft-‘-‘I (mEZ+) 

[J2n ei”“‘2/r(-n)]<;A-1 (Igz,) 
[JIG e-inA’2/r( -l)]l:A-l (Aqz,) 
&ii i”6’“) (mGZ+) 

Jn/2 isgnt~(Cflogl50 

Ja/2 emnSzi4 (a > 0) 
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T (EY”) 

X2+2 
log- 

x2+bZ 

arctan(x/a) 

sin ax 

Ix\‘-’ 

cos ax 

Ix\‘-” 

sin ax 

x 

1 

l/(a2-xy+“” (Ixl<a) 

0 (1x174 

i 

0 (Ixl-+ 
1/(x2-az)v+‘1i2) (Ixl>a) 

1 
(X2 + a2)v+wz) 

--------K,(am) (a>O,b>O) 

-@(e-“b?l~l) (a>O,b>O) 
141 

-Jlr/2isgna.(e -“‘li;‘/() (a~R,a#0) 

(v&Z) 

1r((I/2)-v) g “J-,(ajtj) 
Ji 0 

(Reu<l/2, a70) 

(-1/2c:Revc1/2, a>O) 

%.b Kl y ____ - 
0 r(v+(1/2) 2a 

K,(al<I) (Rev>-l/2, a>O) 

Case2.n>1.Letr=Jx:+x:+...+X,2andp=~r:+~~+...+r,2,wherex=(xi)ER”and 
E, = (&) E R”. If fc L, (R”) depends only on r, then 9[jJ depends only on p and is expressed as 

The constant C in the table stands for Euler’s number. 

T&Y”) 

&4 
P(x) (polynomial) 

Pfr” 

r 2m 

pffn-2m 

(1 +r’)” 

(l+r’)” 

Pfr”logI 

r2*logr 

T st[T](EYy 

(27r)“‘Z 
(2n)“/‘P(i8/8&5([) 

1+-n-2z ) + 

(27~)“‘~( -A)“&lf) (meZ+) 

(-l)mpZ” 
2(“i2~+2m13(n/2)+m)m! 1 WZ+) 

P-~(n'2)+11K~,,*)+l(P) 
2-“-‘I( --a) (GZ+) 

(27r)‘@(l -A)“S(l) (msZ+) 
2(n12)+Ar((n + 1)/2) 

r( - w) 

Y((n+i)/2)+Jr’(-A/2) 
r((n+1)/2) 2 r(-112) 1 
@42Z+, 1$-n-22+) 

f-l)m-12(n/Z)+Zm-1 m! r((n/2)+m)Pfp-“-2m 

The Fourier transform mentioned above is a transformation in the family of complex-valued func- 
tions or distributions. Similar transformations in the family of real-valued functions are frequently 
used in applications: 
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Fourier cosine transform f,(u) = 
s 

m F(t)cos ut dt. 
0 

Inverse transform 

s 

m 
Fourier sine transform f,(u) = F(t)sin ut dt. 

0 

Inverse transform i omf,(u)sinutdu= 
s 

F(t) 
(t > Oh 

-F(-t) (t<o). 

The Fourier transform can be expressed in terms of these transforms. For example (in IS’), 

mflb)= l 2n 
J- s 

om[f(t)+f(-t)]cosutdt-~ om[f(t)-f(-t)]sinutdt. 

r s 

f’(r) 

1 (O<r<a) 
0 (Q<f) 

t-1 

ta-’ (O<a< 1) 

l/(a2+ t*) 
e - at 

eehr2 (ReX > 0) 

e -AI; 

sinut 
- (a>O) 

t 

tanh(mt/2) 

sech(mt/2) 

J,(r) (Rev > - 1) 

Jd4 

No(t) 

K,(t) 

Notes 

f,(u) 

sinuu 
u 

(diverges) 

rya)cos(ma/2)u-” 

ne -+ 20 / 

u/(u’+ 22) 

$$Ci e - u2/4A 

( 
77/2 (O<u<u) 

0 (U<U) 

sech u 

I 

cos( v arc sin u) 

67 

_ (u-Gc)” 
sinE 

vlu2-1 2 

1 0 

- 

Ai 

T/26 1+ u2 

1 - COSUU 
U 

(n/Wgn u 

E(a)sin(ncY/2)u-” 

[e-O”Ei(uu)- e”“Ei( - ~u)]/u(~) 

u/(u2+ 2) 

e-U2/4Arp(u/2VT )/\/X (3) 

G$iX (u/4X)e-U’!/4A 

cosech u 

sin( v arc sin u) 

d/1- 
(O<U<l) 

(u- \luz-l)” 
vlu2-1 c-y (1 c u) 

0 (O<u<u) 

l/&*-u* (a< u) 

2 arc (o<u<l) 
?r Vl-u2 

2 log(u-Vu*-1 ) 

Q vu2_1 
(l<u) 

(arc sinh u)/ \/ I+ u2 

(2) Ei is the exponential integral function (- Table 19.11.3, this Appendix). 

(3) We put q(x)= ~xe’2dr. 

12. Laplace Transforms and Operational Calculus 

(I) Laplace Transforms (- 240 Laplace Transform) 

Laplace transform v(p)= Sowe -P’F(t)dt (Rep >O). 

Inverse transform (Bromwich integral) & ~ctimep’V(p)djr = F(f) (t >O), 

C--iCC 0 (f <Oh 
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F(r) 

1 

l(f-a)= 
i 

0 (O<r<a) 

1 (a<t) 

[x/a] (integral part) 

ram’ (Rea>O) 

e-at 

e-“‘ra-’ (RecY>O, a>O) 

e-“F(t) (a>O) 

(1 --e-y/t 

(W 
l/Ze-x’/4t 

logt 

sin at 

cosat 

sin(xV/; ) 

r -‘/2cos(x~/1) 

t-‘sinxf 

x-‘(l-cosax) 

sinh at 

cash af 

V(P) 

l/P 

eewlp 

I/p(@- 1) 

U4/P’ 

ll(p+a) 

V(P + a) 

log(1 +p-‘) 

p-‘/2e-“G (x >O) 

- oogp + 0/P(‘) 

al(p2+ a2) 

p/(p2+a2) 

G x --e -x2,4* 

2 p3/2 

vjnlp c-x=/4P 

arc tan(x/p) 

f w1+ GJ2/P2,1 

al(P2- a2) 

Pl(P2- a2) 

Notes 
(1) C is Euler’s constant. 
(2) L,(t) is a Laguerre polynomial. 
(3) H,,(t) is a Hermite polynomial. 
(4) (2n + l)! ! = (2n + 1)(2n - 1)(2n - 3). . .5.3.1. 

F(r) 

J,(r) (Rev > - 1) 

iJ,(at) (Rev >O) 

t”J,(af) Rev> -i 
( > 

I~/~J~(x\/; ) 

(Rev>-1) 

Jo(t) 
J,(xvt ) 

No(t) 

L”(t)(2) 

t =Lp( 1) 

H 2n+ IN/; Y3) 

V(P) 

(\/l+pi -p)’ 

VI +p2 

(G&7 -p)’ 

vu” 

(2a)Mv+(1/2)1 
\/;; (P2+a2)‘+(“*) 

x” -c-X=/4P 

2?Jv+’ 

(1 +p2)-‘/2 

e -“‘/4P/p 

2 log(~l+p2 -p) 
- 
77 di%pz 

1 P--l ” -- 
( 1 P .P 

Y(a+n+l) 1 p-l n 
n! -zi--- 

P ( 1 P 

T 

(I-p)” (4) 
; (2n+l)!!- 

p “+(3/a 

(II) Operational Calculus (- 306 Operational Calculus) 

Heaviside function (unit function) l(t)= 0 (t<O) 
1 (t>/O). 

Dirac delta function (unit impulse function) 8(t)= li~ip(t+e)-l(t-e)]. 

When an operator O(p) operates on l(t) and the result is A (t) we write @)1(t) = A (t). 
In the following table (i) of general formulas, we assume the relations !C?,(p)l(t)=A,(r) 

(i= 1,2). 

Carson’s integral Q(P)=PJTome -J”A (t) dt (Rep > 0). 

Laplace transform 
Q(P) 

V(p)= p = ~“CptA(t)dt. 
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(i) General Formulas (i 

Q(P) 
4(P) + Q2(P) 

aWp) 
P&(P) 

+6(P) 

Wap) 

[P/(P + a)lfh(p + a) 

$WP)MP) 

- 
9 

l- 

A (0 Q(P)=Pv(P) 

A l(l) + AZ(~) P 

aA ,(4 I/p” (n=O, 1,2, . ..) 

A ,(W(r) + A;(t) p/(p+ a) 

P2/(P2+ a’) 

s o’A ,(lW aPl(P2+ a2) 

A,(t/a) 

e-“‘A,(t) (Rea > 0) a,+ % +: + . . . 
P 

s 

I 
A,(T)A~(z-T)~T 

0 

= 
I 

k ,(t - T)A~(T)~T 
0 

T  

Examples 

A(t) 
S(l) 

(t”/n!)U t) 

(eea’)l(t) 

(cosat)l( t) 

(sinat)l(t) 

( 

I pz 
~,+a,~ +a,F- + . . . 

) 
l(t) 

$, $@kt-- 1)1(t) 

=R(0)l(t)+k~L~e”r: 

13. COtlfOiTlla~ Mappings (- 77 Conformal Mappings) 

Original Domain Image Domain Mapping Function 

)zj < 1 (unit disk) 

Imz > 0 (upper half-plane) 

Imz > 0 (upper half-plane) 

O<argz<a 
(angular domain) 

(z(< l,Imz>O 
(upper semidisk) 

O<argz<o, 

I4 < 1 
(fan shape) 

z-p a<arg- 
z-4 

<P 

(circular triangle) 

O<Imz<q 
(parallel strip) 

Rez<O, 
O<Imz<q 

(semiparallel strip) 

y2> 42(x + 2), 
z=x+iy, c>o 

(exterior of a parabola} 

y2 < 4c2(x + c2), 

z=x+iy, c>O 
(interior of a parabola) 

14 < ’ 
z - zo 

w= E- 
l - &)z ’ 

jze( < 1, 1.51 = 1 (general form) 

I4 < 1 
z - zo 

W-E-, 
z - &j 

Imz, > 0, I&l= 1 (general form) 

Imw>O az+b w=- a,b,c,darereal; ad-bc>O 
cz+d’ 

(general form) 

Imw>O w=zn/a 

Imw>O 

Imw>O 

O<argw<y 

Imw>O 

Imw>O, IwI<l 

Imw>O 

Imw>O 

w = enr/l) 

w = en4” 

w=ti -ic 

\r w=isecE 
2ic 
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Original Domain Image Domain Mapping Function 

z=x+iy, c>l 
(exterior of an ellipse) 

IwI>c 

x2 Y2 <4 

cos=a sin2a 

z=X+iy, 

O<a<n/2 
(exterior of a hyperbola) 

Imw>O 

x= Y2 >4 

co& sin2a 

x>o, 

z=x+iy, 

o<a<mp 

(right-hand side interior 
of a hyperbola) 

Imw>O 

lzl<l 
Slit domain with boundary 

/Rewl<2, Imw=O 

lzI< 1 
Slit domain with boundary 

IwI > l/4, argw=X 

Slit domain with boundary 

Id< 1 
/WI > 1/41/p 

argw=X+(2jr/p), 

j=o, . . ..p- 1 

- n/2 < Rez < 71/2 Slit domain with boundary 

(parallel strip) lRewl> 1, Imw=O 

- 7r<Imz<7r Slit domain with boundary 
(parallel strip) Rew< -l,Imw=+a 

Arbitrary circle 

or half plane 

Arbitrary circle 
or half-plane 

Interior of an n-gon 

Exterior of an n-gon 

Imz>O Interior of an 
equilateral triangle 

Imz>O Interior of an 
isosceles right triangle 

1 )$I=- 
2i 

w= z+Gz 1 
2 ’ 

z=w+; 

w= e-ia 

( 

z + $q =(r-*4 

2 1 

[(z+yi)~ 

+ ( 
z-v/22_4 $ 

2 
) 1 

1 
w=z+- 

Z 

Z 
w= 

(1 +e-l”z)2 

Z 
w= 

(l+e-iPXzP) 2/P 

w=sinz 

w=z+e’ 

w=c * 
ID 

i~,(t-zj)‘ldt+c~ (CfO, 

c’ are constants), where the inverse image 

of the vertex with the inner angle ojr (j = 

1 ,..., n)isz=z,.Whenz,=co,weomitthe 

factor (t - z,)*n - i ( Schwarz-Christoffel 
transformation) 

w=c 
s 

=(t-p)-2 fi (t-zr,)‘-w+C 
j=l 

(c#O, c’ are constants), where the inverse 

image of the vertex with the inner angle ojr 

(j= 1 , . . , n) is z = zj, and the inverse image 

of cc is z=p 

W=J= &qdt 

s 
z 1 

w= 
0 $qiq 

dt 
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Original Domain Image Domain Mapping Function 

Imz>O Interior of a right triangle 
with one angle r/‘/6 

IA< 1 
O<Rez<w,, 
O<Imz<+/i 

(rectangle) 

-K<Rez<K, 
O<Imz< K’ 

(rectangle) (1) 

Interior of a 
regular n-gon 

Imw>O 

Imw>O 

u<lzI<l 
Imz<O 

(upper half- 
ring domain) 

logq<Rew<O, 
O<Imw<s 
(rectangle) 

w= o=(l-‘~)-*%~ 
s 

w = P (z12~,,24 ( B is the Weierstrass B- 

function) 
w =sn(z,k), 

1 
dl 

(1 - t2)( 1 - kT) 

(sn is Jacobi’s sn function) 

w = logz 

IA< 1 

Imz>O 

IA<1 

Imz>O 

WC 

I 
1 

Interior of an t-5-&(1-t) -f+t(,-,++t, 

equilateral circular triangle 0 

with inner angle The vertices are the images of 

r/k, l<k<cc z = 1, e*ni/3, and e&i/3; and 

dw 
1 I 

I’[(5/6) + (1/2k)]I(;!/3) 
z z-o= I’j(1/6)+(1/2k)]I(4/3) 

Interior of a circular 
I 

1 

triangle with inner 0 I- 

I+m;#+r(l- &q.yl +-Vdt 

angles no, $3, rry, 
w= 

cr+P+y<lQ) s olt- I+=: + 
B + t) 

-?;I;@+l(l-t+zf)-‘-m:8-7dt 

ITI> 1, 
- 1/2<ReT<O 

“‘+“‘<,, 
A* B* 
w=u+v, A>B>O; 
(interior of an ellipse) 

interior of a 
circular polygon 

{w;z,,$qJz=R(z) 
(R (z) is a rational function) 

Z 
s 

‘t-t-t(&t) 
-!+I -t+f(,-z3t) 6 a‘ dt 

0 

- _  ̂
1mJ >U 

J=J(T), 7=03/o,, .I= g:/(g:-27&)(the 
absolute invariant of the elliptic modular 
function); J(e2”i/3)=0, J(i)= 1, J(m)= cc) 

IT+ l/21 < l/2, 
-l<ReT<O 

ImA< 

h=X(7), 7=03/w1,X=(e2-e3)/‘(el--e3); 

J(T)=-+ [ 
A(T)~-X(T)+ 112 

27 X(T)~[X(T)-~]~ ' 

Notes 

A(-l)=co, X(O)= 1, h(co)=O 

(1) K, K’, k’ are the usual notations in the in the theory of elliptic integrals: 

1 
4 

1 
dt, k* + k-l* = 1, 

(1 - t*)( 1 - k*t*) (l-t2)(1-kY) 

(2) When a + /3 + y = 1, the circular triangle is mapped into the ordinary linear triangle by 
a suitable linear transformation, and we can apply the Schwarz-Christoffel transformation. 
When (Y + j3 + y > 1, we have a similar mapping function replacing the integral representa- 
tions of hypergeometric functions in the formula by the corresponding integral representa- 
tions of the hypergeometric functions converging at (Y, p, and y. 
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14. Ordinary Differential Equations 

(1) Solution by Quadrature 

a,b,c, . . . are integral constants. 

(1) Solution of the First-Order Differential Equations (- 313 Ordinary Differential Equations). 
(i) Separated type dy/ dx = X(x) Y(y). The general solution is 

s Y 4 -= 
Y(Y) s xX(x)dx+c. 

(ii) Homogeneous ordinary differential equation dy / dx =f( y / x). Putting y = ux, we have 
du/dx =[f(u)- u]x, and the equation reduces to type (i). The general solution is 

x=cexp[ I’&] (u= G). 

(iii) Linear ordinary differential equation of the first order. dy/dx +p(x)y + q(x) = 0. The general 
solution is 

Y =[c-14(x)P(x)dx]/P(x), 

where 

P(x)=exp[ /p(x)dx]. 

(iv) Bernoulli’s differential equation dy/dx +p(x)y + q(x)ya=O (af0, 1). Putting z =ylmcr, the 
equation is transformed into 

dz/dx+(l-a)p(x)z+(l-a)q(x)=O, 

which reduces to (iii). 
(v) Riccati’s differential equation dy/dx + ay* = bxm. If m = - 2,4k/(l- 2k) (k an integer), this 
is solved by quadrature. In general, it is reduced to Bessel’s differential equation by uy = u’/ u. 
(vi) Generalized Riccati differential equation dy/dx +p(x)y’+ q(x)y + r(x)=O. If we know one, 
two, or three special solutions y =yi(x), the general solution is represented as follows. When y,(x) 
is one known special solution, 

y=v,(x)+PcX)/[~p(x)p(x)dx+c], 

where 

P(x)=exp 
[ 

-I{q(x)+2p(x)yl(x)}dx 1 
When y,(x), y*(x) are the known solutions, 

Y -Yl (xl 

y-yz(x) =cexp 
dx){ydx)-yh)}dx . 1 

When y,(x), yz( x), ys( x) are known solutions, 

Y-Y,(x) Y3(x)-YI(x) 

Y-Y*(X) =c Y3(X) -Yz(X) . 

(vii) Exact differential equation P(x,y)dx + Q (x,y)dy =O. If the left-hand side is an exact 
differential form, the condition is aP/ ay = aQ/ ax. The general solution is 

sPdx+j(Q-$/Pdx)dy=c. 

(viii) Integrating factors. A function M (x,y) is called an integrating factor of a differential 
equation P (x,y)dx + Q (x,y)dy = 0, if M (x,y)[P (x,y)dx + Q (x,y)dy] is an exact differential 
form dq(x,y). If we know an integrating factor, the general solution is given by cp(x,y)= c. If we 
know two independent integrating factors M and N, the general solution is given by M/N = c. 
(ix) Clairaut’s differential equation y = xp +f(~) (p = &/dx). The general solution is the family 
of straight linesy = cx +f(c), and the singular solution is the envelope of this family, which is 
given by eliminating p from the original equation and x +Y(P) -0. 
(x) Lagrange’s differential equation y = xv(p) + q(p) (p z dy/dx). Differentiation with respect 
to x reduces the equation to a linear differential equation [q(p) -p](dx/ dp) + cp’(p)x + I/J’(~) = 0 
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with respect to x, p (see (iii)). The general solution of the original equation is given by eliminating 
p from the original equation and the solution of the latter linear equation. The parameterp may 
represent the solution. If the equation p = q(p) has a solutionp =pO, we have a solutiony =p,,x + 
JI(pe) (straight line). This solution is sometimes the singular solution. 
(xi) Singular solutions. The singular solution of f(x,y,p) = 0 is included in the equation resulting 
from eliminatingp fromf= 0 and af/ ap = 0, though the eliminant may contain various curves 
that are not the singular solutions. 
(xii) System of differential equations. 

eq. (1) dx:dy:dz=P:Q:R. 

A function M(x, y, z) is called a Jacobi’s last multiplier for eq. (1) if M is a solution of a partial 
differential equation (aMPI&) + (aMQ/ay) + (aMR/az) = 0. If we know two independent last 
multipliers M and N, then M/N = c is a solution of eq. (1). If we know a last multiplier M and 
a solution S= a of eq. (l), we may find another solution of (1) as follows: solving f= a with re- 
spect to z and inserting the solution into eq. (l), we see that M(Qdx - Pdy)/f= is an exact differen- 
tial form &3(x, y, a) in three variables x, y, and a. Then G(x, y,f(x, y, z)) = b is another solution of 
eq. (1). 

(2) Solutions of Higher-Order Ordinary Differential Equations. The following (i)-(iv) are several 
examples of depression. 
(i)f(x,y@),y@+‘), . . ..y(“))=O (O<k < n). Setytk)= z; the equation reduces to one of the (n - 
k)th order in z. 
(ii) ~(Y,Y’,Y” , . . . ,y (“)) = 0. This is reduced to (n - l)st order if we consider y’ =p as a variable 
dependent on y. 
(iii) y” =f(y). The general s01ut+~ is given by 

x=a+- 
G J 

2 f(y)dy+b 1 dr. 

We have a similar formula for y(n)=f(y(“-2)). 
(iv) Homogeneous ordinary differential equation of higher order. If the left-hand side of I;(x,y, 
y’, . . . ,y (“I) = 0 satisfies the homogeneity relation F(x, py, py’ , . . . . py(“))=paF(x,y,y’, . . . . y(“)), the 
equation is reduced to one of the (n- l)st order in u by u=y’/y. 

If FsatisfiesF(px,p’y,p’-‘y’, . . . . pi-ny(“))=paF(x,y,y’, . . . . y(“)), thenu=y/x’, t=logx 
reduces the equation to one of type (ii) not containing t. 
(v) Euler’s linear ordinary differential equation. 

p”(X)Xny(“)+pn-,(X)X”-ly(n-‘)+ . ..+Pl(x)xY’+Po(x)Y=q(X) 

is reduced to a linear equation by t = logx. 
(vi) Linear ordinary differential equations of higher order (exact equations). A necessary and 
sufficient condition that L[ y]z ZTcOpj(x) y (j)= X(x) is an exact differential form is 
Z;,,,( - l)$y)=O, and then the first integral of the equation is given by 

n-l n-j-1 

2 2 (-l)“p~~j+,y”‘=IX(x)dx+c. 
j-0 k=O 

(vii) Linear ordinary differential equation of higher order (depression). 

LLylr i: pj(x>y”‘=x(x). 
j=O 

If we know mutually independent special solutionsy,(x) , . . . ,y, (x) for the homogeneous linear 
ordinary differential equation L[ y] = 0, the equation is reduced to the (n - m)th linear ordinary 
differential equation with respect to z by a transformation z = A ( y), where A ( y) == 0 is the mth 
linear ordinary differential equation with solutions y,(x) , . . . ,y,(x). For example, if m = 1, the 
equation is reduced to the (n - l)st linear ordinary differential equation with respect to z by the 
transformation 

Also, if n = m = 2, the general solution is 

Y=C,Y,+CZYZ-YI / Dzdx+y, Tyldx, s 

where T(x)=X(x)/[y, (x)y;(x)-y2(x)y;(x)]. The denominator of the last expression is the 
Wronskian of y, and y2. 
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(viii) Regular singularity. For a linear ordinary differential equation of higher order, 

eq.(l) x”y(“)+x”-‘pl(x)y(“-‘)+ . . . +~~(x)y=O, 

the point x = 0 is its regular singularity if p,(x), . . . ,p,(x) are analytic at x = 0. 

We put po= 1 and 

If p is a root of the characteristic equation&(p) =0 and p+ l,p+2, . . . are not roots, we can 

determine the coefficients c, uniquely from 
m 

eq. (2) 2 q,L-,(P+v)=O (m= 1,2, . ..>. 
v=o 

starting from a fixed value c,, (#O), and the series y = x~Z~~o=ocVxy converges and represents a 
solution of eq. (1). If the differences of all pairs of roots of the determining equation are not 
integers, we have n linearly independent solutions of eq. (1) applying the process for each 
characteristic root. 

If there are roots whose differences are integers (including multiple roots), we denote such a 
system of roots by pi, . . ..pI. We arrange them in increasing order, and denote the multiplicities 

of the roots bye,, . . . . e,, respectively. Put qk = pk -pi (k = 1,2, . . . , I; 0 = q, < q2 < . . . < 4,). Take 

N > q, and a constant c (# 0). Let X be a parameter, and starting from cc= co(X)- eIIz=, fo(X + 
k), we determine c, = c,(h) uniquely by the relation (2). Putting 

mk-ek+ek+l+ . . . +e, (k= 1, . . ..I) forhin m,+,<h<m,-1, 

the series 

eq. (3) 

converges and gives e, independent solutions of eq. (1). Hence for k = 1, . . ,I, we may have 

C’ k- ,ek = m, mutually independent solutions of (1). Applying this process to every characteristic 
root, we have finally n independent solutions of (1) (Frobenius method). 

In the practical computation of the solution, since it is known to have the expression (3) we 
often determine its coefficients successively by the method of undetermined coefficients. 

(3) Solution of Linear Ordinary Differential Equations with Constant Coefficient (-- 252 Linear 
Ordinary Differential Equations). Let cui, ojk be constants. We consider the following linear 
ordinary differential equation of higher order (eq. (1)) and system of linear ordinary differential 
equations (eq. (2)). 

eq. (1) i: qy(‘)=X(x). 
i=O 

eq. (2) yj= i ajok+Xj(x) (j=l, . . ..n). 
k=l 

(i) The general solution of the homogeneous equation (cofactor) is given by the following 

formulas: 

for eq. (1) y=xjexp&x (j=O,l,,..., e,-l;k=l,..., m), 

for eq. (2) Yjtx)= 2 pjk(x)expAkx (j-1, . . ..n). 
k=l 

where h ,, . . . ,A,,, are the roots of the characteristic equation of eq. (1) or eq. (2) given by 

eq. (1’) i aJi=O, 
i=O 

eq. (2’) det( ojk - Mjk ) = 0, 

respectively. We denote the multiplicities of the roots by e,, . . , e, (e, + . . . + e, = n); pjk(x) is a 
polynomial of degree at most e, - 1 containing ek arbitrary constants. 

If all the coefficients in the original equation are real, and the root 1, = pk + iv, is imaginary, 

then ;ik = pk - iv, is also a root with the same multiplicity. Then we may replace exp 1,x and 
exp & x by exp pk x cos v, x and exp pk x sin V~ x, and in this way we can represent the solution using 
real functions. 

(ii) Inhomogenous equation. The solution of an inhomogeneous linear ordinary differential equa- 
tion is given by the method of variation of parameters or by the method described in Section 
(2)(vii). 
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We explain the method of variation of parameters for eq. (2). First we use (i) to find a funda- 
mental system of n independent solutions y, = Q(X) (k = 1, . . . , n) by (i)). Insertingyj =: 
Cz_ ,c~(x)~~~(x) into eq. (2) we have a system of linear equations in the c;(x). Solving for the 
c;(x) and integrating, we have Q(X). 

Special forms of X(x) or Xj(x) determine the form of the solutions, and the parameters may 
be found by the method of undetermined coefficients. The following table shows somle examples 
of special solutions for eq. (1). In the table, a, k, a, b, c, are constants, p,, q, are polynomials of 
degree r, and I, is the operator defined by 

cosax.F(x)dx-cosaxJsinax.F(x)dx 1 (a#O). 

X(x) 

p,(x) 
kea* 

e”%(x) 

Condition 

X = 0 is an m-tuple root of( 1’) 
X= a is anm-tuple root of (1’) 
h= a is anm-tuple root of (1’) 

Special Solution 

x mqr(x) 
cx”e*” 

xmq,Wear 
cos( ax + b) 

sin( ax + b) 

(l’)=cp(X*)+h$(h’), and 

cp(-a*)+aQ(-a*)#0 
c,cos(ax+ b)+ c,sin(ax+ b) 

cos(ax + b) 

sin( ax + b) 

(1’) = g(Q/.f(~*) andfG*) 
is divisible by (X2 + a2)m 

(but not by (X2 + a2)m+1) 

cos(ax+ b) 
c(lJrn 

sin( ax + b) 

(II) Riemann’s P-Function and Special Functions (- 253 Linear Ordinary Differential 
Equations (Global Theory)) 

(1) Some Examples Expressed by Elementary Functions. A,B are integral constants. 

(x-a)‘-‘(x-b)“-‘(x-CC)“-‘dx (h+f.~+v=l). 

These are for finite a, b, c. If c = co, x - c should be replaced by 1. 

p[e op x/z[ Ae”“+B&” (a+(~‘), 
eDLX(Ax+B) ((Y=(Y)). 

=A+B e”“x”-‘dx 
I 

(a#O). 

Riemann’s P-function is reduced to Gauss’s hypergeometric function with parameters a =h + )J 
+ v, p =X + p + v’, y = 1 +X+x’ by transforming a, b, c to 0, 1, co by a suitable linear transforma- 
tion and by putting z = x-“(x - I)-py. 

(2) Representation of Special Functions by Riemann’s P-function. 
(i) Gauss’s hypergeometric differential equation x( 1 - x) y ” + [ y - (a + /? + 1)x] y’ - & = 0. 

y=P ; 

i 

1 00 
0 a x. 

1-y v-a-P P 1 

A special solution is F(a,,&y; x) (- 206 Hypergeometric Functions). 
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(ii) Confluent hypergeometric differential equation xy” -(x - p)y’ - Xy = 0. 

y=joh ,E, x/. 

A special solution is 

* r(X+k) Up) Xk 
,F,(&P;x)= 2 ___ 

k=() I-(h) r(=+ 

(iii) Whittaker’s differential equation y” + 
1 k (1/4)-n’ 

- 4 + x + 
X2 1 y=o. 

1 
cc 0 

y=P lk‘ 1/2+n x . 
-l/2 -k 1/2-n 1 

Special solutions are M/c,,, (X>, w,,,(X). 

(iv) Bessel’s differential equation x5” + xy’ +(x2 - v2)y = 0. 

Special solutions are J,(x), N,(x) (- 39 Bessel Functions). When m = 0, 1,2, . . , Jm-1,2(~) = 
(-l)m2m+1’2.-1’2xm-1’zdm(cos~)/d(x2)m. 
(v) Hermite’s different equation (parabolic cylindrical equation) y” - 2xy’ + 2ny = 0. 

y-‘[;p2 ,b /II. 

When n = 0, 1,2, . . . , the Hermite polynomial Hn(x)=( - l)“2-“/2ex2d”(e-xz)/dx” is the solu- 
tion. 
(vi) Laguerre’s differential equation xy” + (I- x + 1)~’ + ny = 0. 

i 

00 0 
y=P b 

0 0 x’ 
1 I+;:1 -1 I 

When n = 0, 1,2, . . , the Laguerre polynomial L!,(x) = (l/n!)x-‘e”d”(x”+‘e-“)/dx” is the 
solution. 
(vii) Jacobi’s differential equation x(1 -x)y” + [q -(p+ l)x]y’+ n(n+p)y=O. 

y=P l-q q$ *El x 
1 

0 

0 0 -n I 

When n=0,1,2, . . . . the Jacobi polynomial 

G,(p,q;x)= 
r(q)x l-q(lvx)q-P d”[Xq+“-l(l-X)P+n-q] 

r(n + 4) dx” 

is the solution. 
(viii) Legendre’s differential equation (1 - x2)y” - 2xy’ + n(n + 1)y = 0. 

y=p :, -ol O” 
i 

n+l x 
0 0 -n i 

When n=0,1,2, . . . . the general solution is 

A(x2- 1)“+l?(x2- 1)” 
. 

The Legendre polynomial P,(x)=[d”{(x2- l)“}/dx”]/2%! is a special solution. 
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(3) Solution by Cylindrical Functions of Ordinary Linear Differential Equations of th’e Second 
Order. We denote cylindrical functions by C,(x) (- 39 Bessel Functions). 

Equation I Solution 

y” + 
I-2a 
-y--y’+ ( pyxq2+ 

[ 

lx=- v=y= 

X2 1 
y=o y=x”c”‘(pxy 

I-2a 
2 2 

y”+ 7 
[ 

-2fiyixY-l y’+ 

1 [ 

“‘,: ’ -&(y-2a)ixym2 y=O y=x”exp(iPxY)CV(fixY) 1 
y”+ +- 

[ 

2u(x) y’+ 1- 5 + u(x)‘- U!(X)- 1 i ~~y~o ( y =exp[ Ju(r)dx]C,(x) 

L A 
y”+ (gyp-=y =o y = vi c,,/2”(ax”) 

y" + (e2x - v2)y = 0 
y = Cp(ex) 

Y = cc Px) 
y = C,(ix) (modified 

Bessel function) 

(III) Transformation Groups and Invariants 

of a given continuous transformcation group 

be that of its extended group. 

We have 

We put 

4 
P=x’ 

d=r r=-. 
dx= 

Let (Y, /3 and y be invariants of the Oth, first, and second order, respectively. The general form 
of the diffferential equation of the first or of the second order invariant under U is given by 
@(o,P)=O (or P=F(cr)), and \I’(cu,p,y)=O (or y= G((Y,~)), respectively, where F, 49, \k, G 
denote arbitrary functions of the corresponding variables. 

Group With Infinitesimal 
Transformation U T 

0 
1 

9 

1 
0 

-Y X 

0 Y 
X 0 

X Y 
X -Y 

CL-X VY 
P V 

0 h(x) 

k(y) 0 

0 
0 

1 +p= 

P 

-P 

0 

-2P 

(v- P)P 
0 

h’(x) 

- k’(y)p= 

0 k(y) k’(y)p 

4x1 0 - h’(x)p 

0th 

X 

Y 

x=+y= 
X 

Y 

Y/X 
XY 

V/X” 
‘X - w  

X 

Y 

X 

Y 

Invariants 

1st 

P 
P 

(Y - xp)l(x +YP) 
P/Y 
xP 

P 

X’P 
x’-‘/~ orpx/y 

P 

h(x)p - h’(x)y 

1 k’(y) 

P-koX 

4x)p 

2nd 

r 
r 

r/(1 +pq3/;: 

r/Y 
x2r 

xr 

x3r 

v/x 
v-p-1 

r 

h(x)r- h”(x) y 

L + k”(y) -- 
P3 k’(y)P 

k’b)p2 ---- 
k;.) [k(y)12 

:h(x))=r+ h(x)h’(x)p 

r 1 Note 

(1) 
(1) 

(2) 
(3) 

(3) 

(4) 

(5) 

(6) 
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Group With Infinitesimal 
Transformation U Invariants Note 

4 7) 

0 4X)WY) 

xh(x) yh(x) 

Y X 

3 

h’(xMy) 
+ h(xP’(y)p 

h’(x)(y - XP 1 

1 -p= 

( 1 
p-f h(x) (&-l)W 

+ h’(x) 

x=-y= 
l-p x+y 

i-qx-y Or (1 -pTz)J/z 

(x-YP)lU +P)(x -v) 

Notes 
(1) Parallel translation. 
(2) Rotation. 
(3) Affine transformation. 
(4) Similar transformation; the equation is a homogeneous differential equation. 
(5) Linear differential equation. 
(6) Separated variable type. 

(7) When k(y)=y”, the equation is Bernoulli’s differential equation. 

Reference 

[l] A. R. Forsyth, A treatise on differential equations, Macmillan, fourth edition, 1914. 

15. Total and Partial Differential Equations 

(I) Total Differential Equations (- 428 Total Differential Equations) 

Suppose we are given a system of total differential equations 
n 

dzj= 2 Pjk(x;z)dxk (j= 1,2, . . . . m). 
k=l 

A condition for complete integrability is given by 

apjk (X;z) 
+ c azi P,[(x;Z)= 

apj, tx; z> 
+c 

@j, (x;z) 
I azi 

Under this condition, the solution with the initial condition (xy, . . , xz; zy, . . , zi) is obtained as 
follows: First, solve the system of differential equations dzj/dx, = q1 (x1,x!, . . . , x,“; z) in x1 with 
the initial condition zj(xy) = z;, and denote the solution by zj = cpj(x,). Next, considering x1 as a 
parameter, solve the system of differential equations dzj/dx, =&(x1, x2,x$, . , xt; z) in x1 with 

the initial condition zj(x4 = cpj(x,), and denote the solution by zj = cpj(x,, x2). Repeat the pro- 
cess, until we finally have zj = cpi(x,, . . . , x”), which is the solution of the original equation. Or, 
if we have m independent first integrals fj(x; z) =cj of the equation dzj/dx, = Pjl(x; z), we may 
transform the equation into duj= C;=r Qjk(x; u)dx, by the transformation uj=fi(x; z). Since the 
Qjk(x; u) do not involve x1 and the equation is a completely integrable total differential equation, 
we have reduced the number of variables. We obtain the general solution by repeating this 
process n times. 

For 

P(x,y,z)dx+Q(x,,,z>dy+~(x,y,z)dz=O 

(n = 3,m = l), the complete integrability condition is 
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(II) Solution of Partial Differential Equations of First Order (- 322 Partial Differential 
Equations (Methods of Integration), 324 Partial Differential Equations of First Order) 

Let z be a function of x and y, and 

p_=az/ax, q=az/ay, Ea2z/ax2, ssa*z/axay, tra2z/ay2. 

We consider a partial differential equation of the first order F(x,y,z,p,q)=O. 

(1) The Lagrange-Charpit Method. We consider the auxiliary equation 

dx dy dz - d! -4 -=-= 
Fp F4 pFp + qF4 

=-=-2 
4 + PF, Fy + qFz 

which is a system of ordinary differential equations. Let G(x,y,z,p,q)= a be the solution of the 
auxiliary equation. Using this together with the original equation F = 0, we obtain p = P (x,y, z, a), 
q= Q (x,y,z,a), and the complete solution by integrating dz = P dx+ Q&. If we know another 

solution of the auxiliary equation H (x,y, z,p, q) = b independent of G = a, we have the complete 
solution z=@(x,y,a,b) by eliminatinup and q from F=O, G=u, and H= b. 

(2) Solution of Various Standard Forms of Partial Differential Equations of the First Order. 
The integration constants are a, b. 
(i) f(p, q) = 0. The complete solution is z= ax + rp(u)y + b, where the function t = ~(a) is defined 
byf(t,a)=O. 
(ii) f(px, q) = 0, f(x, qy) = 0, f(p/z, q/z) = 0. These equations reduce to (i) if x = ex, y = e’, .z = e’, 
respectively. 

(iii) f(x,p,q)=O. If we can solve forp= F(x,q), the complete solution is z=JF(x,u)dx+uy+ b. 
A similar procedure applies to f( y,p, q) = 0. 
(iv) f(z,p, q) = 0. Solvef(z, t, at) = 0 for t = F(z, a). The complete solution is then given by x + 

uy+ b= Jdz/F(z,a). If we eliminate a and b from the complete solution cP(x,y,z,u,b)=O and 
8 @/ aa = a @/ ab = 0, we have the singular solution of the original equation. 

(v) Separated variable type f(x,p)=g(y,q). Solve the two ordinary differential equations f (x,p) 
= a and g(y,q)= a for the solutionsp = P(x,u) and q= Q (~,a), respectively. Then the complete 

solution is z=jP(x,u)dx+IQ(y,u)&+b. 

(vi) Lagrange’s partial differential equation Pp + Qq = R. Here P, Q, R are functions of x, y, and 
z. Denote the solutions of the system of differential equations dx : & : dz = P : Q : R by u(x,y,z) = 
a, u(x,y,z) = b. Then the general solution is @(u,u)=O, where @ is an arbitrary function. A 

similar method is applicable to 

i pj<x 

j=l 

1, . . . . x& = R(x,, . . . . x,). 
J 

If we have n independent solutions uj(x) = uj of a system of n differential equations dxj/q = 
dz/R (j-l, . . . . n), the general solution is given by @(u,, . . . , u,) = 0. 
(vii) Clairaut’s partial differential equation z =px + q y +f(p,q). The complete solution is given 
by the family of planes z = ax + by +f(u, b). The singular solution as the envelope of the family 
of planes is given by eliminating p and q from the original equation and x = - af/ap and 
Y= - af/aq. 

(III) Solutions of Partial Differential Equations of Second Order (- 322 Partial Differential 
Equations (Methods of Integration)) 

(1) Quadrature. Here cp and Ic, are arbitrary functions. 

(i) r =f(x). The general solution is z = ~~f(x)dxdx + cp(y)x + $(y). A similar rule applies to 

t =f(y). 
(ii) s =J(x, y). The general solution is z = ssf(x, y)dxdy + q(x) + $(y). 
(iii) Wave equation. r-t = 0. The general solution is z = cp(x + y) + $(x - y). 
(iv) Laplace’s differential equation. r + t = 0. Let x + iy = [ and cp, I+$ be complex analytic func- 
tions of [. The general solution is z = cp([) + I+@), and a real solution is z= cp(c) + q(r). 
(v) r + Mp = N, where M and N are functions of x and y. The general solution is given by z = 
j[jL(x,y)N (x,y)dx+cp(y)]/L(x,y)dx+$(y), L(x,y)=expj[M(x,y)dx]. In the integration,yis 
considered a constant. 

A similar method is applicable to s + Mp = N, s + Mq = N, and t + Mq = N. 

(vi) Monge-Ampere partial differential equation. Rr + Ss + Tt + U(rt -s2) = V, where R, S, T, U, V 
are functions of x, y, z, p, q. 
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First, in the case U = 0, we take auxiliary equations 

eq. (1) Rdy*+ Tdx*-Sdxdy=O, 

eq. (2) Rdpdy+ Tdqdx= Vdxdy. 

Equation (1) is decomposed into two linear differential forms Xi dx + Yi & = 0 (i = 1,2). The 
combination with (2) gives a solution u,(x,y,z,p,q)= a,, t+(x,y,z,p,q)= bi (i= 1,2), and we have 
intermediate integrals Fi(ui, oi) = 0 (i = 1,2) for an arbitrary function Fi. We have the solution 
of the original equation by solving the intermediate integrals. If S2#4RT, two intermediate 
integrals are distinct, and hence we can solve them in the formp = P(x,y,z), q= Q (x,y,z), and 
then we may integrate dz = Pdx + Q+. 

Next, in the case U#O, let A, and X2 be the solutions of U*A* + USA + TR + UV = 0. We have 
two auxiliary equations 

i 

X,U&+ Tdx+ Udp=O, 

h,Udx+Rafv,+ Udq=O, Or ( 

A,Udy+ Tdx+ Udp=O, 

h,Udx+ Rdy+ Udq=O, 

and from the solutions ui = a,, vi = bi (i = 1,2), we have intermediate integrals Fi(ui, I+) = 0 (i = 1,2). 
If 4( TR + U V) # S2, I, # 1,, we have two different intermediate integrals & = 0. Solving the simul- 
taneous equations Fi = 0 in p = P (x, y, z), q = Q(x, y, z), we may also find the solution by integrat- 
ingdz=Pdx+Qdy. 
(vii) Poisson’s differential equation. P = (rt - s*)“Q, where P = P(p, q, r, s, t) is homogeneous with 
respect to r, s, t and we assume that Q = Q(x, y, Z) satisfies aQ/az # a, for x, y, z when rt = s*. The 
equation P(p, p(p), r, r@(p), r{@(p)}*)=0 is then an ordinary differential equation in cp as a func- 
tion of p. We first solve this for cp, and then solve a partial differential equation of the first order 
q=(p(p) by the method (11)(2)(i). 

(2) Intermediate Integrals. Letf(x,y,z,p,q,r,S,f) be polynomials with respect to r, s, t. Suppose 
thatf(x,y,z,p,q,r,s,t)=O has the first integral u(x,y,z,p,q)=O. We insert 

( 
*+p~+sik au, 

I/ ( 
au au au 

t=- 7&+qz+sap 
V 

au 
r=- ax a4 ap z 

into the original equation, and replace all the coefficients that are polynomials of s by 0. We thus 
obtain a system of differential equations in U. If u and u are two independent solutions of this 
system, an intermediate integral of the original equation is given in the form (a(u,u)=O. 

(3) Initial Value Problem for a Hyperbolic Partial Differential Equation L[ U]Z u,.. + au, + bt+ 
+cu=lz. 

+ u$$-Rg)-{acos(n,x)+bcos(n,y)}uR ds, 1 
where A is the hatched region in Fig. 19, and the conormal n’ is the mirror image of the normal 
n with respect to x =y. 

u(&~)=(uR),+j-cAR(u~+ou)dy+lBR(u~+bu)dx+j-j. R(x,y;t,v)h(x,y)dxdy 
c 0 

(characteristic initial value problem). 

x 

Fig. 19 Fig. 20 

Here q is the hatched rectangular region in Fig. 20. R (x,y ; 5,~)) is the Riemann function; it 
satisfies 

M [R (x,Y; 5, dl = 0, 

RX--bR=O (on x=[), 

R,,-aR=O (ony=n), 

R(5,~;5,4= 1. 
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Example (i). uxr = h(x,y). R (x,y; 5,~) = 1. 

z&T))= ;LQ + u,l+ $l,“[ u,cos(n,x)+u,cos(n,y)]ds+~~-h(x,y)dxc$. 

Example (ii). Telegraph equation uxy + cu = 0 (c > 0). R (x,y ; 5,~) = J,,( 2vm- q) ). 

Example (iii). uxu + -$-(u,+uy)=O (n= a constant >O). 

(IV) Contact Transformations (- 82 Contact Transformations) 

We consider a transformation (xi, . . . ,x,,; z)+(Xi, . . . , x,;z). weputpj=at/axj, esaz/axj 
(j=l , . . . , n). The transformation is called a contact transformation if there exists a function 
p(x,z,p)#O satisfying dZ- ZPjdXj=p(x,z,p)(dz -Zpjdxj). 

A transformation given by (2n + 1) equations D = 0, 8 Q/ax, + P+3 52/ aZ = 0, a 3/ &xi + 
pja s2/az = 0 generated by a generating function O(x,z,X, Z) is a contact transformation. 

Generating Function 

zxjxj+z+z 

zxjz+z*-zxjxj-zz 

2(X, - Xj)2 + (Z - z>* - a* 

z(q-xj)*-z*-z* 

P 

-1 

Z/(22 - z) 

1 

-& 2 
J 

Transformation 

xj= -pi, Pj’ -xj, 

z=Zpjxj-z 

xi = -pjz, 

pi = - (2Xj - Xj)/(2Z - z) 

xj=xj-pjz, 

z$= -pj(cp;- 1)-l/*, 

z=z(Cp;- 1)“2 

Legendre’s 

transfo:rmation 

Pedal transformation 

Similarity 

(V) Fundamental Solutions (- 320 Partial Differential Equations H) 

A function (or a generalized function such as a distribution) T satisfying LT= 6 (8 is rhe Dirac 
delta function) for a linear differential operator L is called the fundamental (or elementary) 
solution of L. In the following table, we put 

(Heaviside function). 

J, is the Bessel function of the first kind; K, and Z, are the modified Bessel functions. (-Table 
19.IV, this Appendix.) 

(if x,, > 0 and the quantity under the radical sign is positive), 

(otherwise). 

(For Pf (finite part) - 125 Distributions and Hyperfunctions.) 

Operator Fundamental Solution 

d/dx 

d” 
dx” 

an/ax,ax2...ax, 

l(x) 

I 

xm-‘/(ml- l)! (x >O) 

0 @GO) 

l(~,)W2)...W”) 

1 1 
(i=&i) 

2n x+iy 
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Operator 1 Fundamental Solution 

A I - r 5 /2(n-2)7rnj2 + 
H) 1 (n>3) 

(1/2n)logr (n=2) 

/2”(m-1)!*“‘2 fi (2k-n) - 
1 1 ( n - 2m is a positive integer 

k=l 
yn-2m or a negative odd integer 

kfm-h 

27P -fewK 
(m-l)! 

(n,2,-m(2~~) 

0” (Pfs 2m-n)/T(“/2)-122m-l (m- l)!r[m+ 1 -(n/2)] 

(O-A)” 
(A is real and ~0) 

(VI) Solution of Boundary Value Problems (- 188 Green’s Functions, 323 Partial Differential 
Equations of Elliptic Type, 327 Partial Differential Equations of Parabolic Type) 

~[u]=Au,,+2Bu,,+Cu,,+Du,+Eu,+Fu, 

M[v]=(Av),,+2(Bu),+(Co),-(Dv),-(Eu),+Fv. 

Green’s formula ~S,{vL~YI-UM~vl}dXQ=~(P(U~-v~)+Q~~)~~. 

eq. (1) 
Acos(n,x)+Bcos(n,y)=Pcos(n’,x), 
Bcos(n,x)+Ccos(n,y)=Pcos(n’,y). 

Q=(A,+B,-D)cos(n,x)+(B,+C,-E)cos(n,y). 

The integration contour C is the boundary of the domain D (Fig. 21), n is the inner normal of 
C, and n’, called the conormal, is given by (1). 

- 
Fig. 21 

(1) Elliptic Partial Differential Equation L[ u]= u,, + z+~ + au, + bu,, + cu = h. 

Here G (x,y ; 5, n) is Green’s function, which satisfies M (G (x,y; 5, n)) = 0 in the interior of D 

except at (x,.Y)#(& 4, and 

G (x,y; 5,~) = - (1/27r)log{w + a regular function, 

G(x,~;5>d=O (Cw)EC). 
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a% 
(2) Laplace’s Differential Equation in the 2-Dimensional Case s + - =O. 

39 
u(x,y)Ezi(r,cp)=Ref(z) (z~x+iy=re”). 

(i) Interior of a disk (r < 1). 

(ii) Annulus (0 < q < r < 1). 

(Poisson’s integration formula). 

f(z)= 2 ( &2”6(l>v)L (W)4-Jo2”o(~,~)S~(w)d~-olo~z) 

(Villat’s integration formula). 

w= ~(ilogz+~), a=(~-~)~2~ {~(l,cp)-ti(q,cp))&, $=-;logq. 

Here St and 5s are the Weierstrass {-functions ( - 134 Elliptic Functions) with the fu:ndamental 
periods 2w, and 2~s. 

(iii) Half-plane (y > O).f(z)= i/r:% dt, u(x,y)= -l-/-t (xy:j’:,z dt. 

(3) Laplace’s Differential Equation in the 3-Dimensional Case. 
(i) Interior of a sphere (r < 1). 

l-r2 

(1-2rcosy+r2)3’2 
sinOdOd@, 

where 

cosy=cosOcosO+sinOsinBcos(@-cp). 

(ii) Half-space (z > 0). 

u(x,Y,z)= &y= 
4&%0) 

--OO {(x-~)2+(y-1))2+z2}3’2 
4’4. 

(4) Equation of Oscillation (Helmholtz Differential Equation) Au + k2u = 0. Let u,, be the nor- 

malized eigenfunction with the same boundary condition for the eigenvalue k,. Green’s function 
is 

G(J’,Q)= E 
un(P)u;(Q) 

k2- k,Z 

Domain 
Boundary 
Condition Eigenvalue Eigenfunction 

rectangle 
O<x<a, O<y< b 

circle O<r<n 

annulus b < r < a 

fan shape 
O<r<a, O<cp<a 

rectangular parallelepiped 
O<x(a, O<y<b, 

O<z<c 

sphere O<r<a 

u=o knm=n 

(n,m=12. ) > , .. 

u=o k,,, is the root of J,(kx)=O 

k,, is the root of 

u=o J,,, (ka)N,,, (kb) 
-J,,,(kb)N,,,(ka)=O 

u=o 
k,, is the root of J,, (ka) = 0 

(/J==r/(Y) 

au %=O 

au 
k,, is the root of #, (ka) = 0, 

z=o where 

4dPk~~/2 Jn+(l,2)W 

sinnn:sinm!sY 
b 

J,,,(k,,r)e”q 

J,,, (L,,r) N, (k,,,,,r) 

Jm(k,,,,,a) N,,,(k,,a) 1 

ekimq 

cosn7r~cosmaYcosC~ 
b 

(5) Heat Equation. $ = K Au A = 2 + . . . + 2 ; K is a positive constant 
I m 
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tion: hu - k au/an = q, where h and k are nonnegative constants with h + k = 1, and ‘p is a given 

Here V is the domain, and S is its boundary. G (P, Q, t) is the elementary solution that satisfies 
aG/at = KAG in V and kaG/an = hG on S, and further in the neighborhood of P= Q, t =O, it 
has the form G (P, Q, t) = (4mct)- m&R2/4rr + terms of lower degree (R =m). 
(i) -oo<x<oo,G=U(x-~,t),whereU(x,t)=e-”*/4”’/~4 not (similar in the following case 
(ii)). 
(ii) 0 < x < co. u(O,t)=O: G= U(x-.$‘,z)- C/(x+&t). 

j$=hu: G= U(X-&t)+ U(x+&t)-2he*t 
s 

-5e’W(x-q,f)dq. 
-CC 

(iii) 0 < x < I. u(O,t)=u(l,t)=O: G=4( $I+( $1~). 

$(O,t)= $!,r)=O: .=a( $I$+( HIT). 

u(O,t)= $(I,r)=O: 

Here 9 is the elliptic theta function:a(x[T)=&(x,~)= I +2~ei~“2cos2nn x. 
(iv) O<x<co, o<y<w. u(x,O,r)= u(O,y,r)=O: 

G=(e-(“-~2/4r~-e-(“+~2/4~r)(e-~--rl)2/4.f_e-(y+1,2/4”‘)/4nKt 

(v) o< x< a, O<y<b. u = 0 on the boundary: 

(vi) O~x<a,O<y~b,O~z~c.u=Oontheboundary: 

G=-& 2 5 2 exp 
I=1 m=l n=l 

kx Id m7v mq nTz n77.C 
X Sin~sm~sin~sinq-sincsmc. 

(vii) 0 < r < 00. Spherically symmetric. Ix/= r, /,$I= r’: 

G = (,-(+?/4K~ - e-(r+r’)*/4rr)/8~rrl(~K~)‘/z. 

(viii) 0 < r < a. Spherically symmetric. u = 0 on the boundary: 

G= &f, e-Kn”2t/“2sin!?fIsin!!?$~ 

(ix) a < r < cc. Spherically symmetric. kau/ ar - hu = 0 on the boundary: 

G= 1 

8arr’(aKt)“2 
e -(l--1,)2/41f+e-(‘+‘,-2’)z/4”‘_ ah+ k -&-(4?rKt)"' 

Xexp( Kf(~~+(r+r’-2a)~) 

X erfc 

(x) 0 < r < co. Axially symmetric: 

(xi) 0 < r < a. Axially symmetric. 

Ga; e -(~+“3/4K*Z~(rr~/2Kt)/4s~t. 

kz - hu =0 on the boundary: 

JO (rdJ0 (r’4 

G= f 2 {Jo(acu,))2+ (J, ((q-“’ 

where CI” is given by ka,/,(aa,) - h Jo(m,) = 0. 
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16. Elliptic Integrals and Elliptic Functions 

(I) Elliptic Integrals (- 134 Elliptic Functions) 

(1) Legendre-Jacobi Standard Form. 

Elliptic integral of the first kind 

F(kv)= 
s 

o’ vle;,in2i = 
s 

sin q 

o ~(, _ t2tl _ k2t2) (k is the modulus). 

Elliptic integral of the second kind 

Elliptic integral of the third kind 

s 

‘p 
fl(v,n,k)= 

4 = 
o (l+nsin*#)j/l-k2sin2$ s 

sin ‘p 
dt 

c (l+nt*)j/(l-t*)(l-k*?j ’ 

When ‘p = r/2, elliptic integrals of the first and the second kinds are called complete elliptic 
integrals: 

I 
K(k)F(P.i)=Sr’2\/l-~sin2~ =i \/(l-t2;l-k2t2) =;F(;.;:l;k*)~ 

0 

E(k)=E(k,;)= 

s 

“2~l - k2sin2$ d$= 

0 

I’~~dt;;F(-~,i:l;k*), 

where F is the hypergeometric function. 

K(k’)=K(m)&‘(k), E(k’)=E(~/1)&‘(k) (k’2= 1 -k”; k’ is the 

complementary modulus). 

EK’ + E’ K - KK’ = ; (Legendre’s relation). K 

sin q cos ‘p aE E-F -=- 

diTiG& ak k 

(2) Change of Variables. 

tan(#- q~)= k’tancp: F(+$$$)=(l+k’)F(k,d, 

1-k’ E(f$$)=& - [E(k,q,)+k’F(k,cp)l- l+kt slnd’. 
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k, 

i- k’ 
~’ 

coscp 
k’F(k,cp) 

sincpcoscp 

d/1 - k2sin2cp v/1 - k2sin2cp 1 
k’ -itanT 

1 - 
coscp 

.iF(k,cp) i[E(k,cp)- F(k,cp)- I/m tancp] 

1 
k 

ksincp d 1 - k2sin2cp kF(k v) $(k,rp)- k’2F(kvN 

(3) Transformation into Standard Form. 
(i) The following are reducible to elliptic integrals of the first kind (we assume a > b > 0 for 
parameters). 

1 

$3 s 
x 
, &i arccos fi + lPx 

v3 -1+x 

arccos’/3-1+X 
v/7+1-x 

arccoss 

s 
x 
, vG7 

1 

$7 

LB+1 

2x0 

1 
z 

1 

v2 s 
x 
0 $7 

x 

Lf 

dt 

0 (a’- t2)(b2- t2) 

s 

x 

b d/<a2- t;(t2- b2) 

s 

x 

n j/l<t’- a;(t2- b2) 

dt 

u2+ t2)(b2+ t2j 

1 - 
a 

b - 
a 

arc sin x 
b 

arc sin 

arc sin 

1 - 
a 

1 - 
a 

b - 
a 

1 
a 

arc tan x 
b 

arc sin s 
x 

dt 

o &I~- t2)(b2+ t2) 

dt 

a’+ t2)(t2- b2) 

1 b 
arc cos - 

X dla2+ b2 da’+ b2 

(ii) The following are reducible to elliptic integrals of the second kind (we assume a > b > 0 for 
parameters), 
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c2d- dt 

s 
x 

dt 

b t2j/(t2- b2)(a2- t2) 

A k cp 

a 

da2+ b2 

vm 

b2 

1 
ab2 

b - 
a 

da2- b2 
a 

da’- b2 
a 

arc sin x 
b 

arc cots : 

b arc COS - 
X 

arc tan x 
b 

(II) Elliptic Theta Functions 

(1) ForImr>O,weputq=e’“‘anddeline 

so(u,T)~94(u,T)~1+2 5 (-l)nq”2cos2n7ru, 
n=l 

6, (u,7)~2 2 (- l)“qt”+(1/2)12sin(2n+ l)su, 
n=O 

9, (u, 7) Sz 2 5 qt”+(i/*)lZcos(2n + l)?rU, 
n=O 

lYs(u,7)= 1+2 5 q”2cos2trBU. 
n=l 

Each of the four functions i$ (j = 0, 1,2,3) as a function of two variables u and T satisfies the 
following partial differential equation 

a28(U,T) 

au2 
=4 iaa(u,7) 7, a7 

(2) Mutual Relations. 

S,4(u)+~~(u)=SP(u)+934(u), 8,2(u)= k@(u)+ k’s;(u), 

hj( u) = - k’6;( u) + kS,2( u), 8;(u)= k@(u)- k’s;(u), 

where k is the modulus such that iK’(k)/K(k)= T, and k’ is the corresponding complementary 
modulus. 

k’ = 8,2(0)/&j’(O). 

%Y0) = ~~,(w,(o)s,(o), 

W’(O) s; (0) l9; (0) &f(O) 
6;(o)= 6,(O) + 9,(O) +&(g. 

(3) Pseudoperiodicity. In the following table, the only variables in 8 are u and T. m and n are 
integers. 
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Increment of u $2 $3 Exponential Factor 

nl-knr (-IWO (- l)~+~lY, (-l)“& 6, 
exp[ - nmi 

1 
(- l)“+‘lYa (- l)“+“lY, I 

x (2u + nr)] 
m--++r 

2 93 (- lW0 

1 
m+ n+- 7 ( > 2 

(- l)“iti, (- l)“+“i6, (- 1)“tY3 8, exp[ -(n+ i)rri 

m--+ n+!- r 
1 2 ( 2 1 82 93 (-l)m+%Ya (-l)“i9, I X(2u+(n+;)T)] 

Zeros u = m m+nr m+- 1 
2 

m-F-- 1 
2 

+ n+Jj 7 
( > 

+ nr + n++ 7 
( 1 

(4) Expansion into Infinite Products. We put Q,s E (1 - q2”). Then we have 
II=1 

8,(u)=Q, ii (1-2q2”-‘cos2nu+q4”-2), 
n=l 

8,(u)=2Q,,q’/4sinnu E (l-2q2”cos2mu+q4”), 
n=l 

92(u)=2Q,q’/4cosrru ff (1+2q*~cos2nu+q4”), 
n=l 

8,(u)=Q, 3 (1+2q2”-‘cos2au+q4R-2). 
n=l 

(III) Jacobi’s Elliptic Functions 

(1) We express the modulus k and the complementary modulus as follows. 

k= G(O) 

83’ (0) ’ 

k, = 80’ (0) 

83’ (0) ’ 
k2+k”= 1. 

Then we have 

K(k)= K= ;&f(O), K’(k) = K’ = - irK. 

The relation between q and k is 

(2) 

q=++ &,5 + l&9+ 15op3+ 1707 
25 29 2’3 

-L"+ 

2’7 
. . . . where L= 1-‘1 

1+$Yz . 

Functions sn, cn, dn; Addition Theorem. 

1 %(u/W 
sn(u,k)-y 

I 792(u/W 

vk 41 (u/2K) ’ 
cn(u,k)z k 

i-- k 8, (u/2K) ’ 
dn(u,k)Efl ~i”$~~~. 

0 u 

sn%+cn%= 1, dn’u + k’s& = 1. 

sn( u + 0) = 
snucnvdnv+snvcnudnu 

cn( u + u) = 
cnucnv-snudnusnvdnv 

l- k2sn2usn2v ’ 1 - k2 sn2u sn’v ’ 

dn(u+ v)= 
dnudnv- k’snucnusnvcnv 

1 - k2 sn’u sn2v 

dsnu dcnu 
-=cnudnu, -=- 

du du 
snudnu, 

ddnu 
- = - k’snucnu. 

du 
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Increment of u snu cnu dn u 

2mK+2niK’ (-1)“snu (- l)m+“cnu (-l)n#dnu 

(2m - l)K+ZniK’ (- y+lJzL& (- l)rn’y(JE (- l)“k’& 

2mK+ (2n + 1)iK’ (- l)W-& (- l)“+“+lik-l$f i(- I)“+‘% 

(2m-l)K+(2n+l)iK (-l)“‘+tk-‘g (-l)mf”ik’k-‘& 

Zeros u = 2nK+2miK’ (2n+ l)K+ZmiK’ (2n+ l)K+(2m+ 1)iK’ 

Poles u = 2nK+(2m+ 1)iK’ 2nK+(2m + 1)iK’ 2nK+(2m + 1)iK’ 

Fundamental oeriods 4K, 2iK’ 4K, 2K+2iK’ 2K, 4iK’ 

(4) Change of Variables. In the next table, the second column, for example, means tlhe relation 
sn(ku, l/k)= ksn(u,k). 

u k sn cn dn 

ku 

iu 

k’u 

iku 

ik’u 

(l+k)u 

(l+k’)u 

(1 + k’)*u 
2 

l/k ksn 

k’ iz 

dn 

1 
cn 

k i- 
k’ 

k’ i- 
k 

1 
F 

2fi 
l+k 

k,E 

iks” 
dn 

ik’z 

(l+k)sn 

l+ksn2 

E 

1 
dn 

dn 
cn 

cndn 
I+ksn* 

1 - k’ 
1 + k’ 

1 - (1 + k’)sn* 
(l+k’)F 

dn 

k2sncn dn-Vi? x 
1-G (l+dn)(k’+dn) I-VP 

cn 

dn 
cn 

1 
i-i 

I-ksn* 
l+ksn* 

(Gauss’s transformation) 

I-(l-k’)sn” 

(Landen’s transformation) 

sn(u,k’) 
Jacobi’s transformation. sn( iu, k) = i ~, 

1 
cn(u,k’) 

cn( iu, k) = ___, 
cn(u,k’) 

dn(u,k’) 
dn(iu,k)= p. 

cn(u, k’) 

(5) Amplitude. 

is called the amplitude. 
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sn(u,k)=sinp,=sinam(u,k), cn( u, k) = cos cp = cos am( u, k), 

dn(u,k)= dw = dl- k2sn2(u,k) . 

u(b) = I,x 
dt 

j/(1-t’)(l-k2t2) ’ 
x = sn( u, k). 

Elliptic Functions 

am(u,k)= E + 5 29” 

n-1 n(l+q2”) 
sin(nn&) (q=eiw=e-“W/K)). 

am(0,l) = gd0 (Gudermann function). 

(IV) Weierstrass’s Elliptic Functions 

(1) Weierstrass’s y3 -function. For the fundamental periods 2w,, 20,, we have 

1 1 

(u-2nw,-2mos)2 - (2nw,+2mw3)2 I 

gI 3g2 g3 
=L+!&2+!&4+- - 

U2 
12oou6+ 6160 u*+ . . . . 

g,=602’ 
1 1 

n,m (2nwr +2m03) 
4’ 

g3- 140X’ 
n,m (2nw, + 12m03) 

6’ 

where Z’ means the sum over all integers except m = n = 0. 
@7(-u)= p(u). Putting 02- -(a, +w3), 9~ B(wj) (j= 1,2,3) we have 

e,+e,+e,=O, e1e2 + e2e3 + e3el = - g2/4, v2e3 = 83/d. 

@‘2tu)=4[ P(u)-e,][ P(u)-e,][ P(u)-e3]=483(u)-g2P(u)-g3. 

Addition theorem 

2 gqu+u)= -p(u)- g?(u)+ 1 
I ’ 

63(u+W,)-e,+ (ej-e&-s) 
I -I P(u) - ej 

tj,k,O=tLW. 

Using theta functions corresponding to r = w3/o,, 

P(u)= - 2 - 
d210g6, (u/2w,) 

du2 
~l=~(w,)=-LY!!? 

129 9{(O) ’ 

1 ai3 (0% (u/%)83 (u/2q)~,(u/&) 
p’tu)=-z- 1 82 m9,0.%9: (Up+) . 

The relations to Jacobi’s elliptic functions are 

q=exp(i7rw,/o,). 

dn2u 
=e,+te,-e3)$=e2+(e,-e3)- 

s&4 
=e,+(e,-e3)L 

sn% ’ 

where the modulus is k= 
i 

e2-e3 

e,’ 
K(k)=w,G. 

(2) l-function. 

1 1 
u - 2nw, - 2mw3 + (2nw, +U2m03)2 + 2no, +2m03 1 

1 g2 g3 =-- 

6ou3- i%+- 8400 
&7- 

U 

2!!.!Q- 

18480 
... 

= (Sl/O,)U + dlog9, (u/2w,)/du. 

S’(u) = - B(u). 
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Pseudoperiodicity. Putting ~7~ = 3 (oj) (i = 1,2,3) we have 

5(U+2nwl+2mw,)=~(u)+2nTjl+2mTj3 (n,m=O, k 1, ?2, . ..). 

7,~s - QW, = n201 - n,wZ = q+, - nZwj = si/2 (Legendre’s relation). 

1 S”(U) - S”(o) 
Addition theorem {(u+o)={(u)+{(u)+~ s,(u)-s,(v) . 

(3) u-function. 

( +L 

2 

a(u)-UrI’ l- znw +U2mw 
U U 

n,m 1 3 ) [ exp 2nw, + 2mw, 2 ( 2nw, + 2mw3 11 

1788 

n,m=o, 2 1, 1 I k-2, . ..) 

(n,m)z(O,O> 

=u- ALuS- pul- 
g3 b4 9 

- 24.3 .5 23.3.5.7 29.32.5 ’ ‘. ’ .7 

! I  (u) = 4u)ldu). 0(-u)= -u(u). 

Pseudoperiodicity. u(u+2nwl+2mw,)=(- l)n+m+m” [exp(2nnl+2mn,)(u+nw,+ mwJ]u(u). 
(4) Cosigma functions u,, u2, us. 

u(u+wj) 
u/(u)- -ev- = u(wj> (j= 1,2,3; $,=I‘$,). 

uj(“) ’ 
P(u)-ej= - [ 1 P(2u) = - 

2o,(ubJ2(u>fJ3(u> a4) =- u(u) ’ 03(u) -. u4(u) 
(J(uIa) 0, (u/d 02(u/d 

snu=a 
u3(u/u) ’ 

cnu- 
u3(u/4 ’ 

dnu= ~ 
u3(u/d ’ 

where a=V%-e, =A. 
WI 
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17. Gamma Functions and Related Functions 

(I) Gamma Functions and Beta Functions (- 174 Gamma Function) 

In this Section (I): C means Euler’s constant, B, means a Bernoulli number, 5 means the Rie- 
mann zeta function. 

(1) Gamma function. T(z)= 
s 

m e-‘F’dt (Rez>O) 
0 

1 

s 

co+) 
=- 

e2nir _ 1 e-‘t’-‘dt. 
m 
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In the last integral, the integration contour goes once around the positive real axis in the positive 
direction. 

I?(n+l)=n! (n-0,1,2, . ..). r(1/2)=6. 

IY(z + 1) = zqz), wv - 4 = &, nlllr(z+ i)= pTp- Wn(1/2)-n~qnZ), 

j=O 

1 - =zec’ fj (1+ +-z/n, 
r(z) 

i0gr(i+z)=-~i0g~-cz- 2 O” 5(2n+l)z2n+* 

n=l n=, 2n+l 
(Izk 1). 

~~~2=~ol/(l+---&$) (x,yarerealandx>O). 

Asymptotic expansion (Stirling formula). 

rcz) = e 

! 

m (- 1)“-&-2n 
-zz’-‘~SG exp C 

2n(2n - 1) 1 (lawI< 4 
n=l 

=e 
571 

2488320~~ 
+o(z-q . 1 

(2) 

(3) 

(4) 

(5) 

Beta Function. B(x*Y)=Jyf I-‘(1 -t)Y-‘dr (Rex, Rey > 0) 

= r(x)r(y)/r(x +.Y). 

Incomplete Gamma Function. 

y(v,x)qXfv- ‘e-‘dt = r(v)- x(“-‘)/~~-~/~W~~- 1j,2,u,2(x) (Re Y > 0). 

Incomplete Beta Function. &(x>Y)= 1 ?-‘(l- t)“-‘dt (O<a < 1). 

Polygamma Functions. q(z)- $iOgryz) 

--+f& &c-C+ 2 (‘-- 1 nEo n+l 

(k=1,2, . ..). 

(II) Combinatorial Problems (- 330 Permutations and Combinations) 

Factorial n!=n(n-l)(n-2)...3.2.1. O!=l. 

Binomial coefficient (zy)= 
a(a- l)...((Y-r+ 1) 

r ! 

(1) Number of Permutations of n Elements Taken r at a Time. 

.P,=n(n-l)...(n-r+l)=n!/(n-r)!. 

Number of combinations of n elements taken r at a time 

nc+ n! 
r!(n-r)! =(F>. 

.cr=,cn-,a nc,=n-lc,+n-lcr-l. 

Number of multiple permutations .I&= n’. 

Number of multiple combinations nHr=n+r--1C,= 
(n+r-l)! 

r!(n- l)! . 

Number of circular permutations 2,/r. 
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(2) Binomial Theorem. (a+bp~o(;)a”-‘b’. 

Multinomial theorem (a,+ . . . +a,)“=2 p,,n!p , afl...aLm. 
.... m. 

The latter summation runs over all nonnegative integers satisfying p, + . . . +prn = n. 

References 

See references to Table 16, this Appendix. 

18. Hypergeometric Functions and Spherical Functions 

(I) Hypergeometric Function (- 206 Hypergeometric Functions) 

(1) Hypergeometric Function. 
m rya+n) r(b+n) r(c) z” 

F(a,b;c;z)= 2 p-p-. 
n=O r(a) r(b) r(c+n) n! 

The fundamental system of solutions of the hypergeometric differential equation 
2 

r(l-r)s+[c-(a+b+l)z]$-abu=Oat.z=Oisgiven by 

u, = F(a,b;c;z), u,=z’-CF(a-c+l, b-c+l; 2-c; z) (CfO, - 1, -2, . ..). 

F(a,b;c;z)=F(b,a;c;z). dF/dz=(ab/c)F(a+ 1, b+ 1; c+ 1; z). 

r(c)r(c-a-b) 
F(=,b;c; I)= r(c-a)r(c-b) (Re(a + b - c) < 0). 

F(a,b;c;z)= 
r(c) 

I r(b)r(c - b) 0 
‘tb-l(l-t)E-b-l(l-tz)-udt (Rec>Reb>O, I4 < I), 

1 r(c) 
F(a’b’c’z)= 2ni r(=)r(b) I 

im r(u+s>r(b+s)r(-s) 
-im r(c + S) 

(-z)“ds. 

(2) Transformations of the Hypergeometric Function. 

F(a,b; c; z)=(l-z)-“F(a,c-b; c; -&) 

=(1-Z)E--(I--F(C-u,c-b; c; z) 
r(c)r(b - a) 

( 
1 =(‘-z)-~~(~)~(~-~)F =,c-ha-b+l; =) 

b rwb - b) 
+(l-‘)- r(a)r(c-b) F b,c-a; b-a+l; & 

( 1 

r(c)r(c- u - b) 

= r(c-a)r(c-b) 
F(a,b; a+b-c+l; l-z) 

+(l -zy-b r(c)r(a + b - C) 
wm4 

F(c-a,c-b; c-a-b+l; 1-z) 

r(c)r(b - U) 
=r(b)To(-~)-OF(a,l-c+o; I-b+a; ;) 

r(c)r(a - b) 
+ r(a)r(c-b)(-z)-bF(b,l-c+b; I-a+b; ;). 
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(3) Riemann’s Differential Equation (- Table 14.11, this Appendix). 

d% 

dt2+ 

1--cw-cr’+ 1+-P’+ 1-y-y’ du 
z-a z-b Z-C 1 dr 

aa’(a-b)(a-c) + P/?‘(b-c)(b-a) + yy’(c-a)(c-b) 

z-a z-b z-c 1 (z-a)(z:b)(z-c) =” 

Here we have (Y + (Y’ + /3 + /3’ + y + y’= 1 (Fuchsian relation). The solution of this equation 
is given by Riemann’s P-function 

(a-c/,/3-P’,y-y’#integer). 

We have 24 representations of the above function by interchanging the parameters a, b, c; a, 
(Y’; p, fi’; y, y‘ in the right-hand side. 

(4) Barnes’s Extended Hypergeometric Function. 

pFq(q,...,$P1, . . . . P,;z)= 
O” (4”...(~J, Zn 
2 

n-0 (P,L...(P,), n! ’ 
where (a),,=(~((~+l)...((~+n--1) 

=r(a+n)/r(a). F(a,b;c;z)=,F,(a,b;c;z). oFo(x) = ex, ,F,(a;x)=(l -x)-a. 

(5) Appell’s Hypergeometric Functions of Two Variables. 

F,(a;P,P’;Y;x,Y)= 5 2 
m (&+n(P)m(Lv, 

m!n!(Y),+, 
XrnY”, 

m=O n=O 

(dn+“(PL(P’>, 
Fz(~;AP’;Y,Y’;x,Y)= m.on~o m,n,(y) (y,) xmyn, 

. . m n 

FX~,~‘;P,P';Y;X,Y)= 2 2 
(a),(w?,(P)m(B').xmyn 

m=O n=O m!n!(y),+, 

M (&+n(PL+n 
F4(KP;Y,Y’;w)= f. z. m,n,(y) (y,) xmyn. 

. . m n 

(6) Representation of Various Special Functions by Hypergeometric Functions, 

(l-x)“=F(-v,b;b;x), e-“X, (~)“(tanhx)F(l+~,~; l+n; sech2x . 

log(l+x)=xF(l,l; 2; -x), =xF 

sinnx=n(sinx)F 

1+&l-n 1 

arctanx=xF i,l; 5; -x2 . 

(2n - I)!! 
P*dx)=(- I>” (2n)!! F -n n+l. 19 3 2 > 2 , , 

(2n + l)!! 
P*n+dx)=(-1)” (2n)!! XF -n n+?. 2.~2 , 2, 2, (spherical function), 
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where 

n=0,1,2, . . . . 
m(m-2)...4.2 (meven), 

m(m-2)...3.1 (m odd), 
O!!=(-l)!!=l. 

K(x)=;F(;, ;; 1; x’), E(x)=;F( -;, ;; 1; xz) (complete elliptic integral). 

J,(x)= x -,F,(s+l; -~)=2~~~l~~F,(“+~;2y+l:2ix). 
2r(v + 1) 

ex= blimm F(a,b;a;x/b)= ,F,(a;a;x)=,Fe(x). 
+ 

(II) Legendre Function (- 393 Spherical Functions) 

(1) Legendre Functions. The generalized spherical function corresponding to the rotatl’on group 
of 3-dimensional space is the solution of the following differential equation. 

(l-z2)~-2z~+ v(v+l)-& u=O. 

[ 1 
When IJ = 0, the equation is Legendre’s differential equation, and the fundamental system of 
solutions is given by the following two kind of functions. 

Legendre function of the first kind T3,(z)dJ”(r)=2F,( -v, v+l; 1; +;I. 

Legendre function of the second kind 

!Q(Z)E 
r(v+ 1)G 

2’+lr[v+(3,2),Z 
-v-l 

PI ( 

v+2 v+1 3 1 
2’ 2; v+p ,z 1 . 

1 
Q,(x)- -[D,(.x+iO)+Q,(x-iO)] 

2 

(COSV7T)P” (x) - P, (- x) 
=77 

2 sin ~71 
(vfinteger; - 1 <x< 1). 

Recurrence formulas: 

‘p”(z)= W-l(Z). a,(z)-a-,-,(z)=7c(cotva)q3,(z) (v #integer). 

v,(-~)=e’“~‘(P,(z)-(2/7r)(sinva)Q(z), Q-z)= -e’V?iQ,(z) ( f = sgn(Im z)). 

(z2- lm4(4/~z=(v+ 1~W3,+,(~)--~%3,(Z)l, 

Qv+ lvwz)=(v+ lN-L+1(z)+ v%,(z), 

(z2- lww4/~z=(V+ l)[Q,+,(z)--zQ,(z)l, 

(2v + l)zQ,(z) = (v + l)Q+ ,(z) + vQ,- i(Z). 

~3,(z)=~-1’22-“-‘tanvn 
r(v+ 1) 

rb+(3/2)lz 
-“-12F, v+1 

;+l, 2; v+;; 1 Z2 

+~-,,22y~b+w2)1 l-v 2. 3 1 r(v+l) -j--’ 2 z-v; 

P,(cos8)= y (v#integer; O<B<P). 

Estimation: IQ,(cosB)l< x 
Gia 

(O<fl<n; v:> 1). 

p”(l)= 1, P”(o)=-% r( q)r( I$), 

QAO) = + 71 
(1 -cOsvT)r( q)r( T). 

(2) The Case v = n ( = 0, 1,2, ). In the following, the symbol ! ! means 

rn!!G 
m(m-2)...4.2 (m even), 

m(m-2)...5.3.1 (m odd). 
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The function P,, is a polynomial of degree n (Legendre polynomial) and is represented as follows: 

P,(z)= & $(z2- 1) 

I-n 1 -5, -.-; ?-,,; 5 

= &z-l)!! 
n! 

z” n(n-1) n-2+ n(n-l)(n-2)(n-3) 
-(2n-z 2.4.(2n- 1)(2n-3) 

Z"-4T 1 “’ ’ 

P2,(z)= 5 (-1y-’ 
(2m+2j- l)!! 

j=O (2j)!(2m-2j)!! “’ 
Pzm+,(z)= g c-l)"- 

(2m+2j+ l)!! z2j+, 
(2j+ 1)!(2m-2j)!! ’ j=O 

P,(cos8)= 
G!n)! -. 

-,+1ne2F, 

22”(n!)2 
& -n; !-,; ,k2i@ 

2 

2(2n - l)!! 

= (2n)!! 
cos(n-2)/3+ !.I.? 

n(n- 1) 

1.2 (2n-1)(2n-3) 
cos(n-4)8 

+ 1.3.5 n(n- l)(n-2) 

1.2.3 (2n- 1)(2n-3)(2n-5) 
cos(n-6)8+ . . . 

I 

+ 
(n even), 

(n odd). 

= 2 On)!! 

[ 

1.(n+l) 

r (2n+ l)!! 
sin(n + 1)/3 + 

1.(2n+3) 
sin( n + 3)19 

1.3.(n+l)(n+2) 

+ 1.2*(2n+3)(2n+5) 
sm(n + 5)fI + . . . (ad infinitum) 

I 
(o<e< 4 

Laplace-Mehler integral representation 

\/z ecos[n+(1/2)lcp =- 
I 

,sin[n+(1/2)lcp 
77 ol/ c0scp-c0se 

+l!L 
I‘, rl 6 cOse-coscp 

dv 

Pn(x)=~r~+~~(‘) (x=+\/5i+p2). 
r 

P,(l)= 1, P,(- l)=(- l)“, p2,+ do) = 0, 

(2n)! 
Pz,(O)=(- l>“--- = 

(- 1)“(2n - l)!! 

22”(n!)2 (2n)!! ’ 

Recurrence formulas: nP,(z)-(h- l)zP,-,(z)+(n- l)P,-,(z)=O, 

_ ,. . ,., 

I 
(Rez > 1). 
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2*(2n)!! 

I 

l.(n+ 1) 
Qn(cosQ= (2n+l)!! cos(n+l)@+ 1*(2n+3) cos(n+3)@ 

1.3.(n+l)(n+2) 

+ 1.2.(2n+3)(2n+5) 
cos(n+5)8+ . ..I (O<e<a). 

Q,(x)= & $, [ (x2- l)“log+=] - ;P,(x)logE 

= ;P,(X)log----- ; _’ ; - 5, $ pj- l(X)P,-j(X). 

Qo(x) = ; 1% E > Q,(x)=;log+$l, Q2(x)= +(3x2- l)logE - ix. 

(3) Generating Functions. 

1 

v/1-2hz+h2 = 

I 

i! h”P,,(z) (Ihj<minlz*m I), 
n=O 

m 
c 
n=O 

-&P,(z) (Ihl>max\z?vzI). 

(If - 1 < z < 1, the right-hand side is equal to 1.) 

1 
1% 

z-t+ l-2tz+z2 

d/1-2tz+z2 
& = n~otnQ.(z) (Rez > 1, I4 < 0 

r= j/m, cosO=z/r, x,y real, 

++++ 2 
Ii 

1 
+ 1 

m-’ (2mi~+z)2+XZ+yZ 
2 

(2mi7r-z) +x2+y2 I 

(Here the square root of a complex number is taken so that its real part is positive.) 

1+ g PJo(nJ/x2+y2 ) (Rez > 0), 
n=l 

= 

I 

O” ++;+ c (-1)“B2.r2”-Ip 

n*, OnI! 
_ (cosQ) 

2n I (0 < 0 < 2n; z real). 

(4) Integrals of Legendre Polynomials. 

Orthogonal relations: 
s 

+‘Pn(z)Pm(z)dz=G,,&. 
-1 

1 
+lzkPn(z)dz=o (k=O,l, . ..) n- 1). 

-1 

X(X-2)...(h-n+2) 

s 
’ h z P,(z)dz= 

(X+n+1)(h+n-1)...@+1) (neven), 

0 (A-l)(A-3)...(X-n+2) 

(X+n+1)(X+n-1)...(X+2) (nodd) 
(ReX> - 1). 

2(m-n+l)(m-n+3)...(m+n-1) 

I 
Irp,(cos0)sinm0dl= (m-n)(m-n+2)...(m+nj 

(m>n; m+n isodd), 

0 
0 (otherwise). 

(5) Conical Function (Kegelfunktion). This is the Legendre function corresponding to the case 
v = - (l/2) + A (A is a real parameter), 

P-(i,2j+iA(cos~)=l+~sin2~+ (4h2+~j($2+32)sin4~+.... 

P4*,2)+&)= P-(*,2)-&h 

1794 
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(III) Associated Legendre Functions (- 393 Spherical Functions) 

(1) Associated Legendre Functions. The fundamental system of solutions of the differential 
equation in (II) (1) is given by the following two kind of functions when p#O. 

Associated Legendre function of the first kind: 

qq!(z)z l ,,(~)~‘**+V,V+l; 1-K P), 

where we take the branch satisfying arg[(z + l)/(z - l)]‘@ = 0 for z > 1 in the expression raised to 
the (p/2)th power. 

Associated Legendre function of the second kind: 

v+p+2 v+p+ 1 3 1 
~ 2 ,2;v+-;- 

2 z2 ’ 

where we take the branch satisfying arg(z’ - l)fi’* = 0 for z > 1 in (zz - l)‘@, and arg z-“-*~~ = 0 
for z > 0 in z-“-@-l, respectively. 

Pp(x)~eip”/2\SD~(x+iO)=ei~~/2@~(x-iO) Y 

=&(~)p’2+,V+l; 1-p; 7) (-l<x<l). 

77 = - P&y (x)cospr- 
2 sm ~7r 

[ 

IYJJ+p+1) _ 
I-+-p+ 1) 

P” “(xl 1 (-l<x<l). 

Integral representations: 

K%) = 
(z2-- 1)P’2 

s 

+’ (l-t2)p-‘/2 

2pGITp+(1/2)1 -* (z+tviT) 
p-“d 

(Rep> -i, ]arg(z? l)]<n). 

%3;%) = 
(z2- l)‘-2 

s 

CQ (sinh t)2Y+’ 
2’r(p-V)r(~+1) o (z+cosht)‘+‘+i dt 

(Rez>-l,jarg(z?l)]<a,Rev>-l,Re(p-Y)>O). 

r[p+(i/2)l(z2- I)“-~ 

s 

m cosh[v+(1/2)]t 

r(p+++i)r(pLvv) o (z+cosht) 
p+(1/2) dl 

“(cosha)= 

(sinhcu)” 

G I[-p+(1/2)] o (cosha-cosht)‘+(“*) s 

*cosh[ {v+(l/2)}t]dt 
a>O, Rep<: . 

(sin0)’ 

s 

“cos[ {~+(W}v+v 

rh++(ip)l o (coscp-cose)“+“‘2’ 
O<B<n,Reb<i 

I(2p+ 1)2-“(sine)’ m 
P”-’ (cos8) = 

t”+‘dt 
u~++l)r(~+~+l)r(p---Y) (1+2tcost3+t*)fi+(‘/2) 

(Re(p+v)> -1, Re(p-v)>O). 

p,-qcose)= 1 *e-lcose 
I rb+p+i) 0 

J,(tsint3)t”dt (O<B<F,Re(g+r)> -1). 

(Re(Y+p)> -l,Rev > - 1, larg(z + l)] < r). 

s 

m e-l~+W2)l’dt 

a (cash t - cosha)“+(“2) 

(a>O, Rep< l/2, Re(v+y)> - 1). 
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Recurrence formulas: 

(z2- wTY(z)ldz=(~-P+ 1>@1+1(z)-(v+ l)z933t(z), 

Pv + 1wR(z)=(~ - P + l)W+ ,(z)+(v + /$PBt- 1(z), 

w,-dz)=w!(z), 

(1-x*)dP~(x)/dx=(v+l)xP/yx)-(v-p+1)P~+,(x). 

The case when p is an integer m(m = 0, 1,2, . . .) and Y is also an integer n: 

P,“+*(x)+2(m+l)x(l-x~)-“*P~+~(x)+(,-m)(fl+m+1)P~(x)=O. 

(2n+ l)xPT(x)-(n-m+ l)P,“,,(x)-(n+m)P,“_,(x)=O (0 < m < n - 2), 

(x2-l)dPT(x)/dx-(n-m+l)P~+,(x)+(n+l)xP~(x)=O, 

P,“- l(X) - P,“+ *(x) = (2n + l)VF? p,“- l(x). 

PD;P(z)= 
Iyv- p+ 1) 

[ 

2 
Iyv+p+ 1) 

q:(z)-- ;eeipr (sinpa)Clt(z) 1 , 

~t(z)sin[(v+~)n]-~all._,(z)sin[(v-~)~]=~ei~~(cos~~)~~(z), 

@!(-z)=e’im @F(z) -(2/n)[sin(v + p)8]eCipVQ.,(z) (+ = - sgn(Imz)), 

a:(-~)= -ekimQ(z) (? = sgn(Imz)). 

e-‘“OF(coshcr)= 
nIyl+y+v) 

V2asinha 
@:;:@(cotha) (Recosha > 0). 

sin(v+p)a 
QEv-I(X)= sin(v-pCL)a Q:(X)- Ts~(;,,:~ P:(X), 

Py-‘(x)= (x)- AsinprQ’ (x) ?r Y 

Qi(-x)= -[cos(v+p)a]Q,‘L(x)+(m/2)[sin(v+y)lr]P~(x). 

xx?(z)= 
~(l+v+m)(z2-l)m’Z 

r( 1 + v - m)m!2” 
2F1 m-v,m+v+l;m+l; 

( 

=P,(z)(dz)“. 

d”%(z) 
!q!yz)=(z*- l)m/*dxm, aim(z)=(- l)“(z*- 1)-“‘2 mQv(z)(dz)m. 

Py”(x)=(- 1)” 
r(l+v+m)(l-x*)~‘* 

r(l+v-m)m!2m 
*F1 

l-x 
m-v,m+v+l;m+l; 2 

dmf’v (x) 
=(-l)yl-x*)“/*~, 

P”-“(x)=(1-x*)-+ 7. 
I I 

r(v-m+ 1) 
‘P,(x)(dx)“=(- I)“- 

T(v+m+l) 
p,” (x>. 

x x 

d”‘Qv (x> 
Q,?(x)=(-l)m(l-~2)“~2~, QY”(~)=(- l)m r(v-m+ ‘) 

r(v+m+ 1) Q’(xh 

The values at the origin are 

P; (0) = 
\/;;2p 

r[(v-p)/2+11r[(-v-p+1)/21’ 
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dP,f(O) 2P+1sin[7T(B+~.)/21r[(y+fl.+2)/21 VG 2”+’ PC 
dx r[(v-p+1)/2lV~ = r[(Y-~+1)/2lr[(-v-11)/21’ 

de,!’ (0) 
~ =2w;; cos( fq.n) y;-;;;. 

dx 

(2) Generating Functions. 

(cost?+isinesinr$= P,(cos6)+2 i (-i)“&(coSmrp)P~(cos6). 
m=l 

p”-r(,,,@)= + ~$$l).j~---)P;‘(cosL9) (O<B<m,/l>O). 
v+n+l 

(3) Orthogonal Relations. 

“P,” (x)P; (x)dx= 2 (n+ 6,,. 
h+ 1 (n-m)! 

nsinBe’i(m-m’)‘PP,” (cosf?)P~‘(cos~)d~= 
4r7 (n+m)! 

- ~ a,,. s,,*. 
2n+l (n-m)! 

(4) Addition Theorems. 

(Rez>O, ReS >O, larg(z- 1)1 <n, la&-l)/ CT). 

Q,(tt’- Vt’- 1 dt ‘2cos~)=~“(t)q3”(t’)+2 5 (-l)mQ~(t)~D;“(t’)cosm~ 
m=l 

(t, t’ real, 1 < t’ < t, v # negative integer, cp real). 

P,(cosBcosB’+sinBsin8’coscp)= P,(cosB)P,(cos8’)+2 2 (- i)~py-~(cose~)p,m(COS~~)COSm(p 
m=l 

m r(v-m+~) 
=p,(c0se)p,(c0se~)+2 2 m=, r(v+m+ 1) P; (cos e )pvm (c0s e’)cosmcp 

(o<ecs, O<~‘<Q, 6+8’<s, cpreal). 

Q,(cosBcos8’+sinesinB’coscp)= P,(cosB’)Q,(cos0)+2 g (- l)mPy-m(cosB’)Q~(cosB)cos~~ 
m=l 

(0<8’<71/2, 0<0<7r, B+6’<77, cpreal). 
__ __ 

ia,@‘+++ @+l cosha)= 2 - 

(5) Asymptotic Expansions. 
( 7, T’, Cl >o). 

W(z) = I 
2yrb+(1/2)1 

V/?ir(v-p+i) 

z”+ 2-u-T[-v-(1/2)] 
vl?rr(-p-v) z-“-l [1+o(z-2)] 1 

(v+(l/!)#integer, largz) <a, \zjSl). 

Qt(z)= l&e+” rb+~++) 

2”+1 rjy+(3/2)]’ 
-“-1[1+0(z-2)] 

(r+(l/2)#negativeinteger, largz)<m, Iz~>T~>. 

pr(cos8)- 2_ rb+p+l) cos[{r+(l/2)~~-(~/4)+(~/2)] 
Y 

din I-b + (3/2)] m 
[1+0(&J-‘>] 

(E<~<T-E, E>O, J~j>l/e). 
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,,,[(v+~)es!p+ 

(2sin8) /+0/3 

IL= -- 
2 I, -- 

Q~(cosO)=di rb'+p++) 
I%+ (3/2)] 

X 
e(_l,,r(;+~+i)r(;-,+~)r(.+:)cos[(,+~)e+~l+S] 

I-0 r(++p)r(+-p)r(v+l+$)f! 
(2sinB)'+"/2) * 

(In the final two formulas the series converges when v + /J #negative integer, v + (l/2) #negative 
integer, s/6 < 8 < 571/6.) 

[(v+ +)cosq]PP[P(cosB)=J,(n)+sin2~ 

(TJ =(2v+ l)sin(0/2)). 

(6) Estimation. When v > 1, v-p+l>O, p 2 0, 

pv-cp (c0se)I < 

lQ”~*(cose)l< r(v-tm+1)(-&)“2”. 
r++i) (sine) 

(7) Torus Functions. These are solutions of the differential equation 

u=o. 

The fundamental system of solutions is given by 

‘SD:-:-(~/z,(cosh$, W-:_(,/&osh+ 

The asymptotic expansion when m = 0 is 

%(,,2)(coshd 

= (n--l)!e”-(‘/2)1 2r%+(i/2)1 ~log4+Il~e-2w2F 

[ ( 
1 

m!(n - l)! 
1 53 n+ $;n+l;e -2”‘+A+B . 

r[n+(i/2)16 I) 1 
Here 

A=l+ (1/N~-u/Ne-2’+ 
l.(n- 1) 

(1/2)(3/2)[n-(1/2)l[n-(3/2)1 e-4,,+ 
1+2*(n- l)(n-2) 

. . . 

+ 
(2n-3)!!(2n- l)!! _ _ e an I)? 

[(2n-2)!!12 ’ 

B= r[n+OP)l 
2 
m r[[+(l/Z)lr[n+l+(1/2)1( 

F , at+ nh 
n3j2(n- l)! I=1 (n+Z)!Z! 

I(n+/+ ul-v/-(1/2)- %,I--(l/2) 

where 

u,=1+;+ . ..+$ vr~(,,2)‘~+5+f+...+~=2”2r-ur. 

References 

See references to Table 16, this Appendix. 
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19. Functions of Confluent Type and Bessel Functions 

(I) Hypergeometric Function of Confluent Type (- 167 Functions of Confluent Type) 

(1) Kummer Functions. 

m r(a+n) l?(c) z” u(z)= ‘F, (a; c; z)= 2 ~ ~ - n=O l-(a) r(c+n) n! 
r(c) 

= qa)r(c - a) 
zl-C 

1 
ze’p- 1 (z - t)-‘dt (O<Rea<Rec) 

0 

qc)21-c 
= r(u)r(c-a) 

eZ/2 s +‘e”‘/2(1-t)c-.-‘(1+f)u--Ldt (O<Rea<Rec). 
-1 

The fundamental system of solutions of the confluent hypergeometric differential equation 
(Kummer’s differential equation) 

whenc#O,-l,-2 ,..., isgivenby 

6*(z)~,F,(u;c;z), d2(z)~z’-ClFl(u-c+1; 2-c; z). 

d,F,(u; c; z)/dz=(u/c),F,(u+ l;c+ l;z), 

,F,(u;c;z)=e”,F,(c- u;c; -z), 

u,F1(u+l;c+l;z)=(u-c),F,(u;c+1;z)+c,F,(u;c;z), 

u1F~(a+1;c;z)=(z+2u-c),F1(u;c;z)+(c-u),F1(a-1;c;z). 

Putting (a),=a(a+l)...(u+n-l)=P(a+n)/I’(a) we have 

Li’JJn r(c) * 1 -!- F (u;c;z)= 
z”+l(aL+l 

(n+ l)! 
,F1 (u+n+ l;n+2;z) (n=0,1,2, . ..). 

Asymptotic expansion: 

d,mA,~-~ 2 w  (~)“(~~c+l)“(~Z)-.+BlellU-C .$ (c-aL~l-uLz”, 

n=O n=O 

d2~A2z-“ c. 
O” (u)“(u-c+1)“(_Z)-n+B2e~zL1-C 5 (c-dI;l-4nz. 

?I=0 TZ! n=O 

(]~]>>]a], ]z]>]c], -3n/2<argz<a/2,c#integer), 

where 

Al=e-iT(~)/r(~-~), B, = rw/rb), 

fi2=e-i~(~-c+'T(2-c)/r(I-~), B2 = r(2 - c)/r(a - C + 1). 

(2) The fundamental system of solutions at z = 0 of the hypergeometric differential equation of 
confluent type 

(l/4)-p2 u=o 
Z2 1 

is given by 

z(1~2)‘~e’ez,Fl[(1/2)+~-K; 22p+ l;z]. 

(II) Wbittaker Functions (- 167 Functions of Confluent Type) 

(1) A pair of linearly independent solutions of Whittaker’s differential equation 

d2W 

-[ dz2 

+ l+K+ (f/4)-p2 
4 z Z2 I 

w=o 
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isgiven by M,,~,(z)=z”+“~2)e-*~z,F,[~~-~+(1/2); f2p+l;z]. 

Whittaker functions: 

w&k 
l-Y-2y) 

M&)+ 
Jx2l.d 

r[(1/2)-p-4 r[(1/2)+fi-K1 
M,,-,(z)= w,,-,(z). 

When 2~ is an integer, the above definition of W,,,(z) loses meaning, but by taking the limit 

with respect to p we can define it in terms of the following integrals. 

K,,(z)= 

ZP+w2~e-z/2 m 

s 
r[P++(1/2)-Kl 0 

e--LTTp--K-(I/Z)(l ++-(‘/2)& 

z”e-‘/2 M~P-K-w2)e-’ 
= ri p+(1/2)- K] 

(ReCp+(1/2)-K]>O, largzlcn). 

P+‘L-(L/a 
dt 

s ““r(s-K)r[--S--+(1/2)]r[-sfp+(1/2)]z”I 

-ice 
r[-K+11.+(1/2)]r[-K-~+(1/2)] ’ 

M ,+p+(l,2),r(Z) = (- 0: ~+(‘~2)e-r~2(2~+1),,F,(-f;2~+1;z) (1=0,1,2, . ..). 

M (~)=~-in[“+(l/2)lM_,~,(ei”z). 
GF 

M,,,(z)= 
r(+ + 1) 

e”“W-, ,(e’“z)+ 
r(+ + 1) 

r[p+(1/2)-Kl ’ r[p+(1/2)+Kl 

e”I~-r-(l/2)l~, Ir (Z) 

(-371/2<argz<T/2, 2p#-l,-2,...). 

M&)= 
r(+ + 1) 

e-inKW-K,p(eCiTz)+ 
my+ 1) 

r[ ,dl/2bKK] r[p+(i/2)+Kle 

-inl.-r-(1/2)1Rl.,r(Z) 

(-n/2<argt<3T/2, 21J.f - 1, -2, . ..). 

W&p (2)’ Z”2~~-~I,2ww2~ (Z)+[(1/2)-K+CL1W,-,,r(Z) 

=z 1’2w,-(,,2,,p+(,,2, (Z)+[(1/2)-K-&f54+(Z). 

zdW,,,(z)/dz=[K-(z/2)lW,,,(z)- [ P2- {K-(1/2)}2]W,-1,p(z). 

When K is sufficiently large we have 

M,,&& (z)-r -1/2r(2p+ 1)K-P-(1/4)z1/4 COS[2(ZK)“2-~VT-(11/4)], 

W,,,(Z)--((4Z/K)1’4eXp(-K+KlOgK)Sin[2(ZK)”2-nK-(~/4)], 

~~,,,(Z)-(Z/4K)“4eXp(K-K10gK-2(ZK)”2). 

Asymptotic expansion: 

WK,,(z)~e-z/2z’ 

x 1+ 5 ~~~-~~-(1~2~~23~~~-~~-(3/2~~~i...c~2-~~--n+(l/2~~~1 

( “=I n!z” 

(2) Representation of Various Special Functions by Whittaker Functions. 

(i) Probability integral (error function) erfx=@(x)- &ce-“dt 

= 1-T-v2x-v2e-x2/2w 
-1,4,1,4(x2) 

=2x,& ;;;; --2 =2 
( ) ( 

x3 x5 x7 
VG LG x-m+2!5-3!7’-*. ) 

Asymptotic expansion: 

~[l-m(x)]~~(l-i+~-~~...). 
(2x2) (2x2) 

&D(xqq=C(x)-S(x), 
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where C(x), S(x) are the following Fresnel integrals. 

C(x)=jXcostt2dt= $ + -$sinTx2+0 $ , 
0 ( 1 

S(x)=~sin~t2dt=~-~cos~x2+O($). 

(ii) Logarithmic integral 

1 dt 
Liz= - 

s 0 logt 
(When z > 1, take Cauchy’s principal value at t = 1.) 

= -(logl/z)-“2z”2W-1,2,0(-logz). 

Liz is sometimes written as lit. 

(3) Exponential Integral 

Eix= 
I 

X $ dt (When x > 0, take the Cauchy’s principal value at t = 0 while integrating.) 
-m 

(x real, #O) 

N (n-l)! 
=e*x 7 +N! 2 

t”-N 

n=l n=O n!(n- N) 
+ $) + C+loglxl. 

Cosine integral CixE - 
I x 

mydt=C+logx-j 
0 

Sine integral Six= 
s 

Xs&t dt, 

0 t 

six=-- 
J x 

mydt=Six- :. 

Asymptotic expansion Eiix=Cix+isixze’” &+&+&+A+... 
IX (lx)* (/X)3 (1x)4 

(III) Bessel Functions (- 39 Bessel Functions) 

(1) Cylindrical Functions. A cylindrical function Z, is a solution of Bessel’s differential equation 

Recurrence formulas: 

z,- 1 (z> + Z”, 1 (z> = (2V/Z)Z” (21, Z,-,(z)- Z,,, (z)=2dZ,(z)/dz. 

s 
zY+lZv(z)dz=zY+lZy+, (I), 

s 
z-“Zv+, (z)dz= -z-“Z,(z). 

As special solutions, we have the following three kinds of functions. 
(i) Bessel function (Bessel function of the first kind). 

J,(eim”z)=eimMiJY(z). 

J-,b)=(- l)“J,(z). 

Jo+(,,2)(z)=~~z”t(‘/‘)( - i $)“( +) (n=O, 1,2, . ..). 

(ii) Neumann function (Bessel function of the second kind). 

N,(r)=&[( cosY~)J”(z)-J-,(z)] (vfinteger; largzl <a), 
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N-, (z)s( - l)“N, (z) (n=0,1,2, . . . . law < 77). 

N,(e immz) = e -imMlNy(z)+2i(sinmr~cotv~)J,(z). 

N n+(l,2)(4=(- l)n+‘J-h+(l,2)l(Z). 

(iii) Hankel function (Bessel function of the third kind). 

H(‘)(z)rJ,(z)+iN,(z), Y 

H(Z)(z)~Jp(z)-iN,(z). Y 

H!‘)(iz/2)= -2ieeim12 (7r~)-“*W~,~(z). 

H??(z)= eimH!‘)(z), H??(z)= e-‘“IHj*)(z). H!*)(x) =Hj’)(x) (x,v real). 

(2) Integral Representation. 

Hansen-Bessel formula 

.--n 
1 

=- 

J 
neiZcosrcosntdt 

7r 0 

1 =- 
J = 0 

“cos(z sin t - nt)dt (n=0,1,2, . ..). 

Mehler’s formula J,(x) = 1 s, msin(xcosht)dt, 

No(x)= - 1 Jc, O”cos(x cash t)dz (x > 0). 

Poisson’s formula J”(z)= ~/- ~~z~~~,2)l J”/2cos(zcost)sin2Vtdt 
71 v 0 

(Rev:> - i), 

NV(z)= - 
442)” 

vln IYv+(1/2)1 
“‘2sin(z sin t)cos’” t dt - s me -rsin”’ cosh2” t dt 

0 1 
(Rez>O, Rev> -l/2). 

Schllfli’s formula Tcos(zsint-vt)dt-~~me-ZSi*‘e-v’dt ‘(Rez>O), 
0 

N,(z)= $s, nsin(zsint-vt)dt- ~~me-Zsinhr[e”r+(cosvrr)e-“r]dt (Rez>O). 
= 0 

[ f(t-;)]I- “-‘dt (c>O, largzl<n, Rev> -1). 

2(x/2)-" m 
J”(x)= - 

sinxt 

din Ij(1/2)-VI s (t2-1)Y+(“2) 
4 

1 

dt x >o, -$<Rev<;. 
> 

ezwllw*t-~-l dt (Rez > 0). 

(The contour goes once around the negative real axis in the positive direction.) 

Sommerfeld’s formula 2n-?+imeircosreiv[t-(n/2)]dt, 

v+ioo 

H&,qz) = ; J 1 2n-B+iooeiZcos,,iv[r-(n/2)]dt (-n<argz<a-n, O<ll<?r). 
q-im 

ff (l)(z) = - 2! e-im/2 
Y 

I 
meiZCoShfcoshvtdt (O<argz < V; when v=O, it holds also at z=O). 

7? 0 

H;“(z) = - 
2ie-““” (z/2)’ 

I 
m e iz Wsh f SinZ’ t dt 

6 Iyv+(1/2)1 0 

(0 < argz < 7, Rev>-1/2;whenz=O, -1/2<Rev<1/2). 
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H(‘)(z) = - i e -ivn/Z m 

Y 
s 

eir[t-(l/t)]/Zt-v-l dt 

7? 
(O<argz<a; whenargz=O, -l<Rev<l). 

0 

(3) Generating Function. 

exp[ “tit-“] n=, =Jo(z)+ 5 [t”+(- t)-“]J,(z), 

exp( iz cos 0) = f i”J,(z)e ‘“*=Jo(z)+2 g inJ”(z)cosne. 
n--cc n=l 

s 
J&W=2 5 J”+Zn+,(Zh 

n=O 

Kapteyn’s series 
1 

- = 
1-z 

Schlomilch’s series. Supposing thatf(x) is twice continuously differentiable with respect 
to the real variable x in 0 < x < rr, we have 

f(x)= ;a,+ 5 a,Jo(nx) (O<x<n), 
n=l 

where ao=2f(0)+ $-erd~i”‘2y(usin~)dq, 

2 
a,=- 

s l 
Tdu a/* 

r 0 
uj’(usincp)cosnq~dq~ 

0 

l=Je(z>+2 5 J2,(z)=[Jo(z)]2+2 5 [J,(z)]Z. 
?I=1 n=l 

(4) Addition Theorem. For the cylindrical function Z,, we have 

ei4Zv(kR)= fj J,(kp)Z,+,(kr)e’“~ 
n= --oo 

(R=J/ r2+p2-2rpcoscp, O<$< 5, eW = 
r-pe-iv 
~ O<p<r, r-peW ’ 

k is an arbitrary complex number), 

3 (kR > 
~ =2’k-‘r(v) 2 (v+n#+;, 

R’ 
(kp) ‘v+mckr) c~)(coscp) 

m=O ry 

(V #negative integer). 

(1= 1,2). 

,ikpcosq= L l/2 O” 

( > 2kp 
mIZo iY2 m+ l)J,+(~,z,(kp)~,(cosO 

=2T(v) 5 (~+m)i~J,+,(kp)(kp)-“C$)(cosq) (VfO, - 1, -2, . ..). 
m-0 

where P,,, is a Legendre polynomial, and Cg) is a Gegenbauer polynomial. 

(5) Infinite Products and Partial Fractions. Let j,,, be the zeros of z-“J,(z) in ascending order 
with respect to the real part. We have 

J,(z) = 01 fj (1-g) 
l-b+ 1) nsl 

(+-L-2,-3 ,... ). 
, 

Note that if v is real and greater than - 1, all zeros are real. 
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Kneser-Sommerfeld formula 

(6) Definite Integrals. 

(O<x<X<l, Rez>O). 

s “‘2J,(zcosO)cos@dB= 
0 

&~2=J2v(‘)dt, 
0 

2 
P+v y+v+1 

- -. v+1; A!! 

2 ’ 2 ’ a2 

(Re(a+ib)>O, Re(a-ib)>O, Re(p++)>o). 

s 
m 

eC"'J,(bt)t"dt= 
(2xmJ+(1/2)1 

0 (a2+ b2)Y+(‘/2)v/71 
Rev>-:, Rea>lImbl . 

> 

m 
(Rev>O, Rea>lImbl). 

Sommerfeld’s formula 
I 

m Jo(+-I+= rdr ,ikw 

0 vF2=PT7 

(r,x real; -m/2<argdr2-k2 <n/2, Ct<argk<~). 

Weyrich’s formula ?i-J_+meiTx~~1)(r\lk2-.2 )dT= 
eikm 

M LPT? 

(r,x real; O<argm <T, O<argk<m). 

Weber-Sonine formula 

s o”J,(at)e-P4’t’-‘dt= 
b/mIb + /d/21 -a2 

2ppr(y+ 1) 
v+l; - 

4P2 

(Re( p + v) > 0, [awl < :7/4, a > O), 

s 
omJ~(af)e-PI’*~Y+‘dt= ?&-‘/4~’ 

(2P2) 
(Rev > - 1, largpl <a/4). 

Sonine-Schafheitlin formula 

s 
mJ,,(at)J,(bt)t-“df = 

dj(p+ V-A+ 1)/21 
0 2~~bP-~+‘r[(-~++++h+1)/2lr(y+1) 

X2F1 

/J+v-h+1 p-V-X+1 a2 
2 ’ 2 ; p+l; 

2 

(Re(p+v-X+l)>O, Reh>-1, O<a<b). 

(7) Asymptotic Expansion. 

(i) Hankel’s asymptotic representation. We put 

(v,m)= 
[4~~-1~1~4~~-3~1...[4~~-(2m-1)~] 

22mm! 
(m= 1,2,3, . ..). (V,O)‘l. 

For Iz[>>/Y[, lzl>l, 

J,(z)= 1 

(-T<argz<n), 
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N,(z)= 

)[ 1 
)[ 

M-l 

z C-1) 
m(V,2m+l) 

+ *m+, +ow2M-‘) 
m=O (2z) 1 

(-n<argz<m), 

H;~~(z)=gexp[i(z- f - ; 
)I[ 

1:; s+ O(lzl-71 (-7r<argz<2n), 

H.““zqgexP[-i(z-~-;)][ yy+o(lzly)] (-2a<argr<a). 

(ii) Debye’s asymptotic representation. 

vkx, 1-(v/x)>&, v/x=sincu, when l-(P/x)>(~/x)v’/*, 

H,C’)(x)- -exp ix cosa + a - T sina 
A [ { ( 2) I] 

e h/4 

X- i ( 1 5 
X 

+ 8fZtan20L 
1 

je3ri/4 
2x3 

3 II 385 +(128+ 76tan20+ ~ 
3456 

tan4a) 3. 5e5ni/4 + 
22x5 ... 1 

(X=[ - xcos(a/2)]“2). 

v&x, (v/x)- 1 >E, v/x=coshu, when l~*-x*~~/*>l, I~*-x*]~/%-*>>l 

H,,(‘)(x)-+exp[x(ocosho-sinho)] 
71 

Whenvkx, Ix--Y~<x’/~, x>l, X-V=& 

(X=[ - xsinh(a/2)]‘/*). 

H (*j(x) ~- Y 

(iii) Watson-Nicholson formula. When x, v > 0, w  = [(x/v)* - l]‘/*, 

H,c’)(x)=3-‘/hexp[(- l)‘+‘i((n/6)+v(w-(~~/3)-arctanw)}]H1(;)~(~~~/3)+O~~-~~ 

(1= 1,2). 

(IV) Functions Related to Bessel Functions 

(1) Modified Bessel Functions. 

I Y (z)e e-im/2.Tv(e”/2z) 

= 5 (z/2)“+2n 
n=o n!I-(v+n+ 1)’ 

71 r-,(z)--“(z) 
2 sin ~77 -( 1 

TL “*wo,,(2z). 
2z 
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Recurrence formulas: 

Iv- I(z)- I,+ ,(4=(2~IzMz)~ 

I,- I(z)+ z”+,(z)=wz). 

Kv-I(Z)- G+,(z)= -(2~/W&)t 

Kv-,(z)+&+,(z)= -%Xz), 

K-“(z)= K”(z). 

H. Weber’s formula: O” e -P’*J, (at).Z,, (bt) t dt 

(Rev> - 1, largpl <o/4; a,b>O). 

Watson’s formula: J,(z)N”(z)--J”(z)N,,(z)= 
4sin( CL- v)n m 

42 i K”-,(2zsinht)e(v+“)‘dt 

(Rez>O, Re(p-v)<l), 

ah: (z) a444 4 
Jv(z)~ -N,(z)~ = - - s = 0 

m K,,(2z sinh t)em2”‘dt (Ret >O). 

Nicholson’s formula: 

Dixon-Ferrar formula: 

(2) Kelvin Functions. 

When v is an integer n, 

kei”(z)-(a/2)her”(z). 

her,(x)- ibei,(x)=(- l)“~~(ti x), 

her,(x)- ihei,(x)=(- l)“+‘H,,(‘)($ x) (x real). 

(3) Struve Function. H,(x)= 
2(z/2)” 

I I5+(1/2)]G 0 
“‘2sin(z cos 8)sin’“B dfl 

J,z(z) + N,Z(z) = 5 I O” K,42z sinh t)cosh 2vt dt (Rez > 0). 

J,?(z)+N,!(z)= GimK2”(2zsinht)dt 

( 
Rez>O; 

ber Y (z)? ibei Y (z)=J Y (e*3ni/4 z>, 

her Y (z)? ihei Y (z)- H(1)(er3”i/4z), Y 

ker”(z)= -(a/2)hei”(z), 

=g 
(- l)m(z/2)“+Zm+’ 

m=O r[m+(3/2>]r[v+m+(3/2)1’ 

Anger function: ncos(vO-zsinB)dO. 

H. F. Weber function: E”(z)=$p(vB-zsin0)dtI. 

Putting V”EZ’$ +zf +z2- v2, 

V”H”(Z) = 
4(z/2)“+’ 

r[v+(1/2)]!IG ’ !),V? 

v”J”(z)= (z-v)siny v”J”(z)= (z-v)siny 
vr vr 

V,E,(z)= - $ - 
(z - v)cos v7r (z - v)cos v7r 

71 . 71 ’ 
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When v is an integer n, J,(z)=J,(z). 

s 0 
=Jow = zJo(z) + ~[J,(z)&(z) - J,(zvf,(z)l, 

J 0 
=N,(t)dt=zN,(z)+ +v,(z)Ho(z)- fv,(z)H,(z)]. 

(4) Neumann Polynomials. 
(n/21 n(n-j- l)! 

R(t)= ci 
j=O j!(l/2)“-“+’ 

(n is a positive integer), 

O,(t)= l/t. 

Schlafli polynomials: 

+1+2 $ O,(t)J,(z) (ItI > lzlh 
n=l 

S, (1) = i [to, (t) - cos’ y ] (n is a positive integer), 

S,(t) E 0. 

V,S,(x)=2n+2(x-n)sin2(n7r/2) (V, is the same operator defined in (3)). 

Lommel polynomials: R,,,(Z)E r(v+ m) 
r(v)(z,2)“z4 2’ 2 ’ v7 - m3 ( 

1-m 2. 

l-v-m; -2’ 
> 

=(~z/2sinvn)[J,+,(z)J_,+,(z)+(- l)“J-,-,(z)J,-,(z)] 

(m is a nonnegative integer). 

References 

See references to Table 16, this Appendix. 

20. SyStelllS Of Orthogonal Functions (- 317 Orthogonal Functions) 

JR 

Name 

Legendre 

Gegenbauer 

Chebyshev 

Hermite 

Jacobi 

Laguerre 

Notationp,(x) Interval (a,b) 

P”(X) 

C,Y(x> 

Tn (xl 

H,(x) 

(-?,(a,~; x) 

G,“(x) 

(- 1, + 1) 

(- 1, + 1) 

(- 4 + 1) 

(-w+m) 

(031) 

(0, co) 

Weight q(x) 

1 

(1 - x2)4w) 

(1 -x2)- I/2 

e-x2 

x7- ‘(1 - X)a-7 

x*e-” 

For Legendre polynomials P,,(x) - Table 18.11, this Appendix. 

(I) Gegenbauer Polynomials (Gegenbauer Functions) 

Norm A, 

2/(2n + 1) 

2mI(2v+ n)/22’(n + v)n![r(v)12 

7r(n=O); 7r/2 (n > 1) 

v- 77 .n! 

n![r(y)12r(~+n-~+i) 
(a+2n)r(a+n)r(y+n) 

r(a+n+ 1)/n! 
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Generating function 

Orthogonal relation 
I 

r (sin2”0)C~(cos0)C,Y(cosfI)d0= 
d(2v + n) 

0 
1 Ln. 

22”-‘(V+n)n![r(Y)1 

(II) Chebyshev (Tschebyscheff) Polynomials 

(1) Chebyshev Polynomial (Chebyshev Function of the First Kind) 

T,(x)rcos(narccosx) 

=(1/2)[(x+iV~)‘+(x-i\ll-1;I)‘] 

= F(n, - n; l/2; (1 -x)/2) 

= (_ I)“( 1_ .,3”’ d” (I- x2)“-(“2) 

(2n - l)!! dx” ’ 

Chebyshev function of the second kind 

U,(x)-sin(narccosx) 

=(1/2i)[(x+iVY7)n-(x-i~i77)“] 

= (- l)“-ln d-1 (1 _ x2)“-(*‘2) 

(2n- l)!! dx”-1 

x(x), U,(x) are mutually linearly independent solutions of Chebyshev’s differential equation 
(I- x2)$’ - xy’ + n2y = 0. Recurrence relations are 

Tn+, (x)-2xT,(x)+ r,-, (x)=0, u,,, (x)-2xI/,(x)+ u,-, (x)=0. 

Generating function: 

l-12 
=T,(x)+2 2 T,(x)r”, 

1 
1-2tx+ 12 n=O 1--2tx-F t2 

= & z 4+1(x)t”. 
n 0 

Orthogonal relation: (m#n), 
(m=n+O), 

s 

+’ umw”(x)dx 

(m=n=O); -1 
VT7 = 

: 

5 (m=n#O), 

0 (otherwise). 

Orthogonality in finite sums. Let uo, ul, , . . , uk be the zeros of Tk+ 1(x). All zeros are real and 
situated in the interval (- l,l). Then we have 

I 

0 
i$oTm(ui~Tn(ui~F (k+1)/2 

(mfn, or m=n=k+ l), 
(l$m=ngk), 

k+l (m=n=O). 

Letp,(x) be the best approximation of x” in - 1 < x Q 1 by polynomials of degree at most n - 1. 
Then we have x”-p,(x)=2-“+‘T,(x). 
(2) Expansions by T,(x). 

e”=Z,(a)+2 2 Z,(a)T,(x), 
?I==1 

sinax= 2 (- 1)52,+1 (a)TZn+, (xl 

n=O 

cosax=Jo(a)+2 2 (-l)“J,,(a)T,,(x), 
n=l 
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m 1 
log(l+xsin2a)=2logcosa-2C, n(-tana)‘T,(x), 

n=l 

cc 
arctanx=2 c (-p -lfn+‘T,,+,( 

2n+l 
X. 
) 

?I=1 

(III) Parabolic Cylinder Functions (Weber Functions) (- 167 Functions of Confluent Type) 

Parabolic cylinder functions: 

D,(z)= 2(1’4)+(v’2)z-1’2 W(l,4)+(v,2), -ri4(z2/2) 

=A2 (1/4)+wz)z-1/2 Mw4~+w,z~. -1,4(Z*/2) + ~~1,4j-(v,2), -1,4@*/2) 

nu --VI/21 u - v/2) 1 
= 2yi2e-z214 x 

J[ 

1 -v 1 zz 

U(1 - Jw21 IF1 2;2;y 3-Q) ( > 
d+!$;;;;)]. 

The solutions of Weber’s differential equation 

are given by 

D,(z), 4(-z), D-u-, (iz>, D-v-, t-k), 

and the following relations hold among them. 

D~(z)=[~(~+1)/\/2n][e’“‘2D-~-,(iL)+e-iun’2D_~_1(-i~)] 

=e -‘mD,(-z)+[V277 /~(-v)]~-~~~+')~~~D_~_,(~z) 

=e’“lo,(-z)+[V277 /r(-~)]e’(~+‘)“/~D_~-,(-iz). 

Integral representation: 

D,(z)= ~lae-zi-(r’/z)t-Y-ldr (Rev<(,). 
U-v) 0 

e - (S/4)- zt- (G/Z) = 
* (-t)” 

c 
---Do,(z)= +J-y 

n! tT- v)D,(z)dv (c<O, largtl <n/4). 
n=O c Ice 

Recurrence formula: 

0,+1(z)-zD,(z)+vD,-,(z)=o, dD,(z)/dz+(1/2)zD,(z)-vD,-,(z)=O. 

D, (0) = 2y’26i- p+w~; 

Ni - d/21 ’ 
D:(O)=- r(-v,2) . 

Asymptotic expansion: 

v(v- 1) + Y(V- l)(v-2)(v--3) _ 

2z2 2.4~~ 
+ . . . 

I( 
largzl < a~). 

D-,(z)=~“*/~ &[ l-erf(&)], erf(x)=+iXe-“dt (errorfunction). 

(IV) Hermite Polynomials 

For the parabolic cylinder functions, when v is an integer n, we have 

D,,(z)=(-l)neZ2~4d”(e-‘2~2)/dz”=e-’*~4Hn(z/~), 
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where H,(x) is the Hermite polynomial 

H,(x)=2-“‘2(- l)“ex*dn (e-“*)/dX”=eX2/*D,(~x). 

A Hermite polynomial is more often defined by the following function He,(x) (e.g , in W.F. 
Magnus, F. Oberhettinger, and R. P. Soni [l]). 

He,(x)=( - l)neX2/2dn (e-“‘/*)/dx”= I?‘/~D, (x)= H,, (x/fi ). 

The function y = H,(x) is a solution of Hermite’s differential equation 

y”-2xy’+2ny=O. 

H,(X) is a polynomial in x of degree n, and is an even or odd function according to whether n 
is even or odd. 

H 2n+,(~)=(-1)n(2n+1)!!~x,F,(-n;3/2;x2). 

Recurrence formula: 

K+ I (x> = d/T xH,, (x) - nH,-, (x) = V? xH, (x) - H; (x)/fi , 

H 
2n 

(o)= (-- 1)“(2n)! 
2% ! 

=(-1)“(2n-l)!!, H,,+,(O)=O. 

Generating function: 

efi fx-(f2/*)= 2 H, (x)t”/n!. 
n-0 

Orthogonal relation: 

/ 
‘mH,(x)H,(x)e-X2d~=6,,n!~/?r. 

-CC 

(V) Jacobi Polynomials 

=x’-Y(l-xx) 
y-ar(y+n) dn 

---7& 
r(Y) dx 

Y+n--l(l -X)-Y]. 

These satisfy Jacobi’s differential equation x( 1 - x)y ” + [ y - (o + 1)x] y’ + n(cr + n) y = 0. 

Orthogonal relation: 

s ‘XY-l(l-X)a-Y G,(a,y;x)G,(a,y;x)dx= n!lY(cr+n-y+l)lY(y)’ 

0 (a+2n)r(a+n)r(y+n)Smn 

Representation of other functions: 

(Rey > 0, Re(cr - y) > - 1). 

P.(x)=G(l,l; +), T,(x)=G(O,;; +), 

n r(2v + n) 
c;(x>=(- 1) r(2v).n! G,, 

( 

1 1+x 
2v,v+ 2; 2 

1 
. 
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(VI) Laguerre Functions 

(1) Laguerre Functions. 

L?‘(z) = 
I-(a+v+l) 

I-(a+ l)l-(v+ 1) 
z-(‘+1)‘2e”iz~I(,+,)lzl+,,~~(z) 

r(cr+v+l) 
=r(a+ i)r(v+ 1) ,F,(-v;cc+l;z), 

These satisfy Laguerre’s differential equation 

zd2[L!“)(z)]/dz2+(a+l-z)d[Lp)(z)]/dz+vL!”)(z)=O. 

(2) Laguerre Polynomials. When v is an integer n (n = 0, 1,2, . . . ), the function L:)(x) reduces 
to a polynomial of degree n as follows. 

Laguerre polynomials: 

i=O 

(- l)“n! 
LiO)(x)= 1, L$m)(x)= 1, L!;;)(x)= olxmL:*‘(x) (m=0,1,2,...). 

Recurrence formulas: 

nLp)(x)=(-x++n+a- l)Lfi,(x)-(n+a- l)L!“_),(x), 

xd[Lp)(x)]/dx=nI$)(x)-(n+a)Lf$,(x) (n=2,3,...). 

Generating function: 

e-X”(‘-‘) = 2 L!“‘(x)p (ItI < 1). 
(l-t)a+r n=e 

Orthogonal relations: 

(3) 

s 0 
me-Xx”L$‘)(x)L~)dx=6,,~(a+n+l)/n!=8,,,,~(1+a)(n~a). 

H,,(x)=(-2)“n!L!+)(x2), H2n+,(~)=(-2)“n!~~xL~‘~2)(~2). 

Sonine Polynomials. 

S’“‘(x) 3 
(- 0” 

n L’“‘(x) 
T(a+n+l) n * 

(VII) Orthogonal Polynomials 

k=O 

(where n, m are positive integers and n < m). 
We have the same polynomials if we replace xk in PJ 1 - 2x) by 

x(x-l)...(x-k+l)/m(m-l)...(m-kfl) (k=O,l,..., n). 

Orthogonality in finite sums: 

$i f’n,, (kP,,,n (k) = h, 
(m+n+l)!(m-n)! 

k-0 (2n + l)(m!)’ ’ 

Chebyshev’s q functions: 

qn(m 
, 
x)= (- l>“(m- l)! 

2”(m-n- l)! 
Pn,m-~ (x), L,,(x)= [2”(n!)‘/(2n)!]q,(m,x- 1). 

Forgivendatay,atmpointsx,=x,+(k-l)h(k=l,..., m) that are equally spaced with 
step h, the least square approximation among the polynomials Q(x) of degree n( <m), i.e., the 

polynomial that minimizes the square sum of the residues S = k$ [yk - Q(x&]’ is given by the 
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following formula (- 19 Analog Computation): 

B/c= 5 YiSk,m (9, Sk= E [6,,(i)]‘, 
i=l i=l 

References 

See references to Table 16, this Appendix. 

21. Interpolation (- 223 Interpolation) 

(1) Lagrange’s Interpolation Polynomial. 

f(x)= 2 f(xs) 
(x-xo)(x-x,)...(x-xs~,)(x-xs+,)...(x-xx,) 

s=o 
(x,-xo)(x,-x,)...(x,-xx,~,)(x,-x,+,)...(x,--x,)~ 

Aitken’s interpolation scheme. The interpolation polynomialf(x) corresponding to the value 

Ys =f(xJ (3 = 031 , . . . , n) is given inductively by the following procedure. The order of x0,x,, 
. . .,x, is quite arbitrary. 

p,,o(x)=ys (s=O,l, . . ..n>. 

~~,k+,~X~=[~X,-xX)~k,k~X~-~Xk-xX)~,,k~~~]/~~,-xk~ (s=k+1,k+2,...,nh 

f(x) -AJx>. 

(2) Interpolation for Equally Spaced Points. When the points xk lie in the order of their sub- 
scripts at a uniform distance h (x, = x0 + sh), we make the following difference table (Ax = h). 
Forward difference: 

Ai=A;=&+, -f;=f(xi+,)-f(xi), A;=A;;f-A;-‘. 

Variable 

. . . 
x0 - 2Ax 
x0-Ax 

x0 
x,+Ax 

x0+ 2Ax 
x0+ 3Ax 

. . . 

Value of Function . . . 
jr: 
fo 
fi 

2 

(1st) 

- 
Difference 

(2nd) (3rd) (4th) . . . 

. . . . . . 
Amz Af, . . . . . . 

A-, A?, A?, A:, . . . 

L$, g A:, A!, . . . 

4 A: g . . . 

A2 . . . . . . 

Backward difference: 

&@-‘-@&A;-,. 

Central difference: 

8; = 8;&,2) - 6;~,$,2~, S;+(+) = A;. 

Newton interpolation formula (forward type): 

u(u- 1) 
f(xo+uAx)=f(xo)+~Ao+~ 

l! 
A2+ u(u- l)(u-2) A3 

2! O 3! 0 

+ U(U- l)(u-2)(~-3) A4+ 
4! 0 . . . . 

Gauss’s interpolation formula (forward type): 

u(u- 1) 
f(xo+~W=f(xo)+++~ A?,+ 

u(u- l)(u+ 1) 

3! 
A?, 

+ u(u- l)(u+ l)(u-2) A4 + 

4! 2 . . . . 
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Stirling’s interpolation formula: 

Bessel’s interpolation formula: 

x0+x, 
f(T+uAx)= r(xo);s(xl) +~Ao+~(~2-t)~+~(~2-a)A~, 

+ &(A +)(A gA.‘2; Atl + . . . . 

Everett’s interpolation formula: 

u(u2- 1) 
+4(x,)+ 7 0 

A2+ U(U2-1)(U2-4)A4 + 
5! I . . . . ((=1-u) 

(3) Interpolation for Functions of Two Variables. Let x,,, = x0+ mAx, yn =yo+ nAv 
(m and n are integers). We define the finite differences as follows: 

A,(x,,Yo> --fhyo) -f(xozvo>> 

A,(xo,~o)=f(xo>~J -f(xotuo)$ 

A:(xo,yo) -A&,,Y,,) - Ax(xo,~o)= 6,’ (GYO), 

A,.Jxo,yo) -A+,,Y,) - A,(xo,yo) = A~(xo,Y,) -Ax(xo,~o)~ 

A,2(xo,yo)=Ay(xo,~,)-Ay(xo,~o)= 6,’ (xoJ,), . . 

Newton’s formula: 

f(xo+ uAx,yo+ vb) =f(xo,ro) + (uA, + uA,)(x,,vo) 

+(1/2!)[u(u-l)A;+2 uoA,+u(u-l)A;](xo,yo)+ . . . . 

Everett’s formula. Putting s = 1 - u, t = I- u we have 

f(xo+ uAx,~o+uA~)=~tf(xo,~o)+~uf(xo~~,)+ utf(x,,~o)+uuf(x,t~,) 

-(1/6)[us(1+s){t~,Z(x,,y,)+u~,2(~~,~~)}+~~(1+~){t~~(~,,y~)+0~~(x~,y,)} 

+ot(l+t~{s~~~XO,Yo~+USy2~X~,YO~}+ur~1+u~{S~~~XO,Y*~+US:~XI,Y,~}]+~~~~ 

References 

[l] F. J. Thompson, Table of the coefficients of Everett’s central-difference interpolation formula, 
Tracts for computers, no. V, Cambridge Univ. Press, 1921. 
[2] M. Lindow, Numerische Infinitesimalrechnung, Dummler, Berlin, 1928. 

[3] H. T. Davis, Tables of the higher mathematical functions I, Principia Press, Bloomington, 
1933. 
[4] K. Hayashi and S. Moriguti, Table of higher transcendental functions (in Japanese), Iwanami, 
second revised edition, 1967. 

22. Distribution of Typical Random Variables 
(- 341 Probability Measures, 374 Sampling Distributions) 

In the following table, Nos. 1-13 are l-dimensional continuous distributions, and Nos. 2&21 are 

k-dimensional continuous distributions, for which the distribution density is the one with respect 
to Lebesgue measure. Nos. 14-19 are l-dimensional discrete distributions, and Nos. 22-24 are 
k-dimensional discrete distributions, where the density function P(x) means the probability at 

the point x. 
The characteristic function, average, and variance are given only for those represented in a 

simple form. 
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NO. Name Symbol Density Function Domains 

1 Normal Wrd 

2 Logarithmic normal 

3 Gamma 

4 

5 

6 

Exponential 

Two-sided exponential 

Chi square 

UPTO) 

e(rso) 

7 Beta 

8 F F(m, n) 

I 

f 

Cauchy 

One-side stable 
for exponent I /2 

Uniform rectangular 

1 (x-r)* 
1/1exp -- 
(2nd) 1 I 202 

*+P[-v] 

[r(p)]- Ig -PxP- I,-40 

(I/+=P(-(x-P)/4 

(1/2o)e-l’l/ 

2-“/2[r(n/2)]-‘x(“/Z)-‘e-X/2 

[B(p,q)]-‘xp-‘(I-xp-’ 

[GB(n/2,1/2)]-'[I +(r*/n)]-'"+"/2 

,*w[ *+?I-’ 

l/(B-a) 

--o,<x<m 

o.:y < m 

o.:x<m 

p.:x< m 

-cs<x<m 

O‘ZX< m 

O<X<l 

ocx< m 

--at<r<m 

-a<,<m 

--m<x<m 

o<x<m 

ncx<p 

14 Binomial Bin(v) (:)P%n-x x=0.1,2 ,..., n 

I5 Poisson P4) C”XX/X! x-cI.l,2,.. 

16 Hypergeometric ff(N3n.p) 

x integer 
O< KC Np, 

O<n-x<Nq 

17 Negative binomial NB(m,p) r(m+~)[r(m)~!]-~pp~ x=aI 1,2, 

18 Geometric G(P) Pq= x=O.l,2, 

19 Logarithmic KLq’/x, KL’ - I/logp x-1.2,3,... 

20 Multidimensional normal N(!-hW 
(Zn)-yzl-v 

x exp[ - (x - p)Z - ’ (x - P)'/21, 

x-(x I,__., xJJ,p=(p I,..., h), --(a,) 

21 Dirichlet 

r-b,+ +Y~+, ) 
rb,)...rbk+,) 

q-1 A&+,!- ’ 

x,+,-I-(x,+...+x,) 

x I,..., .q>o, 
x,+,. +x,<1 

22 Multinomial M(~,(P,)) 
n!(x,!...x~+,!)-‘p;I...p*X:+, 

++,=n-(x,+ . ..+xJ 

Xi’ . ..x* 

=O,l,..., n, 
x,+..,+.q<n 

23 
Multidimensional 
hypergeometric 

24 Negative polynomial 

x,, . . ..xt integers 
O<xi< Np, 

(i-l,...,k+l) 

r(m+x,+...+~k) X,>.....q 

r(m)x,!...+! P&w Pk? -0,1,2, 
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Conditions for Characteristic 

Parameters Function 

-CO<p<CO, 

a>0 
I 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

II 

I2 

13 

P,S>O 

-m<p<m,o>o 

o>o 

n positive integer 

P.4>0 

eP+(a2) 

(I- iof)-P 

e’*(l-ior)-’ 

(l+oV-’ 

(1-2it)-“I* 

0% 

02 

202 

2n 

P4 

(P+q)?P+q+l) 

OP 

C+S 

0 

n 

P 

p+q 

m,n positive integers 

m, n positive integers 

n positive integer 

-CO<p<CO, 
o>o 

O(n>l) 

O<c<m 
exp[ - clfl’/z(l - it/lrl)] none none 

(P-@/12 -m<a<p<m (e’@ - e’“‘)/ir( fi- a) (a+PW 

p+q- Lp,q>O, 

n positive integer 
(pe”+ 4)” np 14 

A>0 exp[-A(1 -e”)) A A 15 

P+q’l,P,q>o, (Nq)‘“‘(N’“‘) - ’ 

N, Np,n positive integers XF(-n -Np.Nq--n+l.e”) 
w&-n) 

> 9 3 1 np 16 

N>n 
N-l 

m’“‘sm!/(m-n)! 

p+q-l,p,q>O, 

m>O 

mq 
P 

w 
PZ 

17 
(1-qe”)- 

p+q- I,p,q>O 
P 

I - qe” 

4 

7 
18 

p+q-I,p,q>O - Kr log( I - qe”) &q/P &q(l- Krq)/P’ 19 

-m<P,,...,Pk 

< co, P symmetric 

positive definite 

quadratic form 

ap( ipf- F), 

I=(112 . . ..d 

E(3)= Pi 
V(xJ = a,, 

Cov(x,,x,)- mv 
20 

E (xi) =cvi(v,+...+v~+~-“,), 

“I. . . . . ++,>o vi COV(X,,Xj) = - cvivj, 21 
= 

VI+ .,, +~,+I c++ . ..+v.+J2 

x(“,+...+“,+,+l)-’ 

p,+...+p*+,=I, 

PI.....Pk+I>o 
n positive integer 

(p,e”l+ +p&“+p*+,)” EC%) = w, 
w#)=nP,(l -PA 

Cov(x,, x,)= -“pip, 
22 

V(x,)- C”P,(l -p;), 

PI. . . . . P&+,>o, 

N,NP,, . . ..NP.‘,~ 

positive integers 

EC+)= vi 
cov(x,*xj)= - c”Pp,. 

23 
N-II 

CG-- 
N-l 

Po+P,+...+Pk- 

~,PO,P,~...~Pk 

>O, m>O 

E(q) = $ 
v(x,)=wib,+P,vP~~ 24 

COdXi, x,) = mpg,/P; 
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Remarks 
1. Reproducing property with respect to p, u2. 
2. X=logY:N(y,a2). 
3. Reproducing property with respect top. 

4. e(O,a)=r(l,u). 
6. n is the number of degrees of freedom; reproducing property with respect to n. 

8. m and n are the numbers of degrees of freedom. 
9. ezr= F(m,n). 
10. n is the number of degrees of freedom. 

11. C(0, 1)= t(1); reproducing property with respect to n and u. 
14. Reproducing property with respect to n. 
15. Reproducing property with respect to A. 

17. Reproducing property with respect to m. 
18. G(p)=NB(l,p). 
20. Generalization of normal distribution; reproducing property with respect to p and X. 
22. Generalization of binomial distribution; reproducing property with respect to n. 
23. Generalization of hypergeometric distribution. 
24. Generalization of negative binomial distribution; reproducing property with respect to m. 

23. Statistical Estimation and Statistical Hypothesis 
Testing 

Listed below are some frequently used and well-investigated statistical procedures. (Concerning 
main probability distributions - 398 Statistical Decision Functions, 399 Statistical Estimation, 
400 Statistical Hypothesis Testing). The following notations and conventions are adopted, unless 

otherwise stated. 
Immediately after the heading number, the distribution is indicated by the symbol as defined 

in Table 22, this Appendix. It is to be understood that a random sample (xi, x2, . . ,x,) is ob- 
served from this distribution. Where two distributions are involved, samples (xi, . . . ,x0,) and 

(Y i , . . . , y,,) are understood to be observed from the respective distributions. 
Next, a necessary and sufficient statistic based on the sample is marked with * when it is com- 

plete, and # otherwise. Then appears the sampling distribution of this statistic. FOT those statistics 
consisting of several independent components, the distribution of these are shown. Greek lower- 
case letters except tl and 1 denote unknown parameters. Italic lowercase letters denote constants, 

each taking arbitrary real values. Italic capital letters denote constants whose values are specified 
in each procedure; repeated occurrences of the same letter under the same heading nurnber specify 
a certain common real value. 

Problems of point estimation, interval estimation, and hypothesis testing are presented, with 

corresponding estimators, confidence intervals, and tests (critical regions) as their solutions. All 
the confidence intervals here are those constructed from UMP unbiased tests, having I --c( as 

confidence levels. Alternative hypotheses are understood to be the negations of corresponding 
null hypotheses. Significance levels of all the tests are CI. The following symbols are attached to 
each procedure to describe its properties. 

For estimators: 
UMV: uniformly minimum variance unbiased. 

ML: maximum likelihood. 
AD admissibility with respect to quadratic loss function. 
IAD: inadmissibility with respect to quadratic loss function. 

For tests: 
UMP: uniformly most powerful. 
UMPU: uniformly most powerful unbiased. 
UMPI( ): uniformly most powerful invariant with respect to the product of transformation 
groups shown in ( ). 
LR: likelihood ratio. 

0: group of orthogonal transformations. 
L: group of shift transformations. 

S: group of change of scales. 
AD: admissibility with respect to simple loss function. 



1817 App. A, Table 23 
Statistical Estimation, Hypothesis Testing 

IAD: inadmissibility with respect to simple loss function. (Note that UMPU implies AD.) 
The following symbols denote lOO( 1 - (u)% points of respective distributions, (Y being 

sufficiently small. 
u(a): standard normal distribution. 
f,(a): t-distribution with f degrees of freedom. 
x:(a): x2 distribution with f degrees of freedom. 
F$a): F-distribution with (fi,f2) degrees of freedom. 

(1) N(/l,bZ). xx,*. N(n/&,&). 

Point estimation of p. X= iZxi: UMV,ML,AD. 

Interval estimation of CL. 
( 

Xk 442)$ 
1 

. 

Hypothesis [ p < k]. X > k + u(a)-& : UMP, LR. 

Hypothesis [h < p < I]. X < h - C or X > I+ C: UMPU, LR. 

(2) N(a,o*). 2(x,-a)**. 2x;. (a*& is the a*-multiplication of a random variable obeying 
the x*(n) distribution. We use similar notations in the following.) 

Point estimation of u*. 
X(x;- a)’ 

: UMV, ML, IAD. 

Interval estimation of u*. (A&x, - a)*, BC(x. - a)*). 
Hypothesis [a* < k]. Z(xi- a)*>x;(a)k: UkIP,LR. 
Hypothesis [u*= k]. z(xi - a)* < Ak or x(x, - a)* > Bk: UMPlJ. 

(3) N(PTfJ2). (;;J*. ($‘;“““). 

Point estimation of p. X: 

Interval estimation of p. 

UMV, ML, AD. 

! 

. 

Hypothesis 

Hypothesis 

p < k]. &t;-kTf > $!$ : UMPU,LR. 

p= k]. : UMPU, LR, UMPI(S, 0) for k = 0. 

Point estimation of u*. 

Point estimation of u. 

Interval estimation of u*. (AZ(x, - F)i BZ(x, - 3’). 

Hypothesis [u*< k]. 2(x,-.F)*>x,f-,(a)k: UMP, LR. 

Hypothesis [a*= k]. C(xi - Z)*< Ak or X(x,-Y)* > Bk: UMPU. 
Hypothesis [a* > k]. Z(xi - $* <d- t( 1 - a)k: UMPU, UMPI(L). 

Hypothesis -!! < k [ u 1. +- > E: UMPW), AD. 

(4) Bin(N,f?). Xxi*. Bin(Nn,O). 

Point estimation of 8. $: UMV, ML, AD. 

Hypothesis [0 < k]. X> A: UMP. 
Hypothesis [h < fI < I]. X< B or X> C: UMPU. 

(5) H(N,m,B) (n= 1). x*. 

Point estimation of 8. UMV, AD. 

Hypothesis [0 < k]. x > A: UMP. 
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(6) NB(N,O). Xxi*. NB(NyQ 1 

Point estimation of 0. Nn +zx-- 1 (1 when the denominator is 0): UMV, AD. 
I 

Nn 
m: 

ML. 

Hypothesis [0 < k]. Zx, < A : UMP. 
Hypothesis [h < 0 < I]. Cx, < B or Xx, > C: UMPU. 

(7) P(X). xxi*. P(d). 
Point estimation of h. X: UMV, ML, AD. 
Hypothesis [X < k]. X> A : UMP. 
Hypothesis[h<X<I]. Z<B orZ>C: UMPU. 

(8) G(0). Zxi*. NB(n,8). 

(9) 

(10) 

(11) 

(12) 

For the point estimation of 0 and hypothesis testing - (6). 

U[O,fl]. maxxi*. 

Point estimation of 0. maxxi: ML, IAD. 
n+l 
-maxx,: UMV, IAD. 

n 
Hypothesis [0 < k]. maxx, > (1 - a)‘/“k: UMP. 
Hypothesis [0 = k]. maxx, < ka”” or maxx, > k: UMP. 

U[[,v]. (minxi, maxx,)*. 

Point estimation of 5. 
n minxi - maxx; 

n-l 
: UMV, IAD. minxi: ML, IAD. 

t+17 
Point estimation of 2. 

tiin Xi + maxx, 

2 
: UMV, AD. 

Hypothesis [q-t< k]. maxx,--minx, > ka”“: UMP. 

u e-;,e+; . [ 1 (minxi, maxx,)*. 

Point estimation of 19. 
min xi + max xi 

~ : ML, AD. 
L 

Hypothesis [Q < k]. minxi > k + i - a’/” ormaxxi>k+i: UMP. 

et ho>. ( ZXi)‘. ( ::n;$+i;P)~ 

Point estimation of u. 
Xx,--minxi 

n-1 
: UMV, IAD. ,i-minxi: ML, IAD 

Point estimation of p. * minxi - AX: UMV, IAD. minx,: ML, IAD. 

Hypothesis [a< k,p=h]. Cx,<h or ,Zxi>kloga.-‘/“+h: UMP. 
Hypothesis [h<a< I]. xx,-nminx,<A or Xxi-nminxi> B: UMPU. 

Hypothesis [ p = k]. 
nminx;- k 

cx, _ n minx, < 0 or 
nminxi-k 

Cx, - n minx, 
>C: UMPU. 

(13) r(p,O). ZXi*. r(np,u).- 

Point estimation of u. 5: UMV, ML, IAD. 

Interval estimation of u.‘(CZx,, DZx,). 
Hypothesis [a < k]. Xx, > A : UMP. 
Hypothesis [u= k]. Xx, < Ck or Zxi > Dk: UMPU. 

(14) 
N( ~,,a*) 

N( ~24’). 

Point estimation of p1 -pLz. x-j? UMV, ML, AD. 

Interval estimation of pl -pLz. 

Hypothesis [~~-j~~<k]. 
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[/.vp*=k]. Ix-y-kl>u(a/2) 
d---- 

$ + $ : UMPU, UMPI(L), LR. 

I 
CXi 

* r 

I , 

N (n, WV*) 

XV, 

s*=~(x;-,r)z+qyi-y)2 

. q~*(J*~~*~‘> . 

a2x2n,cn,-2 , 

Point estimation of p, - ,u2. X-y: UMV, ML, AD. 

Interval estimation of p, - p2. x--y+ tn,+n*-2 

Hypothesis [ p, - p2 < k]. 
(X-F-k)G d/n,+n*-2 

t = 
G V/s’ 

> tn,+n*-2 (a): UMPU, 

UMPI(L), LR. 
Hypothesis [ p1 - p2= k]. ItI > tn,+n2-2(a): UMPU, UMPI(L), LR. 

Point estimation of CT*. n +s,’ -2 : 
1 2 

UMV, IAD. 6: ML, IAD. 
I 2 

Interval estimation of u*. (As*,Bs*). 
Hypothesis [u*< k]. s*>x~,+~~-~(cx)~: UMP, LR. 

Hypothesis [u2= k]. s* < Ak or s*> Bk: UMPU. 
Hypothesis [a*> k]. s*>~~,+~,-~(l -a)k: UMPU, UMPI(L), LR. 

4 
Interval estimation of -. 

0: I 
A 

0: 
Hypothesis 1 < k . ~ [ 1 (n,-1) q-%-q2 

b, - 1) qyi-Jq* 
> F;;:,‘(a)k: UMPU, UMPI(L, S), LR. 

02 

* 
(17) N(PbP2,4,43P). 

xx;, 2(x;- q*, 
ZYi, qvi-u)‘, 

qx,-qYi-Y) 

! 
Point estimation of p. r= 

Hypothesis [p=O]. Irj > 



Appendix B 
Numerical Tables 

1 

Prime Numbers and Primitive Roots 
L 

Indices Modulo p 
3 
Bernoulli Numbers and Euler Numbers 
4 
Class Numbers of Algebraic Number Fields 
5 
Characters of Finite Groups; 
Crystallographic Groups 
6 
Miscellaneous Constants 
7 
Coefficients of Polynomial Approximations 

1. Prime Numbers and Primitive Roots (- 297 Number Theory, 
Elementary 

In the following table, p is a prime number and r is a corresponding primitive root. 

P r P r P r P * P r P r 

2 79 3 191 19 311 17 439 17 577 5 
3 2 83 2 193 5 313 17 443 2 587 2 
5 2 89 3 197 2 317 2 449 3 593 3 
I 3 97 5 199 3 331 3 451 13 599 7 

11 2 101 2 211 2 337 19 461 2 601 7 
13 2 103 5 223 3 341 2 463 3 607 3 
17 3 107 2 221 2 349 2 467 2 613 2 

P r ___- 
709 2 
719 11 
727 5 
733 7 
739 3 
743 5 
751 3 

P r 

857 3 
859 2 
863 5 
877 2 
881 3 
883 2 
887 5 

19 2 109 11 229 7 353 3 479 13 617 3 757 2 907 2 
23 5 113 3 233 3 359 7 487 3 619 2 761 I 911 17 
29 2 127 3 239 7 367 11 491 2 631 3 769 11 919 7 
31 3 131 2 241 I 373 2 499 7 641 3 113 2 929 3 
37 2 137 3 251 11 379 2 503 5 643 11 787 2 937 5 
41 7 139 2 257 3 383 5 509 2 647 5 797 2 941 2 
43 3 149 2 263 5 389 2 521 3 653 2 809 3 947 2 

41 5 151 I 269 2 397 5 523 2 659 2 
53 2 157 5 271 43 401 3 541 2 661 2 
59 2 163 2 217 5 409 29 541 2 673 5 
61 2 167 5 281 3 419 2 557 2 677 2 
67 2 173 2 283 3 421 2 563 2 683 5 
71 7 179 2 293 2 431 7 569 3 691 3 
73 5 181 2 301 5 433 5 571 3 701 2 

811 3 
821 2 
823 3 
827 2 
829 2 
839 11 
853 2 ~- 

953 3 
967 5 
971 11 
977 3 
983 5 
991 7 
997 7 

tMersenne numbers. A prime number of the form 2P- 1 is called a Mersenne number. There exist 
27 suchp’s less than44500: p=2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 60’7, 1279, 
2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497. The even perfect 
numbers are the numbers of the form 2P-‘(2P- l), where 2P- 1 is a Mersenne number. 

2. Indices Modulop (- 297 Number Theory, Elementary) 

Let r be a primitive root corresponding to a prime number p. The index I = Ind,a of a with respect 
to the basis r is the integer 1 in 0 <I< p - 1 satisfying r’= a(modp). a = b(modp) is equivalent to 
Ind,a = Ind, b(mod(p- 1)). The index satisfies the following congruence relations with respect to 
mod(p- 1): Ind,ab=Ind,a+Ind,b, Ind,a”=nInd,a, Ind,a=Ind,rInd,a. 
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We can solve congruence equations using these relations. The following is a table of indices. 

P 

2 
3 
5 
7 

11 

P-l 

1 
2 
4 

2.3 
2.5 

13 2’.3 
17 24 
19 2.32 
23 2.11 
29 22.7 

31 2.3.5 
37 22.32 
41 23.5 
43 2.3.7 
47 2.23 

53 22.13 
59 2.29 
61 22.3.5 
67 2.3.11 
71 2.5.7 

73 23.32 
79 2.3.13 
83 2.41 
89 23.11 
97 25.3 

101 22.52 
103 2.3.17 
107 2.53 
109 22.33 
113 24.7 

127 
131 
137 
139 
149 

2.3’.7 
2.5.13 

23.17 
2.3.23 

2’.37 
. 

151 2.3.5’ 
157 22.3.13 
163 2.3.’ 
167 2.83 
173 22.43 

179 2.89 
181 2’.3’.5 
191 2.5.19 
193 26.3 
197 2=.7= 

199 2.32.11 
211 2.3.5.7 

223 2.3.37 
227 2.113 
229 2’.3.19 

- 
r 
- 

2 
2 
3 
2 

2 
3 
2 
5 
2 

3 
2 
7 
3 
5 

2 
2 
2 
2 
7 

5 
3 
2 
3 
5 

2 
5 
2 
1 
3 

3 
2 
3 
2 
2 

7 
5 
2 
5 
2 

2 
2 

19 
5 
2 

3 
2 
3 
2 
I 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 

1 - 
13- 
2 15- 
18 4 7- 

1 4 9 11 7 - 
14 1 5 11 7 4 - 

1 13 16 6 12 5 10 - 
2 16 1 19 9 14 7 15 - 

1 5 22 12 25 18 21 9 20 - 

24 1 20 28 23 11 7 4 27 9 - 

1 26 23 32 30 11 7 35 15 21 9 - 

14 25 18 1 37 9 7 31 4 33 12 8 - 

27 1 25 35 30 32 38 19 16 41 34 7 6 - 

18 20 1 32 7 11 16 45 5 35 3 42 15 13 - 

1 17 47 14 6 24 10 37 39 46 33 30 45 22 44 

1 50 6 18 25 45 40 38 15 28 49 55 14 33 23 

1 6 22 49 15 40 47 26 57 35 59 39 54 43 20 

1 39 15 23 59 19 64 10 28 44 47 22 53 9 50 

6 26 28 1 31 39 49 16 15 68 11 20 25 48 9 

8 6 1 33 55 59 21 62 46 35 11 64 4 51 31 

4 1 62 53 68 34 21 32 26 11 56 19 75 49 59 

1 72 27 8 24 77 56 47 60 12 38 20 40 71 23 

16 1 70 81 84 23 6 35 57 59 31 11 21 29 54 

34 70 1 31 86 25 89 81 77 13 46 91 85 4 84 

1 69 24 9 13 66 30 96 86 91 84 56 45 42 58 

44 39 1 4 61 72 70 80 24 86 57 93 50 77 85 

1 70 47 43 22 14 29 78 62 32 27 38 40 59 66 

15 80 92 20 1 101 87 105 3 98 34 43 63 42 103 
12 1 83 8 74 22 5 99 41 89 50 67 94 47 31 

72 1 87 115 68 94 38 84 121 113 46 98 80 71 60 

1 72 46 96 56 18 43 35 23 51 29 41 126 124 105 

10 1 75 42 122 25 38 46 125 91 73 102 119 97 19 

1 41 86 50 76 64 107 61 27 94 56 80 32 115 98 

1 87 104 142 109 53 124 84 95 120 132 72 41 93 138 

10 93 136 1 82 23 124 120 145 42 34 148 3 74 128 

141 82 1 147 28 26 40 124 135 129 62 116 21 113 92 

1 101 15 73 47 51 57 125 9 107 69 33 160 38 28 

40 94 1 118 28 103 53 58 99 150 90 61 97 87 132 

1 27 39 95 23 130 73 33 20 144 102 162 138 84 64 

1 108 138 171 15 114 166 54 135 118 62 149 155 80 36 

1 56 156 15 62 164 175 135 53 48 99 26 83 20 13 

44 116 50 171 85 112 98 1 134 33 175 15 165 8 123 
34 84 1 104 183 141 31 145 162 123 82 5 151 24 29 

1 181 89 146 29 25 159 154 120 36 141 192 110 78 66 

106 1 138 142 189 172 123 55 118 70 164 11 167 88 76 

1 43 132 139 162 144 199 154 21 179 115 118 17 80 124 

180 1 89 210 107 147 144 172 163 128 82’ 152 204 118 50 

1 46 11 154 28 61 99 178 34 8 197 77 131 150 218 

111 68 214 1 42 195 24 52 131 191 175 164 73 12 193 

(table continued on following page) 
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P P--l 

233 23.29 
239 2.7.17 
241 24.3.5 
251 2.53 
251 28 

263 2.131 
269 22.61 
271 2.33.5 
211 2’.3.23 
281 23.5.7 

I 

3 
I 
I 

11 
3 

5 
2 

43 
5 
3 

- 

2 3 5 7 11 13 17 19 23 29 31 31 41 43 47 

72 1 165 222 197 158 103 136 112 132 182 8 85 25 139 
66 14 138 1 4 43 52 155 63 160 188 31 99 15 113 

190 182 138 1 25 47 111 85 57 154 151 73 6 219 114 
135 6 80 218 1 162 184 233 134 203 226 187 fii 77 85 
48 1 55 85 196 106 120 125 28 94 242 219 19 207 61 

190 50 1 79 166 62 126 43 156 221 136 170 17 154 65 

1 109 208 19 230 142 105 223 176 187 259 56 200 254 32 
266 153 220 98 92 15 16 261 15 45 222 182 156 1 213 
147 188 1 22 I 222 103 252 208 14 47 87 1:!6 55 218 
204 1 186 182 253 9 166 221 197 172 62 135 ;!3 132 75 

3. Bernoulli Numbers and Euler Numbers (- 177Generating 
Functions) 

B, are Bernoulli numbers; En are Euler numbers. 

n 

2 
4 
6 
8 

10 

12 
14 
16 
18 
20 

22 

24 

26 

28 

30 

I 
I 

Numerator of B, 

1 
1 
1 
1 
5 

691 
7 

3617 
43867 

174611 

854513 

23636409 1 

8553 103 

23749461029 

8615841276005 

I i 
Denominator of B, 

6 
30 
42 
30 
66 

4 
0.16667 
0.03333 
0.0238 1 
0.03333 
0.07576 

2730 0.253 11 
6 1.16667 

510 7.09216 
798 54.97118 
330 529.12424 

138 6192.12319 

2730 86580.253 11 

6 1425517.16667 

870 2729823 1.06782 

14322 601580873.90064 

En 

1 
5 

61 
1385 

50521 

2702765 
19936098 1 

19391512145 
2404879675441 

37037 1188237525 

6.934887 x lOI 

1.551453 x 10’9 

4.087073 x lo*’ 

1.2522610 x ld4 

4.41543,9x 1026 

4. Class Numbers of Algebraic Number Fields 

(I) Class Numbers of Real Quadratic Field (- 347 Quadratic Fields) 

Let k = Q( fi ), where m is a positive integer without square factor (1 < m < 501). h is the class 
number (in the wider sense) of k. The -sign in the row of N(E) means that the norm N(E) of 
the fundamental unit is - 1. When N(E) = + 1, the class number in the narrow sense is 2h, and 
when N(E) = - 1, the class number in the narrow sense is also h. 

m h N(E) m h N(E) m h 

2 1 - 85 2 - 170 4 
3 1 86 1 173 1 
5 1 - 87 2 174 2 
6 1 89 1 - 177 1 
7 1 91 2 178 2 

10 2 - 93 1 179 1 
11 1 94 1 181 1 
13 1 - 95 2 182 2 
14 1 97 1 - 183 2 

h N(E) m h N(E) 

335 2 
337 1 - 
339 2 
341 1 
345 2 
346 6 - 
347 1 
349 1 - 
353 1 - 

m h N(E) 

421 1 - 
422 1 
426 2 
427 6 
429 2 
430 2 

431 1 
433 1 - 
434 4 
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m h N(E) 

15 2 
17 1 - 
19 1 
21 1 
22 1 
23 1 
26 2 - 
29 1 - 
30 2 
31 1 
33 1 
34 2 
35 2 
37 1 - 
38 1 
39 2 
41 1 - 
42 2 
43 1 
46 1 
47 1 
51 2 
53 1 - 
55 2 
57 1 
58 2 - 
59 1 
61 1 - 
62 1 
65 2 - 
66 2 
67 1 
69 1 
70 2 
71 1 
73 1 - 
74 2 - 
77 1 
78 2 
79 3 
82 4 - 
83 1 

m h N(E) 

101 1 - 
102 2 
103 1 
105 2 
106 2 - 
107 1 
109 1 - 
110 2 
111 2 
113 1 - 
114 2 
115 2 
118 1 
119 2 
122 2 - 
123 2 
127 1 
129 1 
1304 - 
131 1 
133 1 
134 1 
137 1 - 
138 2 
139 1 
141 1 
142 3 
143 2 
145 4 - 
146 2 
149 1 - 
151 1 
154 2 
155 2 
157 1 - 
158 1 
159 2 
161 1 
163 1 
165 2 
166 1 
167 1 

m h N(E) m h N(E) 

185 2 - 266 2 
186 2 267 2 
187 2 269 1 - 
140 2 271 1 
191 1 273 2 
193 1 - 274 4 - 
194 2 277 1 - 
195 4 278 1 
197 1 - 281 1 - 
199 1 282 2 
201 1 283 1 
202 2 - 285 2 

203 2 286 2 
205 2 287 2 
206 1 290 4 - 
209 1 291 4 
210 4 293 1 - 
211 1 295 2 
213 1 298 2 - 
214 1 299 2 
215 2 301 1 
217 1 302 1 
218 2 - 303 2 
219 4 305 2 
221 2 307 1 
222 2 309 1 
223 3 310 2 
226 8 - 311 1 
227 1 313 1 - 
229 3 - 314 2 - 
230 2 317 1 - 
231 4 318 2 
233 1 - 319 2 
235 6 321 3 
237 1 322 4 
238 2 323 4 
239 1 326 3 
241 1 - 327 2 
246 2 329 1 
247 2 330 4 
249 1 331 1 
251 1 334 1 

App. B, Table 4.11 
Class Numbers of Algebraic Number Fields 

m h N(E) 

354 2 
355 2 
357 2 
358 1 
359 3 
362 2 
365 2 
366 2 
367 1 
370 4 
371 2 
373 1 
374 2 
377 2 
379 1 
381 1 
382 1 
383 1 
385 2 
386 2 
389 1 
390 4 
391 2 
393 1 
394 2 
395 2 
397 1 
398 1 
399 8 
401 5 
402 2 
403 2 
406 2 
407 2 
409 1 
410 4 
411 2 
413 1 
415 2 
417 1 
418 2 
419 1 

m h N(E) 

435 4 
437 1 
438 4 
439 5 
442 8 - 
443 3 
445 4 - 
446 1 
447 2 
449 1 - 
451 2 
453 1 
454 1 
455 4 
457 1 - 
458 2 - 
461 1 - 
462 4 
463 1 
465 2 
466 2 
467 1 
469 3 
470 2 
471 2 
473 3 
474 2 
478 1 
479 1 
481 2 - 
482 2 
483 4 
485 2 - 
487 1 
489 1 
491 1 
493 2 - 
494 2 
497 1 
498 2 
499 5 
501 1 

One can find a table of fundamental units and representatives of ideal classes for 0 < m < 2025 in 
E. L. Ince, Cycles of reduced ideals in quadratic fields, Royal Society, London, 1968. 

(II) Class Numbers of Imaginary Quadratic Fields (- 347 Quadratic Fields) 

Let k = Q( G ), where m is a positive integer without square factor (1 < m s 509). h is the 
class number of k. In the present case, there is no distinction between the class numbers in the 

wider and narrow senses. 

mhmhmhmhmhmhmhmh 

1 1 65 8 129 12 193 4 255 12 319 10 389 22 447 14 
2 1 66 8 130 4 194 20 257 16 321 20 390 16 449 20 
3 1 67 1 131 5 195 4 258 8 322 8 391 14 451 6 
5 2 69 8 133 4 197 10 259 4 323 4 393 12 453 12 
6 2 70 4 134 14 199 9 262 6 326 22 394 IO 454 14 
7 1 71 7 137 8 201 12 263 13 327 12 395 8 455 20 

10 2 73 4 138 8 202 6 265 8 329 24 397 6 457 8 
11 1 74 10 139 3 203 4 266 20 330 8 398 20 458 26 
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m h m h in h 

13 2 
14 4 
15 2 
17 4 
19 1 
21 4 
22 2 
23 3 
26 6 
29 6 
30 4 
31 3 
33 4 
34 4 
35 2 
37 2 
38 6 
39 4 
41 8 
42 4 
43 1 
46 4 
47 5 
51 2 
53 6 
55 4 
57 4 
58 2 
59 3 
61 6 
62 8 

1 
1 
1 
1 
1 
11 
11 
1 
1 
1 
1 
1 
1 
1 
1: 
1: 
1: 

77 E 
78 4 
79 4 
82 i 
83 3 
85 4 
86 10 
87 6 
89 12 
91 2 
93 4 
94 8 
95 8 
97 4 
01 14 
02 4 
03 5 
05 8 
06 6 
07 3 
09 6 
10 12 
11 8 
13 8 
14 8 
15 2 
18 6 
19 10 
22 10 
23 2 
27 5 

141 E 
142 4 
143 1c 
145 8 
146 16 
149 14 
151 1 
154 8 
155 4 
157 6 
158 8 
159 10 
161 16 
163 1 
165 8 
166 10 
167 11 
170 12 
173 14 
174 12 
177 4 
178 8 
179 5 
181 10 
182 12 
183 8 
185 16 
186 12 
187 2 
190 4 
191 13 

m h 

205 8 
206 2C 
209 2C 
210 8 
211 3 
213 8 
214 6 
215 14 
217 8 
218 10 
219 4 
221 16 
222 12 
223 7 
226 8 
227 5 
229 10 
230 20 
231 12 
233 12 
235 2 
237 12 
238 8 
239 15 
241 12 
246 12 
241 6 
249 12 
251 7 
253 4 
254 16 

m h m h m h 

267 2 
269 22 
271 11 
213 8 
274 12 
277 6 
278 14 
281 20 
282 8 
283 3 
285 16 
286 12 
287 14 
290 20 
291 4 
293 18 
295 8 
298 6 
299 8 
301 8 
302 12 
303 10 
305 16 
307 3 
309 12 
310 8 
311 19 
313 8 
314 26 
317 10 
318 12 

331 3 399 16 
334 12 401 2a 
335 18 402 16 
337 8 403 2 
339 6 406 16 
341 28 401 16 
345 8 409 16 
346 10 410 16 
347 5 411 6 
349 14 413 20 
353 16 415 10 
354 16 417 12 
355 4 418 8 
357 8 419 9 
358 6 421 10 
359 19 422 10 
362 18 426 24 
365 20 427 2 
366 12 429 16 
367 9 430 12 
370 12 431 21 
371 8 433 12 
373 10 134 24 
374 28 435 4 
377 16 437 20 
379 3 138 8 
381 20 $39 15 
382 8 342 8 
383 17 443 5 
385 8 M5 8 
386 20 146 32 

-- 
m h 

-- 
461 30 
462 8 
463 7 
465 16 
466 8 
467 7 
469 16 
470 20 
471 16 
473 12 
474 20 
478 8 
479 25 
481 16 
482 20 
483 4 
485 20 
487 7 
489 20 
191 9 
493 12 
494 28 
197 24 
198 8 
199 3 
501 16 
502 14 
503 21 
505 8 
506 28 
509 30 
-- 

There are only 9 instances of m for which h = 1, and only 18 instances of m for which h := 2 (Baker, 

Stark). All these cases are in this table. 
One can find a table of structures of the ideal class groups and representatives of ideal classes 

for m < 24000 in H. Wada, A table of ideal class groups of imaginary quadratic fields, Proc. Japan 
Acad., 46 (1970), 401-403. 

(III) Class Numbers of Cyclotomic Fields 

Cyclotomic field k = Q(e’““‘) (1-z I < 100, I prime). h, is the first factor of the class number of k 
(- 14 Algebraic Number Fields). 

h, > 1 for I> 19 (Uchida). 

5. Characters of Finite Groups; Crystallographic Groups 

(I) Symmetric Groups S,, Alternating Groups A, (3 < n < 7), and Mathieu Groups IV, (,q = 
11,12,22,23,24) 

(1) In each table, the first column gives the representation of the conjugate class as we represent 
a permutation by the product of cyclic permutations. For example, (3)(2)’ means the conjugate 
class containing (123)(45)(67). 
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Finite Groups; Crystallographic Groups 

(2) The second column gives the order of the centralizer of the elements of the conjugate class. 
(3) In the table of S,,, the first row gives the type of Young diagram corresponding to each 
irreducible character. For example, [3,2*, l] means T(3,2,2,1). 
(4) In the table of A,, when we restrict the self-conjugate character of S,, (the character with *) 
to A,, it is decomposed into two mutually algebraically conjugate irreducible characters, and 
therefore we show only one of them. The other irreducible character of A, is given by the 
restriction to A, of the character of S, that is not self-conjugate. 
(5) In the table of M,, each character with a bar over the degree is one of the two mutually 
algebraically conjugate characters. 

eT=(-l&/--3)/2, e$=(lkV3)/2, eC=(-lkC7)/2 

&:=(-M/7)/2, E:=(-lkV/-15)/2, E;=(-l+CE)232 

s4 [41 [3,11 rm* P, 17 [I41 

(1) 24 1 3 2 3 1 

(2) 4 1 (3) 3 1 :, 0 -1 i1 1’ 
(4) 4 1 -1 0 1 -1 
(2)2 8 1 - 1 2 - 1 1 

s5 I [51 [4,11 [3,21 t3, 121* P2> 11 12, I31 USI 
(1) 120 1 4 5 6 5 4 1 
(2) 12 1 2 1 0 -1 -2 -1 
(3) 6 1 1 -1 0 -1 1 1 
(4) 4 1 0 -1 0 1 0 -1 

@I2 8 1 0 1 -2 1 0 1 
(3)(2) 6 1 -1 1 0 -1 1 -1 

(5) 5 1 -1 0 1 0 -1 1 

s6 1 [61 [5,11 [421 [4,1*1 [32l [3,&l]* [23] [3, 13] [22, 12] [2, 14] [16] 

(1) 720 1 5 9 10 5 16 5 10 9 5 1 

(2) 48 13 3 2 1 0 -1 -2 -3 -3 -1 

(3) 18 1 2 0 1 -1 -2 -1 1 0 2 1 
(4) 8 1 1 -1 0 -1 0 1 0 1 -1 -1 

a* 16 1 1 1 -2 1 0 1 -2 1 1 1 
(3)(2) 6 1 0 0 -1 1 0 -1 1 0 0 -1 

(5) 5 1 0 -1 0 0 1 0 0 -1 0 1 

(6) 6 1 -1 0 1 0 0 0 -1 0 1 -1 

(W 8 1 -1 1 0 -1 0 -1 0 1 -1 1 

PI3 48 1 -1 3 -2 -3 0 3 2 -3 1 -1 

(3)2 18 1 -1 0 1 2 -2 2 1 0 -1 1 
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& [71 [6,11 [5,21 [5,1'1 [4,31 [4,2,11 [3*,11 [4.131* [3,2'1 [3,2,1*1 [23,11 [3.141 [22.1’l [2,1sl [I’] 

(I) 5040 I 6 14 I5 I4 35 21 20 21 35 I4 I5 I4 6 I 
(2) 240 I 4 6 5 4 5 I 0 -5 -4 
(3) 72 I 3 2 3 -I -I -3 2 

1: 
-I -I ;’ A6 ;4 ;l 

(4) 24 I 2 0 I -I 0 I I 2 -I 0 
(2)2 48 I 2 2 -I i2 -I :l -4 I -I 2 -I 2 2’ ,l 

(3)(2) I2 I I 0 I I 0 
(5) IO I I -1 0’ -I 0’ I 0 

-I I -I I 0 -I -I 

:, 
0 -I 

(6) 
86 

I 0 
il 

0 0 I 0 0 
1’ 

0 8 
-I I I 

0 
(4)(2) I 0 -I 0 I -I 0 -I 0 -I :, 0 1’ 

(2)3 48 I 0 2 
,’ 

0 I -3 0 3 -I 0 3 -2 0 -I 
(3)2 I8 I 0 -I 2 0 2 0 2 0 -I 0 I 

(5)(2) IO I -1 I 0 -I ,l 1 0 -I ,l I 0 -I I -I 

(3)(2)2 24 I - I 2 
I’ 

-I -I I 2 I -I -I -I 2 -I I 
(4)(3) I2 I - I 0 0 0 I 

(7) 7 I -I 0 I 
:, il 0’ 

-I :, :, ,l 1’ 0 -I -ll 

-47 

(I) 2520 

(3) 36 
(2)2 24 

(5) 5 
(4x2) 4 

(3)* 9 
(3X2)* 12 

(7) 7 
(7) 7 

[4, 131* 

10 
1 

-2 
0 
0 
1 

1 

c3+ 

e-4- 

(1) g 
@I4 48 

(4)2 8 

(3)3 18 

(5)* 5 

tW) 8 

@)(2) 8 

(6X3)(2) 6 

(11) 11 

1 10 11 55 

1 2 3 -1 

1 2 -1 -1 

1 1 2 1 

1 0 1 0 

1 0 -1 1 

1 0 -1 1 
1 -1 0 -1 
1 -1 0 0 

45 

-3 
1 

0 

0 

-1 

-1 
0 
1 

44 -is IO 

4 0 -. 2 

0 0 0 

-1 -2 I 

-1 1 0 

0 0 k i.VLZ 

0 0 T i-VT 
1 0 j. 
0 6 -1 

(11) 11 1 1 -1 0 0 1 0 Eq -1 

g=11.10.9.8=7920. 

MI, (1) g 1 11 11 55 55 55 45 54 66 99 120 144 176 16 

(a4 192 1 3 3 -1 -1 7 -3 6 2 3 -8 0 0 0 

(4)* 32 1 3 -1 3 -1 -1 1 2 -2-l 0 0 0 0 

(3)3 5412 2 11 10 0 3 0 3 0 -4 -2 
(5)* 10 1 1 1 0 0 0 0 -1 1 -1 0 -I 1 

(8)(2) 8 1 1 -1 -1 1 -1 -1 0, 0 1 0 0 0 :, 
(6)(3)(2) 6 1 0 0 - 1 - 1 1 0 0 - 1 0 1 0 0 0 

(11) 11 1 0 0 0 0 0 1 -1 0 0 -1 1 0 &q+ 

(11) 11 1 0 0 0 0 0 1 -1 0 0 -1 1 0 Eq 

w 240 1 - 1 - 1 -5 -5 -5 5 6 6 -1 0 4 -4 4 
(10)(2) 10 1 -1 -1 0 0 0 0 1 1 -1 0 -1 1 -1 

(4)*(2)* 32 1 -1 3 -1 3 -1 1 2 -2 -1 0 0 0 0 

(3)4 36 1 -1 -1 1 1 1 3 0 0 3 0 -r; -1 1 

@I2 12 1 -1 -1 1 1 1 -1 0 0 -1 0 1 -1 1 
(8)(4) 8 l-l 1 1 -1-l -1 0 0 1 0 0 0 0 

g=12~11~10~9~8=95040. 
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M22 (1) g 1 21 55 154 210 280 231 385 99 ;13 

ma 384 1 5 7 10 2 -8 7 1 3 -3 

(3Y 361 3 1 1 3 1 -3 -2 0 0 

(5)4 5 1 1 0 -1 0 0 1 0 -1 0 
(4)4(2)2 16 1 1 -1 2 -2 0 -1 1 -1 1 

(4)4(2)2 32 1 1 3 -2 -2 0 -1 1 3 1 
(7)3 710 -10 0 0 0 0 1 E; 

(7)3 710 -10 0 0 0 0 1 E; 

(8)2(4)(2) 8 1 - 1 1 0 0 0 - 1 1 - 1 - 1 
(6)2(3)2(2)2 12 1 - 1 1 1 - 1 1 1 -2 0 0 

(1 II2 Ill-10 0 1 &q+ 0 0 0 1 

(1U2 11 1 -1 0 0 1 Eq 0 0 0 1 

g=22.21.20.48=443520. 

M23 (1) g I 1 22 230 231 770 1035 2024 z 990 231 253 896 

m* 
(3Y 

(5)4 
(4)4(2)2 

(7)3 

(7)3 

(V2(4)(2) 

(6)2(3)2(2)2 

(1 II2 

(1 II2 
(15)(5)(3) 
(15)(5)(3) 
W(W) 
( 1W)(2) 

(23) 
(23) 

2688 1 6 22 7 -14 27 

18014 5 6 5 0 

1512 0 10 0 

32 1 2 2 -1 -2 -1 

14 1 1 -1 0 0 -1 

14 1 1 -1 0 0 -1 

8 10 0 -1 0 1 
1210 l-2 1 0 

1110-10 0 1 

1110-10 0 1 
151-10 10 0 
151-10 10 0 
14 1 -1 1 0 0 -1 

14 1 -1 1 0 0 -1 
231-10 1 + 0 
231-10 1 :’ 0 

8 -3 -18 

-1 0 0 

-1 0 0 

0 1 2 

1 E: CT 
1 E; e; 

0 -1 0 

-1 0 0 

0 1 0 

0 1 0 
-1 0 0 
-1 0 0 

1 - E; E; 

1 -&; E; 

0 -1 1 
0 -1 1 

7 13 0 

-3 1 -4 

1 -2 1 

-1 1 0 
0 

1 
0 m 

0 1 0 

-1 -1 0 

1 1 0 

0 0 &q+ 

0 0 Eq 
E: 1 1 
c5- 1 1 

0 -1 0 
0 -1 0 

1 0 -1 
1 0 -1 

M24 (lY4 g 55.64 45 22.45 
1 

‘I 
(7-Y 21.2” 

(3Y 27.4C 

(5)4 60 

(4)4(2S 128 

(7)3 42 

(7)3 42 

W(4)(2) 16 
(6)2(3)z(2)2 24 

(11)2 11 

(l5)(5)(3) 15 

(15X5)(3) 15 
(14)(7X2) 14 

(14X7)(2) 14 
(23) 23 

(23) 23 

(12)2 12 

(6)4 24 

(4)6 96 

(3)s 7.72 

(2Y2 15.29 

(10)2(2)2 20 

V-1)(3) 21 
(21)(3) 21 
(4)4(2)4 3.2’ 

(l2)(6)(4)(2) 12 

1 23 7.36 23.11 

17 28 13 

15 9 IO 

13 2 3 

13 4 1 

12 0 1 

12 0 I 

1 I 0 -1 

11 l-2 

1 1 -1 0 
10 -1 0 

10 -1 0 
10 0 -1 

10 0 -1 

10 -1 0 

IO -I 0 

l-l 0 1 

l-l 0 1 

l-l 0 1 

I-1 0 1 

I -1 12 -11 

I -1 2 -1 
l-l 0 1 

l-l 0 1 

I-1 4 -3 
I-l 1 0 

23.17 

-21 

16 

1 

-5 

0 

0 

-I 

0 

0 
1 

1 
0 

0 

0 

0 

-1 

-1 

-1 

I 

11 

1 

0 

0 

3 
0 

64 -3 - 18 

10 0 0 

0 0 0 

0 1 2 

- 1 E; E: 

- 1 &< Ej 

0 -1 0 

-2 0 0 

0 1 0 
0 0 0 

0 0 0 
I -&j Ej+ 

1 -E; E3 
1 -1 I 

1 -1 1 

0 1 1 

0 -I -1 

0 1 -2 

-8 3 3 

0 5 - 10 

0 0 0 

-1 ET Ej 

-I E: e3’ 

0 -3 6 
0 0 0 0 

23.45 

-21 

0 

0 

3 

2E: 

2&j 

-1 

0 

1 
0 
0 

0 
0 

0 

0 

-1 

I 

-1 

-3 

-5 

0 

-&; 

-E; 

3 

23.45 

27 

0 

0 

-1 

-1 

-1 

1 

0 

1 
0 

0 
-1 

-1 

0 

0 

0 

2 

3 

6 

35 

0 

-1 

-1 

3 
0 

Il.21 770 

7 - 14 

-3 5 

I 0 

-1 -2 

0 0 

0 0 

-1 0 

1 I 

0 0 

&5’ 0 

ES 0 
0 0 
0 0 
1 %+ 
1 ca 
0 I 

0 1 

3 -2 

0 -7 

-9 10 

1 0 

0 0 

0 0 

-1 2 
-1 -I 
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(V” 
(2)8 21 .g,lO 

(3Y 27.40 
(5)4 60 

(4)4(2S 128 

(7)3 42 
(7)3 42 

(8)2(4)(2) 16 
(6)2(3)2(2)2 24 

(11)2 11 
(15)(5)(3) 15 
(15)(5)(3) 15 
(14)(7)(2) 14 
(14)(7)(2) 14 

(23) 23 
(23) 23 
(12)2 12 
(6)4 24 
(4)6 96 

(3)8 7.12 

w2 15.29 
(10)2(2)2 20 

(21)(3) 21 
(21)(3) 21 
(4)4(2)4 3.2' 

(12)(6)(4)(2) 12 

T 

!3.21 23.55 

35 
6 

-2 

3 
0 

0 
-1 
2 

-1 
1 
1 
0 
0 
0 
0 
0 
0 
3 

0 
3 

-2 
0 
0 

3 
0 

49 

5 
0 
1 

-2 
-2 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-3 

8 
-15 
0 
1 
1 

-7 
-1 

23.88 23.99 23.144 23.11.21 23.7.36 77.12 11.35.27 

8 21 48 49 -28 -56 -21 

-1 0 0 -15 -9 9 0 

-1 -3 -3 3 1 -1 0 
0 1 0 -3 4 0 -1 
1 2 1 0 0 0 0 
1 2 1 0 0 0 0 
0 -1 0 -1 0 0 1 

-1 0 0 1 -1 1 0 
0 0 1 0 -1 0 0 

-1 0 0 0 1 -1 0 
-1 0 0 0 1 -1 0 
1 0 -1 0 0 0 0 
1 0 -1 0 0 0 0 
0 0 0 0 0 1 -1 
0 0 0 0 0 1 -1 
0 0 0 0 0 0 0 
0 2 -2 0 0 0 0 
0 -3 0 -3 0 0 3 

8 6 -6 0 0 0 0 

24 -19 16 9 36 24 -45 

-1 1 1 -1 1 -1 0 
1 -1 1 0 0 0 0 
i -1 1 0 0 0 0 

8 -3 0 1 -4 -8 3 
-1 0 0 1 -1 1 0 

g=24.23.22.21.20.48=244823040. 

(II) General Linear Groups GL(2, q), Unitary Groups LJ(2, q), and Special Linear Groups SL(2, q) 
(q is a power of a prime) (- 151 Finite Groups I) 

(1) The notations are as follows. E =exp[2Pv - 1 /(q- l)], 7 = exp[2aVT /(,g2- l)], 
u = exp[2nm /(q + l)], p is the generator of the multiplicative group of GF(q) - { 01, w  is 

the generator of the multiplicative group of GF(q’) - {0}, wq- ’ = (Y, B is an element of GL(2, q) 
with order q2- 1, and B, = Bq-‘. 
(2) The first column gives a representative of the conjugate class. 

General Linear Group GL(2, q). 

X,(l) &l(q) Y m.n 

E2na qezna (q+ l)&(m++J 

Z” 

(q- l)‘)“w+ 1) 

Pa ( 1’ 1 Pa ) 

E2no 0 e(m+f9a -‘J 
no(q+ I) 

(P” pb) j &a+b) &a+@ 0 

B’ Eric - E”c 0 - (TJ lx + 7, ncq) 

(1) l<a<q-1, l<b<q-1, afb(modq-l), l<c<q’-1, cfO(modq+l). 
(2)Weassumethat l<n<q-l,forX,(l),X,,(q), l<m<n<q-1,for Y,,,,, l<n<q2-1 
for Z,,, n fO(modq + 1). Here, Z,, = Z,. when n E n’q(modq2 - 1). 

Unitary Group U(2,q). 

X,‘(l) x;(q) 

(as as) 02m quzm (q-;L+nIs ;% (q+ lbJm 

(4’ .4 
as 

( 1 a’ 

( 

ld” 

1 I 
(I --nu 

w -w 
qnu+v--“U4 

, 
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(1) (y .s)> (“” ,-uq) are the canonical forms of an element of U(2, q) in GL(2,q’). 

(2) l<s<q+l, l<t<q+l, sft(modq+l), 1<u<q2-1, ufO(modq-l).Whenu= 
- u’q (modq*- 1) u, u’ gives the same conjugate class. 

(3) The ranges are 1~ n < q + 1 for X,‘(l), X,‘(q), 1~ m < n < q+ 1 for Y;,,, l< n < q2- 1 for 

Zi, n $0 (modq - 1). When n’= - nq (modq2 - l), we have .Z; = Z;,.. 

Special Linear Group X(2,2”) (the case when q = 2”). 

( 1 1 1 1 4 

1 

(P” ( 
P 

1 --D > ) 1 1 0 1 ERa +&cna 0 

B; 1 -1 0 -(umc+u-mc) 

(1) l<a<(q-2)/2, l<c<q/2. 
(2) l<n<(q-2)/2, l<m<q/2. 

Special Linear Group X(2, q) (q = power of an odd prime number, e = (q - 1)/2, e’ = (q + 1)/2). 

1 ( > 1 q+l q-1 
q+l q-1 

1 4 2 2 

z= -l -1 
( ) 

1 q (- l)“(q + 1) (-- lYYq- 1) (- 1$$! (- I)+ 

P,= ( 1 
1 1 

1 1 0 1 -1 Pk A’ 

P2=jj1 ( 1 1 0 1 -1 CL7 A ? 

P:Z 

[l_pl ) 

1 0 (-1) -(- 1)” (-l)‘/lk (-I)+* 

1 0 t-11 -(-1)” (-l)‘/AT (- l)e’AT 

P -a 1 1 ena+ E-“a 0 C-1) 0 

Bf 1 -1 0 -(UmC +u-mc) 0 -(- 1) 

(l)l<a<(q--3)/2, l<c<(q-1)/2, l<n<(q-3)/2, l<m<(q-1)/2, 
n+={-1*[(-l)eq]1’z}/2, p’={lf[(-l)‘q]“2}/2. 
(2) The last two columns mean two characters (with the same signs), respectively. 

(III) Ree group Re(q), Suzuki Group Sz(q), and Janko Group J. 

Ree group Re(q) (q=3*“+l=3m2). 

TheorderofRe(q)isq3(q3+l)(q-1),q~=q2-q+1,m+=q+3m+1,m~=q-3m+1. 

1 1 
J 2 
x 3 
Y 9 
T 3 

T-’ 3 
YT 9 

YT-’ 9 
JT 6 

JT-’ 6 
R” 

Sb 
JR” 

JSb 
VS 

W’ 

I A B C XP 

1 40 q3 440 (4- l)mm+P (4- l)mm-/2 m(q2- 1) q3+1 

1 -1 
Z 

-4 -(4- 1)/2 (4 - w 0 q+l 
1 -(q-l) -(4+ ml/2 (q-m)/2 --m 1 
1 1 0 z m m -m 1 
1 1 0 0 a fl 2a 1 

1 1 0 0 cu a 2Z 1 
1 1 0 0 P P -P 1 

1 1 0 0 P P -P 1 
1 -1 0 0 Y -Y 0 1 

1 -1 0 0 - 
1 1 1 1 ; 

-7 0 1 
0 0 p’uI+p-’ 

1 3 -1-3 1 -1 0 0 
1 -1 1 -1 0 0 0 pp+p-p 
1 -1 -1 1 1 -1 0 0 
1 0 -1 0 -1 0 -1 0 

1 0 -1 0 0 1 1 0 
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1 1 
J 2 
x 3 
Y 9 
T 3 

T-’ 3 
YT 9 

YT-’ 9 
JT 6 

JT-’ 6 
R” 

Sb 
JR” 

JSb 

V” 

W’ 

q3+1 

-(q+ 1) 
1 
1 
1 

1 
1 

1 
-1 

-1 
pp+p-‘UI 

0 

--(Pp+P-'l(l) 
0 

0 

0 

(4 - Iho (4- Iko 
xq- 1) -(4- 1) 
2q-1 2q-1 

-1 -1 
-1 -1 

-1 -1 
-1 -1 
-1 -1 
-3 1 

-3 1 
0 0 

o(vb) o’(hb) 
0 0 

o(vb) a’(Xb) 

0 0 - ,$o("-4f+ o-"@) 

0 

(q2- lb+ 
0 

-m+ 
-1 

-3m-1 

-3m-1 
-1 
-1 
0 

0 
0 

0 
0 

0 

0 0 

(q*-- l)m- 
0 

-m- 
.- 1 

3n1-1 
3m-1 

__ 1 
-- 1 
0 
0 
0 

0 
10 

0 

i( 
ww  + W-w) 

i=o 

(1) The first column gives a representative of conjugate class, and the second column gives its 

order. The orders of R, S, V, W are (q- 1)/2, (q+ 1)/4, m- , m, , respectively. R, S, Tare commuta- 
tive with J. 
(2) R”-R-“, V”w V”qc 1/“q2- I/-“- V-‘q- Vms’J2, W’- W’q’c. W’q’, We’- W-‘qw W-“J*, Here 

we fix an integer 6 satisfying d3 = 1 [mod(q + 1)/4], (6 - 1, (q + 1)/4) = 1. 

~b~~b8~~b8=~~ -b-s -bS-s -b8=, JR”-JR -a, JSb-JS -b, 

where A-B means that A and B are mutually conjugate. 
(3) p=exp[4rrGI /(q-l)], v=exp(2rrV- 1 /m-), w=exp(2nGi /m+), 

u = exp[8nm /(q + l)]. 

(4) 1 < /.t<(q-3)/4, 1 <:h(q-3)/S. 
Here v is considered mod(q+ I)/4 and 

Y,= Yy,= Y&z= Ye,= Ye&= Y_“@, 

K is considered modm- and 

ZK=ZKq=Z~q2=Z~)(=Z~)cq=Z~rq2, 

T is considered mod m + and 

z:=z~4=z~42=z~7=z~7q=z~,q2. 

(5) u(vb)= - 5 (uvb8’+u-vb8’), u’(Xb)= i (u~~‘+u-~b~‘)-(u~b~2+u-~~2). 
i=o i=O 

(6) 
m+md-q m-v-q 

(Y” - 2 >p=- 2 
1-V-q 

>y= --j--’ We show one of the two mutually 

complex conjugate characters, for the characters A, B, C. 

Suzuki group Sz(q). The order of Sz(q) is q*(q*+ l)(q- 1) (q=2*“+l,2q=r2). 
- 

X, ‘a z, 
1 4* qZ+l (q-r+ l)(q- 1) (q+r+l)(q-1) r(q- I)/2 r(q- I)/2 
1 0 1 r-1 -r-l - r/2 -r/2 

1 0 1 -1 -1 rCl /2 -rm /2 

1 0 1 -1 -1 -rV/--l/2 r\i-l/2 
1 1 6’ + to- Oi 0 0 0 0 
l-l 0 -(e,Bj+,p7+,;~+,;fiq 0 1 1 

(1) The first column gives a representative of the conjugate class. 
(2) no, rr,, r2 are the elements of order q - 1 q + r + 1, q - r + 1, respectively. 
(3) eO, E,, e2 are the primitive q - 1, q + r + 1, q - r + 1 roots of 1, respectively. 

(4) md; and 7; i are mutually conjugate elements, and hence X, and X-, give the same character. 
i, (Y run over the representatives of mod q- 1, and i,afO (modq- 1). 
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(5) n{, 7i;j, @, T;‘q are mutually conjugate, and hence Yp, Y-@, Ypq, Yek give the same 

character. j, p run over the representatives of modq + r + 1, and j, p f 0 (modq + r + 1). 
(6) T;, rFk, n$‘, nFkq are mutually conjugate, and hence Z,, Z-,, Zyq, Z-, give the same 
character, k, y run over the representatives of mod q - r + 1, and k, yf0 (mod q - r + 1). 

Janko Group J. 

1 1 77 133 209 133 77 77 133 76 76 56 56 120 120 120 

2 1 5 5 1 -3 -3 -3 -3 4 -4 0 0 0 0 0 
3 1 -1 1 -1 -2 2 2 -2 1 1 2 2 0 0 0 
51 2 -2 -1 &+ --E+ -&- E- 1 1 2&- 2.?+ 0 0 0 

51 2 -2 -1 E- -E- -&+ E+ 1 1 2&+ 2E- 0 0 0 

6 l-1 -1 1 0 0 0 0 1 -1 0 0 0 0 0 

7 1 0 0 -1 0 0 0 0 -1-I 0 0 1 1 1 

10 1 0 0 1 -E+ -&+ -&- -&- -1 1 0 0 0 0 0 

10 1 0 0 1 -&- -e- --E+ --e+ -1 1 0 0 0 0 0 
111 0 1 0 1 0 0 1 -1 -1 1 1 -1 -1 -1 
15 1 -1 1 -1 &+ --e+ -&- E- 1 1 -&- -&+ 0 0 0 
15 1 -1 1 -1 E- -&- --E+ &+ 1 1 -&+ -&- 0 0 0 

191 1 0 0 0 1 1 0 0 0 -1 - 1 x, A, A, 

191 1 0 0 0 1 1 0 0 0 -1 - 1 A, x3 x, 

191 1 0 0 0 1 1 0 0 0 -1 - 1 x3 x, x, 

(l)TheorderofJis8~3~5~7~11~19=175560. 
(2) The first column gives the order of the elements of each conjugate class. 

(3) p=exp(27im /19),hl=p+~7+p8+p”+p’2+p’8, X2=p2+p’4+p’6+p3+p5+~‘7, 
x3=p4+p9+p’3+p6+p10+p’5, E-r=(I+_V5)/2. 
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(IV) Three-Dimensional Crystal Classes (- 92 Crystallographic Groups) 

Crystal System 
Bravais Types 

T Geometric Crystal Classes T Arithmetic Crystal Classes 

Triclinic 
P 

Monoclinic 
p, c 

Orthorhombic 
p, c, F, 1 

Tetragonal 
p, 1 

Trigonal 
P, R 

Hexagonal 
P 

Schoentlies International 
Notation Notation”’ 

C, 
SAC,) 

C2 
C Ih 

C Zh 

Short FUJI 

1 1 
T i 

2 2 
m m 

2/m 1 
m 

WV) 
C 2” 

222 222 
mm2 mm2 

222 
mmm --- 

mmm 

G 
S4 

C 4h 

D.4 
C 

Dh) 

D 4h 

4 4 
4 3 

4/m 4 
m 

422 422 
4mm 4mm 
42m 42m 

4/mmm 
422 
--- 
mmm 

G 
WC,i) 
D3 
C 3” 

D3d 

G 
C 3h 

C 6h 

J% 

3 3 
? ? 
32 32 
3m 3m 

3m -2 3- 
m 

6 6 
6 6 

6/m 6 
m 

622 622 

(P? 1) 
(P. 7, 

1 
2 

(P. 2) (C, 2) 
(P, m) CC, m) 

(P, 2/m) CC, 2/m) 

3-5 
6-9 

10-15 

(P,222)(C,222)(F,222)(1,222) 
(P,mm2)(C,mm2)(A,mm2)(F,mm2) 

(1, mm2) 

16-24 

25-46 

(P,mmm)(C,mmm)(F,mmm)(I,mmm) 47-14 

(P, 4Y3) (134) 75-80 

(P. 4, (I, 3, 81-82 

(P. 4/m) U,4/4 

(P,422)'4'(1,422) 

CP, 4mm) (I, 4mm) - - - 
(P,42m)(P,4m2)(1,4m2)(I,42m) 

83-88 

89-98 
!,9-110 

l!!l-122 

(P,4/mmm)(I,4/mmm) 1:!3-142 

(P, 3)“’ R 3) 
(P, 3) (R 3, 
(P 312)‘@ (P 321)“’ (R 32) 
(P:3ml)(P, ;lm) (R,3;) 

(P,?lm) (P,?ml) (R,?m) 

(P,6)'*' 

(P,G 

U'. 6/m) 

(P,622)@' 

143-146 
147-148 
1,29-155 
156-161 

162-167 

168-173 
-174 

175-176 

177-182 

Number of 
Sp.ace Groups@) 
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Crystal System 
Bravais Types 

Hexagonal 
P 
(cont.) 

Cubic 

P, F, 1 

Notes 

T Geometric Crystal Classes 

Schoenflies 
Notation I- 
C 

DE 

D 6h 

T 

Th 

0 

Td 

Oh 

Full 

6mm 
6m2 
622 

International 
Notation”) 

Short 

6mm 
6m2 

6/mmm 

23 

m3 

432 
43m 

m3m 

mmm 
23 

1, 
m 
432 
43m 
442 
-3- 
mm 

App. B, Table 6 

Miscellaneous Constants 

Arithmetic Crystal Classes 

V’. 6mm) 
(P,6m2) (P,62m) 

(P, 6hmm) 

(P, 23) (F, 23) (I, 23) 

(f’, m3) (F, m3) (L m3) 

(P, 432)“” (F, 432) (1,432) 
(P,43m) (F,43m) (Z,43m) 

(P, m3m) (F, m3m) (I, m3m) 

Number of 
Space Groups”’ 

183-186 
187-190 

191-194 

195-199 

200-206 

207-214 
215-220 

221-230 

(1) The notation is based upon International tablesfor X-ray crystallography I, Kynoch, 1969. In 

each crystal system, the lowest class is a holohedry. 
(2) These correspond to the consecutive numbers of space groups in the book cited in (1). 

(3)-( 10) Enantiomorphic pairs arise from these classes: two pairs for (4), (8), (9), and one pair for 
the others. 

For the shapes of Bravais lattices - 92 Crystallographic Groups E, Fig. 3. 

6. Miscellaneous Constants 

\/!i = 1.41421 35623 73095. \/lo = 3.16227 76601 68379. 

dt! = 1.25992 10498 94873, i%@ = 4.64158 88336 12779. 
log,,2=0.30102 99956 63981= l/3.32192 80948 87364. 

(I) Base of Natural Logarithm e (1000 decimals) 

e=2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 
45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 
32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 
76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 
13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 
92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 
93163 68892 30098 79312 77361 78215 42499 92295 76351 48220 82698 95193 66803 31825 28869 39849 
64651 05820 93923 98294 88793 32036 25094 43117 30123 81970 68416 14039 70198 37679 32068 32823 
76464 80429 53118 02328 78250 98194 55815 30175 67173 61332 06981 12509 96181 88159 30416 90351 
59888 85193 45807 27386 67385 89422 87922 84998 92086 80582 57492 79610 48419 84443 63463 24496 
84875 60233 62482 70419 78623 20900 21609 90235 30436 99418 49164 31409 34317 38143 64054 62531 
52096 18369 08887 07016 76839 64243 78140 59271 45635 49061 30310 72085 10383 75051 01157 47704 
17189 86106 87396 96552 12671 54688 95703 50354. 

e (in octal) = 2.55760 52130 50535 5. 

l/e=0.36787 94411 71442, e2=7.38905 60989 30650= l/O.13533 52832 36613. 
v\le = 1.64872 12707 00128 = l/O.60653 06597 12633. 

log,lO=2.30258 5092994046= l/0.434294481903252, 
log,2 = 0.693 14 71805 59945 = I/ 1.44269 50408 88964. 

(II) The Number n (1000 decimals) (- 328 Pi(n)) 
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n=3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 

86280 34825 34211 70679 82148 08651 32823 066470938446095 5058223172 5359408128 48111 74502 

84102 70193 8521105559 64462 29489 54930 3819644288 10975 66593 34461 28475 64823 37867 83165 

27120 1909145648 56692 34603 4861045432 66482 13393 60726 02491 41273 72458 70066 06315 58817 

48815 20920 96282 92540 91715 36436 78925 9036001133 05305 4882046652 138414695194151 16094 

33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 

89122 79381 8301194912 98336 7336244065 6643086021 39494 63952 24737 19070 21798 60943 70277 

05392 17176 29317 67523 84674 81846 766940513200056 81271 45263 56082 77857 71342 75778 96091 

73637 17872 1468440901 22495 3430146549 58537 10507 92279 68925 89235 42019 95611 21290 21960 

86403 44181 59813 62977 47713 09960 51870 72113 49999 99837 297804995105973 17328 16096 31859 

50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 7101000313 78387 52886 58753 32083 

8142061717 7669147303 59825 3490428755 46873 11595 62863 88235 37875 93751 95778 18577 80532 

17122 68066 13001 92787 6611195909 21642 01989. 

T (in octal)=3.11037 55242 10264 3. 
I/~=O.3183098861 83791, ~2=9.869604401089359=l/0.10132 1183642338. 

\/i. = 1.77245 38509 055 16 = l/O.5641 8 95835 47756, 
t&i = 2.50662 82746 3100 1 = l/O.39894 22804 01433, 

\/ii/? = 1.2533 1 41373 15500 = l/O.79788 45608 02865, 

3, = 1.46459 18875 61523 = l/O.68278 40632 55296. 
log,,n=0.49714 98726 94134, log,n= 1.14472 98858 49400. 

(III) Radian rad 

1 rad=57”.295779513082321=3437’.7467707849393=206264”.8062470964. 
lo = 0.0 1745 32925 19943 rad. 1’ = 0.00029 08882 08666 rad, 1” = 0.00000 4848 1 368 1 I rad 

(IV) Euler’s Constant C (100 decimals) (- 174 Gamma Function) 

C=O.57721 566490153286060651209008240243 10421 5933593992 
35988 05767 23488 48677 26777 66467 09369 47063 29174 67495. 

cc= 1.78107 24179 90197 98522. 

s,= 2 L 
,=I I 

3 1.83333 333 6 2.45000 000 15 3.3 1822 899 100 5.18737 752 
4 2.08333 333 8 2.71785 714 20 3.59773 966 500 6.79282 343 
5 2.28333 333 IO 2.92896 825 50 4.79920 534 1000 7.48547 086 

7. Coefficients of Polynomial Approximations 

In this table, we give some typical examples of approximation formulas for computation of func- 
tions on a digital computer (- 19 Analog Computation, 336 Polynomial Approximation). 

(I) Exponential Function 

(1) Putting.&+l=q+y+i(qisaninteger.-k<y<i],wehave 

eX = 2%( y),c(y) k Cqy ‘, which gives an approximation by a polynomial of the 7kh degree, 
where the maximal error is 3 x lo-“. 

a,=0.70710 6781 I 6, a, =0.49012 90717 2, u,=O.16986 57957 2, a,=0.03924 73321 5, 
u4 = 0.00680 097 12, u5 = 0.00094 28 173, u6 = 0.00010 93869, a, = 0.0000 1 0826. 

(2) An approximation by a polynomial of the 1 lth degree: eX k CU,.X’ (- 1 < x < 0). 
Maximal error 1 x 10-12. 
a0 = 0.99999 99999 990, a, = 0.99999 99999 995, u2 = 0.50000 00000 747, 
u3 = 0.16666 66666 8 12, u4 = 0.04166 66657 960, us = 0.00833 33332 174, 

a,=0.00138 88925 998, a,=0.00019 84130 955, a,=0.00002 47944428, 
a,=O.OOOOO 27550 711. u,~= 0.0000002819019, a,,=0.0000000255 791. 



1835 App. B, Table 7.11 
Coeffkients of Polynomial Approximations 

(3) ex"l+ X 

ko+k,x2+k2x4 
( -loge s x Q log\/2 ). 

-- 
;+ 1+ k,x2 

Maximal error 1.4 x IO- 14. 
k,= 1.00000 00000 00327 1. k, =0.10713 50664 56464 2. 
k,=0.0005945898690188, k,=0.0238017331574186. 

(II) Logarithmic Function 

(1) An approximation by a polynomial of the 1 lth degree: log(l + x)+x:a;x’ (0~ x < 1). 

Maximal error 1.1 x IO-“. 
a0 = 0.00000 0000 1 10, a, = 0.99999 99654 98, a2 = - 0.49999 82537 98, 
a3 = 0.33329 85059 64, ad= -0.24963 72428 65, u5= 0.19773 31015 60, 
a6= -0.1574488954 13, a,=0.1171291156 18, a8 = - 0.07364 037 19 14. 
a,=0.03469 74937 56, uIo= -0.01046 82295 69. a,, =0.00148 19917 22. 

(2) For 1 < x Q 2, and putting y = x - “2 -----(3 + 2\/2 ) (- 1 < y $1) then logx + logd/2 + 
x+\/2 

2 a, p+ gives an approximation by a polynomial of the 1 Ith degree (0 < i Q 5). where the 

maximal error is 9.2 X IO- 15. 
a,=0.343 14 57505 076 10 6, a, = 0.00336 70892 56222 5, a2 = 0.00005 94707 04347 4. 
a,=O.OOOOO 12504997762, a,=0.0000000285 68292 8, a,=0.0000000007 437 13 9. 

(III) Trigonometric Functions 

(1) Weput &=p+f+i+g (pisaninteger:q=O,l:r=O,l; -l<z<l),ands=sin 7, 

c=cos~ 
4 

If r=O, sinx=(-l)%, cosx=(-1)4c, 
If r=l, sinx=(-I)%, cosx=-(-l)%. 

Here s and c are computed by the following approximation formulas. Putting - z2/2 =y, 
s(y)=sin(az/4)+zrCa, y’. c(y)=cos(az/4)+‘Cb, y’ gives an approximation by a polynomial 
of the 5th degree, where the maximal errors are s: 2~ 10-15, c: 2~ IO-“. 

a0=0.78539 81633 97426, a,=0.16149 10243 75338. a,=0.00996 15782 61200. 
a,=0.00029 26094 99152, u,=0.00000 50133 389, a,=0.0000000555 1357. 
b, = 0.99999 99999 999, /I, =0.61685 02750 601, b,=0.06341 73767 885, 
b,=0.00260 79335 007. b,=0.00005 7447609. b,=0.0000007765 93. 

(2) 
sin(nx/2) 
-----kFC( -1)‘qx” (-1 dx < 1). This gives an approximation by a polynomial of 10th 

X 

degree (0~ i < 5), where the maximal error is 2.67 x 10-l I. 

ao= 1.57079 63267 682, a, =0.64596 40955 820, a,=0.07969 26037 435, 
a,=0.00468 16578 837, a,=0.00016 02547 767, a,=O.OOOOO 34318 696. 

(3) k,+ 2 + . ..+ 2 (continued fraction) (- 1 < x $ 1). 
I 4 

Maximal error 9.8 X IO-“. 
k,=0.78539 8 16349907, k,=6.1922946807 1350, k,= -0.65449 83095 2316. 
k,=520.24599063989939, k,= -0.0779795098775 1. 

(IV) Inverse Trigonometric Functions 

(1) An approximation by a polynomial of the 21st degree (0 < i $ 10): 
arcsinx+ Eu,x~~+’ (1x1s I/dZ). 
Maximal error IO- lo. 
ao=l.0000000005 3, a,=0.1666665754 5, a,=0.0750046066 5, a,=0.04453 58425 7. 
a,=0.03175 26509 6, a,=0.01176 58281 9, a,=0.06921 26185 7, a,= -0.14821 09628 8. 

u,=0.3288976635 2. a9= -0.35020 41201 5, u,,=0.19740 503250. 
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(2) Putting x=w+u (w=i,i,i,i; -$ < us $), o= z (ICI s f, 

arctanx=arctanw+t(u), t(o)=arctanc. 

The values of arctanw: 

arc tan( l/8) = 0.12435 49945 467 11, arc tan(3/8)=0.35877 06702 70611, 
arctan(5/8)=0.55859 93153 43560, arctan(7/8)=0.71882 9999621623. 

t(c) is computed by an approximation by a polynomial of the 9th degree (0 < i < 4). where 
t(c)=arctanuk C(- l)‘u,a2’+‘. 

Maximal error 1.6 X lo- 13. 
a,, = 0.99999 99999 9992, a, = 0.33333 33328 220, = 0.19999 97377 6, a, 
a3 = 0.14280 9976, a4 = 0.10763 60. 

X2/ 
+ - ,k, (continued fraction) (- 1 < x G 1). 

Maximal error 3.6 x lo- lo. 
k,=0.99999999362, k,= -3.00000308694, k,= -0.55556977284, 
k,= - 15.77401 81127 3, 
k,= -0.1619080978 0, k,= -44.57191 79508 8, k,= -0.1081067493 1 

(V) Gamma Function 

An approximation by a polynomial of the 8th degree: 

r(2+x)+ Cqx’(-1/2<x<l/2). 

Maximal error 7.6 x 10e8. 

a,=0.99999 9926, a,=0.42278 4604, a2=0.411849671. a,=0.08156 52323, 

a,=0.07406 48982. us= -0.00012 51376 7, a,=0.01229 95771, a7= -0.00349 61289, 

a,=0.00213 85778. 

(VI) Normal Distribution 

(1) (0 <x < co). This gives an approximation by a polynomial 

of the 6th degree. 
Maximal error 2.8 x 10m7. 
a,=0.0705230784, a,=0.04228 20123, a,=0.0092705272, 
a3 =0.00015 20143, a,=0.0002765672, a5 =0.0000430638. 

4~(x)(l-P(x))=[exp(-~)][~+x4(u,+~)] (O<x<oo). 

Maximal error 2 x lo-‘. 
a,=0.0055, a, =0.0551, a2= 14.4. 

(3) The inverse function of (2) 

x~[y(ao+~)]“2. y= -log[4P(x)(l -P(x))] (O<y< co). 

Maximal error 4.9 x 10m4. 
a,=2.0611786, aI= -5.7262204, a,=11.640595. 



Statistical Tables for 
Reference 

Statistical Tables 

[l] J. A. Greenwood and H. 0. Hartley, Guide 
to tables in mathematical statistics, Princeton 
Univ. Press, 1962. 
[2] Research Group for Statistical Sciences (T. 

Kitagawa and M. Masuyama, eds.) New statis- 
tical tables (Japanese), explanation p. 264, 
table p. 214, Kawade, 1952. 
[3] R. A. Fisher and F. Yates, Statistical tables 
for biological, agricultural and medical re- 

search, explanation p. 30, table p. 137, Oliver 
& Boyd, third edition, 1948. 
[4] E. S. Pearson and H. 0. Hartley, Bio- 
metrika tables for statisticians, explanation 

p. 104, table p. 154, Cambridge Univ. Press, 
third edition, 1970. 

[S] K. Pearson, Tables for statisticians and 
biometricians I, 1930, explanation p. 83, table 
p. 143; II, 1931, explanation p. 250, table p. 262, 
Cambridge Univ. Press. 
[6] Statistical tables JSA-1972 (Japanese), 

table p. 454, explanation p. 260, Japanese 
Standards Association, 1972. 

Tables of Special Statistical Values 

[S] Harvard Univ., Tables of the cumulative 
binomial probability distribution, Harvard, 
1955, 

2 (l)p’q”-‘: 5 dec., 
i=r 

p = 0.01(0.01)0.50, 

n= 1(1)50(2)100(10)200(20)500(50)1000. 
[9] National Bureau of Standards, NBS ap- 
plied mathematical series, no. 6, Tables of 
the binomial probability distribution, 1950, 

( > 7 p’q”-i 
and the partial sum: 7 dec., p = 

0.01(0.01)0.50, n = 2( 1)49. 
[IO] T. Kitagawa, Table of Poisson distribu- 
tion (Japanese), Baihukan, 1951, e-“hi/i!: 

7-8 dec., m =0.001(0.001)1.000(0.01)10.00. 
[ 1 I] G. J. Lieberman and D. B. Owen, Tables 
of the hypergeometric probability distribu- 

tion, Stanford, 1961, (t )( :I,“) / ( f ): 

6 dec.. N = 2( 1)50( lO)lOO( 100)2000, n = 
l(l)(N/2), k= I(l)n. 

[ 121 National Bureau of Standards, NBS no. 

23, Tables of normal probability functions, 
1942, 
cp(x)=(l/&)exp(-$x2), 

Q(x)= Ix rp(x)dx: 15 dec., 

x=O(O.O~;Ol)l.OOOO(O.OOl)8.285. 

[ 131 K. Pearson, Tables of the incomplete 
beta-functions, Cambridge, second edition, 
1968, I,(p,q): 8 dec.,p, q=O.5(0.5) 11(1)50. 

[ 141 K. Pearson, Tables of the incomplete 
gamma-function, Cambridge, 1922, revised 
edition, 195 1, 

I(u.p)= j-y’ (l/e”)(uP/T(p+ I))&: 

7 dec.,p=0.0(0.1)5.0(0.2)50.0, u=O.1(0.1)20.0; 
p= - 1.0(0.05)0.0, u=0.1(0.1)51.3. 
[ 15) N. V. Smirnov, Tables for the distribution 
and density function of the r-distribution, 
Pergamon, 1961, 6 dec.,f= l(l)35 I= 

0(0.01)3.00(0.02)4.50(0.05)6.50. 
[16] G. J. Resnikoff and G. J. Lieberman, 
Tables of the non-central t-distribution, Stan- 

ford, 1957. 
[ 171 F. N. David, Tables of the ordinates and 
probability integral of the distribution of the 
correlation coefficient in small samples, Cam- 
bridge, 1938. 
[ 181 D. B. Owen, The bivariate normal proba- 
bility distribution, Sandia Corp., 1957, 
T(h,a): 6 dec., a=0.000(0.025)1.000, cc, h= 

0.00(0.01)3.50(0.05)4.75, T(h,a) 

[ 191 National Bureau of Standards, NBS no. 
50, Tables of the bivariate normal distribution 
function and relatfed functions, 1959, L(h, k, r) 

cc 7) 
= 

ss h k 2n.vl-r2 

x*+y*-2rxy 

2(1-r2) I 

dydx: 6 dec., 

r = 2 0.00(0.05)0.95(0.01)0.99, 
h, k = O.O(O. 1)4.0. 

Tables of Allocation 

[20] T. Kitagawa and M. Midome, Table of 
allocation of elements for experimental design 
(Japanese), Baihakan, 1953. 
[21] R. C. Bose, W. H. Clatworthy, and S. S. 
Shrikhande, Tables of partially balanced de- 
signs with two associate classes, North Caro- 
lina Agric. Expt. Station Tech. Bull., 1954 
(table of PBIBD). 



Numerical Tables for 
Reference 

General Tables 

[l] M. Boll, Tables numeriques universelles, 
Dunod. 1947. 
[2] P. Barlow, Barlow’s tables, Robinson, 
1814, third edition, 1930. 
[3] W. Shibagaki, 0.01% table of elementary 

functions (Japanese), Kyoritu, 1952. 
[4] K. Hayashi, Table of higher functions 
(Japanese), Iwanami, second edition, 1967. 
[5] E. Jahnke and F. Emde, Funktionentafeln 
mit Formelin und Kurven, Teubner , second 

edition 1933 (English translation: Tables of 
functions with formulae and curves, Dover, 
fourth edition, 1945). 
[6] Y. Yoshida and M. Yoshida, Mathematical 
tables (Japanese), BaihQkan, 1958. 

[7] M. Abramowitz and I. A. Stegun (eds.), 
Handbook of mathematical functions with 

formulas, graphs and mathematical tables, 
National Bureau of Standards, 1964 (Dover, 
1965). 
[8] A. Fletcher et al. (eds.), Index of mathe- 

matical tables I, II, Scientific Computing 
Service, Addison-Wesley, second edition, 
1962. 

Multiplication Table 

[9] A. L. Crelle, Rechentafeln welche alles 
Mutiplicieren und Dividiren mit Zahlen unter 
1000 ersparen, bei grosseren Zahlen aber die 
Rechung erleichtern und sicherer machen, 

W. de Gruyter, new edition 1944. 

Table of Prime Numbers 

[lo] D. N. Lehmer, List of prime numbers 
from 1 to 10,006,721, Carnegie Institution of 
Washington, 1914. 

Series of Tables of Functions 

[ 1 l] British Association for the Advancement 

of Science, Mathematical tables, vol. 2, 
Emden functions, 1932; vol. 6, Bessel func- 
tions, pt. 1, 1937; vol. 8, Number-divisor 

tables, 1940; vol. 9, Tables of powers giving 
integral powers of integrals, 1940; vol. 10, 
Bessel functions, pt. 2, 1952. 
[ 121 Harvard University, Computation 
Laboratory, Annals, vol. 2, Tables of the 
modified Hankel functions of order one-third 

and their derivatives, 1945; vol. 3, Tables of 

the Bessel functions of the first kind of orders 

zero and one, 1947; vol. 14, Orders seventy- 
nine through one hundred thirty-f tve, 195 1; 
vol. 18, Tables of generalized sine,- and 

cosine-integral functions, pt. 1, 1949; vol. 19, 
pt. 2, 1949; vol. 20, Tables of inverse hyper- 

bolic functions, 1949; vol. 21, Tables of t)c? 
generalized exponential-integral functions, 
1949. 
[ 131 National Bureau of Standards, Applied 
Mathematics Series (AMS), AMS 1, Tables 
of the Bessel functions Y,,(x), Y](x), Ku(x), 
K,(x), 0 4 x 4 1, 1948; AMS 5, Tables of sines 
and cosines to fifteen decimal places at 
hundredths of a degree, 1949; AMS 11, Table 
of arctangents of rational numbers, 1951; 

AMS 14, Tables of the exponential function 
eX (including epX), 1951; AMS 16, Tables 

of n! and T(n + 4) for the first thousand val- 
ues of n, 1951; AMS 23, Tables Iof normal 
probability functions, 1953; AMS 25, Tables 
of the Bessel functions Y,,(x), Y,(x), Kc(x), 
K,(x), 0 < x < 1, 1952; AMS 26, Tables of 
Arctanx, 1953; Tables of lo”, 1953; AMS 

32, Table of sine and cosine integrals for 
arguments from 10 to 100, 1954; AMS 34, 
Table of the gamma function for complex 
arguments, 1954; AMS 36, Tab’les of circular 
and hyperbolic sines and cosines for radian 

arguments, 1953; AMS 40, Table of secants 
and cosecants to nine significant figures at 
hundredths of a degree, 1954; AMS 41, 
Tables of the error function and its derivative, 
1954; AMS 43, Tables of sines and cosines 
for radian arguments, 1955; AMS 45, Table 
of hyperbolic sines and cosines, 1955; AMS 

46, Table of the descending exponential, 1955. 

Tables of Special Functions 

[ 141 Akademiya Nauk SSSR, Tables of the 

exponential integral functions, 1954. 
[ 151 J. Brownlee, Table of log I‘(x), Tracts for 
computers, no. 9, Cambridge Univ. Press, 
1923. 
[ 163 L. Dolansky and M. P. Dolansky, Table 

oflog2Wp), ~~hsAl/p) and ~.log~(llp)+ 
(1 -p)log,(l/(l -p)), M.I.T. Research Lab. of 
Electronics tech. report 227, 1952. 
[ 173 L. M. Milne-Thomson, Die elliptischen 

Funktionen von Jacobi, Springer, 1931; En- 
glish translation: Jacobian elliptic function 
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Schr. Math. Inst. Univ. Miinster 
Schriftenreihe des Mathematischen Instituts 

der Universitlt Miinster (Miinster) 

Sci. Papers Coil. Gen. Ed. Univ. Tokyo 
Scientific Papers of the College of General 

Education, University of Tokyo (Tokyo) 

SBbutu-kaisi 
Nihon Stigaku-buturi-gakkai Kaisi (Tokyo) 

Sugaku 
Sugaku, Mathematical Society of Japan 

(Tokyo) 

Summa Brasil. Math. 

Summa Brasiliensis Mathematicae (Rio de 
Janeiro) 

Sci. Rep. Tokyo Kyoiku Daigaku 
Science Reports of the Tokyo Kyoiku 

Daigaku. Section A (Tokyo) 

Scripta Math. 
Scripta Mathematics. A Quarterly Journal 

devoted to the Philosophy, History, and Ex- 
pository Treatment of Mathematics (New 
York) 

St-m. Bourbaki 

Tensor 
Tensor (Chigasaki, Japan) 

Teor. Veroyatnost. i Primenen. 
Teoriya Veroyatnostei i ee Primenenie. 
Akademiya Nauk SSSR (Moscow). Translated 
as Theor. Prob. Appl. 

Theor. Prob. Appl. 

Seminaire Bourbaki (Paris) 

SIAM J. Appl. Math. 

Theory of Probability and Its Applications. 
Society for Industrial and Applied Mathe- 
matics. English translation of Teor. Veroyat- 

nost. i Primenen. (Philadelphia) 

SIAM Journal of Applied Mathematics. A 

Publication of the Society for Industrial and 
Applied Mathematics (Philadelphia) 

SIAM J. Comput. 

SIAM Journal on Computing (Philadelphia) 

SIAM J. Control 
SIAM Journal on Control (Philadelphia) 

SIAM J. Math. Anal. 
SIAM Journal on Mathematical Analysis 

(Philadelphia) 

SIAM J. Numer. Anal. 
SIAM Journal on Numerical Analysis 

(Philadelphia) 

SIAM Rev. 

TBhoku Math. J. 
The TBhoku Mathematical Journal (Sendai, 
Japan) 

Tohoku-riho 
TBhoku Teikokudaigaku RikahGkoku 
(Sendai, Japan) 

Topology 
Topology. An International Journal of 

Mathematics (Oxford) 

Trans. Amer. Math. Sot 
Transactions of the American Mathematical 
Society (Providence) 

Trans. Moscow Math. Sot. 
Transactions of the Moscow Mathematical 

Society (Providence). Translation of Trudy 
Moskov. Mat. Obshch. 

SIAM Review (Philadelphia) 

Siberian Math. J. 
Siberian Mathematical Journal (New York). 

Translation of Sibirsk. Mat. Zh. 

Trudy Mat. Inst. Steklov. 
Trudy Matematicheskogo Instituta im. V. A 



1847 Journals 

Steklova. Akademiya Nauk SSSR (Moscow- 
Leningrad). Translated as Proc. Steklov Inst. 
Math. 

Trudy Moskov. Obshch. 
Trudy Moskovskogo Matematicheskogo 
Obshchestva (Moscow). Translated as Trans. 
Moscow Math. Sot. 

Tsukuba J. Math. 
Tsukuba Journal of Mathematics. Univ. 

Tsukuba (Ibaraki, Japan) 

Ukrain. Mat. Zh. 
Akademiya Nauk Ukrainskoi SSR. Institut 
Matematiki. Ukrainskii Matematicheskii 
Zhurnal (Kiev). Translated as Ukrainian 
Math. J. 

Ukrainian Math. J. 

Ukrainian Mathematical Journal (New York). 
Translation of Ukrain. Mat. Zh. 

Uspekhi Mat. Nauk 

Uspekhi Matematicheskikh Nauk (Moscow- 
Leningrad). Translated as Russian Math. 
Surveys 

Vestnik Moskov. Univ. 
Vestnik Moskovskogo Universiteta. I, Mate- 

matika i Mekhanika (Moscow). Mathematical 
section translated as Moscow Univ. Math. 

Bull. 

Vierteljschr. Naturf. Ges. Zurich 
Vierteljahrsschrifte der Naturforschenden 

Gesellschaft in Zurich (Zurich) 

Z.Angew. Math. Mech.(Z.A.M.M.) 
Zeitschrift fur Angewandte Mathematik und 
Mechanik, Ingenieurwissenschaftliche For- 

schungsarbeiten (Berlin) 

Z. Angew. Math. Phys. (Z.A.M.P.) 
Zeitschrift fur Angewandte Mathematik und 
Physik (Basel) 

Z. Wahrscheinlichkeitstheorie 

Zeitschrift fur Wahrscheinlichkeitstheorie und 
Verwandte Gebiete (Berlin) 

Zbl. Angew. Math. 

Zentralblatt fiir Angewandte Mathematik 
(Berlin) 

Zbl. Math. 
Zentralblatt fur Mathematik und ihre Grenz- 
gebiete (Berlin-Gottingen-Heidelberg) 

Zh. cksper. Teoret. Fiz. 
Zhurnal 6ksperimental’noi i Teoreticheskoi 
Fiziki (Moscow) 



Publishers 

Academic Press 

Deutscher Verlag der Wiss. 
Deutscher Verlag der Wissenschaften, Berlin 

Dover 
Academic Press Inc., New York-London Dover Publications, Inc., New York 

Addison-Wesley 
Addison-Wesley Publishing Company, Inc., 
Reading (Massachusetts)-Menlo Park (Cali- 
fornia)-London-Don Mills (Ontario) 

Dunod 
Dunod, Editeur, Paris 

Elsevier 

Akademiai Kiadb 
A kiadasert feliis: az Adademiai Kiado igaza- 
toja (Publishing House of the Hungarian 
Academy of Sciences), Budapest 

Akademie-Verlag 

Berlin 

Elsevier Publishing Company, Amsterdam- 
London-New York 

Fizmatgiz 

Akademische Verlag. 
Akademische Verlagsgesellschaft, Leipzig 

Gosudarstvennoe Izdatel’stvo Fiziko- 

Matematicheskoi Literatury, Moscow 

Gauthier-Villars 
Gauthier-Villars & C”, Editeur, -Paris 

Ginn 

Allen 
W. H. Allen & Co. Ltd., London 

Allen & Unwin 
Allen & Unwin, Inc., Winchester (Massachu- 

setts) 

Ginn and Company, Waltham (Massachu- 

setts)-Toronto-London 

Gordon & Breach 
Gordon & Breach, Science Publishers Ltd.. 
London 

Allyn & Bacon 

Allyn & Bacon, Inc., Newton (Massachusetts) 

Almqvist and Wiksell 
Almqvist och Wiksell Forlag, Stockholm 

Asakura 
Asakura-syoten, Tokyo 

Aschelhoug 
H. Aschelhoug and Company, Oslo 

BaihGkan 

Tokyo 

Benjamin 
W. A. Benjamin, Inc., New York-London 

Birkhauser 

Birkhauser Verlag, Basel-Stuttgart 

Blackie 
Blackie & Son Ltd., London-Glasgow 

Goztekhizdat 
Gosudarstvennoe Izdatel’stvo Tekhniko- 

Teoreticheskoi Literatury, Moscow 

Griffin 
Charles Griffin and Company Ltd., London 

Hafner 

Hafner Publishing Company, New York 

Harper & Row 
Harper & Row Publishers, New York- 

Evanston-London 

Hermann 

Hermann & C”, Paris 

Hirokawa 
Hirokawa-syoten, Tokyo 

Hirzel 
Verlag von S. Hirzel, Leipzig 

Cambridge Univ. Press 
Cambridge University Press, London-New 
York 

Holden-Day 
Holden-Day, Inc., San Francisco-London 

Amsterdam 

Holt, Rinehart and Winston 

Holt, Rinehart and Winston, Inc., New York- 
Chicago-San Francisco-Toronto-London 

Interscience 
Interscience Publishers, Inc., New York- 
London 

Iwanami 
Iwanami Shoten, Tokyo 

Kawade 
Kawade-syobo, Tokyo 

Kinokoniya 
Kinokoniya Company, Tokyo 

Chapman & Hall 
Chapman & Hall Ltd., London 

Chelsea 
Chelsea Publishing Company, New York 

Clarendon Press 
Oxford University Press, Oxford 

Cremona 
Edizioni Cremonese, Rome 

de Gruyter 
Walter de Gruyter and Company, Berlin 

Dekker 

Marcel Dekker, Inc., New York 
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KyGritu 
Kyoritu-syuppan, Tokyo 

Lippincott 

J. B. Lippincott Company, Philadelphia 

Longman 
Longman Group, Ltd., Harlow (Essex) 

Longmans, Green 
Longmans, Green and Company, Ltd., 
London-New York-Toronto-Bombay- 
Calcutta-Madras 

Macmillan 
The Macmillan Company, New York-London 

Maki 

Maki-syoten, Tokyo 

Maruzen 
Maruzen Company Ltd., Tokyo 

Masson 
Masson et Cie Paris ’ 1 

Math-Sci Press 
Math-Sci Press, Brookline (Massachusetts) 

McGraw-Hill 

McGraw-Hill Book Company, Inc., New 
York-London-Toronto 

Methuen 

Methuen and Company Ltd., London 

MIT Press 
The MIT Press, Cambridge (Massachusetts)- 

London 

Nauka 
Izdatel’stvo Nauka, Moscow 

Noordhoff 
P. Noordhoff Ltd., Groningen 

North-Holland 

North-Holland Publishing Company, 
Amsterdam 

Oldenbourg 
Verlag von R. Oldenbourg, Munich-Vienna 

Oliver & Boyd 
Oliver & Boyd Ltd., Edinburgh-London 

Oxford Univ. Press 
Oxford University Press, London-New York 

Pergamon 

Pergamon Press, Oxford-London-Edinburgh- 
New York-Paris-Frankfurt 

Polish Scientific Publishers 

Pahstwowe Wydawnictwo Naukowe, Warsaw 

Prentice-Hall 
Prentice-Hall, Inc., Englewood Cliffs (New 
Jersey) 

Princeton Univ. Press 

Princeton University Press, Princeton 

Publishers 

tandem House 
<andom House, Inc., New York 

jibundo 
rokyo 

springer 
springer-Verlag, Berlin (-GGttingen)- 

Heidelberg-New York 

Ieubner 
B. G. Teubner Verlagsgesellschaft, Leipzig- 
Stuttgart 

IBkai 
Iokai-syobo, Tokyo 

Tokyo-tosyo 
Tokyo 

Tokyo Univ. Press 

Tokyo University Press, Tokyo 

Ungar 
Frederick Ungar Publishing Company, New 
York 

Univ. of Tokyo Press 
University of Tokyo Press, Tokyo 

Utida-rokakuho 
Tokyo 

Van Nostrand 
D. Van Nostrand Company, Inc., Toronto- 

New York-London 

Vandenhoeck & Ruprecht 

Giittingen 

Veit 
Verlag von Veit & Company, Leipzig 

Vieweg 
Friedr Vieweg und Sohn Verlagsgesellschaft 

mbH, Wiesbaden 

Wiley 
Wiley & Sons, Inc., New York-London 

Wiley-Interscience 

Wiley & Sons, Inc., New York-London 

Zanichelli 
Nicola Zanichelli Editore, Bologna 



Special Notation 

This list contains the notation commonly and frequently used throughout this work. Th’e symbol * 
means that the same notation is used with more than one meaning. For more detailed definitions 
or further properties of the notation, see the articles cited. 

Notation 

I. Logic 

v 

3 

A,& 

V 

1 

+, =,=- 

++,Q,P 

II. Sets 

E 

c 

$ 

c 
= 

0 

“, u 

n, n 
c> c 

-, ' 
X 

R, - 

I 

rI 

c, LI 
b 

{II 

Example Definition 

Article 

and 
Section 

VxF(x) 

3xF(x) 

AAB, A&B 

AvB 

1A 

A-+& A*B 

AoB 

XEX 

x+x 

AcB 

A+B 

AEB 

A”& UAk 

A~B, 04 

A’, C(A) 

A-B, A\B 

AxB 

XRY, X-Y 

AIR 

Hi A, 

EAA,, HA, 

WI 

B A 

{4P(x)) 

Universal quantifier (for all x, F(x) 
holds) 

Existential quantifier (there exists 
an x such that F(x) holds) 

Conjunction, logical product 
(A and B) 

Disjunction, logical sum (A or B) 

Negation (not A) 

Implication (A im,plies B) 

Equivalence (A and B are logically 
equivalent) 

Membership (element x is a 
member of the set X) 

Nonmembership (element x is not 

a member of the set X) 

Inclusion (A is a subset of B) 

Noninclusion (A is not a subset 
of B) 

Proper inclusion (A is a proper 
subset of B) 

Empty set 

Union, join 

Intersection, meet 

Complement (of a set A) 

Difference (A - B = A n B’) 

Cartesian product (of A and B) 

Equivalence relation 
(for two elements x, y) 

Quotient set (set of equivalence 
classes of A with respect to an 
equivalence relation R) 

Cartesian product (of the A,) 

Direct sum (of the A,) 

Power set (set of all subsets of A) 

Set of all mappings from A to B 

Set of all elements x with the 

property P(x) 

41 lB, C 

41 lB, C 

41 lB* 

41 lB* 

4llB 

41 lB* 

411B 

3tllA 

381A 

381A 

381A 

381A 

381A 

381B, D* 

381B, D* 

381B 

3111B 

381B* 

135A* 

135B* 

381E 

381E 

381E 

381C 

381A 
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Notation 

=> I I. # 

N 

+ 

H 

x, 1x1, #X 

rc, 

j-:X-Y 

,f:XwY 

1, id l,, id, 

c, x CX(X)> xx(x) 

I 

0 

lim sup, lim 

flA 

Clef 

lim sup A, 

lim inf, lim lim infA, 

lim 

l&l 

lim 

III. Order 

(> 1 

c> I 

(2 1 

c> 1 
max 

min 

sup 

lim A, 

1% A, 

I$lAAn 

(4 4 

C4 hl 

(a> bl 

Ca, 4 

maxA 

minA 

supA 

inf infA 

a -cc b 

u, v 

n, A 

IV. Algebra 

mod 

aUb,avb 

aflb,ar\b 

a-b(modn) 

I 46 

x 4 

det, I I detA, IAl 

Special Notation 

Definition 

Article 
and 

Section 

Family with index set A 

Sequence (of numbers, points, 
functions, or sets) 

Cardinal number (of the set X) 

Aleph (transfinite cardinal) 

Mapping (f from X to Y) 

Mapping (where f(X) = Y, but 
not in the present volumes) 

Identity mapping 
(identity function) 

Characteristic function 
(representing function) 

Restriction (of a mapping f to A) 

Composite (of mappings f and g) 

Superior limit (of the sequence 
of sets A,) 

Inferior limit (of the sequence 
of sets A,,) 

Limit (of the sequence of sets A,) 

Inductive limit (of A,) 

Projective limit (of A,) 

Openinterval {xla<x<b} 

Closed interval {xla<x<b} 

Half-open-interval {xlu < x < b} 

Half-open interval {xla<x<b} 

Maximum (of A) 

Minimum (of A) 

Supremum, least upper bound 

(of 4 

Infimum, greatest lower bound 

(of 4 

Very large (b is very large 

compared to a) 

Join of a, b in an ordered set 

Meet of a, b in an ordered set 

Modulo (a and b are congruent 
modulo n) 

Divisibility (a divides b) 

Nondivisibility (a does not 
divide b) 

Determinant (of a square matrix 

4 

l65D 

165D 

49A* 

49E 

381C* 

381C 

381C 

381C 

381C* 

381C 

27OC* 

27OC* 

27OC* 

2lOB 

210B 

355c* 

355c* 

355c 

355c 

311B 

311B 

311B 

311B 

243A* 

243A* 

2976 

297A* 

297A 

103A* 
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Article 

Notation Example 

tr, SP 

Eij 

Im 

Ker 

Coim 

Coker 

a,, s/ 

Horn 

Horn, 

Tor 

Ext 

A. AP 

V. Algebraic Systems 

N 

Z 

Z, 

Q 
R 

C 

H 

GF(qL Fq 

Definition 
and 
Section 

trA, SpA 

‘A; A’, A”, A’ 

4 

A@B 

MEN 

MIN 

dim M 

Im,f 

Ker.f 

Coimf 

Cokerf 

(a,b), a.b 

[a, bl, a x b 

M@N 

Hom(M, N) 

Hom,(M, W 

TorAM, NJ 

Ext”(M, N) 

AM, ARM 

Trace (of a square matrix A) 

Transpose (of a matrix A) 

Unit matrix (of degree n) 

Matrix unit (matrix whose 
(i,j)-component is 1 and all others 
are 0) 

Kronecker product (of two 
matrices A and B) 

Isomorphism (of two algebraic 
systems M and N) 

Quotient space (of an algebraic 

system M by N) 

Dimension (of a linear space, etc.) 

Image (of a mapping f) 

Kernel (of a mapping ,f) 

Coimage (of a mapping f) 

Cokernel (of a mapping ,f) 

Kronecker delta (hii = 1 and 
~5,~ = 0 for i #j) 

Inner product (of two vectors 
a and b) 

Vector product (of two 3- 
dimensional vectors a and b) 

Tensor product (of two modules 
M and N) 

Set of all homomorphisms 
(from M to N) 

Set of all A-homomorphisms 
(of an A-module M to 
an A-module N) 

Torsion product (of M, N) 

Extension (of M, N) 

Exterior algebra (of a linear space 
M), pth exterior product (of M) 

Set of all natural numbers 

Set of all rational integers 

Z/mZ (set of all residue classes 

modulo m) 

Set of all rational numbers 

Set of all real numbers 

Set of all complex numbers 

Set of all quaternions 

Finite field fwith u elements) 

269F 

269B 

269A 

2 69B 

269C* 

256B 

256F* 

256C 

277E* 

217E 

;!llE 

;!llE 

:!69A 

442B* 

442C* 

:!77J, 2561* 

:!llB 

:!llE 

:!OOD 

:!OOG 

2560 

294A 

294A 

29lG* 

294A 

294A 

294A 

29B 

149M 
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Notation Example 

QP 

4x,,...,4 

k(x l>...>X,) 

kCCx~,...>x,,ll 

VI. Groups 

GL GU VI, GJ% K) 

SL 

PSL 

u 

SU 

0 

SO 

Spin 

SP 

PSL(n, K) 

U(n) 

SU(4 

O(n) 

SW 

Spin(n) 

Sp(n) 

Definition 

p-adic number field 
(p is a prime) 

Ring of p-adic integers 

Polynomial ring (of variables 

x , , , x, with coefftcients in k) 

Field extension 

(ofkbyx ,,..., xn) 

Formal power series ring (with 
coefftcients in k). 

Note: The symbols N, Z, Q, R, C, 

and H stand for sets, each with its 
own natural mathematical 
structure 

Article 
and 
Section - 
439F 

439F 

369A 

149D 

370A 

General linear group (over V, 

or over K of degree n) 

Special linear group (over K of 
degree n) 

60B 

60B 

Projective special linear group 
(over K of degree n) 

60B 

Unitary group (of degree n) 60F 

Special unitary group (of degree n) 60F 

Orthogonal group (of degree n) 

Special orthogonal group, 
rotation group (of degree n) 

Spinor group (of degree n) 

Symplectic group (of degree n) 

[For PGL(n, K), LF(n, K), PU(n), Sp(n), PSp(n, K)-60 Classical Groups] 

VII. Topology (Convergence) 

-+ a,-+a 

-1, h %l4 a” b a 

t3 /* a,Ta, a, /*a 

lim lima, 
- 

lim sup, hm lim sup a,, hm a, 

lim inf, !$a liminfa,, lima, 

a- 
, ,Cl E”, E, Cl E 

‘, ‘, Int E’, E”, Int E 

P> d P&K Y)> 4x> Y) 

II II l/X/l 

1.i.m. 1.i.m. f, 

Convergence (sequence a, 
converges to a) 

Convergence monotonically 
decreasing 

Convergence monotonically 
increasing 

Limit (of a sequence a,) 

Superior limit (of a sequence a,) 

Inferior limit (of a sequence a,) 

Closure (of a set E) 

Interior (of a set E) 

Distance (between two points 

x and y) 

Norm (of x) 

Limit in the mean (of a 
sequence f,) 

601 

601 

61D 

60L 

87B, E* 

87B 

87B 

87B, E* 

s7c* 

87c* 

425B 

425B 

273B* 

37B 

168B 
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Notation Example Definition 

4rticle 

(and 
;Section 

s-lim s-lim x, 

w-lim w-lim x, 

N f=s 

VIII. Geometry and Algebraic Topology 

E” 

P” 

S” 

T” 

H” HYX, 4 

Hll fL(X> 4 

a 

6 

S9 

9 

A 

ac 

df 

sq’x 

$(x) 

z1-z2 

Zl”Z2 

WAU 

d dw 

grad 

rot 

div 

A 

II 

D 

a(u,,...,u,) aui 

(H a(xl,...,x,)' axj 

grad cp 

rot u 

divu 

Acp 

I3 

DV 

IX. Function Spaces 

C C(Q) 

Strong limit (of a sequence x,) 

Weak limit (of a sequence xn) 

Homotopy (of two mappings 

f and d 

Homeomorphism (of two 
topological spaces X and Y) 

Euclidean space (of dimension n) 

Projective space 
(of dimension n) 

Spherical surface 

(of dimension n) 

Torus (of dimension n) 

n-dimensional cohomology group 
(of X with coefficients in A) 

n-dimensional homology group 
(of X with coefficients in A) 

(of chain complex C) 

n-dimensional homotopy group 

(of Xl 

Boundary (of C) 

Coboundary (off) 

Streenrod square (of x) 

Steenrod pth power (of x) 

Cup product (of z1 and z2) 

Cap product (of z1 and z2) 

Exterior product (of two 
differential forms w  and q) 

Exterior derivative (of a 
differential form w) 

Gradient (of a function cp) 

Rotation (of a vector u) 

Divergence (of a vector u) 

Laplacian (of a function cp) 

d’alembertian (of a function cp) 

Differential operator 

Jacobian determinant (of 
(ul,. . , u,) with respect to 

(Xl >. . .1 x,1) 

Jacobian matrix (of (ul, , u,) 
with respect to (x1,. ,x,)) 

Space of continuous functions 

(on Q) 

37B 

.37E 

202B 

425G 

140 

343B 

140 

422E 

2OlH 

201G 

201B 

2025, 170 

201B 

201H* 

64B 

64B 

2011 

2OlK 

105Q* 

105Q 

442D 

442D 

442D 

323A 

130A 

112A* 

:208B 

:208B 

168B(l) 
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Article 
and 

Notation Example Definition Section 

LP Lp(W Lp(a> b) Space of functions such that lflp 168B(2) 
is integrable on Q 

c’ C’(L)(l <l<co) Space of functions of class C’ 168B(9) 

9 m4 Space of C” functions with 168B(13) 
compact support 

& 4fi) Space of C” functions 168B(13) 

[For 4Q), A@), A,@), @Q)(=%dU BMW), BW), C, C, C,,(n), C,@), C$), c&.@), 
+q(Q)> %w)(~)> +P,W> ~,,P,(Q, Jf,(R”), H’(Q), H;(R), A’@“), n l(dk’), ZZ 1 ‘(dk)), I,, 
Lo,,,@), m, M(Q), (WV, o#), 9, s, S(Q), I+$)-168 Function Spaces. For w(Q) (Space of 
Sato hyperfunctions), g’(Q), B’(Q), UC, 8,, Y’(Rn)- 125 Distributions and Hyperfunctions] 

X. Functions 

I I 

Re 

Im 

- 

I4 

Rez 

Imz 

z 

arg 

Cl 

0 

0 

argz 

Cal 

f(x) = OMX)) 

f(x) = h7(x)) 

f(x)-g(x) 

D D(T) 

R NT) 

suPP suppf 

p.v. P.v. S:f(-Wx 

Pf PfJfWx 

6 w4,&x 

ex p expx 

log, Log logx, Logx 

sin x, cos x, tan x, set x, 
cosecx, cotan x 

arc sin x, arc cos x, arc tan x 

Arcsinx, Arccosx, Arctanx 

Absolute value (of a complex 
number z) 

Real part (of a complex 
number z) 

Imaginary part (of a complex 

number z) 

Complex conjugate (of a complex 
number z) 

Argument (of a complex 

number z) 

Gauss symbol (greatest integer 
not exceeding a real number a) 

Landau’s notation (f(x)/g(x) 
is bounded for x+c() 

Landau’s notation (f(x)/g(x) 
tends to 0 for X-XX) 

Infinite or infinitesimal of the 

same order (for x+t() 

Domain (of an operator T) 

Range (of an operator T) 

Support (of a function f) 

Cauchy’s principal value (of 
an integral) 

Finite part (of an integral) 

Dirac’s delta function 

(measure or distribution) 

Exponential function 
(expx = ex) 

Natural logarithmic function and 
its principal value, respectively 

Trigonometric functions 

Inverse trigonometric functions 

Principal value of inverse 
trigonometric functions 

-l4B* 

14A 

14A* 

74A 

74C 

83A 

87G 

87G 

87G* 

251A 

251A 

168B(l) 

216D 

125C 

125C* 

113D, 269H 

131D, G 

131E 

131E 

131E 
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Notation 

sinh x, cash x, tanh x 

0 
,c 

Li 

XI. Probability 

P, Pr 

E 

v, o2 

P 

P(l) 

E(I) 

N 

Example 

C ‘II I 

P ” I 

n! 

dn) 

AnI 

T(z) 

J,(z) 

W) 

B(X? Y) 

F(4 B> Y; 4 

P 

Li(x) 

x 

P(E), W4 

E(X) 

w4, a2(W 

PW, Y) 

WIF) 

JW Y) 

N(m, c2) 

w 

Definition 

Hyperbolic functions 

Article 

and 
Section 

131F 

Binomial coefficient, combination 330 

Permutation 

Factorial (of n) 
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390.r 
Akizuki, Yasuo (1902-84) 8 59.H 284.F, G 368.F 
Alaoglu, Leonidas (1914-) 37.E 424.H 
Albanese, Giacomo (1890-1947) 16.P 232.C 
al-Battani, Mohamed ibn Gabis ibn Sinan, Abu 

Abdallah (858?%929) 26 432.C 
Albert, Abraham Adrian (1905-72) 29.F, r 149.r 

231.r 
Albertus Magnus (1193?-1280) 372 
Alcuin (735-804) 372 
Aleksandrov, Aleksandr Danilovich (1912-) 1ll.r 

178.A 255.D 365.H 425.r 
Aleksandrov (Alexandroff), Pave1 Sergeevich (1896- 

1982) 22.1 65.r 93.r 99.r 117.A, E, F, r 201.A, r 
207.C 273.K 425.S-V, r 426. *, r 

Alekseev, Vladimir Mikhailovich (1932-80) 420.r 
Alekseevskii, Dmitrii Vladimirovich (1940-) 364.r 
Alexander, Herbert James (1940-) 344.F 
Alexander, James Waddell (1888-1971) 65.G 

201.A, J, M, 0, P 235.A, C, D, E 426 
Alexits, Gyorgy (1899-1978) 317.r 
Alfsen, Erik Magnus (1930&) 351.L 
Alfvtn, Hannes (1908-) 259.*, r 
Alinhac, Serge (1948-) 345.A 
al-Khwarizmi (Alkwarizmi), Mohammed ibn Musa 

(c. 780-c. 850) 26 
Allard, William Kenneth (1941l) 275.G 
Allendoerfer, Carl Bennett (1911-74) 109 365.E 
Almgren, Frederick Justin, Jr. (19333) 275.A, F, G, 

r 334.F 
Altman, Allen B. 16.r 
Amari, Shun-ichi (1936-) 399.0 
Ambrose, Warren (1914-) 136.D 
Amemiya, Ichiro (1923-) 72.r 
Amitsur, Shimshon A. (1921l) 200.P 
Ampere, Andre-Marie (1775-1836) 82.A 107.B 

278.A 
Amrein, Werner 0. 375.B, r 
Ananda-Rau, K. 121.D 
Andersen, Erik Sparre (1919-) 260.5 
Anderson, Brian D. 0. 86.r 
Anderson, Joel H. (1935-) 36.5 
Anderson, Richard Louis (1915-) 19.r 
Anderson, Robert Murdoch (1951-) 293.D, r 
Anderson, Theodore Wilbur (1918-) 280.r 374.r 

421.D 
Andersson, Karl Gustav (1943-) 274.1 
Ando, Tsuyoshi (1932-) 310.H 
Ando, Y. 304.r 
Andreotti, Aldo (1924480) 32.F 72.r 
Andrews, David F. 371.H 
Andrews, Frank C. 419.r 
Andrianov, Anatolii N. (19366) 32.F 
Andronov, Aleksandr Aleksandrovich (1901-52) 

126.A, I, r 290.r 318.r 
Anger, Carl Theodor (1803358) 39.G App. A, 

Table 19.IV 
Anikin, S. A. 146.A 
Anosov, Dmitrii Viktorovich (1936-) 126.A, J 

136.G 
Antiphon (fl. 430? B.C.) 187 
Antoine, Louis August (1888-1971) 65.G 
Anzai, Hirotada (1919-55) 136.E 
Apery, Roger (1916-) 182.G 



Name Index 
Apollonius (of Perga) 

1876 

Apollonius (of Perga) (262-c. 200 B.C.) 179.A 181 
187 App. A, Table 3.V 

Apostol, T. M. 106.r 216.r 
Appel, Kenneth I. (1932-) 157.A 186.r 
Appell, Paul-Emile (185551930) 1l.r 206.D, r 

393.E, r 428.r App. A, Table 18.1 App. A, 
Table 20.r 

Arakelov, S. Yu. 9.r 118.E 
Arakelyan, Norair Unanovich 164.5 
Araki, Huzihiro (1932-) 150.D, E 212.B, r 308.1, r 

351.L 377.r 402.G 
Araki, Shore (1930&) 427.B 
Aramata, Hideo (1905-47) 450.D 
Aramovich, I. 198.r 
Arbib, Michael Anthony (1940-) 75.r 95.r 
Arbuthnot, John (166771735) 371.A 
Archibald, Raymond Glare (187551955) 187.r 
Archimedes (c. 2877212 B.C.) 20 78.F 93.H 149.N 

155.8, D 187 243.G 310.C 332 355.B 439.C 
Archytas (of Taras) (c. 430-c. 365 B.C.) 187 
Arens, Richard Friedrich (1919-) 36.M 424.N 
Arf, Cahit (1910-) 114.5 
Argand, Jean Robert (176881822) 74.C 
Arima, Reiko (- Sakamoto, Reiko) 
Arima, Yoriyuki (17 14-83) 230 
Arimoto, Suguru (19366) 213.E, F, r 
Aristotle (3844322 B.C.) 187 
Ariyama, Masataka (1929-) 446.r 
Arkhangel’skii, Aleksandr Vladimirovich (1938-) 

273.K. r 425.F, S, Y, CC, r 
Arnauld. Antoine (1612-94) 265 
Arnoff, E. Leonard (19222) 307.A 
Arnold, Leslie K. 136.C 
Arnol’d, Vladimir Igorevich (19377) 82.r 126.A, L, 

M, r 136x 196 219x 271.r 402.r 418.E 420.G App. 
A, Table 5, r 

Aronszajn, Nachman (1907-80) 112.H 188.r 273.K 
323.5 338.E 

Arraut, Jose Luis (19388) 126.H 
Arrow, Kenneth Joseph (1921-) 227.r 292.E, r 
Arsenin, Vasilii Yakovlevich 22.C F, r 
Artin, Emil (1898-1962) 4.A 6.E, F, r 7.r 8 14.F, 

K, 0, R, S, U, r 28 29.r 59.A, C, F, H, r 60.r 65.G 
118.F 123.F 149.N 151.1 155.G 172.F, r 174.r 196 
198.8, r 200.N 235.F 257.H, r 277.1284.A, G 295.E 
343.r 368.F, r 439.L. r 450.A, G, P, R 

Artin, Michael (19344) 15.r 16.U, W, r 126.K 210.r 
418.C 450.Q, r 

Arveson. William B. (19344) 36.r 308.r 
Aryabhata (Arya-Bhatta) (c. 476-c. 550) 209 332 

432.C 
Arzela, Cesare (184771912) 168.B 216.B 435.D 
Asada, Kenji (1946-) 274.r 345.8 
Asano, Keizo (1910-) 8 29.1 
Asano, Kiyoshi (1938-) 41.D 
Aschbacher, Michael George (19444) 151.J 
Ascher, Edgar 92.r 
Ascoli, Giulio (1843-96) 168.B 435.D 
Ash, Avner Dolnick (1949-) 16.r 
Assmus, Edward F., Jr. (1931l) 200.K 
Athreya. Krishna B. 44.C 
Atiyah, Michael Francis (1929-) 16.r 20 68.F 80.G, 

r 109 114.E 147.0 153.C 183 237.A. H, r 323.K 
325.5 345.A 366.A-D, r 390.1, J 391.L, N, r 426 
431.D 437.X 

Atkin, Arthur 0. L. (19355) 328 
Atsuji, Masahiko (1922-) 425.Y 
Aubin, Jean-Pierre 286.X 
Aubin, Thierry Emilien (1942--) 183.r 232.C 

364.H, r 

Audley, Robert John (19288) 346.r 
Auerbach, Herman (1902242) 270.5 
Aumann, Robert John (1930-) 173.D, E, r 443.A 
Auslander, Joseph (1930-) 126.D 
Auslander, Louis (1928-) 105.r 136.G 152.C 279.C 

437.u 
Auslander, Maurice (1926-) 29.K 20O.K. L 284.G 
Avery, J. 377.r 
Avez, Andre 126.r 136.r 402.r 
Ax, James B. 14.D 118.B, F 276.E, r 4-50.5 
Ayoub, Raymond George (1923-) 4.r 123.r 295.r 

328.r 
Azencott, Robert Guy (1943-) 136.G 
Azima, Naonobu (1739-98) 230 
Aziz, Abdul Kadir 303.r 
Azra, Jean-Pierre (1935-) 171.r 
Azumaya Goro (1920&) 8.*, r 29.1, K. r 67.D 172.r 

200.L 362.r 368.r 

B 

Babbage, Charles (1792-1871) 75.A 
Bachelier, Louis (1870- 1946) 45.A 
Bachet de Meziriac, Claude Gaspar (1581-1638) 

296.A 
Bachmann, Paul Gustav Heinrich (1837-1920) 

297.1 
Bacon, Francis (1561-1626) 401.E 
Baer, Reinhold (1902-79) 2.F 122.B :!OO.I, K 
Bagemihl, Frederick (1920&) 62.CE 
Bahadur, Raghu Raj (19244) 396.r 398.r 399.N, r 

400.K, r 
Bahmann, H. 97.B 
Bailey, Norman T. J. 40x 
Baillon, Jean-Bernard (1951-) 286.Y 
Baily, Walter Lewis, Jr. (1930-) 16.2 32.F, H 122.r 

194.r 
Baiocchi, Claudio 440.r 
Baire, Rene Louis (187441932) 20 21 C, L 84.D, r 

126.H 273.B, J 425.N 
Bairstow, L. 301.E 
Baker, Alan (19399) 118.D 182.G, r 196 347.E 

430.D, r 
Baker, George Allen, Jr. (1932-) 142.r 
Baker, Henry Frederick (1866-1956) 9.r 15.r 78.r 

350.r 
Baker, Kenneth R. 376.r 
Bakhshali (c. 3rd century) 209 
Balaban, Tadeusz 325.K 
Balakrishnan, A. V. (1922-) 378.D 
Balas, Egon 215.C r 
Baldwin, John T. (1944-) 276.F 
Balian, Roger 386.r 
Ball, W. W. Rouse 157.r 
Banach, Stefan (1892-1945) 20 23.G 36.A, F 37.A, 

B, E, F, H, I, 0, r 105.Z 162 168.r 246.G 286.K, Z 
310.F, 1424.C H, J, X 442.r 

Banerjee, Kali S. (1914-) 102.r 
Bang, Theger Sophus Vilhelm (1917-) 58.F 
Banica (Banica), Constantin (1942-) 23.r 
Baouendi, M. Salah (1937-) 323.N 345.A 
Barankin, Edward William (1920&) 396.r 399.D, r 
Barban, Mark Borisovich (1935-) 123.E 
Barbey, Klaus 164.r 
Barbosa, Jolo Lucas Marques 275.B 
Barbu, Viorel(1941l) 88.r 440.r 
Barden, Dennis 65.C 
Bardos, Claude Williams (1940-) 204.E 
Bargmann, Valentine (19088) 258.r 437.EE 
Bar-Hillel, Yehoshua (1915575) 96.r 



1877 Name Index 
Bieberbacb, Ludwig 

Bari, Nina Karlovna (1901-61) 159.J Berg, Christian (19444) 338~ 
Barlow, Peter (177661862) NTR Berg, Ira David (1931-) 331.E 390.1 
Barlow, William (18455 1934) 92.F Berge, Claude (19266) 186.r 281.r 282.r 
Barnes, Ernest William (187441953) 206.C App. A, Berger, Charles A. (1937-) 251.K, L 

Table 18.1 Berger, James Orvis (1950&) 398.r 
Barr, Michael (19377) 200.r Berger, M. (1926-) 109.*, r, 17&A, C 391.8, C, r 
Barrow, Isaac (1630-77) 265 283 Berger, Melvyn (19399) 286.r 
Barth, Wolf Paul (1942-) 16.r Berger, Toby (1940-) 213.E 
Bartle, Robert Gardner (1927-) 68.M 443.A, G Bergh, Joran (1941-) 224.r 
Bartlett, Maurice Stevenson (1910-) 40.r 44.r 280.5 Bergman, Stefan (1895-1977) 21.Q 77.r 188.G. r 

407.r 421 .C, r 326.C 
Barwise, Jon 356.r Berkovitz, Leonard D. (1924-) 86.F 108.A, B 
Bashforth, F. 303.E Berlekamp, Elwyn R. (1940-) 63.r 
Bass, Hyman (1932-) 122.F 200.r 237, J, r Bernays, Paul Isaak (1888-1977) 33.A, C, r 97.* 
Bass, Robert Wauchope (1930-) 289.D 156.r 411.5, r 
Bastin, J. 351.r Bernoulli family 20 38 107.A 266 
Batchelder, Paul M. 104.r Bernoulli, Daniel (1700-82) 20 38 205.B 301.5 
Batchelor, George Keith (1920-) 205.r 433.C r 342.A 396.B 
Bateman, Paul Trevier (1919-) 4.D 348.K Bernoulli, Jakob (165441705) 38 46.A 93.H 136.D- 
Bauer, Friedrich Ludwig (1924-) 302.r F 177.B 250.A 342.A 379.1 App. A, Table 14.1 
Bauer, Heinz (1928-) 193.U App. B, Table 3.1 
Baum, Paul Frank (19366) 366.E 427.B Bernoulli, Jakob (1759-89) 38 
Bayer, Pilar 450.r Bernoulli, Johann (166771748) 38 46.A 93.H 163.B 
Bayes, Thomas (1702-61) 342.A. F 396.J 398.B 165.A 

399.F 401.B, E 403.G 405.1 Bernoulli, Johann (1710-90) 38 
Bazilevich, Ivan Evgen’evich 438.8 Bernoulli, Johann (174441807) 38 
Beale, E. M. L. 292.r 349.r Bernoulli, Nikolaus (168771759) 38 
Beals, Richard William (193%) 320.r 345.A, B Bernoulli, Nikolaus (1695-1726) 38 
Beardon, Alan Frank (1940&) 234.r Bernshtein, I. N. 125.EE 154.G 41&H, r 
Beatley, Ralph 139.r Bernshtein, Sergei Natanovich (1880-1968) 49.B 
Beauville, Arnaud (1947-) 15.r 58.E 196 240.E 255.D 261.A 275.A, F 323.1 334.C 
Bebutov, M. 126.E 336.A, C, F 
Becchi, C. M. 150.G Bernshtein, Vladimir 121.r 
Beck, James V. 200.Q, r Bernstein, Allen R. 276.E, r 293.D 
Beckenbach, Edwin Ford (1906-82) 211.r Bernstein, Felix (1878-1956) 228.A 
Becker, Oskar Joachim (188991964) 156.r 187.r Berry, G. G. 319.B 
Beckmann, Petr (1924-) 332 Berry, L. Gerard (1948-) 40.D 
Bede Venerabilis (673-735) 372 Bers, Lipman (1914-) 21.r 23.r 111~ 122.1, r 204.G 
Beer, Stafford (1926-) 95.r 234.D, r 275.A 320.r 326.r 327.r 352.B-E, r 367.r 
Beeson, H. 275.C 416.*, r 
Beez, R. 365.E Berstel, Jean (1941-) 31.r 
Behnke, Heinrich (1898-1979) 21.H, Q 23.E 198.r Berthelot, Pierre (1943%) 16.r 366.r 450.Q 

367.B, G, I, r Bertini, Eugenio (1846-1933) 15.C 
Behrends, Ralph Eugene (I 926-) 132.r Bertrand, Joseph Louis Francois (182221900) 
Behrens, W. V. 400.G 11 l.F 123.A 
Belardinelli, Giuseppe 206.r Berwald, L. (1883-?) 152.C 
Belavin, A. A. 80.r Berztiss, Alfs T. 96.r 
Belinfante, Frederik J. 150.B Besikovich (Besicovitch), Abram Samoilovich (189 1~ 
Bell, Eric Temple (188331960) 177.D 1970) l&A, C 246.K 
Bell, James Frederick (1914-) 33.r Besov, Oleg Vladimirovich (19333) 168.B, r 
Bell, John Stewart (1928-) 351.L Bessaga, Czestaw (19322) 286.D 443.D 
Bell, Steve 344.D Besse, Arthur L. 109.r 178.r 
Bellissard, Jean Vincent (19466) 35 1 .L Besse, J. 198.N 
Bellman, Richard (Ernest) (1920-84) 86.A, F 127.A, Bessel, Friedrich Wilhelm (1784- 1846) 39.A, B, D, 

D, E, G, r 163.B 211~ 291.r 314.r 394.r 405.B, r G 197.C 223.C App. A, Tables 14.11, 19.111, IV, 
Belov, Nikolai Vasil’evich (1891-I 92.r 21.111, IV 
Beltrami, Eugenio (1835-1900) 109 194.B 285.A Besson, Gerard (1955-) 391.F 

352.B App. A, Table 4.11 Betti, Enrico (1823392) 105.A 200.K 201.A, B 426 
Belyaev, Yurii Konstantinovich (1932-) 176.G Beurling, Arne (Karl-August) (19055) 62.B, E 
Bendat, Julius S. (19233) 212.r 125.A, U 143.A 164.G, I 169.E 192.Q 251.L 
Bender, Helmut (1942-) 151.5 338.Q, r 352.C 
Benders, J. F. 215.r B&out, Etienne (1739983) 9.B 12.B 
Bendikson (Bendixson), Ivar Otto (1861~ 1936) Bhaskara (1114-85?) 209 296.A 

107.A 126.1 Bhatia, Nam Parshad (1932-) 86.r 126.r 
Bengel, Giinter (1939-) 112.D Bhattacharya, Rabindra Nath (1937-) 374.F, r 
Benilan, Philippe (1940&) 162 Bhattacharyya, A. 399.D, r 
Bensoussan, Alain (1940&) 405.r Bianchi, Luigi (185661928) 80.J 365.5 417.B 
Berard-Bergery, Lionel (1945-) 364.r Bickel, Peter John (1940-) 371.r 
Berens, Hubert (19366) 224.E, r 378.r Bidal, Pierre 194.F 
Berezin, Feliks Aleksandrovich (1931-80) 377.r Bieberbach, Ludwig (188661982) 43.r 77.E 89.C 



Name Index 
Biedenharn. Lawrence C. 

1878 

92.F. r 107.r 179.B, r 198.r 254.r 288.r 339. 429.r 
438.B, C 

Biedenharn, Lawrence C. (1922-) 353.r 
Biezeno, Cornelis Benjamin (1888-1975) 19.r 
Biggeri, Carlos 121.C 
Biggs, Norman Linstead (1941-) 157.r 
Billera, Louis J. (1943-) 173.E 
Billingsley, Patrick P. (19255) 45.r 136.r 250.r 

341.r 374.r 
Binet, Jacques Philippe Marie (178661856) 174.A 

295.A 
Bing, Rudolf H. (1914-86) 65.F, G 79.D 273.K 

382.D 425.AA 
Birch, Bryan John (1931-) 4.E 118.CE 450.S 
Birkeland, R. 206.D 
Birkhoff, Garrett (191 l-) 8.r 87.r 103~ 183.r 243.r 

248.5 310.A 311.r 343.r 443.A, E, H 
Birkhoff, George David (188441944) 30.r 107.A 

109 1 Il.1 126.A, E 136.A, B 139.r 153.B, D 157.A 
162 253.C 254.D 279.A 286.D 420.F 

Birman, Joan S. (19222) 235.r 
Birman, Mikhail Shlemovich (19288) 331.E 
Birnbaum, Allan (1923-76) 399.C r 400.r 
Birtel, Frank Thomas (1932-) 164.r 
Bisconcini, Giulio 420.C 
Bishop, Errett A. (1928883) 164.D-F, J, K 367.r 
Bishop, Richard L. (1931-) 105.r 178.r 417.r 
Bishop, Yvonne M. M. 280.r 403.r 
Bitsadze, Andrei Vasil’evich (19166) 326.r 
Bjerknes, Carl Anton (1825-1903) 1.r 
Bjiirck, Ake (1934-) 302.r 
Bjiirck, Goran (1930&) 125.r 
Bjork, Jan-Erik 112.r 125.EE 274.r 
Bjorken, James Daniel (19344) 132.r 146.A, C 150.r 
Blackman, R. B. 421 .r 
Blackwell, David (Harold) (1919-) 22.H 398.r 

399.c 
Blahut, Richard E. (19377) 213.r 
Blair, David E. (1940-) 1 t0.E 364.G 
Blakers, Albert Laurence (19177) 202.M 
Blanchard, Andre (1928-) 72.r 
Blanc-Lapierre, Andre Joseph (1915-) 395.r 
Bland, Robert G. (19488) 255.C 
Blaschke, Wilhelm (18855 1962) 43.F 76.r 89.C r 

109.*, r llO.C,r 111~ 178.G 218.A,C, H 228.r 
Biatt, John Markus 353.r 
Blattner, Robert James (1931-) 437.W, EE 
Bleaney, B. I. 130.r 
Bleuler, Konrad (1912-) 150.G 
Bloch, Andre (1893-1948) 2l.N, 0 77.F 272.L 

429.D 
Bloch, Felix (1905-) 353.r 402.H 
Bloch, Spencer 16.R 
Block, Henry David (1920-78) 420.C 
Bloxham, M. J. D. 386.C 
Blum, Julius Rubin (1922282) 136.E 
Blum, Manuel 71.D, r 
Blumenthal, Ludwig Otto (1876-1944) 32.G 122.E 
Blumenthal, Robert McCallum (1931-) 5.r 261.B, r 
Boas, Ralph Philip, Jr. (1912-) 58.r 220.D 240.K 

429.r 
B&her, Maxime (1867-1918) 107.A 167.E 193.D 
Bochner, Salomon (189991982) 5.r 18.A, r 21.Q, r 

36.L X0.r 109.e. r 125.A 160.C. r 164.G 192.B. 0 
194.G 261.F 327.r 341.C J, r 367.F 378.D 443.A, 
C H 

Bodewig, Ewald 298.r 
Boerner, Hermann (1906-82) 362~ 
Boetius, Anicius Manlius Torquatus Severinus 

(c. 480-524) 372 

Bogolyubov, Nikolai Nikolaevich (1909-) 125.W 
136.H 146.A 150.r 212.B 290.A, D 361.r 402.5 

Bohme, Reinhold (19444) 275.C 
Bohnenblust, (Henri) Frederic (1906-) 28 310.A, G 
Bohr, Harald (1887-1951) 18.A, B, H, r 69.B 12l.B, 

C 123.r 450.1 
Bohr, Niels Henrik David (188551962) 351.A 
Bokshtein (Bockstein), Meer Feliksovich (1913-) 

64.B 117.F 
Bol, Gerrit (19066) 110.r 
Boll, Marcel (1886-) NTR 
Bolley, Pierre (19433) 323.N 
Boltyanskii, Vladimir Grigor’evich (lS25-) 86.r 

89.r 117.F 127.G 
Boltzmann, Ludwig (18441906) 41.A, B, r 136.A 

402.B, H, r 403.B, r 
Bolyai, Janos (Johann) (1802-60) 35 A 181 267 

285.A 
Bolza, Oskar (1857-1942) 46.r 
Bolzano, Bernard (1781-1848) 140 273.F 
Bombieri, Enrico (1940-) 15.r 72.K 1 18.B 123.D, 

E, r 151.J 275.F 438.C 45O.P, Q 
Bompiani, Enrico (188991975) 110.B 
Bonnesen, Tommy (1873-) 89.r 228.A 
Bonnet, Ossian Pierre (1819-92) 10s’ 11 l.H 275.A, 

C 364.D App. A, Table 4.1 
Bonsall, Frank Featherstone (1920-) 310.H 
Bony, Jean-Michel(1942-) 274.r 
Book, D. L. 304.r 
Boole, George (1815-64) 33.E 42.A-D, r 104.r 

156.B 243.E 267 379.5 41 l.A, r 
Boone, William Werner (1920-83) 9’7.*, r 161.B 
Boothby, William M. (1918-) 1lO.E 
Borchardt, Carl Wilhelm (1817-80) :!29.r 
Borchers, Hans-Jiirgen (1926-) 150.1~ 
Borel, Armand (1923%) 12.B 13.A, G, r 16.2 32.H, 

r 56.r 73.r 122.F, G, r 147.K 148.E, I 199.r 203.A 
248.0 249.5, V, r 366.D 383.r 384.D 427.B, r 431.r 
437.Q 450.r App. A, Table 6.V 

Bore], Emile (1871-1956) 20 21.0 22.A, G 58.D 
83.B 124.B 156.C 198.Q, r 261.D 27O.B, C, G, J 
272.E, F 273.F 339.D 342.A, B 379.0 429.B 

Borevich, Zenon Ivanovich (1922-) (4.r 297.r 347.r 
Borges, Carlos J. Rego (1939-) 273.K 425.Y 
Borisovich, Yurii Grigor’evich (1930-) 286.r 
Born, Max (1882-1970) 402.5 446.r 
Borovkov, Aleksandr Alekseevich (193-) 260.H 
Borsuk, Karol (1905582) 79.C, r 153 B 202.B, I 

382. A, C 
Bortolotti, Ettore (1866-1947) 417.E 
Bose, Raj Chandra (1901-) 63.D 241.B STR 
Bose, Satyendra Nath (1894-1974) 132.A, C 351.H 

377.B 402.E 
Bott, Raoul(1923-) 105.r 109 153.C 154.F-H 

178.G 202.V, r 237.D, H, r 248.r 272.L 279.D 
325.5 345.A 366.r 391.N, r 413.r 427.E, r 437.Q 
App. A, Table 6.VII 

Bouligand, Georges (18899?) 120.D 
Bouquet, Jean-Claude (1819985) 107.A 11 l.F 

288.B 289.B 
Bourbaki, Nicolas 8 13.r 20.r 22.r 34.r 35.r 60.r 61.r 

67.r 74.r 84.r 87.r 88.r 103.r 105.r 106.r 122.r 13l.r 
135.r 149.r 162 168.C 172.r 187.r 21ti.r 221.r 225.r 
248.r 249.r 256.r 265.r 266.r 267s 270.r 277.r 284.r 
310.1 311.r 312.r 337.r 348.r 355.r 360.r 362.r 368.r 
379.r 381.r 409.r 423.r 424.1, r 425,s. W, Y, CC, r 
435.r 436.r 443.A 

Bourgin, David G. 201~ 
Bourgne, Robert 171.r 
Bourguignon, Jean-Pierre (1947-) 80.r 364.r 
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Callen, Herbert Bernard 

Bourion, Georges 339.E 
Boussinesq, Joseph (1842-1929) 387.B. F 
Boutroux, Pierre Leon (1880-1922) 265.r 288.B, 

C, r 
Bowen, Rufus (1947-78) 126.A, J, K, r 136.C G, r 

234.r 
Bowman, Frank (1891-1983) 39.r 
Box, George E. P. (1919%) 102.r 128.r 301.L 371.A 

421.G, r 
Boyle, James M. 298.r 
Bradley, G. J. 92.r 
Bradley, Ralph Allan (19233) 346.C 
Brahmagupta (598-660) 118.A 209 
Bram, Joseph (19266) 291 .r 
Brams, Steven John (1940&) 173.r 
Brandt, Heinrich (1886-1954) 190.P 241.C 
Branges, Louis de (1932-) 176.K 438.C 
Bratteli, Ola (1946-) 36.H, K, r 308.r 402.G, r 
Brauer, Richard Dagobert (1901-77) 14.E 27.D, 

E 29.E, F, K 118.C 151.5, r 362.G, I, r 427.B 
450.D, G, L 

Braun, He1 (1914-) 32.H 122.E 231.r 
Brauner, Karl 418.r 
Bravais, Auguste (1811-63) 92.B, F App. B, 

Table 5.IV 
Bredikhin, Boris Maksimovich (1920&) 123.E 
Bredon, Glen E. (19322) 383.r 431.r 
Breiman, Leo (1928-) 260.r 342.r 
Brelot, Marcel (1903-) 12O.C E, r 193.5, L, N, U 

207.C 338.G, H 
Bremermann, Hans-Joachim (1926-) 21.D, I 
Bremmer, Hendricus (19044) 240.r 
Brent, Richard Peirce (1946-) 123.B 142.A 450.1 
Breuer, Manfred 390.5 
Brewster, Sir David (1781-1868) 283.r 
Brtzis, David 88.E 
Brtzis, Hai’m (1944) 88.E 162.*, r 286.C X 440.r 
Brianchon, Charles Julien (178551864) 78.K 343.E 
Brieskorn, Egbert (19366) 16.r 418.C, D, r App. A, 

Table 5.r 
Brigham, E. Oran (1940@) 142.r 
Brill, Alexander Wilhelm von (184221935) 9.E, r 

ll.B, r 12.B 
Brillinger, David Ross (1937-) 421.r 
Brillouin, Leon Nicolas (188991969) 25.B 446.r 
Brin, Matthew G. 136.G 
Briot, Charles Auguste Albert (1817-82) 107.A 

288.B 289.B 
Broadbent, S. R. 340.r 
Brocker, Theodor 51.r 
Broderick, Norma 92.r 
Brodskii, Mikhail Samoilovich (1913%) 251.r 390.H 
Brody, Robert 21.0 
Bromwich, Thomas John TAnson (1875- 1929) 

240.D 322.D 379.r App. A, Table 12.1 
Bronshtein, M. D. 325.1 
Bras, Jacques (1934-) 150.D 274.D, I 386.B, C 
Brosilow, C. B. 303.r 
Brouncker, Lord William (1620-84) 332 
Brouwer, Dirk (1902-66) 55.r 
Brouwer, Luitzen Egbertus Jan (1881-1966) 65.G 

79.D 99.A 117.A, D, r 153.B 156.A, C 202.B 305.A 
426 

Browder, Andrew (193ll) 164.r 
Browder, Felix Earl (1927-) 112.F, Q 286.C X, r 

323.H 
Browder, William (19344) 114.5, L, r 427.B 
Brown, Edgar H., Jr. (19266) 202.T 
Brown, Harold 92.F 
Brown, Lawrence David (1940&) 396.r 

Brown, Lawrence G. (1943-) 36.5 390.5, r 
Brown, Leon 43.G 
Brown, Morton (1931-) 65.G 
Brown, Robert (177331858) 5.D 45.A-C, F, I 

176.C I 250.F 406.B, G 
Brown, Robert Freeman (1935-) 153.r 
Brown, Scott W. (1937-) 251.L 
Brownlee, John (1868-1927) NTR 
Bruck, Richard Hubert (1914-) 19O.P, r 241.D 
Bruhat, Francois (1929-) 13.K, Q. R 437.0, EE 
Brumer, Armand 182.r 450.5 
Brun, Viggo (188551978) 4.A, C 123.D, E 
Brune, 0. 282.r 
Brunel, Antoine 136.C 
Brunn 89.E 
Brunovsky, Pavol 126.M 
Bruns, Heinrich (1848-1919) 126.A 420.A 
Brunschvicg, Leon (1869-1944) 329.r 
Bruter, Claude Paul (19377) 281.r 
Buchholz, Herbert (1895-1971) 167.r 
Buchner, Michael Anthony (1947-) 126.L 
Buchsbaum, David Alvin (1929%) 284.G 
Buck, R. Creighton (1920-) 43.F, r 106.r 
Biickner, Hans 217.r 
Bucur, Ion (1930-76) 52.r 
Bucy, Richard S. (19355) 86.E 95.r 405.G, r 
Buerger, Martin J. 92.r 
Buffon, Georges Louis Leclerc, Comte de (1707-88) 

218.A 342.A 385.C 
Buhler, Joe P. 450.G 
Biihlmann, Hans (1930-) 214.r 
Bulirsch, Roland (1932-) 303.F 
Biilow, Rolf 92.F 
Bunimovich, Leonid Abramovich 136.G 
Bunyakovskii, Viktor Yakovlevich (1804-89) 21 l.C 

App. A, Table 8 
Burali-Forti, Cesare (1861-1931) 319.B 
Burchnall, Joseph Langley (189221975) 387.C 
Burckhardt, Johann Jakob 92.F 
Burd, Vladimir Shepselevich (19388) 290.r 
Burgess, David Albert (1935-) 295.E 
Burghelea, Dan (19433) 105.r 183 
Biirgi, Joost (1552-1632) 265 
Burgoyne, N. 150.D App. B, Table 5.r 
Burkholder, Donald L. (19277) 168.B 262.B 
Burkill, John Charles (1900-) 100.A 
Burns, Daniel Matthew, Jr. (19466) 344.C-E 
Burnside, William Snow (1852-1927) 151.D, H, J, r 

16l.C 190.Q, r 267 431.F 
Busemann, Herbert (1905-) 178.F, H, r 
Bush, Robert R. 96.r 346.G 
Bush, Vannevar (1890-1974) 19.E 
Bustab, A. 4.A, C 123.E 
Butkovskii, A. G. 86.r 
Butzer, Paul L. (1928-) 224.E, r 378.r 
Byrne, George D. 303.r 

C 

Cabannes, Henri (1923-) 259.r 
Caflisch, Russel E. 41.D, E 
Caianiello, Eduardo R. (1921-) 291.F, r 
Cairns, Stewart Scott (1904482) 114.A, C 426 
Calabi, Eugenio (1923-) 122.F 232.C 275.H 

365.G, L 
Calderbn, Alberto-Pedro (1920&) 36.M 217.5, 

r 224.A, F 251.0 274.B, 1321.F 323.5 345.A 
Calkin, John Williams (19099) 36.5 390.1 
Callan, Curtis G. (1942-) 132.C 36l.B, r 
Callen, Herbert Bernard (1919-) 419.r 



Name Index 
Campanato, Sergio 

1880 

Campanato, Sergio (I 930&) 168.B 
Campbell, George Ashley (1870-?) 220.r 249.R 
Camus, Jacques (1942-) 323.N 
Cannon, James W. (19433) 65.A, C, F 
Cannonito, Frank Benjamin (1926-) 97.r 
Cantelli, Francesco Paolo (18755) 342.8 374.E 
Cantor, Georg (184551918) 20 33.A 34.r 47.r 

49.D, r 79.D 93.D 98.r 117.A 156.A 159.J 267 
273.F 294.A, E, r 312.A, C 355.r 381.F, r 426 

Cantor, Moritz Benedikt (1829-1920) 20.r 26.r 38x 
187.r 209.r 265.r 266.r 296.r 360.r 372.r 

Cantwell, John C. 154.H 
Cappell, Sylvain E. (I 9466) 65.D 114.K, r 
Caratheodory, Constantin (187331950) 20.r 

21.0, Q 43.J, K, r 46.r 74.r 77.C r 82.r 136.A, C 
180.r 198.r 246.G 255.D, E 270.E 316.F 320.r 321.r 
324.r 333.B, C, r 334.E 438.B 

Cardano, Girolamo (1501-76) 8 10.D 294.A, r 
360.*, r 444 App. A, Table 1 

Cardoso da Silva, Fernando Antonio Figueiredo 
(1939-) 320.r 

Carleman, Torsten (189221949) 20 30.A 41.D 43.H 
58.F 68.L 112.N 125.A 160.r 164.5 168.B 217.5, r 
240.K 321.F 323.5, M 336.1 App. A, Table 8 

Carleson, Fritz (I 8888 1952) 121.C 
Carleson, Lennart A. E. (19288) 43.F, G, r 48.r 

77.E 124.C 159.H 164.1 168.B 169.r 352.F 
Carlson, Bille Chandler (19244) 389.r 
Carlson, James A. 21 .N 
Carmeli, Moshe (1933-) 359.r 
Carnahan, Brice (19333) 304.r 
Carnot, Lazare Nicholas Marguerite (1753-1823) 

181 266 
Carrell, James Baldwin (1940-) 226.r 
Carrel, J. B. 346.E, r 
Carroll, Robert Wayne (I 930-) 378.r 
Carson, John R. App. A, Table 12.11 
Cartan, Ehe (1869-1951) 13.H 21.P 50 80.A, M, N 

90.r 105x 109.*, r 1 lO.B, r I 1l.r 137.*, r 147.A 
152.C 178.A, B 183 191.E, H, 1218.D, E 219.B, 
r 248.F, I, K, N, W, r 249.E, I, R, S, V, r 285.r 
344.AmC, F 362.1 364.F 365.B, 1384.A 412.*, 
r 413.F, r 417.r 427.B 428.E, G 434.B 437.X 
App. A, Table 5.1 

Cartan, Henri (1904-) 3.r 17.C r 20.*, r 21.E, H, 
I, L, 0, Q, r 23.B, E, r 28.r 32.r 36.L 50 52.r 58.D 
64.8 70.F, r 72.E 80.r 87.r 94.r 105.r 124.B, r 192.r 
198.r 200.1, r 201.5 208.r 210.r 225.r 272.5 277.r 
338.E. L, M, P 383.5, r 426 

Carter, Roger William (19344) 151.D, r 
Cartier, Pierre Emil (1932-) 9.E 12.B 16.E 203.H 
Cartwright, Mary L. 62.E 
Case, James H. 108.C 
Casimir, 248.5 
Casorati, Felice (1835590) 104.D 198.D 
Cassandro, M. 402.G 
Casselman, William Allen (1941-) 450.r 
Cassels, John William Scott (19222) 14.r 59.r 118.r 

182.r 257.r 
Cassini, Jean Dominique (162551712) 93.H 
Casson, Andrew J. 114.K 
Cassou-Nogues, Pierrette (1945-) 450.5 
Castaing, Charles (1932-) 443.A 
Castelnuovo, Guido (186551952) 3.E 9.H, r 12.B, r 

15.B, E, G, H 
Castillon, Giovanni Francesco Mauro Melchior 

Salvemini de (1708891) 179.A 
Catalan, Eugene Charles (1814-94) App. A, 

Table lOI 
Cauchy, Augustin Louis (I 789-l 857) 4.D 5.F 20 

21.C 53 87.C 100.E 107.A, B 164.5 165.A, r 190.Q 
198.A, B, E, F, Q 211.C 216.D, E 267 273.5 274.G 
284.B 286.X, Z 294.E 296.301.G 31&A, C, G 
320.B, D, 1321.A, B 339.A 341.D 344.A 379.A, 
B, F, K 388.B 436.G App. A, Tables 8, 9, 10.11 

Cauer, D. (188991918) 179.8 
Cauer, Wilhelm (1900-45) 282.r 
Cavalieri, (Francesco) Bonaventura (1598- 1647) 

20 265 
Cayley, Arthur (1821-95) 12.B 54 105.A 137 151.H 

157.A 190.Q 226.G 251.1 267 269.F, J 285.A 
Cazenave, Thierry 286.Y 
CebySev - Chebyshev 
Tech, Edouard (189331960) 1 lO.B, r 117.E 201.A, 

M, P 207.C 383.F 425.T, r 426 436.1 
Ceder, Jack G. (19333) 425.Y 
Cerf, Jean (19288) 114.1 
Cesari, Lamberto (1910-) 246.r 290.1. 314.D, r 

394.r 
Cesaro, Ernest0 (1859-1906) 297.D 379.K, M 
Ceva, Giovanni (1647?-1734?) 7.A 
Chaber, Jozef 273.K 
Chacon, Rafael Van Severen (1931-) 136.B, H 162 
Chadan, Khosrow (1930&) 375.r 
Chaikin, S. E. - Khaikin, S. E. 
Chaitin, Gregory J. 71.r 354.D 
Chakravarti, Indra-Mohan (1928-) 102.1 
Chandler, Colston 274.D, I 386.C 
Chandrasekhar, S. 433.r 
Chandrasekharan, Komaravolu (1920-) 121.r 123.r 

160.r 379.r 450.r 
Chang Chen-Chung (19277) 276.r 293.r 
Chang, J. J. 346.E, r 
Chang Sun-Yang (1948-) 164.1 
Chaplygin, Sergei Alekseevich (18699 942) 326.B 
Chapman, D. G. (1920&) 399.D 
Chapman, Sydney (1888-1970) 41.E 260.A 261.A 

379.M 402.H, r 
Chapman, Thomas A. (1940&) 65.C 382.B, D 
Charnes, Abraham (19177) 255.D, E 408.r 
Charpit, Paul (?-1774) 82.C 320.D 322.B App. A, 

Table 15.11 
Charzynski, Zygmunt (1914-) 438.C 
Chase, A. B. 24.r 
Chase, Stephen Urban (1932-) 29.r 172.A, K 
Chasles, Michel(179331880) 12.B 78.5 267 350.C 
Chatelet, Francois (1912-) 118.D 
Chaudhuri, Jyoti 63.D 
Chaundy, T. 387.C 
Chauvenet, William (1820-70) 392.r 
Chazarain, Jacques (19422) 274x 325.H, M 345.B 

378.F 
Chazy, Jean (188221955) 288.D 420.D 
Chebotarev, Nikolai Grigor’evich (1894-1947) 

14.S 172.r 
Chebyshev, Pafnutii L’vovich (1821-94) 19.G 

123.A 223.A 299.A 317.D 336.8, H, .I 342.C 
App. A, Tables 20.11, VII 

Cheeger, Jeff (1943-) 178.B, r 391.D, M, r 
Chen Bang-Yen (1943-) 365.F, H, 0, r 417.r 
Chen Jing-Run (1933-) 4.C, r 123.E 242.A 
Chen, T.-C. 142.C r 
Cheney, Elliott Ward (1929-) 142.r 
Cheng, J. H. 365.L 
Cheng Shiu-Yuen (1948-) 275.H 391.F, H 
Ch’&ng Ta-Wei (fl. 1592) 57.C 
Chern Shiing-Shen (1911-) 21. N, P 50.r 56.C, F, r 

80.r 90.r 109.*, r 1lO.E 1ll.r 147.A, IV 152.C 
218.D, E, r 237.B 272.L 275.A, E 279.C 344.B 
365.B, H, L, 0, r 
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Coxeter, Harold Scott Macdonald 

Chernoff, Herman (19233) 371.A, C, H, r 374.r 
400.K 

Chervonenkis, 0. A. NTR 
Cherwell, Lord (Lindemann, Frederick Alexander) 

291.F 
Cheung, Fan-Bill 386.r 
Chevalier, Alfred 171 
Chevalier, Jacques 329.r 
Chevalley, Claude (1909-84) 6.A ll.r 12.B 13.B, 

F, I, N, r 27.r 50.r 59.A, r 6O.L, r 61.r 69.D 105.r 
118.8, F 125.M 151.1200.0 248.Q, r 249.U, V, r 
256.r 258.r 277.r 284.G 368.r 409.r 423.r 427.B 

Chew, Geoffrey Foucar (19244) 132.r 386.C r 
Chien, Robert Tienwen (1931l) 282.r 
Ch’in Chiu-Shao (fl. 1250) 57.B 
Ching Wai-Mee 308.F 
Chisini, Oscar 9.r 
Chittenden, Edward Wilson (1895- 1977) 273.K 
Choi Man-Duen (19455) 36.5 308.r 
Cholesky 298.G, 302.B, D 
Chomsky, Noam (19288) 31.D 75.E 
Choong, K. Y. 332 
Choquet, Gustave (1915-) 20.r 48.F, H, r 89.r 

120.E 139.r 164.C 193.5, N, r 207.C 255.E 338.C 
D, H, I, L-0 407.B 424.U, r 

Chow Wei-Liang (1911l) 3.B 12.B 13.F 16.H, R, S 
72.F, H 

Chowla, Sarvandaman D. (19077) 123.D 450.1, 
K, r 

Chretien, Max (19244) 15O.r 
Christian, Ulrich Hans Richard Otto (19322) 

32.F, H 
Christoffel, Elwin Bruno (1829-1900) 77.D 80.L 

109 1 ll.H 317.D 417.D App. A, Tables 4.11, 13.11 
Chu Hsin 126.N 
Chu Lan Jen(1913-) 133.r 
Chu Shih-Chieh (fl. 1300) 57.B 
Chudakov, Nikolai Grigor’evich (19044) 4.C 
Chudnovskii, Grigorii V. 430.D, r 
Chung Kai Lai (1917-) 45.r 260.5 342.B 
Church, Alonzo (19033) 22.G 31.B 75.D 81.A, r 

97.*, r 354.r 356.A, C, E, G, r 
Churchman, C. West (19133) 307.A 
Ciarlet, Phillipe G. (1938-) 300.r 304.r 
Ciesielski, Zbigniew (1934-) 176.G 
Clagett, Marshall (1916-) 187.r 372.r 
Clairaut, Alexis Claude (1713-65) 20 107.A 165.A 

App. A, Tables 14.1, 15.11 
Clancey, Kevin F. 251.r 
Clark, Charles Edgar (1935-) 376.r 
Clarke, Douglas Albert 356.H, r 
Clarkson, James Andrew (19066) 443.H 
Clatworthy, Willard H. STR 
Clausius, Rudolf Julius Emmanuel (1822-88) 419.A 
Clebsch, Rudolf Friedrich Alfred (1833-72) ll.B 

226.G 353.B 
Clemence, Gerald Maurice (1908-) 55.r 392.r 
Clemens, Charles Herbert (19399) 16.5 
Clenshaw, Charles William (19266) 299.A 
Clifford, Alfred H. (19088) 190.r 243.G 
Clifford, William Kingdon (1845579) 9.C 61.A, D 

275.F 
Clough, Ray William, Jr. (1920-) 304.r 
Coates, John H. (19455) 118.D 182.r 450.5, r 
Cochran, William Gemmel (1909980) 102.r 373.r 

374.B 
Codazzi, Dellino (1824473) 11 l.H 365.C 417.F 

App. A, Table 4.1 
Coddington, Earl Alexander (19255) 107~ 252.r 

253.r 254.r 314.r 315.r 316.r 394.r 

Coffman, Charles V. 246.5 
Cohen, Eckford (1920-) 121.A 
Cohen, Irvin Sol (1917-) 284.A, D, G 
Cohen, Jacob Willem (1923-) 227.r 
Cohen, Marshall M. (1937-) 91.r 
Cohen, Paul Joseph (1934-) 22.F 33.D, r 49.D 

192.P, Q 
Cohen, S. G. 353.r 
Cohn, Paul Moritz (1924-) 249.r 
Cohn, Richard M. (1919-) 104.r 
Cohn-Vossen, Stefan (1902-36) 109 111.1 178.F, 

H 357.r 365.E 410.r 
Coifman, Ronald R. 168.B 251.r 
Cole, B. 164.D 
Cole, J. D. 25.r 
Coleman, Sidney Richard (1937-) 146.C 
Cohn de Verdi&e, Yves (19455) 391.5 
Collatz, Lothar Otto (1910-) 217.r 298.r 
Collingwood, Edward Foyle (1900@70) 62.C. D, r 
Collins, P. D. B. 386.r 
Combes, Jean-Michel Christian (1941-) 331.F 
Combescure, Edouard (c. 1819 (24?)-?) 11 l.F 
Commichau, Michael 72.r 
Condon, Edward U. 353.r 
Conforto, Fabio (1909-54) 3.r 
Conley, Charles Cameron (1933384) 126.E 
Conlon, Laurence William (1933-) 154.H 
Conner, Pierre Euclide, Jr. (1932-) 237.r 431.E, r 
Connes, Alain (1947-) 136.F 308.H, I, r 351.L 
Constantine, Alan Graham 374.r 
Constantinescu, Corneliu (1929%) 193.U 207.C D, 

r 367.E, G, r 
Conti, Roberto (1923-) 290.r 
Conway, John Horton 151.1235.A 
Conway, Richard W. 376.r 
Cook, Joseph M. (19244) 375.A 
Cook, Roger John (19477) 118.D 
Cook, Stephen Arthur (1939-) 71.E, r 
Cooke, George Erskine (1932-) 201.r 
Cooke, Kenneth Lloyd (19255) 163.B 
Cooke, Richard G. 379.r 
Cooley, James William (1926-) 142.D, r 304.r 
Cooper, William (19355) 255.D, E 408.r 
Copernicus, Nicolaus (1473-1543) 360 
Coppel, William Andrew 314.r 
Corbato, Fernando J. 133.r 
Cordes, Heinz 0. (1925-) 345.A 
Coriolis, Gaspard Gustav de (1792-1843) 271.D 
Cornea, Aurel(19333) 193.U 207.C D, r 367.E, 

G, r 
Cornish, Edmund Alfred (1909-73) 374.F 
Cornu, Marie Alfred (1841-1902) 93.H 167.D 
Corwin, Lawrence Jay (1943-) 132.r 
Coster, Joseph 386.C 
Cotes, Roger (1682-1716) 299.A 
Cottle, Richard Warren (1934-) 292.D 
Coulson, Charles Alfred (1910-74) 446.r 
Courant, Richard (1888-1972) 20.*, r 46.r 77.E, r 

82.r 106.r 107.r 112.r 120.r 134.r 188.r 189.r 197.r 
198.r 204.G 205.r 216.r 217.r 222.r 275.A, C, r 
300.r 304.C F, r 317.r 320.r 321.G, r 322.r 323.E, I 
324.r 325.M, r 327.r 334.C D 389.r 391.H 441.r 
446.r 

Cousin, Pierre (186771933) 20 21.K, Q 
Cowen, Michael J. (19455) 124.r 
Cowling, Thomas George (1906-) 259.r 402.r 
Cox, David Roxbee (19244) 40.r 403.r 
Cox, Gertrude Mary (1900-78) 102.r 
Coxeter, Harold Scott Macdonald (19077) 13.R 

92.r 122.H 151.r 161.r 248,s 285.r 357.r 
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Cracknell, Arthur P. 
1882 

Cracknell, Arthur P. 92.r 
Cramer, Gabriel (1704452) 179.A 269.M 302.A 
Cramer, Harald (1X93-1985) 123.r 214.C 242.A 

250.r 341.E, r 374.r 395.r 399.D. M. r 400.r 
Crandall. Michael G. (1940@) 162 286.T, X, r 
Crandall, Stephen Harry (1920&) 298.r 
Crapper, Gordon David (1935-) 205.F 
Crawford, Frank Stevens (19233) 446.r 
Crelle, August Leopold (1780- 1855) 1 NTR 
Cremona, Antonio Luigi Gaudcnzio Giuseppe 

(1830-1903) 16.1 
Crittenden. Richard J. (1930&) 413.r 
Crofton, Morgan William (1826-1915) 218.B 
Cronin, Jane (Smiley) (19222) 153.r 
Crout, Prescott D. 302.8 
Crow, James Franklin (l916-) I1 5.D 263.r 
Crowell, Richard Henry (19288) 235.r 
Crycr, Colin W. 303.G 
Csiszar, lmre 213.r 
Cuda, Karel (1947-) 293.E, r 
Curtis, Charles Whittlcscy (19266) 29.r 92.r 151.r 

277.r 362.r 
Curtis, E 70.r 
Curtis, John H. 299.A 
Cutkosky, Richard Edwin (19288) 146.A, C 386.C 
Cutland, Nigcl John (19444) 293.r 
Czuber, Emanuel (1851-1925) 19.B 

D 

Dade, Everett C. (I 937-) 92.F 
Dahlquist. Germund (19255) 303.G 
Dakin, R. J. 215.r 
d’Alembert, Jean le Rond (1717-83) 20 107.B 

130.A 205.C 239 252.F 325.D App. A, Table 10.11 
Damerell, Robert Mark (1942%) 450.M 
Daniell, Percy John (1889-1946) 310.1 
Danilevskii, A. M. 298.D 
Danilov, V. 1. 16.2 
Dankner, Alan (19455) 126.5 
Dantzig, George Bernard (1914-) 255.C E, r 264.r 

292.D 408.r 
Darboux, Jean Gaston (184221917) 50 109.*, r 

IIO.B 126.L 158.r 216.A 275.A 317.D 320.C 428.A 
Darmois, Georges 374.H 
Darwin, Charles Robert (1809982) 40.B 
Dashen, Roger Frederick (1938-) 132.r 
Date, Eturo (1950-) 287.C 
D’Atri, Joseph Eugcnc (19388) 364.r 384.E 
Datta, Bibhutibhusan 209.r 
Davenport, Harold (1907-69) 4.E I 18.D 192.P 
David, Florence Nightingale (19099) STR 
David, Herbert Aron (19255) 346.r 374.r 
Davidenko, Dmitrii Fedorovich (1922-) 301.M 
Davie, Alexander M. 164.5 
Davies, Laurie 374.r 
Davis, Burgess J. (19444) 262.B 
Davis, Chandler (19266) 212.r 
Davis, Harold T. App. A, Table 21.r NTR 
Davis, Martin (David) (19288) 22.H 31.r 97.*, r 

173.0 293.r 356.H 
Davis, Philip J. (1923-) 223.r 299.r 
Davis, William Jay (19399) 68.M 443.H 
Davisson, Lee D. (19366) 213.E 
Day, Mahlon Marsh (1913-) 37.r 310.r 
Daykin, David Edward 332.r 
De Alfaro, Vittorio (1933-) 132.r 375.r 
de Baggis, F. S. 126.A 
Debiard. Amedte 115.r 
Debreu, Gerard (1921-) 173.E 443.A, I 

Debye, Peter Joseph William (1884- 1966) 25.C r 
30.C 39.E App. A, Table 19.111 

Dedekind, Julius Wilhelm Richard (18~~1l1916) 
1 l.B, r 12.B 14.CE, J, U 47 49.F, r 67.K 98 
156.A, r 172.A, r 243.F 267 284.G 294.A, E, r 
328 347. H 355.A, r 363.r 379.D 45O.A D, K 

De Giorgi, Ennio 275.F 323.L 
de Haan, David Bierens (1822-95) App. A, 

Table 9.r 
Dehn, Max(187881952) 65.E 155.F 196 
Dejon, Bruno F. (1930&) 301.G, r 
Dekkers, A. J. NTR 
Delaunay, Charles Eugene (1816-72) 93.H 
de la Vallee-Poussin, Charles Jean (1866- 1962) 

20.r 48.A, B 123.B 379,s 437.r 450.B, I 
Deleanu, Aristide (19322) 52.r 
Delens, Paul Clement (1889-) 110.r 
de I’Hbpital, Guillaume FranCois Anto ne (1661l 

1704) 20 
Deligne, Pierre (19444) 9.r 12.B l6.V, r 32.D 118.B 

418.r428.H450,A,G, H, J,M,Q,S, -App. B, 
Table 5 

Dellacherie, Claude (19433) 22.r 261.r 262.r 407.B, r 
Deltheil, Robert 218.r 
Demazure, Michel (1937-) 13.r 16.1, Z, r 
de Miatello, 1. D. 384.E 
Deming, William Edwards (1900&) 280.5 373.F. r 
Democritus (c. 460-c. 370 R.c.) 187 
de Moivre, Abraham (1667-1754) 74.C 250.A 

342.A 
De Morgan, Augustus (1806671) 42.Pt 156.B 157.A 

38l.B4ll.A, r 
Dtnes, Jozsef (19322) 241.r 
Denjoy, Arnaud (1884-1974) 58.F 79 D lOO.A, D 

126.1 154.D, H, r 159.1 168.B 429.D 
Denker, Manfred (19444) 136.H 
Deny, Jacques (1916-) 338.M-P, r 
de Oliveira, Mario Moreria Carvalho 126.5 
De Paris, Jean-Claude 321.G 
de Possel, Rent: (19055) 77.E 367.F 
Deprit, Andre Albert (19266) 420.G 
Deprit-Bartholome, Andrte 420.G 
de Rham, Georges-William (1903-) 12.B, 105.R, 

V,r, 109.*, r 114.L 125.A. R 194.F, r ZOl.A, H,I 
237.H 249.V 274.G, 364.E r, 417.r 

Desargues, Gerard (159331662) 155.E 181 265 329 
343.c 

Descartes, Rene (159661650) 7.C 10.E 20 93.H 101 
180.A 181 265 426 

Deser, Stanley (I 931-) 150.r 
De-Sham, Amos (19266) 353.r 
Desoer, Charles A. (19266) 86.D 

i d’Espagnat, Bernard (1921I) 351.r 
DeTurck, Dennis M. 364.r 
Deuring, Max Friedrich (1907-84) 27.r 29.r 73.A, 

r 123.D 257.r 439.L 45O.S, r 
Deutsch, Robert William (1924-) 55.1 
de Vries, G. 387.B 
De Wilde, Marc (1940%) 424.X, r 
Dewitt, Bryce Seligman (1923%) 359.r 
Dewitt (Dewitt-Morette), Cecile (192Z:-) 150.r 

359.r 
DiCastro, C. 361.r 
Dickinson, Bradley W. (1948-) 86.D 
Dickson, Leonard Eugene (187441954) 4.E 10.r 

54.r 60.K l18.A 151.1, r 296.r 297.r 
Didenko, Viktor Pavlovich 326.r 
Dido (Didon, Belus Elissa) 228.A 
Dienes, Paul (188221952) 339.r 
Diestel, Joseph (1943-) 37.r 443.A 
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Eells, James 

Dieudonne, Jean (19066) 10.r 12.r 13.C 20.r 60.K, 
r 139.r 151.r 183.r 200.r 203.r 226.r 321.r 355.r 
389.r 424.r 425.S X, Y 435.r 436.1 

Dijkstra, Edsger Wybe (1930-) 281.C 
Dikii, Leonid Aleksandrovich 387.C 
Diller, Justus (1936- ) 155.r 
Dilworth, Robert Palmer (1914-1 281.E 
Dinaburg, E. 1. 126.K 
Dinculeanu, Nicolae (19255) 443.r 
Dinghas, Alexander (1908-74) 124.r 198.r 
Dmi, Ulissc (184551918) 39.D Ill.1 159.B 314.D 

435.B 
Dinits, E. A. 281.r 
Dinkelbach, Werner 264.r 
Dinostratus (fl. 350? B.C.) 187 
Diocles (200 H.c.) 93.H 
Diophantus (c. 246-c. 330 or c. 1st century) 118.A 

182.F 187 296.A 
Dippolito, Paul Randall (1948) 154.D 
Dirac, Paul Adrien Maurice (1902 -84) 125.C 

132.A 150.A 270.D 297.r 35l.G, r 359.C 377.B, C, r 
App. A, Table 12. I I 

Dirichlct, Pctcr Gustav Lejeune (1805559) 14.D, U 
84.D 98 I19.r 120.A, F 12l.A 123.D 159.B 160.B 
164.B, 165.A, r 182.A 193.F 234.C 242.A 261.C 267 
295.D 296.A, B 323.C E 334.C 338.Q 341.D 347.E, 
H. r 348.M 379.C, D 440.8 450.A. C, K App. A, 
Table 9.V 

Dixmier, Jacques (19244) 18.1 36.r 68.1 308.F. r 
351.C 437.r 

Dixon, A. C. (I 865.. 1936) App. A. Table 19.IV 
Dmitriev, N. A. 44.r 
Dobrushin, Roland L’vovich (19299) 250.r 340.B. 

r 402.G 407.B 
d’ocagne, Maurice (1862- 1938) 19.D, r 
do Carmo, Manfrcdo PerdigHo 1ll.r 275.A, B 

365.G, r 
Doetsch, Gustav (189221977) 43.E 208.r 240.r 

379.M 
Doi, Koji (19344) 450.L 
Doig, Alison G. 215.D 
Dolansky, Ladislav NTR 
Dolbeault, Pierre (1924 -) 72.D 
Dolbeault-Lemoine. Simone 365.E 
Dold, Albrecht E. (192X-) 70.F. r 201.r 
Dolgachev, Igor V. App. A, Table 5.V 
Dollard, John Day (1937 -) 375.B 
Domb, Cyril 361.r 402.r 
Donaldson, Simon K. 114.K, r 
Dongarra, Jack J. (1950-) 298.r 
Donin, Iosif Failovich (19455) 72.G 
Donnelly, Harold Gerard (1951.-) 391.N 
Donoghue, William F., Jr. 212.r 
Donsker, Monroe David (19244) 250.E 340.r 
Doob, Joseph Leo (1910&) 5.r 45.r 62.E 86.E 115.r 

136.B 162 193.T 207.C 250.r 260.5 261.A, F, r 
262.A, B, D 341.r 342.r 395.r 406.A 407.A, r 

Doolittle, M. H. 302.B 
Doplichcr, Sergio (1940-) 150.E 
Dorfmeister, Josef F. (19466) 384.r 
Dorgc, Karl (I 89881975) 337.F 
Dorn, William Schroeder (19288) 349.r 
Dornhoff, Larry 362.r 
Douady, Adrien (19355) 23.G 72.G 
Douglas, Jesse (1897.. 1965) 77.E 109 152.C 275.A, 

C 334.C, D, F, r 
Douglas, R. G.(1938-) 36.5, r 164.1 251.r 390.5, r 
Doughs, Avron (1918) 112.H 323.H 
Dowker, Clifford Hugh (1912. 82) 117.E 201.M 

425.S, Y 

Drach, Jules (1X71&1941) 107.A 
Drake, Frank Robert (19366) 33.r 
Draper, Norman Richard (1931-) 102.r 
Drasin. David (1940&) 272.K. r 
Dreitlein, Joseph F. (I 9344) 132.r 
Drcll, Sidney David (I 9266) 132.r 150.r 
Dreyfus, Stuart Ernest (1931-) 127.r 
Driver, Rodney D. (1932. ) 163.B 
Dryden, H. L. 433.r 
Dubinsky, Ed (1935-) 168.B 
de Bois-Reymond, Paul David Gustave (1831-89) 

159.H 379.D 
Dubreil, Paul 243.r 
Dubreil-Jacotin, Marie-Louise 243.r 
Dubrovin, B. A. 387.r 
Dubyago, Alexander Dmitrievich (1903359) 309.r 
Dudley, Richard Mansfield (19388) 176.G 
Duffin. Richard J. 264.r 
Duffmg, G. 290.C 
Dufresnoy, Jacques 17.C 124.B 
Dugundji, James (1919985) 425.r 
Duhem, Pierre Maurice Marie(1861-1916) 419.B 
Duijvestijn, A. J. W. (1927-) NTR 
Duistermaat, Johannes Jisse (1942-) 274.B, I 

345.B, r 391.J 
Dulac, M. H. 289.C D, r 
Dunford, Nelson (1906 -) 37.r 68.M 112.1, 0 136.B, 

r 162.*, r 168.r 240.r 251.G, r 310.r 315.r 331.r 
378.B, r 390.K, r 443.A, F-H, r 

Dupin, Pierre Charles Francois (1784- 1873) 11 l.H 
Durand, E. 301 .F 
Durand, William Frederick (1859-1958) 222.r 
Duren, Peter Larkin (19355) 43.r 438.r 
Direr, Albrecht (1471-1528) 360 
Durfee, Alan H. (1943-) 154.8 418.r 
Duschek, Adalbert (189551957) 1 I1.r 
Du Val, Patrick (19033) 418.C 
Duvaut, Georges (19344) 440.r 
Dvoretsky, Aryeh (1916-) 45.r 443.D 
Dwork, Bernard M. (19233) 450.G, Q 
Dwyer, Paul Summer (1901-) 298.r 
Dydak, Jerzy 382.A, C 
Dye, Henry Abel (19266) 136.F, r 
Dyer, S. Eldon, Jr. (1929-) 237.r 
Dym, Harry (19388) 176.K 
Dynkin, Evgenii Borisovich (1924-) 115.A, r 248.S 

r 250.r 26l.A, C 270.B App. A, Table 5.1 
Dyson, Freeman John (1923-) 132.C 146.A 150.A 

182.G 212.B 402.G 
Dzyaloshinskii, Igor Ekhiel’vich (1931-) 402.r 

E 

Easton, William B. 33.F, r 
Eberlein, Ernst 136.H 
Eberlein, Patrick Barry (19444) 178.r 
Eberlein, William Frederick (1917-) 37.G 162 424.V 
Ebin, David G. (1942-) 178.B 183.r 
Eckmann, Beno (1917-) 200.1 
Eddington, Sir Arthur Stanley (1882-1944) 109 

App. A, Table 4.11 
Eden, Richard John (19222) 146.A, C, r 386.C r 
Edgeworth, Francis Ysidro (1845-1926) 374.F 
Edmond, C. 432.r 
Edmonds, Alan Robert (19222) 353.r 
Edrei, Albert (1914-) 17.D 272.K, r 
Edwards. Harold M. (19366) 123.r 
Edwards, Robert Duncan (1942-) 65.A, C, F 154.H 
Eells, James (19266) 105.r ! 14.B 183.*, r 194.r 

195.E, r 
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Effros, Edward George 
1884 

Effros, Edward George (19355) 36.H, J 308.r 
Efron, Bradley (19388) 399.0 
Egorov, Dmitrii Fedorovich (1869- 193 1) 270.5 
Egorov, Ivan Petrovich (1915-) 364.F 
Egorov, Yurii Vladimirovich (19388) 112.D 274.C 

I 345.A, B 
Ehrenfest, Paul (1880-1933) 260.A 402.r 
Ehrenfest, Tatiana Alekseevna Afanaseva 260.A 

402.r 
Ehrenpreis, Leon (1930&) 1 l?.B, C, R 125,s 320.H 

437.EE 
Ehresmann, Charles (1905-79) 80.A, r 90.r 109 

154.A, r 
Ehrlich, Louis W. (19277) 301.F 
Ehrlich, Paul Ewing (1948-) 301.r 364.r 
Eichler, Martin Maximilian Emil (1912-) 1 l.B, r 

13.P 27.D, r 32.D, H, r 60.r 61.r 348.r 450.A, L, 

M, S 
Eicken, W. 75.r 
Eidel’man, Samuil Davidovich (1921-) 112.B 

327.H 
Eilenberg, Samuel (19133) 31.r 52.r 70.E-G, r 75.r 

91.r 2OO.K, M, 0, r 201.A, C, E, G, J, Q 202.B, T 
210.r 277.r 305.A 426.*, r 

Einstein, Albert (187991955) 45.A 109 129 132.A 
137 150.A 256.5 285.A 351.A 359.A, B, D, r 364.D, 
1434.C r App. A, Table 4.11 

Eisenberg, Edmund (?-1965) 292.D 
Eisenhart, Luther Pfahler (187661965) 109.*, r 

1ll.r 417.r 
Eisenstein, Ferdinand Gotthold Max (1823352) 

14.0 32.C F 296.A 337.F 339.E 450.T 
Ejiri, Norio (1953-) 275.A 364.F 365.G 391.C 
Elias, Peter (19233) 213.F 
Eliasson, Halldbr Ingimar (19399) 364.H 
Elliott, George Arthur (1945-) 36.H, K, r 
Elliott, Peter D. T. A. 295.r 
Ellis, George F. R. (1939-) 359.r 
El’sgol’ts, Lev Ernestovich (1909967) 163.r 
Elworth, Kenneth David (1940-) 183 286.D 406.r 
Emch, Gerald Gustav (1936-) 351.r 
Emde, Fritz 389.r NTR 
Emden, Robert (1862-1940) 291.F 
Endo Shizuo (1933-) 200.K 
Enestriim, Gustav (185221923) I0.E 
Enflo, Per (19444) 37.G, L 
Engel, Friedrich (1861-1941) 247.r 248.F 249.r 
Engelking, Ryszard 117~ 273.r 425.r 436.r 
Enneper, A. 275.A, B 
Ennola, Veikko Olavi (19322) App. B. Table 5.r 
Enoki Ichiro (19566) 72.K 
Enomoto Hikoe (19455) App. B, Table 5 
Enright, Wayne H. 303.r 
Enriques, Federigo (1871-1946) 9.r 12.B, r 15.B. E, 

G, H, r 72.K 
Enskog, David (188441947) 41.E 217.N 402.H 
Enss, Volker (1942-) 375.D 
Epstein, David Bernard Alper (1937-) 154.H 
Epstein, Henri (1932-) 125.W 150.D 212.B 386.B, r 
Epstein, Paul Sophus (1883-) 450.A, K 
Eratosthenes (2755194 B.C.) 187 297.B 
Erbacher, Joseph A. 365.H 
Erdtlyi, Artur (1908877) 25.r 30.r 220.r 254.r 389.r 

App. A, Table 20.r 
Erdiis Paul (1913-) 4.A 45.r 123.C r 241.E 250.r 

295.E 328 336.E 342.B 
Erlang, A. K. 260.H 307.C 
Ernst, B. 359.E 
Ernst, Bruno (1947-) 424.r 
Escobal, Pedro Ramon 309.r 

Eskin, Grigorii Il’ich (1936-) 274.C I 345.B 
Estermann, Theodor 4.C, D 123.D 
Estes, William Kaye 346.G 
Ethier, Stewart N. 263.r 
Euclid (Eukleides) (c. 303-c. 275 B.C.) 13.R 24.C 35.A 

67.L 70.B 93.A 139.A, B, E 140 150.F 155.A 179.A 
180.A 181 187 285.A, C 296.A 297.A, B 332 337.D 
364.B 412.H 423.M 425.V 

Eudoxus (c. 408-c. 355 B.C.) 20 187 
Euler, Leonhard (1707-83) 4.C 16.E 20 38 46.A, B 

56.B, F 65.A 83.A 90.C 93.C 107.A, Et 126.A 131.D, 
G 141 145 165.A,r 174.A,C 177.C,D 181 186.A. 
F 201.B, F, N 204.E 205.A, B 240.A :!41.B 266 
27l.E, F 275.A 294.A 295.C E 296.A 297.D, H 
303.D, E 320.D 332 379.1-K 419.B 420.B 432.C 
441.B 450.B App. A, Tables 3.V, 14.1 App. B, 
Tables 3.1, 6.IV 

Evans, Griffith Conrad (188771973) 48.E 120.D 
338.H 

Evens, Leonard (1933-) 200.M 
Everett, J. D. 223.C App. A, Table 21 
Ewens. Warren J. 263.r 

F 

Faber, Georg (18777) 228.B 336.1391.D 438.B 
Fabry, Eugene (185661944) 339.D 
Faddeev, Dmitrii Konstantinovich (19077) 112.P 

302.r 
Faddeev, Lyudvig Dmitrievich (1934-) 132.C 

150.G 375.F 387.G 
Faddeeva, Vera Nikolaevna (19066) 302.r 
Fagnano, Giulio Carlo (168221766) 2:O 
Falb, Peter L. (1936-) 86.D 
Falthammar, Carl-Gunne (1931-) 259.r 
Faltings, Gerd (19544) 118.E 145 
Fan Ky (1914-) 153.D 
Fannes, Marcus Marie-Paul (1950-) 402.G 
Fano, Gino (1871-1952) 12.B 137.r 
Fano, Robert Mario (1917-) 130.r 213.F 
Fano, Ugo (1912-) 353.r 
Fantappie, Luigi 125.A 
Faraday, Michael (1791-1867) 150.A 
Farey, J. 4.B 
Farkas, Julius (1847-1930) 255.B, E 
Farquhar, Ian E. 402.r 
Farrell, 0. J. 164.5 
Farrell, Roger Hamlin (1929-) 398.r 
Fary, Istvan (1922-1) 1ll.r 365.0 
Fathi, Albert 126.N 
Fatou, Pierre (187881929) 21.Q 43.D 221.C 272.D 

339.D 
Fattorini, Hector 0. 378.D 
Favard, Jean (1902-) 336.C 
Fazar, W. 376.r 
Federer, Herbert (1920-) 246.r 275.A. G, r 334.F 
Fedorov, Evgraf Stepanovich (1853-19 19) 92.F 

122.H 
Fedorov, Vyatseslav Vasil’evich 102.1 
Feferman, Solomon (1928-) 81.A 
Fefferman, Charles L. (1949-) 21.P, Q 168.B, r 

224.E 262.B 320.r 344.D. F 345.A. B 
Feinberg, Stephen E. 403~ 
Feinstein, Amiel 213.F 
Feit, Walter (1930-) 151.D, J, r 362.r 
FejCr, Lipbt (Leopold) (1880-1959) 43.5 77.B 159.C 

255.D 
Fekete, Mihaly (Michael) (1886-1957) 48.D 445 
Feldblum 179.B 
Feldman, Jacob (1928-) 136.F 
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Frobenius, Ferdinand Georg 

Fel’dman, Naum Il’ich 118.D 430.D, r 
Fell, James Michael Gardner (19233) 308.M 
Feller, William (1906670) 112.5 115.A, r 250.r 260.5 

261.A, B 263.r 341.r 342.r 378.B 
Fenchel, Werner (1905-) 89.r 109 1 ll.F 365.0 
Fendel, D. App. B, Table 5 
Fenstad, Jens Erik 356.F, r 
Fermat, Pierre de (1601-65) 4.D 20 109 144 145 

180.A 265 296.A 297.F, G 329 342.A 441.C 
Fermi, Enrico (1901-54) 132,287.A, r 351.H 377.B 

402.E 
Fernique, Xavier 176.G 
Ferrar, William Leonard (l893-) App. A, Table 

19. IV 
Ferrari, Ludovico (1522-65) 8 10.D 360 444 

App. A, Table 1 
Ferrero, Bruce 14.L 450.5 
Ferrets, N. M. 393.C 
Ferus, Dirk 365.E, J, N, 0, r 
Feshbach, Herman (1917-) 25.r 
Fet, Abram Il’ich (19244) 279.G 
Feynman, Richard Phillips (1918-) 132.C 146.A, B 

150.A, F 351.F 361.A 
Fibonacci (Leonardo da Pisa, Leonardo Pisano) 

(c. 1174-c. 1250) 295.A 372 
Fiedler, Wilhelm 350.r 
Fienberg, Stephen Elliott (19422) 280.r 
Fierz, Markus Edoward (1912-) 150.A 
Fife, Paul C. 95.r 263.D 
Figiel, Tadeusz 68.K, M 
Figueira, Mario Sequeira Rodrigues 286.Y 
Filippov, Aleksei Fedorovich (1923-) 22.r 
Fillmore, Peter Arthur (19366) 36.J 390.5, r 
Finn, Robert (19222) 204.D, r 275.A, D 
Finney, David John (19177) 40.r 
Finney, Ross L. 201.r 
Finsler, Paul (1894- 1970) 109 152.A 286.L 
Fischer, Arthur Elliot 364.H 
Fischer, Bernd (1936-) 151.1, J 
Fischer, Ernst (187551956) 168.B 317.A 
Fischer, Gerd 23.r 
Fischer-Colbrie, Doris Helga (19499) 275.F 
Fisher, Michael Ellis (1931-) 361.r 
Fisher, Ronald Aylmer (1890-1962) 19.r 40.B 

102.A, E, r 263.E 371.A, C 374.B, F 397.r 399.D, 
K, N, 0, r 400.G 401.B, C, F, G, r 403.A, F, r STR 

Fisher, Stephen D. 43.G 77.E 
Fix, George Joseph (1939%) 300.r 304.r 
Flammer, Carson (1919-) 133.r 
Flanders, Harley (19255) 94.r 432.r 442.r 
Flaschka, Hermann (1945-) 287.B, r 
Fleissner, William G. 273.K 
Fleming, Wendell Helms (19288) 108.A 275.A, G 

334.F 405.r 
Flon, L. 75.r 
Floquet, G. 107.A 252.5 268.B 
Floyd, Edwin E. (1924-) 237.r 431.E, r 
Focken, C. M. 116.r 
FBder, Geza (1927-77) 33.r 
Fodor, Jerry A. 96.r 
Fogarty, John 226.r 
Fogels, E. 123.D, F 
Foguel, Sham R. 136.C 
Foiav, Ciprian (1933-) 251.N 
Fok (Fock), Vladimir Aleksandrovich (1898-1974) 

105.C 377.A. r 
Fokker, Adriaan Daniel 115.A 402.1 
Fomin, Sergei Vasil’evich (1917--75) 2.F 46.r 

136.G 
Fong, Paul 15 1 .J App. B, Table 5.r 

Ford, Lester R. (1896-1971) 234.C r 281.r 282.r 
Ford, Walter Burton (187441971) 30.r 
Forelli, Frank (1932-) 164.G, H, K 
Forrester, Jay Wright (1918-) 385.B, r 
Forst, Gunner 338.r 
Forster, Otto F. (1937-) 72.r 
Forsyth, Andrew Russell (185881942) 289.B 428.r 

App. A, Table 14.r 
Forsythe, George Elmer (1917-72) 302.r 304.r 
Fort. Marion Kirkland, Jr. (1921-) 65.r 
Fort, T. 104.r 
Fortet, Robert Marie (1912-) 395.r 
Fortuin, C. M. 212.A 
Foster, Ronald Martin (1896-) 220.r 
Fotiadi, Dimitri 146.A, C 
Fourier, Jean-Baptiste-Joseph (1768-1830) 10.E 

18.B 20 36.L 39.D 125.0, P, BB 142.D 158 159.A 
160.ApD 176.1 192.B, D, F, K, 0 197.C 220.B 
255.E 266 267 274.C 317.A 327.B 345.B 437.2 
App. A, Tables 11. I, 11 

Fowler, Kenneth Arthur (1916-) 151.5 
Fowler, Ralph Howard (1889-1944) 402.r 
Fox, Ralph Hunter (1913-73) 65.G 235.A, C, G, r 

382.A 
Fraenkel, Abraham Adolf (1891-1965) 33.A, B, D, 

r 47.r 381.r 
Frame, J. S. App. B, Table 5 
Francis, J. G. F. 298.F 
Frank, Philipp (1884-1966) 129.r 
Frankel, Theodore T. (1929-) 364.D 
Franklin, Philip (189881965) 157.A, E 
Franklin, Stanley P. (1931-) 425.CC 
Franks, John M. (1943-) 126.5, K 
Franz, Wolfgang (19055) 91.r 337.F 
Fraser, Donald Alexander Stuart (1925-) 396.r 

401.r 
Frautschi, Steven Clark (1933%) 386.r 
Frechet, Rent Maurice (1878-1973) 37.0 87.K, r 

117.H 246.A, 1273.A, r 286.E, K 424.1425.4, S, 
CC, r 426 

Fredholm, Erik Ivar (1866-1927) 20 68.A, E, F, K, 
L 120.A 162 217.A, E, F, r 222.A 251.D 286.E 
339.D 

Freedman, David A. (1938-) 250.r 
Freedman, Michael Hartley (1951-) 114.K, r 
Frege, Friedrich Ludwig Gottlob (184881925) 

156.B4ll.A,r 
Freitag, Eberhard (1942-) 32.F 
Frenet, Jean-Frederic(1816~1900) 1lO.A lll.D 

App. A, Table 4.1 
Fresnel, Augustin Jean (1788- 1827) 167.D App. A, 

Tables 9.V, 19.11 
Freudenthal, Hans (19055) 162 178.F 202.A, U, r 

248.r 249.r 265 310.A, D 
Freyd, Peter John (1936-) 52.r 200.r 
Fricke, Robert (1861-1930) 32.r 73.r 122.r 233.r 

234.r 
Friedberg, Richard Michael (1935-) 356.D 
Friedman, Avner (1932-) 108.A, B 115.D 286.r 

320.r 322.r 327.r 406.r 440.r 
Friedman, James W. 173.E 
Friedman, Lawrence 307.r 
Friedman, Nathaniel A. (1938-) 136.E, r 
Friedrichs, Kurt Otto (1901-83) 112.D, I, S 125.A 

162 204.G 205.r 252.r 300.r 304.F 323.H, r 325.G, 
r 326.D 331.A 345.A 351.K 375.A 

Fristedt, Bert (19377) 5.r 
Frobenius, Ferdinand Georg (1849-1917) 1.r 2.B 

3.A, D, N 14.K 29.H 107.A 145 151.H 154.B 
190.Q, r 191.B 257.D 267 269.1, N 280.F 286.H 
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FrGhlich, Alhrecht 
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297.1 310.H 362.E, G 390.B428.A, D437,EE 
450.P App. A, Table 14.1 

Frohlich, Albrecht (l916-) 14.r 59.r 
Frohlich, Jiirg M. (19466) 402.G 
Fro&art, Marcel (19344) 146.A 386.B 
Frolik, Zdenek (1933-) 425.Y, CC 436.r 
Fronsdal, Christian (1931-) 132.r 
Frostman, Otto Albin (1907777) 48.A, G 120.D 

338.C r 
Froude, William (I 8 I O-79) I 16.B 
Fu, James Chuan (19377) 399.M 
Fubini,Guido(1879-1943) 109 llO.B,r22l.E 

270.L 
Fubini, Sergio Piero (19288) 132.r 
Fuchs, lmmanuel Lazarus (1X33-1902) 32.B 107.A 

119.r 122.C 178.F 234.B 288.B App. A, Table 18.1 
Fuchs, Ladislas 2.r 
Fuchs, Maximilian Ernst Richard (18733) 253.A, E 

28X.D 
Fuchs, Wolfgang Heinrich (19 155) 17.D 272.K, r 
Fueter, Karl Rudolf (1880-1950) 73.r 
Fuglede, Bent (19255) 48.H 143.B 338.E 
Fujii, Hiroshi (1940%) 304.D 
Fuji’i’e, Tatuo (1930-) 143.r 
Fujiki, Akira (19477) 23.G 72.H 232.C 
Fujikoshi. Yasunori (1942.--) 280.r 
Fujimagari, Tetsuo (1943-) 44.E 
Fujimoto, Hirotaka (19377) 21.M, N 
Fujisaki, Genjiro (1930-) 6.F 450.L 
Fujisaki, Masatoshi (1943-) 86.E 405.r 
Fujisawa, Rikitaro (1861-1933) 267 
Fujishige Satoru (19477) 66.r 281.r 
Fujita, Hiroshi (19288) 204.B-D 304.r 378.5 
Fujita, Takao (1949-) 9.r 15.H 72.1 
Fujiwara, Daisuke (19399) 323.H 345.8 
Fujiwara, Masahiko (1943-) I 18.C D 
Fujiwara, Matsusaburo (1881-1946) 89.E 230.*, r 

240.B App. A, Table 9.r 
Fukamiya, Masanori (19 I2-) I62 
Fuks, Boris Abramovich (1907-75) 21.r 198.r 
Fuks, Dmitrii Borisovich lOS.AA, r 154.G 
Fukushima Masatoshi (19355) 115.C 261.r 
Fulkerson, Delbert Ray (1924476) 376.r 
Fuller, Francis Brock 126.G, N 
Fulton, William (19399) 9.r 16.1 366.E, r 418.r 
Funk, Paul 46.r 109 
Furlan, Giuseppi (1935 -) 132.r 
Furstenberg, Hillel 136.C, H 
Furtwangler, Philipp (186991940) 14.L, 0, R 59.A, 

D. F 145 

G 

Gaal, S. A. 425.r 
Gabriel, Pierre (1933%) 13.r 52.r 
Gabrielov, A. M. App. A, Table 5.V 
Gackstatter, Fritz (194ll) 275.E 
Gagliardo, Emilio 224.A 
Gaier, D. 77.r 
Gaifman, Haim (19344) 33.r 
Galambos, Janos (1940&) 374.r 
Galanter, Eugene H. 96.r 
Gale, David (1921-) 22.H 
Galerkin, Boris Grigor’evich (1871~. 1945) 303.1 

304.B 
Galilei, Galileo (I 564 1642) 78.F 107.A 126.A 265 

271.A 359.C 360 
Gallager, Robert G. 63.r 213.E, F 
Gallagher, Patrick Ximenes (1935-) 123.E 
Gallavotti, Giovanni 136.G 

Gallot, Sylvestre (19488) 364.G 
Galois, Evariste (1811-32) 8 83.C 137 149.M 151.D 

171.*, r 172.A, B, G, H 190.Q 200.N 267 
Galton, Francis (1822-191 1) 40.B 44.B, C, r 401.E 
Calvin, Fred (19366) 33.F 
Gambier, Bertrand Olivier (187991954) 288.C 
Gamelin, Theodore Williams (1939-) 36.r 43.r 

164.G, H, J, K, r 169.r 
Gamkrelidze, Revaz Valerianovich 86.r 
Candy, Robin Oliver 81.A 356.r 
Gangolli, Ramesh A. (19355) 5.r 437.EE 
Gantmakher, Feliks Ruvimovich (1908864) 103.r 

248.r 
Garabedian, Paul Roese1(1927-) 77.E 107.r 438.C 
Garbow, Burton S. 298.r 
Garcia, August 136.B 
Carding, Lars (19199) 112.G, N 189.B, r 321.G 

323.H 325.F, J, r 345.A 
Gardner, Clifford S. (1924-) 387.B, D 
Garfinkel, Robert S. (1939-) 215.r 
Garland, Howard (19377) 122.G 
Garnett, John B. (1940&) 164.F, J 169.E, r 
Garnier, Rene (I 8877) 253.E 288.C D 334.C 
Garnir, Henri (1921-85) 189.r 
Garsia, Adrian0 M. (19288) 262.r 
Garside, F. A. 235.F 
Garside, G. R. 301.N 
Gaschiitz, Wolfgang (1920-) 151.D 
Gass, S. I. 255.r 
Gastwirth, Joseph L. (193%) 371.H 
Gateaux, R. 286.E 
Gauduchon, Paul (19455) 109.r 391.r 
Gauss, Carl Friedrich (1777-1855) 3.A 10.E ll.B 

14.U, r 16.V 73.A 74.A, C, r 77.B 83.A 94.F 99.C 
107.A 109 lll.F~H 118.A 120.A 123.A 136.C 
149.1 174.A 175 176.A-C, F, H 179.A 180.B 193.D 
206.A 223.C 242.A 253.B 267 275.C 2’79.C 285.A 
294.A 295.D 296.A, B 297.1299.A 302.B, C 309.C 
r 327.D 337.D 338.5 341.D 347.H 357.A 364.D, H 
365.C 401.E 403 407.D 417.F 426 441.B 450.C 
App. A, Tables 3.111,4.1, 10, 14.11, 16.111, 21 

Gaveau, Bernard (1950-) 115.r 
Gear, Charles William (19355) 303.E, ICI, r 
Gegenbauer, Leopold (1849- 1903) 3 l7.D 393.E 

App. A, Table 20.1 
Gel’fand, Izrail’ Moiseevich (19 133) 3; .r 36.E, G, L 

46.r 82.r lOS.AA, r 112.0, r 125.A, Q. S 136.G 
154.G 16O.r 162.*, r 168.8 183.r 192.G 218.F,G 
256.r 258.r 287.C 308.D 341.r 375.G 387.C, D 
395.r 407.C 424.T, r 437.W, EE, r 443.A, F, H 
450.A, T 

Gel’fond, Aleksandr Osipovich (1906-68) 182.G 
196 295.r 430.A, D, r 

Cell-Mann, Murray (1929-) 132.A, D, r 15O.C 
361.r 

Gentzen, Gerhard (I 909-45) 156.E 41 I .J, r 
Geocze, Zoard de 246.D, E 
Geoffrion, Arthur M. 215.D, r 
Georgescu, V. 375.B 
Gerard, Raymond (I 932-) 428.H, r 
Gerbert (Silvester II) (940??1003) 372 
Gerhardt, Carl Immanuel (1816-99) 245.r 
Germain, Sophie (1776-1831) 11 l.H 145 App. A, 

Table 4.1 
Gerstner, Franz Joseph von (1789-1823) 205.F 
Getoor, Ronald Kay (19299) 5.r 261.r 262.r 
Gevrey, Maurice-Joseph (1884-1957) 58.G, r 

125.U 168.B 325.1 327.C 
Ghosh, Javanta Kumar (19377) 374.F 396.r 399.0 
Ghosh, Sakti P. 96.r 
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Cries. Robert Louis 

Ghouila-Houri, Alain 281.r 282x Goluzin, Gennadii Mikhailovich (1906652) 48.r 
Giacaglia, Georgio Eugenio Oscare 290.r 77.r 438.B, C, r 
Gibbs, Josiah Willard (I 839- 1903) 136.A, C 159.D Gomory, Ralph E. (19299) 215.B, C, r 

340.B 402.B, D, G 419.B, C, r Gonzalez-Aciina, Francisco 235.E 
Gierer, Alfred (1929-) 263.D Good, Irving John (1916-) 403.G, r 
Gieseker, David (19433) 16.Y 72.K Goodier, James Norman (19055) 271.r 
Giga Yoshikazu (19555) 204.C Goodman, Timothy N. T. (1947-) 126.K 136.H 
Gikhman, Iosif Il’ich (19 188?) 406.r Goodner, Dwight Benjamin (1913%) 37.M 
Gilbert, Edgar N. (19233) 63.B Goodwyn, L. Wayne 126.K 136.H 
Gilford, Dorothy Morrow (1919 -) 227.r Gopel, Gustav Adolph (1812-47) 3.A 
Gilkey, Peter Belden (19466) 39l.N, r Goppa, V. D. 63.E 
Gill, Stanley Jensen (19299) 303.D Gordan, Paul Albert (183771912) ll.B 226.G 
Gillies, Donald Bruce (1928875) l14.D 173.D 255.E 353.B 
Gillman, Leonard (19177) 425.r Gordon, Marilyn K. 303.r 
Gindikin, Semen Grigor’evich (19377) 384.C r Gordon, Walter (1893-1940) 351.G 377.C 387.A 
Gini, Corrado 397.E Gorenstein, Daniel (19233) 151.5, r 200.K 
Ginibre, Jean (1938- ) 2 I2.A, r 375.F Gor’kov, Lev Petrovich (1929-) 402.r 
Giraud, Georges 323.C, F Gorny, A. 58.D 
Giraud, Jean (1936-) 200.M Gorry, G. Anthony 215.r 
Giri, Narayan C. (192%) 280.r Gottschalk, W. D. 126.r 
Girsanov, Igor Vladimirovich (1934-) 115.D 136.D Goulaouic, Charles (?%1983) 323.N 

406.B Goursat, Edouard Jean-Baptiste (185881936) ll.r 
Girshick, M. A. 398.r 399.F, r 20.r 46.r 92.F 94.F 193.0 198.B 217.F, r 278.r 
Giusti, Enrico (1940-) 275.F 320x 321.r 322.r 324.r 428.r 
Givens, James Wallace, Jr. (1910-) 298.D Govorov, Nikolai Vasil’evich (1928-) 272.K 
Glaeser, Georges (191%) 58.C r Grad, Harold (1923-) 41.B 
Glaser, V. 150.D 386.B Graeffe (Griiffe), Carl Heinrich (1799-1873) 301.N 
Glashow, Sheldon Lee (1932-) 132.D Graeub, Werner 256.r 
Glauber, Roy J. 340.C Graev. Mark Iosifovich (1922-) 125.r 162.r 183.r 
Glauberman, George Isaac (1941-) 151.J, r 218.r 437.r 
Glauert, Hermann (I 892- 1934) 205.8, D Graff, Karl F. 446.r 
Glazman, Izrail’ Markovich (1916-68) 197.r 251.r Gragg, William Bryant (19366) 303.F 

390.r Graham, Ronald Lewis (1935-) 376.r 
Gleason, Andrew Mattei (1921-) 164.F I96 351.L Gram, Jsrgan Pedersen (1850-1916) 103.G 208.E 
Gleser, Leon Jay (1939-) 399.M 226.E 302.E 317.A 
Glezerman, M. 201 .r Grammel, Richard (1889%) 19.r 
Glicksberg, Irving Leonard (1925583) 86.r 425.T Granoff, Barry (19388) 325.L 
Glimm, James Gilbert (19344) 36.H 150.F, r Grant, J. A. 3Ol.L 

204.G, r 30X.L Grashof, Franz (1826693) 116.8 
Glivenko, Valerii Ivanovich (I 896- 1940) 374.E Grassmann, Hermann Gunther (1809-77) 90.B 

41 l.F, J, r 105.A 147.1 199.B 256.0 267 
Glowinski, Roland (19377) 440.r Grau, Albert A. (1918-) 301.E 
Gluck, Herman R. (1937-) 183.r Grauert, Hans (1930&) 20 21.1, L, Q. r 23.E-G, r 
Gnanadesikan, Ramanathan 280.r 32.F 72.E, G, H, J, r 118.E 147.r 178.F 194.F 232.r 
Gnedenko, Boris Vladimirovich (1912-) 250.r 418.B 

341 .G 374.G Graunt, John (1620-74) 40.A 401.E 
Godbillon, Claude 154.G, r 20 I .r Gray, Andrew 39.r 
Giidel, Kurt (1906678) 22.H 31.B 33.A, C, D, F, r Gray, John Walker (193ll) 1lO.E 

49.D 97.q 156.E, r 184 185.A, C, r 276.D 356&C, r Gray, Robert M. (1943-) 213.E, F 
41 l.J, r Graybill, Franklin Arno (1921-) 403.r 

Godement, Roger (1921-) 36.L 103.r 192x 200.r Green, Albert E. 271.r 
201.r 256.r 277.r 337.r 368.r 383.E, r 450.A, L, T Green, George (179331841) 45.D 94.F 105.W 

Godwin, A. N. 5 I .r 120.A 188.A 189.A, B 193.D, J, N 252.K 315.B 
Gokhberg (Gohbcrg), Izrail’ Tsudikovich (19288) 327.D App. A, Tables 3.111, 4.11, 15.VI 

68.A, J, r 251.r 390.H, r Green, H. E. 291.F 
Goldbach, Christian (1690-1764) 4.C Green, Herbert Sydney (1920-) 402.5, r 
Gol’dberg, Anatolii Asirovich (1930-) 17.C 272.K, r Green, James Alexander (19266) App. B, Table 5.r 
Goldberg, Richard R. 160.r Green, Leon W. (1925-) 136.G 178.G 
Goldberg, Samuel I. (1923-) 105.r 1lO.E 194.r Green, Mark L. (1947-) 21.N 

364.F 417.r Green, Melville S. 361.r 402.r 
Golden, Sidney (!917-) 212.8 Greenberg, Bernand G. (1919-85) 374.r 
Goldman, Oscar (1925) 29.K 200.L Greenberg, Leon (1931-) 234.D, r 
Goldschmidt. David M. I5 I .J Greenberg, Marvin Jay (1935-) 93.r 118.r 201.r 
Gol’dsheid (Goldseid), I. J. 340.r Greene, John M. (19288) 387.B 
Goldstein, Sheldon (I 9477) 136.G Greene, Robert Everist (19433) 178.r 365.B 
Goldstein, Sydney (1903-) 205.r 268.C Greenwood, J. Arthur STR 
Goldstine, Herman Heine (19133) 75.r 138.r Gregory, James (1638875) 332 
Goldstone, Jeffrey (1933-) 132.C Gregory, R. T. 301x 
Golod, Evgenii Solomonovich (19344) 59.F 161.C Grenander, Ulf (1923-) 395.r 421.r 
Golub, Gene Howard (19322) 302.r Griess, Robert Louis, Jr. (19455) 151.1 
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Griffiths, Phillip A. 
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Grifliths, Phillip A. (19388) 9.E, r 16.J, r 21.N 72.G 
124.r 218.E 272.L 

Grifhths, Robert Budington (1937-) 212.A 
Grigelionis, Bronyus Igno (19355) 262.r 
Grillenberger, Christian (1941l) 136x 
Grisvard, Pierre (1940-) 224.E 
Grobman, David Matveevich (1922-) 126.G 
Gromoll, Detlef (193%) 109.r 178.r 279.G 
Gromov, Mikhael L. 154.F 178.r 364.H 
Gross, Oliver Alfred (19199) 86.r 
Gross, W. (?%1918) 62.E 246.G 272.1 429.D 
Grothendieck, Alexander (1928-) 3.N, r 12.B, r 

13.B, r 16.E, U, Y, AA, r 29.K 52.r 68.A, K, M, 
N, r 125.r 168.B, r 200.1, r 203.H 210.r 237.A, 
B, J 325.5 366.A, D, r 383.E, r 424.L, S, X, r 426 
443.A, I> 450 

Grotschel. Martin 215.C 
Grotzsch, Herbert (1902-) 352.A, C 438.B 
Grove, Karsten 178.r 
Groves, G. W. 92.r 
Griinbaum, Branko (1929-) 16.r 89.r 
Griinbaum, F. Albert0 41.C 
Grunsky, Helmut (1904486) 77.E, F, r 226.r 438.B 
Griinwald, G&a (1910-42) 336.E 
Grushin, Viktor Vasil’evich (19388) 323.K. N 

345.A 
Guckenheimer, John M. (19455) 126.K, N 
Guderley, Karl Gottfried (1910-) 205.r 
Gudermann, Christoph (179881852) 131.F 447 

App. A, Tables 16, 16.111 
Guerra, Francesco (1942-) 150.F 
Guest, Philip George (1920&) 19.r 
Gugenheim, Victor K. A. M. (19233) 65.D 
Guggenheim, Edward Armand (19Oll) 419.r 
Guignard, Monique M. 292.B 
Guilford, Joy Paul (18977) 346.r 
Guillemin, Victor W. (19377) 105.r 191.r 274.1, r 

325.L 391.5, N 428.F, G 431.r 
Guiraud, Jean-Pierre 41.D 
Gulliver, Robert D., II (19455) 275.C 334.F 
Gumbel, Emil J. (1891-) 374.r 
Gundlach. Karl-Bernhard (1926-) 32.G 
Gundy, Richard Floyd (19333) 168.B 262.B 
Gunning, Robert Clifford (1931-) 21.r 23.r 

367.G, r 
Gunson, Jack 386.C 
Gupta, Suraj Narayan (1924-) 150.G 
Guthrie, Francis 157.A 
Guthrie, Frederick 157.A 
Guttman, Louis 346.r 
Gyory, Kalman (1940-) 118.D 
Gysin, Werner 114.G 148.E 201.0 

H 

Haag, Rudolf (19222) 150.C-E 351.K 402.G 
Haar, Alfred (1885-1933) 142.8, r 225.C r 255.E 

317.C 321.C 323.E 334.C 336.B 
Haberman, Shelby J. 280.r 
Haboush, William J. (1942-) 16.W 
Hadamard, Jacques Salomon (1865-1963) 20.r 

43.E46.A 58.F. r 109 111.1 121.C 123.B 124.B 
125.A 126.5 159.J 178.A, B 208.D 272.E 320.r 
321.A, G 323.B 325.B, r 339.A, D 357.r 429.B 
450.8, I App. A, Table 8 

Hadley, George F. 227.r 
Haefliger, Andre (1929%) 105.r 114.D 154.A, CH 
Half, L. R. 280.D, r 
Hagihara Yusuke (189771979) 133.r 420.r 
Hagis, Peter H., Jr. (1926-) 297.D 

Hahn, Frank John (1929-) 136.G 
Hahn, Hans (187991934) 37.F 93.D 16O.F 390.G 

424.C 
Hajek, Jaroslav (1926-74) 371.r 399.N, r 
Hajian, Arshag B. (1930-) 136.C F 
Hajos, Gyorgy (Georg) (1912272) 2.B 
Haken, Hermann 95 
Haken, Wolfgang R. G. (19288) 157.A, D 186.r 

235.A 
Halanay, Aristide (19244) 163.r 394.r 
Hal& Gabor (1941-) 123.E 
Halberstam, Heini (1926-) 123.r 
Hale, Jack Kenneth (192%) 163.B, H, r 286.r 290.r 
Hall, G. 303.r 
Hall, Marshall, Jr. (1910-) 29.H 66.r 151.1, r 161.C 

r 190.r 241.C App. B, Table 5 
Hall, Philip (1904482) 151.B, D-F 19Cl.G 
Hall, William Jackson (1929%) 396.r 
Hallen, E. G. 130.r 
Hallstrom, Gunnar af 124.C 
Halmos, Paul Richard (1916-) 42.r 13&E, H 197.r 

225.r 251.r 256.r 270.r 276.E 381.r 390.r 
Halphen, Georges Henri (1844489) 11O.B 134.r 
Hamachi, Toshihiro (1942-) 136.F, r 
Hamada, Noboru (1940-) 96.r 
Hamada, YQsaku (1931-) 321.G 
Hamburger, Hans (1889-1956) 240.K 450.M 
Hamel, George (187771954) 270.5 388.B 
Hamilton, Richard S. (1943-) 195.E 352.C 
Hamilton, William Rowan (1805-65) 20 29.B 

108.B 126.A, L 151.B 186.F 219.C 267 269.F 
271.F 294.F, r 324.E 351.D 441.B 442.D 

Hamm, Helmut A. 418.1 
Hammersley, John Michael (1920-) 34.0.r 385.r 
Hammerstein, H. 217.M 
Hamming, Richard W. (1915-) 63.B, c’ 136.E 

223.r 
Hampel, Frank R. 371.A, I, r 431.r 
Hanai, Sitiro (19088) 273.K 425CC 
Hanania, Mary I. 346.r 
Hancock, H. 134.r 
Handel, Michael (1949-) 126.5 
Handelman, David E. (1950-) 36.H 
Handscomb, David Christopher (19333 I 385.r 
Haneke, Wolfgang 123.C 
Hankel, Hermann (1839973) 39.B 174.A 220.B 

App. A, Table 19.111 
Hanks, R. 224.E 
Hannan, Edward James (1921-) 421.r 
Hanner, Olof (Olaf) (1922-) 79.r 
Hano, Jun-ichi (1926-) 364.F 365.L 
Hansen, Frank (1950-) 212.C 
Hansen, Johan Peder (195 1-) 16.1 
Hansen, Peter Andreas (1795-1874) App. A, 

Table 19.111 
Hanson, David Lee (19355) 136.E 
Hanson, Richard J. (193%) 302.r 
Happel, H. 420.r 
Hara, KBkiti (1918-) 329.r 
Harada, Koichiro (1941-) 151.1, J 
Harada, Manabu (1931l) 200.K 
Harari, Haim (1940&) 132.r 
Harary, Frank (1921-) 186.r 
Hardorp, Detlef 154.H 
Hardt, Robert Miller (19455) 275.C 
Hardy, Godfrey Harold (1877-1947) 4.C, D, r 20.r 

43.E, F 83.r 88.r 106.r 121.r 123.C, r 159.G, H, r 
164.G 168.B 211.r 216.r 220.B 224.E 242.A, B, r 
295.r 317.B 328.*, r 339.B, C 379.F, M. S, r 450.B, 
I App. A, Table 8 
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Hikita, Teruo 

Harish-Chandra (1923383) 13.r 32.r 122.F, G 
249.V 308.M 437.V, X, AA, CC, EE 450.T 

Harle, Carlos Edgard 365.E 
Harman, Harry Horace (1913-76) 346.F, r 
Harnack, Carl Gustav Axe1 (1851-88) 100.E 193.1 
Harris, Joseph 9.E, r 16.r 
Harris, Theodore Edward (1919.-) 44.A 260.5 

34o.c 
Harris, William Ashton (1930-) 289.E 
Hart, J. F. 142.r NTR 
Hartley, Herman Otto (1912-80) STR 
Hartley, Richard Ian 235.E 
Hartman, Philip (1915-) 107.r 126.G 195.E 252.r 

254.r 313.r 314.r 315.r 316.r 365.5 
Hartmanis, Juris (1928-) 71.r 75.r 
Hartogs, Friedrich (187441943) 20 2l.C F, H, Q 
Hartshorne, Robin (193%) 9.r 16.R, r 343.r 
Harvey, F. Reese (1941l) 112.C D 125.Y, Z 
Harvey, William James (1941-) 234.r 
Hasegawa, Hirosi (1782-1838) 230 
Hashimoto, Isao (1941-) 280.r 
Hashimoto, Takeshi (1952-) 213.E 
Hashimoto, Tsuyoshi (194%) 173.E 
Hasse, Helmut (1898-1979) 9.E3 12.B 14.E, L, O-R, 

U, r 27.D, E 29.G 59.A, G, H, r 73.A 113 118.C F 
149.r 242.B 257.F, H, r 295.r 297.1 347.r 348.D, G 
449.r 450.A, L, P, S 

Hastings, Cecil (1920-) 142.r NTR 
Hastings, D. W. 40.D 
Hasumi, Morisuke (1932-) 125.BB 164.K 
Hatakeyama, Yoji (1932-) llO.E, r 
Hattori, Akio (1929-) 237.H 431.D 
Hattori, Akira (1927-86) 200.K, M 
Haupt, Otto (18877) 268.E 
Hausdorff, Felix (1868-1942) 79.A 117.G 169.D 

224.E 234.E 240.K 246.K 249.R 273.5 317.B 381.r 
388.r 423.B 425.A, N, P, Q, AA 426 436.C 443.1 

Hawking, Stephen W. (19422) 359.r 
Hayashi, Chihiro (1911-) 290.r 
Hayashi, Chikio (1918-) 346.E 
Hayashi, Kazumichi (19255) 207.C r 
Hayashi, Keiichi (187991957) NTR 
Hayashi, Mikihiro (1948%) 164.K 
Hayashi, Tsuruichi (1873-1935) 230 267 
Hayman, Walter Kurt (19266) 17.D 124.r 193.r 

272.K, r 391.D 438.C E 
Haynal, A. 33.F, r 
Heath, David Clay (19422) 173.E 
Heath, Sir Thomas Little (1861-1940) 181.r 187.r 
Heath-Brown, David Rodney 118.D 123.C E 
Heaviside, Oliver (1850-1925) 125.E 306.A, B 

App. A, Table 12.11 
Heawood, P. J. (1861-1955) 157.A, E 
Hecht, Henryk (1946-) 437.X 
Hecke, Erich (188771947) 6.D 1 l.B 14.r 29.C 

32.C D, H. r 73.B 123.F, r 348.L, r 450.A, D-F, 

MO 
Hector, Gilbert Joseph (1941-) 154.H 
Hedlund, Gustav Arnold (19044) 126.A, r 136.G 
Heegaard, Poul(1871-1948) 65.C 247.r 
Heesch, Heinrich (19066) 92.F 157.A, D 
Heiberg, Johan Ludvig (1854-1928) 181.r 187.r 
Heilbronn, Hans Arnold (1908-75) 123.D 347.E 

450.K 
Heine, Heinrich Eduard (1821-81) 206.C 273.F 

393.c 
Heins, Maurice Haskell(1915-) 77.F 164.K 198.r 

207.C 367.E, G, r 
Heintze, Ernst 178.r 
Heinz, Erhard (19244) 323.5 

Heisenberg, Werner Karl (1901-76) 150.A 351.C 
D 386.C 

Heitsch, James Lawrence (1946-) 154.G 
Held, A. 359.r 
Held, Dieter (19366) 151.1 
Helgason, Sigurdur (1927-) 109.r 199.r 218.G 225.r 

248.r 249.r 412.r 413.r 417.r 437.Y, AA, EE 
Hellerstein, Simon (1931-) 272.K, r 
Hellinger, Ernst D. (1883-1950) 197.r 217.r 390.G 
Helly, Eduard (188441943) 89.B 94.B 
Helmholtz, Hermann von (1821-94) 139.A 188.D 

205.B 419.C 442.D App. A, Tables 3, 15.VI 
Helms, Lester L. 120.r 193.r 
Helson, Henry (1927-) 164.G, H, r 192.P-R, r 

251.r 
Hemmingsen, Erik (1917-) 117.E 
Hempel, John Paul (1935-) 65.E 
Henderson, David William (1939-) 117.1 
Henkin - Khenkin 
Henkin, Leon (Albert) (1921l) 276.D 
Henon, Michel 287.B, r 
Henrici, Peter K. (1923-) 138.r 300.r 301.r 303.r 
Henry, Charles 144.r 
Henry, N. F. M. 92.r 
Hensel, Kurt (1861-1941) 1l.r 12.B 14.U 118.C 

236.r 370.C 439.L 
Henstock, Ralph (19233) 100.r 
Hepp, Klaus (19366) 146.A 150.r 
Herbrand, Jacques (1908-31) 14.K 59.A, E, H, r 

156.E, r 200.N 356.A, E 
Herglotz, Gustav (1881-1953) 43.1 192.B 325.5 
Hering, Christoph H. 151.5 
Herman, Michael-Robert (19422) 126.1, N 154.G 
Hermann, Carl Heinrich (1898-1961) 92.F 
Hermes, Hans (1912-) 31.r 97.r 356.r 
Hermite, Charles (1822-1901) 14.B 60.0 107.A 

131.D 167.C 176.1 182.A 199.A 217.H 223.E 232.A 
251.E, 0 256.Q 269.1 299.A317.D 344.F 348.F 
412.E. G 430.A App. A, Tables 14.11, 2O.IV 

Herodotus (c. 484-c. 425 B.C.) 181 
Heron (between 150 B.C. and A.D. 200) 187 App. A, 

Tables 2.11, III 
Hersch, Joseph (1925-) 143.A 391.E 
Hertz, Heinrich Rudolf (1857794) 441.B 
Hertzig, David (19322) 151.1 
Herve, Michel Andre (1921-) 23.r 62.B 
Herz, Carl Samuel (1930-) 206.E, r 
Herzberger, Maximilian Jacob (1899-1981) 180.r 
Hesse, Ludwig Otto (1811-74) 9.B 139.H 226.D 

279.B, E, F 
Hessel, Johann Friedrich Christian (179661872) 

92.F 
Hessenberg, Gerhard 155.r 
Hessenberg, K. (1874- 1925) 298.D 
Hestenes, Magnus R. 302.D 
Heun, Karl 303.D 
Hewitt, Edwin (1920&) 192.P, r 342.G 422.r 425.S 

BB 
Hey, Kate 27.F 450.A, L 
Heyting, Arend (1898-1980) 156.r 41 l.J, r 
Hicks, Noel J. (1929-79) lll.r 

~ Hida, Takeyuki (19277) 176.r 
Higgs, Peter Ware (19299) 132.D 
Higman, Donald Gordon 151.1 
Higman, Graham (19177) 97.*, r 151.A, F, I, r 

190.M 
Higuchi, Teiichi (19333) 23.r 
Higuchi, Yasunari (194%) 340.G, r 
Hijikata, Hiroaki (19366) 13.0, P, R 
Hikita, Teruo (19477) 75.r 
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Hilb, Emil 

1890 

Hilb, Emil (1882-1929) 253.r 
Hilbert, David (1862-1943) 4.A 9.F 1 l.B 14.J&L, 

R, U 15.H 16.E, S 20.*, r 32.G 35.A, r 41.E 46.A, 
C, E, r 59.A 68.A, C, I, L 73.B 17.B, E 82.r 92.F 
93.5 105.Z 107.A, r 1 11.1 112.D, r 120.A 126.1 
150.G 155.ApC, E,G, H 156.A,C, D, r 160.D 162 
172.5 179.8 181 188.r 189.r 196.A, B 197.A, B,r 
217.H-J, r 220.E 222.r 226.G, r 253.D 267 284.A 
285.A, 286.K 304.r 317.r 320.r 321.r 322.r 323.E, 
I, r 324.r 325.M 327.r 337.F 347.G, H, r 356.A 
357.r 364.1 365.5 369.D, F 375.F 377.D 382.8 
389.r 402.H 410.r 41 l.J, r 423.N 424.W 430.A 
441.r 443.A 446.r App. A, Table 8 

Hildebrandt, Stefan 0. W. (1936-) 195.E 275.B 
334.F 

Hildebrandt, Theophil Henry (1888-1980) 3lO.r 
443.A 

Hildreth, C. 349.r 
Hilfcrty, M. M. 374.F 
Hilfinger, P. N. 75.r 
Hill, Edward Lee (1904-) 150.8 
Hill, George William (1838% 1914) 107.A 26&B, E 
Hill, Rodney (1921-) 271.r 
Hille, Einar (1894-1980) 106.r 107.r 115.A 136.B 

160.E 162 198.r 216.r 251.r 252.r 253.r 254.r 286.X, 
r 288x 289.r 313.r 315.r 316.r 336.r 378.B, D,r 
438.B 

Hillier, Frederick S. 215.r 
Hilton, Peter John (1923-) 70.r 201.r 202.P, U 
Hintin -- Khinchin 
Hinman, Peter G. (1937-) 22.F, r 356.r 
Hinohara, Yukitoshi (1930-) 200.K 
Hipparchus (190?%125? 8.c.) 187 432.C 
Hippias (late 5th century B.C.) 187 
Hippocrates (of Chios) (470? 430‘? B.C.) 187 
Hirai, Takeshi (1936&) 437.W 
Hirano, Sugayasu (1930-) 301 .G 
Hirashita, Yukio (1946-) 164.C 
Hirayama, Akira (1904&) 230.r 
Hironaka, Heisuke (1931-) 12.B l6.L, Z 21.L 23.D 

72.H 232.C 418.B 
Hirose, Hideo (190X%81) 230.r 
Hirota, Ryogo (1932%) 387.D 
Hirsch, Guy Charles (1915-) 201.5 427.E 
Hirsch, Morris William (1933-) 114.C, D, J, r 

126.5, r 279.C 
Hirschfeld, Joram 276.r 
Hirschman, Isidore I. (1922%) 220.r 
Hirzebruch, Friedrich Ernst Peter (1927-) 12.8 

15.D,G,H2032.F56.G,r72.K,r109114.A 
147.r237.A366.A,B,D,r383.r418.r426431.D,r 

Hitchcock, Frank Lauren (1875-1957) 301.E 
Hitchin, Nigel James (1946&) 80.r 364.r 
Hitchins, G. D. 3Ol.L 
Hitotumatu, Sin (1926&) 186.r 301.D 389.r NTR 
Hitsuda, Masuyuki (1938%) 176.H 
Hlavat$, Viclav (1894&?) 434.r 
Hlawka, Edmund (l916-) 182.D 
Ho, B. L. 86.D 
Hobson, Ernest William (I 856- 1933) 133.r 393.C, r 
Hochschild, Gerhard Paul (1915-) 6.E 13x 59.H 

200.K-M, 0, Q, 249.r 
Hochster, Melvin (1943-) 16.2 
Hocking, John Gilbert (1920-) 79.r 201.r 
Hocquenghem, Alexis (1908-) 63.D 
Hodge, Sir William Valiance Douglas (1903-75) 

12.B 15.D l6.V, r 20 109.*, r 194.B, r 232.A, B, D 
343.r 

Hodges, Joseph Lawson (1922-) 37l.A, H 399.E, 
H N P, r 

Hodgkin, Alan Lloyd (1914-) 291.F 
Hodozi, Yosi (1820-68) 230 
Hoeffding, Wassily (1914-) 371.A 374.1 400.r 
Hoffman, Banesh H. (1906&) 359.D 434.C 
Hoffman, David Allen (1944-) 275.r 365.H 
Hoffman, Kenneth Myron (1930-) 43.r 164.F, 

G, I, r 
Hoffmann-Jorgensen, Jsrgen (1942-) .22.r 
Hogg, Robert Vincent, Jr. (1924-) 371.r 
Hiilder, Otto (1859-1937) 84.A 104.F 168.B 190.G 

21 l.C 277.1 288.D 379.M App. A, Table 8 
Holland, Paul W. (1940-) 280.r 403.r 
Halley, Richard Andrews (1943-) 44.E 340.r 
Holm, Per (1934&) 418.r 
Holmgren, Erik Albert (1872-) 125.DD 321.F 

327.C 
Holmstedt, Tord 224.C 
Homma, Tatsuo (1926&) 65.E 235.A 
Honda, Taira (1932-75) 3.C 450.Q, S, r 
Hong Imsik (1916-) 228.B, r 
Hong Sing Leng 365.N 
Hood, William Clarence (1921-) 128.r 
Hooke, Robert (1635-1703) 271.G 
Hooker, Percy Francis 214.r 
Hooley, Christopher (1928&) 123.E, r 295.E 
Hopcroft, John E. (1939-) 31.r 71.r 75 r 186.r 
Hopf, Eberhard (1902-83) 111.1 126.A, M 136.B 

162.B, C, G, r 204.B, C, r 222.C 234.r 270.E 286.U, 
X 433.8, C 

Hopf, Heinz (1894-1971) 65.r 72.K 93 r 99.r 109 
111.1, r 126.G 147.E 153.B 178.A 201.r 202.A, B, I, 
Q, S, U, V, r 203.A, C, D, H 249.V 305.A 365.H 
425.r 426.*, r 

Hopkins, Charles 368.F 
Horikawa, Eiji (1947-) 72.K. r 
Hiirmander, Lars Valter (1931-) 20 21.1, r 107.r 

112.B-D, H, K, L, R, r 115.D 125.A 164.K 189.C 
274.D, 1286.5 320.1 321.r 323.M 325.H 345.A, B 

Horn, Jacob (1867-1946) 107.A 206.D 314.A 
Horner, William George (1786-1837) 3Ol.C 
Horowitz, Ellis (1944-) 71.r 
Horrocks, Geoffrey (1932-) 16.r 
Hosokawa Fujitsugu (1930&) 235.D 
Hotelling, Harold (1895-1973) 280.B 374.C 
Hotta, Ryoshi (1941-) 437.X 
Householder, Alston Scott (1904&) 298.D 301.r 

302.E 
Houseman, E. E. 19.r 
Howard, Ronald Arthur (1934-) 127.E: 
Howarth, Leslie (1911-) 205.r 
HrbBEek, Karel 33.r 293.E, r 
Hsiang Wu-Chung (1935-) 114.5, K 431.D, r 
Hsiang Wu-Yi (1937-) 275.F 365.K 431.D, r 
Hsiung Chuan-Chih (1916-) 364.F 365.H 
Hsii Kwang-Ch’i (1562-1633) 57.C 
Hu Sze-Tsen (1914-) 79.r 91.r 148.r 201.r 277.r 
Hu Te Chiang 28 1 .r 
Hua Loo-Keng (Hua Luo K’ang) (1910.-85) 4.A, 

E, r 122.E 242.A, r 295.E 
Huang, Kerson (1928-) 402.r 
Huber, Peter J. 371.A, H, J, r 399.H, P. r 
Huber-Dyson, Verena 362.r 
Hudson, John F. P. 65.C, D 
Huff, Robert E. (1942&) 443.H 
Hugenholtz, Nicholaas Marinus (1924.. I 308.H 
Hugoniot, Pierre Henri (1851-87) 51.E 204.G 

205.B 
Hukuhara, Masuo (1905-) 3O.C, r 88.~ 254.D 

288.B, r 289.B-D 314.A, C, D 315.C 316.E 388.B 
443.A 
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Hull, Thomas Edward (19222) 206.r 303.r 
Humbert, Georges (1X59-1921) 83.D 
Humphreys, James E. (1939-) 13.r 248.r 
Hunt, Gilbert Agnew (1916-) 5.H 162 176.G 260.5, 

r 261.A, B 33X.N, 0 400.F 407.B 
Hunt, Richard A. 159.H 168.8, r 224.E 
Huntley, H. E. 116.r 
Huppert, Bertram 151 .D, r 
Hurewicz, Witold (1904456) 117.A, C, r 136.8 

148.D 202.A, 9, N, r 426 
Hurley, Andrew Crowther (1926-) 92.F 
Hurst, Charles A. (1923-) 212.A 402.r 
Hurwicz, Leonid 255.D, E, r 292.E, F, r 
Hurwitz,Adolf(1859-1919) 3.K9.1 10.E ll.D 

83.B 134.r 198.r 339.D 367.8 450.B, r 
Husemoller, Dale H. (1933-) 15.r 56.r 147.r 
Huxley, Andrew Fielding (1917-) 291.F 
Huxley, Martin Neil (19444) 123.E, r 
Huygens, Christiaan (1629-95) 93.H 245 265 

325.8, D 446 
Huzita, Sadasuke (1734- 1807) 230 
Hwa, Rudolph C. (1931-) 146.r 
Hypatia (370?-418) 1 X7 

lagolnitzer, Daniel (1940.-) 146.C 274.D, 1 386.C. r 
Ibragimov, Il’dar Abdulovich (19322) 176.r 250.r 
Ibuki, Kimio (1918-) 75.D 
Ibukiyama, Tomoyoshi (1948%) 450,s 
Ichihara, Kanji (1948%) 115.D 
Igari, Satoru (19366) 224.E 
Igusa, Jun-ichi (19244) 3.r 9.J 12.B 15.E, F 16.2, r 

32.F 11 X.C, D 
Ihara, Yasutaka (193X-) 59.A, r 450.A, M, Q, S, U 
Iitaka, Shigeru (19422) 72.1, r 
lizuka, Kenzo (19233) 362.1 
Ikawa, Mitsuru (1942-) 325.K 34S.A 
Ikebe, Teruo (1930-) 112.E, P 37S.B, C 
Ikebe, Yasuhiko (19344) 298.r 
Ikeda, Akira (19477) 391.C 
Ikeda, Hideto (194X-) 96.r 
Ikeda, Masatoshi (19266) 2OO.K, L 
Ikeda, Nobuyuki (1929-) 44.r 45.r 115.r 250.r 262.r 

399.r 406.F, r 
Ikeda, Tsutomu (1950-) 304.D 
Ikehara, Shikao (1904-X4) 123.B 160.G 
Bin, Arlen Mikhailovich (19322) 327.r 
Illusie. Luc (1940-) 366.r 
Im Hof, Hans-Christoph 17X.r 
Imai, Kazuo (1952-) 41 .D 
Imanishi, Hideki (1942-) 154.H 
Inaba,Eizi(1911--) 337.F 
Inaba. Takashi (1951-) 154.D 
Inagaki. Nobuo (1942-) 399.N 
Ince, Edward Lindsay (1891-1941) 107.r 252.r 

254.r 26X.C D 2XX.r 289.r 
Infeld. Leopold (1898% 1968) 206.r 359.D 
Ingham, Albert Edward (1900-) 123.C r 242.A 
Inose, Hiroshi (1951-~79) 16.r 450.S 
Inoue, Masahisa (1946-) 72.K 
Inoue, Masao (1915-) 338.r 
Iochum, Bruno 351.L 
lonescu-Tulcea, Alexandra 136.B, C 
Iooss, Gerard (19444) 126.M 
Ipsen, D. C. 116.r 
Iri, Masao (1933-) 66.r 186.r 281.r 299.B 301.F 

303.E. r 
Irie Seiiti (1911l) 62.E 

Irwin, Michael C. 65.D 126.G, r 
Isaacs, Rufus Philip (1914--X1) 108.A 
Isbell, John Rolfe (1930-) 436.r 
Iseki, Kanesiroo (1920-) 328 
Iseki, ShB (1926-) 328 
Iseki, Tomotoki (fl. 1690) 230 
Ishida, Masanori (1952-) 16.2 
Ishihara, Shigeru (1922-) 110.r 364.F 365.H 
Ishihara, T&u (1942) 195.r 
Isii, Keiiti (1932-) 2S5.D 399.r 
Ising, Ernest (1900-) 340.B, C 
Iskovskikh, Vitalii Alekseevich 16.5 
Ismagilov, R. S. 183.r 
Isozaki, Hiroshi (l950-) 375.B 
Israel, Robert B. (195l-) 402.r 
Israel, Werner (1931-) 359.r 
Iss’sa, Hej 367.G 
Itaya, Nobutoshi (19333) 204.F 
Ito, Kiyosi (1915-) 5.E, r 4S.G, r 115.A, C 176.1, r 

261.A, r 395.C r 406.A-D, G, r 407.A, C, r 
Ito, Masayuki (1940-) 338.0 
Ito, Noboru (1925-) 151.H. J 
Ito, Seizi, (1927-) 204.B 270.r 327.r 
Ito, Shunji (1943%) 126.K 136.C r 
Ito, Takashi (19266) 192.r 
Ito, Teiiti (189%) 92.F 
Ito, Yoshifumi (1940-) 125.BB 
Ito, Yuji (19355) 136.C F 
Itoh, Mitsuhiro (19477) 80.r 
Itoh, Takehiro (1943-) 275.A 365.G 
Iversen, F. 62.E 272.1 
Ivory, Sir James (1765-1842) 350.E 
Ivrii, V. Ya. 325.H 
Iwahori, Nagayoshi (19266) 13.R, r 249.r 442.r 
Iwamura, Tsurane (1919-) 85.A. r 
Iwaniec, Henryk 123.C E 
Iwano, Masahiro (1931-) 254.D 289.D, E 
Iwasawa, Kenkichi (1917-) 6.D, F 14.L 32.r 243.G 

24X.F.V249.S,T,V,r257.H384.C450.A,F,J,L, 
N, r 

Iyanaga, Shokichi (1906-) 6.r 7.r 14.Q, r 59.D, E, r 
60.r 149.r 161.r 200.r 277.r 294.r 343.r 362.r 36X.r 
409.r 

Izumi, Shin-ichi (19044) 121.r 160.B, F 310.r 

J 

Jackiw, Roman Wildmir (19399) 80.r 
Jackson, Dunham (1888-1946) 336.C E, r 
Jackson, John David (19255) 130.r 
Jackson, Kenneth R. 303.r 
Jacob, Maurice R. 132.r 386.r 
Jacobi, Carl Gustav Jacob (1X04-51) 3.A, G, L 4.D 

9.E,F ll.B,C2046.C 105.107.B 10X.B 126.A 134.A, 
C, I, J, r 178.A 182.H 202.P 208.9 229 248.A 267 
271.F 296.A 297.1 29X.B 302.C 317.D 324.D, E 
34X.K 390.G 420.A, F 428.C App. A, Tables 14.1, 
II, 16.1, III, 20.V 

Jacobowitz, Howard (19444) 286.5 344.8 
Jacobs. Konrad (1928-) 136.H, r 
Jacobson, Florence D. 231.r 
Jacobson, Nathan (1910-) 27.r 29.r 54.r 67.D 149.r 

172.A, K, r 231.r 248.r 256s 36X.H, r 499.r 
Jacod, Jean M. (19444) 262.r 
Jacquet, He& Michel(1933-) 32.r 437.r 450.A. 

N 0 
Jaeckel, Louis A. 371.H, J, r 
Jaffe, Arthur Michael (19377) 15O.C F, r 
Jaglom - Yaglom 
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Jahnke, Paul Rudolf Eugene 
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Jahnke, Paul Rudolf Eugene (1863-1921) 389.r 
NTR 

James, Alan Treleven (1924-) 102.r 374.r 
James, Ioan M. (1928-) 202.Q, U 
James, Ralph Duncan (1909-79) lOO.A, r 
James, Robert Clarke (19188) 37.G 
James, W. 280.D, r 398.r 399.G 
Jancel, Raymond (19266) 402.r 
Janes, E. T. 403.C 
Janet, Maurice (18888) 365.B 
Janiszewski, Zygmund (188881920) 426 
Janko, Zvonimir (1932-) 151 .I, J App. B, 

Table 5.111 
Janner, Aloysio 92.r 
Jans, James Patrick (1927-) 368.r 
Janzen, 0. 246.G 
Jarratt, Peter (1935-) 301.N 
Jauch, Josef-Maria (1914-74) 375.A, r 
Jayne, J. E. 22.r 
Jech, Thomas (1944-) 22.r 33.F, r 
Jeffreys, B. S. 25.r 
Jeffreys, Harold (1891-) 25.B, r 
Jelinek, Fredrick (1932-) 213.E, r 
Jenkins, Gwilym M. 128.r 421.D, G, r 
Jenkins, Howard B. 275.A, D 
Jenkins, James Allister (1923-) 77.F 143.r 438.B, C 
Jensen, Johann Ludwig Wilhelm Waldemar (1859- 

1925) 88.A 121.A 164.K 198.F 
Jensen, K. L. 145 
Jensen, Ronald B. 33.F, r 356.r 
Jentsch, Robert 339.E 
Jerison, Meyer (1922-) 425x 
Jessen, Raymond J. (1910-) 373.~ 
Jeulin, Thierry 406x 
Jewett, Robert Israel (19377) 136.H 
Jimbo, Michio (1951l) 253.E 387.C 
Jimbo, Toshiya (1941-) 164.r 
Jiiina, Miloslav 44.E 
Joffe, Anatole 44.C 
John, Fritz (1910-) 112.B 168.B 218.F 262.B 274.F 

292.B 300.r 304.r 320.r 321.r 323.r 324.r 325.r 327.r 
John, Peter W. M. (1923%) 102x 
Johns, M. Vernon, Jr. (1925-) 371.H, r 
Johnson, Norman Lloyd (1917-) 374.r 
Johnson, Wells 14.L 
Johnson, William B. (19444) 68.K, M 
Johnston, John (1923-) 128.r 
Jolley, Leonard Benjamin William (18866) 379.r 
Joly, Jean-Rene Benoit (1938) 118.r 
Jona-Lasinio, Giovanni 361.r 
Jonckheere, A. R. 346.r 
Jones, B. W. 347.r 348.r 
Jones, Floyd Burton (1910-) 273.K 
Jones, John D. S. 80.r 
Jones, William (167551749) 332 
Jordan, C. W. 214.r 
Jordan, Camille (18381922) 20.r 79.A 92.A, F 

93.A, B, F, K 104.r 151.H 159.B 166.B 190.G,Q,r 
267 269.G 270.D, G 277.1 302.B 310.B 333.A 
362.K 380.C App. A, Table 8 

Jordan, Ernst Pascual(1902-) 150.A 231.B 351.L 
377.B 

Jordan, Herbert E. App. B, Table 5.r 
Joreskog, Karl G. (1935-) 403.r 
Joseph, Peter D. 405.r 
Jost, Res Wilhelm (1918) 150.r 386.B 
Joule, James Prescott (181889) 130.B 
Julia, Gaston Maurice (1893-1978) 21.Q, r 43.K 

124.B 198.r 272.F 429.C 435.E 
Jung, Heinrich Wilhelm Ewald (1876- 1953) 15.r 

JureEkova, Jana (1940&) 371.5, r 
Jurkat, Wolfgang (Bernhard) (1929%) 123.D 
Jutila, Matti Ilmari (19433) 123.E 
Juzvinskii - Yuzvinskii 

K 

Kac, I. S. - Kats 
Kac, Mark (1914484) 41.C 115.C 150.F 250.r 261.1 

287.C 295.E 340.r 341.r 351.F 391.C, r 
Kaczmarz, Stefan (1895-1939) 317.r 
Kadanoff, Leo Philip (1937-) 361.r 
Kadison, Richard Vincent (19255) 36.<i, K 308.r 
Kadomtsev, Boris Borisovich (1928-) 387.F 
Kagan, Abram Meerovich (1936-) 374 H 
Kahan, William M. 302.r 
Kahane, Jean-Pierre (1926-) 159.H, r 192.Q, r 
Kahler, Erich (1906-) 109 191.1 199.A 232.A 365.L 

428.E, r 
Kailath, Thomas (1935-) 86.D, r 
Kainen, Paul C. 157.r 
Kaiser, Henry F. 346.F, r 
Kakeshita Shin-ichi (19344) 371.A 
Kakeya, SBichi (1886-1947) 10.E 89.E 
Kakutani, Shizuo (1911-) 37.N 136.B-D, F 153.D 

162 286.D 310.A, G 352.A 367.D 398.G 
Kalashnikov, Anatolii Sergeevich (1934-) 327.r 
Kall, Peter 408x 
Kallen, Anders Olof Gunnar (1926-68) 150.D 
Kallianpur, Gopinath (1925-) 86.r 250.r 405.r 
Kalman, Rudolf Emil (1930-) 86.A, CF 95 

405.G, r 
Kalmar, L&z16 (1905576) 97.* 
Kaluza, Theodor, Jr. (1910-) 434.C 
Kamae, Teturo (1941-) 136.H 354.r 
Kambayashi, Tatsuji (1933-) 15.r 
Kamber, Franz W. (19366) 154.G, H, r 
Kamenskii, Georgii Aleksandrovich (19255) 163.r 
Kametani, Shunji (1910-) 62.E 124.C 
Kamke, Erich (1890-1961) 316.r 
Kampe de Feriet, Joseph (1893-1982) 206.D 

393.E, r 428.r 
Kan, Daniel M. 70.E 
Kanamori, Akihiro (194%) 33.r 
Kaneda, Eiji (1948) 365.E 
Kaneko, Akira (1945-) 162 
Kanel’, Yakob Isaakovich (1932-) 204.12, r 
Kaneyuki, Soji (19366) 384.r 
Kanitani, Joy0 (1893-) 1 lO.B, r 
Kannan, Rangachary (19466) 290.r 
Kano, Tadayoshi (1941-) 286.2 
Kantor, William M. 151.J 
Kantorovich, Leonid Vital’evich (1912286) 46.r 

162 217.r 255.E 304.r 310.A 
Kaplan, Wilfred (19155) 106x 216.r 313.r 
Kaplansky, Irving (19177) 2.E, r 107.r 113.r 200.K 

241.E 248.r 308.C r 
Kapteyn, Willem (18499?) 39.D App. A. Table 19.111 
Karacuba, Anatolii Alekseevich (1937-) 4.E 
Karhunen, Kari (19155) 395.r 
Kariya, Takeaki (1944) 280.r 
Karlin, Samuel (1923-) 222.r 227.r 26O..J 263.E 

310.H 336.r 374.r 399.G, r 400.r 
Karp, Carol (1926-72) 356.r 
Karrass, Abe 161.r 
Karzanov, A. V. 281.r 
Kas, Arnold S. 15.H 16.R 
Kasahara, Kenkiti (19355) 21.M 
Kasahara, Koji (1932-) 325.H 
Kasai, Takumi (19466) 71.r 
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Knapowski, Stanislaw 

Kasch, Friedrich (1921l) 29.H 
Kashiwara, Masaki (19477) 68.F 125.DD, EE, 

146.A, C 162 274.1 386.C 418.H 428.H 437.r 
Kasteleyn, P. W. (1924-) 212.A 
Kastler, Daniel (1926-) 150.E 351.K 402.G 
Kataoka, Kiyomi (1951l) 125.DD, r 
Kataoka, Shinji (1925-) 408.r 
Katttov, Miroslav 117.A, D, E 
Kato, Junji (1935-) 163.r 
Kato, Kazuhisa (19466) 126.J 
Kato, Masahide (19477) 72.K 
Kato, Mitsuyoshi (19422) 65.D 147.Q 418.r 
Kato, Tosio (1917-) 68.r 162 204.8, C, E 289.E 

304.r 331.A, B, E, r 345.A 351.D 375.A-C 
378.D, E, H-J 390.r 

Katok, Anatolii Borisovich (1944) 126.N 136.E, 

F, H, r 
Kats, Izrail’ Samoilovich (19266) 115~ 
Katsurada, Yoshie (191 I-80) 365.H 
Katz, Jerrold J. 96.r 
Katz, Nicholas M. (1943-) 16.r 450.5, Q, r 
Katznelson, Yitzhak (19344) 136.E 159.H, I 192.r 
Kaufman, Sol (1928-) 399.N, r 
Kaul, Helmut (19366) 195.E 
Kaup, Wilhelm 384.r 
Kawada, Yukiyosi (1916-) 59.H 
Kawaguchi, Akitsugu (1902-84) 152.C 
Kawai, Soichi (19377) 72.r 
Kawai, Takahiro (19455) 125.BB, DD, r 146.A, C 

162 274.1 386.C 428.H 
Kawai, Toru (19455) 293.E, r 
Kawakami, Hiroshi (1941-) 126.N 
Kawakubo, Katsuo (1942-) 431.D 
Kawamata, Yujiro (19522) 15.r 21.N 72.1, r 232.D 
Kawashima, Shuichi (19533) 41.r 
Kawata, Tatsuo (1911l) 374.H 395.r 
Kazama, Hideaki (19455) 21.L 
Kazarinoff, Nicholas D. (1929%) 211~ 
Kazdan, Jerry L. (1937-) 364.H, r 
Kazhdan, David A. 122.G 391 .N 
Kazhikov, A. V. 204.F 
Kechris, Alexander S. (19466) 22.C H, r 
Keedwell, Anthony Donald (19288) 241.r 
Keesling, James Edgar (1942-) 382.C 
Keim, Dieter 424.r 
Keisler, H. Jerome (1936-) 33.r 276.E, r 293.D, r 
Keldysh, Mstislav Vsevolodovich (191 I-78) 336.F 
Keller, Herbert Bishop (1925%) 303.r 
Keller, Joseph Bishop (1923-) 274.C r 
Kelley, D. G. 212.A 
Kelley, John Ernst, Jr. (19377) 376.r 
Kelley, John Leroy (1916-) 37.M 87.r 381.r 424.r 

425.r 435.r 436.r 
Kellogg, Oliver Dimon (187881932) 120.B, D, r 

153.D 193.r 286.D 
Kelly, Anthony 92.r 
Kelvin, Lord (Thomson, William) (18244 1907) 

19.B 39.G 120.A 193.B App. A, Table 19.IV 
Kemeny, John George (19266) 260.5 
Kempe, Alfred Bray 157.A, D 
Kempf, George R. (19444) 9.r 16.r 
Kempisty, Stefan (1892-1940) lOO.A, r 
Kempthorne, Oscar (19199) 102.r 
Kendall, David G. (19188) 44.A 218.r 260.H, J 
Kendall, Maurice George (1907-83) 102.r 280.r 

346.r 371.K 397.r 400.r 
Kenmotsu Katsuei (1942-) 275.F 
Kennedy, P. B. 193~ 
Kepler, Johannes (1571-1630) 20 78.D 126.A 265 

271 .B 309.B 432.C 

Kerekjarto, Szerkeszti Bela (189881946) 207.C 
410.r 

Kerner, Immo 0. 301.F 
Kerr, Roy Patrick (19344) 359.E 
Kervaire, Michel Andre (19277) 65.C 114.A, B, 

I-K 235.G 
Kerzman, Norberto Luis Maria (19433) 164.K 
Kesten, Harry (1931l) 5.G 44.r 340.r 
Khachiyan, L. G. 71.D 255.C 
Khaikin, Semen Emanuilovich 290.r 318.r 
Khas’minskii, Rafail Zalmanovich (1931-) 115.D 
Khatri, Chinubhai Ghelabhai (1931-) 280.r 
Khavinson, Seineon Yakovlevich (19277) 77.E 
Khayyam, Omar (c. 1040-c. 1123(24?)) 26 
Khenkin (Henkin), Gennadii Markovich (1942-) 

164.K 344.F 
Khinchin (Hintin), Aleksandr Yakovlevich (1894- 

1959) 4.A 45.r 83.r 100.A 115.D 213.F 250.C 
307.C 332.r 341.G 342.D 395.B 402.r 

Khovanskii, Aleksei Nikolaevich (1916-) 83.r 
Kiefer, Jack Carl (1924-81) 399.D 
Kikuchi, Fumio (19455) 304.r 
Kikuti, Dairoku (1855-1917) 230 267 
Killing, Wilhelm Karl Joseph (1847-1923) 50 

248.B 279.C 364.F 
Kim Wan Hee (19266) 282.r 
Kimura, Motoo (19244) 115.D 263.E 
Kimura, Tatsuo (19477) 450.V 
Kimura, Tosihusa (19299) 30.r 288.B-D 289.r 
Kinderlehrer, David S. (1941-) 105.r 
Kingman, John Frank Charles (1939-) 136.B, r 
Kinnersley, William 205.F 
Kinney, John R. 115.A 
Kino, Akiko (1934-83) 81.D 356.G 
Kinoshita, Shin’ichi (1925-) 235.A, C, H 
Kinoshita, Toichiro (1925-) 146.B 
Kirby, Robin Cromwell (1938-) 65.A, C 70.C 

114.J-L 
Kirchhoff, Gustav Robert (1824487) 255.D 282.B 
Kirillov, Aleksandr Aleksandrovich (19366) 437.T 
Kirkwood, John Gamble (1907759) 402.5 
Kiselev, Andrei Alekseevich 204.C 
Kishi, Masanori (1932-) 48.H 338.1, J, M 
Kishimoto, Akitaka (1947-) 36.K 402.G 
Kister, James Milton (1930&) 147.r 
Kitada, Hitoshi (19488) 375.B 
Kitagawa, Tosio (1909-) STR 
Kizner, William 301 .D 
Klainerman, Sergiu 286.5 
Klee, Victor La Rue, Jr. (1925-) 89.r 286.D 
Kleene, Stephen Cole (1909%) 22.G 31.B, C, r 

81.A, r 97.r 156.r 185.r 276.r 319.r 356.A, C-H, r 
411.r 

Kleiman, Steven L. (1942-) 9.E, r 16.E, r 450.r 
Klein, Felix (184991925) 1.r 7.E 1 l.B 32.r 53.r 83.D 

90.B,r 109 119.r 122.C,r 137.*,r 139.A,r 151.G 
167.E 171.r 175.r 181 190.Q 196.r 206.r 229.r 233 
234.A, D, r 267.*, r 285.A, C, r 343.F 363.r 410.B 
447.r 

Klein, Jacob 444.r 
Klein, Oskar Benjamin (1895-1977) 212.B 351.G 

377.c 
Klema, Virginia C. 298.r 
Klingen, Helmut P. (1927-) 32.H 450.E 
Klingenberg, Wilhelm P. (19244) 109.*, r 111.~ 

178.C, r 279.G 
Kloosterman, Hendrik D. (1900-) 4.D 32.C G 
Klotz, Tilla 365.H 
Kluvanek, Igor (1931-) 443.A, G 
Knapowski, Stanislaw (1931-67) 123.D 
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Knapp, Anthony William 
1894 

Knapp, Anthony William (1941 -) 260.r 437.EE 
Knaster, Bronisiaw (1X93-- 1980) 79.D 
Knescr, Hellmuth (I 89881973) 198.r 
Kneser, Julius Carl Christian Adolf (I 862- 1930) 

107.A 314.A 316.E App. A, Table 19.111 
Kneser, Martin L. (19288) 13.0-Q 60.K 391.C 
Knopp, Konrad (1X82- 1957) 208.C 339.C 379.1, 

M r 
Knopp, Marvin Isadore (1933-) 328.r 
Knorr, Knut R. K. (I 940&) 72.r 
Knowles, Greg 443.G 
Knudsen, Finn Fayc (I 9422) 16.r 
Knus, Max-Albert (1942-) 29.r 
Knuth, Donald Ervin (19388) 71.r 96.r 354.r 
Knutson, Donald 16.r 
Kobayashi, Osamu (19555) 364.H 
Kobayashi, Shoshichi (19322) 2l.N, 0, Q, r 80.r 

105.r 109.r 275.A 364.r 365.K, 0, r 412.r 413.r 
417.r 431.r 

Kobayashi, Zen-ichi (19066) 367.D 
Koch, John A. 157.A 186.r 
Kochen, Simon Bernard (19344) 118.F 276.E, r 
K&her, Max (19244) 32.F 23 1 .r 
Kodaira, Kunihiko (l915-) l2.B, r 15.8, E, F 

16.V,r2021.N72.F,G,1-K109112.1,0147.0 
194.r 232.D, r 366.A, r 

Kodama, Akio (1949-) 384.F 
Kodama, Laura Ketchum 164.K 
Kodama, Yukihiro (19299) 117.F 273.r 382.D 425.r 
Koebe, Paul (188221945) 77.B, E 193.D, E 196 

438.B, C 
Kogut, John Benjamin (19455) 361.r 
Kohn. Joseph John (19322) l12.H 274.1 345.A 
Koiso, Norihito (1951-) 364.r 
Koizumi, Shoji (1923-) 3.N 
Kojima, Tetsuzo (188661921) 121.B 240.8 379.L 
Koksma, Jurjen Ferdinand (19044) 182.r 430.C 
Kolbin, Vyacheslav Viktorovich (1941-) 408.r 
Kolchin. Ellis Robert (1916-) 13.F I I3 172.A 
Kolesov, Yurii Seralimovich (1939%) 290.r 
Kolmogorov, Andrei Nikolaevich (19033) 20 44.r 

45.F 58.D 71.r 100.A 115.A, D l26.A. L 136.E 
159.H 196 201.A. M, P 205.E 213.E 214.C 250.F, r 
260.A, F 261.A 34l.G, 1, r 342.A, D, G 354.D 
371.F 374.E 407.A, r 425.Q 426 433.C 

Komatsu, Hikosaburo (19355) 68.F 107.r 112.D, R 
162 168.B 224.C E 254.D 378.D, I 

Komatu. Atuo (19099) 305.A 425.U 
Komatu, YQsaku (1914-) 77.E App. A. Table 14.r 
Komura, Takako (1930--) 168.8 378.F 424,s 
Komura, Yukio (193ll) 162 168.B 286.X 378.F 

424.S W 
Kondo, Kazuo (191 I-) 282.r 
Kondo, Motokiti (1906680) 22.C F 
Konheim, Alan G. 126.K 136.H 
K&rig, Dines (188441944) 33.F 
Kiinig, Heinz J. (1929-) 164.G, r 
K&rigs, G. 44.B 
Konishi, Yoshio (1947-) 286.X, Y 
Konno, Hiroshi (1940-J 264.r 
Kono, Norio (1940-) 176.G 437.CC 
Koopman, Bernard Osgood (1900&81) 420.F 
Koopmans, Tjalling Charles (I 9 10 85) 128.r 

255.E 376 
Koosis, Paul J. 164.r 
Koranyi, Adam (1932-) 413.r 
Kern, Granino Arthur (19222) 19.r 
Korn, T(h)eresa Mikhailovich 19.r 
Kiirncr, Otto Herman (1934- ) 4.F 
Korobov, Nikolai Mikhailovich (1917-) 4.E 

Korolyuk, Vladimir Semenovich (192%) 250.r 
Kortanek, Kenneth 0. (19366) 255.D, E 
Korteweg, Diederik Johannes (184881941) 387.B 
Kortum, Ludwig Hermann (1836619041 179.B 
Koshiba, Zen’ichiro (19266) 304.F 
Kostant, Bertram (19288) 248.2 287.r 387.C 

437.U, EE 
Kostrikin, Aleksei Ivanovich (1929-) 161.C 
Koszul, Jean Louis (1921-) 200.5 412.r 413.r 
Kotake, Takeshi (1932-) 112.D 321.G 
Kotani, Shinichi (19466) 176.F 
Kiithe, Gottfried (19055) 29.1 125.Y ltiB.B, r 424.r 
Kotr, Samuel (1930&) 374.r 
Kovalevskaya (Kowalewskaja), Sof’ya Vasil’evna 

(1850-91) 107.B 267 286.2 320.1 321.A, B 
Kowalewski, Gerhard (1876-1950) 103.r 
Kowata, Atsutaka (19477) 437.r 
Kra, Irwin (1937-) 122.r 234.r 
Krahn, E. 228.B 391.D 
Kraichnan, Robert H. 433.C 
Krakus, Bronislav 178.r 
Kramers, Hendrik Anthony (1894-1952) 25.B 
Krasinkiewicz, Josef (1944-) 382.C 
Krasner, Marc (1912-85) 145 
Krasnosel’skii, Mark Aleksandrovich (1320-) 251.r 

286.r 290.r 
Krasovskii, Nikolai Nikolaevich (1924-j 163.B 
Kraus, Fritz (190331980) 212.r 
Krazer, Karl Adolf Joseph (1858- 1926) 3.r 
KrCe, Paul (19333) 224.C 
Kreider, Donald Lester (1931l) 81.*, r 
Krein, Mark Grigor’evich (1907-) 37.1~ 68.A, J, r 

89.r l15.r 162 176.K 251.1, r 310.H 391l.H, r 424.0, 
U, V 443.H 

Krein, Selim Grigor’evich (1917-) 162 224.A 378.r 
Kreisel, Georg (I 9233) 356.H 
Kreiss, Heinz-Otto (1930&) 304.F 325.K 
Krellc, Wilhelm 292.r 
Krengel, Ulrich (19377) 136.B, F, r 
Krichever, I. M. 387.F 
Krieger, Wolfgang 136.E, F, H, r 308.1 
Kripke, A. 411.F 
Kripke, Saul 356.G, r 
Krogh, Fred T. (1937-) 303.r 
Krohn, Kenneth 31.r 
Kronecker, Leopold (1823-91) 2.B 10.B 14.L, U 

15.C 47 73.A, r 136.G 156.C 190.Q 192.R 201.H 
236.A,r267269.C347.D422.K450.B,SApp.A, 
Table 4 

Krull, Wolfgang (1899- 1970) 12.B 67.1>, E, J, r 
172.A, 119O.L 277.1284.A, F, G439.L 

Kruskal, Joseph Bernard (I 9288) 346.E, r 
Kruskall, Martin David (19255) 359.F 387.B 
Kruskal, William Henry (1919%) 371.D 
Krylov, Nikolai Mitrofanovich (1879-1955) 290.A 
Krylov, N. S. 402.r 
Krylov, Nikolai Vladimirovich (I 941-) I 15.r 136.H 

405.r 
Krylov, Vladimir Ivanovich (19022) 46.r 217.r 

299.r 304.r 
Krzyianski, Miroslaw 325.r 
Kshirsagar. Anant M. (1931.-) 280.r 
Kubilius, Jonas P. (1921l) 295.r 
Kublanovskaya, Vera Nikolaevna (1920-) 298.F 
Kubo. Izumi (1939-) 136.F, G 395.r 
Kubo, Ryogo (1920-) 308.H 402.K 
Kubota, Tadahiko (188551952) 89.C 
Kubota. Tomio (193&) 14.U 59.H 257.H 450.A, 

J, M 
Kudo, Hirokichi (1916-) 399.r 443.A 



1895 Name Index 
Leadbetter, Malcolm Ross 

Kudryavtsev, Valerii Borisovich (19366) 75.D 
Kuga, Ken’ichi (1956-) 114.K 
Kuga, Michio (1928-) 450.M, S 
Kugo, Taichiro (1949%) 150.G 
Kuhn, Harry Waldo (I 8744) 108.r 173.B, r 255.r 

292.A, B 
Kuiper, Nicolaas H. (1920@) 105.r 114.8 126.G 

183.e. r 286-D 364.F 365.B, 0 
Kuipers, Lauwerens 182.r 354.r 
Kulikov, Leonid Yakovlevich 2.D 
Kulk, W. V. D. 428.r 
Kulkarni, Ravi S. (19422) 72.r 
Kullback, Solomon (1907-) 213.D, 398.G 403.C, r 
Kumano-go, Hitoshi (1935582) 112.L 274.r 323.r 

345.A, B 
Kummer, Ernst Eduard (1810-93) 14.L, N, 0, U 

15.H 145 167.A 172.F 206.A 236 267 379.1450.3 
App. A, Tables 10.11, 19.1 

Kunen, Kenneth (1943-) 33.r 
Kunieda, Motoji (1879- 1954) 121.B 240.B 
Kunita, Hiroshi (19377) 86.r 115.D 260.5 261.r 

406.B, r 
Kiinneth, Hermann (189221975) 200.E, H 201.3 

450.Q 
Kuntzmann, Jean (1912-) 71.r 75x 
Kunugui, Kinjiro (1903375) 22.C F 62.B, E, r 

lOO.A, r 
Kiinzi, Hans Paul (19244) 292.F, r 
Kuo Yung-Huai 25.8 
Kupka, Ivan Adolf-Karl (19377) 126.r 
Kupradzc, Viktor Dmitrievich (1903385) 188.r 
Kuramochi, Zenjiro (1920-) 207.C D 367.E, G 
Kuranishi, Masatake (19266) 72.G 249.D, V 286.5 

428.F, G, r 
Kurata, Masahiro (1943-) 126.5 
Kuratowski, Kazimierz (Casimir) (1X96- 1980) 

22.D,G,r79.D.r 186,H425,A,Q,r426 
Kuroda, Shige Toshi (1932-) 331.E 375.C 
Kuroda, Sigckatu (1905572) 41 l.J, r 
Kuroda, Tadashi (I 926 ) 367.E 
Kurosh, Aleksandr Gennadievich (190X-71) 2.E, r 

29.5 103.r 161.A, r 190.r 337.r 
Kurosu, Konosuke (189331970) 240.B 
Kiirschak, Jozsef(l86441933) 439.L 
Kurth, Rudolf(l917-) 116.r 
Kurusima, Yosihiro (?-1757) 230 
Kusaka, Makoto (176441839) 230 
Kushner, Harold Joseph (19333) 86.E 405.r 
Kushnirenko, Anatolii Georgievich 418.r 
Kusunoki, Yukio (19255) 143.r 207.C, D, r 367.G, I 
Kutta, Wilhelm Martin (I 86771944) 301.D 303.D 
Kuwabara, Ruishi (1951l) 391.N 
Kuyk, Willem (19344) 32.r 

L 

Lacey, Howard Elton (19377) 37.r 
Lachlan, Alistair H. 276.F 
Lacroix, Sylvestre Francois (176551843) 181 
Ladyzhenskaya, Ol’ga Aleksandrovna (1922 -) 

204.B-D, r 286.r 323.P 
Lafontaine, Jacques (19444) 364.H 
Lagrange, Joseph Louis (1736618 13) 4.D 20 46.A, 

B 82.A83.C D 105.A 106.E, L 107.A, B 109 126.A, 
E, L 150.B 151.8 172.A, F 190.Q 205.A223.A238 
252.D,K266271.F274.C275.A296.A301.C 
322.B 324.D 336.G 342.A 420.B, D 428.C 442.C 
App. A, Tables 9.IV, 14.1, 15. 21 .I1 

Laguerre, Edmond Nicolas (I 834486) 76.B 137 
299.A 317.1~ 429.B App. A, Tables 14.11, 26.VI 

Lainiotis. Dimitri G. 86.r 
Lakshmikantham, Vangipuram (19244) 163.r 
Laksov, Dan (1940-) 9.E 
Lamb, Sir Horace (1849- 1934) 205.r 446.r 
Lambert, Jack D. 303.r 
Lambert, Johann Heinrich (1728877) 83.A, E 332 

339.c 
Ldmbert, Robert Joe (1921-) 303.r 
Lame, Gabriel (179551870) 133.B, C 145 167.E 
Lamperti, John Williams (1932-) 44.E 342.r 
Lance, E. Christopher (1941l) 308.F 
Lanczos, Cornelius (1893-1974) 298.D, E 301.5, N 

302.r 
Land. A. H. 215.D 
Landau, Edmund Georg Herman (1877-1938) 

4.A, r43.J. K, r 77.F 87.G, r 106.r 107.A 121.C-E 
123.8, F, r 131.r 160.G 216.r 240.B 242.A, r 294.r 
295.D 297.r 339.r 347.r 450.1, r 

Landau, Lev Davidovich (1908868) 130.r 146.A, 
C, r 150.r 205.r 259.r 402.r 433.B 

Landau, Yoan D. 86.r 
Landen, John (1719-90) 134.B App. A, Table 

16.111 
Landkof, Naum Samoilovich (19155) 338.r 
Landsberg, Georg(1865-1912) 11.r 
Landshoff, Peter Vincent (1937-) 146.r 386.r 
Lane, Jonathan Homer (1819-80) 291.F 
Landford, Oscar Erasmus, III (1940&) 126.K 

15O.C 340.B, F 402.G 
Lang, Serge (19277) 3.M, r 6.r 12.B 14.r 28.r 105.r 

118.D, F, r 134.r 172.r 182.r 198.r200.r 256.r 
277.r 337.r 368.r 430.r 450.r 

Langevin, Paul (1872- 1946) 45.1 402.K 
Langhaar, Henry L. 116.r 
Langlands, Robert Phelan (19366) 32.H, r 

437.DD, r 450.A, G, N, 0, S, T 
Lapidus, Leon (1910-75) 303.r 
Laplace, Pierre Simon (174991827) 30.B 103.D 

107.8 126.A 192.F 194.B 239 240.A 250.A 266 
306.A 323.A 342.A, r 401.E 442.D App. A, Tables 
12.1, 18.11 

Lappo-Danilevskii, Ivan Aleksandrovich 253.r 
LaSalle, Joseph Pierre (1916683) 86.F 
Lascoux, Jean 146.A, C 
Lashnev, Nikolai Serafimovich 425.CC 
Lashof, Richard Kenneth (19222) 279.C 365.0 
Lasker, Emanuel (186881941) 12.B 
Latter, Robert H. (19466) 168.B 
Laufer, Henry B. (19455) 418.r 
Laugwitz, Detlef (19322) 111 .r 
Laurent, Pierre Alphonse (1813-54) 198.D 339.A 
!>aurent-Duhamel, Marie Jeanne (179771872) 

322.D 
Lauricella, G. 206.D 
Lavine, Richard B. (19388) 375.C 
Lavita, James A. 375.r 
Lavrent’ev, Mikhail Alekseevich (1900-80) 336.F 

352.A, D, E 436.1 
Lavrik, Aleksandr Fedorovich (19277) 123.E 
Lawler, Eugene L. (19333) 66.r 281.r 376.r 
Lawley, Derrick Norman 280.B, G, r 346.F, r 
Lawson, Charles L. 302.r 
Lawson, Herbert Blaine, Jr. (19422) 80.r 154.r 

178~ 275.F, r 364.H 365.K 
Lax, Peter David (19266) 112.5, P, S 204.r 274.r 

304.F 321.G 325.H 345.A, r 375.H 387.C r 
Lazard, Daniel (1941-) 200.K 
Lazard, Michel Paul (19244) 122.F 
Lazarov, Connor (1938) 154.H 
Leadbetter, Malcolm Ross (1931l) 395.r 
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Lebesgue, Henri L&on 
1896 

Lebesgue, Henri Leon (1875- 1941) 20.r 22.A 84.D 
93.F 94.C r 117.8, D, r 120.A, B, D 136.A, E 156.C 
159.ApC, J 160.A 166.C 168.B 179.r 221.A-C 244 
246.C 270.D, E, G, J, L, r 273.F 379,s 38O.C D, r 
388.8 

Lebowitz. A. 134x 
Lebowitz, Joel Louis (1930&) 136.G 
LeCam, Lucien (Marie) (1924-) 341.r 398.r 399.K, 

M, N, r 
Ledger, Arthur Johnson (1926-) 364.r 
L& Dung Trang (1947-) 418.1 
Lee, Benjamin W. (1935577) 132.r 
Lee, E. Bruce (19322) 86.r 
Lee Tsung Dao (19266) 359.C 
Lee, Y. W. 95.r 
Leech, John 151.1 
Leela, S. 163.r 
Lefebvre, Henri (19055) 101.r 
Lefschetz, Solomon (188441972) 3.A 12.B 15.B 

16.P, U, V 79.r 93.r 126.A, r 146.r 153.B, C, r 170.r 
201.A, E, 0, r 210.r 290.r 291.r 394.r 410.r 418.F, I 
422.r 426.*, r 450.Q 

Legendre, Adrien Marie (1752-1833) 4.D 46.C 
82.A 83.B 107.A 109 123.A 134.A, F 145 174.A 
266 296.A, B 297.H. 1342.A 393.A-C 419.C 
App. A, Tables 14.11, 15.IV, 16.1, IV, 18.11, III 

Lehman, R. Sherman (1930&) 385.r 450.1 
Lehmann, Erich Leo (1917-) 371.A, C, H, r 396.r 

399.C E, H, P, r 400.B, r 
Lehmann, Harry Paul (19244) 150.D 
Lehmer, Derrick Henry (19055) 145 301.K 354.B 
Lehmer, Derrick Norman (1867-1938) 123.r NTR 
Lehmer, Emma (19066) 145 
Lehner, Joseph (1912-) 32.r 
Lehrer, G. I. App. B, Table 5 
Lehto, Olli (1925-) 62.C 352.C 
Leibenzon (Leibenson), Zinovii Lazarevich 

(1931l) 192.Q 
Leibler, Richard Arthur (19144) 398.G 
Leibniz, Gottfried Wilhelm, Freiherr von (1646- 

1716) 20 38 75.A 106.D 107.A 156.B 165.A 
245 265 283 293.A 332 379.C App. A, Tables 
9, 10.111 

Leith, Cecil Eldon, Jr. (1923-) 433.C 
Leja, Franciszek (Franqois) (1885-1979) 48.D 
Lelong, Pierre (1912-) 21.r 
Lelong-Ferrand, Jacqueline (1918-) 364.r 
Lemaire, Luc R. (1950&) 195.E, r 
Lenstra, J. K. 376.r 
Leon, Jeffrey S. 151 .I 
Leonardo da Vinci (1452-1519) 360 
Leonardo Pisano - Fibonacci 
Leontief, Wassily W. (1906-) 255.E 
Leontovich, A. M. 420.G 
Leopoldt, Heinrich Wolfgang (19277) 14.D, U 

450.A, J 
Leray, Jean (1906-) 20 112.B 125.A 146.A 148.A, E 

200.5 201.5 204.B, D, r 240.r 286.C D 321.G 323.D 
325.1, J, r 383.5, r 426 

Lerner, R. G. 414.r 
LeRoy, Edouard (1870-1954) 379,s 
Lesley, Frank David 275.C 
Lettenmeyer, Fritz (1891-1953) 254.D 289.D 314.A 
Levelt, Antonius H. M. 428.r 
LeVeque, William Judson (1923-) 118.r 295.r 296.r 

297.r 430.r 
Levi, Eugenio Elia (188331917) 13.Q 21.F, I, Q 

112.D 1% 248.F 214.G 282 321.G 323.B 325.H 
344.A 

Levi, Friedrich Wilhelm (1888-1966) 2.E 122.B 

Levi-Civita, Tullio (1873-1941) 80.A, K 109.*, r 
364.B 420.F 

Levin, Viktor Iosifovich (1909%) 198.r 211.r 
Levine, Jerome Paul (1937-) 114.D 235.G 
Levinson, Norman (1912-75) 107.r 123.B 160.G 

252.r 253.r 254.r 314.C r 315.r 316.r 394.r 450 
Levitan, Boris Moiseevich (1914-) 112.0 287.C 

315.r 375.G 387.D 
Levy, Azriel (1934-) 22.F 33.F, r 356.G 
Levy, Paul (188661971) 5.B, E, r45.A, E, G, I, r 

115.r 159.1 176.A, E, F 192.N 260.5 261.A 262.A 
341.E-G 342.D 406.F 407.A, B 

Lewin, L. 167.r 
Lewis, Daniel Ralph (1944-) 443.A 
Lewis, Donald J. (19266) 4.E 118.D, F 
Lewis, Richard M. 127.G 
Lewy, Hans (19044) 112.C 274.G, I 255.B 300.r 

304.F 320.1 323.1 334.F 
Li Chih (119221279) 57.B 
Li, Peter Wai-Kwong (1952-) 391.D, N 
Li Tien-Yien (1945-) 126.N 303.G 
Li Yen (1892-1963) 57.r 
Liao San Dao (1920&) 126.5 
Lichntrowicz, Andre (19155) 80.r 152 C 359.r 

364.F, H, r 391.D 
Lichtenstein, Leon (1878-) 217.r 222.1 
Lickorish, William Bernard Raymond 114.L 154.B 
Lie, Marius Sophus (1842-99) 13.C, F 76.B, C 

105.0, Q 107.B 109.0, Q 137 139.B 183 190.Q 
247 248.A, B, F, H, P, S,T, V, r 249.&D, G, H, 
L, M, V, r 267 286.K 313.D 406.G 431.C, G 437.U 

Lieb, Elliott Hershel (1932-) 212.B, r ,402.r 
Lieb, Ingo (1939-) 164.K 
Lieberman, David Ira (1941-) 16.R 23.G 
Lieberman, Gerald J. (19255) STR 
Liebmann, Karl Otto Heinrich (187441939) 111.1 

365.5 
Libnard, Alfred 290.C 
Liepmann, Hans Wolfgang (1914-) 205.r 
Lifshits, Evgenii Mikhailovich (1915-) 130.r 150.r 

205.r 259.r 402.r 
Liggett, Thomas Milton (19444) 162 :!86.X 340.r 
Lighthill, Michael James (1924-) 25.B, r 160.r 205.r 

446.r 
Ligocka, Ewa (1947-) 344.D 
Lill 19.B 
Lin, C. C. 433.r 
Lin Jiguan 108.B 
Lin Shu 63.r 
Lind, Douglas A. (19466) 136.E 
Lindeberg, J. W. 250.B 
Lindelof, Ernst Leonhard (1870-1946) 43.C H 

123.C 425,s 
Lindemann, Carl Louis Ferdinand von (18522 

1939) 179.A 332 430.A, D 
Lindenstrauss, Joram (1936-) 37.M, N, r 168.r 

443.H 
Lindley, Dennis Viktor (1923%) 401.r 
Lindow, M. App. A, Table 21.r 
Linfoot, Edward Hubert (1905-82) 34.7.E 
Linnik, Yurii Vladimirovich (1915-72) 4.A, C, E 

123.D, E 136.H 250.r 341.E 374.H 
Lionnet, Eugene (1805-84) 297.D 
Lions, Jaques-Louis (1928-) 86.r 112.E, F 204.B 

224.A, E, F, r 286.C 320.r 322.r 323.r 327.r 37&F, 
I, r 405.r 440.r 

Liouville, Joseph (1809982) 107.A 112.1 126.L 
131.A 134.E 171 182.G 219.A 252.C ‘272.A 315.B 
402.C 430.B 

Lippmann, Bernard Abram (1914-) 3 75.C 
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Malcolm, Donald G. 

Lipschitz, Rudolf Otto Sigismund (1832-1903) 
84.A 107.A 159.B 168.B 279.C 286.B 316.D 406.D 

Liptser, Roberg Shevilevich (1936-) 86.E 405.r 
Listing, Johann Benedikt (1808-82) 426 
Little, C. N. 235.A 
Little, John A. 365.N 
Little, John Dutton Conant (1928-) 133x 
Littlewood, Dudley Ernest (1903-79) App. B, 

Table 5.r 
Littlewood, John Edensor (188551977) 4.C, D 

43.E, r 88.r 123.B, C 159.G 168.B 192.D, P 211.r 
224 242.B, r 317.B 339.B, C 379.S 450.B, I App. A, 
Table 8 

Liu Chung Laung (19344) 66.r 
Liu Hui (fl. 260) 57.A 332 
Liulevicius, Arunas L. (1934-) 202.S 
Livesay, George Roger (19244) 442.L 
Livingood, John 328 
L&hits, Mikhail Samulovich (1917-) 68.5 
Lobachevskii, Nikolai Ivanovich (1793- 1856) 35.A 

181 267 285.A 
Loday, Jean-Louis (19466) 237.r 
Loeb, Peter Albert (19377) 293.D, r 
Loeve, Michel (1907779) 341.r 342.r 
Loewy, Alfred (187331935) 190.P 
Liifstrom, Jorgen (1937-) 224.r 
Logunov, Anatolii Alekseevich (19266) 150.r 
Lohwater, Arthur John (1922-82) 62.r 
Lojasiewicz, Stanislaw (1926-) 16.r 58.E 
Lommel, Eugen Cornelius Joseph van (1837799) 

39.C App. A, Table 19.IV 
Lomonosov, V. I. 251.L 
Langley-Cook, Laurence H. 214.r 
Longo, Giuseppe (1941-) 213.r 
Lonsdale, Dame Kathleen Yardley (1903-71) 92.r 
Looman, H. 198.A 
Looman, M. 100.A 
Loomis, Herschel H., Jr. 75.D, r 
Loomis, Lynn H. (1915-) 36.r 126x 192.r 225.r 
Loos, Ottman 412.r 
Lopatinskii, Yaroslav Borisovich (1906681) 323.H 

325.K 
Lopez de Medrano, Santiago 114~ 
Lorentz, George G. (1910-) 168.B 
Lorentz, Hendrik Antoon (185331928) 60.5 150.B 

258.A 359.B 391.1 402.H 
Lorenz, Edward N. 126.N 433.B, r 
Lorenz, Max 0. 397.E 
Lorenzen, Paul Peter Wilhelm (19155) 243.G 
Loria, Gino (1862-1954) 93.r 
Los, Jerzy Maria (1920&) 276.F 293.C 
Loschmidt, Joseph (1821-95) 41.A 
Losik, Mark Vol’fovich (1935-) 105.r 
Lotz, Heinrich P. 310.H 
Louveau, Alain 22.G 
Lovasz, L&z16 (19488) 186.r 
Love, Augustus Edward Hough (186331940) 271.G 
Love, Clyde Elton (1882-) 107.A 
Low, Francis Eugene (1921-) 150.C 361.r 
Lowdenslager, David B. (1930-) 164.G, H 
Lbwenheim, Leopold (18781940) 97.B 156.E, r 

276.D 
Liiwner, Karl (Loewner, Charles) (189331968) 

212.r 438.B, C 
Lozinskii, Sergei Mikhailovich (1914-) 314.D 
Lii Yinian 17.D 
Lubatiski, J. K. 258.D 
Lubin, Jonathan (19366) 257.r 
Lubkin, Saul (1939%) 450.Q 
Lucas, William F. (19333) 173.D, E, r 

Lute, Robert Duncan (1925-) 96.r 173.C 346.G 
Liiders, Gerhart Claus Friedrich (1920-) 150.D 

386.B 
Ludwig, Donald A. (19333) 321.G 325.L, r 345.r 
Luenberger, David G. (1937-) 86.E 264.r 
Lukacs, Eugene (1906-) 341x 
Lukaszewicz, Jan (18781956) 411.L 
Luke, Yudell L. 389x App. A, Table 16 NTR 
Lumer, Giinter (19299) 164.F, G 
Lundberg, Filip 214.C 
Luneburg, Rudolf Karl (1903-49) 180.A, r 325.L 
Lunts, G. 198.r 
Liiroth, Jakob (1844-1910) 16.5 
Lustzig, G. App. B, Table 5 
Luther, Herbert A. 304.r 
Lutz, Elizabeth (1914-) 1 lS.D, E 
Luxemburg, Wilhelmus Anthonius Josephus 

(19299) 293x 
Luzin (Lusin), Nikolai Nikolaevich (1883-1950) 

22.A, C, F, G, I, r 100.A 156.C 159.1270.5 425CC 
Lyapin, Evgenii Sergeevich (19144) 190.r 
Lyapunov, Aleksandr Mikhailovich (185771918) 

107.A 120.A 126.A, F 163.G 250.B 286.V 314.A 
394.A, C, r 398.C 443.G 

Lyapunov, Aleksei Andreevich (191 l-73) 22.r 
Lyndon, Roger Conant (1917-) 97.r 200.M 
Lyons, Richard Neil (1945-) 151.1 
Lyusternik, Lazar’ Aronovich (1899-1981) 279.G 

286.Q, r NTR 

M 

Maak, Wilhelm (1912-) 18.r 
Maass, Hans (191 l-) 32.F, G, r 450.M 
Macaulay, Francis Sowerby (1862-1937) 12.B 

284.D 
Mach, Ernst (183881916) 116.B 205.B 271.A 
Machin, John (1680-1751) 332 
Machover, Maurice (1931-) 356.G 
Mack, C. 301.N 
Mackay, Alan L. 92.F 
MacKenzie, Robert E. (1920&) 279.C 
Mackey, George Whitelaw (1916-) 36.G 424.M, N 

437.EE 
MacLane, Saunders (1909%) 8.r 52s 70.F, r 91.r 

103.r 200.M, r 201.G 202.T 277.r 305.A 
Maclaurin, Colin (169881746) 20 266 379.5 
MacMahon, Major Percy Alexander (1854-1929) 

328 330.r 
MacPherson, Robert Duncan (1944-) 366.E, r 
MacRobert, Thomas Murray 393.r 
Madansky, Albert 408.r 
Maeda, Fumitomo (189771965) 162 
Maeda, Fumi-Yuki (1935-) 207.D, r 
Maeda, Yoshiaki (1948-) 364.G 
Maehara, Shoji (19277) 41 l.J, r 
Magenes, Enrico (19233) 112.E 323.r 
Magidor, Menachem 33.r 
Magnus, Wilhelm (19077) 161.B, r 389.r App. A, 

Table 2O.IV 
Mahalanobis, Prasanta Chandra (1893-1972) 

280.E 
Mahler, Kurt (1903-) 182.r 430.B, C 
Mahlo, P. 33.r 
Mainardi, Gaspare (1800-79) 1 ll.H App. A, Table 

4.1 
Maitra, Ashok P. 22.E 396.r 
Majima, Hideyuki (1952Z) 428.H 
Makarov, Vitalii Sergeevich (1936-) 122.G 
Malcolm, Donald G. 376.r 
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Malfatti. Gian Francesco 

1898 

Malfatti, Gian Francesco ( 173 1~ 1807) 179.A Maschke, Heinrich (1853-1908) 362.13 
Malgrange, Bernard (19288) 58.C. E 68.F 112.B, Maschler, Michael (1927-) 173.D 

C, R 125.W 320.H 418.r 428.H Maskit, Bernard (1935-) 122.1 234.D, r 416.r 
Malliavin, Paul (1925.-) I lS.D, r 192.M 406.E, r Masley, John M. (1947-) 14.L 
Malmquist, Johannes (1882.. 1952) 254.D 28&B, C, Maslov, Viktor Pavlovich (1930%) 30.r 274.C I 

r 289.13&D 314.A 345.r 
Mal’tsev, Anatolii Ivanovich (1909967) 29.F 249,s Massau, Junius (185221909) 19.B 

276.D Masser, David W. 134.r 430.D. r 
Malus, Etienne Louis (177551812) 180.A Massey, William S. (1920-) 91.r 17O.r 201.r 
Mandelbaum, Richard (19466) 114.r 202.M, P 410.r 
Mandclbrojt, Szolem (1899-1983) 58.F 134.C r Masuda, Kazuo (19466) 72.r 

339.A, r Masuda, Kyuya (1937-) 378.1, J 
Mandelbrot, Benoit B. (19244) 246.K 433.r Masuyama, Motosaburo (1912-) STR 
Mandelstam, Stanley (19288) 132.C Matano, Hiroshi (1952-) 263.C 303.G, r 
Marie, Ricardo 126.5 Mather, John Norman (19422) 5l.CE 126.5 
Mangasarian, Olvi L. (19344) 292.D, r 154.E, r 286.5 418.r 
Mangoldt, Hans Carl Friedrich van (185441925) Mathews, George Ballard (1861-1922) 39.r 

123.B 450.B Mathieu, Emile Leonard (1835-90) 15,l.H 268.A-D 
Manin, V. G. 80.r Matiyasevich, Yurii Vladimirovich 9’7.*, r 118.A 
Manin, Yurii Ivanovich (1937-) 16.5, V 80.r 118.E 196 

387.r 450.5, M Matsuda, Michihiko (1938-) 428.G 
Mann, Henry Berthold (19055) 4.A 37l.A, C 421.r Matsumoto, Hideya (1939-) 13.R 122.F 
Mann, Larry N. (19344) 364.F Matsumoto, Kazuo (1922-) 41 l.J 
Manna, Zohar (1939-) 75.r Matsumoto, Kikuji (1931-) 62.B 124C, r 
Mannheim, Amedee (183lll906) 11 l.F Matsumoto, Shigenori (1947-) 126.M 
Manning, Anthony Kevin (19466) 51.r 126.5, K Matsumoto, Yukio (1944-) 65.D 114.K 
Mansfield, Richard B. (194ll) 22.F Matsumura, Akitaka (195ll) 41.r 204.F 
Maranda, Jean-Marie A. (?-1971) 362.K Matsumura, Hideyuki (1930-) 284.r 
Marchand, Jean-Paul 375.r Matsusaka, Teruhisa (19266) 12.B 16.P, W, r 
Marchenko, Vladimir Aleksandrovich (1922-) Matsushima, Yozo (1921-83) 32.r 122.F 199.r 

287.C 387.D 249.r 384.r 
Marchuk, Gurii Ivanovich (19255) 304.r Matsushita, Shin-ichi (1922-) 338.L 
Marcinkiewicz, Jozef (1910-) 159.H 224.A, E Matsuyama, Noboru (1916-) 310.r 

336.E Mattis, Daniel Charles 402.r 
Marden, Morris (19055) 1O.r Mattuck, Arthur Paul (1930-) 118.E 450.P 
MardeSic, Sibe (19277) 382.A Matuda, Tizuko (19233) 30.r 28&B, r 289.r 
Margulis, Grcgorii A. (I 9466) 122.G Matumoto, Takao (19466) 65.C 114.iK 

Marion, Jerry Baskcrville (1929-) 271.r Matunaga Yosisuke (1692??1747) 230 332 
Markov, Andrei Andreevich (185661922) 5.H Matuzaka, Kazuo (1927-) 7.r 343.r 

44.D, E 126.F, J 127.E 136.B, D,G 150.F 176.F Matveev, Vladimir Borisovich 387.r 
182.G 260.A, H, J 26l.A, B 336.C 340.C 379.1 Maunder, Charles Richard Francis 2’31.r 
403.E 405.C 406.D 407.B Maupertuis, Pierre Louis Moreau de ( ’ 698- 1759) 

Markov, Andrei Andreevich (19033) 31.B 161.B 180.A 441.B 
356.r Maurer, Ludwig (1859-?) 249.R 

Markus, Lawrence J. ( 1922 ) 86.r 126.A, H, L, r Maurus (c. 780-c. 856) 372 
291.r Mautner, Friedrich Ignaz (1921-) 136.G 308.G 

Markwald, Werner 81 .A, r 437.EE 
Marotto, Frederick Robert (1950 -) 126.5 Mawhin, Jean 290.r 
Marsden, Jerrold E. (19422) 126.r 183.r 271.r 286.r Maxlield, John E. (1927-) NTR 

3 16.r 364.H 420.r Maxwell, Albert Ernest 280.r 346.F, I 
Marshall, Donald E. 164.1 Maxwell, George (19466) 92.r 
Marsten, Roy Earl (19422) 215.r Maxwell, James Clerk (1831-79) 51.F 130.A 150.A 
Martin, Andre (193ll) 150.D 386.B, r 180.A 393.D 402.B, H 419.B 
Martin, Donald A. 22.D, F. H, r 33.F, r Maxwell, William L. (19344) 376.r 
Martin, Harold C. 304.r May, J. Peter (19399) 70.r 
Martin, Paul C. 308.H May, Kenneth Ownsworth (1915-77) 157.r 

Martin, Robert S. 207.C, D 260.1 May, Robert McCredie (19366) 126.N 263.D, r 

Martin, William Ted (191 ll) 21.r Mayer, Dieter H. 402.G, r 
Martineau, Andre (1930-72) 125.W, Y, r 162 168.8 Mayer, Karl Heinz (19366) 431.r 

424.X Mayer, Walter 11l.r ZOl.C, E, L 
Martinet, Jean 1lO.E Maynard. Hugh B. 443.H 
Martin-Liif, Per (1942-) 354.r Maret, Edmond 109.r 115.r 391.r 
Martio. Olli Tapani (1941l) 352.F Mazur, Barry C. (1937-) 16.r 37.C 65.C G 114.C 
Marty, F. (?&1939) 272.H 435.E 126.K 426 450.5, r 
Maruyama Gisiro (1916-86) 115.D 136.D, E 250.r Mazur, Stanislaw (1905581) 36.E 

260.5 395.r Mazurkiewicz, Stefan (188881945) 2:I.C 93.D 426 

Maruyama, Masaki (1944-) 16.Y McAndrew, Michael H. 126.K 136.H 

Maruyama, Toru (1949%) 443.A McAuley, Van A. 301.E 
Masani, Pesi R. (1919-) 395.r McBride, Elna Browning 177.r 

Mascheroni, Lorenzo (1750.-- 1800) 179.B McCarthy, John (19277) 31.C 
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Moldestad. Johan 

McCoy, Barry Malcolm (1940- ) 402.r 
McCoy, Neal Henry (I 9055) 368.r 
McCracken, Marsden 126.r 
McDuff, Dusa Waddington (19455) 30X.F 
McGregor, James 263.E 
McKay, John 151.1 
McKcan, Henry P., Jr. (1930&) 41.C 45.1. r I lS.A, r 

176.F, K 260.5 26l.A, r 323.M 340.F 387.E, r 
391 .B, C, K, r 406.r 407.8 

McLachlan, Norman William (188%) 26X.r 
McLaughlin, Jack (1923-) 151.7 
McMillan, Brockway (1915-) 136.E 213.D 
McShane, Edward James (19044) 310.1, r 
Meeks, William Hamilton, III 235.E 275.C D 

Mehler, Ferdinand Gustav (1835595) App. A, 
Tables 18.11, 19.111 

Mehra, Raman K. 86.r 
Meinardus, Giinter (19266) 32X 
Meinhardt, Hans 263.D 
Meixner, Josef (19088) 268.r 389.r 
Melin, Anders (19433) 345.A 
Mellin, Robert Hjalmar (185441933) 206.D 220.C 
Melrosc, Richard B. (1949) 325.M 
Menaechmus (375325 B.C.) I87 
Mendelson, Elliot (1931-) 33.D, r 319.r 
Menelaus (of Alexandria) (fl. 981) 7.A I87 
Menger, Karl (1902-) 93.D 1 I7.A, B, D, r 426 
Menikoff, Arthur S. (19477) 325.H 
Men’shor, Dmitrii Evgen’evich (18922) 77.A 159.J 

198.A, r 317.8 
Meray, Hugues Charles Robert (1835. I91 I) 267 
Mercer, J. 217.H 
Mergclyan, Sergei Nikitovich (19288) 164.5 336.F 

367.G 
Merluzzi, P. 303.r 
Merman, G. A. 420.D 
Mersenne, Marin (158X-1647) 297.E App. B, 

Table I 
Mertcns, Franz Carl Josef (1 X40- 1927) 123.A 

379.F 
Meschkowski, Herbert (1909-) 188.r 
Meshalkin, Lev Dmitrievich (19344) 136.E 
Messiah, Albert M. L. (1921l) 351.r 
Messing, William (19455) 450.Q 
Mttivier, Michel(193ll) 443.H 
Meusnier, Jean Baptiste Marie Charles (1754-93) 

109 11 l.H 275.A 334.8 
Meyer, Franz (I 85661934) 267 
Meyer, Kenneth R. (1937-) l26.K, I, M 
Meyer, Paul-Andre (19344) 261.r 262.D, r 406.r 

407.B. r 
Meyer, Wolfgang T. (I 9366) 109.r 17X.r 279.G r 
Meyer, Yves 251.r 
Michael, Ernest Arthur (19255) 425.X, Y, AA, CC 
Michel, Rene 178.r 304.r 
Michelson, Albert Abraham (18521931) 359.A 
Migdal, A. A. 361.C 
Mikami, Yoshio (1875.-1950) 230.r 
Mikhailov, A. V. 387.G 
Mikhlin, Solomon Grigor’evich (I 908%) 46.r 2 17.r 
Mikusinski, Jan G. (1913%) 306.A, B 
Miles, G. 136.E 
Miigram, Arthur N. (!912-) 112.5 
Milgram, R. James (19399) 65.r 
Miller, Charles F., III (1941l) 97.r 
Miller, David Charles(l9lR~) 291.F 
Miller, K. S. 104.r 
Miller, Louis W. 376.r 389.r 
Millett, Kenneth Cary (I 94l-) 154.H 
Mills, Robert L. (1927-) XO.Q, r 150.G 

Mil’man, David Pinkhusovich (1913-) 37.G 424.U 
443.H 

Milne, James Stuart (1942-) 450.r 
Milne, William Edmund (1890@) 303.E 
Milne-Thomson, Louis Melville (1891-1974) 104.r 

NTR 
Milnor, John Willard (1931-) 56.F, r 65.C, E 70.C 

99.r 109.r llI.r I l4.A-C, F-K, r 126.N 147.H, P 
154.H 178.E 237.J, r 365.0 391.C 418.D, r 426 
App. A, Table 5.V 

Mimura, Masayasu (194ll) 263.D 
Mimura, Yositaka (189881965) 434.C r 
Mimura. Yukio (1904-84) 162 
Minakshisundaram, Subbaramiah (1913-6X) 121.r 

323.M 379.r 391.B, r 
Minemura, Katsuhiro (19455) 437.r 
Minkowski, Hermann (186441909) 14.B, D, U 

X9.D, E 118.C 122.E, F l82.A, C-E, r 196 211.C 
255.8 258.A 296.A 34&D, G, K 359.B App. A, 
Table 8 

Minlos, Robert Adol’fovich (1931-) 258.r 341.5 
424.T 

Minorsky, Nicholas (I 885-) 163.8 
Minsky, Marvin C. 385.r 
Minsky, M. L. 75.r 
Minty, George James (19299) 281.r 286.C 
Miranda, Carlo (1912-82) 323.r 
Mirimanov, D. 145 
Mishchenko, Evgenii Frolovich (19222) 86.r 
Mishkis, Anatolii Dmitrievich 163.B 
Misiurewicz, Michal(l9488) 126.K 
Misner, Charles William (19322) 359.r 
Mitchell, Andrew Ronald 223.r 
Mitchell, Benjamin Evans (1920&) 52.N, r 200.1 
Mitome, Michiwo (1909-76) STR 
Mitropol’skii, Yurii Alekseevich (1917-) 290.D, F 
Mitsui, Takayoshi (1929-) 4.F. r 123.F 328 
Mittag-Leffler, Gustav Magnus (184661927) 47 267 

272.A 
Mityagin, Boris Samuilovich (19377) 424.S 
Miura, Robert Mitsuru (19388) 387.B 
Miwa, Megumu (19344) I18.E 
Miwa, Tetsuji (1949.-) 112.R 253.E 387.C 
Miyadera, Isao (19255) 162 378.B 
Miyajima, Kimio (194X-) 72.G 
Miyajima, Shizuo (1948%) 310.H 
Miyakawa, Tetsuro (194X-) 204.C 
Miyake, Katsuya (1941-) 16.2 
Miyakoda, Tsuyako (1947-) 301.C 
Miyanishi, Masayoshi (1940-) 15.H, r 
Miyaoka, Yoichi (1949%) 72.K, r 
Miyata, Takehiko (1939983) 226.r 
Miyoshi, Tetsuhiko (193X-) 304.r 
Mizohata, Sigeru (19244) I l2.B, D, P 274. B, G, I 

320.1, r 321.F, G, r 323.M 325.G, H 345.A 
Mizukami, Masumi (1951l) 16.r 
Mizumoto, Hisao (1929%) 367.1 
Mizutani, Akira (19466) 304.r 
Mizutani, Tadayoshi (I 9455) 154.G 
Mobius, August Ferdinand (1790-1868) 66.C 74.E 

76.A 267 295.C 410.8 
Moedomo, S. 443.H 
Mohr, Georg (1640-97) 179.B 
Moise, Edwin Evariste (19188) 65.C 70.C 79.D 93.r 

139.r 410.r 
Moiseiwitsch, Benjamin Lawrence (1927-) 441.r 
Moishezon, Boris Gershevich (1937-) 16.E, U, W 

72.r 
Molchanov, Stanislav Alekseevich 115.D 340.r 
Moldestad, Johan (19466) 356.F, r 



Name Index 
Moler, Cleve B. 

1900 

Moler, Cleve B. (19399) 298.r 302x 
Monge, Gaspard (174661818) 107.B 109 158 181 

255.E 266 267 278.A 324.F 
Monin, Andrei Sergeevich 433.r 
Monte], Paul Antoine Aristide (I 87661975) 272.F 

424.0 435.E, r 
Montgomery, Deane (19099) 196 249.V, r 423.N 

431.r 
Montgomery, Hugh L. (19444) 14.L 123.E, r 
Montucla, Jean Etienne (1725599) 187x 
Mook, Dent T. 290.r 
Moon, Philip Burton (19077) 130.r 
Moore, Calvin C. (1936-) 122.F 
Moore, Eliakim Hastings (186221932) 87.H, K, r 
Moore, John Colemar (19233) 147.r 200.r 203.r 
Moore, John Douglas 365.5 
Moore, Robert Lee (1882-1974) 65.F 273.K 

425.AA 426 
Moran, Patrick Alfred Pierce (1917-) 218.r 
Morawetz, Cathleen Synge (19233) 112.S 345.A 
Mordell, Louis Joel (18881972) 118.A, E 
Morera, Giacinto (185661909) 198.A 
Morf, Martin (19444) 86.r 
Morgan, Frank 275.C 
Morgenstern, Oskar (1902-77) 173.A, D 376.r 
Mori, Akira (1924455) 352.8, C 367.E 
Mori, Hiroshi (19444) 275.F 
Mori, Mitsuya (19277) 59.H 
Mori, Shigefumi (1951-) 16.R, r 364x 
Mori, Shin’ichi (19 13%) 207.C r 
Mori, Shinziro (189331979) 284.G 
Moriguti. Sigeiti (1916-) 299.B 389.r NTR 
Morimoto, Akihiko (19277) 1lO.E 126.5 344.C 
Morimoto, Haruki (I 930%) 399.r 
Morimoto, Hiroko (1941l) 224.F 
Morimoto, Mituo (19422) 125.BB, DD 162 
Morimune, Kimio (19466) 128.C 
Morishima, Taro (1903%) 145.* 
Morita, Kiiti (1915-) 8 117.A, C, E, r 273.K 425.S 

x-z, cc 
Morita, Masato (1927-) 353.r 
Morita, Reiko (19344) 353.r 
Morita, Shigeyuki (19466) 154.G 
Morita, Yasuo (1945-) 450.U 
Moriya, Mikao (1906-82) 59.G. H 
Morlet, Claude 147.Q 
Morley, Edward Williams (1838- 1923) 359.A 
Morley, Michael 276.F, r 
Morrey, Charles Bradfield, Jr. (1907-84) 46.r 78.r 

112.D 125.A 194.F, r 195 246.C 275.A, C, r 323.r 
334.D 350.r 352.B 

Morris, Peter D. 443.H 
Morrow, James 72.K 
Morse, Harold Marston (189221977) 109 114.A, 

F 126.5 178.A 275.B 279.A-F 286.N, Q, r 418.F 
Morse, Philip McCord (1903-) 25.r 133.r 227x 
Morton, Keith W. (1930-) 304.r 
Moschovakis, Yiannis Nicholas (19388) 22.D, F, 

H, r 33.r 356.G, r 
Moser, Jiirgen (Kurt) (19288) 21.P 55.r 126.A, L, r 

136x 286.5, r 323.L 344.B 42O.C G 
Moser, William 0. J. (1927-) 92x 122.r 151.r 161.r 
Mosher, Robert E. 64.r 70.r 
Mosteller, (Charles) Frederick (19166) 346.C, G 
Mostow, George Daniel (1923-) 13.r 32.r 122.F, G 

249.r 
Mostowski, Andrzej (1913-75) 33.D, r 356.C H 
Motohashi, Yoichi (19444) 123.E 
Motoo, Minoru (1927-) 44.E l15.C D, r 261.r 
Moulin, M. 375.F 

Moulton, Forest Ray (1872-1952) 55.r 303.E 
Moussu, Robert (1941l) 154.H 
Moyal, Jose E. 44.r 
Muchnik, Al’bert Aramovich (19344) 356.D 
Mugibayashi, Nobumichi (19266) 125.BB 
Muhly, Paul Scott (19444) 164.H 
Muirhead, Robb John (19466) 280.r 
Mukherjee, Bishwa Nath 346.r 
Miiller, Claus Ernst Friedrich (1920-) 323.5 393.r 
Muller, David Eugene (1924-) 3Ol.C 
Miller, Werner (19499) 391.M 
Miiller-Breslau, Heinrich Franz Bernhard (1851l 

1925) 19.r 
Mullikin, Thomas Wilson (19288) 44 r 
Mullis, Clifford T. (1943%) 86.D 
Mumford, David Bryant (19377) 3.A, N, r 9.J, r 

12.B 15.E, F, r 16.R, W, Y, Z, r 32.r 72.G 226.r 
418.D 

Munkres, James Raymond (1930-) 70.r 105.r 
114.C r 

Miintz, C. H. 336.A 
Miinzner, Hans-Friedrich 365.1 
Murakami, Shingo (1927-) 32.r 122.F 384.r App. A, 

Table 5.1 
Muramatu, Toshinobu (19333) 168.B 224.E 

251.0 
Murasugi, Kunio (1929-) 235.A, E, r 
Murata, Hiroshi (1945-) 75.r 
Murray, Francis Joseph (1911-) 136.1; 308.F 
Murre, Jacob P. (1929-) 16.W 
Murthy, M. Pavaman 237.r 
Muskhelishvili, Nikolai Ivanovich (189 1~ 1976) 

217.r 222.r 253.r 
Muto, Yosio (1912-) 364.F, r 
Mutou, Hideo (1953-) 391.E 
Mycielski, Jan (1932-) 22.H 33.F, r 
Myers, Sumner Byron (1910-55) 152.1” 178.B 
Myrberg, Pekka Juhana (1892-1976) 367.E 

N 

Nachbin, Leopold0 (1922-) 21.r 37.M 425.BB 
Nagaev, Sergei Viktrovich (19322) 25O.r 
Nagamati, Sigeaki (1945-) 125,BB 
Nagami, KeiB (1925-) 117.A, C, r 273 K, r 425.Y, 

AA, CC, r 
Nagano, Tadashi (1930-) 191.r 275.F 279.C 344.C 

364.F 365.F, K 
Naganuma, Hidehisa (1941-) 450.L 
Nagao, Hirosi (1925-) 151.H 200.L 362.1 
Nagasawa, Masao (19333) 44.r 
Nagase, Michihiro (1944-) 251.0 
Nagata, Jun-iti (19255) 117.C 273.K, r 425.r 
Nagata, Masayoshi (19277) 8 12.B 13.1 15.r 16.D, 

T, V, AA, r 61.1, r 196 226.G, r 277.r ;!84.E, G 
369.r 370.r 

Nagell, Trygve (1895-) 118.D 
Nagumo, Mitio (19055) 162 286.2, r 316.E, r 

323.D 
Na’im, Linda 120.E 207.C 
Naimark (Neumark), Mark Aronovich (1909-78) 

36.G r 107.r 112.r 192.r 252.r 258x 308.D 315.r 
437.W, EE 

Naito, Hiroo (1950-) 365.F, N 
Nakada, Hitoshi (1951-) 136.C 
Nakagami, Yoshiomi (1940-) 308.r 
Nakagawa, Hisao (1933-) 365.L 
Nakai, Mitsuru (1933-) 169.r 207.C D 
Nakai, Yoshikazu (1920&) 15.C F 16.E r 
Nakajima, Kazufumi (1948-) 384.r 



1901 Name Index 
Nourein. Abdei Wabab M. 

Nakamura, Iku (1947-) 72.K Newman, Maxwell Herman Alexander (189771984) 
Nakamura, Kenjiro (1947779) 310.r 65.C F 93.r 333.r 
Nakamura, Michiko (1937-) 424.X Newton, Sir Isaac (1642- 1727) 20 48.B, F, H 
Nakamura, Tokushi (1930-) 7O.F, r 107.A 126.A 205.C 223.C 254.D 265 27t.A-C 
Nakane, Genkei (166221733) 230 283 299.A 301.D 336.G 337.1338.A 418.D 
Nakanishi, Noboru (1932-) 146.A-C App. A, Table 21 
Nakanishi, Shizu (19244) lOO.A, r Newton, Roger Gerhard (19244) 375.G, r 
Nakano, HidegorB (1909974) 162 310.A 436.r Ney, Peter E. (1930-) 44.C 
Nakano, Shigeo (19233) 21.L 72.H 147.0 232.r Neyman, Jerzy (189441981) 373.A, r 396.F 
Nakano, Tadao (19266) 132.A 400.B, D 401.B, C, F, G, r 
Nakao, Shintaro (19466) 340.r Nicholson, John William (1881-1955) App. A, 
Nakaoka, Minoru (1925%) 70.F, r 153.8 202.P Tables 19.111, IV 

305.A Nickel, Karl L. E. (1924-) 222.r 301.G 
Nakayama, Mikio (19477) 173.E Nickerson, Helen Kelsall (1918-) 94.r 442.r 
Nakayama, Tadasi (1912-64) 6.E 8 29.H, I 59.H Nicolaenko, Basil 41.D 

67.D 172.A 2OO.KpN 243.G Nicolaus Cusanus (1401-64) 360 
Nakazi, Takahiko (1944-) 164.G Nicolescu, Miron (1903-75) 193.r 
Namba, Kanji (19399) 33.r Nicomachus (SO-150?) 187 
Namba, Makoto (1943-) 9.E 72.r Nicomedes (fl. 250? B.C.) 93.H 
Nambu, Yoichiro (1921-) 132.C Niederreiter, HaraId G. (1944-) 182.r 354.r 
Namikawa, Yukihiko (1945-) 16.2 Nielsen, Niels (1865-1931) 167.r 174.r 
Namioka, Isaac (1928) 310.r 424.r Niino, Kiyoshi (1941-) 17.C 
Napier, John (1550&1617) 131.D 265 432.C Niiro, Fumio (19233) 3lO.H 

App A, Tables 2.11, 111 Nijenhuis, Albert (1926-) 72.B 
Narasimhan, Mudumbai S. (1932-) 112.D Nikaido, Hukukane (19233) 89.r 
Narasimhan, Raghavan (19377) 23.r 367.G Nikodym, Otto Martin (18788) 270.L 323.E 380.C 
Naruki, Isao (1944-) 21.P, Q 344.D 443.H 
Nash, John Forbes, Jr. (19288) 173.A, C, r 204.F Nikolai, Paul John (1931l) 151.H 

286.5 323.L 327.G, r 365.B Nikol’skii, Nikolai Kapitonovich (1940-) 251.r 
Navier, Louis Marie Henri (1785-1836) 204.B, Nikol’skii, Sergei MikhaIlovich (1905-) 168.B 

C, F 205.C Nilson, Edwin Norman (19177) 223.r 
Nayfeh, Ali Hasan (1933-) 25.r 290.r Ninomiya, Nobuyuki (19244) 338.C D, J-M 
Necks, Jindiich (19299) 304.r Nirenberg, Louis (1925-) 72.r 112.D, F, H 164.K 
Nedoma, Jiii 213.F 168.B 262.B 274.1286.2, r 304.F 320.1323.H, r 
Ne’eman, Yuval(19255) 132.D, r 345.A, B 365.5 
Nehari, Zeev (1915-78) 77.r 367.G 438.B Nishi, Mieo (19244) 12.B 
Nelson, Joseph Edward (1932-) 115.D 150.F 176.F Nishida, Goro (1943-) 202.U 

293.E, r 341.r 437,s Nishida, Takaaki (1942-) 4l.D, E, r 204.F 263.D 
Nemytskii, Viktor Vladimirovich (190&) 126.E, r 286.2 

394.r Nishijima, Kazuhiko (19266) 132.A 150.r 
Nernst, Hermann Walter (186441941) 419.A Nishikawa, Seiki (19488) 195.r 
N&on, Andre (1922-) 3. M, N, r 15.D 16.P Nishimori, Toshiyuki (1947-) 154.G, H 
Nersesyan, A. A. 164.5 Nishimura, Toshio (1926-) 156.E 
Nesbitt, Cecil James (19122) 29.r 362.r 368.r Nishina, Yoshio (1890-1951) 351.G 
Netto, Eugen (184661919) 177.r 330.r Nishino, Toshio (1932-) 21.L, Q 
Neubiiser, Joachim E. F. G. (19322) 92.F Nishiura, Yasumasa (1950-) 263.r 
Neugebauer, Otto (Eduard) (1899%) 24.r Nisio, Makiko (1931-) 45.r 260.5 405.r 
Neuhoff, David L. 213.E, F Nitecki, Zbigniew 126.r 
Neukirch, Jiirgen (19377) 450.r Nitsche, Johannes C. C. (1925-) 275.C r 334.F, r 
Neumann, Bernhard Hermann (1909%) 16l.C Niven, Ivan(19155) 118.r 

190.M Nobeling, Georg 117.D 246.r 
Neumann, Carl (Karl) Gottfried (1832-1925) Noether, Amalie Emmy (188221935) 8 12.B 

39.B 120.A 188.H 193.F 217.D 323.F App. A, 16.D, X 27.D, E 29.F 150.B 277.1284.A, D, G 
Tables 19.111. IV 368.F 450.L 

Neustadt, L. W. 292.r Noether, Max (1844-1921) 9.E, F, r ll.B, r 12.B 
Neuwirth, Lee P. (1933-) 235.r 15.B, D 16.1 366.C 
Nevanlinna, Frtthiof (1894- 1977) 272.K Nogi, Tatsuo (1941-) 304.F 
Nevanlinna, Rolf Herman (189551980) 2 1 .N 43.r Nohl, Craig R. 80.r 

109 124.B 164.G 198.r272.B, D, E, K, r 367.E, Nomizu, Katsumi (19244) 105.r 199.r 365.H, N, r 

I, r 429.B 438.B 412.r 413.r 417.r 
Neveu, Jacques (1932-) 136.C Nordin, Clas 323.M 
Neville, Charles William (1941-) 164.K Norguet, Francois (19322) 21.1 
Newcomb, Robert Wayne (19333) 282.r Norkin, Sim Borisovich (19188) 163.r 
Newcomb, Simon (I 8355 1909) 392.r Norlund (Nerlund), Niels Erik (188551981) 
Newell, Allen 385.r 104.B, r 379.5, Q 
Newhauser, George L. 215.r Northcott, Douglas Geoffrey 67.1 200.r 277.r 284.r 
Newhouse, Sheldon E. (19422) 126.5, L, M Norton, Richard E. (19288) 146.C 

Newlander, August, Jr. 72.r Norton, Simon Phillips (1952-) 151.1 
Newman, Charles Michael (19466) 212.r Noshiro, Kiyoshi (1906676) 62.B, C, E 

Newman, Donald J. 328 Nourein, Abdel Wahab M. 301.F 



Name Index 
Novikov, P&r Sergeevich 

1902 

Novikov, PZtr Sergeevich (1901-75) 22.D, F, H 
97.*, r 161.B 

Novikov, Sergei Petrovich (19377) 56.F 114.5 
126.N l54.B, D 387.C r 

Nozaki, Akihiro (1936-) 31.r 75.D. r 
Nusselt, Ernst Kraft Wilhelm (1X82- 1957) ll6.B 
Nyikos, Peter J. 273.K 
Nyquist, Harry (1X89-1976) 86.A 402.K 

0 

Obata, Morio (19266) 364.F, G, r 391.D 
Oberhettinger, Fritz (191 I -) 220.r 389.r App.A, 

Table 2O.IV 
Ochan, Yurii Semenovich (19133) l00.r 
Ochiai, Takushiro (1943-) 2l.N, 0 191.r 384.r 
Oda, Tadao (1940-) 16.2, r 72.K 
Oda, Takayuki (1950&) 450.S 
Odqvist, Folke K. G. 188.r 
Oenopides (c. 5th century B.C.) 187 
Ogasawara, Tojiro (1910-78) 162 
Ogg, Andrew P. (19344) 32.r 
Ogiue, Koichi (1941-) llO.E 365.L, r 
Ogus, Arthur E. (19466) 450.r 
Oguztoreli, Mehmet Namik (19233) 163.r 222.r 
oharu, Shinnosuke (1941l) 162 286.X 
Ohm, Georg Simon (178771854) 130.B 259 
Ohnishi, Masao (1923-) 41 l.J 
Ohtsuka, Makoto (19222) 62.C r 77 120.A 143.B 

193.r 207.C r 246.A 33X.C D, M, r 
Ohya, Yujiro (19355) 325.H, I 345.A 
Oikawa, KBtaro (1928-) 48.r 77.E, r 367.r 
Ojanguren, Manuel (1940&) 29.r 
Ojima, Izumi (19499) 150.G 
Oka, Kiyoshi (1901-78) 20 21.E, H, I, K, Q 23.D 

72.E 147.0 383.5 
Oka, Yukimasa (19422) 136.F 
Okabe, Yasunori (1943-) 176.F 
Okada, Norio (1947-) 173.E 
Okada, Yoshitomo (189221957) 379.P 
Okamoto, Kazuo (1948,) 253.E 
Okamoto, Kiyosato (1935-) 437.AA 
Okamoto, Masashi (19233) 280.r 
Okamoto, ShDichi (1951-) 306.A 
Okamura, Hiroshi (1905-48) 94.r 216.B 246.F 

316.D, r 
Okano, Hatsuo (19322) 100.r 
Okonek, C. 16.r 
Okubo, Kenjiro (19344) 253.C 
Okugawa, Kotaro (19133) 113 
Okumura, Masafumi (19366) 1lO.E 
Okuyama, Akihiro (1933-) 273.K 425.Y 
Oleinik, Ol’ga Arsen’evna (19255) 112.D 323.r 

325.H 327.r 
Olive, David Ian (1937-) 146.r 386.C r 
Olivieri, E. 402.G 
Olkin, Ingram (1924-) 280.r 
Olmsted, John M. H. (1911l) 106.r 216.r 
Olum, Paul (1918%) 91.r 305.A, r 
Olver, Frank W. J. 30.r 
O’Meara, Onorato Timothy (19288) 348.r 
Omnes, Roland Lucian (193 1 -) 150.r 
Omori, Hideki (19388) 178.E 183 286.r 
Omura, Jim K. (1940-) 213.E 
O’Nan, Michael E. l51.H, I 
O’Neil, Richard 224.E 
O’Neill, Barrett (19244) 1ll.r 178.r 365.B, G 
O’Neill, Bernard V., Jr. 164.F 
Ono, Harumi (1932-) 301.F 
Ono, Katuzi (19099) 156.E, r 

Ono, Takashi (19288) 13.P 
Onsager, Lars (1903376) 340.B 402.K 
Oono, Yosiro (1920-) 282.r 
Oort, Frans (19355) 9.J 
Oppenheim, Alexander 220.B 242.A 
Ord, J. Keith 374.r 
Ordeshook, Peter C. 173.r 
Ore, Oystein (189991968) 157.r 190.L 
Oresme, Nicole (c. 1320(30)-82) 372 
Orey, Steven (1928X) 260.5 
Orihard, Masae (19155) 310.r 
Orhcz, Wiadyslaw (1903-) 168.B 44z1.D 
Ornstein, Donald S. (19344) 5.G 136.B, C, E-G, r 

162 213.E, F 
Ornstein, Leonard Salomon (1880-1941) 45.1 
Ortega, James McDonogh (19322) 301.r 
Orzech, Morris (19422) 29.r 
Oseen, William (18799) 205.C 
Oseledets, Valerii Iustinovich (1940&) 136.B 
Osgood, William Fogg (186441943) 3.r ll.r 21.H, r 

107.A 
Oshima, Toshio (19488) 274.r 437.03, r 
Osikawa, Motosige (19399) 136.F 
Osima, Masaru (19122) 109.r 275A E, r 334.F, r 

365.H 391.D 
Osterwalder, Konrad (1942-) 150.F 
Ostrogradskii, Mikhail Vasil’evich (1801-62) 94.F 
Ostrowski, Alexander (1893-) 14.F 58.F 88.A r 

106.r 12l.C 205.r 216.r 272.F 301.r 339.E 388.B 
439.L 

Oswatitsch, Klaus (1910-) 207.C 
Otsuki, Nobukazu (19422) 136.r 
Otsuki, Tominosuke (1917-) 275.A, ‘F 365.B 
Ouchi, Sunao (19455) 378.F 
Ovsyannikov, Lev Vasil’evich (1919-) 286.2 
Owen, Donald B. STR 
Oxtoby, John Corning (1910-) 136.H 
Ozawa, Mitsuru (19233) 17.C 367.E 438.C 
Ozeki, Hideki (1931-) 365.1, r 

P 

Paatero, Veikko (1903-) 198.r 
Pacioli, Luca (c. 1445-c. 1514) 360 
Pad& Henri Eugene (186331953) 142.E 
Page, Annie 123.D 
Paige, Christopher Conway (1939-) 241.C 
Painleve, Paul (186331933) 198.G 288.A-D, r 

420.C 
Pal, J. 89.C 
Palais, Richard Sheldon (193 l-) 80.r 105.Z, r 

183.*, r 191.G 279.A, E 286.Q, r 431.r 
Palamodov, Viktor Pavlovich (19388) 112.R 
Paley, Raymond Edward Alan Christopher (19077 

33) 45.r 58.r 125.0, BB 159.G 160.E, G, r 168.B 
192.F, r 272.K 295.E 317.8 

Palis, Jacob, Jr. 126.C J, M, r 
Pan, Viktor Yakovlevich (19399) 71.D 
Panofsky, Wolfgang Kurt German (1919%) 130.r 
Papakyriakopoulos, Christos Dimitric,u (1914-76) 

65.E 235.A 
Papanicolaou, George C. (1943-) 11 .j.D 
Papert, Seymour 385.r 
Pappus (of Alexandria) (fl. 320) 78.K 187 343.D 
Pdrasyuk (Parasiuk), Ostap Stepanovich (1921-) 

146.A 
Paris, Jeffrey B. (19444) 33.r 
Parker, Ernest Tilden (19266) 151.H 241.B 
Parreau, Michel (1923-) 164.K 193.G 207.C 367.E 
Parry, William (1934-) 136.C r 
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Polkinghorne, John Charlton 

Parseval, Marc Antoine (175551836) IX.8 159.A 
16O.C H lY2.M lY7.C 220.B, C, E 

Parshin, Aleksei Nikolaevich 118.E 
Parthasarathy, Kalyanapuram Rangachari 213.F 

341.r 374.r 
Parzen, Emanuel (1929%) 421.D 
Pascal, Blaise (1623362) 20 75.A 7X.K 155.E 181 

265 329 330 342.A 343.E 
Pascal, Ernest0 (1865-?) 15.r 
Pascal, Etienne (15X88 165 1) 329 
Pasch, Moritz (1843 1930) 155.B 
Passman, Donald S. (1940&) 15 1 .r 
Pasta, J. 287.r 
Pasternack, Joel 154.H 
Pastur, Lconid Andreevich 340.r 
Patil, Ganapati P. (19344) 374.r 
Patodi, Vijay Kumar (1945576) 237x 366.r 391.C 

K, L N r 
Pauli, Wolfgang Ernst (lYOO&58) 150.A 25X.A, D 

351.G, H, r 3X6.8 
Pawley, G. Stuart (19377) 92.F 
Pazy, Amnon (1936-) 162 2X6.X 378.F 
Peano, Giuseppe (1858X1932) 93.D, J 106.H 107.A 

117.A 156.8 246.F, G 267 294.A, B, r 316.E 411.A 
Pcarcy, Carl Mark (1935-) 25 1 .r 
Pearl, Raymond (1 X79- 1940) 263.A 
Pears, Alan (19388) 117.r 
Pearson, D. B. 33 l.E 375.B 
Pearson, Egon Sharpe (189551980) 400.B 401.B, 

F, r STR 
Pearson, Karl (1857- 1936) 40.B 174.r 374.r 397.D 

401.E 403.C STR 
P&let, Jean Claude Eugene 116.8 
Pcdcrsen, Gert Kjzrgard (1940&) 36.K, r 212.C 

30x.r 
Pederson, Roger N. (1930&) 438.C 
Pedoe, Daniel (1910-) 343.r 
Pcctre, Jaak (1935-) 112.E, K 125.F 224.A, C, 

E, F, r 
Peierls, Rudolf Ernst (19077) 212.8 
Peirce, Benjamin (1809980) 231.B 36X.F 
Peirce, Benjamin Osgood (185441914) App. A, 

Table 9.r 
Peirce, Charles Sanders (183991914) 156.8 41 l.A 
Peixoto, Mauricio Matos (1921-) 126.A, H, I, M 
Pelczynski, Aleksander 37.L, r 6X.M 443.D 
Pell,John(1611-85) 118.A 
Pepis, Jozef (c. 1922-c. 1942) 97.* 
Peressini, Anthony L. (1934-) 310.r 
Perko, Kenneth A., Jr. (1943%) 235.E 
Perlman, Michael David (1942%) 2XO.r 
Perron, Oskar (1X80-1975) 83.r lOO.A, F 107.A 

120.C 121.C 123.B 254.D 269.N 280.F 289.D 
294.r 310.H 314.A 316.E, r 379.L 394.r 

Pesin, Ya. B. 136.G 
Peter, F. 69.B 249.U, r 437.EE 
Peter, Rozsa (1905577) 356.8, r 
Petermann, Abdreas (19222) 361.r 
Peterson, Elmor Lee (1938%) 264.r 
Peterson, William Wesley (19244) 63.r 
Petersson, Hans (1902-84) 32.B-D 32X.r 450.Q 
Petkov, Vessclin Mihailev (1942-) 325.H 
Petrenko, Viktor Pavlovich (19366) 272.K, r 
Petrie, Ted E. (19399) 431.D 
Petrov, Valentin Vladimirovich (1931l) 250.r 
Petrovskii, Ivan Georgievich (1901-73) 107.r 

112.D 196 320.r 321.E, r 323.1 324.r 325.F, G, J, r 
321.H 

Pettis, Billy James (1913-79) 68.M 443.A. B, D, 
F-H 

Petty, Sir William (1623-87) 40.A 401.E 
Petvyashvili, V. I. 387.F 
Peyret, Roger 304.r 
Pfaff, Johann Friedrich (1765-1825) 103.G 105.Q 

107.B 42X.A, B 
Pfanzagl, Johann (1928%) 399.M, 0 400.r 
Plhiger, Albert (19077) 143.A 272.K 367.E, r 
Pham, Frederic 146.A, C 386.C 41X.r 
Phelps, Robert Ralph (19266) 443.H 
Phillips, Aris (191551985) 154.F 279.C 
Phillips, E. 136.r 
Phillips, Melba N. (19077) 130.r 
Phillips, Ralph Saul (1913-) 68.M 112.P, S 162 

251.r 286.r 375.H 378.B, F, r 443.A, H 
Phragmen, Lars Edvard (1X63-1937) 43.C 
Picard, Charles Emile (185661941) 3.A 1l.r 12.B, r 

15.B, D, r 16.P, U 20.*, r 107.A 113 124.B 206.D 
232.C 237.5 253.r 272.E 288.C 28Y.r 316.D 323.D 
367.D 38X.r 418.F, r 429.B 

Pick, Georg 2 1 .O 
Pielou, Evelyn C. 263.r 
Pietsch, Albrecht (19344) 6X.N, r 424.r 
Pillai, K. C. Sreedharan 2XO.B 
Pincherle, Salvatore (185331936) 217.F 240.B 
Pinchuk, S. I. 344.D, F 
Pinsker, Mark Shlemovich (19255) 136.E 213.E 
Piper, Christopher J. 215.E 
Pitcher, Tom Stephen (19266) 396x 
Pitman, Edwin James George (18977) 371.A, E 

399.G, r 400.K 
Pitt, Harry Raymond (1914-) 160.G 192.r 339.r 

379.r 
Pitt, Loren D. (1939%) 176.F 
Pitts, Jon T. 275.G 
Plancherel, Michel (1X85-1967) lY2.M 218.G 

437.L 
Planck, Max Karl Ernst Ludwig (1858- 1947) 

115.A 351.A 402.1 419.r 
Plante, Joseph F. (19466) 154.H 
Plateau, Joseph Antoine Ferdinand (1x01-83) 109 

275.C 334.A, B 
Platek, Richard A. 356.G 
Plato (427-347 B.C.) 187 357.B 
Platonov, Vladimir Petrovich (1939%) 13.Q 
Pleijel, Ake Vilhelm Carl (1913%) 391.B, C, r 
Plemelj, Josip 253.r 
Plis, Andrzej (lY29-) 321.F 323.5 
Pliss, Viktor Aleksandrovich (19322) 126.5 
Plotkin, Morris 63.B 
Plucker, Julius (1801&6X) 9.8 12.B 90.B 137 267 
Pochhammer, Leo (1841-1920) 206.C 
Pogorelov, Aleksei Vasil’evich (1919-) 365.5 
Pohlmann, Henry 450,s 
Poincare, Henri (185441912) 3.A, C, D ll.B 12.B 

16.E 20 21.Q 25.B 3O.C, r 32.B, F, r 55.r 56.B, F 
65.A, C 70.A 74.G 105.A 107.A 109 114.5, K 117.A 
120.A, D 122.C. r 126.A, C, E,G, I. L, r 136.A,C 
153.B 156.C 170 19X.5 201.A, B, F, 0 218.C H 
219.A, r 24X.5 253.D 254.D 258.A 267 279.A 
285.A, D 286.W 288.8 28Y.C 314.A 335 344.A 
383.E 420.A, C 425.G 426 450.Q 

Poinsot, Louis (177771859) 271.E 
Poisson, Simeon Denis (1781-1840) 5.D, F 82.B 

105.M 126.E 159.C 16X.B 192.C L 193.G 198.B 
260.H 266 271.F, G 323.A 324.C D 325.D 338.A 
341.D 391.5 397.F 407.D App. A, Tables 15.V1, 
19.111 

Polit, Stephen H. 136.E 
Polkinghorne, John Charlton (lY30-) 146.r 

386.C, r 



Name Index 
Pollaczek, FClix 

1904 

Pollaczek, Felix (189221981) 145 307.C 
Pollaczek-Geiringer, H. 298.r 
Polonsky, Ivan P. 223.r 299.r 
Polya, George (188771985) 20.r 48.D, r 66.E 88.r 

121.C 211.r 228.B, r 272.K 339.D 374.5 429.B 
Polyakov, A. M. 80.r 
Pomeranchuk, Isaak Yakovlevich (1913-66) 386.B 
Pommerenke, Christian (1933-) 48.r 77.F 169.F 

438.r 
Poncelet, Jean-Victor (178881867) 179.B 181 

266 267 
Pong, D. H. 345.A 
Ponstein, J. 292.D 
Pontryagin, Lev Semenovich (1908-) 2.G 56.D, 

F, H 64.A, B 86.A, F 107.r 108.r 114.H 126.A, I, r 
192.K 201.A, r 202.B, U 203.D 249.r 305.A 318.r 
422.C E, r 423.r 

Ponzano, Giorgio Enrico (1939-) 146.A 
Poor, Walter Andrew (19433) 178.r 
Popov, M. V. 291.E 
Popov, Viktor Nikolaevich (19377) 132.C 150.G 
Popp, Herbert (19366) 16.W 
Port, Sidney Charles (19355) 5.G 
Porter, Alfred William (1863-1939) 116.r 
Post, Emil Leon (189771954) 31.B 75.D 97.r 161.B 

240.D 356.A, D, H, r 
Postnikov, Aleksei Georgievich (1921-) 295.E 

328.*, r 
Postnikov, Mikhail Mikhailovich (19277) 70.G 

148.D 172.r 305.A 
Poston, Tim 51.r 
Povzner, Aleksandr Yakovlevich (19155) 375.A 
Powell, H. B. 151.r 
Powell, M. J. D. (1936-) 142.r 
Powers, Robert T. (1941-) 36.K 212.B 308.1, r 
Poynting, John Henry (185221914) 130.A 
Prabhu, Narahari Umanath (19244) 260.5 
Prachar, Karl (1925-) 123.D. r 450.r 
Prandtl, Ludwig (1875-1953) 116.B 205.B-D 222.C 
Prdsad, Gopal (1945-) 122.G 
Preissmann, Alexandre 178.B 
Presburger, M. 156.E, r 
Preston, Gordon Bamford (19255) 190.r 
Price, Griffith Baley (19055) 443.A 
Price, J. 423.r 
Priestley, Maurice Bertram (19333) 421.r 
Prigogine, Ilya (1917-) 95 
Prikry, Karel L. (19444) 33.F, r 
Pringsheim, Alfred (1850-1941) 58.E 83.E 
Pro&s (410(411)-485) 187 
Prokhorov, Yurii Vasil’evich (1929-) 115.D 

250.E, r 341.F, r 374.r 
Protter, Murray H. (19188) 78.r 106.r 216.r 323.r 

327.r 350.r 
Priifer, Heinz (1896-l 934) 2.D 200.K 
Prugovecki, Eduard (19377) 375.r 
Przymusinski, Teodor C. 117.E 
Przytycki, Feliks 126.K 
Ptak, VIastimil(19255) 424.X 
Ptolemy (Claudius Ptolemaeus) (c. 85-c. 165) 187 

432.C 
Pugh, Charles C. 126.JJL, r 
Puiseux, Victor Alexandre (1820-83) 339.A 
Pukanszky, Lajos 437.K, U 
Puppe, Dieter (1930-) 200.r 202.G 
Puri, Madan Lai (1929-) 280.r 371.r 
Pustyl’nik, Evgenii Izievich (19388) 251.r 
Pusz, Wieslaw 402.G 
Putnam, Calvin Richard (1924-) 251.K 
Putnam, Hilary Whitehall (19266) 81.D, r 97.+, r 

Pyatetskii-Shapiro, Il’ya losifovich (1929-) 32.H 
122.G 125.r 159.J 384.A, C, r 437.r 45O.Q, S 

Pythagoras (572-492 B.C.) 60.0 118 A 139.B, D 
145 155.C 181 187 

Q 

Quenouille, Maurice Henri (1924-73) 421.D 
Quillen, Daniel G. (1940-) 12.r 16.Y 191.r 200.K 

237.A, I, J 369.F 
Quinn, Barbara Keyfitz 286.X 
Quinn, Frank S. (1946-) 114.K 

R 

Raabe, Joseph Ludwig App. A, Table 10.11 
Raanan, Joseph 173.E 
Rabie, M. 173.r 
Rabinowitz, Paul H. (1939-) 286.T, W, r 
Rabinowitz, Phillip (19266) 223.r 299.r 301.r 
Racah, Giulio (1909-65) 353.A, B, r 
Rademacher, Hans Adolph (1892-1969) 4.A, C, D 

297.r 317.B, C 328.*, r 357.r 
Radjavi, Heydar (19355) 251.r 
Radkevich, E. V. 112.D 323.r 
Rado, Tibor (189551965) 65.C 77.B 109 164.1 

193.r 246.r 275.A, C, D, r 323.E, 1334.C, r 367.A, 
F 410.B 

Radon, Johann (1887-1956) 94.C 1;!5CC 218.F 
270.1, L 380.C 443.H 

Ridstrom, Hans Vilhem (1919-70) 443.1 
Raghavarao, Damaraju (1938-) 102.r 
Raghunathan, Madabusi Santanam (1941-) 

122.G, r 
Raiffa, Howard 173.C 398.r 
Raikov, Dmitrii Abramovich (1905-) 192.G 256.r 

341.E 424.X 437.EE 
Rainville, Earl D. 389.r 
Rajchman, A. 159.5 
Rail, Louis B. (1930-) 138.r 301.r 
Ralston, Anthony (1930-) 142.r 223.r 303.D, r 
Ralston, James V. 345.A 
Ramachandra, Kanakanahalli (19333) 123.E 
Ramamoorthi, R. V. 396.r 
Ramanathan, Kollagunta Gopalaiyer (1921-) 

118.D 450.K 
Ramanujam, Chidambaram Padmanabham (19388 

74) 232.D, r 
Ramanujan, Srinivasa (188771920) ,4.D 32.C D 

295.D, E 328.*, r 
Ramis, Jean-Pierre (19433) 68.F 
Ramsey, Frank Plumpton (1903-30) 156.B 
Ran, Ziv (1957-) 450,s 
Randles, Ronald Herman (1942-) 3’71.r 374.r 
Range, R. Michael (1944) 164.K 
Rankin, Robert Alexander (1915-) 123.C 
Rankine, William John Macquorn (1820-72) 

204.G 205.B 
Rao, Calyampudi Radhakrishna (Radhakrishna 

Rao, Calyampudi) (1920-) 280.r 374.H 399.C 
D, 0, r 401.r 

Rao, Ranga R. (1935-) 374.r 
Raphson, Joseph (c. 1648-c. 1715) 301.D 
Rapoport, Michael 16.r 
Rasmussen, 0. L. 301.r 
Rathbone, C. R. 332.r 
Ratner, Marina E. 126.5 136.F 
Rauch, A. 17.D 

~ Rauch, Harry Ernest (1925579) 134.r 178.A, C 
~ Ray, Daniel Burrill (1928-79) 5.r 115.A 
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Rolle, Michel 

Ray-Chaudhuri, Dwijendra K. 96.r 
Rayleigh, Lord (Strutt, John William) (1842-1919) 

46.F 68.H 228.B 298.C 304.B 318.r 331.A, D 446.r 
Raynaud, Michel(19388) 3.N, r 
Razumikhin, B. S. 163.G, I 
Rebbi, Claudio 80.r 
Reckhow, Robert A. 71.r 
Ree, Rim Hak 15 1 .I, J App. B, Table 5.111 
Reeb, Georges (1920&) 90.r 154.A, B, D 279.D 
Reed, George Michael (1945-) 273.K 
Reed, L. J. 263.A 
Reed, Michael (1942-) 331.r 375.r 390.r 
Reed, Myril Baird (19022) 282.r 
Reeh, Helmut Rudolf (1932-) 150.E 
Rees, David (19188) 67.1 284.A 
Regge, Tullio (1931l) 132.C 146.A, C 375.r 386.C 
Regiomontanus (Johann Miiller) (1436676) 360 

432.C 
Reich, Edgar (1927-) 352.C 
Reid, Constance 196.r 
Reid, John Ker (19388) 302.r 
Reid, Miles A. (1948-) 16.r 
Reidemeister, Kurt Werner Friedrich (1893-1971) 

91.r 155.r 235.A, r 
Reif, Frederick (19277) 402.r 
Reifenberg, E. R. 275.A, G 334.F 
Reilly, Robert C. 365.H 
Reiner, Irving (1924-) 29.r 92.r 151.r 277.r 362.r 
Reinhardt, Hans 59.F 
Reinhardt, Karl 21.B, Q 
Reinsch, C. (1934-) 298.r 300.r 
Rellich, Franz (1906655) 68.C 188.D 323.G 331.A, 

B 351.C 
Remak, Robert (18888?) 19O.L 277.1 
Remes, E. 142.B 
Remmert, Reinhold (1930-) 20 21.M, Q, r 23.B-E, 

r 199.r 
Remoundos, Georgios (18788 1928) 17.A, C, r 
Rengel, Ewald 77.E 
Rtnyi, Alfred (1921-70) 4.C 123.E 
Reseboom, J. H. 376.r 
Resnikoff, George Joseph (1915-) STR 
Reuleaux, Franz (1829-1905) 89.E 11 l.E 
Revuz, Daniel Robert (1936-) 260.5 261.E 
Reynolds, Osborne (1842-1912) 116.B 205.C 259 
Rhaeticus, Georg Joachim (1514474) 432.C 
Rheinboldt, Werner Carl (1927-) 301.r 
Rhodes, John L. (1937-) 31.r 
Ribenboim, Paulo (19288) 145.r 
Ribet, Kenneth A. 14.L 450.5, r 
Riccati, Jacopo Francesco (167661754) 86.E 107.A 

405.G App. A, Table 14.1 
Ricci, Curbastro Gregorio (1853- 1925) 109 364.D 

365.C 417.B, F App. A, Table 4.11 
Ricci, Matteo (1552-1610) 57.C 
Rice, John Richard (19344) 299.r 336.r 
Richard, Jules Antoine (186221956) 319.B 
Richardson, C. H. 104.r 
Richardson, Lewis Fry (1881-1953) 302.C 304.E 
Richardson, Roger Wolcott, Jr. (1930-) 431.r 
Richert, Hans-Egon (19244) 4.C 123.D, E, r 
Richter, Hans (1912278) 443.A 
Richter, Wayne H. (19366) 81.D. r 
Richtmyer, Robert Davis (1910-) 304.r 
Rickart, Charles Earl (19133) 36.r 231.r 443.A 
Rickman, Seppo U. (1935-) 352.F 
Rieffel, Marc A. (1937-) 308.H 443.H 
Riemann, Georg Friedrich Bernhard (1826666) 3.1, 

L,r9.C,F,Ill.B~D,r12.B15.D16.V202l.A, 
C, F 30.C 37.K 46.E 51.E 74.D 77.B 80.K 94.B 

105.A, P, W 107.A 109 1lO.E 123.A,B 137 152.A 
159.A 160.A 181 198.A, D, Q 199.A 216.A 217.5 
237.G 253.B, D 267 274.G 275.A 285.A 286.L 
323.E 325.D 334.C 344.A 363 364.A, B, D 365.A 
366.A-D 367.A, B, E 379.C S 412.A-D, J 413.* 
416 426 447 450.A, B, I, Q App. A, Tables 4.11, 
14.11, 18.1 

Riemenschneider, Oswald W. (1941-) 232.r 
Riesz, Frigyes (Frederic) (1880-1956) 43.D 68.A, 

E, r 77.B 136.B 162 164.G, I 168.B 193.S 197.A, 
F, r 251.0, r 260.D 310.A, B 317.A, B 390.r 
425.r 

Riesz, Marcel (188661969) 43.D 88.C 121.r 
125.A 164.G, 1224.A 338.B 379.R 

Riley, Robert Freed (1935-) 235.E 
Rim, Dock S. (1928) 200.M 
Ringel, Gerhard (19199) 157.E, r 186.r 
Ringrose, John Robert (1932-) 308.r 
Rinnooy Kan, Alexander H. G. (1949-) 376.r 
Rinow, Willi (1907779) 178.A 
Riordan, John (1903-) 66.r 330.r 
Riquier, C. 428.B, r 
Rishel, Raymond W. 405.r 
Rissanen, Jorma (19322) 86.D 
Ritt, Joseph Fels (1893-1951) 113.*, r 428.r 
Ritter, Klaus (19366) 292.r 
Ritz, Walter (1878-1909) 46.F 303.1 304.B 
Riviere, Ntstor Marcel0 (1940-78) 224.E 
Roache, Patrick John (1938-) 300.r 
Robbin, Joel W. (1941l) 126.G, r 183 
Robbins, Herbert (Ellis) (19155) 250.r 399.D 
Roberts, Joel L. (1940-) 16.1 
Roberts, John Elias (1939%) 150.E 
Roberts, John Henderson (19066) 117.C 
Roberts, Richard A. (1935-) 86.D 
Robertson, Alex P. 424.r 
Robertson, Howard Percy (1903-61) 359.E 
Robertson, Wendy J. 424.X, r 
Robin, Gustave (1855-97) 48.B 323.F 
Robinson, Abraham (1918874) 118.D 276.D, E, r 

293.A, D, r 
Robinson, Derek William (1935-) 36.K, r 308.r 

402.G, r 
Robinson, G. 301.r 
Robinson, Julia Bowman (1919-85) 97.*, r 
Robinson, R. Clark 77.F 126.H, J, L, r 
Robinson, Raphael Mitchel(1911l) 356.B 
Roth, Gustave (1839-66) 9.C, F ll.D 15.D 237.G 

366.ApD 
Roche, Edouard Albert (1820-83) App. A, 

Table 9.1V 
Rockafellar, R. Tyrrell (19355) 89.r 292.D 
Rodin, Burton (1933-) 367.1, r 
Rodoskii, Kirill Andreevich (1913-) 123.E 
Rodrigues, Olinde (179441851) 393.B 
Roepstorff, Gert (1937-) 402.G 
Rogers, Claude Ambrose (1920-) 22.r 182.D 

443.D 
Rogers, Hartley, Jr. (1926-) 22.r 81.D, r 97.r 

356.r 
Rogers, William H. 371.r 
Roggenkamp, Klaus W. (1940-) 362.r 
Rogosinski, Werner Wolfgang (1894-1964) 159.H. 

r 242.A 
Rohrl, Helmut (1927-) 196 253.D 
Roitman, A. A. 16.R, r 
Rokhlin, Vladimir Abramovich (1919-84) 56.H 

114.H, K 136.E, H, r 213.r 
Rolfsen, Dale Preston Odin (1942-) 235.r 
Rolle, Michel (i652-1719) 106.E 



Name Index 
Romanov. Vladimir Gabrilovich 

1906 

Romanov, Vladimir Gabrilovich 218.H 
Romberg, W. 299.C 
Roquette, Peter Jaques (19277) I 18.D 
Rose, Milton Edward (19255) 353.r 
Rosen, Judah Ben (19222) 292.E 
Rosenberg, Alex (19266) 29.r 
Rosenberg, Ivo G. (19399) 75.D 
Rosenberg, Jonathan M. (195ll) 437.r 
Rosenblatt, Murray (19266) 395.r 421.r 
Rosenbloom, Paul Charles (1920&) 255.D, E 
Rosenblueth, Arturo (1900&70) 95.r 
Rosenblum, Marvin (19266) 331.E 421.r 
Rosenhain, Johann Georg (1816-87) 3.A 
Rosenhead, Louis (1906684) 205.r 
Rosenlicht, Maxwell (1924-) 9.F 13.B, r 
Rosenthal, Peter (1941l) 251.r 
Roshko, Anatol(19233) 205.r 
Ross, George G. 438.C 
Ross, Kenneth A. (19366) 192.r 
Ross, Ronald (1857- 1932) 263.A 
Rosser, John Barkley (1907 ) 33.r 145 156.E, r 

185.r 356.D 
Rossetti, C. 132.r 
Rossi, Hugo 21.r 23.r 164.C G 344.C 384.r 
Rota, Gian-Carlo (19322) 66.r 203.r 
Roth, Klaus Friedrich (19255) 118.D 182.G 
Roth, Leonard (1904-6X) 12.r 16.r 
Rothstein, Wolfgang (1910-75) 21.M 
Rotman, Joseph J. (1934-) 2.E 
Rouche, Eugene (183221910) 10.E 99.D 198.F 
Rouche, Nicolas 290.r 
Rouet, A. 150.G 
Roumieu, Charles 125.A. U 
Rourke, Colin Patrik (19433) 65.r 147.4, r 
Roussarie, Robert 154.G H 
Roussas, George Gregory (19333) 399.N, r 
Roy, K. K. 396.r 
Roy, Prabir (19377) 117.C 
Roy, Samarendra Nath 280.B 
Royden, Halsey Lawrence (1928-) 21 .O 36.M 

164.K 166.r 207.C D, r 221.r 270.r 367.E, 1 
380.r 416 

Rozanov, Yurii Anatol’evich (1934-) 176.r 395.r 
Rozenfel’d (Rosenfel’d) B. 1. 154.G 
Rozhdestvenskii, Boris Leonidvich (19288) 204.r 
Rubel, Lee A. (I 9288) 164.5 
Riickert, Walter 23.B 
Rudakov, Aleksei Nikolaevich 15.r 
Rudin, Mary Ellen (19244) 425.Y 
Rudin, Walter (1921-) 20.r 36.r 84.r 87.r 106.r 

164.1, K, r 166.r 192.Q, r 198.r 216.r 221.r 270.r 
367 380.r 422.r 

Rudolph, Daniel Jay (19499) 136.E, F 
Rudvalis, Arunas (19455) 151.1 
Ruelle, David Pierre (19355) 126.A, J, K, M, N, r 

136.C, G, H,r 150.D 154.H 340.B402.G,r 
433.B. r 

Ruffini, Paolo (176551822) 172.A 190.Q 
Ruh, Ernst A. (19366) 178.r 
Rund, Hanno (19255) 152.C r 
Runge, Carl David TolmC (I 856- 1927) 19.r 118.D 

223.A 301.D 303.D 416.F 
Running, Theodore Rudolph (I 866-) 19.r 
Ruskai, Mary Beth (19444) 212.B 
Russell, Bertrand Arthur William (18722 1970) 

156.A,B,r319.B,r411.A,K,r 
Rutman, Moisei Aronovich (1917-) 89.r 310.H 
Ryan, Patric J. 365.r 
Ryll-Nardzewski, Czeslaw (19266) 22.E 
Ryser, Herbert John (1923385) 66.r 

S 

Saaty, Thomas L. (19266) 157.r 22.r 260.H 291.r 
Sabatier, Pierre Celestin (19355) 375.r 
Saburi, Yutaka (19488) 125.BB 
Saccheri, Girolamo (I 667-l 733) 285 A 
Sacker, R. S. 126.M 
Sacks, Gerald Enoch (19333) 22.F 33.r 63.B 97.r 

276.r 356.r 
Sacks, Jerome (1931l) 195.E, r 275.D 
Sacksteder, Richard (1928-) 136.G 154.H 365.E 
Sadanaga, Ryoichi (1920&) 92.F 
Sadler, D. H. 291.F 
Sagher, Yoram 224.E 
Sah, Chih-Han (19344) 151.~ 
Sahni, Sartaj K. 71.r 
Sainouchi, Yoshikazu (19266) 367.1 
Saint-Beuve, Marie-France 22.r 
Saint-Donat, Bernard 9.r 16.r 
Saint-Raymond, Jean 22.F 
Saito, Hiroshi (19477) 450.G, r 
Saito, Kyoji (1944-) 41&D, r App. A, Table 5.r 
Saito, Masahiko (1931l) 122.F 
Saito, Tosiya (1920&) 126.E 289.E 
Saito, Yoshimi (1939-) 375.C 
Sakai, Akira (1932-) 164.K 
Sakai, Fumio (19488) 21.N 
Sakai, Makoto (1943-) 367.E, r 
Sakai, Shoichiro (1928-) 36.K, r 308 C, E, F, L 
Sakai, Takashi (1941l) 178.C 391.B ,413.r 
Sakamoto, Heihachi (1914-) 374.H 
Sakamoto, Kunio (19488) 365.N, r 
Sakamoto, Reiko (19399) 323.M 325.K, r 327.H 
Sakane, Yusuke (1946-) 365.L 
Sakata, Shoichi (191 l-70) 132.D, r 
Saks, Stanisiaw (1897-1942) 84.r 94.- 1OO.r 198.r 

221.r 246.r 270.r 380.r 
Salam, Abdus (19266) 132.D 
Salem, Raphael (1898-1963) 159.r 192~ 
Salmon, George (1819-1904) 78.r 350.r 
Salomaa, Arto Kustaa (1934-) 75.r 
Salzmann, Helmut Reinhard (1930-) 58.r 
Sambutsky, S. 353.r 
Samelson, Hans (1916-) 413.r 427.E 
Sampson, Joseph Harold (1925-) 183 195.E 
Samuel, Pierre (1921l) 12.B 67.r 284.G, r 370.r 

439.r 
Sanderson, Brian Joseph (19399) 65.r 147.Q. r 
Sannami, Atsuro (1955-) 126.J 
Sanov, Ivan Nikolaevich (19199) 16’ .C 403.r 
Sansone, Giovanni (188881979) 290.r 317.r 
Santalb, Luis Antonio (191 ll) 218.C, E, H, r 228.A 
Sapiro - Shapiro 
Sapronov, Yu. I. 286.r 
Sarason, Donald Erik (1933%) 164.K, r 
Sard, Arthur (1909-80) 105.5 208.B :!86.P 
Sargsyan (Sargsjan), L. S. 3 15.r 
Sarhan, Ahmed E. 374.r 
Saribekovich, Sargsyan Iskhan (1931-) 315~ 
Sario, Leo Reino (1916-) 48.r 77.E, r 124.C r 169.r 

207.r 367.E, G, r 
Sarton, George Alfred Leon (1884419 56) 26.r 209.r 

372.r 
Sasaki, Shigeo (1912-) 110.E 275.C 365.5 
Sasieni, Maurice W. 307.r 
Sataev, E. A. 136.F, r 
Satake, Ichiro (19277) 13.r 16.2 21.0 32.F 59.H 

122.r 248.U, r 384.r 43l.AA 
Sato, Atsushi (19544) 154.H 
Sato, Fumthiro (1949-) 450.V 



1907 Name Index 
Seidenberg, Abraham 

Sato, Ken-iti (1934-) 115.C D 263.r 
Sato, Mikio (192%) 20 112.D 125.A, V, W, BB, EE 

146.A, C 162.*, r 274.1 345.B 386.C 387.C 418.H 
450.A, M, Q, S, V 

Sato, Tokui (1906683) 217.r 288.B 
Sattinger, David H. 126.M 286.r 
Savage, I. Richard (19255) 371.A, C, r 
Savage, John E. 71.r 
Savage, Leonard Jimmie (1917-71) 342.G 399.F, r 

401.B. F 
Sawada, Ken (1953-) 126.5 
Sawashima, Ikuko (1929%) 310.H 
Saxer, Walter (189661974) 214.r 
Saronov, Vyachcslav Vasil’evich (19355) 341 .J 
Scarf, Herbert Ely (1930 -) 173.E 227.r 
Si-egol’kov - Shchegol’kov 
Schaaf, Manfred 258.r 
Schade, J. P. 95.r 
Schaefer, Helmut (19255) 217.r 310.A, H 
Schaeffer, Albert Charles (19077) 438.B, C 
Schafheitlin, Paul (1861-) App. A, Table 19.111 
Schafke, Friedrich Wilhelm (19222) 268.r 389.r 
Schaible, Siegfried 264.r 
Schapira, Pierre M. (19433) 112.D 125.Y 162 
Schark, I. J. 164.1 
Schatten, Robert (191 1-1977) 68.1 
Schauder, Juliusz Pawel (1899-1943) 37.L 68.E 

153.D 286.D 323.C D, r 325.C r 
Schechter, Martin (1930&) 112, F, H 189.B 320.r 

323.H 
Scheffe, Henry (1907777) 102.r 346.C 399.C. r 
Scheffers, Georg (I 866- 1945) 247.r 
Scheifele, Gerhard 55.r 
Scheinberg, Stephen 164.K 
Scheja, Giinter (1932-) 21.M. r 
Scherk, Heinrich Ferdinand 275.A 
Scherk, John (1947-) 132.r 
Scherk, Peter (1910-85) 4.A 
Schetzen, Martin 95.r 
Schickard, Wilhelm (I 592 1635) 75.A 
Schiffer, Menahem Max (191 I-) 77.E, r 188.r 367.r 

438.B, C 
Schiffman, M. 275.B 
Schilling, Otto Franz Georg (191 t-73) 257.r 439.r 
Schlafli, Ludwig (1814-95) 105.A 248.S 393.8 

App. A, Tables 19.111, IV 
Schlaifer, Robert 398.r 
Schlesinger, Ludwig (186441933) 253.E, r 
Schlessinger, Michael 16.r 
Schlichting, Hermann (1907-) 205.r 433.A 
Schlieder, Siegfried (I 918-) 150.E 
Schlomilch, Otto 39.D App. A, Tables 9.IV, 10.11, 

19.111 
Schmeidler, David 173.D 
Schmetterer, Leopold (1919-) 399.N 
Schmid, Hermann Ludwig (1908-56) 59.H 
Schmid, Wilfried (19433) 16.r 437.W 
Schmidt, Erhald (187661959) 68.C I 139.G 

217.H, 1286.V 302.E 317.A 445 
Schmidt, Friedrich Karl (1901-77) 12.B 59.G 

45O.P 
Schmidt, 0. Y. - Shmidt 
Schmidt, Robert (1898- 1964) 208.C 379.M 
Schmidt, Wolfgang M. (19333) 83.r I l&B, D, r 

182.G, r 354.r 430.C 437.W 
Schnee, Walter 379.M 
Schneider, Michael (19422) 16.r 
Schneider, Theodor (191 l-) 182.r 196 430.A, B, r 
Schober, Glenn E. (1938.-) 438.r 
Schoen, Richard M. (1950@) 275.D, F 364.r 

Schoenberg, Isaac Jacob (1903-) 178.A 
Schoenfeld, Lowell (1920-) 328 
Schoenflies, Arthur Moritz (185331928) 47.r 65.G 

92.E, F 93.D, K 122.H 381.r App. B, Table 5.IV 
Scholtz, Arnold 59.F 
Schonfinkel, M. 97.* 
Schdnhage, Arnold 298.r 
Schopf, Andreas 200.1 
Schottky, Friedrich Hermann (1851-1935) 9.J 

43.5 234.8 367.C 
Schouten, Jan Arnoldus (188331971) 109.*, r 137 

417.r 428.r 434.C 
Schrader, Robert (19399) 150.F 
Schreier, Otto (1901-29) 7.r 28 151.A, I 161.A 

172.F 190.G, N 200.M 256.r 343.r 350.r 
Schroder, A. 156.8 
Schroder, Friedrich Wilhelm Karl Ernst (1841-1902) 

44.B 388.D 41 l.A 
Schrodinger, Erwin (1887-1961) 331.A, D 340.E 

351 .C, D 434.C 
Schubauer, G. B. 433.A 
Schubert, Hermann (1848-1911) 56.E 201.r 
Schubert, Horst (19199) 235.A 
Schur, Friedrich Heinrich (185661932) 364.D 
Schur, Issai (187551941) 29.E 43.5 122.C E, F, H, r 

151.E 226.r 277.H 295.E 368.G 379.L437.D, EE 
App. B, Table 5.r 

Schiitte, Kurt (1909%) 97.~ 156.E, r 
Schuur, Jerry Dee (19366) 290.r 
Schwank, Friedrich (1900-) 217.r 
Schwartz, Arthur J. (1932-) 126.1 
Schwartz, Jacob Theodore (1930-) 37.r 68.M 

112.1, 0 136.B, r 162.r 168.r 240.r 251.r 279.r 
286.r 30&F, r 310.r 315.r 331.r 378.r 390.r 443.A, 
G, r 

Schwartz, Laurent (1915-) 20.*, r 68.r 94.r 112.D, r 
125.A, B, L, r 160.r 162.*, r 168.r 189.r 192.M 
240.r 262.r 270.1 306.A 322.r 424.R, S, X, r 

Schwartz, Richard 280.r 
Schwarz, Hermann Amandus (184331921) 1 l.D 

43.B 77.D 106.H 109 198.G 21 l.C 246.B 275.B, F 
334.C App. A, Tables 8, 9.111, 13.111 

Schwarzenberger, Rolph Ludwig Edward (1936-) 
92.r 

Schwarzschild, Karl (187331916) 359.E 
Schweber, Silvan Samuel (1928%) 150.r 
Schweitzer, Paul Alexander (19377) 126.N 154.D 
Schwerdt, Hans 19.r 
Schwinger, Julian Seymour (1918-) 132.C 146.A 

150.A, F 308.H 361.A 375.C 
Scidmore, Allan K. (1927-) 96.r 
Scipione de1 Ferro (1465- 1526) 360 
Scott, Dana S. 33.E, r 
Scott, William Raymond (1919-) 151.r 
Searle, Shayle R. (1928&) 403.r 
Sebastiao e Silva, Jose (1914-) 125.BB 
Secrest, Don H. (19322) 299.r 
Sedov, Leonid Ivanovich (19077) 116.r 
Seebach, L. 425.r 
Seeley, Robert Thomas (19322) 274.1323.K 
Seelig, Carl (1894-1962) 129.r 
Segal, Graeme Bryce (1941-) 105.r 237.5 366.r 
Segal, Irving Ezra (1918-) 308.D 351.K 
Segal, Jack (1934-) 382.A, C 
Segre, Beniamino (1903-77) 366.r 
Segre, Corrado (1X63-1924) 1 l.B 
Seibert, Peter 126.D 
Seidel, Philipp Ludwig von (1821-96) 302.C 
Seidel, Wladimir P. (1906-81) 62.C D 
Seidenberg, Abraham (1916-) 9.r 343.r 



Name Index 
Seifert, Herbert 

1908 

Seifert, Herbert (19077) 65.r 91.r 99.r 126.N 154.D 
170.r 201.r 235.A, C, r 410.r 

Seinfeld, John Hersh (19422) 303.r 
Seitz, Gary M. 151.5 
Seki, Takakazu (Kowa) (c. 1642 (1639?)-1708) 

230 332 
Sekiguchi, Jiro (195 1 -) 437.CC 
Selberg, Atle (1917-) 4.A 32.H, r 122.F, G 123.8, 

D, E 412.K 437.X, CC, DD 450.A, I, K, T, r 
Selberg, Henrik Ludvig (19066) 17.A, C, D, r 48.E 

124.B 338.H 
Selfridge, R. G. NTR 
Sell, George R. (1937-) 126.M 
Selmer, Ernst Sejersted (1920&) 118.C 
Selten, Reinhard 173.B 
Semple, John Greenlees (1904-86) 12.r 
Sen, Pranab Kumar (19377) 280.r 371.r 
Senior, James Kuhn 151.r 
Seregin, L. V. 1 15.r 
Sergner, J. A. 19.B 
Serre, Jean-Pierre (1926-) 3.N, r 9.r 12.B 13.r 15.E 

16.C, E, T, r 20 2l.L, Q 29.r 32.D 52.N 59.H, r 
64.8, r 70.r 72.E, K, r 122.F 147.K, 0 148.A 
172.r 200.K, M, r 202.N, U, r 237.5 248.r 249.r 
257.r 284.G 362.r 366.D 369.F, r 426 428.G 
450.G. J, R, r 

Serret, Joseph Alfred (1819-85) 11 l.D 238.r 
App. A, Table 4.1 

Serrin, James Burton (1926-) 275.A, D 323.D, E 
Servais, C. 297.D 
Seshadri, Conjeeveram Srirangachari (19322) 

16.Y, r 
Seshu, Sundaram (19266) 282.r 
Sevast’yanov, Boris Aleksandrovich (1923-) 44.r 
Severi, Francesco (187991961) 9.F, r 1 l.B 12.B 

15.B, D, F 16.P 232.C 
Sewell, Geoffrey Leon (1927-) 402.G 
Sewell, Walter Edwin (1904-) 336.H 
Sgarro, Andrea (19477) 213.r 
Shabat, Aleksei Borisovich 387.F 
Shafarevich, Igor’ Rostislavovich (1923-) 14.r 15.r 

16.r 59.F, H 118.D, E 257.H 297.r 347.r 450.Q, S 
Shampine, Lawrence Fred (19399) 303.r 
Shaneson, Julius L. 65.D 114.5, K, r 
Shanks, Daniel (19177) 332.r 
Shanks, E. B. 109.r 
Shanks, William (1812-82) 332 
Shannon, Claude Elwood (1916-) 31.C 136.E 

213.A, D-F 403.r 
Shannon, Robert E. 385.r 
Shapiro, Harold N. (19222) 123.D 
Shapiro, Harold S. 43.r 
Shapiro, Harvey L. 425.r 
Shapiro, Jeremy F. 215.r 264.r 
Shapiro, Zoya Yakovlevna 258.r 323.H 
Shapley, Lloyd Stowell(1923-) 173.D, E 
Sharkovskii, Aleksandr Nikolaevich (19366) 126.N 
Sharpe, Michael J. (1941l) 262.r 
Shaw, B. 251.K 
Shaw H. 75.r 
Shchegol’kov (Stschegolkow), Evgenii Alekseevich 

(1917-) 22.r 
Shelah, Saharon 33.r 276.E, F, r 
Shelly, Maynard Wolfe 227.r 
Shelukhin, V. V. 204.F 
Shen Chao-Liang (1951-) 36.H 
Shenk, Norman A., II 112.P 
Shepard, Roger Newland (1929-) 346.E, I 
Sher, Richard B. (1939-) 382.D 
Sherman, Seymour (1917-77) 212.A. r 

Shewhart, Walter Andrew (1891-1967) 401.G 
404.A, B 

Shiba, Masakazu (1944-) 367.1 
Shibagaki, Wasao (19066) 174.r App. A, Table 20.r 

NTR 
Shidlovskii, Andrei Borisovich (1915-) 430.D, r 
Shields, Allen Lowell (19277) 43.G, r 164.5 
Shields, Paul C. (1933-) 136.E, r 213.F 
Shiga, Kiyoshi (19444) 195.r 
Shiga, Koji (1930-) 72.r 147.0 
Shige-eda, Shinsei (19455) 96. r 
Shikata, Yoshihiro (19366) 178.r 
Shilov, Georgii Evgen’evich (1917-75) 21.D 36.M 

125.A, Q, S 160.r 162.r 164.C 384.D 424.r 
Shimada, Nobuo (1925-) 114.B 202,s 
Shimakura, Norio (1940&) 323.H, N 
Shimizu, Hideo (19355) 32.H 45O.L, r 
Shimizu, Ryoichi (1931-) 374.H 
Shimizu, Tatsujiro (1897-) 124.B 272.J 
Shimodaira, Kazuo (1928-) 230.r 
Shimura, Goro (1930&) 3.M, r ll.B 13.P 16.r 32.D, 

F, H, r 59.A 73.B, r 122.F, r 450.A, I,, M, S, U, r 
Shintani, Hisayoshi (1933-) 303.r 
Shintani, Takuro (1943380) 450.A, El, G, V, r 
Shioda, Tetsuji (1940-) 450.Q, S 
Shiohama, Katsuhiro (1940&) 178.r 
Shiraiwa, Kenichi (1928-) 126.5 
Shirkov, Dmitrii Vasil’evich (1928-) 150.r 361.r 
Shiryaev, Al’bert Nikolaevich (1934-) 86.E 395.r 

405.r 
Shisha, Oved (1932-) 211.r 
Shizuta, Yasushi (19366) 41.D 112.F 
Shimidt (Schmidt), Otto Yul’evich (189-1956) 

190.L 277.1 
Shmul’yan, Yu. V. 37.E, G 162 424.0, V 
Shnider, Steven David (1945-) 344.CE 
Shnirel’man, Lev Genrikhovich (1905538) 4.A 

279.G 286.Q, r 
Shoda, Kenjiro (1902-77) 8 29.F 
Shoenfield, Joseph Robert (19277) 22. F, H, r 97.r 

156.r 185.r 411.r 
Shohat, James Alexander (188661944) 240.r 341.r 
Shortley, George H. 353.r 
Shreider, Yulii Anatol’evich (1927-) 192.r 
Shrikhande, S. S. 102.K 241.B STR 
Shub, Michael (1943-) 126.5, K, r 
Shubik, Martin 173.r 
Shubnikov, Aleksei Vasil’evich (1887-) 92.F, r 
Shult, Ernest E. (19333) 151.5 
Shultz, Frederic W. (1945-) 351.L 
Shvarts (Schwarz, &arc), Al’bert Solomonovich 

(1934-) 56.H 80.r 286.D 
Sibuya, Yasutaka (1930-) 289.D, E428.H, r 
Sidak, Zbyntk (1933-) 371.r 
Sidon, S. 159.J 192.T 
Siebenmann, Laurence Carl (1939-) 65.A, C, r 

70.C 114.5, K, r 
Siegel, Carl Ludwig(189661981) 3.A, r 4.F ll.B, r 

14.E 21.Q 22.A, C, H, r 27.r 32.F, r 49.D, r 55.r 
72.r 118.A, C, D 122.B, E, F, r 123.D 126.1 154.D 
182.D, E, G, r 242.A 289.D 296.A 297.r 328 347.E 
348.K.r 384.A, E, F 412.r 42O.C F 430.A, B, D, r 
450.A, E, K, r 

Sierpiitski, Waciaw (188221969) 22.A, C, H 49.D 
242.A 297.r 425.r 426 

Sigmund, Karl 136.r 
Sikonia, W. 331.E 390.1 
Sikorski, Roman (1920-83) 42.r 
Silov - Shilov 
Silver, Jack H. 33.F, r 



1909 Name Index 

Steffensen, John F. 

Silverman, Leonard M. (19399) 86.D 
Silverstein, Martin Louis (19399) 44.E 168.B 
Silvester II - Gerber1 
Silvet, S. D. 102.r 
Simart, Georges 1l.r 12.r 15.r 418.r 
Simauti, Takakazu (1930&) 411.5 
Simon, Barry (19466) 150.r 212.8, r 331.r 351.r 

375.r 390.r 
Simon, Herbert Alexander (1916-) 385.r 
Simon, Leon M. (19455) 275.C 
Simonis, Juriaan (19433) 16.Y 
Simons, James H. (19388) 275.A, F 364.r 365.G 
Simplicius (c. 6th century) 187 
Simpson, Thomas (1710-61) 299.A 303.E 
Sims, Charles C. (1937-) 14.L 151.A, I 
Sinai, Yakov Grigor’evich (19355) 126.A, J, N 

136.C, E, G, r 
Singer, Isadore Manual (1924-) 20 68.F 80.r 91.r 

109 153.C 183 191.r 303.H, r 323.K, M 366.A-C, r 
390.5 391.B, C, K, L, r 428.r 

Singh, Avadhesh Narayan 209.r 
Sinha, Kalya B. 375.r 
Sinnott, W. 450.5 
Sirao, Tunekiti (1924-) 45.1, r 
Sitnikov, Kirill Aleksandrovich (19266) 117.D 
Siu Yum-Tong (1943-) 195.r 232.C 364.r 
Sjolin, Per B. (1943-) 159.r 
Skibinsky, Morris (1925-) 396.3 
Skitovich, Viktor Pavlovich 374.H 
Skolem, Albert Thoralf (188771963) 97.8 118.C D 

156.E, r 276.D 293.A 
Skornyakov, Lev Anatol’evich (19244) 85.r 
Skorokhod, Anatolii Vladimirovich (1930-) 44.r 

115.D, r 250.E, r 406.D, F, r 
Skramstad, H. K. 433.A 
Slater, Lucy Joan 167.r 206.r 292.B NTR 
Slodowy, Peter (194%) 418.r 
Slowikowski, Wqjciech (1932-) 424.X 
Smale, Stephen (1930-) 65.C 105.Z, r 114.A, B, 

D, F, r 126.A, J, K, r 136.G 183 279.D, E 286.P, Q 
426 

Small, Charles (1943-) 29.r 
Smart, D. R. 153.r 
Smart, William Marshall (1889-) 55.r 392.r 
Smirnov, Modest Mikhailovich (1921l) 326.r 
Smirnov, Nikolai Vasil’evich (1900-66) 250.F, r 

374.E STR 
Smirnov, Vladimir Ivanovich (1887-1974) 20.r 

106.r 216.r 371.F 
Smirnov, Yurii Mikhailovich (1921l) 273.K 
Smith, Brian T. (1942-) 298x 301.0 
Smith, David Eugene (1860-1944) 187.r 
Smith, Gordon Dennis 304.r 
Smith, Guy Watson (18855) 19.r 
Smith, H. L. 87.H, K, r 
Smith, Henry John Stephen (1826683) 179.B 
Smith, J. M. 263.r 
Smith, Kennan Tayler (1926-) 276.E 338.E 
Smith, Paul Althaus (1900-80) 235.E 431.B 
Smith, Paul John (19433) 151.1 
Smithies, Frank (1912-) 217.r 
Smorodinsky, Meir (1936-) 136.E 
Smullyan, Raymond M. 411.r 
Smyth, Brian 275.F 365.H, L 
Smythe, Robert T. (1941-) 340.r 
Snapper, Ernst (1913-) 16.E 200.M 
Sneddon, Ian Naismith (1919%) 389.r 
Sneddon, W. J. 336.r 
Snell, James Laurie (1925-) 260.3 
Snell (Snel van Roijen, Snellius), Willebrord 

(1580-1626) 180.A 
Sobolev, Sergei L’vovich (1908-) 20 46.r 125.A 

162 168.B, r 224.E 320.r 323.G 325.r 
Sobolevskii, Pave1 Evseevich (1930-) 251.r 286.r 

378.1, J 
Sohncke, Leonhard (1842-97) 92.F 
Solitar, Donald Moiseevitch (19322) 161.r 
Solovay, Robert M. (19388) 22.F, H 33.E, F, r 
Sommer, Friedrich (1912-) 198.r 367.r 
Sommerfeld, Arnold Johannes Wilhelm (1868-1951) 

130.r 188.D 271x 274.r 402.H App. A, Table 19.111 
Sommerville, Duncan Mclaren Young (187991934) 

285.r 
Soms, A. 399.N 
Sonine (Sonin), Nikolai Yakovlevich (184991915) 

317.D App. A, Tables 19.111, 2O.VI 
Sono MasazB (1886-1969) 8 284.G 
Soreau, R. (18655?) 19.r 
Sotomayor, Jorge (1942-) 126.M 
Sova, Miroslav 378.D 
Sowey, E. R. 354.r 
Spanier, Edwin Henry (1921-) 64.r 70.r 148.r 170.r 

201.M, r 202.1, r 305.r 
Spath, R. A. 274.F 314.A 
Spearman, Charles (1863-1945) 346.F, r 371.K 
Specht, Wilhelm (1907-85) 10.r 151.r 190.r 
Specker, W. H. 142.C 
Spector, Clifford (1930-) 81.r 156.E, r 356.H, r 
Speer, Eugene Richard (19433) 146.A 
Speiser, Andreas (1885-1970) 151.r 172.5 190.r 
Spencer, Domina Eberle (1920@) 130.r 
Spencer, Donald Clayton (1912-) 12.B 15.F 72.G, r 

232.r 367.r 428.E, r 438.B, C 442.r 
Spencer, Thomas 402.G 
Sperner, Emanuel (1905-80) 7.r 256.r 343.r 350.r 
Spindler, Heinz 16.r 
Spitzer, Frank Ludwig (19266) 44.C 250.r 260.E, J 

340.r 
Spivak, Michael D. (1940-) 114.5 191.r 365.r 
Sprindzhuk, Vladimir Gennadievich (19366) 118.D 

43o.c 
Springer, George (1924-) 367.r 
Springer, Tonny Albert (19266) 13.A, I, 0, P, r 
Srinivasan, B. App. B, Table 5 
Srinivasan, T. P. 164.G 
Srivastava, Muni Shanker (1936-) 280.r 
Stallings, John Robert, Jr. (19355) 65.A, C, E, F 

235.G 426 
Stampacchia, Guido (1922-78) 440.r 
Stanasila (Stanagila), Octavian (19399) 23.r 
Stancu-Minasian, I. M. 408.r 
Stanley, Harry Eugene (1941-) 402.r 
Stanley, Richard Peter (1944) 16.2 
Stapp, Henry Pierce (19288) 146.C 274.D, I 386.C 
Stark, Harold Mead (1939-) 83.r 118.D 182.G 

347.E 450.E 
Stasheff, James Dillon (19366) 56.r 201.r 
Staudt, Karl Georg Christian von (1798-1867) 

267 343.C 450.5 
Stavroudis, Orestes Nicholas (1923-) 180.r 
Stearns, Richard Edwin (19366) 75.r 
Stechkin, Sergei Borisovich (1920-) 211.r 336.C 
Steel, J. 22.F 
Steele, John Hyslop (1926-) 263.D 
Steen, Lynn Arthur (1941-) 425.r 
Steenbrink, Joseph H. M. (1947-) 9.J 
Steenrod, Norman Earl (1910-71) 52.r 56.r 64.A, 

B, r 70.F, r 91.r 147.r 148.D 201.A, C, Q, R 210.r 
305.A, r 426.*, r 442.r 

Steffensen, John F. 223.r 



Name Index 
Stegall, Charles 

1910 

Stegall, Charles 443.H 
Stegun, Irene A. (1919 ) NTR 
Stein, Charles M. 280.D, r 398.r 399.G, r 400.8, F 
Stein, Elias M. (193ll) 159.G 168.B, r 224.8, E, r 

251.r 437.V, DD 
Stein, Karl (19133) 20 2l.H, L, M, Q 23.B, E, F 

72.E 367.B, G, I 
Steinberg, Robert (19222) 13.0 151.7 237.5 248.2 

App. B, Table 5.r 
Steinbuch, Karl 95.r 
Steiner. Jakob (179661863) 78.K 89.C 179.A, B 

181 228.8 267 
Steinhaus, Hugo (188771972) 37.H 317.r 424.5 
Steinitz, Ernst (1871.-1928) 8 149.1, r 172.A 357.r 
Steinmann, Othmar Viktor (1932-) 150.D 
Stepanov, Sergei Aleksandrovich 450.P 
Stepanov, Vyacheslav Vasil’evich (188991950) 

18.A. r 126.E r 394.r 
Stephan, Frederick F. 280.5 
Stepin, Anatolii Mikhailovich (1940&) 136.E, G, H 
Stern. A. 297.D 
Sternberg, S. H. 346.r 
Sternberg, Shlomo (19366) 105.r 1ll.r 126.G, r 

132.r 19l.r 274.r 325.L 428.F, G, r 431.r 
Stetter, Hans J. (1930&) 303.r 
Stevin, Simon (15488 1620) 360 
Stewart, F. M. 22.H 
Stewart, Gilbert W., III 298.r 
Stewart, Ian Nicholas (1945-) 51.r 
Stickelberger. Ludwig (1X50- 1936) 2.B 
Stiefel, Eduard Ludwig (1909978) 55.r 56.A, B, F 

65.8 147.A, I, M 199.B 302.D 
Stieltjes, Thomas Joannes (1856694) 94.A-C 133.C 

166.C l92.D, Q 220.D 240.A, K 270.L 
Stiemke, Erich 255.B, E 
Stigum, Bernt Petter (193ll) 44.r 
Stirling, James (169221770) 66.D 174.A 223.C 

App. A, Tables 17.1, 21.1 
Stoer, Josef (19344) 303.F 
Sto’ilow, Simion 207.8, C 367.r 
Stoka, Marius Ion (19344) 218.r 
Stoker, James Johnston (19055) 11 lx 205.r 
Stokes, George Gabriel (1X19-1903) 94.F I05.U 

167.E 188.E204.B.C,F205.C,F254.DApp.A, 
Table 3.111 

Stall, Wilhelm Friedrich (19233) 21.N 272.L 
Stolz, Otto (384221905) 106.G 333.8 
Stolzenberg, Gabriel 164.F 
Stone, Arthur Harold (1916-) 22.r 273.K 

425.X, CC 
Stone, Charles J. 5.F 
Stone, Harold S. (1938) 96.r 
Stone, Marshall Harvey (1903-) 42.D 112.0 162 

168.B 197.r 207.~ 251 .r 310.1 37X.C 390.r 425.T 
Stong, Robert Evcrt (19366) I14.r 237.H 
Stora, Raymond Felix (1930&) 150.G 
Storer, James Edward (19277) 282.r 
Stsrmer, Erling (19377) 212.B 
Stout, Edgar Lee (19388) 164.r 
Stracke, Gustav (18877) 309.r 
Strang, Wiliam Gilbert (19344) 300.r 304.r 
Strassen, Volker (19366) 250.E 
Stratila (Strati&), Serban 308.r 
Stratonovich, Ruslan Leont’evich (1930%) l15.D 

406.C 
Stratton, Julius Adams (l901&) 130.r 133.r 
Strauss. Walter A. (19377) 286.C 345.A 
Stray, Arne (19444) 164.5 
Streater, Raymond F. (19366) 150.r 386.r 
Strcbcl, Kurt 0. (I 92 l-) 352.C 

Street, Anne Penfold (1932-) 241 .r 
Stroock, Daniel Wyler (1940&) 44.E 115.C D, r 

250.r 261.C 262.E 406.A, D, r 
Stroud, Arthur H. 299.r 
Stroyan, Keith Duncan (19444) 293.r 
Struik, Dirk Jan (1X94-) 187.r 266.r 
Strutt, Maximilian Julius Otto (190331 133.r 268.r 
Struve, Friedrich George Wilhelm von (1793-1864) 

39.G App. A, Table 19.IV 
Stuart, Alan (1922%) 102.r 374.r 397.r 400.r 
Student (Gosset, William Sealy) (1876 -1936) 

374.B 400.G 401.F 
Stueckelberg, Ernst Carl Gerlach (1905%) 361.r 
Sturm, Jacques Charles Francois (18011-55) 10.E 

107.A 112.1 301.C 315.B 
Subramanyam, K. 399.0 
Suetuna, Zyoiti (189X-1970) 242.B 2’35.D 450.E 
Sugawara, Masao (1902270) 73.A 
Sugie, Toru (19522) 15.H 
Sugimoto (Goto), Midori (19444) 17Y.r 
Suita, Nobuyuki (1933%) 77.E 
Sukhatme, Balkrishna Vasudeo (1924479) 373.r 
Sukhatme, Pandurang Vasudeo 373.r 
Sullivan, Dennis Parnell (1941-) 65.C 114.5, L 

154.H, r 234.E 
Sumihiro, Hideyasu (1941-) 16.2 
Sunada, Toshikazu (19488) 195.r 391 .C 
Sundman. Karl Frithiof(1873-1949) 420.C 
Sunouchi, Gen-ichiro (191 I-) 159.G, H 3lO.r 336.D 
Sunzi (c. 3rd century) 57.A 
Suranyi, Janos (1918 -) 97.B 
Suslin, Andrci Aleksandrovich 16.Y 200.K 369.F 
Suslin (Souslin), Mikhail Yakovlevich (189441919) 

22.ApC, H, I 33.F 425.CC 
Siissmilch, Johann Peter (1707-67) 401.E 
Suzuki, Michio (19266) 151.1, J, r 190.r App. B, 

Table 5.111 
Suzuki, Mitsuo (19288) 173.E 
Svarc - Shvarts 
Swan, Richard G. (1933-) 200.M 23’r.r 362.r 383.r 
Sweedler, Moss E. (19422) 172.A, K 203.A 
Swierczkowski, S. 22.H 
Swinnerton-Dyer, Henry Peter Francis (1927-) 

1 l8.D, E 450.5, Q, S 
Switzer, Robert M. (1940%) 202.r 
Sylow, Peter Ludvig Mejdell (1832-1918) 151.8 
Sylvester, James Joseph (1X14-97) 103.F 186.A 

226.G 267 297.D 348.C 369.E, F 
Symanzik, Kurt (1923-83) 132.C 15O.D, F 361.B, r 

386.C 
Synge, John Lighton (1897-) 152.C 178.B, C 
Szabb, Arpad (19133) 187.r 
Szankowski. Andrzej (1945-) 37.L 
Szasz, Otto (188441952) 121.B 
Szczarba, Robert H. (1932-) 114.K 
Szebehely, Victor G. (1921l) 420.r 
Szegii, Gabor (I 895-19X5) 20.r 48.D, r 164.G 

188.H 222.r 228.B, r 317.r 322.r 336.1 389.r 
Szegti, Giorgio P. 86.r 108.r 126.r 
Szemeredi, Endre 136.C 
Szmielew, Wanda (19 18-76) 97.B 
Sz.-Nagy (Szekefalvi-Nagy), Bela (191.3&) 68.r 197.r 

251.N, r 390.r 
Szpilrajn, Edward 117.G 
Szpiro, Lucien (194ll) 16.Y 118.E 

T 

Tabata, Masahisa (1947-) 304.D 
Tachibana, Shun-ichi (19266) I1O.E 



1911 Name Index 

Thurston, William P. 

Tai Yung-Sheng (19444) 16.r 28.r 59.H 118.D, E, r 200.K, N 257.r 450.F, G, 
Tait, Peter Guthrie (1831~1901) 157.C 235.A L, N, P, Q. S, r 
Takagi, Ryoichi (1943 -) 365.1, K, L Tatsuuma, Nobuhiko (1930&) 437.K 
Takagi, Teiji (I 875 - 1960) 14.L, 0, R, U 59.A Tatuzawa, Tikao (1915-) 4.F, r 123.E 450.r 

73.A, r 196 267 297.1 336.A 348.M 415 450.E Tauber, Alfred (186661942?) 36.L 121.D 160.G 
App. B, Tables 4.1, II 192.F 339.8 379.N 

Takahara, Yositane (c. 17th century) 230 Taubes, Clifford Henry (1955-) 150.r 
Takahashi, Hidetoshi (1915585) 142.D 299.r Taylor, Angus Ellis (191 l&) 106.r 216.r 
Takahashi, Moto-o (1941-) 156.E 41 l.J, r Taylor, Brook (168551731) 20 21.B 58.C 106.E, J 
Takahashi, Reiji (19277) 437.BB 286.F 339.A App. A, Table 9.IV 
Takahashi, Shuichi (1928-) 362.K Taylor, Sir Geoffrey Ingram (1886- 1975) 205.E 
Takahashi, Tsunero (1933 -) 275.F 365.1, K, L 433.A, C 
Takahasi, Yositoki (1764- 1804) 230 Taylor, Howard Milton (19377) 260.r 
Takano, Kinsaku (1915-58) 213.F Taylor, James Henry (18933?) 152.C 
Takano, Kyoichi (1943-) 428.r Taylor, John Clayton (1930&) 132.r 
Takasawa, Yoshimitsu (1942-) 299.B Taylor, John R. 375.r 
Takasu, Satoru (I 931-) 200.K Taylor, Joseph L. 36.M, r 
Takebe, Katahiro (166441739) 230 332 Taylor, Michael E. 345.A 
Takeno, HyBitiri, (19 IO-) 434.r Taylor, Samuel James (19299) 45.r 
Takenouchi, Osamu (19255) 437.E Taylor, Thomas D. 304.r 
Takenouchi, Tanzo (1887-1945) 73.A 134.r Teichmiiller, Oswald (1913-43) 9.J 43.E 77.E 
Takens, Floris (1940-) 126.A, L, M, r 433.B, r 352.A, C 416 438.B 
Takesaki, Masamichi (1933%) 36.r 308.H, I, J Teissier, Bernard (19455) 16.2 418.r 
Takeuchi, Kei (19333) 128.C r 346.r 37l.A, H Teixeira, Francisco Comes 93.r 

373.r 399.K, 0 400.r Temam, Roger (1940&) 204.B, D 304.r 
Takeuchi, Masaru (19322) 365.1, L, N, 0 384.E, r Tennenbaum, Stanley (19277) 33.F, r 
Takeuchi, Mitsuhiro (19477) 203.r Teplitz, Vigdor L. 146.r 
Take&, Gaisi (1926-) 33.r 81.D 156.E, r 356.G, r Terada, Toshiaki (1941-) 206.D 428.H 

41 l.J, r Terano, Takao (19522) 301.F 
Takhtadzhan (Takhtajan), Leon Armenovich Terasaka, Hidetaka (19044) 235.A, C 

387.G ter Haar, Dick 402.r 
Tall, Franklin D. (19444) 273.K te Riele, H. J. J. 297.D 
Talman, James Davis (I 93 I-) 389.r Terjanian, Guy 118.F 
Talmi, Igal 353.r Terry, Milton Everett (1916-) 346.C 371.C 
Tamagawa, Tsuneo (1925-) 6.F 13.P, r 59.H 118.C Thales (c. 639-c. 546 B.C.) 35.A 18 1 187 

122.F 348.K 450.A, H, K, L Theaitetus (415-369 B.C.) 187 
Tamano, Hisahiro (1928869) 425.X Theil, Henri (19244) 128.r 
Tamarkin, Jacob David (188881945) 160.E 240.r Theodorsen, Theodore (18977) 39.F 

341.r Theodorus (of Cyrene) (5th century B.C.) 187 
Tamura, Itiro (19266) 114.8, F 154.8. H Theon (of Alexandria) (Il. 370) 187 
Tamura, JirB (1920-) 124.C 367.F Theon (of Smyrna) (Il. 130) 187 
Tamura, Ryoji (1920-81) 371.C Thimm, Walter (19133) 23.D 
Tanabe, Hiroki (1932-) 378.1 Thirring, Walter Eduard (1927-) 212.B 
Tanabe, Kunio (1943-) 302.r Thorn, Rene F. (1923-) 12.B 5l.A, B, E 56.E, F, I 
Tanaka, Chuji (1916-) 121.8, C 70.r 114.A, F-H 126.A, H, M 148.E 183 202.T 
Tanaka, Hiroshi (1932-) 41.C 261.r 340.r 406.D 263.D 418.G, r 426 
Tanaka, Hisao (192%) 22.C F Thoma, Elmar Herbert (1926-) 437.E 
Tanaka, Jun-ichi (19499) 164.H Thomas Aquinas (1225(27)-74) 372 
Tanaka, Makoto (1942-) 437.r Thomas, J. 206.C 
Tanaka, Minoru (19099) 295.E Thomas, Lawrence E. 375.F 
Tanaka, Minoru (1949%) 279.r Thomas, Paul Emery (1927-) 64.r 
Tanaka, Noboru(l930&) 21.P 80.r 191.r 344.B Thomas, Richard Kenneth (1942-) 136.E 

364.F 365.F 384.D, r Thomas, Tracy Yerkes (1899-1984) 152.C 
Tanaka, Shigeru (19422) 136.C Thomason, Steven Karl (1940@) 22.F 
Tanaka, Shunichi (19388) 287.C Thompson, Cohn John (1941-) 212.B 
Tanaka, Yosizane (1651-1719) 230 Thompson. J. F. 304.E 
Tandori, Karoly (19255) 3 17.B Thompson, John Griggs (1932-) 15l.D, H-J 
Tangora, Martin Charles (19366) 64.r Thomsen, Cerhard (18999) 155.H 
Tani, Atsusi (I 9466) 204.F ‘t Hooft, Gerald 132.C D 
Taniyama, Yutaka (1927-58) 3.M 73.B 450.F, S Thorin, G. 0. 88.r 224.A 
Tannaka, Tadao (1908886) 59.D 69.D 249.U Thorne, Kip S. 359.r 
Tannery, Paul (1843-l 904) 144.r 187.r Thorpe, J. A. Y 1.r 
Tanno, Shukichi (19377) 110.E 364.F, G 365.L Thrall, Robert McDowell (1914-) 29.r 173.D 

3Yl.C E, N 368.r 
Tdrski, Alfred (1902-83) 22.G 33.r 97.B, r 156.r Threlfall, William (1888-) 65.r 91.r 99.r 170.r 

185.D, r 276.D 201.r 235.r 4lO.r 
Tartaglia, Niccolb (1500?-57) 360 Thue, Axe1 (186331922) 31.B 118.D 182.G 
Tartakovskii, Vladimir Abramovich 4.E 161.B Thullen, Peter (!907-) 20 21.H, M, Q 
Tashiro, Yoshihiro (1926-) 364.F, G Thurston, William P. (19466) 65.E 126.5, N 
Tate, John Torrence (1925-) 3.C M, N, r 6.E, F, r 154.A, D-H, r 234.A 235.B, E 



Name Index 
Thurstone. Louis Leon 

1912 

Thurstone, Louis Leon (188771955) 346.C F 
Tierney, Myles 200.r 
Tietavainen, Aimo A. (19377) 63.r 
Tietze, Heinrich (1880- 1964) 425.Q 
Tikhonov, Andrei Nikolaevich (19066) 153.D 

273.K 425.Q, S, T 
Timmesfeld, Franz-Georg (19433) 151.5 
Timoshenko, Stephen P. (187881972) 271.r 
Tisserand, Francois Felix (1845-96) 55.r 
Tissot, Nicolas Auguste (1824&?) 206.C 
Titchmarsh, Edward Charles (1898-1963) 112.0 

123.B, D, r 16O.C r 192.r 198.r 220.C 242.A, r 
306.B 429.r 450.r 

Tits, Jacques Leon (1930&) 13.0, Q, R, r 151.1, J 
343.1 

Toda, Hirosi (1928) 202.P, R, U 
Toda, Morikazu (I 917-) 287.A, r 
Toda, Nobushige (19388) 17.C 
Todd, John Arthur (1908-) 237.F 366.B, r 
Todhunter, Isaac (1820-84) 342.r 
Todorov, Andrei Nikolov (194%) 232.C 
Todorov, Ivan T. (19333) 146.r 150.r 
Toeplitz, Otto (18x1-1940) 197.r 217.r 251.0 

379.L 
Toki, Yukinari (19133) 62.D 352.A 367.E 
Tollmien, Walter 433.A 
Tolman, Richard Chace (1881-1948) 402x 
Tolstoy, I. 446.r 
tom Dieck, Tammo 43 1 .E, r 
Tomi, Friedrich (19433) 275.C 
Tomita, Minoru (1924-) 308.H 
Tomiyama, Jun (1931-) 36.K 164.E 
Tomonaga, Sin-itiri, (1906679) 132.C 146.A 150.A 

359.C 361.A 
Tomotika, Susumu (1903364) 134.r 
Tompkins, Charles Brown (1912-) 275.B 365.B 
Tondeur, Philippe Maurice (19322) 154.G, H, r 
Tonelli, Leonida (1885- 1946) 107.A 246.C 
Tonnelat-Baudot, Marie-Antoinette (1912-80) 

434.r 
Toponogov, Viktor Andreevich 178.A, F 
Topp, L. J. 304.r 
Topsse, Flemming (19388) 22.r 
Tore&, R. (1884-1915) 9.E, J ll.C 
Torgerson, Warren S. 346.E, r 
Torii, Tatsuo (19344) 3Ol.C 
Totoki, Haruo (19344) 136.D 395.r 
Traub, Joe Fred (19322) 71.r 301.r 
Trefftz, Erich Immanuel(18881937) 46.F 
Tremolieres, Raymond (1941-) 440.r 
Treves, J. Francois (1930-) 112.D, L 125.r 274.1 

286.2 320.1, r 321.r 345.A, B 424.r 
Tricomi, Francesco Giacomo (18977 1978) 217.N, r 

288.C 317.r 326.C r 
Triebel, Hans (1936-) 168.r 224.r 
Trigg, G. L. 414.r 
Tristram, Andrew G. 114.K 
Trjitzinsky, Waldemar Joseph (1901-73) 254.D 

289.C D 314.A 
Tromba, Anthony J. (1943-) 275.C r 286.D 
Trotter, Hale Freeman (1931&) 235.C 351.F 378.E 
Trubowitz, Eugene B. (1951&) 387.E 
Trudinger, Neil Sidney (19422) 364.H 
Truesdell, Clifford Ambrose T. (1919-) 389.B 
Trych-Pohlmeyer, E. B. 402.G 
Tschebyscheff - Chebyshev 
Tsen Chung-Tze 27.E 118.F 
Tsirel’son B. S. 406.D 
Tsu Ch’ung-Chih (4299500) 57.A 332 

Tsuboi, Takashi (1953-) 154.G 
Tsuchiya, Nobuo (1950-) 154.G, H 
Tsuda, Takao (I 932-) 354.r 
Tsuji, Masatsugu (1894-1960) 48.r 62.B, D 124.C 

234.r 242.A 367.r 388.B 
Tsuji, Tadashi (19466) 384.B 
Tsukada, Kazumi (1953-) 365.N 391 .N 
Tsukamoto, Tatsuo (1940-) 353.r 
Tsukamoto, Y6tar8 (1932-74) 178.B 
Tsushima, Ryuji (1952-) 32.r 
Tsuzuku, Tosiro (19299) 13.R 
Tucker, Albert William (1905-) 173.1.255.B, E 

292.A, B 
Tug&, Tosiyuki (19266) 22.C 81 356.G, r 
Tukey, John Wilder (19155) 34.r 87.r 142.D, r 

304.r 371.A, r 397.r 421.C r 425.X, r 436.r 
Tumarkin, Lev Abramovich (1904474) 117.1 
Tumura, Yosiro (1912-) 17.C D 62.10 
Tung Chuan 57.A 
Turan, Pal (Paul) (1910-76) 123.D, r 
Turing, Alan Mathison (1912254) 22.G 31.B, C 

97.B 161.B 356.A 
Turner, M. J. 304.r 
Tushkanov, S. B. 17.C 
Tutte, William T. 186.r 
Tyupkin, Yu. S. 80.r 
Tzafriri, Lior (1936-) 37.N, r 168.r 

U 

Uchida, Fuichi (19388) 431.G 
Uchida, Koji (1939-) 14.L 
Uchiyama, Akihito (1948-) 168.B 
Udagawa, Kanehisa (1920-65) 389.r 
Ueda, Tetsuo (1951&) 72.K 
Ueda, Yoshisuke (19366) 126.N 
Uehara, Hiroshi (1923-) 202.P 
Ueno, Kenji (19455) 16.r 72.1, r 
Ueno, Tadashi (1931-) 115.C 
Ugaheri, Tadashi (1915-) 240.B 338.C 
Uhl, J. Jerry, Jr. (1940-) 443.A, H 
Uhlenbeck, George Eugene (1900-) 41.C 45.1 
Uhlenbeck, Karen (19422) 195.E, r i75.D 
Uhlhorn, Ulf 258.r 
Uhlmann, Armin 212.B 
Ukai, Seiji (1939-) 41.D 
Ulam, Stanislaw Marcin (1909984) 33.F, r 153.B 

287.r 385.C 
Ullman, Jeffrey D. (1942-) 31.r 71.r ‘75.r 186.r 
Ullrich, Egon (1902257) 17.A, C 
Ulm, Helmut (1908-75) 2.D 
Umemura, Hiroshi (19444) 16.1 
Umemura (Yamasaki), Yasuo (1934-) 225.r 437.BB 
Umezawa, Hiroomi (19244) 150.r 
Umezawa, Toshio (1928-) 411.F 
Uno, Toshio (1902-) NTR 
Ura, Taro (1920-) 126.D, F 
Urabe, Minoru (1912-75) 301.D 
Urakawa, Hajime (19466) 391.E 
Ural’tseva, Nina Nikolaevna 286.r 323.D 
Urbanik, Kazimierz (1930-) 407.C 
Ursell, Harold Douglas 246.r 
Uryson, Pave1 Samuilovich (1898-1924) 22.1 93.D 

117.A, r 273.K 425.Q, S, U, V, CC 
Ushiki, Shigehiro (1950-) 126.N 
Ushio, Kazuhiko (19466) 96.r 
Utida, Itumi (1805582) 230 
Utida, Shunro (1913-) 263.A 
Uzawa, Hirofumi (19288) 292.A, E, r 



1913 Name Index 
Wagschal, Claude 

V 

Vahlen, Karl Theodor (186991945) 83.B 
Vaillancourt, Remi (1934-) 304.F 345.A 
Vainberg, Boris Rutimovich (1938X) 323.K 
Vainshtein, Isaak Aronovich 273.K 
Vlisala, Jussi 143.r 352.F 
Vajda, Steven 40X.r 
Valentine, F. A. 88.r 
Valiron, Georges (18X4- 1954) 17.A, C, D 43.K 

121.B, C, r 124.8 272.F, K 429.B435.r 
van Beijeren, Henk 402.G 
van Ceulen, Ludolf (1540-1610) 332 
Van Daele, Alfons 308.H 
van Dantzig, D. 109 434.C 
van den Berg, Franciscus Johannes (1 X33-92) 19.B 
van der Corput, Johannes Gualtherus (1890-1975) 

4.C 182.H 242.A 
Vandermonde, Alexandre Theophile (1735596) 

103.G 190.Q 
van der Pal, Balthasar (188991959) 240.r 290.C 
van der Waerden, Bartel Leendert (1903-) 8.*, r 

12.B 24.r 29.r 60.r 66.r 67.r 90.r 92.F, r 122.r 149.r 
1721 187.r 190.r 196 284.r 337.r 351.r 362.r 368.r 
369.E 371.C 417.E 

Vandiver, Harry Shultz (18X2-1973) 14.L 145.*, r 
van Hove, Leon Charles Prudent (1924-) 351.K 
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Veech, William Austin (19388) 136.H 
Vekua, Il’ya Nestorovich (1907-77) 217.3 323.r 
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Veneziano, Gabriele (1942-) 132.C 386.C 
Venkov, Boris Borisovich (19344) 200.M 
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Verbeure, Andre (1940-) 402.G 
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Verdier, Jean-Louis (19355) 16.r 450.Q, r 
Ver Eecke, Paul (1867-1959) 187.r 
Vergne, Michele 384.r 
Verhulst, Pierre Francois (1 x04-49) 263.A 
Verner, James Hamilton (1940-) 303.r 
Veronese, Giuseppe (185441917) 275.F 
Vershik, Anatolii Moiseevich (19333) 136.D, r 
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Vessiot, Ernest (1 ,6551952) 107.A 113 249.V 
Vey, Jacques 154.G, r 384.r 
Vick, James Whi>yhd (1942-) 201.r 
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Villat, Henri Rene Pierre (187991972) App. A, 
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Vinberg, Ernesl Borisovich (1937-) 122.G 351.1 
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Vogan, David Alexander, Jr. (19544) 437.r 
Vogel, Kurt (188881985) 24.r 
Vogel, William R. 200.r 
Vogt, Dietmar (1941-) 168.8 
Voichick, Michael (1934-) 164.K 
Voiculescu, Dan Virgil (19499) 36.5 331.E 
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Volder, J. E. 142.C 
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von Mises, Richard (I 883-1953) 29X.r 342.A 
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Vranceanu, Gheorghe (1900-79) 434.C 
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Wagner, S. W. 95.r 
Wagschal, Claude 321.G 



Name Index 
\ 
k 

Wagstaff, Samuel S. \ 

1914 

Wagstaff, Samuel S. 14.L 145 \ 
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261.r 262.r 406.B, D, F 
Watanabe, Takeshi (1931-) 260.5 
Watari, Chinami (1932-) 336.D 
Waternaux, Christine M. 280.r 
Watson, George Leo (19099) 4.E 348.r 
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(183661910) lll.H, 1365.C App. A, Table 4.1 
Weinstein, Alan David (1943-) 126.N 178.r 
Weinstock, Robert 441.r 
Weir, M. D. 425.r 
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344.D, E 
Welsh, James Anthony Dominic 66.1 
Wendroff, Burton 304.F 
Wentzel, Gregor (18988) 25.B 
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448 App. A, Table 4.11 

Weyl, Fritz Joachim (1915-77) 21.N, r 124.B, r 
272.L 448 

Weyrich, Rudolf (1894-) 39.r App. A, Table 19.111 
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a (cardinal number of N) 49.A 
A(a) (the totality of functions bounded and con- 

tinuous on the closure of s2 and holomorphic 
in Q) 168.B 

A,(Q) (the totality of functions J‘that are holomor- 

phic in Q and that satisfy i IJ(z)lPd.xdy< x) 

168.B 
r-capacity 169.C 
r-excessive function 261 .D 
r-limit point 126.D 
a-limit set (of an orbit) 126.D 
r-perfect, a-perfectness 186.5 
a-point (of a meromorphic function) 272.B 
r-pseudo-orbit 126.5 
x-quartile 396.C 
x-string 248.L 
r-trimmed mean 371.H 
a-adic completion (of an R-module) 284.B 
a-adic topology (of an R-module) 284.B 
.oj-characteristic class (of a real oriented vector 

bundle) 237.F 
A-balanced mapping 277.J 
A-B-bimodule 277.D 
A-homomorphism 

between A-modules 277.E 
of degree p (between two graded A-modules) 

200.B 
A-linear mapping (between A-modules) 277.E 
A-module 277.C 
A-optimality 102.E 
A set 22.A 409.A 
A-stability 303.G 
A(r)-stability 303.G 
&-stability 303.G 
A(O)-stable 303.G 
A-submodule 277.C 
A-summable 379.N 
A-number 430.C 
abacus 75.A 
Abel, N. H. 1 
Abel continuity theorem 12l.D 339.B 
Abelian category 52.N 
Abelian differential 1 I .C 367.H 
Abelian equation 172.G 
Abelian ergodic theorem 136.B 
Abelian extension 172.B 
Abelian function 3.5 

elementary 3.M 
Abelian function field 3.5 
Abelian group(s) 2 190.A 

category of 52.B 
class of 202.N 
dual topological 422.C 
elementary 2.B 
elementary topological 422.E 
free 2.C 
meta- 190.H 
mixed 2.A 
primary 2.A 
reduced 2.D 
topological 422.A 

torsion 2.A 
torsion-free 2.A 
of type p” 2.D 

Abelian ideal (of a Lie algebra) 248.C 
Abelian integral 1 l.C 
Abelian Lie algebra 248.C 
Abelian Lie group 249.D 
Abelian linear group over K 60.L 
Abelian p-group 2.A 

complete 2.D 
divisible 2.D 

Abelian potential 402.G 
Abelian projection operator 308.E 
Abelian subvariety 3.B 
Abelian surface 15.H 
Abelian theorems 240.G 
Abelian variety (varieties) 3 

isogenous 3.C 
polarized 3.G 
simple 3.B 

Abel integral equation 217.L 
Abel method, summable by 379.N 
Abel method of summation 379.N 
Abel partial summation 379.D 
Abel problem 217.L 
Abel test 379.D 
Abel theorem 

(on the Cauchy product of two series) 379.F 
(in the theory of algebraic functions) 3.L 1 l.E 

aberration 180.C 
annual 392 
diurnal 392 

Aberth (DKA) method, Durand-Kerner- 301.F 
Abramov’s formula 136.E 
abscissa 

of absolute convergence (of a Dirichlet series) 
121.B 

of absolute convergence (of a Laplace trans- 
form) 240.B 

of boundedness (of a Dirichlet series) 121.B 
of convergence (of a Dirichlet series) 121.B 
of convergence (of a Laplace transform) 

240.B.H 
of regularity (of a Dirichlet series) 121.B 
of regularity (of a Laplace transform) 240.C 
of simple convergence (of a Dirichlet series) 

121.B 
of uniform convergence (of a Dirichlet series) 

121.B 
of uniform convergence (of a Laplace transform) 

240.B 
absolute (for a quadric hypersurface) 285.C 
absolute Bore1 summable 379.0 
absolute class field 59.A 
absolute continuity 

generalized 1OO.C 
generalized, in the restricted sense 100.C 
space of 390.E 

absolute continuity (*), generalized 100.C 
absolute convergence, abscissa of 

(of a Dirichlet series) 121.B 
(of a Laplace transform) 240.B 

absolute covariant 226.D 
absolute curvature (of a curve) 1ll.C 
absolute figure (in the Erlangen program) 137 
absolute homology group 2Ol.L 
absolute inequality 21 l.A 
absolute integral invariant 219.A 
absolute invariant 12.A 226.A 
absolutely closed space 425.U 
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Whitehead, George William (191%) 64.r 70.r 148.r 
202.P, Q, T-V, r 

Whitehead, John Henry Constantine (1904-60) 
65.A, C, F 90.r 91.r 109.r 114.A, C 178.A 200.L 
202.F, N, P 237.5 426 

Whiteside, Derek Thomas 265.r 283.r 
Whitham, Gerald Beresford (19277) 205.r 
Whitin, Thomson M. 227.r 
Whitney, D. Ransom 371.A, C 
Whitney, Hassler (19077) 56.B, F 58.B-E 66.r 

105.A,D, K, r 111, J 114.A, B, D,r 126.E 147.A, 
F, M 168.B 186.H 201.A, J 418.G 

Whittaker, Edmund Taylor (187331956) 167.B 
174.r 268.r 271.r 3Ol.C 389.r 420.r 450.0 App. A, 
Tables 14.11, 19, 20.r 

Whittle, Peter (1927-) 421.r 
Whyburn, Gordon Thomas (1904469) 79.r 93.r 426 
Wick, Gian Carlo (1909-) 351.K 
Widder, David Vernon (189881973) 94.r 220.D 

240.B, D, E 341 .r 
Widlund, Olof B. (19388) 303.G 
Widman, Kjell-Ove 195.E 
Widom, Harold (19322) 164.K 
Wieferich, Arthur 145 
Wielandt, Helmut (1910-) 151.B, E, H, r 
Wiener, Norbert (189441964) 5.C 18.A, r 20 

36.L 37.A 45.A, B, D, r 48.A, B 58.r 86.E 95.*, r 
120.BpD 123.B 125.0, BB 136.B 159.1 160.B, 
E, G, r 162 176.C. I 192.F, H, 0, P, r 207.C D 
222.C 250.E 260.E 338.G 339.r 342.A 395.D, r 
406.8 407.r 

Wierman, John Charles (19499) 340.r 
Wigert, S. 295.E 
Wightman, Arthur Strong (19222) 15O.C D, r 

212.B 258.r 351.K 386.r 
Wigner, Eugene Paul (1902-) 150.A 212.B 258.C r 

351.H, J&L, r 353.B, r 377.B 437.DD 
Wijsman, Robert Arthur (1920-) 396.r 
Wilcox, Calvin Hayden (19244) 375.B 
Wilcoxon, Frank 371.A-C 
Wilczynski, Ernst Julius (187661932) 109 1lO.B 
Wilder, Raymond Louis (18966 1982) 79.r 93.r 
Wiles, Andrew (1953-) 14.L 257.H 450.5 
Wilkes, James Oscroft (1932-) 304.r 
Wilkinson, James Hardy (1919-) 138.C 298.r 

300.r 301.r 302.r 
Wilks, Samuel Stanley (1906-64) 280.B 374.r 

396.r 399.P 
Willers, Friedrich-Adolf (1883-) 19.r 
Williams, David (19388) 260.P 
Williams, H. C. 123.C 
Williams, Robert F. (19288) 126.5, K, N 
Williamson, Jack (1940-) 272.K, r 
Williamson, Robert E. (19377) 114.H 
Willmore, Thomas James (1919--) lll.r 365.0 
Wilson, B. M. 295.E 
Wilson, Edwin Bidwell (1879-1964) 374.F 
Wilson, John (1741-93) 297.G 
Wilson, K. B. 102.r 3Ol.L 
Wilson, Kenneth G. (19366) 361.r 
Wiman, Anders (186551959) 429.B 
Winnink, Marinus 308.H 
Winter, David John (1939-) 172.r 
Winters, Gayn B. 9.r 
Wintner, Aurel Frederick (1903358) 55.r 420.r 

435.E 
Wirtinger, Wilhelm (18655?) 3.r 235.B, D 365.L 

App. A, Table 8 
Wishart, John 374.C 
Witt, Ernst (1914-) 9.E 59.H 60.0 149.M 151.H 

I 

161.B 248.5 348.E 449.A. B 
Witten, Louis (1921l) 359.r 
Wold, Herms - 0. A. 395.D 
Wolf, Emil (‘ !2-) 446.r 
Wolf, Josep 

19 

ilbert (1936-) 178.r 364.D 365.F 
412.r 41. I 

Wolfe, Dor;,llas A. 371.r 374.r 
Wolfe, Ph “” 327-) 292.D 349.C 
Wolff, Jul’ 

k 

43.K 77.C 
Wolff, Th as H. 164.1 
Wolfowitz, Jacob (1910-81) 63.r 213.F 399.5, N, r 

400.r 
Wolovich, William A. (1937-) 86.D 

:ratschek, Hans 92.F 

a% -3 qie (19344) 403.c 
wo Sai-Wing (1940-) 314.r 

4b 

wo i (1935-) 21.N 
w ) .” Muray (1934-) 86.E 
Wood, John William (1941l) 154.B, H 
Wood, Rex Chester (1920-) 19.r 
Woodcock, Alexander E. R. 51.r 
Woods, E. J. (1936-) 308.1 377.r 
Woods, H. J. 92.F 
Woolard, Edgar William (1899-) 392.r 
Woronowicz, Stanislaw Lech (1941-) 402.G 
Wrench, John William, Jr. (1911&) 332.r 
Wright, D. App. B, Table 5 
Wright, Elisabeth Maitland 4.D, r 83.r 291.F 295.r 

328.*, r 
Wright, Sewall (1889-) 263.E 
Wronski, HGene Joseph Maria (177661853) 208.E 
Wu Chien-Shiung (19133) 359.C 
Wu Hung-Hsi (1940-) 178.r 
Wu Tai Tsun (1933-) 402.r 
Wu Wen-Tsiin (19199) 56.F, r 90.r App. A, 

Table 6.V 
Wulf, W. A. 75.r 
Wylie, Alexander (1815-87) 57.C 
Wylie, Shaun (1913-) 70.r 201.r 

X 

Xavier, Frederic0 Jose de Vasconcelos (1951-) 
275.E 

Xiahou Yang (c. 5th century) 57.A 
Xu Yue (fl. 200) 57.A 

Y 

Yabuta, Kozo (1940&) 164.G 
Yaglom, Akiva Moiseevich (1921-) 44.B, C 395.r 

407.C 433.r 
Yaglom, Isaak Moiseevich (1921-) 89.r 
Yamabe, Hidehiko (1923-60) 183 196 249.D, V 

364.H 
Yamada, Masami (19266) 353.r 
Yamada, Toshihiko (1939-) 362.r 450.T 
Yamada, Toshio (1937-) 406.D 
Yamagami, Shigeru (1955-) 212.B 
Yamaguchi, Keizo (1951-) 344.C 
Yamaguti, Masaya (19255) 126.N 303.G, r 304.F 

325.H 
Yamamoto, Koichi (1921l) 241.E 
Yamamoto, Sumiyasu (19177) 96.F 
Yamamoto, Yoshihiko (1941-) 45O.S 
Yamanaka, Takesi (1931-) 286.2 

i Yamanoshita, Tsuneyo (1929-) 202.S 
Yamashita, Hiroshi (19466) 301.F 
Yamasuge, Hiroshi (1926-60) 114.F 
Yamato, Kenji (1948-) 154.G 



Subject Index 
Affine minimal surface 

1920 

afline minimal surface llO.C 
alline normal 1lO.C 
afline principal normal llO.C 
aftine ring 16.A 
afline scheme 16.D 
alline space 1.A 
affne symmetric space 80.5 
affine torsion 11O.C 
afline transformation(s) 7.E 364.F 

group of 7.E 
of a manifold with an afline connection 80.5 
proper 7.E 
regular 7.E 

afline variety 16.A 
afline Weyl group (of a symmetric Riemann space) 

413.G 
affinity 7.E 

equivalent 7.E 
age-dependent branching process 44.E 
Agncsi, witch of 93.H 
Ahlfors finiteness theorem 234.D 
Ahlfors live-disk theorem 272.5 
Ahlfors function 43.G 77.E 
Ahlfors principal theorem 367.B 
Ahlfors theory of covering surfaces 367.B 
Airy integral App. A, Table 19.IV 
Aitken interpolation scheme 223.B, App. A, Table 

il 

Akizuki theorem, Krull- 284.F 
Alaoglu theorem, Banach- 

(in a Banach space) 37.E 
(in a topological linear space) 424.H 

Albanese variety 16.P 
of a compact Kahler manifold 232.C 
strict 16.P 

Aleksandrov compactification 207.B 
aleph 49.E 

alpha (K,) 312.D 
zero (h’,) 49.E 

Alexander cohomology group 201.M 
relative 201.M 

Alexander duality theorem 210.0 
Alexander horned sphere 65.G 
Alexander ideal (of a knot) 235.C 
Alexander-Kolmogorov-Spanier cohomology theory 

201.M 
Alexander matrix (of a knot) 235.C 
Alexander polynomial (of a knot) 235.C 
Alexander polynomial (of a link) 235.D 
Alexander trick 65.D 
Alexander-Whitney mapping (map) 201.5 
Alfven wave 259 
algebra 8 

(over a field) 203.F 
(of sets) 270.B 
algebraic 29.5 
alternative 231.A 
AF- 36.H 
approximately finite 36.H 
association 102.5 
associative 29 231.A 
augmented 200.L 
Al+‘*- 36.H 
Azumaya 29.K 
Banach 36.A 
Banach *- 36.F 
Boolean 42.A 243.A 
Boolean, generalized 42.B 
C*- 36.G 
C*-, of type I 430.5 

C*-group (of a locally compact Hz.usdorff 
group) 36.L 

Calkin 36.5 390.1 
Cayley 54 
Cayley, genera1 54 
central separable 29.K 
central simple 29.E 
Clifford 61.A 
over a commutative ring 29.A 
composition 23 1 .B 
current 132.C 
cyclic 29.G 
derived (of a Lie algebra) 248.C 
Dirichlet 164.B 
disk 164.B 
distributive 231.A 
division 29.A 
Douglas 164.1 
dual 203.F 
enveloping 200.L 231.A 
enveloping, universal (of a Lie algebra) 248.5 
enveloping van Neumann 36.G 
exterior (of a linear space) 256.0 
Frobenius 29.H 
full matrix 269.B 
function 164.A 
graded 203.B 
Grassmann (of a linear space) 25~5.0 
group 29.C 38.L 192.H 
Hecke 29.C 32.D 
homological 200.A 
Hopf 203.H 
Hopf, dual 203.C 
Hopf, elementary 203.D 
Hopf, graded 203.C 
increasing family of 6- 407.B 
j- 384.C 
Jordan 231 
L,- (of a locally compact Hausdorl‘f group) 
36.L 

Lie 248.A 
liminal C*- 36.H 
linear 8 
of logic 41 l.A 
logmodular 164.B 
multiplier 36.K 
nonassociative 23 1 .A 
normal j- 384.C 
normal simple 29.E 
operator 308.A 
optional 6- 407.8 
PI- 29.5 
postliminal C*- 36.H 
power associative 231.A 
predictable ri- 407.B 
quasi-Frobenius 29.H 
quaternion 29.D 
quaternion, generalized 29.D 
quaternion, Hamilton 29.B 
quaternion, totally definite 27.D 
quotient 29.A 
Racah 353.A 
reduced 23 1 .B 
relationship 102.5 
residue class 29.A 
r~- 270.B 
semigroup 29.C 
semigroup, large 29.C 
(semi)simple 29.A 
separable 29.F,K 200.L 



1919 Subject Index 
Affhe mapping 

additive functor 52.N 
additive group 2.E 190.A 

complete 2.E 
divisible 2.E 
free 2.E 
ordered 439.B 
totally ordered 439.B 

additive interval function 380.B 
, continuous 380.B 
additive measure 

completely 270.D 
finitely 270.D 
o- 270.D 

additive number theory 4 
additive operator 251.A 
additive processes 5 342.A 

temporally homogeneous 5.B 
additive set function 380.C 

completely 380.C 
finitely 380.B 
n-absolutely continuous 380.C 

additive valuation 439.B 
additivity 

(in the theory of local observables) 150.E 
complete (of the integral) 221.C 
complete (of a measure) 270.D 
for the contours (in the curvilinear integral) 

94.D 
countable 270.D 
of probability 342.B 
CT- 270.D 

address 75.B 
single-, instructions 75.C 

adele 6.C 
and idele 6 
principal 6.C 

adele group 
of an algebraic group 13.P 
of a linear algebraic group 6.C 

adele ring (of an algebraic number field) 6.C 
adeles and ideles 6 
Adem formula App. A, Table 6.11 
Adem relation 64.B 
adequacy 396.5 
adherent point 425.B 
AD1 (alternating direction implicit) method 

304.F 
adiabatic law 205.B 
adiabatic process, quasistatic 419.B 
adiabatic wall 419.A 
adjacent 

(chamber) 13.R 
(edges) 186.B 
(germ) 418.E 
(vertices) 186.B 

adjacement matrix 186.G 
adjoin 

a set to a field 149.D 
a variable to a commutative ring 337.A 

adjoint 
left (linear mapping) 52.K 256.Q 
right (linear mapping) 52.K 256.Q 
self- - self-adjoint 

adjoint boundary condition 315.B 
adjoint boundary value problem 315.B 
adjoint differential equations 252.K 
adjoint differential expression 252.K 
adjoint functor 52.K 
adjoint group 

isogenous to an algebraic group 13.N 

of a Lie algebra 248.H 
of a Lie group 249.P 

adjoint Hilbert space 251.E 
adjoint kernel (of a kernel of a potential) 338.B 
adjoint Lie algebra 248.B 
adjoint matrix 269.1 
adjoint operator 

(on Banach spaces) 37.D 251.D 
(on Hilbert spaces) 251.E 
(of a linear partial differential operator) 322.E 
(of a microdifferential operator) 274.F 
(of a microlocal operator) 274.F 

adjoint representation 
of a Lie algebra 248.B 
of a Lie group 249.P 
of a linear representation 362.E 

adjoint space (of a linear topological space) 424.D 
adjoint system 

(of a complete linear system on an algebraic 
surface) 15.D 

of differential equations 252.K 
adjunction formula 15.D 
adjustment 

sampling inspection with 404.C 
seasonal 397.N 

Adler-Weisberger sum rule 132.C 
admissible 

(decision function) 398.B 
(estimator) 399.G 
(extremal length) 143.A 

admissible automorphic representations 450.N 
admissible control 405.A 
admissible function 46.A 304.B 
admissible homomorphism (between a-groups) 

190.E 
admissible isomorphism (between R-groups) 190.E 
admissible lattice (in R”), S- 182.B 
admissible monomial (in Steenrod algebra) 64.B, 
admissible normal subgroup 190.E 
admissible ordinal 356.G 
admissible sequence (in Steenrod algebra) 64.B, 

App. A, Table 6.111 
admissible subgroup (of an n-group) 190.E 
Ado theorem 248.F 
advanced type (of functional differential equation) 

163.A 
a.e. (almost everywhere) 270.D 
AF-algebra 36.H 
affect (of an algebraic equation) 172.G 
affectless algebraic equation 172.G 
afhne (morphism) 16.D 
aftine algebraic group 13.A 
afline algebraic variety 16.A 

quasi- 16.C 
aftine arc element 11O.C 
aftine arc length llO.C 
affme binormal llO.C 
afhne connection 80.H 286.L 

canonical (on R”) 80.5 
coefficients of 80.L 

aftine coordinates 7.C 
afline curvature llO.C 
atline differential geometry llO.C 
atline frame (of an al&e space) 7.C 
affme geometry 7 

in the narrower sense 7.E 
affine length llO.C 
affme locally symmetric space 80.J 
afhnely congruent 7.E 
afhne mapping 7.E 



Subject Index 
Absolutely continuous 

1918 

absolutely continuous 
(function) 100.C 
(mapping in the plane) 246.H 
(measure) 270.L 
(set function) 380.C 
(vector measure) 443.G 
generalized 1OO.C 
p- 380.C 
in the restricted sense 100.C 
in the sense of Tonelli 246.C 

absolutely continuous (*) 100.C 
absolutely continuous spectrum 390.E 
absolutely convergent 

(double series) 379.E 
(infinite product) 379.G 
(Laplace-Stieltjes integral) 240.B 
(power series) 2 1 .B 
(series) 379.C 
(series in a Banach space) 443.D 
uniformly 435.A 

absolutely convex set (in a topological linear space) 
424.E 

absolutely integrable function 216.E 
absolutely irreducible (representation) 362.F 
absolutely irreducible character 362.E 
absolutely measurable 270.L 
absolutely p-valent 438.E 

locally 438.E 
absolutely simple algebraic group 13.L 
absolutely stable 

(linear k-step method) 303.G 
(system of differential equations) 291.E 

absolutely summing (operator) 68.N 
absolutely uniserial algebra 29.1 
absolute minimality 16.1 
absolute moment (kth) 341 .B 
absolute multiple covariant 226.E 
absolute neighborhood retract 202.D 

fundamental (FANR) 382.C 
absolute norm (of an integral ideal) 14.C 
absolute parallelism 191.B 
absolute retract 202.D 

fundamental (FAR) 382.C 
absolute stability 303.G 

interval of 303.G 
region of 303.G 
region of, of the Runge-Kutta (P,p) method 
303.G 

absolute temperature 419.A 
absolute value 

(of a complex number) 74.8 
(of an element of an ordered lield) 149.N 
(of an element of a vector lattice) 310.B 
(of a real number) 355.A 
(of a vector) 442.B 

absorb (a subset, topological linear space) 424.E 
absorbing barrier 115.B 
absorbing set (in a topological linear space) 424.E 
absorption cross section 375.A 
absorption law 

in the algebra of sets 381.B 
in a lattice 243.A 

absorption principle, limiting 375.C 
abstract algebraic variety 16.C 
abstract L space 310.G 
abstract L, space 310.G 
abstract M space 310.G 
abstract Riemann surface 367.A 
abstract simplicial complex 70.C 
abstract space 381.B 

abstract variety 16.C 
abundant number 297.D 
acceleration parameter 302.C 
acceptance 400.A 
acceptance region 400.A 
accepted 3 1 .D 
accessible (from a region) 93.K 
accessible boundary point 333.B 
accretive operator (in a Hilbert space) 251.5 286.C 
accumulated error 138.C 
accumulation point 87.C 425.0 

complete 425.0 
acoustic problem 325.L 
act 

on a commutative ring 226.A 
freely (on a topological space) lZ12.A 

action 43 1.A 
R- 126.B 
rational 226.B 
reductive 226.8 
Z- 126.B 

action and reaction, law of 271.A 
action integral S0.Q 
action space 398.A 
activity 281.D 
activity analysis 376 
actuarial mathematics 214.A 
acute angle 139.D 
acute type 304.C 

strongly 304.C 
acyclic complex 200.C 200.H 
Adams-Bashforth method 303.E 
Adams conjecture 237.1 
Adams-Moulton method 303.E 
Adams operation 237.E 
adapted (stochastic process) 407.B 
adaptive scheme 299.C 
addition 

(in a commutative group) 190.A 
(of natural numbers) 294.B 
(in a ring) 368.A 
(of unfoldings) 51.D 

addition formula 
algebraic 3.M 
for ez 131.G 
for sine and cosine 432.A 
of trigonometric functions App. A, Table 2.1 

addition theorem 
of Bessel functions 39.B 
of cylindrical functions App. A, ‘Table 19.111 
of Legendre functions 393.C 
of the @-function App. A, Table 16.IV 
of sn, cn, dn App. A, Table 16.111 
of the i-function App. A, Table 16.IV 

additive 
completely - completely additive 
countably - countably additive: 
finitely - finitely additive 
CT- - o-additive 
totally - totally additive 

additive category 52.N 
additive class 

completely 270.B 
countably 270.B 
finitely 270.B 

additive functional 
(of a Markov process) 261.E 
martingale 261.E 
natural 261.E 
perfect 261.E 

. 



1921 Subject Index 
Algorithm 

o- 270.B 
0, tail 342.G 
V-, topological 270.C 
CT-, well-measurable 407.B 
simple 29.A 
solvable 231.A 
Staudt 343.C 
Steenrod 64.B 
supplemented 200.L 
symmetric 29.H 
tensor (on a linear space) 256.K 
Thorn 114.H 
total matrix 269.8 
uniform 164.A 
uniscrial 29.1 
uniserial, absolutely 29.1 
uniserial, generalized 29.1 
unitary 29.A 
universal enveloping (of a Lie algebra) 248.5 
vector App. A, Table 3.1 
von Neumann 308.C 
von Neumann, induced 308.C 
von Neumann, reduced 308.C 
W*- 308.C 

weak* Dirichlet 164.G 
zero 29.A 

algebra class (of central simple algebras) 29.E 
algebra class group 29.E 
algebra extension 29.D 200.L 
algebra homomorphism 29.A 
algebraic addition formula 3.M 
algebraic algebra 29.5 
algebraic analysis 125.A 
algebraically closed (in a field) 149.1 
algebraically closed field 149.1 

quasi- 118.F 
algebraically dependent (on a family of elements 

of a field) 149.K 
algebraically dependent elements (of a ring) 369.A 
algebraically equivalent cycles 16.R 
algebrdicdlly equivalent to 0 (a divisor on an alge- 

braic variety) 16.P 
algebrdicdlly independent (over a field) 149.K 
algebraically independent elements (of a ring) 

369.A 
algebraically simple eigenvalue 390.E 
algebraic branch point (of a Riemann surface) 

367.B 
algebraic closure 

of a field 149.1 
separable 257.E 

algebraic correspondence 9.H 16.1 
group of classes of 9.H 

algebraic curves 1l.A 
irreducible 1l.B 
plane 9.B 

algebraic cycles 450.Q 
algebraic differential equation 113 288.A 
algebraic dimension (of a compact complex mani- 

fold) 74.F 
algebraic clement (of a field) 149.E 
algebraic equations 10, App. A, Table 1 

in m unknowns 10.A 
algebraic extension 149.E 
algebraic family (of cycles on an algebraic variety) 

16.R 
algebraic fiber space 72.1 
algebraic function ll.A 
algebraic function field 

over k of dimension I 9.D 

over k of transcendence degree 1 9.D 
in n variable 149.K 
c-function of 450.P 

algebraic fundamental group 16.U 
algebraic geometry 12.A 
algebraic groups 13 

absolutely simple 13.U 
afIine 13.A 
almost simple 13.U 
connected 13.A 
isogenous 13.A 
k-almost simple 15.0 
k-anisotropic 13.G 
k-compact 13.G 
k-isotropic 13.G 
k-quasisplit 13.0 
k-simple 13.0 
k-solvable 13.F 
k-split 13.N 
linear 13.A 
nilpotent 13.F 
reductive 13.1 
semisimple 13.1 
simple 13.L 
solvable 13.F 
unipotent 13.E 

algebraic group variety 13.B 
algebraic homotopy group 16.U 
algebraic integer 14.A 
algebraic K-theory 237.5 

higher 237.5 
algebraic Lie algebra 13.C 
algebraic linear functional 424.B 
algebraic multiplicity (of an eigenvalue) 309.B 
algebraic number 14.A 
algebraic number fields 14 

relative 14.1 
algebraic pencil 15.C 
algebraic point (over a field) 369.C 
algebraic scheme 16.D 
algebraic sheaf, coherent 16.E 72.F 
algebraic singularity (of an analytic function) 

198.M 
algebraic solution (of an algebraic equation) 10.D 
algebraic space 16.W 
algebraic subgroup 13.A 
algebraic surfaces I5 
algebraic system 

of r equations 10 
in the wider sense 409.B 

algebraic topology 426 
algebraic torus 13.D 
algebraic varieties 16 16.C 

abstract 16.C 
afline 16.A 
complex 16.T 
normal 16.F 
product 16.A 
projective 16.A 
quasi-afline 16.C 
quasiprojective 16.C 

algebra isomorphism 29.A 
algebroidal function(s) 17 

entire 17.B 
k-valued 17.A 

algorithm 97 356.C 
composite simplex 255.F 
division 297.A 
division (of polynomials) 337.C 
dual simplex 255.F 



Subject Index 
Alignment chart 

1922 

Euclidean 297.A 
Euclidean (of polynomials) 337.D 
fractional cutting plane 215,B 
greedy 66.G 
heuristic 215.E 
partitioning 215.E 
primal-dual 255.F 
variable-step variable-order (VSVO) 303.E 
VSVO 303.E 

aliases 102.1 
alignment chart 19.D 
allied series (of a trigonometric series) 159.A 
all-integer 215.B 
all-integer algorithm 215.B 
all-integer programming problem 215.A 
allocation, optimum 373.E 
allocation process, multistage 127.A 
allowed homomorphism (between A-modules) 

277.E 
allowed submodule 277.C 
almost all 342.B 
almost all points of a variety 16.A 
almost certainly converge 342.D 
almost certainly occur 342.8 
almost complex manifold 72.B 

stably 114.H 
weakly 114.H 

almost complex structure 72.B 
tensor held of (induced by a complex structure) 
72.B 

almost conformal 275.C 
almost contact manifold 1lO.E 
almost contact metric structure llO.E 
almost contact structure llO.E 
almost elfective action (on a set) 415.B 
almost elfectively (act on a G-space) 431.A 
almost everywhere converge 342.D 
almost everywhere hold (in a measure space) 270.D 
almost finite memory channels 213.F 
almost G-invariant statistic 396.1 
almost invariant test 400.E 
almost parallelizable manifold 114.1 
almost periodic (motion) 126.D 
almost periodic differential equation 290.A 
almost periodic functions 18 

analytic 18.D 
on a group 18.F 
with respect to p 18.C 
in the sense of Bohr 18.B 
uniformly 18.B 

almost periodic group, maximally 18.1 
almost periodic group, minimally 18.1 
almost simple algebraic group 13.~ 

k- 13.0 
almost subharmonic 193.T 
almost surely converge 342.D 
almost surely occur 342.B 
almost symplectic structure 191.B 
alphabet 31.B 63.A 213.B 
alternate angles 139.D 
alternating contravariant tensor 256.N 
alternating covariant tensor 256.~ 
alternating direction implicit (ADI) method 304.F 
alternating function 337.1 
alternating group of degree n 151.G 
alternating knot 235.A 
alternating law (in a Lie algebra) 248.A 
alternating matrix 269.B 
alternating multilinear form 256.H 
alternating multilinear mapping 256.H 

alternating polynomial 337.1 
simplest 337.1 

alternating series 379.C 
alternating tensor field 105.0 
alternative (in game theory) 173.B 
alternative algebra 231.A 
alternative field 231.A 
alternative hypothesis 400.A 
alternative theorem, Fredholm 68.E :!17.F 
alternizer 256.N 
altitude (of a commutative ring) 67.E 
altitude theorem, Krull 284.A 
amalgamated product (of a family of groups) 

190.M 
amalgamated sum 52.G 
ambient isotropic 65.D 
ambient isotropy 65.D 
ambig class (of a quadratic field) 347.F 
ambig ideal (of a quadratic field) 347.F 
ambiguous point 62.D 
amicable number 297.D 
Amitsur cohomology group 200.P 
Amitsur complex 200.P 
amount insured 214.A 
amount of inspection, expected 404.C 
amount of insurance 214.A 
Ampere equations, Monge- 278, App. A, Table 

15.111 
Ampere transformation 82.A 
amphicheiral knot 235.A 
ample divisor 16.N 

very 16.N 
ample linear system 16.N 

very 16.N 
ample over S (of a sheaf on a scheme) 16.E 

relatively 16.E 
very 16.E 

ample vector bundle 16.Y 
amplification matrix 304.F 
amplification operator of a scheme 304.F 
amplitude 

(of a complex number) 74.C 
(function) App. A, Table 16.111 
(of an oscillation) 318.A 
(of time series data) 397.N 
(of a wave) 446 
Feynman 146.B 
partial wave scattering 375.E 
probability 351.D 
scattering 375.C,E 386.B 

amplitude function (of a Fourier integral operator) 
274.C 345.8 

AMU estimator, kth-order 399.0 
analog, difference 304.E 
analog computation 19 
analog computers 19.E 

electronic 19.E 
analog of de Rham’s theorem 21.L 
analog quantity 138.B 
analog simulation 385.A 
analysis 20 

activity 376 
algebraic 125.A 
backward 138.C 
backward error 302.B 
combinatorial 66.A 
consistency of 156.E 
convex 88 
design-of-experiment 403.D 
dimensional 116 



1923 

Diophantine 296.A 
experimental 385.A 
factor 280.G 
forward 138.C 
function 20 
functional 162 
functional, nonlinear 286 
harmonic (on locally compact Abelian groups) 

192.G 
intrablock 102.D 
microlocal 274.A 345.A 
multivariate 280 
of a network 282.C 
numerical 300 
principal component 280.F 
regression 403.D 
spectral 390.A 

analysis of variance 400.H 403.D 
multivariate 280.B 
table 400.H 

analytic 
(function) 21 .B,C 198.A,H 
(predicate) 356.H 
complex, structure 72.A 
micro- (hyperfunction) 125.CC 
pseudo- (function) 352.B 
quasi- (function) 352.B 
quasi- (in the generalized sense) 58.F 
real 106.K 198.H 

analytical dynamics 271.F 
analytically continuable 198.1 
analytically hypoelliptic 112.D 323.1 
analytically independent elements 370.A 
analytically normal local ring 284.D 
analytically thin set 23.D 
analytically uniform spaces 125,s 
analytically unramified semilocal ring 284.D 
analytic almost periodic function 18.D 
analytic automorphism 21.5 
analytic capacity 169.F 
analytic continuation 198.G 

along a curve 198.1 
direct 198.G 
uniqueness theorem of 198.1 
in the wider sense 198.0 

analytic covering space 23.E 
analytic curve 

in an analytic manifold 93.B 
in a Euclidean plane 93.B 

analytic differential (on a Riemann surface) 367.H 
analytic fiber bundle 

complex 147.0 
real 147.0 

analytic functions 198.A,H 
complex 198.H 
inverse 198.L 
many-valued 198.5 
multiple-valued 198.5 
n-valued 198.5 
real 106.K 198.H 
in the sense of Weierstrass 198.1 
of several complex variables 21.B,C 
in the wider sense 198.0 

analytic geometry 181 
analytic hierarchy 356.H 
analytic homomorphism (between Lie groups) 

249.N 
analytic index 

of a elliptic complex 237.H 
of an elliptic differential operator 237.H 

Subject Index 
Angle 

analytic isomorphism 21.5 
between Lie groups 249.N 

analyticity, set of 192.N 
analytic manifold 

complex 72.A 
real 105.C 

analytic mapping 21.5 
analytic measurable space 270.C 
analytic neighborhood 

of a function element in the wider sense 
198.0 

of a Riemann surface 367.A 
analytic number theory 296.B 
analytic operation 22.B 
analytic operation function 37.K 
analytic perturbation 331.D 
analytic polyhedron 21.G 
analytic prolongation 198.G 
analytic relations, invariance theorem of 198.K 
analytic representation (of GL( V)) 60.D 
analytic set 

(in set theory) 22 
(in the theory of analytic spaces) 23.B 
co- 22.A 
complementary (in set theory) 22.A 
germ of 23.8 
irreducible (at a point) 23.B 
principal 23.B 
purely d-dimensional 23.B 
purely d-dimensional (at a point) 23.B 

analytic sheaf 72.E 
coherent 72.E 

analytic spaces 23 
Banach 23.G 
C- 23.E 
general 23.G 
K-complete 23.F 
normal 23.D 
in the sense of Behnke-Stein 23.E 

analytic structure 
complex 72.A 
real 105.D 
on a Riemann surface 367.A 

analytic submanifold, complex 72.A 
analytic subset (of a complex manifold) 72.E 
analytic subspace 23.C,G 
analytic torsion 391.M 
analytic vector (with respect to a unitary representa- 

tion of a Lie group) 437,s 
analytic wave front set 274.D 
analyzer 

differential 19.E 
harmonic 19.E 

anchor ring 410.B 
ancient mathematics 24 
ancillary statistic 396.H 4Ol.C 
Anger function 39.G, App. A, Table 19.IV 
angle 139.D 155.B 

(of a geodesic triangle) 178.A,H 
(of hyperspheres) 76.A 
(of a spherical triangle) 432.B 
acute 139.D 
alternate 139.D 
corresponding 139.D 
eccentric (of a point on a hyperbola) 78.E 
eccentric (of a point on an ellipse) 78.D 
Euler 90.C 
general 139.D 
non-Euclidean (in a Klein model) 285.C 
obtuse 139.D 



Subject Index 

Angular derivative (of a holomorphic function) 
1924 

regular polyhedral 357.B 
righi 139.D 
straight 139.D 
straightening of 114.F 
supplementary 139.D 
trisection of 179.A 
vertical 139.D 

angular derivative (of a holomorphic function) 
43.K 

angular domain 333.A 
angular frequency (of a sine wave) 446 
angular momentum 258.D 271.E 

integrals of 420.A 
intrinsic 415.G 
orbital 315.E 
theorem of 271.E 

angular momentum density 150.B 
angular transformation 374.D 
anharmonic ratio 343.D 
anisotropic 

(quadratic form) 13.G 
k- (algebraic group) 13.G 

annihilation operator 377.A 
annihilator 422.D 

left 29.H 
reciprocity of (in topological Abelian groups) 
422.E 

right 29.H 
annual aberration 392 
annual parallax 392 
annuity contract 214.B 
annular domain 333.A 
annulator 422.D 
annulus conjecture 65.C 
anomaly 

eccentric 309.B 
mean 309.B 
true 309.B 

Anosov diffeomorphism 126.5 136.G 
Anosov flow 126.5 136.G 
Anosov foliations 126.3 
Anosov vector held 126.5 
ANR (absolute neighborhood retract) 202.D,E 
antiautomorphism 

(of a group) 190.D 
(of a ring) 368.D 
principal (of a Clifford algebra) 61.B 

antiendornorphism 
(of a group) 190.D 
(of a ring) 368.D 

antiequivalence (between categories) 52.H 
anti-Hermitian form 256.Q 
anti-Hermitian matrix 269.1 
antiholomorphic 195.B 275.B 
antihomomorphism 

of groups 190.D 
of la1 tices 243.C 
of rings 368.D 

anti-isomorphic lattices 243.C 
anti-isomorphism 

of groups 190.D 
of lattices 243.C 
of ordered sets 3 11 .E 
of rings 368.D 

antinomy 3 19.A 
antiparticle 132.A 386.B 
antipodal points (on a sphere) 140 
antipode 203.H 
anti-self-dual (G-connection) 80.Q 

antisymmetric 
(Fock space) 377.A 
(multilinear form) 256.H 
(multilinear mapping) 256.H 
(relation) 358.A 
(tensor) 256.N 
law 311.A 
matrix 269.B 

antisymmetry, set of 164.E 
Antoine’s necklace 65.G 
apartment 13.R 
aperiodic 136.E 260.B 
Apollonius problem (in geometric construction) 

179.A 
a posteriori distribution 388.B 
a posteriori probability 342.F 
apparent force 271.D 
apparent singular point 254.L 
Appell hypergeometric functions of two variables 

206.D, App. A, Table 18.1 
application 31.B 
approach 

Bayesian 401 .B 
group-theoretic 215.C 
non-Bayesian 401 .B 
S-matrix 132.C 
state-space 86.A 

approximate derivative (of a measurabls: function) 
100.B 

approximate functional equation (for zeta function) 
450.B 

approximately derivable (measurable function) 
100.8 

approximately finite (von Neumann algebra) 308.1 
approximately finite algebra 36.H 
approximately finite-dimensional 308.1 
approximation(s) 

best (of a continuous function) 33’6.B 
best (in evaluation of functions) 142.B 
best (of an irrational number) 83.8 
best polynomial, in the sense of Chebyshev 

336.H 
Diophantine 182.F 
full discrete 304.B 
least square 336.D 
of linear type 142.B 
method of successive (for an elliptic partial dif- 

ferential equation) 323.D 
method of successive (for Fredholm integral 
equations of the second kind) 217.D 

method of successive (for ordinary differential 
equations) 316.D 

nth (of a differentiable function) 106.E 
Oseen 205.C 
overall, formula 303.C 
Pad& 142.E 
Pauli 415.G 
Prandtl-Glauert 205.B 
polynomial. 336 
semidiscrete 304.B 
simplicial (to a continuous mapping) 70.C 
Stokes 205.C 
Wilson-Hilferty 374.F 
Yosida 286.X 

approximation method 
in physics 25 
projective 304.B 

approximation property 
(of a Banach space) 37.L 



1925 Subject Index 
Ascending chain 

bounded 37.L 
approxrmation theorem 

(on functions on a compact group) 69.B 
(on valuations) 439.G 
cellular 70.D 
Eichler’s 27.D 
Kronecker’s 422.K 
polynomial (for C”-functions) 58.E 
simplicial 70.C 
Weierstrass 336.A 

a priori distribution 388.B 
least favorable 388.H 

a priori estimate 323.C 
in L2 sense 323.H 

a priori probability 342.F 
AR (absolute retract) 202.D 
Arabic numerals 26 
Arab mathematics 26 
Araki axioms, Haag- 150.E 
Araki-Sewell inequality, Roepstorff- 402.G 
arbitrary constant 313.A 
arbitrary set 381.G 
arc(s) 93.B 186.B 

continuous 93.B 
Farey 4.8 
geodesic 178.H 364.B 
joined by an 79.B 
Jordan 81.D 93.B 
major 4.B 
minor 4.B 
open 93.B 
pseudo- 79.B 
simple 93.B 

Arccos 131.E 
arc cos (arc cosine) 13 1 .E 
arc element 

affine 1lO.C 
conformal llO.D 

Archimedean lattice-ordered group 243.G 
Archimedean ordered field 149.N 
Archimedean unit (of a vector lattice) 310.8 
Archimedean valuation 14.F 439.C 
Archimedean vector lattice 310.C 
Archimedes axiom 

in geometry 155.B 
for real numbers 355.B 

Archimedes spiral 93.H 
arc length 11 l.D 

atTine 1lO.C 
representation in terms of (for a continuous 
arc) 246.A 

Arcsin 131.E 
arcsin (arcsine) 131.E 
arcsine law 

for Brownian motion 45.E 
for distribution function 250.D 
for random walk 260.E 

arcsine transformation 374.D 
Arctan 131.E 
arctan (arctangent) 131.E 
arcwise connected component 79.B 
arcwise connected space, locally 79.B 
area 246 

(Euclidean) 139.F 
(of a polygon) 155.F 
(of a set in R’) 216.F 
Banach (of a surface) 246.G 
of concentration 397.E 
definite, set of 216.F 
Geiicze (of a surface) 246.E 

Gross (of a Bore1 set) 246.G 
inner 216.F 270.G 
Janzen (of a Bore1 set) 246.G 
Lebesgue (of a surface) 246.C 
mixed (of two ovals) 89.D 
outer 216.F 270.G 
Peano (of a surface) 246.F 
surface, of unit hypersphere App. A, Table 9.V 

area1 element (in a Cartan space) 152.C 
area1 functional 334.B 
areally mean p-valent 438.E 
area theorem 438.B 

Bers 234.D 
Arens-Royden theorem 36.M 
Arens theorem, Mackey- 424.N 
Arf-Kervaire invariant 114.5 
Argand plane, Gauss- 74.C 
argument 

(of a complex number) 74.C 
behind-the-moon 351.K 

argument function 46.A 
argument principle 198.F 
arithmetical (predicate) 356.H 
arithmetical hierarchy 356.H 

of degrees of recursive unsolvability 356.H 
arithmetically equivalent 

(lattices) 92.B 
(pairs) 92.B 
(structures) 276.D 

arithmetic crystal classes 92.B 
arithmetic function 295.A 
arithmetic genus 

(of an algebraic curve) 9.F 
(of an algebraic surface) 15.C 
(of a complete variety) 16.E 
(of a divisor) 15.C 
virtual (of a divisor) 16.E 

arithmetic mean 21 l.C 397.C 
arithmetic of associative algebras 27 
arithmetico-geometric mean 134.B 
arithmetic operations 294.A 
arithmetic progression 379.1, App. A, Table 10.1 

prime number theorem for 123.D 
arithmetic subgroup 13.P 122.F.G 
arithmetic unit 75.8 
arithmetization (of metamathematics) 185.C 
array 96.C 

balanced 102.L 
k- 330 

orthogonal 102.L 
arrow diagram 28 1 .D 
Arrow-Hurwicz-Uzawa gradient method 292.E 
artificial variables 255.C 
Artin, E. 28 
Artin conjecture 450.G 
Artin general law of reciprocity 59.C 
Artin-Hasse function 257.H 
Artinian module 277.1 
Artinian ring 284.A 

left 368.F 
right 368.F 

Artin L-function 450.G,R 
Artin-Rees lemma 284.A 
Artin-Schreier extension (of a field) 172.F 
Artin symbol 14.K 
Arzela theorem, Ascoli- 168.B 435.D 
ascending central series (of a Lie algebra) 248.C 
ascending chain 

in an ordered set 31 l.C 
of subgroups of a group 190.F 



Subject Index 

Ascending chain condition 
1926 

ascending chain condition 
in an ordered set 3 1 I .C 
for subgroups of a group 190.F 

Ascoli-Arzela theorem 168.B 435.D 
Ascoli theorem 435.D 
as. consistent 399.K 
assembler 75.C 
associate (of an element of a ring) 67.H 
associated convergence radii 21.B 
associated diagrams (in irreducible representations 

of orthogonal groups) 60.5 
associated differential equation, Legendre’s 393.A 
associated factor sets (of crossed products) 29.F 
associated factor sets (for extension of groups) 

190.N 
associated fiber bundle 147.D 
associated flow 136.F 
associated form (of a projective variety) 16,s 
associated graded ring 284.D 
associated integral equation (of a homogeneous) 

integral equation) 217.F 
associated Laguerre polynomials 317.D 
associated Legendre functions 393.C App. A, 

Table 18.fII 
associated prime ideal 67.F 
associated principal bundle 147.D 
association, measure of 397.K 
association algebra 102.5 
association matrix 102.5 
associative, homotopy 203.D 
associative algebra(s) 102.5 231.A 

power 231.A 
associative law 

for the addition and multiplication of natural 
numbers 294.B 

in the algebra of sets 381.B 
for cardinal numbers 49.C 
for the composite of correspondences 358.B 
general (for group composition) 190.C 
for group composition 190.A 
in a lattice 243.A 
in a ring 368.A 

associative multiplication of a graded algebra 
203.B 

assumed rate of interest 214.A 
assumption 

inverse 304.D 
Stokes 205.C 

asteroid 93.H 
astronomy, spherical 392 
asymmetric (factorial experiment) 102.H 
asymmetric Cauchy process 5.F 
asymptote (of an infinite branch) 93.G 
asymptotically developable (function) 30.A 
asymptotically distributed 374.D 
asymptotically efftcient estimator 399.N 

first-order 399.0 
kth-order 399.0 

asymptotically mean unbiased 399.K 
asymptotically median unbiased estimator (AMU) 

kth-order 399.0 
asymptolically normal estimator 

best (BAN) 399.K 
consistent and (CAN) 399.K 

asymptotically normally distributed 399.K 
asymptotically optimal 354.D 
asymptotically stable 126.F 286,s 394.B 

globally 126.F 
uniformly 163.G 

asymptotically unbiased 399.K 

asymptotic bias 399.K 
asymptotic completeness 150.D 
asymptotic concentration 399.N 
asymptotic condition, LSZ 150.D 
asymptotic cone 350.B 
asymptotic convergence 168.B 
asymptotic covariance matrix 399.K 
asymptotic curve 1lO.B 1ll.H 
asymptotic direction 1ll.H 
asymptotic distribution, &h-order 399.0 
asymptotic efiiciency 399.N 

second-order 399.0 
higher-order 399.0 

asymptotic expansion 30.A, App. A, Table 17.1 
(of a pseudodifferential operator) 345.A 
method of matched 112.B 
Mirskshisundaram-Pleijel 391.B 

asymptotic fields 150.D 
asymptotic freedom 361.B 
asymptotic method 290.D 
asymptotic normality 399.K 
asymptotic path (for a meromorphic function) 

272.H 
asymptotic perturbation theory 331.D 
asymptotic power series 30.A 
asymptotic property (of solutions of a system of 

linear ordinary differential equations) 314.A 
asymptotic ratio set 308.1 
asymptotic ray 178.F 
asymptotic representation 

Debye 39.D, App. A, Table 19.IH 
Hankel App. A, Table 19.111 

asymptotic sequence 30.A 
asymptotic series 30.A 
asymptotic set 62.A 
asymptotic solution 325.M 
asymptotic tangent 1lO.B 
asymptotic value of a meromorphic function 62.A 

272.H 
asymptotic valaue theorem, Lindelof 43.C 
asynchronous system (of circuits) 75.B 
Atiyah-Bott fixed point theorem 153.1~ 
Atiyah-Singer fixed point theorem 153.C 
Atiyah-Singer index theorem 237.H 

equivariant 237.H 
atlas 105.C 

of class Cr 105.D 
of class C” 105.D 
oriented 105.F 

atled (nabla) 442.D 
atmospheric refraction 392 
at most (for cardinal numbers) 49.B 
atomic 

(measurable set) 270.D 
at 0 163.H 

atomic element (in a complemented modular lat- 
tice) 243.F 

atomic formula 276.A 411.D 
atomless 398.C 
at random 401.F 
attaching a handle 114.F 
attaching space 202.E 
attraction, domain of 374.G 
attractor 126.F 

strange 126.N 
attribute, sampling inspection by 404 C 
augmentation 

(of an algebra) 200.M 
(of a chain complex) 200.C 
(of a coalgebra) 203.F 



1927 Subject Index 
Axiom of the power set 

(of a cochain complex) 200.F 
(of a complex in an Abelian category) 

200.H 
augmented algebra 200.M 
augmented chain complex 200.C 
autocorrelation 421.8 
autocorrelation coefficient 397.N 
autocovariance, sample 421.B 
automata 31 
automatic integration scheme 299.C 
automaton 31.A 

deterministic linear bounded 31 .D 
hnite 31.D 
nondeterministic linear bounded 31.D 
push-down 31.D 

automorphic form 450.0 
of dimension -k 32.B 
of type U 437.DD 
of weight m 32.A 
of weight k 32.B 

automorphic function(s) 32 
multiplicative 32.A 
with respect to F 32.A 

automorphism 
(of an algebraic system) 409.C 
(of a field) 149.B 
(of a group) 190.D 
(of an object in a category) 52.D 
(of a polarized Abelian variety) 3.G 
(of a probability space) 136.E 
(of a ring) 368.D 
analytic 21.5 
anti- (of a group) 190.D 
anti- (of a ring) 368.D 
differential 113 
Frobenius (of a prime ideal) 14.K 
group of (of a group) 190.D 
holomorphic 21.5 
inner (of a group) 190.D 
inner (of a ring) 368.D 
inner, group of (of a group) 190.D 
inner, group of (of a Lie algebra) 248.H 
involutive (of a Lie group) 412.8 
k-fold mixing 136.E 
Kolmogorov 136.E 
metrically isomorphic (on a measure space) 

136.E 
modular 308.H 
outer, group of (of a group) 190.D 
outer, group of (of a Lie algebra) 248.H 
principal (of a Clifford algebra) 61.B 
shift 126.5 
spatially isomorphic (on a measure space) 

136.E 
spectrally isomorphic (on a measure space) 

136.E 
strongly mixing 136.E 
weakly isomorphic 136.E 
weakly mixing 136.E 

automorphism group (of a Lie algebra) 248.A 
automorphy, factor of 32.A 
autonomous 163.D 290.A 
autoregressive Gaussian source 213.E 
autoregressive integrated moving average process 

421.G 
autoregressive moving average process 421.D 
autoregressive process 421.D 
auxiliary circle 78.D 
auxiliary equation, Charpit 32O.D 

auxiliary units 414.A 

auxiliary variable 373.C 
average 211 .C 

moving 397.N 
moving, process 421.D 
phase 402.C 
weighted moving 397.N 

average complexity 71.A 
average outgoing quality level 404.C 
average sample number 404.C 
averaging, method of 290.D 
AW*-algebra 36.H 
axial-vector currents, partially conserved 132.C 
axial visibility manifold 178.F 
axiom(s) 35.A 411.1 

Archimedes (in geometry) 155.B 
Archimedes (for real numbers) 355.B 
congruence (in geometry) 155.B 
Eilenberg-Steenrod 201.Q 
Euclid 139.A 
first countability 425.P 
the first separation 425.Q 
the fourth separation 425.Q 
Frechet 425.4 
Haag-Araki 150.E 
Haag-Keslev 150.E 
Hausdorff 425.Q 
Kolmogorov 425.Q 
logical 337.C 411.1 
Martin 33.F 
mathematical 337.C 411.1 
Osterwalder-Schrader 150.F 
Pasch 155.B 
second countability 425.P 
the second separation 425.Q 
system of 35.8 
the, third separation 425.4 
Tietze’s first 425.Q 
Tietze’s second 425.Q 
Tikhonov’s separation 425.Q 
Vietoris 425.Q 
Wightman 150.D 

axiom A diffeomorphism 126.5 
axiom A flow 126.5 
axiomatic quantum field theory 150.D 
axiomatic set theory 36 156.E 
axiom A vector field 126.5 
axiomatization 35.A 
axiomatize (by specifying a system of axioms) 

35.B 
axiom of choice 33.B 34.A 

and continuum hypothesis, consistency of 
33.D 

and continuum hypothesis, independence of 
33.D 

axiom of comprehension 33.8 38 1 .G 
axiom of constructibility 33.D 
axiom of determinacy 22.H 
axiom of determinateness 33.F 
axiom of e-induction 33.8 
axiom of extensionality 33.8 
axiom of foundation 33.8 
axiom of free mobility (in Euclidean geometry) 

139.8 
axiom of infinity 33.8 381.G 
axiom of linear completeness (in geometry) 155.B 
axiom of mathematical induction 294.8 
axiom of pairing 381.G 
axiom of parallels (in Euclidean geometry) 139.A 

155.B 
axiom of the power set 33.B 381.G 



Subject Index 

Axiom of reducibility (in symbolic logic) 
1928 

axiom of reducibility (in symbolic logic) 156.B 
411.K 

axiom of regularity 33.B 
axiom of replacement 33.B 381.G 
axiom of separation 33.B 
axiom of strong infinity 33.E 
axiom of subsets 33.B 381.G 
axiom of substitution 381.G 
axiom of the empty set 33.B 
axiom of the sum set 33.B 
axiom of the unordered pair 33.B 
axiom of union 381 .G 
axioms of continuity 

Dedekind’s 355.A 
axiom system(s) 35 

of a structure 409.B 
of a theory 411.1 

axis (axes1 
of a circular cone 78.A 
conjugate (of a hyperbola) 78.C 
of convergence 240.B 
coordinate (of an aftine frame) 7.C 
coordinate (of a Euclidean space) 140 
imaginary 74.C 
major (of an ellipse) 78.C 
minor (of an ellipse) 78.C 
optical 180.B 
of a parabola 78.C 
principal (of a central conic) 78.C 
principal (of a parabola) 78.C 
principal (of a quadric surface) 350.B 
principal, of inertia 271.E 
principal, transformation to 390.B 
real 74.C 
of rotation (of a surface of revolution) 111.1 
transverse (of a hyperbola) 78.C 
xi- (of a Euclidean space) 140 

Ax-Kochen isomorphism theorem 276.E 
azimuth App. A, Table 3.V 
azimuthal quantum number 315.E 
Azumaya algebra 29.K 
Azumaya lemma, Krull- 67.D 

B 

/I -beta 
.8(R) 

(=9,,,(Q)) 168.B 
(the space of hyperfunctions) 125.V 

B”,,, (Besov spaces) 168.B 
p-KMS state 402.G 
P-shadowed 126.5 
B-traced 126.J 
%-measurable function 270.5 
%-measurable set 270.C 
B-regular measure 270.F 
%ummable series 379.0 
/81-summable series 379.0 
b-function 125.EE 418.H 
BN-pair 13.R 343.1 
(B,N)-pair 151.5 
En set 22.D 
B-complete (locally convex space) 424.X 
BA 102.L 
back substitution 302.B 
backward analysis 138.C 
backward difference 223.C App. A. Table 21 
backward emission 320.A 
backward equation, Kolmogorov 115.A 260.F 
backward error analysis 302.B 

backward interpolation formula 
Gauss 223.C 
Newton 223.C 

backward moving average representation 395.D 
canonical 395.D 

backward type 304.D,F 
badly approximable 83.B 
Baer sum (of extensions) 200.K 
Bahadur efficiency 400.K 
Baire condition 425.L 
Baire function 84.D 
Baire-Hausdorff theorem 273.5 425.N 
Baire measurable 270.L 
Baire property 425.L 

Lebesgue measurability and 33.F 
Baire set 126.H 270.C 
Baire space 425.L 
Baire zero-dimensional space 273.B 
Bairstow method 301.E 
balanced array 102.L 
balanced fractional factorial design 102.1 
balanced incomplete block design 102.E 

partially 102.5 
balanced mapping, A- 277.5 
balayage 338.L 
balayage principle 338.L 
ball 140 

n- 140 
open 140 
open n- 140 
spin 351.L 
unit 140 
unit (of a Banach space) 37.B 

ball knot, (p, q)- 235.G 

ball pair 235.G 
BAN (best asymptotically normal) 399.K 
Banach-Alaoglu theorem 

(in a Banach space) 37.E 
(in a topological linear space) 424.H 

Banach algebra(s) 36.A 
Banach analytic space 23.G 
Banach area (of a surface) 246.G 
Banach (extension) theorem, Hahn- 

(in a normed space) 37.F 
(in a topological linear space) 424.C 

Banach integral 310.1 
Banach lattice 310.F 
Banach Lie group 286.K 
Banach limit 37.F 
Banach manifold 105.2 
Banach space(s) 37.A,B 

reflexive 37.G 
regular 37.G 

Banach star algebra 36.F 
Banach-Steinhaus theorem 

(in a Banach space) 37.H 
(in a topological linear space) 424.5 

Banach theorem 37.1 
band, Mobius 4lO.B 
bang-bang control 405.C 
Barankin theorem 399.D 
bar construction (of an Eilenberg-MacL.ane com- 

plex) 70.F 
bargaining set 173.D 
bargaining solution, Nash 173.C 
Barnes extended hypergeometric function 206.C 

App. A, Table 18.1 
barrel (in a locally convex space) 424.1 
barreled (locally convex space) 424.1 

quasi- 424.1 



1929 

barrier 120.D 
absorbing I 15.B 
reflecting 115.B.C 

Bartle-Dunford-Schwartz integral 443.G 
barycenter 

(of points of an affme space) 7.C 
(of a rigid body) 271.E 

barycentric coordinates 
(in an atline space) 7.C 90.B 
(in a Euclidean complex) 70.B 
(in the polyhedron of a simplicial complex) 

7o.c 
barycentric derived neighborhood, second 65.C 
barycentric refinement 425.R 
barycentric subdivision 

(of a Euclidean complex) 70.B 
(of a simplicial complex) 70.C 

baryons 132.B 
base 

(in a Banach space) 37.L 
(curve of a roulette) 93.H 
(of a logarithmic function) 131.B 
(of a point range) 343.B 
(of a polymatroid) 66.F,G 
data 96.B 
filter 87.1 
local 425.E 
for the neighborhood system 425.E 
normal 172.E 
open 425.F 
for the space 425.E 
for the topology 425.F 
for the uniformity 436.B 

base functions 304.B 
base point 

of a linear system 16.N 
of a loop 170 
of a topological space 202.8 

base space 
of a fiber bundle 147.B 
of a fiber space 148.B 
of a Riemann surface 367.A 

base term (of a spectral sequence) 200.J 
base units 414.A 
Bashforth method, Adams- 303.E 
basic components (of an m-dimensional surface) 

110.A 
basic concept (of a structure) 409.B 
basic equation 320.E 
basic feasible solution 255.A 
basic tield (of linear space) 256.A 
basic form 255.A 
basic interval 4.B 
basic invariant 226.B 
basic limit theorem 260.C 
basic open set 425.F 
basic optimal solution 255.A 
basic property (of a structure) 409.B 
basic ring (of a module) 277.D 
basic set (for an Axiom A flow) 126.5 
basic set (of a structure) 409.B 
basic solution 255.A 

feasible 255.A 
optimal 255.A 

basic space (of a probability space) 342.8 
basic surface (of a covering surface) 367.B 
basic variable 255.A 
basic vector field 80.H 
basic Z,-extension 14.L 

Subject Index 
Bernoulli 

basin 126.F 
basis 

(of an Abelian group) 2.B 
(in a Banach space) 37.L 
(of a homogeneous lattice) 182.B 
(of an ideal) 67.B 
(of a linear space) 256.E 
(of a module) 277.G 
canonical 201 .B 
canonical homology 1 l.C 
Chevalley canonical 248.4 
dual 256.G 
minimal 14.B 
normal 172.E 
of order I’ in N 4.A 
orthonormal 197.C 
Schauder 37.L 
strongly distinguished 418.F 
transcendence 149.K 
Weyl canonical 248.P 

basis theorem 
Hilbert (on Noetherian rings) 284.A 
Ritt (on differential polynomials) 113 

bath, heat 419.B 
Bayes estimator 399.G 
Bayes formula 342.F 405.1 
Bayesian approach 401 .B 
Bayesian model 403.G 
Bayes risk 398.B 
Bayes solution 398.B 

generalized 398.B 
in the wider sense 398.B 

Bayes sufficient c-field 396.5 
BCH (Base-Chaudhuri-Hooquenghem) code 63.D 
BDI, type (symmetric Riemannian spaces) 412.G 
BDII, type (symmetric Riemannian spaces) 412.G 
BDH (Brown-Douglas-Fillmore) theory 36.5 390.5 
behavior, Regge 386.C 
behavior strategy 173.B 
behind-the-moon argument 351.K 
Behnke-Stein, analytic space in the sense of 23.E 
Behnke-Stein theorem 21.H 
Behrens-Fisher problem 400.G 
Bellman equation 405.B 
Bellman function 127.G 
Bellman principle 405.B 
Bell inequality 351.L 
Bell number 177.D 
belong 

(to a set) 381.A 
to the lower class with respect to local con- 
tinuity 45.F 

to the lower class with respect to uniform con- 
inuity 45.F 

to the upper class with respect to local con- 
tinuity 45.F 

to the upper class with respect to uniform con- 
tinuity 45.F 

Beltrami differential equation 352.B 
Beltrami differential operator 

of the first kind App. A, Table 4.11 
of the second kind App. A, Table 4.11 

Behrami operator, Laplace- 194.B 
Bergman kernel function 188.G 
Bergman metric 188.G 
Bernays-Gddel set theory 33.A 
Bernoulli 

loosely 136.F 
monotonely very weak 136.F 



Subject Index 
Bernoulli differential equation 

1930 

Bernoulli differential equation App. A, Table 14.1 
Bernoulli family 38 
Bernoulli lemniscate 93.H 
Bernoulli method 301.5 
Bernoulli number 177.B 
Bernoulli polynomial 177.B 
Bernoulli process 136.E 

very weak 136.E 
weak 136.E 

Bernoulli sample 396.B 
Bernoulli shift 136.D 

generalized 136.D 
Bernoulli spiral 93.H 
Bernoulli theorem 205.B 
Bernoulli trials, sequence of 396.B 
Bernshtein inequality (for trigonometric polyno- 

mials) 336.C 
Bernshtein polynomial 366.A 418.H 

Sato- 125.EE 
Bernshtein problem 275.F 

generalized 275.F 
Bernshtein theorem 

(on cardinal numbers) 49.B 
(on the Laplace transform) 240.E 
(on minimal surfaces) 275.F 

Bers area theorem 234.D 
Bertini theorems 15.C 
Bertrand conjecture 123.A 
Bertrand curve 11 l.F 
Besov embedding theorem, Sobolev- 168.B 
Besov space 168.B 
Bessaga-Pelczynski theorem 443.D 
Bessel differential equation 39.B, App. A, Table 

14.11 
Bessel formula, Hansen- App. A, Table 19.111 
Bessel function(s) 39, App. A, Table 19.111 

half 39.B 
modified 39.G 
spherical 39.B 

Bessel inequality 197.C 
Bessel integral 39.B 
Bessel interpolation formula App. A, Table 21 
Bessel series, Fourier- 39.D 
Bessel transform, Fourier- 39.D 
best (statistical decision function) 398.B 
best approximation 

(of a continuous function) 336.B 
(in evaluation of functions) 142.B 
(of an irrational number) 83.B 
in the sense of Chebyshev 336.H 

best asymptotically normal estimator 399.K 
best invariant estimator 399.1 
best linear unbiased estimator (b.1.u.e.) 403.E 
best polynomial approximation (in the sense of 

Chebyshev) 336.H 
beta density 397.D 
beta distribution 341.D, App. A, Table 22 
beta function 174.C App. A, Table 17.1 

incomplete 174.C App. A, Table 17.1 
beta-model, Lute 346.G 
better, uniformly (statistical decision function) 

398.B 
Betti group (of a complex) 201.B 
Betti number 

of a commutative Noetherian ring 200.K 
of a complex 201.B 

between (two points in an ordered set) 31 l.B 
between-group variance 397.L 
Beurling generalized distribution 125.U 
Beurling-Kunugui, theorem, Iversen- 62.B 

Bezout theorem 12.B 
BG (=Bernays-Giidel set theory) 33.A 
Bhattacharyya inequality 399.D 
biadditive mapping 277.5 
bialgebra 203.G 

quotient 203.G 
semigroup 203.G 
universal enveloping 203.G 

bialgebra homomorphism 203.G 
Bianchi identities 80.5 417.B, App. A, Table 4.11 
bias 399.C 
biaxial spherical harmonics 393.D 
BIBD (balanced incomplete block design) 102.E 
bicharacteristic curve 325.A 
bicharacteristic strip 320.B 
bicompact 425,s 
bicomplex 2OO.H 
Bieberbach conjecture 438.C 
Biehler equality, Jacobi- 328 
biequicontinuous convergence, topology of 424.R 
bifurcation, Hopf 126.M 
bifurcation equation 286.V 
bifurcation method 290.D 
bifurcation point 

(in bifurcation theory) 126.M 286.R 
(in nonlinear integral equations) 217.M 

bifurcation set 51.F 418.F 
bifurcation theorem, Hopf 286.U 
bifurcation theory 286.R 
biharmonic (function) 193.0 
biholomorphic mapping 21.5 
biideal 203.G 
bijection 

(in a category) 52.D 
(of sets) 381.C 

bijective mapping 381.C 
bilateral network 382.C 
bilinear form 

(on linear spaces) 256.H 
(on modules) 277.5 
(on topological linear spaces) 424.G 
associated with a quadratic form 256.H 
matrix of 256.H 
nondegenerate 256.H 
symmetric (associated with a quadratic form) 

348.A 
bilinear functional 424.G 

integral 424.R 
bilinear Hamiltonian 377.A 
bilinear mapping 

(of a linear space) 256.H 
(of a module) 277.5 
canonical (on tensor products of linear spaces) 

256.1 
bilinear programming 264.D 
bilinear relations, Hodge-Riemann 16.V 
bimatrix game 173.C 
bimeasurable transformation 136.B 
bimodular germ (of an analytic function) 418.E 
bimodule 277.D 

A-B- 277.D 
binary quadratic form(s) 348.M 

primitive 348.M 
properly equivalent 348.M 

binary relation 358.A 41 l.G 
binding energy 351.D 
Binet formula 

(on Fibonacci sequence) 295.A 
(on gamma function) 174.A 

binomial coefficient 330, App. A, Table 17.11 



1931 Subject Index 
Bore1 set(s) 

binomial coefticient series 121.E 
binomial distribution 341.D 397.F, App. A, 

Table 22 
negative 341.D 397.F, App. A, Table 22 

binomial equation 10.C 
binomial probability paper 19.B 
binomial series App. A, Table lO.IV 
binomial theorem 330, App. A, Table 17.11 
binormal 11 l.F 

afine ll0.C 

bioassay 40.C 
biology, mathematical models in 263 
biometrics 40 
bipartite graph 186.C 

complete 186.C 
bipolar (relative to a pairing) 424.H 
bipolar coordinates 90.C 
bipolar cylindrical coordinates App. A, Table 3.V 
bipolar theorem 37.F 424.H 
biprojective space 343.H 
biquadratic equation App. A, Table 1 
birational correspondence 16.1 
birational invariant 12.A 
birational isomorphism 

between Abelian varieties 3.C 
between algebraic groups 13.A 

birational mapping 16.1 
birational transformation 16.1 
BirchhSwinnerton-Dyer conjecture 1 f8.D 450,s 
biregular mapping (between prealgebraic varieties) 

16.C 
BirkhoR integrable (function) 443.E 
Birkhoff integral 443.E 
Birkhoff fixed-point theorem, Poincare- 153.B 
Birkhoff-Witt theorem, Poincart- (on Lie algebras) 

248.5 
Birnbaum theorem 399.C 
birth and death process 260.G 
birth process 260.G 
birth rate, infinitesimal 260.G 
bispectral density function 421.C 
bispinor of rank (k, n) 258.B 
bit 75.B 213.B 

check 63.C 
information 63.C 

bivariate data 397.H 
bivariate distribution 397.H 
bivariate moments 397.H 
bivariate normal density 397.1 
Blackwell-Rao theorem 399.C 
Blakers-Massey theorem 202.M 
Blaschke manifold 178.G 

at a point p 178.G 
Blaschke product 43.F 
Blaschke sequence 43.F 
Bleuler formalism, Gupta- 105.G 
Bloch constant 77.F 

schlicht 77.F 
Bloch theorem 77.F 
block 

(bundle) 147.Q 
(of irreducible modular representations) 362.1 
(of a permutation group) 151.H 
(of plots) 102.B 
complete 102.B 
incomplete 102.B 
initial 102.E 

block bundle 147.Q 
normal 147.Q 
q- 147.Q 

block code 63.A 213.F 
sliding 213.E 

block design 102.B 
balanced incomplete 102.E 
efficiency-balanced 102.E 
optimal 102.E 
randomized 102.B 
variance-balanced 102.E 

block effect 102.B 
block size 102.B 
block structure, q- 147.Q 
blowing up 

(of an analytic space) 23.D 
(of a complex manifold) 72.H 
(by an ideal sheaf) 16.K 
b.1.u.e (best linear unbiased estimator) 403.E 

Blumenthal zero-one law 261.B 
BMO (bounded mean oscillation) 168.B 
Bochner integrable 443.C 
Bochner integral 443.C 
Bochner theorem 36.L 192.B 
body 

bounded star 182.C 
rigid 271.E 

body forces 271.G 
Bogolyubov inequality, Peierls- 212.8 
Bohr, almost periodic function in the sense of 

18.B 
Bohr compactification 18.H 
Bokshtein homomorphism 64.B 
Bokshtein operation 64.B 
Boltzmann constant 402.B 
Boltzmann distribution law, Maxwell- 402.B 
Boltzmann equation 41.A 402.B 
Bolzano-Weierstrass theorem 140 273.F 
bond percolation process 340.D 
Bonnet formula, Gauss- 111 .H 364.D, App. A, 

Table 4.1 
Bonnet fundamental theorem 11 l.H 
Bonnet-Sasaki-Nitsche formula, Gauss- 275.C 
Boolean algebra 243.E 

generalized 42.B 
Boolean lattice 42.A 243.E 

of sets 243.E 
Boolean operations 42.A 
Boolean ring 42.C 

generalized 42.C 
Boolean space 42.D 
Boolean-valued set theory 33.E 
Borcher theorem 150.E 
bord (for a G-manifold) 431.E 
bordant 431.E 
border set 425.N 
Borel-Cantelli lemma 342.B 
Bore1 direction (of a meromorphic function) 272.F 
Bore1 embedding, generalized 384.D 
Bore1 exceptional value 272.E 
Bore1 exponential method, summable by 379.0 
Bore1 field 270.B,C 
Bore1 integral method, summable by 379.0 
Bore1 isomorphic 270.C 
Borel-Lebesgue theorem 273.H 

mapping 270.C 
Bore1 measurable function 270.5 
Bore1 measure 270.G 
Bore1 method of summation 379.0 
Bore1 set(s) 

(in a Euclidean space) 270.C 
(in the strict sense) 270.C 
(in a topological space) 270.C 



Subject Index 
Bore1 space 

1932 

nearly 261 .D 
Bore1 space 270.C 

standard 270.C 
Bore1 subalgebra (of a semisimple Lie algebra) 

248.0 
Bore1 subgroup 

of an algebraic group 13.G 
k- (of an algebraic group) 13.G 
of a Lie group 249.5 

Bore1 subset 270.C 
Bore1 summable, absolute 379.0 
Bore1 theorem 

(on classifying spaces) App. A, Table 6.V 
(on meromorphic functions) 272.E 
Heine 273.F 

Bore]-Weil theorem 437.4 
bornological 

locally convex space 424.1 
ultra- (locally convex space) 424.W 

Borsuk-Ulam theorem 153.B 
Bortolotti covariant derivative, van der Waerden- 

417.E 
Bose particle 132.A 
Bose statistics 377.B 402.E 
boson 132.A 351.H 

Nambu-Goldstone 132.C 
Bott fixed point theorem, Atiyah- 153.C 
Bott generator 237.D 
Bott isomorphism 237.D 
Bott periodicity theorem 

on homotopy groups 202.V, App. A, Table 
6.VII 

in K-theory 237.D 
bound 

Froissart 386.B 
greatest lower (of a subset in an ordered set) 

311.8 
greatest lower (of a subset of a vector lattice) 

31o.c 
Hamming 63.B 
least upper (of a subset in an ordered set) 
311.B 

least upper (of a subset of a vector lattice) 
31o.c 

lower (of a subset in an ordered set) 3 11 .B 
Plotkin 63.B 
upper (of a subset in an ordered set) 31 l.B 
Varshamov-Gilbert-Sacks 63.B 

boundary (boundaries) 
(of a convex cell) 7.D 
(cycle) 200.H 
(of a function algebra) 164.C 
(of a manifold) 65.B 105.B 
(of a topological space) 425.N 
Choquet (for a function algebra) 164.C 
closed (for a function algebra) 164.C 
C’-manifold with 105.E 
C-manifold without 105.E 
differential manifold with, of class c’ 105.E 
domain with regular 105.U 
domain with smooth 105.U 
dual Martin 260.1 
entrace (of a diffusion process) I 15.B 
exit (of a diffusion process) 115.B 
harmonic 207.B 
ideal 207.A 
Martin 207.C 260.1 
module of 200.C 
natural (of an analytic function) 198.N 
natural (of a diffusion process) 115.B 

Newton, off in the coordinate 4 18.D 
nondegenerate Newton 418.D 
of null (open Riemann surface) 367.E 
pasting together 114.F 
of positive (open Riemann surface) 367.E 
regular (of a diffusion process) 1 15.B 
relative 367.B 
Shilov (for a function algebra) 21 .D 164.C 
Shilov (of a Siegel domain) 384.1) 
surface with 410.B 
topological manifold with 105.B 
topological manifold without 105.B 

boundary cluster set 62.A 
boundary condition 3 15.A 323.F 

adjoint 315.B 
operator with 112.F 

boundary element (in a simply connected domain) 
333.B 

boundary function 160.E 
boundary group 234.B 
boundary homomorphism 

of homology exact sequence 201 L 
in homotopy exact sequences 202.L 

boundary layer 205.C 
boundary layer equation, Prandtl 205.C 
boundary operator 2OO.C 

between chain groups 201.B 
linear 3 15.B 
partial 200.E 
total 200.E 

boundary point 
dual passive 260.H 
entrace 260.H 
exit 260.H 
irregular 120.D 
passive 260.H 
regular 120.D 
of a subset 425.N 

boundary set 425.N 
boundary space 112.E 
boundary value 

(of a conformal mapping) 77.B 
(of a hyperfunction) 125.V 
(relative to a differential operator) 112.E: 

boundary value problem 315 
(for harmonic functions) 193.F 
(in numerical solution of ordinary differential 
equations) 303.H 

adjoint 315.B 
first (for elliptic differential equations) 323.C 
first (for harmonic functions) 193.F 
general 323.H 
homogeneous (of ordinary differential equa- 
tions) 315.B 

inhomogeneous (of ordinary differential equa- 
tions) 315.B 

of ordinary differential equations 315 
second (elliptic differential equations) 323.F 
second (for harmonic functions) 193.F 
self-adjoint 315.B 
solution of App. A, Table 15.VI 
third (for elliptic differential equations) 323.F 
third (for harmonic functions) 193.F 
two-point (of ordinary differential equations) 

315.A 
weak form of the (of partial differential equa- 

tions) 304.B 
bounded 

(in an affine space) 7.D 
(half-plane) 155.B 



I933 Subject Index 
Brouwer mapping theorem 

(metric space) 273.B 
(ordered set) 3 I 1 .B 
(set in a topological linear space) 424.F 
(set of real numbers) 87.B 
(torsion group) 2.F 
(vector lattice) 3lO.B 
(vector measure) 443.G 
order 3lO.B 
relatively 331.B 
T 311.B 
totally 273.B 

bounded, essentially (measurable function) 168.B 
bounded approximation property (of a Banach 

space) 37.5 
bounded automaton, linear 

deterministic 31.D 
nondeterministic 3 1.D 

bounded domain 
divisible 284.F 
homogeneous 384.A 412.F 
irreducible symmetric 412.F 
sweepable 284.F 
symmetric 412.F 

bounded from above 
(in an ordered set) 31 I .B 
(for real numbers) 87.B 

bounded from below 
(for a filtration) 200.5 
(in an ordered set) 311.B 
(for real numbers) 87.B 
(for a spectral sequence) 200.5 

bounded functions 43.A 
bounded linear operator 37.C 
boundedly complete o-field 396.E 
bounded matrix 269.K 
bounded mean oscillation (BMO) 168.B 
bounded metric space, totally 273.B 
bounded motion 420.D 
bounded p-operator 356.B 
boundedness, abscissa of (of a Dirichlet series) 

121.8 
boundedness principle, upper (in potential theory) 

388.C 
boundedness theorem, uniform 37.H 
bounded quantitier 356.B 
bounded set 

in an affine space 7.D 
in a locally convex space 424.F 
in a metric space 273.8 
totally (in a metric space) 273.B 

bounded star body 182.C 
bounded uniform space 

locally totally 436.H 
totally 436.H 

bounded variation 
function of 166.8 
integrable process of 406.B 
mapping of 246.H 
in the sense of Tonelli 246.C 
set function of 380.B 
vector measure of 443.G 

bound state 351.D 
bound variable 41 l.C 
bouquet 202.F 
Bouquet differential equation, Briot- 288.B 289.B 
Bouquet formulas (on space curves) 1ll.F 
Bourbaki, Frkchet space in the sense of 424.1 
Boussinesq equation 387.F 
boxes 140 

box topology 425.K 
brachistochrone 93.H 
bracket 105.M 

Lagrange 84.A 324.D 
Poisson (of two functions) 105.M 
Poisson (of two vector fields) 271.F 324.C.D 
Toda 202.R 

bracket product (in a Lie algebra) 248.A 
Bradley-Terry model 346.C 
braid(s) 235.F 

closed 235.F 
braid group 235.F 
branch 

(of an analytic function) 198.5 
(of a curve of class C”) 93.G 
(of a graph) 282.A 
finite (of a curve of class Ck) 93.G 
infinite (of a curve of class Ck) 93.G 

branch and bound methods 215.D 
branch divisor (in a covering of a nonsingular 

curve) 9.1 
branched minimal immersion 275.B 
branched minima1 surface 275.8 
branching Markov process 44.E 
branching processes 44 342.A 

age-dependent 44.E 
continuous state 44.E 
Galton-Watson 44.8 
Markov 44.D 
multitype Markov 44.E 

branch point 
(of a covering surface) 367.B 
(of an ordinary curve) 93.C 
algebraic (of a Riemann surface) 367.B 
fixed (of an algebraic differential equation) 
288.A 

logarithmic (of a Riemann surface) 367.B 
movable (of an algebraic diffirential equation) 
288.A 

branch source 282.C 
Brandt law 241.C 
Brauer character (of a modular representation) 

362.1 
Brauer group 

(of algebra classes) 29.E 
(of a commutative ring) 29.K 

Brauer theorem 450.G 
Bravais class 92.B 
Bravais group 92.B 
Bravais lattice 92.B 
Bravais type 92.B 

simple 92.E 
breadth (of an oval) 89.C 
Brelot solution, Perron- (of Dirichlet problem) 

12o.c 
Brelot solution, Perron-Wiener- (of Dirichlet prob- 

lem) 120.C 
Brianchon theorem 

on conic sections 78.K 
in projective geometry 343.E 

bridge, Brownian 2SO.F 374.E 
Brieskorn variety 418.D 
Brill-Noether number 9.E 
Briot-Bouquet differential equation 288.B 289.B 
broken line 155.F 
broken symmetry 132.C 
Bromwich integral 240.D 322.D, App. A, Table 12.1 
Brouwer fixed-point theorem 153.B 
Brouwer mapping theorem 99.A 



Subject Index 
Brouwer theorem on the invariance of domain 

1934 

Brouwer theorem on the invariance of domain 
117.D 

Browder-Livesay invariant 114.L 
Brownian bridge 250.F 374.E 
Brownian functional 176.1 
Brownian motion 5.D 45 342.A 

d-dimensional 45.C 
{F,}- 45.8 406.B 
on Lie groups 406.G 
with an N-dimensional time parameter 45.1 
Ornstein-Uhlenbeck 45.1 
right invariant 406.G 
space-time 45.F 

Brown-Shield-Zeller theorem 43.C 
BRS transformation 150.G 
Bruck-Ryser-Chowla theorem 102.E 
Bruhat decomposition (of an algebraic group) 13.K 

relative 13.Q 
Brun theorems, Poincare- 420.A 
Brun-Titchmarsh theorem 123.D 
Bucy filter, Kalman- 86.E 405.G 
building 130.R 343.1 
bulk viscosity, coeflicients of 205.C 
bundle(s) 

canonical 147.F 
complex conjugate 147.F 
complex line 72.F 
complex line, determined by a divisor 72.F 
conormal 274.E 
coordinate 147.B 
coordinate, equivalent 147.B 
cotangent 147.F 
cotangential sphere 274.E 
dual 147.F 
fiber 147.B 
fiber, associated 147.D 
fiber, of class C’ 147.0 
fiber, complex analytic 147.0 
fiber, orientable 147.L 
fiber, real analytic 147.0 
flat 1:. 154.B 
foliated 154.B,H 
frame, orthogonal 364.A 
frame, tangent orthogonal n- 364.A 
G- 147.B 
Hopf 147.E 
induced 147.G 
line 147.F 
Maslov 274.C 
normal 105.C 114.8 154.B,E 364.C 274.E 
normal block 147.Q 
normal k-vector 114.5 
normal sphere 274.E 
n-sphere 147.K 
n-universal 147.G 
principal 147.C 
principal, associated 147.D 
principal fiber 147.C 
product 147.E 
q-block 147.Q 
quotient 16.Y 147.B 
reduced 147.5 
spin 237.F 
Spin’ 237.F 
sub- 16.Y 147.F 
tangent 105.H 147.F 154.B 286.K 
tangential sphere 274.E 
tangent r-frame 108.H 147.F 
tautological line 16.E 
tensor 147.F 

trivial 147.E 
unit tangent sphere 126.L 
universal 147.G,H 
vector 16.Y 147.F 
vector, ample 16.Y 
vector, complex 147.F 
vector, cotangent 147.F 
vector, dual 147.F 
vector, indecomposable 16.Y 
vector, normal 105.L 
vector, quaternion 147.F 
vector, quotient 16.Y 
vector, semistable 16.Y 
vector, stable (on algebraic varieties) 16.Y 
vector, stable (on topological spaces) 237.B 
vector, stably equivalent 237.B 
vector, tangent 108.H 147.F 

bundle group (of a fiber bundle) 147.EI 
bundle mapping (map) 147.B 
bundle of homomorphisms 147.F 
bundle of p-vectors 147.F 
bundle space (of a fiber bundle) 147.B 
Bunyakovskii inequality 21 l.C, App. A, Table 8 
Burali-Forti paradox 319.B 
Burnside conjecture 151.D 
Burnside problem 161.C 

restricted 161.C 
Burnside ring 431.F 
Burnside theorem 15 1 .D 
burst error 63.E 
Bush-Mosteller model 346.G 

C 

c (cardinal number of R) 49.A 
C’(n) (the totality of I times continuously differenti- 

able functions in a) 168.B 
C;(n) (the totality of functions in C’(n) whose 

supports are compact subsets of cl) 168.B 
c (a sequence space) 168.B 
C (complex numbers) 74.A 294.A 
X-equivalent (closed on G-manifolds) ,431.F 
W-group 52.M 
Y-theory, Serre 202.N 
C-analytic hierarchy 356.H 
C-arithmetical hierarchy 356.H 
C-equivalent almost complex manifolds 114.H 
C,-field 118.F 
C,(d)-field 118.F 
C, set 22.D 
{c,}-consistency, {c,}-consistent 399.K 
C*-algebra 36.G 

liminal 36.E 
postliminal 36.E 
of type I 308.L 

C*-cross norm 36.H 
C*-dynamical system 36.K 
C*-group algebra (of a locally compact Hausdorff 

space) 36.L 
C*-tensor product, projective 36.H 
(C, cc)-summation 379.M 
c,-bundle 237.F 
c,-mapping 237.G 
C-analytic space 23.E 
C-covering space 23.E 
C’-conjugacy, (?-conjugate 126.B 
C-equivalence, C-equivalent 126.B 
(Y-flow 126.B 
C’-foliation 154.G 
C’-function in a C”-manifold 105.G 



1935 Subject Index 
Canonical representation 

C’-manifold 105.D 
with boundary 105.E 
without boundary 105.E 
compact 105.D 
paracompact - 105.D 

C-mapping 105.J 
C’-norm 126.H 
C’-structure 108.D 

subordinate to (for a Cs-structure) 108.D 
on a topological manifold 114.B 

C’- R-stable 126.H 
C’-structurally stable 126.H 
C-triangulation 114.C 
C”-homomorphism (between Lie groups) 249.N 
C”-isomorphism (between Lie groups) 249.N 
C”-function (of many variables) 58.B 

germ of (at the origin) 58.C 
preparation theorem for 58.C 
rapidly decreasing 168.B 
slowly increasing 125.0 

C”-functions and quasi-analytic functions 58 
C” topology, weak 4Ol.C 
CA set (in set theory) 22.A 
Caianiello differential equation 291.F 
calculable function, effective 356.C 
calculable number 22.G 
calculation, graphical 19.B 
calculator 75.A 
calculus 

differential 106 
fundamental theorem of the infinitesimal 216.C 
Heaviside 306.A 
holomorphic functional 36.M 
infinitesimal (in nonstandard analysis) 273.D 
Kirby 114.L 
operational 251.G 306, App. A, Table 12.11 
predicate 41 l.J 
predicate, with equality 41 l.J 
propositional 41 l.F 
of residue 198.F 
stochastic 406.A 
tensor 417.A, App. A, Table 4.11 

calculus of variations 46 
classical theory of 46.C 
conditional problems in 46.A 
fundamental lemma in 46.B 

Calderon-Zygmund singular integral operator 
217.5 251.0 

Calderbn-Zygmund type, kernel of 217.5 
Calkin algebra 36.5 
Callan-Symanzik equation 361.B 
Campbell-Hausdorff formula 249.R 
CAN estimator 399.K 
canceling 138.B 
cancellation law 

on the addition of natural numbers 294.B 
in a commutative semigroup 190.P 
on the multiplication of natural numbers 294.B 

canonical ahine connection (on R”) 80.5 
canonical anticommutation relation 277.A 
canonical backward moving average representation 

395.D 
canonical basis (of a chain group of a finite simpli- 

cial complex) 201.B 
Chevalley (of a complex semisimple Lie algebra) 

248.Q 
Weyl (of a semisimple Lie algebra) 248.P 

canonical bilinear mapping (on tensor products of 
linear spaces) 256.1 

canonical bundle (of a differentiable manifold) 147.F 
canonical class (of an algebraic curve) 9.C 
canonical cohomology class (in Galois cohomology 

in class field theory) 59.H 
canonical commutation relations 351.C 377.A,C 
canonical coordinates (of a Lie group) 

of the first kind 249.Q 
of the second kind 249.Q 

canonical coordinate system (for a conic section) 
78.C 

canonical correlation coefficient 280.E 374.C 
canonical decomposition (of a closed operator) 

251.E 
canonical decomposition theorem 86.C 
canonical divisor 

(of an algebraic curve) 9.C 
(of an algebraic variety) 16.0 
(of a Jacobian variety) 9.E 
(of a Riemann surface) 1 l.D 

canonical element (in the representation of a functor) 
52.L 

canonical ensemble 402.D 
grand 402.D 

canonical equation 324.E 
Hamilton 271.F 

canonical field 377.C 
canonical form 

(of F(M)) 191.A 
(of a linear hypothesis) 400.H 
(of a regular submanifold of F(M)) 191.A 
of the equation (of a quadric surface) 350.B 
Khinchin (of an infinitely divisible probability 
distribution) 341.G 

Kolmogorov (of an infinitely divisible pro- 
bability distribution) 341.G 

Levy (of an infinitely divisible probability 
distribution) 341.G 

Weierstrass (for an elliptic curve) 9.D 
Weierstrass (of the gamma function) 174.A 

canonical function (on a nonsingular curve) 9.E 
canonical homology basis 1 l.C 
canonical homomorphism 

(on direct products of rings) 368.E 
(on tensor products of algebras) 29.A 

canonical injection 
(from a direct summand) 381.E 
(in direct sums of modules) 277.F 
(in free products of groups) 190.M 
(from a subgroup) 190.D 
(from a subset) 381.C 

canonically bounded 200.5 
canonically polarized Jacobian variety 3.G 9.E 
canonical measure 

(in a birth and death chain) 260.G 
(in a diffusion process) 115.B 
(in a Markov chain) 260.1 

canonical model 251.N 
canonical l-form (of the bundle of tangent n-frames) 

80.H 
canonical parameter 

ofanarc lll.D 
local (for power series) 339.A 

canonical product, Weierstrass 429.B 
canonical projection 

(on direct products of modules) 277.F 
(onto a quotient set) 135.B 

canonical representation 
(of a Gaussian process) 176.E 
generalized 176.E 



Subject Index 
Canonical scale 

1936 

canonical scale 1 15.B 
canonical scores 397.M 
canonical surjection 

(on direct products of groups) 190.L 
(to a factor group) 190.D 
(onto a quotient set) 135.B 

canonical transformation 271.F 
(concerning contact transformations) 82.B 
group of 271.F 
homogeneous 82.B 

canonical vartables (in analytical dynamics) 271.F 
canonical variates 280.E 
canonical vectorial form 417.C 
Cantelli lemma, Borel- 342.B 
Cantelli theorem, Glivenko- 374.E 
Cantor, G. 47 
Cantor discontinuum 79.D 
Cantor intersection theorem 273.F 
Cantor-Lebesgue theorem 159.J 
Cantor normal form (for an ordinal number) 312.C 
Cantor set 79.D 

general 79.D 
Cantor’s theory of real numbers 244.E 
capability, error-correcting 63.B 
capacitable set 48.H 
capacitary dimension 48.G 
capacitary mass distribution 338.K 
capacitated network 281.C 
capacity 

(of discrete memeoryless channel) 213.F 
(of a prime Ideal) 27.A 
(of a set) 48 260.D 
(transportation and scheduling) 281.D 
CL- 169.C 
analytic 169.F 
continuous analytic 164.5 
ergodic 213.F 
logarithmic 48.B 
Newtonian 48.B 
Newtonian exterior 48.H 
Newtonian inner 48.F 
Newtonian interior 4X.F 
Newtonian outer 48.H 
of order r 169.C 
stationary 213.F 

capacity constraint 28 I .D 
capillary wave 205.F 
cap product 

(of a cochain and a chain) 200.K 
(of a cohomology class and a homology class) 

201.K 
capture 

complete 420.D 
partial 420.D 

CAR 377.A 
Caratheodory measure 270.E 
Caratheodory outer measure 270.E 
Carathtodory pseudodistance 21 .D 
Cardano formula (on a cubic equation) lO.D, 

App. A, Table 1 
cardinality 33.F 

(of an ordinal number) 49.E 
(of a set) 49.A 312.D 

cardinal number(s) 49.A 312.D 
comparability theorem for 49.8 
of continuum 49.A 
corresponding to an ordinal number 49.E 
finite 49.A 
infinite 49.A 
measurable 33.E 

ofN 49.A 
ofR 49.A 
of all real-valued functions on LO, ] 49.A 
ofaset 49.A312.D 
strongly compact 33.E 
strongly inaccessible 33.E 
transfinite 49.A 
weakly compact 33.E 
weakly inaccessible 33.E 

cardinal product (of a family of ordered sets) 31 l.F 
cardinal sum (of a family of ordered sets) 31 l.F 
cardioid 93.H 
Carleman condition, Denjoy- 168.B 
Carleman inequality App. A, Table 8 
Carleman theorem 

(on asymptotic expansions) 30.A 
(on bounded functions) 43.F 

Carleman type, kernel of 217.J 
carrier 

(of a differential form) 108.Q 
(of a distribution) 125.D 
(of a function) 125.B 168.B 
(of a real-valued function) 425.R 

Carson integral App. A, Table 12.11 
Cartan, E. 50 
Cartan, differential form of Maurer- :!49.R 
Cartan, system of differential equations of Maurer- 

249.R 
Cartan connection 80.M 
Cartan criterion of semisimplicity (on Lie algebras) 

248.F 
Cartan criterion of solvability (on Lie algebras) 

248.F 
Cartan formula 

for Steenrod pth power operations 64.B 
for Steenrod square operations 64.B 

Cartan integer (of a semisimple Lie algebra) 248.N 
Cartan invariant (of a fmite group) 362.1 
Cartan involution 437.X 
Cartan-KPhler existence theorem 428.E 
Cartan-Mal’tsev-Iwasawa theorem (on maximal 

compact subgroups) 249,s 
Cartan maximum principle 338.L 
Cartan pseudoconvex domain 21.1 

locally 21.1 
Cartan relative integral invariant 219.B 
Cartan subalgebra 

(of a Lie algebra) 248.1 
(of a symmetric Riemannian space) 413.F 

Cartan subgroup 
(of an algebraic group) 13.H 
(of a group) 249.1 

Cartan space 152.C 
Cartan theorem 

on analytic sheaves (H. Cartan) 72.E 
on representations of Lie algebras (E. Cartan) 

248.W 
Cartan-Thullen theorem 21.H 
Cartan-Weyl theorem 248.W 
Carter subgroup 151 .D 
Cartesian coordinates (in an aftine space) 7.C 
Cartesian product 

(of complexes) 70.C,E 
(of mappings) 381.C 
(of sets) 381 .B,E 

Cartesian space 140 
Cartier divisor 16.M 
Cartier operator 9.E 
CA set 22.A 
case complexity, worst 71.A 



1937 Subject Index 

Cell complex 

Casimir element (of a Lie algebra) 248.3 
Casorati determinant 104.D 
Casorati-Weierstrass theorem (on essential singular- 

ities) 198.D 
Cassini oval 93.H 
Casson handle 114.M 
Castelnuovo criterion 15.E 
Castelnuovo lemma 3.E 9.H 
casus irreducibilis lO.D, App. A, Table 1 
Catalan constant App. A, Table 10.111 
catastrophe, elementary 51 .E 
catastrophe point 51.F 
catastrophe set 51.F 
catastrophe theory 51 
categorical 

(data) 397.B 
(set of closed formulas) 276.F 

categorical system (of axioms) 35.B 
categoricity in powers 276.F 
categories and functors 52 
category 52.A 

Abelian 52.N 
of Abelian groups 52.B 
additive 52.N 
of analytic manifolds 52.B 
cohomology theory on the 261.Q 
of commutative rings 52.8 
diagram in the 52.C 
of differentiable manifolds 52.B 
dual 52.F 
exact 237.5 
Grothendieck 200.1 
of groups 52.8 
homotopy, of topological spaces 52.B 
of left (right) R-modules 52.B 
of linear spaces over R 52.8 
of pointed topological spaces 202.B 
PL 65.A 
product 52.A 
quotient 52.N 
of rings 52.B 
set of the first 425.N 
set of the second 425.N 
of sets 52.8 
shape 382.A 
of S-objects 52.G 
of topological spaces 52.B 

catenary 93.H 
catenoid 111.1 
Cauchy, A. L. 53 
Cauchy condensation test 379.B 
Cauchy condition (on D-integral and D(*)-integral) 

100.E 
Cauchy criterion (on the convergence of a sequence 

of real numbers) 87.C App. A, Table IO.11 
Cauchy data 321.A 
Cauchy distribution 34l.D, App. A, Table 22 
Cauchy existence theorem (for partial differential 

equations) 320.B 
Cauchy filter (on a uniform space) 436.G 
Cauchy-Hadamard formula 339.A 
Cauchy inequality 21 l.C, App. A, Table 8 
Cauchy integral formula 198.8 
Cauchy integral representation 21.C 
Cauchy integral test (for convergence) 379.B 
Cauchy integral theorem 198.A,B 

stronger form of 198.B 
Cauchy-Kovalevskaya existence theorem 321.A 
Cauchy-Kovalevskaya theorem, abstract 286.2 
Cauchy net (in a uniform space) 436.G 

Cauchy polygon 316.C 
Cauchy principal value 

of an improper integral 216.D 
of the integral on infinite intervals 216.E 

Cauchy problem 
(of ordinary differential equations) 3 16.A 
(for partial differential equations) 315.A 320.B 

321.A 325.B 

abstract 286.X 
Cauchy process 5.F 

asymmetric 5.F 
symmetric 5.F 

Cauchy product (of two series) 379.F 
Cauchy remainder App.A, Table 9.IV 
Cauchy-Riemann (differential) equation 198.A 

274.G 

(for a holomorphic function of several complex 
variables) 21.C 

(for a holomorphic function of two complex 
variables) 320.F 

Cauchy-Riemann structure 344.A 
Cauchy-Schwarz inequality 21 l.C, App. A, Table 8 
Cauchy sequence 

(in an a-adic topology) 284.B 
(in a metric space) 273.5 
(of rational numbers) 294.E 
(of real numbers) 355.B 
(in a uniform space) 436.G 

Cauchy sum (of a series) 379.A 
Cauchy theorem 379.F 
Cauchy transform 164.5 
causality, macroscopic 386.C 
cause, most probable 401.E 
caustic 325.L 
Cayley algebras 54 

general 54 
Cayley number 54 
Cayley projective plane 54 
Cayley theorem (in group theory) 15 1 .H 
Cayley theorem, Hamilton- 269.F 
Cayley transform (of a closed symmetric operator 

in a Hilbert space) 251.1 
Cayley transformation 269.5 
CCP (chance-constrained programming) 408.B 
CCR 377.A 
CCR algebra 36.H 
Tech cohomology group (for topological spaces) 

201.L,P 
relative 201.M 

Tech cohomology group with coefficient sheaf 9 
383.F 

Tech compactitication, Stone- 207.C 
Tech complete space 425.T 436.1 
Tech homology group (for topological spaces) 

201.M 
relative 201.M 

ceiling function 136.D 
ceiling states 402.G 
celestial mechanics 55 
cell 70.D 

convex (in an aftine space) 7.D 
fundamental (of a symmetric Riemann space) 
413.F 

n- (in a Hausdorff space) 70.D 
(n - q)-dual 65.B 
topological n- 140 
unit 140 

cell complex 70.D 
closure finite 70.D 
countable 70.D 



Subject Index 
Cell-like (CE) 

1938 

Euclidean 70.B 
finite 70.D 
locally countable 70.D 
locally finite 70.D 
regular 70.D 

cell-like (CE) 382.D 
cellular approximation theorem 70.D 
cellular cohomology group 201.H 
cellular decomposition (of a Hausdorff space) 70.D 
cellular homology group 201.F,G 
cellular mapping (between cell complexes) 70.D 
CE mapping 382.D 
center 

(of a central symmetry) 139.B 
(of a continuous geometry) 85.A 
(of gravity) 271.E 
(of a group) 190.C 
(of a hyperbola or ellipse) 78.C 
(of a lattice) 243.E 
(of a Lie algebra) 248.C 
(of mass) 271.E 
(of a nonassociative algebra) 231.A 
(of a pencil of hyperplanes) 343.B 
(of a quadric hypersurface) 7.G 
(of a quadric surface) 350.A 
(of a regular polygon) 357.A 
(of a regular polyhedron) 357.B 
(of a ring) 368.F 
(of a solid sphere) 140 
(of a sphere) 139.1 
(of a von Neumann algebra) 308.C 

centered process 5.B 
centering 5.B 
center manifold theorem 286.V 
center of curvature 11l.E 
center of projection 343.B 
center surface 111.1 
central composite design 102.M 
central configuration 420.B 
central conic(s) 78.C 
central difference 223.C 304.E, App. A, Table 21 
central element (in a lattice) 243.E 
central extension (of a group) 190.N 
central figure 420.B 
centralizer 

(of a subset of a group) 19O.C 
(of a subset of a ring) 368.F 

central limit theorem 250.B 
central moment 397.C 
central motion 126.E 
central potential 315.E 
central processor 75.B 
central quadric hypersurface 7.F 350.G 
central quadric surface 350.B 
central series 

ascending (of a Lie algebra) 248.C 
descending (of a Lie algebra) 248.C 
lower (of a group) 190.J 
upper (of a group) 19O.J 

central simple algebra 29.E 
similar 29.E 

central symmetry (of an afline space) 139.B 
centrifugal force 271.D 
certainly, almost 342.B,D 
certainty equivalent 408.B 
Cesaro method of summation of order u 379.M 

summable by 379.M 
Ceva theorem 7.A 
CFL condition 304.F 
CG method 302.D 

chain 200.H 
ascending (of normal subgroups of a group) 

190.F 
ascending (in an ordered set) 31 L.C 
conservative 260.A 
descending (in a lattice) 243.F 
descending (of (normal) subgroups of a group) 

190.F 
descending (in an ordered set) 31 l.C 
equivalence 200.H 
general Markov 260.5 
homotopy 200.H 
irreducible (a Markov chain) 260.B 
Markov 260.A 
minimal 260.F 
normal (in a group) 190.G 
normal (in Markov chains) 260.1~ 
q- (of a chain complex) 201.B 
recurrent 260.B 
regular (of integral elements) 428.E 
u- 260.1 

chain complex(es) 2OO.C,H 201.B 
in an Abelian category 201.B 
of A-modules 200.C 
augmented 2OO.C 
double 200.E 
oriented simplicial 2Ol.C 
positive 200.H 
product double 2OO.E 
quotient 200.C 
relative 200.C 
singular (of a topological space) 2Ol.E 

chain condition (in an ordered set) 311.C 
ascending (in an ordered set) 3 11 .C 
descending (in an ordered set) 3 11 .C 

chained metric space, well- 79.D 
chain equivalence 200.C 
chain homotopy 200.C 
chain mapping 200.C 201.B 

over an A-homomorphism 200.C 
chain recurrent 126.E 
chain recurrent set 126.E 
chain rule 106.C 
chain subcomplex 200.C 
chain theorem 14.5 
chain transformation (between complexes) 2OO.H 
Chaitin complexity, Kolmogorov- 354.D 
chamber 

positive Weyl 248.R 
Weyl 13.5 248.R 

chamber complex 13.R 
chance-constrained programming 408.A 
chance constraint 408.A 
chance move 173.B 
change 

scalar (of a B-module) 277.L 
time 261.F 406.B 
of variables (in integral calculus) 216.C 

channel 375.F 
almost finite memory 213.F 
d-continuous 213.F 
discrete memoryless 213.F 
finite memory 213.F 
noisy 213.A 
test 213.E 

channel coding theory 213.A 
channel Hilbert space 375.F 
channel wave operators 375.F 
chaos 126.N 303.G 433.B 

propagation of 340.F 



1939 Subject Index 
Characteristic vector 

Chaplygin’s differential equation 326.B 
Chapman complement theorem 382.B 
Chapman-Kolmogorov equality 261.A 
Chapman-Kolmogorov equation 260.A 
Chapman-Robbins-Kiefer inequality 399.D 
Chapman theorem (on (C, sc)-summation) 379.M 
character 

(of an Abelian group) 2.G 
(of an algebraic group) 13.D 
(irreducible unitary representation) 437.V 
(of a linear representation) 362.E 
(of a regular chain) 428.E 
(of a representation of a Lie group) 249.0 
(of a semi-invariant) 226.A 
(of a topological Abelian group) 422.B 
absolutely irreducible 362.E 
Brauer (of a modular representation) 362.1 
Chern (of a complex vector bundle) 237.B 
Dirichlet 295.D 
Hecke 6.D 
identity (of an Abelian group) 2.G 
integral (on the l-dimensional homology group 
of a Riemann surface) 1 I .E 

irreducible (of an irreducible representation) 
362.E 

Minkowski-Hasse (of a nondegenerate quadratic 
form) 348.D 

modular (of a modular representation) 362.1 
nonprimitive 450.C,E 
planar 367.G 
primitive 295.D 450.C,E 
principal (of an Abelian group) 2.G 
principal Dirichlet 295.D 
reduced (of an algebra) 362.E 
residue 295.D 
simple (of an irreducible representation) 362.E 

character formula, Weyl 248.2 
character group 

(of an Abelian group) 2.G 
(of a topological Abelian group) 422.B 

characteristic(s) 
(of a common logarithm) 131.C 
(of a field) 149.B 
Euler (of a finite Euclidean cellular complex) 
201.B 

Euler-Poincare (of a finite Euclidean complex) 
16.E 201.B 

operating 404.C 
population 396.C 
quality 404.A 
sample 396.C 
Todd 366.B 
two-terminal 281.C 

characteristic class(es) 56 
(of an extension of a module) 200.K 
(of a fiber bundle) 147.K 
(of foliations) 154.G 
(of a vector bundle) 56.D 
.d(of a real oriented vector bundle) 237.F 
of codimension 4 154.G 
of a manifold 56.F 
smooth, of foliations 154.G 

characteristic curve 
(of a network) 281.B 
(of a one-parameter family of surfaces) 111.1 
(of a partial differential equation) 320.B 

324.A,B 
characteristic equation 

(of a differential-difference equation) 163.F 
(for a homogeneous system of linear ordinary 

differential equations) 252.5 
(of a linear difference equation) 104.E 
(of a linear ordinary differential equation) 

252.E 
(of a matrix) 269.F 
(of a partial differential equation) 320.D 
(of a partial differential equation of hyperbolic 

type) 325.A,F 
characteristic exponent 

(of an autonomous linear system) 163.F 
(of the Hill differential equation) 268.B 
(of a variational equation) 394.C 

characteristic function(s) 
(of a density function) 397.G 
(of a graded R-module) 369.F 
(of a meromorphic function) 272.B 
(of an n-person cooperative game) 173.D 
(for an optical system) 180.C 
(of probability distributions) 341.C 
(of a subset) 381.C 
empirical 396.C 
Hilbert (of a coherent sheaf) 16.E 
Hilbert (of a graded module) 369.F 

characteristic functional (of a probability distribu- 
tion) 407.C 

characteristic hyperplane (of a partial differential 
equation of hyperbolic type) 325.A 

characteristic hypersurface (of a partial differential 
equation of hyperbolic type) 325.A 

characteristic linear system (of an algebraic family) 
15.F 

characteristic line element 82.C 
characteristic manifold (of a partial differential 

equation) 320.B 
characteristic mapping (map) (in the classification 

theorem of fiber bundles) 147.G 
characteristic measure 407.D 
characteristic multiplier 

(of a closed orbit) 126.G 
(of a periodic linear system) 163.F 

characteristic number 
(of a compact operator) 68.1 
(of a manifold) 56.F 
Lyapunov 314.A 

characteristic operator function 251.N 
characteristic polynomial 

(of a differential operator) 112.A 
(of a linear mapping) 269.L 
(of a matrix) 269.F 
(of a partial differential operator) 321.A 

characteristic root 
(of a differential-difference equation) 163.A 
(of a linear mapping) 269.L 
(of a linear partial differential equation) 325.F 
(of a matrix) 269.F 

characteristic series (in a group) 190.G 
characteristic set 

(of an algebraic family on a generic component) 
15.F 

(of a partial differential operator) 320.B 
characteristic strip 320.D 324.B 
characteristic surface 320.B 
characteristic value 

(of a linear operator) 390.A 
sample 396.C 

characteristic variety (of a system of microdifferential 
equations) 274.G 

characteristic vector 
(of a linear mapping) 269.L 
(of a linear operator) 390.A 



Subject Index 

Character module (of an algebraic group) 
1940 

character module (of an algebraic group) 13.D 
character system (of a genus of a quadratic held) 

347.F 
charge 15O.B 
charge symmetry 415.J 
Charpit method, Lagrange- 322.8, App. A, Table 

15.11 
Charpit subsidiary equation 82.C 320.D 
chart 

alignment 1Y.D 
control 404.B 
intersection 1Y.D 

Chatelet group, Weil- 118.D 
Chebotarev density theorem 14,s 
Chebyshev formula 299.A 

Gauss- (in numerical integration) 299.A 
Chebyshev function App. A, Table 20.11 
Chebyshev interpolation 233.A 366.5 
Chcbyshev orthogonal polynomial lY.G 
Chebyshev polynomial 336.H 
Chebyshev q-function 19.G, App. A, Table 20,VII 

simplest 1Y.G 
Chebyshev system 336.B 
Chebyshev theorem 336.B 
check bits 63.C 
check matrix, parity 63.C 
Cheng domain theorem, Courant- 39 1.H 
Chern character (of a complex vector bundle) 

237.B 
Chern class 

of a C”-bundle 56.C 
of a manifold 56.F 
of a real Zn-dimensional almost complex 

manifold 147.N 
total 56.C 
ofa U(n)-bundle 147.N 
universal 56.C 

Chern formula (in integral geometry) 218.D 
Chern number 56.F 
Cherwell-Wright differential equation 291.F 
Chevalley canonical basis (of a complex semisimple 

Lie algebra) 248.Q 
Chevalley complexification (of a compact Lie group) 

249.U 
Chevalley decomposition (on algebraic groups) 

13.1 
Chevalley group 15 1 .I 
Chevalley theorem (forms over finite fields) 118.8 
Chevalley theorem (on algebraic groups) 13.B 
Chevalley type (algebraic group) 13.N 
Chinese mathematics 57 
Chinese remainder theorem 297.G 
chi-square distribution 374.B, App. A, Table 22 

noncentral 374.B 
chi-square method, modified minimum 400.K 
cht-square test 400.G 

of goodness of fit 400.K 
choice, axiom of 33.B 34.A 
choice function 33.B 34.A 
choice process, multistage 127.A 
choice set 33.8 34.A 
Cholesky method 302.B 
Chomsky grammar 3 1 .D 
Chomsky hierarchy 31 .D 
Choquest boundary 164.C 
Chow coordinates (of a positive cycle) 16.S 
Chow-Kodaira theorem 72.F 
Chowla theorem, Bruck-Ryaer- 102.E 
Chow lemma 72.H 

Chow ring (of a projective variety) 1ti.R 
Chow theorem 

on an analytic submanifold of P” 72.F 
on the field of rational functions of an analytic 

space 23.D 
Chow variety 16,s 
Christoffel-Darboux formula 3 17.D 
Christoffel symbol 80.L 11 l.H 417.D 
Christoffel transformation, Schwarz- 77.D, App. A, 

Table 13 
Christoffel transformation formula, Schwarz- 77.D 
chromatic number 157 186.1 
chromodynamics, quantum 132.C 
Chung-Erdos theorem 342.B 
Church’s thesis 356.C 
circle(s) 140 

Apollonius App. A, Table 3.V 
auxiliary (of an ellipse) 78.D 
of convergence (of a power series) 33Y.A 
of curvature 11 l.E 
director (of an ellipse) 78.D 
great (of a sphere) 140 
inscribed (of a regular polygon) 357.A 
isometric 234.C 
of meromorphy (of a power series) 33Y.D 
open 140 
oscillating 11 l.E 
quadrature of 179.A 
unit 74.C 140 

circled subset (of a topological linear space) 424.E 
circle geometry 76.C 
circle method 4.B 
circle problem, Gauss 242.A 
circle type, limit 112.1 
circuit 66.G 
circuit matrix 254.8 
circular cone 78.A 111.1 

oblique 350.B 
right 350.B 

circular cylinder I1 1.1 350.B 
circular cylindrical coordinates App. A, Table 3.V 
circular cylindrical surface 350.B 
circular disk 140 
circular domain 333.A 
circular frequency (of a simple harmonic motion) 

318.B 
circular function 131.F 432.A 
circular section 350.F 
circular unit 14.L 
circulation (of a vector field) 205.B 442.D 
circumference 140 
circumferentially mean p-valent 438.E 
circumscribed circle (of a regular polygon) 357.A 
circumscribing sphere (of a simplex) 139.1 
cissoidal curve 93.H 
cissoid of Diocles Y3.H 
Clairaut differential equation App. A, Table 14.1 
Clairaut partial differential equation App. A, 

Table 15.11 
class 

(in axiomatic set theory) 33.C 3Rl.G 
(of a lattice group) 13.P 
(of a nilpotent group) 19O.J 
(of a plane algebraic curve) 9.B 
(of a quadratic form) 348H,I 
.&-characteristic (of a real oriented vector 

bundle) 237.F 
algebra (of central simple algebras) 29.E 
ambig (of a quadratic field) 347.F 



1941 Subject Index 
Classical (state) 

Bravais 92.B Steifel-Whitney (of a differentiable manifold) 
canonical (of an algebraic curve) 9.C 147.M 
canonical cohomology 59.H Stiefel-Whitney (of a manifold) 56.F 
canonical divisor ll.D Stiefel-Whitney (of an O(n)-bundle) 147.M 
characteristic (of an extension of module) Stiefel-Whitney (of an R”-bundle) 56.B 

200.K Stiefel-Whitney (of a topological manifold) 
characteristic (of a fiber bundle) 147.K 56.F 
characteristic (of foliations) 154.G surface of the second 350.D 
characteristic (of a vector bundle) 56 Todd 237.F 
characteristic, of codimension q 154.G total Chern 56.C 
characteristic, of a manifold 56.F total Pontryagin 56.D 
Chern (of a C”-bundle) 56.C total Stiefel-Whitney 56.B 
Chern (of a manifold) 56.F trace 68.1 
Chern (of a real 2n-dimensional almost complex universal Chern 56.C 
manifold) 147.N universal Euler-Poincare 56.B 

Chern (of a U(n)-bundle) 147.N universal Stiefel-Whitney 56.B 
cohomology 200.H unoriented cobordism 114.H 
combinational Pontryagin 56.H Wu (of a topological manifold) 56.F 
complete 398.B Zygmund 159.E 
completely additive 270.B class C” 
conjugacy (of an element of a group) 19O.C function of 106.K 
countably additive 270.B function of (of many variables) 58.B 
crystal 92.B mapping of 286.E 
curve of the second 78.K oriented singular r-simplex of 108.T 
differential divisor (of a Riemann surface) 1 l.D partition of unity of 108,s 
divisor (on a Riemann surface) 11 .D singular r-chain of 108.T 
Dynkin 270.B singular r-cochain of 108.T 
the Dynkin, theorem 270.B class Ck 
equivalence 135.B curve of (in a differentiable manifold) 93.B 
ergodic 260.B curve of (in a Euclidean plane) 93.B 
essentially complete 398.B class c”, function of 106.K 
Euler-Poincart (of a manifold) 56.F class C”, function of 106.K 
Euler-Poincart (of an oriented w-bundle) 56.B class C’ 
finitely additive 270.B function of 106.K 
fundamental (of an Eilenberg-MacLane space) mapping of 286.E 

70.F class C 
fundamental (of a Poincare pair) 114.5 atlas of 105.D 
fundamental (of the Thorn complex MC) coordinate neighborhood of 105.D 

114.G diffeomorphism of 105.J 
fundamental, with coefficient Z, 65.B differentiable manifold of 105.D 
generalized Hardy 164.G differentiable manifold with boundary of 
Gevrey 58.G 125.U 105.E 
group of congruence 14.H differentiable mapping of 105.J 
Hardy 43.F 159.G differentiable structure of 105.D 
Hilbert-Schmidt 68.1 fiber bundle of 147.0 
holosymmetric 92.B function of (in a C”-manifold) 105.G 
homology 200.H 201.8 function of (at a point) 105.G 
homotopy 202.B functionally dependent of (components of a 
idea1 (of an algebraic number field) 14.E mapping) 208.C 
idea1 (of a Dedekind domain) 67.K functional relation of 208.C 
ideal, in the narrow sense 14.G 343.F mapping of 208.B 286.E 
idele 6.D nonsingular mapping of 208.B 
idele, group 6.D regular mapping of 208.B 
linear equivalence (of divisors) 16.M vector field of 105.M 
main 241.A Z-action of 126.B 
mapping 202.B class C’, tensor field of 108.0 
minimal complete 398.B class Co, mapping into Banach space of 286.E 
monotone 270.B class (CO), semigroup of 378.B 
the monotone, theorem 270.B class D”, curve of 364.A 
multiplicative 270.B class field 59.B 
nuclear 68.1 absolute 59.A 
oriented cobordism 114.H class field theory 59 
Pontryagin (of a manifold) 56.F local 59.G 
Pontryagin (of an R”-bundle) 56.D class field tower problem 59.F 
proper 381.G class formation 59.H 
q-dimensional homology 201.B class function (on a compact group) 69.B 
of a quadratic form over an algebraic number class group divisor 1 l.D 

field 348.H classical (potential) 402.G 
residue (modulo an idea1 in a ring) 368.F classical (state) 402.G 



Subject Index 

Classical compact real simple Lie algebra 
1942 

classical compact real simple Lie algebra 248.T 
classical compact simple Lie group 249.L 
classical complex simple Lie algebra 248.8 
classical complex simple Lie group 249.M 
classical descriptive set theory 356.H 
classical dynamical system 126.L 136.G 
classical group(s) 60.A 

infinite 147.1 202.V 
classical logic 41 l.L 
classical mechanics 271 .A 
classical risk theory 214.C 
classical solution (to Plateau’s problem) 275.C 
classical statistical mechanics 402.A 
classical theory of the calculus of variations 46.C 
classilication (with respect to an equivalence 

relation) 135.B 
classification theorem 

on a fiber bundle 147.G 
first (in the theory of obstructions) 305.B 
Hopf 202.1 
second (in the theory of obstructions) 305.C 
third (in the theory of obstructions) 305.C 

classification theory of Riemann surfaces 367.E 
classificatory procedure 280.1 
classifying mapping (map) (in the classification 

theorem of fiber bundles) 147.G 
classifying space 

(of a topological group) 174.G,H 
cohomology rings of App. A, Table 6.V 
for F,‘-structures 154.E 
n- (of a topological group) 147.G 

class n 
function of 84.D 
projective set of 22.D 

class N,, null set of 169.E 
class number 

(of an algebraic number field) 14.E 
(of a Dedekind domain) 67.K 
(of a simple algebra) 27.D 

class of Abelian groups 202.N 
class w, function of 84.D 
class 1 

function of 84.D 
function of at most 84.D 

class theorems, complete 398.D 
class 5, function of 84.D 
class 0, function of 84.D 
Clebsch-Gordan coefhcient 258.B 353.B 
Clenshaw-Curtis formulas 299.A 
Clifford algebras 61 
Clifford group 61.D 

reduced 61.D 
special 61.D 

Clifford number 61.A 
Clifford torus 275.F 
Clifford torus, generalized 275.F 
clinical trials 40.F 
closable operator 251.D 
closed 

absolutely (space) 425.U 
algebraically (in a field) 149.1 
algebraically (field) 149.1 
boundary 164.C 
H- (space) 425.U 
hyperbolic, orbit 126.G 
integrally (ring) 67.1 
k- (algebraic set) 13.A 
multiplicatively, subset (of a ring) 67.1 
quasi-algebraically (held) 118.F 

r- (space) 425.U 
real, field 149.N 
Zariski 16.A 

closed arc 93.B 
closed braid 235.F 
closed convex curve 11 l.E 
closed convex hull 424.H 
closed convex surface 111.1 
closed covering 425.R 
closed curve, simple 93.B 
closed differential 367.H 
closed differential form 105.Q 
closed formula 276.A 299.A 

in predicate logic 41 l.J 
closed geodesic 178.G 
closed graph theorem 37.1251.D 424,.X 
closed group 362.5 
closed half-line (in affine geometry) 7.D 
closed half-space (of an afIine space) 7.D 
closed ideals in L,(G) 192.M 
closed image (of a variety) 16.1 
closed interval 140 

in R 355.C 
closed linear subspace (of a Hilbert space) 197.E 
closed manifold 105.B 
closed mapping 425.G 
closed operator (on a Banach space) 251.D 
closed orbit 126.D,G 

hyperbolic 126.G 
closed plane domain 333.A 
closed path 

(in a graph) 186.F 
(in a topological space) 170 
direct 186.F 
space of 202.C 

closed range theorem 37.5 
closed Riemann surface 367.A 
closed set 425.B 

locally 425.5 
relative 425.5 
system of 425.B 
Zariski 16.A 

closed subalgebra 36.B 
closed subgroup (of a topological group) 423.D 
closed submanifold (of a (Y-manifold) 105.L 
closed subsystem (of a root system) 13.L 
closed surface 410.B 

in a 3-dimensional Euclidean space 111.1 
closed system 419.A 
closed system entropy 402.G 
closed term (of a language) 276.A 
closure 425.B 

(in a matroid) 66.G 
(of an operator) 251.D 
algebraic (of a field) 149.1 
convex (in an afIine space) 7.D 
integral (of a ring) 67.1 
Pythagorean (of a field) 155.C 

closure finite (cell complex) 70.D 
closure operator 425.B 
closure-preserving covering 425.X 
clothoid 93.H 
cloverleaf knot 235.C 
cluster 375.F 
cluster decomposition Hamiltonian ?75.F 
clustering property 402.G 
cluster point 425.0 
cluster set(s) 62.A 

boundary 62.A 



1943 Subject Index 
Coefficient(s) 

curvilinear 62.C 
interior 62.A 

cluster value 62.A 
cluster value theorem 43.G 
cn App. A, Table 16.111 
coalgebra 203.F 

cocommutative 203.F 
dual 203.F 
graded 203.B 
quotient 203.F 

coalgebra homomorphism 203.F 
coanalytic set 22.A 
coarse moduli scheme 16. W 
coarse moduli space of curves of genus 9 9.J 
coarser relation 135.C 
coarser topology 425.H 
cobordant 114.H 

foliated 154.H 
h- 114.1 
mod 2 114.H 
normally 114.5 

cobordism, knot 235.G 
cobordism class 114.H 

oriented 114.H 
unoriented 114.H 

cobordism group 
complex 114.H 
oriented 114.H 
unoriented 114.H 

cobordism group of homotopy n-spheres, h- 114.1 
cobordism ring 114.H 

complex 114.H 
cobordism theorem, h- 114.F 
coboundary (coboundaries) 200.H 

(in a cochain complex) 201 .H 
(in the theory of generalized analytic functions) 

164.H 
module of 200.F 

coboundary homomorphism (on cohomology 
groups) 201 .L 

coboundary operator 200.F 
cobounded 2Ol.P 
cochairi 200.H 201.H 

(products of) 201.K 
deformation 305.B 
finite (of a locally finite simplicial complex) 

2Ol.P 
n- (for an associative algebra) 200.L 
separation 305.B 

cochain complex 200.F 201.H 
singular 201.H 

cochain equivalence 200.F 
cochain homotopy 200.F 
cochain mapping 200.F 201.H 
cochain subcomplex 200.F 
Cochran theorem 374.B 
cocommutative coalgebra 203.F 
cocycle(s) 200.H 201.H 

(in the theory of generalized analytic functions) 
164.H 

continuous 200.N 
difference 305.B 
module of 200.F 
obstruction 147.L 305.B 
separation 305.B 
vanishing (on an algebraic variety) 16.U 

Codazzi, equation of 365.C 
Codazzi-Mainardi equations 11 l.H, App. A, 

Table 4.1 
code(s) 63.A 213.D 

BHC (Bose-Chaundhuri-Hocquenghem) 63.D 
block 63.A 213.F 
convolutional 63.E 
cyclic 63.D 
Goppa 63.E 
group 63.C 
Hamming 63.C 
linear 63.C 
perfect 63.B 
sliding block 213.E 
tree 213.E 
trellis 213.E 

code word 63.A 
codimension 

(of an algebraic subvariety) 16.A 
(of a C’-foliation) 154.B 
(of an element in a complex) 13.R 
(of the germ of a singularity 51.C 
(of a linear space) 256.F 
(of a PL embedding) 65.D 

codimension q, characteristic class of 154.G 
coding rate 213.D 
coding theorem 

block 213.D 
noiseless source 213.D 
source 213.D,E 

coding theory 63 
channel 213.A 
source 213.A 

codomain (of a mapping) 381.C 
co-echelon space 168.B 
coefficient(s) 

(of a linear representation) 362.E 
(of a system of algebraic equations) 10.A 
(of a term of a polynomial) 337.B 
of an alIine connection 80.L 
autocorrelation 397.N 
binomial 330, App. A, Table 17.11 
of bulk viscosity 205.C 
canonical correlation 280.E 374.C 
Clebsch-Gordan 258.A 353.B 
confidence 399.4 
correlation (of two random variables) 342.C 

397.H 
of determination 397.H,J 
differential 106.A 
of excess 341.H 396.C 
expansion 317.A 
Fourier 159.A 197.C 317.A, App. A, Table 11.1 
Fourier (of an almost periodic function) 18.B 
Gini, of concentration 397.D 
indeterminate, Lagrange method of 106.L 
Lagrange interpolation 223.A 
Legendre 393.B 
multipie correlation 397.5 
of order p llO.A 
partial correlation 397.5 
partial differential 106.F 
population correlation 396.D 
Racah 353.B 
reflection 387.D 
regression 397.H,J 403.D 
of a Riemannian connection 80.L 
sample correlation 396.D 
sample multiple correlation 397.5 
sample partial correlation 280.E 
of shear viscosity 205.C 
of skewness 341.H 
of thermal expansion 419.B 
torsion (of a complex) 201.B 



Subject Index 

Coefficient field 
1944 

transmission 387.D 
transport 402.K 
universal, theorem 200.D,G,H 20l.G,H 
of variation 397.C 
of viscosity 205.C 
Wigner 353.B 

coefficient field 
(of an affine space) 7.A 
(of a projective space) 343.C 
(of a semilocal ring) 284.D 

coefficient group (of the cohomology theory) 201.Q 
coefficient module 200.L 
coefficient problem 438.C 
coefficient ring 

of a semilocal ring 284.D 
coefficient sheaf 3 

Tech cohomology with 383.F 
cohomology group with 383.E 

coercive (boundary condition) 112.H 323.H 
cofactor (of a minor) 103.D 
colibering 202.G 
cofinal 

(ordinal numbers) 3 12.C 
(subset of a directed set) 31 1 .D 

cotinality 3 12.C 
cofmality, cardinality and 33.F 
colinal object 52.D 
cofinal subnet 87.H 
cogenerator (of an Abelian category) 200.H 
cographic 66.H 
Cohen theorem (on Noetherian rings) 284.A 
coherence 397.N 421.E 
coherent algebraic sheaf 16.E 72.F 
coherent analytic sheaf 72.E 
coherently oriented (pseudomanifold) 65.B 
coherent &-module 16.E 

quasi- 16.E 
coherent sheaf of rings 16.E 
coherent vector 277.D 
Cohn-Vossen theorem 1 Il.1 
cohomological dimension 

(of an associative algebra) 200.L 
(of a scheme) 16.E 
(of a topological space) 117.F 

cohomological functor 200.1 
cohomology 6.E 200.H 

equivariant 43 1 .D 
exact sequence of 200.F 
Galois 200.N 
Gel’fand-Fuks 105.AA 
I-adic 450.Q 
non-Abelian 200.M 
Tatc 200.N 
Weil 440.Q 

cohomology class 200.H 
canonical (in Galois cohomology in the class 

field theory) 59.H 
orientation 201.N 

cohomology exact sequence (for simplicial com- 
plexes) 201.L 

cohomology group(s) 201.H 
?- 72.D 
Alexander 201 .M 
Amitsur 200.P 
i‘ech (for topological spaces) 201.M,P 
i’ech, with coefficient sheaf ,F 383.~ 
cellular 201.H 
with coefficient sheaf .p 383.E 
de Rham 201.H 
Dolbeault 72.D 

generalized (for CW complexes) 201.H 
Hochschild 200.L 
integral (of a topological space) 201.H 
local 125.W 
rational 200.0 
reduced (of a topological space) 201.H 
relative (sheaf cohomology) 125.W 
relative Alexander 201.M 
relative Tech 201.M 
singular, with compact supports 201.P 
singular, of X with coefficients in G 201.H,R 

cohomology module 200.F 
cohomology operation(s) 64 

functional 202,s 
primary 64.B 
stable 64.B 
stable primary 64.B 
stable secondary 64.C 

cohomology ring 
of a compact connected Lie Group App. A, 
Table 6.IV 

de Rham (of a differential manifold) 105.R 
de Rham (of a topological space) 201.1 
of an Eilenberg-Maclane complex APP. A, 
Table 6.111 

singular (of a topological space) 201.1 
cohomology sequence, exact 200.H 
cohomology set 172.K 
cohomology spectral sequence 200.5 
cohomology theory (theories) 

Alexander-Kolmogorov-Spanier 201.M 
on the category of topological parrs 201.Q 
complete 200.N 
with E-coeflicient, generalized 202.T 
generalized 201.Q 

cohomology vanishing theorems 194.G 
cohomotopy group 202.1 
coideal 203.F 
coimage 

(of an A-homomorphism) 277.E 
(of a homomorphism of presheaves of sheaves) 

383.D 
(of a morphism) 52.N 

coincidence number (of mappings) 153.B 
coincidence point (of mappings) 153.B 
coindex (of ?-function) 279.E 
cokernel 

(of an A-homomorphism) 277.E 
(of a homomorphism of presheavl:s or sheaves) 

383.D 
(of a morphism) 52.N 

collapsing 65.C 
elementary 65.C 

collectionwise Hausdorff space 425.AA 
collectionwise normal space 425.AA 
collective 342.A 

$- 354.E 
collective risk theory 214.C 
collinear points 343.B 
collinear vectors 442.A 
collineation(s) 343.D 

group of 343.D 
projective 343.D 
projective, in the wider sense 343.D 
in the wider sense 343.D 

collocation method 303.1 
colocal (coalgebra) 203.1 
color conjecture, four 186.1 
colored symmetric group 92.D 
coloring (of a graph) 186.1 



1945 Subject Index 
Compact set 

coloring, Tail 157.C 
color lattice 92.D 
color point group 92.D 
colors, number of 93.D 
color symmetric group 92.D 
column(s) (of a matrix) 269.A 

iterated series by (of a double series) 379.E 
repeated series by (of a double series) 379.E 

column finite matrix 269.K 
column nullity (of a matrix) 269.D 
column vector 269.A 
comass (on k-forms) 275.G 
Combescure, correspondence of 11 l.F 
combination 

k- 330 
linear (of elements in a linear space) 256.C 
linear (of ovals) 89.D 
multiple App. A, Table 17.11 
number of treatment 102.L 

combination theorem, Klein 234.D 
combinatorial analysis 66.A 
combinatorial equivalence 65.A 
combinatorially equivalent 65.A 
combinatorial manifold 65.C 
combinatorial mathematics 66.A 
combinatorial Pontryagin class 56.H 
combinatorial problems App. A, Table 17.11 
combinatorial property 65.A 
combinatorial sphere, group of oriented differentiable 

structures on 114.1 
combinatorial theory 66.A 
combinatorial topology 426 
combinatorial triangulation 65.C 
combinatorial triangulation problem 65.C 
combinatorics 66 
comb space 89.A 
commensurable 122.F 
common divisor (of elements of a ring) 67.H 

greatest 67.H 297.A 
common logarithm 131.C 
common multiple (of elements of a ring) 67.H 

least 67.H 297.A 
common notion 35.A 
communality 346.F 
commutant 308.C 
commutation relations 

canonical 351.C 377.A 
normal 150.D 

commutative algebra 203.F 
commutative diagram 52.C 
commutative field 368.B 
commutative group 2.A 190.A 
commutative law 

of addition (in a ring) 368.A 
on the addition of natural numbers 294.B 
in the algebra of sets 381.B 
on cardinal numbers 49.C 
for group composition 190.A 
in a lattice 243.A 
for multiplication (in a commutative ring) 

368.A 
on the’multiplication of natural numbers 
294.B 

commutative Lie group 249.D 
commutatively convergent series 379.C 
commutative multiplication (of a graded algebra) 

203.B 
homotopy- 203.D 

commutative ring 368.A 
category of 52.B 

commutativity, event 346.G 
commutator 

(of differential operators) 324.C 
(of two elements of a group) 190.H 
self- 251.K 

commutator group 190.H 
commutator subgroup 190.H 
commuter 368.E 
comonad 200.Q 
compact 

(continuous mapping) 286.D 
(kernel distribution) 125.L 
(linear operator) 68.B 
(topological space) 425,s 
linearly 422.L 
locally 425.V 
locally linearly 422.L 
relatively (linear operator) 331.B 
relatively (maximum likelihood method) 

399.M 
relatively (subset) 273.F 425,s 
real- 425.BB 
sequentially 425,s 
CT- 425.V 
T- 68.F 331.B 
uniformly locally 425.V 
weakly (linear operator) 68.M 

compact algebraic group, k- 13.G 
compact cardinal number 

strongly 33.E 
weakly 33.E 

compact complex manifolds, family of 72.G 
compact c-manifold 105.D 
compact element (of a topological Abelian group) 

422.F 
compact foliation 154.H 
compact form (of a complex semisimple Lie algebra) 

248.P 
compact group 69.A 
compact homotopy class 286.D 
compactification 

(of a complex manifold) 72.K 
(of a Hausdorff space) 207.A 
(of a topological space) 425.T 

compactifying (kernel) 125.L 
Aleksandrov 207.C 
Bohr 18.H 
F- 207.C 
Kertkjartb-Stoilow 207.C 
Kuramochi 207.C 
Martin 207.C 
one-point (of a topological space) 425.T 
resolutive 207.B 
Royden 207.C 
Stone-Tech 207.C 425.T 
Wiener 207.C 

compact leaf 154.D 
compact metric space 273.F 
compactness theorem (in model theory) 276.E 
compact open C” topology 279.C 
compact-open topology 279.C 435.D 
compact operators 68 
compact real Lie algebra 248.P 
compact real simple Lie algebra 

classical 248.T 
exceptional 248.T 

compact set 425,s 
in a metric space 273.F 
relatively 399.M 425.S 
uniform convergence on 435.C 



Subject Index 
Compact simple Lie group 

1946 

compact simple Lie group 
classical 249.L 
exceptional 249.L 

compact space 425,s 
countably 425.S 
locally 425.V 
real- 425.BB 
sequentially 425,s 
(i- 425.V 
uniformly locally 425.V 

compact support (singular q-cochain) 201.P 
compact type (symmetric Riemannian homogeneous 

space) 412.D 
compactum, dyadic 79.D 
companion matrix 301.1 
comparability theorem for cardinal numbers 49.B 
comparison, paired 346.C 
comparison test (for convergence) 379.B 
comparison theorem (in the theory of differential 

equations) 316.E 
metric 178.A 
triangle 178.A 

compass 179.A 
compatible 

with composition 409.C 
with C-structure 114.B 
with the multiplication of a group l9O.C 
with operation (of an operator domain) 277.C 
with operations in a linear space 256.~ 
with topology 436.H 
with a triangulation (a C’-structure) 114.C 

compiler 75.C 
complement 

(of a decision problem) 71.B 
(in lattice theory) 42.A 243.E 
(in set theory) 381 .B 
orthogonal (of a subset of a Hilbert space) 

197.E 
relative (of two sets) 381.B 

complementary analytic set 22.A 
complementary degenerate series 437.W 
complementary degree 200.5 
complementary event 342.B 
complementary law of reciprocity 14.0 
complementary law of the Jacobi symbol 297.1 
complementary law of the Legendre symbol 

first 297.1 
second 297.1 

complementary modulus (in Jacobi elliptic func- 
tions) 134.5, App. A, Table 16.1 

complementary series 437.W 
complementary set 381.B 
complementary slackness, Tucker theorem on 

255.B 
complementary submodule 277.H 
complementary subspace (of a linear subspace) 

256.F 
complementation, law of (in a Boolean algebra) 

42.A 
complement conjecture, knot 235.8 
complemented (Banach space) 37.N 
complemented lattice 243.E 
complement theorem 382.B 

Chapman’s 382.B 
completable topological group 423.H 
complete 

(Abelian p-group) 2.D 
(algebraic variety) 16.D 
(increasing family of o-algebras) 407.B 
(logical system) 276.D 

(metric space) 273.5 
(ordinary differential equation) 126.C 
(predicate) 356.H 
(recursively enumerable set) 356.D 
(set of closed formulas) 276.F 
(statistics) 396.E 
(system of axioms) 35.B 
(system of orthogonal functions) 317.A 
(topological group) 423.H 
(uniform space) 436.G 
(valuation) 439.D 
(vector lattice) 310.C 
(wave operator) 375.B.H 
(Zariski ring) 284.C 
B- (locally convex space) 424.X 
fully (locally convex space) 424.X 
holomorphically (domain) 21.F 
NP- 71.E 
at o (in the theory of deformation) 72.G 
quasi- (locally convex space) 424.F 
(T- (vector lattice) 310.C 
weakly 1-, manifold 21.L 

complete accumulation point 425.0 
complete additive group 2.E 
complete additivity (of the Lebesgue integral) 

22l.C 
complete additivity (of a measure) 270.D 
complete additivity theorem, Pettis 443.G 
complete analytic space, K- 23.F 
complete bipartite graph 186.C 
complete blocks 102.B 
complete capture 420.D 
complete class 398.B 

essentially 398.B 
minimal 398.B 

complete class theorems 398.D 
complete cohomology theory 200.N 
complete distributive law (in a lattice-ordered group) 

243.G 
complete elliptic integral App. A, Table 16.1 

of the first kind 134.B 
of the second kind 134.C 

complete form, theorem on 356.H 
complete free resolution (of Z) 200.N 
complete graph 186.C 
complete hyperbolic manifolds 21.0 
complete induction 294.B 
complete integrability condition 428.C 
complete intersection 16.A 
complete lattice 243.D 

conditionally 243.D 
o- 243.D 

complete linear system 
on an algebraic curve 9.C 
on an algebraic variety 16.N 
defined by a divisor 16.N 

complete local ring 284.D 
structure theorem of 284.D 

completely additive 
(arithmetic function) 295.B 
(measure) 270.D,E 
(vector measure) 443.G 

completely additive class 270.B 
completely additive set function 380.C 
completely continuous operator 68.B 
completely integrable 154.B 
completely integrable (system of independent l- 

forms) 428.D 
completely integrally closed (ring) 67.1 
completely monotonic function 240&K 



IV47 Subject Index 

Complex(es) 

completely multiplicative number-theoretic function 
295.8 

completely nonunitary 251.M 
completely normal space 425.Q 
completely passive 402.G 
completely positive 36.H 

completely positive entropy 136.E 
completely primary ring 368.H 
completely randomized design 102.A 
completely reducible A-module 277.H 
completely reducible group l9O.L 
completely reducible linear representation 362.C 
completely regular space 425.Q 
completely unstable flow 126.E 
complete manifold, weakly I- 21 .L 
complete mapping 241 .B 
complete maximum principle 338.M 
complete measure 270.D 
complete measure space 270.D 
complete metric space 273.5 
completeness 

(for a Cartan connection) 80.N 
(of a logical system) 276.D 
(of the predicate calculus) 41 l.J 
asymptotic 150.D 
NP- 71.E 
theorem of (in geometry) 155.B 

completeness of real numbers 294.E 355.B 
completeness of scattering states 150.D 386.B 
completeness theorem. Code1 41 l.J 
complete observation 405.C,D 
complete orthogonal system 217.G 
complete orthonormal set (Hilbert space) 197.C 
complete orthonormal system 217.G 

of fundamental functions 217.G 
complete pivoting 302.B 
complete predicate 356.H 
complete product measure space 270.H 
complete quadrangle 343.C 
complete reducibility theorem, Poincare 3.c 
complete Reinhardt domain 21.B 
complete residue system modulo m 297.G 
complete ring (with respect to an ideal I) 16.X 
complete scheme, k- 16.E 
complete set 241.B 
complete u-field 396.E 

boundcdly 396.E 
complete solution (of partial differential equations) 

320.C 
complete space 436.G 

Tech 42S.T 436.1 
Dieudonne 436.1 
holomorphically 23.F 
topologically 436.1 

complete system 
of axioms 35.B 
of independent linear partial differential equa- 

tions 324.C 
of inhomogeneous partial differential equations 
428.C 

of nonlinear partial differential equations 
428.C 

complete valuation 439.D 
complete vector lattice 310.C 

CT- 31o.c 
complete Zariski ring 284.C 
completion 

a-adic (of an R-module) 284.B 
of a held (with respect to a valuation) 439.D 

of a measure space 270.D 
of a metric space 273.5 
p- 270.D 
of an ordered set 243.D 
of a ring along an ideal 16.X 
of Spec(A) along V(I) 16.X 
of a T,-topological group 423.H 
of a uniform space 436.G 
of a valuation 439.D 
of a valuation ring (of a valuation) 439.D 

complex(es) 70 
(in an Abelian category) 201.B 
(in buildings and BN pairs) 13.R 
(over an object of an Abelian category) 200.H 
c- 72.D 
abstract simplicial 70.C 
acyclic 201.B 
Amitsur 200.P 
cell 70.D 
chain 200.C 
chain (in an Abelian category) 201.B 
chain, over C 201 .C 
chain over A 201.G 
chamber 13.R 
closure finite cell 70.D 
cochain, over A 201.H 
cochain (in an Abelian category) 200.F,H 
cochain (of a simplicial complex) 201.H 
countable cell 70.D 
countable simplicial 70.C 
Coxeter 13.R 
CW 70.D 
de Rham 201.H 
de Rham (as an elliptic complex) 237.H 
Dolbeault 72.D 
double 200.H 
double chain 200.E 
dual 65.B 
Eilenberg-MacLane 70.F 
elliptic (on a compact (?-manifold) 237.H 
Euclidean 70.B 
Euclidean cell 70.8 
Euclidean simplicial 70.8 
finite cell 70.D 
finite simplicial 70.C 
geometric 70.B 
isomorphic simplicial 70.C 
isomorphic S.S. 70.E 
Kan 70.E 
linear (in projective geometry) 343.E 
linear line 343.E 
locally countable cell 70.D 
locally countable simplicial 70.C 
locally finite cell 70.D 
locally finite simplicial 70.C 
minimal 70.E 
multiple 200.H 
negative 200.H 
ordered (of a simplicial complex) 70.E 
ordered simplicial 70.C 
oriented simplicial chain 2Ol.C 
Poincare 114.5 
positive 200.H 
positive chain 200.C 
Postnikov 70.G 
product 200.H 
product (of cell complexes) 70.D 
product double chain 200.E 
quotient 2Ol.L 



Subject Index 

Complex algebraic variety 
1948 

quotient chain 200.C 
rectilinear 70.B 
regular cell 70.D 
relative chain 200.C 
relative cochain 200.F 
semisimplicial (s.s.) 70.E 
simplicial 65.A 70.C 
singular (of a topological space) 70.E 
singular chain (of a topological space) 201.E 
singular cochain 201.H 
space form 365.L 
S.S. 70.E 
s.s., realization of 70.E 
standard (of a Lie algebra) 200.0 
Thorn 114.G 
Thorn, associated with (G, n) 114.G 
Thorn, fundamental cohomology class of the 

114.G 
complex algebraic variety 16.T 
complex analytic fiber bundle 147.0 
complex analytic function 198.H 
complex analytic manifold 72.A 
complex analytic structure (in a complex manifold) 

72.A 
complex analytic submanifold 72.A 
complex cobordism group 114.H 
complex cobordism ring 114.H 
complex conjugate bundle 147.F 
complex conjugate representation 362.F 
complex dimension (of a complex manifold) 72.A 
complex form (on a Fourier series) 159.A 
complex form (of a real Lie algebra) 248.P 
complex function 165.B 
complex Gaussian 176.B 
complex Gaussian process 176.C 
complex Gaussian random variable 176.B 
complex Gaussian system 176.B 
complex Grassmann manifold 199.B 
complex group (over a field) 60.L 
complex Hermitian homogeneous space 199.A 
complex Hilbert space 197.B 
complexification 

Chevalley 249.U 
of a real Lie algebra 248.P 

complex interpolation space 224.C 
complexity 

average 7 1 .A 
of computation 71 
Kolmogorov-Chaitin 354.D 
space 71.A 
time 71.A 
worst-case 71.A 

complex Lie algebra 248.A 
of a complex Lie group 249.M 

complex Lie group 249.A 
complex linear space 256.A 
complex line bundle 72.F 

determined by a divisor 72.F 
complex manifold(s) 72 

almost 72.B 
compact, family of 72.G 
isomorphic 72.A 
stably almost 114.H 
weakly almost 114.H 

complex multiplication 73 
complex number plane 74.C 
complex numbers 74.A 294.F 

conjugate 74.A 
complex of lines 110.B 
complex orthogonal group 60.1 

complex orthogonal matrix 269.1 
complex plane 74.C 
complex projective space 343.E 

infinite-dimensional 56 
complex quadratic form 348.A,B 
complex representation (of a Lie group) 249.0 
complex simple Lie algebra 

classical 248,s 
exceptional 248,s 

complex simple Lie group 
classical 249.M 
exceptional 249.M 

complex space form 365.L 
complex special orthogonal group 60.1 
complex spectral measure 390.D 
complex spectral representation 390.E 
complex spectral resolution 390.E 
complex sphere 74.D 
complex spinor group 61.E 
complex Stiefel manifold 199.B 
complex structure 

(in a complex manifold) 72.A 
(pseudogroup structure) 105.Y 
(on R’“) 3.H 
(on a Riemann surface) 367.A 
almost 72.B 
deformation of 72.G 
tensor field of almost (induced by a complex 
structure) 72.B 

complex symplectic group 60.L 
complex topological linear space 424..A 
complex torus 3.H 
complex-valued function 165.B 
complex variable 165.C 

theory of functions of 198.Q 
complex vector bundle 147.F 
component(s) 

(of a direct product set) 381.E 
(in graph theory) 186.F 
(of a matrix) 269.A 
(of a point in a projective space) 343.C 
(of a tensor of type (p, q)) 256.5 
(of a vector) 256.A 442.A 
(of a vector field) 105.M 
arcwise connected 79.B 
basic (of an m-dimensional surface) 110.A 
connected 79.A 186.F 
of degree n (of a graded A-module) 2OO.B 
embedded primary (of an ideal) 67.F 
fixed (of a linear system) 16.N 
ghost (of an infinite-dimensional vector) 449.A 
horizontal (of a homogeneous space) 110.A 
horizontal (of a vector field) 80.C 
identity (of a topological group) 423.F 
irreducible (of an algebraic variety) 16.A 
irreducible (of an analytic space) 23.C 
irreducible (of a linear representaiion) 362.D 
isolated primary (of an ideal) 67.F 
ith (of an element relative to a ba:sis) 256.C 
ith (of an n-tuple) 256.A 
nilpotent (of a linear mapping) 269.L 
orthogonal (of an element of a linear space) 

139.G 
path- 79.B 
primary (of an ideal) 67.F 
principal 280.F 
principal, analysis 280.F 
principal, of order p llO.A 
proper (of an intersection of subvarieties) 16.G 
Reeb 154.B 



1949 Subject Index 
Condition(s) 

relative (of a Lie transformation group) 1lO.A 
secondary (of a homogeneous space) 1lO.A 
semisimple 269.L 
simple (of a semisimple ring) 368.G 
strongly connected 186.F 
unipotent (of a linear mapping) 269.L 
variable (of a linear system) 15.C 16.N 
vertical (of a vector field) 8O.C 

component model 403.F 
components-of-variance model 403.C 
composite 

of cohomology operations 64.B 
of correspondences 358.B 
of homotopy classes 202.B 
of mappings 381.C 
of morphisms 52.A 
of subsets 436.A 
of valuations 439.F 

composite designs, central 102.M 
composite field 149.D 
composite function 106.1 
composite hypothesis 400.A 
composite number 297.B 
composite particles 132.A 
composition 

(of knots) 235.A 
(of probability distributions) 341.E 
external law of (of a set of another set) 409.A 
internal law of (of a set) 409.A 
law of (on a set) 409.A 
secondary 202.R 

composition algebra 231.B 
composition factor 190.G 
composition factor series 190.G 
composition product (of functions) 192.H 
composition series 

(in a group) 190.G 
(in a lattice) 243.F 

composition theorem (in class field theory) 59.C 
compound Poisson process 5.F 
comprehension, axiom of 33.B 381.G 
compressibility, isothermal 419.B 
compressible fluid 205.B 
compression, information 96.B 
computable (partial function) 31.B 
computation 

analog 19.A 
complexity of 7 1 
high-precision 138.B 

compute 31.B 71.B 
computers 75 

analog 19.E 
digital 75.B 
electronic 75.A 
electronic analog 19.E 
hybrid 19.E 

comultiplication 203.B,F 
Hopf 203.D 

concatenation (of paths) 170 
concave function 88.A 

strictly 88.A 
concave programming problem 292.A 
concentration 

area of 397.E 
asymptotic 399.L 
Gini coefficient of 397.E 
measure of 397.E 
spectral 33 1 .F 

concentration function 
maximal 341 .E 

mean 341.E 
concept 

basic (of structure) 409.B 
global (in differential geometry) 109 
in the large (in differential geometry) 109 
local (in differential geometry) 109 
in the small (in differential geometry) 109 

conchoidal curve 93.H 
conchoid of Nicomedes 93.H 
concircularly flat space App. A, Table 4.11 
concordant 154.F 
concurrent 

(in nonstandard analysis) 293.B 
(in projective geometry) 343.B 

condensation of singularities, principle of 37.H 
condensation point 425.0 
condensation test, Cauchy 379.B 
condition(s) 

adjoint boundary 315.B 
ascending chain (for (normal) subgroups of a 
group) 190.F 

ascending chain (in an ordered set) 31 l.C 
Baire 425.N 
boundary (for an ordinary differential equation) 

315.A 
boundary (for partial differential equations of 
elliptic type) 323.F 

boundary, operator with 112.F 
Cauchy (on the D-integral and the D(a)- 

integral) 100.E 
CFL (Courant-Friedrichs-Lewy) 304.F 
chain (in an ordered set) 3 1 l.C 
complete integrability 428.C 
consistency 341.1 
Denjoy-Carleman 168.B 
descending chain (for (normal) subgroups of a 

group) 190.F 
descending chain (in an ordered set) 311.C 
entropy 204.G 
of finite character (for functions) 34.C 
of finite character (for sets) 34.C 
finiteness, for integral extension 284.F 
Frobenius integrability 154.B 
Haar (on best approximation) 336.B 
Harnack (on the D-integral and the D(*)- 
integral) 100.E 

Holder, of order a 84.A 
initial (for ordinary differential equations) 

316.A 
initial (for partial differential equations) 321.A 
Jacobi 46.C 
KMS 308.H 
Levi 325.H 
Lindeberg 250.B 
Lipschitz 84.A 163.D 286.B 316.D 
Lipschitz, of order G( 84.A 
Lorentz 130.A 
LSZ asymptotic 150.D 
Lyapunov 250.B 
maximal (in an ordered set) 31 l.C 
minimal (in an ordered set) 3 11 .C 
no cycle 126.5 
Palais-Smale 279.E 286.4 
Poincare (in the Dirichlet problem) 120.A 
restricted minimal (in a commutative ring) 

284.A 
of R. Schmidt (in (C, cc)-summation) 379.M 
Sommerfeld radiation 188.D 
spectrum 150.D 
strip 320.D 



Subject Index 

Conditional density 
1950 

strong transversality 126.5 reduced mapping 202.F 
transversality 108.B regular 384.A 
of transversality (in the calculus of variations) right circular 350.B 
46.B self-dual regular 384.E 

uniqueness (for solution of an ordinary differen- side 25X.A 
tial equation) 3 16.D confidence coefficient 399.Q 

von Neumann 304.F confidence interval 399.4 
Whitney, (h) 41X.G confidence level 399.4 
Whitney, (h) at a point 418.G confidence limits 399.4 

conditional density 397.1 confidence region 399.Q 
conditional distribution 397.1 invariance of 399.Q 
conditional entropy 213.8 unbiased 399.Q 
conditional expectation (of a random variable) uniformly most powerful 399.Q 

342.E uniformly most powerful unbiased 399.Q 
conditional inequality 211.A configuration 
conditionality, principle of 401.C central 420.B 
conditionally complete lattice 243.D Pascal 7X.K 
conditionally convergent 379.C,E conliguration space 126.L 402.G 
conditionally u-complete lattice 243.D confluent differential equation 167.A 
conditionally stable 394.D confluent hypergeometric differential equation 
conditional mean (of a random variable) 342.E 167.A, App. A, Table 14.11 19.1 

397.7 confluent type 
conditional moments 397.5 function of 167.A 
conditional probability 342.E hypergeometric function of 167.A, App. A, 

regular 342.E Table 19.1 
conditional probability distribution 342.E confocal central tonics, family of 78.H 
conditional problems in the calculus of variations confocal parabolas, family of 7X.H 

46..4 confocal quadrics, family of 350.E 
conditional relative extremum (ofa function) 106.L conformal 77.A 
conditional self-intersection 213.B almost 275.C 
conditional stability 394.D conformal arc element 1lO.D 
condition number 302.A conformal connection 80.P 
conductivity 130.B conformal correspondence (between surfaces) 111.1 
conductor conformal curvature 1lO.D 

(of an Abelian extension) 14.4 conformal curvature tensor, Weyl XO.P, App. A, 
(of a class field) 59.B Table 4.11 
(of Dirichlet L-functions) 45o.c conformal differential geometry 11O.D 
(of an ideal group) 14.H conformal function, AL- 352.B 
(of a Grossencharakter) 450.F conformal geometry 76.A 
(of Hecke L-functions) 450.E conformal invariant 77.E 
(of a nonprimitive character or a primitive conformally equivalent 77.A 367.A 1Sll.B 
character) 450.C conformally flat 191.8 

(of a quadratic field) 347.G conformally flat space App. A, Table 4.11 
(of a residue character) 295.D conformal mapping 19X.A, App. A, Table 13 
(of a subring of a principal order) 14.B generalized 246.1 
p- (of norm-residue) 14.P extremal quasi- 352.C 

conductor-ramification theorem (in class field the- quasi- 352 
ory) 59.C conformal space 76.A 

conductor with a group character 450.G conformal structure 19l.B 
cone conformal structure (on a Riemann surface) 367.A 

(of a PL embedding) 65.D conformal torsion 1 I0.D 
(in a projective space) 343.E conformal transformation 80.P 364.F 
(of a simplicial complex) 70.C confounded 
(over a space) 202.E with blocks 102.5 
asymptotic 350.8 partially (with blocks) 102.5 
circular 7X.A 111.1 congruence 
conjugate convex X9.F (in geometry) 155.B 
convex 89.F (in number theory) 297.G 
convex polyhedral 89.F linear (in projective geometry) 343.E 
dual convex X9.F of lines 1lO.B 
extension (of a PL embedding) 65.D multiplicative 14.H 
future 25X.A congruence axiom (of geometry) 155.B 
light 25X.A congruence classes modulo m*, group of 14.H 
Mach 205.B congruence subgroup (of a modular group) 122.D 
mapping 202.E principal, of level N 122.D 
natural positive 308.K congruence zeta function 450.P 
oblique circular 350.8 congruent 
past 258.A (figures) 139.C 
quadric 350.. (segment) 155.B 
reduced (of a topological space) 202.F aflinely 7.E 



1951 Subject Index 
Connected sequences of functors 

in the Erlangen program I37 
congruent modulo m 297.G 
congruent transformation(s) 139.B 

group of 285.C 
conic(s) 78.A 

central 78.C 
focal (of a quadric) 350.E 
pencil of 343.E 

conical function App. A, Table 18.11 
conical hypersurface, quadric 350.G 
conical surface 111 .I 

quadric 350.B 
conic Lagrange manifold 274.C 345.B 
conic section(s) 78.A 

equation of 78.C 
canonical form of the equation of 78.C 

conjecture 
Adams (on J-homomorphisms) 237.1 
annulus (on combinatorial manifolds) 65.C 
Artin (on Artin L-functions) 450.G 
Bieberbach (on univalent functions) 438.C 
Birch-Swinnerton-Dyer (on L-functions of 
elliptic curves) 118.D 450.S 

Burnside (on finite groups) 151.D 
C, (on Kodaira dimension) 72.H 
entropy 12h.K 
four color 186.1 
fundamental (in topology) 70.C 
generalized Poincare 65.C 
general knot 235.B 
Hasse (on Hasse zeta function) 450,s 
Hodge (on cycles on algebraic varieties) 450,s 
Iwasawa main (on p-adic L-functions) 450.5 
knot complement 235.B 
Leopoldt (on p-adic L-functions) 450.5 
Mordell (on Diophantine equations) 118.E 
Poincdre (on a characterization of spheres) 
65.C 

property P- (on knot groups) 235.8 
Ramanujan (on automorphic functions) 32.D 
Ramanujan-Petersson (on Hecke operators) 
32.D 

Sato (on Hasse zeta functions) 450,s 
Schreier (on simple groups) 151.1 
Seifert (on vector fields) 126.K 154.D 
Smith (on knot theory) 235.E 
stability 126.3 
Taniyama-Weil (on L-functions of elliptic 

curves) 450,s 
Tate (on Hasse i-functions) 450,s 
unknotting 235.E 
Vandiver (on the class number of cyclotomic 

. fields) 14.L 
Weil (on congruence zeta functions) 450.Q 

conjugacy 
C’- 126.B 
topological 126.B 

conjugacy class (of an element of a group) 190.C 
conjugate 

(CC method) 302.D 
(diameter) 78.G 
(element) 149.5 
(point in a geodesic) 178.A 
(point in a projective space) 343.E 
(with respect to a quadric surface) 350.C 
(quaternion) 29.D 
(subset) 19O.C 
c’- 126.8 
harmonic (in projective geometry) 343.D 
52. 126.H 

topological 126.B 
conjugate axis (of a hyperbola) 78.C 
conjugate complex number 74.A 
conjugate convex cone 89.F 
conjugate differential (on Riemann surface) 367.H 
conjugate exponent 168.C 
conjugate field 149.5 377.C 
conjugate Fourier integral 160.D 
conjugate function 159.E 160.D 
conjugate gradient (CC) method 302.D 
conjugate harmonic function 193.c 
conjugate hyperbola 78.E 
conjugate ideal (of a fractional ideal) 14.1 
conjugate operator 

(in Banach spaces) 37.D 
(of a differential operator) 125.F 
(of a linear operator) 251.D 

conjugate planes (with respect to a quadric surface) 
35o.c 

conjugate point(s) 
(in the calculus of variations) 46.C 
(in a Riemannian manifold) 364.C 

conjugate pole 350.C 
conjugate Radon transform 218.F 
conjugate representation 362.F 

complex 362.F 
conjugate series (of a trigonometric series) 159.A 
conjugate space 

(of a linear topological space) 424.D 
(of a normed linear space) 37.D 

conjugation mapping (of a Hopf algebra) 203.E 
conjugation operator 164.K 
conjunction (of propositions) 41 l.B 
connected 

(aftine algebraic group) 13.A 
(design) 102.K 
(graded module) 203.B 
(graph) 186.F 
(topological space) 79.A 
(treatment) 102.B 
arcwise (space) 79.B 
K- 186.F 
locally (at a point) 79.B 
locally (space) 79.A 
locally arcwise (at a point) 79.B 
locally arcwise (space) 79.B 
locally n- (at a point) 79.C 
locally n- (space) 79.C 
locally o- (space) 79.C 
multiply (plane domain or space) 333.A 
n- (pair of topological spaces) 202.L 
n- (space) 79.C 202.L 
n-ply (plane domain) 333.A 
co- (space) 79.C 
path- (space) 79.B 
simply (covering Lie group) 249.C 
simply (space) 79.C 170 
simply, group 13.N 
strongly (components) 186.F 

connected component 79.A 186.F 
arcwise- 79.B 
strongly 186.F 

connected Lie subgroup 249.D 
connectedness 79 186.F 

of real numbers 294.E 
connectedness theorem 

general, due to W. Fulton and J. Hansen 16.1 
Zariski 16.X 

connected part 150.D 
connected sequences of functors 200.1 



Subject Index 

Connected set 
1952 

connected set 79.A 
connected space 79.A 
connected sum 

(of oriented compact Cm-manifolds) 114.F 
(of 3-manifolds) 65.E 

connecting homomorphism 
in cohomology 200.F 
in homology 200.C 
on homology groups 2Ol.C,L 

connecting morphism 20O.H,1 
connection(s) 80 

affine 80.H 286.L 
affme, coefficients of 80.L 
canonical afhne (on R”) 80.J 
Cartan 80.M 
conformal 80.P 
Euclidean 364.B 
Euclidean, manifold with 109 
flat 80.E 
Gauss-Manin (of a variety) 16.V 
Levi-Civita 364.B 
linear 80.H 
locally flat 80.E 
metric 80.K 
normal 365.C 
projective 80.0 
Riemannian 80.K 364.B 
Riemannian, coefficients of 80.L 

connection form 80.E 417.B 
connection formula 

for the solutions of a differential equation 
253.A 

connection of spin and statistics 132.A 150.D 
connection problem 253.A 
connective fiber space, n- 148.D 
connectives, propositional 41 l.E 
connectivity (of a space) 201.A 
conoid, right 111.1 
conoidal neighborhood 274.E 
conormal 323.F 
conormal bundle 274.E 
conormal sphere bundle 274.E 
co-NP 71.E 
conservation laws, even-oddness 150.D 
conservative (measurable transformation) 136.C 
conservative chain 260.A 
conservative process 261.B 
conserved axial-vector currents, partially 132.C 
consistency 

(condition in the multistep method) 303.E 
(of an estimator) 399.K 
(of a logical system) 276.D 
of analysis 156.E 
of the axiom of choice and the continuum 
hypothesis 33.D 

{cn}- 399.K 
relative 156.D 

consistency condition 341.1 
consistency proof 156.D 

of pure number theory 156.E 
consistent 

(finite difference scheme) 304.F 
(formal system) 411.1 
(system of axioms) 35.B 
a.s. 399.K 
{c,}- 399.K 
Fisher 399.K 
co- 156.E 

consistent and asymptotically normal (CAN) 
estimator 399.K 

consistent estimator 399.K 
consistent kernel (in potential theory) 338.E 
consistent-mass scheme 304.D 
consistent test 400.K 

uniformly 400.K 
constant(s) 165.C 

arbitrary (in a general solution of a differential 
equation) 313.A 

Bloch 77.F 
Boltzmann 402.B 
dielectric 130.B 
empirical 19.F 
error 303.E 
Euler 174.A 
integral 216.C 
integration (in a general solution of a differential 
equation) 313.A 

isoperimetric 391.D 
Lagrange method of variation of 252.D 
Landau 77.F 
method of variation of 55.B 252.1: 
phase (of a sine wave) 446 
Planck 115 
renormalization 150.D 
Robin 48.B 
schlicht Bloch 77.F 
structural (of a Lie algebra) 248.C 
universal (in the theory of conformal mapping) 

77.F 
constant breadth, curve of 89.C 
constant curvature 

space of 364.D, App. A, Table 4.1 I 
surface of 111.1 

constant function 381.C 
constant inclination, curve of 11 l.F 
constant mapping 381.C 
constant pressure, specific heat at 419.B 
constant sheaf 383.D 

locally constructible 16.AA 
constant stratum, p- 418.E 
constant-sum game 173.A 
constant term 

of a formal power series 376.A 
of a polynomial 337.B 
unfolding 5 1 .D 

constant variational formula 163.E 
constant volume, specific heat at 419.8 
constant width, curve of 1 ll.E 
constituent (of an analytic or coanalytic set) 22.C 
constraint 102.L 264.B 

capacity 281.D 
chance 408.B 
unilateral 440.A 

constraint qualification 
Guignard 292.B 
Slater 292.B 

constraint set (of a minimization problem) 292.A 
constructibility, axiom of (in axiomatic set theory) 

33.D 
constructible (set in axiomatic set theory) 33.D 
constructible sheaf 16.AA 

locally, constant 16.AA 
construction 

bar (of an Eilenberg-MacLane complex) 70.F 
geometric, problem 179.A 
GNS 308.D 
group measure space 136.F 
impossible, problem 179.A 
possible, problem 179.A 
W- (of an Eilenberg-MacLane complex) 70.F 



1953 Subject Index 
Continuous geometry 

construction problem (of class held tower) 59.F 
constructive field theory 150.F 
constructive method 156.D 
constructive ordinal numbers 81.B 
consumer’s risk 404.C 
contact, thermal 419.A 
contact element 428.E 

in a space with a Lie transformation group 
1lO.A 

contact form 1lO.E 
contact manifold llO.E 
contact metric structure llO.E 
contact network 282.B 
contact pair (in circle geometry) 76.C 
contact process 340.C 
contact structure 105.Y 
contact transformations 82, App. A, Table 15.IV 

quantized 274.F 
contain 381.A 

physically 351.K 
content (of a tolerance region) 399.R 

Jordan 270.G 
mean 399.R 

context-free grammar 31.D 
context-sensitive grammar 31.D 
contiguous 399.M 
contingency table 397.K 400.K 
continuable, analytically 198.1 
continuation 

analytic 198.G 
analytic, along a curve 198.1 
analytic, in the wider sense 198.0 
direct analytic 198.G 
harmonic 193.M 198.G 

continuation method 301.M 
continuation theorem 

Hartogs 21.F 
Remmert-Stein 23.B 
Riemann 21.F 
unique 323.5 

continued fractions 83.A 
finite 83.A 
infinite 83.A 
mixed periodic 83.C 
normal 83.E 
pure periodic 83.C 
recurring 83.B 
simple 83.A 

continuity 
absolute, space of 390.E 
axioms of (in geometry) 155.B 
Dedekind axiom of (for real numbers) 355.A 
equation of (for a fluid) 205.A 
equation of (for electromagnetics) 130.A 204.B 
Hartogs theorem of 21.H 
interval of (for a probability distribution) 

341.c 
local 45.F 
modulus of (of a function) 84.A 
modulus of, of kth order (of a continuous 

function) 336.C 
properties of 85.A 
of real numbers 294.E 
uniform 45.F 

continuity (*). generalized absolute 1OQ.c 
in the restricted sense 100.C 

continuity principle 
for analytic functions of several complex vari- 

ables 21.H 
in potential theory 338.C 

quasi- (in potential theory) 338.1 
continuity property for Tech theory 201.M 
continuity requirement, variational principles with 

relaxed 271.G 
continuity theorem 

Abel (for Dirichlet series) 339.B 
Abel (for power series) 121.D 
Levy 341.F 

continuous 
(additive interval function) 380.B 
(flow) 136.D 
(function of ordinal numbers) 312.C 
(mapping) 84.A 425.G 
absolutely (function) 100.C 
absolutely (mapping in the plane) 246.H 
absolutely (measure) 270.L 
absolutely (set function) 380.C 
absolutely (vector measure) 443.G 
absolutely, in the restricted sense 1oo.c 
absolutely, in the sense of Tonelli 246.C 
absolutely, (a) 100.C 
completely (operator) 68.D 
equi- 435.D 
equi-, semigroup of class (C?) 378.B 
generalized absolutely 100.C 
hypo- 424.Q 
left 84.~ 
from the left 84.B 
in the mean 217.M 
in the mean (stochastic process) 407.A 
p-absolutely 380.C 
with respect to the parameter (a distribution) 

125.H 
piecewise, function 84.B 
in probability 407.A 
right 84.B 
from the right 84.B 
separately (bilinear mapping) 424.Q 
strongly (function with values in a Banach 
space) 37.K 

uniformly 84.A 273.1 436.E 
uniformly, on a subset 436.G 
weakly (function with values in a Banach space) 

37.K 
continuous action (in topological dynamics) 126.B 
continuous additive interval function 380.B 
continuous analytic capacity 164.5 
continuous arc(s) 93.B 
continuous cocycle 200.N 
continuous distribution (probability theory) 341.D 
continuous dynamical system 126.B 
continuous flow 

(in ergodic theory) 136.D 
(on a topological space) 126.B 

continuous functions 84 
absolutely 1OO.C 
generalized absolutely 1OO.C 
lower semi- 84.C 
lower semi- (at a point) 84.C 
on a metric space 84.C 
piecewise 84.B 
quasi- 338.1 
right 84.B 
semi- (at a point) 84.C 
uniformly (in a metric space) 84.A 
upper semi- 84.C 
upper semi- (at a point) 84.C 

continuous geometry 85 
irreducible 85.A 
reducible 85.A 



Subject Index 
Continuous homomorphism 

continuous homomorphism (between topological 
groups) 423.5 

open 423.5 
continuous image 425.G 
continuously differentiable function, n-times 106.K 
continuous mapping 425.G 

space of 435.D 
strongly 437.A 
uniformly (of metric spaces) 273.1 
uniformly (of uniform spaces) 436.E 

continuous plane curve 93.B 
continuous representation 

strongly (of a topological group) 69.B 
weakly (of a topological group) 69.B 

continuous scmiflow 126.B 
continuous semimartingale 406.B 
continuous spectrum 390.A 

absolutely 390.E 
of an integral equation 217.3 

continuous spin 258.C 
continuous state branching process 44.E 
continuous tensor product 377.D 
continuum 79.D 

cardinal number of 49.A 
indecomposable 79.D 
irreducible 79.D 
Peano 93.D 

continuum hypothesis 49.D 
consistency of the axiom of choice and 33.D 
generalized 49.D 
independence of the axiom of choice and 33.D 

contour(s) 
additivity of (in the curvilinear Integral) 94.D 
of an integration 94.D 

contract, annuity 214.B 
contracted tensor 256.L 
contractible space 79.C 202.D 

locally 79.C 202.D 
locally, at a point 79.C 

contraction 
(of a graph) 186.E 
(linear operator) 37.C 
(of a mapping) 381.C 
(of a matroid) 66.H 
(of a tensor) 256.L 
sub- 186.E 

contraction principle 286.B 
contractive 251.N 

purely 251.N 
purely, part 251.N 

contradiction 41 1.1 
contradictory formal system 411.1 
contragredicnt (of a linear mapping) 256.G 
contragredient representation 362.E 
contrast 

elementary 102.C 
normalized 102.C 
treatment 102.C 

contravariant functor 52.H 
contravariant index (of a component of a tensor) 

256.J 
contravariant of order r and covariant of order s 

108.D 
contravariant spinor 258.B 
contravariant tensor 

alternating 256.N 
of degree p 256.5 
symmetric 256.N 

contravariant tensor algebra 256.K 

1954 

contravariant tensor field of order r 105.0 
contravariant vector 256.5 
contravartant vector field 105.0 
control 

admissible 405.A 
bang-bang 405.C 
feedback 405.C 
impulse 405.E 
inventory 227 
local 102.A 
optimal 46.D 86.B,C 405.A 
quality 404.A 
stochastic 342.A 405 
time-optimal 86.F 

control chart 404.B 
controllability 86.C 
controlled stochastic differential equation 405.A 
controlled tubular neighborhood system 418.G 
control limit 

lower 404.F 
upper 404.8 

control problem, time optimal 86.F 
control space (in static model in catas rophe theory) 

51.B 
control theory 86 
control unit 75.B 
convention 

Einstein 256.5 
Einstein summation 417.8 
Maxwell 51.F 
perfect delay 5 l.F 

converge 
(filter) 87.1 
(infinite product) 379.G 
(in a metric space) 273.D 
(net) 87.H 
(sequence of lattices) 182.B 
(sequence of numbers) 87.B 355.B 
(series) 379.A 
(in a topological space) 87.E 
almost certainly 342.D 
almost everywhere 342.D 
almost surely 342.D 
in distribution 168.B 342.D 
in the mean of order p 342.D 
in the mean of power p 168.B 
in probability 342.D 
with probability 342.D 
strongly 37.8 
uniformly (in a uniform space) 435.A 
weakly (in a normed linear space) 37.E 
weakly (in a topological linear Ispace) 424.H 

convergence 87 
(of a filter) 87.1 
(of a net) 87.H 
(of probability measures) 341 F 
(of truncation errors) 303.B 
abscissa of (of a Dirichlet series) 121 .B 
abscissa of (of a Laplace transform) 240.B,H 
absolute, abscissa of (Dirichlrt series) 121.B 
absolute, abscissa of (of a Laplace transform) 
240.B 

associated, radii 21.8 
asymptotic 168.B 
axis of 240.B 
circle of (of a power series) 339.A 
exponent of 429.B 
generalized 33 1 .C 
norm resolvent 33 1 .C 



1955 Subject Index 
Coordinate(s) 

radius of (of a power series) 339.A 
relative uniform star 3lO.F 
simple, abscissa of (of a Dirichlet series) 121.B 
star 87.K 
strong (of operators) 251.C 
strong resolvent 33 I .C 
uniform 435 
uniform (of a series) 435.A 
uniform (of operators) 251.C 
uniform. abscissa of (of a Dirichlet series) 

121.8 
uniform, abscissa of (of a Laplace transform) 
240.B 

uniform, on compact sets 435.c 

weak (of operators) 25 I .C 
weak (of probability measures) 341.F 
weak (of a sequence of submodules) 200.5 
Weierstrass criterion for uniform 435.A 

convergence criterion for positive series App. A 
Table 10.11 

convergence domatn (of a power series) 21.8 
convergence in measure 168.B 
convergence method 354.B 
convergence theorem 

on distributions 125.G 
Lebesgue 221 .C 
of martingales 262.B 

convergent 
(continued fraction) 83.A 
(double series) 379.E 
(filtration) 200.5 
(infinite integral) 216.E 
(sequence) 87.8 355.B 
(series) 379.A 
absolutely (double series) 379.E 
absolutely (infinite product) 379.G 
absolutely (Laplace-Stieltjes integral) 240.B 
absolutely (power series) 21.B 
absolutely (series) 379.C 
absolutely (series in a Banach space) 443.D 
commutatively 379.C 
conditionally 379.CE 
intermediate 83.B 
(o)- 87.L 
(o)-star 87.L 
order (in a vector lattice) 310.C 
pointwisc 435.B 
principal X3.B 
simply 435.B 
unconditionally 379.C 
uniformly (on a family of sets) 435.C 
uniformly (sequence, series, or infinite product) 

435.A 
uniformly, in the wider sense 435.C 
uniformly absolutely 435.A 

convergent power series 370.B 
convergent power series ring 370.8 
convergent sequence 355.B 
convex 

(function on a G-space) 178.H 
(function on a Riemannian manifold) 178.B 
(subset of a sphere) 274.E 
(subset of a sphere bundle) 274.E 
absolutely 424.E 
holomorphically, domain 21.H 
locally (linear topological space) 424.E 
logarithmically (domain) 21.B 
matrix (of order m) 212.C 
operator 212.C 
properly 274.E 

uniformly (normed linear space) 37.G 
convex analysis 88 
convex body 89.A 
convex cell (in an aftine space) 7.D 
convex closure (in an aftine space) 7.D 
convex cone 

conjugate 89.F 
dual 89.F 

convex curve, closed 1ll.E 
convex functions 88.A 

proper 88.D 
strictly 88.A 

convex hull 89.A 
(in an atline space) 7.D 
(of a boundary curve) 275.8 
(in linear programming) 255.D 
closed 424.H 

convexity theorem 
Lyapunov 443.G 
M. Riesz 88.C 

convex neighborhood 364.C 
convex polyhedral cone 89.F 
convex polyhedron 89.A 
convex programming 264.C 
convex programming problem 292.A 
convex rational polyhedra1 16.2 
convex set(s) 89 

absolutely (in a linear topological space) 424.E 
in an affine space 7.D 
P- (for a differential operator 112.C 
regularly 89.G 
strongly P- 112.C 
strongly separated 89.A 

convex surface, closed 111 .I 
convolution 

(of arithmetic functions) 295.C 
(of distributions) 125.M 
(of functions) 159.A 192.H 
(of hyperfunctions) 125.X 
(of probability distributions) 341.E 
(in the theory of Hopf algebra) 203.H 
generalized (of distributions) 125.M 

convolutional code 63.E 
cooperative game 173.A,D 
coordinate(s) 90 

(of an element of a direct product of sets) 
381.E 

(in the real line) 355.E 
afftne 7.C 
barycentric (in an afline space) 7.C 90.B 
barycentric (in a Euclidean simplicial complex) 

70.B 
barycentric (in the polyhedron of a simplicial 
complex) 70.C 

bipolar 9O.C App. A, Table 3.V 
bipolar cylindrical App. A, Table 3.V 
canonical (of a Lie group) 249.Q 
Cartesian (in an atline space) 7.C 
Chow (of a positive cycle) 16.S 
circular cylindrical App. A, Table 3.V 
curvilinear 9O.C App. A, Table 3.V 
cylindrical 90.C. App. A, Table 3.V 
ellipsoidal 90.C 133.A, App. A, Table 3.V 
elliptic 90.C 350.E App. A, Table 3.V 
elliptic cylindrical App. A, Table 3.V 
equilateral hyperbolic 9O.C App. A, Table 3.V 
generalized (in analytical dynamics) 271.F 
generalized cylindrical App. A, Table 3.V 
geodesic 80.J 
geodesic polar 90.C 



Subject Index 
Coordinate axis 

1956 

Grassmann (in a Grassmann manifold) 90.B 
homogeneous (of a point in a projective space) 

343.c 
hyperbolic cylindrical App. A, Table 3.V 
hyperplane (of a hyperplane in a projective 
space) 343.C 

inhomogeneous (of a point with respect to a 
frame) 343.C 

isothermal 90.C 
ith (of an element relative to a basis) 256.C 
Klein line 90.B 
Kruskal 359.D 
line (of a line) 343.C 
local (on an algebraic variety) 16.0 
local (on a topological manifold) 105.C 
local, transformation of 90.D 
moving App. A, Table 3.IV 
multiplanar 90.C 
multipolar 90.C 
(n + 2)-hyperspherical 76.A 90.B 
normal 90.C 
oblique (in a Euclidean space) 90.B 
orthogonal curvilinear 90.C 
parabolic 90.C 
parabolic cylindrical App. A, Table 3.V 
parallel (in an afline space) 7.C 
pentaspherical 90.B 
plane (of a plane) 343.C 
Plucker (in a Grassmann manifold) 90.B 
polar 9O.C App. A, Table 3.V 
projective 343.C 
rectangular (in a Euclidean space) 90.B 
rectangular hyperbolic 90.C 
rotational App. A, Table 3.V 
rotational hyperbolic App. A, Table 3.V 
rotational parabolic App. A, Table 3.V 
spherical 90.C 133.D 
tangential polar 90.C 
tetracyclic 90.B 
trilinear 90.C 
tripolar 90.C 

coordinate axis 
of an afhne frame 7.C 
ith (of a Euclidean space) 140 

coordinate bundle(s) 147.B 
equivalent 147.B 

coordinate curve (in a Euclidean space) 90.C 
coordinate function 

(of a tiber bundle) 147.B 
(in the Ritz method) 304.B 

coordinate hyperplane (of an afftne frame) 7.C 
coordinate hypersurface (in a Euclidean space) 

9O.C 
coordinate neighborhood 

of class c 105.D 
of a fiber bundle 147.B 
of a manifold 105.C 

coordinate ring (of an afftne variety) 16.A 
homogeneous 16.A 

coordinate system 90.A 
(of a line in a projective space) 343.C 
geodesic, in the weak sense 232.A 
holomorphic local 72.A 
isothermal curvilinear App. A, Table 3.V 
I-adic 3.E 
local (of a topological space) 90.D 105.C 
moving 90.B 
orthogonal, adapted to a flag 139.E 
orthogonal curvilinear App. A, Table 3.V 
projective 343.C 

coordinate transformation (of a fiber bundle) 147.B 
(of a locally free OX-Module) 16.E 

coplanar vectors 442.A 
coproduct 

of commutative algebras 29.A 
of an element in a graded coalgebra 203.B 
Hopf 203.D 
of two objects 52.E 

coradical 293.F 
CORDIC 142.A 
core 173.D 
coregular representation (of an algebra) 362.E 
corestriction (homomorphism of cohomology 

groups) 200.M 
Corioli force 271.D 
corner polyhedron 215.C 
Cornish-Fisher expansions 374.F 
Cornu spiral 93.H 167.D 
Corona problem 43.G 
Corona theorem 164.1 
coroot 13.5 
correcting, error- 63.A 
correcting capability, error- 63.B 
correctly posed 

(initial value problem) 321.E 
(problems for partial differential equations) 

322.A 
corrector (in a multistep method) 303.E 

Milne 303.E 
correlation 343.D 

involutive 343.D 
Kendall rank 371.K 
serial 397.N 
serial cross 397.N 
Spearman rank 371.K 

correlation coefficient 
(of two random variables) 342.C 397.H 
canonical 280.E 374.C 
multiple 397.5 
partial 397.5 
population 396.D 
sample 396.D 
sample multiple 280.E 
sample partial 280.E 
serial 421.B 

correlation inequalities 212.A 
correlation matrix 397.5 
correlation ratios 397.L 
correlation tensor 433.C 
correlogram 397.N 
correspond 358.B 
correspondence 358.B 

algebraic (of an algebraic variety) 16.1 
algebraic (of a nonsingular curve) 9.H 
algebraic, group of classes of 9.H 
birational 16.1 
of Combescure 11 l.F 
conformal (between surfaces) 111.1 
geodesic (between surfaces) 111.1 
homothetic (between surfaces) 111.1 
inverse 358.B 
one-to-one 358.B 
similar (between surfaces) 111.1 
univalent 358.B 

correspondence principle 351.D 
correspondence ring (of a nonsingular curve) 9.H 
corresponding angles 139.D 
corresponding points (with respect to confocal 

quadrics) 350.E 
cos (cosine) 13 l.E 432.A 



1957 Subject Index 
Covering Lie group, simply connected 

cos-I 131.E 
cosec (cosecant) 13 l.E 432.A 
cosech (hyperbolic cosecant) 131.F 
cosemisimple 203.F 
coset 

double (of two subgroups of a group) 190.C 
left (of a subgroup of a group) 190.C 
right (of a subgroup of a group) 19O.C 

coset space (of a topological group) 
left 423.E 
right 423.E 

cash (hyperbolic cosine) 131.F 
cosigma functions 134.H, App. A, Table 16.IV 
cosine(s) 432.A 

first law of 432.A, App. A, Table 2.11 
hyperbolic 131.F 
integral 167.D 
law of (on spherical triangles) 432.B, App. A, 
Table 2.111 

optical direction 180.A 
second law of 432.A, App. A, Table 2.11 

cosine integral 167.D, App. A, Table 19.11 
cosine series, Fourier, App. A, Table 11.1 
cosine transform, Fourier I6O.C App. A, Table 

11.11 
cospecialization (in &ale topology) 16.AA 
cospectral density 397.N 
cost 281.D 

imputed 255.B 
shadow 292.C 
unit 281.D 

cost of insurance 214.B 
cost of observation 398.F 
cot (cotangent) 131.E 
cotangent(s) 432.A 

hyperbolic 131.F 
law of App. A, Table 2.111 

cotangent bundle 147.F 
cotangential sphere bundle 274.E 
cotangent vector bundle 147.F 
Cotes formula, Newton- (in numerical integration) 

299.A 
coth (hyperbolic cotangent) 131.F 
cotree 186.G 
cotriple 200.4 
counit 203.F 
counity (of a coalgebra) 203.B 
countability axioms 425.P 
countable additivity 270.B 
countable cell complex 70.D 
countable Lebesgue spectrum 136.E 
countable model (of axiomatic set theory) 156.E 
countable ordinal number 49.F 
countable set 49.A 
countable simplicial complex 70.C 

locally 70.C 
countably additive class 270.B 
countably compact space 425.S 
countably equivalent sets 136.C 
countably Hilbertian space 424.W 
countably infinite set 49.A 
countably normed space 424.W 
countably paracompact space 425.Y 
countably productive property 425.Y 
counting constants, principle of 16.S 
counting function (of a meromorphic function) 

272.B 
Courant-Cheng domain theorem 391.H 
Cousin problem 21.K 

first 21.K 

second 21.K 
covariance (of two random variables) 342.C 397.H 

population 396.D 
sample 396.D 

covariance distribution 395.C 
covariance function 395.A,B 

sample 395.G 
covariance matrix 341.B 397.5 

asymptotic 399.K 
variance 341.B 397.5 

covariant 226.D 
absolute 226.D 
absolute multiple 226.E 
with ground forms 226.D 
multiple 226.E 
of an nary form of degree d 226.D 
relativistically 150.D 

covariant derivative 
(of a tensor field) 80.1417.B, App. A, Table 4.11 
(of a vector field) 80.1 
(of a vector field along a curve) 80.1 
van der WaerdenBortolotti 417.E 

covariant differential 
(of a differential form) 80.G 
(of a tensor field) 80.1,L 417.B 
(of a vector field) 80.1 

covariant functor 52.H 
covariant index (of a component of a tensor) 256.5 
covariant spinor 258.B 
covariant tensor 

alternating 256.N 
of degree 4 256.5 
symmetric 256.N 

covariant tensor field of order s 105.0 
covariant vector 256.5 
covariant vector field 105.0 
covector, p- 256.0 
cover (a set) 381.D 
covering(s) 

(covering space) 91.A 
(curve) 9.1 
(of a set) 381.D 425.R 
closed (of a set) 425.R 
closure-preserving 425.X 
countable (of a set) 425.R 
degree of (of a nonsingular curve) 9.1 
discrete (of a set) 425.R 
E- (of a metric space) 273.B 
finite (of a set) 425.R 
locally finite (of a set) 425.R 
mesh of (in a metric space) 273.B 
n-fold (space) 91.A 
normal (of a set) 425.R 
open (of a set) 425.R 
point-finite (of a set) 425.R 
regular (space) 91.A 
u-discrete (of a set) 425.R 
u-locally finite (of a set) 425.R 
star-finite (of a set) 425.R 
unramified (of a nonsingular curve) 9.1 

covering curve 9.1 
covering differentiable manifold 91.A 
covering dimension (of a normal space) 117.B 
covering family (in Grothendieck topology) 16.AA 
covering group (of a topological group) 91.A 423.0 

universal (of a topological group) 91.B 423.0 
covering homotopy property 148.B 
covering law 381.D 425.L 
covering Lie group, simply connected (of a Lie 

algebra) 249.C 



Subject Index 

Covering linkage invariant(s) 
1958 

covering linkage invariant(s) 235.E (of a function on R’) 106.L 
covering manifold 91 .A (of a harmonic function) 193.5 
covering mapping (map) 91 .A (of a mapping a: R” + R”) 20X.B 
covering space(s) 91 degenerate 106.L 279.B 

analytic 23.E nondegenerate 106.L 279.B 286.1~ 
C- 23.E critical region 400.A 
in the sense ofcartan 23.E critical value 
ramified 23.B (in bifurcation theory) 286.R 
universal 91.B (of a C”-function on a manifold) 279.B 

covering surface(s) 367.8 (of a C” -mapping q: M + M') 105.5 
Ahlfors theory of 367.B (of a contact process) 340.C 
with relative boundary 367.B (of an external magnetic field) 340.B 
unbounded 267.B (of a mapping a: R” + R”) 208.B 
universal 367.B Crofton formula (in integral geometry) 218.B 
unramified 367.B cross cap (a surface) 410.B 

covering system, uniform 436.D crosscut(s) (of a plane domain) 333.A 
covering theorem, Vitali 380.D fundamental sequence of (in a simply connected 
covering transformation 91 .A domain) 333.B 

of an unramilied unbounded covering surface crossed homomorphism (of an associative algebra) 
367.B 2OO.L 

covering transformation group 91.A crossed product 
Coxctcr complex 13.R (in C’*-algebra theory) 36.1 
Coxctcr diagram (of a complex semisimple Lie (of a commutative ring and a group) 29.D 

algebra) 248.S (in von Neumann algebra theory) 308.5 
Coxeter group 13.R crossings 
CPM 307.C 376 normal 16.L 
Cramer-Castillon problem (in geometric construc- only normal 16.L 

tion) 179.A crossing symmetry 132.C 386.B 
Cramer-Rao inequality 399.D cross norm, C*- 36.H 
Cramer rule 269.M cross product 
Cramer theorem 399.M (of cohomology groups) 201.5 
crash duration 281.D (of homology groups) 201.5 
creation (operator 377.A (of vector bundles) 237.C 
Cremona transformation 16.1 cross ratio 343.D 
CR-equivalence 344.A cross section 
criterion (of a fiber bundle) 147.L 286.H 

Cartan, of semisimplicity (of Lit algebras) (of a fiber space) 148.D 
248.F (of a flow) 126.C 

Cartan, of solvability (of Lie algebras) 248.F absorption 375.A 
Castclnuovo 15.E differential 375.A 386.8 
Cauchy 87.C, App. A, Table 10.11 local (in a topological group) 147.E 
convergence, for positive series App. A. Table scattering 375.A 

10.11 total 386.B 
d’Alembert App. A, Table 10.11 total elastic 386.B 
Euler 297.H cross-sectional data 128.A 397.A 
Gauss App. A, Table IO.11 cross spectral density function 421.E 
Jacobian (on regularity of local rings) 370.B Crout method 302.B 
Kummer 145, App. A, Table 10.11 CR structure 344.A 
logarithmic App. A, Table IO.11 crystal class 92.B 
Nakai-Moishezon (of ampleness) 16.E arithmetic 92.B 
Nyquist’s 86.A geometric 92.B 
Raabe App. A. Table 10.11 3-dimensional App. B, Table 5.IV 
of ruled surfaces 15.E crystal family 92.B 
Schlomilch App. A, Table IO.11 crystallographic group 92 
simplex 255.D crystallographic restriction 92.A 
Wcicrstrass, for uniform convergence 435.A crystallographic space group 92.A 
Weyl 182.H crystal system 92.B 

criterion function 127.A cube 357.B 
critical (Galton-Watson process) 44.8 duplication of 179.A 
critical determinant 182.B Hilbert 382.B 
critical exponent I I l.C unit 139.F 140 
critical inclination problem 55.c unit n- 140 
critical lattice in M with respect to S 182.B cubic equation lO.D, App. A, Table 1 
critical manifold, nondegenerate 279.D,E cubic map 157.B 
critical path 376 cubic P 92.E 
critical percolation probability 340.D cubic resolvent App. A, Table 1 
critical point cumulant 397.G 

(of a C’ -function on a manifold) 279.B factorial 397.G 
(of a C’-mapping q: M + M') 105.J joint 397.1 
(of a flow) 126.D cumulative distribution 397.B 



1959 Subject Index 
Curve(s) 

cumulative distribution curve 397.B 
cumulative distribution function 341.B 342.C 
cumulative distribution polygon 397.B 
cup product 

(of cohomology classes) 201.1 
(of derived functors) 200.K 
(in K-theory) 237.C 

cup product reduction theorem (on cohomology or 
homology groups) 200.M 

curl (of a differentiable vector field) 442.D 
current 125.R 

4-, density 150.8 
integral 275.G 
partially conserved axial-vector 132.C 
random 395.1 

current algebra 132.C 
Curtis formulas, Clenshaw- 299.A 
curvature 

(of a curve of class C?) 1lI.D 
(of a plane curve) 1 I l.E 
absolute (of a curve) 11 l.C 
affine 11O.C 
circle of 1 I1.E 
conformal 1lO.D 
constant, space of 364.D, App. A, Table 4.11 
constant, surface of 111.1 
Gaussian (of a surface) 11 l.H, App. A, Table 
4.1 

geodesic 1 I l.H, App. A, Table 4.1 
S. Germain (of a surface) 11 I.H, App. A, Table 
4.1 

holomorphic sectional 364.D 
integral (of a surface) 11 l.H 
line of (on a surface) 11 l.H 
Lipschitz-Killing 279.C 
mean 364.D 
mean (of a surface) 11 l.H 365.D, App. A, 
Table 4.1 

mean, vector 365.D 
minimum, property 223.F 
negative 178.H 
nonpositive, G-space with 178.H 
normal (of a surface) 1ll.H 
principal (of a surface) I1 1.H 365.C 
radius of (of a plane curve) 1 I l.E 
radius of (of a space curve) lll.F 
radius of principal (of a surface) 1Il.H 
Ricci 364.D 
Riemannian 364.D 
scalar 364.D. App. A, Table 4.11 
sectional 364.D 
total (of an immersion) 365.0 
total (of a surface) I 1 I .F,H, App. A, Table 4.1 
total Gaussian (of a surface) I 1l.H 
total mean 365.0 

curvature form 80.G 364.D 
curvature tensor 

(of an afline connection) 8O.J,L 417.B 
(of a FrCchet manifold) 286.L 
(of a Riemannian manifold) 364.D 
projective App. A, Table 4.11 
Weyl conformal 8O.P, App. A, Table 4.11 

curve(s) 93 11 l.A 
algebraic 9.A 
analytic (in an analytic manifold) 93.B 
analytic (in a Euclidean plane) 93.B 
asymptotic 110.B I1 l.H 
Bertrand lll.F 
bicharacteristic 325.A 
characteristic (network flow problem) 281.B 

characteristic (of a l-parameter family of 
surfaces) 111 .I 

characteristic (of a partial differential equation) 
320.B 324.A,B 

cissoidal 93.H 
of class Cx (in a differentiable manifold) 93.B 
of class C’ (in a Euclidean plane) 93.B 
closed convex 11 l.E 
of constant breadth 89.C 
of constant inclination 11 l.F 
of constant width 1 I l.E 
continuous plane 93.B 
coordinate (in a Euclidean space) 90.C 
covering 9.1 
Darboux llO.B 
Delaunay 93.H 
dual (of a plane algebraic curve) 9.B 
elliptic 9.C 
exceptional 15.G 
exponential 93.H 
of the first kind 15.G 
Frkchet 246.A 
fundamental (with respect to a birational 

mapping) 16.1 
fundamental theorem of the theory of 11 l.D 
general 93.D 
generating 111.1 
hyperelliptic 9.D 
influence 371.1 
integral (of a Monge equation) 324.F 
integral (of ordinary differential equations) 

316.A 
Jordan 93.8 
logarithmic 93.H 
Lorentz 397.F 
Mannheim 11 l.F 
meromorphic 272.L 
nodal 391.H 
oc- 404.c 
ordinary 93.C 
Peano 93.5 
pedal 93.H 
plane App. A, Table 4.1 
plane algebraic 9.B 
of pursuit 93.H 
rational 9.C 
rational (in a Euclidean plane) 93.H 
rectifiable 93.F 
rolling (of a roulette) 93.H 
of the second class 78.K 
of the second order 78.1 
simple closed 93.B 
sine 93.H 
solution (of ordinary differential equations) 

316.A 
stable 9.K 
stationary 46.8 
stationary (of the Euler-Lagrange differential 
equations) 324.E 

of steepest descent 46.A 
timelike 324.A 
tooth 181.E 
in a topological space 93.B 
transcendental 93.H 
u- lll.H 
unicursal 9.C 93.H 
unicursal ordinary 93.C 
universal 93.E 
v- lll.H 
variation 17P A 



Subject Index 
Curve fitting 

1960 

curve fitting 19.F 
curve tracing 93.G 
curvilinear cluster set 62.C 
curvilinear coordinates 9O.C, App. A, Table 3.V 

orthogonal 90.C 
planar App. A, Table 3.V 
in 3-dimensional space App. A, Table 3.V 

curvilinear coordinate system 
isothermal App. A, Table 3.V 
orthogonal App. A, Table 3.V 

curvilinear integrals 94.A 
with respect to a line element 94.D 
with respect to a variable 94.D 

cushioned refinement 425.X 
cusp 

of a curve 93.G 
of a Fuchsian group 122.C 
parabolic (of a Fuchsian group) 122.C 
of a plane algebraic curve 9.B 

cusp form 450.0 
in the case of one variable 32.B 
in Siegel half-space 32.F 

cuspidal parabolic subgroup 437.X 
cusp singularity 418.C 
cut 

(in a projective space) 343.B 
(of Q) 294.E 
(of R) 355.A 
disjunctive 215.C 
Gomory 215.B 
subadditive 215.C 

cut locus 178.A 
cutoff 15o.c 
cut point (on a geodesic) 178.A 
cutset (in a graph) 186.G 
cutset matrix (of a graph), fundamental 186.G 
cutting (P” by P’) 343.B 
cutting plane 215.B 

fractional, algorithm 215.B 
CW complex 70.D 
CW decomposition 70.D 
CW pair 201.L 
cybernetics 95 
cycle 

(on an algebraic variety) 16.M 
(of basic sets) 126.5 
(of a chain complex) 200.H 
(=cyclic permutation) 151 .G 
(of time series data) 397.N 
algebraic 450.Q 
algebraically equivalent 16.R 
dividing (on an open Riemann surface) 367.1 
foliation 154.H 
fundamental (of an oriented pseudomanifold) 

65.A 
fundamental (in a resolution of a singular point) 
418.C 

limit 126.1 
module of 200.C 
no, condition 126.5 
numerically equivalent 16.Q 
one 16.R 
positive (on an algebraic variety) 16.M 
rationally equivalent 16.R 
Schubert S6.E 
vanishing 418.F 
zero 16.R 

cycle index 66.E 
cyclic algebra 29.G 
cyclic code 63.D 

cyclic determinant 103.G 
cyclic element 251.K 
cyclic equation 172.G 
cyclic extension 172.B 
cyclic group 19O.C 
cyclic Jacobi method 298.B 
cyclic part (of an ergodic class) 260.B 
cyclic representation (Banach algebra) 36.E 
cyclic representation (topological groups) 437.A 
cyclic subgroup (of a group) 193.C 
cyclic vector (of a representation space ‘of a unitary 

representation) 437.A 
cyclide 90.B 
cyclide of Dupin 11 l.H 
cycloid 93.H 
cyclomatic number 186.G 
cyclotomic field 14.L 
cyclotomic polynomial 14.L 
cyclotomic Z,-extension 14.L 
cyclotomy 296.A 
cylinder 

circular 111.1 350.B 
elliptic 350.B 
hyperbolic 350.B 
mapping 202.E 
parabolic 350.B 

cylinder function 
elliptic 268.B 
parabolic 167.C 

cylinder set 270.H 
n- 270.G 

cylindrical coordinates 9O.C App. A, ‘Table 3.V 
bipolar App. A, Table 3.V 
circular App. A, Table 3.V 
elliptic App. A, Table 3.V 
generalized App. A, Table 3.V 
hyperbolic App. A, Table 3.V 
parabolic 167.C App. A, Table 3.V 

cylindrical equation, parabolic App. A, Table 14.11 
cylindrical functions 39.B, App. A, Table 19.111 
cylindrical hypersurface, quadric 350.1~ 
cylindrical surface 111.1 

circular 350.B 
elliptic 350.B 
hyperbolic 350.B 
parabolic 350.B 

D 

6 -delta 
9(Q) 125.B 168.B 
9’(Q) 125.B 

qM& %4J 168.B 
qMnj, q.) 125.1~ 
9,(n) (the totality of functions f(x) in Cm(D) such 

that for all c(, Dqf(x) belongs to L,,(R) with 
respect to Lebesgue measure) 168.B 

&measure 270.D 
A-refinement (of a covering) 425.R 
At-set 22.D 
d-functor 200.1 

universal 200.1 
a*-functor 200.1 
%-complex 72.D 
%cohomology groups 72.D 
d-continuous channels 213.F 
d-dimensional analytic set, purely 23.13 
d-trial path dependent 346.G 
d”-cohomology group 72.D 
D-sufficient u-field 396.5 



1961 Subject Index 
Decreasing real analytic function 

D-wave 315.E 
D-integrable function 100.D 
D-integral 

definite 100.D 
indefinite 100.D 

D(*)-integral 1OO.D 
d’Alembert criterion App. A, Table 10.11 
d’Alembertian 130.A 
d’Alembert method of reduction of order 252.F 
d’Alembert paradox 205.C 
d’Alembert solution 325.D 
damped oscillation 318.B 
damping ratio (of a damped oscillation) 318.B 
Daniel]-Stone integrable function 310.1 
Daniell-Stone integral 310.1 
Danilevskii method 298.D 
Darboux curve 11O.B 
Darboux formula, Christoffel- 3 17.D 
Darboux frame 110.B 
Darboux quadric 110.B 
Darboux sum 216.A 
Darboux tangent 110.B 
Darboux theorem 216.A 428.A 
Darmois theorem, Skitovich- 374.H 
data 96.B 

cross-sectional 128.A 
macroeconomic 128.A 
microeconomic 128.A 
scattering 287.C 387.C 

data analysis, statistical 397.A 
data base 96.B 
data processing 96 
data structures 96.B 
Davidenko’s method of differentiation with respect 

to a parameter 301.M 
death insurance 214.B 
death process 260.G 

birth and 260.G 
death rate, infinitesimal 260.G 
Debye asymptotic representation 39.D, App. A, 

Table 19.111 
decidable number-theoretic predicate 356.C 
decision 127.A 
decision function(s) 398.A 

invariant 398.E 
minimax 398.B 
sequential 398.F 
space of 398.A 
statistical 398.A 

decision problem 71.B 97 186.5 
n- 398.A 
sequential 398.F 
statistical 398.A 

decision procedure, statistical 398.A 
decision process, Markov 127.E 
decision rule 

sequential 398.F 
terminal 398.F 

decision space 398.A 
decision theoretically sufficient a-field 396.5 
decoder 213.D 
decoding 63.A 
decomposable operator (on a Hilbert space) 308.G 
decompose (a polygon) 155.F 
decomposed into the direct sum of irreducible 

representations 437.G 
decomposition 

(of a set) 381.D 
Bruhat (of an algebraic group) 13.K 
canonical (of a closed operator) 251.E 

cellular (of a Hausdorff space) 70.D 
Chevalley (on algebraic groups) 13.1 
cluster, Hamiltonian 375.F 
CW 70.D 
de Rham (of a Riemannian manifold) 364.E 
direct (of a group) 190.L 
Doob-Meyer 262.C 
D-optimality 102.E 
dual direct product (of a decomposition of a 

compact or discrete Abelian group) 422.H 
ergodic (of a Lebesgue measure space) 136.H 
Fefferman-Stein 168.B 
formula of Radon 125.CC 
Heegurard 65.C 
Iwasawa (of a connected semisimple Lie group) 

249.T 
Iwasawa (of a real semisimple Lie algebra) 

248.V 
Jordan (of an additive set function) 380.C 
Jordan (of a function of bounded variation) 

166.B 
Jordan (of a linear mapping) 269.L 
Jordan (in an ordered linear space) 310.B 
Khinchin 395.B 
Lebesgue, theorem 270.L 
Levi (on algebraic groups) 13.Q 
Levi (on Lie algebras) 248.F 
multiplicative Jordan (of a linear transforma- 

tion) 269.L 
Peirce (of a Jordan algebra) 231.B 
Peirce left (in a unitary ring) 368.F 
Peirce right (in a unitary ring) 368.F 
plane wave 125.CC 
polar 251 .E 
relative Bruhat 13.4 
Riesz (in Markov process) 260.D 
Riesz (in martingale) 262.C 
Riesz (of a superharmonic or subharmonic 
function) 193,s 

semimartigale 406.B 
simplicial (of a topological space) 79.C 
singular value (SVD) 302.E 
spectral 126.5 
Wiener-It6 176.1 
Witt (of a quadratic form) 348.F 
Wold 395.D 
Zariski 15.D 

decomposition-equal polygons 155.F 
decomposition field (of a prime ideal) 14.K 
decomposition group (of a prime ideal) 14.K 
decomposition number (of a finite group) 362.1 

generalized (of a finite group) 362.1 
decomposition theorem 

canonical 86.C 
in class held theory 59.C 
for dimension 117.C 
Lebesgue (on a completely additive set function) 

380.C 
unique (for a 3-manifold) 65.E 

decreasing, monotone 380.B 
decreasing C”-function, rapidly 168.B 
decreasing distribution, rapidly 125.0 
decreasing Fourier hyperfunction, exponentially 

125.BB 
decreasing function 

monotone 166.A 
strictly 166.A 
strictly monotone 166.A 

decreasing real analytic function, exponentially 
125.BB 



Subject Index 
Decreasing sequence, monotonically 

1962 

decreasing sequence, monotonically (of real num- 
bers) 87.8 

rapidly 168.B 
decrement, logarithmic (of a damped oscillation) 

318.B 
Dedekind, J. W. R. 98 
Dedekind, test of du Bois-Reymond and 379.D 
Dedekind axiom of continuity (for real numbers) 

3.55.A 
Dedekind discriminant theorem 14.5 
Dcdekind eta function 328.A 
Dedekind principle (in a modular lattice) 243.F 
Dedekind sum 328.A 

reciprocity law for 328.A 
Dedekind theory of real numbers 294.E 
Dedekind zeta function 14.C 450.D 
deep water wave 205.F 
defect 

(of a block of representations) 362.1 
(of a conjugate class in a group) 362.1 
(of a meromorphic function) 272.E 

defect group 
of a block of representations 362.1 

(of a conjugate class in a group) 362.1 
deficiency 

(of an algebroidal function) 17.C 
(of a closed operator) 251.D 
(of a linear system on a surface) 15.C 
maximal (of an algebraic surface) 15.E 

deficiency index 
(of a closed symmetric operator) 251.1 
(of a differential operator) 112.1 

deficient number (in elementary theory of numbers) 
297.D 

defined along V’ (for a rational mapping) 16.1 
defined over k’ (for an algebraic variety) 16.A 
define recursively 356.C 
defining functions (of a hyperfunction) 125.V 

standard 125.2 
defining ideal (of a formal spectrum) 16.X 
defining module (of a linear system) 16.N 
defining relations (among the generators of a group) 

161.A 
definite 

negative (function) 394.C 
negative (Hermitian form) 348.F 
negaiive (quadratic form) 348.8 
positive (function) 36.L 192.B,J 394.C 437.B 
positive (Hcrmitian form) 348.F 
positive (kernel) 217.H 
positive (matrix) 269.1 
positive (potential) 338.D 
positive (quadratic form) 348.8 
positive (sequence) 192.B 
semi- (Hermitian form) 348.F 
semi- (kernel) 217.H 
totally (quatcrnion algebra) 27.D 

definite D-integral 100.D 
dellnitc integral 216.C App. A, Table 9.V 

(of a hypcrfunction) 125.X 
definite quadratic form 348.C 
definition 

field of 16.A 
first (of algebraic K-group) 237.5 
second (of algebraic K-group) 237.5 
truth 185.D 

dclinition by mathematical induction 294.B 
definition by translinite induction 31 I .C 
deflation 

in homological algebra 200.M 

method for an eigenvalue problem 298.C 
deformation 

(of complex structures) 72.G 
(of a graph) 186.E 
infinitesimal, to the direction C/ds 72.G 
isomonodromic 253.E 
isospectral 387.C 
projective (between surfaces) 110.B 
of a scheme over a connected scheme 16.W 
of a surface 1lO.A 

deformation cochain 305.B 
deformation retract 202.D 

neighborhood 202.D 
strong 202.D 

degeneracy (of energy eigenvalues) 351 .H 
set of (of a holomorphic mapping between 

analytic spaces) 23.C 
degeneracy index 17.C 
degeneracy operator (in a semisimplicial complex) 

70.E 
degenerate 

(critical point) 106.L 279.B 
(eigenvalue) 390.A,B 
(mapping) 208.B 
(quadratic surface) 350.B 
(simplex) 70.E 
totally 234.B 

degenerate kernel 217.F 
degenerate module l18.D 
degenerate series 

(of unitary representations of a complex semi- 
simple Lie group) 437.W 

complementary (of unitary representations of a 
complex semisimple Lie group) 437.W 

degree 
(of an algebraic element) 149.F 
(of an algebraic equation) 10.A 
(of an algebraic variety) 16.G 
(of an angle) 139.D 
(of a central simple algebra) 29.E 
(of a divisor class) I l.D 
(of a divisor of an algebraic curve) 9.C 
(of an element with respect to a prime ideal of a 

Dedekind domain) 439.F 
(of an extension) 149.F 
(of a graph) 186.B 
(of a Jordan algebra) 231.B 
(of a linear representation) 362.D 
(of a matrix representation) 362.D 
(of an ordinary differential equation) 313.A 
(of a permutation representation) 362.B 
(of a polynomial) 337.A 
(of a prime divisor) 9.D 
(of a rational homomorphism) 3.C 
(of a representation of a Lie algebra) 248.B 
(of a representation of a Lie group) 249.0 
(of a square matrix) 269.A 
(of a term of a polynomial) 337.B 
(of a valuation) 439.1 
(of a O-cycle on an algebraic variety) 16.M 
complementary (of a spectral sequence) 200.5 
of covering (of a nonsingular curve; 9.1 
filtration 200.5 
formal (of a unitary representation) 437.M 
of freedom (of the dynamical system) 271.F 
of freedom (of error sum of squares) 403.E 
of freedom (of sampling distributions) 374.B 
in- 186.B 
Leray-Schauder 286.D 
local, of mapping 99.B 



1963 Subject Index 
De Rbam theorem (on a C”-manifold) 

mapping 99.A 
of mapping 99.A 
out- 186.B 
of the point 99.D 
of a prime divisor of an algebraic function field 

of dimension I 9.D 
of ramification (of a branch point) 367.B 
of recursive unsolvability 97 
relative (of a finite extension) 257.D 
relative (of a prime ideal over a field) 14.1 
of symmetry 43 1 .D 
total (of a spectral sequence) 200.J 
transcendence (of a field extension) 149.K 
of transcendency (of a field extension) 149.K 
of unsolvability 97 

degree k 
holomorphic differential forms of 72.A 
tensor space of 256.3 

degree n 
alternating group of 151.G 
component of 200.B 
general linear group of 60.8 
projective general linear group of 60.B 
Siegel modular function of 32.F 
Siegel modular group of 32.F 
Siegel space of 32.F 
Siegel upper half-space of 32.F 
special linear group of 60.8 
symmetric group of 15 I .G 

degree p, contravariant tensor of 256.5 
degree 4, covariant tensor of 256.5 
degree r 

differential form of 105.Q 
differential form of (on an algebraic variety) 

16.0 
mean of (of a function with respect to a weight 

function) 21 I .C 
Dehn lemma (on 3.manifolds) 65.E 
Dejon-Nickel method 301.G 
Delaunay curve 93.H 
delay convention, perfect 5 I .F 
delay-differential equation 163.A 
delayed recurrent event 260.C 
Delos problem (in geometric construction) 179.A 
delta, Kronecker 269.A, App. A, Table 4.11 
delta function. Dirac App. A, Table 12.11 
demography 40.D 
de Moivre formula 74.C 
de Moivre-Laplace theorem 250.B 
de Morgan law 3X I .B 

in a Boolean algebra 42.A 
Denjoy-Carleman condition 168.B 
Denjoy integrable in the wider sense 100.D 
Denjoy integrals 100 

in the restricted sense 100.D 
Denjoy-Luzin theorem 159.1 
denominator, partial (of an infinite continued frac- 

tion) 83.A 
dense 

(set) 425.N 
(totally ordered set) 31 l.B 
locally 154.D 
nowhere 425.N 
relatively 126.E 
Zariski 16.A 

dense in itself 425.0 
denseness of rational numbers 355.8 
density 

(on a maximal torus) 248.Y 

(of a set of prime ideals) 14,s 
(of a subset of integers) 4.A 
angular momentum 150.B 
beta 397.D 
bivariate normal 397.1 
conditional 397.1 
cospectral 397.N 
electric flux 130.A 
energy 195.B 
4-current 150.B 
free Lagrangian 150.B 
gamma 397.D 
joint 397.1 
kinetic 218.A 
Lagrangian 150.B 
magnetic flux 130.A 
point of (of a measurable set of the real line) 

100.B 
posterior 401.B 
prior 401.B 
probability 341.D 
sojourn time 45.G 

density function 397.D 
hispectral 421.C 
marginal 397.1 
normal 397.D 
rational spectral 176.F 

density matrix 35 I .B 
density theorem 

(on discrete subgroups of a Lie group) 122.F 
Chehotarev 14,s 
Kaplansky 308.C 
Lehesgue 100.8 
von Neumann 308.C 

dependence, domain of 325.8 
dependent 

algebraically (elements of a ring) 369.A 
algebraically (on a family of elements of a field) 

149.K 
functionally (components of a mapping) 208.C 
functionally, of class C’ (components of a 
mapping) 208.C 

linearly (elements in a linear space) 256.C 
linearly (elements in an additive group) 2.E 
linearly (with respect to a difference equation) 

104.D 
path, d-trial 346.G 

dependent points 
(in an affme space) 7.A 
(in a projective space) 343.B 

dependent set 66.G 
dependent variable 165.C 
depending choice, principle of 33.F 
depth (of an ideal) 67.E 
de Rham cohomology group 201.H 
de Rham cohomology group (of a differentiable 

manifold) 105.R 
de Rham cohomology ring (of a differentiable 

manifold) 105.R 
de Rham cohomology ring (of a topological space) 

201.1 
de Rham complex (as an elliptic complex) 237.H 
de Rham decomposition (of a Riemannian manifold) 

364.E 
de Rham equations 274.G 
de Rham homology theory 114.L 
de Rham system, partial 274.G 
de Rham theorem (on a P-manifold) 105.V 201.H 

analog of 21.L 



Subject Index 
Derivable 

1964 

derivable 
approximately (measurable function) 100.B 
in the general sense (a set function) 380.D 
in the ordinary sense (a set function) 380.D 

derivation 
(of an algebra) 200.L 
(of an algebraic function field) 16.0 
(of a commutative ring) 113 
(of a field) 149.L 
(of a Lie algebra) 248.H 
(of a linear operator in a C*-algebra) 36.K 
*- 36.K 
inner (in an associative algebra) 200.L 
inner (in a Lie algebra) 248.H 
invariant (on an Abelian variety) 3.F 
over k 149.L 
Lie algebra of 248.H 

derivation tree 31.E 
derivative 

(of a distribution) 125.E 
(of a function) 106.A 
(of a holomorphic function) 198.A 
(of a hyperfunction) 125.X 
(of a polynomial) 337.G 
(of an element in a differential ring) 113 
angular (of a holomorphic function) 43.K 
approximate (of a measurable function) 100.B 
covariant (of a tensor field) 80.1, App. A, 

Table 4.11 
covariant (of a tensor field in the direction of a 

tangent vector) 417.B 
covariant (of a vector field) 80.1 
covariant (of a vector field along a curve) 80.1 
directional 106.G 
distribution 125.E 
exterior (of a differential form) 105.Q 
first-order 106.A 
FrCchet 286.E 
free 235.C 
Glteaux 286.E 

general (of a set function) 380.D 
generalized 125.E 
general lower (of a set function) 380.D 
general upper (of a set function) 380.D 
higher-order (of a differentiable function) 

106.D, App. A, Table 9.111 
higher-order partial 106.H 
Lagrangian 205.A 
left (on the left) 106.A 
Lie (of a differential form) 105.Q 
Lie (of a tensor field) 105.0 
normal 106.G 
nth (of a differentiable function) 106.D 
ordinary (of a set function) 380.D 
ordinary lower (of a set function) 380.D 
ordinary upper (of a set function) 380.D 
partial 106.F,K 
partial, nth order 106.H 
at a point 106.A 
Radon-Nikodym 380.C 
right (on the right) 106.A 
Schwarzian App. A, Table 9.111 
spherical (for an analytic or meromorphic 
function) 435.E 

variational 46.B 
weak 125.E 

derivatives and primitive functions App. A, Table 9.1 
derived (language) 31.D 
derived algebra (of a Lie algebra) 248.C 
derived function 106.A 

nth 106.D 
derived group (of a group) 190.H 
derived neighborhood 65.C 

second barycentric 65.C 
derived normal model (of a variety) 16.F 
derived series (of a Lie algebra) 248.C 
derived set (of a set) 425.0 
derived sheaf 125.W 
derived unit 414.P 
Desarguesian geometry, non- 155.E 343.C 
Desargues theorem 155.E 343.C 
Descartes, R. 101 

folium of 93.H 
Descartes theorem 10.E 
descending central series (of a Lie algebra) 248.C 
descending chain 

(in a lattice) 243.F 
(of (normal) subgroups of a group) 190.F 
(in an ordered set) 31 l.C 

descending chain condition 
(for a (normal) subgroup of a group) 190.F 

desce(ni an ordered set) 3 1 l.C 

curve of steepest 46.A 
line of swiftest 93.H 
method of steepest 212.C 

descriptive set theory 
classical 356.H 
effective 356.H 

design 
block (-block design) 
central composite 102.M 
completely randomized 102.A 
factorial 102.H 
first-order 102.M 
fractional factorial 102.1 
second-order 102.M 
Youden square 102.K 

design matrix 102.A 403.D 
design-of-experiment analysis 403.D 
design of experiments 102 
designs for estimating parameters 102.M 
designs for exploring a response surface 102.M 
designs for two-way elimination of heterogeneity 

102.K 
desingularization (of an analytic space) 23.D 
de Sitter space 355.D 
desuspend 114.L 
detecting, error- 63.A 
determinacy 

axiom of 22.H 
projective 22.H 

determinant(s) 103 
(of an element of the general linear group over 

a noncommutative field) 60.0 
(of a nuclear operator) 68.L 
Casorati 104.D 
critical 182.B 
cyclic 103.G 
Fredholm 217.E 
Gramian 103.G 208.E 
Hankel 142.E 
Hill 268.B 
intinite (in Hill’s method of solution) 268.B 
Jacobian 208.B 
of a lattice 182.B 
Lopatinski 325.K 
Pfaffian 103.G 
Vandermonde 103.G 
Wronskian 208.E 



1965 Subject Index 
Differentiable 

determinantal equation, Hill 268.B 
determinant factor (of a matrix) 269.E 
determinateness, axiom of 33.F 
determination, coefficient of 397.H,J 
determination, orbit 309.A 
determined system 

of differential operators 112.R 
of partial differential equations 320.F 

determining set (of a domain in C”) 21.C 
deterministic 

(in prediction theory) 395.D 
(Turing machine) 3 1 .B 

deterministic linear bounded automaton 31.D 
deterministic process 127.B 
Deuring-Heilbronn phenomenon 123.D 
developable function, asymptotically 30.A 
developable space 425.AA 
developable surface 111.1 
development 

along a curve 364.B 
of a curve 80.N 11 l.H 364.8 

deviation 
large 250.B 
mean absolute 397.C 
standard 341.B 342.C 397.C 

deviation point 335.B 
devices, peripheral 75.B 
de Vries equation, Korteweg- 387.A 
(DF)-space 424.P 
DFT (Discrete Fourier Transform) 142.D 
diagonal (of a Cartesian product of sets) 381.B 

436.A 
diagonalizable (linear transformation) 269.L 
diagonalizable operator (in an Abelian van Neu- 

mann algebra) 308.G 
diagonal mapping (of a graded coalgebra) 203.B,F 
diagonal matrix 269.A 
diagonal morphism (in a category) 52.E 
diagonal partial sum (of a double series) 379.E 
diagonal sum (of a matrix) 269.F 
diagram 52.C 

(of a symmetric Riemann space) 413.F 
arrow 281 .D 
associated (in irreducible representations of 

orthogonal groups) 60.5 
in a category 52.C 
commutative 52.C 
Coxeter (of a complex semisimple Lie algebra) 

248,s 
Dynkin (of a complex semisimple Lie algebra) 

248.S App. A, Table 5.1 
extended Dynkin App. A, Table 5.1 
Feynman 146.B 
mutually associated 60.5 
Newton 254.D 
Satake (of a compact symmetric Riemannian 
space) 437.AA 

Satake (of a real semisimple Lie algebra) 
248.U, App. A, Table 5.11 

scatter 397.H 
Schlafli (of a complex semisimple Lie algebra) 
248,s 

Young 362.H 
diameter 

(of a central conic) 78.G 
(of a solid sphere) 140 
(of a subset in a metric space) 273.B 
conjugate (of a diameter of a central conic) 

78.G 
transtinite 48.D 

diathermal wall 419.A 
dichotomy 398.C 
Dido’s problem 228.A 
dielectric constant 130.B 
Dieudonne complete 436.1 
Dieudonne theorem 425.X 
diffeomorphic Cm-manifolds 105.J 
diffeomorphism(s) 

Anosov 126.5 136.G 
Axiom A 126.J 
C’- (in nonlinear functional analysis) 286.E 
of class C’ 105.J 
group of orientation-preserving 114.1 
horse-shoe 126.5 
minimal 126.N 
Morse-Smale 126.J 
Y- 136.G 

diffeotopy theorem 178.E 
difference 102.E 104.A 

backward 223.C App. A, Table 21 
central 223.C 304.E, App. A, Table 21 
divided 223.0 
finite 223.C 
forward 304.E 
of the nth order 104.A 
primary 305.C 
second 104.A 
symmetric 304.E 
of two sets 381.B 

difference analog 304.E 
difference cocycle 305.B 
difference-differential equation 163.A 
difference equation 104 

geometric 104.G 
homogeneous 104.C 
inhomogeneous 104.C 
linear 104.C 
nonhomogeneous 104.C 

difference group (of an additive group) 190.C 
difference method 303.A 
difference product 337.1 
difference quotient 104.A 
difference scheme 304.F 

of backward type 304.F 
of forward type 304.F 

difference set 102.E 
difference table 223.C 
different 

(of an algebraic number field) 14.5 
(of a maximal order) 27.B 
relative 14.5 

differentiable 
complex function 21.C 
Frechet 286.E 
Gdteaux 286.E 
infinitely 106.K 
left (on the left) 106.A 
n-times 106.D 
n-times continuously 106.K 
with respect to the parameter (a distribution) 

125.H 
partially 106.F 
at a point (a complex function) 198.A 
at a point (a real function) 106.A 
right (on the right) 106.A 
in the sense of Stolz 106.G 
on a set 106.A 
termwise (infinite series with function terms) 

379.H 
totally 21.C 106.G 



Subject Index 
Differentiable dynamical system of class C’ 

1966 

differentiable dynamical system of class Cr 126.B 
differentiable manifold(s) 105 

with boundary of class C’ 105.E 
of class C 105.D 
Riemann-Roth theorem for 237.G 

differentiable mapping of class c’ 105.J 
differential of (at a point) 105.J 

differentiable pinching problem 178.E 
differentiable semigroup 378.F 
differentiable slice theorem 431.C 
differentiable structure(s) 114.B 

of class c 105.D 
group of oriented (on a combinatorial sphere) 

1 14.1 
differentiable transformation group 431.C 
differential 

(=boundary operator) 200.H 
(=coboundary operator) 200.F 
(of a differentiable function) lO6.B 
(of a differentiable mapping at a point) 105.J 
(of a function on a differentiable manifold) 

105.1 
(Frechet derivative) 286.E 
Abelian (of the first, second, third kind) 1l.C 

367.H 
analytic (on a Riemann surface) 367.H 
conjugate (on a Riemann surface) 367.H 
covariant (of a differential form) 80.G 
covariant (of a tensor field) 80.1,L 417.B 
covariant (of a vector field) 80.1 
exterior (of a differential form) 105.Q 
harmonic (on a Riemann surface) 367.H 
holomorphic (on a Riemann surface) 367.H 
kernel 188.G 
meromorphic (on a Riemann surface) 367.H 
nth lot” a differentiable function) 106.D 
of nth order (of a differentiable function) 

106.D 
e- (on an algebraic curve) 9.F 
partial 200.H 
quadratic (on a Riemann surface) 1I.D 
rth (Frechet derivative) 286.E 
stochastic 406.C 
total 106.G 200.H 367.H 

differential analyzer 19.E 
differential and integral calculus App. A, Table 9 
differential automorphism 113 
differential calculus 106 
differential coefficient 106.A 

partial 106.A 
differential cross section 375.A 386.8 
differential divisor (of an algebraic curve) 9.C 
differential divisor class (of a Riemann surface) 

1l.D 
differential equation(s) 313.A 

adjoint 252.K 
algebraic II3 288.A 
almost periodic 290.A 
Beltrami 352.B 
Bernoulli App. A, Table 14.1 
Bessel 39.B, App. A, Table 14.11 
Briot-Bouquet 288.B 289.B 
Caianiello 29 1 .F 
Cauchy-Riemann 198.A 
Cauchy-Riemann (for a holomorphic function 

of several complex variables) 21 .C 
Cauchy-Riemann (for a holomorphic function 

of IWO complex variables) 320.F 
Chaplygin 326.B 
Chebyshev App. A, Table 14.1 

Cherwell-Wright 291.F 
Clairaut App. A, Table 14.1 
Clairaut partial App. A, Table 1 5.11 
confluent 167.A 
confluent hypergeometric 167.A, App. A, 
Table 14.11 

delay 163.A 
with deviating argument 163.A 
difference- 163.A 
Dufhng 290.C 
elliptic partial App. A, Table 15. VI 
Emden 291.F 
Euler (in dynamics of rigid bodies] 271.E 
Euler-Lagrange 46.8 
Euler linear ordinary App. A, Table 14.1 
exact App. A, Table 14.1 
Fokker-Planck partial 115.A 
functional- 163.A 
Gauss hypergeometric App. A, Table 14.11 
Gaussian 206.A 
generalized Lame 167.E 
generalized Riccati App. A, Table 14.1 
Hamilton 324.E 
Hamilton-Jacobi 23.B 324.E 
Helmholtz I88.D, App. A, Table 15.VI 
Hermite App. A, Tables 14.11 20.111 
Hill 268.B 
Hodgkin-Huxley 291.F 
hyperbolic 325 
hyperbolic partial 325 
hypergeometric 206.A, App. A, Table 18.1 
hyperspherical 393.E 
integro- 163.A 222 
integro-, of Fredholm type 222.A 
integro-, of Volterra type 222.A 
Jacobi App. A, Tables 14.11 20.V 
Killing 364.F 
Kummer App. A, Table 19.1 
with lag 163.A 
Lagrange 320.A, App. A, Table 14.1 
Lagrange partial App. A, Table 5.11 
Laguerre App. A, Tables 14.11 2Ci.VI 
Lame 113.B 
Laplace 323.A, App. A, Table 15 III 
Laplace, in the 2-dimensional case App. A, 
Table 15.VI 

Laplace, in the 3-dimensional case App. A, 
Table 15.VI 

Legendre 393.B, App. A, Table 14.11 
Legendre associated 393.A 
Lienard 290.C 
linear ordinary 252.A 313.A 
linear partial 320.A 
Lowner 438.B 
Mathieu 268.A 
matrix Riccati 86.E 
modified Mathieu 268.A 
Mongc 324.F 
Monge-Ampere 278.A, App. A, Table 15.111 
nonlinear ordinary 313.A 
nonlinear partial 320.A 
ordinary 3 I3 
partial 3 13.A 320 
partial, of elliptic type 323 
partial, of hyperbolic type 325 
partial, of mixed type 326 
partial, of parabolic type 327 
Poisson 323.A. App. A, Table 15.111 
polytropic 291 .F 
rational 288.A 



1967 Subject Index 
Dimension 

related 254.F 
with retardation 163.A 
retarded 163.A 
Riccati App. A, Table 14.1 
Riemann App. A, Table 18.1 
self-adjoint 252.K 
self-adjoint system of 252.K 
stochastic 342.A 406 
Stokes 167.E 188.E 
strongly nonlinear 290.C 
system of. of Maurer-Cartan 249.R 
system of hyperbolic (in the sense of Petrovskii) 

325.G 
system of linear, of the first order 252.G 
system of ordinary 313.B 
system of partial, of order 1 (on a differentiable 

manifold) 428.F 
system of total 428.A 
Tissot-Pochhammer 206.C 
total 42&A, App. A, Table 15.1 
Tricomi 326.C 
van der Pol 290.C 
weakly nonlinear 290.C 
Weber 167.C, App. A, Table 20.111 
Weber-Hermite 167.C 
Whittaker 167.8, App. A, Tables 14.11 19.11 

differential extension ring 113 
differential field 113 

Galois theory of 1 I3 
differential form 105.Q 

closed 105.Q 
of degree I 105.0 
of degree r 105.Q 
of degree r (on an algebraic variety) 16.0 
divisor of (on an algebraic variety) 16.0 
exact 105.Q 
exterior, of degree r 105.Q 
of the first kind (on an algebraic variety) 16.0 
of the first kind (on a nonsingular curve) 9.E 
harmonic 194.B 
holomorphic, of degree k 72.A 
invariant (on an Abelian variety) 3.F 
of Maurer-Cartan 249.R 
primitive 232.B 
of the second kind (on a nonsingular curve) 
9.E 

of the third kind (on a nonsingular curve) 9.E 
of type (r, s) 72.C 

differential geometry 109, App. A, Table 4 
affine llO.C 
conformal 110.D 
projective 11O.B 

differential geometry in specific spaces 110 
differential geometry of curves and surfaces 

111 
differential ideal 113 

of a differential ring 113 
involutive 428.E 
prime (of a differential ring) 113 
semiprime (of a differential ring) 113 
sheaf on a real analytic manifold 428.E 

differential index (in a covering of a nonsingular 
curve) 9.1 

differential invariant 
fundamental (of a surface) 110.B 
on an m-dimensional surface 110.A 
Poincare 74.G 

differential law 107.A 
differential operator(s) 112 223.C 306.8 

Beltrami, of the first kind App. A, Table 4.11 

Beltrami, of the second kind App. A, Table 
4.11 

elliptic 112.A 
of the kth order 237.H 
ordinary 112.A 
partial 112.A 
pseudo- 345 
strongly elliptic 112.G 323.H 
system of 112.R 

differential polynomial(s) 113 
ring of 113 

differential quotient (at a point) 106.A 
differential representation (of a unitary representa- 

tion of a Lie group) 439,s 
differential rings 113 
differential subring 113 
differential system 191.1 

restricted 191.1 
differential topology 114 
differential variable 113 
differentiation 

(in a commutative ring) 113 
(of a differential function) 106.A 
graphical 19.B 
higher (in a commutative ring) 113 
logarithmic App. A, Table 9.1 
numerical 299.E 
partial 106.F 
theorem of termwise (on distribution) 125.G 
of a vector field App. A, Table 3.11 

diffraction (of waves) 446 
diffusion, Ehrenfest model of 260.A 
diffusion-convection equation 304.B 
diffusion kernel 338.N 
diffusion process 115 

on manifolds 115.D 
multidimensional 115.C 

digamma function 174.B 
digital computer 75.B 
digital quantity 138.8 
dihedral group 151.G 
dilatation 

in Laguerre geometry 76.B 
maximal 352.B 

dilated maximum principle (in potential theory) 
338.C 

dilation (of a linear operator) 251.M 
power 251.M 
strong 251.M 
unitary 251.M 

dilation theorem 251.M 
dimension 

(of an affine space) 7.A 
(of an algebraic variety) 16.A 
(of an analytic set) 23.B 
(of an automorphic form) 32.B 
(of a cell complex) 70.D 
(of a convex cell in an shine space) 7.D 
(of a divisor class on a Riemann surface) 1 l.D 
(of a Euclidean simplicial complex) 70.B 
(of a free module) 277.G 
(of a Hilbert space) 197.C 
(of a linear space) 256.C 
(of a linear system of divisors) 9.C 16.N 
(of a physical quantity) 116 
(of a projective space) 343.B 
(of a simplicial complex) 70.C 
(of a topological space) 117 
algebraic (of an algebraic surface) 72.F 
capacity 48.G 



Subject Index 
Dimension -k 

1968 

cohomological (of an associative algebra) 
2OO.L 

cohomological (of a scheme) 16.E 
cohomological (of a topological space) 117.F 
complex (of a complex manifold) 72.A 
covering (of a normal space) 117.B 
decomposition theorem for 117.C 
geometric (of a vector bundle) 114.D 
global (of an analytic set) 23.B 
global (of a ring) 200.K 
harmonic (of a Heins end) 367.E 
Hausdorff 117.G 234.E 246.K 
homological (of a module) 200.K 
homological (of a topological space) 117.F 
injective (of a module) 200.K 
Kodaira (of a compact complex manifold) 72.1 
Krull 67.E 
large inductive 117.B 
Lebesgue (of a normal space) 117.B 
left global (of a ring) 200.K 
local (of an analytic set at a point) 23.B 
product theorem for 117.C 
projective (of a module) 200.K 
right global (of a ring) 200.K 
small inductive 117.B 
sum theorem for 117.C 
theorem on invariance of, of Euclidean spaces 

117.D 
weak (of a module) 200.K 
weak global (of a ring) 200.K 

dimension -k 
automorphic form of 32.B 
Fuchsian form of 32.B 
Hilbert modular form of 32.G 
Siegel modular form of 32.F 

dimensional analysis 116 
dimensional formula 116 
dimension function (on a continuous geometry) 

85.A 
dimension theorem 

(of alline geometry) 7.A 
(on modular lattice) 243.F 
(of projective geometry) 343.B 

dimension theory 117 
dimension type (of a topological space) 117.H 
Dini-Hukuhara theorem 314.D 
Dini-Lipschitz test (on the convergence of Fourier 

series) 159.B 
Dini series 39.C 
Dini surface 111.1 
Dini test (on the convergence of Fourier series) 

159.8 
Dini theorem (on uniform convergence) 435.B 
Diocles, cissoid of 93.H 
Diophantine (relation) 97 
Diophantine analysis 296.A 
Diophantine approximation 182.F 
Diophantine equations 118 
Dirac delta function App. A, Table 12.11 
Dirac distribution 125.C 
Dirac equation 377.C 415.G 
Dirac field, free 377.C 
Dirac y-matrix 415.G 
Dirac hole theory 415.G 
Dirac matrix 377.C 
direct analytic continuation 198.G 
direct circle 78.D 
direct closed path 186.F 
direct decomposition (on a group) 19O.L 
directed family 165.D 

directed graph 186.B 
directed set 311.D 
direct factor 

(of a direct product of sets) 381.1~ 
(of a group) 19O.L 

direct image (of a sheaf) 383.G 
direct integral 308.G 

of unitary representations 437.H 
direction 

asymptotic 11 l.H 
Bore1 (of a meromorphic function) 272.F 
Julia (of a transcendental entire function) 
429.C 

positive (in a curvilinear integral) 198.B 
principal (of a surface) 11 l.H 

directional derivative 106.G 
direction ratio (of a line in an afIine sp.ace) 7.F 
direct limit (of a direct system of sets) 210.B 
direct method 46.E 302.B 
direct path 186.F 
direct product 

(of algebras) 29.A 
(of distributions) 125.K 
(of a family of lattices) 243.C 
(of a family of ordered sets) 311.F 
(of a family of sets) 381.E 
(of a family of topological groups] 423.C 
(of a family of topological spaces) 425.K 
(of groups) 190.L 
(of G-sets) 362.B 
(of Lie groups) 249.H 
(of mappings) 381.C 
(of measurable transformations) 136.D 
(of modules) 277.F 
(of objects of a category) 52.E 
(of rings) 368.E 
(of sets) 381.B 
(of sheaves) 383.1 
restricted (of an infinite number of groups) 

19O.L 
restricted (of locally compact groups) 6.B 
semi- (of groups) 190.N 

direct product decomposition 19O.L 
dual 422.H 

directrix (of an ellipse) 78.B 
of Wilczynski 110.B 

direct set, increasing 308.A 
direct sum 

(of a family of ordered sets) 311.F 
(of a family of sets) 381.E 
(of G-sets) 362.B 
(of Hilbert spaces) 197.E 
(of ideals of a ring) 368.F 
(of an infinite number of groups) 19O.L 
(of Lie algebras) 248.A 
(of linear representations) 362.C 
(of linear spaces) 256.F 
(of modules) 277.B,F 
(of a mutually disjoint family of ssts) 381.D 
(of quadratic forms) 348.E 
(of sheaves) 383.1 
(of topological groups) 423.C 
(of two objects) 52.E 
(of unitary representations) 437.G 
integral 308.G 
topological (of topological spaces.) 425.M 

direct summand (of a direct sum of se1.s) 381.E 
direct system (of sets) 210.B 
direct transcendental singularity 19FI.P 
Dirichlet, P. G. L. 119 



1969 Subject Index 
Distance function 

Dirichlet algebra 164.8 
weak* 164.G 

Dirichlet character 295.D 
Dirichlet discontinuous factor App. A, Table 9.V 
Dirichlet distribution 341.D, App. A, Table 22 
Dirichlet divisor problem 242.A 
Dirichlet domain 120.A 
Dirichlet drawer principle 182.F 
Dirichlet form 261.C 

regular 261.C 
Dirichlet function 84.D 221.A 
Dirichlet functional 334.C 
Dirichlet integral 

(in the Dirichlet problem) 120.F 
(in Fourier’s single integral theorem) 160.B 

Dirichlet kernel 159.B 
Dirichlet L-function 450.C 
Dirichlet principle 120.A 323.C 
Dirichlet problem 120 293.F 323.C 
Dirichlet problem with obstacle 440.B 
Dirichlet region 234.C 
Dirichlet series 121.A 

ordinary 121.A 
of the type I,&} 121.A 

Dirichlet space 338.4 
Dirichlet test (on Abel partial summation) 379.D 
Dirichlet test (on the convergence of Fourier series) 

159.B 
Dirichlet theorem 

(of absolute convergence) 379.C 
(on the distribution of primes in arithmetical 

progression) 123.D 
Dirichlet unit theorem 14.D 
discharge of double negation 411.1 
discharging 157.D 
disconnected, extremely 37.M 
disconnected metric space, totally 79.D 
discontinuity 

of the first kind 84.B 
fixed point of (of a stochastic process) 407.A 
at most of the first kind 84.B 
region of 234.A 

discontinuity formula 146.C 386.C 
discontinuity point 84.B 

of the first kind 84.B 
of the second kind 84.B 

discontinuous distribution, purely 341.D 
discontinuous factor, Dirichlet App. A, Table 9.V 
discontinuous groups 122 

of the tirst kind 122.B 
discontinuous transformation group 122.A 

properly 122.A 
discontinuum, Cantor 79.D 
discrete covering 425.R 

CT- 425.R 
discrete C’-flow 126.B 
discrete dynamical system of class C’ 126.B 
discrete flow 126.B 

of class C’ 126.B 
discrete Fourier transform 142.D 
discrete mathematics 66.A 
discrete memoryless channels 213.F 
discrete metric space 273.B 
discrete semiflow 126.B 

of class C’ 126.B 
discrete series (of unitary representations of a semi- 

simple Lie group) 437.X 
discrete series, principal 258.C 
discrete set 425.0 

discrete spectrum 136.E 390.E 
quasi- 136.E 

discrete topological space 425.C 
discrete topology 425.C 
discrete uniformity 436.D 
discrete valuation 439.E 
discrete valuation ring 439.E 
discrete variable method 303.A 
discrete von Neumann algebra 308.E 
discretization error 303.B 
discriminant 

(of an algebraic equation) 337.5 
(of an algebraic number field) 14.B 
(of a binary quadratic form) 348.M 
(of a curve of the second order) 78.1 
(of a family of curves) 93.1 
(of a quadratic form) 348.A 
(of a simple ring) 27.B 
fundamental 295.D 
relative 14.5 

discriminant function, linear 280.1 
discriminant theorem, Dedekind 14.5 
disintegration 270.L 
disjoint family, mutually (of sets) 381.D 
disjoint sets 381.B 
disjoint sum 381.B 
disjoint union 381.B 

of a mutually disjoint family of sets 381.D 
disjoint unitary representations 437.C 
disjunction (of propositions) 41 l.B 
disjunctive cuts 215.C 
disjunctive programming 264.C 
disk 140 

circular 140 
n- 140 
open 140 
open n- 140 
unit 140 

disk algebra 164.B 
disk theorem (on meromorphic functions) 272.3 
dispersion 397.C 
dispersion relations 132.C 
dispersive 

(now) 126.E 
(linear operator) 286.Y 

dispersive wave 446 
displacement 

electric 130.A 
parallel (of a tangent vector space) 80.H 364.B 
parallel, along a curve 80.C 

dissection, Farey 4.B 
dissipative (operator) 251.5 286.C 

maximal 251.5 
dissipative part (of a state space) 260.B 
distance 

(in Euclidean geometry) 139.E 
(in a metric space) 273.B 
Euclidean 139.E 
extremal 143.B 
Frbchet (between surfaces) 246.1 
Hamming 63.B 136.E 
Ltvy 341.F 
Mahalanobis generalized 280.E 
non-Euclidean (in a Klein model) 285.C 
optical 180.A 
perihelion 309.B 
reduced extremal 143.B 

distance function 273.B 
pseudo- 273.B 



Subject Index 
Distinct differentiable structures 

1970 

distinct differentiable structures 114.B 
distinct system of parameters 284.D 
distinguishable, finitely (hypothesis) 400.K 
distinguished basis, strongly 418.F 
distinguished pseudopolynomial 21.E 
distortion function, rate 213.E 
distortion inequalities 438.B 
distortion measure 213.E 
distortion theorem 438.8 
distributed 

asymptotically 374.D 
uniformly 182.H 

distribution(s) 125 
(on a differentiable manifold) 125.R 
(of random variables) 342.C 
(of a vector bundle) 428.D 
a posteriori 39X.B 
a priori 398.B 
asymptotically normal 399.K 
beta 34l.D, App. A, Table 22 
Beurling generalized 125.U 
binomial 341.D 397.F, App. A, Table 22 
bivariate 397.H 
capacity mass 338.K 
Cauchy 341.D, App. A, Table 22 
chi-square 374.A, App. A, Table 22 
conditional probability 342.E 
continuous 341.D 
converge in (a sequence of random variables) 
342.D 

covariance 395.C 
cumulative 397.B 
Dirac 125.C 
Dirichlet 341.D, App. A, Table 22 
double, potential of 338.A 
entropy of a 403.B 
equilibrium, Gibbs 136.C 
equilibrium mass 338.K 
exponential 341.D, App. A, Table 22 
exponential family of 396.G 
F- 341.D 374.B, App. A, Table 22 
fiducial 401 .F 
finite-dimensional 407.A 
of finite order 125.5 
function, empirical 374.D 
gamma 341.D, App. A, Table 22 
Gaussian 341.D 
geometric 341.D, App. A, Table 22 
hypergeometric 341.D 397.F, App. A, Table 22 
infinitely divisible 341.G 
initial 261.A 
initial law 406.D 
integrable 125.N 
invariant (of a Markov chain) 260.A 
invariant (second quantization) 377.C 
involutive (on a differentiable manifold) 428.D 
joint 342.C 
k-dimensional normal 341.D 
k-Erlang 260.H 
kth-order asymptotic 399.0 
L- 341.G 
lattice 341.D 
law, Maxwell-Boltzmann 402.B 
least favorable 400.8 
least favorable a priori 398.H 
limit 250.A 
logarithmic App. A, Table 22 
logarithmic normal App. A, Table 22 
marginal 342.C 397.H 

multidimensional hypergeometric App. A, 
Table 22 

multidimensional normal App. A, Table 22 
multinomial 341.D 
multiple hypergeometric 341.D 
multivariate normal 397.5 
n-dimensional 342.C 
n-dimensional probability 342.C 
negative binomial 341.D 397.F, App. A, 
Table 22 

negative multinomial 341.D 
negative polynomial App. A, Table 22 
noncentral chi-square 374.8 
noncentral F- 374.B 
noncentral r- 374.B 
noncentral Wishart 374.C 
normal 341.D 397.C, App. A, Table 22 
one-dimensional probability, of a *andom 
variable 342.C 

one-side stable for exponent l/2 App. A, 
Table 22 

operator-valued 150.D 
p-dimensional noncentral Wishart 374.C 
Pearson 397.D 
pluriharmonic 21.C 
Poisson 341.D 397.F, App. A, Table 22 
polynomial App. A, Table 22 
population 396.B 401.F 
positive 125.C 
posterior 401.B 403.G 
predictive 403.G 
of prime numbers 123 
prior 401.B 403.G 
probability 342.B, App. A, Table 22 
probability, of a random variable 342.C 
purely discontinuous 341.D 
quasistable 341.G 
random 39S.H 407.C 
random, with independent values It every point 
407.c 

random, in the wider sense 395.C 407.C 
rapidly decreasing 125.0 
rectangular App. A, Table 22 
sampling 374.A 
semistable 341.G 
simple, potential of 338.A 
simultaneous 342.C 
slowly increasing 125.N 
stable 341.G 
standard Gaussian 176.A 
standard normal 341.D 
strictly stationary random 395.H 
strongly stationary random 395.H 
substituted 125.Q 
t- 341.D 374.B, App. A, Table 22 
tempered 125.N 
two-sided exponential App. A, Table 22 
of typical random variables App. A, Table 22 
ultra-, of class {M,} or (M,) 125.U,BB 
uniform 341.D, App. A, Table 221 
unit 341.D 
value 124.A 
of values of functions of a complex variable 

124 
waiting time 307.C 
weakly stationary random 395.C 
Wishart 374.C 
Z- 341.D 374.B. App. A. Table 221 

distribution curve. cumulative 397.B 



1971 Subject Index 
Divisor 

distribution derivative 125.E 
distribution-free (test) 371.A 
distribution-free method 371.A 
distribution function 168.B 341.B 342.C 

cumulative 341.B 342.C 
empirical 250.F 396.C 
n-dimensional 342.C 
symmetric 341.H 
unimodal 341 .H 

distribution kernel 338.P 
distribution law, Maxwell-Boltzmann 402.B 
distribution polygon, cumulative 397.8 
distribution semigroup 378.F 
distributive algebra 231.A 
distributive lattice 243.E 
distributive law 

(in algebra of sets) 381 .B 
(on cardinal numbers) 49.C 
(in a lattice) 243.E 
(on natural numbers) 294.B 
(in a ring) 368.A 
complete (in a lattice-ordered group) 243.G 

disturbance 128.C 
diurnal aberration 392 
div (divergence) 442.D 
diverge 87.B,E 379.A 

to r/ 87.D 
divergence 

(of a differentiable vector field) 442.D 
(of a vector field with respect to a Ricmannian 

metric) 105.W 
(of a vector held with respect to a volume 

element) 105.W 
infrared 146.8 
ultraviolet 146.B 

divergence form 323.D 
divergence theorem 94.D 
divergent 

(double series) 379.E 
(inhnite product) 379.G 
(integral) 216.E 
(sequence of real numbers) 87.B 
(series) 379.A 
properly 379.A 

divide (a bounded domain) 384.F 
divided difference 223.D 
dividing cycle (on an open Riemann surface) 367.1 
divisibility relation (in a ring) 67.H 
drvisible 

(Abelian p-group) 2.D 
(addnive group) 2.E 
(element of ring) 67.H 277.D 
(fractional ideal) 14.E 
(general Siegel domain) 384.F 
(number) 297.A 

divisible A-module 277.D 
divisible subgroup (of a discrete Abelian group) 

422.G 
division (of a pseudomanifold) 65.A 

simplicial 65.A 
division algebra 29.A 
division algorithm 

of natural numbers 297.A 
of polynomials 337.C 

division ring 368.B 
division theorem 

Spath type (for microdifferential operators) 
274.E 

Weierstrass type (for microdifferential opera- 
tors) 274.E 

iisor 
(in an algebraic curve) 9.C 
(of an algebraic function field of dimension 1) 

9.D 
(of an algebraic number field) 14.F 
(in an algebraic variety) 16.M 
(in a closed Riemann surface) 1l.D 
(in a complex manifold) 72.F 
(of an element of a ring) 67.H 
(of a fractional ideal) 14.E 
(of a number) 297.A 
ample 16.N 
branch (in a covering) 9.1 
canonical (of an algebraic curve) 9.C 
canonical (of an algebraic variety) 16.0 
canonical (of a Jacobian variety) 9.E 
canonical (of a Riemann surface) ll.D 
Cartier 16.M 
common (of elements of a ring) 67.H 
complete linear system defined by 16.N 
complex line bundle determined by 72.F 
differential (of an algebraic curve) 9.C 
of a differential form (on an algebraic variety) 

16.0 
effective (on an algebraic curve) 9.C 
effective (on a variety) 16.M 
elementary (of a matrix) 269.E 
embedded prime (of an ideal) 67.F 
finite prime 439.H 
of a function (on an algebraic curve) 9.C 
of a function (on an algebraic variety) t6.M 
greatest common 297.A 
greatest common (of an element of a ring) 

67.H 
imaginary infinite prime 439.H 
infinite prime 439.H 
integral (of an algebraic curve) 9.C 
integral (of an algebraic number held) 14.F 
integral (on a Riemann surface) ll.D 
isolated prime (of an ideal) 67.F 
k-rational (on an algebraic curve) 9.C 
linearly equivalent (of a complex manifold) 

72.F 
maximal prime (of an ideal) 67.F 
minimal prime (of an ideal) 67.F 
nondegenerate 16.N 
nondegenerate (on an Abelian variety) 3.D 
numerically connected 232.D 
D-linearly equivalent (on an algebraic curve) 
9.F 

pole (of a function on an algebraic variety) 
16.M 

positive (of an algebraic curve) 9.C 
positive (on a Riemann surface) 1 l.D 
prime (of an algebraic function field of dimen- 
sion 1) 9.D 

prime (of an algebraic number held or an 
algebraic function field of one variable) 
439.H 

prime (of an ideal) 67.F 
prime (on a Riemann surface) 11 .D 
prime rational, over a field (on an algebraic 

curve) 9.C 
principal (on an algebraic curve) 9.C 
principal (on a Riemann surface) 1 l.D 
real infinite prime 439.H 
real prime 439.H 
sheaf of ideals of (of a complex manifold) 72.F 
special 9.C 
very ample 16.N 



Subject Index 
Divisor class (on a Riemann surface) 

1972 

zero (of a function on an algebraic variety) 
16.M 

zero (of a ring) 368.B 
zero, with respect to M/P 284.A 

divisor class (on a Riemann surface) 1 l.D 
canonical 1 l.D 
differential 1 l.D 

divisor class group (of a Riemann surface) 1 l.D 
divisor function 295.C 

generalized 295.C 
divisor group (of a compact complex manifold) 

12.F 
divisor problem, Dirichlet 242.A 
Dixmier theorem, Rellich- 351.C 
Dixon-Ferrar formula App. A, Table 19.IV 
DK method 301.F 
DKA method 301.F 
DLR equation 402.G 
dn App. A, Table 16.111 
dodecahedron 357.B 
Doetsch three-line theorem 43.E 
Dolbeault cohomology group 72.D 
Dolbeault complex 72.D 
Dolbeault lemma 72.D 
Dolbeault theorem 72.D 
domain(s) 

(of a correspondence) 358.B 
(of a mapping) 37.C 381.C 
(in a topological space) 79.A 
(of a variable) 165.C 
angular 333.A 
annular 333.A 
of attraction 374.G 
Brouwer theorem on the invariance of 117.D 
Cartan pseudoconvex 21.1 
circular 333.A 
of class Cl,” 323.F 
closed plane 333.A 
complete Reinhardt 21.B 
convergence (of a power series) 21.B 
Courant-Cheng, theorem 391.H 
of dependence 325.B 
Dirichlet 120.A 
divisible bounded 284.F 
d-pseudoconvex 21.G 
effective 88.D 
fundamental 234.C 
generated Siegel 384.F 
holomorphically complete 21.F 
holomorphically convex 21.H 
of holomorphy 21.F 
homogeneous bounded 384.A 412.F 
individual 411.H 
of influence 325.B 
integral 368.B 
of integration 216.F 
irreducible symmetric bounded 412.F 
Jordan 333.A 
Levi pseudoconvex 21.1 
of a local homomorphism 423.0 
locally Cartan pseudoconvex 21.1 
locally Levi pseudoconvex 21.1 
nodal 391.H 
Noetherian 284.A 
Noetherian integral 284.A 
object 411.G 
of operator 409.A 
operator (of a group) 190.E 
plane 333 
principal ideal 67.K 

pseudoconvex 21.G 
with regular boundary (in a Cm-manifold) 

105.u 
Reinhardt 21.B 
Siegel 384.A 
Siegel, generalized 384.F 
Siegel, irreducible 384.E 
Siegel, of the first kind 384.A 
Siegel, of the second kind 384.A 
Siegel, of the third kind 384.A 
slit 333.A 
with smooth boundary (in a C”-manifold) 

105.u 
spectrum of 39 1 .A 
strongly pseudoconvex 21.G 
sweepable bounded 284.F 
symmetric bounded 412.F 
unique factorization 40.H 
universal 16.A 
Weil 21.G 

domain kernel (of a sequence of domains) 333.C 
dominant (of a sequence of functions) 435.A 
dominant integral form (on a Cartan subalgebra) 

248.W 
dominate (an imputation of a game) 173.D 
dominated 

(by a family of topological spaces) 425.M 
(statistical structures) 396.F 
weakly (statistical structure) 396.F 

dominated ergodic theorem 136.B 
dominating set 186.1 
domination, number of 186.1 
domination principle 338.L 

inverse 338.L 
Donsker invariance principle 250.E 
Doob-Meyer decomposition theorem 262.D 
Doolittle method 302.B 
dotted indices 258.B 
dotted spinor of rank k 258.B 
Douady space 23.G 
double chain complex 200.E 
double complex 200.H 
double coset (of two subgroups of a gr’oup) 190.C 
double distribution, potential of 338.A 
double exponential formula 299.B 
double integral 216.F 
double integral theorem, Fourier 16O.B 
double layer, potential of 338.A 
double mathematical induction 294.1~ 
double negation, discharge of 411.1 
double point, rational 418.C 
double ratio 343.E 
double sampling inspection 404.C 
double sequence 379.E 
double series 379.E 

absolutely convergent 379.E 
conditionally convergent 379.E 
convergent 379.E 
divergent 379.E 
Weierstrass theorem of 379.H 

double suspension theorem 65.C 
double-valued representation 258.B 
doubly invariant 164.H 
doubly periodic function 134.E 
Douglas algebra 164.1 
Douglas functional 334.C 
Douglas-Radb solution (to Plateau’s problem) 

215.c 
downhill method 3Ol.L 

1 down-ladder 206.B 



1973 Subject Index 
E-flat 

drawer principle, Dirichlet 182.F 
drift 

transformation by 261.F 
transformation of 406.B 

drift part 406.B 
dual 

(cell) 65.B 
(graded module) 203.B 
(graph) 186.H 
(matroid) 66.H 
(proposition in a projective space) 343.B 
(regular polyhedron) 357.B 
(symmetric Riemannian space) 412.D 
(topological group) 422.C 437.5 

dual algebra 203.F 
dual basis (of a linear space) 256.G 
dual bundle 147.F 
dual category 52.F 
dual cell, (n - q)- 65.B 
dual coalgebra 203.F 
dual complex 65.B 
dual cone 125.BB 
dual convex cone 89.F 
dual curve (of a plane algebraic curve) 9.B 
dual direct product decomposition 422.H 
dual frame 417.B 
dual homomorphism 

(of a homomorphism of algebraic tori) 13.D 
(of lattices) 243.C 

dual Hopf algebra 203.C 
dual isomorphism 

(of lattices) 243.C 
(between ordered sets) 311 .E 

duality 
(in field theory) 150.E 
(for symmetric Riemannian space) 412.D 
Martineau-Harvey 125.Y 
Poincare (in manifolds) 201.0 
Poincare (in Weil cohomology) 450.4 
principle of (in projective geometry) 343.B 

duality mapping 251.5 
duality principle 

(for closed convex cone) 89.F 
(for ordering) 3 11 .A 

duality property (of linear space) 256.G 
duality theorem 

(on Abelian varieties) 3.D 
(of linear programming) 255.B 
(in mathematical programming) 292.D 
Alexander 201.0 
for R-module 422.L 
Poincare-Lefschetz 201.0 
Pontryagin (on topological Abelian groups) 

192.K 422.C 
Serre (on complex manifolds) 72.E 
Serre (on projective varieties) 16.E 
of Takesaki 308.1 
Tannaka (on compact groups) 69.D 
Tannaka (on compact Lie group) 249.U 

dual lattice 243.C 310.E 450.K 
dual linear space 256.G 

self- 256.H 
dually isomorphic (lattices) 243.C 
dual mapping (of a linear mapping) 256.G 
dual Martin boundary 260.1 
dual module 277.K 
dual operator 

in Banach space 37.D 
of a differential operator 125.F 
of a linear operator 251.D 

dual ordering 31 l.A 
dual passive boundary point 260.1 
dual problem 255.B 349.B 
dual process 261.F 
dual representation 362.E 
dual resonance model 132.C 
dual semigroup 378.F 
dual space 

(of a C*-algebra) 36.G 
(of a linear space) 256.G 
(of a linear topological space) 424.D 
(of a locally compact group) 437.J 
(of a normed linear space) 37.D 
(of a projective space) 343.B 
quasi- (of a locally compact group) 437.1 
strong 424.K 

dual subdivision 65.B 
dual vector bundle 147.F 
du Bois-Reymond and Dedekind, test of 379.D 
du Bois Reymond problem 159.H 
DufIing differential equation 290.C 
Duhamel method 322.D 
Duhem relation, Gibbs- 419.B 
dummy index (of a tensor) 256.5 
Dunford integrable 443.F 
Dunford integral 251.G 443.F 
Dunford-Pettis theorem 68.M 
Donford-Schwartz integral, Bartle- 443.G 
duo-trio test 346.D 
Dupin, cyclide of 11 l.H 
Dupin indicatrix 11 l.H 
duplication of a cube 179.A 
Durand-Kerner-Aberth (DKA) method 301.F 
Durand-Kerner (DK) method 301.F 
Dvoretzky-Rogers theorem 443.D 
dyadic compactum 79.D 
dynamical system(s) 126 

classical 126.L 136.G 
continuous 126.B 
differential 126.B 
discrete 126.B 
linear 86.B 

dynamic programming 127 264.C 
dynamic programming model 307.C 
dynamics 

analytical 271 .F 
fluid 205.A 
magnetofluid 259 
quantum flavor 132.D 

dynamo theory, hydromagnetic 259 
Dynkin class 270.B 
Dynkin class theorem 270.B 
Dynkin diagram (of a complex semisimple Lie 

algebra) 248,s 
extended App. A, Table 5.1 

Dynkin formula 261.C 
Dynkin representation of generator 261.C 

E 

E (topology) 424.R 
E, Eddington’s App. A, Table 4.11 
6-(Q) (=C?(Q)) 125.1 168.B 
&‘(!A) 125.1 

p;e2;; ;;g 

s-entropy 213.E 
s-expansion 111 .C 
s-factor 450.N 
e-flat 178.D 



Subject Index 
Alermitian form 

1974 

c-Hermitian form 60.0 
E-independent partitions 136.E 
i:-induction, axiom of 33.B 
z-neighborhood (of a point) 273.C 
a-number 3 12.C 
i:-operator, Hilbert 41 l.J 
E-quantifier, Hilbert 41 l.J 
c-sphere (of a point) 273.C 
a-symbol, Hilbert 41 I.J 
e-tensor product 424.K 
s-theorem (in predicate logic) 411.J 
[:-trace form 60.0 
6-function 46.C 
C-space 193.N 
E-function 430.D 
E-optimality 102.E 
E waves 130.B 
Eberlein-Shmul’yan theorem 37.G 
Eberlein theorem 424.V 
eccentric angle 

of a point on a hyperbola 78.E 
of a point on an ellipse 78.E 

eccentric anomaly 309.8 
eccentricity (of a conic section) 78.B 
echelon space 168.8 
ecliptic 392 
econometrics 128 
Eddington’s E App. A, Table 4.11 
edge 

(of a convex cell in an affine space) 
(in a graph) 186.B 
(of a linear graph) 282.A 
reference 281 .C 

edge homomorphism 200.5 
edge of the wedge theorem 125.W 
Edgeworth expansion 374.F 
effect 403.D 

block 102.8 
factorial 102.H 
fixed 102.A 
fixed, model 102.A 
main 102.H 
random 102.A 
random, model 102.A 
treatment 102.B 

effective descriptive set theory 356.H 
effective divisor 

(on an algebraic curve) 9.C 
(on a variety) 16.M 

effective domain 88.D 
effective genus (of an algebraic curve) 9 
effectively (act on a G-space) 431.A 

almost 43 1 .A 
effectively calculable function 356.C 
effectively given (object) 22.A 
effectively parametrized (at o) 72.G 
effect vector 102.A 
efficiency 399.D 

asymptotic 399.N 
Bahadur 4OO.K 
second-order 399.0 
second-order asymptotic 399.0 

efficiency-balanced block design 102.E 
efficient 

kth order asymptotic 3Y9.0 
efficient estimator 399.D 

asymptotically 399.N 
first-order 399.0 
lirst-order asymptotic 399.0 

Egervhry theorem, K&rig- 281.E 

Egorov theorem 270.5 
Ehrenfest model of diffusion 260.A 
Ehrenpreis-Malgrange theorem 112.13 
Eichler approximation theorem 27.D 
eigenchain 390.H 
eigenelement (of a linear operator) 39O.A 
eigenfunction 

(of a boundary value problem) 31S.B 
(for an integral equation) 217.F 
(of a linear operator) 390.A 
generalized 375.C 

eigenspace 
(of a linear mapping) 269.L 
(of a linear operator) 390.A 
generalized 3YO.B 
in a weaker sense 269.L 

eigenvalue(s) 
(of a boundary value problem) 315.B 
(of an integral equation) 217.F 
(of a linear mapping) 269.L 
(of a linear operator) 390.A 
(of the Mathieu equation) 268.B 
(of a matrix) 269.F 
degenerate 390.A 
generalized 375.C 
geometrically simple 390.A 
index of 217.F 
multiplicity of 217.F 
numerical computation of 298 

eigenvalue problem 390.A 
generalized 298.G 

eigenvector 
(of a linear mapping) 269.L 
(of a linear operator) 3YO.A 
(of a matrix) 269.F 
generalized 390.B 

eightfold way 132.D 
eikonal 82.D 18O.C 
eikonal equation 324.E 325.L 
Eilenberg-MacLane complexes 7O.F 
Eilenberg-MacLane space 70.F 
Eilenberg-MacLane spectrum 202.T 
Eilenberg-Postnikov invariants (of a CW complex) 

70.G 
Eilenberg-Steenrod axioms 201.Q 
Eilenbcrg-Zilber theorem 201.5 
Einstein, A. 129 
Einstein convention (on tensors) 256.5 
Einstein-Kahler metric 232.C 
Einstein metric 364.1 
Einstein relation (in diffusion) 1..8.A 
Einstein space 364.D, App. A, Table 4.11 
Einstein summation convention 417.B 
Eisenstein-Poincare series 32.F 
Eisenstcin series 32.C 

generalized 450.T 
Eisenstein theorem 337.F 
elastic, total, cross section 386.1~ 
elasticity 

modulus of, in shear 271.G 
modulus of, in tension 27 l.G 
small-displacement theory cf 271.G 
theory of 27 l.G 

elastic limit 271.G 
elastic scattering 375.A 
elation 1lO.D 
electric displacement 130.A 
electric field 130.A 
electric flux density 130.A 
electric network 282.B 



1975 Subject Index 

Elementary Hopf algebra 

electric polarization 130.A 
electric susceptibility 130.B 
electric waves 130.B 

transverse 130.B 
electrodynamics, quantum 132.C 
electromagnetic wave 446 

theory of 130.8 
transverse 130.B 

electromagnetism 130 
electron 377.9 
electronic analog computer 19.E 
electronic computer 75.A 
electrostatics 130.B 
clement(s) 381.A 

affine arc IIO.C 
algebraic (of a field) 149.E 
areal (in a Cartan space) 152.C 
atomic (in a complemented modular lattice) 

243.F 
boundary (in a simply connected domain) 
333.B 

canonical (in the representation of a functor) 
52.L 

Casimir (of a Lie algebra) 248.5 
central (in a lattice) 243.E 
compact (of a topological Abelian group) 
422.F 

conformal arc 1lO.D 
conjugate (in a field) 149.5 
conjugate (in a group) 19O.C 
contact 428.E 
contact (in a space with a Lie transformation 
group) I I0.A 

cyclic 251.5 
even (of a Clifford algebra) 61 .B 
finite, method 304.C 
function 198.1 339.A 
function, in the wider sense 198.0 
gcnerahzed nilpotent (in a commutative Banach 

algebra) 36.E 
generating 390.G 
greatest (in an ordered set) 3 11 .B 
homogeneous (of a graded ring) 369.B 
homogeneous (of a homogeneous ring) 369.9 
hypersurface 324.B 
idempotent (of a ring) 368.B 450.0 
identity (of an algebraic system) 409.C 
identity (of a held) 149.A 
identity (of a group) 190.A 
identity (of a ring) 368.A 
inseparable (of a held) 149.H 
integral (of a system of total diffcrcntial equa- 

tions) 428.E 
inverse (in a group) 190.A 
inverse (in a ring) 368.B 
inverse function 198.L 
invertible (of a ring) 368.B 
irreducible (of a ring) 67.H 
isotropic (with respect to a quadratic form) 

348.E 
k-dimensional integral 19 I .I 
Kepler orbital 309.B 
least (in an ordered set) 31 I .B 
left inverse (of an element of a ring) 368.B 
line lll.C 
linearly dependent 2.E 
linearly independent 2.E 
matrix 351.B 
maximal (in an ordered set) 31 l.B 
maximum (in an ordered set) 3 1 I .B 

minimal (in an ordered set) 3 11 .B 
minimum (in an ordered set) 3 11 .B 
negative (of an ordered field) 149.N 
neutral (in a lattice) 243.F 
nilpotent (of a ring) 368.9 
odd (of a Clifford algebra) 61.B 
ordinary 191.1 
ordinary integral 428.E 
oriented (in a covering manifold of a homoge- 
neous space) llO.A 

orthogonal (of a ring) 368.9 
osculating 309.D 
polar (of an analytic function in the wider sense) 

198.0 
polar (of an integral element) 428.E 
positive (of an ordered field) 149.N 
prime (of a ring) 67.H 
prime (for a valuation) 439.E 
primitive (of an extension of a field) 149.D 
projective line 110.B 
purely inseparable (of a field) 149.H 
quasi-inverse (in a ring) 368.B 
quasi-invertible (of a ring) 368.B 
quasiregular (of a ring) 368.B 
ramified 198.0 
rational 198.0 
regular (of a connected Lie group) 249.P 
regular (of a ring) 368.B 
regular integral 428.E 
right inverse (in a ring) 368.B 
separable (of a field) 149.H 
singular (of a connected Lie group) 249.P 
singular (with respect to a quadratic form) 
348.E 

surface 324.B 
surface, union of 324.B 
torsion (of an A-module) 277.D 
transcendental (of a field) 149.E 
transgressive (in the spectral sequence of a fiber 

space) 148.E 
triangular 304.C 
unit (of a field) 149.A 
unit (of a group) 190.A 
unit (of a ring) 368.A 
unity (of a field) 149.A 
unity (of a ring) 368.A 
volume (oi an oriented ?-manifold) 105.W 
volume, associated with a Riemannian metric 

105.w 
zero (of an additive group) 2.E 190.A 
zero (of a field) 149.A 
zero (of a linear space) 256.A 
zero (of a ring) 368.A 

elementarily equivalent structures 276.D 
elementary (Kleinian group) 234.A 
elementary (path) 186.F 
elementary Abelian functions 3.M 
elementary Abelian group 2.B 
elementary catastrophe 51.E 
elementary collapsing 65.C 
elementary contract 102.C 
elementary divisor 

(of a matrix) 269.E 
simple (of a matrix) 269.E 

elementary event(s) 342.9 
space of 342.B 

elementary extension 276.D 
elementary function(s) 131 

of class n 131.A 
elementary Hopf algebra 203.D 



Subject Index 

Elementary ideal 
1976 

elementary ideal 235.C 
elementary kernel (of a linear partial differential 

operator) 320.H 
elementary number theory 297 

fundamental theorem of, 297.C 
elementary particle(s) 132 
elementary solution App. A, Table 15.V 

(of a differential operator) 112.B 
(of a linear partial differential operator) 320.H 
(of partial differential equations of elliptic 
type 323.B 

elementary symmetric function 337.1 
elementary symmetric polynomial 337.1 
elementary topological Abelian group 422.E 
eliminate (variables from a family of polynomials) 

369.E 
elimination 

design for two-way, of heterogeneity 102.K 
forward 302.B 
Gaussian 302.B 
Gauss-Jordan 302.B 

elimination method, Sylvester 369.E 
ellipse 78.A 
ellipsoid 350.B 

of inertia 271.E 
of revolution 350.B 

ellipsoidal coordinates 90.C 133.A, App. A, Table 
3.v 

ellipsoidal harmonics 133.B 
four species of 133.C 

ellipsoidal type, special function of 389.A 
elliptic 

(differential operator) 112.A 323.A 237.H 
(pseudodifferential operator) 323.K 
(Riemann surface) 77.B 367.D 
(solution) 323.D 
analytically hypo- 323.1 
analytic hypo- 112.D 
hypo- 112.D 189.C 323.1 
microlocally 345.A 
strongly 112.G 323.H 

elliptic omplex (on a compact Cm-manifold) 237.H 
elliptic coordinates 90.C 350.E, App. A, Table 3.V 
elliptic curve 9.C 

L-functions of 450.S 
elliptic cylinder 350.B 
elliptic cylinder function 268.B 
elliptic cylindrical coordinates App. A, Table 3.V 
elliptic cylindrical surface 350.B 
elliptic domain 77.B 
elliptic function(s) 134 

of the first kind 134.G 
Jacobi App. A, Table 16.111 
of the second kind 134.G 
of the third kind 134.H 
Weierstrass App. A, Table 16.IV 

elliptic function field 9.D 
elliptic geometry 285.A 
elliptic integral 1 l.C 134.A, App. A, Table 16.1 

complete App. A, Table 16.1 
of the first kind 134.A, App. A, Table 16.1 
of the lirst kind, complete 134.B 
of the first kind, incomplete 134.B 
of the second kind 134.A, App. A, Table 16.1 
of the second kind, complete 134.C 
of the third kind 134.A, App. A, Table 16.1 

elliptic integrals and elliptic functions App. A, 
Table 16 

elliptic irrational function 134.A 

elliptic modular group 122.D 
elliptic motions 55.A 
elliptic operator 323.H 

microlocally 345.A 
strongly 323.H 

elliptic paraboloid 350.B 
of revolution 350.B 

elliptic point 
(of a Fuchsian group) 122.C 
(on a surface) 11 l.H 

elliptic quadric hypersurface 350.G 
elliptic singularity 418.C 

minimally 418.C 
elliptic space 285.C 
elliptic surface 72.K 
elliptic theta function 134.1, App. A, Table 16.11 
elliptic transformation 74.F 
elliptic type 323.A,D 

(Lie algebra) 191.D 
partial differential equation of 323, App. A, 
Table 15.VI 

elongation strain 271.G 
embedded 

(into a topological space) 425.5 
hyperbolically 21.0 

embedded Markov chain 260.H 
embedded primary component (of an ideal) 67.F 
embedded prime divisor (of an ideal) 67.F 
embedding 105.K 

(of categories) 52.H 
(of a Y-manifold) 105.K 
(of a topological space) 425.5 
formula of, form 303.D 
generalized Bore1 384.D 
PL 65.D 
regular 105.K 
Tanaka 384.D 
toroidal 16.2 
torus 16.2 

embedding principle (in dynamic programming) 
127.B 

embedding theorem 
full (of an Abelian category) 52.N 
Irwin 65.D 
Menger-Niibeling 117.D 
Sobolev-Besov 168.B 
Tikhonov 425.T 

Emden differential equation 291.F 
Emden function, Lane- 291.F 
emission 325.A 

backward 325.A 
forward 325.A 

empirical characteristic function 396.C 
empirical constant 19.F 
empirical distribution function 250.F 374.E 396.C 
empirical formula 19.F 
empiricism, French 156.C 
empty set 33.B 381.A 

axiom of 33.B 
enantiomorphic pair 92.A 
enantiomorphous 92.A 
encoder 213.D 
encoding 63.A 
end 

(of an arc) 93.B 
(of a noncompact manifold) 178 F 
(of a segment) 155.B 
(of a segment in an afhe space) 7.D 
Heins 367.E 



1977 Subject Index 
Equation(s) 

lower (of a curvilinear integral) 94.D 
upper (of a curvilinear integral) 94.D 

endogenous variable 128.C 
endomorphism 

(of an algebraic system) 409.C 
(of a group) 190.D 
(of a polarized Abelian variety) 3.G 
(of a probability space) 136.E 
(of a ring) 368.D 
anti- (of a group) 190.D 
anti- (of a ring) 368.D 
aperiodic 136.E 
entropy of 136.E 
exact (of a measure space) 136.E 
periodic (at a point) 136.E 
ring of (of an Abelian variety) 3.C 

endomorphism ring 
(of an Abelian variety) 3.C 
(of a module) 277.B 368.C 

endpoint 
(of an ordinary curve) 93.C 
left (of an interval) 355.C 
right (of an interval) 355.C 

end vertex 186.B 
energy 195.B 338.B 

binding 351.D 
free 340.B 402.G 
Gibbs free 419.C 
Helmholtz free 419.C 
internal 419.A 
kinetic 271.C 351.D 
mean 402.G 
mean free 340.B 402.G 
mutual 338.B 
potential 271.C 
rest 359.C 
total 271.C 

energy density 195.B 
energy equation (for a fluid) 205.A 
energy function 126.L 279.F 
energy inequality 325.C 
energy integral 420.A 
energy minimum principle 419.C 

Gibbs 419.C 
energy-momentum 4-vector 258.C 
energy-momentum operator 258.D 
energy-momentum tensor 150.B 359.D 
energy principle 338.D 
energy spectrum function 433.C 
energy spectrum tensor 433.C 
energy surface 126.L 402.C,G 
Enestriim theorem, Kakeya- (on an algebraic equa- 

tion) 10.E 
Engel theorem 248.F 
engulfing lemma 65.C 
enlargement 293.B 
Enneper formula, Weierstrass- 275.A 
Enneper surface 275.B 
Enriques surface 72.K 
ensemble 402.D 

canonical 402.D 
grand canonical 402,D,G 
microcanonical 402.D 

Enskog method 217.N 
enthalpy 419.C 
enthalpy minimum principle 419.C 
entire algebroidal function 17.B 
entire function 429.A 

rational 429.A 
transcendental 429.A 

entire linear transformation 74.E 
entrance 281.C 
entrance boundary (of a diffusion process) 115.B 
entrance boundary point 260.1 
entropy 212.B 

(of an endomorphism) 136.E 
(in information theory) 213.B 
(in statistical mechanics) 402.B 
(in thermodynamics) 419.A 
closed system 402.G 
completely positive 136.E 
conditional 213.B 
of a distribution 403.B 
of the endomorphism cp 136.E 
E- (of source coding theorem) 213.E 
maximal 136.C,H 
mean 402.G 
open system 402.G 
of a partition 136.E 
relative 212.B 
topological 136.H 
topological, off with respect to c( 126.K 

entropy condition 204.G 
entropy conjecture 126.K 
entropy maximum principle 419.A 
entropy production, equation of 205.A 
entry (of a matrix) 269.A 
enumerable predicate, recursively 356.D 
enumerable set, recursively 356.D 
enumerating predicate 356.H 
enumeration method, implicit 215.D 
enumeration theorem 356.H 

Polya’s 66.E 
envelope 

(of a family of curves) 93.1 
of holomorphy 21.F 
injective 200.1 
lower 338.M 
upper (of a family of subharmonic functions) 

193.R 
envelope power function 400.F 
enveloping algebra 231.A 

special universal (of a Jordan algebra) 231.C 
universal (of a Lie algebra) 248.5 

enveloping surface 111 .I 
enveloping von Neumann algebra 36.G 
epicycloid 93.H 
epidemiology 40.E 
epimorphism (in a category) 52.D 200.Q 
epitrochoid 93.H 
Epstein zeta function 450.K 
equality 

Chapman-Kolmogorov 261.A 
Jacobe-Beihler 328 
Parseval 18.B 159.A 160.C 192.K 197.C 
ZOO.B,C,E 

equal weight, principle of 402.D 
equation(s) 

Abelian 172.G 
adjoint differential 252.K 
algebraic 10, App. A, Table 1 
algebraic differential 113 288.A 
approximate functional (for zeta function) 

450.B 
basic 320.E 
Bellman 405.B 
bifurcation 286.V 
binomial 10.C 
biquadratic App. A, Table 1 
Boltzmann 41.A 402.B 



Subject Index 

Equation(s) 
1978 

Boussinesq 387.F 
Briot-Bouquet differential 288.B 
Callan-Symanzik 361.B 
canonical 324.E 
canonical forms of the (of surfaces) 350.B 
Cauchy-Riemann (differential) 21.C 198.A 
274.G 320.F 

characteristic (for a homogeneous system of 
linear ordinary differential equations) 252.5 

characteristic (of a linear difference equation) 
104.E 

characteristic (of a linear ordinary differential 
equation) 252.E 

characteristic (of a matrix) 269.F 
characteristic (of an autonomous linear system) 

163.F 
characteristic (of a partial differential equation) 

320.D 
characteristic (of a partial differential equation 

of hyperbolic type) 325.A,F 
Chaplygin differential 326.B 
Chapman-Kolmogorov 260.A 261.A 
Charpit subsidiary 82.C 320.D 
of Codazzi 365.C 
Codazzi-Mainardi 11 l.H, App. A, Table 4.1 
of a conic section 78.C 
of a conic section, canonical form of 78.C 
of continuity 130.A 204.B 205.A 
cubic lO.D, App. A, Table 1 
cyclic 172.G 
delay-differential 163.A 
de Rham 274.G 
difference - difference equation 
difference-differential 163.A 
differential - differential equation(s) 
diffusion-convection 304.B 
Diophantine 118.A 
Dirac 377.C 415.G 
DLR 402.G 
eikonal 324.E 325.L 
energy (for a fluid) 205.A 
of entropy production 205.A 
Ernst 359.D 
estimating 399.P 
Euler (calculus of variations) 46.B 
Euler (of a perfect fluid) 204.E 
Euler, of motion (of a perfect fluid) 205.A 
Euler differential (dynamics of rigid bodies) 
271.E 

Euler-Lagrange 46.B 
evolution 378.G 
exterior field 359.D 
field 150.B 
Fokker-Planck 402.1 
functional - functional equation 
functional-differential 163.A 
Galois 172.G 
of Gauss (on an isometric immersion) 365.C 
Gauss (on surfaces) 111 .H 
Gel’fand-Levitan-Marchenko 287.C 387.D 
general 172.G 
general Navier-Stokes 204.F 
Hamilton differential 324.E 
Hamilton-Jacobi 108.B 
Hamilton-Jacobi differential 271.F 324.E 
heat 327.A, App. A, Table 15.VI 
of heat conduction 327.A 
Hill determinantal 268.B 
indicial 254.C 
induction 259 

integral - integral equation(s) 
integrodifferential 163.A 222 
integrodifferential, of Fredholm type 222.A 
integrodifferential, of Volterra type 222.A 
interior field 359.D 
Kadomtsev-Petvyashvili 387.F 
KdV 387.B 
Kepler 309.B 
Klein-Gordon 377.C 415.G 
Kolmogorov backward 115.A 260.F 
Kolmogorov forward 115.A 260.F 
Konigs-Schriider 44.B 
Korteweg-de Vries 387.A 
Lagrange, of motion 271.F 
Landau 146.C 
Landau-Nakanishi 146.C 
Langevin 45.1402.K 
Lewy-Mizohata 274.G 
likelihood 399.M 
linear 10.D 
linear, system of 269.M 
linear integral 217.A 
linear ordinary differential 252.A 
linear structure, system 128.C 
Lippman-Schwinger 375.C 
local (of a divisor on an open set) 16.M 
logistic 263.A 
master 402.1 
matrix Riccati differential 86.E 
Maxwell 130.A 
microdifferential 274.G 
minimal surface 275.A 
of motion (of a fluid) 205.A 
of motion (of a model) 264 
of motion (in Newtonian mechanics) 271.A 
of motion (of a particle in a gravitational field) 

359.D 
of motion, Euler (of a perfect fluid) 205.B 
of motion, Heisenberg 351.D 
of motion, Lagrange 271.F 
natural (of a curve) 11 l.D 
natural (of a surface) 110.A 
Navier-Stokes 204.B 205.C 
normal (in the method of least squares) 403.E 
302.E 397.J 

ordinary differential - ordinary differential 
equation(s) 

of oscillation App. A, Table 15.VI 
Painlevi: 288.C 
parabolic cylindrical App. A, Table 14.11 
partial differential - partial difIerentia1 
equation(s) 

Pell 118.A 
PfafIian 428.A 
Pfaffian, system of 428.A 
Poisson 338.A 
Prandtl boundary layer 205.C 
Prandtl integrodiNerentia1 222.C 
pressure 205.B 
primitive 172.G 
quadratic lO.D, App. A, Table 1 
quartic lO.D, App. A, Table 1 
radial 3 15.E 
random Schriidinger 340.E 
of a rarefied gas 41.A 
rational differential 288.A 
reciprocal 10.C 
regular local (at an integral point) 428.E 
renewal 260.C 
renormalization 11 l.B 



1979 Subject Index 
Equivalent 

resolvent 251.F 
retarded differential 163.A 
Ricci 365.C 
Schlesinger 253.E 
Schriidinger 35 1 .D 
secular 55.B 269.F 
self-adjoint differential 252.K 
self-adjoint system of differential 252.K 
Sine-Gordon 387.A 
singular integral 217.5 
of sound propagation 325.A 
special functional 388 
of state 419.A 
structure (of an afline connection) 417.B 
structure (for a curvature form) 80.G 
structure (for a torsion form) 80.H 
of structure (of a Euclidean space) 1ll.B 
of structure (for relative components) 11O.A 
system of 10.A 
system of linear ordinary differential 252.G 
telegraph 325.A, App. A, Table 15.111 
time-dependant Schrodinger 351.D 
time-independant Schriidinger 351.D 
transport 325.L 
two-dimension KdV 387.F 
variational 316.F 394.C 
of a vibrating membrane 325.A 
of a vibrating string 325.A 
wave 325.A 446.A, App. A, Table 15.111 
Wiener-Hopf integrodifferential 222.C 
Yang-Mills 80.Q 
Yule-Walker 421.D 

equator (of a sphere) 140 
equiangular spiral 93.H 
equianharmonic range of points 343.D 
equicontinuous (family of mappings) 435.D 
equicontinuous group of class (C”) 378.C 
equicontinuous semigroup of class (Co) 378.B 
equidistant hypersurface (in hyperbolic geometry) 

285.C 
equilateral hyperbola 78.E 
equilateral hyperbolic coordinates 9O.C App. A, 

Table 3.V 
equilateral triangle solution 420.B 
equilibrium, Nash 173.C 
equilibrium figures 55.D 
equilibrium Gibbs distribution 136.C 
equilibrium mass distribution 338.K 
equilibrium point 

(of a flow) 126.D 
(in an N-person differential game) 108.C 
(in a two-person zero-sum game) 173.C 

equilibrium potential 260.D 
equilibrium principle 338.K 
equilibrium state 136.H 340.B 419.A 
equilibrium statistical mechanics 402.A 
equilibrium system, transformation to 82.D 
equilong transformation 76.B 
equipollent sets 49.A 
equipotential surface 193.5 
equipotent sets 49.A 
equivalence 

(of categories) 52.H 
(in a category) 52.D 
(of complexes) 200.H 
(of coverings) 91.A 
anti- (of categories) 52.H 
chain 200.H 
cochain 200.F 
combinatorial 65.A 

c’- 126.B 
CR- 344.A 
homotopy 202.F 
Kakutani 136.F 
Lax, theorem 304.F 
natural 52.5 
principle of (in insurance mathematics) 214.A 
principle of (in physics) 359.D 
simple homotopy 65.C 
topological 126.B 

equivalence class 135.B 
linear (of divisors) 16.M 

equivalence properties 135.A 
equivalence relations 135 358.A 

proper (in an analytic space) 23.E 
equivalent 

(additive functionals) 261.E 
(arc) 246.A 
(coordinate bundle) 147.B 
(covering) 91.A 
(extension by a C*-algebra) 36.5 
(fiber bundle) 147.B 
(formula) 411.E 
(functions with respect to a subset of C”) 21.E 
(G-structures) 19l.A 
(knot) 235.A 
(linear representation) 362.C 
(measure) 225.5 
(methods of summation) 379.L 
(proposition) 411 .B 
(quadratic form) 348.A 
(quadratic irrational numbers) 182.G 
(relation) 135.B 
(space group) 92.A 
(stochastic process) 407.A 
(surfaces in the sense of Frechet) 246.1 
(system of neighborhoods) 425.E 
(unfolding) 51.E 
(unitary representation) 437.A 
(valuation) 439.B 
(word) 31.B 
algebraically (cycles) 16.R 
algebraically, to 0 16.P 
arithmetically 92.B 276.D 
C- 114.H 
certainty 408.B 
chain 200.C 
x- 431.F 
combinatorially 65.A 
conformally 77.A 19l.B 367.A 
countably (under a nonsingular bimeasurable 
transformation) 136.C 

C’- 126.B 
elementarily 276.D 
fiber homotopy (vector bundles) 237.1 
finitely (under a nonsingular bimeasurable 

transformation) 136.C 
flow 126.B 
F- (points) 122.A 
geometrically 92.B 
homotopy (systems of topological spaces) 

202.F 
k- (Cm-manifolds) 114.F 
linearly (divisors) 16.M 72.F 
locally (G-structure) 19l.H 
numerically (cycles) 16.4 
D-linearly, divisors 9.F 
Q- 126.H 
(PL) 65.D 
properly (binary quadratic forms) 348.M 



Subject Index 

Equivalent affinity 
1980 

pseudoconformally 344.A 
quasi- (unitary representations) 437.C 
rationally (cycles) 16.R 
right 51.C 
simple homotopy 65.C 
stably (vector bundles) 237.B 
stably fiber homotopy (vector bundles) 237.1 
topologically 126.B,H 
uniformly (uniform spaces) 436.E 
unitarily (self-adjoint operators) 390.G 

equivalent affinity 7.E 
equivariant Atiyah-Singer index theorem 237.H 
equivariant cohomology 431.D 
equivariant J-group 43 1 .F 
equivariant J-homomorphism 43 I .F 
equivariant K-group 237.H 
equivariant mapping (map) 431.A 
equivariant point (of a mapping) 153.B 
equivariant point index (of a mapping) 153.B 
Eratosthenes’ sieve 297.B 
Erdiis theorem, Chung- 342.B 
ergodic 

(Markov chain) 260.5 
(transformation) 136.B 

ergodic capacity 213.F 
ergodic class 260.B 

positive recurrent 260.B 
ergodic decomposition (of a Lebesgue measure 

space) 136.H 
ergodic homeomorphism 

strictly 136.H 
uniquely 136.H 

ergodic hypothesis 136.A 402.C 
ergodic information source 213.C 
ergodic lemma, maximal 136.B 
ergodic Szemertdi theorem 136.C 
ergodic theorem I36.A,B 

Abelian 136.B 
dominated 136.B 
individual 136.8 
local 136.B 
mean 136.B 
multiplicative 136.B 
pointwise 136.B 
ratio 136.B 
subadditive 136.B 

ergodic theory 136 342.A 
Erlang distribution, k- 260.1 
Erlangen program 137 
Ernst equation 359.D 
error(s) 138.A 

accumulated 138.C 
burst 63.E 
discretization 303.B 
of the first kind 400.A 
of input data 138.B 
local truncation 303.E 
mean square 399.E 403.E 
propagation of 138.C 
roundoff 138.B 303.B 
of the second kind 400.A 
theory of 138.A 
truncation 138.B 303.B 

error analysis I38 
backward 302.B 

error constant 303.E 
error-correcting 63.A 
error-correcting capability 63.B 
error-detecting 63.A 
error estimate, one-step-two-half-steps 303.D 

error function 167.D, App. A, Table 19.11 
error matrix 405.G 
error probability 213.D 
error space 403.E 
error sum of squares (with n--s degree of freedom) 

403.E 
error term 403.D 
error vector 102.A 
essential (conformal transformation group) 364.F 
essentially bounded (measurable function) 168.B 
essentially complete class 398.B 
essentially normal 390.1 
essentially self-adjoint 251.E 390.1 
essentially singular point (with respect to an analytic 

set) 21.M 
essentially unitary 390.1 
essential part 260.1 
essential singularity 

(of an analytic function in the wider sense) 
198.P 

(of a complex function) 198.D 
essential spectrum 390.E,H 
essential support (of a distribution) 274.D 
essential supremum (of a measurable function) 

168.B 
Estes stimulus sampling model 346.G 
estimable (parametr,ic function) 399.C 
estimable parameter 403.E 

linearly 403.E 
estimate 399.B 

a priori 323.C 
nonrandomized 399.B 
one-step-two-half-steps error 30.3.D 
Schauder 323.C 

estimating equation 399.P 
estimating function 399.P 

likelihood 399.M 
estimating parameters, design for 102.M 
estimation 

Hadamard App. A, Table 8 
interval 399.Q 4Ol.C 
point 371.H 399.B 4Ol.C 
region 399.0 
statistical 399.A, App. A, Table 23 

estimation space 403.E 
estimator 399.B 

asymptotically efficient 399.N 
BAN 399.K,N 
based on an estimating function ,399.P 
Bayes 399.F 
best asymptotically normal 399.K 
best invariant 399.1 
best linear unbiased 403.E 
CAN 399.K 
consistent 399.K 
consistent and asymptotically normal 399.K 
efficient 399.D 
first-order asymptotic efficient 399.0 
tirst-order efficient 399.0 
generalized least squares 403.E 
invariant 399.1 
kth-order AMU 399.0 
kth-order asymptotically median unbiased 

399.0 
L- 371.H 
least squares 403.E 
M- 371.H 
maximum likelihood 399.M 
mean unbiased 399.C 
median unbiased 399.C 



1981 Subject Index 
Exact 

ML 399.M 
modal unbiased 399.C 
moment method 399.L 
Pitman 399.G 
R- 371.H 
randomized 399.B 
ratio 373.C 
state 86.E 
Stein shrinkage 399.G 
superefficient 399.N 
UMV unbiased 399.C 
unbiased 399.C 
uniformly minimum variance unbiased 399.C 

eta function 
(of a Riemann manifold) 391.L 
Dedekind 328.A 

etale morphism 16.F 
&ale neighborhood 16.AA 
etale site 16.AA 
&ale topology 16.AA 
Euclid axiom 139.A 
Euclidean algorithm 297.A 

of polynomials 337.D 
Euclidean cell complex 70.B 
Euclidean complex 70.B 
Euclidean connection 364.B 

manifold with 109 
Euclidean distance 139.E 
Euclidean field 150.F 
Euclidean field theory 150.F 
Euclidean geometry 139 

n-dimensional 139.B 181 
non- - non-Euclidean geometry 285 
in the wider sense 139.B 

Euclidean group, locally 423.M 
Euclidean Markov field theory 150.F 
Euclidean method 150.F 
Euclidean polyhedron 70.B 
Euclidean simplicial complex 70.B 
Euclidean space(s) 140 

locally 259.B 425.V 
non- 285.A 
theorem on invariance of dimension of 117.D 

Euclidean space form 412.H 
Euclidean type (building) 13.R 
Euclid ring 67.L 
Euler, L. 141 
Euler angles 9O.C App. A, Table 3.V 
Euler characteristic (of a finite Euclidean cellular 

complex) 201.B 
Euler class (of M) 201.N 
Euler constant 174.A 
Euler criterion 297.H 
Euler differential equation (dynamics of rigid 

bodies) 271.E 
Euler equation 

(calculus of variations) 46.B 
(of a perfect fluid) 204.E 

Euler equation of motion (of a perfect fluid) 205.A 
Euler formula 131.G 
Euler function 295.C 
Euler graph 186.F 
Euler infmite product expansion 450.B 
Euler integral 

of the tirst kind 174.C 
of the second kind 174.A 

Euler-Lagrange differential equation 46.B 
Euler linear ordinary differential equation App. A, 

Table 14.1 
Euler-Maclaurin formula 379.5 

Euler method 
of describing the motion of a fluid 205.A 
of numerical solution of ordinary differential 
equations 303.E 

summable by 379.P 
of summation 379.P 

Euler number 177.C 201.B, App. B, Table 4 
Euler path 186.F 
Euler-Poincare characteristic 16.E 201.B 
Euler-Poincart class 56.B 

(of a manifold) 56.F 
universal 56.B 

Euler-Poincare formula 201.B,F 
Euler polynomial 177.C 
Euler product 450.B 
Euler relation 419.B 
Euler square 241.B 
Euler summation formula 295.E 
Euler theorem on polyhedra 201.F 
Euler transformation (of infinite series) 379.1 
evaluable (locally convex space) 424.1 
evaluation and review technique program 376 
Evans-Selberg theorem 48.E 338.H 
Evans theorem 48.E 
even element (of a Clifford algebra) 61.B 
even function 165.B 
even half-spinor 61.E 
even half-spin representation 61.E 
even-oddness conservation laws 150.D 
even permutation 151.G 
even state 415.H 
event(s) 281.D 342.B 

complementary 342.B 
delayed recurrent 260.C 
elementary 342.B 
exclusive 342.B 
impossible 342.B 
independent 342.B 
inferior limit 342.B 
intersection of 342.B 
measurable 342.B 
probability of an 342.B 
with probability 1 342.B 
product 342.B 
random 342.B 
recurrent 250.D 260.C 
space of elementary 342.B 
sum 342.B 
superior limit 342.B 
sure 342.B 
symmetric 342.G 
tail 342.B 

event commutativity 346.G 
event horizon 359.D 
Everett formula (for functions of two variables) 

App. A, Table 21 
Everett interpolation formula App. A, Table 

21 
everywhere 

almost 270.D 342.D 
nearly 338.F 
quasi- 338.F 

evolute (of a curve) 11 l.E 
evolution equation 378 
evolution operator 378.G 

holomorphic 378.1 
exact 

(additive covariant functor) 200.1 
(differential on a Riemann surface) 367.H 
(endomorphism) 136.E 



Subject Index 

Exact differential equation 
1982 

(in Galois cohomology) 172.5 
(in sheaf theory) 383.C 
half- 200.1 
left- 200.1 
right- 200.1 

exact differential equation App. A, Table 14.1 
exact differential form 105.Q 
exact functor 52.N 
exact sampling theory 401.F 
exact sequence 

(of A-homomorphisms of A-modules) 277.E 
of cohomology 200.F 
cohomology 2Ol.L 
of Ext 200.G 
fundamental (on cohomology groups) 200.M 
Gysin (of a fiber space) 148.E 
of homology 200.C 
homology (of a fiber space) 148.E 
homology (for simplicial complexes) 2Ol.L 
homotopy 202.L 
homotopy (of a fiber space) 148.D 
homotopy (of a triad) 202.M 
homotopy (of a triple) 202.L 
Mayer-Vietoris (for a proper triple) 2Ol.C 
Puppe 202.G 
reduced homology 201.F 
relative Mayer-Vietoris 2Ol.L 
(R, S)- (of modules) 200.K 
short 200.1 
of Tor 200.D 
Wang (of a fiber space) 148.E 

exceptional 
(Jordan algebra) 23 1 .A 
(leaf) 154.D 

exceptional compact real simple Lie algebra 248.T 
exceptional compact simple Lie group 249.L 
exceptional complex simple Lie algebra 248,s 
exceptional complex simple Lie group 249.M 
exceptional curve 15.G 

of the first kind 15.G 
of the second kind 15.G 

exceptional function, Julia 272.F 
exceptional orbit 431.C 
exceptional sets 192.R 
exceptional value 

(of a transcendental entire function) 429.B 
Bore1 272.E 
Nevanlinna 272.E 
Picard 272.E 

excess 178.H, App. A, Table 6.111 
coefficient of 341.H 396.C 
spherical 432.B 
total 178.H 

excessive (function) 260.D 261.D 
a- 261.D 

excessive measure 261.F 
exchange 420.D 
exchange of stability 286.T 
excision isomorphism 201.F,L 
excluded middle, law of 156.C 41 l.L 
exclusive events 342.B 
exhaustion 178.F 
existence theorem 

(in class field theory) 59.C 
(for ordinary differential equations) 316.C 
Cartan-KLhler 191.1428.E 
Cauchy 320.B 
Cauchy-Kovalevskaya 321.A 

existential proposition 41 l.B 
existential quantifier 41 l.C 

exit 281.C 
exit boundary (of a diffusion process) 115.B 
exit boundary point 260.1 
exit time 261.B 
exogenous variable 128.C 
exotic sphere 114.B 
exp A (exponential function of matrix A) 269.H 
expansion 65.C 

asymptotic 30.A, App. A, Table 17.1 
asymptotic (of a pseudodifferential operator) 

345.A 
Cornish-Fisher 374.F 
Edgeworth 374.F 
E- 361.C 
Laurent 198.D 
method of matched asymptotic 112.B 
Minakshisundaram-Pleijel asymptotic 391.B 
orthogonal 317.A 
partial wave 375.E 386.B 
Taylor (of an analytic function of several vari- 

ables) 21.B 
Taylor (of a holomorphic function:1 339.A 
Taylor, and remainder App. A, Table 9.IV 
Taylor, formal 58.C 

expansion coefficient 3 17.A 
expansion formula, q- 134.1 
expansion method 205.B 
expansion theorem 306.B 

Hilbert-Schmidt 217.H 
Laplace (on determinants) 103.D 

expansive 126.5 
expectation 115.B 342.C 

conditional 342.E 
mathematical 341.B 

expectation value (of an operator) 351.B 
expected amount of inspection 404.C 
expected value (of a random variable) 342.C 
experiment(s) 

design of 102 
factorial 102.H 
Sk factorial 102.H 
statistical 398.G 

experimental analysis 385.A 
experimentation model 385.A 
explanatory variable 403.D 
explicit 

(difference equation in a multistep method) 
303.E 

(Runge-Kutta method) 303.D 
explicit function 165.C 
explicit method 303.E 
explicit reciprocity laws 14.R 
explicit scheme 304.F 
exploratory procedures 397.4 
exploring a response surface, designs for 102.M 
explosion, R- 126.5 
explosion time 406.D 
exponent 

(of an Abelian extension) 172.F 
(of an algebra class) 29.E 
(of a finite group) 362.G 
(of a Kummer extension) 172.F 
(of a power) 131.B 
(of a regular singular point) 254.C 
(of a stable distribution) 341.G 
characteristic (of an autonomous linear system) 

163.F 
characteristic (of the Hill differential equation) 

268.B 
characteristic (of a variational equation) 394.C 



1983 Subject Index 

External (in nonstandard analysis) 

conjugate 168.C 
of convergence 429.B 
critical 111 .C 
integral 167.D 
one-sided stable process of 5.F 
of the stable process 5.F 
subordinator of 5.F 

exponential curve 93.H 
exponential dichotomy 290.B 
exponential distribution 341.D, App. A, Table 22 

two-sided App. A, Table 22 
exponential family of distributions 396.G 
exponential formula 286.X 

double 299.B 
exponential function 131.D 

with the base a 131.B 
of an operator 306.C 

exponential generating function 177.A 
exponential group 437.U 
exponential Hilbert space 377.D 
exponential integral 167.D, App. A, Table 19.11 
exponential lattice 287.A 
exponential law (on cardinal numbers) 49.C 
exponentially decreasing Fourier hyperfunction 

125.BB 
exponentially decreasing real analytic function 

125.BB 
exponentially stable 163.G 394.B 
exponential mapping 

(of a Lie algebra into a Lie group) 249.Q 
(of a Riemannian manifold) 178.A 364.C 

exponential method, Bore1 379.0 
exponential series 131 .D 
exponential valuation 439.B 

p-adic 439.F 
exposed, strongly 443.H 
expression 

field of rational 337.H 
rational 337.H 

expx 131.D 
Ext 200.G 

exact sequence of 200.G 
Ext groups 200.G 
Ext;h(A, B) 200.K 
Ext;(M, N) 200.G 
extended Dynkin diagram App. A, Table 5.1 
extended hypergeometric function, Barnes 206.C 
extended real number 87.E 
extension 

(of a connection) 80.F 
(of a field) 149.B 
(of a fractional ideal) 14.1 
(of a group) 190.N 
(of an ideal of compact operators) 36.5 390.5 
(of an isomorphism of subfields) 149.D 
(of a mapping) 38 1 .C 
(of modules) 200.K 
(of an operator) 251.B 
(of a solution of an ordinary differential 

equation) 316.C 
(of a valuation) 439.B 
Abelian (of a field) 172.B 
algebra 200.L 
algebraic (of a field) 149.E 
Artin-Schreier (of a field) 172.F 
basic Z,- 14.L 
central (of a group) 190.N 
of the coefficient ring 29.A 
cone 65.D 
cyclic (of a field) 172.B 

cyclotomic Z,- 14.L 
elementary 276.D 
finite 149.F 
Friedrichs 112.1 251.E 
Galois 172.B 
r- 14.L 
group 200.M 
inseparable (of a field) 149.H 
Kummer (of a field) 172.F 
Lebesgue 270.D 
linear (of a rational mapping to an Abelian 

variety) 9.E 
maximal Abelian 257.F 
maximal separable (of a field) 149.H 
natural (of an endomorphism) 136.E 
normal 149.G 251.K 
p- (of a field) 59.F 
p-adic 439.F 
purely inseparable (of a field) 149.H 
Pythagorean (of a field) 155.C 
regular (of a field) 149.K 
scalar (of an algebra) 29.A 
scalar (of an A-module) 277.L 
scalar (of a linear representation) 362.F 
separable (of a field) 149.H,K 
separably generated (of a field) 149.K 
simple (of a held) 149.D 
split (of a group) 190.N 
strong (of a differential operator) 112.E,F 
transcendental 149.E 
transitive (of a permutation group) 151.H 
unramified 14.1257.D 
weak (of a differential operator) 112.E,F 
z,- 14.L 

extensionality, axiom of (in axiomatic set theory) 
33.B 

extension field 149.B 
Picard-Vessiot 113 
strongly normal 113 

extension theorem 
first (in the theory of obstructions) 305.B 
Hahn-Banach 37.F 
Hopf (in measure) 270.E 
Kolmogorov 341.1 
second (in the theory of obstructions) 305.C 
third (in the theory of obstructions) 305.C 
Tietze 425.Q 
Whitney 168.B 

extensive thermodynamical quantity 419.A 
exterior 

(of an angle) 155.B 
(of a polygon) 155.F 
(of a segment) 155.B 
(of a subset) 425.N 

exterior algebra (of a linear space) 256.0 
exterior capacity, Newtonian 48.H 
exterior derivative (of a differential form) 105.Q 
exterior differential form of degree r 105.Q 
exterior field equation 359 
exterior point (of a subset) 425.N 
exterior power, p-fold 

(of a linear space) 256.0 
(of a vector bundle) 147.F 

exterior problem (for the Dirichlet problem) 120.A 
exterior product 

(of differential forms) 105.Q 
(of elements of a linear space) 256.0 
(of a p-vector and a q-vector) 256.0 
(of two vectors) 442.C 

external (in nonstandard analysis) 293.B 



Subject Index 
External irregular point 

1984 

external irregular point 338.L 
external language 75.C 
external law of composition 409.A 
externally stable set 186.1 
external product 200.K 
external space (in the static model in catastrophe 

theory) 51.B 
external variable 264 
extinction probability 44.B 
extrapolation 176.K 223.A 
extrapolation method 

polynomial 303.F 
rational 303.F 

extremal (Jordan curve) 275.C 
extremal distance 143.8 

reduced 143.B 
extremal function, Koebe 438.C 
extremal horizontal slit mapping 367.G 
extremal length 143 

defined by Hersch and Pfluger 143.A 
with weight 143.B 

extremal quasiconformal mapping 352.C 
extremal vertical slit mapping 367.G 
extremely disconnected 37.M 
extreme point 

of a convex set 89.A 
of a subset of a linear space 424.V 

extremum 
conditional relative (of a function) 106.L 
relative (of a function) 106.L 

F 

f (cardinal number of all real-valued functions 
on [0, 11) 49.A 

F, (finite field with 4 elements) 450.4 
f-metric 136.F 
&-metric 136.F 
F-compactification 207.C 
F-distribution 341.D 374.B, App. A, Table 22 

noncentral 374.B 
F-free (compact oriented G-manifold) 431.E 
F-test 400.G 
(F, F’)-free (compact oriented G-manifold) 431.G 
F, set 270.C 
(F)-space 424.1 
face 

(of a complex) 13.R 
(of a convex cell) 7.D 
ith (of a singular q-simplex) 201 .E 
q- (of an n-simplex) 70.B 

face operator (in a semisimplicial complex) 70.E 
factor 

(of an element of a ring) 67.H 
(of a factorial experiment) 102.H 
(of a van Neumann algebra) 308.F 
of automorphy 32.A 
composition (in a composition factor series in 

a group) 190.G 
determinant (of a matrix) 269.E 
direct (of a direct product of sets) 381.E 
direct (of a group) 190.L 
Dirichlet discontinuous App. A, Table 9.V 
first (of a class number) 14.L 
integrating App. A, Table 14.1 
Krieger 308.1 
p- (of an element of a group) 362.1 
Powers 308.1 
proper (of an element of a ring) 67.H 
second (of a class number) 14.L 

Ulm (of an Abelian p-group) 2.D 
factor A-module 277.C 
factor analysis 280.G 
factor analysis model 403.C 
factor group 190.C 
factorial 330, App. A, Table 17.11 

Jordan 330 
factorial cumulant 397.G 
factorial cumulant generating function 397.G 
factorial design 102.H 

balanced fractional 102.1 
fractional 102.1 
orthogonal fractional 102.1 

factorial effect 102.H 
factorial experiment 102.H 

S’ 102.H 
factorial function 174.A 
factorial moment 397.G 
factorial moment generating functions 397.G 
factorial series 104.F 121.E 
factorization 

incomplete 302.C 
regular 251.N 
triangular 302.B 

factorization method 206.B 
factorization theorem 

(of an HP-function) 43.F 
Neyman 396.F 
unique (in an integral domain) 67 H 

factor loading 280.G 346.F 
factor representation 

of a topological group 437.E 
of type I, II, or III 437.E 

factor ring 368E,F 
factor score 280.G 346.F 
factor set(s) 

(in cohomology of groups) 200.M 
(of a crossed product) 29.D 
(in extensions of groups) 190.N 
(of a projective representation) 362.5 
associated (in extensions of groups) 190.N 

factor transformation (of a measure-preserving 
transformation) 136.D 

Faddeev-Popov ghost 132.C 150.G 
fading memory 163.1 
faithful 

(functor) 52.H 
(linear representation) 362.C 
(permutation representation) 362.8 
(weight on a von Neumann algebra) 308.D 
fully (functor) 52.H 

faithfully flat A-module 277.K 
faithfully flat morphism 16.D 
false 411.E 

regular 3Ol.C 
false position, method of 3Ol.C 
family 165.D 

algebraic (of cycles on an algebraic variety) 
16.R 

of compact complex manifolds 72.G 
of confocal central tonics 78.H 
of confocal parabolas 78.H 
of confocal quadrics 350.E 
covering 16.AA 
crystal 92.B 
directed 165.D 
equicontinuous (of mappings) 435.D 
exponential, of distributions 396.G 
of frames (on a homogeneous space) 110.A 
of frames of order 1 110.B 



1985 Subject Index 
Field(s) 

of functions 165.B,D 
of functions indexed by a set 165.B 
indexed by a set 165.D 
of mappings 165.D 
normal (of functions) 435.E 
parameter space 72.G 
of points 165.D 
of quasi-analytic functions 58.A 
quasinormal (of analytic functions) 435.E 
separating 207.C 
of sets 165.D 381.B,D 
of sets indexed by a set 381.D 
tight (of probability measures) 341.F 
uniform, of neighborhood system 436.D 

fan 16.2 
Fannes-Verbeure inequality, Roebstorff- 402.G 
FANR 382.C 
FAR 382.C 
Farey arc 4.B 
Farey dissection 4.B 
Farey sequence 4.B 
Farkas theorem, Minkowski- 255.B 
fast Fourier transform 142.D 
fast wave 259 
Fatou theorem 

on bounded functions in a disk 43.D 
on the Lebesgue integral 221.C 

favorable a priori distribution, least 398.H 
F.D. generator 136.E 
F.D. process 136.E 
feasible (flow) 281.B 
feasible directions, method of (in nonlinear 

programming) 292.E 
feasible region 264.B 292.A 
feasible solution 255.A 264.B 

basic 255.A 
feedback control 405.C 
Fefferman-Stein decomposition 168.B 
Feit-Thompson theorem (on finite groups) 151.D 
FejCr kernel 159.C 
Fejer mean 159.C 
Fejitr theorem 159.C 
Feller process 261.B 
Feller transition function 261.B 
Fermat, P. de 144 

last theorem of 145 
Fermat number 297.F 
Fermat principle 180.A 441.C 
Fermat problem 145 
Fermat theorem 297.G 
fermions 132.A 351.H 
Fermi particle 132.A 
Fermi statistics 377.8 402.E 
Ferrar formula, Dixon- App. A, Table 19.IV 
Ferrari formula App. A, Table 1 
Feynman amplitude 146.B 
Feynman diagram 146.B 
Feynman graphs 146.A,B 386.C 
Feynman integrals 146 
Feynman-Kac formula 35 1 .F 
Feynman-Kac-Nelson formula 150.F 
Feynman rule 146.A,B 
F.F. 136.F 
FFT 142.D 
fiber 

(of a fiber bundle) 147.B 
(of a fiber space) 148.B 
(of a morphism) 16.D 
geometric (of a morphism) 16.D 
integration along (of a hyperfunction) 274.E 

fiber bundle(s) 147 
associated 147.D 
of class C 147.0 
complex analytic 147.0 
equivalent 147.B 
isomorphic 147.B 
orientable 147.L 
principal 147.C 
real analytic 147.0 

tibered manifold 428.F 
fiber homotopy equivalent 237.1 

stably 237.1 
fiber homotopy type, spherical G- 431.F 
libering, Hopf 147.E 
fiber mapping (map), linear 114.D 
fiber product 52.G 
fiber space(s) 72.1 148 

algebraic 72.1 
locally trivial 148.B 
n-connective 148.D 
spectral sequence of (of singular cohomology) 

148.E 
Spivak normal 114.5 

liber sum 52.G 
fiber term (of a spectral sequence) 200.5 
Fibonacci sequence 295.A 
libration (of a topological space) 148.B 
libration, Milnor 418.D 
fictitious state 260.F 
fiducial distribution 401.F 
fiducial interval 401.F 
field(s) 149 

(of sets) 270.B 
(of stationary curves) 46.C 
absolute class 59.A 
algebraically closed 149.1 
algebraic function, in n variables 149.1 
algebraic number 14.B 
alternative 231.A 
Anosov vector 126.5 
Archimedean ordered 149.1 
asymptotic 150.D 
Axiom A vector 126.5 
basic (of a linear space) 256.A 
Bore1 270.B,C 
C,- 118.F 
C,(d)- 118.F 
canonical 377.C 
class 59.B 
coefficient (of an afline space) 7.A 
coefficient (of an algebra) 29.A 
coefficient (of a projective space) 343.C 
coefficient (of a semilocal ring) 284.D 
commutative 368.B 
composite 149.D 
conjugate 149.5 377.C 
cyclotomic 14.L 
decomposition (of a prime ideal) 14.K 
of definition (for an algebraic variety) 16.A 
differential 113 
electric 130.B 
Euclidean 150.F 
extension 149.B 
finite 149.C 
formal power series, in one variable 370.A 
of formal power series in one variable 370.A 
formally real 149.N 
free 150.A 
free Dirac 377.C 
free scalar 377.C 



Subject Index 
Field equation 

1986 

function 16.A 
Galois 149.M 
Galois theory of differential 113 
ground (of an algebra) 29.A 
ground (of a linear space) 256.A 
Hamiltonian vector 126.L 219.C 
holomorphic vector 72.A 
imaginary quadratic 347.A 
imperfect 149.H 
inertia (of a prime ideal) 14.K 
intermediate 149.D 
invariant 172.B 
Jacobi 178.A 
Lagrangian vector 126.L 
local 257.A 
local class 257.A 
local class, theory 59.G 
linearly disjoint 149.K 
magnetic 130.B 
of moduli 73.B 
Morse-Smale vector 126.5 
noncommutative 149.A 
number 149.C 
ordered 149.N 
p-adic number 257.A 439.F 
perfect 149.H 
Picard-Vessiot extension 113 
power series, in one variable 370.A 
prime 149.B 
Pythagorean 139.B 155.C 
Pythagorean ordered 60.0 
quadratic 347.A 
quasi-algebraicagy closed 118.F 
of quotients 67.G 
ramification (of a prime ideal) 14.K 
random 407.B 
of rational expressions 337.H 
rational function, in n variables 149.K 
of rational functions 337.H 
real 149.N 
real closed 149.N 
real quadratic 347.A 
relative algebraic number 14.1 
residue class 149.C 368.F 
residue class (of a valuation) 439.B 
scalar 108.0 
scalar (in a 3-dimensional Euclidean space) 
442.D 

of scalars (of a linear space) 256.A 
skew 149.A 368.B 
splitting (for an algebra) 362.F 
splitting (for an algebraic torus) 13.D 
splitting (of a polynomial) 149.G 
strongly normal extension 113 
tension 195.B 
tensor -tensor field 
topological 423.P 
totally imaginary 14.F 
totally real 14.F 
transversal 136.G 
vector (in a differentiable manifold) 108.M 
vector (in a 3-dimensional Euclidean space) 
442.D 

Wightman 150.D 
Yang-Mills 150.G 

field equation 150.B 
exterior 339.D 
interior 339.D 

field theory 150 

constructive 150.F 
Euclidean 150.F 
Markov 150.F 
nonsymmetric unified 434.C 
quantum 150.C 
unified 434 
unitary 434.C 

fifth postulate (in Euclidean geometry) 139.A 
fifth problem of Hilbert 423.N 
figure(s) 137 

absolute (in the Erlangen program) 137 
central 420.B 
equilibrium 55.D 
fundamental (in a projective space) 343.B 
linear fundamental 343.B 
P’- 343.B 

file 96.B 
filing, inverted, scheme 96.F 
fill-in 302.E 
filter 87.1 

Cauchy (on a uniform space) 436.G 
Kalman 86.E 
Kalman-Bucy 86.E 405.G 
linear 405.F 
maximal 87.1 
nonlinear 405.F,H 
Wiener 86.E 

filter base 87.1 
filtering 395.E 

stochastic 342.A 405.F 
Iiltration 200.5 

discrete 200.5 
exhaustive 200.5 

filtration bounded from below 200.5 
filtration degree 200.5 
Iinal object 52.D 
final set 

(of a correspondence) 358.B 
(of a linear operator) 251.E 

final state 31.B 
finely continuous 261.C 
finely open (set) 261.D 
Iine moduli scheme 16.W 
finer relation 135.C 
liner topology 425.H 
fine topology (on a class of measures) :!61.D 338.E 
fmitary standpoints 156.D 
finite 

(cell complex) 70.D 
(measure) 270.D 
(morphism) 16.D 
(potency) 49.A 
(simplicial complex) 70.C 
(triangulation) 70.C 
(von Neumann algebra) 308.E 
approximately 36.H 308.1 
geometrically 234.C 
hyper- 308.1 
locally -locally finite 
point- (covering) 425.R 
pro-, group 210.C 
semi- 308.1 
CT- - u-finite 
star- (covering) 425.R 

finite automaton 31.D 
finite-band potentials 387.E 
finite basis (for an ideal) 67.B 
finite branch (of a curve of class CL) 93.G 
Iinite character, condition of 34.C 



1987 Subject Index 
Fixed point 

finite cochain (of a locally finite simplicial complex) 
2Ol.P 

fjnite continued fraction 83.A 
finite covering (of a set) 425.R 
finite differences 223.C 
finite-dimensional distribution 407.A 
tinite-dimensional linear space 256.C 
finite-dimensional projective geometry 343.B 
finite-displacement theory 271.G 
finite element method 233.G 290.E 304.C 
tinite extension 149.F 
finite field 149.C 
finite field F, 149.M 
finite-gap potentials 387.E 
finite groups 151.A 19O.C 
finite intersection property 425,s 
finite interval (in R) 355.C 
finite length 277.1 
finitely additive (vector measure) 443.G 
finitely additive class 270.B 
finitely additive measure 270.D 
finitely additive set function 380.B 
finitely determined process 136.E 
finitely distinguishable (hypothesis) 400.K 
finitely equivalent sets (under a nonsingular bi- 

measurable transformation) 136.C 
finitely fixed 136.F 
finitely generated 

(A-module) 277.D 
(group) 19O.C 

finitely presented (group) 16l.A 
finite memory channel 213.F 
finiteness condition for integral extensions 284.F 
finiteness theorem 16.AA 

Ahlfors 234.D 
finite order (distribution) 125.5 
finite ordinal number 312.B 
finite part (of an integral) 125.C 
finite population 373.A 
tinite presentation 16.E 
finite prime divisor 439.H 
finite projective plane 241.B 
finite rank (bounded linear operator) 68.C 
finite sequence 165.D 
finite series 379.A, App. A, Table 10.1 
finite set 49.A 381.A 

hereditary 33.B 
finite subset property 396.F 
finite sum, orthogonality for a 19.G 317.D, App. A, 

Table 2O.VII 
finite type 

(graded module) 203.B 
(module) 277.D 
(morphism of schemes) 16.D 
(@module) 16.E 
algebraic space of 16.W 
locally of 16.D 
subshift of 126.5 

finite-type power series space 168.B 
finite-valued function 443.B 
linitistic (topological space) 431.B 
Finsler manifold 286.L 
Finsler metric 152.A 
Finsler space 152 
firmware 75.C 
first axiom, Tietze 425.4 
first boundary value problem 193.F 323.C 
first category, set of 425.N 
first classfication theorem (in theory of obstructions) 

305.B 

first complementary law of the Legendre symbol 
297.1 

first countability axiom 425.P 
first definition (of algebraic K-group) 237.5 
first extension theorem (in the theory of obstruc- 

tions) 305.B 
first factor (of a class number) 14.L 
first fundamental form (of a hypersurface) 1ll.G 
first fundamental quantities (of a surface) 1ll.H 
first fundamental theorem (Morse theory) 279.D 
first homotopy theorem (in the theory of obstruc- 

tions) 305.B 
first incompleteness theorem 185.C 
first-in first-out memory 96.E 
first-in last-out memory 96.E 
first integral (of a completely integrable system) 

428.D 
first isomorphism theorem (on topological groups) 

423.5 
first kind 

(integral equations of Fredholm type of the) 
217.A 

Abelian differential of 1l.C 
Abelian integral of 1 l.C 
differential form of 16.0 

first law of cosines 432.A, App.A, Table 2.11 
first law of thermodynamics 419.A 
first maximum principle (in potential theory) 338.C 
first mean value theorem (for the Riemann integral) 

216.B 
first negative prolongational limit set 126.D 
first-order asymptotic efficient estimator 399.0 
first-order derivatives 106.A 
first-order designs 102.M 
first-order efficient estimator 399.0 
first-order predicate 411.K 
first-order predicate logic 4ll.K 
first positive prolongational limit set 126.D 
first problem, Cousin 21.K 
first prolongation (of P) 191.E 
first quadrant (of a spectral sequence) 200.5 
first quartile 396.C 
first regular integral 126.H 
first-return mapping (map) 126.B 
first separation axiom 425.Q 
first variation 46.B 
first variation formula 178.A 
Fisher consistent 399.K 
Fisher expansions, Cornish- 374.F 
Fisher inequality 102.E 
Fisher information 399.D 
Fisher information matrix 399.D 
Fisher problem, Behrens- 400.G 
Fisher theorem 43.G 
Fisher theorem, Riesz- 168.B 317.A 
Fisher three principles 102.A 
Fisher-Yates-Terry normal score test 371.C 
Fisher z-transformation 374.D 
tisheye, Maxwell 180.A 
tit, chi-square test of goodness of 400.K 
tit, goodness of 397.Q 
fitting, curve 19.F 
live-disk theorem, Ahlfors 272.5 
fixed branch points (of an algebraic differential 

equation) 288.A 
fixed component (of a linear system) 16.N 
fixed effect 102.A 
fixed-effect model 102.A 
fixed point 

(of a discontinuous group) 122.A 



Subject Index 
Fixed-point index (of a continuous mapping) 

1988 

(of a flow) 126.D equivalent 126.B 
(of a mapping) ,153.A,D geodesic 126.L 136.G 
(of a transformation group) 431.A harmonic 193.K 
of discontinuity (of an additive process) 5.B hornentropic 205.B 
of discontinuity (of a stochastic process) 407.A horocycle 136.G 
hyperbolic 126.G hypersonic 205.C 
isolated 126.G K- 136.E 

fixed-point index (of a continuous mapping) 153.B Kolmogorov 136.E 
fixed point method 138.B Kronecker 136.G 
fixed-point theorem(s) 153 laminar 205.E 433.A 

Atiyah-Bott 153.C maximum, minimum cut theorem 281 
Atiyah-Singer 153.C maximum, problem 281 
Brouwer 153.B measurable 136.D 
Kakutani 153.D minimal 126.N 
Lefschetz 153.B minimum-cost, problem 281.C 
Leray-Schauder 286.D Morse-Smale 126.5 
Poincart-Birkoff 153.8 multicommodity, problem 281.F 
Schauder 153.D 286.D network, model 307.C 
Tikhonov 153.D network, problem 281 282.B 

fixed singularity (of an algebraic differential S- 136.D 
equation) 288.A single-commodity, problem 281:F 

fixed variates 403.D special 136.D 
fixed vector 442.A translational 126.L 136.G 
FKG 212.A transonic 205.B 
Fl (f&he) 52.A transversal 136.G 
flabby resolution 125.W turbulent 205.E 433.A 
flabby sheaf 383.E Y-, 136.G 
flag (in an aMine space) 139.B flow-shop scheduling problem 376 
flag manifold 199.B fluctuation-dissipation theorem 402.K 

proper 199.B fluid 205.A 
flat compressible 205.B 

(connection) 80.E incompressible 205.B 
(morphism of schemes) 16.D Newtonian 205.C 
(Riemannian manifold) 364.E non-Newtonian 205.C 
(sphere pair) 235.G perfect 205.B 
conformally 191 .B fluid dynamics 205.A 
E- 178.D flux 
faithfully (A-module) 277.K (of a regular tube) 193.K 
faithfully (morphism of schemes) 16.D vector (through a surface) 442.D 
locally (connection) 80.E flux density 
locally (PL embedding) 65.D electric 130.A 
locally (Riemannian manifold) 364.E magnetic 130.A 
normally (along a subscheme) 16.L focal conic (of a quadric) 350.E 

flat A-module 277.K focal length 180.B 
flat deformation 16.W focal point (of a submanifold of a Riemannian 
flat F-bundle 154.B manifold) 364.C 
flat function 58.C Fock representation 150.C 
flat point (of a surface) 11 l.H Fock space 377.A 
flat site 16.AA antisymmetric 377.A 
flat space symmetric 377.A 

concircularly App. A, Table 4.11 focus 
conformally App. A, Table 4.11 (of a conic section ellipse) 78.B 
projectively App. A, Table 4.11 (of an optimal system) 180.B 

flavor dynamics, quantum 132.D (of a quadric) 350.E 
flex 9.B Fokker-Planck partial differential equation- 115.A 
flip model, spin 340.C 402.1 
floating point method 138.B Foiag model, Sz. Nagy- 25 1 .N 
Floquet theorem 252.5 268.B folding (of a chamber complex) 13.R 
flow foliated bundle 154.B,H 

(in ergodic theory) 136.D foliated cobordant (C”-foliations) 154.H 
(on a network) 281.B foliated cobordism 154.H 
(on a topological space) 126.B foliated structure 105.Y 
Anosov 126.B 136.G foliation 154 
associated 136.F Anosov 126.5 
Axiom A 126.5 compact 154.H 
built under a function 136.D C’- 154.B,G 
C’- 126.B r,- 154.H 
of class c’ 126.B holomorphic 154.H 
continuous 126.B real analytic 154.H 
discrete 126.B Reeb 154.B 



1989 Subject Index 
Formmally self-adjoint (differential operator) 

Riemannian 154.H 
transverse to 154.H 

foliation cycles 154.H 
folium cartesii 93.H 
folium of Descartes 93.H 
foot of the perpendicular 139.E 
force 

apparent 271.D 
body 271.G 
centrifugal 271.D 
Corioli 271.D 
line of 193.5 
Lorentz 130.A 
restitutive 318.B 

forced oscillation 318.B 
force polygon 19.C 
Ford fundamental region 234.C 
forgetful functor 52.1 
form(s) 337.B 

anti-Hermitian 256.Q 
associated (of a projective variety) 16.S 
automorphic 437.DD 450.0 
automorphic, of weight k (or of dimension -k) 

32.B 
automorphic, of weight m 32.A 
basic (in linear programming) 255.A 
bilinear 256.H 277.5 424.G 
bilinear, associated with a quadratic form 
256.H 

canonical (of F(M)) 191.A 
canonical (of a linear hypothesis) 400.H 
canonical, of the equation (of a quadric) 350.B 
canonical l- (of the bundle of tangent n-frames) 
80.H 

Cantor normal 312.C 
compact (of a complex semisimple Lie algebra) 
248.P 

complex (of a Fourier series) 159.A 
complex (of a real Lie algebra) 248.P 
complex space 365.L 
connection 80.E 417.B 
contact 1lO.E 
covariant of n-ary, of degree d 226.D 
covariant with ground 226.D 
curvature 80.G 364.D 
cusp (in the case of one variable) 32.B 
cusp (in Siegel upper half-space) 32.F 
differential -differential form 
Dirichlet 261.C 
divergence 323.D 
dominant integral (on a Cartan subalgebra) 
248.W 

s-Hermitian 60.0 
e-trace 60.0 
Euclidean space 412.H 
first fundamental 11 l.G, App. A, Table 4.1 
formula of embedding 303.D 
Fuchsian, of weight k (or of dimension -k) 

32.B 
fundamental (associated with a Hermitian 
metric) 232.A 

fundamental (of a Finsler space) 152.A 
games in partition-function 173.D 
generalized Levi 274.G 
ground 226.D 
Hermitian - Hermitian form 256.Q 
Hesse normal (of a hyperplane) 139.H 
Hilbert modular, of dimension -k 32.G 
Hilbert modular, of weight k 32.G 
holomorphic k- 72.A 

hyperbolic space 412.H 
integral (on a Cartan subalgebra) 248.W 
invariants of n-ary, of degree d 226.D 
Jordan normal 269.G 
k- (of an algebraic group) 13.M 
kernel 348.F 
Khinchin canonical 341.G 
Killing 248.B 
Kolmogorov canonical 341.G 
Legendre-Jacobi standard 134.A, App. A, 
Table 16.1 

Levi 344.A 
Levy canonical 341.G 
limit of an indeterminate 106.E 
linear (on an A-module) 277.E 
linear (on a linear space) 256.B 
modular, of level N 32.C 
multilinear 256.H 
n-person 173.B-D 
norm 118.D 
normal (of an ordinal number) 312.C 
normal (of an ordinary differential equation) 
313.B 

normal (of partial differential equations) 321.B 
normal (of a partial differential equation of the 
first order) 324.E 

normal (of a surface) 410.B 
normal real (of a complex semisimple Lie 
algebra) 248.Q 

normic (in a field) 118.F 
Pfafftan 105.Q 428.A 
polar (of a complex number) 74.C 
primitive 232.C 
pseudotensorial 80.G 
quadratic -quadratic form 
real (of a complex algebraic group) 60.0 
real (of a complex Lie algebra) 248.P 
reduced (of a linear structural equation system) 

128.C 
regular Dirichlet 261.C 
second fundamental 11 l.G 365.C App. A, 
Table 4.1 

sesquilinear - sesquilinear form 
Siegel modular, of dimension -k 32.F 
Siegel modular, of weight k 32.F 
skew-Hermitian 256.4 
skew-symmetric multilinear 256.H 
space 285.E 412.H 
spherical space 412.H 
standard (of a difference equation) 104.C 
standard (of a latin square) 241.A 
symmetric multilinear 256.H 
symplectic 126.L 
tensorial 80.G 
third fundamental App. A, Table 4.1 
torsion 80.H 
Weierstrass canonical (for an elliptic curve) 
9.D 

Weierstrass canonical (of the gamma function) 
174.A 

Weyl 351.C 
formal adjoint operator 322.E 
formal degree (of a unitary representation) 437.M 
formal dimension n, Poincare pair of 114.5 
formal geometry 16.X 
formal group 13.C 
formalism 156.A,D 

Gupta-Bleuler 150.G 
formally real field 149.N 
formally self-adjoint (differential operator) 112.1 



Subject Index 
Formally undecidable proposition 

1990 

formally undecidable proposition 185.C 
formal power series 370.A 

field of, in one variable 370.A 
rings of 370.A 

formal power series field in one variable 370.A 
formal power series ring 370.A 
formal scheme 16.X 

separated 16.X 
formal solution (for a system of ordinary differential 

equations) 289.C 
formal spectrum (of a Noetherian ring) 16.X 
formal system 156.D 411.1 
formal Taylor expansion 58.C 
formal vector fields 105.AA 
formation 

class 59.H 
pattern 263.D 

formation, class 59.H 
formation rule 41 l.D 
form ring 284.D 
formula(s) 41 l.D 

Abramov 136.E 
addition (for e’) 13 l.G 
addition (for sine and cosine) 432.A 
Adem App.A, Table 6.11 
algebraic addition 3.M 
atomic 41 l.D 
atomic (of a language) 276.A 
Bayes 342.F 405.1 
Bessel interpolation App. A, Table 21 
Binet 174.A 295.A 
Bouquet (on space curves) 11 l.F 
Campbell-Hausdorff 249.R 
Cardano App. A, Table 1 
Cartan (for Steenrod pth power operations) 

64.B 
Cartan (for Steenrod square operations) 64.B 
Cauchy-Hadamard (on the radius of conver- 
gence) 339.A 

Cauchy integral 198.B 
Chebyshev (in numerical integration) 299.A 
Chern (in integral geometry) 218.D 
Christoffel-Darboux 317.D 
Clenshaw-Curtis 299.A 
closed 41 l.J 
closed (of a language) 276.A 
closed type (in numerical integration) 299.A 
connection 253.A 
constant variational 163.E 
Crofton (in integral geometry) 218.B 
decomposition, of Radon 125.CC 
De Moivre 74.C 
dimensional 116 
discontinuity 146.C 386.C 
Dixon-Ferrar App. A, Table 19.IV 
double exponential 299.B 
Dynkin 261.C 
of embedding form 303.D 
empirical 19.F 
Euler (for cos z, sin z, cash z) 131.G 
Euler (for eiy) 131.G 
Euler-Maclaurin 379.5 
Euler-Poincare (for a finite Eulidean cellular 
complex) 201.B,F 

Euler summation 295.E 
Everett App. A, Table 21 
Everett interpolation 224.B, App. A, Table 21 
exponential 286.X 
Ferrari App. A, Table 1 
Feynman-Kac 315.F,G 

Feynman-Kac-Nelson 150.G 
first variation 178.A 
Fourier inversion 160.C 
Fredholm 68.L 
Frenet (on curves) 11 l.D 
Frenet-Serret (on curves) 11 l.D 
Gauss (on Gauss sum) 295.D 
Gauss (on harmonic functions) 193.D 
Gauss (for integration of a vector field) 

App. A, Table 3.111 
Gauss (for isometric immersion) 365.C 
Gauss (in numerical integration) 299.A 
Gauss (for the surface integral) 94.F 
Gauss (in theory of surfaces) 11 l.H, App. A, 

Table 4.1 
Gauss backward interpolation 2213.C 
Gauss-Bonnet 1 ll.H 364.D, App. A, Table 4.1 
Gauss-Bonnet-Sasaki-Nitsche 275.C 
Gauss-Chebyshev (in numerical integration) 
299.A 

Gauss forward interpolation 223.C 
Gauss-Hermite (in numerical integration) 
299.A 

Gauss integration (in the narrow sense) 299.A 
Gauss interpolation App. A, Table 21 
Gauss-Laguerre (in numerical integration) 

299.A 
Green (for differential operators) App. A, 
Table 15.VI 

Green (for harmonic functions) 1’33.D 
Green (for Laplace operator) App. A, 
Tables 3.1114.11 

Green (for ordinary differential equations) 
252.K 

Green (for partial differential equations of 
parabolic type) 327.D 

Green (on the plane) 94.F 
Green-Stokes 94.F 
Hansen-Bessel App. A, Table 19.1II 
Heron (for plane triangles) App. A, Table 2.11 
Heron (for spherical triangles) App. A, 
Table 2.111 

identically true 41 l.G 
IMT 299.B 
interpolation 223.A 
interpolatory 299.A 
inversion (for a characteristic function) 341.C 
inversion (of cosine transform) 160.C 
inversion (of Fourier transform) 16O.C 
inversion (of Fourier transform of distributions) 

160.H 
inversion (of Fourier transform on a locally 
compact Abelian group) 192.K 

inversion (of generalized Fourier transform) 
220.B 

inversion (of Hilbert transform) 220.E 
inversion (of integral transform) 220.A 
inversion (of Laplace-Stieltjes transform) 

240.D 
inversion (on a locally compact group) 437.L 
inversion (of Mellin transform) 220.C 
inversion (for a semigroup of operators) 240.1 
inversion (of Stieltjes transform) 220.D 
ItB 45.G 406.B 
Jensen 198.F 
Klein-Nishina 415.G 
Kneser-Sommerfeld App. A, Table 19.111 
Kostant (on representations of compact Lie 
groups) 248.2 

Kronecker limit 450.B 



1991 Subject Index 
Fourier series 

Kubo 402.K 
Kiinneth (in an Abelian category) 200.H 
Kiinneth (in Weil cohomology) 450.4 
Lagrange (for the vector triple product) 442.C 
of a language 276.A 
lattice-point 222.B 
Lefschetz fixed-point 450.Q 
Leibniz (in differentiation) 106.D, App. A, 
Table 9.111 

Leibniz (in infinite series) App. A, Table 10.111 
Liouville 252.C 
Machin 332 
Mehler App. A, Table 19.111 
Milne-Simpson 303.E 
Mobius inversion (in combinatorics) 66.C 
Mobius inversion (in number theory) 295.C 
Nakano-Nishijima-Gell-Mann 132.A 
Newton (on interpolation) App. A, Table 21 
Newton (on symmetric functions) 337.1 
Newton backward interpolation 223.C 
Newton-Cotes (in numerical integration) 
299.A 

Newton forward interpolation 223.C 
Newton interpolation App. A, Table 21 
Nicholson App. A, Table 19.IV 
open (in numerical integration) 299.A 
Ostrogradskii 94.F 
overall approximation 303.C 
Picard-Lefschetz 418.F 
Plancherel (on a unimodular locally compact 
group) 437.L 

Plucker (on plane algebraic curves) 9.B 
Poincart (in integral geometry) 218.C 
Poisson (on Bessel functions) App. A, 
Table 19.111 

Poisson (for a flat torus) 391.5 
Poisson integral 198.B 
Poisson summation 192.C,L 
prime 411 .D 
prime (of a language) 276.A 
principal, of integral geometry 218.C 
product (for the Hilbert norm-residue symbol) 

14.R 
product (on invariant Haar measures) 225.F 
product (for the norm-residue symbol) 14.Q 
product (on valuations) 439.H 
q-expansion (on theta functions) 134.1 
recurrence, for indefinite integrals App. A, 

Table 9.11 
reduction (of a surface) 110.A 
Ricci 417.B, App. A, Table 4.11 
Riemann-Hurwitz (on coverings of a non- 
singular curve) 9.1 

Rodrigues 393.B 
SchlPfli App. A, Table. 19.111 
Schwarz-Christoffel transformation 77.D 
second variation 178.A 
set-theoretic 33.B 
Sommerfeld App. A, Table 19.111 
Sonine-Schalheitlin App. A, Table 19.111 
Steinberg (on representations of compact 

Lie groups) 248.2 
Stirling 174.A 212.C App. A, Table 17.1 
Stirling interpolation App. A, Table 21 
Stokes 94.F 
Stokes (on a Cm-manifold) 108.U 
Stokes (for integration of a vector field) 

App. A, Table 3.111 
Taylor (for a function of many variables) 

106.5 

Taylor (for a function of one variable) 106.E, 
App. A, Table 9.IV 

theoretical 19.E 
O- (on ideles) 6.F 
trace (on unitary representations) 437.DD 
transformation (for the generating function 

of the number of partitions) 328.A 
transformation (of a theta function) 3.1 
transformation (for theta series) 348.L 
Trotter product 351.F 
valid 41 l.G 
Villat integration App. A, Table 15.VI 
Wallis App. A, Table lO.VI 
Watson 39.D, App. A, Table 19.IV 
Watson-Nicholson App. A, Table 19.111 
Weber App. A, Table 19.IV 
Weber-Sonine App. A, Table 19.111 
Weierstrass-Enneper 275.A 
Weingarten (for isometric immersion) 365.C 
Weingarten (in theory of surfaces) 11 l.H, 

App. A, Table 4.1 
Weyl 323.M 
Weyl character (on representations of compact 

Lie groups) 248.2 
Weyl integral 225.1 
Weyrich App. A, Table 19.111 
Wiener 160.B 
Wu’s App. A, Table 6.V 

Forti paradox, Burali- 319.B 
forward analysis 138.C 
forward difference 304.E, App. A, Table 21 
forward emission 325.A 
forward equation, Kolmogorov 115.A 260.F 
forward interpolation formula 

Gauss 223.C 
Newton 223.C 

forward type 304.D,F 
foundation, axiom of 33.B 
foundations of geometry 155 
foundations of mathematics 156 
four arithmetic operations 294.A 
four color conjecture 186.1 
four-color problem 157 
4-current density 150.B 
four-group 151.G 
Fourier, J. B. J. 158 
Fourier analysis App. A, Table 11 
Fourier analysis on the adele group 6.F 
Fourier-Bessel series 39.D 
Fourier-Bessel transform 39.D 
Fourier coefficient 159.A, App. A, Table 11.1 

(of an almost periodic function) 18.B 
(in a Hilbert space) 197.C 
(in an orthogonal system) 317.A 

Fourier cosine series App. A, Table 11.1 
Fourier cosine transform 16O.C App. A, 

Table 11.11 
Fourier double integral theorem 160.B 
Fourier-Her-mite polynomial 176.1 
Fourier hyperfunction 125.BB 

exponentially decreasing 125.BB 
modified 125.BB 

Fourier integral 160.A 
conjugate 160.D 

Fourier integral operator 274.C 345.B 
Fourier inversion formula 160.C 
Fourier kernel 220.B 
Fourier-Laplace transform 192.F 
Fourier reciprocity 160.C 
Fourier series 159, App. A, Table 11.1 



Subject Index 

Fourier sine series 
1992 

(of an almost periodic function) 18.8 
(of a distribution) 125.P 
(in a Hilbert space) 197.C 

Fourier sine series App. A, Table 11.1 
Fourier sine transform 16O.C App. A, Table 11.11 
Fourier single integral theorem 160.C 
Fourier-Stieltjes transform 192.B,O 
Fourier theorem (on real roots of an algebraic 

equation) 10.E 
Fourier transform 160, App. A, Table 11 .I1 

(of a distribution) 125.0 
(in topological Abelian groups) 36.L 192.1 
discrete 142.D 
fast 142.D 
generalized 220.B 
inverse 125.0 

Fourier ultrahyperfunction 125.BB 
4-momentum operators 258.A,D 
fourth separation axiom 425.4 
four-vector 258.C 359.C 
four-vector, energy-momentum 258.C 
four-vertex theorem 11 l.E 
fractal 246.K 
fraction(s) 

continued 83 
partial App. A, Table 10.V 

fractional cutting algorithm 215.B 
fractional factorial design 102.1 

balanced 102.1 
orthogonal 102.1 

fractional group, linear 60.8 
fractional ideal 67.5 

of an algebraic number field 14.E 
principal 67.K 

fractional power 378.D 
fractional programming 264.D 
fractional step 304.F 
Fraenkel set theory, Zermelo- 33.A,B 
fractional transformation, linear 74.E 
frame(s) 90.B 

(of an affine space) 7.C 
(of a C”-manifold) 191.A 
(in E”) lll.B 
(of a group manifold) 1lO.A 
(in projective geometry) 343.C 
(of a real line) 355.E 
affine 7.C 
bundle of tangent r- 105.H 
Darboux 110.B 
dual 417.B 
family of (on a homogeneous space) 1lO.A 
family of, of order 1 1lO.B 
Frenet 110.A 111 .D 
Gaussian (of a surface) lll.H 
k- (in R”) 199.B 
method of moving 1lO.A 
moving 90.B 11 l.C 417.B 
natural moving 417.B 
normal 1lO.B 
of order 0 1lO.C 
of order 1 1 lO.B,C 
of order 2 11 O.B,C 
of order 3 1 lO.B,C 
of order 4 1lO.B 
orthogonal (in a Euclidean space) 1 ll.B 139.E 
orthogonal k- (in R”) 199.B 
orthogonal moving 417.D 
projective 343.C 
Stiefel manifold of k- 199.B 
stochastic moving 406.G 

tangent r- 105.H 
frame bundle 

orthogonal 364.A 
tangent orthogonal n- 364.A 
tangent r- 105.H 147.F 

framed link 114.L 
framing 114.L 
Frechet axiom 425.4 
Frechet curve 246.A 
Frechet derivative 286.E 
Frechet differentiable function 286.E 
Frechet differential 286.E 
Frechet distance (between surfaces) 246.1 
Frechet L-space 87.K 
Frechet manifold 286.K 
Frechet space 

(quasinormed space) 37.0 
(topological linear space) 424.1 
(topological space) 425.CC 
locally convex 424.1 
in the sense of Banach 37.0 
in the sense of Bourbaki 424.1 

Frtchet surface 246.1 
Frechet-Uryson space 425.CC 
Fredholm alternative theorem 68.E 217.F 
Fredholm determinant 217.E 
Fredholm first minor 217.E 
Fredholm formula 68.L 
Fredholm integral equation 217.A 

of the first kind 217.A 
of the second kind 217.A 
of the third kind 217.A 

Fredholm mapping 286.E 
Fredholm operator 68.F 251.D 

(in the sense of Grothendieck) 68.:K 
Fredholm rth minor 217.E 
Fredholm type 

integral equation of 217.A 
integrodifferential equation of 222.A 

free 
(discontinuous group) 122.A 
distribution- 371.A 
F- (oriented G-manifold) 431.E 
(F, F’)- (oriented G-manifold) 431.E 

free Abelian group 2.C 
free additive group 2.E 
free derivative 235.C 
free Dirac field 377.C 
freedom 

asymptotic 361.B 
degrees of (of a dynamical system) 271.F 
n degrees of (sampling distribution) 374.B,C 

free energy 340.B 402.G 
Gibbs 419.C 
Helmholtz 419.C 
mean 340.B 402.G 

free fields 150.A 
free grammar, context- 31.D 
free groups 161 
free Hamiltonian 351.D 
free homotopy 202.B 
free Lagrangian density 150.B 
freely act 122.A 431.A 
free module 277.G 
free product (of groups) 190.M 
free scalar field 377.C 
free semigroup 161.A 
free special Jordan algebra 231.A 
free vacuum vector 1.50.C 
free variable 41 l.C 



1993 Subject Index 
Function(s) 

free vector 442.A 
French empiricism 156.C 
Frenet formula 11 l.D 
Frenet frame 110.A 11 l.D 
Frenet-Serret formulas (on curves) 11 l.D, 

App. A, Table 4.1 
frequency 

(of an oscillation) 318.A 
(of samples) 396.C 397.B 
(of a translational flow) 126.L 136.G 
(of a wave) 446 
angular (of a wave) 446 
circular (of a simple harmonic motion) 318.B 
relative (of samples) 396.C 

frequency distribution 397.B 
frequency function 397.D 
frequency response function 421.E 
Fresnel integral 167.D, App. A, Tables 9.V 19.11 
Freudenthal theorem 202.U 
Friedrichs extension 112.1 251.1 
Friedrichs scheme 304.F 
Friedrichs theorem 323.H 326.D 
frieze group 92.F 
Frobenius algebra 29.H 

quasi- 29.H 
Frobenius automorphism (of a prime ideal) 14.K 
Frobenius group 15 1 .H 
Frobenius integrability condition 154.B 
Frobenius method App. A, Table 14.1 
Frobenius morphism 450.P 
Frobenius substitution (of a prime ideal) 14.K 
Frobenius theorem 

(on Abelian varieties) 3.D 
(on matrices with nonnegative entries) 269.N 
(on polynomials of a matrix) 390.B 
(on representations of finite groups) 362.G 
(on total differential equations and on foliations) 

154.B 286.H 428.D 
Frobenius theorem, Perron- 310.H 
Froissart bound 386.B 
Froissart-Martin bound 386.B 
frontier point (of a subset) 425.N 
front set, analytic wave 274.D 
front set, wave 274.B 345.A 
Frostman maximum principle 338.C 
Froude number 116.B 
Fubini theorem 221.E 
Fuchsian form of weight k (or of dimension -k) 

32.B 
Fuchsian function 32.B 
Fuchsian group 122.C 

of the first kind 122.C 
of the second kind 122.C 

Fuchsian relation 253.A, App. A, Table 18.1 
Fuchsian type (visibility manifold) 178.F 
Fuchsian type, equation of 253.A 
Fuchsoid group 122.C 
Fuks cohomology, Gel’fand- 105.AA 
full discrete approximation 304.B 
full embedding theorem (of an Abelian category) 

52.N 
full group 136.F 258.A 
full homogeneous Lorentz group 258.A 
full inhomogeneous Lorentz group 258.A 
full international notation 92.E 
full linear group 60.B 
full matrix algebra 269.B 
full Poincare group 258.A 
full subcategory 52.A 
fully complete (locally convex space) 424.Y 

fully faithful functor 52.H 
fully normal space 425.X 
fully transitive 92.C 
Fulton and Hansen, general connectedness theorem 

of 16.1 
function(s) 165 381.C 

Abelian 3.5 
absolutely integrable 214.E 
additive interval 380.B 
additive set 380.C 
admissible 46.A 304.B 
Ahlfors 43.G 77.E 
algebraic 1 l.A 
almost periodic 18 
almost periodic, on a group 18.C 
almost periodic, with respect to p 18.C 
almost periodic, in the sense of Bohr 18.B 
a-excessive 261.D 
alternating 337.1 
amplitude (of a Fourier integral operator) 

274.C 345.B 
analytic -analytic function(s) 
analytic almost periodic 18.D 
analytic operator 37.K 
Anger 39.G, App. A, Table 19.IV 
Appell hypergeometric, of two variables 

206.D, App. A, Table 18.1 
argument 46.A 
arithmetic 295.A 
Artin-Hasse 257.H 
associated Legendre 383.C App. A, 

Table 18.111 
asymptotically developable 30.A 
automorphic 32 
automorphic, with respect to I 32.A 
b- 125.EE 418.H 
%-measurable 270.5 
Baire 84.D 
Barnes extended hypergeometric 206.C, 
App. A, Table 18.1 

base 304.B 
Bellman 127.G 
Bergman kernel 188.G 
Bessel 39, App. A, Table 19.111 
beta 174.C App. A, Table 17.1 
bispectral density 421.C 
Bore1 measurable 270.5 
boundary 160.E 
bounded 43.A 
of bounded variation 166 
Busemann 178.F 
Cm- (of many variables) 58.B 
Cm-, slowly increasing 125.0 
c’-, in a Cm-manifold 105.G 
canonical (on a nonsingular curve) 9.E 
characteristic (of a density function) 397.G 
characteristic (of a graded R-module) 369.F 
characteristic (of a meromorphic function) 
272.B 

characteristic (of an n-person cooperative game) 
173.D 

characteristic (for an optical system) 180.C 
characteristic (of a probability measure) 341.C 
characteristic (of a subset) 381.C 
characteristic operator 251.N 
Chebyshev App. A, Table 20.11 
Chebyshev q- 19.G, App. A, Table 2O.VII 
choice 33.B 34.A 
circular 131.F 432.A 
class (on a compact group) 69.B 



Subject hdex 
Function(s) 

1994 

of class C”, Co, Cl, C”, or C” 106.K 
of class C’ at a point 105.G 
of class C’ in a P-manifold 105.G 
of class C” (of many variables) 58.B 
of class n, 0, 1, 5, or w 84.D 
cn App. A, Table 16.111 
completely additive set 380.C 
completely monotonic 240.E,K 
completely multiplicative number-theoretic 
295.B 

complex 165.B 
complex-valued 165.B 
composite 106.1 
concave 88.A 
of confluent type 167 
of confluent type and Bessel functions APP. A, 

Table 19 
conical App. A, Table 18.11 
conjugate 159.E 160.D 
conjugate harmonic 193.C 
constant 381.C 
continuous (on a metric space) 84 
continuous additive interval 380.B 
convex 88.A 
coordinate (of a fiber bundle) 147.B 
coordinate (in the Ritz method) 304.B 
cosigma 134.H, App. A, Table 16.IV 
counting (of a meromorphic function) 272.B 
covariance 386.A 395.A 
criterion 127.A 
cross spectral density 421.E 
cumulative distribution 341.B 342.C 
cylindrical 39.B, App. A, Table 19.111 

Daniell-Stone integrable 3lO.E 
decision 398.A 
decision, space of 398.A 
Dedekind eta 328.A 
Dedekind zeta 14.C 450.D 
defining (of a hyperfunction) 125.V 
density 397.D 
derived 106.A 
digamma 174.B 
dimension (on a continuous geometry) 85.A 
D-integrable 1OO.D 
Dirac delta App. A, Table 12.11 
Dirichlet 84.D 221.A 
distance 273.B 
distribution 168.B 341.8 342.C 
divisor 295.C 
divisor of (on an algebraic curve) 9.C 
divisor of (on an algebraic variety) 16.M 
dn App. A, Table 16.111 
doubly periodic 134.E 
E- 430.D 
8- 46.C 
effectively calculable 356.C 
eigen- (of a boundary value problem) 315.B 
eigen- (for an integral equation) 271.F 
eigen- (of a linear operator) 390.A 
elementary 131 
elementary, ofclass n 131.A 
elementary Abelian 3.M 
elliptic 134 323.A,D 
elliptic, of the first kind 134.G 
elliptic, of the second kind 134.G 
elliptic, of the third kind 134.H 
elliptic cylinder 268.B 
elliptic irrational 134.A 
elliptic theta 134.1, App. A, Table 16.11 
empirical characteristic 396.C 

empirical distribution 250.F 374.E 396.C 
energy 126.L 279.F 
energy spectrum 433.C 
entire 429.A 
entire algebroidal 17.B 
envelope power 400.F 
error 167.D, App. A, Table 19.11 
estimating 399.D 
q- 391.L 
Euler 295.C 
even 165.B 
explicit 165.C 
exponential 131.D 
exponential, with the base a 131.8 

exponential, of an operator 306.C 
exponential generating 177.A 
factorial 174.A 
family of quasi-analytic 58.A 
Feller transition 261.B 
finitely additive set 380.B 
finite-valued 443.B 
flat 58.C 
Frechet differentiable 286.E 
frequency 397.D 
frequency response 421.E 
Fuchsian 32.B 
gamma 150.D 174, App. A, Table 17.1 
Gel’fand-Shilov generalized 125,s 
generalized 125,s 
generalized divisor 295.C 
generalized rational 142.B 
general Mathieu 268.B 
general recursive 356.C,F 
generating (of an arithmetic function) 295.E 
generating (of a contact transformation) 

82.A 271.F 
generating (of a sequence of functions) 

177.A 
of Gevrey class 168.B 
global implicit, theorem 208.D 
grand partition 402.D 
Green 188.A 189.B 
Green (a-order) 45.D 
Green (of a boundary value problem) 315.B 
Green, method 402.5 
Gudermann 131.F, App. A, Table 16.111 
half-Bessel 39.B 
Hamiltonian 219.C 271.F 
Hankel 39.B, App. A, Table 19.III 
harmonic 193 
harmonic kernel 188.H 
hazard 397.0 
Heaviside 125.E 306.B, App. A, Table 12.11 
Hey zeta 27.F 
higher transcendental 289.A 
Hilbert characteristic (of a coheren: sheaf on 

a projective variety) 16.E 
Hilbert modular 32.G 
Hill 268.E 
holomorphic 198 
holomorphic (of many variables) 21.C 
holomorphic (on an open set in a complex 

manifold) 72.A 
holomorphic, germ of 21.E 
hyper- 125.V 
hyperarithmetical 356.H 
hyperbolic 13l.F 
hypergeometric 206.A, App. A, Table 18.1 
hypergeometric (of the hyperspheri’cal dif- 

ferential equation) 393.E 



1995 Subject Index 

Function(s) 

hypergeometric, of confluent type 167.A, 
App. A, Table 19.1 

hypergeometric, with matrix argument 206.E 
identity 381.C 
implicit 165.C 208 
implicit, theorem 208.A 286.G 
implicit, theorem (in Banach algebra) 36.M 
implicit, theorem (in locally convex spaces) 
286.5 

impulse 306.B, App. A, Table 12.11 
incomplete beta 174.C App. A, Table 17.1 
incomplete gamma 174.A, App. A, Table 17.1 
increment 380.B 
indicator (of a subset) 342.E 376.C 
inner 43.F 
integral 429.A 
integral of, with respect to a volume element 
(on a C”‘-manifold) 105.W 

interpolation 223.A 
interval 380.A 
invariant decision 398.E 
inverse 198.L 381.C 
inverse analytic 198.L 
inverse trigonometric 131.E 
Jacobi elliptic App. A, Table 16.111 
joint density 397.5 
Julia exceptional 272.F 
jump 306.C 
K-pseudoanalytic 352.B 
K-quasiregular 352.B 
k-valued algebroidal 17.A 
Kelvin 39.G, App. A, Table 19.IV 
kernel 188.G 
Koebe extremal 438.C 
Kummer 167.A, App. A, Table 19.1 
L- - L-function 
Lagrangian 271.F 292.A 
Laguerre App. A, Table 2O.VI 
I- 32.C 
Lame, of the first kind 133.B 
Lame, of the lirst species 133.C 
Lame, of the fourth species 133.C 
Lame, of the second kind 133.C 
Lame, of the second species 133.C 
Lame, of the third species 133.C 
Lane-Emden 291.F 
Laplace spherical 393.A 
Lebesgue measurable 270.5 
Legendre 393.B, App. A, Table 18.11 
likelihood 374.5 399.M 
likelihood estimating 399.M 
linear 74.E 
linear discriminant 280.1 
linear fractional 74.E 
linear regression 397.H,J 403.D 
locally integrable 168.B 
logarithmic, to the base a 131.B 
loss 398.A 
lower limit 84.C 
lower semicontinuous (in a set) 84.C 
Lyapunov 126.F 163.G 
major 100.F 
Mangoldt 123.B 
many-valued 165.B 
of many variables 165.C 
Mathieu 268 
Mathieu, of the first kind 268.B 
Mathieu, of the second kind 268.D 
maximal concentration 341.E 
mean concentration 341.E 

measurable 270.5 
measurable vector 308.G 
meromorphic 21.5 272 
meromorphic (on an analytic space) 23.D 
meromorphic (on a complex manifold) 72.A 
minimax decision 398.B 
minor 100.F 
Mobius 66.C 295.C 
modified Bessel 39.G, App. A, Table 19.IV 
modified indicator 341.C 
modified Mathieu 268.A 
modified Mathieu, of the first kind 268.D 
modified Mathieu, of the second kind 268.D 
modified Mathieu, of the third kind 268.D 
modular (of a locally compact group) 225.D 
modular, of level N 32.C 
moment-generating 177.A 341.C 
monotone 166.A 
monotone decreasing 166.A 
monotone increasing 166.A 
monotonic 166.A 
Morse 279.B 
of at most class 1 84.D 
p-conformal 352.B 
multidimensional gamma 374.C 
multiplicative 32.A 
multiplicative automorphic 32.A 
multiplicity (of a mapping) 246.G 
multivalent 438 
multivalued 165.B 
Nash-Moser implicit, theorem 286.J 
n-dimensional distribution 342.C 
nth derived 106.D 
n-times continuously differentiable 106.K 
n-times differentiable 106.D 
of n variables 165.C 
nice (on a Cm-manifold) 114.F 
nondecreasing 166.A 
nondegenerate theta 3.1 
nonincreasing 166.A 
nontangential maximal 168.B 
normal (of ordinal numbers) 312.C 
normal density 397.D 
null 310.1 
number-theoretic 295.A 356.A 
objective 264.B 307.C 
odd 165.B 
operating 192.N 
order (of a meromorphic function) 272.B 
orthogonal 317, App. A, Table 20 
orthogonal, Haar system of 3 17.C 
orthogonal, Rademacher system of 317.C 
orthogonal, Walsh system of 317.C 
outer 43.F 
P-, of Riemann 253.B 
@-, of Weierstrass 134.F, App. A, Table 16.IV 
Painlevi: transcendental 288.C 
parabolic cylinder 167.C 
parametric 102.A 399.A 
partial 356.E 
partition 402.D 
payoff 173.B 
pentagamma 174.B 
periodic 134.E 
phase (of a Fourier integral operator) 274.C 

345.B 
piecewise continuous 84.B 
plurisubharmonic 21.G 
point 380.A 
polygamma 174.B, App. A, Table 17.1 



Subject Index 
Function(s) 

1996 

positive real 282.C 
of positive type 192.B,J 
power 400.A 
primitive 216.C 
primitive, derivatives and App. A, Table 9.1 
primitive recursive 356,A,B,F 
probability generating 341.F 
proper (of a boundary value problem) 315.B 
proper convex 88.D 
propositional 41 l.C 
proximity (of a meromorphic function) 272.B 
pseudo- 125.C 
psi 174.B 
quadratic loss 398.A 399.E 
quasi-analytic 58.F 
quasi-analytic, family of 58.A 
quasi-analytic, set of 58.F 
quasicontinuous 338.1 
radial maximal 168.B 
rank 66.F 
rapidly decreasing Cm- 168.B 
rate distortion 213.E 
rational, field of 337.H 
rational, on a variety 16.A 
rational entire 429.A 
real 165.B 
real analytic 106.K 198.H 
real-valued 165.B 
recursive -recursive function(s) 
regression 397.1 
regular 198 
regular, on an open set (of a variety) 16.B 
regular, at a subvariety 16.B 
representative (of a compact Lie group) 249.U 
representing (of a predicate) 356.B 
representing (of a subset) 381.C 
reproduction 263.A 
Riemann (of a Cauchy problem) 325.D 
Riemann integrable 216.A 
Riemann P App. A, Tables 14.1 18.1 
Riemann theta 3.L 
Riemann i- 450.B 
right continuous 84.B 
right majorizing 316.E 
right superior 316~ 
risk 398.A 
sample 407.A 
sample covariance 395.G 
with scattered zeros 208.C 
schlicht 438.A 
Schwinger 150.F 
selection 354.E 
self-reciprocal 220.B 
semicontinuous (at a point) 84.C 
sequential decision 398.F 
set 380 
of several variables 106&J 
shape 223.G 
Siegel modular, of degree n 32.F 
o-, of Weierstrass 134.F, App. A, Table 16.IV 
simple 221.B 443.B 
simple loss 398.A 
simplest Chebyshev q- 19.G 
simply periodic 134.E 
single-valued 165.B 
singular inner function 43.F 
slope 46.C 
sn App. A, Table 16.111 
special App. A, Table 14.11 
spec:ial, of confluent type 389.A 

special, of ellipsoidal type 389.A 
special, of hypergeometric type X39.A 
spherical (on a homogeneous space) 437.~ 
spherical Bessel 39.B 
spherical harmonic 193.C 
spheroidal wave 133.E 
standard defining 125.2 
stationary 46.B 
statistical decision 398.A 
stream 205.B 
strictly concave 88.A 
strictly convex 88.A 
strictly decreasing 166.A 
strictly increasing 166.A 
strictly monotone 166.A 
strictly monotone (of ordinal numbers) 312.C 
strictly monotone decreasing 166.A 
strictly monotone increasing 16CI.A 
strictly monotonic 166.A 
structure 191.C 
Struve 39.G, App. A, Table 19.IV 
subharmonic 193.A 
superharmonic 193.P 
supporting 125.0 
symmetric 337.1 
SzegB kernel 188.H 
T- 150.D 
test 130.DD 400.A 
tetragamma 174.B 
Theodorsen 39.E 
theory of 198.Q 
theory of, of a complex variable 198.4 
theta 134.1 
theta (on a complex torus) 3.1 
time ordered 150.D 
torus App. A, Table 18.111 
transcendental, of Painlevk 288.C 
transcendental entire 429.A 
transcendental meromorphic 272.A 
transfer 86.D 
tra’nsfinite logical choice 411.J 
transition (of a fiber bundle) 147 B 
transition (of a Markov chain) 2~50.A 261.B 
trigamma 174.B 
trigonometric 432.A, App. A, Table 2 
truncated Wightman 150.D 
truth 341.A 411.E 
ultradifferentiable 168.B 
uniformly almost periodic 18.B 
unit 306.B, App. A, Table 12.11 
universally measurable 270.L 
upper limit 84.C 
upper semicontinuous 84.C 
value 108.B 
on a variety 16.A 
von Neumann 39.B 188.H, App. A, 
Table 19.111 

Wagner 39.E 
wave 351.D 
Weber 39.G 167.C, App. A, Tables 19.IV, 2O.IV 
Weierstrass elliptic App. A, Table 16.IV 
Weierstrass @- 134.F, App. A, Table 16.IV 
Weierstrass sigma 134.F, App. A, Table 16.IV 
weight (interpolatory) 299.A 
weight (for the mean of a function1 21 l.C 
weight (in orthogonality) 317.A 
Whittaker 167.B, App. A, Table 19.11 
Wightman 150.D 
X-valued holomorphic 251.G 
zeta -zeta functions 



1997 Subject Index 
Fundamental period parallelogram 

zonal spherical (on a homogeneous space) 
431.Y 

functional 46.A 162 165.B 
additive (of a Markov process) 261.E 
algebraic linear 424.B 
analytic 168.C 
area1 334.B 
bilinear 424.G 
Brownian 176.1 
characteristic (of a probability distribution) 

407.c 
Dirichlet 334.C 
Douglas 334.C 
linear 37.C 197.F 424.B 
martingale additive 261.E 
multiplicative (of a Markov process) 261.E 
multiplicative, transformation by (in Markov 

process) 261.F 
perfect additive 261.E 
subadditive 88.8 
supporting (of a convex set) 89.G 
Yang-Mills S0.Q 

functional analysis 162 
functional analysis, nonlinear 286 
functional cohomology operation 202,s 
functional-differential equation 163 

system of 163.E 
functional equation 

Abel 388.D 
approximate (of zeta function) 450.B 
Schroder 388.D 
special 388.A 
of zeta function 450.B 

function algebra 164.A 
functionally dependent (components of mapping) 

208.C 
of class C’ 208.C 

functional model 251.N 
functional paper 19.D 
functional @-operation 202,s 
functional relation 208.C 

of class C’ 208.C 
of gamma function 174.A 

function element 198.1 339.A 
inverse 198.L 
in the wider sense 198.0 

function field 
(of an algebraic curve over a field) 9.C 
(of an algebraic variety) 16.A 
Abelian 3.5 
algebraic, over k of dimension 1 9.D 
algebraic, over k of transcendence degree 1 

9.D 
algebraic, in n variables 149.K 
elliptic 9.D 
rational, in n variables 149.K 

function group 234.A 
function matrix 

rational 86.D 
transfer 86.B 

functions on a variety 16.A 
function space(s) 168 435.D 

test 125,s 
function symbol 411.H 
function-theoretic null sets 169 
function variable 41 l.H 
functor 52.H 

a- 200.1 
ii*- 200.1 
additive 52.N 

adjoint 52.K 
cohomological 200.1 
connected sequences of 200.1 
contravariant 52.H 
covariant 52.H 
derived 200.1 
exact 52.N 200.1 
faithful 52.H 
forgetful 52.1 
fully faithful 52.H 
half-exact 200.1 
homological 200.1 
left adjoint 52.K 
left balanced 200.1 
left derived 200.1,Q 
left exact 200.1 
partial derived 200.1 
relative derived 200.K 
representable 53.L 
right adjoint 52.K 
right balanced 200.1 
right derived 200&Q 
right exact 200.1 
spectral 200.5 
universal % 200.1 

functorial isomorphism 53.5 
functorial morphism 53.5 
fundamental absolute neighborhood retract (FANR) 

382.C 
fundamental absolute retract (FAR) 382.C 
fundamental cell (of a symmetric Riemann space) 

413.F 
fundamental class 

(of an Eilenberg-MacLane space) 70.F 
(of a Poincare pair) 114.5 
(of a Thorn complex) 114.G 
with coefftcient 2, 65.B 

fundamental conjecture (in topology) 70.C 
fundamental curve (with respect to a birational 

mapping) 16.1 
fundamental cutset matrix 186.G 
fundamental cycle 

(of an oriented pseudomanifold) 65.B 
(in a resolution of a singularity) 418.C 

fundamental differential invariants (of a surface) 
110.B 

fundamental discriminant 295.D 
fundamental domain 234.C 
fundamental exact sequence 200.M 
fundamental figure(s) 343.B 

linear 343.B 
fundamental form 

(associated with a Hermitian metric) 232.A 
(of a Finsler space) 152.A 
first 11 l.G, App. A, Table 4.1 
second 11 l.G 360.G 365.C 

fundamental group 170 
algebraic 16.U 

fundamental homology class 201.N 
around K 201.N 

fundamental invariants (of a space with a Lie trans- 
formation group) 110.A 

fundamental kernel 320.H 
fundamental lemma 

in the calculus of variations 46.B 
Neyman-Pearson 400.B 

fundamental open set 122.B 
fundamental operator 163.H 
fundamental period (of a periodic function) 134.E 
fundamental period parallelogram 134.E 



Subject Index 
Fundamental point 

1998 

fundamental point 
(with respect to a birational mapping) 16.1 
(of a projective space) 343.C 

fundamental quantities 
first 111.H 
second 111 .H 

fundamental region (of a discrete transformation 
group) 122.B 

Ford 234.C 
fundamental relations 

(of gamma functions) 174.A 
(among the generators of a group) 161.A 
(in thermodynamics) 419.A 

fundamental retract 382.C 
fundamental root system (of a semisimple Lie 

algebra) 248.N 
fundamental sequence 

of cross cuts (in a simply connected domain) 
333.B 

of rational numbers 294.E 
of real numbers 355.B 
in a uniform space 436.G 

fundamental set (of a transformation group) 122.B 
fundamental solution(s) 

(of a differential operator) 112.B 189.C 
(of an elliptic equation) 323.B 
(of an evolution equation) 189.C 
(of a hyperbolic equation) 325.D 
(of a parabolic equation) 327.D 
(of a partial differential equation) 320.H 
system of (of a system of linear equations) 

269.M 
fundamental space 12% 
fundamental subvariety (with respect to a birational 

mapping) 16.1 
fundamental system 

(of eigenfunctions to an eigenvalue for 
an integral equation) 217.F 

(for a linear difference equation) 104.D 
(of a root system) 13.5 
of irreducible representations (of a complex 
semisimple Lie algebra) 248.W 

of neighborhoods 425.E 
of solutions (of a homogeneous linear ordinary 
differential equation) 252.B 

of solutions (of a homogeneous system of linear 
differential equations of the first order) 252.H 

fundamental tensor(s) 
(of a Finsler space) 152.A 
(of a Riemannian manifold) 364.A 
Lie 413.G 
second 417.F 

fundamental theorem(s) 
of algebra 10.E 
Bonnet (on surfaces) 11 l.H 
of calculus 216.C 
of elementary number theory 297.C 
the first (of Morse theory) 279.D 
Gentzen 411.5 
Nevanlinna first 272.B 
Nevanlinna second 272.E 
of the principal order D 14.C 
of projective algebraic varieties 72.F 
of projective geometry 343.D 
of proper mapping 16.X 
the second (of Morse theory) 279.D 
of Stein manifolds 21.L 72.E 
on symmetric polynomials 337.1 
of the theory of curves 11 l.D 
of the theory of surfaces 11 l.G 

Thorn 114.H 
of the topology of surfaces 410.B 
of ultraproducts 276.E 

fundamental tieset matrix 186.G 
fundamental unit 414.A 116 
fundamental units (of an algebraic number field) 

14.D 
fundamental vector field 191.A 
fundamental vectors (in a vector space) 442.A 
future cone 258.A 

G 

Y -gamma 
GL(n, k) (general linear group) 60.B 
y-matrices, Dirac 415.G 
y-perfect 186.5 
y-perfectness 186.5 
y-point of the kth order (of a holomorphic 

198.C 
I-equivalent (points) 122.A 
I-extension 14.L 
I,-foliation 154.H 
I-structure 90.D 105.Y 
I,-structure 154.H 
I;-structure 154.E 
g-lattice (of a separable algebra) 27.A 

integral 27.A 
normal 27.A 

G-bundle 147.B 
G-connections, Yang-Mills 80.4 
G-fiber homotopy type, spherical 431.F 
G-group 172.J 
G-invariant 

(element) 226.A 
(statistics) 396.1 
almost 396.1 

G-invariant measure 225.B 
G-isomorphism 191.A 
G-manifold 431.C 

oriented 431.E 
G-mapping (G-map) 362.B 431.A 
G-set 

k-ply transitive 362.B 
left 362.B 
quotient 362.B 
right 362.B 
simply transitive 362.B 
sub- 362.B 

G-space 178.H 431.A 
with nonpositive curvature 178.1~ 

G-stationary 
strictly 395.1 
weakly 395.1 

G-structure 191 
G-subset 362.B 
G-surface 178.H 
G-vector bundle 237.H 
G,-set 270.C 
gain, heat 419.A 
Galerkin method 290.E 303.1 304.B 
Galilei transformation 359.C 
Galois, E. 171 
Galois cohomology 172.5 200.N 
Galois equation 172.G 
Galois extension (of a held) 172.B 
Galois field 149.M 
Galois group 

of an algebraic equation 172.G 
of a Galois extension 172.B 



1999 Subject Index 
Gel’fand-Pettis integrable 

of a polynomial 172.G (in numerical integration) 299.A 
Galois theory 172 (for the surface integral) 94.F 

of differential tields 113 (in theory of surfaces) 11 l.H, App. A, Table 4.1 
Galton-Watson process 44.B Gauss forward interpolation formula 223.C 

multi +)-type 44.C Gauss-Hermite formula (in numerical integration) 
game 299.A 

bimatrix 173.C Gauss hypergeometric differential equation 
constant-sum 173.A App. A, Table 14.11 
cooperative 173.A Gaussian 
differential 108 (system of random variables) 176.A 
general-sum 173.A complex 176.B 
with infinitely many players 173.D Gaussian curvature 
matrix 173.C (of a surface) 11 l.H, App. A, Table 4.1 
multistage 173.C total (of a surface) 1ll.H 
noncooperative 173.A Gaussian differential equation 206.A 
n-person, in extensive form 173.B Gaussian distribution 341.D 
n-person, in normal form 173.C standard 176.A 
n-person cooperative, in characteristic- Gaussian elimination 302.B 

function form 173.D Gaussian frame (of a surface) 1ll.H 
in partition-function form 173.D Gaussian integer 14.U 
without side payments 173.D Gaussian plane 74.C 
zero-sum 173.A Gaussian process 176 342.A 
zero-sum two-person 108.B complex 176.C 

game-theoretic model 307.C N-ple Markov 176.F 
game theory 173 N-ple Markov, in the restricted sense 176.F 
gamma density 397.D stationary 176.C 
gamma distribution 34l.D, App. A, Table 22 Gaussian random field 
gamma function 150.D 174, App. A, Table 17.1 Markov, in the McKean sense 176.F 

incomplete 174.A, App. A, Table 17.1 Markov, in the Nelson sense 176.F 
multidimensional 374.C Gaussian random measure 407.D 

gamma function and related functions App. A, Gaussian random variable, complex 176.B 
Table 17 Gaussian source, autoregressive 213.E 

gap (at a point) 84.B Gaussian sum 295.D 450.C 
gap theorem 339.D local 450.F 

Hadamard 339.D Gaussian system 
gap value (of a point on a Riemann surface) 1l.D (of random variables) 176.A 
Carding, hyperbolic in the sense of 325.F complex 176.B 
Carding inequality 112.G 323.H Gaussian white noise 407.C 
Garnier system 253.E Gauss integral 338.5 
Garside-Jarratt-Mack method 301.N Gauss integration formula (in the narrow sense) 
gases, kinetic theory of 402.B 299.A 
Glteaux derivative 286.E Gauss interpolation formula App. A, Table 21 
GLteaux differentiable 286.E Gauss-Jordan elimination 302.B 
gauge theory 105.G Gauss kernel 327.D 

lattice 150.G Gauss-Laguerre formula (in numerical integration) 
gauge transformation 299.A 

(in electromagnetism) 130.A Gauss-Manin connection (of a variety) 16.V 
(in a lattice spin system) 402.G Gauss mapping (in geometric optics) 180.B 
(of a principal fiber bundle) S0.Q Gauss-Markov theorem 403.E 
(in unified field theory) 434.B Gauss-Seidel method 302.C 
of the first kind 150.B Gauss series 206.A 

Gauss, C. F. 175 Gauss symbol 83.A 
Gauss-Argand plane 74.C Gauss theorem 
Gauss backward interpolation formula 223.C (on algebraic closedness of C) 10.E 
Gauss-Bonnet formula 11 l.H 364.D, App. A, (on primitive polynomials) 337.D 

Table 4.1 Gauss theorema egregium (on surfaces) 1ll.H 
Gauss-Bonnet-Sasaki-Nitsche formula 275.C Gauss transformation App. A, Table 16.111 
Gauss-Chebyshev formula (in numerical integration) Gauss variational problem 338.5 

299.A G.C.D. (greatest common divisor) 67.H 297.A 
Gauss circle problem 242.A GCR algebra 36.H 
Gauss criterion App. A, Table 10.11 Gegenbauer polynomials 317.D 393.E, App. A, 
Gauss equation Table 20.1 

(on an isometric immersion) 365.C Gel’fand-Fuks cohomology 105.AA 
(on surfaces) 1ll.H Gel’fand integrable 443.F 

Gauss formula Gel’fand-Levitan-Marchenko equation 
(on Gauss sum) 295.D (for KdV equations) 387.D 
(on harmonic functions) 193.D (for nonlinear lattice) 287.C 
(for integration of a vector field) App. A, Gel’fand-Mazur theorem 36.E 

Table 3.111 ~ Gel’fand-Naimark theorem 36.G 
(for isometric immersion) 365.C Gel’fand-Pettis integrable 443.F 



Subject Index 
Gel’fand-Pettis integral 

2000 

Gel’fand-Pettis integral 443.F 
Gel’fand-Pyatetskii-Shapiro reciprocity law 

437.DD 
Gel’fand representation (of a commutative Banach 

algebra) 36.E 
Gel’fand-Shilov generalized function 125,s 
Gel’fand theorem, Stone- 168.B 
Gel’fand topology 36.E 
Gel’fand transform 36.E 
Gel’fand triplet 424.T 
Gell-Mann formula, Nakano-Nishijima- 132.A 
general addition theorem 388.C 
general analytic space 23.G 
general angle 139.D 
general associative law (for group composition) 

19o.c 
general boundary value problem 323.H 
general Cantor set 79.D 
general Cayley algebra 54 
general connectedness theorem due to Fulton and 

Hansen 16.1 
general curve 93.D 
general derivative (of a set function) 380.D 
general geometry of paths 152.C 
generalization (in &tale topology) 16.AA 
generalized absolute continuity (*) 100.C 
generalized absolute continuity in the restricted 

sense 100.C 
generalized absolutely continuous function 100.C 
generalized Bayes solution 398.B 
generalized Bernoulli shift 136.D 
generalized Bernshtein problem 275.F 
generalized Boolean algebra 42.B 
generalized Boolean ring 42.C 
generalized Bore1 embedding 384.D 
generalized Clifford torus 275.F 
generalized cohomology theories 201.A 
generalized cohomology theory with E-coefficient 

202.T 
generalized conformal mapping 246.1 
generalized continuum hypothesis 49.D 
generalized convergence 331.C 
generalized convolution (of distributions) 125.M 
generalized coordinates (in analytical dynamics) 

271.F 
generalized cylindrical coordinates App. A, 

Table 3.V 
generalized decomposition number (of a finite 

group) 362.1 
generalized derivative 125.E 
generalized distance, Mahalanobis 280.E 
generalized distribution, Beurling 125.U 
generalized divisor function 295.C 
generalized eigenfunction 375.C 
generalized eigenspace (of a linear operator) 

390.B 
generalized eigenvalue 375.C 
generalized eigenvalue problem 298.G 
generalized eigenvector 390.B 
generalized Eisenstein series 450.T 
generalized Fourier transform 220.B 
generalized function 125,s 
generalized Hardy class 164.G 
generalized helix 11 l.F 
generalized homology theory 201.A 
generalized homology theory with E-coefficient 

202.T 
generalized Hopf homomorphism 202.U 
generalized Hopf invariant 202.Q 
generalized Hurewicz theorem 202.N 

generalized isoperimetric problem 46.A 228.A 
generalized Jacobian (of a set function) 246.H 
generalized Jacobian variety 9.F 1 l.C 
generalized Lame differential equation 167.E 
generalized least squares estimator 403.E 
generalized Lebesgue measure 270.E 
generalized Levi form 274.G 
generalized limit 37.F 
generalized minimal immersion 275.B 
generalized module 143.B 
generalized momentum 271.F 
generalized nilpotent (operator) 251.F 
generalized nilpotent element 36.E 
generalized nilpotent group 190.K 
generalized peak point 164.D 
generalized peak set 164.D 
generalized Pfaff problem 428.B 
generalized Poincart conjecture 65.C 
generalized quaternion group 15 1 .B 
generalized rational function 142.B 
generalized Riccati differential equation App. A, 

Table 14.1 
generalized Riemann-Roth theorem (on algebraic 

curves) 9.F 
generalized Schlomilch series 39.C 
generalized solvable group 190.K 
generalized stochastic process 407.C 
generalized suspension theorem 202.T 
generalized Tauberian theorem 36.L 160.G 

of Wiener 192.D 
generalized topological space 425.D 
generalized trigonometric polynomial 18.B 
generalized trigonometric series 18.B 
generalized uniserial algebra 29.1 
generalized valuation 439.B 
generalized variance 280.E 397.5 
generalized variance, sample 280.E 
generalized wave operator 375.B 
generalized Whitehead theorem 202.N 
general knot conjecture 235.B 
general law of reciprocity 14.0 

Artin 59.C 
general linear group 60.B 226.B 256.D 

of degree n over K 60.B 226.B 256.D 
over a noncommutative field 60.0 
projective 60.B 

general linear hypothesis 400.C 
general linear Lie algebra 248.A 
general lower derivative (of a set function) 380.D 
general Markov chain 260.5 
general Mathieu function 268.B 
general Navier-Stokes equations 204.F 
general position 

(complexes) 70.B 
(PL mappings) 65.D 
(in a projective space) 343.B 
theorem 65.D 

general principle of relativity 358 
general projective geometry 343.B 
general random walk 260.A 
general recursive function 356.C,F 
general recursive predicate 356.C 
general recursive set 97 
general Runge-Kutta method 303.D 
general sense, derivable in the 380.D 
general set theory 33.B 
general solution 

(of a difference equation) 104.D 
(of an ordinary differential equation) 313.A 
(of a partial differential equation) 320.C 



2001 Subject Index 
Geometric realization (of the S.S. complex) 

(of a system of partial differential equations) 
428.B 

general sum 173.A 
general theory 

of perturbations 420.E 
of relativity 358 

general topology 426 
general type 72.H 

surface of 72.K 
general uniformization theorem 367.G 
general upper derivative (of a set function) 380.D 
generate 

(an A-module) 277.D 
(a completely additive class) 270.B 
(a field over k) 149.D 
(a filter) 87.1 
(an ideal) 67.B 
(a linear subspace) 256.F 
(a subgroup) 190.C 
(a subring) 368.E 
(a topology) 425.F 

generated, finitely 277.D 
generating curve 111.1 
generating element (with respect to a self-adjoint 

operator) 390.G 
generating function(s) 

(of an arithmetic function) 295.E 
(of a canonical transformation) 82.~ 
(of a contact transformation) 82.A 
(of an infinitesimal transformation) 271.F 
(of a sequence of functions) 177.A 
exponential 177.A 
factorial cumulant- 397.G 
factorial moment 397.G 
joint moment 397.1,J 
moment- 177.A 341.C 397,G,J 
probability- 341.F 397.G 

generating line 
(of a circular cone) 78.A 
(of a quadric hypersurface) 343.E 
(of a quadric surface) 350.B 
(of a ruled surface in differential geometry) 

111.1 
generating representation (of a compact Lie group) 

249.U 
generating space (of a quadric hypersurface) 343.E 
generator 

(of an Abelian category) 200.1 
(of a cyclic code) 63.D 
(of an endomorphism) 136.E 
(of a group) 190.C 
(of a Markov process) 261.C 
(of a semigroup) 378.D 
Bott 237.D 
Dynkin representation of 261.B 
F.D. 136.E 
infinitesimal 378.B 
system of (of an A-module) 277.D 
topological (of a compact Abelian group) 

136.D 
two-sided 136.E 

generic (property) 126.H 
generic point 16.A 
Gentzen fundamental theorem 411.J 
genuine solution 323.G 
genus 

(of an algebraic curve) 9.C 
(of a differential ideal) 428.E 
(of an ideal group) 59.E 
(in integral representation theory) 362.K 

(of a knot) 235.A 
(of a lattice group) 13.P 
(of a quadratic field) 347.F 
(of a quadratic form) 348.H 
(of a surface) 410.B 
(of a transcendental integral function) 429.B 
arithmetic (of an algebraic curve) 9.F 
arithmetic (of an algebraic surface) 15.C 
arithmetic (of a complete variety) 16.E 
arithmetic, of a divisor (on an algebraic surface) 

15.c 
boundary 410.B 
effective (of an algebraic curve) 9.C 
of the function field K/k 9.D 
geometric (of an algebraic surface) 15.E 
geometric (of a complete variety) 16.0 
geometric (of a singular point) 418.C 
i- 15.E 
linear 15.G 
measure of (of a positive definite symmetric 

matrix) 348.K 
n (of an algebraic curve) 9.F 
principal (of an ideal group) 59.E 
principal (of a quadratic field) 347.F 
virtual arithmetic (of a divisor) 16.E 

geocentric parallax 392 
Geiicze area (of a surface) 246.E 
Geocze problem 246.D 
geodesic 8O.L,1 111.H 178 364.C App. A, Table 4.1 

null 359.D 
totally, submanifold 365.D 

geodesic arc 178.H 364.8 
geodesic coordinates 80.5 
geodesic coordinate system in the weak sense 

232.A 
geodesic correspondence (between surfaces) 111.1 
geodesic curvature 111.1, App. A, Table 4.1 
geodesic flow 126.L 136.G 
geodesic line 178.H 
geodesic point 11 l.H 365.D 
geodesic polar coordinates 90.C 
geodesic triangle 178.A 
geodesic variation 178.A 
geometrically finite 234.C 
geometrically reductive 226.B 
geometrically simple eigenvalue 390.A 
geometrical mean 397.C 
geometric complex 70.B 
geometric construction problem 179.A 
geometric crystal class 92.B 
geometric difference equation 104.G 
geometric dimension (of a vector bundle) 114.D 
geometric distribution 341.D, App. A, Table 22 
geometric fiber (of a morphism) 16.D 
geometric genus 

of an algebraic surface 15.E 
of a complete variety 16.0 
of a singular point 418.C 

geometric mean 
(of a function) 21 l.C 
(of numbers) 21 l.C 

geometric multiplicity (of an eigenvalue) 390.A 
geometric number theory 296.B 
geometric optics 180 
geometric point (of a scheme) 16.D 
geometric probability 218.A 
geometric programming 264.D 
geometric progression 379.1, App. A, Table lO.VI 
geometric quotient 16.W 
geometric realization (of the S.S. complex) 70.E 



Subject Index 
Geometric series 

2002 

geometric series 379.B, App. A, Table 10.1 Gibbs measure 136.C 
geometry 181 Gibbs phenomenon 159.D 

alIme 7 Gibbs state 340.B 
affix, in the narrower sense 7.E Gilbert-Sacks bound, Varsharmov 63.B 
alline differential 1lO.C Gill method, Runge-Kutta- 303.D 
algebraic 12.A Gini coefficient of concentration 397.E 
analytic 181 Giraud theorem 323.C 
circle 76.C Girsanov theorem 406.B 
conformal 76.A Girsanov transformation 406.B 
conformal differential 1lO.D Girshick-Savage theorem 399.F 
continuous 85.A Givens method 298.D 
differential 109 Givens transformation 302.E 
differential, of curves and surfaces 111 GKS first inequality 212.A 
differential, in specilic spaces 110 GKS second inequality 212.A 
elliptic 285.A Glashow-Weinberg-Salam model 132.D 
Euclidean, in the wider sense 139.B Glauert approximation, Prandtl- 205.B 
finite-dimensional projective 343.B Glauert law of similarity, Prandtl- 205.D 
formal 16.X g.1.b. (greatest lower bound) 31 l.B 
general, of paths 152.C Gleason part (for a function algebra) 164.F 
general projective 343.B Gleason theorem 351.L 
hyperbolic 285.A glide operation 92.E 
hypersphere 76.C glide reflection 92.E 
integral 218.A Glivenko-Cantelli theorem 374.E 
Laguerre 76.B global analysis 183 
Lobachevskii non-Euclidean 285.A global dimension 
Mobius 76.A (of an analytic set) 23.B 
natural 1lO.A (of a ring) 200.K 
n-dimensional Euclidean 139.B 181 left (of a ring) 200.K 
non-Archimedean 155.D right (of a ring) 200.K 
non-Desarguesian 155.D 343.C weak (of a ring) 200.K 
non-Euclidean 285.A global discretization error 303.B 
parabolic 285.A global Hecke algebra 450.0 
plane 181 global implicit function theorem 208.D 
projective 343.B globally asymptotically stable 126.F 
projective, of paths 109 globally symmetric Riemannian space 412.A 
projective differential 1lO.B global property (in differential geometry) 109 
pseudoconformal 344.A global roundoff error 303.B 
pure 181 global truncation error 303.B 
Riemannian 137, App. A, Table 4.11 gluing theorem 21.1 
Riemann non-Euclidean 285.A gluons 132.D 
solid 181 GNS construction 308.D 
space 181 Godbillion-Vey ciasses 154.G 
of a space subordinate to a group 137 Giidel, Kurt 184 
spectral 391 Godel completeness theorem 411.J 
sphere 76.C Godel incompleteness theorem 156.E 
spherical 285.D Giidel number(s) 185 356.C,E 
on a surface 1ll.G Godel numbering 185.A 
synthetic 181 Godel set theory 33.C 
wave 434.C Bernays- 33.A 

geometry of numbers 182 Goldbach problem 4.C 
germ(s) 383.B Golden-Thompson inequality 212.B 

of an analytic set 23.B Goldstein method, Ince- 268.C 
of a ?-function at the origin 58.C Goldstone boson, Nambu- 132.C 
of a holomorphic function 21.E Goldstone theorem 132.C 
irreducible 23.B Gomory cut 215.B 
reducible 23.B Goodner-Kelley theorem, Nachbin- 37.M 
sheaf of, of holomorphic functions 23.C goodness of lit 397.4 
sheaf of, of regular functions 16.B test 401.E 

Germain curvature (of a surface) 11 l.H, App. A, good reduction (of an Abelian variety) 3.N 
Table 4.1 potential (of an Abelian variety) 3.N 

Gevrey class 58.G 125.U 325.1 good resolution 418.C 
function of 168.B Goppa code 63.E 

ghost component (of an infinite-dimensional vector) Gordan coefficients, Clebsch- 258.B 353.B 
449.A Gordan equation, Klein- 351.G 377.C 

ghost, Faddeev-Popov 132.C 150.G Gordon equation, Sine- 387.A 
GHS inequality 212.A Gorenstein ring 200.K 
Gibbs distribution, equilibrium 136.C Goursat kernel, Pincherle- 217.F 
Gibbs-Duhem relation 419.B Goursat theorem 198.B 
Gibbs free energy 419.C grad (gradient) 442.D 

minimum principle 419.C graded algebra 203.B 



2003 Subject Index 
Group(s) 

graded A-module 200.B 
graded coalgebra 203.B 
graded Hopf algebra 203.C 
graded ideal 369.B 
graded module 

connected 203.B 
dual 203.B 

graded object 200.B 
graded ring 369.B 

associated 284.D 
gradient 442.D, App. A, Table 3.11 
gradient method 292.E 

Arrow-Hurwicz-Uzawa 292.E 
conjugate (CG) 302.D 

gradient projection method, Rosen 292.E 
Graeffe method 301.N 
Gramian (determinant) 103.G 208.E 
grammar 

Chomsky 3 1.D 
context-free 31.D 
context-sensitive 31.D 
regular 3 1 .D 

Gram-Schmidt orthogonalization 3 17.A 
Gram theorem 226.E 
grand canonical ensemble 402.D 
grand partition function 402.D 
graph 186.B 

(of a knot) App. A, Table 7 
(=linear graph) 282.A 
(of a mapping) 38 1 .C 
(of a meromorphic mapping) 23.D 
(of an operator) 251.B 
(of a relation) 358.R 
bipartite 186.C 
complete 186.C 
complete bipartite 186.C 
direct 186.8 
Euler 186.F 
Feynman 146.A,B 386.C 
labeled 186.B 
linear 282.A 
oriented 186.B 
partial 186.C 
planar 186.H 
regular 186.C 
reoriented 186.B 
section 186.C 
sub- 186.D 
undirected 186.B 
unicursal, theorem (Euler’s) 186.F 
unlabeled 186.B 
unoriented 186.B 

graphic 66.H 
graphical calculation 19.B 
graphical differentiation 19.B 
graphical integration 19.B 
graphical mechanics 19.D 
graphical method of statistical inference 19.B 
graph norm 251.D 
graph theorem, closed 37.1 251.D 424.X 
graph theory 186 
Grashoff number 116.B 
Grassmann algebra (of a linear space) 256.0 
Grassmann coordinates (in a Grassmann manifold) 

90.B 
Grassmann manifold 119.B 427.D 

complex 199.B 
formed by oriented subspaces 199.B 
infinite 147.1 

real 199.B 
Grauert theorem (on proper holomorphic mappings) 

23.E 72.E 
gravitation, law of universal 271.B 
gravitational units, system of 414.B 
gravity, center of 271.E 
gravity wave 205.F 

long 205.F 
grazing ray 325.L 
great circle (of a sphere) 140 
greater than (another compactification) 207.B 
greatest common divisor 67.H 297.A 
greatest element (in an ordered set) 311.B 
greatest lower bound (of an ordered set) 310.C 

311.8 
greedy algorithm 66.G 
Greek mathematics 187 
Greek quadratrix 187 
Greek quadrivium 187 
Greek three big problems 187 
Green formula 

(for differential operators) App. A, Table 15.VI 
(for harmonic functions) 193.D 
(for Laplace operator) App. A, Tables 3.111,4.11 
(for ordinary differential equations) 252.K 
(for partial differential equations of parabolic 
type) 327.D 

(on the plane) 94.F 
Green function method 402.5 
Green functions 188 189.B 

(a-order) 4S.D 
(of a boundary value problem) 315.B 

Green line 193.5 
Green measure 193.5 
Green operator 189.A,B 194.C 
Green space 193.N 
Green-Stokes formula 94.F 
Green tensor 188.E 
Green theorem 105.W 
Griffith first inequality 212.A 
Griffith second inequality 212.A 
Gross area (of a Bore1 set) 246.G 
Grossencharakter 6.D 

Hecke L-function with 450.F 
Gross theorem 272.1 
Grothendieck category 200.1 
Grothendieck construction 237.B 
Grothendieck criterion of completeness 424.L 
Grothendieck group 

(of a compact Hausdorff space) 237.B 
(of a ring) 237.5 

Grothendieck theorem of Riemann-Roth type 
366.D 

Grothendieck topology 16.AA 
ground field (of a linear space) 256.A 
ground form 226.D 

covariant with 226.E 
ground ring (of a module) 277.D 
group(s) 190.A 

Abelian 2 190.A 
Abelian linear 60.L 
absolute homology 2Ol.L 
additive 2.E 190.A 
adele (of an algebraic group) 13.P 
adele (of a linear algebraic group) 6.C 
adjoint (isogenous to an algebraic group) 13.N 
adjoint (of a Lie algebra) 248.H 
adjoint (of a Lie group) 249.P 
of afftne transformations 7.E 



Subject Index 

Group(s) 
2004 

afline Weyl (of a symmetric Riemann space) 
413.G 

algebra 192.H 
algebra class 29.E 
algebraic 13 
algebraic fundamental 16.U 
algebraic homotopy 16.U 
alternating, of degree n 151.G 
automorphism (of a Lie algebra) 248.A 
of automorphisms (of a group) 190.D 
*-automorphism 36.K 
Betti (of a complex) 201.B 
black and white 92.D 
black and white point 92.D 
boundary 234.B 
braid 235.F 
Brauer (of algebra classes) 29.E 
Brauer (of a commutative ring) 29.K 
Bravais 92.B 
bundle (of a fiber bundle) 147.B 
V 52.M 
of canonical transformations 271.F 
category of 52.B 
cellular homology 201.F,G 
character (of an Abelian group) 2.G 
character (of a topological Abelian group) 

422.B 
Chevalley 151.1 
of classes of algebraic correspondences 9.H 
classical 60.A 
Clifford 61.D 
closed 362.5 
coefficient (of a homology group) 201.Q 
cohomology (of a complex) 200.0 
cohomology (of a group) 200.M 
cohomology (of a Lie algebra) 200.0 
cohomology, with coefftcient sheaf S 283.E 
cohomotopy 202.1 
of collineations 343.D 
color point 92.D 
color symmetry (colored symmetry) 92.D 
commutative 2.A 190.A 
commutator (of two elements) 190.H 
commutator (of two subsets of a group) 190.H 
compact 69.A 
completely reducible 190.L 
complex 60.L 
complex cobordism 114.H 
complex orthogonal 60.1 
complex special orthogonal 60.1 
complex symplectic 60.L 
of congruence classes modulo m* 14.H 
of congruent transformations 285.C 
covering 91.A 423.0 
covering transformation 91.A 
Coxeter 13.R 
crystallographic 92.A 
crystallographic space 92.A 
cyclic 190.C 
decomposition (of a prime ideal) 14.K 
defect (of a block of representations) 362.1 
defect (of a conjugate class in a group) 362.1 
derived (of a group) 190.H 
difference (of an additive group) 190.C 
of differentiable structures on combinatorial 
spheres App. A, Table 6.1 

differentiable transformation 431.C 
dihedral 151.G 
direct product 190.L 
discontinuous, of the first kind 122.B 

discontinuous transformation 122.A 
divisor (of a compact complex manifold) 72.F 
divisor class (of a Riemann surface) 1 l.D 
elementary topological Abelian 422.E 
elliptic modular 122.D 
equicontinuous, of class (Co) 378.C 
equivariant J- 431.C 
exponential 437.U 
extension (cohomology of groups) 200.M 
factor 190.C 
finite 151.A 190.C 
finitely generated 190.C 
finitely presented 161.A 
of the first kind 122.C 
formal 13.C 
four- 151.G 
free 161.A 
free product (of the system of groups) 190.M 
frieze 92.F 
Frobenius 151.H 
Fuchsian 122.C 
Fuchsoid 122.C 
full 136.F 
full linear 60.B 
full Poincare 258.A 
function 234.A 
fundamental (of a topological space) 170 
Galois (of an algebraic equation) 172.G 
Galois (of a Galois extension) 172.B 
Galois (of a polynomial) 172.G 
generalized nilpotent 190.K 
generalized quaternion 151.B 
generalized solvable 190.K 
general linear 60.B 226.B 
general linear (over a noncommutative field) 

60.0 
Grothendieck (of a compact Hausdorff space) 

237.B 
Grothendieck (of a ring) 237.5 
h-cobordism (of homotopy n-spheres) 114.1, 
App. A, Table 6.1 

Hamilton 151.B 
Hausdorff topological 423.B 
Hilbert modular 32.G 
holonomy 80.D 364.E 
homogeneous holonomy 364.E 
homogeneous Lorentz 359 
homology (of a chain complex) 201.B 
homology (of a group) 200.M 
homology (of a Lie algebra) 200.0 
homology (of a polyhedron) 201.D 
homotopy 202.5 
hyper- 190.P 
icosahedral 151.G 
ideal, modulo m* 14.H 
ideal class 14.E 67.K 
idele 6.C 
idele class 6.D 
indecomposable 190.L 
inductive limit 210.C 
inductive system of 210.C 
inertia (of a finite Galois extension) 257.D 
inertia (of a prime ideal) 14.K 
infinite 190.C 
infinite classical 147.1 202.V 
infinite orthogonal 202.V 
infinite symplectic 202.V 
infinite unitary 202.V 
inhomogeneous Lorentz 359 
of inner automorphisms (of a group) 190.D 



2005 Subject Index 
Group(s) 

of inner automorphisms (of a Lie algebra) 
248.H 

integral homology (of a polyhedron) 201.D 
integral homology (of a simplicial complex) 
2Ol.C 

integral singular homology 201.E 
isotropy 362.B 
J- 237.1 
of Janko-Ree type 151.5 
k- 13.A 
K- (of a compact Hausdorff space) 237.B 
Klein four- 151.G 
Kleinian 122.C 243.A 
knot 235.8 
L- 450.N 
lattice 182.B 
lattice (of a crystallographic group) 92.A 
lattice-ordered Archimedean 243.G 
Lie 249.A 423.M 
Lie transformation 431.C 
linear fractional 60.B 
linear isotropy (at a point) 199.A 
linear simple 15 1 .I 
link 235.D 
little 258.C 
local Lie 423.L 
local Lie, of local transformations 431.G 
locally Euclidean 423.M 
local one-parameter, of local transformations 

105.N 
Lorentz 60.5 258 359.B 
magnetic 92.D 
Mathieu 151.H 
matric 226.B 
matrix 226.B 
maximally almost periodic 18.1 
minimally almost periodic 18.1 
mixed 190.P 
Mobius transformation 76.A 
modular 122.D 
monodromy (of an n-fold covering) 91.A 
monodromy (of a system of linear ordinary 
differential equations) 253.B 

monothetic 136.D 
of motions 139.B 
of motions in the wider sense 139.B 
multiplicative 190.A 
multiplicative (of a field) 149.A 190.B 
N&on-Severi (of a variety) 15.D 16.P 
nilpotent 151.C 190.J 
octahedral 151.G 
n 190.E 
one-parameter, of transformations (of a Cm- 

manifold) 105.N 
one-parameter, of transformations of class C 

126.B 
one-parameter semi-, of class Co 378.B 
one-parameter sub- 249.Q 
ordered 243.G 
ordered additive 439.B 
of orientation-preserving diffeomorphisms 

114.1 
oriented cobordism 114.H 
of oriented differentiable structures on 
a combinatorial sphere 114.1 

orthogonal 60.1 139.B 151.1 
orthogonal (over a field with respect to 
a quadratic form) 60.K 

orthogonal (over a noncommutative field) 
60.0 

orthogonal transformation 60.1 
of outer automorphisms (of a group) 190.D 
of outer automorphisms (of a Lie algebra) 
248.H 

p- 151.B 
periodic 2.A 
permutation 190.B 
permutation, of degree n 151.G 
II- 151.F 
n-solvable 15f.F 
Picard (of a commutative ring) 237.5 
Poincare 170 258.A 
point (of a crystallographic group) 92.A 
polychromatic 92.D 
principal isotropy 431.C 
profmite 210.C 
projective class 200.K 
projective general linear 60.B 
projective limit 210.C 
projective special linear 6O.B,0 
projective special unitary 60.H 
projective symplectic 60.L 
projective system of 210.C 
of projective transformations 343.D 
projective unitary 60.F 
proper Lorentz 60.5 258.A 359.B 
proper orthogonal 60.1 258.A 
pseudo- (of topological transformations) 

105.Y 
p-torsion, of exceptional groups App. A, 
Table 6.IV 

qth homology 201.B 
quasi- 190.P 
quasi-Fuchsian 234.B 
quaternion 151.B 
quaternion unimodular 412.G 
quotient 190.C 
quotient (of a topological group) 423.E 
of quotients (of a commutative semigroup) 

19O.P 
ramification (of a finite Galois extension) 

257.D 
ramification (of a prime ideal) 14.K 
rational cohomology 200.0 
reductive 13.4 
Ree 151.1 
of Ree type 151.5 
regular polyhedral 151.G 
relative homotopy 202.K 
relative singular homology 2Ol.L 
renormalization 11 l.A 
restricted holonomy 364.E 
restricted homogeneous holonomy 364.E 
Riemann-Roth 366.D 
Riesz 36.H 
rotation 60.1 258.A 
Schottky 234.B 
semi- 190.P 396.A 
separated topological 423.B 
sequence of factor (of a normal chain) 190.G 
shape 382.C 
Siegel modular (of degree n) 32.F 
simple 190.C 
simply connected (isogenous to an algebraic 
group) 13.N 

singular homology 201.G,L 
solvable 151.D 190.1 
space 92.A 
special ClitTord 6 l.D 
special linear 60.B 



Subject Index 
Group algebra 

2006 

special linear (over a noncommutative field) 
60.0 

special orthogonal 60.1,K 
special unitary 60.F,H,O 
spinor 60.1 61.D 
stability 362.B 
stable homotopy 202.T 
stable homotopy (of classical group) 202.V 
stable homotopy (of the Thorn spectrum) 

114.G 
Steinberg (of a ring) 237.5 
structure (of a fiber bundle) 147.B 
supersolvable 151.D 
Suzuki 151.1 
symmetric 190.B 
symmetric, of degree n 15 1 .G 
symplectic 60.L 151.1 
symplectic (over a noncommutative field) 
60.0 

symplectic transformation 60.L 
Tate-Shafarevich 118.D 
tetrahedral 151.G 
theoretic approach 215.C 
Tits simple 151.1 
T,-topological 423.B 
topological 423 
topological Abelian 422.A 
topological transformation 431.A 
torsion 2.A 
torsion (of a finite simplicial complex) 201.B 
torus 422.E 
totally ordered 243.G 
totally ordered additive 439.B 
total monodromy 418.F 
transformation 431, App. A, Table 14.111 
transitive permutation 151.H 
of translations 7.E 258.A 
of twisted type 151.1 
type I 308.L 437.E 
underlying (of topological group) 423.A 
unimodular 60.B 
unimodular locally compact 225.C 
unit (of an algebraic number field) 14.D 
unitary 60.F 151.1 
unitary (over a field) 60.H 
unitary (relative to an s-Hermitian form) 60.0 
unitary symplectic 60.L 
unitary transformation 60.F 
universal covering 91.B 423.0 
unoriented cobordism 114.H 
value (of a valuation) 439.B,C 
vector 422.E 
Wall 114.5 
WC (Weil-Chltelet) 118.D 
weakly wandering under 136.F 
web 234.B 
weight 92.C 
Weil 6.E 450.H 
Weil-Chltelet 118.D 
Weyl (of an algebraic group) 13.H 
Weyl (of a BN pair) 13.R 
Weyl (of a Coxeter complex) 13.R 
Weyl (of a root system) 13.5 
Weyl (of a semisimple Lie algebra) 248.R 
Weyl (of a symmetric Riemannian space) 
413.F 

Weyl, affine 413.F 
Weyl, k- 13.4 
White 92.D 
Whitehead (of a ring) 237.5 

Witt (of nondegenerate quadratic forms) 
348.E 

Zassenhaus 151 .H 
group algebra 29.C 36.L 

C*- 36.L 
group code 63.C 
group extension 200.M 
grouplike 203.F 
group manifold (of a Lie transformation group) 

110.A 
group measure space construction 136.F 
group minimization problem 215.C 
group object (in a category) 52.M 
groupoid 190.P 

hyper- 190 
group pair (of topological Abelian groups) 422.1 

orthogonal 422.1 
group ring (of a compact group) 69.A 
group scheme 16.H 
group system 235.B 
group theorem (on fractional ideals) 67.5 
group-theoretic approach 215.C 
group variety 13.B 16.H 

algebraic 13.B 
group velocity 446 
growth, infra-exponential 125.AA 
Grunsky inequality 438.B 
Gudermann function (Gudermannian) 131.F, 

App. A, Table 16.111 
guide, wave 130.B 
Guignard constraint qualification 292.B 
Gupta-Bleuler formalism 150.G 
Gysin exact sequence (of a fiber space) 148.E 
Gysin homomorphism 201.0 
Gysin isomorphism, Thorn- 114.G 

of a fiber space 148.E 

H 

HP (Hardy spaces) 168.B 
H’(R) (Sobolev spaces) 168.B 
H;(Q) (Sobolev spaces) 168.B 
h-cobordant oriented manifolds 114.1 
h-cobordism group of n-dimensional homotopy 

spheres 114.1, App. A, Table 6.1 
h-cobordism theorem 114.F 
H-function 402.B 
H-series, principal 437.X 
H-space 203.D 
H-theorem 402.B 
(H, p)-summable 379.M 
H-closed space 425.U 
Haag-Araki axioms 150.E 
Haag-Kastler axioms 150.E 
Haag-Ruelle scattering theory 150.D 
Haag theorem 150.C 
Haar condition (on best approximation) 336.B 
Haar measure 

left-invariant 225.C 
right-invariant 225.C 

Haar space 142.B 
Haar system of orthogonal functions 317.C 
Haar theorem 225.C 
Hadamard estimation App. A, Table 8 
Hadamard formula, Cauchy- 339.A 
Hadamard gap theorem 339.D 
Hadamard multiplication theorem 339.D 
Hadamard theorem 

(on meromorphic functions) 272.E 
(on singularities of power series) 339.D 



2007 Subject Index 
Hasse norm-residue symbol, Hilbert- 

Hadamard three-circle theorem 43.E 
hadrons 132.B 
Haefliger structure 154.E 

C’- 154.E 
Hahn-Banach (extension) theorem 

(in a normed space) 37.F 
(in a topological linear space) 424.C 

half Bessel function 39.B 
half-exact (functor) 200.1 
half-life 132.A 
half-line 155.B 

closed (in afhne geometry) 7.D 
half-periodic solution (of Hill equation) 268.E 
half-plane 155.B 333.A 
half-space 

of an afline space 7.D 
closed (of an affme space) 7.D 
principal (of a flag) 139.B 
Siegel upper (of degree n) 32.F 
supporting (of a convex set) 89.A 

half-spinor (even, odd) 61.E 
half-spin representation (even, odd) 61.E 
half-trajectory 

negative 126.D 
positive 126.D 

half-width 132.A 
Hall subgroup 151.E 
Hallstrom-Kametani theorem 124.C 
Halmos theorem, von Neumann- 136.E 
Hamburger moment problem 240.K 
Hamilton canonical equation 271.F 
Hamilton-Cayley theorem 269.F 
Hamilton differential equation 324.E 
Hamilton group 151.B 
Hamiltonian 271.F 351.D 442.D 

bilinear 377.A 
cluster decomposition 375.F 
free 351.D 

Hamiltonian function 219.C 271.F 
Hamiltonian operator 351.D 
Hamiltonian system 126.L 
Hamiltonian vector field 126.L 219.C 
Hamilton-Jacobi differential equation 271.F 324.E 
Hamilton-Jacobi equation 108.B 
Hamilton path 186.F 
Hamilton principle 441.B 
Hamilton quaternion algebra 29.B 
Hammerstein integral equation 217.M 
Hamming bound (of a code) 63.B 
Hamming code 63.C 
Hamming distance 63.B 136.E 
handle 410.B 

attaching 114.F 
Casson 114.K 
manifold with 114.F 

handlebody 114.F 
Hankel asymptotic representation App. A, 

Table 19.111 
Hankel determinant 142.E 
Hankel functions 39.B, App. A, Table 19.111 
Hankel transform 220.B 
Hansen, general connectedness theorem due to 

Fulton and 16.1 
Hansen-Bessel formula App. A, Table 19.111 
hard, NP- 71.E 
hard Lefschetz theorem 450.Q 
hardware 75.C 
Hardy class 43.F 159.G 

generalized 164.E 
Hardy inequality App. A, Table 8 

Hardy-Littlewood-Sobolev inequality 224.E 
Hardy-Littlewood supremum theorem App. A, 

Table 8 
Hardy-Littlewood theorem 

on bounded functions 43.E 
on trigonometric systems 317.B 

Hardy space 168.B 
Hardy theorem 

on bounded functions 43.E 
on the Cauchy product of two series 379.F 

harmonic 
(form) 194.B 
(function) 193.A 
(function on a state space) 260.D 
(mapping) 195.B 

harmonically separated points (in a projective space) 
343.D 

harmonic analyzer 19.E 
harmonic analysis 192 
harmonic boundary 207.B 
harmonic conjugates 343.D 
harmonic continuation 193.M 198.G 
harmonic differential (on a Riemann surface) 367.H 
harmonic dimension (of a Heins end) 367.E 
harmonic flow 193.K 
harmonic functions 193 

conjugate 193.C 
spherical 193.C 

harmonic integrals 194 
harmonic kernel function 188.H 
harmonic majorant (of subharmonic function) 

193,s 
harmonic mapping 195 
harmonic mean 

(of a distribution) 397.C 
(of a function) 21 l.C 
(of numbers) 211.C 

harmonic measure 
inner 169.B 
outer 169.B 

harmonic motion, simple 318.B 
harmonic oscillation 318.B 
harmonic range of points 343.D 
harmonics 

ellipsoidal 133.B 
ellipsoidal, of four species 133.C 
solid 393.A 
spherical 193.C 393.A 
surface 393.A 
tesseral 393.D 
zonal 393.D 

Harnack condition (on the D-integral) 100.E 
Harnack first theorem 193.1 
Harnack lemma 193.1 
Harnack second theorem 193.1 
Hartogs continuation theorem 21.F 
Hartogs-Osgood theorem 21.H 
Hartogs theorem 

of continuity 21.H 
of holomorphy 21.C 

Hartshorne conjecture 16.R 
Harvey duality, Martineau- 125.Y 
hashing 96.B 
Hasse character, Minkowski- (of a nondegenerate 

quadratic form) 348.D 
Hasse conjecture 45O.S 
Hasse function, Artin- 257.H 
Hasse invariant (of a central simple algebra over 

a p-adic field) 29.G 
Hasse norm-residue symbol, Hilbert- 14.R 



Subject Index 
Hasse principle 

2008 

Hasse principle 348.G minimum principle 419.C 
Hasse theorem, Minkowski- (on quadratic forms Helmholtz theorem (on vector fields) 442.D, 

over algebraic number fields) 348.G App. A, Table 3.111 
Hasse-Witt matrix 9.E Helmholtz vorticity theorem 205.B 
Hasse zeta function 450,s Helson set 192.R 
Haupt theorem 268.E hemisphere 
Hauptvermutung (in topology) 65.C 70.C northern 140 
HausdorB axiom 425.4 southern 140 
Hausdorff dimension 117.G 234.E 246.K Henselian ring 370.C 
Hausdorff formula, Campbell- 249.R Henselization 370.C 
Hausdorff measure 169.D Hensel lemma 118.C 
Hausdorff moment problem 240.K Hensel ring 370.C 
Hausdorff space 425.Q Herbrand lemma 200.N 

collectionwise 425.AA Herbrand quotient 200.N 
Hausdorff theorem, Baire- 273.5 425.N hereditarily normal space 425.Q 
Hausdorff topological group 423.B hereditarily quotient mapping 425.G 
Hausdorff uniform space 436.C hereditarily weak topology 425.M 
Hausdorff-Young inequality 224.E hereditary finite set 33.B 
Hausdorff-Young theorem 317.B hereditary ring 200.K 
Hawaiian earring 79.C left 200.K 
hazard function 397.0 right 200.K 
hazard rate 397.0 Herglotz integral representation 43.1 
heat Herglotz theorem 192.B 

Joule 130.B Hermite differential equation App. A, Table 14.11 
specific, at constant pressure 419.B Hermite differential equation, Weber- 167.C 
specific, at constant volume 419.B Hermite formula, Gauss- (in numerical integration) 

heat bath 419.B 299.A 
heat conduction, equation of 327.A Hermite interpolation polynomial 223.E 
heat equation 327.A, App. A, Table 15.VI Hermite polynomials 317.D, App. A, Table 2O.IV 
heat gain 419.A Hermite polynomials, Fourier- 176.1 
heat loss 419.A Hermitian (integral operator) 251.0 
Heaviside calculus 306.A Hermitian form 256.Q 348.F 
Heaviside function 125.E 306.B, App. A, Table 12.11 anti- 256.Q 
Hecke algebra 29.C 32.D E- 60.0 

global 450.0 indefinite 348.F 
Hecke character 6.D negative definite 348.F 
Hecke L-function 450.E positive definite 348.F 

with Grossencharakter 450.F semidefinite 398.F 
Hecke operator 32.D skew- 256.Q 

zeta function defined by 450.M v- 384.A 
Hecke ring 32.D Hermitian homogeneous space, complex 199.A 
Heegaard decomposition 65.C Hermitian hyperbolic space 412.G 
height Hermitian inner product 256.4 

(of an algebraic number) 430.B Hermitian kernel 217.H 
(of an element in a lattice) 243.F Hermitian linear space 256.Q - 
(of an ideal) 67.E Hermitian matrix 269.1 
(of an isogeny) 3.F anti- 269.1 
(of a lattice) 243.F skew 269.1 
(of a prime ideal) 67.E Hermitian metric 232.A 
infinite (element of an Abelian p-group) 2.D Hermitian operator 251.E 

Heilbronn phenomenon, Deuring- 123.D Hermitian space 
Heine-Bore1 theorem 273.F irreducible symmetric 412.E 
Heine series 206.C symmetric 412.E 
Heins end 367.E Heron formula 
Heisenberg equation of motion 351.D (for plane triangles) App. A, Table 2.11 
Heisenberg picture 351.D (for spherical triangles) App. A, Table 2.111 
Heisenberg uncertainty relation 351.C Hersch and Pfluger, extremal length defined by 
helicity 258.C 143.A 
helicoid Hersch problem 391.E 

ordinary 111.1 Hessenberg method 298.D 
right 111.1 Hesse normal form (of a hyperplane) 139.H 

helicoidal surface 111.1 Hessian 
Helinger-Hahn theorem 390.G (on a differential manifold) 279.B,F 
helix (form) 226.D 

generalized 11 l.F (of a plane algebraic curve) 9.B 
ordinary 11 l.F heterogeneity, design for two-way elimination of 

Helly theorem 94.B 102.K 
Helmholtz differential equation 188.D, App. A, heuristic algorithm 215.E 

Table 15.VI Hewitt-Savage zero-one law 342.G 
Helmholtz free energy 419.C hexagon 155.F 



2009 Subject Index 
Holomorpbic 

hexagonal (system) 92.E adjoint 251.E 
hexahedron 357.B channel 375.F 
Hey zeta function 27.F complex 197.B 
hidden variable theories 351.L exponential 377.D 
hierarchy 356.H physical 150.G 

analytic 356.H pre- 197.B 
arithmetical 356.H real 197.B 
arithmetical, of degrees of recursive unsolvability rigged 424.T 

356.H Hilbert-Speiser theorem 172.5 
C-analytic 356.H Hilbert system of axioms (foundations of geometry) 
C-arithmetical 356.H 155.B 
Chomsky 31.D Hilbert syzygy theorem 369.F 
hyperarithmetical, of degrees of recursive Hilbert theorem 90 172.5 

unsolvability 356.H Hilbert transform 160.D 220.E 
hierarchy theorem 356.H Hilbert zero point theorem 369.D 
Higgs mechanism 132.D Hilferty approximations, Wilson- 374.F 
higher algebraic K-theory 237.5 Hill determinant 268.B 
higher differentiation (in a commutative ring) 113 Hill determinantal equation 268.B 
higher order, of (for infinitesimals) 87.G Hill differential equation 268.B 
higher-order derivative (of a differentiable function) Hille-Yosida theorem 378.B 

106.D Hill function 268.E 
higher-order ordinary differential equation Hill method of solution 268.B 

App. A, Table 14.1 Hirsch theorem, Leray- 201.5 
higher-order partial derivative 106.G Hirzebruch index theorem (for differentiable 
higher-order predicate logic 41 l.K manifolds) 56.G 
higher-transcendental function 389.A Hirzebruch signature theorem (on algebraic surface) 
highest weight (of a representation of a Lie algebra) 72.K 

248.W Hirzebruch surface 15.G 
high-precision computation 138.B Hirzebruch theorem of Riemann-Roth type 366.B 
Hilbert, D. 196 histogram 397.B 
Hilbert basis theorem 284.A Hitchcock method 301.E 
Hilbert characteristic function hitting probability 5.G 

(of a coherent sheaf) 16.E hitting time 260.B 261.B 407.B 
(of a graded module) 369.F Hlawka theorem, Minkowski- 182.D 

Hilbert cube ,382.B Hochschild cohomology group 200.L 
Hilbert s-operator 411.J Hodge conjecture 450.S 
Hilbert s-quantifier 41 l.J Hodge index theorem 15.D 
Hilbert s-symbol 411.J Hodge manifold 232.D 
Hilbert fifth problem 423.N Hodge metric 232.D 
Hilbert-Hasse norm-residue symbol 14.R Hodges-Lehmann theorem 399.E,H 
Hilbertian space, countably 424.W Hodge spectral sequence 16.U 
Hilbert inequality App. A, Table 8 Hodge structure (of a vector space) 16.V 
Hilbert invariant integral 46.C mixed 16.V 
Hilbert irreducibility theorem (on polynomials) polarized 16.V 

337.F Hodgkin-Huxley differential equation 291.F 
Hilbert manifold 105.Z 286.K hodograph method 205.B 
Hilbert modular form hodograph plane 205.B 

of dimension -k 32.G hold almost everywhere (in a measure space) 270.D 
of weight k 32.G hold at almost all points 

Hilbert modular function 32.G in a measure space 270.D 
Hilbert modular group 32.G Holder condition of order a 84.A 
Hilbert modular surface 15.H Holder inequality 2ll.C App. A, Table 8 
Hilbert norm-residue symbol 14.R Holder integral inequality 21 l.C 
Hilbert Nullstellensatz 369.D Holder method of order p, summable by 379.M 
Hilbert polynomial Holder sequence, Jordan- (in a group) 190.G 

(of an algebraic curve) 9.F Holder space 168.B 
(of a coherent sheaf) 16.E Hdlder theorem 104.F 
(of a graded module) 369.F Holder theorem, Jordan- (in group theory) 190.G 

Hilbert problem (in calculus of variations) 46.A Holder theorem, Jordan- (on representations 
Hilbert problem, Riemann- of algebras) 362.D 

(for integral equations) 217.5 hole theory, Dirac 415.G 
(for ordinary differential equations) 253.D Holmgren type theorem (of Kashiwara-Kawai) 

Hilbert scheme 16.S 125.DD 
Hilbert-Schmidt class 68.1 Holmgren uniqueness theorem 321.F 
Hilbert-Schmidt expansion theorem 217.H holohedral 92.B 
Hiibert-Schmidt norm 68.1 holohedry 92.B 
Hilbert-Schmidt type holomorphic 

integral operator of 68.C (family of linear operators) 331.C 
kernel of 217.1 (function) 198.A 

Hilbert spaces 197 (in the sense of Riemann) 21.C 



Subject Index 

Holomorpbically complete domain 
2010 

(vector-valued function) 37.K 
holomorphically complete domain 21.F 
holomorphically complete space 23.F 
holomorphically convex domain 21.H 
holomorphic automorphism 21.5 
holomorphic differential (on a Riemann surface) 

367.H 
holomorphic differential form of degree k 72.A 
holomorphic distribution (with respect to a param- 

eter) 125.H 
holomorphic evolution operator 378.1 
holomorphic foliation 154.H 
holomorphic function(s) 198 

(on a complex manifold) 72.A 
(of many variables) 21.A,C 
germ of a 21.E 
sheaf of germs of 23.C 383.D 

holomorphic functional calculus 36.M 
holomorphic hull 21.H 
holomorphic k-form 72.A 
holomorphic local coordinate system 72.A 
holomorphic mapping 21.5 

(of a complex manifold) 72.A 
nondegenerate (between analytic spaces) 23.C 

holomorphic microfunction 274.F 
holomorphic modification (of an analytic space) 

23.D 
holomorphic part (in a Laurent expansion) 198.D 
holomorphic sectional curvature 364.D 
holomorphic semigroup 378.D 
holomorphic tangent vector 72.A 
holomorphic vector field 72.A 
holomorphy 

domain of 21.F 
envelop of 21.F 
Hartogs theorem of 21.C 

holonomic (coherent &-module) 274.H 
holonomic systems 

with regular singularities 274.H 
simple 274.H 

holonomy 154.C 
holonomy group 80.D 154.C 364.D 

homogeneous 364.E 
restricted 80.D 364.E 
restricted homogeneous 364.E 

holonomy homomorphism 154.C 
linear 154.C 

holosymmetric class 92.B 
homentropic flow 205.B 
homeomorphic 425.G 
homeomorphism 425.G 

minimal 136.H 
PL 65.A 
strictly ergodic 136.H 
uniquely ergodic 136.H 

homeomorphism problem 425.G 
homoclinic point 126.5 

transversal 126.5 
homogeneous 

(A-submodule) 200.B 
(boundary value problem) 315.B 
(difference equation) 104.C 
(lattice) 182.B 
(linear ordinary differential equation) 252.A 
(system of linear differential equations of 

the first order) 252.G 
spatially (process) 261.A 
temporally (additive process) 5.B 
temporally (process) 261.A 
weighted (analytic function) 418.D 

homogeneous bounded domain 384.A 412.F 
homogeneous coordinate ring 16.A 
homogeneous coordinates 343.C 
homogeneous difference equation 104.C 
homogeneous element 

of a graded ring 369.B 
of a homogeneous ring 369.B 

homogeneous equations, system of linear 269.M 
homogeneous holonomy group 364.E 

restricted 364.E 
homogeneous hypersurface 344.A 
homogeneous ideal 

of a graded ring 369.B 
of a polynomial ring 369.B 

homogeneous integral equation 217.F 
homogeneous Lorentz group 258.A 359 
homogeneously regular 275.C 
homogeneous Markov process 5.H 261.A 
homogeneous n-chain (for a group) 200.M 
homogeneous ordinary differential equation 

App. A, Table 14.1 
of higher order App. A, Table 14.1 

homogeneous part (of a formal power series) 370.A 
homogeneous polynomial 337.B 
homogeneous ring 369.B 
homogeneous Siegel domain, irreducible 384.E 

topology of Lie groups and 427 
homogeneous space(s) 199 249.F 362.B 

complex Hermitian 199.A 
Klhler 199.A 
linearly connected 199.A 
reductive 199.A 
Riemannian 199.A 
symmetric 412.B 
symmetric Riemannian 412.B 

homogeneous turbulence 433.C 
homological algebra 200 

relative 200.K 
homological dimension 

of a module 200.K 
of a topological space 117.F 

homological functor 200.1 
homological mapping 200.C 
homologous 201.B 
homologous to zero 198.B 
homology 200.H 

intrinsic 114.H 
homology basis, canonical 1 l.C 
homology class 200.H 

fundamental 201.N 
fundamental, around K 201.N 
q-dimensional 201.B 

homology exact sequence 2Ol.L 
(of fiber space) 148.E 
reduced 201.F 

homology group(s) 
(of a chain complex) 201.B 
(of a group) 200.M 
(of a Lie algebra) 200.0 
(of a polyhedron) 201.0 
(of a simplicial complex) 201.G 
absolute 2Ol.L 
Tech 201.M 
cellular 201.F,G 
with coefficients in G 201.G 
integral 201.C,D 
integral singular 201.E 
local 201.N 
reduced 201.E 
relative Tech 201.M 



2011 Subject Index 
Homotopy set 

relative singular 2Ol.L 
simplicial 201.D 
singular ZOl.G,L,R 

homology manifold 65.B 
homology module 200.C 
homology theory 201 

generalized 201.Q 
generalized, with E-coefficient 202.T 
uniqueness theorem of 201.Q 

homomorphic 
(algebraic system) 409.C 
(groups) 190.D 
(topological groups) 423.5 
order (ordered sets) 31 l.E 

homomorphic image (of a measure-preserving 
transformation) 136.D 

homomorphism 
(of Abelian varieties) 3.C 
(of algebraic systems) 409.C 
(of fields) 149.B 
(of groups) 190.D 
(of lattices) 243.C 
(of Lie algebras) 248.A 
(of linear representations) 362.C 
(of presheaves) 383.A 
(of rings) 368.D 
(of sheaves) 363.B 
A- (of A-modules) 277.E 
A-, of degree p (of graded A-modules) 200.B 
admissible (of n-groups) 190.E 
algebra 29.A 
allowed (of A-modules) 277.E 
analytic (of Lie groups) 249.N 
anti- (of groups) 190.D 
anti- (of rings) 368.D 
bialgebra 203.G 
Bokshtein 64.B 
boundary (on homology groups) 201.L 
boundary (in homotopy exact sequences) 

202.L 
C”-(between Lie groups) 249.N 
canonical (on direct products of rings) 368.E 
coalgebra 203.F 
coboundary (on cohomology groups) 201.L 
connecting (in homology) 200.C 2Ol.L 
connecting (on homology groups) 201 .C 
continuous (of topological groups) 423.5 
crossed (of an associative algebra) 200.L 
dual (of a homomorphism of algebraic tori) 

13.D 
dust (of lattices) 243.C 
edge 200.5 
equivariant J- 431.F 
generalized Hopf 202.V 
Gysin 201 .O 
holonomy 154.C 
Hopf algebra 203.H 
Hurewicz 202.N 
induced by a continuous mapping (between 
homotopy groups) 202.K 

J- (in homotopy theory) 202.V 
J- (in K-theory) 237.1 
Jordan (of Jordan algebras) 23 l.A 
lattice- 243.C 
local (of a topological group) 423.0 
module of (of modules) 277.B 
module of A- (of A-modules) 277.E 
Cl- (of R-groups) 190.E 
open continuous (of topological groups) 423.3 
operator (of A-modules) 277.E 

operator (of n-groups) 190.E 
order 311.E 
rational (of Abelian varieties) 3.C 
rational (of algebraic groups) 13.A 
ring 368.D 
*- 36.F 
Umkehr 201.0 
unitary (of rings) 368.D 
zero (of two A-modules) 277.H 

homomorphism theorem 
on groups 190.D 
on Lie algebras 248.A 
on topological groups 423.5 
on topological linear spaces 424.X 

homothetic correspondence (between surfaces) 
111.1 

homothety 
in conformal differential geometry 1lO.D 
in Euclidean geometry 139.B 

homotopic 154.E,F 202.B 
chain (chain mappings) 200.C 
integrably 154.F 
null- (continuous mapping) 202.B 
regularly (immersions) 114.D 
relative to a subspace 202.B 
to zero 202.B 

homotopy 202.B 
composite 202.B 
free 202.B 
linear 114.D 
restricted 202.B 

homotopy-associative (multiplication) 203.D 
homotopy category of topological spaces 52.B 
homotopy chain 200.C 
homotopy class 202.B 

compact 286.D 
homotopy cochain 200.F 
homotopy commutative (multiplication) 203.D 
homotopy equivalence 202.F 

simple 65.C 
weak 202.F 

homotopy equivalent systems (of topological 
spaces) 202.F 

homotopy exact sequence 202.L 
of a fiber space 148.D 
of a triad 202.M 
of a triple 202.L 

homotopy extension property 202.E 
homotopy group(s) 202.5 

algebraic 16.U 
of a compact connected Lie group App. A, 
Table 6.VII 

realization theorem of 202.N 
of a real Stiefel manifold App. A, Table 6.VII 
relative 202.K 
of a sphere App. A, Table 6.VI 
stable 202.T, App. A, Table 6.VII 
stable (of classical groups) 202.V 
stable (of the k-stem) 202.U 
stable (of Thorn spectrum) 114.G 
of a triad 202.M 

homotopy identity (of an H-space) 203.D 
homotopy invariance (of a homology group) 201.D 
homotopy invariant 202.B 
homotopy inverse (for an H-space) 203.D 
homotopy n-spheres 

group of 114.1 
h-cobordism group of 114.1 

homotopy operations 202.0 
homotopy set 202.8 



Subject Index 

Homotopy sphere 
2012 

homotopy sphere 65.C 
homotopy theorem 

first (in obstruction theory) 305.B 
second (in obstruction theory) 305.C 
simple 65.C 
third (in obstruction theory) 305.C 

homotopy theory 202 
de Rham 114.L 

homotopy type 202.F 
(of a link) 235.D 
spherical G-fiber 431.F 

homotopy type invariant 202.F 
Hooke law 271.G 
Hopf algebra(s) 203 

dual 203.C 
elementary 203.D 
graded 203.C 

Hopf algebra homomorphism 203.H 
Hopf bifurcation 126.M 
Hopf bundle 147.E 
Hopf classification theorem 202.1 
Hopf comultiplication 203.D 
Hopf coproduct 203.D 
Hopf extension theorem 270.E 
Hopf fibering 147.E 
Hopf homomorphism, generalized (of homotopy 

groups of spheres) 202.U 
Hopf integrodifferential equation, Wiener- 222.C 
Hopf invariant 202.U 

generalized 202.Q 
modulo p 202,s 

Hopf mapping (Hopf map) 147.E 
Hopf surface 72.K 
Hopf theorem (continuous vector field) 153.B 
Hopf weak solution 204.C 
horizon, event 359.F 
horizontal components 

of a homogeneous space 110.A 
of a vector field 80.C 

horizontal slit mapping, extremal 367.G 
horizontal subspace 191.C 
horizontal vector (in a differentiable principal fiber 

bundle) 80.C 
Hiirmander theorem 112.C,D 
horned sphere, Alexander 65.G 
Horner method 301 .C 
horocycle flow 136.G 
horosphere 218.G 
horseshoe diffeomorphism 126.J 
Hosokawa polynomial 235.D 
Hotelling T2 statistic 280.8 

noncentral 374.C 
Householder method 298.D 
Householder transformation 302.E 
Hugoniot relation, Rankine- 204.G 205.B 
Hukuhara theorem, Dini- 314.D 
Hukuhara problem 315.C 
hull 

closed convex 424.H 
convex 89.A 
convex (in an afline space) 7.D 
convex (of a boundary curve) 275.A 
convex (in linear programming) 255.D 
holomorphic 21.H 

hull-kernel topology 36.D 
human death and survival, model of 214.A 
Hunt process 261.B 
Hunt-Stein lemma 400.F 

Hurewicz homorphism 202.N 
Hurewicz isomorphism theorem 202.N 
Hurewicz-Steenrod isomorphism theorem 148.D 
Hurewicz theorem, generalized 202.N 
Hurewicz-Uzawa gradient method, Arrow- 292.E 
Hurwitz formula, Riemann- (on coverings of 

a nonsingular curve) 9.1 
Hurwitz relation 

(on homomorphisms of Abelian varieties) 3.K 
Riemann- 367.B 

Hurwitz theorem 10.E 
Hurwitz zeta function 450.B 
Huxley differential equation, Hodgkin- 291.F 
Huygens principle 325.B 446 

in the wider sense 325.D 
hybrid computer 19.E 
hydrodynamics 205 
hydromagnetic dynamo theory 259 
hydromagnetics 259 
hydrostatics 205.A 
hyperalgebra 203.1 
hyperarithmetical function 356.H 
hyperarithmetical hierarchy of degrees of recursive 

unsolvability 356.H 
hyperarithmetical predicate 356.H 
hyperbola 78.A 

conjugate 78.E 
equilateral 78.E 
rectangular 78.E 

hyperbolic 
(closed invariant set of a dynamical system) 

126.5 
(differential operator) 112.A 325.H 
(linear mapping) 126.G 
(partial differential equation) 325.A,E 
(Riemann surface) 367.D,E 
(simply connected domain) 77.B 
(space form) 412.H 
complete 21.0 
regularly 325.A,F 
in the sense of Girding 325.F 
in the sense of Petrovskii 325.F 
in the strict sense 325.F 
strongly 325.H 
symmetric (in the sense of Friedrichs) 325.G 
weakly 325.H 

hyperbolically embedded 21.0 
hyperbolic closed orbit 126.G 
hyperbolic coordinates 

equilateral 9O.C App. A, Table 3.V 
rectangular 90.C 

hyperbolic cosecant 131.F 
hyperbolic cosine 131.F 
hyperbolic cotangent 131.F 
hyperbolic cylinder 350.B 
hyperbolic cylindrical coordinates App. A, 

Table 3.V 
hyperbolic cylindrical surface 350.B 
hyperbolic differential equations, system of (in 

the sense of Petrovskii) 325.G 
hyperbolic-elliptic motion 420.D 
hyperbolic fixed point 126.G 
hyperbolic function 131.F 
hyperbolic geometry 285.A 
hyperbolic knot 235.E 
hyperbolic manifold 21.0 235.E 
hyperbolic motion 420.D 
hyperbolic-parabolic motion 420.D 



2013 Subject Index 
Hypotrochoid 

hyperbolic paraboloid 350.B 
hyperbolic plane 122.C 
hyperbolic point (on a surface) 11 l.H 
hyperbolic quadric hypersurface 350.1 
hyperbolic secant 13 1 .F 
hyperbolic sine 13 1 .F 
hyperbolic singular point 126.G 
hyperbolic space 285.C 

Hermitian 412.G 
quaternion 412.G 
real 412.G 

hyperbolic spiral 93.H 
hyperbolic tangent 131.F 
hyperbolic transformation 76.F 
hyperbolic type, partial differential equation of 

321.E 325 
hyperbolic type, primitive 92.C 
hyperboloidic position 350.B 
hyperboloid of one sheet 350.B 
hyperboloid of revolution of one or two sheets 

350.B 
hyperboloid of two sheets 350.B 
hypercohomology 200.J 
hyperconstructive ordinal 81.E 
hypercubic type, primitive 92.C 
hyperelliptic curve 9.D 
hyperelliptic integral 1l.C 
hyperelliptic Riemann surface 11 .C 
hyperelliptic surface 72.K 
hyperlinite 293.B 308.1 
hyperfunction 125 

in the Dirichlet problem 120.C 
exponentially decreasing Fourier 125.BB 
Fourier 125.BB 
Fourier ultra- 125.BB 
modified Fourier 125.BB 
Sato 125.V 

hypergeometric differential equation 260.A, 
App. A, Table 18.1 

confluent 167.A, App. A, Tables 14.IL19.1 
Gauss App. A, Table 14.11 

hypergeometric distribution 341.D 397.F, 
App. A, Table 22 

multidimensional App. A, Table 22 
multiple 341.D 

hypergeometric function(s) 209, App. A, Table 18.1 
Appell, of two variables 206.D, App. A, 

Table 18.1 
Barnes extended 206.G, App. A, Table 18.1 
of confluent type 167.A, App. A, Table 19.1 
of the hyperspherical differential equation 

393.E 
with matrix argument 206.E 
and spherical functions App. A, Table 18 

hypergeometric integral 253.B 
hypergeometric series 206.A 
hypergeometric type, special function of 389.A 
hypergroup 190.P 
hypergroupoid 190.P 
hyperinvariant (under an operator) 251.L 
hyperplanar symmetry (of an alline space) 139.B 
hyperplane(s) 

in an alline space 7.A 
characteristic (of a partial differential equation 
of hyperbolic type) 325.A 

at infinity (in afline geometry) 7.B 
pencil of (in a projective space) 343.B 
in a projective space 343.B 

regression 403.D 
tangent (of a quadric hypersurface) 343.E 

hyperplane coordinates 
of an afline frame 7.C 
in projective geometry 343.C 

hyperplane section 418.1 
hyperquadric 

in an a&e space 350.G 
in a projective space 343.D 350.1 

hypersonic flow 205.C 
hypersphere 76.A 

imaginary 76.A 
limiting (in hyperbolic geometry) 285.C 
non-Euclidean 285.C 
oriented real 76.A 
point 76.A 
proper (in hyperbolic geometry) 285.C 
real 76.A 

hypersphere geometry 76.A 
hyperspherical coordinates, (n + 2)- 76.A 90.B 
hyperspherical differential equation 393.E 
hypersurface(s) 

(of an algebraic variety) 16.A 
(in a Euclidean space) 11 l.A 
central quadric 350.G 
characteristic (of a partial differential equation 
of hyperbolic type) 325.A 

coordinate (in a Euclidean space) 90.C 
elliptic quadric 350.G 
homogeneous 344.A 
hyperbolic quadric 3SO.G 
integral (partial differential equations) 320.A 
noncentral quadric 350.G 
nondegenerate 344.A 
parabolic quadric 350.G 
pencil of quadric 343.E 
properly (n - I)-dimensional quadric 350.G 
quadric 343.D 35O.G,1 
quadric conical 350.Q 
quadric cylindrical 350.4 
regular quadric 343.E 
singular quadric (of the hth species) 343.E 
spherical real 344.C 

hypersurface element(s) 82.A 324.B 
union of 82.A 

hypocontinuous (bilinear mapping) 424.4 
hypocylcoid 93.H 
hypo-Dirichlet 164.B 
hypoelliptic 112.D 189.C 323.1 

analytically 112.D 323.1 
hypofunction (in the Dirichlet problem) 120.C 
hyponormal 251.K 
hypothesis 

alternative 400.A 
composite 400.A 
continuum -continuum hypothesis 
ergodic 136.A 402.C 
general linear 400.H 
Lindeldf 123.C 
null 400.A 
Riemann 450.B,P 
simple 400.A 
statistical 400.A 
Suslin 33.F 

hypothesis testing 4Ol.C App. A, Table 23 
statistical 400, App. A, Table 23 

hypothetical infinite population 397.P 
hypotrochoid 93.H 



Subject Index 

i-genus 

2014 

1 

i-genus 15.E 
I-adic topology (of a ring) 16.X 
ith component (of an n-tuple) 256.A,C 
ith coordinate 256.C 
ith coordinate axis (of a Euclidean space) 140 
icosahedral group 15 1 .G 
icosahedron 357.B 
ideal(s) 

(of an algebra) 29.A 
(of an algebraic number field) 14.B 
(of a lattice) 42.C 
(of a Lie algebra) 248.A 
(of a ring) 368.F 
Abelian (of a Lie algebra) 248.C 
Alexander (of a knot) 235.C 
ambig (of a quadratic field) 347.F 
conjugate (of a fractional ideal) 14.1 
defining (of a formal spectrum) 16.X 
differential (of a differential ring) 113 
differential (on a real analytic manifold) 428.E 
elementary 235.C 
fractional (of an algebraic number held) 14.E 
graded 369.B 
homogeneous (of a graded ring) 369.B 
homogeneous (of a polynomial ring) 369.B 
integral (of an algebraic number field) 14.C 
integral left 27.A 
integral right 27.A 
integral two-sided o- 27.A 
involutive differential 428.E 
largest nilpotent (of a Lie algebra) 248.D 
left (of a ring) 368.F 
left e- 27.A 
maximal 67.C 
maximal (left or right) 368.F 
maximal (with respect to S) 67.C 
maximal, space (of a Banach algebra) 36.E 
minimal (left or right) 368.F 
mixed 284.D 
nilpotent (of a Lie algebra) 248.C 
order (of a vector lattice) 310.B 
p-primary 67.F 
primary 67.F 
prime 67.C 
prime (of a maximal order) 27.A 
prime differential (of a differential ring) 113 
primitive (of a Banach algebra) 36.E 
principal 67.K 
principal (of an algebraic number field) 14.E 
principal, theorem (in class field theory) 59.D 
principal fractional 67.K 
pure 284.D 
right (of a ring) 368.F 
right o, 27.A 
semiprime (of a commutative ring) 113 
semiprime differential (of a differential ring) 

113 
sheaf of (of a divisor of a complex manifold) 

72.F 
solvable (of a Lie algebra) 248.C 
two-sided (of a ring) 368.P 
two-sided o- 27.A 
unmixed 284.D 
valuation (of a valuation) 439.B 

ideal boundary 207.A 
in the narrow sense 14.G 

ideal class 14.E 
ideal class group 14.E 67.K 

ideal group modulo m* 14.H 
ideal point (in hyperbolic geometry) 285.C 
idele (of an algebraic number field) 6.C 

principal 6.C 
idele class 6.D 
idele class group 6.D 
idele group 6.C 
idempotent element (of a ring) 368.B 

elementary 450.0 
primitive 368.B 

idempotent law (in a lattice) 243.A 
idempotent measure 192.P 
idempotent set (of a ring) 368.B 
idempotent theorem 36.M 
identically true formula 411.G 
identification (in factor analysis) 280.G 
identification space (by a partition) 425.L 
identified equation 128.C 

just 128.C 
over- 128.C 

identity (identities) 231.A 
Bianchi 80.5 417.B 
Bianchi first App. A, Table 4.11 
Bianchi second App. A, Table 4.11 
homotopy (of an H-space) 203.D 
Jacobi (on the bracket of two vector fields) 

105.M 
Jacobi (in a Lie algebra) 248.A 
Jacobi (with respect to Whitehead product) 

202.P 
in Jordan algebras 231.A 
Lagrange 252.K 
Parseval t8.B 159.A 160.C 192.K 197.C 

220.B,C,E 
resolution of 390.D 
theorem of (of one variable) 198.C 
theorem of (of several variables) 21.C 

identity character (of an Abelian group) 2.G 
identity component (of a topological group) 423.F 
identity element 

of an algebraic system 409.C 
of a field 149.A 
of a group 190.A 
of a local Lie group 423.L 
of a ring 368.A 

identity function 381 .C 
identity mapping 381.C 
identity matrix 269.A 
identity operator (in a linear space) 37.C 
identity relation 102.1 
Ihara zeta function 450.U 
Ikehara-Landau theorem, Wiener- 123.B 
ill-conditioned (coefficient matrix in numerical 

solution of linear equations) 302.D 
image 

(of a group homomorphism) 190.D 
(of a linear mapping) 256.F 
(of a line in P3) 343.E 
(of a mapping) 38 1 .C 
(of a morphism) 52.N 
(of an operator homomorphism) 277.E 
(of a sheaf homomorphism) 383.D 
closed (of a variety) 18.1 
continuous 425.G 
direct (of a sheaf) 383.G 
homomorphic (of a measure preserving 

transformation) 136.D 
inverse (of a set) 381.C 
inverse (of a sheaf) 383.G 
inverse (of a uniformity) 436.E 



2015 Subject Index 
Independent 

perfect 425.CC 
perfect inverse 425.CC 

image measure 270.K 
imaginary axis 74.C 
imaginary field, totally 14.F 
imaginary hypersphere 76.A 
imaginary intinite prime divisor 439.H 
imaginary number 74.A 

purely 14.A 
imaginary part 74.A 
imaginary prime divisor 439.H 
imaginary quadratic field 347.A 
imaginary root (of an algebraic equation) 10.E 
imaginary transformation, Jacobi’s 134.1, App. A, 

Table 16.111 
imaginary unit 74.A 294.F 
imbedded Markov chain 260.H 
imbedding 105.K 
imbedding principle 127.B 
immersed submanifold (of a Euclidean space) 

lll.A 
immersion 

(of a Cm-manifold) 105.K 
(of a Riemann surface) 367.G 
branched minimal 275.B 
generalized minimal 275.B 
isometric 365.A 
Klhler 365.L 
minimal 275.A 
minimum 365.0 
tight 365.0 
totally real 365.T 

imperfect field 149.H 
implication 411 .B 

strict 411.L 
implicit 

(difference equation in a multistep method) 
303.E 

(Runge-Kutta method) 303.D 
implicit enumeration method 215.D 
implicit functions 165.C 208 
implicit function theorem 208.A 286.G 

(in Banach algebras) 36.M 
(in locally convex spaces) 286.5 
global 208.D 
Nash-Moser 286.5 

implicit method 303.E 
implicit scheme 304.F 
impossible construction problem 179.A 
impossible event 342.B 
impredicative (object) 156.8 
imprimitive (permutation group) 151.H 
improper integral 216.D,E 

convergent 216.E 
divergent 216.E 

improper Riemann integral 216.E 
improvement, iterative 302.C 
impulse control 405.E 
impulse function 306.B, App. A, Table 12.11 
imputation 173.D 
imputed costs 292.B 
imputed prices 292.C 
IMT formula 299.B 
inaccessible, strongly 33.F 
inaccessible cardinal number 

strongly 33.E 
weakly 33.E 

inaccessible ordinal number 
strongly 312.E 
weakly 312.E 

Ince definition 268.D 
Ince-Goldstein method 268.C 
incidence matrix 

of a block design 102.B 
of a graph 186.G 

incidence number 146.B 201.B 
incidence relation 282.A 
inclination, curve of constant 11 l.F 
inclination problem, critical 55.C 
inclusion 381 .C 
inclusion mapping 381.C 
incoming wave operator 375.B 
incompatible system (of partial differential 

equations) 428.B 
incomplete beta function App. A, Table 17.1 
incomplete blocks 102.B 
incomplete elliptic integral of the first kind 134.B 
incomplete factorization 302.C 
incomplete gamma function 174.A, App. A, 

Table 17.1 
incompleteness theorem, Giidel 156.E 

first 185.C 
second 185.C 

incompressible (measurable transformation) 136.C 
incompressible fluid 205.B 
inconsistent problem (of geometric construction) 

179.A 
inconsistent system (of algebraic equations) 10.A 
increasing (sequence function or distribution) 

monotone 166.A 380.B 
monotonically 87.B 
non- 166.A 
slowly (P-function) 125.0 
slowly (distribution) 125.N 
slowly (in the sense of Deny) 338.0 
slowly, sequence 168.B 
strictly 166.A 
strictly monotone 166.A 

increasing directed set 308.A 
increasing process 406.B 

integrable 406.B 
increment 

of a function 106.B 
process with independent 5.B 

increment function 380.B 
Ind (large inductive dimension) 117.B 
ind (small inductive dimension) 117.B 
indecomposable A-module 277.1 
indecomposable continuum 79.D 
indecomposable group 190.L 
indecomposable linear representation 362.C 
indecomposable vector bundle 16.Y 
indefinite D-integral 100.D 
indefinite Hermitian form 348.F 
indefinite integral 198.B 

in Lebesgue integral 221.0 
in Riemann integral 216.C 

indetinite quadratic form 348.C 
indefinite sum (of a function) 104.B 
in degree 186.B 
independence, number of 186.1 
independence theorem (on valuations) 439.G 
independent 

(axioms) 35.B 
(complexes) 70.B 
(differential operators) 324.C 
(events) 342.B 
(frequency) 126.L 
(partitions) 136.E 
(points) 7.A 



Subject Index 
Independent increments, process with 

2016 

(random variables) 342.C 
algebraically 149.K 369.A 
analytically (in a complete ring) 370.A 
E- (partitions) 136.E 
linearly 2.E 256.C,E 277.G 
path 346.G 

independent increments, process with 5.B 
independent of the past history 406.D 
independent process 136.E 
independent set 66.G 186.1 
independent system, maximal (of an additive group) 

2.E 
independent variable 165.C 
independent vector 66.F 
indeterminacy, set of points of (of a proper 

meromorphic mapping) 23.D 
indeterminate 369.A 

in the algebraic sense 337.C 
indeterminate coefficients, Lagrange’s method of 

106.L 
indeterminate form, limit of 106.E 
indeterminate system (of algebraic equations) 10.A 
Ind,a 297.G 
index 

(of a central simple algebra) 29.G 
(of a critical point) 279.B,E 286.N 
(of a divisor) 3.D 
(of an s-Hermitian form) 60.0 
(of an eigenvalue) 217.F 
(of a Fredholm mapping) 286.E 
(of a Fredholm operator) 68.F 251.D 
(of a manifold) 56.G 
(of a number) 297.G 
(of an orthogonal array) 102.L 
(of a quadratic form) 348.E 
(of a recursive function) 356.F 
(of the Riemann-Hilbert problem) 217.5 
(of a stable distribution) 341.G 
(of a stable process) 5.F 
(of a subgroup) 190.C 
analytic (of an elliptic complex) 237.H 
analytic (of an elliptic differential operator) 
237.H 

contravariant (of a component of a tensor) 
256.5 

covariant (of a component of a tensor) 256.5 
cycle 66.E 
deficiency (of a closed symmetric operator) 

251.1 
deficiency (of a differential operator) 112.1 
degeneracy 17.C 
differential (in a covering of a nonsingular 

curve) 9.1 
dummy (of a tensor) 256.J 
fixed-point (of a continuous mapping) 153.B 
of inertia (of a quadratic form) 348.E 
Keller-Maslov 274.C 
Kronecker 201.H 
multi- 112.A 
o-speciality (of a divisor) 9.F 
p- (on a central simple algebra) 29.G 
ramification (of an algebroidal function) 

17.c 
ramification (of a finite extension) 257.D 
ramification (of a prime ideal) 14.1 
ramification (of a valuation) 439.1 
ramification, relative (of a prime ideal) 14.1 
of relative nullity 365.D 
Schur (of a central simple algebra) 29.E 
Schur (of an irreducible representation) 362.F 

of a singular point (of a continuous vector field) 
153.B 

speciality (of a divisor) 9.C 15.D 
topological (of an elliptic complex) 237.H 
of total isotropy (of a quadratic form) 348.E 

indexing set (of a family of elements) 381.D 
index set 

(of a balanced array) 102.L 
(of a family) 165.D 381.D 

index theorem 
Atiyah-Singer 237.H 
for differentiable manifolds 56.G 
Hirzebruch (for differentiable manifolds) 56.G 
of Hodge 15.D 
Morse 279.F 

Indian mathematics 209 
indicator function 

modified 341.C 
of a subset 342.E 

indicatrix 
Dupin 11 l.H 
spherical (of a space curve) 11l.F 

indicial equation 254.C 
indirect least squares method 128.C 
indirect transcendental singularity (of an analytic 

function) 198.P 
indiscrete pseudometric space 273.B 
indiscrete topology 425.C 
individual 41 l.H 
individual domain 411.H 
individual ergodic theorem 136.B 
individual risk theory 214.C 
individual symbol 411.H 
individual variables 41 l.H 
indivisibilis 265 
induced 

(Cartan connection) 80.0 
(unfolding) 51.D 

induced bundle 147.G 
induced homomorphism 202.K 
induced module 277.L 
induced representation 

(of a finite group) 362.G 
(of a unitary representation) 437.0 

induced topology 425.1 
induced von Neumann algebra 308.C 
induction 

(of a von Neumann algebra) 308.C 
axiom of mathematical 294.B 
complete 294.B 
double mathematical 294.B 
magnetic 130.A 
mathematical 294.B 
multiple mathematical 294.B 
translinite (in a well-ordered set) 31 l.C 

induction equation 259 
inductive dimension 

small 117.B 
large I 17.B 

inductive limit 
(in a category) 210.D 
(of an inductive system of sets) 210.B 
(of a sequence of topological spaces) 425.M 
(of sheaves) 383.1 
strictly (of a sequence of locally convex spaces) 

424.W 
inductive limit and projective limit 210 
inductive limit group 210.C 
inductive limit space 210.C 
inductively ordered set 34.C 



2017 Subject Index 
Infinitesimal transformation 

inductive system 
(in a category) 210.D 
(of groups) 210.C 
(of sets) 210.B 
of topological spaces 210.C 

inelastic (scattering) 375.A 
inequality (inequalities) 211, App. A, Table 8 

absolute 21 l.A 
Bell’s 351.L 
Bernshtein (for trigonometric polynomials) 

336.C 
Bessel 197.C 
Bhattacharyya 399.D 
Bunyakovskii 21 l.C, App. A, Table 8 
Carleman App. A, Table 8 
Cauchy 21 l.C, App. A, Table 8 
Cauchy-Schwarz 21 l.C, App. A, Table 8 
Chapman-Robbins-Kiefer 399.D 
Chebyshev 342.C 
conditional 21 l.A 
correlation 212.A 
Cramer-Rao 399.D 
distortion 438.B 
energy 325.C 
Fisher 102.E 
FKG 212.A 
Girding 112.G 
GHS 212.A 
GKS first 212.A 
GKS second 212.A 
Golden-Thompson 212.B 
Griffith& first 212.A 
Grifhths’s second 212.A 
Grunsky 438.B 
Hardy App. A, Table 8 
Hardy-Littlewood-Sobalen 224.E 
Haussdorff-Young 224.E 
Hilbert App. A, Table 8 
Holder 2 11 .C, App. A, Table 8 
Holder integral 211.C 
isoperimetric 228.B 
Jordan App. A, Table 8 
Klein 212.B 
Markov (for polynomials) 336.C 
maximal (maximal ergodic lemma) 136.B 
Minkowski 21 l.C, App. A, Table 8 
Morse 279.D,E 
Peierls-Bogolyubov 212.B 
Powers-Stormer 212.B 
quasivariational 440.D 
Riemann’s period 3.L 
Riemann-Roth (on algebraic surfaces) 15.D 
Roepstorff-Araki-Sewell 402.G 
Roepstorff-Fannes-Verbeure 402.G 
Schwarz 21 l.C 
stationary variational 440.B 
triangle 273.A 
variational, of evolution 440.C 
von Neumann 251.M 
Wirtinger App. A, Table 8 
Wolfowitz 399.5 
Young 224.E, App. A, Table 8 

inertia 
ellipsoid of 271.E 
index of (of an a quadratic form) 348.B 
law of 271.A 
law of, Sylvester (on a quadratic form) 348.B 
moment of 271.E 
principal axis of 27 1 .E 
principal moment of 271.E 

product of 271.E 
inertia field (of a prime ideal) 14.K 
inertia group 14.K 257.D 
inertial system 271.D 359 
inf (infimum) 31 l.B 
inference 

rule of 411.1 
statistical 401 
statistical, graphical method of 19.B 

inferior limit 
(of a sequence of real numbers) 87.C 
(of a sequence of subsets of a set) 270.C 

inferior limit event 342.B 
intimum 

(of an ordered set) 31 l.B 
(of a subset of a vector lattice) 310.C 

infinite, purely (von Neumann algebra) 308.E 
infinite branch (of a curve of class Ck) 93.G 
infinite cardinal number 49.A 
infinite classical group 147.1 202.V 
infinite continued fraction 83.A 
infinite determinant (in Hill’s method of solution) 

268.B 
infinite-dimensional complex projective space 56.C 
infinite-dimensional linear space 256.C 
infinite-dimensional normal space 117.B 
infinite-dimensional real projective space 56.B 
infinite Grassmann manifold 147.1 
infinite group 190.C 
infinite height (element of an Abelian p-group) 2.D 
infinite interval 355.C 
infinite lens space 91.C 
infinitely differentiable (function) 106.K 
infinitely divisible distribution 341.G 
infinitely recurrent (measurable transformation) 

136.C 
infinite matrix 269.K 
infinite order (of an element in a group) 190.C 
infinite orthogonal group 202.V 
infinite population 401.E 
infinite prime divisor 439.H 

imaginary 439.H 
real 439.H 

intinite product 379.G, App. A, Table lO.VI 
divergent 379.G 

infinite product expansion, Euler’s 436.B 450.B 
infinite sequence 165.D 
infinite series 379.A, App. A, Table 10.111 
infinite set 49.F 381.A 

countably 49.A 
infinitesimal 

(for a function) 87.G 
(for a hyperreal number) 293.D 
(for a sequence of random variables) 250.B 
order of (of a function) 87.G 

infinitesimal birth rate 260.G 
infinitesimal calculus (in nonstandard analysis) 

293.D 
infinitesimal death rate 260.G 
infinitesimal deformation to the direction a/& 

72.G 
infinitesimal element (in nonstandard Hilbert space) 

276.E 
infinitesimal generator (of a semigroup) 378.B 
infinitesimal motion (of a Riemannian manifold) 

364.E 
infinitesimal real number 276.E 
infinitesimal transformation 

(of a differentiable transformation group) 
431.G 



Subject Index 

Infinitesimal wedge 
2018 

(of a one-parameter transformation group) 
105.N 

infinitesimal wedge 125.V 
infinite Stiefel manifold 147.1 
infinite symplectic group 202.V 
infinite type (Lie algebra) 191.D 
infinite type power series space 168.B 
infinite unitary group 202.V 
infinity 87.D,G 

axiom of 33.B 381 .G 
axiom of strong 33.E 
hyperplane at (in atline geometry) 7.B 
minus 87.D 
negative 87.D 355.C 
order of (of a function) 87.G 
plus 87.D 
point at 7.B 74.D 178.F 285.C 
positive 87.D 355.C 
regular at the point at 193.B 
space at (in affine geometry) 7.B 

inflation 200.M 
inflection, point of 9.B 93.G 
influence, domain of 325.B 
influence curve 371.1 
information 

Fisher 399.D 
limited (in maximum likelihood method) 

128.C 
loss of 138.B 
mutual 213.E 
self- 213.B 

information bit 63.C 
information compression 96.B 
information matrix 102.1 399.D 
information number, Kullback-Leibler (K-L) 

398.G 
information retrieval 96.F 
information retrieval system 96.F 
information sciences 75.F 
information set 173.B 
information source 213.A 

ergodic 213.C 
information theory 213 
informatiques 75.F 
informative, more (statistical experiment) 398.G 
infra-exponential growth 125.AA,BB 
infrared divergence 132.C 146.B 
ingoing subspaces 375.H 
inhomogeneous 

(boundary value problem) 315.B 
(difference equation) 104.C 
(linear ordinary differential equation) 252.A 
(system of linear differential equations) 252.G 

inhomogeneous coordinates 343.C 
inhomogeneous lattice (in R”) 182.B 
inhomogeneous Lorentz group 359.B 
inhomogeneous polarization 3.G 
initial blocks 102.E 
initial-boundary value problem 325.K 
initial condition 

(for ordinary differential equations) 316.A 
(for partial differential equations) 321.A 

initial data 321.A 
initial distribution 

(of a Markov process) 261.A 
(for a stochastic differential equation) 406.D 

initial function (of a functional-differential 
equation) 163.C 

initial law (for a stochastic differential equation) 
406.D 

initial number 312.D 
initial object 52.D 
initial ordinal number 49.E 
initial phase (of a simple harmonic motion) 318.B 
initial point 

(of a curvilinear integral) 94.D 
(of a path) 170 
(of a position vector) 7.A 
(of a vector) 442.A 

initial set 
(of a correspondence) 358.B 
(of a linear operator) 251.E 

initial state 31.B 
initial surface 321.A 
initial term (of an infinite continued fraction) 

83.A 
initial value 

(for an ordinary differential equation) 316.A 
(for a partial differential equation) 321.A 
(for a stochastic differential equation) 406.D 

initial value problem 
(for functional-differential equations) 163.D 
(for hyperbolic partial differential equations) 

App. A, Table 15.111 
(for integrodifferential equations) 222.B 
(for ordinary differential equations) 313.C 

316.A 
(for partial differential equations) 321.A 
Navier-Stokes 204.B 
singular (for partial differential equations of 
mixed type) 326.C 

initial vertex 186.B 
injection 381.C 

(in a category) 52.D 
(homomorphism of cohomology groups) 

200.M 
canonical 38 1 .C,E 
canonical (on direct sums of modules) 277.F 
canonical (on free products of group) 190.M 
canonical (from a subgroup) 190.D 
natural (from a subgroup) 190.D 

injective 
(Banach space) 37.M 
(C*-algebra) 36.H 
(mapping) 381.C 
(object in an Abehan category) 200.1 

injective A-module 277.K 
injective class 200.4 
injective dimension 200.K 
injective envelope 200.1 
injective module, (R, S)- 200.K 
injective resolution (in an Abehan category) 200.1 

j- 200.Q 
right (of an A-module) 200.F 

injectivity, rational 200.0 
injectivity radius 178.C 
inner area 216.F 270.G 
inner automorphism 

(of a group) 190.D 
(of a ring) 368.D 
group of (of a group) 190.D 
group of (of a Lie algebra) 248.H 

inner capacity, Newtonian 48.F 
inner derivation 

(of an associative algebra) 200.L 
(of a Lie algebra) 248.H 

inner function 43.F 
inner harmonic measure 169.B 
inner measure 270.E 

Lebesgue 270.F 



2019 Subject Index 
Integral(s) 

inner product 
(in a Hermitian linear space) 256.Q 
(in a Hilbert space) 197.B 
(of hyperspheres) 76.A 
(between a linear space and its dual space) 

256.G 
(in a metric vector space) 256.H 
(of a pair of linear spaces) 424.G 
(of vectors) 256.A 442.B 
Hermitian 256.4 

inner product space 442.8 
inner solution 112.B 
inner topology (of a Lie subgroup) 249.E 
inner transformation (in the sense of Stoilow) 

367.B 
inner variable 112.B 
inner volume 270.G 
innovation 405.H 
input, Poisson 260.H 
input data, error of 138.B 
inrevolvable oval 89.E 
inscribe (in a sphere) 139.1 
inscribed circle (of a regular polygon) 357.A 
inseparable, purely (rational mapping) 16.1 
inseparable element (of a field) 149.H 

purely 149.H 
inseparable extension (of a field) 149.H 

purely 149.H 
inseparable polynomial 337.G 
inspection 

expected amount of 404.C 
sampling (-sampling inspection) 404.C 

instantaneous state 260.F 261.B 
in-state 150.D 386.A 
instruction 31.B 

single-address 75.C 
insurance 

amount of 214.A 
cost of 214.B 
death 214.B 
mixed 214.B 
survival 214.B 

insured, amount 214.A 
integer(s) 294.C 

algebraic 14.A 
Cartan (of a semisimple Lie algebra) 248.N 
Gaussian 14.U 
p-adic 439.F 
p-adic, ring of 439.F 
rational 294.B 

integer polyhedron 215.C 
integer programming 215 264.C 
integer programming problem 

all- 215.A 
mixed 215.A 
pure 215.A 
O-1 215.A 

integrability 
(of multivalued vector functions) 443.1 
strong 443.1 

integrability condition, complete 428.C 
integrable 

(function) 221.B 
(G-structure) 191.A 
(increasing process) 262.D 406.B 
(representation) 437.X 
(in the sense of Riemann) 216.A 
absolutely 216.E,F 
BirkhoB(function) 443.E 
Bochner (function) 443.C 

completely (system of independent l-forms) 
154.B 428.D 

D- (function) 100.D 
Daniell-Stone (function) 310.1 
Denjoy (in the wider sense) 100.D 
Dunford 443.F 
Gel’fand-Pettis (function) 443.F 
Lebesgue (function) 221.B 
locally, function 168.B 
p- (function) 221.B 
Perron (function) 100.F 
Pettis 443.F 
Riemann (function) 216.A 
scalarly 443.FJ 
square (function) 168.B 
square (unitary representation) 437.M 
termwise (series) 216.B 
uniformly (family of random variables) 262.A 
weakly (function) 443.E 

integrable distribution 125.N 
integrable increasing process 262.D 406.B 
integrable process of bounded variation 406.B 
integrable system 287.A 
integrably homotopic 154.F 
integral(s) 

(of differential forms) 105.T 
(of a distribution with respect to %) 125.H 
(of a function) 221.B 
(=integrally dependent) 67.1 
(of a Mange-Ampere equation) 278.B 
(of multivalued vector functions) 443.1 
(scheme) 16.D 
Abelian 1 l.C 
action 8O.Q 
Airy App. A, Table 19.W 
almost (element of a ring) 67.1 
of angular momentum 420.A 
Banach 310.1 
Bartle-Dunford-Schwartz 443.G 
Bessel 39.B 
Birkhoff 443.E 
Bochner 443.C 
Bromwich 240.D 322.D, App. A, Table 12.1 
Carson App. A, Table 12.11 
of Cauchy type 198.B 
of the center of mass 420.A 
complete additivity of the (in Lebesgue integral) 

221.c 
complete elliptic App. A, Table 16.1 
complete elliptic, of the first kind 134.B 
complete elliptic, of the second kind 134.C 
conjugate Fourier 160.D 
constant 216.C 
cosine 167.D. App. A, Table 19.11 
curvilinear 94.A 
curvilinear (with respect to a line element) 

94.D 
curvilinear (with respect to a variable) 94.D 
D(*)- 100.D 
Daniell-Stone 310.1 
definite App. A, Table 9.V 
definite (of a hyperfunction) 125.X 
definite (in a Riemann integral) 216.C 
definite D- 100.D 
Denjoy 100 
Denjoy (in the restricted sense) 100.D 
Denjoy (in the wide sense) 100.D 
direct 308.G 
direct (of unitary representations) 437.H 
Dirichlet (in Dirichlet problem) 120.F 



Subject Index 

Integral bilinear functional 
2020 

Dirichlet (in Fourier’s single integral theorem) 
160.B 

double (in Riemann integral) 216.F 
Dunford 251.G 443.F 
elliptic 1 l.C 134.A, App. A, Table 16.1 
elliptic, of the first kind 134.A 
elliptic, of the second kind 134.A 
elliptic, of the third kind 134.A 
energy 420.A 
Euler, of the first kind 174.C 
Euler, of the second kind 174.C 
exponential 167.D, App. A, Table 19.11 
Feynman 146 
first (of a completely integrable system) 428.D 
Fourier 160.A 
Fresnel 167.D, App. A, Tables 9.V 19.11 
of a function with respect to a volume element 

105.w 
Gauss 338.5 
Gel’fand 443.F 
Gel’fand-Pettis 443.F 
harmonic 194.A 
Hilbert’s invariant 46.C 
hyperelliptic 11 .C 
hypergeometric 2.53.B 
improper (in Riemann integral) 216.D,E 
incomplete elliptic (of the first kind) 134.B 
indelinite (in Lebesgue integral) 221.D 
indefinite (in Riemann integral) 198.B 216.C 
indefinite D- 100.D 
intermediate App. A, Table 15.111 
intermediate (of a Monge-Ampere equation) 

278.B 
iterated (in Lebesgue integral) 221.E 
iterated (in Riemann integral) 216.G 
Jacobi 420.F 
L- 221.B 
with respect to I (of a distribution) 125.H 
Lebesgue 221.B 
Lebesgue-Radon 94.C 
Lebesgue-Stieltjes 94.C 166.C 
logarithmic 167.D, App. A, Table 19.11 
Lommel 39.C 
multiple (in Lebesgue integral) 221.E 
multiple (in Riemann integral) 216.F 
n-tuple (in Riemann integral) 216.F 
over an oriented manifold 105.T 
Pettis 443.F 
Poisson 168.B 193.G 
probability App. A, Table 19.11 
regular first 126.H 
repeated (in Lebesgue integral) 221.E 
repeated (in Riemann integral) 216.G 
Riemann 37.K 216.A 
Riemann lower 216.A 
Riemann-Stieltjes 94.B 166.C 
Riemann upper 2 16.A 
scalar 443.F,I 
sine 167.D, App. A, Table 19.11 
singular 217.5 
over a singular chain 105.T 
spectral 390.D 
Stieltjes 94.B 
stochastic 261.E 406.B 
stochastic, of Stratonovich type 406.C 
surface 94.A,E 
surface (with respect to a surface element) 

94.E 
trigonometric 160.A 

vector 443.A 
of a vector field App. A, Table 3.111 
vector-valued 443.A 

integral bilinear functional 424.R 
integral calculus 216 
integral character (of the homology group of 

a Riemann surface) 1 l.E 
integral closure (of a ring) 67.1 
integral cohomology group 201.H 
integral constant 216.C 
integral cosine 167.D 
integral current 275.G 
integral curvature (of a surface) 11 l.H 
integral curve 

(of a Monge equation) 324.F 
(of ordinary differential equations) 316.A 

integral direct sum 308.G 
integral divisor 

(of an algebraic curve) 9.C 
(of an algebraic number field) 14.F 
(on a Riemann surface) 1 l.D 

integral domain 368.B 
Noetherian 284.A 

integral element 428.E 
k-dimensional 19 1 .I 
ordinary 428.E 
regular 428.E 

integral equation(s) 217 
Abel 217.L 
associated 217.F 
Fredholm 217.A 
of Fredholm type 217.A 
Hammerstein 217.M 
homogeneous 2 17.F 
linear 217.A 
nonlinear 217.M 
numerical solution of 217.N 
singular 217.5 
transposed 217.F 
Volterra 217.A 
of Volterra type 217.A 

integral exponent 167.D 
integral form 248.W 
integral formula 

Cauchy 198.B 
Poisson 198.B 
Villat App. A, Table 15.VI 
Weyl 225.1 

integral function 429.A 
integral g-lattice 27.A 
integral geometry 218 

principal formula of 218.C 
integral homology group 

of a polyhedron 201.D 
of a simplicial complex 2Ol.C 

integral hypersurface (of a partial differential 
equation) 320.A 

integral ideal (of an algebraic number field) 14.C 
integral inequality, Holder 21 l.C 
integral invariant(s) 219 

absolute 219.A 
Cartan’s relative 219.B 
relative 219.A 

integral kernel 217.A 251.0 
integral left ideal 27.A 
integral logarithm 167.D 
integrally closed 

(in a ring) 67.1 
completely (ring) 67.1 



2021 Subject Index 

Intersect 

integrally closed ring 67.1 
integrally dependent element (of a ring) 67.1 
integral manifold 428.A,B,D 

k-dimensional 191.1 
ordinary (of a differential ideal) 428.E 
regular (of a differential ideal) 428.E 
singular (of a differential ideal) 428.E 

integral method, summable by Borel’s 379.0 
integral operator 68.N 100.E 250.0 

Calderon-Zygmund singular 217.5 251.0 
Fourier 274.C 345.B 
of Hilbert-Schmidt type 68.C 

integral point 428.E,F 
integral quotient (in the division algorithm of 

polynomials) 337.C 
integral representation 362.0,K 

Cauchy 21.C 
Herglotz 43.1 
Laplace-Mehler App. A, Table 18.11 
Schlafli 393.8 

integral right ideal 27.A 
integral sine 167.D 
integral singular homology group 201.E 
integral test, Cauchy (for convergence) 379.B 
integral theorem 

Cauchy 198.A,B 
Fourier double 160.B 
Fourier single 160.B 
stronger form of Cauchy 198.8 

integral transforms 220.A 
integral two-sided o-ideal 27.A 
integral vector 428.E 
integrand 2 16.A 
integrate 216.A 

(an ordinary differential equation) 313.A 
integrating factor App. A, Table 14.1 
integration 

along a hber (of a hyperfunction) 274.E 
automatic, scheme 299.C 
contour of (of curvilinear integral) 94.D 
domain of 216.F 
graphical 19.B 
Jacobi’s second method of 324.D 
numerical 299 
path of (of curvilinear integral) 94.D 
Romberg 299.C 

integration by parts 216.C 
(on D-integral) 100.G 
(in the Stieltjes integral) 94.C 

integration constant (in a general solution of 
a differential equation) 313.A 

integration formula 
based on variable transformation 299.B 
Gauss (in the narrow sense) 299.A 
Poisson App. A, Table 15.VI 
Villat App. A, Table 15.VI 

integrodifferential equation(s) 163.A 222 
of Fredholm type 222.A 
Prandtl’s 222.C 
of Volterra type 222.A 
Wiener-Hopf 222.C 

intensity, traffic 260.H 
intensive (thermodynamical quantity) 419.A 
interaction 102.H 
interest, assumed rate of 214.A 
interference (of waves) 446 
interior 

(of an angle) 139.D 155.B 
(of a manifold) 105.B 
(of a polygon) 155.F 

(ofa segment) 155.B 
(of a set) 425.B 
(of a simplex) 70.C 

interior capacity, Newtonian 48.F 
interior cluster set 62.A 
interior field equation 359.D 
interior operator 425.B 
interior point 425.B 
interior problem (in Dirichlet problems) 120.A 
interior product (of a differential form with a vector 

field) 105.Q 
intermediate convergent (of an irrational number) 

83.B 
intermediate held 149.D 
intermediate integrals App. A, Table 15.111 

of Monge-Ampere equation 278.B 
intermediate-value theorem 84.C 
intermittent structure 433.C 
internal (in nonstandard analysis) 293.B 
internal energy 419.A 
internal irregular point 338.L 
internal law of composition (of a set) 409.A 
internally stable set 186.1 
internally thin set 338.G 
internal product 200.K 
internal space in catastrophe theory (in static 

model) 51.B 
internal state 31.B 
internal symmetry 150.B 
international notation (for crystal classes) 92.B 
international system of units 414.A 
interpolating (for a function algebra) 164.D 
interpolating sequence 43.F 
interpolation 

(of a function) 223, App. A, Table 21 
(of a stationary process) 176.K 395.E 
Chebyshev 223.A 336.5 
inverse 223.A 
Lagrange 223.A 
of operators 224 
spline 223.F 

interpolation coefficient, Lagrange’s 223.A 
interpolation formula 223.A 

Bessel App. A, Table 21 
Everett App. A, Table 21 
Gauss App. A, Table 21 
Gauss’s backward 223.C 
Gauss’s forward 223.C 
Newton App. A, Table 21 
Newton’s backward 223.C 
Newton’s forward 223.C 
Stirling App. A, Table 21 

interpolation function 223.A 
interpolation method 224.A 
interpolation polynomial 223.A 

Hermite 223.E 
Lagrange 336.G, App. A, Table 21 
Newton 336.G 
trigonometric 336.E 

interpolation problem 43.F 
interpolation scheme, Aitken 223.B 
interpolation space 224.A 

complex 224.B 
real 224.C 

interpolation theorem 224.B,C 
interpolatory formula 299.A 
interquartile range 397.C 
intersect 155.B 

properly (on a variety) 16.G 
transversally 105.L 



Subject Index 

Intersection 
2022 

intersection 
(of events) 342.B 
(of projective subspaces) 343.B 
(of sets) 381.8 
(of subspaces of an afline space) 7.A 
complete 16.A 

intersection chart 19.D 
intersection multiplicity (of two subvarieties) 16.Q 
intersection number 

(of divisors) 15.C 
(of homology classes) 65.B 201.0 
(of sheaves) 16.E 
self- 15.C 

intersection product 
(in algebraic varieties) 16.Q 
(in homology theory) 201.0 

intersection property, finite 425,s 
intersection theorem 

(of alline geometry) 7.A 
(of projective geometry) 343.B 
Cantor’s 273.F 
Krull 284.A 

interval 
(in a Boolean algebra) 42.B 
(in a lattice) 243.C 
(in a vector lattice) 3lO.B 
(in an ordered set) 311.B 
(in real number space) 355.C 
of absolute stability 303.G 
basic 4.B 
closed 140 355.C 
confidence 399.Q 
of continuity (for a probability distribution) 

341.c 
fiducial 401.F 
finite 355.C 
infinite 355.C 
open 140 355.C 
principle of nested 87.C 
of relative stability 303.G 
supplementary 4.B 
tolerance 399.R 

interval estimation 399.Q 401.C 
interval function 380.A 

additive 380.B 
continuous additive 380.B 

in the large (in differential geometry) 109 
in the small (in differential geometry) 109 
intrablock analysis 102.D 
intransitive (permutation group) 151.H 
intrinsic angular momentum 415.G 
intrinsic homology 114.H 
intuitionism 156.A 

semi- 156.C 
intuitionistic logic 41 l.L 
invariance 

of a confidence region 399.Q 
of dimension, theorem on (of Euclidean spaces) 

117.D 
of domain, Brouwer theorem on 117.D 
homotopy 201.D 
isospin 351.5 
Lorentz 150.B 
of speed of light, principle of 359.B 
topological (homology groups) 201.A 

invariance principle 
(of hypothesis testing) 400.E 
(of wave operators) 375.B 
Donsker’s 250.E 
Strassen’s 250.E 

invariance theorem of analytic relations 198.K 
invariant(s) App. A, Table 14.111 

(of an Abelian group) 2.B 
(of a cohomology class of a Galois group) 

59.H 257.E 
(decision problem) 398.E 
(element under a group action) 226.A 
(of an elliptic curve) 73.A 
(in the Erlangen program) 137 
(under flow) 126.D 
(function algebra) 164.H 
(hypothesis) 400.E 
(measure) 136.B 225 270.L 
(S-matrices) 386.B 
(of a normal simple algebra) 257.G 
(subspace of a Banach space) 25 1.L 
absolute 12.A 226.A 
absolute integral 219.A 
almost G- 396.1 
Arf-Kervaire 114.5 
basic 226.B 
birational 12.A 
Browder-Livesay 114.L 
Cartan (of a finite group) 362.1 
Cartan relative integral 219.B 
conformal 77.E 
covering linkage 235.E 
differential (on an m-dimensional surface) 

1lO.A 
Eilenberg-Postnikov (of a CW-complex) 70.G 
fundamental (of a space with a Lie transforma- 

tion group) 110.A 
fundamental differential (of a surface) 1lO.B 
G- (element) 226.A 
G- (measure) 225.A 
G- (statistics) 396.1 
generalized Hopf 202.Q 
Hasse (of a central simple algebra) 29.G 
homotopy 202.B 
homotopy type 202.F 
Hopf 202S,U 
Hopf, modulo p 202.S 
integral 219 
isomorphism (on a measure space) 136.E 
Iwasawa 14.L 
k- (of a CW-complex) 70.G 
left (metric in a topological group) 423.1 
left, Haar measure 225.C 
left, tensor field 249.A 
metric (on a measure space) 136.E 
Milnor 235.D 
of n-ary form of degree d 226.D 
negatively 126.D 
normal 114.5 
of order p 1lO.A 
p- (of a central simple algebra) 29.G 
PCT 386.B 
Poincart’s differential 74.G 
positively 126.D 
rearrangement 168.B 
relative 12.A 226.A 
relative integral 219.A 
right, Haar measure 225.C 
right, tensor field 249.A 
sampling procedure 373.C 
semi- 226.A 
semi- (of a probability distribution) 341.C 
shape 382.C 
spectral 136.E 
TCP- 386.B 



2023 Subject Index 
Involutory (involutive) system 

topological 425.G 
U- (subspace of a representation space of 
a unitary representation) 437.C 

uniformly most powerful 399.Q 
vector 226.C 
of weight w 226.D 

invariant decision function 398.E 
invariant derivation (on an Abelian variety) 3.F 
invariant differential form (on an Abelian variety) 

3.F 
invariant distribution(s) 

(of a Markov chain) 260.A 
(of second quantization) 377.C 

invariant estimator 399.1 
best 399.1 

invariant field 172.B 
invariant integral, Hilbert’s 46.C 
invariant level a test, uniformly most powerful 

(UMP) 400.E 
invariant Markov process 5.H 
invariant measure(s) 225 

(of a Markov chain) 260.A 
(of a Markov process) 261.F 
(under a transformation) 136.B 
G- 225.B 
quasi- 225.5 
relatively 225.H 
smooth 126.5 
sub- 261.F 
transverse 154.H 

invariant measure problem 136.C 
invariants and covariants 226 
invariant statistic 396.1 

maximal 396.1 
invariant subgroup (of a group) 190.C 
invariant subspace (of a linear operator) 164.H 

doubly 164.H 
invariant tensor field 

left 249.A 
right 249.A 

invariant test 400.E 
almost 400.E 

invariant torus 126.L 
inventory control 227 
inventory model 307.C 
inverse 

(in a group) 190.A 
(of a mapping) 381.C 
homotopy (for an H-space) 203.D 
quasi- (on a Banach algebra) 36.C 
right (in nonlinear functional analysis) 286.G 

inverse analytic function 198.L 
inverse assumption 304.D 
inverse correspondence 358.8 
inverse domination principle 338.L 
inverse element 

(in a group) 190.A 
(in a ring) 368.B 
left (in a ring) 368.B 
quasi- (in a ring) 368.B 
right (in a ring) 368.B 

inverse Fourier transform (of a distribution) 
125.0 

inverse function 198.L 381.C 
inverse function element 198.L 
inverse image 

(of a set) 381.C 
(of a sheaf) 383.G 
(of a uniformity) 436.E 
perfect 425.CC 

inverse interpolation 223.A 
inverse iteration 298.C 
inverse limit (of an inverse system of sets) 210.B 
inverse mapping 381.C 
inverse mapping theorem 208.B 
inverse matrix 269.B 
inverse morphism 52.D 
inverse operator 37.C 251.B 
inverse path 170 
inverse problem 

(in potential scattering) 375.G 
Jacobi 3.L 

inverse relation 358.A 
inverse system (of sets) 210.B 
inverse transform (of an integral transform) 220.A 
inverse trigonometric function 131.E 
inversion 

(with respect to a circle) 74.E 
(of a domain in R”) 193.B 
(with respect to a hypersphere) 76.A 
Laguerre 76.B 
space 258.A 
space-time 258.A 

inversion formula 
(for a characteristic function) 341.C 
(of a cosine transform) 160.C 
(of a Fourier transform) 160.C 
(of a Fourier transform of distributions) 160.H 
(of a Fourier transform on a locally compact 

Abelian group) 192.K 
(of a generalized Fourier transform) 220.B 
(of a Hilbert transform) 220.E 
(of an integral transform) 220.A 
(of a Laplace-Stieltjes transform) 240.D 
(on a locally compact group) 437.L 
(of a Mellin transform) 220.C 
(for a semigroup of operators) 240.1 
(of a Stieltjes transform) 220.D 
Fourier 160.C 
Mobius (in combinatorics) 66.C 
Mobius (in number theory) 295.C 

inverted tiling scheme 96.F 
invertible element 

quasi- 368.B 
of a ring 368.B 

invertible jet 105.X 
invertible knot 235.A 
invertible matrix 269.B 
invertible sheaf 16.E 
involute (of a curve) 11 l.E 
involution 

(of an algebraic correspondence) 9.H 
(in a Banach algebra) 36.F 
(of a division ring) 348.F 
(of a homotopy sphere) 114.L 
Cartan 427.X 

involutive 
(cross section) 286.H 
(differential ideal) 428.E 
(differential system) 191.1 
(distribution) 154.B 428.D 
(Lie group) 191.H 

involutive automorphism (of a Lie group) 412.B 
involutive correlation 343.D 
involutive distribution (on a differentiable manifold) 

428.D 
involutive subspace 428.F 
involutory (involutive) system 

(of differential forms) 428.F 
(of nonlinear equations) 428.C 
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(of partial differential equations) 428.F 
(of partial differential equations of first order) 

324.D 
irrational function, elliptic 134.E 
irrational number(s) 294.E 355.A 

space of 22.A 
irrational real number 294.E 
irreducibility theorem, Hilbert’s (on polynomials) 

337.F 
irreducible 

(algebraic curve) 9.B 
(algebraic equation) 10.B 
(algebraic variety) 16.A 
(coalgebra) 203.F 
(complemented modular lattice) 243.F 
(continuous geometry) 85.A 
(continuum) 79.D 
(Coxeter complex) 13.R 
(discrete subgroup of a semisimple Lie group) 

122.F 
(germ of an analytic set) 23.B 
(linear representation) 362.C 
(linear system) 16.N 
(linear system in control theory) 86.C 
(3-manifold) 65.E 
(Markov chain) 260.B 
(polynomial) 337.F 
(positive matrix) 269.N 3 10.H 
(projective representation) 362.5 
(representation of a compact group) 69.8 
(Riemannian manifold) 364.E 
(root system) 13.L 
(scheme) 16.D 
(Siegel domain) 384.E 
(transition matrix) 126.5 
(unitary representation) 437.A 
absolutely (representation) 362.F 
at 0 (for an algebraic set) 23.B 

irreducible character 
(of an irreducible representation) 362.E 
absolutely 362.E 

irreducible component 
(of an algebraic variety) 16.A 
(of an analytic space) 23.C 
(of a linear representation) 362.D 

irreducible element (of a ring) 67.H 
irreducible representation(s) 

(of a Banach algebra) 36.D 
fundamental system of (of a complex semisimple 

Lie algebra) 248.W 
irreducible symmetric bounded domain 412.F 
irreducible symmetric Hermitian space 412.E 
irreducible symmetric Riemannian space 412.C 

App. A, Table 5.111 
irreducible tensor of rank k 353.C 
irredundant (intersection of primary ideals) 67.F 
irregular 

(boundary point) 120.D 
(prime number) 14.L 

irregularity 
(of an algebraic surface) 15.E 
number of (of an algebraic variety) 16.0 

irregular point 
(of Brownian motion) 45.D 
(of a Markov process) 261.D 
(in potential theory) 338.L 
external 338.L 
internal 338.L 

irregular singular point 
(of a solution) 254.B 

(of a system of linear ordinary differential 
equations) 254.B 

irreversible processes, statistical mechanics of 
402.A 

irrotational 
(fluid) 205.B 
(vector field) 442.D 

Irwin’s embedding theorem 65.D 
Ising model 340.B 402.G 

stochastic 340.C 
island (in a Riemann surface) 272.5 
isobaric polynomial 32.C 
isogenous 

(Abelian varieties) 3.C 
(algebraic groups) 13.A 

isogeny 13.A 
isolated fixed point 126.G 
isolated ordinal number 312.B 
isolated point 

(of a curve) 93.G 
(in a topological space) 425.0 

isolated primary component (of an ideal) 67.F 
isolated prime divisor (of an ideal) 67.F 
isolated singularity (of an analytic function) 

198.D,M 
isolated singular point 198.D 418.D 
isolated vertex 186.B 
isometrically isomorphic (normed spaces) 37.C 
isometric immersion 365.A 
isometric mapping 11 l.H 273.B 
isometric operator 251.E 

partially 251.E 
isometric Riemannian manifolds 364.A 
isometric spaces 273.B 
isometry 

(=isometric operator) 251.E 
(between Riemannian manifold) 364.A 

isomonodromic deformation 253.E 
isomorphic 

(algebraic systems) 409.C 
(block bundles) 147.Q 
(cohomology theories) 201.4 
(complex manifolds) 72.A 
(fiber bundles) 147.B 
(groups) 190.D 
(Lie algebras) 248.A 
(Lie groups) 249.N 
(measure spaces) 398.D 
(normed spaces) 37.C 
(objects) 52.D 
(PL-embeddings) 65.D 
(representations) 362.C 
(simplicial complexes) 70.C 
(s.s. complexes) 70.E 
(structures) 276.E 
(topological groups) 423.A 
(unitary representations) 437.A 
anti- (lattices) 243.C 
Bore1 270.C 
dually (lattices) 243.C 
isometrically (normed spaces) 37.C 
locally 423.0 
metrically (automorphisms on a measure space) 

136.E 
order 311.E 
similarly (ordered fields) 149.N 
spatially (automorphisms on a measure space) 

136.E 
spectrally 136.E 
weakly 136.E 



2025 Subject Index 
Iwasawa decomposition 

isomorphic mapping, Bore1 270.C 
isomorphic relations among classical Lie algebras 

App. A, Table 5.IV 
isomorphism 

(of Abelian varieties) 3.C 
(of algebraic systems) 409.C 
(of block bundles) 147.Q 
(of fields) 149.B 
(of functors) 52.5 
(of groups) 190.D 
(of lattices) 243.C 
(of Lie algebras) 248.A 
(of linear spaces) 256.B 
(of objects) 52.D 
(of prealgebraic varieties) 16.C 
(of rings) 368.D 
(of topological groups) 423.A 
(of unfoldings) 51 .D 
admissible (of R-groups) 190.E 
algebra 29.A 
analytic 21.5 
analytic (of Lie groups) 249.N 
anti- (of groups) 190.D 
anti- (of lattices) 243.C 
anti- (of ordered sets) 311 .E 
anti- (of rings) 368.D 
birational (of Abelian varieties) 3.C 
birational (of algebraic groups) 13.A 
Bott 237.D 
C”- (of Lie groups) 249.N 
dual (of lattices) 243.C 
dual (of ordered sets) 31 l.E 
excision (on homology groups) ZOl.F,L 
functorial 52.5 
G- 191.A 
k- (of algebraic groups) 13.A 
k- (of extension fields of k) 149.D 
lattice- 243.C 
local (of topological groups) 423.0 
mod p (in a class of Abelian groups) 202.N 
R- (of D-groups) 190.E 
operator (of R-groups) 190.E 
order 3 1 l.E 
ring 368.D 
suspension (for homology) 201.E 
Thorn-Gysin 114.G 
Thorn-Gysin (of a fiber space) 148.E 
uniform 436.E 

isomorphism invariant (on a measure space) 136.E 
isomorphism problem 

(in ergodic theory) 136.E 
(for graphs) 186.J 
(for integral group algebras) 362.K 

isomorphism theorem 
(in class field theory) 59.C 
(on groups) 190.D 
(on rings) 368.F 
(on topological groups) 423.5 
Ax-Kochen (on ultraproduct) 276.E 
tirst (on topological groups) 423.5 
Hurewicz 202.N 
Hurewicz-Steenorod (on homotopy groups of 
fiber spaces) 148.D 

Keisler-Shelah (in model theory) 276.E 
second (on topological groups) 423.5 
third (on topological groups) 423.5 

isoparametric (hypersurface) 365.1 
isoparametric method 304.C 
isoperimetric (curves) 228.A 
isoperimetric constant 391.D 

isoperimetric inequality 228.B 
isoperimetric problem(s) 11 l.E 228.A 

generalized 46.A 228.A 
special 228.A 

isospectral 391.B 
isospectral deformation 387.C 
isospin 351.5 
isospin invariance 351.5 
isothermal compressibility 419.B 
isothermal coordinates 90.C 
isothermal curvilinear coordinate system App. A, 

Table 3.V 
isothermal parameter 334.B 

(for an analytic surface) 111.1 
isothermal process 419.B 
isotopic 65.D 202.B 

(braids) 235.F 
(embeddings) 114.D 
(latin square) 241.A 
ambient 65.D 

isotopy 65.D 202.B 
ambient 65.D 

isotopy lemma, Thorn’s first 418.G 
isotopy type (of knots) 235.A 
isotropic 

(with respect to a quadratic form) 348.E 
k- (algebraic group) 13.G 
totally (subspace) 60.0 348.E 

isotropic point 365.D 
isotropic submanifold 365.D 
isotropic turbulence 433.C 
isotropy, index of total (of a quadratic form) 348.E 
isotropy group 362.B 

linear 199.A 
principal 431.C 

isotropy representation 431.C 
isotropy subgroup (of a topological group) 431.A 
isotropy type (of a transformation group) 431.A 
iterated integral 

(in Lebesgue integral) 221.E 
(in Riemann integral) 216.G 

iterated kernel (for a Fredholm integral equation) 
217.D 

iterated logarithm 
Khinchin’s law of 250.C 
law of 45.F 

iterated series 
by columns (of a double series) 379.E 
by rows (of a double series) 379.E 

iteration 
(in a Banach space) 286.B 
inverse 298.C 
method of successive (for Fredholm integral 
equations) 217.D 

two-body 271.C 
iteration matrix 302.C 
iterative improvement 302.C 
iterative method 302.C 
iterative process, linear stationary 302.C 
It8 circle operation 406.C 
It8 decomposition, Wiener- 176.1 
It8 formula 45.G 406.B 
It6 process 406.B 
ItB theorem, Levy- (on Levy processes) 5.E 
It8 type, stochastic integral of 406.C 
ITPFI 308.1 
Iversen-Beurling-Kunugi theorem 62.B 
Iversen theorem 272.1 
Iwahori subgroup 13.R 
Iwasawa decomposition 
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(of a Lie group) 249.T 
(of a real semisimple Lie algebra) 248.V 

Iwasawa group 384.C 
Iwasawa invariant 14.L 
Iwasawa main conjecture 450.5 
Iwasawa theorem, Cartan-Mal’tsev- (on maximal 

compact subgroups) 249,s 

J 

J-group 237.1 
equivariant 431.F 

J-homomorphism 202.V 237.1 
equivariant 431.F 

J-method 224.C 
Jackson’s theorem (on the degree of approximation 

336.C 
Jacobi, C. G. J. 229 
Jacobian 208.B 
Jacobian, generalized (of a set function) 246.H 
Jacobian criterion (on regularity of local rings) 

370.B 
Jacobian determinant 208.B 
Jacobian matrix 208.B 
Jacobian variety 9.E 1 l.C 16.P 

canonically polarized 3.G 9.E 
generalized 9.F 1 l.C 

Jacobi-Biehler equality 328 
Jacobi condition 46.C 
Jacobi differential equation App. A, Tables 14.11 

20.v 
Hamilton- 271.F 324.E 

Jacobi elliptic functions App. A, Table 16.111 
Jacobi equation, Hamilton- 108.B 
Jacobi field 178.A 
Jacobi identity 

(on the bracket of two vector fields) 105.M 
(in a Lie algebra) 248.A 
(with respect to Whitehead product) 202.P 

Jacobi imaginary transformation 134.1 
Jacobi integral 420.F 
Jacobi inverse problem 3.L 
Jacobi last multiplier App. A, Table 14.1 
Jacobi matrix 390.G 
Jacobi method 

(in numerical computation of eigenvalues) 
298.8 

(in numerical solution of linear equations) 
302.C 

cyclic 298.B 
threshold 298.B 

Jacobi polynomial 317.D, App. A, Table 20.V 
Jacobi second method of integration 324.D 
Jacobi symbol 297.1 

complementary law of 297.1 
law of quadratic reciprocity of 297.1 

Jacobi standard form, Legendre- 134.A, App. A, 
Table 16.1 

Jacobi transformation App. A, Table 16.111 
Jacobson radical (of a ring) 67.D 
Jacobson topology 36.D 
James theorem 37.G 
Janko-Ree type, group of 151.5 
Janzen area (of a Bore1 set) 246.G 
Japanese mathematics (wasan) 230 
Japanese ring, universally 284.F 
Jarrat-Mack method, Garside- 301.N 
Jeffreys method 112.B 
Jensen formula 198.F 
Jensen measure 164.K 

jet 
invertible 105.X 
of order r 105.X 

job 281.D 
job-shop scheduling 307.C 
job-shop scheduling problem 376 
John-Nirenberg space (= BMO) 168.B 
join 

(in a Boolean algebra) 42.A 
(in a lattice) 243.A 
(of points) 155.B 
(of projective spaces) 343.B 
(of sets) 381.B 
(of simplicial complexes) 70.C 
(of subgroups of a group) 190.G 
reduced (of homotopy classes) 202.Q 
reduced (of mappings) 202.F 
reduced (of topological spaces) 202.F 

joined by an arc 79.8 
joint cumulant 397.1 
joint density 397.1 
joint distribution 342.C 
joint moment generating function 397.1,J 
joint random variable 342.C 
joint sensity function 397.5 
joint spectrum 36.M 
Jordan algebras 231 

exceptional 231 .A 
free special 231.A 
semisimple 231.B 
special 231.A 

Jordan arc 93.B 
Jordan canonical form (of a matrix) 269.G 
Jordan content 270.G 
Jordan curve 93.B 
Jordan curve theorem 93.K 
Jordan decomposition 

(of an additive set function) 380.C 
(of a function of bounded variation) 166.B 
(of a linear mapping) 269.L 
(in an ordered linear space) 310.B 
multiplicative 269.L 

Jordan domain 333.A 
Jordan elimination, Gauss- 302.B 
Jordan factorial 330 
Jordan-Holder sequence (in a group) 190.G 
Jordan-Holder theorem (in group theory) 

190.G 
Jordan-Holder theorem (on representations of 

algebras) 362.D 
Jordan homomorphism (between Jordan alge- 

bras) 231.A 
Jordan inequality App. A, Table 8 
Jordan measurable set (of R”) 270.G 
Jordan measure 270.D,G 
Jordan module 231 .C 
Jordan normal form 269.G 
Jordan test (on the convergence of Fourier series) 

159.B 
Jordan-Zassenhaus theorem (on integral represen- 

tation of a group) 362.K 
Joule heat 130.B 
Joule’s law 130.B 
Julia’s direction (of a transcendental entire function) 

272.F 429.C 
Julia’s exceptional function 272.F 
jump (at a point) 84.8 
jump function 306.C 
jumping of the structures 72.G 
just identified (equation) 128.C 
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Kernel 

K 

K-recursiveness 356.G 
k-almost simple algebraic group 13.0 
k-anisotropic algebraic group 13.G 
k-array 330 
k-Bore1 subgroup (of an algebraic group) 13.G 
k-closed algebraic set 13.A 
k-combination 330 
k-compact algebraic group 13.G 
k-connect (graph) 186.F 
k-dimensional integral element 191.1 
k-dimensional integral manifold 191 .I 
k-dimensional normal distribution 341.D 
k-equivalent C”-manifolds 114.F 
k-Erlang distribution 260.H 
k-fold mixing automorphism 136.E 
k-fold screw glide with pitch 92.E 
k-form 

(of an algebraic group) 13.M 
holomorphic 72.A 

k-frame 199.B 
orthogonal 199.B 

k-group 13.A 
k-invariants (of a CW-complex) 70.G 
k-isomorphism (between algebraic groups) 13.A 
k-isotropic algebraic group 13.G 
k-morphism (between algebraic groups) 13.A 
k-movable 382.C 
k-permutation 330 
k-ply transitive G-set 362.B 
k-ply transitive permutation group 151.H 
k-quasisplit algebraic group 13.0 
k-rank (of a connected reductive algebraic group) 

13.4 
k-rational divisor (on an algebraic curve) 9.C 
k-rational point (of an algebraic variety) 16.A 
k-root 13.Q 
k-sample problem 371.D 
k-simple algebraic group 13.0 
k-solvable algebraic group 13.F 
k-space 425.CC 
k-split algebraic group 13.N 
k-split torus 13.D 

maximal 13.Q 
k-step method, linear 303.E 
k-subgroup 

minimal parabolic 13.Q 
standard parabolic 13.4 

k-subset 330 
k-transitive permutation group 151.H 
k-trivial torus 13.D 
k-valued algebroidal function 17.A 
k-vector bundle, normal 114.3 
k-way contingency table 397.K 
k-Weyl group 13.Q 
k’-space 425.CC 
kth prolongation 

(of G structure) 191.E 
(of a linear Lie algebra) 19l.D 
(of a linear Lie group) 191 .D 

kth saturated model 293.B 
kth transform 160.F 
K-complete analytic space 23.F 
K-complete scheme 16.D 
K-flow 136.E 
K-group 237.B 

equivariant 237.H 
K-method 224.C 
K-pseudoanalytic function 352.B 

K-quasiregular function 352.B 
K-rational ( = algebraic over K) 369.C 
K-regular measure 270.F 
K-theory 237 

algebraic 237.5 
higher algebraic 237.5 

K3 surface 15.H 72.K 
marked 72.K 

Kac formula, Feynman- 351.F 
Kac- Nelson formula, Feynman- 150.F 
Kadomtsev-Petvyashvili equation 387.F 
Kahler existence theorem, Cartan- 191.1 

428.E 
Kahler homogeneous space 199.A 
Kahler immersion 365.L 
Kahler manifold 232 
Kahler metric 232.A 

standard (of a complex projective space) 
232.D 

Kahler metric, Einstein- 232.C 
Kahler submanifold 365.L 
Kakeya-Enestriim theorem (on an algebraic 

equation) 10.E 
Katutani equivalence 136.F 
Kakutani fixed point theorem 153.D 
Kakutani theorem 

(on complemented subspace problems of 
Banach spaces) 37.N 

(on statistical decision problems) 398.G 
Kakutani unit 310.G 
KHllen-Lehmann representation 150.D 
Kalltn-Lehmann weight 150.D 
Kalman-Bucy lilter 86.E 405.G 
Kalman tilter 86.E 
Kaluza’s 5-dimensional theory 434.C 
Kametani theorem, Hallstrom- 124.C 
Kan complex 70.F 
Kaplansky’s density theorem 308.C 
Kapteyn series 39.D, App. A, Table 19.111 
Karlin’s theorem 399.G 
Kastler axioms, Haag- 150.E 
Kato perturbation 351.D 
Kato theorem, Rellich- 331.B 
Kawaguchi space 152.C 
KdV equation 387.8 

two-dimensional 387.F 
Keisler-Shelah isomorphism theorem 276.E 
Keller-Maslov index 274.C 
Kelly theorem, Nachbin-Goodner- 37.M 
Kelvin function 39.G, App. A, Table 19.IV 
Kelvin transformation 193.B 
Kendall notation 260.H 
Kendall’s rank correlation 371.K 
Kepler’s equation 309.B 
Kepler’s first law 271.B 
Kepler’s orbital elements 309.B 
Kepler’s second law 271.B 
Kepler’s third law 271.B 
Kertkjarto-Stoilow compactification 207.C 
kernel 

(of a bargaining set) 173.D 
(distribution) 125.L 
(of a group homomorphism) 190.D 
(of an integral equation) 217.A 
(of an integral operator) 251.0 
(of an integral transform) 220.A 
(of a linear mapping) 256.F 
(of a morphism) 52.N 
(of an operator homomorphism) 277.E 
(of a potential) 338.B 
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(of a set) 425.0 
(of a sheaf homomorphism) 383.C 
(of a system of S&in) 22.B 
adjoint 338.B 
of Calderon-Zygmund type 217.5 
of Carleman type 217.5 
consistent 338.E 
degenerate 217.F 
diffusion 338.N 
Dirichlet 159.B 
distribution 338.P 
domain (of a sequence of domains) 333.C 
elementary 320.H 
Fejer 159.C 
Fourier 220.B 
fundamental 320.H 
Hermitian 217.H 
of Hilbert-Schmidt type 217.1 
Hunt 338.0 
integral 217.A 251.0 
iterated 217.D 
Kuramochi 207.C 
Martin 207.C 
perfect (in potential theory) 338.E 
Pincherle-Goursat 217.F 
Poisson 159.C 
positive 2 17.H 
positive definite 217.H 338.D 
positive semidelinite 217.H 
reproducing 188.G 
semidefinite 217.H 
separated 217.F 
singular 217.5 
symmetric 217.G 
symmetric, of positive type 338.D 
weak potential 260.D 
Wiener 95 

kernel differential 188.G 
kernel form 348.E 
kernel function 188.G 

Bergman 188.G 
harmonic 188.H 
SzegG 188.H 

kernel representation (of a Green’s operator) 
189.8 

kernel theorem (of Schwartz) 125.L 424,s 
Kerner-Aberth (DKA) method, Durand- 301.F 
Kerner (DK) method, Durand- 301.F 
Kerr metric 359.E 
Kervaire invariant, Arf- 114.5 
Khachiyan’s method 255.C 
Khinchin canonical form (of an intinitely divisible 

probability distribution) 341.G 
Khinchin decomposition (of a covariance function) 

395.B 
Khinchin’s law of the iterated logarithm 250.C 
Kiefer inequality, Chapman-Robbins- 399.D 
killing 261.F 
Killing curvature, Lipschitz- 279.C 
Killing differential equation 364.F 
Killing form 248.B 
killing measure I 15.B 
killing method (of obtaining a homotopy group) 

202.N 
killing time 260.A 
Killing vector field 364.F 
kind 

Abelian differential of the first, second, third 
11.c 

Abelian integral of the first, second, third 11.C 

associated Legendre function of the first, second 
393.c 

Beltrami differential operator of the first, second 
App. A, Table 4.11 

Bessel function of the first, second. third 39.B 
complete elliptic integral of the first, second 

134.B,C 
differential form of the first (on an algebraic 

variety) 16.0 
canonical coordinates of the tirst, second 

249.Q 
dfferential form of the first, second, third (on a 

nonsingular curve) 9.E 
discontinuity of the first, second 84.B 
discontinuous group of the first 122.B 
elliptic function of the first, second, third 

134.G,H 
elliptic integral of the first, second. third 134.A 
error of the first, second 400.A 
Euler integral of the first, second 174.A,C 
exceptional curve of the first, second 15.G 
Fredholm integral equation of the first, second, 

third 217.A 
Fuchsian group of the first, second 122.C 
Hankel function of the first, second 39.B 
incomplete elliptic integral of the first 134.B 
Lame function of the first, second 133.C 
Legendre function of the first, second 393.B 
Mathieu function of the first, second 268.B 
modified Mathieu function of the first, second, 

third 268.D 
perfect members of the second 297.D 
Stirling number of the second 66.D 

kinetic density 218.A 
kinetic energy 271.C 351.D 
kinetic measure 218.A 
kinetic theory of gases 402.B 
Kirby calculus 114.L 
Kirchhoff laws 282.B 
Kirchhoff solution 325.D 
Kleene’s normal form theorem 356.C 
Klein, F. 233 
Klein bottle 410.B 
Klein combination theorem 234.D 
Klein four-group 151.G 
Klein-Gordon equation 351.G 377.C 
Kleinian group 122.C 234.A 
Klein inequality 212.B 
Klein line coordinates 90.B 
Klein model (of non-Euclidean geometry) 285.C 
Klein-Nishina formula 351.G 
Klein transform 150.D 
K-L (= Kullback-Leibler) information number 

398.G 
Kloosterman sum 32.C 
KMS condition 308.H 402.G 
Kneser-Nagumo theorem 316.E 
Kneser-Sommerfeld formula App. A, Table 19.111 
Knopp-Schmidt theorem 208.C 
Knopp-Schnee theorem (on method of summation) 

379.M 
knot 235.A 

alternating 235.A, App. A, Table 7 
amphicheiral 235.A 
clover leaf 235.C 
equivalent 235.A 
hyperbolic 235.E 
invertible 235.A 

(P> d- 235.G 
(p. q)-ball 235.G 
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L-space 

slice 235.G 
trefoil 235.C 

knot cobordism 235.G 
knot complement conjecture 235.B 
knot conjecture, general 235.B 
knot group (of a knot) 235.B 
knot projection, regular 235.A 
knotted 235.A 
knot theory 235, App. A, Table 7 
knot types 235.A 
Kobayashi pseudodistance 21.0 
Kochen isomorphism theorem, Ax- 276.E 
Kodaira dimension (of a compact complex manifold) 

72.1 
Kodaira-Spencer mapping (map) 72.G 
Kodaira theorem 

(on Hodge manifolds) 232.D 
Chow- 72.F 

Kodaira theory, Weyl-Stone-Titchmarsh- 112.0 
Kodaira vanishing theorem 232.D 
Koebe extremal function 438.C 
Koebe theorem 193.E 
Kojima-Schur theorem (on linear transformations 

of sequences) 379.L 
Kolchin theorem, Lie- (on solvable algebraic groups) 

13.F 
Kollektiv 342.A 
Kolmogorov automorphism 136.E 
Koimogorov axiom To 425.Q 
Kolmogorov backward equation 115.A 260.F 
Kolmogorov canonical form 341.G 
Kolmogorov-Chaitin complexity 354.D 
Kolmogorov equality, Chapman- 261.A 
Kolmogorov equation, Chapman- 260.A 
Kolmogorov extension theorem 341.1407.D 
Kolmogorov flow 136.E 
Kolmogorov forward equation 115.A 260.F 
Kolmogorov-Smirnov test 371.F 
Kolmogorov-Smirnov test statistic 374.E 
Kolmogorov space 425.Q 
Kolmogorov-Spanier cohomology theory, Alex- 

ander- 201.M 
Kolmogorov spectrum 433.C 
Kolmogorov test 45.F 
Kolmogorov theorem 250.F 
Kolmogorov zero-one law 342.G 
KondB uniformization theorem 22.F 
Konig-Egervary theorem 281.E 
Kbnigs-Schroder equation 44.B 
Korteweg-de Vries (KdV) equation 387.A 
Kostant’s formula (on representations of compact 

Lie groups) 248.2 
Kovalevskaya existence theorem, Cauchy- 321.A 
Kovalevskaya theorem, abstract Cauchy- 286.2 
Krein-Mil’man property 443.H 
Krein-Mil’man theorem 424.U 
Krein-Schmul’yan theorem 37.E 424.0 
Krein theorem 424.V 
Krieger’s factor 308.1 
Kronecker, L. 236 
Kronecker approximation theorem 422.K 
Kronecker delta 269.A, App. A, Table 4.11 
Kronecker flow 136.G 
Kronecker index 

(in homology theory) 201.H 
(of divisors on a surface) 15.C 

Kronecker limit formula 450.B 
Kronecker product (of matrices) 269.C 
Kronecker set 192.R 
Kronecker symbol (for a quadratic field) 347.D 

Kronecker theorem 
(on an Abelian extension of Q) 14.L 
(on an algebraic equation) 10.B 

Krull-Akizuki theorem 284.F 
Krull altitude theorem 28.A 
Krull-Azumaya lemma 67.D 
Krull dimension 

(of a commutative ring) 67.E 
(of an ideal) 67.E 

Krull intersection theorem 284.A 
Krull-Remak-Schmidt theorem (in group theory) 

19O.L 
Krull ring 67.5 
Krull topology (for an infinite Galois group) 172.1 
Kruskal coordinates 359.F 
Kruskal-Wallis test 371.D 
Kubo formula 402.K 
Kuhn-Tucker theorem 292.B 
Kullback discrimination information 213.D 
Kullback-Leibler (K-L) information number 398.G 
Kummer criterion 145, App. A, Table 10.11 
Kummer differential equation App. A, Table 19.1 
Kummer extension 172.F 
Kummer function 167.A, App. A, Table 19.1 
Kummer surface 15.H 
Kiinneth formula 

(in Abelian category) 200.H 
(in Weil cohomology) 450.4 

Kiinneth theorem 2OO.E 201.5 
Kunugi theorem, Iversen-Beurling- 62.B 
Kuo (PLK) method, Poincare-Lighthill- 25.B 
Kuramochi compactilication 207.C 
Kuramochi kernel 207.C 
Kuranishi prolongation theorem 428.G 
Kuranishi space 72.G 
Kuratowski space 425.4 
kurtosis 396.C 397.C 

population 396.C 
Kutta-Gill method, Runge- 303.D 
Kutta methods, Runge- 303.D 

L 

A” (Lipschitz spaces) 168.B 
I-function 32.C 
(1,) or I, (a sequence space) 168.B 
L, @) (the space of measurable functionsf(x) on R 

such that If(x)lp, 1 < p < co, is integrable) 
168.B 

L, (cl) 168.B 
L,p,I) (n) (the Lorentz spaces) 168.B 
[-adic cohomology 450.Q 
I-adic coordinate system 3.E 
I-adic representation 3.E 
L-distribution 341.G 
L-estimator 371.H 
L-function 

Artin 450.G,R 
of automorphic representation 450.N 
Dirichlet 450.C 
of elliptic curves 450,s 
Hecke 450.E 
Hecke (with Grossencharakter) 450.F 
p-adic 450.5 
Weil 450.H 

L-group 450.N 
L-integral 221.B 
L-space 87.K 

abstract 310.G 
Frechet 87.K 
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L,-space, abstract 310.G laminar flow 205.E 433.A 
c-space 87.K ’ Lanczos method 298.D,E 301.N 
(LF)-space 424.W Landau constant 77.F 
labeled graph 186.B Landau equation 146.C 
lacunas for hyperbolic operators 325.5 Landau-Nakanishi equation 146.C 
lacunary structure (of a power series) 339.E Landau-Nakanishi variety 146.C 386.C 
ladder Landau symbols (0, o) 87.G 

down- 206.B Landau theorem 43.5 
up- 206.B Wiener-Ikehara 123.B 
ladder method 206.B Landau variety 146.C 

lag 163.A Landen transformation 134.B, App. A, Table 
lagged variables 128.C 274.C 16.111 
Lagrange, J. L. 238 Lane-Emden function 29 1 .F 
Lagrange bracket 82.A 324.0 Langevin equation 45.1402.K 
Lagrange-Charpit method 322.B, App. A, Table language 3 1 .D 276.A 

15.11 accepted by 3 1 .D 
Lagrange differential equation 320.A, App. A, external 75.C 

Table 14.1 machine 75.C 
Lagrange differential equation, Euler- 46.B Laplace, P. S. 239 
Lagrange equations of motion 271.F Laplace-Beltrami operator 194.B 
Lagrange formula (for vector triple product) Laplace differential equation 323.A, App. A, 

442.C Table 15.111 
Lagrange identity 252.K 2-dimensional case App. A, Table 15.VI 
Lagrange interpolation 223.A 3-dimensional case App. A, Table 15.VI 
Lagrange interpolation coefficients 223.A Laplace expansion theorem (on determinants) 
Lagrange interpolation polynomial 223.A 336.G, 103.D 

App. A, Table 21 Laplace-Mehler integral representation App. A, 
Lagrange manifold, conic 345.B Table 18.11 
Lagrange method Laplace method 30.B 

(of describing the motion of a fluid) 205.A Laplace operator 323.A 442.D 
of indeterminate coefficients 106.L Laplace spherical functions 393.A 
of variation of constants 252.D Laplace-Stieltjes transform 240.A 

Lagrange multiplier 46.8 Laplace theorem, de Moivre- 250.B 
method of 106.L Laplace transform 240, App. A, Table 12.1 

Lagrange partial differential equation App. A, Fourier- 192.F 
Table 15.11 Laplace transform and operational calculus App. 

Lagrange problem (in calculus of variations) 46.A A, Table 12 
Lagrange remainder App. A, Table 9.IV Laplacian 323.A 442.D, App. A, Table 3.11 
Lagrange resolvent 172.F in the large 109 
Lagrange stable 126.E large deviation 250.B 

negatively 126.E large inductive dimension (Ind) 117.B 
positively 126.E large numbers 

Lagrange-stable motion 420.D law of 250.B 
Lagrangian density 150.B strong law of 250.C 

free 150.B weak law of 395.B 
Lagrangian derivative 205.A larger, stochastically 371.C 
Lagrangian function 271.F 292.A larger topology 425.H 
Lagrangian manifold, conic 274.C large sample theory 40 1 .E 
Lagrangian vector field 126.L large semigroup algebra 29.C 
Laguerre differential equation App. A, Tables large sieve method 123.E 

14.11 2O.VI largest nilpotent ideal (of a Lie algebra) 248.D 
Laguerre formula, Gauss- (in numerical integration) Lashnev space 425.CC 

299.A last multiplier, Jacobi App. A, Table 14.1 
Laguerre function App. A, Table 2O.VI last-out memory, first-in 96.E 
Laguerre geometry 76.B last theorem of Fermat 145 
Laguerre inversion 76.B last theorem of Poincart 153.B 
Laguerre polynomials 3 17.D, App. A, Table 2O.VI latin rectangle 241.E 

associated 317.D Latin square(s) 102.K 241 
Laguerre transformation 76.B lattice(s) 
Lambert series 339.C (of a crystallographic group) 92.A 
Lame differential equation 133.B (=lattice ordered set) 243 

generalized 167.E (of a Lie group) 122.G 
Lame function (in R”) 182.B 

of the first kind 133.B A- 92.E 
of the first species 133.C anti-isomorphic 243.C 
of the fourth species 133.C Archimedean vector 310.C 
of the second kind 133.C I?- 92.E 
of the second species 133.C Banach 310.F 
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dual 243.C 310.E 450.K 
dually isomorphic 243.C 
F- 92.E 
g- (of a separable algebra) 27.A 
homogeneous (in R”) 182.B 
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I- 92.E 
inhomogeneous (in R”) 182.B 
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P- 92.E 
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Toda 287.A 387.A 
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lattice gauge theory 150.G 
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lattice-homomorphism 243.C 
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Archimedean 243.G 
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lattice-point formula 220.B 
lattice-point problems 242 
lattice-spin systems 402.G 
latus rectum 78.D,E 
Laurent expansion 198.D 
Laurent series 339.A 
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(of a solution of a stochastic differential 
equation) 406.D 
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absorption (in a lattice) 243.A 
of action and reaction 271.A 
adiabatic 205.8 
alternating (in a Lie algebra) 248.A 
antisymmetric (for ordering) 3 1 l.A 
arcsine (for Brownian motion) 45.E 
arcsine (for distribution function) 250.D 
arcsine (for random walk) 260.E 
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associative (in algebra of sets) 381.B 
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associative (of group composition) 190.A 
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Brandt’s 241.C 
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19O.P 
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commutative (for addition) 294.B 368.A 
commutative (in algebra of sets) 381.B 
commutative (of group composition) 190.A 
commutative (in a lattice) 243.A 
commutative (for multiplication) 294.B 368.A 
complementary, of quadratic reciprocity of 

Jacobi symbol 297.1 
complementary, of reciprocity 14.0 
of complementation (in a Boolean algebra) 
42.A 

complete distributive (in a lattice-ordered 
group) 243.G 

of composition 409.A 
of composition, external 409.A 
of composition, internal 409.A 
of cosines (on spherical triangles) 432.B, App. 

A, Table 2.111 
of cosines, first 432.A, App. A, Table 2.11 
ofcosines, second 432.A, App. A, Table 2.11 
of cotangents App. A, Table 2.111 
de Morgan’s (in algebra of sets) 381.B 
de Morgan’s (in a Boolean algebra) 42.A 
differential 107.A 
distributive (in algebra of sets) 381.B 
distributive (in a lattice) 243.E 
distributive (of natural numbers) 294.B 
distributive (in a ring) 368.A 
even-oddness conservation 150.D 
of excluded middle 156.C 41 l.L 
explicit reciprocity (of norm-residue symbol) 

14.R 257.H 
first complementary, of quadratic reciprocity of 

Legendre symbol 297.1 
Gel’fand-Pyatetskii-Shapiro reciprocity (on 
unitary representations) 437.DD 

general associative (for group composition) 
19o.c 

Hewitt-Savage zero-one 342.G 
Hooke’s 271.G 
idempotent (in a lattice) 243.A 
of inertia 271.A 
of inertia, Sylvester (for a quadratic form) 

348.C 
initial (for stochastic differential equation) 
406.D 

of iterated logarithm 45.F 
of iterated logarithm, Khinchin 250.C 
Joule’s 130.B 
Kepler’s first 271.B 
Kepler’s second 271.B 
Kepler’s third 271.B 
Kirchhoff 282.B 
Kolmogorov zero-one 342.G 
of large numbers 250.B 395.B 
of large numbers, strong 250.C 
Maxwell-Boltzmann distribution 402.B 
modular (in a lattice) 243.F 
of motion 271.A 
of motion, Newton’s three 271.A 
Newton (on frictional stresses) 205.C 
Newton’s first 271.A 
Newton’s second 271.A 
Newton’s third 271.A 
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Ohm 130.B 259 
of quadratic reciprocity of Jacobi symbol 
297.1 

of quadratic reciprocity of Legendre symbol 
297.1 

of reaction 271.A 
of reciprocity 14.0 297.1 
of reciprocity, Artin general 59.C 
of reciprocity, general 14.0 
reciprocity, of Shafarevich 257.H 
reflexive (for an equivalence relation) 135.A 
reflexive (for ordering) 31 l.A 
second complementary, of quadratic reciprocity 

of Legendre symbol 297.1 
of similarity, Prandtl-Glauert 205.D 
of similarity, Reynolds 205.C 
of similitude 116 
of sines 432.A, App. A, Table 2.11 
of sines (for spherical triangles) 432.B, App. 

A, Table 2.111 
of sines and cosines App. A, Table 2.111 
of small numbers 250.B 
symmetric (for an equivalence relation) 135.A 
of symmetry (for the Hilbert norm-residue 
symbol) 14.R 

of tangents App. A, Table 2.111 
transitive (for an equivalence relation) 135.A 
transitive (for ordering) 31 l.A 
of universal gravitation 271.B 
zero-one 342.G 

Lax equivalence theorem 304.F 
Lax representation 287.B 387.C 
Lax-Wendroff scheme 304.F 
layout, two-way 155.H 
layer 

boundary 205.C 
potential of double 338.A 
potential of single 338.A 

LBA problem 31.F 
L.B. (loosely Bernoulli) 136.F 
LCL (lower control limit) 404.B 
L.C.M. (least common multiple) 67.H 297.A 
leaf (leaves) 

(of a foliation) 154.B 
compact 154.D 
growth of 154.H 

leaf topology 154.D 
learning model 346.G 
least action, principle of 441.B 
least common multiple 67.H 297.A 
least element (in an ordered set) 31 l.B 
least favorable distribution 400.B 
least favorable a priori distribution 398.H 
least square approximation 336.D 
least squares, method of 

(for estimation) 403.E 
(for higher-dimensional data) 397.5 
(for numerical solution) 303.1 

least squares estimator 403.E 
generalized 403.E 

least squares method 
indirect (in econometrics) 128.C 
three-stage 128.C 
two-stage 128.C 

least squares problem, linear 302.E 
least upper bound (ordered sets) 310.C 31 l.B 
Lebesgue, H. L. 244 
Lebesgue area (of a surface) 246.C 
Lebesgue convergence theorem 221.C 
Lebesgue decomposition theorem 270.L 380.C 

Lebesgue density theorem 100.B 
Lebesgue dimension 117.B 
Lebesgue extension 270.D 
Lebesgue integrable 221.B 
Lebesgue integral 221.B 
Lebesgue measurability and the Baire property 

33.F 
Lebesgue measurable (set) 270.G 
Lebesgue measurable function 270.5 
Lebesgue measure 270.G 

generalized 270.E 
Lebesgue measure space (with a finite cr-finite 

measure) 136.A 
Lebesgue method of summation 379.S 
Lebesgue number 273.F 
Lebesgue outer measure 270.G 
Lebesgue-Radon integral 94.C 
Lebesgue spectrum, countable 136.E 
Lebesgue-Stieltjes integral 94.C 166.C 
Lebesgue-Stieltjes measure 166.C 270.L 
Lebesgue test (on the convergence of Fourier series) 

159.B 
Lebesgue theorem 

(on the dimension of R”) 117.D 
Borel- 273.H 
Cantor- 159.J 
Riemann- 159.A 160.A 

Le Cam theorem 399.K 
Lefschetz duality theorem, Poincart- 201.0 
Lefschetz fixed-point formula 450.Q 
Lefschetz fixed-point theorem 153.B 
Lefschetz formula, Picard- 418.F 
Lefschetz number 

(of a continuous mapping) 153.B 
(of a variety) 16.P 

Lefschetz pencil 16.U 
Lefschetz theorem 

strong 16.U 
weak 16.U 

Lefschetz transformation, Picard- 16.U 
left, limit on the 87.F 
left A-module 277.D 
left adjoint functor 52.K 
left adjoint linear mapping 256.4 
left annihilator 29.H 
left Artinian ring 368.F 
left balanced functor 200.1 
left continuous 84.B 
left coset 190.C 
left coset space 423.E 
left decomposition, Peirce (in a unitary ring) 368.F 
left derivative 106.A 
left derived functor 200.1,Q 
left differentiable 106.A 
left distributive law 312.C 
left endpoint (of an interval) 355.C 
left exact functor 200.1 
left G-set 362.B 
left global dimension (of a ring) 200.K 
left hereditary ring 200.K 
left ideal 368.F 

integral 27.A 
left invariant Haar measure 225.C 
left invariant metric (of a topological group) 423.1 
left invariant tensor field (on a Lie group) 249.A 
left inverse element (in a ring) 368.B 
left linear space 256.A 
left Noetherian ring 368.F 
left O,-ideal 27.A 
left operation 409.A 
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left order (of a g-lattice) 27.A 
left parametrix 345.A 
left projective resolution (of an A-module) 200.C 
left projective space 343.F 
left quotient space (of a topological group) 423.E 
left regular representation 

(of an algebra) 362.C 
(of a group) 362.B 

left resolution (of an A-module) 200.C 
left satellite 200.1 
left semihereditary ring 200.K 
left semi-integral 68.N 
left shunt 115.B 
left singular point (of a diffusion process) 115.B 
left translation 249.A 362.B 
left uniformity (of a topological group) 423.G 
Legendre associated differential equation 393.A 
Legendre coefficient 393.B 
Legendre differential equation 393.B, App. A, 

Table 14.11 
Legendre function 393.B, App. A, Table 18.11 

associated App. A, Table 18.111 
associated (of the first kind) 393.C, App. A, 
Table 18.111 

associated (of the second kind) 393.C App. 
A, Table 18.111 

of the first kind 393.B, App. A, Table 18.11 
of the second kind 393.B, App. A, Table 18.11 

Legendre-Jacobi standard form 134.A, App. A, 
Table 16.1 

Legendre polynomial 393.B, App. A, Table 18.11 
Legendre relation 134.F, App. A, Table 16.1 
Legendre symbol 297.H 

first complementary law of reciprocity of 297.1 
law of quadratic reciprocity of 297.1 
second complementary law of reciprocity of 
297.1 

Legendre transform 419.C 
Legendre transformation (contact transform) 82.A, 

App. A, Table 15IV 
Lehmann representation, Kallen- 150.D 
Lehmann-SchetIe theorem 399.C 
Lehmann-Stein theorem 400.B 
Lehmann theorem 371.C 

Hodges- 399.E,H 
Lehmann weight, Kallen- 150.D 
Lehmer method 301.K 
Leibler (K-L) information number, Kullback- 

398.G 
Leibniz, G. W. 245 
Leibniz formula (in differentiation) 106.D, App. 

A, Table 9.111 
Leibniz test (for convergence) 379.C 
lemniscate 93.H 

Bernoulli 93.H 
length 246 

(of a broken line) 139.F 
(of a curve) 93.F 246.A 
(of a descending chain in a lattice) 243.F 
(of a module) 277.1 
(of a multi-index) 112.A 
(of a normal chain in a group) 190.G 
(of a path) 186.F 
(of a segment) 139.C 
(of a Witt vector) 449.B 
affine 1lO.C 
afline arc 11O.C 
extremal (of a family of curves) 143.A 
extremal, defined by Hersch-Pfluger 143.A 
extremal, with weight 143.B 

of finite (module) 277.1 
focal 180.B 
x- (of a group) 151.F 
queue 260.H 
wave 446 

lens, Luneburg’s 180.A 
lens space 9 1 .C 

inlinite 91.C 
Leopoldt’s conjecture 450.J 
leptons 132.B 
Leray-Hirsch theorem 201.5 
Leray-Schauder degree 286.D 
Leray-Schauder fixed-point theorem 286.D 323.D 
letter 

(in information theory) 63.A 213.B 
(=variable) 369.A 

level 
(of a factor) 102.H 
(of a modular form) 32.C 
(of a modular function) 32.C 
(of an orthogonal array) 102.L 
(of a principal congruence subgroup) 122.D 
(of a test) 400.A 
(of a tolerance region) 399.R 
average outgoing quality 404.C 
confidence 399.Q 

level c( test 400.A 
minimax 400.F 
most stringent 400.F 
unbiased 400.C 
uniformly most powerful (UMP) invariant 
400.E 

uniformly most powerful (UMP) unbiased 
4OO.c 

level n structure (on an Abelian variety) 3.N 
level set (of a Cm-function) 279.D 
level surface 193.5 
Levi-Civita, parallel in the sense of 1 ll.H 
Levi-Civita connection 364.B 
Levi condition 321.G 325.H 
Levi decomposition 

(on algebraic groups) 13.4 
(on Lie algebras) 248.F 

Levi form 344.A 
generalized 274.G 

Levi problem 21.1,F 
Levi pseudoconvex domain 21.1 

locally 21.1 
Levi subgroup 13.4 
Levitan-Marchenko equation, Gel’fand- 

(for KdV equations) 387.D 
(for a nonlinear lattice) 287.C 

Levy canonical form 341.G 
Levy continuity theorem 341.F 
Levy distance 341.F 
Levy-It6 theorem (on Levy processes) 5.E 
Levy measure 5.E 
Levy process 5.B 
Levy theorem, Wiener- 159.1 
Lewy-Mizohata equation 274.G 
lexicographic linear ordering 248.M 
lexicographic ordering 31 l.G 
liability reserve 214.B 
Lie, M. S. 247 
Lie algebra(s) 248, App. A, Table 5.1 

(of an algebraic group) 13.C 
(of a Lie group) 249.B 
Abelian 248.C 
adjoint 248.B 
algebraic 13.C 



Subject Index 
Lie derivative 

2034 

classical compact real simple 248.T 
classical complex simple 248,s 
compact real 248.P 
compact real simple App. A, Table 5.1 
complex 248.A 
complex (of a complex Lie group) 249.M 
complex simple App. A, Table 5.1 
of derivations 248.H 
exceptional compact real simple 248.T 
exceptional complex simple 248,s 
general linear 248.A 
isomorphic 248.A 
nilpotent 248.C 
noncompact real simple App. A, Table 5.11 
quotient 248.A 
real 248.A 
reductive 248.G 
restricted 248.V 
semisimple 248.E 
simple 248.E 
solvable 248.C 

Lie derivative lOS.O,Q 
Lie fundamental theorem (on a local Lie group of 

local transformations) 431.G 
Lie group(s) 249 423.M 

Abelian 249.D 
Banach 286.K 
classical compact simple 249.L 
classical complex simple 249.M 
commutative 249.D 
complex 249.A 
direct product of 249.H 
exceptional compact simple 249.L 
exceptional complex simple 249.M 
isomorphic 249.N 
local 423.L 
local (of local transformations) 431.G 
nilpotent 249.D 
quotient 249.G 
semisimple 249.D 
simple 249.D 
simply connected covering 249.C 
solvable 249.D 
topology of, and homogeneous spaces 427 

Lie-Kolchin theorem (on solvable algebraic groups) 
13.F 

Lie line-sphere transformation 76.C 
Lie minimal projection 76.B 
Lienard differential equation 290.C 
lies over (of a compactitication) 207.B 
Lie subalgebra 248.A 

associated with a Lie subgroup 249.D 
Lie subgroup 

(of a Lie group) 249.D 
connected 249.D 

Lie theorem (on Lie algebras) 248.F 
Lie transformation (in circle geometry) 76.C 
Lie transformation group (of a differentiable mani- 

fold) 431.C 
lifetime 260.A 261.B 

(of a particle by a scattering) 132.A 
lift 

(along a curve in a covering surface) 367.B 
(of a differentiable curve) 80.C 
(of a vector field) 80.C 
inflation 200.M 

lifting (in nonstandard analysis) 293.D 
lifting theorem 251.M 
light cone 258.A 
Lighthill-Kuo (P.L.K.) method, Poincare- 25.B 

Lighthill method 25.B 
lightlike 258.A 359.B 
likelihood 374.5 
likelihood equation 399.M 
likelihood estimating function 399.M 
likelihood estimator, maximum 399.M 
likelihood function 374.5 399.M 
likelihood method, maximum 399.M 
likelihood ratio 400.1 

monotone 374.5 
likelihood ratio test 400.1 
limacon of Pascal 93.H 
liminal C*-algebra 36.H 
limit 

(of a function) 87.F 
(of an indeterminate form) 106.E 
(of a mapping) 87.F 
(of a net) 87.H 
(of a sequence of lattices) 182.B 
(of a sequence of points) 87.E 273.D 
(of a sequence of real numbers) 87.B 355.B 
(of a sequence of sets) 270.C 
(of a spectral sequence) 200.5 
Banach 37.F 
confidence 399.Q 
direct (of a direct system) 210.B 
elastic 271.G 
generalized 37.F 
inductive (in a category) 210.D 
inductive (group) 210.C 
inductive (of an inductive system) 210.B 
inductive (of sheaves) 383.1 
inductive (space) 210.C 
inductive (of topological spaces) 425.M 
inferior (event) 342.B 
inferior (of a sequence of real numbers) 87.C 
inferior (of a sequence of sets) 270.C 
inverse (of an inverse system) 210.8 
on the left (of a real-valued function) 87.F 
lower (function) 84.C 
lower (of a Riemann integral) 216.A 
lower (of a sequence of real numbers) 87.C 
lower control 404.B 
in the mean 168.B 
order (of an order convergent sequence) 310.C 
projective (in a category) 210.D 
projective (of a family of continuous homomor- 

phisms) 423.K 
projective (group) 210.C 
projective (of a projective system) 210.B 
projective (space) 210.C 
on the right (of a real-valued function) 87.F 
strictly inductive (of a sequence of locally 
convex spaces) 424.W 

superior (event) 342.B 
superior (of a sequence of real numbers) 87.C 
superior (of a sequence of sets) 270.C 
thermodynamic 402.G 
tolerance 399.R 
upper (function) 84.C 
upper (of a Riemann integral 216.A 
upper (of a sequence of real numbers) 87.C 
upper control 404.B 

limit circle type (boundary point) 112.1 
limit cycle 126.1 
limit distribution 250.A 
limit formula, Kronecker’s 450.B 
limited information maximum likelihood method 

128.C 
limit inferior 
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(of a sequence of real numbers) 87.C 
(of a sequence of sets) 270.C 

limiting absorption principle 375.C 
limiting hypersphere (in hyperbolic geometry) 

285.C 
limit ordinal number 312.B 
limit point 

(of a discontinuous group) 122.C 
(of a sequence) 87.B,E 
c(- 126.D 
negative 126.D 
w- 126.D 
positive 126.D 

limit point type (boundary point) 112.1 
limit set 234.A 

IX- 126.D 
first negative prolongational 126.D 
first positive prolongational 126.D 
co- 126.D 
residual 234.E 

limit superior 
(of a sequence of real numbers) 87.C 
(of a sequence of sets) 270.C 

limit theorem(s) 250.A 
basic 260.C 
central 250.B 
local 250.B 
in probability theory 250 

limit value (of a mapping) 87.F 
Lindeberg condition 250.B 
Lindeliif asymptotic value theorem 43.C 
Lindelijf hypothesis 123.C 
Lindeliif space 425,s 
Lindeliif theorem 43.F 

Phragmen- 43.C 
Lindemann-Weierstrass theorem 430.D 
Lindstedt-Poincart method 290.E 
line(s) 7.A 93.A 155.B 

(of a graph) 186.B 
broken 155.F 
complexes, linear 343.E 
complex of 110.B 
concurrent (in projective geometry) 343.B 
congruence of 1lO.B 
congruences, linear 343.E 
of curvature (on a surface) 11 l.H 
of force 193.J 
generating (of a circular cone) 78.A 
generating (of a quadric hypersurface) 343.E 
generating (of a quadric surface) 350.B 
generating (of a ruled surface) Ill.1 
geodesic 178.H 
Green 193.5 
Green, regular 193.5 
half- 155.B 
long 105.B 
normal (to a curve) 93.G 
Pascal 78.K 
pencil of (in a projective plane) 343.13 
projective 343.8 
real 355.E 
regression 403.D 
of regression 111 .F,I 
straight 93.A 155.B 
stream 205.B 
supporting (function) 89.C 
supporting (of an oval) 89.C 
of swiftest descent 93.H 
tangent 93.G I 11 .C,F 

tangent, oriented 76.B 
vector (of a vector field) 442.D 
vortex 205.B 

linear algebra 8 
linear algebraic group 13.A 
linear boundary operators, 315.B 
linear bounded automation 

deterministic 31.D 
nondeterministic 31.D 

linear code 63.C 
linear combination 256.C 

of ovals 89.D 
linear connection 80.H 
linear difference equation 104.C 
linear differential equations, system of (of the first 

order) 252.G 
linear discriminant function 280.1 
linear dynamical system 86.B 
linear equation(s) 10.D 16.M 269.M 
linear equivalence class (of divisors) 16.M 
linear extension (of a rational mapping to an 

Abelian variety) 9.E 
linear fiber mapping (map) 114.D 
linear filter 405.F 
linear form 256.B 277.E 
linear fractional function 74.E 
linear fractional group 60.B 
linear fractional programming 264.D 
linear fractional transformation 74.E 
linear function 74.E 
linear functional 37.C 197.F 424.B 

algebraic 424.B 
linear fundamental figure (of a projective space) 

343.B 
linear genus 15.G 
linear graph 282.A 
linear group . 

Abelian (over K) 60.L 
full 60.B 
general 60.B 256.D 
general (of degree n over K) 60.B 226.B 
general (over a noncommutative field) 60.0 
projective general 60.B 
projective general (of degree n over K) 60.B 
projective special 60.B 
projective special (over a noncommutative field) 
60.0 

special 60.B 
special (of degree n over K) 60.B 
special (over a noncommutative field) 60.0 

linear holonomy 154.C 
linear homogeneous equations, system of 269.M 
linear homotopy 114.D 
linear hypothesis, general 400.H 
linear integral equation 217.A 
linear isotropy group (at a point) 199.A 
linearized operator 183 286.E 
linearized stability, principle of 286,s 
linear k-step method 303.E 
linear least squares problem 302.E 
linear Lie algebra, general 248.A 
linear line complex 343.E 
linear line congruence 343.E 
linear logistic model 403.C 
linearly compact 422.L 

locally 422.L 
linearly connected homogeneous space 199.A 
linearly dependent (with respect to a difference 

equation) 104.D 



Subject Index 

Linearly dependent elements 
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linearly dependent elements 
(in an additive group) 2.E 
(in a linear space) 256.C 

linearly disjoint (fields) 149.K 
linearly equivalent (divisors) 16.M 172.F 

o- (on an algebraic curve) 9.F 
linearly estimable parameter 403.E 
linearly independent elements 

(in an A-module) 277.G 
(in an additive group) 2.E 
(in a linear space) 256.C 

linearly independent family (of elements in a linear 
space) 256.E I 

linearly ordered set 31 l.A 
linearly reductive 226.B 
linearly representable 66.H 
linear mapping 70.C 256.B 

A- (of an A-module) 277.E 
piecewise 70.C 

linear model 403.D 
log 403.c 
multivariate 280.B 
normal 403.C 

linear multistep method 303.E 
linear network 282.C 
linear operator(s) 37.C 251 

(between linear spaces) 256.B 
bounded 37.C 

linear ordering 31 l.A 
lexicographic 248.M 
theorem of 155.B 

linear ordinary differential equation(s) 252 253 254 
313.A 

with constant coefhcients App. A, Table 14.1 
of the first order App. A, Table 14.1 
of higher order App. A, Table 14.1 

linear parameter 102.A 
linear partial differential equation 320.A 
linear pencil 16.N 
linear prediction theory 395.D 
linear predictor 395.D 

optima1 395.D 
linear programming 255 264.C 
linear programming problem 255.A 
linear recurrent sequence 295.A 
linear regression 397.5 
linear regression function 397.5 403.D 
linear representation 

(of an algebra) 362.C 
(of a group) 362.C 
(of a Lie algebra) 248.B 
associated with representation module 362.C 
completely reducible 362.C 
direct sum of 362.C 
equivalent 362.C 
faithful 362.C 
homomorphism of 362.C 
indecomposable 362.C 
irreducible 362.C 
isomorphic 362.C 
reciprocal (of an algebra) 362.C 
reducible 362.C 
semisimple 362.C 
similar 362.C 
simple 362.C 
tensor product of 362.C 

linear simple group 151.1 
linear space(s) 256 

category of (over a ring) 52.B 
complex 256.A 

dual 256.G 
over a field 256.A 
finite-dimensional 256.C 
Hermitian 256.4 
infinite-dimensional 256.C 
lattice-ordered 310.B 
left 256.A 
normed 37.B 
ordered 310.B 
quasinormed 37.0 
quotient 256.F 
real 256.A 
right 256.A 
self-dual 256.H 

linear stationary iterative process 302.C 
linear structural equation system 128.C 
linear structure 96.C 
linear subspace 

closed 197.E 
of a linear space 256.F 

linear system 
(of divisors) 15.C 16.N 
(of functional-differential equations) 163.E 
ample 16.N 
characteristic (of an algebraic family) 15.F 
complete 9.C 16.N 
complete (defined by a divisor) 16.N 
irreducible 16.N 
reducible 16.N 
very ample 16.N 

linear time-invariant (dynamical system) 86.8 
linear time-varying system 86.B 
linear topological space 424.A 
linear topology 422.L 
linear transformation 

(on a Banach space) 251.A 
(on a linear space) 256.B 
(on a Riemann sphere) 74.E 
(of series) 379.L 
entire 74.E 
semisimple 256.P 
triangular 379.L 

linear unbiased estimator, best 403.E 
linear variety 422.L 

linearly compact 422.L 
line bundle 147.F 

complex 72.F 
complex (determined by a divisor) 72.F 
tautological 16.P 

line coordinates (of a line) 343.C 
line element 11 l.C 

characteristic 82.C 
of higher order, space of 152.C 
projective 110.B 

line-sphere transformation, Lie 76.C 
linguistics, mathematical 75.E 
link 235.D 

framed 114.L 
linkage invariant, covering 235.E 
link group 235.D 
linking number 99.C 
link polynomial 235.D 

reduced 235.D 
link type 235.D 
Linnik’s constant 123.D 
Liouville formula 252.C 
Liouville number 430.B 
Liouville operator, Sturm- 112.1 
Liouville problem, Sturm- 315.B 
Liouville theorem 



2031 Subject Index 
Local property 

on bounded entire functions 272.A 
first 134.E 
fourth 134.E 
on integral invariants 219.A 
second 134.E 
third 134.E 

Lip c( (Lipschitz) 84.A 
of order c( 84.A 

Lippman-Schwinger equation 375.C 
Lipschitz condition 84.A 163.D 286.B 316.D 

of order c( 84.A 
Lipschitz-Killing curvature 279.C 
Lipschitz space 168.B 
Lipschitz test, Dini- (on the convergence of Fourier 

series) 159.B 
list (representation) 96.D 186.D 
little group 258.C 
Littlewood-Paley theory 168.B 
Littlewood-Sobolev inequality, Hardy- 224.E 
Littlewood supremum theorem, Hardy- App. A, 

Table 8 
Littlewood theorem, Hardy- 

(on bounded functions) 43.E 
(on trigonometric systems) 317.B 

lituus 93.H 
Livesay invariant, Browder- 114.L 
loading 214.A 

factor 280.G 346.F 
Lobachevskiii non-Euclidean geometry 285.A 
local base (in a topological space) 425.E 
local canonical parameter (for power series) 339.A 
local class field theory 59.G 
local cohomology group 125.W 
local concept (in differential geometry) 109 
local continuity 45.F 
local control 102.A 
local coordinates 

(on an algebraic variety) 16.0 
(on a differentiable manifold) 105.C 
transformation of 90.D 

local coordinate system 90.D 105.C 
holomorphic 72.A 

local cross section (in a topological group) 147.E 
local degree of a mapping 99.B 
local dimension (of an analytic set at a point) 

23.B 
local equation 

(of a divisor) 16.M 
regular (at an integral point) 428.E 

local ergodic theorem 136.B 
local field 257.A 
local Gaussian sum 450.F 
local homology group 201.N 
local homomorphism (of a topological group) 

423.0 
local isomorphism (of topological groups) 423.0 
localization 

of a linear representation relative to a prime 
ideal 362.F 

principle of (on convergence tests of Fourier 
series) 159.B 

strict 16.AA 
local Lie group 423.L 

(of local transformations) 431.G 
local limit theorem 250.B 
locally (on a topological space) 425.5 
locally absolutely p-valent (function) 438.E 
locally arcwise connected (space) 79.B 
locally Cartan pseudoconvex (domain) 21.1 
locally closed (set) 425.5 

locally compact space 425.V 
uniformly 425.V 

locally connected (space) 79.A 
locally constructible (constant sheaf) 16.AA 
locally contractible 

(at a point) 79.C 
(space) 79.C 202.D 

locally convex (topological linear space) 424.E 
locally convex Frechet space 424.1 
locally countable cell complex 70.D 
locally countable simplicial complex 70.C 
locally dense 154.D 
locally equicontinuous semigroup 378.F 
locally equivalent (G-structure) 191.H 
locally Euclidean group 423.M 
locally Euclidean space 425.V 
locally finite 

(algebra) 29.5 
(cell complex) 70.D 
(covering) 425.R 
(simplicial complex) 70.C 
c- (covering) 425.R 

locally flat 
(connection) 80.E 
(injection between topological manifolds) 

65.D 
(PL embedding) 65.D 
(Riemannian manifold) 364.E 

locally integrable function 168.B 
locally isomorphic (topological groups) 423.0 
locally Levi pseudoconvex (domain) 21.1 
locally linearly compact (Q-module) 422.L 
locally Macaulay ring 284.D 
locally n-connected 

(at a point) 79.C 
(space) 79.C 

locally Noetherian (scheme) 16.D 
locally Noetherian formal scheme 16.X 
locally of finite type (for a morphism) 16.D 
locally w-connected (space) 79.C 
locally p-valent 438.E 
locally quadratic transformation 

(of an algebraic surface) 15.G 
(of an algebraic variety) 16.K 
(of a complex manifold) 72.H 

locally rectifiable (curve) 143.A 246.A 
locally symmetric Riemannian space 412.A, App. 

A, Table 4.11 
locally symmetric space 364.D 

affine 80.5 
locally symmetrizable (diffusion processes) 115.D 
locally totally bounded (uniform space) 436.H 
locally trivial fiber space 148.B 
locally uniformized 367.C 
local martingale 262.E 
local maximum modulus principle 164.C 
local moduli space (of a compact complex manifold) 

72.G 
local one-parameter group of local transformations 

105.N 
local operator 125.DD 
local orientation (in an oriented manifold) 201.N 
local parameter 

(around a cusp of a Fuchsian group) 32.B 
(of a nonsingular algebraic curve) 9.C 
(of a Riemann surface) 367.A 

local problem (on the solutions of differential 
equations) 289.A 

local property 
(in differential geometry) 109 



Subject Index 

Local regime 
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(of a pseudodifferential operator) 345.A 
micro-pseudo- 345.A 
pseudo- (of a pseudodifferential operator) 
345.A 

local regime (in static model in catastrophe theory) 
51.B 

local ring 284.D 
(of a prime ideal) 67.G 
(of a subvariety) 16.B 
analytically normal 284.D 
analytically unramified 284.D 
complete 284.D 
Macaulay 284.D 
Noetherian 284.D 
Noetherian semi- 284.D 
quasi- 284.D 
quasisemi- 284.D 
regular 284.D 
semi- 284.D 
structure theorem of complete 284.D 

local-ringed space 383.H 
local section 126.E 
local strategy 173.B 
local system of groups (over a topological space) 

201.R 
local time 45.G 
local transformations, local Lie group of 431.G 
local truncation error 303.E 
local uniformizing parameter 367.A 
location parameter 396.1 400.E 
locus 

cut 178.A 
singular (of a variety) 16.F 

Loeb measure 293.D 
Loeb space 293.D 
log-x 131.D 
log,x 131.B 
Logz (logarithm) 131.G 
logarithm 131.B 

common 131.C 
integral 167.D 
Khinchin law of the iterated 250.C 
law of iterated 45.F 
Napierian 13 1 .D 
natural 131.D 

logarithmically convex 21.B 
logarithmic branch point (of a Riemann surface) 

367.B 
logarithmic capacity 48.B 
logarithmic criterion App. A, Table 10.11 
logarithmic curve 93.H 
logarithmic decrement (of a damped oscillation) 

318.B 
logarithmic differentiation App. A, Table 9.1 
logarithmic distribution App. A, Table 22 
logarithmic function to the base a 13 1 .B 
logarithmic integral 167.D, App. A, Table 19.11 
logarithmic normal distribution App. A, Table 

22 
logarithmic paper 19.F 

semi- 19.F 
logarithmic potential 338.A 
logarithmic series 13 1 .D 
logarithmic singularity 

(of an analytic function) 198.M 
(of an analytic function in the wider sense) 

198.P 
logarithmic spiral 93.H 
logic 

algebra of 41 l.A 

classical 411 .L 
intuitionistic 41 l.L 
many-valued 41 l.L 
mathematical 41 l.A 
modal 41 l.L 
predicate 41 l.G 
predicate, with equality 41 l.J 
propositional 41 l.E 
quantum 351.L 
symbolic 41 l.A 
three-valued 41 l.L 
two-valued 4 11 .L 

logical axiom 411.1 
logical choice function, transtinite 411.J 
logical operator 41 l.E 
logical product (of propositions) 411.B 
logical sum (of propositions) 41 l.B 
logical symbol 411 .B 
logicism 156.A,B 
logistic equation 263.A 
logistic model, linear 403.C 
log linear model 403.C 
logmodular algebra 164.B 
Lommel integral 39.C 
Lommel polynomials App. A, Table 19.IV 
long gravity wave 205.F 
longitude (of a knot) 235.B 
longitudinal wave 446 
long line 105.B 
long water wave 205.F 
look-up, table 96.C 
Looman-Men’shov theorem 198.A 
loop 170 19O.P 

self- 186.B 
loop space 202.C 
loop theorem (on 3-manifolds) 65.E 
loosely Bernoulli 136.F 
Lopatinskii condition, Shapiro- 323.H 
Lopatinskii dterminant 325.K 
Lorentz condition 130.A 
Lorentz force 130.A 
Lorentz group 60.5 258.A 359.B 

full homogeneous 258.A 
full inhomogeneous 258.A 
homogeneous 359.B 
inhomogeneous 359.B 
proper 60.5 359.B 
proper complex 258.A 

Lorentz invariance 150.B 
Lorentz space 168.B 1 

Lorentz transformation 359.B 
Lorenz curve 397.E 
loss 

heat 419.A 
of information 138.B 

loss function 398.A 
quadratic 398.A 399.E 
simple 398.A 

lot tolerance percent defective 404.C 
Lowenheim theorem, Skolem- 156.E 
lower bound 31 l.B 

greatest 310.C 311.8 
lower central series (of a group) 190.J 
lower class 

with respect to local continuity 45.F 
with respect to uniform continuity 45.F 

lower control limit 404.B 
lower derivative 

general (of a set function) 380.D 
ordinary (of a set function) 380.D 



2039 Subject Index 

Manifold(s) 

lower end (of a curvilinear integral) 94.D 
lower envelope principle 338.M 
lowering the superscripts 417.D 
lower integral, Riemann 216.A 
lower limit 

(of a Riemann integral) 216.A 
(of a sequence of real numbers) 87.C 

lower limit function 84.C 
lower order 

(for infinity) 87.G 
(of a meromorphic function) 272.C 

lower semicontinuity (of length) 264.A 
lower semicontinuous (at a point) 84.C 
lower semicontinuous function 84.C 
lower semilattice 243.A 
lower triangular matrix 269.B 
lower variation (of a set function) 380.B 
Lowner differential equation 438.B 
loxodromic transformation 74.F 
LP (linear programming) 255 
LSZ asymptotic condition 150.D 
1.u.b. (least upper bound) 31 l.B 
Lubanski vector, Pauli- 258.D 
Luenberger observer 86.E 
lumping, mass 304.D 
Luneburg lens 180.A 
Liiroth theorem 16.5 
Lutz-Mattuck theorem 118.E 
Luzin first principle (in analytic set theory) 22.C 
Lurin second principle (in analytic set theory) 22.C 
Luzin space 22.1 425.CC 
Luzin theorem 270.3 

Denjoy- 159.1 
Luzin unicity theorem (in analytic set theory) 22.C 
Lyapunov characteristic number 3 14.A 
Lyapunov condition 250.B 
Lyapunov convexity theorem 443.G 
Lyapunov function 126.F 163.G 394.C 
Lyapunov-Schmidt procedure 286.V 
Lyapunov stable 126.F 

in both directions 394.A 
in the negative direction 394.A 
in the positive direction 394.A 
uniformly 126.F 

Lyapunov theorem 398.C 
Lyusternik- Shnirel’man theory 286.Q 

M 

M(R) (the set of all essentially bounded measurable 
fuctions on fi) 168.B 

(M,}, ultradistribution of class 125.U 
(M,), ultradistribution of class 125.U 
n-absolutely continuous (additive set function) 

38O.C 
p-completion 270.D 
p-conformal function 352.B 
p-constant stratum 418.E 
p-integrable 221.8 
p-measurable 270.D 
p-null set 370.D 
p-operator, bounded 356.B 
p-singular (additive set function) 380.C 
m-dissipative 251.5 
m x n matrix 269.A 
mth root 10.C 
M-estimator 371.H 
M-port network 282.C 
M-set 159.5 
M-space 425.Y 

(Ml-space (= Monte1 space) 424.0 
M space, abstract 310.G 
M waves 130.B 
Macaulay local ring 284.D 
Macaulay ring 284.D 

locally 284.D 
Mach cone 205.B 
machine 

Turing 3 l.B 
universal Turing 3 1 .C 

machine-language program 75.~ 
machine scheduling problem 376 
machine sequencing problem 376 
Machin formula 322 
Mach number 116.B 205.B 
Mach wave 205.B 
Mackey-Arens theorem 424.N 
Mackey space 424.N 
Mackey theorem 424.M 
Mackey topology 424.N 
Mack method, Garside-Jarratt- 301.N 
MacLane complexes, Eilenberg- 70.F 
MacLane space, Eilenberg- 70.F 
MacLane spectrum, Eilenberg- 202.1 
Maclaurin formula, Euler- 379.5 
macroeconomic data 128.A 
macroscopic causality (of S-matrix) 386.C 
magnetic field 130.A 
magnetic flux density 130.A 
magnetic group 92.D 
magnetic induction 130.A 
magnetic quantum number, orbital 351.E 
magnetic permeability 130.B 
magnetic polarization 130.A 
magnetic Reynolds number 259 
magnetic susceptibility 130.B 
magentic viscosity 259 
magnetic wave 130.B 

transverse 130.B 
magnetofluid dynamics 259 
magnetohydrodynamics 259 
magnetostatics 130.B 
magnitude (of a vector) 442.B 
Mahalanobis generalized distance 280.E 
Mainardi equations, Codazzi- 11 l.H, App. A, 

Table 4.1 
main classes 241 .A 
main effect 102.H 
main theorem 

(in class field theory) 59.C 
Zariski’s 16.1 

majorant 
(of a sequence of functions) 435.A 
harmonic (of a subharmonic function) 193,s 
method of 3 16.G 

majorant series 316.G 435.A 
major arc 4.B 
major axis (of an ellipse) 78.C 
major function 100.F 
majorizing function, right 316.E 
Malfatti problem (in geometric construction) 179.A 
Malgrange theorem, Ehrenpreis- 112.B 
Mal’tsev-Iwasawa theorem, Cartan- (on maximal 

compact subgroups) 249,s 
Mal’tsev theorem, Wedderburn- (on algebras) 29.F 
Malus theorem 180.A 
Mandelstam representation 132.C 
Mangoldt function 123.B 
manifold(s) 

almost complex 72.B 
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Manin connection, Gauss- (of a variety) 
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almost contact 110.E 
almost parallelizable 114.1 
analytic - analytic manifold 
Banach 105.2 286.K 
Blaschke manifold 178.G 
with boundary 105.B 
without boundary 105.B 
c’- 105.D 
c’-, with boundary 105.E 
C’-, without boundary 105.E 
center, theorem 286.V 
characteristic (of a partial differential equation) 

320.B 
characteristic classes of 56.F 
closed 105.B 
coherently oriented pseudo- 65.B 
combinatorial 65.C 
compact C’- 105.D 
complex - complex manifold(s) 
complex analytic 72.A 
conic Lagrange 345.B 
conic Lagrangian 274.C 
contact 110.E 
covering 91 .A 
covering differentiable 91.A 
differentiable, with boundary of class c’ 105.E 
differentiable, of class C’ 105.D 
with Euclidean connection 109 
tibered 428.F 
Finsler 286.L 
flag 199.B 
Frechet 286.K 
G- 431.c 
Grassmann - Grassmann manifold 
group (of a Lie transformation) 1lO.A 
with a handle attached by f 114.F 
h-cobordant oriented 114.1 
Hilbert 105.Z 286.K 
Hodge 232.D 
homology 65.B 
Hopf 232.E 
hyperbolic 21.0 235.E 
integral 428.A,B,D 
irreducible 3- 65.E 
Kahler 232 
k-dimensional integral 191.1 
nontrivial 3- 65.E 
ordinary integral (of a differential ideal) 428.E 
orientable (C-manifold) 105.F 
orientation 201.N 
oriented 105.F 201.N 
oriented G- 431.E 
paracompact C’- 105.D 
parallelizable 1 14.1 
K- 114.1 
PL- 65.C 
Poincare 105.A 
at a point 178.G 
prime 3- 65.E 
proper flag 199.B 
pseudo- 65.B 
pseudo-Hermitian 344.F 
Q- 382.D 
real analytic 105.D 
regular integral (of a differential ideal) 428.E 
Riemannian - Riemannian manifold 
singular integral (of a differential ideal) 428.E 
SC”- 178.G 
smooth 105.D 114.B 
space-time 359.D 

s-parallelizable 114.1 
stable 126.G,J 
stably almost complex 114.H 
stably parallelizable 114.1 
Stein 21.L 
Stiefel - Stiefel manifold 
symplectic 219.C 
topological 105.B 
triangulated 65.B 
unstable 126.G,J 
visibility 178.F 
weakly almost complex 114.H 
weakly l-complete 21.L 

Manin connection, Gauss- (of a variety) 16.V 
Mannheim curve 11l.F 
Mann-Whitney U-test 371.C 
MANOVA (multivariate analysis of variance) 

280.B 
mantissa (of the common logarithm) 131.C 
many body problem 402.F 420.A 
many-valued (analytic function) 198.5 
many-valued function 165.B 
many-valued logic 411.L 
map 381.C (also - mapping) 

bundle 147.B 
covering 91 .A 
cubic 157.B 
equivariant 431.A 
first-return 126.C 
G- 431.A 
Gauss lll.G 
Kodaira-Spencer 72.G 
linear fiber 114.D 
normal 114.5 
PL 65.A 
Poincare 126.C 
time-one 126.C 
trivalent 157.B 

mapping 381.C 
A-balanced 277.5 
afline 7.E 
alternating multilinear 256.H 
analytic 21.5 
antiholomorphic 195.B 
antisymmetric multilinear 256.H 
biadditive 277.5 
biholomorphic 21.5 
bijective 381.C 
bilinear 256.H 277.5 
birational 16.1 
biregular (between prealgebraic varieties) 

16.C 
Bore1 isomorphic 270.C 
of bounded variation 246.H 
bundle 147.B 
c’- 105.J 
cl- 237.G 
CE 382.D 
cellular (between cell complexes) 70.D 
chain 200.C 
chain (between chain complexes) 201.B 
characteristic (in the classification theorem of 
fiber bundles) 147.G 

class 202.B 
of class C’ 208.B 
classifying 147.G 
closed 425.G 
cochain 200.F 201.H 
complete 241.C 
conformal 198.A 



2041 Subject Index 

Markov subshift 

conjugation (of a Hopf algebra) 203.E 
constant 381.C 
continuous 425.G 
covering 91 .A 
degenerate 208.B 
degree 99.A 
degree of 99.A 
diagonal (of a graded coalgebra) 203.B,F 
differentiable, of class C’ 105.J 
dual (of a linear mapping) 256.G 
duality 251.5 
equivariant 431 .A 
essential 202.B 
exponential 178.A 249.4 364.C 
extremal horizontal slit 367.G 
extremal quasiconformal 352.C 
extremal vertical slit 367.G 
first-return 126.C 
Fredholm 286.E 
G- 362.B 431.A 
Gauss (in geometric optics) 180.B 
generalized conformal 246.1 
of group algebra 192.Q 
harmonic 195.B 
hereditarily quotient 425.G 
holomorphic 21.5 72.A 
homological 200.C 
homotopy-associative 203.D 
Hopf 147.E 
identity 381.C 
inclusion 38 1 .C 
inverse 381 .C 
inverse, theorem 208.B 
isometric 11 l.H 273.B 
Kodaira-Spencer 72.G 
linear (between linear spaces) 256.B 
linear (between polyhedrons) 70.C 
linear fiber 114.D 
local degree of 99.B 
meromorphic 23.D 
monotone 311.E 
multilinear 256.H 
nondegenerate holomorphic (between analytic 

spaces) 23.C 
nonexpansive 286.B 
nonsingular, of class Ci 208.B 
normal 114.5 
normal coordinate 364.C 
one-to-one 381.C 
onto 38f.C 
open 425.G 
order-preserving 31 l.E 
orientation-preserving 99.A 
orientation-reversing 99.A 
partial (of a mapping) 38 I .C 
perfect 425.W 
perspective (in projective geometry) 343.B 
piecewise aftine 192.Q 
piecewise linear (between polyhedra) 70.C 
PL 65.A 
Poincare 126.C,G 
product 425.K 
projective (in projective geometry) 343.B 
proper 425.W 
purely inseparable rational 16.1 
quasiconformal 352.B 
quasiperfect 425.CC 
quotient 425.G 
rational 16.1 
regular (between prealgebraic varieties) 16.C 

regular, of class C’ 208.B 
semicontinuous (in a topological linear space) 

153.D 
semilinear 256.P 277.L 
separable (rational) 16.1 
simplicial 70.C 
simplicial (between polyhedra) 70.C 
simplicial (relative to triangulations) 70.C 
skew-symmetric multilinear 256.H 
space 202.C 
space of continuous 435.D 
spin 237.G 
S.S. (semisimplicial ) (between S.S. complexes) 
70.E 

s.s., realization of 70.E 
surjective 381.C 
symmetric multilinear 256.H 
Teichmiiller 352.C 
time-one 126.C 
topological 425.G 
topology induced by a 425.1 
transposed (of a diffusion kernel) 338.N 
transposed (of a linear mapping) 256.G 
uniformly continuous 273.1436.E 
unit 203.F 

mapping chain 201.B 
mapping class 202.B 
mapping cone 202.E 

reduced 202.F 
mapping cylinder 202.E 
mapping space 435.D 
mapping theorem 

Brouwer 99.A 
open 37.1424.X 
Riemann 77.B 
spectral 251.G 

mapping truck 202.G 
Marchenko equation, Gel’fand-Levitan- 

(for KdV equations) 387.D 
(for a nonlinear lattice) 287.C 

Marcinkiewicz theorem 224.E 
marginal density functions 397.1 
marginal distribution 342.C 397.H 
marked K3 surface 72.K 
Markov branching process 44.D 

multitype 44.E 
Markov chains 260.A 342.A 

embedded 260.H 
general 260.5 
imbedded 260.H 
(non) recurrent 260.B 

Markov field theory, Euclidean 150.F 
Markovian decision process 127.E 
Markovian policy 405.C 
Markovian type (stochastic differential equation) 

406.D 
Markov inequality (for polynomials) 336.C 
Markov measure 136.D 
Markov operators 136.B 
Markov partition (for an automorphism) 136.G 
Markov process(es) 261 342.A 

branching 44.E 
homogeneous 5.H 
invariant 5.H 
strong 261.B 

Markov property 261.B 
strong 261.B 

Markov shift 136.D 
Markov statistical mechanics 340.C 
Markov subshift 126.5 
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Markov theorem, Gauss- 
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Markov theorem, Gauss- 403.E 
Markov time 261.B 407.B 
Martin axiom (in set theory) 33.F 
Martin bound, Froissart- 386.B 
Martin boundary 207.C 260.1 

dual 260.1 
Martin compactilication 207.C 
Martineau-Harvey duality 125.Y 
martingale 262 342.A 

{F,}-Wiener 406.B 
local 262.E 

martingale additive functional 261.E 
martingale part 406.B 
martingale problem 115.C 261.C 406.A 
Martin kernel 207.C 
Maslov bundle 274.C 
Maslov index, Keller- 274.C 
mass 132.A 258.C 271.E 

(of a current) 275.G 
center of 271.E 
integrals of the center of 420.A 

mass distribution 
capacitary 338.K 
equilibrium 338.K 

Massey theorem, Blakers- 202.M 
mass lumping 304.D 
mass matrix 304.D 
master equation 402.1 
matched asymptotic expansions, method of 25.B 
mathematical axiom 411.1 
mathematical expectation (of a probability distribu- 

tion) 341.B 
mathematical induction 294.B 

axiom of 294.B 
definition by 294.B 
doulbe 294.B 
multiple 294.B 

mathematical linguistics 75.E 
mathematical logic 41 l.A 
mathematical modeling 40.G 300 
mathematical models in biology 263 
mathematical object 52.A 
mathematical programming 264.A 
mathematical programming problem 264.B 
mathematical structure 409.B 
mathematical system (for a structure) 409.B 
mathematics 

actuarial 214.A 
combinatorial 66.A 
discrete 66.A 

mathematics in the 18th century 266 
mathematics in the 19th century 267 
mathematics in the 17th century 265 
Mathieu diIIerentia1 equation 268.A 

modified 268.A 
Mathieu functions 268 

modified 268.A 
modified, of the first kind 268.D 
modilied, of the second kind 268.D 
modified, of the third kind 268.D 
of the second kind 268.D 

Mathieu group 151.H 
Mathieu method 268.C 
matric group 226.B 
matrix (matrices) 269 

adjacement 186.G 
adjoint 269.1 
Alexander (of a knot) 23S.C 
alternating 269.B 

amplification 304.F 
anti-Hermitian 269.1 
antisymmetric 269.B 
association 102.5 
asymptotic covariance 399.K 
of a bilinear form 256.H 
bounded 269.K 
circuit 254.B 
column finite 269.K 
companion 301.1 
complex orthogonal 269.5 
correlation 397.5 
covariance 341.B 397.5 
density 351.B 
design 102.A 403.D 
diagonal 269.A 
Dirac 377.C 
Dirac’s y 351.G 
error 405.G 
Fisher information 399.D 
fundamental cutset 186.G 

fundamental tieset 186.G 
group 226.B 
Hasse-Witt 9.E 
Hermitian 269.1 
identity 269.A 
incidence (of a block design) 102.B 
incidence (of a graph) 186.G 
infinite 269.K 
information 102.1 
inverse 269.B 
invertible 269.B 
iteration 302.C 
Jacobi 390.G 
Jacobian 208.B 
lower triangular 269.B 
mass 304.D 
m by n 269.A 
of (m, n)-type 269.A 
m x n 269.A 
moment 341.B 
monodromy 254.B 
nilpotent 269.F 
noncentrality 374.C 
nonsingular 269.B 
normal 269.1 
orthogonal 269.5 
parity check 63.C 
Pauli spin 258.A 351.G 
period (of a closed Riemann surface) 1 l.C 
period (of a complex torus) 3.H 
port-admittance 282.C 
port-impedance 282.C 
positive definite 269.1 
positive semidelinite 269.1 
principal 3.1 
projection 269.1 
proper orthogonal 269.5 
Q- 260.F 
of quadratic form 348.A 
rational function 86.D 
rectangular 269.A 
regular 269.B 
Riemann 3.1 
row finite 269.K 
S- 150.D 386 
sample correlation 280.E 
scalar 269.A 
scale 374.C 
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Mean 

Seifert 235.C 
semisimple 269.G 
of sesquihnear form 256.4 
similar square 269.G 
skew h- 269.1 
skew-Hermitian 269.1 
skew-symmetric 269.B 
square 269.A 
stiffness 304.C 
stochastic 260.A 
of the sum of squares between classes 280.B 
of the sum of squares within classes 280.B 
symmetric 269.B 
symplectic 60.L 
transfer function 86.B 
transition 126.5 260.A 
transposed 269.B 
triangular 269.B 
tridiagonal 298.D 
unipotent 269.F 
unit 269.A 
unitary 269.1 
upper triangular 269.B 
variance 341.B 
variance-covariance 341.B 397.5 
weighting 86.B 
zero 269.B 

matrix algebra 
full 269.B 
total 269.B 

matrix convex of order m 212.C 
matrix element 351.B 
matrix game 173.C 
matrix group 226.B 
matrix monotone decreasing of order m 212.c 
matrix montone increasing of order m 212.c 
matrix representation 362.D 
matrix Riccati differential equation 86.E 
matrix Riccati equation 405.G 
matrix unit 269.B 
matroid 66.G 

p-ary 66.H 
poly- 66.F 
operations for 66.H 

Mattuck theorem, Lutz- 118.E 
Maupertuis principle 180.A 
Maurer-Cartan 

differential form of 249.R 
system of differential equations of 249.R 

maximal 
(hypersurface in Minkowski space) 275.H 
(ideal) 368.F 
(in prediction theory) 395.D 
(Riemann surface) 367.F 

maximal concentration function 341.E 
maximal condition 3 11 .C 
maximal deficiency (of an algebraic surface) 15.E 
maximal dilatation 352.B 
maximal dissipative operator 251.5 
maximal element (in an ordered set) 31 l.B 
maximal entropy 136.C,H 
maximal ergodic lemma 136.B 
maximal lilter 87.1 
maximal function 

nontangential 168.B 
radial 168.B 

maximal ideal 67.C 368.F 
with respect to S 67.C 

maximal ideal space (of a Banach algebra) 36.E 

maximal independent system (of an additive group) 
2.E 

maximal inequality (=maximal ergodic lemma) 
136.B 

maximal invariant statistic 396.1 
maximal k-split torus 13.Q 
maximally almost periodic group 18.1 
maximally overdetermined (= holonomic) 274.H 
maximal operator 112.E 
maximal order 27.A 
maximal prime divisor (of an ideal) 67.F 
maximal separable extension (of a field) 149.H 

~ maximal toroidal subgroup (of a compact Lie group) 
248.X 

maximal torsion subgroup (of an Abelian group) 
2.A 

maximal torus (of a compact Lie group) 248.X 
maximum, relative (of a function) 106.L 
maximum element (in an ordered set) 311.B 
maximum-flow minimum-cut theorem 281.C 
maximum-flow problem 281.C 
maximum likelihood estimator 399.M 
maximum likelihood method 399.M 

limited information 128.C 
maximum modulus principle (for a holomorphic 

function) 43.B 
local 164.C 
Cartan 338.L 
complete 338.M 

maximum principle 
(for analytic functions) 43.B 
(in control theory) 86.F 
(for harmonic functions) 193.E 
(for minimal surface) 275.B 
(for parabolic operators) 327.D 
dilated (in potential theory) 338.C 
entropy 419.A 
first (in potential theory) 338.C 
Frostman’s 338.C 
Hopf (for equations of elliptic type) 323.C 
strong (for equations of elliptic type) 323.C 
Ugaheri’s 338.C 

maximum return 127.B 
maximum-separation minimum-distance theorem 

281.C 
maximum solution (of a scalar equation) 316.E 
maximum spectral measure 390.G 
Maxwell-Boltzmann distribution law 402.B 
Maxwell convention 51.F 
Maxwell equations 130.A 
Maxwell fisheye 180.A 
Maxwell relations 419.B 
Maxwell stress tensor 130.A 
Maxwell theorem (on spherical functions) 393.D 
Mayer-Vietoris exact sequence (for a proper triple) 

201.c 
relative 2Ol.L 

Mazur theorem 37.F 
Gel’fand- 36.E 

meager set 425.N 
non- 425.N 

mean 
(of an almost periodic function) 18.B,E 
(of numbers or a function) 21 l.C 
(of a probability distribution) 341.B 
(of a random variable) 342.C 
(of a statistical data) 397.C 
(of a weakly stationary process) 395.A 
a-trimmed 371.H 
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Mean absolute deviation 
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arithmetic 211.C 397.C 
arithmetico-geometric 134.B 
bounded, oscillation 168.B 
conditional (of a random variable) 342.E 397.1 
continuous in the 217.M 407.A 
convergence in the, of order p 168.B 342.0 
407.A 

convergence in the, of power p 168.B 
of degree r (of a function with respect to a 
weight function) 211.C 

Fejer 159.C 
geometric 21 l.C 
geometrical 397.C 
harmonic 21 l.C 397.C 
limit in the 168.B 
moment about the (kth) 341.B 
population 396.C 
sample 396.C 

mean absolute deviation 397.C 
mean anomaly 309.B 
mean concentration function 341.E 
mean content (of a tolerance region) 399.R 
mean curvature 11 l.H 364.D 365.D, App. A, Table 

4.1 
total 365.0 

mean curvature vector 365.D 
mean energy 402.G 
mean entropy 402.G 
mean ergodic theorem 136.B 
mean free energy 340.B 402.G 
mean motion 309.B 
mean number of sheets (of a covering surface of 

a Riemann sphere) 272.5 
mean oval (of two ovals) 89.D 
mean p-valent, areally 438.E 
mean p-valued, circumferentially 438.E 
mean recurrence time 260.C 
mean square error 399.E 403.E 
mean unbiased, asymptotically 399.K 
mean unbiased estimator 399.C 
mean value 

(of a continuous function on a compact group) 
69.A 

(of a weakly stationary process) 395.C 
mean value theorem 

(in differential calculus) 106.E 
(on harmonic functions) 193.E 
first (in the Riemann integral) 216.B 
second (in the D-integral) 100.G 
second (in the Riemann integral) 216.B 
second (for the Stieltjes integral) 94.C 
Siegel 182.E 
Vinogradov 4.E 

mean vector 341.B 
measurability 443.1 

strong 443.1 
measurability theorem, Pettis 443.B 
measurable 

(flow) 136.D 
(multivalued vector function) 443.1 
(operator function) 308.G 
(set) 270.D,G 
(in set theory) 33.F 
(stochastic process) 407.A 
(transformation) 136.B 
(vector valued function) 443.B 
absolutely 270.L 
d- 270.C 
Baire 270.L 
Jordan 270.D,G 

Lebesgue 270.G 
p- 270.D 
nearly Bore1 261.D 
progressively (stochastic process) 407.A 
real-valued (in set theory) 33.F 
with respect to a family of random variables 

342.C 
with respect to p* 270.E 
scalarly 443.1 
strongly 443.B,I 
universally 270.L 
weakly 443.B,I 

measurable cardinal number 33.E 
measurable event 342.B 
measurable function 270.5 

2% 270.5 
Baire 270.L 
Bore1 270.5 
Lebesgue 270.5 
universally 270.L 

measurable space(s) 270.C 
analytic 270.C 
complete 270.D 
isomorphic 398.D 
standard 270.C 

measurable vector function 308.G 
measure 270.D,G 

of an angle 139.D 
of association 397.K 
atomless probability 398.C 
b-regular 270.F 
Bore1 270.G 
bounded 270.D 
canonical 115.B 260.G 
characteristic 407.D 
Carathtodory 270.E 
Carathiodory outer 270.E 
complete 270.D 
completely additive 270.D 
complex spectral 390.D 
convergence in 168.B 
6- 270.D 
distortion 213.E 
excessive 261.F 
finitely additive 270.D 
G-invariant 225.B 
Gaussian random 407.D 
generalized Lebesgue 270.E 
of genus (of a positive definite symmetric 

matrix) 348.K 
Gibbs 136.C 
Green 193.5 
Haar 225.C 
harmonic 120.C 169.B 207.B 260.1 
Hausdorff 169.D 
idempotent 192.P 
image 270.K 
inner harmonic 169.B 
invariant 136.B 255.B 260.AJ261.F 
Jensen 164.K 
Jordan 270.D,G 
killing 115.B 
kinetic 228.A 
K-regular 270.F 
Lebesgue 270.G 
Lebesgue outer 270.G 
Lebesgue-Stieltjes 166.C 270.L 
left invariant Haar 225.C 
of length 139.C 
Levy 5.E 
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Method(s) 

of location 397.C 
Loeb 293.D 
Markov 136.D 
orthogonal 164.C 
outer 270.E,G 
outer harmonic 169.B 
Plancherel (of a locally compact group) 437.L 
Poisson random 407.D 
positive Radon 270.1 
probability 341 342.B 
product 270.H 
quasi-invariant 225.5 
quotient 225.H 
Radon 270.G 
real spectral 390.D 
regular 270.F 
relatively invariant 225.H 
representing 164.C 
right invariant Haar 225.C 
a-additive 270.D 
u-finite 270.D 
signed 380.C 
smooth (for a Riemannian metric) 136.G 
smooth invariant 126.5 
spectral 390.D,K 395.B,C 
speed 115.B 
subinvariant 261.F 
superharmonic 260.1 
of variability 397.C 
vector 443.G 
Weil 225.G 
Wiener 45.B 250.E 

measure algebra 192.0 
measure-preserving (transformation) 136.B 
measure problem, invariant 136.C 
measure space 270.D 

bounded 270.D 
complete 270.D 
complete product 270.H 
Lebesgue, with a finite (or u-finite) measure 

136.A 
product 270.H 
u-finite 270.D 

measure theory 270 
mechanics 

celestial 55.A 
classical 271 .A 
classical statistical 402.A 
equilibrium statistical 402.A 
graphical 19.C 
Markov statistical 340.C 
Newtonian 271.A 
nonlinear 290.A 
quantum 351 
quantum statistical 402.A 
statistical 342.A 402 

mechanism, Higgs 132.D 
median 341.H 396.C 397.C 

sample 396.C 
mediant (of two fractions in Farey sequence) 4.B 
median unbiased estimator 399.C 
medieval mathematics 372 
meet 

(in a Boolean algebra) 42.A 
(in an ordered set) 243.A 
(of sets) 381.B 

Mehler formula App. A, Table 19.111 
Mehler integral representation, Laplace- App. A, 

Table 18.11 
Mellin transform 220.C 

member (of a set) 381.A 
membrane 

equation of a vibrating 325.A 
permeable 419.A 

memory 
fading 163.1 
first-in first-out 96.E 
first-in last-out 96.E 

memory channel 
almost finite 213.F 
finite 213.F 

memoryless channel 213.C 
discrete 213.F 

memory unit 75.B 
Menelaus theorem (in afIine geometry) 7.A 
Menger-Ntibeling embedding theorem 117.D 
Men’shov theorem, Looman- 198.A 

Rademacher- 317.B 
Mercer theorem 217.H 
merging 96.C 
meridian 

(of a knot) 235.B 
(of a surface of revolution) 11 l.H 

meromorphic (in a domain) 272.A 
meromorphic curve 272.L 
meromorphic differential (on a Riemann surface) 

367.H 
meromorphic function(s) 21.5 272.A 

(on an analytic set) 23.D 
(on a complex manifold) 72.A 
transcendental 272.A 

meromorphic mapping, proper (between analytic 
spaces) 23.D 

meromorphy 
circle of (of a power series) 339.D 
radius of (of a power series) 339.D 

Mersenne number 297.E, App. B, Table 1 
Mersenne prime 297.E 
Mertens theorem (on the Cauchy product of two 

series) 379.F 
mesh of a covering (in a metric space) 273.B 
mesons 132.B 
meta-Abelian group 190.H 
metabolic model (in catastrophe theory) 51.F 
metamathematics 156.D 
metastable range (of embeddings) 114.D 
method(s) 

Abel, of summation 379.N 
Adams-Bashforth 303.E 
Adams-Moulton 303.E 
AD1 304.F 
alternating direction implicit (ADI) 304.F 
Arrow-Hurwicz-Uzawa gradient 292.E 
of averaging 290.D 
Bairstow 301.E 
Bernoulli 301.5 
Borel, of summation 379.0 
branch and bound 215.D . 

Ces$ro, of summation of order a 379.M 
Cholesky 302.B 
circle 4.8 
collocation 303.1 
congruence 354.B 
conjugate gradient (C.G.) 302.D 
constructive 156.D 
continuation 301.M 
Crout 302.B 
cyclic Jacobi 298.B 
d’Alembert, of reduction of order 252.F 
Danilevskii 298.D 
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Davidenko, of differentiation with respect to a 
parameter 301.M 

Dejon-Nickel 301.G 
difference 303.A 
direct (in the calculus of variations) 46.E 
discrete variable 303.A 
distribution-free 371.A 
Doolittle 302.B 
downhill 3Ol.L 
Duhamel 322.D 
Durand-Kerner (DK) 301.F 
Durand-Kerner-Aberth (DKA) 301.F 
Enskog 217.N 
Euclidean 150.F 
Euler (of describing the motion of a fluid) 
205.A 

Euler (of numerical solution of ordinary differ- 
ential equations) 303.E 

Euler (of summation) 379.P 
expansion 205.B 
extrapolation 303.F 
factorization 206.B 
of false position 301.C 
of feasible directions (in nonlinear program- 
ming) 292.E 

finite element 223.G 304.C 
fixed point 138.B 
floating point 138.B 
Frobenius App. A, Table 14.1 
Galerkin 303.1 304.B 
Garside-Jarratt-Mack 301.N 
Gauss-Seidel 302.C 
Givens 298.D 
gradient 292.E 
Graeffe 301.N 
graphical, of statistical inference 19.B 
Green function 402.5 
of harmonic balance 290.D,E 
Hessenberg 298.D 
Hill, of solution 268.B 
Hitchcock 301.E 
hodograph 205.B 
Horner 3Ol.C 
Householder 298.D 
implicit 303.E 
implicit enumeration 215.D 
Ince-Goldstein 268.C 
indirect least squares 128.C 
interpolation 224.A 
isoparametric 304.C 
Jacobi (of numerical computation of eigen- 

values) 298.B 
Jacobi (in numerical solution of linear 

equations) 302.C 
Jacobi second, of integration 324.D 
Jeffreys 25.B 
killing (of obtaining a homotopy group) 202.N 
ladder 206.B 
Lagrange (of describing the motion of a fluid) 
205.A 

Lagrange (of indeterminate coefficients) 106.L 
Lagrange, of variation of constants 252.D 
Lagrange, of variation of parameters 252.D 
Lagrange-Charpit 322.B, App. A, Table 15.11 
of Lagrange multipliers 106.L 
Lanczos 298.D 301.N 
Laplace 30.B 
of least squares (for estimation) 403.E 
of least squares (for numerical solution of linear 
equations) 397.5 

I of least squares (for numerical solution of 
ordinary differential equations) 303.1 

Lebesgue, of summation 379,s 
Lehmer 301.K 
Lighthill 25.B 
limited information maximum likelihood 

128.C 
of linearization 290.D 
linear k-step 303.E 
linear multistep 303.E 
of majorants 316.G 
of matched asymptotic expansions 25.B 
Mathieu 268.C 
maximum likelihood 399.M 
middle-square 354.B 
Milne 303.E 
modified minimum chi-square 400.K 
moment 399.L 
Monte Carlo 385.C 
of moving frames llO.A 
of multiple scales 290.E 
multistep 303.E 
multivalue 303.E 
Newton-Raphson 301.D 
nonparametric 371.A 
Norlund, of summation 379.4 
of orthogonal projection 323.G 
(p + 1)-stage 303.D 
penalty 292.E 
Perron (in Dirichlet problem) 120.C 
perturbation 25.B 
Poincare 25.B 
Poincare-Lighthill-Kuo (P.L.K.) 25.B 
polynomial extrapolation 303.F 
power 298.C 
predictor-corrector (PC) 303.E 
projective approximation 304.B 
QR 298.F 
of quadrature 313.D 
QZ 298.G 
rational extrapolation 303.F 
Rayleigh-Ritz 46.F 271.G 
renormalization 361.A 
Richardson 302.C 
Riemann, of summation 379,s 
Riesz, of summation of the kth order 379.R 
Ritz 46.F 303.1 304.B 
robust 371.A 
Rosen gradient projection 292.E 
Runge-Kutta 303.D 
Runge-Kutta-Gill 303.D 
saddle point 25.C 
scaling 346.E 
scoring 397.M 
simplex 255.C 
spectral 304.B 
stationary phase 30.B 
of steepest descent 25.C 
step by step 163.D 
Strum 3Ol.C 
of successive approximation (for an elliptic par- 
tial differential equation) 323.D 

of successive approximation (for Fredholm 
integral equations of the second kind) 217.D 

of successive approximation (for ordinary 
differential equations) 316.D 

of successive iteration (for Fredholm integral 
equations of the second kind) 217.D 

summable by Abel’s 379.N 
summable by Borel’s exponential 379.0 



2041 Subject Index 
Minimal operator 

summable by Borel’s integral 379.0 
summable by Cesaro’s, of order G( 379.M 
summable by Euler’s 379.P 
summable by Holder’s, of order p 379.M 
summable by Niirlund’s 379.4 
summable by M. Riesz’s, of order k 379.R 
of summation 379.L 
Sylvester elimination 369.E 
three-stage least squares 128.C 
threshold Jacobi 298.B 
two-phase simplex 255.C 
two-stage least squares 128.C 
variational 438.B 
of variation of constants 55.B 252.1 
of variation of parameters App. A, Table 14.1 
WKB 25.B 
WKBJ 25.B 

metric 273.B 
Bergman 188.G 
Einstein 364.1 
Einstein-Kahler 232.C 

f- 136.F 
fN- 136.F 
Finsler 152.A 
Hermitian 232.A 
Hodge 232.D 
Kahler 232.A 
Kerr 359.E 
left invariant (in a topological group) 423.1 
Petersson 32.B 
Poincare 74.G 
pseudo- 273.B 
pseudo-Riemannian 105.P 
Riemannian 105.P 
Robertson-Walker 359.E 
standard Klhler (of a complex projective space) 

232.P 
Teichmiiller 416 

metrically isomorphic automorphisms (on a measure 
space) 136.E 

metric comparison theorem 178.A 
metric connection 80.K 
metric invariant (on a measure space) 136.E 
metric multidimensional scaling 346.E 
metric space(s) 273 

compact 273.F 
complete 273.J 
discrete 273.B 
indiscrete pseudo- 273.B 
induced by a mapping 273.B 
precompact 273.B 
product 273.8 
pseudo- 273.B 
separable 273.E 
totally bounded 273.B 

metric structure 
almost contact 110.E 
contact 1lO.E 

metric subspace 273.B 
metric topology 425.C 
metric vector space 256.H 
metrizable topological group 423.1 
metrizable topological space 273.K 
metrizable uniform space 436.F 

pseudo- 436.F 
Meusnier theorem (on surfaces) llI.H 
Meyer decomposition theorem, Doob- 262.D 
Michael theorem 425.X 
micro-analytic 12S.CC 274.E 
microboundle 147.P 

normal PL 147.P 
PL 147.P 
tangent PL 147.P 

microcanonical ensemble 402.D 
microdifferential equation 274.G 
microdifferential operator 274.F 

of finite order 274.F 
of infinite order 274.F 

microfunction 274.E 
holomorphic 274.F 

microlocal analysis 274 345.A 
microlocally elliptic (operator) 345.A 
microlocal operator 274.F 
micro-pseudolocal property 345.A 
middle point 7.C 
middle-square method 354.B 
midpoint 7.C 
midpoint rule 303.E 
midrange 374.G 
Mikusinski operator 306.B 
Mills equation, Yang- 80.G 
Mills field, Yang- 150.G 
Mills functional, Yang- 80.4 
Mills G-connection, Yang- 80.4 
Mil’man property, Krein- 443.H 
Mil’man theorem 37.G 

Krein- 424.U 
Milne corrector 303.F 
Milne method 303.E 
Milne predictor 303.E 
Milne-Simpson formula 303.E 
Milnor libering theorem 418.D 
Milnor libration 418.D 
Milnor invariant 235.D 
Milnor monodromy 418.D 
Milnor number (in Milnor ftbering theorem) 418.D 
Minakshisundaram-Pleijel asymptotic expansion 

391.B 
minimal 

(algebraic surface) 15.G 
(algebraic variety) 16.1 
(ideal) 368.F 
(immersion) 275.A 
(superharmonic function) 260.1 
(transformation) 136.H 
relatively 15.G 16.1 

minimal basis (of a principal order or an algebraic 
number field) 14.B 

minimal chain (for a transition probability) 260.F 
minimal complete class 398.B 
minimal complex 70.E 
minimal condition 

(in an ordered set) 3 1 l.C 
restricted (in a commutative ring) 284.A 

minimal diffeomorphism 126.N 
minimal element (in an ordered set) 31 l.B 
minimal flow 126.N 
minimal function, X- 367.E 
minimal immersion 275.A 

branched 275.B 
generalized 275.B 

minimality 16.1 
absolute 16.1 

minimally almost periodic group 18.1 
minimally elliptic singularity 418.C 
minima1 model 15.G 

(for the algebra of differential forms) 114.L 
Ntron (of an Abelian variety) 3.N 
relatively 15.G 

minimal operator 112.E 
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minimal parabolic k-subgroup 13.4 
minimal polynomial 

(of an algebraic element) 149.E 
(of a linear transformation) 269.L 
(of a matrix) 269.F 

minimal prime divisor (of an ideal) 67.F 
minimal projection, Lie 76.B 
minimal realization 86.D 
minimal resolution 418.C 
minimal set 126.E 
minimal splitting field (of a polynomial) 149.G 
minimal submanifold 275.A 365.D 
minimal sufhcient u-field 396.E 
minimal surface 111.1 334.B 

atline 1lO.C 
branched 275.B 

minimal surface equation 275.A 
minimal variety 275.G 
minimax (estimator) 399.H 
minimax decision function 398.B 
minimax level a: test 400.F 
minimax principle 

(for eigenvalues of a compact operator) 68.H 
(for statistical decision problem) 398.B 
for I, 391.G 

minimax solution 398.B 
minimax theorem 173.C 
minimization problem, group 215.C 
minimizing sequence 46.E 
minimum (minima) 

of a function 106.L 
relative (at a point) 106.L 
successive (in a lattice) 182.C 
weak 46.C 

minimum chi-square method, modified 400.K 
minimum-cost flow problem 281.C 
minimum curvature property 223.F 
minimum element (in an ordered set) 311.B 
minimum immersion 365.0 
minimum norm property 223.F 
minimum principle 

energy 419.C 
enthalpy 419.C 
Gibbs free energy 419.C 
Helmhoitz free energy 419.C 
for A, 391.G 
ofl 391.D 

minimum solution (of a scalar equation) 316.E 
minimum variance unbiased estimator, uniformly 

399.c 
Minkowski-Farkas theorem 255.B 
Minkowski-Hasse character (of a nondegenerate 

quadratic form) 348.D 
Minkowski-Hasse theorem (on quadratic forms 

over algebraic number fields) 348.G 
Minkowski-Hlawka theorem 182.D 
Minkowski inequality 21 l.C, App. A, Table 8 
Minkowski reduction theory (on fundamental 

regions) 122.E 
Minkowski space 258.A 
Minkowski space-time 359.B 
Minkowski theorem 182.C 

on discriminants 14.B 
on units 14.D 

Minlos theorem 424.T 
minor 

(of a matrix) 103.D 
(of a matroid) 66.H 
Fredholm’s tirst 203.E 

Fredholm’s rth 203.E 
principal (of a matrix) 103.D 

minor arc 4.B 
minor axis (of an ellipse) 78.C 
minor function 100.F 
minus infinity 87.D 
minute (an angle) 139.D 
Mittag-Lefller theorem 272.A 
mixed Abelian group 2.A 
mixed area (of two ovals) 89.D 
mixed group 190.P 
mixed Hodge structure 16.V 
mixed ideal 284.D 
mixed initial-boundary value problem (for hyper- 

bolic operator) 325.K 
mixed insurance 214.B 
mixed integer programming problem 215.A 
mixed model 102.A 
mixed periodic continued fraction 83.C 
mixed problem 322.D 
mixed spinor rank (k, n) 258.B 
mixed strategy 173.C 
mixed tensor 256.5 
mixed type, partial differential equation of 304.C 

326.A 
mixing (automorphism) 

k-fold 136.E 
strongly 136.E 
weakly 136.E 

mixture 351.B 
Mizohata equation, Lewy- 274.G 
ML estimator 399.M 
mobility, axiom of free (in Euclidean geometry) 

139.B 
Mobius band 410.B 
Mobius function 66.C 295.C 
Mobius geometry 76.A 
Mobius strip 410.B 
Mobius transformation 74.E 76.A 
Mobius transformation group 76.A 
mod 1, real number 355.D 
mod p (modulo p) 

Hopf invariant 202,s 
isomorphism (in a class of Abelian groups) 
202.N 

modal logic 41 l.L 
modal proposition 41 l.L 
modal unbiased estimator 399.C 
mode 396.C 397.C 

sample 396.C 
model 

(of an algebraic function field) 9.D 
(of a mathematical structure) 409.B 
(of a symbolic logic) 276.D 41 l.G 
Bayesian 403.G 
Bradley-Terry 346.C 
Bush-Mosteller 346.G 
canonical 251.N 
component 403.F 
components-of-variance 403.C 
countable (of axiomatic set theory) 156.E 
derived normal (of a variety) 16.F 
dual resonance 132.C 
Estes stimulus-sampling 346.G 
factor analysis 403.C 
fixed effect 102.A 
functional 251.N 
game theoretic 307.C 
Glashow-Weinberg-Salam 132.D 
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Modulus (mod&) 

of human death and survival 214.A 
Ising 340.B 402.G 
Klein (of non-Euclidean geometry) 285.C 
learning 346.G 
linear 403.D 
linear logistic 403.C 
log linear 403.C 
Lute b- 346.G 
mathematical, in biology 263 
metabolic (in catastrophe theory) 51.F 
minimal 15.G 
minimal (for the algebra of differential forms) 

114.L 
mixed 102.A 
multiple 403.E 
multivariate linear 280.B 
natural (in axiomatic set theory) 33.C 
normal linear 403.C 
Poincare (of geometry) 285.D 
queuing 260.H 
random-effects 102.A 403.C 
relatively minimal 15.G 
Sakata 132.D 
Scheffe 346.C 
simple 403.F 
spin-flip 340.C 
static (in catastrophe theory) 51.B 
stochastic Ising 340.C 
stochastic programming 307.C 
string 132.C 
Sz.-Nagy-Foiag 251.N 
Thurstone-Mosteller 346.C 
Veneziano 132.C 386.C 
Whittaker 450.0 

model experimentation 385.A 
modeling, mathematical 300 
model scheduling 307.C 
model selection 401 .D 
model theory 276 
modification 

(of a stochastic process) 407.A 
holomorphic (of an analytic space) 23.D 
proper (of an analytic space) 23.D 
spherical 114.F 

modified Bessel functions App. A, Table 19.IV 
modified Fourier hyperfunction 125.BB 
modified indicator function 341.C 
modified Mathieu differential equation 268.A 
modified Mathieu function 268.A 

of the first kind 268.D 
of the second kind 268.D 
of the third kind 268.D 

modified minimum chi-square method 400.K 
modified wave operator 375.B 
modular, weakly (in quantum mechanics) 351.L 
modular automorphism 308.H 
modular character (of a modular representation) 

362.1 
modular form 

Hilbert, of dimension -k 32.G 
Hilbert, of weight k 32.G 
of level N 32.C 
Siegel, of dimension -k 32.F 
Siegel, of weight k 32.F 

modular function 
(of a locally compact group) 225.D 
Hilbert 32.G 
of level N 32.C 
Siegel, of degree n 32.F 

modular group 122.D 
elliptic 122.D 
Hilbert 32.G 
Siegel, of degree n 32.F 

modular lattice 243.F 
modular law (in a lattice) 243.F 
modular operator 308.H 
modular represenation (of a finite group) 362.G 
modular surface, Hilbert 15.H 
module(s) 277 

(of a family of curves) 143.A 
A- 211.C 
over A 277.C 
of A-homomorphisms (between A-modules) 

277.E 
Artinian 277.1 
of boundaries 200.C 
category of left (right) R- 52.B 
character (of an algebraic group) 13.D 
of coboundaries 200.F 
of cocycles 200.F 
coefficient 200.L 
cohomology 200.F 
connected graded 203.B 
of cycles 200.C 
defining (of a linear system) 16.N 
degenerate 118.D 
divisible A- 277.D 
dual 277.K 
dual graded 203.B 
duality theorem for D- 422.L 
factor A- 277.C 
faithfully flat A- 277.K 
of linite length 277.1 
flat A- 277.K 
free 277.G 
generalized 143.B 
graded A- 200.B 
homology 200.C 
of homomorphisms (between two modules) 

277.B 
induced 277.L 
injective A- 277.K 
Jordan 231.C 
left A- 277.D 
Noetherian 277.1 
Lo-, 383.1 
with operator domain A 277.C 
projective A- 277.K 
of quotients of an R-module with respect to S 

67.G 
(R, S)-injective 200.K 
(R, S)-projective 200.K 
representation (of a linear representation) 

362.C 
of representations (of a compact group) 69.D 
right A- 277.D 
torsion A- 277.D 

moduli functor 16. W 
moduli scheme 16.W 

coarse 16.W 
tine 16.W 

moduli space 16.W 72.G 
of curves of genus 9 9.J 
local 72.G 

modulus (moduli) 
(of a complex number) 74.B 
(of a complex torus of dimension I) 32.C 
(=a conformal invariant) 1 l.B 77.E 
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(of a congruence) 297.G 
(of an elliptic integral) 134.A, App. A, Table 

16.1 
(in Jacobi elliptic functions) 134.5, App. A, 

Table 16.111 
(of a locally multivalent function) 438.E 
(of a ring) 77.E 
complementary (of an elliptic integral) App. A, 

Table 16.1 
complementary (in Jacobi elliptic functions) 

134.5, App. A, Table 16.111 
of continuity (of a function) 84.A 
of continuity of kth order (of a continuous 
function) 336.C 

of elasticity in shear 271.G 
of elasticity in tension 271.G 
held of 73.B 
local maximum, principle 164.C 
maximum, principle (for a holomorphic func- 
tion) 43.B 

periodicity (of an elliptic integral) 134.A 
of rigidity 271.G 
Young’s 271.G 

modulus number 418.E 
modus ponens 411.1 
Moishezon criterion, Nakai- (of ampleness) 16.E 
Moishezon space 16.W 
mole numbers 419.A 
moment 397.C 

absolute (kth) 341.B 
bivariate 397.H 
central 397.C 
conditonal 397.1 
factorial 397.G 
of inertia 271.E 
(kth) 341.B 
about the mean (kth) 341.B 
population (of order k) 396.C 
principal, of inertia 271.E 
sample (of order k) 396.C 

moment generating function 177.A 341.C 397.G,J 
moment matrix 341.B 
moment method 399.L 
moment method estimator 399.L 
moment problem 

Hamburger 240.K 
Hausdorff 240.K 
Stieltjes 240.K 

momentum 271.A,E 
angular 271.E 
generalized 27 1 .F 
integrals of angular 420.A 
intrinsic angular 351.G 
orbital angular 351.E 
theorem of 271.E 
theorem of angular 271.E 

momentum density, angular 150.B 
momentum 4-vector, energy- 258.C 
momentum operator 

angular 258.D 
energy- 258.D 

momentum phase space 126.L 
momentum representation 351.C 
momentum tensor 

angular 258.D 
energy- 150.D 359.D 

monad 
(in homology theory) 200.Q 
(in nonstandard analysis) 293.D 

Monge-Ampere equations 278, App. A, Table 
15.111 

Monge differential equation 324.F 
manic polynomial 337.A 
monoclinic system 92.E 
monodromy group 

(of an n-fold covering) 91.A 
(of a system of linear ordinary differential equa- 

tions) 253.B 
Milnor 418.D 
total 418.F 

monodromy matrix 254.B 
monodromy theorem (on analytic continuation) 

198.5 
monogenic function 

in the sense of E. Bore1 198.4 
in the sense of Cauchy 198.4 

monoid, unitary 409.C 
monoidal transformation 

(of an analytic space) 23.D 
(of a complex manifold) 172.H 
(by an ideal sheaf) 16.K 
with center IV 16.K 
real 274.E 

monomial 337.B 
(module) 277.D 
admissible (in Steenrod algebra) 64.B 

monomial representation (of a finite group) 362.G 
monomorphism (in a category) 52.D 
monothetic group 136.D 
monotone 

(curve) 281.B 
operator 212.C 

monotone class 270.B 
monotone class theorem 270.B 
monotone decreasing 

(set function) 380.B 
matrix, of order m 212.C 

monotone decreasing function 166.A 
strictly 166.A 

monotone function 166.A 
strictly 166.A 
strictly (of ordinal numbers) 312.C 

monotone increasing 
(set function) 380.B 
matrix, of order m 212.C 

monotone increasing function 166.A 
strictly 166.A 

monotone likelihood ratio 374.5 
monotonely very weak Bernoulli 136.F 
monotone mapping 31 l.E 
monotone operator (in a Hilbert space) 286.C 
monotone sequence (of real numbers) 87.B 
monotonically decreasing (sequence of real numbers) 

87.B 
monotonically increasing (sequence of real numbers) 

87.B 
monotonic function, completely 240.E,K 
Monte Carlo method 385.C 
Monte1 space 424.0 
Monte1 theorem 435.E 
moon argument, behind-the- 351.K 
Moore-Smith convergence 87.H 
Moore space 273.K 425.AA 
Moore space problem, normal 425.AA 
Mordell conjecture 118.E 
Mordell-Weil theorem 118.E 

weak 118.E 
more informative (experiment) 398.G 
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Morera theorem 198.A 
Morgenstern solution, von Neumann 173.D 
morphism 

(in a category) 52.A 
(of chain complexes) 200.H 
(of complexes) 13.R 
(of filtered modules) 200.5 
(of inductive systems) 210.D 
(of unfoldings) 5 1 .D 
atline 16.D 
connecting 200.H 
diagonal (in a category) 52.E 
ttale 16.F 
finite 16.D 
flat 16.D 
faithfully flat 16.D 
Frobenius 450.P 
functorial 52.5 
inverse 52.D 
k- (between algebraic groups) 13.A 
projective 16.E 
proper (between schemes) 16.D 
quasiprojective 16.E 
s- 52.G 
of schemes 16.D 
separated 16.D 
shape 382.A 
smooth 16.F 
strict (between topological groups) 423.5 
structure 52.G 

Morse function 279.B 
Morse index theorem 279.F 
Morse inequalities 279.D 
Morse lemma 279.B 
Morse-Smale diffeomorphism 126.5 
Morse-Smale flow 126.5 
Morse-Smale vector tield 126.5 
Morse theory 279 

fundamental theorems of 279.D 
Morsitication 418.F 
Moser implicit function theorem, Nash- 286.5 
Mosteller model 

Bush- 346.G 
Thurstone- 346.C 

most powerful (test) 400.A 
most probable cause 401.E 
most probable value 401.E 
most stringent level d( test 400.F 
motion(s) 

(in dynamical system) 126.B 
(Euclidean) 139.B 
Brownian 5.D 45 342.A 
Brownian (d-dimensional) 45.C 
Brownian, on Lie groups 406.G 
Brownian, with an N-dimensional time para- 
meter 45.1 

central 126.E 
elliptic 55.A 
equation of (of a fluid) 205.A 
equation of (of a particle in a gravitation field) 
359.D 

equations of (in Newtonian mechanics) 271.A 
Euler equation of (of a perfect fluid) 205.8 
{.e}-Brownian 45.B 406.B 
group of (in Euclidean geometry) 139.B 
group of, in the wider sense 139.B 
Heisenberg equation of 351.D 
hyperbolic 420.D 
hyperbolic-elliptic 420.D 

hyperbolic-parabolic 420.D 
infinitesimal (of a Riemannian manifold) 364.F 
Lagrange equation of 271.F 
Lagrange-stable 420.D 
law of 271.A 
mean 309.B 
Newton three laws of 271.A 
Ornstein-Uhlenbeck Brownian 45.1 
oscillating 420.D 
parabolic 420.D 
parabolic-elliptic 420.D 
perpetual 402.G 
proper (in Euclidean geometry) 139.B 
proper (of a star) 392 
quasiperiodic 136.G 
right-invariant Brownian 406.G 
simple harmonic 318.B 
space-time Brownian 45.F 

Moulton method, Adams- 303.E 
movability 382.C 
movable 382.C 

k- 382.C 
movable branch point (of an algebraic differential 

equation) 288.A 
movable singularity (of an algebraic differential 

equation) 288.A 
move 173.B 

chance 173.B 
moving average 397.N 

weighted 397.N 
moving average process 421.D 

autoregressive 421.D 
autoregressive integrated 421.G 

moving average representation 
backward 395.D 
canonical backward 395.D 

moving coordinates App. A, Table 3.IV 
moving coordinate system 90.B 
moving frame(s) 90 111.C 417.B 

method of 110.A 
natural 417.B 
orthonormal 417.D 
stochastic 406.G 

multicollinearity 128.B 
multicommodity flow problem 281.F 
multidiagonal type 304.C 
multidimensional diffusion process 115.A,C 
multidimensional gamma function 374.c 
multidimensional hypergeometric distribution 

App. A, Table 22 
multidimensional normal distribution App. A, 

Table 22 
multidimensional scaling 346.E 

nonmetric 346.E 
multi-index 112.A 168.B 
multilinear form 256.H 
multilinear mapping 256.H 

alternating 256.H 
antisymmetric 256.H 
skew-symmetric 256.H 
symmetric 256.H 

multinomial distribution 341.D 
negative 341.D 

multinomial theorem 330 
multi-objective model 307.C 
multiobjective programming 264.C 
multiplanar coordinates 90.C 
multiple 297.A 

(of an element of a ring) 67.H 
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(of a fractional ideal) 14.E 
common (of elements of a ring) 67.H 
least common 297.A 
least common (of elements of a ring) 67.H 
scalar (of an element of a module) 277.D 
scalar (of a linear operator) 37.C 
scalar (in a linear space) 256.A 
scalar (of a vector) 442.A 

multiple complex 200.H 
multiple correlation coefficient 397.5 

sample 280.E 
multiple covariant 226.E 

absolute 226.E 
multiple hypergeometric distribution 341.D 
multiple integral 

(in Lebesgue integral) 227.E 
(in Riemann integral) 216.F 

multiple mathematical inductions 294.B 
multiple model 403.F 
multiple point 

(on an arc) 93.B 
(of a plane algebraic curve) 9.B 
(on a variety) 16.F 

multiple root (of an algebraic equation) 10.B 
multiple sampling inspection 404.C 
multiple-valued (analytic function) 198.J 
multiple Wiener integral 176.1 
multiplication 

(of an algebra) 203.F 
(of a graded algebra) 203.B 
(in a group) 190.A 
(of an H-space) 203.D 
(of local Lie groups) 423.L 
(by a natural number) 294.B 
(in a ring) 368.A 
associative (of a graded algebra) 203.B 
commutative (of a graded algebra) 203.B 
commutative law for (in a ring) 368.A 
complex 73.A 
homotopy associative 203.D 
homotopy commutative 203.D 
Pontryagin 203.D 
scalar (in a module) 277.D 
scalar (on vectors) 442.A 
symmetric 406.C 

multiplication theorem, Hadamard 339.D 
multiplicative (arithmetic function) 295.B 
multiplicative automorphic function 32.A 
multiplicative class 270.B 
multiplicative congruence 14.H 
multiplicative ergodic theorem 136.B 
multiplicative function 32.A 295.B 
multiplicative functional 

(of a Markov process) 261.E 
transformation by 261.F 

multiplicative group 149.A 190.A 
of a field 190.B 

multiplicative Jordan decomposition (of a linear 
transformation) 269.L 

multiplicatively closed subset (of a ring) 67.C 
multiplicative valuation 439.C 
multiplicator (of a relative invariant measure) 

225.H 
multiplicity 

(of a covering surface) 367.B 
(of an eigenvalue for an integral equation) 

217.F 
(of an eigenvalue of a matrix) 390.B 
(of a Gaussian process) 176.E 
(of a local ring) 284.D 

(of a representation) 362.D 
(of a root of an algebraic equation) 10.B 
(of a weight) 248.W 
algebraic (of an eigenvalue) 390.B 
geometric (of an eigenvalue) 390.A 
intersection (of two subvarieties) 16.Q 
representation without 437.G 
set of 159.J 

multiplicity function (of a mapping) 246.G 
multiplier 

(of a group) 362.5 
(of a semi-invariant) 226.A 
characteristic (of a closed orbit) 126.G 
characteristic (of a periodic linear system) 

163.F 
Jacobi’s last App. A, Table 14.1 
Lagrange 46.B 
method of Lagrange 106.L 
Stokes 254.D 

multiplier algebra 36.K 
multiply connected domain 333.A 
multiply transitive (permutation group) 151.H 
multipolar coordinates 90.C 
multiprocessor scheduling problem 376 
multistage allocation process 127.A 
multistage choice process 127.A 
multistage game 173.C 
multistage programming 264.C 
multistage sampling 373.E 
multistep method 303.E 

linear 303.E 
multitype Galton-Watson process 44.C 
multitype Markov branching process 44.E 
multivalent function 438.E 
multivalued function 165.B 
multivalue method 303.E 
multivariate (data) 397.A 
multivariate analysis 280 

of variance 280.B 
multivariate linear model 280.B 
multivariate normal distribution 397.5 
Muntz theorem (on polynomial approximation) 

336.A 
mutual energy 338.B 
mutual information 213.E 
mutually associated diagrams (for O(n) diagrams) 

60.5 
mutually disjoint family (of sets) 381.D 
mutually noncomparable (summations) 379.L 
mutually orthogonal (latin squares) 241.B 
M.V.W.B. (= monotonely very weak Bernoulli) 

136.F 

N 

N (natural numbers) 294.A,B 
NP 71.E 
nary predicate 41 l.G 
n-ary relation 41 l.G 
n-ball 140 

open 140 
n-body problem 420.A 
n-cell 70.D 140 

open 70.D 
topological 140 

n-classifying space (of a topological group) 
147.G 

n-cochain (for an associative algebra) 200.L 
n-connected 

(pair of topological spaces) 202.L 
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Negative resistance 

(space) 79.C 202.L 
locally 79.C 

n-connective fiber space 148.D 
n-cube, unit 140 
n-cylinder set 270.H 
n-decision problem 398.A 
n degrees of freedom (sampling distribution) 

374.B,C 
n-dimensional (normal space) 117.B 
n-dimensional distribution 342.C 
n-dimensional distibution function 342.C 
n-dimensional Euclidean geometry 139.B 181 
n-dimensional probability distribution 342.C 
n-dimensional random variable 342.C 
n-dimensional sample space 396.B 
n-dimensional statistic 396.B 
n-disk 140 

open 140 
n-element 140 
n-fold covering 91.A 
n-fold reduced suspension (of a topological space) 

202.F 
n-gon, regular 357.A 
n-gonal number 296.A 
n-particle subspace 377.A 
n-person game 173.B-D 
n-ply connected (plane domain) 333.A 
n-section (in a cell complex) 70.D 
n-sheeted (covering surface) 367.B 
n-simple 

(pair of topological spaces) 202.L 
(space) 202.L 

n-simplex 
(in a Euclidean simplicial complex) 70.B 
(in a semisimplicial complex) 70.E 
(in a simplicial complex) 70.C 

n-sphere 140 
open 140 
solid 140 

n-sphere bundle 147.K 
n-times continuously differentiable (function) 

106.K 
n-times differentiable (function) 106.D 
n-torus 422.E 
n-tuple 256.A 381.B 
n-universal bundle 147.G 
n-valued (analytic function) 198.5 
(n + 2)-hyperspherical coordinates 79.A 90.B 
N-ple Markov Gaussian process 176.E 

in the restricted sense 176.F 
nth approximation (of an n-times differentiable 

function) 106.E 
nth convergent (of an infinite continued fraction) 

83.A 
nth derivative (of a differentiable function) 

106.D 
nth derived function 106.D 
nth differential (of a differentiable function) 

106.D 
nth partial quotient 83.A 
nth order, differential of 106.D 
nth order partial derivatives 106.H 
nth term 165.D 
nabla 442.D, App. A, Table 3.11 
Nachbin-Goodner-Kelley theorem 37.M 
Nagumo theorem, Kneser- 316.E 
Naimark theorem, Gel’fand- 36.G 
Nakai-Moishezon criterion (of ampleness) 16.E 
Nakanishi equation, Landau- 146.C 
Nakanishi variety, Landau- 146.C 386.C 

Nakano-Nishijima-Gell-Mann formula 132.A 
Nakayama lemma 67.D 
Nambu-Goldstone boson 132.C 
Napier analogies App. A, Table 2.111 
Napierian logarithm 131.D 
Napier number 131.D 
Napier rule App. A, Table 2.H 
Nash bargaining solution 173.C 
Nash equilibrium 173.C 
Nash-Moser implicit function theorem 286.5 
nat 213.B 
natural additive functional 261.E 
natural boundary 

(of an analytic function) 198.N 
(of a diffusion process) 115.B 

natural equation 
(ofacurve) lll.D 
(of a surface) llO.A 

natural equivalence 52.5 
natural extension (of an endomorphism) 136.E 
natural geometry 1lO.A 
natural injection (from a subgroup) 190.D 
naturality (of a homotopy operation) 202.0 
natural logarithm 131.D 
natural model (in axiomatic set theory) 33.C 
natural moving frame 417.B 
natural number 294.A,B 

nonstandard 276.E 
Skolem theorem on impossibility of 156.E 

natural positive cone 308.K 
natural scale 260.G 
natural spline 223.F 
natural surjection (to a factor group) 190.D 
natural transformation 52.5 
Navier-Stokes equation(s) 204.B 205.C 

general 204.F 
Navier-Stokes initial value problem 204.B 
nearly Bore1 measurable set 261.D 
nearly everywhere (in potential theory) 338.F 
necessary (statistic) 396.E 
necessity 41 l.L 
necklace, Antoine’s 65.G 
negation (of a proposition) 41 l.B 
negative 

(complex) 200.H 
(element of a lattice-ordered group) 243.G 
(element of an ordered field) 149.N 
(rational number) 294.D 

negative binomial distribution 341.D 397.F, App. 
A, Table 22 

negative curvature 178.H 
negative definite (function) 394.C 
negative definite Hermitian form 348.F 
negative definite quadratic form 348.B 
negative half-trajectory 126.D 
negative infinity 87.D 355.C 
negative limit point 126.D 
negatively invariant 126.D 
negatively Lagrange stable 126.E 
negatively Poisson stable 126.E 
negative multinomial distribution 341.D 
negative number 355.A 
negative orientation (of an oriented C-manifold) 

105.F 
negative part (of an element of a vector lattice) 

310.B 
negative polynominal distribution App. A, Table 

22 
negative prolongational limit set, first 126.D 
negative resistance 318.B 



Subject Index 

Negative root 
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negative root (of a semisimple Lie algebra) 248.M 
negative semidefinite quadratic form 348.C 
negative semiorbit 126.D 
negative variation 

(of a mapping) 246.H 
(of a real bounded function) 166.B 

neighborhood 425.8 
analytic (of a function element in the wider 

sense) 198.0 
analytic (in a Riemann surface) 367.A 
conoidal 274.D 
convex 364.C 
coordinate (in a tiber bundle) 147.B 
coordinate (in a topological manifold) 105.C 
coordinate, of class C’ 105.D 
derived 65.C 
E- (of a point) 273.C 
&tale 16.AA 
fundamental system of 425.E 
open 425.E 
open tubular 114.B 
regular 65.C 
regular, theorem 65.C 
relative 425.5 
tubular 105.L 114.B 364.C 

neighborhood deformation retract 202.D 
neighborhood retract 202.D 

absolute 202.D 
fundamental absolute (FANR) 382.C 

neighborhood system 425.B 
base for 425.E 
uniform 436.D 
uniform family of 436.D 

Nelson formula, Feynman-Kac- 150.F 
Nelson symmetry 150.F 
Nernst postulate 419.A 
Ntron minimal model (of an Abelian variety) 

3.N 
N&on-Severi group 

(of a surface) 15.D 
(of a variety) 16.P 

nerve (of a covering) 70.C 
nested intervals, principle of (for real numbers) 

87.C 355.B 
net (in a set) 87.H 

Cauchy (in a uniform space) 436.G 
square 304.E 
universal (in a set) 87.H 

net premium 214.A 
network(s) 282 425.F 

bilateral 282.C 
capacitated 28 1 .C 
contact 282.B 
electric 282.B 
linear 282.C 
M-port 282.C 
passive 282.C 
reciprocal 282.C 
time-invariant 282.C 
two-terminal 281.C 

network flow model 307.C 
network flow problem 281 282.B 
network programming 264.C 
network scheduling 307.C 
Neumann function 39.B 188.H, App. A, Table 

19.111 
Neumann polynomial App. A, Table 19.IV 
Neumann problem 193.F 323.F 
Neumann series 217.D 
neutral element (in a lattice) 243.E 

neutral type (of functional differential equation) 
163.B 

Nevanlinna exceptional value 272.E 
Nevanlinna first fundamental theorem 272.B 
Navanlinna second fundamental theorem 272.E 
Nevanlinna theory 

(of meromorphic functions) 124.B 272.B 
(for several complex variables) 21.N 

Newton, I. 329 
Newton backward interpolation formula 223.C 
Newton boundary 418.D 

nondegenerate 418.D 
Newton-Cotes formula (in numerical integration) 

299.A 
Newton diagram 254.D 
Newton first law 271.A 
Newton formula (on interpolation) App. A, Table 

21 
Newton formula (on symmetric functions) 337.1 
Newton forward interpolation formula 223.C 
Newtonian capacity 48.B 
Newtonian exterior capacity 48.H 
Newtonian fluid 205.C 
Newtonian inner capacity 48.F 
Newtonian interior capacity 48.F 
Newtonian mechanics 271.A 
Newtonian outer capacity 48.H 
Newtonian potential 271.C 338.A 
Newton interpolation formula App. A, Table 21 
Newton interpolation polynomial 336.G 
Newton iterative process 301.D 
Newton law (on frictional stresses) 205.C 
Newton law of universal gravitation 271.B 
Newton-Raphson method 301.D 
Newton second law 271.A 
Newton third law 271.A 
Newton three laws of motion 271.A 
Neyman factorization theorem 396.F 
Neyman-Pearson lemma 400.B 
Neyman structure 400.D 
nice function (on a Cm-manifold) 114.F 
Nicholson formula App. A, Table 19.IV 
Nicholson formula, Watson- App. A, Table 19.111 
Nickel method, Dejon- 301.G 
Nicomedes conchoid 93.H 
Nijenhuis tensor 72.B 
Nikodym derivative, Radon- 270.L 380.C 
Nikodym property, Radon- 443.H 
Nikodym theorem, Radon- 270.L 380.C 
Nikodym theorem for vector measures, Radon- 

443.H 
nilalgebra 23 1 .A 
nilmanifold 178.D 
nilpotent 

(Lie algebra) 248.C 
(Lie group) 249.D 
(subset of a ring) 368.B 
(zero-divisor) 284.A 
generalized (linear operator) 251.F 

nilpotent algebraic group 13.F 
nilpotent component (of a linear transformation) 

269.L 
nilpotent element 

(of a ring) 368.B 
generalized (in a Banach algebra) 36.E 

nilpotent group 190.J 
finite 151.C 
generalized 190.K 

nilpotent ideal 
(of a Lie algebra) 248.C 



2055 Subject Index 
Nonstandard 

largest (of a Lie algebra) 248.D 
nilpotent matrix 269.F 
nilpotent radical (of a Lie algebra) 248.D 
nilradical 

(of a commutative ring) 67.B 
(of a ring) 368.H 

9j symbol 353.C 
Nirenberg space, John- (= BMO) 168.B 
NishijimaaGell-Mann formula, Nakano- 132.A 
Nishina formula, Klein- 351.G 
Nitsche formula, Gauss-Bonnet-Sasaki- 275.C 
niveau surface 193.5 
Nobeling embedding theorem, Menger- l17.D 
no cycle condition 126.5 
nodal curve 391.H 
nodal domain 391.H 
nodal point 304.C 
nodal set 391.H 
node 

(of a curve) 93.G 
(of a graph) 186.B 282.A 
(of a plane algebraic curve) 9.B 
completion 281.D 
start 281.D 

Noetherian domain 284.A 
Noetherian integral domain 284.A 
Noetherian local ring 284.D 
Noetherian module 277.1 
Noetherian ring(s) 284.A 

left 368.F 
right 368.F 

Noetherian scheme 16.D 
locally 16.D 

Noetherian semilocal ring 284.D 
Noether number, Brill- 9.E 
Noether theorem 150.B 
noise 

thermal 402.K 
white 176.D 

noisy channel 213.A 
nomograms 19.A,D 
non-Abelian cohomology 200.M 
nonadaptive scheme 299.C 
nonanticipative 406.D 
non-Archimedean geometry 155.D 
non-Archimedean valuation 14.F 439.C 
nonassociative algebra 231.A 
nonatomic 168.C 443.G 
non-Bayesian approach 401 .B 
noncentral (quadric hypersurface) 7.F 350.G 
noncentral chi-square distribution 374.B 
noncentral F-distribution 374.B 
noncentral Hotelling TZ statistic 374.C 
noncentrality (sampling distribution) 374.B,C 
noncentrality matrix 374.C 
noncentral f-distribution 374.8 
noncentral Wishart distribution 374.C 

p-dimensional 374.C 
noncommutative field 149.A 
noncompact real simple Lie algebra App. A, 

Table 5.11 
noncompact type (symmetric Riemannian homoge- 

neous space) 412.D 
noncomparable, mutually 379.L 
nonconforming type 304.C 
nonconvex quadratic programming 264.D 
noncooperative (game) 173.A 
nondecreasing function 166.A 
nondegenerate 

(analytic mapping) 23.C 

(bilinear form) 256.H 
(critical point) 106.L 279.B 286.N 
(function on a Hilbert manifold) 279.E 
(quadratic form) 348.A 
(representation) 437.N 
(sesquilinear form) 256.Q 
(theta-function) 3.1 

nondegenerate critical manifold 279.D,E 
nondegenerate divisor 3.D 16.N 
nondegenerate hypersurface 344.A 
nondegenerate Newton boundary 418.D 
non-Desarguesian geometry 155.E 343.C 
nondeterministic 

(Turing machine) 31.B 
purely (weakly stationary process) 395.D 

nondeterministic linear bounded automaton 31.D 
nonelementary (Kleinian group) 234.A 
non-Euclidean angle (in a Klein model) 285.C 
non-Euclidean distance 285.C 
non-Euclidean geometry 285 
non-Euclidean hypersphere 285.C 
non-Euclidean space 285.A 
nonexpansive mapping 286.B 
nonexpansive operator 37.C 
nonhomogeneous difference equation 104.C 
nonhomogeneous n-chain (for a group) 200.M 
nonincreasing function 166.A 
nonlinear differential equation 291.D 
nonlinear filter 405.F,H 
nonlinear functional analysis 286 
nonlinear integral equation 217.M 
nonlinear lattice dynamics 287 
nonlinear mechanics 290.A 
nonlinear ordinary differential equations 313.A 

(global theory) 288 
(local theory) 289 

nonlinear oscillation 290 
nonlinear partial differential equations 320.A 
nonlinear problems 291 
nonlinear programming 264.C 
nonlinear semigroup 88.E 378.F 

of operators 286.X 
nonmeager set 425.N 
nonmetric MDS 346.E 
nonnegative (matrix) 269.N 
nonnegative terms, series of 379.B 
non-Newtonian fluid 205.C 
nonparametric method 371 
nonparametric test 371.A 
nonpositive curvature 178.H 

G-space with 178.H 
nonprimitive character 450.C,E 
nonrandomized (decision function) 398.A 
nonrandomized estimate 399.B 
nonrandomized test 400.A 
nonrecurrent (chain) 260.B 
nonrecurrent (transient) 260.B 
nonresidue, quadratic 297.H 
nonsaddle set 126.E 
nonsingular (flow) 126.G 

(point for a flow) 126.D 
(point of a variety) 16.F 

nonsingular mapping of class C’ 208.B 
nonsingular matrix 269.B 
nonsingular transformation 

(of a linear space) 256.B 
(on a measure space) 136.B 

nonsingular variety 16.F 
nonstandard 33.B 

(element) 293.B 
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nonstandard analysis 293 
nonstandard natural number 276.E 
nonstandard real number 276.E 
nonstandard set theory 293.E 
nonstationary oscillations 290.F 
nonsymmetric unified field theory 343.C 
nontangential maximal function 168.B 
nontangential path 333.B 
nontrivial (3-manifold) 65.E 
nontrivially (to act on a G-space) 431.A 
nonwandering 126.E 

set 126.E 
Norlund method of summation 379.Q 
norm 

(of an algebraic element) 149.5 
(of an element of a general Cayley algebra) 54 
(of an element of a quaternion algebra) 29.D 
(of an operator) 37.C 
(of a separable algebraic element) 149.5 
(of a vector) 37.B 
absolute (of an integral ideal) 14.C 
C*-cross 36.H 
C’- 126.H 
graph 251.D 
Hilbert-Schmidt 68.1 
minimum, property 223.F 
nuclear 68.K 
pseudo- (on a topological linear space) 424.F 
reduced (of an algebra) 362.E 
relative (of a fractional ideal) 14.1 
semi- (on a topological linear space) 424.F 
spinorial 6 1 .D 
supremum 168.B 
trace 68.1 
uniform 168.B 

normal 62.C 110.E 354.F 
(almost contact structure) llO.E 
(analytic space) 23.D 
(current) 275.G 
(fundamental region) 122.B 
(*-isomorphism) 308.C 
(state) 351.B 
(for a valuation) 439.H 
(weight on a von Neumann algebra) 308.D 
afline 11O.C 
afhne principal llO.C 
analytically 284.D 
principal 11 I .F 

normal algebraic variety 16.F 
normal analytic structure 386.C 
normal basis 172.E 
normal block bundle 147.Q 
normal bundle 

(of a foliation) 154.B,E 
(of an immersion) 114.B 
(of a submanifold) 105.L 274.E 364.C 

normal Cartan connection 80.N 
normal chain 

(in a group) 190.G 
(in a Markov chain) 260.D 

normal commutation relation 150.D 
normal connection 365.C 
normal contact Riemannian manifold 110.E 
normal continued fraction 83.E 
normal coordinate(s) 90.C 

mapping 364.C 
normal covering 425.R 
normal crossings 16.L 

only 16.L 
normal curvature (of a surface) 11 l.H 

normal density function 397.D 
normal derivative 106.G 
normal distribution 341.D 397.D, App. A, Table 

k-dimensional 341.D, App. A, Table 22 
logarithmic App. A, Table 22 
multidimensional App. A, Table 22 
standard 341.D 

normal duration 28.1 
normal equation 

(in the method of least squares) 302.E 403.E 
(in statistical data analysis) 397.5 

normal estimator, best asymptotically 399.K 
normal estimator, consistent and asymptotically 

399.K 
normal extension 149.G 251.K 
normal extension held, strongly 113 
normal family 435.E 
normal fiber space, Spivak 144.5 
normal form 

(of differential equations) 313.B 324.E 
(of a surface) 410.B 
Cantor (for an ordinal number) 3 12.C 
Hesse (of a hyperplane) 139.H 
Jordan (for a matrix) 269.G 
n-adic (for an ordinal number) 312.C 
prenex (in predicate logic) 41 l.J 

normal form theorem, Kleene 356.C 
normal frame 110.B 
normal function (of ordinal numbers) 312.C 
normal g-lattice 27.A 
normal invariant 114.5 
normality, asymptotic 399.K 
normalization 

(of an analytic space) 23.D 
(of a variety) 16.F 

normalization theorem 
for finitely generated rings 369.D 
for polynomial rings 369.D 

normalized 
(function) 317.A 
(into an orthonormal set) 197.C 
(vector) 139.G 

normalized contrast 102.C 
normalized valuation 439.E 
normalizer 136.F 190.C 
normal j-algebra 384.C 
normal k-vector bundle 114.5 
normal line 93.G, App. A, Table 4.1 
normal linear model 403.C 
normally cobordant 114.5 
normally distributed, asymptotically 399.K 
normally flat along a subscheme (a scheme) 16.L 
normal mapping (map) 114.5 
normal matrix 269.1 
normal model, derived (of a variety) 16.F 
normal Moore space problem 425.AA 
normal number 354.F 
normal operator 390.E 

(of Sario) 367.G 
normal PL microbundle 147.P 
normal plane lll.F 
normal point 16.F 23.D 
normal polygon 234.C 
normal process 176.C 
normal real form (of a complex semisimple Lie 

algebra) 248.Q 
normal representation 308.C 
normal ring 67.1 
normal score test, Fisher-Yates-Terry 371.C 
normal section 410.B 

22 
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Number(s) 

normal sequence (of coverings) 425.R 
normal simple algebra 29.E 
normal space 425.Q 

collectionwise 425.AA 
completely 425.4 
fully 425.X 
hereditarily 425.Q 
perfectly 425.4 

normal sphere bundle 274.E 
normal stress 271 .G 
normal structure 276.D 
normal subgroup 190.C 

admissible 190.E 
normal system (of E-functions) 430.D 
normal transformation (of a sequence) 379.L 
normal valuation 439.E,H 
normal variety 16.F 
normal vector 105.L lll.H 364.A 
normal vector bundle 105.L 
normal vibration 318.B 
normed linear space 37.B 
normed ring 36.A 
normed space, countably 424.W 
normed vector lattice 310.F 
norm form 118.D 
normic form 118.F 
norm-residue 14.P 
norm-residue symbol 14.4 

(in local class field theory) 257.F 
Hilbert 14.R 
Hilbert-Hasse 14.R 

norm resolvent convergence 331.C 
northern hemisphere 140 
north pole 74.D 140 
notation 

full international 92.E 
Kendall 260.H 
Schoenflies (for crystal classes) 92.E, App. B, 
Table 6.IV 

short international 92.E 
system of (for ordinal numbers) 81 

notion, common 35.A 
Novikov closed leaf theorem 154.D 
nowhere dense set 425.N 
NP 71.E 

co- 71.E 
NP-complete 71.E 
NP-completeness 71 .E 
NP-hard 71.E 
NP-space 71.E 
NP-time 71.E 
NR (neighborhood retract) 202.D 
nuclear (C*-algebra) 36.H 
nuclear class 68.1 
nuclear norm 68.K 
nuclear operator 68.1,K 
nuclear space 424.S 
nucleolus 173.D 
null (vector in the Minkowski space-time) 359.B 
null-bicharacteristic 320.B 
null boundary, open Riemann surface of 367.E 
null cobordant 235.G 
null function 310.1 
null geodesic 399.D 
null homotopic (continuous mapping) 202.B 
null hypothesis 400.A 
nullity 

(of a critical point) 279.B 
(of a graph) 186.G 
(of a linear mapping) 256.F 

(of a linear operator) 251.D 
(of a matrix) 269.D 
column (of a matrix) 269.D 
of relative 365.D 
row (of a matrix) 269.D 

null recurrent (point) 260.D 
null sequence (in a-adic topology) 284.B 
null set 270.D 310.1 381.A 

of class N, 169.E 
function-theoretic 169 

null space 251.D 
null system 343.E 
number(s) 294 

A- 43o.c 
abundant 297.D 
algebraic 14.A 
amicable 297.D 
average sample 404.C 
azimuthal quantum 315.E 
Bell 177.D 
Bernoulli 177.B 
Betti 200.K 201.B 
Brill-Noether 9.E 
calculable 22.G 
Cantor’s theory of real 294.E 
cardinal 49.A 312.D 
Cayley 54 
characteristic (of a compact operator) 68.1 
characteristic (of a manifold) 56.F 
Chern 56.F 
chromatic 157.E 186.1 
class (of an algebraic number field) 14.E 
class (of a Dedekind domain) 67.K 
class (of a simple algebra) 27.D 
Clifford 61.A 
coincidence (of a mapping) 153.B 
of colors 92.D 
completeness of real 294.E 
complex 74.A 294.F 
composite 297.B 
condition 302.A 
connectedness of real 294.E 355.B 
continuity of real 294.E 
cyclomatic 186.G 
decomposition (of a finite group) 362.1 
Dedekind’s theory of real 294.E 
deficient 297.D 
of denominator 186.1 
Euler 177.C 201.B, App. B, Table 4 
Fermat 297.F 
Froude 116.B 
generalized decomposition (of a finite group) 

362.1 
geometry of 182 
Giidel 185 356C,E 
Grashoff 116.B 
imaginary 74.A 
incidence 146.B 201.B 
of independence 186.1 
initial 312.D 
intersection (of divisors) 15.C 
intersection (of homology classes) 65.B 201.0 
intersection (of sheaves) 16.E 
irrational 294.E 355.A 
irrational real 294.E 
of irregularity (of an algebraic variety) 16.P 
Kullback-Leibler information 398.G 
Lebesgue 273.F 
Lefschetz 153.B 
Lefschetz (of a variety) 16.P 



Subject Index 
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linking 99.C 
Liouville 430.B 
Lyapunov characteristic 314.A 
Mach 116.B 205.B 
magnetic Reynolds 259 
mean (of sheets) 272.5 
Mersenne 297.E, App. B, Table 1 
Milnor 418.D 
modulus 418.E 
mole 419.A 
n-gonal 296.A 
Napier 131.D 
natural 294.A,B 
negative 355.A 
negative rational 294.D 
normal 354.F 
Nusselt 116.B 
orbital magnetic quantum 315.E 
ordinal 312.B 
p-adic 439.F 
of partitions 177.D 328 
P&let 116.B 
pentagonal 4.D 
perfect 297.D 
perfect, of the second kind 297.D 
Picard (of a variety) 15.D 16.P 
Poisson 271.G 
polygonal, of order K 4 5 
Pontryagin 56.F 
positive 355.A 
positive rational 294.D 
Prandtl 116.B 
prime 297.B 
principal quantum 315.E 
pseudorandom 354.B 
Pythagorean 145 
ramification 14.K 
random 354 
rational 294.D,E 
rational real 294.E 
real 294.E 355.A,D 
real, mod 1 355.0 
relatively prime 297.A 
of replications 102.B 
Reynolds 116.B 205.C 
rotation 99.D 11 l.E 126.1 
s- 43o.c 
s*- 43o.c 
self-intersection 15.C 
of sheets (of an analytic covering space) 

23.E 
of sheets (of covering surface) 367.B 
Stiefel-Whitney 56.F 
Stirling, of the second kind 66.D 
T- 43o.c 
T*- 430.C 
Tamagawa 13.P 
transcendental 430.A 
translation 18B,D 
of treatment combinations 102.L 
type 314.A 
cl- 43o.c 
u*- 43o.c 
wave (of a sine wave) 446 
wave, vector (of a sine wave) 205.F 
weakly compact cardinal 33.E 
weakly inaccessible cardinal 33.E 
Weil 3.C 

number field 149.C 
algebraic 14.B 

p-adic 439.F 
p-adic 257.A 439.F 
relative algebraic 14.1 

numbering, Giidel 185.A 
number operator 377.A 
number system, point range of 343.C 
number-theoretic function(s) 295.A 356.A 

additive 295.B 
completely additive 295.B 
completely multiplicative 295.B 
multiplicative 295.B 

number theory 296 
analytic 296.B 
consistency proof for pure 156.E 
elementary 297 
fundamental theorem of elementary 297.C 
geometric 296.B 
pure 156.E 

numerals, Arabic 26 
numerator, partial (of an infinite continued 

fraction) 83.A 
numerical analysis 300 
numerical differentiation 299.E 
numerical integration 299 
numerically connected (divisor) 232.D 
numerically equivalent (cycles) 16.Q 
numerically semipositive 15.D 
numerical method 300 
numerical range (of a linear operator) 251.E 
numerical solution 

of algebraic equations 301 
of integral equations 217.N 
of linear equations 302 
of ordinary differential equations 303 
of partial differential equations 304 

numerical tensor App. A, Table 4.11 
Nusselt number 116.B 
nutation 392 
Nyquist criterion 86.A 
Nyquist theorem 402.K 

0 

0(n) (space of holomorphic functions in 0) 168.B 
o,(n) 168.B 
O(n) (orthogonal group) 60.1 
o-connected space 79.C 

locally 79.C 
w-consistent (system) 156.E 
w-limit point 126.D 
w-limit set 126.D 
a-conjugate 126.H 
R-equivalent 126.H 
R-explosion 126.5 
R-group 190.E 
R-homomorphism (between R-groups) 190.E 
n-isomorphism (between a-groups) 190.E 
R-modules, duality theorem for 422.L 
n-stability theorem 126.5 
R-stable, C’- 126.H 
!&subgroup (of an R-group) 190.E 
o-ideal 

integrated two-sided 27.A 
two-sided 27.A 

o,-ideal, left 27.A 
o,-ideal, right 27.A 
D-differential (on an algebraic curve) 9.F 
D-genus (of an algebraic curve) 9.F 
D-linearly equivalent divisors (on an algebraic 

curve) 9.F 



2059 Subject Index 
Operation(s) 

D-specialty index (of a divisor of an algebraic one-dimensional statistic 396.B 
curve) 9.F lOOa%-point 396.C 

O-module 383.1 l-1 (mapping) 381.C 
(o)-convergent 87.L one-parameter group 
(o)-star convergent 87.L local (of local transformations) 105.N 
OA (orthogonal array) 102.L of transformations 105.N 126.B 
Ob (object) 52.A one-parameter semigroup of class (Co) 378.B 
object 52.A 41 l.G one-parameter subgroup (of a Lie group) 249.Q 

cotinal 52.D one-parameter variation 178.A 
final 52.D one-point compactification 425.T 
graded 200.B one-point union 202.F 
group (in a category) 52.M one-sided (surface) 410.B 
initial 52.D one-sided stable for exponent l/2 App. A, Table 22 
injective 200.1 one-sided stable process (of the exponent a) 5.F 
isomorphic 52.D one-step-two-half-steps errors estimate 303.D 
mathematical 52.A one-to-one correspondence 358.B 
in predicate logic 41 l.G one-to-one mapping 381.C 
projective 200.1 only normal crossings 16.L 
quotient 52.D Onsager reciprocity relation 402.K 
S-, category of 52.G onto mapping 381.C 
of type i + 1 356.F open 
of type 0 356.F (Riemann surface) 367.A 
zero 52.N (system) 419.A 

object domain 41 l.G (topological manifold) 105.B 
objective function 264.B 307.C finely 261.D 
objective probability 401.B Zariski 16.A 
object variable 41 l.G open arc 93.B 
oblate App. A, Table 3.V open ball 140 
oblique circular cone 350.B open base 425.F 
oblique coordinates (in a Euclidean space) 90.B open circle 140 
observability 86.C open continuous homomorphism 423.5 
observables 351.B open covering (of a set) 425.R 
observation open disk 140 

complete 405.C open formulas 199.A 
cost of 398.F opening 186.E 
partial 405.C open interval 140 355.C 

observation process 405.F open mapping 425.G 
observation vector 102.A open mapping theorem 
observer, Luenburger 86.E (in Banach space) 37.1 
obstacle, Dirichlet problem with 440.B (in topological linear spaces) 424.X 
obstruction(s) 305 open n-ball 140 

to an n-dimensional homotopy 305.B open n-cell 140 
to an (n + 1)-dimensional extension 305.B open n-disk 140 
primary 147.L 305.C open n-sphere 140 
secondary 305.D open neighborhood 425.E 
surgery 114.5 open parallelotope (in an affine space) 7.D 
tertiary 305.D open set 425.B 

obstruction class 56.E basic 425.F 
obstruction cocycle 147.L 305.B relative 425.5 
obtuse angle (in Euclidean geometry) 139.D system of 425.B 
OC-curve (operative characteristic curve) 404.C open simplex 7.D 70.C 
octahedral group 151.G open sphere 140 
octahedron 357.B open star (in a complex) 70.B,C 
odd element (of a Clifford algebra) 61.B open subgroup (of a topological group) 423.D 
odd function 165.B open surface 410.B 
odd half-spinor 61.E open system entropy 402.G 
odd half-spin representation 61.E open tubular neighborhood 105.L 114.B 
odd permutation (in a symmetric group) 151.G operate 
odd ratio 397.K (in a function algebra) 192.N 
odd state 315.H from the left (on a set) 362.B 
of bounded variation 443.G from the right (on a set) 362.B 
Ohm’s law (for a moving medium) 130.B 259 operating characteristic 404.C 
Oka’s principle 147.0 operating function 192.N 
Oka’s theorem 72.E operating systems 75.C 
l-complete manifold, weakly 2i.L operation(s) 
one cycle 16.R (of an operator domain on a module) 277.C 
one-dimensional diffusion processes 115.A (on a set) 409.A 
one-dimensional lattice 287.A Adams 237.E 
one-dimensional probability distribution (of random Bokshtein 64.B 

variables) 342.C Boolean 42.A 
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cohomology 64 
compatible with 277.C 
four arithmetic 294.A 
functional cohomology 202,s 
functional @- 202.S 
glide 92.E 
homotopy 202.0 
left 409.A 
primary cohomology 64.B 
Pontryagin (pth) power 64.B 
primitive (of a group) 362.B 
rational 294.A 
reduced square 64.B 
right 409.A 
ring 368.A 
stable cohomology 64.B 
stable primary cohomology 64.B 
stable secondary cohomology 64.C 
Steenrod (pth) power 64.B 
Steenrod square 64.B 
transitive (of a group) 362.B 

operation A (in set theory) 22.B 
operational calculus 251.G 306, App. A, Table 12.11 
operator 

(in functional analysis) 162 251.A 
(on a set) 409.A 
Abelian 308.E 
accretive (in a Hilbert space) 286.C 
additive 251.A 
adjoint (in Banach spaces) 37.D 251.D 
adjoint (in Hilbert spaces) 251.E 
adjoint (of a linear partial differential operator) 

322.E 
adjoint (of a microdifferential operator) 274.F 
adjoint (of a microlocal operator) 274.F 
amplification (of the scheme) 304.F 
angular momentum 258.D 
annihilation 377.A 
Beltrami differential, of the first kind App. A, 
Table 4.11 

Beltrami differential, of the second kind App. 
A, Table 4.11 

boundary 200.C 201.B 
with a boundary condition 112.F 
bounded linear 37.C 
Calderon-Zygmund singular integral 217.5 
251.0 

Cartier 9.E 
channel wave 375.F 
closable 251 .D 
closed 39.1 251.D 
closure 425.B 
coboundary 200.F 
compact 68 
completely continuous 68.B 
conjugate (in Banach spaces) 37.D 
conjugate (of a differential operator) 125.F 
conjugate (of a linear operator) 251.D 
conjugation (in function algebras) 164.K 
creation 377.A 
decomposable (on a Hilbert space) 308.G 
degeneracy (in a semisimplicial complex) 70.E 
diagonalizable (in an Abelian von Neumann 

algebra) 308.G 
differential 112 223.C 306.B 
differential, of the kth order 237.H 
differentiation 223.C 
dissipative 286.C 
domain (of an Q-group) 190.E 
domain of 409.A 

down-ladder 206.B 
dual (in Banach spaces) 37.D 
dual (of a differential operator) 125.F 
dual (of a linear operator) 251.D 
elliptic 112.A 
energy-momentum 258.D 
evolution 378.G 
exponential function of 306.C 
face (in a semisimplicial complex) 70.E 
formal adjoint 322.E 
4-momentum 258.D 
Fourier integral 274.C 
Fredholm 68.F 251.D 
fundamental 163.E 
generalized wave 375.B 
Green’s 189.A,B 194.C 
Hamiltonian 351.D 
Hecke 32.D 
Hermitian 251.E 
Hilbert’s a- 41 l.J 
holomorphic evolution 378.1 
identity (on a Banach space) 37.C 
incoming wave 375.8 
with index 68.F 
integral 68.N 100.E 251.0 306.B 
integral, of Hilbert-Schmidt type 68.C 
interior 425.B 
inverse 37.C 251.B 
isometric 251.E 
Laplace 323.A 442.D 
Laplace-Beltrami 194.B 
linear 251 
linear (in Banach spaces) 37.C 
linear (in linear spaces) 256.B 
linear boundary 3 15.B 
linearized 286.E 
local 125.DD 
logical 41 l.E 
Markov 136.B 
maximal (of a differential operator) 112.E 
maximal dissipative 251.5 
microdifferential 274.F 
microlocal 274.F 
microlocally elliptic 345.A 
Mikusinski’s 306.B 
minimal (of a differential operator) 112.E 
modified wave 375.B 
modular 308.H 
monotone (in a Hilbert space) 286.C 
nonlinear semigroups of 286.X 
nonnegative 251.E 
normal 390.E 
normal (of Sario) 367.G 
normal linear 251.E 
nuclear 68.1,K 
number 377.A 
ordinary differential 112.A 
outgoing wave 375.B 
partial differential 112.A 
positive (in vector lattices) 310.E 
positive semidefinite 251.E 
projection (in a Hilbert space) 197.E 
pseudodifferential 251.0 345 
pseudodifferential (in microlocal analysis) 

274.F 
resolvent (of a Markov process) 261.D 
ring of 308.C 
S- 150.D 
scalar 390.K 
scattering 375.F,H 



2061 Subject Index 
Order 

Schrodinger 351.D 
self-adjoint 251.E 390.E 
shift 223.C 251.0 306.C 
spectral 390.K 
Steenrod App. A, Table 6.11 
step-down 206.B 
step-up 206.B 
strongly elliptic 112.G 323.H 
Sturm-Liouville 112.1 
of summable pth power 68.K 
symmetric 251.E 
system of differential 112.R 
T- 375.C 
TCP 150.D 
Toeplitz operator 251.0 
total boundary 200.E 
trace 168.B 
translation 306.C 
transposed 112.E 189.C 322.E 
unilateral shift 390.1 
unitary 390.E 
up-ladder 206.B 
Volterra 68.5 
wave 375.B,H 

operator algebra 308.A 
operator convex 212.C 
operator domain 277.C 

module with 277.C 
operator homomorphism 

(of A-modules) 277.E 
(of R-groups) 190.E 

operator isomorphism 190.E 
operator monotone 212.C 
operator topology 

strong 251.C 
uniform 251.C 
weak 251.C 

operator-valued distribution 150.D 
opposite 

(simplex) 2Ol.C 
orientation 105.F 
root 13.R 

optical axis 180.B 
optical direction cosines 180.A 
optical distance 180.A 
optical theorem 386.B 
optics, geometric 180 
optimal 

(design) 102.E 
asymptotically 354.0 

optimal control 46.D 86.B,C 405.A 
optimal control problem, time 86.E 
optimality 

A- 102.E 
D- 102.E 
E- 102.E 
principle of 127.A 

optimal policy 127.A 
optimal regular problem 86.F 
optimal solution 255.A 264.B 292.A 

basic 255.A 
optimal stopping 405.E 
optimization model 307.C 
optimum allocation 373.E 
optimum predictor, linear 395.D 
optional (stochastic process) 407.B 
optional a-algebra 407.B 
optional sampling 262.C 
optional sampling theorem 262.A 
orbit 

(of a dynamical system) 126.B 
(of a permutation group) 151.H 
(= system of transitivity) 362.B 
(of a topological transformation group) 1lO.A 
431.A 

closed 126.D 
exceptional 431.C 
principal 431.C 
pseudo-, G(- 126.5 
pseudo-, tracing property 126.5 
singular 43 1 .C 

orbital angular momentum 351.E 
orbital elements, Kepler’s 309.B 
orbitally stable 126.F 
orbital stability (of a solution of a differential 

equation) 394.D 
orbit determination 309.A 
orbit space (of a topological group) 431.A 
orbit type 431.A 

principal 43 1 .C 
order 

(of an algebraic number field) 14.B 
(of a covering) 425.R 
(of a differential equation) 313.A 320.A 
(of a differential operator) 112.A 
(of an element of a group) 190.C 
(of an elliptic function) 134.E 
(of a function defined by a Dirichlet series) 

121.c 
(of a function on an algebraic curve) 9.C 
(of a generating point of a simple maximally 

overdetermined system) 274.H 
(of a group) 190.C 
(of a homomorphism of Abelian varieties) 3.C 
(of an infinitesimal) 87.G 
(of an infinity) 87.G 
(of a Lie algebra) 191.D 
(of a meromorphic function) 272.C 
(of a microdifferential operator) 274.F 
(of a multistep method) 303.E 
( = order relation) 31 l.A 
(of a plane algebraic curve) 9.B 
(of a point in an ordinary curve) 93.C 
(of a point with respect to a cycle) 99.D 
(of a pole of a complex function) 198.D 
(of the precision of numerical solution) 303.B 
( = a subring) 27.A 
(of a system of differential equations) 313.B 
(of a transcendental entire function) 429.B 
(of a zero point of a complex function) 198.C 
d’Alembert’s method of reduction of 252.F 
derivatives of higher App. A, Table 9.111 
difference of the nth 104.A 
finite (distribution) 125.5 
y-point of the kth (of a holomorphic function) 

198.C 
of higher 87.G 
inlinite (element in a group) 190.C 
left (of a g-lattice) 27.A 
of lower 87.G 
maximal (of a g-lattice) 27.A 
at most (a function) 87.G 
of the nth 87.G 
principal (of an algebraic number held) 14.B 
principal (fundamental theorem of) 14.C 
right (of a g-lattice) 27.A 
of the same 87.G 
small set of 436.G 
space of line elements of higher 152.C 
surface of the second 350.A 
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zero point of the kth (of a holomorphic func- 
tion) 198.C 

zero point of the - kth (of a complex function) 
198.D 

order a 
capacity of 169.C 
Cesaro method of summation of 379.M 
Holder condition of 84.A 
Lipschitz condition of 84.A 
potential of 338.B 
summable by Cesaro’s method of 379.M 

order k 
coefficient of llO.A 
converge in the mean of 173.B 342.D 
invariants of 110.A 
population moment of 396.C 
principal components of llO.A 
quantile of 341.H 
Riesz method of summation 379.R 
summable by Holder’s method of 379.M 
summable by M. Riesz’s method of 379.R 

order p 
contravariant tensor field of 105.0 
jet of 105.X 

orders, covariant tensor field of 105.0 
order 0, frame of llO.C 
order 1 

family of frames of 1lO.B 
frame of 11O.C 

order 2, frame of 1 lO.B,C 
order 3, frame of 1 lO.B,C 
order 4, frame of 110.B 
order bounded 310.B 
order convergent sequence (in a vector lattice) 

3lO.C 
order-disorder transition 402.F 
ordered additive group 439.B 

totally 439.B 
ordered complex (of a semisimplicial complex) 

70.E 
ordered field 149.N 

Archimedean 149.N 
Pythagorean 60.0 

ordered group 243.G 
lattice- 243.G 
totally 243.G 

ordered linear spaces 3lO.B 
lattice- 310.B 

ordered pair 33.B 381.B 
ordered set 311 .A 

inductively 34.C 
lattice- 243.A 
linearly 311.A 
partially 31 l.A 
semi- 3ll.A 
totally 311 .A 

ordered simplex (in a simplicial complex) 70.E 
ordered simplicial complex 70.C 
order function (meromorphic function) 272.B 
order homomorphic (ordered sets) 3 1 l.E 
order homomorphism 311.E 
order ideal (of a vector lattice) 3lO.B 
ordering 96.C 3 1 l.A 

dual 311.A 
duality principle for 311.A 
lexicographic 3 11 .G 
lexicographic linear 248.M 
linear 311.A 
partial 31 l.A 

pre- 311.H 
total 311.A 
well- 31 l.C 

order isomorphic (ordered sets) 31 l.E 
order isomorphism 31 l.E 
order limit (in a vector lattice) 310.~ 
order-preserving mapping 311.E 
order-preserving semigroup 286.Y 
order relation 31 l.A 
order statistic 396.C 
order topology 425.C 
order type 312.A 
ordinal numbers 312.B 

admissible 356.G 
cardinality of 49.E 
constructive 81.B 
countable 49.E 
finite 312.B 
of the first, second, or third number class 
312.D 

of a higher number class 312.D 
hyperconstructive 81.E 
initial 49.E 
isolated 312.B 
limit 312.B 
strongly inaccessible 312.E 
transfinite 312.B 
transfinite initial 49.E 
weakly inaccessible 312.E 

ordinal product (of a family of ordered sets) 3ll.G 
ordinal scale 397.M 
ordinal sum (of a family of ordered sets) 31 l.G 
ordinary curve 93.C 
ordinary derivative (of a set function) 380.D 
ordinary differential equation(s) 313, App. A, Table 

14 
(asymptotic behavior of solutions) 314 
(boundary value problems) 315 
(initial value problems) 316 
Euler linear App. A, Table 14.1 
higher-order App. A, Table 14.1 
homogeneous App. A, Table 14.1 
homogeneous (of higher order) App. A, Table 

14.1 
linear 252 313.A 
linear (with constant coefficients) App. A, 

Table 14.1 
linear (of the first order) App. A. Table 14.1 
linear (global theory) 253 
linear (of higher order) App. A, Table 14.1 
linear (local theory) 254 
nonlinear 3 13.A 
nonlinear (global theory) 288 
nonlinear (local theory) 289 
system of 313.B 

ordinary differential operator 112.A 
ordinary Dirichlet series 12l.A 
ordinary double point (of a plane algebraic curve) 

9.B 
ordinary element 191.1 
ordinary helicoid 111.1 
ordinary helix 11 l.F 114.F 
ordinary integral element 428.E 
ordinary integral manifold (of a differential ideal) 

428.E 
ordinary lower derivative (of a set function) 380.D 
ordinary point 

(of an analytic set) 23.B 
(of a curve) 93.G 



2063 Subject Index 

Ortbonomic system, passive 

(in hyperbolic geometry) 285.C 
(of an ordinary curve) 93.C 
(on a Riemann surface) 1 l.D 

ordinary representation (of a finite group) 362.G 
ordinary sense, derivable in the 380.D 
ordinary singularity 

(of an analytic function) 198.P 
in the wider sense 198.P 

ordinary solution (of a differential ideal) 428.E 
ordinary upper derivative (of a set function) 380.D 
ordinate set 221.E 
orientable 

(manifold) 105.F 201.N 
(pseudomanifold) 65.B 
transversely 154.8 

orientable fiber bundle 147.L 
orientation 

(of an afhne space) 139.B 
(of a contact element) llO.A 
(of a manifold) 105.F 201.N 
local (in an oriented manifold) 201.N 
negative (of an oriented manifold) 105.F 
opposite (of oriented atlases) 105.F 
positive (of an oriented manifold) 105.F 
same (of oriented atlases) 105.F 

orientation cohomology class 201.N 
orientation manifold 201.N 
orientation sheaf 201.R 
orientation-preserving mapping 99.A 
orientation-reversing mapping 99.A 
oriented atlas (of an orientable differentiable mani- 

fold) 105.F 
oriented cobordism 

class 114.H 
group 114.H 

oriented differentiable structures, group of (on the 
combinatorial sphere) 114.1 

oriented element (in a covering manifold) llO.A 
oriented G-manifold 43 1 .E 
oriented graph 186.B 
oriented manifold 105.F 201.N 

integrals over 105.T 
oriented pseudomanifold 65.B 

coherently 65.B 
oriented q-simplex 2Ol.C 
oriented real hypershpere 76.A 
oriented segment 442.A 
oriented simplicial chain complex 2Ol.C 
oriented singular r-simplex of class C” 105.T 
oriented tangent line 76.B 
origin 

(of an affme space) 7.C 
(of a Euclidean space) 140 
(of a projective frame) 343.C 

Orlicz-Pettis theorem 443.D 
Orlicz space 168.B 
Ornstein-Uhlenbeck Brownian motion 45.1 
orthant, positive 89.G 
orthochronous 258.A 
orthocomplement (of a subspace of a linear space) 

139.G 
orthogonal 

(block design) 102.5 
(elements of a ring) 368.B 
(in Euclidean geometry) 139.E,G 
(functions) 317.A 
(in a Hilbert space) 197.C 
(linear subspaces) 256.G 
mutually (latin squares) 241.B 

orthogonal array 102.L 

orthogonal complement (of a subset of a Hilbert 
space) 197.E 

orthogonal component (of an element of a linear 
space) 139.G 

orthogonal coordinate system adapted to (a flag) 
139.E 

orthogonal curvilinear coordinates 90.C 
orthogonal curvilinear coordinate system App. A, 

Table 3.V 
orthogonal expansion 317.A 
orthogonal for a finite sum 19.G 
orthogonal fractional factorial design 102.1 
orthogonal frame 11 l.B 139.E 
orthogonal frame bundle 364.A 

tangent 364.A 
orthogonal function(s) 317, App. A, Table 20 

Haar system of 317.C 
Rademacher system of 317.C 
Walsh’s system of 3 17.C 

orthogonal group 60.1 139.B 151.1 
(over a noncommutative group) 60.0 
complex 60.1 
complex special 60.1 
infinite 202.V 
over K with respect to Q 60.K 
pair 422.1 
proper 60.1258.A 
reduced 61.D 
special 60.1 

orthogonality for a finite sum 317.D, App. A, Table 
2O.VII 

orthogonality relation 
(on irreducible characters) 362.G 
(for square integrable unitary representations) 

437.M 
orthogonalization 

Gram-Schmidt 317.A 
Schmidt 317.A 

orthogonal k-frame (in R”) 199.B 
orthogonal matrix 269.5 

complex 269.5 
proper 269.5 

orthogonal measure 164.C 
orthogonal polynomial(s) 19.G, App. A, Table 

2O.VII 
Chebyshev 19.G 
simplest 19.G 
system of 317.D 

orthogonal projection 
(in Euclidean geometry) 139.E,G 
(in a Hilbert space) 197.E 
method of 323.G 

orthogonal series (of functions) 317.A 
orthogonal set 

(of functions) 317.A 
(of a Hilbert space) 197.C 
(of a ring) 368.B 

orthogonal system 
(of functions) 317.A 
(of a Hilbert space) 197.C 
complete 217.G 

orthogonal trajectory 193.5 
orthogonal transformation 139.B 348.B 

(over a noncommutative field) 60.0 
(with respect to a quadratic form) 60.K 

orthogonal transformation group 60.1 
over Ii with respect to Q 60.K 

orthomodular 351.L 
orthonomic system, passive (of partial differential 

equations) 428.B 
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orthonormal basis 197.C 
orthonormalization 139.G 
orthonormal moving frame 417.D 
orthonormal set 

(of functions) 317.A 
(of a Hilbert space) 197.C 
complete (of a Hilbert space) 197.C 

orthonormal system 
complete 217.G 
complete (of fundamental functions) 217.G 

orthorhombic system 92.E 
oscillate (for a sequence) 87.D 
oscillating (series) 379.A 
oscillating motion 420.D 
oscillation(s) 318 

(of a function) 216.A 
bounded mean 168.B 
damped 3 18.B 
equation of App. A, Table 15.VI 
forced 3 18.B 
harmonic 318.B 
nonlinear 290.A 
relaxation 318.C 
nonstationary 290.F 

oscillator process 351.F 
oscillatory 314.F 
osculating circle 11 l.F 
osculating elements 309.D 
osculating plane 11 l.F 
osculating process 77.B 
Oseen approximation 205.C 
Osgood theorem, Hartogs- 21.H 
O-S positivity 150.F 
Osterwalder-Schrader axioms 150.F 
Ostrogradskii formula 94.F 
outdegree 186.B 
outer area 216.F 270.G 
outer automorphisms 

group of (of a group) 190.D 
group of (of a Lie algebra) 248.H 

outer capacity, Newtonian 48.H 
outer function 43.F 
outer harmonic measure 169.B 
outer measure 270.E,G 

Carathtodory 270.E 
Lebesgue 270.G 

outer solution 25.B 
outer variable 25.B 
outer volume 270.G 
outgoing subspace 375.H 
outgoing wave operator 375.B 
outlier test 397.4 
out-state 150.D 386.A 
oval 89.C 111 .E 

Cassini 93.H 
mean (of two ovals) 89.D 
width of the lll.E 

ovaloid 89.C 111.1 
overall approximation formula 303.C 
overconvergence 339.E 
overcrossing point 235.A 
overdetermined system 

(of differential operators) 112.1 
(of partial differential equations) 320.F 
maximally (= holonomic) 274.H 

overlield 149.B 
overidentified 128.C 
overrelaxation 

successive (SOR) 302.C 

I p 

PSL(n, k) (projective special linear group) 60.B 
PS,(n, k) (projective symplectic group over K) 60.L 
PU(n) (projective unitary group) 60.F 
P”(K) (projective space) 343.H 
q-subsequence 354.E 
x-group 151.F 
n-length (of a group) 151.F 
r-c-manifold 114.1 
n-series (of a group) 151.F 
n-solvable group 151.F 
n theorem 116 
A topology 424.R 
II: set 22.A 
IZ,f set 22.D 
p-adic exponential valuation 439.F 
p-adic extension (of the field of quotients of a 

Dedekind domain) 439.F 
p-index (of a central simple algebra over a finite 

algebraic number field) 29.G 
p-invariant (of a central simple algebra over a finite 

algebraic number field) 29.G 
p-primary ideal 67.F 
p-function, Weierstrass 134.F, App. A, Table 

16.IV 
g-acyclic 200.Q 
p-adic integer(s) 439.F 

ring of 439.F 
p-adic Lfunction 450.5 
p-adic number 439.F 
p-adic number field 257.A 439.F 
p-adic regulator 450.5 
p-adic valuation 439.F 
p-ary matroid 66.H 
p-atom 168.8 
p-covector 256.0 
p-dimensional noncentral Wishart distribution 

374.c 
p-extension (of a field) 59.F 
p-factor (of an element of a group) 362.1 
p-fold exterior power 

(of a linear space) 256.0 
(of a vector bundle) 147.F 

p-form 
tensorial 417.C 
vectorial 417.C 

p-group 151.B 
Abelian 2.A 
complete (Abelian) 2.D 
divisible (Abelian) 2.D 

p-parabolic type 327.H 
p-rank (of a torsion-free additive group) 2.E 
p-regular (element of a finite group) 362.1 
p-Sylow subgroup 151.B 
pth power, operator of summable 68.K 
pth power operation 

Pontryagin 64.B 
Steenrod 64.B 

p-torsion group of an exceptional group App. A, 
Table 6.IV 

p-valent (function) 438.E 
absolutely 438.E 
circumferentially mean 438.E 
locally 438.E 
locally absolute 438.E 
mean 438.E 
quasi- 438.E 

p-vector 256.0 
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Parameter(s) 

bundle of 147.F 
(p, q)-ball knot 235.G 
(p, q)-knot 235.G 
(p + l)-stage method 303.D 
P-convex (for a differential operator) 112.C 

strongly 112.C 
P-function, Riemann 253.B, App. A, Tables 

14.11 18.1 
P-projective resolution 200.Q 
P-wave 351.E 
P. set 22.D 
P’-figure 343.B 
p-space 425.Y 
P-space 425.Y 
Pad& approximation 142.E 
Padt table 142.E 
Painleve equation 288.C 
Painlevt theorem 198.G 
Painleve transcendental function 288.C 
pair 381.B 

(in axiomatic set theory) 33.B 
ball 235.G 
BN- 13.R 
contact (in circle geometry) 76.C 
group (of topological Abelian groups) 422.1 
order 381.B 
ordered (in axiomatic set theory) 33.B 
orthogonal group 422.1 
Poincare, of formal dimension n 114.5 
simplicial 2Ol.L 
sphere 65.D 235.G 
topological 2Ol.L 
unordered 381.B 
unordered (in axiomatic set theory) 33.B 

paired comparison 346.C 
pairing 

(of linear spaces) 424.G 
axiom of 381.G 

pair test 346.D 
pairwise sufficient (statistic) 396.F 
Palais-Smale condition (C) 279.E 286.4 
Paley theorem 317.B 
Paley theory, Littlewood- 168.B 
Paley-Wiener theorem 125.0,BB 
pantograph 19.E 

paper 
binomial probability 19.B 
functonal 19.D 
logarithmic 19.F 
probability 19.F 
semilogarithmic 19.F 
stochastic 19.B 

Pappus theorem 
(on conic sections) 78.K 
(in projective geometry) 343.C 

parabola(s) 78.A 
family of confocal 78.H 

parabolic 
(differential operator) 112.A 
(Riemann surface) 367.D,E 
(simply connected domain) 77.B 
(visibility manifold) 178.F 

parabolic coordinates 9O.C App. A, Table 3.V 
parabolic cusp (of a Fuchsian group) 122.C 
parabolic cylinder 350.B 
parabolic cylinder function 167.C 
parabolic cylindrical coordinates 167.C App. A, 

Table 3.V 
parabolic cylindrical equation App. A, Table 14.11 

parabolic cylindrical surface 350.B 
parabolic-elliptic motion 420.D 
parabolic geometry 285.A 
parabolic motion 420.D 
parabolic point (on a surface) 110.B 11 l.H 
parabolic quadric hypersurface 350.1 
parabolic subalgebra (of a semisimple Lie algebra) 

248.0 
parabolic subgroup 

(of an algebraic group) 13.G 
(of the BN-pair) 13.R 
(of a Lie group) 249.5 
cuspidal 437.X 
minimal k- 13.4 
standard k- 13.Q 

parabolic transformation 74.F 
parabolic type 

(equation of evolution) 378.1 
partial differential equation of 327 

paraboloid 
elliptic 350.B 
elliptic, of revolution 350.B 
hyperbolic 350.B 

paracompact (space) 425,s 
countably 425.Y 
strongly 425,s 

paracompact C-manifold 105.D 
paradox(es) 3 19 

Burali-Forti 319.B 
d’Alembert 205.C 
Richard 319.B 
Russel 319.B 
Skolem 156.E 
Zen0 319.C 

parallax 
annual 392 
geocentric 392 

parallel(s) 
(afftne subspaces) 7.B 
(lines) 139.A 155.B 
(lines in hyperbolic geometry) 285.B 
(tensor field) 364.B 
axioms of 139.A 
in the narrow sense (in an afline space) 7.B 
in the sense of Levi-Civita 1 ll.H 
in the wider sense (in an atline geometry) 7.B 

parallel coordinates (in an affme space) 7.C 
parallel displacement 

(in an affine connection) 80.H 
(in a connection) 80.C 
(in the Riemannian connection) 364.B 

parallelepiped, rectangular 14.0 
parallelism, absolute 191.B 
parallelizable 

(flow) 126.E 
(manifold) 114.1 
almost 114.1 
s- 114.1 
stably 114.1 

parallelogram, period 134.E 
parallelotope 425.T 

(in an aftine space) 7.D 
open (in an afline space) 7.D 

parallel projection (in an afline space) 7.C 
parallel translation 80.C 364.B 
parameter(s) 165.C 

(of an elliptic integral) 134.A 
(in a population distribution) 401.F 
(of a probability distribution) 396.B 



Subject Index 
Parameter space 
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acceleration 302.C 
canonical (of an arc) 1ll.D 
design for estimating 102.M 
distinct system of 284.D 
estimable 403.E 
isothermal 334.B 
isothermal (for an analytic surface) 111.1 334.B 
Lagrange’s method of variation of 252.D 
linear 102.A 
linearly estimable 403.E 
local (Fuchsian groups) 32.B 
local (of a nonsingular algebraic curve) 9.C 
local (of a Riemann surface) 367.A 
local canonical (for power series) 339.A 
local uniformizing (of a Riemann surface) 

361.A 
location 396.1400.E 
one- (group of transformations) 105.N 
one- (subgroup of a Lie group) 249.Q 
one-, semigroup of class (C”) 378.B 
of regularity (of a Lebesgue measurable set) 
380.D 

regular system of 284.D 
scale 396.14OO.E 
secondary 1lO.A 
selection 396.F 
system of 284.D 
time (of a stochastic process) 407.A 
transformation 396.1 
transformation of 11 l.D 
true value of 398.A 

parameter space 
(of a family of compact complex manifolds) 

72.G 
(of a family of probability measures) 398.A 
(of a probability distribution) 396.8 

parametrically sustained vibration 318.B 
parametric function 102.A 399.A 
parametric programming 264.C 
parametric representation 165.C 

(of Feynman integrals) 146.B 
(of a subspace of an afhne space) 7.C 

parametrix 189.C 
left 345.A 
right 345.A 

parametrized, effectively (at 0) 72.G 
paraxial ray 180.B 
parity check matrix 63.C 
parity check polynomial 63.D 
parity transformation 359.B 
Parreau-Widom type 164.K 
Parseval equality 18.B 197.C 
Parseval identity 18.B 159.A 160.C 192.K 

220.B,C,E 
parsing 31.E 

part(s) 
(for a function algebra) 164.F 
connected 150.D 
cyclic (of an ergodic class) 260.B 
dissipative (of a state space) 260.B 
essential 260.1 
linite (of an integral) 125.C 
Gleason (for a function algebra) 164.F 
holomorphic (in a Laurent expansion) 198.D 
homogeneous (of a formal power series) 370.A 
imaginary 74.A 
integration by (for the D-integral) 1OO.G 
integration by (for the Stieltjes integral) 94.C 
integration by (for the Riemann integral) 

216.C 

negative (of an element of a vector lattice) 
3lO.B 

positive (of an element of a vector lattice) 
3lO.B 

principal (of a differential operator) 112.A 
principal (of a Laurent expansion1 198.D 
principal (of a partial differential operator) 

320.B 
purely contractive 251.N 
real 74.A 
semisimple (of an algebraic group) 13.E 
semisimple (of a nonsingular matrix) 13.E 
singular (of a Laurent expansion) 198.D 
unipotent (of an algebraic group) 13.E 
unipotent (of a nonsingular matrix) 13.E 

partial boundary operator 200.E 
partial capture 420.D 
partial correlation coefficient 397.5 

sample 280.E 
partial denominator (of an infinite continued frac- 

tion) 83.A 
partial de Rham system 274.G 
partial derivative 106.F,K 

nth-order 106.H 
partial derived functor 200.1 
partial differential 200.H 
partial differential coefficient 106.E 
partial differential equation(s) 313.A 320 

(initial value problems) 321 
(method of integration) 322 
of elliptic type 323, App. A, Table 15.VI 
of the first order 324 
Fokker-Planck 115.A 
hyperbolic 325 
of hyperbolic type 325 
of mixed type 326 
of parabolic type 327 
solution, of the first order App. A, Table 15.11 
solution, of the second order App. A, Table 

15.111 
system of, of order 1 (on a differentiable mani- 
fold) 428.F 

partial differential operator 112.A 
partial differentiation 106.F 
partial fraction App. A, Table 1O.V 
partial function 356.E 
partial graph 186.C 
partially balanced incomplete block design 102.J 

406.J 
partially confounded (with blocks) 102.5 
partially conserved axial-vector currents 132.G 
partially differentiable (function) 106.F 
partially isometric (operator) 251.E 
partially ordered set 311.A 
partial mapping (of a mapping) 381.C 
partial numerator (of an infinite continued fraction) 

83.A 
partial observation 405.C 
partial ordering 3 11 .A 
partial pivoting 302.B 
partial product 379.G 
partial quotient, nth 83.A 
partial recursive (in a partial recursive function) 

356.E,F 
partial sum (of a series) 379.A 

diagonal (of a double series) 379.E 
partial summation, Abel 379.D 
partial wave 386.B 
partial wave expansion 375.E 386.B 
partial wave scattering amplitude 375.E 



2067 Subject Index 
Percolation process 

particle(s) 
Bose 132.A 
composite 132.A 
elementary 132 
Fermi 132.A 

particular solution 
(of a differential equation) 313.A 
(of partial differential equations) 320.C 
(for a system of differential equations) 313.C 

particular transformation (of bg) 248.R 
partition(s) 

(in ergodic theory) 136.E 
(of an interval) 216.A 
(of a set) 381.D 
(of a space) 425.L 
entropy of 136.E 
s-independent 136.E 
independent sequence of 136.E 
Markov (for an automorphism) 136.C,G 
number of 177.D 328 
of numbers 328 
Pinsker 136.E 
principal 66.H 
of unity 425.R 
of unity of class C” 105,s 
of unity subordinate to a covering 425.R 
upper semicontinuous 425.L 

partition function 402.D 
grand 402.D 

partitioning algorithm 215.E 
Pascal, B. 329 

limacon of 93.H 
Pascal configuration 78.K 
Pascal line 78.K 
Pascal theorem 

(on conic sections) 78.K 
(in geometry) 155.E 
(in projective geometry) 343.E 

Pascal triangle 330 
Pasch’s axiom (in geometry) 155.B 
passive 

(state) 402.G 
completely 402.G 

passive boundary point 260.1 
dual 260.1 

passive network 282.C 
passive orthonomic system (of partial differential 

equations) 428.B 
past cone 258.A 
past history, independent of the 406.D 
pasting together the boundaries 114.F 
path 

(in a Finsler space) 152.C 
(in a graph) 186.F 
(of a Markov process) 261.B 
(of a stochastic process) 407.A 
(in a topological space) 148.C 170 
asymptotic (for a meromorphic function) 
272.H 

closed (in a graph) 186.F 
closed (in a topological space) 170 
closed, space of 202.C 
critical 376 
direct 186.F 
direct closed 186.F 
Euler (in a graph) 186.F 
general geometry of 152.C 
Hamilton 186.F 
of an integration (curvilinear integral) 94.D 
inverse 170 

nontangential 333.B 
projective geometry of 109 
quasi-independent of (response probability) 

346.G 
sample 407.A 
simple 186.F 
Stolz (in a plane domain) 333.B 

path-component 79.B 
path-connected 79.B 
path-dependent, d-trial 346.G 
path-independent (response probability) 346.G 
path integral 351.F 
pathological (space) 65.F 
path space 148.C 261.B 
pathwise uniqueness of solution 406.D 
pattern formation 263.D 
Pauli approximation 351.G 
Pauli-Lubanski vector 258.D 
Pauli principle 35 1 .G 
Pauli spin matrix 258.A 351.G 
payoR 108.B,C 173.B 
payoff function 173.C 
PBIBD (partially balanced incomplete block 

design) 102.5 
PC (predictor-corrector) method 303.E 
PCT invariance 386.B 
PCT theorem 386.B 
peak point 164.D 

generalized 164.D 
peak set 164.D 

generalized 164.D 
Peano area (of a surface) 246.F 
Peano continuum 93.D 
Peano curves 93.5 
Peano postulates 294.B 
Pearson distribution 397.D 
Pearson lemma, Neyman- 400.B 
P&let number 116.B 
pedal curve 93.H 
Peierls-Bogolyubov inequality 212.B 
Peirce decomposition (of a Jordon algebra) 231.B 
Peirce left decomposition (in a unitary ring) 368.F 
Peirce right decomposition (in a unitary ring) 

368.F 
Peirce space 231.B 
Pelczynski theorem, Bessaga- 443.D 
Pell equation 118.A 
penalized problems 440.B 
penalty method 292.E 
penalty term 440.B 
pencil 

algebraic 15.C 
of tonics 343.E 
of hyperplanes (in a projective space) 343.B 
Lefschetz 16.U 
linear 16.N 
of lines (in a projective plane) 343.B 
of planes (in a 3-dimensional projective space) 
343.B 

of quadric hypersurfaces 343.E 
of quadrics 343.E 

peninsula (in a Riemann surface) 272.5 
pentagamma function 174.B 
pentagon 155.F 
pentagonal number 4.D 
pentagonal number theorem 328 
pentaspherical coordinates 90.B 
percolation process 340.D 

bond 340.D 
site 340.D 
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perfect 
(image) 180.A 
G(- (graph) 186.K 
y- (graph) 186.K 

perfect additive functional 261.E 
perfect code 63.B 
perfect delay convention 51.F 
perfect held 149.H 
perfect fluid 205.B 
perfect image 425.CC 
perfect inverse image 425.CC 
perfect kernel (in potential theory) 338.E 
perfectly normal space 425.Q 
perfectly separable space 425.P 
perfect mapping 425.W 

quasi- 425CC 
perfectness theorem 186.K 
perfect number 297.D 

of the second kind 297.D 
perfect set 425.0 
perigon, straight 139.D 
perihelion distance 309.B 
period 

(of an Abelian differential form) 1 l.C 
(of an ergodic class) 260.B 
(of a marked K3 surface) 72.K 
(of an orbit) 126.D 
(of an oscillation) 318.A 
(of a periodic continued fraction) 83.C 
(of a periodic function) 134.B 
(of a wave) 446 
fundamental 134.E 

periodgram 421.C 
periodic (trajectory) 126.D 

almost 126.F 
periodic continued fraction 83.C 
periodic endomorphism (at a point) 136.E 
periodic function 134.E 

almost (on a graph) 18.E 
almost (with respect to p) 18.C 
almost (in the sense of Bohr) 18.B 
analytic almost 18.D 
doubly 134.E 
simply 134.E 
uniformly almost 18.B 

periodic group 2.A 
maximally almost 18.1 
minimally almost 18.1 

periodic inequality, Riemann 3.L 
periodicity 390.5 
periodicity modulus (of an elliptic integral) 134.A 
periodicity theorem, Bott 202.V 237.D, App. A, 

Table 6.VII 
periodic solution (of Hill’s equation) 268.E 
period matrix 

(of a closed Riemann surface) 1 l.C 
(of a complex torus) 3.H 

period parallelogram 134.E 
fundamental 134.E 

period relation, Riemann’s 3.L 1 l.C 
peripheral devices 75.B 
peripheral system 235.B 
permeability, magnetic 130.B 
permeable membrane 419.A 
permutation 190.B 

(in a symmetric group) 151.G 
even 151.G 
k- 330 
odd 151.G 

permutation group 190.B 

of degree n 151.G 
imprimitive 151.G 
intransitive 151.H 
K-transitive 151.H 
K-ply transitive 151.H 
multiply transitive 151.H 
primitive 151.H 
regular 151.H 
transitive 151.H 

permutation representation (of a group) 362.B 
degree of 362.B 
faithful 362.B 
primitive 362.B 
reciprocal 362.B 
similar 362.B 

perpendicular 
(to a hyperplane) 139.E 
foot of the 139.E 

perpetual motion 402.G 
Perron-Brelot solution (of Dirichlet problem) 

12o.c 
Perron-Frobenius theorem 310.H 
Perron integrable (function) 100.F 
Perron method (in Dirichlet problem) 120.C 
Perron theorem 

(on linear transformations of sequences) 379.L 
(on ordinary differential equations) 316.E 
(on positive matrices) 269.N 

Perron-Wiener-Brelot solution (of Dirichlet 
problem) 120.C 

persistent 260.5 
perspective 343.B 
perspective mapping (in projective geometry) 343.B 
PERT 307.C 376 
perturbation(s) 

analytic 331.D 
asymptotic 331.D 
general theory of 420.E 
Kato 351.D 
of linear operators 331 
method 25.A 
regular 331.D 
secular 55.B 
singular 289.E 
special theory of 420.E 

Petersson conjecture, Ramanujan- 32.D 
Petersson metric 32.B 
Peter-Weyl theory 

(on compact groups) 69.B 
(on compact Lie groups) 249.U 

Petrovskii, hyperbolic in the sense of 325.F 
Petrovskii theorem 112.D 
Pettis completely additivity theorem 443.G 
Pettis integrable 443.F 

Gel’fand- 443.F 
Pettis integral 443.F 

Gel’fand- 443.F 
Pettis measurability theorem 443.B 
Pettis theorem 

Dunford- 68.M 
Orlicz- 443.D 

Petvyashvili equation, Kadomtsev- 387.F 
Pfafhan 103.G 
Pfaffian equation(s) 428.A 

system of 428.A 
Pfaffian form 428.A 
Pfaff problem 428.A 

generalized 428.B 
Pfluger extremal length, Hersch- 143.A 
phase 



2069 Subject Index 
Pliicker relations (on Pliicker coordinates) 

initial (of a simple harmonic motion) 318.B 
pure 402.G 

phase average 402.C 
phase constant (of a sine wave) 446 
phase function (of a Fourier integral operator) 

274.C 345.B 
phase portrait 126.B 
phase shift 375.E 386.B 
phase space 

(of a dynamical system) 126.C 290.C 
(for functional-differential equation) 163.C 
(in statistical mechanics) 402.C 
momentum 126.L 
velocity 126.L 

phase transition 340.B 
phase velocity (of a sine wave) 446 
phenomenon 

Gibbs 159.D 
Runge 223.A 
Stokes 254.D 

photon 132.B 377.B 
Phragmen-Lindelof theorem 43.C 
physical Hilbert space 150.G 
physically contains 351.K 
PI-algebra (algebra with polynomial identities) 

29.5 
Picard exceptional value 272.E 
Picard group (of a commutative ring) 237.J 
Picard-Lefschetz formula 418.F 
Picard-Lefschetz transformation 16.U 
Picard number (of a variety) 16.P 
Picard scheme 16.P 
Picard theorem 

(on transcendental entire functions) 429.B 
(on transcendental meromorphic functions) 

272.E 
Picard variety 16.P 

(of a compact Kahler manifold) 232.C 
Picard-Vessiot extension field 113 
Picard-Vessiot theory 113 
picture 

Heisenberg 351.D 
Schrodinger 351.D 

piecewise afhne mapping 192.Q 
piecewise continuous function 84.B 
piecewise linear mapping 65.A 70.C 
piecewise smooth curve 364.A 
Pincherle-Goursat kernel 217.F 
Pinching problem (differentiable) 178.E 
Pinsker partition 136.E 
Pitman estimator 399.G 
pivot 302.B 
pivoting 

complete 302.B 
partial 302.B 

PL category 65.A 
PL embedding 65.D 
PL homeomorphism 65.A 
PL isomorphism 65.A 
PL k-ball 65.C 
PL (k - I)-sphere 65.C 
PL mapping (map) 65.A 
PL microbundle 147.P 
PL (n, m)-ball knot 65.D 
PL (n, m)-knot 65.D 
PL normal 147.P 
PL structure 65.C 
PL tangent 147.P 
PL topology 65.A 
place (of a field) 439.5 

placement problem 235.A 
planar 367.G 
planar character 367.G 
planar curvilinear coordinates App. A, Table 3.V 
planar graph 186.H 
planarity (of a graph) 186.H 
Plancherel formula (on a unimodular locally com- 

pact group) 437.L 
Plancherel measure (of a locally compact group) 

437.L 
Plancherel theorem 160.H 192.A,K 

(with respect to the Radon transform) 218.G 
Planck constant 351.A 
Planck (partial differential) equation, Fokker- 

115.A 402.1 
plane(s) 155.B 

(as an afftne space) 7.A 
(in a projective space) 343.B 
Cayley projective 54 
complex 74.C 
conjugate (with respect to a quadric surface) 

35o.c 
coordinates (of a plane) 343.C 
finite projective 241.B 
Gauss-Argand 74.C 
Gaussian 74.C 
half- 155.B 333.A 
hodograph 205.B 
hyperbolic 122.C 
normal 111 .F 
osculating 11 l.F 
pencil of (in a 3-dimensional projective space) 

343.B 
polar (with respect to a quadric surface) 350.C 
principal (of a quadric surface) 350.B 
projective 343.B 
rectifying 11 l.F 
tangent 11 l.H, App. A, Table 4.1 
w- 74.D 
z- 74.D 

plane algebraic curve 9.B 
plane coordinates (of a plane) 343.C 
plane curve App. A, Table 4.1 

continuous 93.B 
plane domains 333 

closed 333.A 
multiply connected 333.A 
n-ply connected 333.A 

plane geometry 181 
plane polygon 155.F 
plane triangle App. A, Table 2.11 
plane trigonometry 432.A 
plane wave 446 
plane wave decomposition 125.CC 
planimeter 19.A 
planning 

production 376 
statistical 102.A 

plasticity, theory of 271.G 
Plateau problem 334 
playable 108.B 
Pleijel asymptotic expansion, Minakshisundaram- 

391.B 
PLK (Poincare-Lighthill-Kuo) method 25.B 
Plotkin bound 63.B 
plots 102.B 
Plucker coordinates (in a Grassman manifold) 

90.B 
Plucker formulas (on plane algebraic curves) 9.B 
Plucker relations (on Plucker coordinates) 90.B 
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plurigenera 15.E 
pluriharmonic distribution 21.C 
plurisubharmonic function 21.G 
plus infinity 87.D 
Pochhammer differential equation, Tissot- 206.C 
Poincart, H. 335 

last theorem of 153.B 
theta-Fuchsian series of 32.B 

Poincare-Birkhoff fixed-point theorem 153.B 
Poincare-Birkhoff-Witt theorem (on Lie algebras) 

248.5 
Poincare-Bruns theorem 420.A 
Poincare characteristic, Euler- 16.E 201.B 
Poincare class 

Euler- 56.B,F 
universal Euler- 56.B 

Poincare complete reducibility theorem 3.C 
Poincart complex 114.5 
Poincare condition (in Dirichlet problem) 120.A 
Poincare conjecture 65.C 

generalized 65.C 
Poincare differential invariant 74.G 
Poincare duality 201.0 450.4 
Poincare formula (in integral geometry) 218.C 
Poincare formula, Euler- 201.B,F 
Poincare group 170 258.A 
Poincare-Lefschetz duality theorem 201.0 
Poincart-Lighthill-Kuo (PLK) method 25.B 
Poincare manifold 105.A 
Poincare mapping (map) 126.C,G 
Poincare method 25.B 
Poincare method, Lindstedt- 290.E 
Poincari metric 74.G 
Poincare model (of geometry) 285.D 
Poincari pair (of formal dimension n) 114.5 
Poincare polynomial (of a finite simplicial complex) 

201.B 
Poincare series 32.B 
Poincare series, Eisenstein- 32.F 
Poincare theorem 383.E 

(on Abelian varieties) 3.D 
Poincare-Volterra theorem 198.5 
Poinsot representation 271.E 
point(s) 

(of an affine space) 7.A 
(in the foundations of geometry) 155.B 
(of a graph) 186.B 
(in projective geometry) 343.B 
accessible boundary (of a plane domain) 333.B 
accumulation 425.0 
accumulation (of a sequence of real numbers) 

87.C 
adherent 425.B 
algebraic (over a field) 369.C 
algebraic branch (of a Riemann surface) 367.B 
almost all, of a variety 16.A 
G(- (of a meromorphic function) 272.B 
cc-limit 126.D 
ambiguous 62.D 
antipodal (on a sphere) 140 
apparent singular 254.C 
base (of a linear system) 16.N 
base (of a loop) 170 
base (of a topological space) 202.B 
bifurcation 126.M 217.M 286.R 
boundary (of a subset) 425.N 
branch (of a covering surface) 367.B 
branch (of a harmonic mapping) 275.B 
branch (of an ordinary curve) 93.C 
catastrophe 51.F 

cluster 425.0 
coincidence (of maps) 153.B 
collinear (in projective geometry) 343.B 
complete accumulation 425.0 
condensation 425.0 
conjugate 46.C 364.C 
conjugate (in a projective space) 343.E 
corresponding (with respect to confocal qua- 
dries) 350.E 

critical (of a Cm-function) 279.B 
critical (of a function) 106.L 
critical (of a mapping) 105.J 193.J 208.B 
critical (of a trajectory) 126.D 
cut (on a geodesic) 178.A 
degenerate critical 106.L 279.B 
degree of 99.D 
of density (of a measurable set of the real line) 

1OO.B 
dependent (in an alIme space) 7.A 
dependent (in a projective space) 343.B 
deviation 336.B 
discontinuity 84.B 
discontinuity, of the first kind 84.B 
discontinuity, of the second kind 84.B 
dual passive boundary 260.1 
elliptic (of a Fuchsian group) 122.C 
elliptic (on a surface) 11 l.H 
end (of an ordinary curve) 93.C 
entrance boundary 260.1 
equianharmonic range of 343.D 
equilibrium 108.C 
equilibrium (in the theory of games) 173.C 
equilibrium (of a trajectory) 126.D 
equivariant (of a mapping) 153.B 
equivariant, index (of a mapping) 153.B 
essentially singular (with respect to an analytic 

set) 21.M 
estimation 399.B 4Ol.C 
exit boundary 260.1 
exterior (of a subset) 425.N 
externally irregular 338.L 
extreme (of a convex set) 89.A 
extreme (of a subset of a linear space) 424.T 
fixed (of a discontinuous transformation group) 

122.A 
fixed (of a flow) 126.D 
fixed (of a mapping) 153.A 
fixed (of a mapping in a topological linear 

space) 153.D 
fixed (method of roundoff) 138.B 
fixed (of a topological transformation group) 
431.A 

fixed, of discontinuity 5.B 407.A 
fixed, index (of a mapping) 153.B 
fixed branch (of an algebraic differential equa- 
tion) 288.A 

fixed, theorem 153 
flat (of a surface) 11 l.H 
focal (of a submanifold of a Riemannian mani- 

fold) 364.C 
frontier (of a subset) 425.N 
functions 380.A 
fundamental (of a projective space) 343.C 
fundamental (with respect to a birational 

mapping) 16.1 
y-, of the kth order (of a holomorphic function) 

198.C 
generalized peak 164.D 
generic 16.A 
geodesic 11 l.H 365.D 



2071 Subject Index 
Points(s) 

geometric (of a scheme) 16.D 
harmonic range of 343.D 
homoclinic 126.5 
hyperbolic (on a surface) 11 l.H 
hyperbolic fixed 126.G 
hyperbolic singular 126.G 
ideal (in hyperbolic geometry) 285.C 
independent (in an afine space) 7.A 
independent (in a projective space) 343.B 
at infinity (in affine geometry) 7.B 
at infinity (of a Gaussian plane) 74.D 
at infinity (in hyperbolic geometry) 285.C 
at infinity (of a Riemann manifold) 178.F 
of inflection (of a curve of class C’) 93.G 
of inflection (of a plane algebraic curve) 9.B 
initial (of a curvilinear integral) 94.D 
initial (of a path) 170 
initial (of a position vector) 7.A 
initial (of a vector) 442.A 
integral 428.E,F 
interior 425.B 
internally irregular 338.L 
irregular (of an analytic set) 45.D 
irregular (of a Markov process) 261.D 
irregular boundary 120.D 
irregular singular 254.B 
isolated 425.0 
isolated (of a curve) 93.G 
isolated fixed 126.G 
isotropic 365.D 
k-rational (of an algebraic variety) 16.A 369.C 
left singular (of a diffusion process) 115.B 
limit (of a discontinuous group) 122.C 
limit (of a sequence of points) 87.E 
limit (of a sequence of real numbers) 87.B 
limit, type 112.1 
logarithmic branch (of a Riemann surface) 

367.B 
middle (of two points of an affine space] 7.C 
movable branch (of an algebraic differential 
equation) 288.A 

multiple (on an arc) 93.B 
multiple (of a plane algebraic curve) 9.B 
multiple (on a variety) 16.F 
negative limit 126..D 
nodal 304.C 
nondegenerate critical 106.L 279.B 
nondegenerate critical (of a function on a 
Hilbert manifold) 286.N 

nonrecurrent 260.B 
nonsingular (of an algebraic variety) 16.F 
normal (of an analytic space) 23.D 
normal (of a variety) 16.F 
null recurrent 260.B 
w-limit 126.D 
100~(%- 396.C 
order of (with respect to a cycle) 99.D 
order of (in an ordinary curve) 93.C 
ordinary (of an analytic set) 23.B 
ordinary (of a curve of class CL) 93.G 
ordinary (in hyperbolic geometry) 285.C 
ordinary (of an ordinary curve) 93.C 
ordinary (of a plane algebraic curve) 9.B 
ordinary (on a Riemann surface) 1 l.D 
overcrossing 235.A 
parabolic (on a surface) llO.B 11 l.H 
passive boundary 260.1 
peak 164.D 
positive limit 126.D 
positive recurrent 260.B 

principal 180.B 
r-ple (of a plane algebraic curve) 9.B 
ramification (of an analytic covering space) 

23.E 
rational 118.E 
rational double 418.C 
recurrent (of a Markov process) 261.B 
reflection (with respect to a circle) 74.E 
regular (of an analytic set) 23.B 45.D 
regular (with respect to an analytic set) 21.M 
regular (in catastrophe theory) 51.F 
regular (of a differentiable mapping) 105.J 
regular (of a diffusion process) 115.B 
regular (with respect to the Dirichlet problem) 
207.B 

regular (of a flow) 126.D 
regular (of a Hunt process) 261.D 
regular (of a polyhedron or cell complex) 65.B 
regular (of a surface in E3) 1ll.J 
regular boundary 120.D 
regular singular 254.B 
rest (of a trajectory) 126.D 
right singular (of a diffusion process) 115.B 
saddle (of a function) 255.B 292.A 
saddle (on a surface) 11l.H 
saddle (of a system of ordinary differential 
equations) 126.G 

saddle (of two-person games) 108.B 
saddle, method 25.C 
sample 342.B 396.B 398.A 
Schwinger 150.F 
semiregular (of a surface in E3) 1ll.J 
simple (of an analytic set) 23.B 418.A 
simple (on a variety) 16.F 
singular (of an analytic set) 23.B 418.A 
singular (of a continuous vector field) 153.B 
singular (of a curve of class Ck) 93.G 
singular (of a linear difference equation) 104.D 
singular (of a plane algebraic curve) 9.B 
singular (of a polyhedron or cell complex) 
65.B 

singular (of a quadric hypersurface) 343.E 
singular (of a surface in E3) 11 l.J 
singular (of a system of linear ordinary dif- 
ferential equations) 254.A 

singular (of a system of ordinary differential 
equations) 289.A 

singular (of a trajectory) 126.D,G 
singular (on a variety) 16.F 
smooth (of variety) 16.F 
stable 16.W 
stationary (of an arc of class C”) 11 l.D 
successive minimum 182.C 
supporting (of a convex set) 89.G 
supporting (of a projective frame) 343.C 
symmetric (with respect to a circle) 74.E 
terminal (of a curvilinear integral) 94.D 
terminal (of a Markov process) 261.B 
terminal (of a path) 176 
terminal (of a vector) 442.A 
transient 260.B 
transition 254.F 
transversal homoclinic 126.5 
turning 25.B 254.F 
ultraintinite (in hyperbolic geometry) 285.C 
umbilical (of a surface) lll.H 365.D 
undercrossing 235.A 
unit (of an affine frame) 7.C 
unit (of a projective frame) 343.C 
unit (of a projective space) 343.C 
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Point(s) at infinity 
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w- (of an entire function) 429.B (of an integral element) 428.E 
wandering (of a trajectory) 126.E polar form (of a complex number) 74.C 
Weierstrass 1 l.D polarity (with respect to a quadric hypersurface) 
zero (of a holomorphic function) 198.C 343.E 
zero (of a polynomial) 337.B 369.C polarization (on an Abelian variety) .3.G 
zero (of a subset of a polynomial ring) 369.C electric 130.A 
zero, of the -kth order (of a complex function) inhomogeneous 3.G 

198.D magnetic 130.A 
zero, of the kth order (of a holomorphic func- principal 3.G 
tion) 198.C polarized 

point(s) at infinity 74.D 285.C (Hodge structure) 16.V 
regular at the 193.B (wave) 446 

pointed coalgebra 203.F polarized Abelian variety 3.G 
pointed set 172.5 polarized Jacobian variety, canonically 3.G 9.E 

morphism of 172.5 polar plane (with respect to a quadric surface) 
pointed shape category 382.A 35o.c 
pointed topological spaces, category of 202.B polar set (in potential theory) 261.D 338.H 
pointer 96.B polar space 191.1 
point estimation 399.B 4Ol.C App. A, Table 23 polar system (in projective geometry) 343.D 
point-finite covering (of a set) 425.R polar tetrahedron 350.C 
point function 380.A 407.D self- 350.C 
point group (of a crystallographic group) 92.A polar triangle 78.5 
point hypersphere 76.A self- 78.5 
point process 407.D pole 
point range (in projective geometry) 343.B (of a complex function) 198.D 

of the number system (in projective geometry) (of a function on an algebraic curve) 9.C 
343.c (of a function on an algebraic variety) 16.M 

point set 381.B (of a polar with respect to a conic) 78.5 
points of indeterminacy, set of 23.D (of a polar plane) 350.C 
point spectrum 390.A (of a polar of a quadric hypersurface) 158.E 

pure 136.E (of a roulette) 93.H 
pointwise convergent sequence 435.B north (of a complex sphere) 74.1) 
pointwise ergodic theorem 136.B north (of a sphere) 140 
Poisson bracket 82.B 271.F 324.C,D order of 198.D 

(of two vector fields) 105.M Regge 132.C 386.C 
Poisson differential equation 323.A, App. A, Table resonance 331.F 

15.111 I 
south (of a complex sphere) 74.1) 

Poisson distribution 341.D 397.F, App. A, Table south (of a sphere) 140 
22 , 

Poisson equation 338.A 
Poisson formula App. A, Table 19.111 ’ 

pole divisor (of a function on an algebraic variety) 

policyl”E7.A 405.C 
of 7’” = Em/l- 391.5 Markovian 405.C 

Poisson input 260.H optimal 127.A 
Poisson integral 168.B 193.G Polish space 22.1 273.5 
Poisson integral formula 198.B Pblya’s enumeration theorem 66.E 
Poisson integration formula App. A, Table 15,VI Pblya type 374.5 
Poisson kernel 159.C strictly of 374.5 
Poisson number 271.G polychromatic group 92.D 
Poisson point process, stationary 407.D polydisk 21.B 
Poisson process 5.D polygamma functions 174.B, App. A. Table 17.1 

compound 5.F polygon(s) 155.F 
Poisson random measure 407.D Cauchy 316.C 
Poisson ratio 271.G decomposition-equal 155.F 
Poisson solution 325.D force 19.C 
Poisson stable 126.E normal 234.C 

negatively 126.E plane 155.F 
positively 126.E regular 357.A 

Poisson summation formula 192.C simple 155.F 
(of Fourier transforms) 192.C supplementation-equal 155.F 
(on a locally compact Abelian group) 192.L polygonal number of order r 4.D 

polar polyharmonic 193.0 
(with respect to a conic) 78.5 polyhedral, convex rational 16.2 
(in projective geometry) 343.E polyhedral angle, regular 357.B 
(relative to pairing) 424.H polyhedral cone, convex 89.F 

polar coordinates 90.C polyhedral group, regular 151.G 
geodesic 90.C ‘polyhedron (polyhedra) 
tangential 90.C (in an allme space) 7.D 

polar decomposition 251.E (of a simplicial complex) 65.A 7O.C 
polar element analytic 21.G 

(a function element in the wider sense) 198.0 convex 89.A 
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Positive cycle (on an algebraic variety) 

corner 215.C 
Euclidean 70.B 
Euler theorem on 201.F 
integer 215.C 
regular 357.B 
topological 65.A 

polymatroid 66.F 
polynomial(s) 337 

Alexander (of a knot) 235.C,D 
alternating 337.1 
associated Laguerre 317.D 
Bernoulli 177.B 
Bernshtein 336.A 
Bernshtein (generalized) 418.H 
characteristic (of a differential operator) 112.A 
321.A 

characteristic (of a linear mapping) 269.L 
characteristic (of a matrix) 269.F 
Chebyshev 317.D 336.H, App. A, Table 20.11 
Chebyshev orthogonal 19.G 
cyclotomic 14.L 
differential 113 
Euler 177.C 
Fourier-Hermite 176.1 
Galois group of the 172.G 
Gegenbauer 317.D 393.E, App. A, Table 20.1 
generalized trigonometric 18.B 
Hermite 317.D 
Hermite interpolation 223.E 
Hilbert (of an algebraic curve) 9.F 
Hilbert (of a graded R-module) 369.F 
Hilbert (of a sheaf) 16.E 
homogeneous of degree n 337.B 
Hosokawa 235.D 
inseparable 337.G 
irreducible 337.F 
isobaric 32.C 
Jacobi 317.D, App. A, Table 20.V 
Lagrange interpolation 223.A 336.G, App. A, 
Table 21 

Laguerre 3 17.D, App. A, Table 2O.W 
Legendre 393.B, App. A, Table 18.11 
link 235.D 
Lommel App. A, Table 19.IV 
in m variables 337.B 
minimal (of an algebraic element) 149.E 
minima1 (of a linear mapping) 269.L 
minimal (of a matrix) 269.F 
manic 337.A 
Neumann App. A, Table 19.IV 
Newton interpolation 336.G 
orthogonal 19.G, App. A, Table 2O.VII 
parity check 63.E 
Poincare 201.B 
primitive 337.D 
reduced link 235.D 
reducible 337.F 
ring of 337.A 369 
ring of differential 113 
Sato-Bernshtein 125.EE 
Schlafli App. A, Table 19.IV 
separable 337.G 
simplest orthogonal 19.G 
Snapper 16.E 
Sonine 3 17.D, App. A, Table 2O.VI 
symmetric 337.1 
system of orthogonal 317.D 
trigonometric interpolation 336.E 
ultraspherical 317.D 
zonal 374.C 

polynomial approximation 336 
best (in the sense of Chebyshev) 336.H 

polynomial approximation theorem (for Cm- 
functions) 58.E 

polynomial distribution App. A, Table 22 
negative App. A, Table 22 

polynomial extrapolation method 303.F 
polynomial identity (on an algebra) 29.5 
polynomially transformable 71.E 
polynomial representation (of GL( V)) 60.D 
polynomial ring 337.A 369 

of m variables 337.B 
polynomial time 71.B 
polytropic differential equation 291.F 
Pomeranchuk theorem 386.B 
Pontryagin class(es) 

(of an R”-bundle) 56.D 
combinatorial 56.H 
of a manifold 56.F 
rational 56.F 
total 56.D 
universal 56.D 

Pontryagin duality theorem (on topological Abelian 
groups) 192.K 422.C 

Pontryagin multiplication 203.D 
Pontryagin number 56.F 
Pontryagin pth power operation 64.B 
Pontryagin product 203.D 
Popov ghost, Faddeev- 132.C 150.G 
population (in statistics) 397.B 401.E 

finite 373.A 
infinite 401.E 

population characteristic 396.C 
population correlation coefficient 396.D 
population covariance 396.D 
population distribution 396.B 401.F 

hypothetical infinite 397.P 
population kurtosis 396.C 
population mean 396.C 
population moment of order k 396.C 
population standard deviation 396.C 
population variance 396.C 
port-admittance matrix 282.C 
porter 168.C 
port-impedance matrix 282.C 
port network, M- 282.C 
portrait, phase 126.B 
position 

genera1 (complexes) 70.B 
genera1 (of a PL mapping) 65.D 
general (in a projective space) 343.B 
general, theorem 65.D 
hyperboloid 350.D 
method of false 3Ol.C 

position representation 351.C 
position vector 442.A 

(of a point of an alline space) 7.A 
positive 

(chain complex) 200.C 
(class of vector bundles) 114.D 
(complex) 200.H 
(functional on a C*-algebra) 36.G 
(function on a C*-algebra) 308.D 
(Hermitian operation) 308.A 
(square matrix) 310.H 
completely (linear mapping between C*- 
algebras) 36.H 

positive boundary, open Riemann surface of 367.E 
positive cone, natural 308.K 
positive cycle (on an algebraic variety) 16.M 
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Positive definite 
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positive definite 
(function) 192.B,J 394.C 
(Hermitian form) 348.F 
(matrix) 269.1 
(potential) 338.D 
(sequence) 192.B 
(on a topological group) 36.L 437.B 

positive definite kernel 217.H 
positive definite quadratic form 348.C 
positive direction (in a curvilinear integral) 198.B 
positive distribution 125.C 
positive divisor 

(of an algebraic curve) 9.C 
(on a Riemann surface) 1 l.D 

positive element 
(in a lattice-ordered group) 243.G 
(of an ordered field) 149.N 
strictly 310.H 
totally 14.G 

positive entropy, completely 136.E 
positive half-trajectory 126.D 
positive infinity 87.D 355.C 
positive kernel 217.H 
positive limit point 126.D 
positively invariant 126.D 
positively Lagrange stable 126.E 
positively Poisson stable 126.E 
positively regular process 44.C 
positive matrix 269.N 
positive number 355.A 
positive operator (in vector lattices) 310.E 
positive orientation (of an oriented C-manifold) 

105.F 
positive orthant 89.G 
positive part (of an element of a vector lattice) 

310.B 
positive prolongational limit set, first 126.D 
positive Radon measure 270.1 
positive real function 282.C 
positive recurrent ergodic class 260.B 
positive recurrent point 260.B 
positive root (of a semisimple Lie algebra) 248.M 
positive semidetinite (operator) 251.E 
positive semidefinite kernel 217.H 
positive semidefinite matrix 269.1 
positive semidefinite quadratic form 348.C 
positive semiorbit 126.D 
positive system, symmetric 112,s 326.D 
positive terms, series of 379.B 
positive type 

(function of) 192.B,J 
(sequence of) 192.B 
(symmetric kernel of) 338.D 

positive variation 
(of a mapping) 246.H 
(of a real bounded function) 166.B 

positive Weyl chamber 248.R 
positivity 

O-S 150.F 
reflection 1 SO.F 
T- 150.F 

possibility 41 l.L 
possible construction problem 179.A 
posterior density 401.B 
posterior distribution 398.B 401.B 403.G 
posterior risk 399.F 
postliminal C*-algebra 36.H 
Postnikov complex 70.G 
Postnikov system (of a CW complex) 148.D 
Post problem 356.D 

Post theorem 356.H 
postulate(s) 35.A 

fifth (in Euclidean geometry) 139.A 
Nernst 419.A 
Peano 294.B 

potency of a set 49.A 
potential 338.A 

(of a force) 271.C 
(of a Hamiltonian) 375.8 
(for a lattice spin system) 402.G 
(in a Markov chain) 260.D 
(on a network) 281.B 
central 351.E 
chemical 402.D 419.B 
of a double distribution 338.A 
of a double layer 338.A 
equilibrium 260.D 
finite-band 387.E 
finite-gap 387.E 
logarithmic 338.A 

. Newtonian 271.C 338.A 
of order G( 338.B 
reflectionless 387.D 
Riesz 338.B 
scalar 130.A 442.D 
of a simple distribution 338.A 
of a single layer 338.A 
vector 130.A 442.D 
velocity 205.B 
Yukawa 338.M 

potential energy 271.G 
potential good reduction (of an Abelian variety) 

3.N 
potential kernel, weak 260.D 
potential stable reduction (of an Abelian variety) 

3.N 
potential theory 338 
power 

(of a cardinal number) 49.C 
(of an ordinal number) 312.C 
(of a test) 400.A 
of a with exponent x 131.B,G 
fractional 378.D 
p-fold exterior (of a linear space) 256.0 
p-fold exterior (of a vector bundle) 147.F 
Pontryagin (pth) operation 64.B 
residue of the nth 14.M 
of a set 49.A 
Steenrod (pth) operation 64.B 

power associative algebra 231.A 
power dilation 251.M 
powerful invariant, uniformly most 399.4 
powerful unbiased, uniformly most 399.4 
power function 400.A 

envelope 400.F 
power method 298.C 
power-residue symbol 14.N 
power series 21.B 339 370 

with center at the point of infinity 339.A 
convergent 370.B 
field of, in one variable 370.A 
formal 370.A 
formal, held in one variable 370.A 
ring of 370.A 
ring of convergent 370.B 
ring of formal 370.A 

power series space 
finite type 168.B 
infinite type 168.B 

power set 



2075 Subject Index 
Prime formula 

(of a set) 381.B 
axiom of 33.B 381.G 

power sum theorem 123.D 
Powers factor 308.1 
Powers-Stormer inequality 212.B 
Poynting vector 130.A 
Prandtl boundary layer equation 205.C 
Prandtl-Glauert approximation 250.B 
Prandtl-Glauert law of similarity 205.D 
Prandtl integrodifferential equation 222.C 
Prandtl number 116.B 
prealgebraic variety 16.C 
precession 392 
precompact 

(metric space) 273.B 
(set in a metric space) 273.B 

precompact uniform space 436.H 
preconditioned (in numerical solution of linear 

equations) 302.D 
predator relation, prey- 263.B 
predecessor (of an element in an ordered set) 31 l.B 
predetermined variables 128.C 
predicate 41 l.G 

analytic 356.H 
arithmetical 356.H 
complete 356.H 
decidable (number-theoretic) 356.C 
enumerating 356.H 
first-order 41 l.K 
general recursive 356.C 
hyperarithmetical 356.H 
of n-argument 41 l.G 
nary 41 l.G 
primitive recursive 356.B 
second-order 41 l.K 

predicate (object) 156.B 
predicate calculus 41 l.J 

with equality 411.J 
predicate logic 411 .J 

with equality 41 l.J 
first-order 41 l.K 
higher-order 41 l.K 
second-order 411.K 
third-order 41 l.K 

predicate symbol 41 l.H 
predicate variable 41 l.G,H 
predictable (c-algebra) 407.B 
prediction sufficiency 396.5 
prediction theory 395.D 

linear 395.D 
predictive distribution 403.C 
predictor 303.E 

(in a multistep method) 303.E 
linear 395.D 
Mime’s 303.E 
optimal linear 395.D 

predictor-corrector (PC) method 303.E 
predual 308.D 
prefix condition code 213.D 
pre-Hilbert space 197.B 
prehomogeneous vector space 450.V 

zeta function associated with 450.V 
premium 214.A 

net 214.A 
risk 214.B 
savings 214.B 

prenex normal form (in predicate logic) 41 l.J 
preordering 3 11 .H 
preparation theorem 

for Cm-functions 58.C 
Weierstrass 21.E 370.B 
Weierstrass type (for microdifferential opera- 
tors) 274.F 

presentation 235.B 
of finite (LO-Modules) 16.E 
Wirtinger (of a knot group) 235.B,D 

presheaf 383.A 
sheaf associated 383.C 

presheaf on a site 16.AA 
pressure 402.G 419.A 
pressure, topological 136.H 
pressure equation 205.B 
prestratification, Whitney 418.G 
preventive maintenance model 307.C 
prey-predator relation 263.~ 
price 

imputed 292.C 
shadow 255.B 

primal problem 255.B 
primary Abelian group 2.A 
primary cohomology operation 64.B 

stable 64.B 
primary component 

(of an ideal) 67.F 
embedded (of an ideal) 67.F 
isolated (of an ideal) 67.F 

primary difference 305.C 
primary ideal 67.F 

p 67.F 
primary obstruction 147.L 305.C 
primary problem 255.B 
primary ring 368.H 

completely 368.H 
semi- 368.H 

primary solution (of a homogeneous partial dif- 
ferential equation) 320.E 

primary submodule 284.A 
prime(s) 

(3-manifold) 65.E 
over an element (in a lattice) 243.F 
under an element (in a lattice) 243.F 
Mersenne 297.E 
relatively (fractional ideals) 14.E 
relatively (numbers) 297.A 
twin 123.C 

prime differential ideal (of a differential ring) 113 
prime divisor 

(of an algebraic function field of dimension 1) 
9.D 

(of an algebraic number field or an algebraic 
function field of one variable) 439.H 

(of an ideal) 67.F 
(on a Riemann surface) 1 l.D 
embedded (of an ideal) 67.F 
finite 439.H 
imaginary infinite 439.H 
infinite 439.H 
isolated (of an ideal) 67.F 
maximal (of an ideal) 67.F 
minimal (of an ideal) 67.F 
real 439.H 
real (infinite) 439.H 

prime element 
(of a ring) 67.H 
(for a valuation) 439.E 

prime field 149.B 
prime formula 41 l.D 

(of a language) 276.A 
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prime ideal 67.C 
(of a maximal order) 27.A 
associated (of an ideal) 67.F 
ramified 14.1 
unramitied 14.1 

prime ideal theorem 123.F 
prime knot 235.A 
prime number(s) 297.B 

regular 14.L 
relatively 297.A 

prime number theorem 123.B 
for arithmetic progression 123.D 

prime quotient (in a lattice) 243.F 
prime rational divisor over a field (on an algebraic 

curve) 9.C 
prime spot (of an algebraic number field or an 

algebraic function field) 439.H 
primitive 427.B 

(differential form) 232.B 
(element of coalgebra) 203.1 
(element of an extension of a field) 149.D 
(generator of the cohomology algebra of a 
compact Lie group) 427.B 

primitive binary quadratic form 348.M 
primitive character 295.D 450.C,E 

non- 450.C,E 
primitive equation 172.G 
primitive form 232.B 
primitive function(s) 216.C 

derivatives and App. A, Table 9.1 
primitive hyperbolic type (reduced basis of) 92.C 
primitive hypercubic type (reduced basis of) 92.C 
primitive ideal (of a Banach algebra) 36.D 
primitive idempotent element (of a ring) 368.B 
primitive lattice 92.E 
primitive operation (of a group) 362.B 
primitive permutation group 151.H 
primitive permutation representation (of a group) 

362.B 
primitive polynomial 337.D 
primitive recursive 356.B 
primitive recursive function 356,A,B,F 

uniformly 356.B 
primitive recursive in $i, _. , I/& 356.B 
primitive recursive predicate 356.B 
primitive root of unity 14.L 

module m 297.G 
primitive solution (of a partial differential equation) 

320.E 
principal adele (of an algebraic number field) 6.C 
principal analytic set 23.B 
principal antiautomorphism (of a Clifford algebra) 

61.B 
principal automorphism (Clifford algebras) 61.B 
principal axis (axes) 

(of a central conic) 78.C 
(of inertia) 271.E 
(of a parabola) 78.C 
(of a quadric surface) 350.B 
transformation to 390.B 

principal bundle 147.C 
associated 147.D 
reduced 147.5 
reducible 147.5 

principal character 295.D 
(of an Abelian group) 2.G 

principal component(s) 
(in principal component analysis) 280.F 
of order p 1lO.A 

principal component analysis 280.F 

principal congruence subgroup of level N 122.D 
principal convergent (of an irrational number) 83.B 
principal curvature 

(of a surface) 1ll.H 365.C 
radius of (of a surface) 11 l.H 

principal directions (of a surface) llI.H 
principal discrete series 258.C 
principal divisor 

(on an algebraic curve) 9.C 
(on a Riemann surface) 1 l.D 

principal fiber bundle 147.C 
principal formula of integral geometry 218.C 
principal fractional ideal 67.K 
principal genus 

(for an ideal group) 59.E 
of a quadratic field 347.F 

principal half-space (of a flag) 139.B 
principal H-series 437.X 
principal ideal 67.K 

of an algebraic number field 14.E: 
principal ideal domain 67.K 
principal ideal ring 67.K 
principal ideal theorem (in class field theory) 59.D 
principal idele (of an algebraic number field) 6.C 
principal isotropy group(s) 431.C 
principal matrix (belonging to a Riemann matrix) 

3.1 
principal minor (of a matrix) 103.D 
principal moment of inertia 271.E 
principal normal 11 l.F 
principal orbit(s) 43 1 .C 

type 431.C 
principal order (of an algebraic number field) 14.B 

fundamental theorem of 14.C 
principal part 

(of a differential operator) 112.A 
(of a Laurent expansion) 198.D 
(of a partial differential operator) 320.B 

principal partition 66.H 
principal plane (of a quadric surface) 350.B 
principal point(s) 

(for a Gauss mapping) 180.B 
principal polarization (of an Abelian variety) 3.G 
principal quantum number 315.E 
principal series 258.C 

(in an R-group) 190.G 
(of unitary representations of a complex semi- 

simple Lie group) 437.W 
(of unitary representations of a real semisimple 

Lie group) 437.X 
principal solution 104.B 
principal space (of a flag) 139.B 
principal subspace (of a linear operator) 390.B 
principal symbol 237.H 

(of a microdifferential operator) 274.F 
(of a simple holonomic system) 274.H 

principal theorem, Ahlfors 367.B 
principal value 

(of inverse trigonometric functions) 131.E 
Cauchy (of an improper integral) 216.D 
Cauchy (of the integral on infinite intervals) 

216.E 
oflog 131.G 

principle(s) 
argument 198.F 
balayage 338.L 
Bellman 405.B 
Cartan maximum 338.L 
complete maximum 338.M 
of condensation of singularities 37.H 



2071 Subject Index 
Problem(s) 

of conditionality 4Ol.C 
continuity 21.H 
continuity (in potential theory) 338.C 
contraction 286.B 
correspondence 351.D 
of counting constants 16,s 
Dedekind (in a modular lattice) 243.F 
of depending choice (DC) 33.F 
dilated maximum (in potential theory) 338.C 
Dirichlet 120.A 323.E 
Dirichlet drawer 182.F 
domination 338.L 
Donsker invariance 250.E 
duality (for closed convex cones) 89.F 
duality, for ordering 31 l.A 
of duality (in projective geometry) 343.B 
embedding (in dynamic programming) 127.B 
energy 338.D 
energy minimum 419.A 
enthalpy minimum 419.C 
entropy maximum 419.A 
of equal weight 402.E 
equilibrium 338.K 
of equivalence (in insurance mathematics) 

214.A 359.D 
Fermat 180.A 441.C 
first maximum (in potential theory) 338.C 
Fisher three 102.A 
Frostman maximum 338.C 
general, of relativity 359.D 
Gibbs free energy minimum 419.C 
Hamilton 441.B 
Hasse 348.G 
Helmholtz free energy minimum 419.C 
Huygens 325.B 446 
Huygens, in the wider sense 325.D 
invariance 375.B 400.E 
of invariance of speed of light 359.B 
inverse domination 338.L 
of least action 441.B 
limiting absorption 375.C 
of linearized stability 286,s 
of localization (on convergence tests of Fourier 
series) 159.B 

local maximum modulus 164.C 
lower envelope 338.M 
Maupertuis 180.A 
maximal 193.E 
maximum (for control theory) 86.F 
maximum (for a holomorphic function) 43.B 
maximum (for minimal surfaces) 275.B 
maximum modulus (for a holomorphic func- 

tion) 43.B 
minimax (for eigenvalues of a compact opera- 
tor) 68.H 

minimax (for 1,) 391.G 
minimax (for statistical decision problem) 

398.B 
minimum (for 1) 391.D 
minimum (for 1,) 391.G 
of nested intervals (for real numbers) 87.C 

355.B 
Oka 21.K 147.0 
of optimality 127.A 
Pauli 351.H 
quasicontinuity (in potential theory) 338.1 
Rayleigh 68.H 
reflection 45.E 
of reflection 74.E 
Schwarz, of reflection 198.G 

separation 405.C 
special, of relativity 359 
stochastic maximum 405.D 
stored program 75.B 
Strassen invariance 250.E 
of sufficiency 4Ol.C 
of superposition 252.B 322.C 
sweeping-out 338.L 
Ugaheri maximum 338.C 
uniqueness (in potential theory) 338.M 
upper boundedness (in potential theory) 338.C 
variational 441 
variational (in statistical mechanics) 340.B 
402.G 

variational (in the theory of elasticity) 271.G 
variational, with relaxed continuity requirement 
271.G 

variational, for topological pressure 136.H 
Pringsheim theorem 58.E 
prior density 401.B 
prior distribution 401.B 403.G 
probabilistic model 397.P 
probability 342 

additivity of 342.B 
a posteriori 342.F 
a priori 342.F 
binomial, paper 19.B 
conditional 342.E 
continuous in 407.A 
converge in 342.D 
converge with, 1 342.D 
critical percolation 340.D 
error 213.D 
of an event 342.B 
that event E occurs 342.B 
event with, 1 342.B 
extinction 44.B 
geometric 218.A 
hitting, for single points 5.G 
objective 401.B 
regular conditional 342.E 
ruin 214.C 
standard transition 260.F 
subjective 401.B 
theory of 342.A 
transition 260.A 261.A 351.B 

probability amplitude 351.D 
probability density 341.D 
probability distribution(s) 342.B, App. A, Table 22 

(one-dimensional, of random variable) 342.C 
(of random variables) 342.C 
conditional 342.E 
n-dimensional 342.C 

probability generating function 341.F 397.G 
probability integral App. A, Table 19.11 
probability measure 341 342.B 
probability of loss 307.C 
probability paper 19.F 

binomial 19.B 
probability ratio test, sequential 400.L 
probability space 342.B 
probable cause, most 401.E 
probable value, most 401.E 
problem(s) 

Abel 217.L 
abstract Cauchy 286.X 
acous&c 325.L 
adjoint boundary value 315.B 
all-integer programming 215.A 
Appolonius (in geometric construction) 179.A 



Subject Index 
Problem(s) 
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Behrens-Fisher 400.G 
Bernshtein, generalized 275.F 
boundary value (of ordinary differential equa- 

tions) 303.H 315.A 
Burnside (in group theory) 161.C 
Cauchy (for ordinary differential equations) 

316.A 
Cauchy (for partial differential equations) 

320.B 321.A 325.B 
class held tower 59.F 
combinatorial App. A, Table 17.11 
combinatorial triangulation 65.C 
concave programming 292.A 
conditional, in the calculus of variations 46.A 
connection 253.A 
construction 59.F 
convex programming 292.A 
corona 43.G 
correctly posed (for partial differential equa- 

tions) 322.A 
Cousin, first 21.K 
Cousin, second 21.K 
Cramer-Castillon (in geometric construction) 

179.A 
critical inclination 55.C 
decision 71.B 97 186.5 
Delos (in geometric construction) 179.A 
Dido 228.A 
differentiable pinching 178.E 
Dirichlet 120 193.F 323.C 
Dirichlet, with obstracle 440.B 
Dirichlet divisor 242.A 
dual 255.B 349.B 
du Bois Reymond 159.H 
eigenvalue 390.A 
exterior (Dirichlet problem) 120.A 
first boundary value 193.F 323.C 
flow-shop scheduling 376 
four-color 157 
Gauss circle 242.A 
Gauss variational 338.5 
general boundary value 323.H 
generalized eigenvalue 298.G 
generalized isoperimetric 46.A 228.A 
generalized Pfaff 428.B 
Ge6cze 246.D 
geometric construction 179.A 
Goldbach 4.C 
group-minimization 215.C 
Hamburger moment 240.K 
Hausdorff moment 240.K 
Hersch 391.E 
Hilbert (in calculus of variations) 46.A 
Hilbert fifth 423.N 
homeomorphism 425.G 
homogeneous boundary value (of ordinary 
differential equations) 315.B 

Hukuhara 315.C 
of identification (in econometrics) 128.C 
impossible construction 179.A 
inconsistent (of geometric construction) 179.A 
inhomogeneous boundary value (of ordinary 

differential equations) 315.B 
initial value (for functional differential equa- 
tions) 163.D 

initial value (of ordinary differential equations) 
313.C 316.A 

initial value (for partial differential equations) 
321.A 

initial value, for a hyperbolic partial differential 
equation App. A, Table 15.111 

interior (Dirichlet problem) 120.A 
interpolation 43.F 
invariant measure 136.C 
inverse (in potential scattering) 375.G 
isomorphism (for graphs) 186.5 
isomorphism (for integral group algebra) 

362.K 
isoperimetric 11 l.E 228.A 
Jacobi inverse 3.L 
job-shop scheduling problem 376 
k-sample 371.D 
Lagrange (in calculus of variations) 46.A 
LBA 31.D 
Levi 21.1 
linear least squares 302.E 
linear programming 255.A 
local (on the solutions of diNerentia1 equations) 
289.A 

machine scheduling 376 
machine sequencing 376 
Malfatti (in geometric construction) 179.A 
many-body 402.F 420.A 
martingale 115.C 261.C 406.A 
maximum flow 281.C 
minimum-cost flow 281.C 
mixed integer programming 215.A 
multicommodity flow 281.C 
multiprocessor scheduling 376 
n-body 420.A 
n-decision 398.A 
network-flow 281 282.B 
Neumann (for harmonic functions) 193.F 
Neumann (for partial differential equations of 

elliptic type) 323.F 
nonlinear 291 
normal Moore space 425.AA 
optimal regulator 86.F 
penalized 440.B 
Pfaff 428.A 
placement 235.A 
Plateau 334.A 
possible construction 179.A 
primal 255.B 
primary 255.B 
properly posed 322.A 
pure integer programming 215.A 
quadratic programming 292.A 349.A 
random walk 260.A 
representation (on surface) 246.1 
restricted Burnside (in group theory) 161.C 
restricted three-body 420.F 
Riemann 253.D 
Riemann-Hilbert (for integral equations) 217.5 
Riemann-Hilbert (for ordinary differential 

equations) 253.D 
Robin 323.F 
of satistiability (of a proposition) 97 
Schoenflies 65.G 
second boundary value (for harmonic functions) 

193.F 
second boundary value (for partial differential 
equations of elliptic type) 323.F 

second Cousin 21.K 
self-adjoint boundary value 315.B 
sequential decision 398.F 
shortest path 281.C 

single- commodity flow 281 



2079 Subject Index 
Process 

singular initial value (for partial differential 
equations of mixed type) 326.C 

smoothing 114.C 
special isoperimetric 228.A 
of specification 397.P 
statistical decision 398.A 
Steiner (in geometric construction) 179.A 
Stieltjes moment 240.K 
Sturm-Liouville 315.B 
third boundary value (for harmonic functions) 

193.F 
third boundary value (for partial differential 
equations of elliptic type) 323.F 

three big 187 
three-body 420.A 
Thues (general) 31.B 
time optimal control 86.F 
transformation (in a finitely presented group) 

161.8 
transient 322.D 
transportation 255.C 
transportation, on a network 255.C 
Tricomi 326.C 
two-body 55.A 
two-point boundary value (of ordinary dif- 

ferential equations) 3 15.A 
two-terminal 281 
type (for Riemann surfaces) 367.D 
of universal validity of a proposition 97 
Waring 4.E 
weak form of the boundary value 304.8 
well-posed (in general case) 322.A 
word (in a finitely presented group) 161.B 
O-l integer programming 215.A 

procedure 
classification 280.1 
exploratory 397.Q 
Lyapunov-Schmidt 286.V 
random sampling 373.A 
sampling 373.A 
shortest-path 281.C 
statistical decision 398.A 

process 
(in catastrophe theory) 51.F 
Jon a measure space) 136.E 
( = stochastic process) 407.A 
additive 5 342.A 
age-dependent branching 44.E 
asymmetric Cauchy 5.F 
autoregressive 421.D 
autoregressive integrated moving average 

421.G 
autoregressive moving average 421.D 
Bernoulli 136.E 
Bernoulli, very weak 136.E 
Bernoulli, weak 136.E 
birth 260.G 
birth and death 260.G 
bond percolation 340.D 
branching 44 342.A 
branching Markov 44.E 1 
Cauchy 5.F 
centered 5.B 
compound Poisson 5.F 
contact 340.C 
continuous-state branching 44.E 
death 260.G 
diffusion 115 
dual 261.F 

exponent of the stable 5.F 
Feller 261.~ 
finitely determined (F.D.) 136.E 
Galton-Watson branching 44.B 
Gaussian 176 342.A 
Gaussian, complex 176.C 
generalized stochastic 407.C 
homogeneous Markov 5.H 
Hunt 261.~ 
increasing 262.D 
independent 136.E 
with independent increments 5.B 
integrable, of bounded variation 406.B 
integrable increasing 406.B 
invariant Markov 5.H 
irreversible 402.A 
isothermal 419.B 
It8 406.B 
Levy 5.B 
linear stationary iterative 302.C 
Markov 261 342.A 
Markov branching 44.D 
Markovian decision 127.E 
moving average 421.D 
multistage allocation 127.A 
multistage choice 127.A 
multitype Galton-Watson 44.C 
multitype Markov branching 44.E 
Newton iterative 301 .D 
normal 176.C 
observation 405.F 
one-sided stable, of the exponent. a 5.F 
oscillator 315.F 
osculating 77.B 
percolation 340.D 
point 407.D 
Poisson 5.D 
positive regular 44.C 
progressive 407.B 
quadratic variation 406.B 
quasistatic adiabatic 419.B 
recurrent 261.B 
reversed 261.F 
sample 407.A 
shift associated with the stationary 136.D 
u- (of a complex manifold) 72.H 
signal 405.F 
site percolation 340.D 
spatially homogeneous 261.A 
stable 5.F 
stationary 342.A 395.A 
stationary Gaussian 176.C 
strictly stable 5.F 
strictly stationary 395.A 
stochastic 342.A 407 
stochastic, with stationary increments of order n 

395.1 
strongly stationary 395.A,F 
strong Markov 261.B 
subadditive 136.B 
sweeping-out 338.L 
symmetric Cauchy 5.F 
symmetric stable 5.F 
system 405.F 
temporally homogeneous 261.A 
temporally homogeneous additive 5.B 
transient 261.B 
very weak Bernoulli (V.W.B.) 136.E 
weak Bernoulli (W.B.) 136.E 



Subject Index 

Processing, data 
2080 

weakly stationary 395.A 
weakly stationary, of degree k 395.1 
Wiener 5.D 45.B 

processing, data 96 
processor, central 75.B 
producer’s risk 404.C 
product(s) 

(of algebraic varieties) 16.A 
(of cardinal numbers) 49.C 
(of completely additive classes) 270.H 
(of elements of a graded algebra) 203.8 
(of elements of a group) 190.A 
(of hyperfunctions) 125.X 274.E 
(of ideals) 67.B 
(of knots) 235.A 
(of linear operators) 37.C 251.B 
(of matrices) 269.B 
(of objects) 52.E 
(of ordinal numbers) 312.C 
(of paths) 170 
(in quadrangular set of six points) 343.C 
(of real numbers) 355.B 
(of sets) 381.B 
(of tensors) 256.K 
amalgamated (of a family of groups) 190.M 
Blaschke 43.F 
bracket (in a Lie algebra) 248.A 
cap (in (co)homology groups of a space) 201.K 
cap (in homological algebra) 200.K 201.K 
cardinal (of a family of ordered sets) 31 l.F 
Cartesian (of a family of sets) 381.E 
Cartesian (of mappings) 381.C 
Cartesian (of ordered simplicial complexes) 

7o.c 
Cartesian (of S.S. complexes) 70.E 
Cartesian (of sets) 381.B 
Cauchy (of series) 379.F 
complex (of cell complexes) 70.D 
cross- (in cohomology groups of a space) 201.5 
cross- (in homology groups of a space) 201.5 
cross- (of vector bundles) 237.C 
crossed (of a C*-algebra) 36.1 
crossed (of a commutative ring and a group) 
29.D 

crossed (in von Neumann algebra theory) 
308.1 

cup (of cohomology classes) 201.1 
cup (in K-theory) 237.C 
cup, reduction theorem 200.M 
cup of derived functors 200.K 
difference 337.1 
direct -direct product 
divergent infinite 374.F 
exterior (of differential forms) 105.Q 
exterior (of elements of a linear space) 256.0 
exterior (of a p-vector and q-vector) 256.0 
exterior (of two vectors) 442.C 
external (of derived functors) 200.K 
Euler 450.V 
fiber, over S 52.G 
free (of groups) 190.M 
Hermitian inner 256.Q 
of ideals of a commutative ring 67.8 
of inertia 271.E 
infinite 379.G 
infinite App. A, Table lO.VI 
inner (in a Hermitian linear space) 256.4 
inner (in a Hilbert space) 197.B 
inner (in a metric vector space) 256.H 

inner (for a pairing) 424.G 
inner (with respect to a linear space and its dual 
space) 256.G 

inner (of two hyperspheres) 76.A 
inner (of two n-tuples) 256.A 
inner (of two vectors) 442.B 
inner, space 442.B 
internal (of derived functors) 200.K 
interior (of a differential form with a vector 
field) 105.Q 

intersection (of homology classes) 201.0 
intersection (of two subvarieties) 16.Q 
Kronecker (of matrices) 269.C 
logical (of propositions) 411.B 
ordinal (of a family of ordered sets) 311.G 
partial 379.G 
Pontryagin 203.D 
projective C*-tensor 36.H 
proper (of two normal g-lattices) 27.A 
restricted direct 6.B 
Riemannian (of Riemannian manifolds) 364.A 
scalar (of linear operators) 37.C 
scalar (of two vectors) App. A, Table 3.1 
scalar triple (of three vectors) 442.C 
skew (of measurable transformations) 136.D 
slant 201.K 
smash 202.F 
spatial tensor 36.H 
sum of 216.A 
symmetric (of a topological spac:e) 70.F 
tensor (of A-homomorphisms) 277.5 
tensor (of algebras) 29.A 
tensor (of A-modules) 277.5 
tensor (of chain complexes) 201.5 
tensor (of cochain complexes) 201.5 
tensor (of distributions) 125.K 
tensor (of Hilbert spaces) 308.C 
tensor (of linear mappings) 256.1 
tensor (of linear representations) 362.C 
tensor (of linear spaces) 256.1 
tensor (of locally convex spaces) 424.R 
tensor (of sheaves) 383.1 
tensor (of vector bundles) 147.F 
tensor (of von Neumann algebras) 308.C 
torsion (in a category) 200.K 
torsion (of two A-modules) 2OO,D,K 
vector 442.C App. A, Table 3.1 
vector triple 442.C, App. A, Table 3.1 
wedge (of derived functors) 200.K 
Weierstrass canonical 429.B 
Whitehead 202.P 

product algebraic variety 16.A 
product bundle 147.E 
product category 52.B 
product complex 200.H 350.D 
product decomposition, dual direct 422.H 
product double chain complex 200.E 
product event 342.B 
product formula 

(for the Hilbert norm-residue symbol) 14.R 
(on invariant Ham measures) 225.E 
(for the norm-residue symbol) 14.Q 
(on valuations) 439.H 
Trotter 3 15.F 

production planning 376 
production rule 3 1 .B 
product mapping 425.K 
product measure 270.H 
product measure space 270.H 

I 



2081 Subject Index 
Projective set of class n 

complete 270.H 
product metric space 273.B 
product of inertia 271.E 
product rule 299.D 
product space 425.L 

reduced 202.Q 
product theorem for dimension 117.C 
product topological space 425.L 
product topology 425.L 
product uniformity 436.E 
product uniform space 436.E 
profjnite groups 210.C 
program 75.C 

machine-language 75.C 
program evaluation and review technique 376 
programming 75.C 385.B 

bilinear 364.D 
chance-constrained 408.A 
convex 264.C 
disjunctive 264.C 
dynamic 127.A 264.C 
fractional 264.C 
geometric 264.D 
integer 264.C 
linear 264.C 
linear mathematical 264.D 
mathematical 264.A 
multiobjective 264.C 
multistage 264.C 
network 264.C 
nonconvex 264.D 
parametric 264.C 
stochastic 264.C 408.A 
stochastic, model 307.C 
two-stage linear, under uncertainty 255.F 
two-stage stochastic 408.A 

programming problem 
all-integer 215.A 
concave 292.A 
convex 292.A 
linear 255.A 
mathematical 264.B 
mixed integer 215.A 
nonlinear 264.C 
pure-integer 215.A 
quadratic 292.A 349.A 
O-1 integer 215.A 

progression 
arithmetic 379.1, App. A, Table 10.1 
geometric 379.1, App. A, Table 10.1 

progressive (set) 407.B 
progressively measurable (stochastic process) 407.B 
progressive process 407.B 
projecting (in a projective space) 343.B 
projection 

(of a covering space) 367.B 
(from a direct product set) 381.E 
(of a fiber bundle) 147.B 
(of a fiber space) 148.B 
(of a Hilbert space) 197.E 
(onto a homogeneous space) 199.A 
(in a projective space) 343.B 
(to a quotient set defined by an equivalence 

relation) 135.B 
(on a tangent bundle of a Banach manifold) 
286.K 

canonical (on modules) 277.F 
canonical (onto a quotient set) 135.B 
center of (in projective geometry) 343.B 
Lie minimal 76.B 

method of orthogonal (of H. Weyl) 323.G 
orthogonal 139.E,G 
orthogonal (on a Hilbert space) 197.E 
parallel (in an affine space) 7.C 
regular knot 235.A 
relaxation with 440.E 
stereographic 74.D 
unramified (of a covering surface) 367.B 

projection matrix 269.1 
projection method, Rosen’s gradient 292.E 
projection operator (in a Hilbert space) 197.E 
projective 

(Banach space) 37.M 
(object in an Abelian category) 200.1 

projective (object) 200.1 
projective algebraic variety 16.A 

fundamental theorems of 72.F 
quasi- 16.C 

projective A-module 277.K 
projective approximation method 304.B 
projective C*-tensor product 36.H 
projective class 200.4 
projective class group 200.K 
projective collineation 343.D 

in the wider sense 343.D 
projective connection 80.0 
projective coordinates 343.C 
projective coordinate system 343.C 
projective curvature tensor App. A, Table 4.11 
projective deformation (between surfaces) 110.B 
projective determinacy 22.H 
projective differential geometry 1lO.B 
projective dimension (of a module) 200.K 
projective frame (in projective geometry) 343.C 
projective general linear group 60.B 

of degree n over K 60.B 
projective geometry 343 

finite-dimensional 343.B 
fundamental theorem of 343.D 
general 343.B 
of paths 109 

projective limit 
(in a category) 210.D 
(of a projective system of sets) 210.B 
(of a projective system of topological groups) 
423.K 

projective limit group 210.C 
projective limit space 210.C 
projective line 343.B 
projective line element 110.B 
projectively flat space App. A, Table 4.11 
projectively related (fundamental figures) 343.B 
projective mapping (in projective geometry) 343.B 
projective module, (R, S)- 200.K 
projective morphism 16.E 

quasi- 16.E 
projective plane 343.B 

Cayley 54 
finite 241.B 

projective representation 
(of a group) 362.5 
irreducible 362.5 
similar 362.5 

projective resolution 
(in an Abelian category) 200.1 
left (of an A-module) 200.C 
‘$- 200.4 

projective scheme 16.E 
quasi- 16.E 

projective set of class n 22.D 



Subject Index 

Projective space 
2082 

projective space 343.B 
complex 343.D 
infinite-dimensional complex 56.C 
infinite-dimensional real 56.B 
over A 147.E 
left 343.F 
real 343.D 
right 343.F 

projective special linear group 60.B 
(over a noncommutative field) 60.0 

projective special unitary group over K 60.H 
projective symplectic group over K 60.L 
projective system 

(in a category) 210.D 
(of groups) 210.C 
(of sets) 210.B 
(of topological groups) 423.K 
(of toplogical spaces) 210.C 

projective topology 424.R 
projective transformation 343.D 364.F 

group of 343.D 
regular 343.D 
singular 343.D 
singular, of the kth species 343.D 

projective transformation group 343.D 
projective unitary group 60.F 
projective variety 16.A 
prolate App. A, Table 3.V 
proliferation (of errors) 138.D 
prolongable (Riemann surface) 367.F 
prolongation 

(along a curve in a covering surface) 367.B 
(of a Riemann surface) 367.F 
(of a solution of an ordinary differential equa- 

tion) 316.C 
(of a system of partial differential equations) 
428.B,F 

(of a valuation) 439.B 
analytic 198.G 
first (of P) 191.E 
kth (of G) 191.D 
kth (of a Lie subalgebra) 191.D 
kth (of P) 191.E 

prolongational limit set 
first negative 126.D 
first positive 126.D 

proof, consistency 156.D 
for pure number theory 156.E 

proof theory 156.D 
propagation 

of chaos 340.F 
equation of sound 325.A 
of errors 138.C 
of singularities 325.M 
wave 446 

proper 
(continuous mapping) 425.W 
(equivalence relation in an analytic space) 

23.E 
(leaf) 154.D 
(Lorentz group) 258.A 
(morphism of scheme) 16.D 
(PL embedding) 65.D 

proper affine transformation 7.E 
proper class (in set theory) 381.G 
proper complex Lorentz group 258.A 
proper component (of an intersection of subvarietie 

16.G 
proper convex function 88.D 
proper factor (of an element of a ring) 67.H 

.s) 

proper flag manifold 199.B 
proper function (of a boundary value problem) 

315.B 
proper hypersphere (in hyperbolic geometry) 

285.C 
proper Lorentz group 60.3 
properly convex (subset of a sphere) 274.E 
properly discontinuous transformation group 

122.A 
properly divergent 379.A 
properly equivalent (binary quadratic forms) 

348.M 
properly infinite 308.E 
properly intersect (on a variety) 16.G 
properly (n - I)-dimensional quadric hypersurface 

350.G 
properly posed 

(initial value problem) 321.E 
(problems for partial differential equations) 

322.A 
proper mapping(s) 425.W 

fundamental theorem of 16.X 
proper meromorphic mapping (between analytic 

spaces) 23.D 
proper modification (of an analytic space) 23.D 
proper motion 

in Euclidean geometry 139.B 
of a star 392 

proper orthogonal group 60.1258.A 
proper orthogonal matrix 269.5 
proper product (of two normal g-lattices) 27.A 
proper quadric surface 350.B 
proper rotation group 258.A 
proper subset 38 l.A 
proper time 258.A 
proper transform (of a subvariety) 16.1 
property (properties) 41 l.G 

approximation 37.L 
asymptotic (of solutions of a system of linear 

ordinary differential equations) 314.A 
Baire 425.N 
basic (of a structure) 409.B 
bounded approximation 37.L 
clustering 402.G 
combinatorial 65.A 
continuity, for Tech theory 201.M 
of continuity (in a continuous geometry) 85.A 
countably productive 425.Y 
covering homotopy 148.B 
duality (of linear spaces) 256.G 
equivalence 135.A 
finite intersection 425,s 
finite subset 396.F 
global (in differential geometry) 109 
homotopy extension 202.E 
in the large (in differential geometry) 109 
local (in differential geometry) 109 
local (of a pseudodifferential operator) 345.A 
Markov 261.8 
micro-pseudolocal (of a pseudodifferential 

operator) 345.A 
minimum curvature 223.F 
minimum norm 223.F 
P conjecture 235.B 
pseudolocal (of a pseudodifferential operator) 

345.A 
pseudo-orbit tracing 126.J 
reproducing (of a probability distribution) 

341.E, App. A, Table 22 
in the small (in differential geometry) 109 



2083 Subject Index 
q-expansion formula 

spectral 136.E 
star-finite 425,s 
strong Markov 261.B 
topological 425.G 
uniformity 399.N 
universal mapping 52.L 

proper value 
(of a boundary value problem) 315.B 
(of a linear mapping) 269.L 
(of a linear operator) 390.A 
(of a matrix) 269.F 

proper variation 279.F 
proper vector 

(belonging to an eigenvalue) 269.F 
(of a linear operator) 390.A 
(of a linear transformation) 269.L 

proposition(s) 
existential 41 l.B 
modal 411 .L 
universal 41 l.B 
variables 41 l.E 

propositional calculus 41 l.F 
propositional connectives 41 l.E 
propositional function 4Jl.C 
propositional logic 41 l.E 
provable (formula) 411.1 
proximity function (of a meromorphic function) 

272.B 
Priifer ring 200.K 
pseudoanalytic function, K- 352.B 
pseudo-arc 79.D 
pseudocompact (space) 425.S 
pseudoconformal geometry 344.A 
pseudoconformally equivalent 344.A 
pseudoconformal transformation 344.A 
pseudoconvex (domain) 21.G 

Cartan 21.1 
d- 21.G 
Levi 21.1 
locally Cartan 2 1 .I 
locally Levi 21.1 
strictly 344.A 
strongly 21.G 

pseudodifferential operator 251.0 274.F 345 
pseudodistance 

Carathtodory 21.0 
Kobayashi 21.0 

pseudodistance function 273.B 
pseudofunction 125.C 
pseudogeometric ring 284.F 
pseudogroup (of topological transformations) 

105.Y 
of transformations (on a topological space) 
90.D 

pseudogroup structure 105.Y 
pseudo-Hermitian manifold 344.F 
pseudointerior 382.B 
pseudo-isotopic 65.D 
pseudo-isotopy 65.D 
pseudolocal property (of a pseudodifferential opera- 

tor) 345.A 
micro- 345.A 

pseudomanifold 65.8 
pseudometric 273.B 
pseudometric space 273.B 

indiscrete 273.8 
pseudometric uniformity 436.F 
pseudometrizable 436.F 
pseudonorm (on a topological linear space) 37.0 

424.F 

1 pseudo-orbit 126.5 
I CL- 126.5 
I tracing property 126.5 
~ pseudo-ordering 311.H 

pseudopolynomial, distinguished 21.E 
pseudorandom numbers 354.B 
pseudo-Riemannian metric 105.P 
pseudo-Runge-Kutta method 303.D 
pseudosphere 111.1 285.E 
pseudotensorial form 80.G 
pseudovaluation 439.K 

$-collective 354.E 
psi function 174.B 
psychometrics 346 
Puiseux series 339.A 
pullback 

(of a differential form) 105.Q 
(of a distribution) 125.4 
(of a divisor) 16.M 

Puppe exact sequence 202.G 
pure 

(continued fraction) 83.C 
(differential form) 367.H 
(state) 351.B 

pure geometry 18 1 
pure ideal 284.D 
pure integer programming problem 215.A 
purely contractive 251.N 
purely contractive part 251.N 
purely d-dimensional analytic set 23.B 

(at a point) 23.B 
purely discontinuous distribution 341.D 
purely imaginary number 74.A 
purely infinite (von Neumann algebra) 308.E 
purely inseparable 

(extension of a held) 149.H 
(rational mapping) 16.1 

purely inseparable element (of a field) 149.H 
purely n-codimensional 125.W 
purely nondeterministic 395.D 
purely transcendental extension 149.K 
pure number theory 156.E 
pure periodic continued fraction 83.C 
pure phase 402.G 
pure point spectrum 136.E 
pure strategy 173.B 
pursuit, curve of 93.H 
push-down automaton 31.D 
push-down storage 96.E 
Putnam’s theorem 251.K 
Pyatetskii-Shapiro reciprocity law, Gel’fand- 

437.DD 
Pythagorean closure (of a field) 155.C 
Pythagorean extension (of a field) 155.C 
Pythagorean field 139.B 155.C 
Pythagorean number 145 
Pythagorean ordered field 60.0 
Pythagorean theorem 139.D 

Q 

Q (rational numbers) 294.A,D 
q-block bundle 147.Q 
q-block structure 147.Q 
q-boundary 201.B 
q-chains 201.B 
q-cochains, singular 201.H 
q-cycle 201. B 
q-dimensional homology classes 201. B 
q-expansion formula 134.1 
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q-face 
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q-face 70.B 
q-function 

Chebyshev 19.G, App. A, Table 2O.VII 
simplest Chebyshev 19.G 

q-numbers 130.A 
q-representation 351.C 
q-simplex 

oriented 201 .C 
singular 201 .E 
standard 201.E 

qth homology group 201.8 
Q-manifold 382.D 
Q-matrix 260.F 
Q-spaces 425.BB 
QR method 298.E 
QZ method 298.C 
QCD (=quantum chromodynamics) 132.D 
q.e. (= quasi-everywhere) 338.F 
QFD (= quantum flavor dynamics) 132.D 
quadrangles 155.F 

complete 343.C 
quadrangular set of six points 343.C 
quadrant, first (of a spectral sequence) 200.5 
quadratic differential (on a Riemann surface) 1 l.D 
quadratic equation lO.D, App. A, Table 1 
quadratic field(s) 347 

complex 347.A 
imaginary 347.A 
real 347.A 

quadratic form(s) 348 
(on a linear space) 256.H 
bilinear form associated with 256.H 
binary 348.M 
complex 348.A.B 
definite 348.C 
equivalent 348.A 
indefinite 348.C 
matrix of 348.A 
negative definite 348.C 
negative semidefinite 348.C 
nondegenerate 348.A 
positive definite 348.C 
positive semidefinite 348.C 
primitive binary 348.M 
properly equivalent binary 348.M 
real 348.A,C 
reduced 348.1 
Siegel zeta function of indefinite 450.K 

quadratic irrational number, irreducible 83.C 
quadratic loss function 398.A 399.E 
quadratic nonresidue 297.H 
quadratic programming 349 

nonconvex 264.D 
quadratic programming problem 292.A 349.A 
quadratic reciprocity of Jacobi symbol, law of 

297.1 
quadratic reciprocity of Legendre symbol, law of 

297.1 
quadratic residue 297.H 
quadratic transformation 16.1 

locally 16.K 
locally (of an algebraic surface) 15.G 
locally (of a complex manifold) 72.H 

quadratrix 187 
quadrature 107.A, App. A, Table 15.111 

of a circle 179.A 
method of 313.D 
solution by App. A, Table 14.1 
spectral density 397.N 

quadric(s) 350.A 

confocal, family of 350.E 
Darboux llO.B 
pencil of 343.E 

quadric cone 350.B,G 
quadric conical hypersurface 350.G 
quadric conical surface 350.B 
quadric cylindrical hypersurface 350.G 
quadric hypersurface 350G,I 

(in a projective space) 343.D 350 I 
central 350.G 
elliptic 350.G 
of the hth species, singular (in a projective 
space) 343.E 

hyperbolic 350.G 
noncentral 350.G 
parabolic 350.G 
pencil of 343.E 
properly (n - l)-dimensional 350.G 
regular (in a projective space) 343.E 

quadric surface(s) 350 
canonical form of the equation of 350.B 
central 350.B 
degenerate 350.B 
proper 350.B 

quadrivium 187 
qualification 

Gauignard’s constraint 292.B 
Slater’s constraint 292.B 

qualitative (data) 397.A 
quality 404.A 
quality characteristic 404.A 
quality control 404.A 

statistical 404.A 
quantilier 411 .C 

bounded 356.B 
existential 41 l.C 
Hilbert’s c- 411.J 
universal 41 l.C 

quantile 
a- 396.C 
of order p 341.H 
restricted 33.8 

quantitative (data) 397.A 
quantity (quantities) 

analog 138.B 
digital 138.B 
first fundamental (of a surface) 11 l.H 
second fundamental (of a surface) 11 l.H 
thermodynamical 419.A 

quantization 351.D 
second 377.B 

quantized contact transformation 274.F 
quantum chromodynamics (QCD) 132.C,D 
quantum electrodynamics 132.C 
quantum field theory 132.C 150.C 
quantum flavor dynamics (QFD) 132 D 
quantum logic 351.L 
quantum mechanics 351 
quantum number 

azimuthal 351.E 
orbital magnetic 351.E 
principal 351.E 

quantum statistical mechanics 402.A 
quartic equation lO.D, App. A, Table 1 
quartile(s) 396.C 

first 396.C 
third 396.C 

quasi-affne (algebraic variety) 16.C 
quasi-algebraically closed field 118.F 
quasi-analytic function 58.F 



2085 Subject Index 
r-section 

family of %.A 
in the generalized sense 58.F 
set of 58.F 

quasi-Banach space 37.0 
quasibarreled (locally convex space) 424.1 
quasibounded harmonic function 193.G 
quasicomplete (locally convex space) 424.F 
quasiconformal mappings 352 

extremal 352.C 
quasiconformal reflection, theorem of 352.C 
quasicontinuity principle (in potential theory) 338.1 
quasicontinuous function 338.1 
quasidiscrete spectrum 136.E 
quasidual space (of a locally compact group) 437.1 
quasi-equivalent unitary representation 437.C 
quasi-everywhere (in potential theory) 338.F 
quasi-Frobenius algebra 29.H 
quasi-Fuchsian group 234.B 
quasigroup 19O.P 241.C 
quasi-independent of path (a response probability) 

346.G 
quasi-invariant measure 225.5 
quasi-inverse (in a Banach algebra) 36.C 
quasi-inverse element (of an element of a ring) 

368.B 
quasi-invertible element (of a ring) 368.B 
quasilinear 

(operator) 224.E 
(partial differential equation) 320.A 323.D 

326.A 
quasilocal ring 284.D 
quasinilpotent (operator) 251.F 
quasinorm (of a vector) 37.0 
quasinormal family (of analytic functions) 435.E 
quasinormed linear space 37.0 
quasi-perfect mapping 425.CC 
quasiperiodic (translational flow) 126.L 
quasiperiodic motion 136.G 404.F 
quasiperiodic solution (of Hill’s differential equation) 

268.B 
quasiprojective algebraic variety 16.C 
quasiprojective morphism 16.E 
quasiprojective scheme 16.E 
quasi-p-valent 438.E 
quasiregular element (of a ring) 368.B 
quasiregular function, K- 352.B 
quasisemilocal ring 284.D 
quasisimple ring 368.E 
quasisplit algebraic group, k- 13.0 
quasistable distribution 341.G 
quasistatic adiabatic process 419.B 
quasistationary electric circuit 130.B 
quasisymmetric 384.E 
quasivariational inequalities 440.D 
quaternion 29.B 
quaternion algebra 29.D 

generalized 29.D 
Hamilton 29.B 
total definite 27.D 

quaternion field 29.B 
quaternion group 151.B 

generalized 15 1 .B 
quaternion hyperbolic space 412.G 
quaternion unimodular group 412.G 
quaternion vector bundle 147.F 
query 96.F 
questions 351.L 
queue 96.E 

length 260.H 
queuing model 260.H 307.C 

queuing theory 260.H 307.C 
quotient(s) 

(of an ideal and a subset of a commutative ring) 
67.B 

(in a lattice) 243.F 
(of numbers) 297.A 
(of an ordered set) 311.B 
difference 104.A 
differential (at a point) 106.A 
lield of 67.G 
geometric 16.W 
group of (of a commutative semigroup) 190.P 
Herbrand 200.N 
integral (in the division algorithm of poly- 
nomials) 337.C 

module of, of an R-module with respect to S 
67.G 

prime (in a lattice) 243.F 
Rayleigh 68.H 304.B 
ring of, of a ring with respect to a prime ideal 

67.G 
ring of, of a ring with respect to S 67.G 
ring of total 67.G 

quotient bialgebra 203.G 
quotient bundle 147.F 

(of a vector bundle on an algebraic variety) 
16.Y 

quotient category 52.N 
quotient chain complex 200.C 
quotient coalgebra 203.F 
quotient complex 201.L 
quotient group 

(of a group) 190.C 
(of a topological group) 423.E 

quotient G-set 362.B 
quotient lattice 243.C 
quotient Lie algebra 248.A 
quotient Lie group 249.G 
quotient (linear) space 

(by a linear subspace) 256.F 
(with respect to an equivalence relation) 256.F 

quotient mapping 425.G 
hereditarily 425.G 

quotient measure 225.H 
quotient object 52.D 
quotient representation (of a linear representation) 

362.C 
quotient set (with respect to an equivalence relation) 

135.B 
quotient singularity 418.C 
quotient space 

(by a discontinuous transformation group) 
122.A 

(of a linear space) 256.F 
(of a topological space) 425.L 
left (of a topological group) 423.E 
right (of a topological group) 423.E 

quotient system (of an algebraic system) 409.C 
quotient topological space 425.L 
quotient topology 425.L 

R 

R (real numbers) 294.A 355.A 
p-set 308.1 
r-closed space 425.U 
r-frame, tangent 105.H 
r-pie point (of a plane algebraic curve) 9.B 
r-section 

(of a Euclidean (simplicial) complex) 70.B 
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r-skeleton (of a Euclidean complex) 
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(of a simplicial complex) 70.C 
r-skeleton (of a Euclidean complex) 70.B 
rth differential 286.E 
rth syzygy 369.F 
R-estimator 371.H 
R-progenerator 29.K 
(R, k)-summable 379,s 
(R, S)-exact sequence (of modules) 200.K 
(R, Qinjective module 200.K 
(R, S)-projective module 200.K 
R-action (continuous) 126.B 
R”-valued random variable 342.C 
Raabe criterion App. A, Table 10.11 
Racah algebra 353.A 
Racah coefficient 353.B 
Rademacher-Men’shov theorem 317.B 
Rademacher system of orthogonal functions 317.C 
radial equation 351.E 
radial maximal function 168.B 
radian 139.D 
radiation condition, Sommerfeld 188.D 
radical(s) 

(of an algebraic group) 13.1 
(of a Banach algebra) 36.D 
(of a commutative Banach algebra) 36.E 
(of a commutative ring) 67.B 
(of an ideal) 67.B 
(of a Jordan algebra) 231.B 
(of a Lie algebra) 248.D 
(of a ring) 368.H 
Jacobson (of a ring) 67.D 
nilpotent (of a Lie algebra) 248.D 
solution by (of an algebraic equation) 10.D 
solvable by 172.H 
unipotent 13.1 

radius (radii) 
(of a solid sphere) 140 
(of a sphere) 139.1 
associated convergence 21 .B 
of convergence (of a power series) 339.A 
of curvature (of a plane curve) 11 l.E 
of curvature (of a space curve) 11 l.F 
injectivity 178.C 
of meromorphy (of a power series) 339.D 
of principal curvature (of a surface) 11 l.H 
spectra1 126.K 251.F 390.A 
of torsion (of a space curve) 11 l.F 

Radb solution, Douglas- (to Plateau problem) 
275.C 

Radon, decomposition formula of 125.CC 
Radon integral, Lebesgue- 94.C 
Radon measure 270.1 

positive 270.1 
Radon-Nikodym derivative 270.L 380.C 
Radon-Nikodym property 443.H 
Radon-Nikodym theorem 270.L 380.C 

for vector measures 443.H 
Radon transform 218.F 

conjugate 218.F 
raising the subscripts (for tensor fields) 417.D 
Ramanujan conjecture 32.D 
Ramanujan-Petersson conjecture 32.D 
Ramanujan sum 295.D 
ramification, degree of (of a branch point) 367.B 
ramilication field (of a prime ideal) 14.K 

mth 14.K 
ramification group 

(of a finite Galois extension) 257.D 
(of a prime ideal) 14.K 

mth 14.K 
ramification index 

(of an algebroidal function) 17.C 
(of a finite-extension) 257.D 
(of a prime ideal over a field) 14.1 
(of a valuation) 439.1 
relative (of a prime ideal over a field) 14.1 

ramification numbers (of a prime ideal) 14.K 
ramification point (of an analytic covering space) 

23.E 
ramification theorem (in the theory of algebroidal 

functions) 17.C 
conductor- (in class field theory) 59.C 

ramified (prime ideal) 14.1 
ramified covering space 23.B 
ramified element 198.0 
ramified type theory 41 l.K 
random, at 401.F 
random current 395.1 
random distribution 395.H 407.C 

with independent values at every point 407.C 
strictly stationary 395.H 
strongly stationary 395.H 
weakly stationary 395.C 
in the wider sense 395.C 
in the wide sense 407.C 

random effect 102.A 
random-effects model 102.A 403.C 
random event 342.B 
random field 407.B 
randomization 102.A 
randomized (decision function) 398.A 
randomized block design 102.B 
randomized design, completely 102.A 
randomized estimator 399.B 
randomized test 400.A 
random measure 

Gaussian 407.D 
Poisson 407.D 

random numbers 354 
pseudo- 354.B 

random sample 374.A 396.B 401.F 
random sampling procedure 373.A 
random Schriidinger equations 340.E 
random sequence 354.E 
random tensor field 395.1 
random variable(s) 342.C 

distribution of 342.C 
independent 342.C 
joint 342.C 
measurable with respect to a family of 342.C 
n-dimensional 342.C 
one-dimensional probability distribution of 
342.C 

probability distribution of 342.C 
R”-valued 342.C 
(S, @)-valued 342.C 

random walk 260.A 
general 260.A 
standard 260.A 

range 
(of a correspondence) 358.B 
(of a linear operator) 37.C 
(of a mapping) 381.C 
(of a population characteristic) 1396.C 
(of statistical data) 397.C 
closed, theorem 37.5 
equianharmonic (of points) 343.D 
harmonic (of points) 343.D 



2087 Subject Index 
Reaction, law of 

interquartile 397.C 
long 375.B 
metastable (of embeddings) 114.D 
numerical (of a linear operator) 251.E 
point (in projective geometry) 343.B 
point, of the number system (in projective 
geometry) 343.C 

sample 396.C 
short 375.B 
stable (of embeddings) 114.D 
of values (of a meromorphic function) 62.A 

rank 
(of an analytic mapping) 23.C 
(of a bilinear mapping) 256.~ 
(of a complex) 13.R 
(of a connected compact Lie group) 248.X 
(of an element of a complex) 13.R 
(of an elliptic curve over Q) 118.D 
(of first-order predicates) 41 l.K 
(of a free Abelian group) 2.C 
(of a free group) 161.A 
(of a free module) 277.G 
(of a graph) 186.G 
(of a Lie algebra) 248.K 
(of a linear mapping) 256.~ 
(of a matrix) 269.D 
(of a module) 2.E 
(of a normalj-algebra) 384.C 
(of a prime ideal) 67.E 
(of a quadratic form) 348.A 
(of a sesquilinear form) 256.Q 
(of a symmetric Riemannian homogeneous 

space) 412.D 
(of a Tits system) 151.5 
(of a valuation) 439.B 
bispinor 258.B 
of finite (operator) 68.C 
k- 13.Q 
p- (of a torsion-free additive group) 2.E 
at a point (of an analytic mapping) 23.C 
rational (of a valuation) 439.B 

rank correlation 
Kendall 371.K 
Spearman 371.K 

rank function 66.F 
Rankine-Hugoniot relation 204.G 205.B 
rank k, irreducible tensor of 353.C 
rank test 

signed 371.B 
Wilcoxon signed 371.B 

Rao inequality, Cramer- 399.D 
Raphson method, Newton- 301.D 
rapidly decreasing ?-function 168.B 
rapidly decreasing distribution 125.0 
rapidly decreasing sequence 168.B 
rarefied gas, equation of 41.A 
rate 

coding 213.D 
hazard 397.0 
infinitesimal birth 260.G 
intinitesimal death 260.G 
of interest, assumed 214.A 
transmission 213.A 

ratio 
anharmonic 343.D 
of the circumference of a circle to its diameter 

332 
cross 343.D 
damping (of a damped oscillation) 318.B 
direction (of a line in an afline space) 7.F 

double 343.D 
likelihood 400.1 
likelihood, test 400.1 
monotone likelihood 374.5 
odds 397.K 
Poisson 271.G 
sequential probability, test 400.L 
stiffness 303.G 

ratio ergodic theorem 136.B 
ratio estimator 373.C 
rational action 226.B 
rational cohomology group 200.0 
rational curve 9.C 93.H 
rational differential equation 288.A 
rational divisor 

k- (on an algebraic curve) 9.C 
prime 9.C 

rational double point 418.C 
rational element 198.0 
rational entire function 429.A 
rational expression 337.H 

lield of 337.H 
rational extrapolation method 303.F 
rational function(s) 

field of 337.H 
generalized 142.B 
on a variety 16.A 

rational function field in n variables 149.K 
rational function matrix 86.D 
rational homomorphism 3.C 13.A 
rational injectivity 200.0 
rational integer 294.C 
rationally equivalent cycles 16.R 
rational mapping 16.1 

defmed along a subvariety 16.1 
purely inseparable 16.1 
separable 16.1 

rational number(s) 294.D 
denseness of 355.B 

rational operation 294.A 
rational point 118.E 

over a field 369.C 
k’- (of an algebraic variety) t6.A 

rational polyhedral, convex 16.2 
rational Pontryagin class 56.F 
rational rank (of a valuation) 439.B 
rational real number 294.E 
rational representation 

(of GL( I’)) 60.D 
(of a matrix group) 226.B 

rational singularity 418.C 
rational surface 15.E 
rational variety 16.5 

uni- 16.5 
ratio set 136.F 

asymptotic 308.1 

ray 
(in atline geometry) 7.D 
(in foundation of geometry) 155.B 
(modulo m*) 14.H 
(in a Riemannian manifold) 178.F 
asymptotic 178.F 
grazing 325.L 
paraxial 180.B 
unit 351.B 

Rayleigh principle 68.H 
Rayleigh quotient 68.H 298.C 304.B 
Rayleigh-Ritz method 46.F 271.G 
Rayleigh-Schriidinger series 331.D 
reaction, law of 271.A 
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real analytic (at a point) 106.K real submanifold, totally 365.M 
real analytic fiber bundle 147.0 real-time (computation) 19.E 
real analytic foliation 154.H real topological vector space 424.A 
real analytic function 106.K 198.H real-valued functions 165.B 

exponentially decreasing 125.BB real-valued measurable (cardinal) 33. F 
real analytic manifold 105.D real variable 165.C 
real analytic structure 105.D rearrangement 168.B 
real axis 74.C rearrangement invariant 168.B 
real closed field 149.N reciprocal equation 10.C 
real-compact space 425.BB reciprocal linear representation (of an algebra) 
real field 149.N 362.C 

formally 149.N reciprocal network 282.C 
totally 14.F reciprocal permutation representation (of a group) 

real form 412 362.B 
(of a complex algebraic group) 60.0 reciprocal spiral 93.H 
(of a complex Lie algebra) 248.P reciprocity 
normal (of a complex semisimple Lie algebra) of annihilators (in topological Abelian groups) 

248.4 422.E 
real function 165.B Artin’s general law of 59.C 
real Grassmann manifold 199.B complementary law of 14.0 
real Hilbert space 197.B Fourier 160.C 
real hyperbolic space 412.G general law of 14.0 
real hypersphere 76.A law of quadratic, of Jacobi symbol 297.1 

oriented 76.A law of quadratic, of Legendre symbol 297.1 
real hypersurface, spherical 344.C relations, Onsager’s 402.K 
real immersion, totally 365.M reciprocity law 297.1 
real infinite prime divisor 439.H for Dedekind sums 328 
real interpolation space 224.C explicit (for Hilbert norm-residue symbol) 
realizable 14.R 

(for a linear representation) 362.F Gel’fand&Pyatetskii-Shapiro (on unitary repre- 
(by a submanifold) 114.G sentation) 437.DD 

realization Shafarevich 257.H 
(of a linear time-varying system) 86.D record 96.B 
(of an S.S. complex) 70.E rectangle 140 
(of an S.S. mapping) 70.E latin 241.E 
minimal 86.D rectangular coordinates (in a Euclidean space) 

realization theorem (of a homotopy group) 202.N 90.B 
realization theory 86.D rectangular distribution App. A, Table 22 
real Lie algebra 248.A rectangular hyperbola 78.E 

compact 248.P rectangular hyperbolic coordinates 90.C 
real line 355.E rectangular matrix 269.A 
real linear space 256.A rectangular parallelepiped 140 
real monoidal transform 274.E rectifiable 
real number(s) 294.E 355 (current) 275.G 

Cantor’s theory of 294.E (curve) 93.F 246.A 
completeness of 294.E 355.B locally 143.A 246.A 
connectedness of 294.E rectifying plane 11 l.F 
continuity of 294.E rectifying surface 11 l.F 
Dedekind’s theory of 294.E rectilinear complex 70.B 
extended 87.E recurrence formulas for indefinite integrals App. 
infinitesimal 276.E A, Table 9.11 
irrational 294.E recurrence theorem 136.A,C 
mod 1 35.5.D recurrence time 260.C 
nonstandard 276.E mean 260.C 
rational 294.E recurrent 

real part 74.A (L&y process) 5.G 
real prime divisor 439.H (Markov chain) 260.B 
real projective space 343.D (Markov process) 261.B 

infinite-dimensional 56.B (nonsingular measurable transformation) 
real quadratic field 347.A 136.C 
real quadratic form 348.A,C (point of a dynamical system) 1:!6.E 
real representation (of a Lie group) 249.0 chain 126.E 
real root (of an algebraic equation) I0.E infinitely (measurable transformation) 136.C 
real simple Lie algebra linear (sequence) 295.A 

classical compact 248.T non- (Markov chain) 260.B 
exceptional compact 248.T null (point) 260.B 

real spectral measure 390.D positive (ergodic class) 260.B 
real Stiefel manifold positive (point) 260.B 

of k-frames 199.B regionally (flow) 126.E 
of orthogonal k-frame 199.B strongly (measurable transformation) 136.C 
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Reflexive law 

recurrent chain 260.B 
recurrent event 250.D 260.C 

delayed 260.C 
recurrent point 

(of a Markov chain) 260.B 
(of a Markov process) 261.B 

recurrent sequence of order r 295.A 
recurrent set 260.E 

chain 126.E 
recursive function(s) 356 

general 356.C,F 
partial 356.E,F 
primitive 356,A,B,F 
uniformly primitive 356.B 

recursively 
(define a partial recursive function) 356.E 
uniformly in Y 356.E 

recursively enumerable predicate 356.D 
recursively enumerable set 356.D 
recursive predicate 

general 356.C 
primitive 356.B 

recursive set 97 356.D 
general 97 

reduced 
(a closed linear subspace) 251.L 
(latin square) 241.A 
(scheme) 16.D 

reduced Abelian group 2.D 
reduced algebra 231.B 
reduced basis (of a lattice) 92.C 
reduced bundle (of a principal G-bundle) 147.5 
reduced character (of an algebra) 362.E 
reduced Clifford group 61.D 
reduced cone (of a topological space) 202.F 
reduced dual 437.L 
reduced extremal distance 143.B 
reduced form (of a linear structural equation 

system) 128.C 
reduced homology exact sequence 201.F 
reduced homology group 201.E 
reduced join 

(of homotopy classes) 202.Q 
(of mappings) 202.F 
(of topological spaces) 202.F 

reduced link polynomial 235.D 
reduced mapping cone 202.F 
reduced norm (of an algebra) 362.E 
reduced orthogonal group 61.D 
reduced product space 202.Q 
reduced quadratic form 348.1 
reduced representation (of an algebra) 362.E 
reduced residue system module m 297.G 
reduced square, Steenrod 64.B 
reduced square operation, Steenrod 64.B 
reduced suspension 

(of a topological space) 202.F 
n-fold 202.F 

reduced trace (of an algebra) 362.E 
reduced von Neumann algebra 308.C 
reducibility, axiom of 156.B 41 l.K 
reducible 

(algebraic equation) 10.B 
(algebraic variety) 16.A 
(continuous geometry) 85.A 
(fiber bundle) 147.5 
(in four color problem) 157.D 
(germ of an analytic set) 23.B 
(linear system) 16.N 
(linear system in control theory) 86.C 

(polynomial) 337.F 
(positive matrix) 269.N 
(representation) 362.C 
(Riemannian manifold) 364.E 
completely (A-module) 277.H 
completely (group) 190.L 
completely (representation) 362.C 

reductio ad absurdum 156.C 411.1 
reduction 

d’Alembert method of, of order 252.F 
good (of an Abelian variety) 3.N 
modulo 9I (of a representation) 277.L 
modulo m (of a linear representation) 362.F 
potential good (of an Abelian variety) 3.N 
potential stable (of an Abelian variety) 3.N 
stable (of an Abelian variety) 3.N 
stable (of a curve) 9.K 

reduction formula (of a surface) 110.A 
reduction theorem, cup product (on cohomology or 

homology of groups) 200.M 
reduction theory, Minkowski (on fundamental 

regions) 122.E 
reductive 

(algebraic group) 13.1 
(homogeneous space) 199.A 
(Lie algebra) 248.G 

reductive action 226.B 
defined by a rational representation 226.B 
geometrically 226.B 
linearly 226.B 
semi- 226.B 

reductive stabilizer 199.A 
Reeb component 154.B 
Reeb foliation 154.B 
Reeb stability theorems 154.D 
Ree group 151.1 
Reeh-Schlieder theorem 150.E 
Rees lemma, Artin- i84.A 
Ree type 

group of 151.5 
group of Janko- 151.5 

reference edge 281.C 
refinement 

(of a covering) 425.R 
(of a descending chain in a lattice) 243.F 
(of a normal chain in a group) 190.G 
barycentric 425.R 
cushioned 425.X 
A- (of a covering) 425.R 
star (of a covering) 425.R 

reflected wave 325.L 
reflecting barrier 115.B,C 
reflection 

(associated with @) 13.R 
(of a principal space) 139.B 
glide 92.E 
Schwartz’s principle of 74.E 198.G 
space 359 
theorem of quasiconformal 352.C 

reflection coefficient 387.D 
reflectionless potential 387.D 
reflection points (with respect to a circle) 74.E 
reflection positivity 150.F 
reflection principle 45.E 
reflexive 

(locally convex space) 424.0 
(relation) 358.A 
Banach space 37.G 

reflexive law 
(for an equivalence relation) 135.A 
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(on ordering) 311 .A 
refraction, atmospheric 392 
Regge behavior 386.C 
Regge poles 132.C 386.C 
regime, local 5 1 .B 
region 19.A 

acceptance 400.A 
confidence 399.4 
confidence, uniformly most powerful 399.Q 
confidence, uniformly most powerful unbiased 

399.Q 
critical 400.A 
Dirichlet 234.C 
of discontinuity 234.A 
estimation 399.Q 
feasible 264.B 292.A 
Ford fundamental 234.C 
fundamental (of a discrete transformation 

group) 122.B 
invariance of a confidence 399.Q 
of relative stability 303.G 
star 339.D 
tolerance 399.R 
unbiased confidence 399.Q 

regionally recurrent (flow) 126.E 
regionally recurrent on an invariant set 126.E 
region of absolute stability (of the Runge-Kutta (P, p) 

method) 303.G 
regression, line of 11 l.F,I 
regression analysis 403.D 
regression coefficient 397.H,J 403.D 
regression function 397.1 

linear 397.H 403.D 
regression hyperplane 403.D 
regression line 403.D 
regula falsi 3Ol.C 
regular 

(almost contact manifold) 110.E 
(almost periodic system) 290.B 
(boundary point) 120.D 
(cell complex) 70.D 
(closed set) 125.5 
(coherent I-module) 274.G 
(differential form on an algebraic variety) 16.0 
(Dirichlet form) 261.C 
(element of a connected Lie group) 249.P 
(element of a real Lie algebra) 248.B 
(estimator) 399.N 
(Green line) 193.5 
(kernel) 125.L 
(left ideal of a Banach algebra) 36.D 
(ordinal number) 312.E 
(permutation group) 151.H 
(point for an additive process) 5.G 
(point of an analytic set) 23.B 45.D 
(point with respect to an analytic set) 21.M 
(point with respect to the Dirichlet problem) 

207.B 
(point of a flow) 126.D 
(prime number) 14.L 
(sampling procedure) 373.A 
(spectra1 sequence) 200.5 
(submartingale) 262.D 
(at a subvariety) 16.B 
homogeneously 275.C 
of the hth species 343.E 
at the point at infinity (for a harmonic function) 

193.B 
along a subvariety (for a rational mapping) 
16.1 

regular afIine transformation 7.E 
regular Banach space 37.G 
regular boundary 

(of a diffusion process) 115.B 
domain with (in a Cm-manifold) 105.U 

regular chain (of integral elements) 428.E 
regular conditional probability 342.E 
regular cone 384.A 

self-dual 384.E 
regular covering (space) 91.A 
regular element 

(of a ring) 368.B 
p- (of a finite group) 362.1 

regular embedding 105.K 
regular extension (of a field) 149.K 
regular factorization 251.N 
regular frst integral 126.H 
regular form 16.0 
regular function(s) 198.A 

on an open set (of a variety) 16.B 
sheaf of germs of 16.B 
at a subvariety 16.B 

regular grammar 31.D 
regular graph 186.C 
regular integral element 191.1428.E 
regular integral manifold (of a differential ideal) 

428.E 
regularity 

abscissa of (of a Dirichlet series) 121.B 
axiom of (in axiomatic set theory) 33.B 
up to a boundary 112.F 
parameter of (of a Lebesgue measurable set) 

380.D 
regularization (of a distribution) 125.M 
regularizing (kernel) 125.L 
regular knot projection 235.A 
regular local equation (at an integral point) 428.E 
regular local ring 284.D 
regularly convex set 89.G 
regularly homotopic (immersion) 114.D 
regularly hyperbolic (partial differential equation) 

325.A,F 
regular mapping 

(between prealgebraic varieties) 16.C 
of class C’ 208.B 

regular matrix 269.B 
regular measure 270.F 

5% 270.F 
K- 270.F 

regular n-gon 357.A 
regular neighborhood 65.C 
regular neighborhood system 65.C 
regular outer measure 270.E 
regular perturbation 331.D 
regular point 

(in catastrophe theory) 51.F 
(of a differentiable mapping) 105 J 
(of a diffusion process) 115.B 
(for a Hunt process) 261.D 
(of a polyhedron or cell complex) 65.B 
(of a surface in ES) 11l.J 
semi- (of a surface in E3) lll.J 

regular polygon 357.A 
regular polyhedra 357.B 
regular polyhedral angle 357.B 
regular polyhedra1 group 151.G 
regular positive Radon measure 270.H 
regular process, positively 44.C 
regular projective transformation 343.D 
regular representation 
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Relative nullity, index of 

(of a group) 362.B orthogonality (on irreducible characters) 
(of a locally compact group) 69.B 362.G 
(of a topological transformation group) 437.A orthogonality (for square integrable unitary 
left (of an algebra) 362.C representations) 437.M 
left (of a group) 362.C period 11 .C 
right (of an algebra) 362.E Plucker (on Plucker coordinates) 90.B 
right (of a group) 362.E prey-predator 263.B 

regular ring 284.D proper equivalence (in an analytic space) 23.E 
regular ring (continuous geometry) 85.B Rankine-Hugoniot 204.G 205.B 
regular sequence (of Lebesgue measurable sets) reciprocity, Onsager’s 402.K 

380.D reflexive 358.A 
regular singularity (of a coherent &?-module) 274.H Riemann-Hurwitz 367.B 
regular singular point 254.B Riemann period 3.L 1 l.C 
regular solution (of a differential ideal) 428.E stronger 135.C 
regular space 425.4 symmetric 358.A 

completely 425.Q transitive 358.A 
regular submanifold (of a Cm-manifold) 105.L weaker 135.C 
regular system relationship algebra 102.5 

of algebraic equations 10.A relative Alexander cohomology group 201.M 
of parameters (of a local ring) 284.D relative algebraic number field 14.1 

regular transformation relative boundary 367.B 
(of a linear space) 256.B relative Bruhat decomposition 13.Q 
(of a sequence) 379.L relative Tech cohomology group 201.M 
totally (of a sequence) 379.L relative Tech homology group 201.M 

regular tube 193.K relative chain complex 200.C 
regular value 105.J relative cochain complex 200.F 
regulator (of an algebraic number field) 14.D relative cohomology group 215.W 

p-adic 450.5 relative complement (at two sets) 381.B 
regulator problem, optimal 80.F relative components (of a Lie transformation group) 
Reinhardt domain 21.B 110.A 

complete 21.B relative consistency 156.D 
reiteration theorem 224.D relative degree 
rejection 400.A (of a finite extension) 257.D 
related differential equation 254.F (of a prime ideal over a field) 14.1 
relation(s) 358 relative derived functor 200.K 

(among elements of a group) 190.C relative different 14.5 
(among the generators of a group) 161.A relative discriminant 14.5 
Adem (for Steenrod pth power operations) relative entropy 212.B 

64.B relative extremum, conditional 106.L 
Adem (for Steenrod square operations) 64.B relative frequency (of samples) 396.C 
analytic, invariance theorem of 198.K relative homological algebra 200.K 
antisymmetric 358.A relative homotopy group 202.K 
binary 358.A 41 l.G relative integral invariant 219.A 
canonical anticommutation 377.A Cartan’s 219.B 
canonical commutation 351.C 377.A,C relative invariant 12.A 226.A 
coarser 135.C relative invariant measure 225.H 
defining (among the generators of a group) relatively ample sheaf 16.E 

161.A relatively bounded (with respect to a linear operator) 
dispersion 132.C 331.B 
equivalence 135.A 358.A relatively closed set 425.J 
Euler 419.B relatively compact 
tiner 135.C (with respect to a linear operator) 331.B 
Fuchsian 253.A (maximum likelihood method) 399.M 
functional (among components of a mapping) (set) 425,s 

208.C (subset) 273.F 
functional, of class C’ 208.C relatively dense 126.E 
fundamental (among the generators of a group) relatively invariant measure 225.H 

161.A 419.A relatively minimal 15.G 16.1 
Gibbs-Duhem 419.B relatively minimal model 15.G 
Heisenberg uncertainty 351.C relatively open set 425.5 
Hurwitz (on homomorphisms of Abelian varie- relatively prime 
ties) 3.K (fractional ideals) 14.E 

identity 102.1 (numbers) 297.A 
incidence 282.A relatively stable 303.G 
inverse 358.A relative maximum (of a function) 106.L 
Legendre 134.F, App. A, Table 16.1 relative Mayer-Vietoris exact sequence 2Ol.L 
Maxwell 419.B relative minimum (of a function) 106.L 
n-ary 41 l.G relative neighborhood 425.5 
normal commutation 150.D relative norm (of a fractional ideal) 14.1 
order 311.A relative nullity, index of 365.D 
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Relative open set 
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relative open set 425.5 
relative ramification indek (of a prime ideal over a 

field) 14.1 
relative singular homology group 2Ol.L 
relative stability 303.G 

interval of 303.G 
region of 303.G 

relative topology 425.5 
relative uniformity 436.E 
relative uniform star convergence 310.F 
relativistically covariant 150.D 
relativity 

general principle of 359 
general theory of 359.A 
special principle of 359 
special theory of 359.A 

relativization 
(of a definition of primitive recursive functions) 

356.B 
(of a topology) 425.5 
(of a uniformity) 436.E 

relativized 356.F 
relaxation 215.A 

with projection 440.E 
relaxation oscillation 318.C 
relaxed continuity requirements, variational prin- 

ciples with 271.G 
Rellich-Dixmier theorem 351.C 
Rellich-Kato theorem 331.B 
Rellich lemma 68.C 
Rellich theorem 323.G 
Rellich uniqueness theorem 188.D 
remainder 297.A 337.C 

(in Taylor’s formula) 106.E 
Cauchy App. A, Table 9.IV 
Lagrange App. A, Table 9.IV 
Roche-Schlamilch App. A, Table 9.IV 

remainder theorem 337.E 
Chinese 297.G 

Remak-Schmidt theorem, Krull- (in group theory) 
19O.L 

Remmert-Stein continuation theorem 23.B 
Remmert theorem 23.C 
removable (set for a family of functions) 169.C 
removable singularity 

(of a complex function) 198.D 
(of a harmonic function) 193.L 

Renaissance mathematics 360 
renewal 

equation 260.C 
theorem 26O.C 

renormalizable 111 .B 132.C 15O.C 
super 15O.C 

renormalization 
constant 150.C 
equation 11 l.B 
group 111 .A 
method 11 l.A 

R&nyi theorem 123.E 
reoriented graph 186.8 
repeated integral 

(for the Lebesgue integral) 221.E 
(for the Riemann integral) 216.G 

repeated series 
by columns 379.E 
by rows 379.E 

replacement, axiom of 33.B 381.G 
replacement, model 307.C 
replica 13.C 
replication 102.A 

number of 102.B 
represent 

(a functor) 52.L 
(an ordinal number) 81.B 

representable 
(functor) 52.L 
linearly (matroid) 66.H 

representation(s) 362.A 
(of an algebraic system) 409.C 
(of a Banach algebra) 36.D 
(of a Jordan algebra) 231.C 
(of a knot group) 235.E 
(of a lattice) 243.E 
(of a Lie algebra) 248.8 
(of a mathematical system) 362.A 
(of a vector lattice) 310.D 
absolutely irreducible 362.F 
adjoint (of a Lie algebra) 248.B 
adjoint (of a Lie group) 249.P 
adjoint (of a representation) 362.E: 
analytic (of GL( V)) 60.B 
in terms of arc length (of a continuous arc) 

246.A 
canonical (of Gaussian processes) 176.E 
completely reducible 362.C 
complex (of a Lie group) 249.0 
complex conjugate 362.F 
conjugate 362.F 
contragredient 362.E 
coregular (of an algebra) 362.E 
cyclic (of a C*-algebra) 36.G 
cyclic (of a topological group) 437.A 
differential (of a unitary representation of a Lie 

group) 437s 
direct sum of 362.C 
double-valued 258.B 
dual 362.E 
equivalent 362.C 
factor (of a topological group) 437.E 
factor, of type I, II, or III 308.M 437.E 
faithful 362.B 
Fock 150.C 
Gel’fand (of a commutative Banach algebra) 
36.E 

generalized canonical (of Gaussian processes) 
176.E 

generating (of a compact Lie group) 249.U 
half-spin (even, odd) 61.E 
Herglotz’s integral 43.1 
induced 362.G 
induced (of a finite group) 362.G 
induced (of a unitary representation of a sub- 
group) 437.0 

integral (of a group) 362.G,K 
integral, Cauchy’s 21.C 
irreducible (of an algebra or a group) 362.C 
irreducible (of a Banach algebra) 36.D 
irreducible projective 362.5 
isomorphic 362.C 
isotropy 431.C 
KU&n-Lehmann 150.D 
kernel (of a Green’s operator) 189.B 
I-adic 3.E 
Lax 287.B,C 387.C 
left regular (of a group) 362.B 
linear - mear representation 
list 186.;’ 
Mandelstam 132.C 
matrix 362.D 
modular (of a finite group) 362.G 
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Resolvent set (of a linear operator) 

module of 69.D 
momentum 351.C 
without multiplicity 437.G 
normal (of a von Neumann algebra) 308.C 
ordinary (of a finite group) 362.G 
parametric 165.C 
parametric (of Feynman integrals) 146.B 
parametric (of a subspace of an atline space) 

7.c 
permutation (of a group) 362.B 
permutation, reciprocal (of a group) 362.B 
polynomial (of GL( V)) 60.D 
position 351.C 
projective (of a group) 362.5 
projective, irreducible 362.5 
quotient (of a linear representation) 362.C 
rational (of CL(V)) 60.D 
rational (of a matrix group) 226.8 
real (of a Lie group) 349.0 
reciprocal linear (of an algebra) 362.C 
reciprocal permutation (of a group) 362.B 
reduced (of an algebra) 362.E 
reducible 362.C 
regular (of a locally compact group) 69.B 
regular (of a topological transformation group) 
437.A 

regular, left (of an algebra) 362.C 
regular, left (of a group) 362.B 
regular, right (of an algebra) 362.E 
regular, right (of a group) 362.B 
Schrodinger 351.C 
semisimple 362.C 
similar 362.C 
similar matrix (semilinear mapping) 256.D 
similar projective 362.5 
simple 362.C 
slice 43 l.C 
special (of a Jordan algebra) 231.C 
spectral 390.E 
spherical (of a differentiable manifold) 11 l.G 
spherical (of a space curve) 11 l.F 
spherical (of a unimodular locally compact 

group) 437.2 
spin 61.E 
spin (of SO(n)) 60.5 
spinor, of rank 258.B 
strongly continuous (of a topological group) 

69.B 
sub- 362.C 
sub- (of a projective representation) 362.5 
tensor (of a general linear group) 256.M 
tensor product of 362.C 
translation, theorem 375.H 
transposed 362.E 
tree 96.D 
unit (of a group) 362.C 
unitary - unitary representation 
vector (of a Clifford group) 61.D 
weakly continuous (of a topological group) 
69.B 

zero (of an algebra) 362.C 
representation module 

(of a linear representation) 362.C 
faithful 362.C 

representation problem (on surfaces) 246.1 
representation ring 237.H 
representation space 

(of a Banach algebra) 36.D 
(of a Lie algebra) 248.B 
(of a Lie group) 249.0 

(of a unitary representation) 437.A 
representative (of an equivalence class) 135.B 
representative function (of a compact Lie group) 

249.U 
representative ring (of a compact Lie group) 

249.U 
, representing function (of a predicate) 356.B 

representing function (of a subset) 381.C 
representing measure 164.C 
reproducing kernel 188.G 
reproducing property (of a probability distribution) 

341.E, App. A, Table 22 
reproduction function 263.A 
requirements, variational principles with relaxed 

continuity 271.G 
reserve, liability 214.B 
residual (subset of a directed set) 311.D 
residual limit set 234.E 
residual set 126.H 425.N 
residual spectrum 390.A 
residue(s) 

(of a complex function) 198.E 
calculus of 198.F 
of the nth power (modulo p) 14.M 
norm- (modulo p) 14.P 
norm- (symbol) 14.4 257.F 
power- (symbol) 14.N 
quadratic 297.H 

residue character 295.D 
residue class (modulo an ideal in a ring) 368.F 
residue (class) algebra 29.A 
residue (class) field 149.C 368.F 439.B 
residue (class) ring (modulo an ideal) 368.F 
residue system modulo m 

complete 297.G 
reduced 297.G 

residue theorem 198.E 
(on a nonsingular curve) 9.E 

resistance, negative 318.B 
resistance, specific 130.B 
resolution 200.H 

complete free (of Z) 200.N 
complex spectral 390.E 
flabby 125.W 
of the identity 390.D 
injective (in an Abelian category) 200.1 
21 102.1 
21 + 1 102.1 
minimal 418.C 
projective (in an Abehan category) 200.1 
right (of an A-module) 200.F 
right injective (of an A-module) 200.F 
of singularities 16.L 
of singularities (of an analytic space) 23.D 
418.B 

spectral 390.E 
standard (of Z) 200.M 

resolutive 207.B 
resolutive compactilication 207.B 
resolvent 

(of a kernel) 217.D 
(of a linear operator) 251.F 
(operator of a Markov process) 261.D 
cubic App. A, Table 1 

resolvent (operator of a Markov process) 261.D 
resolvent convergence 

norm 331.C 
strong 331.C 

resolvent equation 251.F 
resolvent set (of a linear operator) 251.F 390.A 
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Resonance model, dual 
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resonance model, dual 132.C 
resonance pole 331.F 
resonance theorem 37.H 
response 405.A 
response surface 102.M 

designs for exploring 102.M 
rest energy 359.C 
restitutive force 318.B 
rest point (of a trajectory) 126.D 
restricted (Lorentz group) 258.A 
restricted Burnside problem (in group theory) 

161.C 
restricted differential system 191.1 
restricted direct product 6.B 

(of an inlinite number of groups) 190.L 
(of locally compact groups) 6.B 

restricted holonomy group 80.D 364.E 
restricted homogeneous holonomy group 364.E 
restricted homotopy 202.B 
restricted Lie algebra 248.V 
restricted minimal condition (in a commutative ring) 

284.A 
restricted quantifier 33.B 
restricted three-body problem 420.F 
restriction 

(of a connection) 80.F 
(of a continuous flow) 126.D 
(of a distribution) 125.D 
(of a mapping) 38 1 .C 
(in a presheaf) 383.A 
crystallographic 92.A 
scalar (of a B-module) 277.L 
unitary (of a semisimple Lie algebra) 248.P 

resultant(s) 369.E 
system of 369.E 

retardation 163.A 
retarded differential equation 163.A 
retarded type (functional differential equation) 

163.A 
retract 202.D 

absolute 202.D 
absolute neighborhood 202.D 
deformation 202.D 
fundamental 382.C 
fundamental absolute (FAR) 382.C 
fundamental absolute neighborhood (FANR) 

382.C 
neighborhood 202.D 
neighborhood deformation 202.D 
strong deformation 202.D 

retraction 202.D 
retrieval, information (system) 96.F 
retrospective study 40.E 
return 127.C 

first- (mapping, map) 126.C 
maximum 127.B 

Reuleaux triangle 89.E 11 l.E 
reversal, time 258.A 
reversed process 261.F 
review technique, program evaluation and 376 
revolution 

ellipsoid of 350.B 
elliptic paraboloid of 350.B 
hyperboloid of, of one sheet 350.B 
hyperboloid of, of two sheets 350.B 
surface of 111.1 

Reynolds law of similarity 205.C 
Reynolds number 116.B 205.C 
Reynolds number, magnetic 259 

Riccati differential equation App. A, Table 14.1 
generalized App. A, Table 14.1 
matrix 86.E 

Riccati equation, matrix 405.G 
Ricci curvature 364.D 
Ricci equation 365.C 
Ricci formula 417.B, App. A, Table 4.11 
Ricci tensor 364.D 417.B, App. A, Table 4.11 
Richard paradox 3 19.B 
Richardson method 302.C 
Riemann, G. F. B. 363 

P-function of 253.B 
Riemann bilinear relations, Hodge- 16.V 
Riemann continuation theorem 21.F 
Riemann differential equation App. A. Table 18.1 
Riemann (differential) equation, Cauchy- 198.A 

274.G 
(for a holomorphic function of several complex 
variables) 21.C 

(for a holomorphic function of two complex 
variables) 320.F 

Riemann function (of a Cauchy problem) 325.D 
Riemann-Hilbert problem 

(for integral equations) 217.5 
(for linear ordinary differential equations) 
253.D 

Riemann-Hurwitz formula (on coverings of a non- 
singular curve) 9.1 

Riemann-Hurwitz relation 367.B 
Riemann hypothesis 450.A,I,P,Q 
Riemannian connection 80.K 364.B 

coefficients of 80.L 
Riemannian curvature 364.D 
Riemannian foliation 154.H 
Riemannian geometry 137, App. A, Table 4.11 
Riemannian homogeneous space 199..4 

symmetric 412.B 
Riemannian manifold(s) 105.P 286.K ,364 

flat 364.E 
irreducible 364.E 
isometric 364.A 
locally flat 364.E 
normal contact 110.E 
reducible 364.E 

Riemannian metric 105.P 
pseudo- 105.P 
volume element associated with I OS. W 

Riemannian product (of Riemannian manifolds) 
364.A 

Riemannian space 364.A 
irreducible symmetric App. A, Table 5.111 
locally symmetric App. A, Table 4.11 
symmetric - symmetric Riemannian space 

Riemannian submanifold 365 
Riemann integrable (function) 216.A 
Riemann integral 37.K 216.A 
Riemann-Lebesgue theorem 159.A 160.A 
Riemann lower integral 216.A 
Riemann mapping theorem 77.B 
Riemann matrix 3.1 
Riemann method of summation 3798 
Riemann non-Euclidean geometry 285.A 
Riemann period inequality 3.L 
Riemann period relation 3.L 
Riemann P-function App. A, Tables 14.11 18.1 
Riemann problem 253.D 
Riemann-Roth group 366.D 
Riemann-Roth inequality (on algebraic surfaces) 

15.D 



2095 Subject Index 
Ring(s) 

Riemann-Roth theorem(s) 366 right derivative 106.A 
(on algebraic surfaces) 15.D right derived functor 200.1 
(for compact complex surface) 366.C right differentiable 106.A 
(on nonsingular algebraic curves) 9.C right endpoint (of an interval) 355.C 
(on Riemann surfaces) 1 l.D right equivalent 51.C 
for an adjoint system 15.D right exact (functor) 200.1 
for differentiable manifolds 237.G right global dimension (of a ring) 200.K 
generalized (on algebraic curves) 9.F right G-set 362.B 
for a line bundle 366.C right helicoid 111 .I 

Riemann-Roth type right ideal 
Grothendieck theorem of 366.D (of a ring) 368.F 
Hirzebruch theorem of 366.B integral 27.A 

Riemann sphere 74.D right injective resolution (of an A-module) 200.F 
Riemann-Stieltjes integral 94.B 166.C right invariant Haar measure 225.C 
Riemann structure, Cauchy- 344.A right invariant tensor field (on a Lie group) 
Riemann sum 216.A 249.A 
Riemann surface(s) 367 right inverse (of df,(O)) 286.G 

abstract 367.A right inverse element (of an element of a ring) 
classitication theory of 367.E 368.B 
closed 367.A right linear space 256.A 
elliptic 367.D right majorizing function 316.E 
hyperbolic 367.D right Noetherian ring 368.F 
maximal 367.F right o, ideal 27.A 
open 367.A right operation (of a set to another set) 409.A 
open, of null boundary 367.E right order (of a g-lattice) 27.A 
open, of positive boundary 367.E right parametrix 345.A 
parabolic 367.D right projective space 343.H 
prolongable 367.F right quotient space (of a topological group) 

Riemann theorem 423.E 
(on removable singularities) 198.D right regular representation 
(on series with real terms) 379.C (of an algebra) 362.E 

Riemann 0 function 3.L (of a group) 362.B 
Riemann upper integral 216.A right resolution (of an A-module) 200.F 
Riemann [ function 450.V right satellite 200.1 
Riesz convexity theorem 88.C right semihereditary ring 200.K 
Riesz decomposition right semi-integral 68.N 

(in a Markov chain) 260.D right shunt 115.B 
of a superharmonic or subharmonic function right singular point (of a diffusion process) 115.B 

193,s right superior function 3 16.E 
Riesz-Fischer theorem 168.B 317.A right translation 249.A 362.B 
Riesz group 36.H right uniformity (of a topological group) 423.G 
Riesz method of order k, summable by 379.R rigid 
Riesz method of summation of the kth order 379.R (characteristic class of a foliation) 154.G 
Riesz potential 338.B (isometric immersion) 365.E 
Riesz-Schauder theorem 68.E rigid body 271.E 
Riesz space 3 10.B rigidity 
Riesz (F.) theorem (ofasphere) 111.1 

(on L, functions) 317.B modulus of 271.G 
(representation) 197.F rigidity theorem 178.C 

Riesz (F. and M.) theorem 168.C strong 122.G 
(on bounded holomorphic functions on a disk) ring(s) 368 

43.D adele (of an algebraic number field) 6.C 
Riesz-Thorin theorem 224.A afhne 16.A 
Riesz transform 251.0 anchor 410.B 
right, limit on the 87.F Artinian 284.A 
right-adjoint (linear mapping) 256.Q associated graded 284.D 
right adjoint functor 52.K basic (of a module) 277.D 
right A-module 277.D Boolean 42.C 
right angle 151.D Burnside 431.F 
right annihilator (of a subset of an algebra) 29.H category of 52.B 
right Artinian ring 368.F category of commutative 52.B 
right balanced (functor) 200.1 Chow (of a projective variety) 16.R 
right circular cone 350.B cobordism 114.H 
right conoid 111.1 coefficient (of an algebra) 29.A 
right continuous (function) 84.B coefficient (of a semilocal ring) 284.D 
right coset (of a subgroup of a group) 190.C coherent sheaf of 16.E 
right coset space (of a topological group) 423.E cohomology 201.1 
right decomposition, Peirce (in a unitary ring) cohomology, of compact connected Lie groups 

368.F App. A, Table 6.IV 



Subject Index 
Ringed space 

cohomology, of an Eilenberg-MacLane com- 
plex App. A, Table 6.111 

commutative 67 368.A 
complete local 284.D 
completely integrally closed 67.1 
completely primary 368.H 
complete Zariski 284.C 
completion, with respect to an ideal 16.X 
complex cobordism 114.H 
of convergent power series 370.B 
coordinate (of an afftne variety) 16.A 
correspondence (of a nonsingular curve) 9.H 
de Rham cohomology (of a differentiable mani- 

fold) 105.R 201.1 
differential 113 
differential extension 113 
of differential polynomials 113 
discrete valuation 439.E 
division 368.B 
endomorphism (of an Abelian variety) 3.C 
endomorphism (of a module) 277.B 368.C 
of endomorphisms (of an Abelian variety) 
factor, modulo an ideal 368.F 
form 284.D 
of formal power series 370.A 
of fractions 67.G 
generalized Boolean 42.C 
Gorenstein 200.K 
graded 369.B 
ground (of an algebra) 29.A 
ground (of a module) 277.D 
group (of a compact group) 69.A 
Hecke 32.D 
Hensel 370.C 
Henselian 370.C 
hereditary 200.K 
homogeneous 369.B 
homogeneous coordinate 16.A 
integrally closed 67.1 
Krull 67.5 
left Artinian 368.F 
left hereditary 200.K 
left Noetherian 368.F 
left semihereditary 200.K 
local 284.D 
local (of a subvariety) 16.B 
locally Macaulay 284.D 
Macaulay 284.D 
Macaulay local 284.D 
Noetherian 284.A 
Noetherian local 284.D 
Noetherian semilocal 284.D 
normal 67.1 
normed 36.A 
of operators 308.C 
of p-adic integers 439.F 
polynomial 337.A 369.A 
polynomial, in m variables 337.B 
of polynomials 337.A 369 
power series 370.A 
of power series 370 
primary 368.H 
primitive 368.H 
principal ideal 67.K 
Priifer 200.K 
pseudogeometric 284.F 
quasilocal 284.D 
quasisemilocal 284.D 
quasisimple 368.E 
quotient 368.E 

3.c 
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of quotients of a ring with respect to a prime 
ideal 67.G 

of quotients of a ring with respect to a subset of 
the ring 67.G 

regular 85.B 284.D 
regular local 284.D 
representation 237.H 
representative (of a compact Lie group) 249.U 
residue class, modulo an ideal 368.F 
right Artinian 368.F 
right hereditary 200.K 
right Noetherian 368.F 
right semihereditary 200.K 
of scalars (of a module) 277.D 
semihereditary 200.K 
semilocal 284.D 
semiprimary 368.H 
semiprimitive 368.H 
semisimple 368.G 
simple 368.G 
splitting 29.K 
topological 423.P 
of total quotients 67.G 
unitary 368.A 409.C 
universally Japanese 284.F 
of a valuation 439.B 
of valuation vectors 6.C 
Zariski 284.C 
zero 368.A 

ringed space 383.H 
local 383.H 

ring homomorphism 368.D 
ring isomorphism 368.D 
ring operations 368.A 
ripple 205.F 
risk 

Bayes 398.B 
consumer’s 404.C 
posterior 399.F 
producer’s 404.C 

risk function 398.A 
risk premium 214.B 
risk theory 214.C 

classical 214.C 
collective 214.C 
individual 214.C 

Ritt basis theorem (on differential polynomials) 
113 

Ritz method 46.F 303.1 304.B 
Rayleigh- 46.F 271.G 

Robbins-Kiefer inequality, Chapman- 399.D 
Robertson-Walker metrics 359.E 
Robin constant 48.B 
Robin problem 323.F 
robust and nonparametric method 37 L 
robust estimation 371.A 
robust method 371.A 
Roth - Rieman-Roth 
Roche-Schliimilch remainder App. A, Table 9.IV 
Rodrigues formula 393.B 
Roepstorff-Araki-Sewell inequality 402.G 
Roepstorff-Fannes-Verbeure inequality 402.G 
Rogers theorem, Dvoretzky- 443.D 
Rokhlin theorem 114.K 
Rolle theorem 106.E 
rolling curve (of a roulette) 93.H 
Roman and medieval mathematics 372 
Romberg integration 299.C 
Room square 241.D 
root 
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g-discrete (covering of a set) 

(of a chamber complex) 13.R 
(of a polynomial) 337.B 
characteristic (of an autonomous linear system) 

163.F 
characteristic (of a linear mapping) 269.L 
characteristic (for a linear partial differential 
equation with variable coefftcients) 325.F 

characteristic (of a matrix) 269.F 
co- 13.5 
imaginary (of an algebraic equation) 10.E 
k- 13.Q 
mth 10.C 
multiple (of an algebraic equation) 10.B 
negative (of a semisimple Lie algebra) 248.M 
of a polynomial 337.B 
positive (of a semisimple Lie algebra) 248.M 
primitive, modulo m 297.G 
primitive, of unity 14.L 
real (of an algebraic equation) 10.E 
of a semisimple algebraic group 13.5 
of a semisimple Lie algebra 248.K 
simple (of an algebraic equation) 10.B 
simple (in a root system) 13.5 
simple (of a semisimple Lie algebra) 248.M 

root extraction 10.C 
root subspace (of a linear operator) 390.B 
root subspace (of a semisimple Lie algebra) 248.K 
root system 

(of a semisimple algebraic group) 13.5 
(of a semisimple Lie algebra) 248.K 
(of a symmetric Riemannian space) 413.F 
(in a vector space over Q) 13.5 
fundamental (of a semisimple Lie algebra) 

248.N 
irreducible 13.L 

root vector 390.B 
Rosen gradient projection method 292.E 
rot (rotation) 136.D 442.D, App. A, Table 3.11 
rotatable 102.M 
rotation App. A, Table 3.11 

(of a differentiable vector field) 442.D 
(on a locally compact Abelian group) 136.D 
axis of (of a surface of revolution) 111 .I 

rotational 205.B 
rotational coordinates App. A, Table 3.V 
rotation group 60.1 
rotation number 99.D 11 l.E 126.1 
rotation theorem 438.B 
Roth theorem 118.D 182.G 
Rouche theorem 10.E 99.D 198.F 
roulette 93.H 
roundoff error 138.B 

global 303.B 
row (of a matrix) 269.A 

iterated series by (of a double series) 379.E 
repeated series by (of a double series) 379.E 

row finite matrix 269.K 
row nullity (of a matrix) 269.D 
row vector 269.A 
Royden compactification 207.C 
Royden theorem, Arens- 36.M 
Riickert zero-point theorem 23.B 
Ruelle scattering theorey, Haag- 150.D 
ruin probability 214.C 
rule 

Adler-Weisberger sum 132.C 
chain (on the differentiation of composite 

functions) 106.C 
Cramer 269.M 
Feynman 146.A,B 

formation 41 l.D 
of inference 411.1 
midpoint 303.E 
Napier App. A, Table 2.11 
product 299.D 
projection 31.B 
selection 351.H 
sequential decision 398.F 
Simpson’s l/3 299.A 
Simpson’s 3/8 299.A 
slide 19.A 
stopping 398.F 
terminal decision 398.F 
trapezoidal (of numerical integration) 299.A 
trapezoidal (of numerical solution of ordinary 
differential equations) 303.E 

univalence superselection 351.K 
ruled surface 

(algebraic surface) 15.E 
(in differential geometry) 111.1 
criterion of 15.E 

ruler 155.G 179.A 
run (in a sequence of Bernoulli trials) 396.C 
Runge-Kutta-Gill method 303.D 
Runge-Kutta method 303.D 

explicit 303.D 
general 303.D 
implicit 303.D 
pseudo- 303.D 
semi-explicit 303.D 
semi-implicit 303.D 

Runge-Kutta (P, p) method, region of absolute 
stability of 303.G 

Runge phenomenon 223.A 
Runge theorem (on polynomial approximation) 

336.F 
Russell paradox 3 19.B 
Ryser-Chowla theorem, Bruck- 102.E 

S 

Y (the totality of rapidly decreasing P-functions) 
168.B 

Y’ (the totality of tempered distributions) 125.N 
S, space of type 125.T 
SL(n, K) (special linear group) 60.B 
Sp(A) (Spur of a matrix A) 269.F 
SP(n, K) (symplectic group) 60.L 
.SU(n) (special unitary group) 60.F 
S(n) (totality of measurable functions on R that 

take finite value almost everywhere) 168.B 
* -also star 
*-automorphism group 36.K 
*-derivation 36.K 
*-homomorphism 36.F 
*-representation (of a Banach *-algebra) 36.F 
*-subalgebra 443.C 
a-additive measure 270.D 
a-additivity 270.D 
a-algebra 270.B 

optional 407.B 
predictable 407.B 
tail 342.G 
topological 270.C 
well-measurable 407.B 

u-compact space 425.V 
o-complete (vector lattice) 310.C 
u-complete lattice 243.D 

conditionally 243.D 
a-discrete (covering of a set) 425.R 
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a-field 
Bayer sufficient 396.5 
boundedly complete 396.E 
complete 396.E 
D-suflicient 396.5 
decision theoretically sufficient 396.5 
minimal sufficient 396.F 
pairwise sufficient 396.F 
test sufficient 396.5 

cr-tinite (measure space) 270.D 
o-function, of Weierstrass 134.F, App. A, 

Table 16.IV 
a-locally finite covering (of a set) 425.R 
u-process (of a complex manifold) 72.H 
u-space 425.Y 
c-subfield 

necessary 396.E 
sufficient 396.E 

u-weak topology 308.B 
C: set 22.A 
,E,! set 22.D 
C-space 425.Y 
s-cobordism 65.C 
s-cobordism theorem 65.C 
s-field 149.A 
s-handle 114.F 
?-factorial experiment 102.H 
S-admissible (lattice in R”) 182.B 
S-flow 136.D 
S-levels 102.K 
S-matrix 150.D 
S-matrix theory 386.C 
S-morphism 52.G 
S-number 430.C 
S-object 52.G 
S-operator 150.D 386.B 
S-scheme 16.D 
S-set 308.1 
S-topology (on a linear space) 424.K 
S-wave 351.E 
(S)-space 424,s 
S*-number 430.C 
(S, @)-valued random variable 342.C 
s-parallelizable (manifold) 114.1 
Sacks bound, Varshamov-Gilbert- 63.B 
saddle point 

(diflerential game) 108.B 
(of a dynamical system) 126.G 
(of a function) 255.B 
(in nonlinear programming) 292.A 
(on a surface) 11 l.H 

saddle-point method 25.C 
saddle set 126.E 
Sakata model 132.D 
Salam model, Glashow-Weinberg- 132.D 
same kind (of mathematical systems) 409.B 
same orientation (for oriented atlases) 105.F 
same shape 382.A 
sample(s) 373.A 401.E 

Bernoulli 396.B 
random 374.A 396.B 401.F 
small 401 .F 

sample autocovariance 421.B 
sample characteristic 396.C 
sample characteristic value 396.C 
sample correlation coeflicient 396.D 
sample covariance 396.D 
sample covariance function 395.G 
sample function 407.A 
sample generalized variance 280.E 

sample mean 396.C 
sample median 396.C 
sample mode 396.C 
sample moment of order k 396.C 
sample multiple correlation 280.E 
sample number, average 404.C 
sample partial correlation coefficient 280.E 
sample path 407.A 
sample point 342.B 396.B 398.A 
sample problem, k- 371.D 
sample process 407.A 
sample range 396.C 
sample size 373.A 
sample space 342.B 396.B 398.A 
sample standard deviation 396.C 
sample survey 373 
sample theory, large 401.E 
sample value 396.B 
sample variance 396.C 
sampling 

exact, theory 401.F 
multistage 373.E 
optional 262.C 
optional, theorem 262.A 
stratified 373.E 
two-stage 373.E 

sampling distribution 374.A 
sampling inspection 404.C 

with adjustment 404.C 
by attributes 404.C 
double 404.C 
multiple 404.C 
with screening 404.C 
sequential 404.C 
single 404.C 
by variables 404.C 

sampling inspection plan 404.C 
sampling inspection tables 404.C 
sampling procedure 373.A 

invariant 373.C 
random 373.A 
regular 373.A 
uniform 373.A 

Sard theorem 105.J 208.B 
Sard-Smale theorem 286.P 
Sasakian manifold 110.E 
Sasaki-Nitsche formula, Gauss-Bonnet- 275.C 
Satake diagram App. A, Table 5.11 

(of a compact symmetric Riemannian space) 
437.AA 

(of a real semisimple Lie algebra) 248.U 
satellite 

left 200.1 
right 200.1 

satistiability, problem of (of a proposition) 97 
satisfiable (formula) 276.C 
Sato-Bernshtein polynomial 125.EE 
Sat0 conjecture 450,s 
saturated 

((B,N)-pair) 151.5 
(fractional factorial design) 102.1 

saturated model, K- 293.B 
Savage theorem, Girshick- 399.F 
Savage zero-one law, Hewitt- 342.G 
savings premium 214.B 
Sazonov topology 341.5 
SC?‘-manifold 178.G 
scalar(s) 

(in a linear space) 256.A,J 
(of a module over a ring) 277.D 
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Schmidt theorem, Knopp- 

field of (of a linear space) 256.A 
ring of (of a module) 277.D 

scalar change (of a B-module) 277.L 
scalar curvature 364.D, App. A, Table 4.11 
scalar extension 

(of an algebra) 29.A 
(of an A-module) 277.L 
(of a linear representation) 362.F 

scalar field 105.0 
(in a 3-dimensional Euclidean space) 442.D 
free 377.C 

scalar integral 443.FJ 
scalarly integrable 443.FJ 
scalarly measurable 443.BJ 
scalar matrix 269.A 
scalar multiple 

(of an element of a module) 277.D 
(of a linear operator) 37.C 
(in a linear space) 256.A 
(of a vector) 442.A 

scalar multiplication 
(in a module) 277.D 
(on vectors) 442.A 

scalar operator 390.K 
scalar potential 130.A 442.D 
scalar product 442.8, App. A, Table 3.1 
scalar restriction (of a B-module) 277.L 
scalar sum (of linear operators) 37.C 
scalar triple product 442.C 
scale 

of Banach space 286.2 
canonical 115.B 
natural 260.G 
ordinal 397.M 
two-sided 19.D 

scaled, u,- 19.D 
scale matrix 374.C 
scale parameter 396.1 400.E 
scaling, metric multidimensional 346.~ 
scaling, multidimensional 346.E 
scaling method 346.E 
scatter diagram 397.H 
scattered (sheaf) 383.E 
scattered set 425.0 
scattered zeros, function with 208.C 
scattering 375.A 

data 387.D 
elastic 375.A 
inelastic 375.A 

scattering amplitude 375.C 386.B 
partial wave 375.E 

scattering cross section 375.A 
scattering data 387.D 
scattering operator 375.B,F,H 
scattering state 375.B 

completeness of the 150.D 
scattering theory, Haag-Ruelle 150.D 
Schafheithn formula, Sonine- App. A, Table 19.111 
Schauder basis 37.L 
Schauder degree, Leray- 286.D 
Schauder estimate 323.C 
Schauder fixed-point theorem 153.D 286.D 

Leray- 286.D 323.D 
Schauder theorem, Riesz- 68.E 
scheduling 376 

job-shop 307.C 
model 307.C 
network 307.C 

scheduling and production planning 376 
scheduling problem 

flow-shop 376 
job-shop 376 
machine 376 
multiprocessor 376 

Scheffe model 346.C 
Scheffe theorem, Lehmann- 399.C 
Scheja theorem 21.M 
schema of Souslin 22.B 
scheme 16.D 

adaptive 299.C 
aftine 16.D 
Aitken’s interpolation 223.B 
algebraic 16.D 
automatic integration 299.C 
coarse moduli 16.W 
complete 16.D 
consistent-mass 304.D 
deformation of X over a connected 16.W 
difference 304.E 
difference, of backward type 304.F 
difference, of forward type 304.F 
explicit 304.F 
fine moduh 16.W 
formal 16.X 
Friedrichs 304.F 
group 16.H 
Hilbert 16.S 
implicit 304.F 
integral 16.D 
inverted filing 96.F 
irreducible 16.D 
K-complete 16.D 
Lax-Wendroff 304.F 
locally Noetherian formal 16.X 
moduli 16. W 
morphism of 16.D 
Noetherian 16.D 
nonadaptive 299.C 
Picard 16.P 
projective 16.E 
quasiprojective 16.E 
s- 16.D 
over S 16.D 
separated 16.D 
separated formal 16.X 

Scherk’s surface 275.A 
Schlafli diagram (of a complex semisimple Lie 

algebra) 248,s 
Schlafli formula App. A, Table 19.111 
Schlafli integral representation 393.B 
Schlafli polynomial App. A, Table 19.IV 
Schlesinger equations 253.E 
schlicht 438.A 
schlicht Bloch constant 77.F 
schlichtartig 367.G 
Schlieder theorem, Reeh- 150.E 
Schlomilch criterion App. A, Table 10.11 
Schliimilch remainder, Roche- App. A, Table 

9.N 
Schlomilch series 39.D, App. A, Table 19.111 

generalized 39.D 
Schmidt class, Hilbert- 68.1 
Schmidt condition 379.M 
Schmidt expansion theorem, Hilbert- 217.H 
Schmidt norm, Hilbert- 68.1 
Schmidt orthogonalization 317.A 

Gram- 317.A 
Schmidt procedure, Lyapunov- 286.V 
Schmidt theorem 118.D 
Schmidt theorem, Knopp- 208.C 
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Schmidt theorem, Krull-Remak- (in group theory) 
19O.L 

Schmidt type, integral operator of Hilbert- 68.C 
Schmidt type, kernel of Hilbert- 217.1 
Schnee theorem, Knopp- (on method of summation) 

379.M 
Schoenflies notation (for crystal classes) 92.E, 

App. B, Table 6.IV 
Schoenflies problem 65.G 
Schoenflies theorem 65.G 
Schottky group 234.B 
Schottky theorem 43.5 
Schottky uniformization 367.C 
Schrader axioms, Osterwalder- 150.F 
Schreier conjecture (on simple groups) 151.1 
Schreier extension, Artin- (of a field) 172.F 
Schroder equation, Kiinigs- 44.B 
Schroder functional equation 388.D 
Schrodinger equation 351.D 

l-body 351.E 
random 340.E 
time-dependent 351.D 
time-independent 351.D 

Schrljdinger operator 351.D 
Schriidinger picture 351.D 
Schrodinger representation 351.C 
Schriidinger series, Rayleigh- 331.D 
Schubert cycle 56.E 
Schubert variety 56.E 
Schur index 

(of a central simple algebra) 29.E 
(of an irreducible representation) 362.F 

Schur lemma 
(on linear representations) 362.C 
(on simple modules) 277.H 368.G 
(on unitary representations) 437.D 

Schur subgroup 362.F 
Schur theorem (on linear transformations of 

sequences) 379.L 
Schur theorem, Kojima- (on linear transformations 

of sequences) 379.L 
Schur-Zassenhaus theorem (on Hall subgroups) 

151.E 
Schwartz-Christoffel transformation 77.D, 

App. A, Table 13 
Schwartz-Christoffel transformation formula 77.D 
Schwartz integral, Bartle-Dunford- 443.G 
Schwartz space 424.S 
Schwarzian derivative App. A, Table 9.111 
Schwarz inequality 21 l.C 

Cauchy- 211.C App. A, Table 8 
Schwarz lemma 43.B 
Schwarz principle of reflection 198.G 
Schwinger equation, Lippmann- 375.C 
Schwinger function 150.F 
Schwinger points 150.F 
sciences, information 75.F 
scores 

canonical 397.M 
factor 280.G 346.F 

score test, Fisher-Yates-Terry normal 371.C 
scoring method 397.M 
screening, sampling inspection with 404.C 
seasonal adjustment 397.N 
set (secant) 131.E 
secant 432.A 

hyperbolic 131.F 
sech (hyperbolic secant) 131.F 
second (unit of an angle) 139.D 
secondary cohomology operation, stable 64.C 

secondary components (of a homogeneous space) 
110.A 

secondary composition 202.R 
secondary obstruction 305.D 
secondary parameters 110.A 
second axiom, Tietze’s 425.4 
second barycentric derived neighborhood 65.C 
second boundary value problem 

(for harmonic functions) 193.F 
(of partial differential equations of elliptic type) 

323.F 
second category, set of 425.N 
second classification theorem (in the theory of 

obstructions) 305.C 
second complementary law (of Legendre symbols) 

297.1 
second countability axiom 425.P 
second Cousin problem 21.K 
second definition (of an algebraic K-group) 237.5 
second difference 104.A 
second extension theorem (in the theory of 

obstructions) 305.C 
second factor (of a class number) 14.L 
second fundamental form (of an immersion of 

a manifold) 1 ll.G 365.C App. A, Table 4.1 
second fundamental quantities (of a surface) 11 l.H 
second fundamental tensor 417.F 
second fundamental theorem (in Morse theory) 

279.D 
second homotopy theorem 305.C 
second incompleteness theorem 185.C 
second isomorphism theorem (on topological 

groups) 423.5 
second kind 

(Abelian differential of) 1 l.C 
(Abelian integral of) 1 l.C 
(Fuchsian group of) 122.C 
(integral equations of Fredholm type of) 

217.A 
perfect number of 297.D 
Stirling number of 66.D 

second law of cosines 432.A, App. A, Table 2.11 
second law of thermodynamics 419.A 
second mean value theorem 

(for the D-integral) 100.G 
(for the Riemann integral) 216.B 
(for the Stieltjes integral) 94.C 

second-order asymptotic efficiency 399.0 
second-order design 102.M 
second-order efficiency 399.0 
second-order predicate 41 l.K 
second-order predicate logic 411.K 
second quantization 377 
second separation axiom 425.Q 
second variation formula 178.A 
section 

(of a finite group) 362.1 
(of a sheaf space) 383.C 
circular 350.F 
conic 78 
cross- 126.C 286.H 
cross (of a fiber bundle) 147.L 
cross (of a fiber space) 148.D 
cross-, for a closed orbit 126.G 
differential cross 375.A 386.B 
local 126.E 
local cross (of a fiber bundle) 147.E 
n- (in a cell complex) 70.D 
normal (of a surface) 410.B 
r- (of a Euclidean complex) 70.B 
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r- (of a simplicial complex) 70.C 
scattering cross 375.A 
set of (of a sheaf) 383.C 
total (elastic) cross 386.B 
zero- (of a block bundle) 147.Q 

sectional curvature 364.D 
holomorphic 364.D 

section graph 186.C 
sectors, superselection 150.E 351.K 
secular equation 55.B 269.F 
secular perturbation 55.B 
sedenion 29.D 
segment 155.B 178.H 

(in affme geometry) 7.D 
(in an ordered set) 3 1 l.B 
oriented 442.A 

Seidel method, Gauss- 302.C 
Seifert conjecture 126.N 154.D 
Seifert matrix 235.C 
Seifert surface 235.A 
Selberg sieve 123.E 
Selberg theorem, Evans- 48.E 338.H 
Selberg zeta function 450.T 
selection, measurable 443.1 
selection, model 401.D 
selection function 354.E 
selection parameter 396.F 
selection rule 351.H 
selection statistic 396.F 
self-adjoint 

(linear homogeneous ordinary differential 
equation) 315.B 

essentially 251.E 390.1 
self-adjoint differential equation 252.K 
self-adjoint differential operator, formally 112.1 
self-adjoint operator 251.E 390.F 
self-adjoint system of differential equations 252.K 
self-commutator 251.K 
self-dual (linear space) 256.H 
self-dual (regular cone) 384.E 
self-dual, anti- (G-connection) 80.Q 
self-excited vibration 318.8 
self-information 213.B 
self-intersection number 15.C 
self-loop 186.B 
self-polar tetrahedron 350.C 
self-polar triangle 78.5 
self-reciprocal function 220.B 
semicontinuity, lower (of length) 246.A 
semicontinuous 84.C 

(mapping in a topological linear space) 153.D 
lower 84.C 
upper 84.C 

semicontinuous function 84.C 
semicontinuous partition, upper 425.L 
semidelinite Hermitian form 348.F 
semidefinite kernel, positive 217.H 
semidefinite matrix, positive 269.1 
semidefinite operator, positive 251.E 
semidetinite quadratic form, positive or negative 

348.C 
semidirect product (of two groups) 190.N 
semidiscrete approximation 304.B 
semiexact (differential on an open Riemann surface) 

367.1 
semi-explicit 303.D 
semifinite (von Neumann algebra) 308.E 
semifinite (weight on a von Neumann algebra) 

308.D 
semiflow 126.B 

of class C 126.B 
continuous 126.B 
discrete 126.B 
discrete, of class C’ 126.B 

semigroup 88.E 190.P 409.A 
(of a Markov process) 261.B 
of class (Co) 378.B 
differentiable 378.F 
distribution 378.F 
dual 378.F 
equicontinuous, of class (Co) 378.B 
free 161.A 
holomorphic 378.D 
locally equicontinuous 378.F 
nonlinear 378.F 
nonlinear, of operators 286.X 
of operators 378 
order-preserving 286.Y 
unitary 409.C 

semigroup algebra 29.C 
large 29.C 

semigroup bialgebra 203.G 
semihereditary ring 200.K 

left 200.K 
right 200.K 

semi-implicit 303.D 
semi-integral, left 68.N 
semi-integral, right 68.N 
semi-intuitionism 156.C 
semi-invariant 226.A 

G- 226.A 
of a probability distribution 341.C 

semilattice 243.A 
lower 243.A 
upper 243.A 

semilinear (partial differential equations of elliptic 
type) 323.D 

semilinear mapping 256.P 277.L 
semilinear transformation 256.P 
semilocal ring 284.D 

analytically unramified 284.D 
Noetherian 284.D 
quasi- 284.D 

semilogarithmic paper 19.F 
semimartingale 262.E 406.B 

continuous 406.B 
semimartingale decomposition 406.B 
seminorm (on a topological linear space) 424.F 
semiorbit 126.D 

negative 126.D 
positive 126.D 

semiordered set 3 11 .A 
semiordering 3 11 .A 
semipolar set 261.D 
semiprimary ring 368.H 
semiprime differential ideal (of a differential ring) 

113 
semiprime ideal (of a differential ring) 113 
semiprimitive ring 368.H 
semireductive (action defined by a rational 

representation) 226.B 
semireflexive (locally convex space) 424.0 
semiregular point (of a surface in E3) 11l.J 
semiregular transformation (of a sequence) 379.L 
semisimple 

(algebraic group) 13.1 
(Banach algebra) 36.D 
(Jordan algebra) 231.B 
(Lie algebra) 248.E 
(Lie group) 249.D 
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(matrix) 269.G 
semisimple algebra 29.A 
semisimple A-module 277.H 
semisimple component (of a linear transformation) 

269.L 
semisimple linear representation 362.C 
semisimple linear transformation 269.L 
semisimple part 

of an algebraic group 13.E 
of a nonsingular matrix 13.E 

semisimple ring 368.G 
semisimplicial complex 70.E 
semisimplicity, Cartan’s criterion of 248.F 
semistable (coherent sheaf) 16.Y 
semistable distribution 341.G 
semistable reduction theorem 16.2 
semistable vector bundle (algebraic) 16.Y 
semivariation 443.G 
sensitive grammar, context- 31.D 
sensory test 346.B 
separable 

(function in nomograms) 19.D 
(polynomial) 337.G 
(rational mapping) 16.1 
(stochastic process) 407.A 
(topological space) 425.P 
perfectly 425.P 

separable algebra 29.F,K 200.L 
central 29.K 

separable element (of a tield) 149.H 
separable extension 

(of a field) 149.H,K 
maximal (of a field) 149.H 

separable metric space 273.E 
separably generated extension (of a field) 149.K 
separated 

(formal scheme) 16.X 
(morphism) 16.D 

separated convex sets, strongly 89.A 
separated kernel 217.F 
separated scheme 16.D 
separated space 425.4 
separated S-scheme 16.D 
separated topological group 423.B 
separated type App. A, Table 14.1 
separated uniform space 436.C 
separated variable type App. A, Table 15.11 
separately continuous (bilinear mapping) 424.Q 
separating family 207.C 
separating transcendence basis (of a field extension) 

149.K 
separation 

axioms of (in set theory) 33.B 
of variables 322.C 

separation axioms 425.Q 
the lirst 425.Q 
the fourth 425.4 
the second 425.4 
the third 425.4 
Tikhonov 425.4 

separation cochain 305.B 
separation cocycle 305.B 
separation principle 405.C 
separation theorem (on convex sets) 89.A 
separator 186.F 
sequence(s) 165.D 

admissible (in Steenrod algebra) 64.B, App. A, 
Table 6.111 

asymptotic 30.A 
of Bernoulli trials 396.B 

Blaschke 43.F 
Cauchy (in a-adic topology) 284.B 
Cauchy (in a metric space) 273.5 
Cauchy (of rational numbers) 294.E 
Cauchy (of real numbers) 355.B 
Cauchy (in a uniform space) 436.G 
cohomology exact 201.L 
cohomology spectral 200.5 
connected, of functors 200.1 
convergent (of real numbers) 87.B 355.B 
divergent (of real numbers) 87.B 
double 379.E 
exact (of A-homomorphisms of A-modules) 
277.E 

exact, of cohomology 200.F 
exact, of Ext 200.G 
exact, of homology 200.C 
exact, of Tor 200.D 
of factor groups (of a normal chain) 190.G 
Farey 4.B 
Fibonacci 295.A 
finite 165.D 
of functions 165.B,D 
fundamental (in a metric space) 273.5 
fundamental (of rational numbers) 294.E 
fundamental (of real numbers) 355.B 
fundamental (in a uniform space) 436.G 
fundamental, of cross cuts (in a simply 

connected domain) 333.B 
fundamental exact (on cohomology of groups) 

200.M 
Gysin exact (of a fiber space) 148.E 
Hodge spectral 16.U 
homology exact (of a fiber space) 148.E 
homology exact (for simplicial complexes) 

2Ol.L 
homotopy exact 202.L 
homotopy exact (of a fiber space) 148.D 
homotopy exact (of a triad) 202.M 
homotopy exact (of a triple) 202.L 
independent, of partitions 136.E 
infinite 165.D 
interpolating 43.F 
Jordan-Holder (in a group) 190.G 
linear recurrent 295.A 
Mayer-Vietoris exact 2Ol.C 
minimizing 46.E 
monotone (of real numbers) 87.B 
monotonically decreasing (of real numbers) 

87.B 
monotonically increasing (of real numbers) 

87.8 
normal (of open coverings) 425.R 
null (in a-adic topology) 284.B 
of numbers 165.D 
(o)-convergent 87.L 
(o)-star convergent 87.L 
order-convergent (in a vector lattice) 310.C 
oscillating (of real numbers) 87.D 
of points 165.D 
pointwise convergent 435.B 
positive definite 192.B 
of positive type 192.B 
Puppe exact 202.G 
random 354.E 
rapidly decreasing 168.B 
recurrent, of order r 295.A 
reduced homology exact 201.F 
regular (of Lebesgue measurable sets) 380.D 
regular spectral 200.5 



2103 Subject Index 

Serre V-theory 

relative Mayer-Vietoris exact 2Ol.L 
(R, S)-exact (of modules) 200.K 
of sets 165.D 
short exact 200.1 
simply convergent 435.B 
slowly increasing 168.B 
spectral 200.5 
spectral (of singular cohomology of a fiber 

space) 148.E 
standard 400.K 
symbol (in the theory of microdifferential 
operators) 274.F 

of Ulm factors (of an Abelian p-group) 2.D 
uniformly convergent 435.A 
Wang exact (of a fiber space) 148.E 

sequencing problem, machine 376 
sequential decision function 398.F 
sequential decision problem 398.F 
sequential decision rule 398.F 
sequentially compact (space) 425,s 
sequential probability ratio test 400.L 
sequential sampling inspection 404.C 
sequential space 425.CC 
sequential test 400.L 
serial correlation coeffkient 397.N 421.B 
serial cross correlation coefficient 397.N 
series 379, App. A, Table 10 

absolutely convergent 379.C 
absolutely convergent double 379.E 
allied (of a trigonometric series) 159.A 
alternating 379.C 
ascending central (of a Lie algebra) 248.C 
asymptotic 30 
asymptotic power 30.A 
binomial App. A, Table lO.IV 
binomial coefficient 121 .E 
characteristic (in a group) 190.G 
commutatively convergent 379.C 
complementary (of unitary representations of 
a complex semisimple Lie group) 437.W 

complementary degenerate (of unitary represen- 
tations of a complex semisimple Lie group) 
437.w 

composition (in a group) 190.G 
composition (in a lattice) 243.F 
composition factor (of a composition series in 

a group) 190.G 
conditionally convergent 379.C 
conditionally convergent double 379.E 
conjugate (of a trigonometric series) 159.A 
convergent 379.A 
convergent double 379.E 
convergent power 370.B 
convergent power, ring 370.B 
degenerate (of unitary representations of 
a complex semisimple Lie group) 437.W 

derived (of Lie algebra) 248.C 
descending central (of a Lie algebra) 248.C 
Dini 39.D 
Dirichlet 121 
Dirichlet, of the type {A.} 121.A 
discrete (of unitary representations of a semi- 

simple Lie group) 437.X 
divergent 379.A 
divergent double 379.E 
double 379.E 
Eisenstein 32.C 
Eisenstein-Poincare 32.F 
exponential 131 .D 
factorial 104.F 121.E 

field of formal power, in one variable 370.A 
finite 379.A, App. A, Table 10.1 
formal power 370.A 
formal power, field in one variable 370.A 
formal power, ring 370.A 
Fourier 159 197.C App. A, Table 11.1 
Fourier (of an almost periodic function) 18.B 
Fourier (of a distribution) 125.P 
Fourier-Bessel 39.D 
Fourier cosine App. A, Table 11.1 
Fourier sine App. A, Table 11.1 
Gauss 206.A 
generalized Eisenstein 450.T 
generalized Schlomilch 39.D 
generalized trigonometric 18.B 
geometric 379.B, App. A, Table 10.1 
Heine 206.C 
hypergeometric 206.A 
infinite 379.A, App. A, Table 10.111 
iterated, by columns (of a double series) 379.E 
iterated, by rows (of a double series) 379.E 
Kapteyn 39.D. App. A, Table 19.111 
Lambert 339.C 
Laurent 339.A 
logarithmic 131.D 
lower central (of a group) 190.J 
majorant 316.G 
majorant (of a sequence of functions) 435.A 
Neumann 217.D 
of nonnegative terms 379.B 
ordinary Dirichlet 121.A 
orthogonal (of functions) 317.A 
oscillating 379.A 
n- (of a group) 151.F 
Poincart 32.B 
of positive terms 379.B 
power 21.B 339 370.A, App. A, Table IO.IV 
power (in a complete ring) 370.A 
power, with center at the point at infinity 
339.A 

power, ring 370.A 
principal (in an Q-group) 190.G 
principal (of unitary representations of a com- 

plex semisimple Lie group) 258.C 437.W 
principal (of unitary representations of a real 

semisimple Lie group) 258.C 437.X 
principal H- 437.X 
properly divergent 379.A 
Puiseux 339.A 
repeated, by columns (of a double series) 

379.E 
repeated, by rows (of a double series) 379.E 
ring of convergent power 370.B 
ring of formal power 370.A 
ring of power 370.A 
Schlomilch 39.D, App. A, Table 19.111 
simple 379.E 
singular 4.D 
supplementary 258.C 
Taylor 339.A 
termwise integrable 216.B 
theta 348.L 
theta-Fuchsian, of Poincart 32.B 
time 397.A 421 .A 
trigonometric 159.A 
unconditionally convergent 379.C 
uniformly absolutely convergent 435.A 
upper central (of a group) 190.J 

Serre conjecture 369.F 
Serre V-theory 202.N 
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Serre duality theorem 
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Serre duality theorem 
(on complex manifolds) 72.E 
(on projective varieties) 16.E 

Serre formulas, Frenet- (on curves) 11 l.D, 
App. A, Table 4.1 

Serre theorem (for ample line bundles) 16.E 
sesquilinear form 

(on a linear space) 256.Q 
(on a product of two linear spaces) 256.Q 
matrix of 256.4 
nondegenerate 256.4 

set(s) 381 
A- 22.A 409.A 
absolutely convex (in a linear topological space) 
424.E 

cc-limit 126.D 
analytic 22.A,I 
analytic (in the theory of analytic spaces) 23.B 
analytically thin (in an analytic space) 23.D 
of analyticity 192.N 
analytic wave front 274.D 
of antisymmetry 164.E 
arbitrary 381.G 
asymptotic 62.A 
asymptotic ratio 308.1 
axiom of power 33.B 381.G 
B. 22.D 
%-measurable 270.C 
Baire 126.H 270.C 
bargaining 173.D 
basic (for an Axiom A flow) 126.5 
basic (of a structure) 409.B 
basic open 425.F 
bifurcation 51.F 418.F 
border 425.N 
Bore1 (in a Euclidean space) 270.C 
Bore1 (in a topological space) 270.C 
Bore1 in the strict sense 270.C 
boundary 425.N 
boundary cluster 62.A 
bounded (in an atline space) 7.D 
bounded (in a locally convex space) 424.F 
bounded (in a metric space) 273.B 
C, 22.D 
CA 22.A 
Cantor 79.D 
capacity of 260.D 
catastrophe 51.F 
category of 52.B 
chain recurrent 126.E 
characteristic (of an algebraic family on 

a generic component) t5.F 
characteristic (of a partial differential operator) 

320.B 
choice 34.A 
closed 425.B 
cluster 62.A 
coanalytic 22.A 
compact (in a metric space) 273.F 
compact (in a topological space) 425,s 
complementary 381.B 
complementary analytic 22.A 
complete 241.B 
complete orthonormal (of a Hilbert space) 

197.c 
connected 79.A 
constraint (of a minimization problem) 292.A 
convex 7.D 89 
countably equivalent (under a nonsingular 

bimeasurable transformation) 136.C 

curvilinear cluster 62.C 
cylinder 270.H 
of degeneracy (of a holomorphic mapping 

between analytic spaces) 23.C 
A.’ 22.D 
dense 425.N 
dependent 66.G 
derived 425.0 
determining (of a domain in C”) 21 .C 
difference (of blocks) 102.E 
directed 3ll.D 
discrete 425.0 
disjoint 381.B 
dominating 186.1 
empty (a) 381.A 
externally stable 186.1 
equipollent 49.A 
equipotent 49.A 
F, 270.C 
factor (of a crossed product) 29.D 
factor (of an extension of groups) 190.N 
factor (of a projective representation) 362.5 
family of 165.D 381.B,D 
family of (indexed by A) 38 1 .D 
final (of a correspondence) 358.B 
final (of a linear operator) 251.E 
finite 49.F 381.A 
finitely equivalent (under a nonsingular 
bimeasurable transformation) 136.C 

of the first category 425.N 
of the first kind 319.B 
first negative prolongational limit 126.D 
first positive prolongational limit 126.D 
function 380.A 
function-theoretic null 169.A 
fundamental (of a transformation group) 

122.B 
fundamental open (of a transformation group) 

122.8 
G, 270.C 
general Cantor 79.D 
generalized peak 164.D 
(general) recursive 97 
germ of an analytic 23.B 
homotopy 202.B 
idempotent (of a ring) 368.B 
increasing directed 308.A 
independent 66.G 186.1 
index 102.L 
index (of a family) 165.D 
index (of a family of elements) 381.D 
indexing (of a family of elements) 381.D 
infinite 49.F 381.A 
information 173.B 
initial (of a correspondence) 358.B 
initial (of a linear operator) 251.E 
interior cluster 62.A 
internally stable 186.1 
interpolating (for a function algebra) 164.D 
Kronecker 192.R 
lattice of 243.E 
lattice-ordered 243.A 
Lebesgue measurable 270.G 
Lebesgue measurable (of R”) 270.G 
level 279.D 
limit 234.A 
locally closed 425.J 
M- 159.J 
meager 425.N 
minimal 126.E 



210.5 Subject Index 

Sheaf (sheaves) 

p-measurable 270.D 
p-null 270.D 
of multiplicity 159.J 
n-cylinder 270.H 
nilpotent (of a ring) 368.B 
nodal 391.H 
nonmeager 425.N 
nonsaddle 120.E 
nonwandering 126.E 
nowhere dense 425.N 
null (in a measure space) 270.D 310.1 
null, of class Na 169.E 
null (0) 381.A 
w-limit 126.D 
open 425.B 
ordered -ordered set 
ordinate 221.E 
orthogonal (of functions) 317.A 
orthogonal (of a Hilbert space) 197.C 
orthogonal (of a ring) 368.B 
orthonormal (of functions) 317.A 
orthonormal (of a Hilbert space) 197.C 
P. 22.D 
P-convex (for a differential operator) 112.C 
peak 164.D 
perfect 425.0 
II; 22.A 
IT; 22.D 
point 381.B 
of points of indeterminacy (of a proper 
meromorphic mapping) 23.D 

polar (in potential theory) 261.D 338.H 
power 381.8 
precompact (in a metric space) 273.B 
principal analytic 23.B 
projective, of class n 22.D 
purely d-dimensional analytic 23.B 
of quasi-analytic functions 58.F 
quotient (with respect to an equivalence 
relation) 135.B 

ratio 136.F 
recurrent 260.E 
recursive 356.D 
recursively enumerable 356.D 
regularly convex 89.G 
relative closed 425.5 
relatively compact 425,s 
relatively compact (in a metric space) 273.F 
relatively open 425.5 
removable (for a family of functions) 169.C 
residual 126.H 425.N 
resolvent (of a closed operator) 251.F 
resolvent (of a linear operator) 390.A 
p- 308.1 
S- 308.1 
saddle 126.E 
scattered 425.0 
of the second category 425.N 
of the second kind 319.B 
semipolar 261.D 
Sidon 192.R 194.R 
sieved 22.B 
C; 22.A 
Z; 22.D 
singularity (of a proper meromorphic mapping) 

23.D 
stable 173.D 
stable, externally 186.1 
stable, internally 186.1 

standard 22.1 
strongly P-convex 112.C 
strongly separated convex 89.A 
system of closed 425.B 
system of open 425.B 
ternary 79.D 
thin (in potential theory) 261.D 
totally bounded (in a metric space) 273.B 
totally bounded (in a uniform space) 436.H 
U- 159.J 
of uniqueness 159.J 
universal (for the projective sets of class n) 

22.E 
universal (of set theory) 381.B 
wandering (under a measurable transformation) 

136.C 
wave front 274.B 345.A 
wave front, analytic 274.D 
weakly wandering 136.C 
weakly wandering (under a group) 136.F 
well-ordered 31 l.C 
Z- 382.B 
Zariski closed 16.A 
Zariski dense 16.A 
Zariski open 16.A 

set function(s) 380 
additive 380.C 
of bounded variation 380.B 
completely additive 380.C 
finitely additive 380.B 
monotone decreasing 380.B 
monotone increasing 380.B 
p-absolutely continuous additive 380.C 
n-singular additive 380.C 

set-theoretic formula 33.B 
set-theoretic topology 426 
set theory 381.F 

axiomatic 33 156.E 
Bernays-Godel 33.A,C 
Boolean-valued 33.E 
classical descriptive 356.H 
effective descriptive 356.H 
genera1 33.B 
Godel 33.C 
Zermelo 33.B 
Zermelo-Fraenkel 33.A,B 

Severi group, Neron- 
(of a surface) 15.D 
(of a variety) 16.P 

Sewell inequality, Roepstorff-Araki- 402.G 
sgn P (sign) 103.A 
shadow costs 292.C 
shadow price 255.B 
Shafarevich group, Tate- 118.D 
Shafarevich reciprocity law 257.H 
shallow water wave 205.F 
shape 

pointed 382.A 
same 382.A 

shape category 382.A 
shape dominate 382.A 
shape function 223.G 
shape group 382.C 
shape invariant(s) 382.C 
shape morphism 382.A 
shape theory 382 
Shapiro-Lopatinskii condition 323.H 
Shapley value 173.D 
sheaf (sheaves) 383 



Subject Index 

Sheaf space 
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(in &tale (Grothendieck) topology) 16.AA 
of Abelian groups 383.B 
analytic 72.E 
associated with a presheaf 383.C 
Tech cohomology group with coefficient 

383.F 
coherent, of rings 16.E 
coherent algebraic 16.E 72.F 
coherent analytic 72.E 
constructible 16.AA 
cohomology group with coefficient 383.E 
constant 383.D 
derived 125.W 
flabby 383.E 
of germs of analytic functions 383.D 
of germs of analytic mapping 383.D 
of germs of continuous functions 383.D 
of germs of differentiable sections of a vector 
bundle 383.D 

of germs of differential forms of degree of r 
383.D 

of germs of functions of class C’ 383.D 
of germs of holomorphic functions (on an 
analytic manifold) 383.D 

of germs of holomorphic functions (on an 
analytic set) 23.C 

of germs of holomorphic functions (on an 
analytic space) 23.C 

of germs of regular functions 16.B 
of germs of sections of a vector bundle 383.D 
of groups 383.C 
of ideals of a divisor (of a complex manifold) 
72.F 

invertible 16.E 
locally constructible (constant) 16.AA 
of @modules 383.1 
orientation 201.R 
pre- 383.A 
pre-, on a site 16.AA 
of rings 383.C 
scattered 383.E 
structure (of a prealgebraic variety) 16.C 
structure (of a ringed space) 383.H 
structure (of a variety) 16.B 
trivial 383.D 

sheaf space 383.C 
shear, modules of elasticity in 271.G 
shearing strain 271.G 
shearing stress 271.G 
shear viscosity, coefficient of 205.C 
sheet(s) 

hyperboloid of one 350.B 
hyperboloid of revolution of one 350.B 
hyperboloid of revolution of two 350.B 
hyperboloid of two 350.B 
mean number of (of a covering surface of 

a Riemann sphere) 272.5 
number of (of an analytic covering space) 
23.E 

number of (of a covering surface) 367.B 
sheeted, n- 367.B 
Shelah isomorphism theorem, Keisler- 276.E 
Shields-Zeller theorem, Brown- 43.C 
shift 251.0 

associated with the stationary process 136.D 
automorphism 126.5 
Bernoulli 136.D 
generalized Bernoulli 136.D 
Markov 136.D 
phase 375.E 386.B 

shift operator 223.C 251.0 306.C 
unilateral 390.1 

shift transformation 136.D 
Shilov boundary 

(of a domain) 21.D 
(for a function algebra) 164.C 
(of a Siegel domain) 384.D 

Shilov generalized function, Gel’fand- 125.S 
Shmul’yan theorem 424.V 

Eberlein- 37.G 
Krein- 37.E 424.0 

Shnirel’man theory, Lyusternik- 286.Q 
shock wave 205.B 446 
shortening 186.E 
shortest-path problem 281.C 
shortest representation (of an ideal) 6’7.F 
short exact sequence 200.1 
short international notation 92.E 
short range 375.B 
Shrikhande square 102.K 
shrinking (a space to a point) 202.E 
shunt 

left 115.B 
right 115.B 

SI (international system of units) 414.A 
side 155.B,F 

(of an angle) 139.D 155.B 
(of a complete quadrangle) 343.C 
(on a line) 155.B 
(on a plane) 155.B 
(of a point with respect to a hyperplane) 7.D 
(of a polygon) 155.F 
(of a spherical triangle) 432.B 

side cone 258.A 
Sidon set 192.R 
Siegel domain(s) 384 

of the first kind 384.A 
generated 384.F 
irreducible 384.E 
of the second kind 384.A 
of the third kind 384.A 

Siegel mean value theorem 182.E 
Siegel modular form of weight k (or of dimension 

-k) 32.F 
Siegel modular function of degree n 32.F 
Siegel modular group of degree n 32.F 
Siegel space of degree n 32.F 
Siegel theorem 

(on Diophantine equations) 118.D 
(on positive definite forms) 348.K 

Siegel upper half-space of degree n 32.F 
Siegel zero 123.D 
Siegel zeta function of indefinite quadratic forms 

450.K 
sieve 16.AA 22.B 

Eratosthenes 297.B 
large 123.E 
large, method 123.D 
Selberg 123.E 

sieved set 22.B 
sieve method 4.A 

large 123.D 
sign (of a permutation) 103.A 
signal process 405.F 
signature 

(of a Hermitian form) 348.F 
(of an irreducible representation of GL( V)) 

60.D 
(of a knot) 235.C 
(of a manifold) 56.G 
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Simplicial homology group 

(of a quadratic form) 348.C classical complex 248,s 
Hirzebruch, theorem 72.K exceptional compact real 248.T 

signed Lebesgue-Stieltjes measure 166.C exceptional complex 248.S 
signed measure 380.C simple Lie group 249.D 
signed rank test 371.B classical compact 249.L 
signed rank test, Wilcoxon 371.B classical complex 249.M 
sign test 371.B exceptional compact 249.L 
similar exceptional complex 249.M 

(central simple algebra) 29.E simple loss function 398.A 
(linear representation) 362.C simple model 403.F 
(matrix representation of a semilinear mapping) simple pair (of an H-space and an H-subspace) 

256.P 202.L 
(permutation representation) 362.B n- (of topological spaces) 202.L 
(projective representation) 362.5 simple path 186.F 
(square matrices) 269.G simple point 

similar central simple algebras 29.E (on an algebraic variety) 16.F 
similar correspondence (between surfaces) 111.1 (of an analytic set) 23.B 418.A 
similarity simple ring 368.G 

(of an affine space) 7.E quasi- 368.E 
Prandtl-Glauert law of 205.D simple root 
Reynolds law of 205.C (of an algebraic equation) 10.B 
von Karma, transonic 205.D (in a root system) 13.5 

similarly isomorphic (ordered fields) 149.N (of a semisimple Lie algebra) 248.M 
similar mathematical systems 409.B simple series 379.E 
similar test 400.D simple spectrum 390.G 
similar unitary representations 437.A simplest alternating polynomial 337.1 
simple simplest Chebyshev q-function 19.G 

(A-module) 277.H simplest orthogonal polynomial 19.G 
(Abelian variety) 3.B simple type theory 411.K 
(algebraic group) 13.L simplex 
(eigenvalue) 390.A,B (in an afline space) 7.D 
(function) 438.A (of a complex) 13.R 
(Lie algebra) 248.E (in a locally convex space) 424.U 
(Lie group) 249.D (in a polyhedron of a simplicial complex) 
(linear representation) 362.C 7o.c 
(polygon) 155.F (in a simplicial complex) 70.C 
(subcoalgebra) 203.F (of a triangulation) 70.C 
absolutely (algebraic group) 13.L degenerate (in a semisimplicial complex) 
algebraically (eigenvalue) 390.B 70.D 
almost (algebraic group) 13.L n- (in a Euclidean simplicial complex) 70.B 
geometrically (eigenvalue) 390.A n- (in a semisimplicial complex) 70.E 
k- (algebraic group) 13.0 n- (in a simplicial complex) 70.C 
k-almost (algebraic group) 13.0 open (in an affme space) 7.D 

simple algebra 29.A open (in the polyhedron of a simplicial 
central 29.E complex) 70.C 
normal 29.E ordered (in a semisimplicial complex) 70.E 
zeta function of 27.F ordered (in a simplicial complex) 70.C 

simple arc 93.B oriented q- 2Ol.C 
simple Bravais lattice 92.E oriented singular r-, of class Cm 105.T 
simple character (of an irreducible representation) singular n- (in a topological space) 70.E 

362.E simplex method 255.C 
simple closed curve 93.B two-phase 255.C 
simple component (of a semisimple ring) 368.G simplex tableau 255.C 
simple continued fraction 85.A simplicial approximation (to a continuous mapping) 
simple convergence, abscissa of (of a Dirichlet series) 7o.c 

121.B simplicial approximation theorem 70.C 
simple distribution, potential of 338.A simplicial chain complex, oriented 2Ol.C 
simple extension (of a field) 149.D simplicial complex(es) 65.A 70.C 
simple function 221.B 443.B abstract 70.C 
simple group 190.C countable 70.C 

linear 151.1 Euclidean 70.B 
Tits 151.1 finite 70.C 

simple harmonic motion 318.B isomorphic 70.C 
simple holonomic system 274.H locally countable 70.C 
simple homotopy equivalence 65.C locally finite 70.C 
simple homotopy equivalent 65.C ordered 70.C 
simple homotopy theorem 65.C simplicial decomposition (of a topological space) 
simple hypothesis 400.A 7o.c 
simple Lie algebra 248.E simplicial division 65.A 

classical compact real 248.T simplicial homology group 201.D 



Subject Index 
Simplicial mapping 
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simplicial mapping (map) 70.C 
(between polyhedra) 70.C 
(relative to triangulations) 70.C 

simplicial pair 201.L 
simply connected (space) 79.C 170 
simply connected covering Lie group (of a Lie 

algebra) 249.C 
simply connected group (isogenous to an algebraic 

group) 13.N 
simply convergent sequence 435.B 
simply elliptic (singularity) 418.C 
simply invariant (subspace) 164.H 
simply periodic function 134.E 
simply transitive (G-set) 362.B 
Simpson formula, Milne- 303.E 
Simpson f rule 299.A 
Simpson 2 rule 299.A 
simulation 307.C 385 

analog 385.A 
in the narrow sense 385.A 
system 385.A 

simultaneous distribution 342.C 
simultaneous equations 10.A 
sin (sine) 13 l.E 
sin-’ 131.E 
sine(s) 432.A 

hyperbolic 13 1 .F 
integral 167.D 
laws of 432.A, App. A, Tables 2.11 2.111 
laws of (on spherical trigonometry) 432.B 

sine curve 93.H 
Sine-Gordon equation 387.A 
sine integral 167.D, App. A, Table 19.11 
sines and cosines, law of App. A, Table 2.111 
sine transform 16O.C, App. A, Table 11.11 
sine wave 446 
Singer fixed point theorem, Atiyah- 153.C 
Singer index theorem 

Atiyah- 237.H 
equivariant Atiyah- 237.H 

single-address instruction 75.C 
single-commodity flow problem 281.F 
single integral theorem, Fourier 160.B 
single layer, potential of a 338.A 
single-objective model 307.C 
single sampling inspection 404.C 
single-valued function 165.B 
singular 

(distribution) 374.C 
(element of a connected Lie group) 249.P 
(element of a real Lie algebra) 248.B 
(element with respect to a quadratic form) 

348.E 
(Galton-Watson process) 44.C 
(harmonic function) 193.G 
(mapping) 208.B 
(ordinal number) 270.1 
(set function) 380.C 
essentially (with respect to an analytic set) 
21.M 

of the hth species 343.D,E 
p- 380.C 
relative, homology group 2Ol.L 

singular cardinal problem 33.F 
singular chain complex (of a topological space) 

201.E 
singular cochain complex 201.H 
singular cohomology group 201.H 
singular cohomology ring 201.1 
singular complex (of a topological space) 70.E 

singular fiber 72.K 
singular homology group ZOl.E,G,L,R 

integral 201.E 
singular initial value problem (of a partial differen- 

tial equation of mixed type) 326.C 
singular inner function 43.F 
singular integral 217.5 
singular integral equation 217.5 
singular integral manifold (of a differential ideal) 

428.E 
singular integral operator, Calderon-Zygmund 

217.5 251.0 
singularity (singularities) 51.C 198.M 

algebraic 198.M 
of an analytic function 198.M 
cusp 418.C 
direct transcendental (of an analytic function in 

the wider sense) 198.P 
elliptic 418.C 
essential (of a complex function) 198.D 
fixed (of an algebraic differential equation) 
288.A 

indirect transcendental (of an analytic function 
in the wider sense) 198.P 

isolated (of an analytic function) 198.D 
isolated (of a complex function) 198.M 
logarithmic (of an analytic function) 198.M 
logarithmic (of an analytic function in the wider 
sense) 198.P 

movable (of an algebraic differential equation) 
288.A 

ordinary (of an analytic function in the wider 
sense) 198.P 

principle of condensation of 37.H 
propagation of 325.M 
quotient 418.C 
rational 418.C 
regular (of a coherent b-module) 274.H 
removable (of a complex function) 198.D 
removable (of a harmonic function) 193.L 
resolution of 16.L 23.D 418.B 
space of 390.E 
theory of 418 
transcendental (of an analytic function in the 

wider sense) 198.P 
two-dimensional 418.C 

singularity set (of a proper meromorphic mapping) 
23.D 

singularity spectrum (of a hyperfunction) 125.CC 
274.E 

singularity theorem (in physics) 359.F 
singular kernel 217.5 
singular locus (of a variety) 16.F 
singular n-simplex (in a topological space) 70.E 
singular orbit 43 l.C 
singular part (of a Laurent expansion) 198.D 
singular perturbation 289.E 
singular point 

(of an algebraic variety) 16.F 
(of an analytic set) 23.B 418.A 
(of a continuous vector field) 153.B 
(of a curve of class Cx) 93.G 
(of a flow) 126.D 
(of a linear difference equation) 104.D 
(of a plane algebraic curve) 9.B 
(of a polyhedron) 65.B 
(of a quadratic hypersurface) 343.E 
(of a surface in E3) 1ll.J 
(of a system of linear ordinary differential 

equations) 254.A 
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Smooth boundary, domain with 

(of a system of ordinary differential equations) 
126.G 289.A 

apparent (of a system of linear ordinary dif- 
ferential equations) 254.C 

hyperbolic 126.G 
irregular (of a solution) 254.B 
irregular (of a system of linear ordinary dif- 

ferential equations) 254.B 
isolated 198.D 
left (of a diffusion process) 115.B 
regular (of a solution) 254.B 
regular (of a system of linear ordinary dif- 
ferential equations) 254.B 

right (of a diffusion process) 115.B 
singular projective transformation 343.D 

of the hth species 343.D 
q-cochain 201.H 
q-simplex 201.E 

singular quadric hypersurface of the hth species (in a 
projective space) 343.E 

singular r-chain of class C” 105.T 
singular r-cochain of class C” 105.T 
singular r-simplex of class C”, oriented 105.T 
singular series 4.D 
singular solution 

(of a differential ideal) 428.E 
(of a general partial differential equation) 

320.C 
(of an ordinary differential equation) 313.A, 

App. A, Table 14.1 
(of a partial differential equation) 320.C 
totally (with respect to a quadratic form) 

348.E 
singular spectrum 345.A 390.E 

(of a hyperfunction) 125.CC 274.E 
singular subspace 343.D 
singular subspace, totally 348.E 
singular support 

(of a distribution) 112.C 
(of a hyperfunction) 125.W 

singular value 302.A 
singular value decomposition (SVD) 302.E 
sinh (hyperbolic sine) 131.F 
sink 126.G 281.C 
sinusoid 93.D 
sinusoidal wave 446 
site 16.AA 

&tale 16.AA 
flat 16.AA 
presheaf on 16.AA 
Zariski 16.AA 

site percolation process 340.D 
6j-symbol 353.B 
size 

(of a balanced array) 102.L 
(complexity of computation) 71.A 
(of a population) 397.B 
(of a random sample) 396.B 
(of a sample) 401.E 
(of a test) 400.A 
block 102.B 
sample 373.A 
step 303.B 

skeleton 
(of a domain in C”) 21 .C 
r- (of a Euclidean complex) 70.B 

skew field 149.A 368.B 
skew-Hermitian form 256.Q 
skew-Hermitian matrix 269.P’ 
skew h-matrix 269.1 

skewness 396.C 397.C 
coefficient of 341.H 

skew product (of measure-preserving transforma- 
tions) 136.D 

skew surface 111.1 
skew-symmetric (multilinear mapping) 256.H 
skew-symmetric matrix 269.B 
skew-symmetric tensor 256.N 
Skitovich-Darmois theorem 374.H 
Skolem-Lowenheim theorem 156.E 
Skolem paradox 156.E 
Skolem theorem on the impossibility of characteriz- 

ing the system of natural numbers by axioms 
156.E 

slackness, Tucker theorem on complementary 
255.B 

slack variable 255.A 
slant product 

(of a cochain and a chain) 201.K 
(of a cohomology class and a homology class) 

201.K 
Slater constraint qualification 292.B 
slender body theorem 205.B 
slice knot 235.G 
slice representation 431.C 
slice theorem, differentiable 43 1 .C 
slicing theorem, watermelon- 125.DD 
slide rule 19.A 
sliding block code 213.E 
slit (of a plane domain) 333.A 
slit domain 333.A 
slit mapping 

extremal horizontal 367.G 
extremal vertical 367.G 

slope function 46.C 
slowly increasing Cm-function 125.0 
slowly increasing distribution 125.N 
slowly increasing function in the sense of Deny 

338.P 
slowly increasing sequences 168.B 
slow wave 259 
Smale condition C, Palais- 279.E 286.Q 
Smale diffeomorphism, Morse- 126.5 
Smale flow, Morse- 126.5 
Smale theorem, Sard- 286.P 
Smale vector field, Morse- 126.5 
small-displacement theory of elasticity 271.G 
smaller topology 425.H 
small inductive dimension (ind) 117.B 
small numbers, law of 250.B 
small sample 401.F 
small set of order U 436.G 
smashing (a space to a point) 202.E 
smash product 202.F 
Smirnov test, Kolmogorov- 3 17.F 
Smirnov test statistic, Kolmogorov- 374.E 
Smirnov theorem 250.F 
Smith conjecture 235.E 
Smith convergence, Moore- 87.H 
Smith theorem 431.B 
smooth 

(function) 106.K 
(measure for a Riemann metric) 136.G 
(morphism of schemes) 16.F 
(point of a variety) 16.F 
piecewise (curve) 364.A 
in the sense of A. Zygmund 168.B 
uniformly (normed linear space) 37.G 

smooth boundary, domain with (in a Cm-manifold) 
105.u 



Subject Index 
Smooth characteristic class of foliations 

2110 

smooth characteristic class of foliations 154.G 
smoothing (of a combinatorial manifold) 114.C 
smoothing problem 114.C 
smooth invariant measure 126.5 
smooth manifold 105.D 114.B 
smooth structure 114.B 
smooth variety 16.F 
sn 134.5, App. A, Table 16.111 
Snapper polynomial 16.E 
Sobolev-Besov embedding theorem 168.8 
Sobolev inequality, Hardy-Littlewood- 224.E 
Sobolev space 168.8 
software 75.C 
sojourn time density 45.G 
solenoidal (vector held) 442.D 
solid geometry 181 
solid harmonics 393.A 
solid n-sphere 140 
solid sphere 140 

topological 140 
solitary wave 387.B 
soliton 387.B 
solution 

(of equations of neutral type) 163.H 
(of a functional-differential equation) 163.C 
(of an inequality) 21 l.A 
(of an ordinary differential equation) 313.A 
(of a partial differential equation) 320.A 
(of partial differential equations of first order) 

App. A, Table 15.11 
(of partial differential equations of second 

order) App. A, Table 15.111 
(of a system of differential equations) 313.B 
(of a system of linear equations) 269.M 
(of a system of partial differential equations) 

428.B 
algebraic (of an algebraic equation) 10.D 
asymptotic 325.L 
basic 255.A 
basic feasible 255.A 
basic optimal 255.A 
Bayes 398.B 
Bayes, in the wider sense 398.B 
of boundary value problems App. A, Table 

15.VI 
of the Cauchy problem 325.D 
classical (to Plateau’s problem) 275.C 
complete (of partial differential equations) 

320.C 
d’Alembert 325.D 
Douglas-Radb (to Plateau’s problem) 275.C 
elementary (of a differential operator) 112.B 
elementary (of a linear partial differential 

operator) 320.H 
elementary (of partial differential equations 

of elliptic type) 323.B 
elementary (of a partial differential operator) 

App. A, Table 15.V 
equilateral triangle 420.B 
feasible (of a linear equation in linear program- 

ming) 264.A 
formal (for a system of ordinary differential 

equations) 289.C 
fundamental (of a Cauchy problem) 325.D 
fundamental (of a differential operator) 112.B 
fundamental (of an evolution equation) 189.C 
fundamental (of a linear parabolic equation 

with boundary conditions) 327.F 
fundamental (of a linear partial differential 

operator) 320.H 

fundamental (of a partial differential equation 
of parabolic type) 327.D 

fundamental (of partial differential equations 
of elliptic type) 323.B 

fundamental (of a partial differential operator 
with Cm-coefficients) 189.C 

fundamental system of (of a homogeneous 
linear ordinary differential equation) 252.B 

fundamental system of (of a homogeneous 
system of linear differential equations of first 
order) 252.H 

general (of a differential equation) 313.A 
general (of a general partial differential equa- 
tion) 320.C 

general (of a nonhomogeneous linear difference 
equation) 104.D 

general (of partial differential equations) 
320.C 

general (of a system of differential equations) 
313.c 

general (of a system of partial differential 
equations) 428.B 

generalized Bayes 398.B 
genuine 323.G 
half-periodic (of the Hill equation) 268.E 
Hill’s method of 268.B 
Hopf’s weak 204.C 
inner 25.B 
Kirchhoff 325.D 
to the martingale problem 115.C 
maximum 316.E 
minimax 398.B 
minimum 3 16.E 
Nash bargaining 173.C 
numerical (of algebraic equations) 301 
numerical (of integral equations) 217.N 
numerical (of linear equations) 302 
numerical (of ordinary differential equations) 

303 
numerical (of partial differential equations) 

304 
optimal (of a linear programming problem) 
255.A 

optimal (of a nonlinear programming problem) 
292.A 

ordinary (of a differential ideal) 428.E 
outer 25.B 
particular (of a differential equation) 313.A 
particular (of partial differential equations) 

320.C 
particular (for a system of differential equations) 

313.c 
pathwise uniqueness of 406.D 
periodic (of the Hill equation) 268.E 
Perron-Brelot (of the Dirichlet problem) 

12o.c 
Perron-Wiener-Brelot (of the Dirichlet problem) 

12o.c 
Poisson 325.D 
primary (of a homogeneous partial differential 
equation) 320.E 

primitive (of a partial differential equation) 
320.E 

principal 104.B 
by quadrature App. A, Table 14.1 
quasiperiodic (of the Hill equation) 268.B 
by radicals (of an algebraic equation) 10.D 
regular (of a differential ideal) 428.E 
singular App. A, Table 14.1 
singular (df a differential ideal) 428.E 
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singular (of a general partial differential equa- 
tion) 320.C 

singular (of an ordinary diIIerentia1 equation) 
313.A, App. A, Table 14.1 

singular (of partial differential equations) 
320.C 

stable (of the Hill equation) 268.E 
straight line 420.B 
strong (of Navier-Stokes equation) 204.C 
strong (of stochastic differential equations) 

406.D 
system of fundamental (of a system of linear 

homogeneous equations) 269.M 
trivial (of a system of linear homogeneous 
equations) 269.M 

unique strong 406.D 
uniqueness theorem of (of systems of linear 
differential equations of the first order) 
316.D,G 

unstable (of the Hill equation) 268.E 
von Neumann-Morgenstern 173.D 
weak 204.C 323.G 378.1 

solution curve (of ordinary differential equations) 
316.A 

solution operator 163.E 
solvability, Cartan’s criterion of 248.F 
solvable 

(ideal of a Lie algebra) 248.C 
(Lie algebra) 248.C 
(Lie group) 249.D 
(by a Turing machine) 71.B 
by radicals 172.H 

solvable algebra 231.A 
solvable algebraic group 13.F 

k- 13.F 
solvable group 190.1 

finite 151.D 
generalized 190.K 
K- 151.F 

solve 
(a conditional inequality) 21 l.A 
(by means of a Turing machine) 71.E 
(an ordinary differential equation) 313.A 
(a partial differential equation) 320.A 
(a system of algebraic equations) 10.A 
(a triangle) 432.A 

Sommerfeld formula App. A, Table 19.111 
Kneser- App. A, Table 19.111 

Sommerfeld radiation condition 188.D 
Sonine formula, Weber- App. A, Table 19.111 
Sonine polynomials 317.D, App. A, Table 2O.VI 
Sonine-Schatheitlin formula App. A, Table 19.111 
SOR (successive overrelaxation) 302.C 
sorting 96.C 
soudure 80.N 
sound propagation, equation of 325.A 
source 126.G 28 1 .C 

(of a jet) 105.X 
autoregressive Gaussian 213.E 
ergodic information 213.C 
information 213.A 
stationary 213.C 
without (vector lield) 442.D 

source branch 282.C 
source coding theorem 213.D 

with a fidelity criterion 213.E 
noiseless 213.D 

source coding theory 213.A 
southern hemisphere 140 

south pole 74.D 140 
space(s) 381.B 

of absolute continuity 390.E 
absolutely closed 425.U 
abstract 381.B 
abstract L 310.G 
abstract L, 310.G 
abstract M 310.G 
action 398.A 
adjoint (of a topological linear space) 424.D 
afftne 7.A 
affine locally symmetric 80.J 
afline symmetric 80.5 
K,- 425.Y 
algebraic 16.W 
algebraic fiber 72.1 
analytic 23.C 
analytic, in the sense of Behnke and Stein 23.E 
analytically uniform 125,s 
analytic covering 23.E 
analytic measurable 270.C 
arcwise connected 79.B 
attaching 202.E 
Baire 425.N 
Baire zero-dimensional 273.B 
Banach 37.A,B 
Banach analytic 23.G 
base (of a fiber bundle) 147.B 
base (of a fiber space) 148.B 
base (of a Riemann surface) 367.A 
base for 425.F 
basic (of a probability space) 342.B 
Besov 168.B 
bicompact 408,s 
biprojective 343.H 
Boolean 42.D 
Bore1 270.C 
boundary 112.E 
bundle (of a fiber bundle) 147.B 
C-analytic 23.E 
C-covering 23.E 
Cartan 152.C 
Cartesian 140 
Tech-complete 436.1 
classifying (of a topological group) 147.G,H 
closed half- 7.D 
of closed paths 202.C 
co-echelon 168.B 
collectionwise Hausdorff 425.AA 
collectionwise normal 425.AA 
comb 79.A 
compact 425,s 
compact metric 273.F 
complete 436.G 
completely normal 425.Q 
completely regular 425.4 
complete measure 270.D 
complete product measure 270.H 
complete uniform 436.G 
complex, form 365.L 
complex Hilbert 197.B 
complex interpolation 224.B 
complexity 71.A 
complex projective 343.D 
concircularly flat App. A, Table 4.11 
configuration 126.L 402.G 
conformal 76.A 
conformally flat App. A, Table 4.11 
conjugate (of a normed linear space) 37.D 
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conjugate (of a topological linear space) 424.D 
connected 79.A 
of constant curvature 364.D, App. A, Table 
4.11 

of continuous mapping 435.D 
contractible 79.C 
control (in catastrophe theory) 51.B 
countable paracompact 425.Y 
countably compact 425,s 
countably Hilbertian 424.W 
countably normed 424.W 
covering 91.A 
crystallographic, group 92.A 
decision 398.A 
of decision functions 398.A 
de Sitter 359.D 
developable 425.AA 
(DF)- 424.P 
Dieudonnt complete topological 435.1 
Dirichlet 338.4 
discrete metric 273.B 
discrete topological 425.C 
Douady 23.G 
dual (of a C*-algebra) 36.G 
dual (of a linear space) 256.G 
dual (of a locally compact group) 437.J 
dual (of a normed linear space) 37.D 
dual (of a projective space) 343.B 
dual (of a topological linear space) 424.D 
&- 193.N 
echelon 168.B 
eigen- 269.L 390.A 
Eilenberg-Maclane 70.F 
Einstein 364.D, App. A, Table 4.11 
of elementary events 342.B 
elliptic 285.C 
error 403.E 
estimation 403.E 
Euclidean 140 
external (in static model in catastrophe theory) 

51.B 
(F)- 424.1 
fiber 72.1 148.B 
finite type power series 168.B 
Finsler 152.A 
Fock (antisymmetric) 377.A 
Fock (symmetric) 377.A 
Frechet 37.0 424.1 425.CC 
Frechet, in the sense of Bourbaki 37.0 424.1 
Frtchet L- 87.K 
Frechet-Uryson 425.CC 
fully normal 425.X 
function 168.A 435.D 
fundamental 125.S 
G- 178.H 431.A 
general analytic 23.G 
generalized topological 425.D 
generating (of a quadric hypersurface) 343.E 
globally symmetric Riemannian 412.A 
Green 193.N 
group 92.A 
H- 203.D 
Haar 142.B 
half- (of an afline space) 7.D 
Hardy 168.B 
Hausdorff 425.Q 
Hausdorff uniform 436.C 
H-closed 425.U 
hereditarily normal 425.Q 
Hermitian hyperbolic 412.G 

Hilbert 173.B 197.B 
Hilbert, adjoint 251.E 
Hilbert, exponential 377.D 
Holder 168.B 
holomorphically complete 23.F 
homogeneous -homogeneous space 
hyperbolic 285.C 412.H 
identification (by a partition) 425.L 
indiscrete pseudometric 273.B 
inductive limit 210.C 
infinite-dimensional 117.B 
infinite lens 91.C 
infinite type power series 168.B 
at infmity (in affine geometry) 7.B 
inner product 442.B 
internal (in static model in catastrophe 
theory) 51.B 

interpolation 224.A 
of irrational numbers 22.A 
irreducible symmetric Hermitian 412.A 
isometric 273.B 
John-Nirenberg (= BMO) 168.B 
k- 425.CC 
k’- 425.CC 
K-complete analytic 23.F 
Kawaguchi 152.C 
Kolmogorov 425.4 
Kiithe 168.B 
Kuranishi 72.G 
Kuratowski 425.4 
L- 87.K 
L*- 87.K 
Lashnev 425.CC 
lattice ordered linear 310.B 
Lebesgue (= L,(R)) 168.B 
Lebesgue measure, with (u-) finite measure 

136.A 
left coset (of a topological group) 423.E 
left projective 343.H 
left quotient (of a topological group) 423.E 
lens 91.C 
(LF)- 424.W 
of line elements of higher order 152.C 
linear -linear space 
linear topological 424.A 
Lindelof 425,s 
Lipschitz 168.B 
locally arcwise connected 79.B 
locally compact 425.V 
locally connected 79.A 
locally contractible 79.C 204.C 
locally convex Frechet 424.1 
locally Euclidean 425.V 
locally n-connected 79.C 
locally o-connected 79.C 
locally symmetric 364.D 
locally symmetric Riemannian 412.A 
locally totally bounded uniform 436.H 
locally trivial fiber 148.B 
local moduli, of a compact complex manifold 

72.G 
local ringed 383.H 
Loeb 293.D 
loop 202.c 
Lorentz 168.B 
Luzin 22.1422.CC 
M- 425.Y 
(M)- 424.0 
Mackey 424.N 
mapping 202.C 435.D 
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maximal ideal (of a commutative Banach space) 
36.E 

measurable 270.C 
measure 270.D 
metric -metric space 
metric vector 256.H 
metrizable topological 273.K 
metrizable uniform 436.F 
Minkowski 258.A 
moduli 16.W 72.G 
Moishezon 16.W 
momentum phase 126.L 
Monte1 424.0 
Moor 273.K 425.AA 
n-classifying (of a topological group) 147.G 
n-connected 79.C 202.L 
n-connective fiber 148.D 
n-dimensional 117.B 
n-simple 202.L 
non-Euclidean 285.A 
normal 425.Q 
normal analytic 23.D 
normed linear 37.B 
NP- 71.E 
nuclear 424.S 
null 251.D 
w-connected 79.C 
orbit (of a G-space) 43 1.A 
ordered linear 310.B 
Orlicz 168.B 
P- 425.Y 
p- 425.Y 
paracompact 425,s 
parameter (of a family of compact complex 
manifolds) 72.G 

parameter (for a family of probability measures) 
398.A 

parameter (of a probability distribution) 396.B 
partition of a 425.L 
path 148.C 
path (of a Markov process) 261.B 
path-connected 79.B 
pathological 65.F 
Peirce 231.B 
perfectly normal 425.4 
perfectly separable 425.P 
phase 126.B 163.C 402.C 
physical Hilbert 150.G 
pinching a set to a point 202.E 
polar 191.1 
Polish 22.1 273.5 
precompact metric 273.B 
precompact uniform 436.H 
pre-Hilbert 197.B 
principal (of a flag) 139.B 
principal half- 139.B 
probability 342.B 
product 425.K 
product measure 270.H 
product metric 273.B 
product topological 425.K 
product uniform 436.E 
projective, over A 147.E 
projective limit 210.C 
projectively flat App. A, Table 4.11 
pseudocompact 425,s 
pseudometric 273.B 
pseudometrizable uniform 436.F 
Q- 425.BB 
quasi-Banach 37.0 

I quasicompact 408,s 
quasidual (of a locally compact group) 437.1 
quasinormed linear 37.0 
quaternion hyperbolic 412.G 
quotient 425.L 
quotient (by a discrete transformation group) 

122.A 
I quotient (of a linear space with respect to an 

equivalence relation) 2S6.F 
quotient (by a transformation group) 122.A 
quotient topological 425.L 
r-closed 425.U 
ramified covering 23.B 
real-compact 425.BB 
real Hilbert 197.B 
real hyperbolic 412.G 
real interpolation 224.C 
real linear 256.A 
real projective 343.D 
reduced product 202.4 
reflexive Banach 37.G 
regular 425.Q 
regular Banach 37.G 
representation (for a Banach algebra) 36.D 
representation (of a representation of a Lie 
algebra) 248.B 

representation (of a representation of a Lie 
group) 249.0 

representation (of a unitary representation) 
437.A 

Riemannian 364.A 
Riesz 310.B 
right coset (of a topological group) 423.E 
right projective 343.H 
right quotient (of a topological group) 423.E 
ringed 383.H 
(S)- 424.S 
sample 342.B 396.B 398.A 
scale of Banach 286.2 
Schwartz 424,s 
separable 425.P 
separable metric 273.E 
separated 425.4 
separated uniform 436.C 
sequential 425.CC 
sequentially compact 42S.S 
sheaf 383.C 
shrinking, to a point 202.E 
Siegel, of degree n 32.F 
Siegel upper half-, of degree n 32.F 
C- 425.Y 
o- 425.Y 
c-compact 425.V 
u-finite measure 270.D 
simply connected 79.C 170 
of singularity 390.E 
smashing, to a point 202.E 
Sobolev 168.B 
Spanier cohomology theory, Alexander- 

Kolmogorov- 201.M 
spherical 285.D 
Spivak normal fiber 114.5 
standard Bore1 270.C 
standard measurable 270.C 
standard vector (of an afline space) 7.A 
state (of a dynamical system) 126.B 
state (of a Markov process) 261.B 
state (in static model in catastrophe theory) 

51.B 
state (of a stochastic proccess) 407.B 
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Stein 23.F 
stratitiable 425.Y 
strongly paracompact 425,s 
structure (of a Banach algebra) 36.D 
subbase for 425.F 
Suslin 22.1 425.CC 
symmetric Hermitian 412.E 
symmetric homogeneous 412.B 
symmetric Riemannian 412 
symmetric Riemannian homogeneous 412.B 
Ta- 425.4 
Tl- 425.Q 
Ti-uniform 436.C 
Ta- 425.Q 
Ta- 425.Q 
T4- 425.4 
T,- 425.4 
T6- 425.Q 
tangent 105.H 
tangent vector 105.H 
Teichmiiller 416 
tensor, of degree k 256.5 
tensor, of type (p, q) 256.5 
test function 125,s 
Thorn 114.G 
Tikhonov 425.Q 
time parameter 260.A 
topological -topological space 
topological complete 436.1 
topological linear 424.A 
topological vector 424.A 
total (of a fiber bundle) 147.B 
total (of a fiber space) 148.B 
totally bounded metric 273.B 
totally bounded uniform 436.H 
totally disconnected 79.D 
transformation (of an algebraic group) 13.G 
of type S 125.T 
underlying topological (of a complex manifold) 

72.A 
underlying topological (of a topological group) 
423.A 

uniform -uniform space 
uniformizable topological 436.H 
uniformly locally compact 425.V 
uniform topological 436.C 
unisolvent 142.B 
universal covering 91.B 
universal Teichmiiller 416 
vector, over K 256.A 
velocity phase 126.L 
weakly symmetric Riemannian 412.J 
well-chained metric 79.D 
wild 65.F 

space complexity 71.A 
space form 285.E 412.H 

Euclidean 412.H 
hyperbolic 412.H 
spherical 412.H 

space geometry 181 
space group 92.A 

crystallographic 92.A 
equivalent 92.A 

spacelike 258.A 359.B 
space reflection 359.B 
space-time, Minkowski 359.B 
space-time Brownian motion 45.F 
space-time inversion 258.A 
space-time manifold 359.D 
span 

(of a domain) 77.E 
(a linear subspace by a set) 256.F 
(of a Riemann surface) 367.G 

spanning tree 186.G 
sparse 302.C 
Splth type division theorem (for microdifferential 

operators) 274.F 
spatial (*-isomorphism on von Neumann algebras) 

308.C 
spatially homogeneous (process) 261.A 
spatially isomorphic (automorphisms on a measure 

space) 136.E 
spatial tensor product 36.H 
Spearman rank correlation 371.K 
Spec (spectrum) 16.D 
special Clifford group 61.D 
special divisor 9.C 
special flow 136.D 
special function(s) 389, App. A, Table 14.11 

of confluent type 389.A 
of ellipsoidal type 389.A 
of hypergeometric type 389.A 

special functional equations 388 
special isoperimetric problem 228.A 
speciality index 

(of a divisor of an algebraic curve) 9.C 
(of a divisor on an algebraic surface) 15.D 
o- (of a divisor of an algebraic curve) 9.F 

specialization 16.A 
(in ttale topology) l6.AA 

special Jordan algebra 231.A 
special linear group 60.B 

(over a noncommutative field) 60.0 
of degree n over K 60.B 
projective 60.B 
projective (over a noncommutative field) 60.0 

special orthogonal group 60.1 
complex 60.1 
over K with respect to Q 60.K 

special principle of relativity 359.B 
special relativity 359.B 
special representation (of a Jordan algebra) 231.C 
special surface 110.A 
special theory of perturbations 420.E 
special theory of relativity 359.A 
special unitary group 60.F 

(relative to an s-Hermitian form) 60.0 
over K 60.H 
projective, over K 60.H 

special universal enveloping algebra (of a Jordan 
algebra) 231.C 

special valuation 439.B 
species 

ellipsoidal harmonics of the first, second, third 
or fourth 133.C 

Lame functions of the first, second, third or 
fourth 133.C 

singular projective transformation of the hth 
343.D 

singular quadric hypersurface of the hth (in a 
projective space) 343.E 

specification 401.A 
problem of 397.P 

specific heat 
at constant pressure 419.B 
at constant volume 419.B 

specificity 346.F 
specific resistance 130.B 
spectral analysis 390.A 
spectral concentration 331.F 
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Spinor 

spectral decomposition 126.5 395.B 
spectral density, quadrature 397.N 
spectral functor 200.5 
spectral geometry 391.A 
spectral integral 390.D 
spectral invariant 136.E 
spectrally isomorphic (automorphisms on a measure 

space) 136.E 
spectral mapping theorem 251.G 
spectral measure 390.B,K 395.B,C 

complex 390.D 
maximum 390.G 
real 390.D 

spectral method 304.B 
spectral operator 390.K 
spectral property 136.E 
spectral radius 126.K 251.F 390.A 
spectral representation 390.E 

complex 390.E 
spectral resolution 390.E 

complex 390.E 
spectral sequence 200.5 

(of a fiber space) 148.E 
cohomology 200.5 
Hodge 16.U 

spectral synthesis 36.L 
spectral theorem 390.E 
spectrum 390.A 

(of a commutative ring) 16.D 
(of a domain in a Riemannian manifold) 391.A 
(of an element of a Banach algebra) 36.C 
(in homotopy theory) 202.T 
(of a hyperfunction) 274.E 
(of an integral equation) 217.5 
(of a linear operator) 251.F 390.A 
(of a spectral measure) 390.C 
absolutely continuous 390.E 
continuous (of a linear operator) 390.A 
continuous (of an integral equation) 217.5 
countable Lebesgue 136.E 
discrete 136.E 390.E 
Eilenberg-MacLane 202.T 
essential 390.E,I 
formal (of a Noetherian ring) 16.X 
intermittent 433.C 
joint 36.M 
Kolmogorov 433.C 
for p-forms 391.B 
point 390.A 
pure point 136.E 
quasidiscrete 136.E 
residual 390.A 
simple 390.G 
singular 125.CC 345.A 390.A 
singular (of a hyperfunction) 274.E 
singularity (of a hyperfunction) 125.CC 274.E 
sphere 202.T 
stable homotopy group of the Thorn 114.G 
Thorn 114.G 202.T 

spectrum condition 150.D 
speed measure 115.B 
Speiser theorem, Hilbert- 172.J 
Spencer mapping (map), Kodaira- 72.G 
sphere(s) 139.1 150 

circumscribing (of a simplex) 139.1 
combinatorial, group of oriented differentiable 
structures on the 114.1 

complex 74.D 
E- (of a point) 273.C 
exotic 114.B 

homotopy n- 65.C 
homotopy n-, h-cobordism group of 114.1 
horned, Alexander’s 65.G 
open n- 140 
open 140 
PL (k - l)- 65.C 
pseudo- 111.1 
Riemann 74.D 
solid 140 
solid n- 140 
topological 140 
topological solid 140 
unit 140 
w- 74.D 
z- 74.D 

sphere bundle n- 147.K 
cotangential 274.E 
normal 274.E 
tangential 274.E 
unit tangent 126.L 

sphere geometry 76.C 
sphere pair 235.G 65.D 
sphere spectrum 202.T 
sphere theorem 

(characterization of a sphere) 178.C 
(embedding in a 3-manifold) 65.E 

spherical 
(real hypersurface) 344.C 
(space form) 412.H 

spherical astronomy 392 
spherical Bessel function 39.B 
spherical coordinates 9O.C App. A, Table 3.V 
spherical derivative (for an analytic or meromorphic 

function) 435.E 
spherical excess 432.B 
spherical Fourier transform 437.2 
spherical function(s) 393 

(on a homogeneous space) 437.X 
Laplace 393.A 
zonal (on a homogeneous space) 437.Y 

spherical G-fiber homotopy type 43 1.F 
spherical geometry 285.D 
spherical harmonic function 193.C 
spherical harmonics, biaxial 393.D 
spherical indicatrix (of a space curve) 11 l.F 
spherical modification 114.F 
spherical representation 

of a differentiable manifold 1ll.G 
of a space curve 111 .F 
of a unimodular locally compact group 437.2 

spherical space 285.D 
spherical triangle 432.B, App. A, Table 2.111 
spherical trigonometry 432.B 
spherical type 13.R 
spherical wave 446 
spheroidal coordinates 133.D, App. A, Table 3.V 
spheroidal wave function 133.E 
spin 132.A 258.A 415.G 

continuous 258.A 
spin and statistics, connection of 132.A 150.D 
spin ball 351.L 
spin bundle 237.F 
SpinC bundle 237.F 
spin-flip model 340.C 
spin mapping (map) 237.G 
spin matrix, Pauli 258.A 415.G 
spinor 61.E 

contravariant 258.A 
covariant 258.A 
dotted 258.B 
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even half- 61 .E 
mixed, of rank (k, n) 258.A 
odd half- 61.E 
undotted 258.B 

spinor group 60.1 61.D 
complex 6 1 .E 

spinorial norm 61.D 
spinor representation (of rank k) 258.A 
spin representation 

(of SO(n)) 60.5 
(of Spin(n, C)) 61.E 
even half- 61 .E 
half- 61.E 
odd half- 61.E 

spin-structure 237.F 431.D 
spin systems, lattice 402.G 
spiral 93.H 

Archimedes 93.H 
Bernoulli 93.H 
Cornu 93.H 
equiangular 93.H 
hyperbolic 93.H 
logarithmic 93.H 
reciprocal 93.H 

Spivak normal fiber space 114.5 
spline 223.F 

natural 223.F 
spline interpolation 223.F 
split 

((B,N)-pair) 151.5 
(cocycle in an extension) 257.E 
(exact sequence) 277.K 
k- (algebraic group) 13.N 
K- (algebraic torus) 13.D 
k-quasi- (algebraic group) 13.0 
maximal k-, torus 13.Q 

split extension (of a group) 190.N 
splitting, Heegaard 65.C 
splitting field 

for an algebra 362.F 
for an algebraic torus 13.D 
minimal (of a polynomial) 149.G 
of a polynomial 149.G 

splitting ring 29.K 
split torus, maximal k- 13.Q 
spot prime 439.H 
Spur 269.F 
square(s) 

Euler 241.B 
latin 241 
Latin 102.K 
least, approximation 336.D 
matrix of the sum of, between classes 280.B 
matrix of the sum of, within classes 280.B 
method of least 303.1 
middle-, method 354.B 
Room 241.D 
Shrikhande 102.K 
Youden 102.K 
Youden, design 102.K 

square-free integer 347.H 
square integrable 168.B 
square integrable unitary representation 437.M 
square matrix 269.A 
square net 304.E 
square numbers 4.D 
S.S. complex(es) (semisimplicial complex) 70.E 

geometric realization of 70.E 
isomorphic 70.E 

S.S. mapping (semisimplicial mapping) 70.E 
realization of 70.E 

stability 286.S 303.E 394 
A- 303.G 
A,,- 303.G 
A(a)- 303.G 
absolute 303.G 
conjecture 126.5 
exchange of 286.T 
interval of absolute 303.G 
interval of relative 303.G 
orbital (of a solution of a differential equation) 
394.D 

principle of linearized 286,s 
region of absolute (of the Runge-K.utta (P,p) 

method) 303.G 
region of relative 303.G 
relative 303.G 
stiff- 303.G 
structural 290.A 
structural, theorem 126.5 

stability group 362.B 
stability subgroup (of a topological group) 431.A 
stability theorem 

R- 126.5 
structural 126.J 

stabilizer 
(in an operation of a group) 362.B 
(in a permutation group) 151.H 
(in a topological transformation group) 431.A 
reductive 199.A 

stable 394.A 
(coherent sheaf on a projective variety) 241.Y 
(compact leaf) 154.D 
(discretization, initial value problems) 304.D 
(equilibrium solution) 286,s 
(initial value problem) 304.F 
(invariant set) 126.F 
(linear function) 163.H 
(manifold) 126.G 
(minima1 submanifold) 275.B 
(static model in catastrophe theory) 51.E 
absolutely 303.G 
asymptotically 126.F 286.S 394.B 
in both directions (Lyapunov stable) 394.A 
C’-a- 126.H 
C’-structurally 126.H 
conditionally 394.D 
exponentially 163.G 394.B 
externally, set 186.1 
globally asymptotically 126.F 
internally, set 186.1 
Lagrange 126.E 
Lyapunov 126.F 
Lyapunov, in the positive or negative direction 

394.A 
negatively Lagrange 126.E 
negatively Poisson 126.E 
one-side, for exponent f App. A, Table 22 
orbitally 126.F 
Poisson 126.E 
positively Lagrange 126.E 
positively Poisson 126.E 
relatively 303.G 
uniformly 394.B 
uniformly asymptotically 163.G 394.B 
uniformly Lyapunov 126.F 

stable cohomology operation 64.B 
stable curve 9.K 
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stable distribution 341.G 
quasi- 341 .G 
semi- 341.G 

stable homotopy group 202.T. App. A, Table 6.VII 
(of Thorn spectrum) 114.G 
of classical groups 202.V 
of k-stem 202.U 

stable manifold 126.G,J 
stable point 16.W 
stable primary cohomology operation 64.C 
stable process 5.F 

exponent of 5.F 
one-sided, of the exponent d( 5.F 
strictly 5.F 
symmetric 5.F 

stable range (of embeddings) 114.D 
stable reduction 

(of an Abelian variety) 3.N 
(of a curve) 9.K 
potential (of an Abelian variety) 3.N 

stable reduction theorem 3.N 9.K 
stable secondary cohomology operation 64.C 
stable set 173.D 

externally 186.1 
internally 186.1 

stable solution (of the Hill equation) 268.E 
stable state 260.F 394.A 404.A 
stable vector bundle 

(algebraic) 16.Y 
(topological) 237.B 

stably almost complex manifold 114.H 
stably equivalent (vector bundles) 237.B 
stably fiber homotopy equivalent 237.1 
stably parallelizable (manifold) 114.1 
stack 96.E 
stage method, (P + l)- 303.D 
stalk (of a sheaf over a point) 16.AA 383.B 
standard 

(in nonstandard analysis) 293.B 
(transition probability) 260.F 

standard Bore1 space 270.C 
standard complex (of a Lie algebra) 200.0 
standard defining function 125.2 
standard deviation 

(characteristics of the distribution) 397.C 
(of a probability distribution) 341.B 
(of a random variable) 342.C 
population 396.C 
sample 396.C 

standard form 241.A 
(of a difference equation) 104.C 
of the equation (of a conic section) 78.C 
Legendre-Jacobi (of an elliptic integral) 134.A, 
App. A, Table 16.1 

standard Gaussian distribution 176.A 
standard Kahler metric (of a complex projective 

space) 232.D 
standard measurable space 270.D 
standard normal distribution 341.D 
standard parabolic k-subgroup 13.4 
standard part (in nonstandard analysis) 293.D 
standard q-simplex 201.E 
standard random walk 260.A 
standard resolution (of 2) 200.M 
standard sequence 400.K 
standard set 22.1 
standard vector space (of an aftine space) 7.A 
star - also * 

(in a complex) 13.R 
(in a Euclidean complex) 70.B 

(in a projective space) 343.B 
(in a simplicial complex) 70.C 
(of a subset defined by a covering) 425.R 
open 70.B,C 

star body, bounded 182.C 
star convergence 87.K 

(o)- 87.L 
relative uniform 310.F 

star-finite (covering of a set) 425.R 
star-finite property 425,s 
star refinement (of a covering) 425.R 
star region 339.D 
starting values (in a multistep method) 303.E 
start node 281.D 
star topology, weak (of a normed linear space) 

37.E 424.H 
state(s) 

(of a C*-algebra) 308.D 
(in Ising model) 340.B 
(in quantum mechanics) 351.B 
bound 351.D 
ceiling 402.G 
completeness of the scattering 150.D 
equation of 419.A 
equilibrium 136.H 340.B 419.A 
even 415.H 
fictitious 260.F 
final 31.B 
Gibbs 340.B 
ground 402.G 
in- 150.D 386.A 
initial 31.B 
instantaneous 260.F 261.B 
internal 31.B 
odd 415.H 
out- 150.D 386.A 
scattering 395.B 
stable 260.F 394.A 404.A 
stationary 340.C 351.D 
of statistical control 404.A 
sum over 402.D 
unstable 394.A 

state estimator 86.E 
state space 126.B 

(in catastrophe theory) 51.B 
(of a dynamical system) 126.B 
(of a Markov process) 261.B 
(of a stochastic process) 407.B 

state-space approach 86.A 
state variable 127.A 
static model (in catastrophe theory) 51.B 

stable 51.B 
stationary capacity 213.F 
stationary curve 

(of the Euler-Lagrange differential equation) 
324.E 

(of a variation problem) 40.B 
stationary function 46.B 
stationary iterative process, linear 302.C 
stationary phase method 30.8 
stationary point (of an arc of class C”) 11 l.D 
stationary Poisson point process 407.D 
stationary process(es) 342.A 395 

shift associated with 136.D 
strictly 395.A 
strongly 395.A 
weakly 395.A 
weakly, of degree k 395.1 
in the wider sense 395.A 

stationary random distribution 
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strictly 395.H 
strongly 395.F,H 
weakly 395.C 

stationary source 213.C 
stationary state 340.C 3.51.D 
stationary value (of a function) 106.L 
stationary variational inequality 440.B 
stationary wave 446 
statistic 396 

ancillary 396.H 401 .C 
Hotelling’s T* 280.B 
invariant 396.H 
Kolmogorov-Smirnov test 374.E 
maximal invariant 396.1 
minimal sufficient 396.1 
n-dimensional 396.B 
necessary and suflicient 396.E 
l-dimensional 396.B 
order 396.C 
selection 396.F 
t- 374.B 
L’- 374.1 

statistical control, state of 404.A 
statistical data analysis 397.A 
statistical decision function 398 
statistical decision problem 398.A 
statistical decision procedure 398.A 
statistical estimation 399, App. A, Table 23 
statistical experiment 398.G 
statistical genetics 40.B 
statistical hypothesis 400.A 
statistical hypothesis testing 400, App. A, Table 23 
statistical inference 401 
statistical model 403 
statistical mechanics 342.A 402 

classical 402.A 
equilibrium 402.A 
of irreversible processes 402.A 
Markov 340.C 
quantum 402.A 

statistical planning 102.A 
statistical quality control 404 
statistical structure 396.E 

dominated 396.F 
statistical thermodynamics 402.A 
statistics 397.C 

Bose 377.B 402.E 
Fermi 377.B 402.E 

statistics and spin, connection of 150.D 
Staudt algebra 343.C 
Steenrod algebra 64.B 
Steenrod axioms, Eilenberg- 201.4 
Steenrod isomorphism theorem, Hurewicz- 148.D 
Steenrod operator App. A, Table 6.11 
Steenrod pth power operation 64.B 
Steenrod square operation 64.B 
steepest descent, curve of 46.A 
steepness, wave 205.F 
Stein, analytic space in the sense of Behnke and 

23.E 
Steinberg formula (on representation of compact Lie 

groups) 248.2 
Steinberg group 237.5 
Steinberg symbol 237.5 
Steinberg type 13.0 
Stein continuation theorem, Remmert- 23.B 
Stein decomposition, Fefferman- 168.B 
Steiner problem 179.A 
Steiner symmetrization 228.B 
Steinhaus theorem, Banach- 

(in a Banach space) 37.H 
(in a topological linear space) 424.5 

Stein lemma, Hunt- 400.F 
Stein manifold 21.L 

fundamental theorems of 21.L 72.E 
Stein space 23.F 
Stein theorem, Behnke- 21.H 
Stein theorem, Lehmann- 400.B 
step, fractional 304.F 
step-by-step method 163.D 
step-down operator 206.B 
step size (in numerical solution) 303.B 
step-up operator 206.B 
stereographic projection 74.D 
Stiefel manifold 199.B 

complex 199.B 
infinite 147.1 
of k-frames 199.B 
of orthogonal k-frames 199.B 
real, of k-frames 199.B 
real, of orthogonal k-frames 199.B 

Stiefel-Whitney class 
(of a differentiable manifold) 56.1~ 147.M 
(of an O(n)-bundle) 147.M 
(of an R”-bundle) 56.B 
(of a topological manifold) 56.F 
total 56.B 
universal 56.B 

Stiefel-Whitney number 56.F 
Stieltjes integral 94.E 

Lebesgue- 94.C 166.C 
Riemann- 94.B 166.C 

Stieltjes measure, Lebesgue- 166.C 270.L 
Stieltjes moment problem 240.K 
Stieltjes theorem 133.C 
Stieltjes transform 220.D 

Fourier- 192.B,O 
Laplace- 240.A 

Stiemke theorem 255.B 
stiff 303.G 

in an interval 303.G 
stiffness matrix 304.C 
stiffness ratio 303.G 
stiff-stability 303.G 
stimulus-sampling model, Estes 342.H 346.G 
Stirling formula 174.A 212.C, App. A, Table 17.1 
Stirling interpolation formula App. A., Table 21 
Stirling number of the second kind 66.D 
stochastically larger (random variable) 371.C 
stochastic calculus 406.A 
stochastic control 342.A 405 
stochastic differential 406.C 
stochastic differential equation 342.A 

linear (LSDE) 405.G 
of Markovian type 406.D 

stochastic differential of Stratonovich type 406.C 
stochastic filtering 324.A 405.F 
stochastic inference, graphical method of 19.B 
stochastic integral 261.E 406.B 

of It8 type 406.C 
of Stratonovich type 406.C 

stochastic Ising model 340.C 
stochastic matrix 260.A 
stochastic maximum principle 405.D 
stochastic model 264 
stochastic moving frame 406.G 
stochastic paper 19.B 
stochastic process@) 342.A 407 

generalized 407.C 
with stationary increments of order n 395.1 
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Strongly inaccessible 

stochastic programming 264.C 307.C 408 
two-stage 408.A 

Stoilow compactification, Kerekjarto- 207.C 
Stoilow type (compactification) 207.B 
Stokes approximation 205.C 
Stokes assumption 205.C 
Stokes differential equation 167.E 188.E 
Stokes equation, general Navier- 204.F 
Stokes equation, Navier- 204.B 205.C 
Stokes formula 94.F 105.0, App. A, Table 3.11 

Green- 94.F 
Stokes initial value problem, Navier- 204.B 
Stokes multiplier 254.C 
Stokes phenomenon 254.C 
Stokes theorem App. A, Table 3.111 
Stokes wave 205.F 
Stolz, differentiable in the sense of 106.G 
Stolz path (in a plane domain) 333.B 
Stone-Tech compactitication 207.C 425.T 
Stone-Gel’fand theorem 168.B 
Stone integrable function, Daniel]- 310.1 
Stone integral, Daniell- 310.1 
Stone theorem 378.C 425.X 437.R 
Stone theorem, Weierstrass- 168.B 
Stone-Titchmarsh-Kodaira theory, Weyl- 112.0 
stopping, optimal 405.E 
stopping rule 398.F 
stopping time 261.B 407.B 
storage, push-down 96.E 
stored program principle 75.B 
Starmer inequality, Powers- 212.B 
straight angle 139.D 
straightening of the angle 114.F 
straight, G-space is 178.H 
straight line(s) 93.A 155.B 
straight line solution 420.B 
strain 271.G 
strain, shearing 271.G 
strain tensor 271.G 
strange attractor 126.N 
Strassen invariance principle 250.E 
strategic variable 264 
strategy (strategies) 33.F 108.B,C 173.C 

behavior 173.B 
local 173.B 
mixed 173.C 
pair 108.B 
pure 173 
winning 33.F 

stratifiable space 425.Y 
stratification, Whitney 418.G 
stratified sampling 373.E 
Stratonovich type 

stochastic differential of 406.C 
stochastic integral of 406.C 

stratum (strata) 373.E 418.G 
p-constant 418.E 

stream function 205.8 
streamlined (body) 205.C 
stream lines 205.B 
strength 102.L 
stress 271.G 

normal 271.G 
shearing 27 1 .G 
tangential 271.G 

stress tensor 150.B 271.G 
Maxwell 130.A 

strict Albanese variety 16.P 
strict implication 411.L 
strict localization 16.AA 

strictly concave function 88.A 
strictly convex function 88.A 
strictly decreasing function 166.A 
strictly ergodic (homeomorphism on a compact 

metric space) 136.H 
strictly G-stationary (system of random variables) 

395.1 
strictly increasing function 166.A 
strictly inductive limit (of a sequence of locally 

convex spaces) 424.W 
strictly monotone function 166.A 

(of ordinal numbers) 312.C 
strictly of Polya type (a family of probability 

densities) 374.5 
strictly positive (element in E”) 310.H 
strictly pseudoconvex 344.A 
strictly stable process 5.F 
strictly stationary process 395.A 
strictly stationary random distribution 395.H 
strict morphism (between topological groups) 423.5 
string 

a- 248.L 
equation of a vibrating 325.A 

string model 132.C 
strip 

bicharacteristic 320.B 
characteristic 320.D 324.B 
Mobius 410.B 

strip condition 320.D 
strong (boundary component) 77.E 
strong convergence (of operators) 251.C 
strong convergence theorem (on distributions) 

125.G 
strong deformation retract 202.D 
strong dilation 251.M 
strong dual (space) 424.K 
stronger 

(equivalence relation) 135.C 
(method of summation) 379.L 
(topology) 425.H 
(uniformity) 436.E 

stronger form of Cauchy’s integral theorem 198.B 
strong extension 

(of a differential operator) 112.E 
(of a differential operator with boundary condi- 
tion) 112.F 

strong infinity, axiom of 33.E 
strong integrability 443.1 
strong lacuna 325.5 
strong law of large numbers 250.C 
strong Lefschetz theorem 16.U 
strongly, converge (in a Banach space) 37.B 
strongly acute type 304.C 
strongly closed subgroup 151.5 
strongly compact cardinal number 33.E 
strongly connected (graph) 186.F 
strongly connected components 186.F 
strongly continuous 

(Banach space-valued function) 37.K 
(in unitary representations) 437.A 

strongly continuous representation (of a topological 
space) 69.B 

strongly continuous semigroup 378.B 
strongly distinguished basis 418.F 
strongly elliptic (differential operator) 112.G 
strongly elliptic operator 323.H 
strongly embedded subgroup 151.5 
strongly exposed (of a convex set) 443.H 
strongly hyperbolic differential operator 325.H 
strongly inaccessible 33.F 312.E 
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strongly inaccessible cardinal number 33.E F- (on a topological space) 90.D 
strongly measurable 443.B,I r;- 154.E 
strongly mixing automorphism 136.E r,- 154.H 
strongly nonlinear differential equation 290.D group of oriented differentiable (on a com- 
strongly normal extension field 113 binatorial sphere) 114.1 
strongly P-convex set 112.C Hodge (of a vector space) 16.V 
strongly paracompact space 425,s isomorphic 276.E 
strongly pseudoconvex domain 21.G jumping of 72.G 
strongly recurrent (measurable transformation) lacunary (of a power series) 339.E 

136.C level n (on an Abelian variety) 3.N 
strongly separated (convex sets) 89.A linear 96.C 
strongly stationary process 395.A mathematical 409.B 
strongly stationary random distribution 395.H mixed 16.V 
strong Markov process 261.B Neyman 400.D 
strong Markov property 261.B normal 276.D 
strong maximum principle 323.C normal analytic 386.C 
strong measurability 443.1 PL 65.C 
strong operator topology 25 1 .C pseudogroup 105.Y 
strong rigidity theorem 122.G real analytic 105.D 
strong solution smooth 114.B 

(of Navier-Stokes equation) 204.C spin- 237.F 431.D 
(of a stochastic differential equation) 406.D statistical 396.E 
unique 406.D symplectic 219.C 

strong topology tensor field of almost complex (induced by a 
(on a direct product space) 425.K complex structure) 72.B 
(on a family of measures) 338.E topological 425.A,B 
(on a normed space) 37.E tree 96.D 
(on a topological linear space) 424.K twinning 92.D 

strong transversality condition 126.5 uniform 436.B 
structural constants (of a Lie algebra) 248.C structure equation 
structural equation system, linear 128.C (of an aftine connection) 417.B 
structurally stable, C’- 126.H (for a curvature form) 80.G 
structural stability 290.A (for a torsion form) 80.H 
structural stability theorem 126.5 linear, system 128.C 
structure(s) 409 structure function 191.C 

(of a language) 276.B structure group (of a tiber bundle) 147.B 
almost complex 72.B structure morphism 52.G 
almost contact 1lO.E structure sheaf 
almost contact metric llO.E (of a prealgebraic variety) 16.C 
almost symplectic 191.B (of a ringed space) 383.H 
analytic (in function algebras) 164.F (of a variety) 16.B 
analytic (on a Riemann surface) 367.A structure space (of a Banach algebra) 36.D 
arithmetically equivalent 276.D structure theorem 
Cauchy Riemann 344.A (on topological Abelian groups) 422.E 
CR 344.A of complete local rings 284.D 
C’- (of a differentiable manifold) 105.D 114.A for von Neumann algebras of type III 308.1 
C’-, Haelliger 154.F Sturm-Liouville operator 112.1 
classifying space for f; 154.E Sturm-Liouville problem 315.B 
coalition 173.D Sturm method 301.C 
compatible with c’- 114.B Sturm theorem (on real roots of an algebraic equa- 
complex 105.Y tion) 10.E 
complex (in a complex manifold) 72.A Struve function App. A, Table 19.W 
complex (on RI”) 3.H Student test 400.G 
complex (on a Riemann surface) 367.A subadditive cuts 215.C 
complex analytic (in a complex manifold) 72.A subadditive ergodic theorem 136.B 
conformal 191.8 subadditive functional 88.B 
conformal (on a Riemann surface) 367.A subadditive process 136.B 
contact 105.Y subalgebra 29.A 
contact metric 110.E Bore1 (of a semisimple Lie algebra) 248.0 
data 96.B Cartan (of a Lie algebra) 248.1 
deformation of complex 72.G Cartan (symmetric Riemann space) 413.F 
differentiable 114.B closed (of a Banach algebra) 36. B 
differentiable, of class C’ 105.D Lie 248.A 
elementarily equivalent 276.D of a Lie algebra associated with a Lie subgroup 
equations (of a Euclidean space) 11 l.B 249.D 
equations of (for relative components) 1lO.A parabolic (of a semisimple Lie algebra) 248.0 
foliated 105.Y *- 308.C 
G- 191 subbase 
f- (on a differentiable manifold) 105.Y for a space 425.F 
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Subset(s) 

for a topology 425.F 
subbialgebra 203.G 
subbundle 

(of an algebraic vector bundle) 16.Y 
(of a vector bundle) 147.F 

subcategory 52.A 
full 52.A 

subcoalgebra 203.F 
subcomplex 

(of a cell complex) 70.D 
(of a chain complex) 200.H 201.B 
(of a cochain complex) 201.H 
(of a complex) 13.R 
(of a Euclidean complex) 70.B 
(of a simplicial complex) 70.C 
(of an S.S. complex) 70.E 
chain 200.C 
cochain 200.F 

subcontraction 186.E 
subcritical (Galton-Watson process) 44.B 
subdifferential 88.D 
subdivision 

(of a Euclidean complex) 70.B 
(of a simplicial complex) 70.C 
(of a triangulation) 70.C 
barycentric (of a Euclidean complex) 70.B 
barycentric (of a simplicial complex) 70.C 
dual (of a triangulation of a homology mani- 
fold) 65.B 

subelliptic 112.D 
subfamily 165.D 
subfield 149.B 

valuation over a 439.B,C 
subgraph 186.E 
subgroup 

(of a group) 190.C 
(of a topological group) 423.D 
admissible 190.E 
admissible normal 190.E 
algebraic 13.A 
arithmetic 13.P 122.F,G 
Bore1 13.G 249.J 
Cartan 13.H 249.1 
Carter 151.D 
closed 423.D 
commutator 190.H 
congruence 122.D 
connected Lie 249.D 
cyclic 190.C 
divisible 422.G 
Hall 151.E 
invariant 190.C 
irreducible discrete 122.F 
isotropy 431.A 
Iwahori 13.R 
k-Bore1 13.G 
Levi- 13.4 
Lie 249.D 
maximal torsion 2.A 
minimal parabolic k- 13.Q 
normal 190.G 
R- 190.E 
one-parameter 249.Q 
open 423.D 
parabolic 13.G 249.5 
parabolic 13.R 
principal congruence, of level N 122.D 
p-Sylow 151.B 
rational 404.B 
Schur 362.F 

sequences of 190.F 
stability 431.A 
standard parabolic k- 13.4 
strongly closed 151.5 
strongly embedded 151.5 
subnormal 190.G 
Sylow 151.B 
toroidal 248.X 
torsion 2.A,C 

subharmonic functions 193 
almost 193.T 

subinvariant measure 261.F 
subjective probability 401.B 
sublattice 243.C 
submanifold 

(of a Banach manifold) 286.N 
(of a combinatorial manifold) 65.D 
(of a Cm-manifold) 105.L 
closed 105.L 
complex analytic 72.A 
immersed (of a Euclidean space) 11 LA 
isotropic 365.D 
KLhler 365.L 
minimal 275 365.D 
regular 105.L 
Riemannian 365.A 
totally geodesic 365.D 
totally real 365.M 
totally umbilical 365.D 

submartingale 262.A 
submedian 193.T 
submersion 105.L 
submodular 66.F 
submodule 

A- 277.C 
allowed 277.C 
complementary 277.H 
homogeneous A- (of a graded A-module) 
200.B 

primary 284.A 
subnet 87.H 

cotinal 87.H 
subnormal (operator in a Hilbert space) 251.K 
subnormal subgroup 190.G 
subobject 52.D 
subordinate 105.D 437.T 
subordination 5 261.F 

of the &h order 261.F 
subordinator of the exponent a 5.F 
subproblems 215.D 
subrepresentation 

(of a linear representation) 362.C 
(of a projective representation) 362.5 
(of a unitary representation) 437.C 

subring 368.E 
differential 113 

subroutine 75.C 
subscripts, raising 417.D 
subsequence 165.D 

q- 354.0 
subset(s) 381.A 

(in axiomatic set theory) 33.B 
analytic (of a complex manifold) 72.E 
axiom of 33.B 381.G 
Bore1 270.C 
circled (of a linear topological space) 424.E 
cotinal 311.D 
G- 362.B 
k- 330 
proper 381.A 
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residual 3 11 .D 
subshift 126.5 

of finite type 126.5 
Markov 126.5 

subsidiary equation, Charpit 82.C 320.D 
subsonic (Mach number) 205.B 
subsonic flow 326.A 
subspace 

(of an affine space) 7.A 
(of a linear space) 256.F 
(of a projective space) 343.B 
(of a topological space) 425.3 
analytic 23.C,G 
closed linear (of a Hilbert space) 197.E 
complementary (of a linear subspace) 256.F 
horizontal 191.C 
ingoing 375.H 
invariant (of a linear operator) 251.L 
involutive 428.F 
linear (of a linear space) 256.F 
metric 273.B 
n-particle 377.A 
orthogonal (determined by a linear subspace) 

256.G 
orthogonal (of a linear space) 139.G 
outgoing 375.H 
precompact (metric) 273.B 
parallel (in an aftine space) 7.B 
parallel, in the narrower sense (in an aftine 

space) 7.B 
parallel, in the wider sense (in an afline space) 

7.B 
principal (of a linear operator) 390.B 
root (of a linear operator) 390.B 
root (of a semisimple Lie algebra) 248.K 
singular (of a singular projective transforma- 

tion) 343.D 
totally bounded (metric) 273.B 
totally isotropic (relative to an s-Hermitian 
form) 60.0 

totally isotropic (with respect to a quadratic 
form) 348.E 

totally singular (with respect to a quadratic 
form) 348.E 

U-invariant (of a representation space of a 
unitary representation 437.C 

uniform 436.~ 
substituted distribution 125.4 
substitution 

(of a hyperfunction) 125.X 274.E 
axiom of 381.G 
back 302.B 
Frobenius (of a prime ideal) 14.K 

subsystem 
(of an algebraic system) 409.C 
closed (of a root system) 13.L 

subtraction 361.B 
subtraction terms 361.B 
subvariety, Abelian 3.B 
successive approximation 

method of (for an elliptic partial differential 
equation) 323.D 

method of (for Fredholm integral equations of 
the second kind) 217.D 

method of (for ordinary differential equations) 
316.D 

successive minima (in a lattice) 182.C 
successive minimum points 182.C 
successive overrelaxation (SOR) 302.C 
successor 

(of an element in an ordered set) 31 l.B 
(of a natural number) 294.B 

sufficiency 
prediction 396.5 
principle of 4Ol.C 

sufficient (a-field, statistic) 
Bayes 396.5 
D- 396.5 
decision theoretically 396.5 
minimal 396.E 
pairwise 396.F 
test 396.5 

sutliciently many irreducible representations 
437.B 

sum 
(of convergent double series) 379.E 
(of a divergent series by a summation) 379.L 
(of elements of a group) 190.A 
(of elements of a linear space) 256.A 
(a function) 104.B 
(of ideals) 67.B 
(of linear operators) 251.B 
(of linear subspaces) 256.F 
(of matrices) 269.B 
(of ordinal numbers) 312.C 
(of potencies) 49.C 
(of real numbers) 355.A 
(of a quadrangular set of six points) 343.C 
(of a series) 379.A 
(of submodules) 277.B 
(=union of sets) 33.B 381.B 
(of vectors) 442.A 
amalgamated 52.G 
Baer (of extensions) 200.K 
cardinal (of a family of ordered sets) 31 l.F 
Cauchy (of a series) 379.A 
connected (of oriented compact P-manifolds) 

114.F 
connected (of 3-manifolds) 65.E 
constant- (game) 173.A 
Darboux 216.A 
Dedekind 328.A 
diagonal (of a matrix) 269.F 
diagonal partial (of a double series) 379.E 
direct -direct sum 
disjoint 381.B 
fiber 52.G 
Gaussian 295.D 450.C 
general- (game) 173.A 
indefinite (of a function) 104.B 
Kloosterman 32.C 
local Gaussian 450.F 
logical (of propositions) 41 l.B 
ordinal (of a family of ordered sets) 31 l.G 
orthogonality for a tinite 19.G 317.D 
partial (of a series) 379.A 
of products 216.A 
Ramanujan 295.D 
Riemann 216.A 
scalar (of linear operators) 37.C 
over states 402.D 
topological 425.M 
trigonometric 4.C 
Whitney (of vector bundles) 147.F 
zero (game) 173.A 
zero-, two-person game 108.B 

sum event 342.B 
summable 

A- 379.N 
by Abel’s method 379.N 
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absolute Bore1 379.0 
2% 379.0 
IBI- 379.0 
by Borel’s exponential method 379.0 
by Borel’s integral method 379.0 
by Cesaro’s method of order a 379.M 
by Euler’s method 379.P 
by Holder’s method of order p 379.M 
(H, p)- 379.M 
by Norlund’s method 379.Q 
(R, k)- 379,s 
by Riesz’s method of order k 379.R 
T- 379.L 

summable pth power, operator of 68.K 
summand, direct (of a direct sum of sets) 381.E 
summation 

Abel’s method of 379.N 
Abel’s partial 379.D 
Borel’s method of 379.N 
(C, a)- 379.M 
Cesaro’s method of, of order c( 379.M 
Euler’s method of 379.P 
of a function 104.B 
Lebesgue’s method of 379.S 
methods of 379.L 
Norlund’s method of 379.Q 
Riemann’s method of 379,s 
Riesz’s method of, of the kth order 379.R 

summation convention, Einstein’s 417.B 
summation formula 

Euler 295.E 
Poisson (on Fourier transforms) 192.C 
Poisson (on a locally compact Abelian group) 

192.L 
summing, absolutely (operator) 68.N 
sum theorem for dimension 117.C 
Sundman theorem 420.C 
sup (supremum) 31 l.B 
superabundance (of a divisor on an algebraic 

surface) 15.D 
superadditive 173.D 
superconductivity 130.B 
supercritical (Galton-Watson process) 44.B 
superefficient estimator 399.N 
superharmonic (function) 193.P 260.D 
superharmonic measure 260.1 
superharmonic transformation 261.F 
superior function, right 316.E 
superior limit 

(of a sequence of real numbers) 87.C 
(of a sequence of subsets of a set) 270.C 

superior limit event 342.B 
supermartingale 262.A 
supermultiplet theory 351.5 
superposition, principle of 252.B 322.C 
superregular function 260.D 
superrenormalizable 150.C 
superscripts, lowering 417.D 
superselection rule, univalence 351.K 
superselection sector 150.E 351.K 
supersolvable group 151.D 
supersonic 205.B 326.A 
supplementary angles 139.D 
supplementary interval 4.B 
supplementary series 258.C 
supplementation-equal polygons 155.F 
supplemented algebra 200.M 
support 

(of a coherent sheaf) 16.E 
(of a differential form) 105.Q 

(of a distribution) 125.D 
(of a function) 125.B 168.B 425.R 
(of a section of a sheaf) 383.C 
(of a spectral measure) 390.D 
compact (of a singular q-cochain) 2Ol.P 
essential (of a distribution) 274.D 
singular (of a distribution) 112.C 
singular (of a hyperfunction) 125.W 

supporting function 125.0 
supporting functional (of a convex set) 89.G 
supporting half-space (of a convex set) 89.A 
supporting hyperplane (of a convex set) 89.A 
supporting line (of an oval) 89.C 
supporting line function (of an oval) 89.C 
supporting point 

(of a convex set) 89.G 
(of a projective frame) 343.C 

supremum 
(of an ordered set) 168.B 
(of a set of Hermitian operators) 308.A 
(of a subset of a vector lattice) 310.C 
essential (of a measurable function) 168.B 

supremum norm 168.B 
supremum theorem, Hardy-Littlewood App. A, 

Table 8 
sure event 342.B 
surely, almost 342.B,D 
surface(s) 11 l.A 410, App. A, Table 4.1 

Abelian 15.H 
abstract Riemann 367.A 
afline minimal 11O.C 
algebraic 15 
basic (of a covering surface) 367.B 
with boundary 410.B 
branched minimal 275.B 
center 111.1 
characteristic 320.B 
circular cylindrical 350.B 
closed 410.B 
closed (in a 3-dimensional Euclidean space) 

111.1 
closed convex 111.1 
conical 111.1 
of constant curvature 111.1 
covering 367.B 
covering, Ahlfors theory of 367.B 
covering, with relative boundary 367.B 
cylindrical 111.1 
deformation of 110.A 
degenerate quadric 350.8 
developable 111.1, App. A, Table 4.1 
Dini 111.1 
elliptic 72.K 
elliptic cylindrical 350.B 
energy 126.L 402C,G 
Enneper 275.B 
Enriques 72.K 
enveloping 111.1 
equipotential 193.5 
Frtchet 246.1 
fundamental theorem of the theory of 11 l.G 
fundamental theorem of the topology of 410.B 
G- 178.H 
of general type 72.K 
geometry on a 11 l.G 
helicoidal 111.1 
Hilbert modular 15.H 
Hirzebruch 15.G 
Hopf 72.K 
hyperbolic cylindrical 350.B 



Subject Index 
Surface area of unit hypersphere 

2124 

hyperelliptic 72.K 
initial 321.A 
K3 15.H 72.K 
Kummer 15.H 
level 193.5 
marked K3 72.K 
minimal 111.1 334.B 
niveau 193.5 
one-sided 4lO.B 
open 4lO.B 
parabolic cylindrical 350.B 
proper quadric 350.B 
quadric 350.A 
quadric conical 350.B 
rational 15.E 
rectifying 111.1 
response 102.L 
response, design for exploring 102.M 
of revolution 111.1 
Riemann - Riemann surface 
ruled 15.E 
ruled (in differential geometry) 111.1 
of the second class 350.D 
of the second order 350.A 
Scherk’s 275.A 
Seifert 235.A 
skew 111.1 
special 1lO.A 
tangent 11 l.F 
two-sided 4lO.B 
unbounded covering 367.B 
unirational 15.H 
universal covering 367.B 
unramified covering 367.B 
Veronese 275.F 
Iv- 111.1 
Weingarten ( W) 111 .I 

surface area of unit hypersphere App. A, Table 9.V 
surface element 324.B 
surface harmonics 393.A 
surface integral 94.A,E 

(with respect to a surface element) 94.E 
surface wave 446 
surgery 114.F,J 
surgery obstruction 114.J 
surjection 381.C 

(in a category) 52.D 
canonical (on direct products of groups) 19O.L 
canonical (to a factor group) 190.D 
canonical (onto a quotient set) 135.B 
natural (to a factor group) 190.D 

surjective mapping 381.C 
survival insurance 214.B 
susceptibility 

electric 130.B 
magnetic 130.B 

suspension 
(of a discrete dynamical system) 126.C 
(of a homotopy class) 202.4 
(of a map) 202.F 
(of a space) 202.E,F 
n-fold reduced 202.F 
reduced (of a topological space) 202.F 

Suslin 
K- 22.H 
schema of 22.B 
system of 22.B 

Suslin hypothesis 33.F 
Suslin space 22.1425.CC 
Suslin theorem 22.C 

suspension isomorphism (on singular (co)homology 
groups) 201.E 

suspension theorem, generalized 202.T 
Suzuki group 151.1 
SVD (singular value decomposition) 302.E 
sweep (a bounded domain) 384.F 
sweepable (bounded domain) 384.F 
sweeping-out principle 338.L 
sweeping-out process 338.L 
sweep out (a measure to a compact set) 338.L 
Swinnerton-Dyer conjecture, Birch- 118.D 450.S 
Sylow subgroup 15I.B 

p- 151.B 
Sylow theorem 15l.B 
Sylvester elimination method 369.E 
Sylvester law of inertia (on a quadratic form) 348.B 
Sylvester theorem (on determinants) 103.F 
Symanzik equation, Callan- 361.B 
symbol 369.A 

(of a Fourier integral operator) 274.C 
(of a pseudodifferential operator) 251.0 345.B 
(= Steinberg symbol) 237.5 
(of a vector field) 105.M 
Artin 14.K 
Christoffel 80.L 1ll.H 417.D, App. A, Table 
4.11 

function 41 l.H 
Gauss 83.A 
Hilbert E- 411.J 
Hilbert-Hasse norm-residue 14.R 
Hilbert norm-residue 14.R 
individual 411.H 
Jacobi 297.1 
Jacobi, complementary law of 297.1 
Jacobi, law of quadratic reciprocity of 297.1 
Kronecker 347.D 
Landau (0, o) 87.G 
Legendre 297.H 
Legendre, first complementary law of 297.1 
Legendre, law of quadratic reciprocity of 297.1 
Legendre, second complementary law of 297.1 
logical 411.B 
9j- 353.C 
norm-residue 14.4 257.F 
power-residue 14.N 
predicate 411.H 
principal (of a differential operator) 237.H 
principal (of a microdifferential operator) 
274.F 

principal (of a simple holonomic system) 
274.H 

6j- 353.B 
Steinberg (in algebraic K-theory) 237.5 
3j- 353.B 

symbolic logic 411 
symbol sequence (in microlocal analysis) 274.F 
symmetric 

(block design) 102.E 
(factorial experiment) 102.H 
(Fock space) 377.A 
(member of a uniformity) 436.B 
(multilinear mapping) 256.H 
(relation) 358.A 
(tensor) 256.N 

symmetric algebra 29.H 
symmetric bilinear form (associated with a quadratic 

form) 348.A 
symmetric bounded domain 412.F 

irreducible 412.F 
symmetric Cauchy process 5.F 
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symmetric difference 304.E 
symmetric distribution function 341.H 
symmetric event 342.G 
symmetric function 337.1 

elementary 337.1 
symmetric group 190.B 

ofdegree n 151.G 
symmetric Hermitian space 412.E 

irreducible 412.E 
symmetric homogeneous space 412.B 
symmetric hyperbolic system (of partial differential 

equations) 325.G 
symmetric kernel 217.G 335.D 
symmetric law (in an equivalence relation) 135.A 
symmetric Markov process 261.C 
symmetric matrix 269.B 

anti- 269.B 
skew- 269.B 

symmetric multilinear form 256.H 
anti- 256.H 
skew- 256.H 

symmetric multilinear mapping 256.H 
anti- 256.H 
skew- 256.H 

symmetric multiplication 406.C 
symmetric operator 251.E 
symmetric points (with respect to a circle) 74.E 
symmetric polynomial 337.1 

elementary 337.1 
fundamental theorem on 337.1 

symmetric positive system 
(of differential operators) 112,s 
(of first-order linear partial differential equa- 

tions) 326.D 
symmetric product (of a topological space) 70.F 
symmetric Riemannian homogeneous space 412.B 
symmetric Riemannian space(s) 412 

globally 412.A 
irreducible 412.C App. A, Table 5.111 
locally 412.A, App. A, Table 4.11 
weakly 412.J 

symmetric space 412.A 
affme 80.5 
affme locally 80.5 
locally 80.5 364.D 

symmetric stable process 5.F 
symmetric tensor 256.N 

anti- 256.N 
contravariant 256.N 
covariant 256.N 
skew- 256.N 

symmetric tensor field 105.0 
symmetrization 

(in isoperimetric problem) 228.B 
Steiner (in isoperimetric problem) 228.B 

symmetrizer 256.N 
Young 362.H 

symmetry 
(at a point of a Riemannian space) 412.A 
(of a principal space) 139.B 
(in quantum mechanics) 415.H 
broken 132.C 
central (of an afline space) 139.B 
charge 415.5 
crossing 132.C 386.B 
degree of 43 1 .D 
hyperplanar (of an affine space) 139.B 
internal 150.B 
law of (for the Hilbert norm-residue symbol) 

14.R 

Nelson 150.F 
TCP 386.B 

symmetry group, color 92.D 
symmorphic space group 92.8 
symmorphous space group 92.B 
symplectic form 126.L 
symplectic group 60.L 15 1 .I 

complex 60.L 
infinite 202.V 
over a field 60.L 
over a noncommutative field 60.0 
projective (over a field) 60.L 
unitary 60.L 

symplectic manifold 219.C 
symplectic matrix 60.L 
symplectic structure 219.C 
symplectic transformation 60.L 

(over a noncommutative field) 60.0 
symplectic transformation group (over a field) 

60.L 
synchronous (system of circuits) 75.B 
syndrome 63.C 
synthesis (in the theory of networks) 282.C 

spectral 36.L 
synthetic geometry 181 
system 

adjoint (of a complete linear system on an 
algebraic surface) 15.D 

adjoint, of differential equations 252.K 
algebraic 409.B 
algebraic, in the wider sense 409.B 
ample linear 16.N 
asynchronous (of circuits) 75.B 
axiom 35 
axiom (of a structure) 409.B 
axiom (of a theory) 411.1 
of axioms 35.B 
base for the neighborhood 425.E 
categorical (of axioms) 35.B 
C*-dynamical 36.K 
character (of a genus of a quadratic field) 

347.F 
characteristic linear (of an algebraic family) 

15.F 
Chebyshev (of functions) 336.B 
classical dynamical 126.L 136.G 
of closed sets 425.B 
complete (of axioms) 35.B 
complete (of independent linear partial differen- 

tial equations) 324.C 
complete (of inhomogeneous partial differential 
equations) 428.C 

complete (of nonlinear partial differential 
equations) 428.C 

complete linear (on an algebraic curve) 9.C 
complete linear (on an algebraic variety) 16.N 
complete linear, defined by a divisor 16.N 
completely integrable (of independent l-forms) 

428.D 
complete orthogonal 217.G 
complete orthonormal 217.G 
complete orthonormal, of fundamental func- 

tions 217.G 
complete residue, modulo m 297.G 
continuous dynamical 126.B 
coordinate 90.A 
coordinate (of a line in a projective space) 

343.c 
crystal 92.B 
determined (of differential operators) 112.R 
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determined (of partial differential equations) 
320.F 

differentiable dynamical 126.B 
differential 191.1 
of differential equations of Maurer-Cartan 
249.R 

of differential operators 112.R 
direct (of sets) 2lO.B 
discrete dynamical 126.B 
distinct, of parameters 284.D 
dynamical 126 
of equations 10.A 
equilibrium, transformation to 82.D 
formal 156.D 411.1 
of functional differential equations 163.E 
fundamental (of eigenfunctions to an eigenvalue 

for an integral equation) 217.F 
fundamental (for a linear difference equation) 

104.D 
fundamental (of a root system) 13.5 
fundamental, of irreducible representations (of a 
complex semisimple Lie algebra) 248.W 

fundamental, of neighborhoods 425.E 
fundamental, of solutions (of a homogeneous 

linear ordinary differential equation) 252.B 
fundamental, of solutions (of a homogeneous 

system of first-order linear differential equa- 
tions) 252.H 

fundamental root (of a semisimple Lie algebra) 
248.N 

of fundamental solutions (of a system of linear 
homogeneous equations) 269.M 

Garnier 253.E 
of generators (of a A-module) 277.D 
of gravitational units 414.B 
group 235.B 
Haar, of orthogonal functions 317.C 
Hamiltonian 126.L 
holonomic 274.H 
holonomic, with regular singularities 274.H 
homotopy equivalent (of topological spaces) 
202.F 

of hyperbolic differential equations (in the sense 
of Petrovskii) 325.G 

incompatible (of partial differential equations) 
428.B 

inconsistent (of algebraic equations) 10.A 
indeterminate (of algebraic equations) 10.A 
inductive (in a category) 210.D 
inductive (of sets) 210.B 
inductive, of groups 210.C 
inductive, of topological spaces 210.C 
inertial 271.D 359 
information retrieval 96.F 
integrable 287.A 
international, of units 414.A 
inverse (of sets) 210.B 
involutive -involutory 
involutory (of differential forms) 428.F 
involutory (of nonlinear equations) 428.C 
involutory (of partial differential equations) 
428.F 

involutory (of partial differential equations of 
first order) 324.D 

irreducible linear 16.N 
lattice spin 402.G 
linear (on an algebraic variety) 16.N 
of linear differential equations of first order 

252.G 
linear dynamical 86.B 

of linear equations 269.M 
of linear homogeneous equations 269.M 
linear structural equation 128.C 
linear time-varying 86.B 
local, of groups (over a topological space) 

201.R 
local coordinate (of a manifold) 105.C 
local coordinate (of a topological space) 90.D 
local coordinate, holomorphic 72.A 
mathematical (for a structure) 409.B 
maximal independent (of an additive group) 

2.E 
neighborhood 425.B 
of notations (for ordinal numbers) 81.B 
null (in projective geometry) 343.D 
number, point range of (in projective geometry) 

343.c 
of open sets 425.B 
operating 75.C 
of ordinary differential equations 313.B 
orthogonal (of functions) 3 17.A 
orthogonal (of a Hilbert space) 197.C 
of orthogonal functions App. A, Table 20 
of orthogonal polynomials 317.D 
overdetermined (of differential operators) 

112.R 
overdetermined (of partial differential equa- 

tions) 320.F 
of parameters 284.D 
partial de Rham 274.G 
of partial differential equations of order 1 (on a 
differentiable manifold) 428.F 

passive orthonomic (of partial differential 
equations) 428.B 

peripheral 235.B 
of Pfaflian equations 428.A 
polar (in projective geometry) 34.3.D 
Postnikov (of a CW complex) 14.8.D 
projective (in a category) 210.D 
projective (of sets) 210.B 
projective, of groups 210.C 
projective, of topological groups 423.K 
projective, of topological spaces 210.C 
quotient (of an algebraic system) 409.C 
Rademacher, of orthogonal functi’ons 3 17.C 
reduced residue 297.G 
reducible linear 16.N 
regular, of parameters 284.D 
of resultants 369.E 
root (of a symmetric Riemann space) 413.F 
root (in a vector space over Q) 13.5 
self-adjoint, of differential equations 252.K 
simple holonomic 274.H 
of simultaneous differential equations App. A, 
Table 14.1 

of Suslin 22.B 
symmetric positive (of differential operators) 

112s 
symmetric positive (of first-order linear partial 
differential equations) 326.D 

Tits 13.R 151.5 343.1 
of total differential equations 42.8.A 
of transitivity (of a G-set) 362.B 
trigonometric 159.A 
two-bin 227 
underdetermined (of differential operators) 

112.R 
underdetermined (of partial differential equa- 

tions) 320.F 
uniform covering 436.D 
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Teicbmiiller space 

uniform family of neighborhoods 436.D 
uniform neighborhood 436.D 
unisolvent (of functions) 336.B 
of units 414.A 
very ample linear 16.N 
Walsh, of orthogonal functions 317.C 

system process 405.F 
system simulation 385.A 
syzygy 369.F 

first 369.F 
rth 369.F 

syzygy theorem, Hilbert 369.F 
syzygy theory 200.K 369.F 
Szego kernel function 188.H 
Szemeredi theorem, ergodic 136.C 
Sz.-Nagy-Foiag model 251.N 

T 

T-function 150.D 
t-distribution 341.D 374.B, App. A, Table 22 

noncentral 374.B 
r-statistic 374.B 
f-test 400.G 
T-bound 331.B 
T-bounded 331.B 
T-compact 68.F 331.B 
T-operator 375.C 
T*-statistic 

Hotelling’s 280.B 
noncentral Hotelling 374.C 

T-number (transcendental number) 430.C 
T*-number (transcendental number) 43O.C 
To-space 425.Q 
T, -space 425.Q 
T,-space 425.Q 
T,-space 425.Q 
T,-space 425.4 
T,-space 425.Q 
T,-space 425.Q 
T-positivity 150.F 
T-set 308.1 
T-summable (series) 379.L 
T, -uniformity 436.C 
T, -uniform space 436.C 
T,-topological group 423.B 
table 

analysis-of-variance 400.H 
contingency 397.K 400.K 
difference 223.C 
k-way contingency 397.K 
Pade 142.E 

tableau, simplex 255.C 
table look-up 96.C 
tail event 342.G 
tail o-algebra 342.G 
Tait algorithm 157.C 
Tait coloring 157.C 
Takagi, Teiji 415 
Takesaki, duality theorem of 308.5 
Takesaki theory, Tomita- 308.H 
Tamagawa number (of an algebraic group) 13.P 
Tamagawa zeta function 450.L 
Tamano product theorem 425.X 
tame (knot) 235.A 
tan (= tangent) 131.E 
tan’ 131.E 
Tanaka embedding 384.D 
tangent 432.A 

(of pressure) 402.G 

asymptotic 110.B 
Darboux 110.B 
hyperbolic 131.F 
law of App. A, Table 2.111 

tangent bundle 
(of a Banach manifold) 286.K 
(of a differentiable manifold) 105.H 147.F 
(of a foliation) 154.B 

tangent hyperplane (of a quadric hypersurface) 
343.E 

tangential polar coordinates 90.C 
tangential sphere bundle 274.E 
tangential stress 271.G 
tangent line 93.G 11 l.C,F, App. A, Table 4.1 

oriented 76.B 
tangent orthogonal n-frame bundle 364.A 
tangent plane 11 l.H, App. A, Table 4.1 
tangent PL microbundle 147.P 
tangent r-frame(s) 105.H 

bundle of 105.H 
tangent r-frame bundle 147.F 
tangent space 105.H 
tangent sphere bundle, unit 126.L 
tangent surface 11 l.F 
tangent vector 105.H 

holomorphic 72.A 
of type (0,l) 72.C 
of type (1,O) 72.C 

tangent vector bundle 105.H 147.F 
tangent vector space 105.H 
tanh (hyperbolic tangent) 131.F 
Taniyama-Weil conjecture 450,s 
Tannaka duality theorem 69.D 249.U 
target (of a jet) 105.X 
target variable 264 
Tate cohomology 2Ml.N 
Tate conjecture 450,s 
Tate-Shafarevich group 118.D 
Tate theorem 59.H 
Tauberian theorem 121.D 339.B 

generalized 36.L 160.G 
generalized, of Wiener 192.D 

Tauberian type, theorem of 339.B 
Tauber theorem 339.B 
tautochrone 93.H 
tautological line bundle 16.E 
tautology 4ll.E 
Taylor expansion 

(of an analytic function of many variables) 
21.B 

(of a holomorphic function of one variable) 
339.A 

formal 58.C 
Taylor expansion and remainder App. A, Table 

9.IV 
Taylor formula App. A, Table 9.IV 

(for a function of many variables) 106.5 
(for a function of one variable) 106.E 

Taylor series 339.A 
Taylor theorem (in a Banach space) 286.F 
TCP invariance 386.B 
TCP operator 150.D 
TCP symmetry 386.B 
TCP theorem 386.B 
technique, program evaluation and review 376 
TE wave 130.B 
Teichmtiller mapping 352.C 
Teichmiiller metric 416 
Teichmiiller space 416 

universal 416 
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telegraph equation 325.A, App. A, Table 15.111 
temperature (of states) 419.A 

absolute 419.A 
tempered distribution 125.N 
temporally homogeneous 

(additive process) 5.B 
(Markov process) 261.A 

TEM wave 130.B 
tension 281.B 

modulus of elasticity in 271.G 
tension field 195.B 
tensor 

alternating 256.N 
angular momentum 258.D 
antisymmetric 256.N 
conformal curvature App. A, Table 4.11 
contracted 256.L 
contravariant, of degree p 256.5 
correlation 433.C 
covariant, of degree 4 256.5 
curvature 8O.J,L 364.D 417.B 
energy-momentum 150.B 359.D 
energy spectrum 433.C 
fundamental (of a Finsler space) 152.C 
fundamental (of a Riemannian manifold) 

364.A 
Green 188.E 
irreducible, of rank k 353.C 
Maxwell stress 130.A 
mixed 256.5 
Nijenhuis 72.B 
numerical App. A, Table 4.11 
projective curvature App. A, Table 4.11 
Ricci 364.D, App. A, Table 4.11 
second fundamental 417.F 
skew-symmetric 256.N 
strain 271.G 
stress 150.B 271.G 
symmetric 256.N 
torsion App. A, Table 4.11 
torsion (of an afline connection) 80.5 417.B 
torsion (of an almost contact structure) llO.E 
torsion (of a Frtchet manifold) 286.L 
torsion (of a Riemannian connection) 80.L 
of type (p. q) 256.5 
Weyl’s conformal curvature 80.P 

tensor algebra 
(on a linear space) 256.K 
contravariant 256.K 

tensor bundle (of a differentiable manifold) 147.F 
tensor calculus 417, App. A, Table 4.11 
tensor field 105.0 

of almost complex structure (induced by a 
complex structure) 72.B 

alternating 105.0 
of class C’ 105.0 
contravariant, of order r 105.0 
covariant, of order s 105.0 
covariant derivative of (in the direction of a 

tangent vector) 80.1 
left invariant (on a Lie group) 249.A 
parallel 364.B 
random 395.1 
right invariant (on a Lie group) 249.A 
symmetric 105.0 
of type (r, s) 105.0 
of type (r, s) with value in E 417.E 

tensorial form 80.G 
tensorial p-form 417.C 
tensor product 

(of A-homomorphisms) 277.5 
(of algebras) 29.A 
(of A-modules) 277.5 
(of chain complexes) 201.5 
(of cochain complexes) 201.5 
(of distributions) 125.K 
(of Hilbert spaces) 308.C 
(of linear mappings) 256.1 
(of linear representations) 362.C 
(of linear spaces) 256.1 
(of locally convex spaces) 424.R 
(of sheaves) 383.1 
(of vector bundles) 147.F 
(of von Neumann algebras) 308.C 
continuous 377.D 
E 424.R 
projective C*- 36.H 
spatial 36.H 

tensor representation (of a general linear group) 
256.M 

tensor space 
of degree k 256.5 
of type (p, q) 256.5 

term 
(of a language) 276.A 
(of a polynomial) 337.B 
(in predicate logic) 411.H 
(of a sequence) 165.D 
(of a series) 379.A 
base (of a spectral sequence) 200.5 
closed (of a language) 276.A 
constant (of a formal power series) 370.A 
constant (of a polynomial) 337.B 
error 403.D 
fiber (of a spectral sequence) 200.5 
initial (of an infinite continued fraction) 83.A 
nth (of sequence) 165.D 
penalty 440.B 
subtraction 11 l.B 
undefined 35.B 

terminal decision rule 398.F 
terminal point 

(of a curvilinear integral) 94.D 
(in a Markov process) 261.B 
(of a path) 170 
(of a vector) 442.A 

terminal time 261.B 
terminal vertex 186.B 
termwise differentiable (infinite series with function 

terms) 379.H 
termwise differentiation, theorem of (on distribu- 

tions) 125.G 
termwise integrable (series) 216.B 
ternary set 79.D 
Terry model, Bradley- 346.C 
Terry normal score test, Fisher-Yates- 371.C 
tertiary obstruction 305.D 
tertium non datur 156.C 
tesseral harmonics 393.D 
test 400.A 

Abel 379.D 
almost invariant 400.E 
Cauchy condensation 379.B 
Cauchy integral 379.B 
chi-square 400.G 
chi-square, of goodness of tit 400.K 
comparison 379.B 
consistent 400.K 
Dini (on the convergence of Fourier series) 

159.B 
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Theory 

Dini-Lipschitz (on the convergence of Fourier 
series) 159.B 

Dirichlet (on Abel’s partial summation) 379.D 
Dirichlet (on the convergence of Fourier series) 

159.B 
of du Bois-Reymond and Dedekind 379.D 
duo-trio 346.D 
F- 400.G 
Fisher-Yates-Terry normal score 371.C 
goodness-of-tit 397.Q 401.E 
invariant 400.E 
Jordan (on the convergence of Fourier series) 

159.B 
Kolmogorov 45.F 
Kolmogorov-Smirnov 371 .F 
Kruskal-Wallis 371.D 
Lebesgue (on the convergence of Fourier series) 

159.B 
Leibniz (for convergence) 379.C 
level tx 400.A 
likelihood ratio 400.1 
Mann-Whitney (i- 371.C 
minimax level OL 400.F 
most powerful 400.A 
most stringent level a 400.F 
nonparametric 371.A 
nonrandomized 400.A 
outlier 397.Q 
pair 346.D 
randomized 400.A 
sensory 346.B 
sequential 400.L 
sequential probability ratio 400.L 
sign 371.B 
signed rank 371.B 
similar 400.D 
Student 400.G 
t- 400.G 
triangle 346.D 
UMP unbiased level a: 4o0.C 
UMP in variant level a 400.E 
unbiased level c( 4o0.C 
uniformly consistent 400.K 
uniformly most powerful (UMP) 400.A 
uniformly most powerful invariant level G( 
400.E 

uniformly most powerful unbiased level a 
4OO.c 

van der Waerden, 371.C 
Welch 400.G 
Wiener (for Brownian motion) 45.D 
Wiener (for Dirichlet problem) 338.G 
Wiener (for random walk) 260.E 
Wilcoxon 371 .C 
Wilcoxon signed rank 371.B 

test channel 213.E 
test function 4OO.A 
test function space 125.S 
testing 

hypothesis 4Ol.C 
statistical hypothesis 400 

test statistics, Kolmogorov-Smirnov 374.E 
test sufficient (a-field) 396.5 
tetracyclic coordinates 90.B 
tetragamma function 174.B 
tetragonal (system) 92.E 
tetrahedral group 15l.G 
tetrahedron 7.D 357.B 

polar 350.C 
self-polar 350.C 

TE waves 130.B 
Theodorsen function 39.E 
theorem(s) -also specific theorems 

of angular momentum 271.E 
Brouwer’s, on the invariance of domain 117.D 
of coding 273.D-F 
on complete form 356.H 
of completeness (in geometry) 155.B 
cup product reduction 200.M 
fundamental - fundamental theorem(s) 
of identity 21.C 
invariance, of analytic relations 198.K 
on invariance of dimension of Euclidean spaces 

117.D 
kernel 125.L 424,s 
of linear ordering (in geometry) 155.B 
local limit 250.B 
of momentum 271.E 
product, for dimension 117.C 
of quasiconformal reflection 352.C 
structure, for von Neumann algebras of type III 

308.1 
of Tauberian type 339.B 
of termwise differentiation (of distributions) 

125.G 
translation (in class field theory) 59.C 
translation representation 375.H 
transversality 105.L 
triangle comparison 178.A 
Tucker’s, on complementary slackness 255.B 
unicursal graph (Euler’s) 186.F 
Weierstrass’s, of double series 379.H 

Theorem A 21.L 72.E,F 
Theorem B 21.L 72.E,F 
theoretical formula 19.F 
theory 

Ahlfors’s, of covering surfaces 272.5 367.B 
of buildings 343.1 
of calculus of variations, classical 46.C 
Cantor’s, of real numbers 294.E 
class field 59 
classification, of Riemann surfaces 367.E 
combinatorial 66.A 
complete cohomology 200.N 
constructive field 150.F 
Dedekind’s, of real numbers 294.E 
de Rham homotopy 114.L 
dimension 117 
of elasticity 271.G 
of electromagnetic waves 130.B 
of errors 138.A 
Euclidean field 150.F 
Euclidean Markov field 150.F 
exact sampling 401.F 
finite-displacement (of elasticity) 271.G 
of functions 198.4 
of functions of a complex variable 198.Q 
Galois 172 
Galois, of differential fields 113 
game 173 
of gases, kinetic 402.B 
graph 186 
Haag-Ruelle scattering 150.D 
hidden variables 351.L 
hydromagnetic dynamo 259 
information 213 
Kaluza’s 5-dimensional 434.C 
large sample 401.E 
lattice gauge 150.G 
Littlewood-Paley 168.B 
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local class field 59.G 
Lyusternik-Shnirel’man 286.Q 
Minkowski reduction (on fundamental regions) 

122.E 
Morse 219 
Morse, fundamental theorems of 279.D 
Nevanlinna (of meromorphic functions) 124.B 
272.B 

nonsymmetric unified field 434.C 
number, analytic 296.B 
number, elementary 297 
number, geometric 296.B 
of perturbations, general 420.E 
of perturbations, special 420.E 
Peter-Weyl (on compact groups) 69.B 
Peter-Weyl (on compact Lie groups) 249.U 
Picard-Vessiot 113 
of plasticity 271.G 
prediction 395.D 
prediction, linear 395.D 
of probability 342.A 
proof 156.D 
quantum field 15O.C 
ramified type 411.K 
realization 86.D 
of relativity, general 359.A 
of relativity, special 359.A 
risk 214.C 
risk, classical 214.C 
risk, collective 214.C 
risk, individual 214.C 
Serre W- 202.N 
set 381.F (- also set theory) 
of singularities 418 
slender body 205.B 
small-displacement, of elasticity 271.G 
S-matrix 386.C 
supermultiplet, Wigner’s 351.5 
syzygy 200.K 
thin wing 205.B 
Tomita-Takesaki 308.H 
type 411.K 
unified field 434.A 
unitary field 434.C 

thermal contact 419.A 
thermal expansion, coefficient of 419.A 
thermal noise 402.K 
thermodynamical quantity 419.A 

extensive 419.A 
intensive 419.A 

thermodynamic limit 402.G 
thermodynamics 419 

first law of 419.A 
second law of 419.A 
statistical 402.A 
third law of 419.A 
0th law of 419.A 

theta formula (on ideles) 6.F 
theta-Fuchsian series of Poincare 32.B 
theta function 134.1 

(on a complex torus) 3.1 
elliptic 134.1, App. A, Table 16.11 
graded ring of 3.N 
Jacobian 134.C 
nondegenerate 3.1 
Riemann 3.L 

theta series 348.L 
thick (chamber complex) 13.R 
thickness (of an oval) 89.C 
thin (chamber complex) 13.R 

thin set 
(in Markov processes) 261.D 
(in potential theory) 338.G 
analytically (in an analytic space) 23.D 
internally 338.G 

thin wing theory 205.B 
third boundary value problem 193.F 323.F 
third classification theorem (in the theory of obstruc- 

tions) 305.C 
third extension theorem (in the theory Iof obstruc- 

tions) 305.C 
third fundamental form App. A, Table 4.1 
third homotopy theorem (in the theory of obstruc- 

tions) 305.C 
third isomorphism theorem (on topological groups) 

423.5 
third kind 

Abelian differential of ll.C 
Abelian integral of 1 l.C 

third law of thermodynamics 419.A 
third-order predicate logic 41 l.K 
third quartiles 396.C 
third separation axiom 425.Q 
Thorn algebra 114.H 
Thorn complex 114.G 

associated with (G,n) 114.G 
Thorn first isotropy theorem 418.G 
Thorn fundamental theorem 114.H 
Thorn-Gysin isomorphism 114.G 

(on a fiber space) 148.E 
Thompson inequality, Golden- 212.B 
Thompson theorem, Feit- (on finite groups) 151.D 
Thorn space 114.G 
Thorn spectrum, stable homotopy group of 114.G 

202.T 
Thorin theorem, Riesz- 224.A 
thorn (of a convergence domain) 21.B 
three big problems 187 
three-body problem 420.A 

restricted 420.F 
three-circle theorem, Hadamard 43.E 
3j-symbol 353.B 
three laws of motion, Newton’s- 271.A 
three-line theorem, Doetsch 43.E 
three-stage least squares method 128.1, 
three-valued logic 41 l.L 
three principles, Fisher’s 102.A 
three-series theorem 342.D 
threshold Jacobi method 298.B 
Thue problem 31.B 
Thue theorem 118.D 
Thullen theorem, Cartan- 21.H 
Thurstone-Mosteller model 346.C 
tieset 186.G 
tieset matrix, fundamental 186.G 
Tietze extension theorem 425.4 
Tietze first axiom 425.Q 
Tietze second axiom 425.4 
tight family (of probability measures) 341.F 
tight immersion 365.0 
tightness 399.M 
Tikhonov embedding theorem 425.T 
Tikhonov fixed-point theorem 153.D 
Tikhonov product theorem 425,s 
Tikhonov separation axiom 425.4 
Tikhonov space 425.Q 
Tikhonov theorem 425.Q 

Uryson- (on metrizability) 273.K 
Tikhonov-Uryson theorem 425.Q 
time 
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exit 261.B 
explosion 406.D 
first splitting 44.E 
hitting 260.B 261.B 407.B 
killing 260.A 
life 260.A 261.B 
local 45.G 
Markov 261.B 407.B 
NP- 71.E 
polynomial 71.E 
proper 258.A 
real- 19.E 
recurrence 260.C 
sojourn, density 45.G 
stopping 261.B 407.B 
terminal 261 .B 
waiting 260.H 
waiting, distribution 307.C 

time change 
(of a Markov process) 261.B 
(of a semimartingale) 406.B 
(of a submartingale) 262.C 

time complexity 71.A 
time-dependent Schrodinger equation 351.D 
time-homogeneous Markovian type 406.D 
time-independent Markovian type 406.D 
time-independent Schriidinger equation 351.D 
time-invariant, linear (dynamical systems) 86.B 
time-invariant network 282.C 
timelike 

(curve) 325.A 
(vector of a Minkowski space) 258.A 359.B 

time-one mapping (map) 126.C 
time optimal control problem 86.F 
time ordered function 150.D 
time parameter (of a stochastic process) 407.A 
time parameter space 260.A 
time reversal 258.A 359.B 
time series 397.A 421.A 
time series analysis 421 
time series data 397.N 
time-varying system, linear 86.B 
Tissot-Pochhammer differential equation 206.C 
Titchmarsh-Kodaira theory, Weyl- Stone- 112.0 
Titchmarsh theorem 306.B 

Brun- 123.D 
Tits simple group 151.1 
Tits system 13.R 151.5 343.1 
TM waves 130.B 
Toda bracket 202.R 
Toda lattice 287.A 387.A 
Todd characteristic 366.B 
Todd class (of a complex vector bundle) 237.F 
Toeplitz operator 251.0 
Toeplitz theorem 379.L 
tolerance interval 399.R 
tolerance limits 399.R 
tolerance percent defective, lot 404.C 
tolerance region 399.R 
Tomita-Takesaki theory 308.H 
Tonelli 

absolutely continuous in the sense of 246.C 
bounded variation in the sense of 246.C 

topological Abelian group(s) 422 
dual 422.C 
elementary 422.E 

topological conjugacy 126.B 
topological entropy 126.K 136.H 
topological equivalence 126.B 
topological field 423.P 

topological generator (of a compact Abelian group) 
136.D 

topological group(s) 423 
completable 423.H 
complete 423.H 
Hausdorff 423.B 
homomorphic 423.5 
isomorphic 423.A 
locally isomorphic 423.0 
metrizable 423.1 
separated 423.B 
T,- 423.B 

topological groupoid 154.C 
topological index (of an elliptic complex) 237.H 

201.A topological invariance (of homology groups) 
topological invariant 425.G 
topological linear spaces 424 
topologically complete space 436.1 
topologically conjugate 126.B 
topologically equivalent 126.B,H 
topological manifold 105.B 

with boundary 105.B 
without boundary 105.B 

topological mapping 425.G 
topological n-cell 140 
topological pair 2Ol.L 
topological polyhedron 65.A 
topological pressure 136.H 
topological property 425.G 
topological ring 423.P 
topological u-algebra 270.C 
topological solid sphere 140 
topological space(s) 425 

category of 52.B 
category of pointed 202.B 
complex linear 424.A 
discrete 425.C 
generalized 425.D 
homotopy category of 52.B 
inductive system of 210.C 
linear 424.A 
metrizable 273.K 
product 425.K 
projective system of 210.C 
quotient 425.L 
real linear 424.A 
underlying (of a complex manifold) 72.A 
underlying (of a differentiable manifold) 105.D 
underlying (of a topological group) 423.A 
uniform 436.C 
uniformizable 436.H 

topological sphere 140 
topological structure 425.A,B 
topological sum 425.M 
topological transformation group 431.A 
topological vector space 424.A 
topology 425.B 426 

284.B a-adic (of an R-module) 
algebraic 426 
base for a 425.F 
of biequicontinuous convergence 424.R 
box 425.K 
coarser 425.H 
combinatorial 426 
compact-open 279.C 435.D 
compact-open Cm 279.C 
differential 114 
discrete 425.C 
etale 16.AA 
fine (on a class of measures) 261.D 338.E 
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liner 425.H 
Gel’fand 36.E 
general 426 
Grothendieck 16.AA 
hereditarily weak 425.M 
hull-kernel 36.D 
I-adic (of a ring) 16.X 
indiscrete 425.C 
induced 425.1 
induced by a mapping 425.1 
inner (of a Lie subgroup) 249.E 
Jacobson 36.D 
Krull (for an infinite Galois group) 172.1 
larger 425.H 
leaf 154.D 
of Lie groups and homogeneous spaces 427 
linear 422.L 
Mackey 424.N 
metric 425.C 
order 425.C 
PL 65.A 
product 425.K 
projective 424.R 
quotient 425.L 
relative 425.5 
S- (on a linear space) 424.K 
Sazonov 341.5 
set-theoretic 426 
u-weak 308.B 
smaller 425.H 
strong (on a class of measures) 338.E 
strong (on a direct product space) 425.K 
strong (on a normed space) 37.E 
strong (on a topological linear space) 424.K 
stronger 425.H 
strong operator 251.C 
subbase for a 425.F 
of surfaces, fundamental theorem of 410.B 
trivial 425.C 
uniform 436.C 
of uniform convergence 424.K 
of the uniformity 436.C 
uniformizable 436.H 
uniform operator 251 .C 
vague (on a class of measures) 338.E 
weak (in a cell complex) 70.D 
weak (on a class of measures) 338.E 
weak (on a direct product space) 425.K 
weak (on a direct sum) 425.M 
weak (on a locally convex space) 424.H 
weak (on a normed linear space) 37.E 
weak, relative to the pairing (E, F) 424.H 
weak C” 279.C 
weaker 425.H 
weak operator 25 I .C 
weak* (on a locally convex space) 424.H 
weak* (on a normed space) 37.E 
Zariski (of a spectrum) 16.D 
Zariski (of a variety) 16.A 

topology E (on the tensor product of locally convex 
spaces) 424.R 

topology a (on the tensor product of locally convex 
spaces) 424.R 

Tor 200.D 
exact sequence of 200.D 

Tor,R(A, B) 200.K 
Tor,A(M, N) 200.D 
Torelli theorem 9.E,J 1 l.C 
Tor groups 200.D 
toric variety 16.2 

toroidal coordinates App. A, Table 3.V 
toroidal embedding 16.2 
toroidal subgroup, maximal (of a compact Lie 

group) 248.X 
torsion 

(of a curve of class C”) 11 l.D 
afline 1lO.C 
analytic 391.M 
conformal 110.D 
radius of (of a space curve) 11 l.F 
Whitehead 65.C 

torsion A-module 277.D 
torsion Abelian group 2.A 

bounded 2.F 
torsion coefficients (of a complex) 201 .B 
torsion element (of an A-module) 277.D 
torsion form 80.H 
torsion-free A-module 277.D 
torsion-free Abelian group 2.A 
torsion group 2.A 

(of a complex) 201.B 
torsion product 

(in a category) 200.K 
(of A-modules) 200.D 

torsion subgroup 
(of an Abelian group) 2.C 
maximal 2.A 

torsion tensor App. A, Table 4.11 
(of an affme connection) 8O.J,L 417.B 
(of an almost contact structure) 110.E 
(of a Frechet manifold) 286.L 

torus 
(algebraic group) 13.D 
(compact group) 422.E 
(surface) 111.1 410.B 
algebraic 13.D 
Clifford 275.F 
complex 3.H 
generalized Clifford 275.F 
invariant 126.L 
K-split 13.D 
K-trivial 13.D 
maximal (of a compact Lie group) 248.X 
maximal K-split 13.Q 
n- 422.E 

torus embedding 16.2 
torus function App. A, Table 18.111 
torus group 422.E 
total (set of functions) 317.A 
total boundary operator 200.E 
total Chern class 56.C 
total cross section 386.B 
total curvature 

(of an immersion) 365.0 
(of a space curve) 11 l.F 
(of a surface) 11 l.H, App. A, Table 4.1 
Gaussian 11 l.H 

total degree 200.5 
total differential 

(of a complex) 200.H 
(of a function) 106.G 
(on a Riemann surface) 367.H 

total differential equation(s) 428, App. A, Table 15.1 
system of 428.A 

total elastic cross section 386.B 
total energy 271.C 
total excess 178.H 
total Gaussian curvature (of a surface) 11 l.H 
total isotropy, index of (with respect to a quadratic 

form) 348.E 
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totally bounded transcendence basis, separating (of field extension) 
(metric space) 273.B 149.K 
(subset of a metric space) 273.B transcendence degree (of a field extension) 149.K 
(subset of a uniform space) 436.H transcendency, degree of (of a field extension) 
(uniform space) 436.H 149.K 
locally 436.H transcendental curve 93.H 

totally definite quaternion algebra 27.D transcendental element (of a field) 149.E 
totally degenerate (group) 234.B transcendental entire functions 429 
totally differentiable transcendental extension 149.E 

(complex function) 21.C purely 149.K 
(real function) 106.G transcendental function 

totally disconnected (topological space) 79.D higher 389.A 
totally geodesic submanifold 365.D of Painlevt 288.C 
totally imaginary tield 14.F transcendental meromorphic function 272.A 
totally isotropic (subspace) 60.0 348.E transcendental numbers 430 
totally ordered additive group 439.B transcendental singularity (of an analytic function 
totally ordered group 243.G in the wider sense), direct, indirect 198 P 
totally ordered set 31 l.A transfer (in group theory) 190.0 
totally positive (element) 14.G transfer function 86.D 
totally real field 14.F transfer function matrix 86.B 
totally real immersion 365.M transferrer of constant lengths 155.G 
totally real submanifold 365.M transtinite cardinal number 49.A 
totally regular transformation (of a sequence) transtinite diameter 48.D 

379.L transfinite induction 
totally singular (subspace) (with respect to a (in a well-ordered set) 31 l.C 

quadratic form) 348.E definition by 31 l.C 
totally umbilical submanifold 365.D translinite initial ordinal number 49.E 
totally unimodular 186.G transtinite logical choice function 411.5 
total matrix algebra 269.B translinite ordinal number 312.B 
total mean curvature 365.0 transform 
total monodromy group 418.F (of a sequence by a linear transformation) 
total ordering 31 l.A 379.L 
total Pontryagin class 56.D Cauchy (of a measure) 164.5 
total quotients, ring of 67.G Cayley (of a closed symmetric operator) 251.1 
total space discrete Fourier 142.D 

(of a fiber bundle) 147.B fast Fourier 142.D 
(of a fiber space) 148.B Fourier 160, App. A, Table 11.11 

total Stiefel-Whitney class 56.B Fourier (of a distribution) 125.0 
total transform (of a subvariety) 16.1 Fourier (in topological Abelian groups) 36.L 
total variation 192.1 

(of a function) 166.B Fourier, generalized 220.B 
(of a mapping from a plane into a plane) Fourier, inverse (of a distribution) 125.0 

246.H Fourier, spherical 437.2 
(of a set function) 380.B Fourier-Bessel 39.D 
(of a vector measure) 443.G Fourier cosine 16O.C App. A, Table 11.11 

tower, class field (problem) 59.F Fourier-Laplace 192.F 
trace Fourier sine 16O.C, App. A, Table 11.11 

(of an algebraic element) 149.5 Fourier-Stieltjes 192.B,O 
(of an element of a general Cayley algebra) Gel’fand 36.E 

54 Hankel 220.B 
(of a linear system of an algebraic surface) Hilbert 160.D 220.E 

15.c integral 220 
(of a matrix) 269.F inverse (of an integral transform) 220.A 
(of a nuclear operator) 68.L Klein 150.D 
(in a von Neumann algebra) 308.D kth 160.F 
reduced (of an algebra) 362.E Laplace 240, App. A, Table 12.1 

trace class 68.1 Laplace-Stieltjes 240.A 
traced, /l- 126.5 Legendre 419.C 
trace form, E- 60.0 Mellin 220.C 
trace formula (on unitary representations) 437.DD proper (of a subvariety) 16.1 
trace norm 68.1 Radon 218.F 
trace operator 168.B Radon, conjugate 218.F 
tracing property, pseudo-orbit 126.5 real monoidal 274.E 
tractrix 93.H Riesz 251.0 
traflic intensity 260.H Stieltjes 220.D 
trajectory 126.B,C total (of a subvariety) 16.1 

negative half- 126.D Watson 160.C 220.B 
orthogonal 193.J transformable, polynomially 71.E 
positive half- 126.D transformation(s) 381.C 

transcendence basis (of a field extension) 149.K (on a measure space) 136.D 
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afftne 7.E 
afhne (of a manifold with an afline connection) 
80.5 

afline (of a Riemannian manifold) 364.F 
afftne, group of 7.E 
afline, proper 7.E 
afline, regular 7.E 
Ampere 82.A 
angular 374.D 
arc sine 374.D 
bimeasurable (on a measure space) 136.B 
birational 16.1 
BRS 150.G 
canonical 82.8 271.F 
canonical, group of 271.F 
Cayley (of a matrix) 269.5 
chain (between complexes) 200.H 
conformal 80.P 364.F 
congruent (in Euclidean geometry) 139.B 
congruent, group of 285.C 
contact 82, App. A, Table 15.IV 
coordinate (of a fiber bundle) 147.B 
coordinate (of a locally free Oz-Module) 16.E 
covering 91.A 367.B 
Cremona 16.1 
by drift 261.F 
of drift 406.B 
elliptic 74.F 
entire linear 74.E 
to an equilibrium system 82.D 
equilong 76.B 
ergodic (on a measure space) 136.B 
Euler (of infinite series) 379.1 
factor (of a measure preserving transformation) 

136.D 
Fisher z- 374.D 
Galilei 359.C 
gauge (in electromagnetism) 130.A 
gauge (in a lattice spin system) 402.G 
gauge (of a principal fiber bundle) S0.Q 
gauge (in unified field theory) 343.B 
gauge, of the first kind 150.B 
Gauss App. A, Table 16.111 
Givens 302.E 
Householder 302.E 
hyperbolic 74.F 
infinitesimal (of a Lie transformation group) 

431.G 
infinitesimal (of a one-parameter group of 

transformations) 105.N 
inner (in the sense of Stoi’low) 367.B 
Jacobi imaginary 134.1, App. A, Table 16.111 
Kelvin 193.B 
Laguerre 76.B 
Landen 134.B, App. A, Table 16.111 
Legendre 82.A, App. A, Table 15.IV 
Lie (in circle geomtry) 76.C 
Lie line-sphere 76.C 
linear (= linear fractional) 74.E 
linear (of a linear space) 251.A 256.B 
linear (of a sequence) 379.L 
linear fractional 74.E 
local, local Lie group of 43 1 .G 
local, local one-parameter group of 105.N 
of local coordinates 90.D 
locally quadratic (of an algebraic surface) 

15.G 
locally quadratic (of an algebraic variety) 16.K 
locally quadratic (of a complex manifold) 72.H 
Lorentz 359.B 

loxodromic 74.F 
measurable (on a measure space) 136.B 
measure-preserving 136.B 
Mobius 74.E 76.A 
monoidal (of an analytic space) 23.D 
monoidal (of a complex manifold) 72.H 
monoidal (by an ideal sheaf) 16.K 
monoidal, with center W 16.K 
by a multiplicative functional (in a Markov 
process) 261.F 

natural 52.5 
nonsingular (of a linear space) 256.B 
nonsingular (on a measure space) 136.B 
normal (of a sequence) 379.L 
one-parameter group of 105.N 
one-parameter group of class C 126.B 
orthogonal 139.B 348.B 
orthogonal (over a noncommutative field) 

60.0 
orthogonal (with respect to a quadratic form) 

60.K 
orthogonal, around the subspace AX 139.B 
parabolic 74.F 
of the parameter 11 l.D 
parity 359.B 
particular (of 6:) 248.R 
Picard-Lefschetz 16.U 
to principal axes 390.B 
projective 343.D 
projective (of a Riemannian manifcmld) 367.F 
projective, group of 343.D 
pseudoconformal 344.A 
pseudogroup of (on a topological space) 90.D 
quadratic 16.1,K 
quantized contact 274.F 
regular (of a linear space) 256.B 
regular (of a sequence) 379.L 
regular projective 343.D 
Schwarz-Christoffel 77.D 
semilinear 256.P 
semiregular (of a sequence) 379.L 
shift 136.D 
singular projective 343.D 
singular projective, of the hth species 343.D 
superharmonic 261.F 
symplectic 60.L 
symplectic (over a noncummutative field) 

60.0 
totally regular (of a sequence) 379.L 
triangular (linear) 379.L 
unitary 348.F 
unitary (relative to an a-Hermitian form) 60.0 
weakly equilvalent 136.F 

transformation tormula 
(for the generating function of the number of 

partitions) 328 
(of a theta function) 3.1 
(for theta series) 348.L 
Schwarz-Christoffel 77.D 

transformation group(s) 431, App. A, Table 14.111 
(of a set) 431.A 
covering 91.A 
differentiable 431.C 
discontinuous 122.A 
free discontinuous 122.A 
Lie 431.C 
Mobius 76.A 
orthogonal 60.1 
orthogonal (over a field with respect to a 

quadratic form) 60.K 
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Triangle 

properly discontinuous 122.A 
symplectic 60.L 
topological 431.A 
unitary 60.F 

transformation parameter 396.1 
transformation problem (in a finitely presented 

group) 161.B 
transformation space (of an algebraic group) 13.G 
transgression 

(homomorphism of cohomology groups) 
200.M 

(in the spectral sequence of a fiber space) 
148.E 

transgressive (element in the spectral sequence of 
a fiber space) 148.E 

transient 
(Levy process) 5.G 
(Markov chain) 260.B 
(Markov process) 261.B 

transient problem 322.D 
transition 

order-disorder 402.F 
phase 340.B 

transition function 
(of a fiber bundle) 147.B 
(of a Markov chain) 260.A 
(of a Markov process) 261.B 
Feller 261.B 

transition matrix 126.5 260.A 
transition point 254.F 
transition probability 

(of a diffusion process) 115.B 
(of a Markov chain) 260.A 
(of a Markov process) 261.A 
(in quantum mechanics) 351.B 
standard 260.F 

transitive 
(dynamical system) 126.1,J 
(operation of a group) 362.B 
(permutation representation) 362.B 
(relation) 358.A 
fully (subgroup of an orthogonal group) 92.C 
k- (permutation group) 151.H 
k-ply (G-set) 362.B 
k-ply (permutation group) 151.H 
multiply (permutation group) 151.H 
simply (G-set) 362.B 

transitive extension (of a permutation group) 
151.H 

transitive law 
(in an equivalence relation) 135.A 
(on ordering) 311.A 

transitively (act on G-space) 431.A 
transitive permutation group 151.H 
transitivity, system of (of a G-set) 362.B 
translation(s) 

(in an afline space) 7.E 
group of (of an afline space) 7.E 
left 249.A 362.B 
parallel 80.C 364.B 
right 249.A 362.B 

translational flow 126.L 136.G 
frequencies of 126.L 136.G 

translation group (of a Lorentz group) 258.A 
translation number 18.B,D 
translation operator 306.C 
translation representation theorem 375.H 
translation theorem (in class field theory) 59.C 
transmission coefficient 387.D 
transmission rate 213.A 

transonic flow 205.B 
transonic similarity, von Karma, 205.D 
transportation problem 255.C 
transport coefficient 402.K 
transport equations 325.L 
transpose 

(of a linear mapping) 256.G 
(of a rational homomorphism) 3.E 

transposed integral equation 217.F 
transposed mapping 

(of a diffusion kernel) 338.N 
(of a linear mapping) 256.G 

transposed matrix 269.B 
transposed operator 112.E 189.C 322.E 
transposed representation 362.E 
transposition (in a symmetric group) 151.G 
transvection 60.0 
transversal (matroid) 66.H 
transversal field 136.G 
transversal flow 136.G 
transversal homoclinic point 126.J 
transversality, condition of (in calculus of variations) 

46.B 
transversality condition 108.B 

strong 126.5 
transversality theorem 105.L 
transverse 

(foliations) 154.H 
(to a submanifold of a differentiable manifold) 

105.L 
to a foliation 154.B 

transverse axis (of a hyperbola) 78.C 
transverse electric waves 130.B 
transverse electromagnetic waves 130.B 
transverse invariant measure 154.H 
transversely (intersect) 105.L 
transversely orientable 154.B 
transverse magnetic waves 130.B 
transverse structure 154.H 
transverse wave 446 
trap 

(of a diffusion process) 115.B 
(of a Markov process) 261.B 

trapezoidal rule 
(of numerical integration) 299.A 
(of numerical solution of ordinary differential 

equations) 303.E 
treatment 102.B 

connected 102.B 
treatment combinations, number of 102.L 
treatment contrast 102.C 
treatment effect 102.B 
tree 93.C 186.G 

co- 186.G 
derivation 31.E 
spanning 186.G 

tree code 213.E 
tree representation 96.D 
tree structure 96.D 
trefoil knot 235.C 
trellis code 213.E 
trend 397.N 
triad 202.M 

homotopy exact sequence of 202.M 
homotopy group of 202.M 

trial path dependent, d- (response probability) 
346.G 

triangle 7.D 155.F 178.H 
geodesic 178.A 
Pascal 330 
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plane App. A, Table 2.11 
polar 78.5 
Reuleaux 89.E 11l.E 
self-polar 78.5 
solving a 432.A 
spherical 432.B, App. A, Table 2.111 

triangle comparison theorem 178.A 
triangle inequality 273.A 
triangle test 346.E 
triangulable 65.A 
triangular (linear transformation) 379.L 
triangular element 304.C 
triangular factorization 302.B 
triangular matrix 269.B 

lower 269.B 
upper 269.B 

triangular number 4.D 
triangulated manifold 65.B 
triangulation 65.A 70.C 

c’- 114.c 
combinatorial 65.C 
combinatorial, problem 65.C 
compatible with 114.C 
finite 70.C 

trick, Alexander’s 65.D 
triclinic (system) 92.E 
Tricomi differential equation 326.C 
Tricomi problem 326.C 
tridiagonal matrix 298.D 
trigamma function 174.B 
trigonal (system) 92.E 
trigonometric function 131.E 432.A, App. A, 

Table 2 
inverse 13l.E 

trigonometric integral 160.A 
trigonometric interpolation polynomial 336.E 
trigonometric polynomial, generalized 18.B 
trigonometric series 159.A 

generalized 18.B 
trigonometric sum 4.C 
trigonometric system 159.A 
trigonometry 432, App. A, Table 2 

plane 432.A 
spherical 432.B 

trilinear coordinates 90.C 
trimmed mean, a- 371.H 
triple ZOO.Q,L 

homotopy exact sequence of 202.L 
triple product, scalar, vector 442.C, App. A, Table 

3.1 
triplet, Gel’fand 424.T 
tripolar coordinates 90.C 
trisection of an angle 179.A 
trivalent map 157.B 
trivial 

(extension) 390.5 
(knot) 65.D 235.A 
K- (torus) 13.D 

trivial bundle 147.E 
trivial fiber space, locally 148.B 
trivialization (of a block bundle) 147.4 
trivially (act on a G-space) 431.A 
trivial sheaf 383.D 
trivial solution (of a system of linear homogeneous 

equations) 269.M 
trivial topology 425.C 
trivial valuation 439.C,F 
trochoid 93.H 
Trotter product formula 351.F 
true 411.E 

true anomaly 309.B 
true value of a parameter 398.A 
truncated Wightman function 150.D 
truncation error 138.B 303.B 

local 303.E 
truth definition 185.D 
truth function 411.E 
truth value (of a formula) 41 l.E 
Tsen theorem 27.E 118.F 
tube 126.E 

regular 193.K 
vector 442.D 

tuboid 125.V 
tubular neighborhood 105.L 114.B 364.C 

open 105.L 114.B 
tubular neighborhood system, controlle’d 418.G 
Tucker theorem on complementary slackness 

255.B 
Tucker theorem, Kuhn- 292.B 
tuple, n- 256.A 381.B 
turbulence 433 

homogeneous 433.C 
isotropic 433.C 

turbulent flow 205.E 433 
Turing machine 3 1 .B 

universal 31.C 
turning point 25.B 254.F 
twinable 92.D 
twinning structure 92.D 
twin primes 123.C 
twisted type, group of 151.1 
two-bin system 227 
two-body interaction 271.C 
two-body problem 55.A 
two-dimensional KdV equation 387.F 
2-isomorphic 186.H 
two-person game, zero-sum 108.B 
two-phase simplex method 255.C 
two-point boundary value problem (of ordinary 

differential equations) 315.A 
two sheets 

hyperboloid of 350.B 
hyperboloid of revolution of 350.13 

two-sided exponential distribution App. A, Table 
22 

two-sided generator (for an automorphism of a 
measure space) 136.E 

two-sided ideal 368.F 
two-sided o-ideal 27.A 

integral 27.A 
two-sided scale 19.D 
two-sided surface 4lO.B 
two-stage least squares method 128.C 
two-stage sampling 373.E 
two-stage stochastic programming 408.A 
two-terminal characteristic 281.C 
two-terminal network 281.C 
two-terminal problem 281.C 
two-valued logic 411.L 
two-way elimination of heterogeneity, design for 

102.K 
two-way layout 102.H 
type 

(of an Abelian group) 2.B,D 
(of an object) 356.F 
(of a quadratic form) 348.E 
(of a structure) 409.B 
(of a transcendental number) 43O.C 
acute 304.C 
backward 304.D 
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Unbiased estimator 

Bravais (of lattices) 92.B 
Bravais, of the class of (K K) 92.B 
compact 412.D 
dimension 117.H 
of finite (graded module) 203.B 
of finite (module) 277.D 
of finite (morphism of schemes) 16.D 
of tinite (&module) 16.E 
of linite, subshift 126.J 
forward 304.D 
Fredholm, integral equation of 217.A 
Fredholm, integrodifferential equation of 
222.A 

Fuchsian (linear ordinary differential equations) 
253.A 

Fuchsian (visibility manifold) 178.F 
general 72.1 
general, surface of 72.K 
homotopy 202.F 
homotopy (of a link) 235.D 
homotopy, invariant 202.F 
isotopy (of knots) 235.A 
isotopy (of a transformation group) 431.A 
k-, Markov branching process 44.E 
knot 235.A 
link 235.D 
locally of finite (morphism of schemes) 16.D 
mixed 304.C 326.A 
multi-, Markov branching process 44.E 
multidiagonal 304.C 
noncompact 412.D 
nonconforming 304.C 
orbit (of a G-space) 431.A 
Parreau-Widom 164.K 
positive (symmetric kernel) 338.D 
principal orbit 43 l.C 
spherical G-fiber homotopy 431.F 
Stoi’low 207.B 
twisted, group of 151 .I 
Volterra, integral equation of 217.A 
Volterra, integrodifferential equation of 222.A 
Weierstrass-, preparation theorem (for micro- 
differential operators) 274.F 

type pm, Abelian group of 2.D 
type (P, 4) 

(of an operator) 224.E 
tensor of 256.5 
tensor space of 256.J 
weak (of an operator) 224.E 

type (r, s), differential form of 72.C 
type S (harmonic boundary) 207.B 
type S, space of 125.T 
type number (of a solution of a system of linear 

ordinary differential equations) 314.A 
type problem (for Riemann surfaces) 367.D 
type theory 41 l.K 

ramified 411 .K 
simple 41 l.K 

type (0, l), tangent vector of 72.C 
type (l,O), tangent vector of 72.C 

type 1 
(von Neumann algebra) 308.E 
C*-algebra of 308.L 
group of 437.E 

type I group 437.E 

type I,,,, (irreducible symmetric bounded domain) 
412.1 

type I, (von Neumann algebra) 308.E 
type II (von Neumann algebra) 308.E 

type 11, 

(ergodic countable group) 136.F 
(von Neumann algebra) 308.E,F 

type II, (irreducible symmetric bounded domain) 
412.1 

We 11, 
(ergodic countable group) 136.F 
(von Neumann algebra) 308E,F 

type III 
(ergodic countable group) 136.F 
(von Neumann algebra) 308.E 
structure theorem for von Neumann algebras of 

308.1 
type III, (factor) 308.1 
type III, (factor) 308.1 
type III, (factor) 308.1 
type III, (irreducible symmetric bounded domain) 

412.1 
type IV, (irreducible symmetric bounded domain) 

412.1 
type AI, AII, AIII, AIV (irreducible symmetric 

Riemannian space) 412.G 
type BDI, BDII (irreducible symmetric Riemannian 

space) 412.G 
type CI, CII (irreducible symmetric Riemannian 

space) 412.G 
type DIII (irreducible symmetric Riemannian space) 

412.G 

U 

U(n) (unitary group) 60.F 
u-chain 260.1 
u-curve 11 l.H 
u,-scale 19.D 
(i-invariant (subspace) 437.C 
U-set 159.5 
u-statistic 274.1 
Li test, Mann-Whitney 371.C 
U-number 430.C 
U*-number 430.C 
UCL (upper control limit) 404.B 
Ugaheri maximum priciple 338.C 
Uhlenbeck Brownian motion, Ornstein- 45.1 
Ulam theorem, Borsuk- 153.B 
Ulm factor(s) 2.D 

sequence of 2.D 
ultrabornological (locally convex space) 424.W 
ultradifferentiable function 168.B 
ultradistribution 125.U,BB 

of class {M,} 125.U 
of class {M,} 125.U 

ultrafilter 87.1 
ultrainfinite point 285.C 
ultrapower 276.E 
ultraproduct 276.E 

fundamental theorem of 276.E 
ultraspherical polynomials 317.D 
ultraviolet divergence 132.C 146.B 
umbilical point (of a surface) 1 ll.H 365.D 
umbilical submanifold, totally 365.D 
Umkehr homomorphism 201.0 
UMP (uniformly most powerful) (test) 400.A 
UMP invariant level G( test 400.E 
UMP unbiased level c( test 400.C 
UMV unbiased estimator 399.C 
unavoidable set 157.D 
unbiased confidence region 399.4 

uniformly most powerful 399.Q 
unbiased estimator 399.C 

asymptotically (mean) 399.K 
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best linear 403.E 
kth order asymptotically median 399.0 
mean 399.C 
median 399.C 
modal 399.C 
UMV 399.C 
uniformly minimum variance 399.C 

unbiased level c( test 400.C 
uniformly most powerful 400.C 

unbiasedness 399.C 
unbounded (covering surface) 367.B 
uncertainty (in observations) 351.C 
uncertainty relation, Heisenberg 351.C 
unconditonally convergent 

(series) 379.C 
(series in a Banach space) 443.D 

undecidable proposition, formally 185.C 
undefined concept 35.B 
undefined term 35.B 
undercrossing point 235.A 
underdetermined system 

of differential operators 112.R 
of partial differential operators 320.F 

underflow 138.B 
underlying group (of a topological group) 423.A 
underlying topological space 

(of a complex manifold) 72.A 
(of a differentiable manifold) 105.D 
(of a topological group) 423.A 

undirected graph 186.B 
undotted index 258.B 
undotted spinor (of rank k) 258.B 
unfolding 

(of a germ of an analytic function) 418.E 
constant 51.D 
r- 51.D 
universal 418.E 

unicity theorem, Luzin’s 22.C 
unicursal (ordinary curve) 93.C 
unicursal curve 9.C 93.H 
unicursal graph theorem (Euler’s) 186.F 
unified field theory 434 

nonsymmetric 434.C 
uniform 

(lattice of a Lie group) 122.K 
(sampling procedure) 373.A 

uniform algebra 164.A 
uniform boundedness theorem 37.H 
uniform continuity 

lower class with respect to 45.F 
upper class with respect to 45.F 

uniform convergence 435 
(of an infinite product) 435.A 
(of operators) 251.C 
(of a series) 435.A 
abscissa of 121.B 240.B 
on compact sets 435.C 
Weierstrass criterion for 435.A 

uniform covering system 436.D 
uniform distribution 182.H 341.D, App. A, Table 

22 
uniform family of neighborhoods system 436.D 
uniform isomorphism 436.E 
uniformity 436.B 

base for the 436.B 
discrete 436.D 
generated by a family of pseudometrics 436.F 
generated by a pseudometric 436.F 
left (of a topological group) 423.G 
product 436.E 

pseudometric 436.F 
relative 436.E 
right (of a topological group) 423.G 
stronger 436.E 
T,- 436.C 
topology of the 436.C 
weaker 436.E 

uniformizable (topological space) 436.H 
uniformization 367.C 

(of a set in a product space) 22.F 
Schottky 367.C 

uniformization theorem 
general 367.G 
Kond8 22.F 

uniformized 367.C 
locally 367.C 

uniformizing parameter, local (of a Riemann surface) 
367.A 

uniformly 
(partial recursive function) 356.E 
(primitive recursive function) 356.B 

uniformly absolutely convergent (series) 435.A 
uniformly almost periodic function 18.B 
uniformly asymptotically stable 

(solution of a differential equation) 394.B 
(solution of a functional differential equation) 

163.G 
uniformly best (estimator) 399.C 
uniformly better (decision function) 398.B 
uniformly consistent test 400.K 
uniformly continuous 

(function) 84.A 
(mapping) 273.1436.E 
on a subset 436.G 

uniformly convergent 
(sequence) 435.A 
on a family of sets 435.C 
in the wider sense 435.C 

uniformly convex (normed linear space] 37.G 
uniformly equivalent (uniform spaces) 436.E 
uniformly integrable (family of random variables) 

262.A 
uniformly locally compact (space) 425.V 
uniformly Lyapunov stable 126.F 
uniformly minimum variance unbiased estimator 

399.c 
uniformly most powerful 

(confidence region) 399.Q 
(test) 400.A 
invariant 399.Q 
invariant level c( 400.E 
unbiased 399.4 
unbiased level OT 400.E 

uniformly recursive in Y (define a partial recursive 
function) 356.E 

uniformly smooth (normed linear space) 37.G 
uniformly stable 394.8 
uniform neighborhood system 436.D 
uniform norm 168.B 
uniform operator topology 251.C 
uniform space(s) 436 

analytically 125,s 
complete 436.G 
Hausdorff 436.C 
locally totally bounded 436.H 
metrizable 436.F 
precompact 436.H 
product 436.E 
pseudometrizable 436.F 
separated 436.C 
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Unit circle 

T,- 436.C 
totally bounded 436.H 

uniform star convergence, relative 310.F 
uniform structure 436.B 
uniform subspace 436.E 
uniform topological space 436.B 
uniform topology 436.B 
unilateral constraints 440.A 
unilateral shift operator 390.1 
unimodal (distribution function) 341.H 
unimodular 

(germ of an analytic function) 418.E 
(locally compact group) 225.D 
totally 186.G 

unimodular group 60.B 
quaternion 412.G 

union 
(in axiomatic set theory) 33.B 
(of matroids) 66.H 
(of sets) 381.B 
axiom of 381.G 
disjoint 381.B,D 
of hypersurface elements 82.A 
of surface elements 324.B 

unipotent 
(algebraic group) 13.E 
(linear transformation) 269.L 

unipotent component 269.L 
unipotent matrix 269.F 
unipotent part 

(of an algebraic group) 13.E 
(of a nonsingular matrix) 13.E 

unipotent radical 13.1 
unique continuation theorem 323.5 
unique decomposition theorem (for a 3-manifold) 

65.E 
unique factorization domain 67.H 
unique factorization theorem (in an integral domain) 

67.H 
uniquely ergodic (homeomorphism (on a compact 

metric space) 136.H 
uniqueness 

in the sense of law of solutions 406.D 
set of 159.J 
of solution, pathwise 406.D 

uniqueness condition (for solutions of ordinary 
differential equations) 316.D 

uniqueness principle (in potential theory) 338.M 
uniqueness theorem 

(for analytic functions) 198.C 
(for class field theory) 59.B 
(for differential equations in a complex domain) 

316.G 
(for Fourier transform) 192.1 
(for harmonic functions) 193.E 
(for an initial value problem of ordinary differ- 

ential equations) 316.D 
of the analytic continuation 198.C,I 
Holmgren 321.F 
of homology theory 201.R 
Rellich 188.D 
von Neumann 351.C 

unique strong solution 406.D 
unirational surface 15.H 
unirational variety 16.5 
uniserial algebra 29.1 

absolutely 29.1 
generalized 29.1 

unisolvent space 142.B 
unisolvent system (of functions) 336.B 

unit(s) 
(of an algebraic number field) 14.D 
(for measure of length) 139.C 
(in a ring) 368.B 
(of a symmetric matrix with rational coordi- 

nates) 348.5 
(of a vector lattice) 310.B 
Archimedean (of a vector lattice) 310.B 
arithmetic 75.B 
auxiliary 414.A 
base 414.A 
circular 14.L 
control 75.B 
derived 414.D 
fundamental 414.A 
fundamental (of an algebraic number field) 

14.D 
gravitational, system of 414.B 
imaginary 74.A 294.F 
international system of 414.A 
Kakutani 310.G 
matrix 269.B 
memory 75.B 
system of 414 

unital 36.A 
unitarily equivalent (self-adjoint operators) 390.G 
unitary 

(homomorphism between rings) 368.D 
(module) 277.D 
essentially 390.1 

unitary algebra 29.A 
unitary dilation 251.M 
unitary field theory 434.C 
unitary group 60.F 151.1 

(relative to an c-Hermitian form) 60.0 
infinite 202.V 
over K 60.H 
over K, projective special 60.H 
over K, special 60.H 
projective 60.F 
special 60.F 
special (relative to an c-Hermitian form) 60.0 

unitary matrix 269.1 
unitary monoid 409.C 
unitary operator 251.E 390.E 
unitary representation(s) 437 

disjoint 437.C 
equivalent 437.A 
induced by a representation of a subgroup 
437.0 

integrable 437.X 
irreducible 437.A 
isomorphic 437.A 
quasi-equivalent 437.C 
similar 437.A 
square integrable 437.M 
sufficiently many irreducible 437.B 

unitary restriction (of a semisimple Lie algebra) 
248.P 

unitary ring 368.A 409.C 
unitary semigroup 409.C 
unitary symplectic group 60.L 
unitary transformation 348.F 

(relative to an c-Hermitian form) 60.0 
unitary transformation group 60.F 
unit ball 

(of a Banach space) 37.B 
(of a Euclidean space) 140 

unit cell 140 
unit circle 74.C 140 
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Unit cost 
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unit cost 281.D 
unit cube 139.F 140 
unit disk 140 
unit distribution 341.D 
unit element 

(of a field) 149.A 
(of a group) 190.A 
(of a ring) 368.A 

unit function 306.B, App. A, Table 12.11 
unit group (of an algebraic number field) 14.D 
unit impulsive function App. A, Table 12.11 
unit mapping 203.F 
unit matrix 269.A 
unit n-cube 140 
unit point 

(of an affline frame) 7.C 
(of a projective frame) 343.C 

unit ray 351.B 
unit representation (of a group) 362.C 
unit sphere 140 
unit tangent sphere bundle 126.L 
unit theorem, Dirichlet 14.D 
unit vector 7.C 442.B 
unity 

(in the axioms for the real numbers) 355.A 
partition of 425.R 
partition of, of class Cm 105.S 
partition of, subordinate to a covering 425.R 
primitive root of 14.L 

unity element 
(of a field) 149.A 
(of a ring) 368.A 

univalence superselection rule 351.K 
univalent (analytic function) 438.A 
univalent correspondence 358.B 
univalent function 438 
univariate (statistical data) 397.A 
universal 

(d-functor) 200.1 
(*-representation of a Banach *-algebra) 36.G 
(unfolding) 51.D 

universal bundle 147.G,H 
n- 147.G 

universal Chern class 56.C 
universal coefficient theorem 

(in Abelian categories) 200.H 
(for cohomology) 200.G 201.H 
for homology 200.D 201.G 

universal constants (in the theory of conformal 
mapping) 77.F 

universal covering group 91.B 423.0 
universal covering space 91.B 
universal covering surface 367.B 
universal curve 93.H 
universal domain 16.A 
universal enveloping algebra 

(of a Lie algebra) 248.5 
special (of a Jordan algebra) 231 .C 

universal enveloping bialgebra 203.G 
universal Euler-Poincark class 56.B 
universal gravitation, law of 271.B 
universally Japanese ring 16.Y 284.F 
universally measurable 270.L 
universal mapping property 52.L 
universal net (in a set) 87.H 
universal Pontryagin class 56.D 
universal proposition 411.B 
universal quantifier 41 l.C 
universal set 

(for the projective sets of class n) 22.E 

(in set theory) 381.B 
universal Stiefel-Whitney class 56.B 
universal Teichmiiller space 416 
universal Turing machine 3 1 .C 
universal unfolding 418.E 
universal validity of a proposition, problem of 97 
universe 

(in nonstandard analysis) 293.B 
(of a structure) 276.B 

unknotted 
(ball pair) 65.D 235.G 
(knot) 235.A 
(sphere pair) 65.D 235.G 

unknotting conjecture 235.G 
unknotting theorem, Zeeman 65.D 
unlabeled graph 186.B 
unmixed ideal 284.D 
unmixedness theorem 284.D 
unordered pair 381.B 

(in axiomatic set theory) 33.B 
axiom of 33.B 

unoriented cobordism class 114.H 
unoriented cobordism group 114.H 
unoriented graph 186.H 
unramified 

(covering surface) 367.B 
(prime ideal) 14.1 
(projection of a covering surface) 367.B 
analytically (semilocal ring) 284.D 

unramified covering (of a nonsingular curve) 9.1 
unramified extension 14.1257.D 
unrenormalizable 132.C 361.B 
unsolvability 

degree of 97 
recursive, arithmetical hierarchy of degrees of 

356.H 
recursive, degree of 97 
recursive, hyperarithmetical hierarchy of de- 
grees of 356.H 

unstable 
(boundary component) 77.E 
(state) 394.A 
completely (flow) 126.E 

unstable manifold 126.G,J 
unstable solution (of Hill’s equation) :!64.E 
up-ladder 206.B 
upper bound 

(of a subset in an ordered set) 311 .B 
least (ofan ordered set) 311.B 
least (of a subset of a vector lattice)1 310.C 

upper boundedness principle (in potent Ial theory) 
338.C 

upper central series (of a group) 19O.J 
upper class 

with respect to local continuity 45.F 
with respect to uniform continuity 45.F 

upper control limit 404.B 
upper derivative 

general (of a set function) 380.D 
ordinary (of a set function) 380.D~ 

upper end (of a curvilinear integral) 94.D 
upper envelope (of a family of subharmonic func- 

tions) 193.R 
upper half-space of degree n, Siegel 32.F 
upper integral, Riemann 216.A 
upper limit (of a Riemann integral) 216.A 
upper limit function 84.C 
upper semicontinuous 

(at a point) 84.C 
(partition) 425.L 
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in a set 84.C 
upper semilattice 243.A 
upper triangular matrix 269.B 
upper variation (of a set function) 380.B 
Uryson lemma 425.Q 
Uryson space, Frechet- 425.CC 
Uryson theorem, Tikhonov- 425.Q 
Uryson-Tikhonov theorem (on metrizability) 

273.K 
Uzawa gradient method, Arrow-Hurwicz- 292.E 

V 

v-curve 1 I l.H 
vacuum vector 377.A 

free 150.C 
vague topology (on a class of measures) 338.E 
valid formula 41 l.G 
valuation(s) 439 

additive 439.B 
Archimedean 14.F 439.C 
complete 439.D 
completion of 439.D 
discrete 439.E 
equivalent 439.B 
exponential 439.B 
generalized 439.B 
multiplicative 439.C 
non-Archimedean 14.F 439.C 
normal 439.E,H 
normalized 439.E 
p-adic 439.F 
p-adic exponential 439.F 
prolongation of 439.B 
pseudo- 439.K 
special 439.B 
over a subfield 439.B,C 
trivial 439.C,F 

valuation ideal (of a valuation) 439.B 
valuation ring 439.B 

completion of 439.D 
discrete 439.E 

valuation vector(s) 6.C 
ring of 6.C 

value(s) 
(of an infinite continued fraction) 83.A 
(of an infinite product) 379.G 
(of a variable) 165.C 
absolute (of a complex number) 74.B 
absolute (of an element of an ordered field) 

149.N 
absolute (of an element of a vector lattice) 

310.B 
absolute (of a real number) 355.A 
absolute (of a vector) 442.B 
asymptotic (of a meromorphic function) 62.A 

272.H 
boundary (of a conformal mapping) 77.B 
boundary (hyperfunction) 125.V 
boundary (relative to a differential operator) 

112.E 
boundary, problem -boundary value problem 
characteristic (of a linear operator) 390.A 
cluster 62.A 
cluster, theorem 43.G 
critical (in bifurcation theory) 286.R 
critical (of a Cm-function on a manifold) 279.B 
critical (of a contact process) 340.C 
critical (of an external magnetic field) 340.B 
critical (of a mapping u: R” + R”) 208.B 

Subject Index 
Variable(s) 

critical (of a C--mapping cp: M + M’) 105.J 
exceptional (of a transcendental entire function) 

429.B 
exceptional, Bore1 272.E 
exceptional, Nevanlinna 272.E 
exceptional, Picard 272.E 
expectation (of an observable) 351.B 
expected (of a random variable) 342.C 
gap (of a point on a Riemann surface) ll.D 
initial (for ordinary differential equations) 

316.A 
initial (for partial differential equatons) 321.A 
initial (for stochastic differential equations) 

406.D 
initial, problem - initial value problem 
limit (of a mapping) 87.F 
mean (of a function on a compact group) 69.A 
mean (of a weakly stationary process) 395.C 
mean, theorem - mean value theorem 
most probable 401.E 
principal (of inverse trigonometric functions) 

131.E 
principal (of log z) 131.G 
principal, Cauchy (of an improper integral) 

216.D 
principal, Cauchy (of the integral of a function 

in (-co, co)) 216.E 
proper (of a boundary value problem) 315.B 
proper (of a linear mapping) 269.L 
proper (of a linear operator) 390.A 
proper (of a matrix) 269.F 
range of (of a meromorphic function) 62.A 
regular 105.J 
sample 396.B 
sample characteristic 396.C 
Shapley 173.D 
singular 302.A 
singular, decomposition (SVD) 302.E 
starting 303.E 
stationary (of a function) 106.L 
true, of parameter 398.A 
truth (of a formula) 41 l.E 

value distribution 124.A 
value function 108.B 405.A 
value group 

(of an additive valuation) 439.B 
(of a multiplicative valuation) 439.C 

Vandermonde determinant 103.G 
van der Pol differential equation 290.C 
van der Waerden-Bortolotti covariant derivative 

417.E 
van der Waerden test 371.C 
Vandiver conjecture 14.L 
van Hove sense, limit in 402.G 
vanishing cocycle 16.U 
vanishing cycle 418.F 
vanishing theorem 

(on compact complex manifolds) 194.G 
Kodaira 232.D 

van Kampen theorem (on fundamental groups) 
170 

variability, measure of 397.C 
variable(s) 165.C 

(of a polynomial) 369.A 
artificial 255.C 
auxiliary 373.C 
basic 255.A 
bound 41 l.C 
canonical (in analytical dynamics) 271.F 
change of (in integral calculus) 216.C 
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complex 165.C 
complex, theory of functions of 198.Q 
dependent 165.C 
differential (of a differential polynomial) 113 
endogenous 128.C 
exogenous 128.C 
explanatory 403.D 
hidden, theories 351.L 
independent 165.C 
individual 41 l.H 
inner 25.B 
lagged 128.C 
object 41 l.G 
outer 25.B 
predetermined 128.C 
predicate 41 l.G,H 
proposition 41 l.E 
random 342.C 
random, independent 342.C 
random, joint 342.C 
random, n-dimensional 342.C 
random, W-valued 342.C 
random, (S, (X)-valued 342.C 
real 165.C 
sampling inspection by 404.C 
separation of 322.C 
slack 255.A 
state 127.A 

variable component (of a linear system) 15.C 16.N 
variable method, discrete 303.A 
variable-step variable-order (VSVO) algorithms 

303.E 
variance 

(of a probability distribution) 341.B 
(of a random variable) 342.C 
(of univariate quantitative data) 397.C 
analysis of 400.H 403.D 
between-group 397.L 
generalized 280.E 397.5 
multivariate analysis of 280.B 
population 396.C 
sample 396.C 
sample generalized 280.E 
uniformly minimum unbiased estimator 399.C 
within-group 397.L 

variance-covariance matrix 341.B 397.5 
variance matrix 341.B 
variate 

canonical 280.E 
fixed 403.D 

variation(s) 
(of an integral) 100.E 
bounded - of bounded variation 
calculus of 46 
calculus of, classical theory of 46.C 
calculus of, conditional problems in 46.A 
calculus of, fundamental lemma in 46.B 
coefficient of 397.C 
of constants, Lagrange’s method of 252.D 
of constants, method of 55.B 252.1 
first 46.B 
first, formula 178.A 
geodesic 178.A 
lower (of a set function) 380.B 
negative (of a mapping) 246.H 
negative (of a real bounded function) 166.B 
one-parameter 178.A 
of parameters, Lagrange method of 252.D 
of parameters, method of App. A, Table 14.1 
positive (of a mapping) 246.H 

positive (of a real bounded function) 166.B 
proper 279.F 
quadratic, process 406.B 
second formula 178.A 
total (of a finitely additive vector measure) 
443.G 

total (of a mapping) 246.H 
total (of a real bounded function) 166.B 
total (of a set function) 380.B 
upper 380.B 

variational derivative 46.B 
variational equation 316.F 394.C 
variational formula, constant 163.E 
variational inequality 440 

of evolution 440.C 
stationary 440.B 

variational method 438.B 
variational principles(s) 441 

(in ergodic theory) 136.G 
(in statistical mechanics) 340.B 402.G 
(in the theory of elasticity) 271.G 
with relaxed continuity requirements 271.G 
for the topological pressure 136.H[ 

variational problem, Gauss 338.5 
variation curve 178.A 
variation vector field 178.A 
variety 

(algebraic variety) 16.A 
(of block design) 102.B 
Abelian 3 
Abelian, isogeneous 3.C 
Abelian, polarized 3.G 
Abelian, simple 3.B 
abstract 16.C 
abstract algebraic 16.C 
afhne 16.A 
atline algebraic 16.A 
Albanese 16.P 
Albanese (of a compact Klhler manifold) 

232.C 
algebraic 16 
algebraic group 13.B 
almost all points of a 16.A 
Brieskorn 418.D 
characteristic (of a microdifferential equation) 

274.G 
Chow 16.W 
complex algebraic 16.T 
function on a 16.A 
generalized Jacobian 9.F 1 l.C 
group 13.B 16.H 
irreducible 16.A 
Jacobian 9.E ll.C 16.P 
Landau 146.C 
Landau-Nakanishi 146.C 386.C 
linear (in an n-module) 422.L 
linear, linearly compact 422.L 
minimal 275.G 
nonsingular 16.F 
normal 16.F 
normal algebraic 16.F 
Picard 16.P 
Picard (of a compact Kahler manifold) 232.C 
prealgebraic 16.C 
product algebraic 16.A 
projective 16.A 
projective algebraic 16.A 
quasi-aNine algebraic 16.C 
quasiprojective algebraic 16.C 
rational 16.5 
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Vector triple product 

rational function on a 16.A 
reducible 16.A 
Schubert 56.E 
smooth 16.F 
strict Albanese 16.P 
toric 16.2 
unirational 16.5 
Zariski topology of a 16.A 

varifold 275.G 
Varshamov-Gilbert-Sacks bound 63.B 
vector(s) 

(in a Euclidean space) 442 
(in a linear space) 256.A 
analytic 437,s 
characteristic (of a linear mapping) 269.L 
characteristic (of a linear operator) 390.A 
characteristic (of a matrix) 269.F 
coherent 377.D 
collinear 442.A 
column 269.A 
contravariant 256.5 
coplanar 442.A 
covariant 256.5 
cyclic (of a representation space of a unitary 

representation) 437.A 
effect 102.A 
eigen- (of a linear mapping) 269.L 
eigen- (of a linear operator) 390.A 
eigen- (of a matrix) 269.F 
eigen-, generalized 390.B 
error 102.A 
fixed 442.A 
four- 359.C 
four-, energy-momentum 258.C 
free 442.A 
free vacuum 15O.C 
fundamental (in a vector space) 442.A 
horizontal 80.C 
independent 66.F 
integral 428.E 
mean 341.B 
mean curvature 365.D 
normal 105.L 11 l.H 364.A 
normalized 409.G 
observation 102.A 
orthogonal 139.G 
p- 256.0 
p-, bundle of 147.F 
positive 7.A 442.A 
Poynting 130.A 
proper (of a linear mapping) 269.L 
proper (of a linear operator) 390.A 
proper (of a matrix) 269.F 
root 390.B 
row 269.A 
tangent 105.H 
tangent, holomorphic 72.A 
tangent. of type (0,l) 72.C 
tangent. of type (LO) 72.C 
unit 442.B 
unit (of an afftne frame) 7.C 
vacuum 377.A 
valuation 6.C 
valuation, ring of 6.C 
vertical 80.B 
wave number (of a sine wave) 446 
Witt 449 
Witt, of length n 449.B 
zero 442.A 

vector algebra App. A, Table 3.1 

vector analysis and coordinate systems App. A, 
Table 3 

vector bundle 147.F 
(algebraic) 16.Y 
ample 16.Y 
complex 147.F 
cotangent 147.F 
dual 147.F 
indecomposable 16.Y 
normal 105.L 
normal k- 114.5 
quaternion 147.F 
semistable 16.Y 
stable 16.Y 237.B 
stably equivalent 237.B 
tangent 105.H 147.F 

vector field 
(on a differentiable manifold) 105.M 
(in a 3-dimensional Euclidean space) 442.D 
Anosov 126.5 
Axiom A 126.5 
basic 80.H 
of class c’ 105.M 
contravariant 105.0 
covariant 105.0 
differentiation of App. A, Table 3.11 
formal 105.AA 
fundamental 191.A 
G- 237.H 
Hamiltonian 126.L 219.C 
holomorphic 72.A 
integral of App. A, Table 3.111 
irrotational 442.D 
Killing 364.F 
Lagrangian 126.L 
lamellar 442.D 
Morse-Smale 126.5 
solenoidal 442.D 
variation 178.A 
without source 442.D 
without vortex 442.D 

vector flux (through a surface) 442.D 
vector function, measurable 308.G 
vector group 422.E 
vectorial form, canonical 417.C 
vectorial p-form 417.C 
vector integral 443.A 
vector invariant 226.C 
vector lattice 310.B 

Archimedean 310.C 
complete 310.C 
normed 310.F 
u-complete 310.C 

vector line (of a vector field) 442.D 
vector measure 443.G 

absolutely continuous 443.G 
bounded 443.G 
completely additive 443.G 
finitely additive 443.G 

vector potential 130.A 442.D 
vector product 442.C App. A, Table 3.1 
vector representation (of a Clifford group) 61.D 
vector space 442.A 

over a field 256.H 
metric 256.H 
prehomogeneous 450.V 
standard (of an affine space) 7.A 
tangent 105.H 
topological 424.A 

vector triple product 442.C App. A, Table 3.1 
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vector tube 442.D 
vector-valued integral 443 
velocity 

group 446 
phase (of a sine wave) 446 

velocity phase space 126.L 
velocity potential 205.B 
Veneziano model 132.C 386.C 
Verbeure inequality, Roepstorff- Fannes- 402.G 
Veronese surface 275.F 
versa1 (unfolding) 5 1 .D 
version (of a stochastic process) 407.A 
vertex (vertices) 

(of an angle) 139.D 155.B 
(in a cell complex) 70.D 
(of a circular cone) 78.A 
(of a complete quadrangle) 343.C 
(of a convex cell in an afftne space) 7.D 
(of a convex polyhedron) 89.A 
(in a Euclidean (simplicial) complex) 70.B 
(of a geodesic triangle) 178.A 
(of a graph) 186.B 
(of a linear graph) 282.A 
(of a parabola) 78.C 
(of a polygon) 155.F 
(in the polyhedron of a simplicial complex) 

7o.c 
(of a simplex in an afftne space) 7.D 
(in a simplicial complex) 70.C 
(of a spherical triangle) 432.B 
(of a star region) 339.D 
adjacent 186.B 
end 186.B 
initial 186.B 
isolated 186.B 
terminal 186.B 

vertical angles 139.D 
vertical component (of a vector field) 80.C 
vertical slit mapping, extremal 367.G 
vertical vector 80.B 
very ample 

(divisor) 16.N 
(linear system) 16.N 
(sheaf) 16.E 

very weak Bernoulli process 136.E 
Vessiot extension field, Picard- 113 
Vessiot theory, Picard- 113 
Vey classes, Godbillon- 154.G 
vibrating membrane, equation of a 325.A 
vibrating string, equation of a 325.A 
vibration 318 

normal 3 18.B 
parametrically sustained 318.B 
self-excited 318.B 

Viete, F. 444 
Vietoris axiom 425.Q 
Vietoris exact sequence, Mayer- (for a proper triple) 

2Ol.C 
Villat integration formula App. A, Table 15.VI 
Vinogradov mean value theorem 4.E 
virtual arithmetic genus (of a divisor) 16.E 
viscosity 205.B 

coefficient of 205.C 
coefficient of bulk 205.C 
coefficient of shear 205.C 
magnetic 259 

visibility manifold 178.F 
Vitali covering theorem 380.D 
Vivanti theorem 339.A 
Volterra integral equation 217.A 

Volterra operator 68.5 
Volterra theorem, Poincart- 198.5 
Volterra type 

integral equation of 217.A 
integrodifferential equation of 222.A 

volume 
(of an idele) 6.D 
(of a lattice in a Euclidean space) 92.D 
(of a polyhedron) 139.F 
(of a simplex in an atline space) 7.E 
inner 270.G 
outer 270.G 

volume element 
(of an oriented Cm-manifold) 105.W 
associated with a Riemannian metric 105.W 
integral of a function with respect to a (on a 
?-manifold) 105.W 

von Karman transonic similarity 205. D 
von Mises theorem 399.K 
von Neumann, J. 445 
von Neumann algebra 308.C 

discrete 308.E 
finite 308.E 
induced 308.C 
purely infinite 308.E 
reduced 308.C 
semitinite 308.E 
structure theorem for, of type III 308.1 
of type I 308.E 
of type II 308.E 
of type II, 308.E 
of type II, 308.E 
of type III 308.E 

von Neumann condition 304.F 
von Neumann density theorem 308.C 
von Neumann-Halmos theorem 136.13 
von Neumann inequality 251.M 
von Neumann-Morgenstern solution 173.D 
von Neumann reduction theory 308.G, 
von Neumann selection theorem 22.F 
von Neumann theorem, Weyl- 390.1 
von Neumann uniqueness theorem 351.C 
vortex, vector field without 442.D 
vortex line 205.B 
vorticity 205.B 
vorticity theorem, Helmholtz 205.B 
Vossen theorem, Cohn- 111.1 
VSVO algorithm 303.E 
V.W.B. process 136.E 

W 

W$Q) (Sobolev space) 168.B 
w-plane 74.D 
w-point (of an entire function) 429.B 
w-sphere 74.D 
W-construction (of an Eilenberg-MacLane complex) 

70.F 
W-surface 111.1 
W*-algebra 308.C 
Wagner function 39.F 
waiting time 260.H 
waiting time distribution 307.C 
Wald theorem 399.H,M 
Walker equation, Yule- 421.D 
Walker metrics, Robertson- 359.E 
wall 

adiabatic 419.A 
diathermal 419.A 

Wall group 114.5 
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Weak topology 

Wallis formula App. A, Table lO.VI 
Wallis test, Kruskal- 371.D 
Walsh system of orthogonal functions 317.C 
wandering 126.E 

weakly, under a group 136.E 
wandering point 126.E 
wandering set 136.C 

weakly 136.C 
Wang exact sequence (of a fiber space) 148.E 
Waring problem 4.E 
Warning second theorem 118.B 
Warning theorem 118.B 
wasan 230 
water wave(s) 205.F 

deep 205.F 
long 205.F 
shallow 205.F 

Watson formula 39.E, App. A, Table 19.IV 
Watson-Nicholson formula App. A, Table 19.111 
Watson process 

Galton- 44.B 
multi (k)-type Galton- 44.C 

Watson transform 160.C 220.B 
wave(s) 446 

Alfven 259 
capillary 205.F 
dispersive 446 
electromagnetic 446 
electromagnetic, theory of 130.B 
fast 259 
gravity 205.F 
gravity, long 205.F 
longitudinal 446 
Mach 205.B 
partial 386.B 
partial, expansion 375.E 386.B 
plane 446 
polarized 446 
shock 205.B 446 
sine 446 
sinusoidal 446 
slow 259 
spherical 446 
stationary 446 
Stokes 205.F 
surface 446 
transverse 446 
water 205.F 
water, deep 205.F 
water, long 205.F 
water, shallow 205.F 

wave equation 325.A 446, App. A, Table 15.111 
wave expansion, partial 375.E 386.B 
wave front set 274.B 345.A 

analytic 274.D 
wave function 351.D 

spheroidal 133.E 
wave guide 130.B 
wavelength (of a sine wave) 446 
wave number (of a sine wave) 446 
wave operator 375.B,H 

generalized 375.B 
incoming 375.B 
modified 375.B 
outgoing 375.B 

wave propagation 446 
wave scattering amplitude, partial 375.E 
wave steepness 205.F 
W.B. process 136.E 
WC group 118.D 

weak (boundary component) 77.E 
weak Bernoulli process 136.E 

very 136.E 
weak convergence 

(of operators) 251.C 
(of probability measures) 341.F 
(of a sequence of submodules) 200.5 

weak Cm topology 279.C 
weak derivative 125.E 
weak dimension (of a module) 200.K 
weaker 

(equivalence relation) 135.C 
(method of summation) 379.L 
(topology) 425.H 
(uniformity) 436.E 

weak extension (of a differential operator) 112.E,F 
weak form of the boundary value problem (of partial 

differential equations) 304.B 
weak global dimension (of a ring) 200.K 
weak homotopy equivalence 202.F 
weak lacuna 325.5 
weak law of large numbers 395.B 
weak Lefschetz theorem 16.U 
weakly, converge 

(in a normal linear space) 37.E 
(in a topological linear space) 424.H 

weakly almost complex manifold 114.H 
weakly compact (linear operator) 68.M 
weakly compact cardinal number 33.E 
weakly continuous (function with values in a Banach 

space) 37.K 
weakly continuous representation (of a topological 

group) 69.B 
weakly dominated (statistical structure) 396.F 
weakly equivalent (transformations) 136.F 
weakly G-stationary (system of random variables) 

395.1 
weakly hyperbolic linear (differential operator) 

325.H 
weakly inaccessible (ordinal number) 312.E 
weakly inaccessible (cardinal number) 33.E 
weakly integrable 443.F 
weakly isomorphic (automorphisms) 136.E 
weakly measurable 443.B,I 
weakly mixing (automorphism) 136.E 
weakly modular 351.L 
weakly nonlinear differential equations 290.D 
weakly I-complete manifold 114.H 
weakly stationary process 395.A 
weakly stationary process of degree k 395.1 
weakly stationary random distribution 395.c 
weakly symmetric Riemannian space 412.5 
weakly wandering set 136.C 
weakly wandering under a group 136.F 
weak minimum 46.C 
weak Mordell-Weil theorem 118.E 
weak operator topology 251.C 
weak potential kernel 260.D 
weak solution 204.C 323.G 378.1 
weak solution, Hopf’s 204.C 
weak* Dirichlet algebra 164.G 
weak star topology 37.E 424.H 
weak topology 

(in a cell complex) 70.D 
(on a class of measures) 338.E 
(on a direct product space) 425.K 
(on a direct sum) 425.M 
(on a locally convex space) 424.H 
(on a normed linear space) 37.E 
(relative to the pairing (E,F)) 424.H 
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Weak type (p, q), quasi-linear operator of 
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hereditarily 425.M (in numerical integration) 299.A 
weak type (p, 4). quasi-linear operator of 224.E (in orthogonality) 317.A 
Weber differential equation 167.C App. A, Table weight group (of a pair (T, K)) 92.C 

20.111 weighting matrix 86.B 
Weber formula App. A, Table 19.IV weight k, automorphic form of 32.B 
Weber function 167.C, App. A, Table 19.IV 20.111 weight k, Fuchsian form of 32.B 
Weber-Hermite differential equation 167.C weight k, Hilbert modular form of 32.8 
Weber-Sonine formula App. A, Table 19.111 weight k, Siegel modular form of 32.F 
web group 234.B weight lattice (of a pair (T, K)) 92.C 
Wedderburn-Mal’tsev theorem (on algebras) 29.F weight m, automorphic form of 32.A 
Wedderburn theorem weight w, invariant of 226.D 

(on commutativity of finite lields) 149.M Weil-Chbtelet group 118.D 
(on simple algebras on a field) 29.E Weil cohomology 450.4 
(on simple rings) 368.G Weil conjecture 450.Q 

wedge 125.V Taniyama- 450,s 
infinitesimal 125.V Weil domain 21.G 

wedge product (of derived functors) 200.K Weil group 6.E 450.H 
wedge theorem, edge of the 125.W Weil L-function 450.H 
Weierstrass, K. 447 Weil measure 225.G 

analytic function in the sense of 198.1 Weil number 3.C 
Weierstrass approximation theorem 336.A Weil theorem 
Weierstrass canonical form Borel- 437.Q 

(of elliptic curves) 9.D Mordell- 118.E 
(of the gamma function) 174.A weak Mordell- 118.E 

Weierstrass canonical product 429.B Weinberg-Salam model, Glashow- 132.D 
Weierstrass criterion for uniform convergence Weingarten formula 

435.A (for an isometric immersion) 365.C 
Weierstrass elliptic functions 134.F, App. A, Table (in the theory of surface) 11 l.H, App. A, Table 

16.IV 4.1 
Weierstrass-Enneper formula 275.A Weingarten surface 111.1 
Weierstrass @-function 134.F, App. A, Table 16.IV Weirich formula App. A, Table 19.111 
Weierstrass point 1 l.D Weisberger sum rule, Adler- 132.C 
Weierstrass preparation theorem 21.E 370.B Welch test 400.G 
Weierstrass sigma function 134.F well-behaved 36.K 
Weierstrass-Stone theorem 168.B well-chained (metric space) 79.D 
Weierstrass theorem well-measurable 407.B 

(on compactness of subsets of R) 355.D well-measurable a-algebra 407.B 
(on continuous functions on a compact set) well-ordered set 31 l.C 

84.C well-ordering 31 l.C 
(on essential singularities) 198.D well-ordering theorem 34.B 
(on expansion of meromorphic functions) well-posed 

272.A (initial value problem) 321.E 
(on transcendental entire functions) 124.B (martingale problem) 115.C 
Bolzano- 140 273.F (problems for partial differential equations) 
Casorati- (on essential singularities) 198.D 322.A 
of double series 379.H Wendroff scheme, Lax- 304.F 
Lindemann- 430.D Weyl, H. 448 

Weierstrass-type preparation theorem (for micro- Weyl canonical basis 248.P 
differential operators) 274.F Weyl chamber 13.5 248.R 

Weierstrass zeta function 134.F positive 248.R 
weight(s) Weyl character formula (on representation of com- 

(of an automorphic form) 32.C pact Lie groups) 248.2 
(in a barycenter) 7.C Weyl conformal curvature tensor 8O.lP 
(of a covariant) 226.D Weyl criterion 182.H 
(of a multiple covariant) 226.E Weyl form 351.C 
(of a representation of a complex semisimple Weyl form of the CCRs (canonical commutation 
Lie algebra) 248.W relations) 337.A 

(on a von Neumann algebra) 308.D Weyl formula 323.M 
(of a weighted homogeneous analytic function) Weyl group 
418.D (of a BN pair) 13.R 

equal, principle of 402.E (of a complex semisimple Lie algebra) 248.R 
extremal length with 143.B (of a connected algebraic group) 13.H 
highest (of a representation of a complex semi- (of a Coxeter complex) 13.R 

simple Lie algebra) 248.W (of a root system) 13.5 
Kallen-Lehmann 150.D (of a symmetric Riemannian space:) 413.F 

weighted homogeneous (analytic function) 418.D affine (of a symmetric Riemannian space) 
weighted moving average 397.N 413.1 
weight function k- 13.4 

(for the mean of a function) 21 l.C Weyl integral formula 225.1 



2147 Subject Index 
Yourden square design 

Weyl lemma 112.D 
Weyl-Stone-Titchmarsh-Kodaira theory 112.0 
Weyl theorem 

(on Lie algebras) 248.F 
Cartan- 248.W 

Weyl theory 
Peter- (on compact groups) 69.B 
Peter- (on compact Lie groups) 249.U 

Weyl-von Neumann theorem 390.1 
white group 92.D 
Whitehead group (of a ring) 237.J 
Whitehead product 202.P 
Whitehead theorem 202.N 

generalized 202.N 
Whitehead torsion 65.C 
white noise 176.D 

Gaussian 407.C 
Whitney class, Stiefel- 56.B,F 147.M 
Whitney class, total Stiefel- 56.B 
Whitney class, universal Stiefel- 56.B 
Whitney condition (b) 418.G 

at a point 418.G 
Whitney extension theorem 168.B 
Whitney mapping (map) 201.5 
Whitney number, Stiefel- 56.F 
Whitney prestratilication 418.G 
Whitney stratification 418.G 
Whitney sum (of vector bundles) 147.F 
Whitney theorem 105.K 
Whitney C/-test, Mann- 371.C 
Whittaker differential equation 167.8, App. A, 

Tables 14.11 19.11 
Whittaker function 167.B, App. A, Table 19.11 
Whittaker model 450.0 
wider sense, Bayes solution in the 398.B 
Widom type, Parreau- 164.K 
width, curve of constant 11 l.E 
width of an oval 11 l.E 
Wiener, generalized Tauberian theorems of 192.D 
Wiener-Brelot solution, Perron- (of Dirichlet prob- 

lem) 120.C 
Wiener compactification 207.C 
Wiener filter 86.E 
Wiener formula 160.B 
Wiener-Hopf integrodifferential equation 222.C 
Wiener-Ikehara-Landau theorem 123.B 
Wiener integral, multiple 176.1 
Wiener-It6 decomposition 176.1 
Wiener kernel 95 
Wiener-Levy theorem 159.1 
Wiener martingales, {.e}- 406.B 
Wiener measure 250.E 
Wiener measure with the initial distribution p 45.B 
Wiener process 5.D 45.B 98.B 
Wiener test 

(for Brownian motion) 45.0 
(for Dirichlet problem) 338.G 
(for random walk) 260.E 

Wiener theorem, Paley- 125.0,BB 
Wightman axiom 150.D 
Wightman field 150.D 
Wightman function 150.D 

truncated 150.D 
Wigner coefficients 353.B 
Wigner rotation 258.C 
Wigner supermultiplet 351.5 
Wigner theorem 258.C 351.H 
Wilcoxon signed rank test 371.B 
Wilcoxon test 371.C 

Wilczynski, directrix of llO.B 
wild 

(knot) 235.A 
(space) 65.F 

Wilson-Hilferty approximations 374.F 
Wilson theorem 297.G 
Wiman theorem 429.B 
winding number 198.B 
window 421.C 
winning strategy 33.F 
Wirtinger inequality App. A, Table 8 
Wirtinger presentation (of a knot group) 235.B,D 
Wishart distribution 374.C 

p-dimensional noncentral 374.C 
witch of Agnesi 93.H 
within-group variance 397.L 
without source (vector field) 442.D 
without vortex (vector field) 442.D 
Witt decomposition (of a quadratic form) 348.E 
Witt group (of nondegenerate quadratic forms) 

348.E 
Witt matrix, Hasse- 9.E 
Witt theorem 

(on s-trace forms) 60.0 
(on quadratic forms) 348.E 
Poincare-Birkhoff- (on Lie algebras) 248.5 

Witt vector 449 
of length n 449.B 

WKB method 25.B 
WKBJ method 25.B 
Wold decomposition 395.D 
Wolfowitz inequality 399.5 
word 31.B 190.M 

cord 63.A 
equivalent 3 1 .B 

word problem (in a finitely presented group) 
161.B 

worst-case complexity 71.A 
Wright differential equation, Cherwell- 291.F 
Wronskian (determinant) 208.E 
Wu class (of a topological manifold) 56.F 
Wu formula App. A, Table 6.V 

X 

x: (distribution) 125.EE 
X-minimal function 367.E 
x,-axis (of a Euclidean space) 140 

Y 

Y-diffeomorphism 136.G 
Y-flow 136.G 
Yamabe problem 183 364.H 
Yang-Mills equation 80.Q 
Yang-Mills field 150.G 
Yang-Mills functional S0.Q 
Yang-Mills G-connection 80.Q 
Yates-Terry normal score test, Fisher- 371.C 
Yosida approximation 286.X 
Yosida theorem, Hille- 378.B 
Young diagram 362.H 
Young inequality 224.E, App. A, Table 8 

Hausdorff- 224.E 
Young modulus 271.G 
Young symmetrizer 362.H 
Young theorem, Hausdorff- 317.B 
Yourden square 102.K 
Yourden square design 102.K 
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Yukawa potential 
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Yukawa potential 338.M 
Yule-Walker equation 421.D 

Z 

Z (integers) 294.A,C 
Z (Zermelo set theory) 33.B 
ZF (Zermelo-Fraenkel set theory) 33.B 
z-distribution 374.B, App. A, Table 22 
z-plane 74.D 
z-sphere 74.D 
z-transformation, Fisher 374.D 
Z-distribution 341.D 
Z-set 382.B 
Z-action (continuous) 126.B 
Z-action of class C’ 126.B 
Z,-extension 14.L 

basic 14.L 
cyclotomic 14.L 

Zariski closed (set) 16.A 
Zariski connectedness theorem 16.X 
Zariski decomposition 15.D 
Zariski dense (set) 16.A 
Zariski main theorem 16.1 
Zariski open (set) 16.A 
Zariski ring 284.C 

complete 284.C 
Zariski site 16.AA 
Zariski topology 

(of a spectrum) 16.D 
(of a variety) 16.A 

Zassenhaus group 151.H 
Zassenhaus theorem 

Jordan- (on integral representation of a group) 
362.K 

Schur- (on Hall subgroups) 151.E 
Zeeman unknotting theorem 65.D 
Zeller theorem, Brown-Shields- 43.C 
zenith angle App. A, Table 3.V 
Zeno, paradoxes of 319.C 
Zermelo-Fraenkel set theory 33.A,B 
Zermelo set theory 33.B 
zero(s) 355.A 

(of a function on an algebraic curve) 9.C 
(of a function on an algebraic variety) 16.M 
homologous to 198.B 
homotopic to 202.B 
scattered, function with 208.C 

zero algebra 29.A 
zero cycles 16.R 
zero-dimensional space, Baire 273.B 
zero divisor 

(of a function on an algebraic variety) 16.M 
(with respect to M/P) 284.A 
(of a ring) 368.B 

zero element 
(of an additive group) 2.E 190.A 
(of a field) 149.A 
(of a linear space) 256.A 
(of a ring) 368.A 

zero homomorphism (between two A-modules) 
277.H 

zero matrix 269.B 
zero object 52.N 
zero-one law 342.G 

Blumenthal 261.B 
Hewitt-Savage 342.G 
Kolmogorov 342.G 

zero point 
(of a holomorphic function) 198.C 

(of a polynomial) 337.B 369.C 
(of a subset of a polynomial ring) 369.C 
of the kth order (of a holomorphrc function) 

198.C 
of the - kth order (of a complex function) 

198.D 
order of (of a homomorphic function) 198.C 

zero-point theorem 
Hilbert 369.D 
Riickert 23.B 

zero representation (of an algebra) 362.C 
zero ring 368.A 
zero-section (of a block bundle) 147.Q 
zero-sum (game) 173.A 
zero-sum two-person game 108.B 
zeroth law of thermodynamics 419.A 
zero vector 442.A 
zeta function(s) 450 

(associated with a prehomogeneous space) 
45d.V 

(of a homeomorphism of a comp.act metric 
space) 126.K 

of an algebraic function field 450.P 
of an algebraic variety over a finite field 450.4 
congruence 450.P 
Dedekind 14.C 450.D 
defined by Hecke operators 450.M 
Epstein 450.K 
Hasse 450.S 
Hey 27.F 
Hurwitz 450.B 
Ihara 450.U 
Riemann 450.B 
of a scheme 450.R 
Selberg 450.T 
Siegel, of indefinite quadratic forms 450.K 
of a simple algebra 27.F 
Tamagawa 450.L 
Weierstrass 134.F, App. A, Table 16.IV 

ZFC 33.B 
Zilber theorem, Eilenberg- 201.5 
zonal harmonics 393.D 
zonal polynomial 374.C 
zonal spherical function (on a homogeneous space) 

437.Y 
Zorn lemma 34.C 
Zygmund, smooth in the sense of 168.B 
Zygmund class 159.E 
Zygmund singular integral operator, Calderon- 

251.0 
Zygmund type, kernal of Calderon 217.5 


